
HAL Id: tel-01843558
https://theses.hal.science/tel-01843558

Submitted on 18 Jul 2018

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Scheduling task graphs on modern computing platforms
Bertrand Simon

To cite this version:
Bertrand Simon. Scheduling task graphs on modern computing platforms. Distributed, Parallel,
and Cluster Computing [cs.DC]. Université de Lyon, 2018. English. �NNT : 2018LYSEN022�. �tel-
01843558�

https://theses.hal.science/tel-01843558
https://hal.archives-ouvertes.fr

Numéro National de Thèse : 2018LYSEN022

THÈSE de DOCTORAT DE L’UNIVERSITÉ DE LYON
opérée par

l’École Normale Supérieure de Lyon

École Doctorale N◦512

Informatique et Mathématiques de Lyon

Spécialité : Informatique

présentée et soutenue publiquement le 04/07/2018, par :

Bertrand SIMON

Ordonnancement de graphes de tâches sur des
plates-formes de calcul modernes

Scheduling task graphs on modern computing platforms

Devant le jury composé de :

Claire HANEN Professeure, Université Paris Nanterre Rapporteure
Safia KEDAD-SIDHOUM Professeure, CNAM, Paris Rapporteure
Sascha HUNOLD Assistant-professor, TU Wien (Autriche) Examinateur
Uwe SCHWIEGELSHOHN Professor, TU Dortmund (Allemagne) Examinateur
Loris MARCHAL Chargé de recherche, CNRS, ENS de Lyon Co-encadrant
Frédéric VIVIEN Directeur de recherche, Inria, ENS de Lyon Directeur de thèse

ii

Acknowledgments

Je souhaite remercier en premier lieu Claire Hanen et Safia Kedad-Sidhoum pour avoir accepté d’être
rapporteures de cette thèse, et donc d’avoir consacré une partie de leur temps à lire en détail ce
manuscript, ainsi que pour leurs remarques judicieuses qui ont permis de l’améliorer. Je suis égale-
ment reconnaissant à Uwe Schwiegelshohn et Sascha Hunold d’avoir accepté d’évaluer mes travaux en
tant que président et membre du jury.

Merci à Loris et Frédéric qui m’ont encadré durant ces trois années. Merci à la fois pour la direction
scientifique au quotidien, les conseils professionnels, mais aussi les moments plus détendus. Tous les
doctorants n’ont pas cette chance.

J’ai beaucoup appris pendant ma thèse notamment en travaillant avec des personnes qui m’ont ap-
porté différentes visions de la recherche et méthodes de travail. Merci à Abdou Guermouche, Michael
Bender, Rob Johnson, Shikha Singh, Samuel McCauley, Oliver Sinnen et Louis-Claude Canon.

Je remercie tous les membres (actuels, anciens, et de passage) de l’équipe ROMA, dans laquelle
règne une très bonne ambiance de travail, entrecoupée de pauses ludiques, gourmandes ou/et anisées.
En particulier les futurs docteurs avec qui j’ai partagé un bureau durant ces trois années: Guillaume,
Julien, Aurélien, Loïc et Gilles. Je remercie également tous les doctorants du LIP que j’ai cotôyés,
Evelyne, Lætitia et Marie, qui m’ont considérablement facilité la vie au laboratoire ainsi que tous les
membres du LIP avec qui j’ai interagi pendant ma thèse.

Impossible de ne pas mentionner ici les PhDisc, avec qui j’ai passé de nombreux week-ends
d’ultimate durant ces trois ans. Déjà quatre thèses soutenues et plusieurs qui vont suivre dans les
prochains mois, je compte sur les nouvelles recrues pour poursuivre la série!

Merci à Uderzo et Goscinny, sans qui les introductions de chapitres auraient manqué d’originalité.
Merci enfin à ma famille qui m’a soutenu tout au long de ma thèse et bien avant.

iii

iv

Introduction

Modern computing platforms are designed to solve increasingly complex scientific problems, that come
from areas as various as astronomy, genomics, geophysics, or image processing. These applications can
benefit from an improved performance in several ways. In the context of numerical simulations, this
improvement may be used to rely on a more complex mathematical model, to study a larger system,
to increase the length of the simulation, or to improve the accuracy by reducing the time steps or the
mesh size. The computational power of modern platforms is increasing due to the combination of many
computing units, which may be specialized in different sorts of computations: a typical computer is now
composed of many classical CPUs (Central Processing Units) associated with some specialized units
such as GPUs (Graphics Processing Units) or Xeon Phi. Because of the large number of computing
units in a modern platform, these units are divided into nodes which are themselves organized into a
specific hierarchy. The available memory is in turn distributed over the nodes. This distribution and the
use of several layers of memories of different speeds lead to complex memory accesses, which is known
as a Non-Uniform Memory Access (NUMA) architecture. Furthermore, transferring data between two
nodes is highly time-consuming, and this cost depends on the connection between involved nodes. Two
computers therefore differ in multiple ways: the number of processing units, the type of each processing
unit, the amount of memory available, the memory access times, the way these resources are organized
into a hierarchy, . . . Due to the complexity and specific features of modern platforms, implementing an
application in order to fully harness the capacities of a given platform is far from an easy task, and the
lack of portability is furthermore highly problematic.

Several approaches have been used to abstract the specificities of the targeted platform in order to
allow a programmer to write efficient and portable parallel code. One of the most natural way to exploit
potential parallelism in a sequential code is to flag certain loops which can be executed concurrently, as
implemented in the OpenMP API [116] released in 1997. A downside of this approach is the restriction
of the parallelism possibilities, as it may introduce unnecessary synchronization points. During the
same period, Cilk [35] proposed a different approach, which has then been adopted in OpenMP 3.0 in
2008. The programmer has here the possibility to call a function via a task, which may be executed on
a different thread, and may wait for a given result before being executed. This method allows to easily
implement parallel recursive algorithms, following for instance the divide-and-conquer mechanism. It
suffers however from limitations on more complex programs. A paradigm which allows more general
parallelism has been introduced quite recently and is now widely adopted [57], for instance in OpenMP
4.0 since 2013: task graphs, also named workflows. The user creates tasks, as previously, but specifies
their data dependences. Any (acyclic) graph of tasks can now therefore be constructed. Typically, an
application is composed of a few main operations which are called many times (e.g., a matrix-matrix
product). The idea here to cope with hybrid platforms is to provide several implementations of each
operation in order to allow its execution on different types of processors. A dedicated software, named
a runtime scheduler, builds the task graph corresponding to the program and schedules the tasks by
allocating each one on some resources of the targeted platform. This software decides the allocation of

v

vi

Problem Model Program DAG Schedule Machine Solution

FOR k = 0 . . TILES−1
FOR n = 0 . . k−1

A[k] [k] <− DSYRK(A[k] [n] , A[k] [k])
A[k] [k] <− DPOTRF(A[k] [k])
FOR m = k + 1 . . TILES−1

FOR n = 0 . . k−1
A[m] [k] <− DGEMM(A[k] [n] , A[m] [n] , A[m] [k])

A[m] [k] <− DTRSM(A[k] [k] , A[m] [k])

POTRF−1

TRSM−4−1 TRSM−2−1 TRSM−3−1

GEMM−4−2−1

GEMM−4−2−0 GEMM−4−3−0

GEMM−4−3−1

GEMM−4−1−0

TRSM−1−0

GEMM−2−1−0 GEMM−3−1−0

GEMM−3−2−1

TRSM−4−0

POTRF−0

TRSM−3−0TRSM−2−0

GEMM−3−2−0

SYRK−1−1−0

SYRK−4−4−0

SYRK−4−4−1

SYRK−2−2−0

SYRK−2−2−1 SYRK−3−3−1

SYRK−3−3−0

Scope of
this thesis

Figure 1: Several steps from a scientific problem to the computation of a solution.1

each task: how many computing units and which ones will be dedicated to them. The developer of a
scientific application does not need to take into account the specificities of the targeted platform in his
code, or even to adapt it to different platforms: everything is in the hands of the scheduler. This concept
has been applied in many contexts, although often primarily motivated by linear algebra, as evidenced
by the number of softwares currently developed and dedicated to task graph scheduling on parallel
platforms. We can cite among them: StarPU [17] from Inria Bordeaux, France; XKAAPI [68] from
Inria Grenoble, France; StarSS [119] from Barcelona Supercomputing Center, Spain; QUARK [147]
and PaRSEC [36] from ICL, University of Tenessee, Knoxville, USA. The dense linear algebra library
MAGMA [137] also relies on DAGs.

If we take a step back, the complete process from a given problem to the computation of a solution is
summarized in Figure 1. Following the example of weather forecasting, mathematical models have been
designed to describe the relevant physical interactions. The earth and the atmosphere are divided into a
3D grid. The interactions between gridboxes, following the mathematical model, are implemented into
a computer program. This program is then interpreted as a DAG, or a workflow. A schedule of this DAG
on the targeted machine is computed by a dedicated scheduler. Finally, the execution of this schedule
leads to the result, here, a weather prediction. The objective of this thesis is to provide theoretical
algorithms and results in order to help schedulers compute a satisfactory schedule of such a DAG on a
given platform.

Representing a consequent workload as a graph of smaller tasks is actually not a new idea. Before
its widespread usage in runtime schedulers, this concept has been used in many areas of the scheduling
domain. Even before computer science scheduling studies, scientific management already included such
a paradigm. In this context, the workload does not represent programs to be executed on a computer,
but a project which has to be completed by human labor. In the 1950s, the Program Evaluation and
Review Technique (PERT), developed for the U.S. Navy, along with the Critical Path Method, already
used this technique for large project management, such as the development of the Polaris submarine.
The main objective was to identify the critical tasks, i.e., tasks for which any delay will impact the final
completion date, in order to prioritize them. This was a major advance in scientific project management,
initiated at the end of the 19th century by the Taylorism and later the Fordism, as it allowed to represent
more complex projects than traditional Gantt charts, which were introduced at the beginning of the 20th
century. In the 1960s and 1970s, many task scheduling problems have been studied in the computing

1All images are either self-produced, under the CC0 license, or in the public domain.

vii

context, considering for instance several machines of potentially different types, independent tasks or
precedence constraints, and different objectives such as minimizing the makespan or the sum of the
completion times, classified under the now widely adopted α |β |γ notation introduced in the survey of
Graham et al. [74]. Graham’s list scheduling algorithm [72] designed in late 1960s to schedule DAGs
on parallel platforms is still a reference. In parallel, task trees have been used to represent arithmetic
expressions, where each node is a single operation. This model has lead to algorithms ensuring for
instance an efficient usage of registers, see for example [130]. Similar techniques have then been used
to reduce the memory consumption of linear algebra workflows [106]. With the increased importance
of heterogeneous architectures, the task graph model has been thoroughly studied, as discussed above.
One of the most well-known algorithm is HEFT [139], a low-complexity heuristic designed in 2002 for
minimizing the makespan on a heterogeneous platform. The improvement of the computing power of
modern machines and the generalization of the task graph model bring new challenges to the scheduling
community. We will explore some of them in this manuscript.

In this thesis, we consider the problem of scheduling a graph of tasks on a modern, therefore com-
plex, platform. As explained in the beginning of this introduction, such platforms present many specifici-
ties, which cannot be all addressed in this manuscript. We therefore focus on shared-memory platforms,
which may represent one node of a more complex platform. Specifically, we consider the three following
challenges.

• Some applications are described as a graph of tasks where each task can be parallelized, which is
known as task parallellism. Allocating more processors to a task generally decreases its comput-
ing time. In addition, several tasks of the graph may also be executed simultaneously (i.e., graph
parallelism). There are therefore two conflicting types of parallelism to cope with: several tasks
can be computed simultaneously, but a single task can be terminated faster using more resources.
The scheduler needs to decide the number of resources allocated to each task, in addition to the
traditional scheduling problem. We study this problem on a homogeneous platform composed of
identical processors.

• Hybrid platforms are composed of several types of processors, for instance CPUs and GPUs. The
execution time of each task is typically much shorter on one type of resource. Because of their
cost, there are usually far fewer GPUs, which makes them a rare resource: many tasks can be
accelerated on GPUs, but an efficient schedule may allocate many of them on CPUs. One of the
main scheduling choices in this context is then to decide on which type of resource each task will
be executed. We study this problem in an online setting, where the graph is gradually discovered,
which increases the difficulty of the decision.

• The processing power of modern platforms increases at a faster rate than the available memory.
Therefore, for more and more applications running on a shared-memory platform, the priority
becomes to reduce the memory consumption in order to avoid expensive memory transfers. We
study two scenarios under this perspective. First, we aim at preventing dynamic schedulers from
running out of memory when possible. These schedulers generally start multiple tasks in parallel,
which may lead to a memory shortage. We study how to restrict this parallelism while maintaining
the performance. Then, if the data files manipulated are too large, the memory will not be suffi-
cient. In this case, the objective is not to prevent these transfers, but to optimize their efficiency,
in order to minimize their impact.

The studies conducted in this thesis focus on the theoretical side of the problems. Therefore, we
don’t claim that our contributions may be directly implemented in an actual runtime scheduler. The

viii

objective is instead to influence future implementations of schedulers, by exhibiting efficient algorithms
under well-defined and nevertheless realistic models. In each studied problem, we aim at grasping the
main features leading to complex scheduling problems in order to propose generic solutions, which are
independent of the nature of the task graph or of the specificities of the platform, provided that they fit
into the adopted model.

The main contributions of each chapter are summarized below.

Chapter 1: The speedup model of Prasanna and Musicus for parallel tasks [C2]

We focus in the first two chapters of this thesis on scheduling graphs of parallel tasks, which means that
several processors can be allocated to each task, and more precisely on malleable tasks, for which the
allocation can change during the execution of a task. In this framework, the objective of minimizing the
makespan on identical processors has been addressed in several studies, but most of them remain quite
general and therefore lead to complex algorithms. We thus focus on specific applications for which we
can estimate the speedup of the tasks, i.e., their acceleration factor as a function of the processing power
allocated to them. We then aim at designing simple algorithms with performance guarantees that can be
implemented in a runtime scheduler.

In this chapter, we target workflows corresponding to the elimination trees arising in the multifrontal
factorization of sparse matrices. The studied DAGs therefore have a tree structure. Simulations show that
a speedup function equal to pα, where p is the number of allocated processors and α is a number smaller
than 1, suits quite well the behavior obtained when using some factorization kernels for a reasonable
number of processors. Such a speedup model has already been studied by Prasanna and Musicus, and
the optimal strategy has been defined through the use of complex optimization techniques. We propose
a new and simpler proof of this optimal strategy which gives more insights on the underlying concepts.
We then study the same scheduling problem on two multicores, where no task can be split between the
two nodes. We prove that this problem is NP-complete, we provide an approximation algorithm when
the nodes are identical, and an FPTAS for independent tasks when the number of processors per node
may differ.

Chapter 2: The two-threshold roofline speedup model for parallel tasks [J2]

The speedup model adopted in the previous chapter presented several limitations and appeared to be
too specific. In order to overcome these weaknesses, we design and study a more accurate and general
speedup model for the same problem. Based on benchmarks, we assume that the parallelization of a task
is composed of three phases. When few processors are allocated to a task, the speedup is perfect. When
many processors are allocated, the speedup is constant. When an intermediate number of processors is
allocated, the speedup is linear but not perfect. The thresholds defining these phases, as well as the max-
imum speedup, depend on the task. Benchmarks on linear algebra kernels show that this model is able
to fit actual tasks with a high accuracy. Minimizing the makespan of a graph of tasks under this model
is unfortunately NP-complete. Two algorithms coming from the literature and not designed specifically
for this model have an approximation ratio depending on tasks’ speedup function. We propose a new
scheduling policy that takes advantage of the knowledge of this model and has the same approximation
ratio. This heuristic turns out to be more efficient than the others on synthetic graphs.

ix

Chapter 3: Exploiting hybrid platforms in an online setting [C6]

The platform studied in the previous chapters is assumed to be composed of identical processors. As
motivated earlier, modern computing platforms rely more and more on several dedicated computing
units, such as GPUs or Xeon Phis, combined with many traditional CPUs. This heterogeneity in the
computing resources leads to difficult scheduling choices: on which type of processor each task should
be executed? Typically, a task can be accelerated if scheduled on one of the few available GPUs, but
this rare resource may be used more efficiently if allocated to another task. This concern is preponderant
when designing dynamic runtime schedulers. Indeed, for some applications, the workflow to schedule,
represented by a DAG of tasks, is not known in advance, or is too large to allow complex computations.
Therefore, when a task becomes available, the scheduler has to allocate this task with little information
on the remainder of the graph. For some applications, it is nevertheless possible to precompute some in-
formation on the descendants of each task. We focus on a platform composed of two types of processors,
for instance m CPUs and k GPUs, with m ≥ k. Each task is sequential (i.e., can be executed on one pro-
cessor) and has a known running time depending solely on the type of processor on which it is executed.
Our contribution is twofold. On the theoretical side, we show several lower bounds on online algorithms
competitivity. An algorithm aware of every available task cannot be better than

p
m/k - competitive. We

study the influence on this bound of the addition of flexibility on the way tasks are processed and of
pre-computed information on the graph. On the algorithmic side, we improve an existing online algo-
rithm to obtain a (2

p
m/k +1) - competitive algorithm. We also design an algorithm which has a better

behavior on non-pathological instances, while maintaining a competitive ratio in O(
p

m/k). We show
on simulations that this heuristic presents performance close to an offline scheduling algorithm (which
has full information on the task graph). All the results have finally been extended to multiple types of
processors.

Chapter 4: Coping with a limited available memory [C7]

In the previous chapters, we did not focus on the memory consumption of the computed schedule, and
therefore implicitly assumed that few data transfers occurred for the targeted applications. Indeed, when
the objective is solely to minimize the makespan, typical schedules execute many tasks concurrently. If
the available memory is not sufficient, this may lead to a memory shortage, and the computed schedule
needs to rely on swap mechanisms or out-of-core execution. These operations have a dramatic impact
on the final execution time, and need then be avoided or optimized.

We first focus on the case where it is possible to avoid out-of-core execution. The obtained schedule
is then usually much more efficient. To address this problem, we consider a DAG whose execution may
or may not fit into the available memory depending on the order in which the tasks are executed. An
interesting result is that deciding whether there exists a schedule that does not fit into memory is polyno-
mial. Dynamic runtime schedulers usually have efficient strategies to minimize the makespan provided
that there is no memory shortage. These strategies are typically adapted from theoretical results such as
the ones presented in the previous chapters. The problem is then to guide these schedulers in order to
prevent them from making choices that lead to a memory shortage. This question is difficult on arbitrary
DAGs because deciding whether there exists a schedule fitting in memory is NP-complete. However, the
graphs considered are generally easy to schedule sequentially without exceeding the memory limit. Our
solution consists in adding dependences to a DAG in order to obtain a graph for which every schedule
will fit in main memory. We use the critical path of the resulting graph in order to assess the quality
of the solution, i.e., the makespan that will be obtained by a scheduler. Unfortunately, even given the
knowledge of a memory-efficient sequential schedule, finding such a graph with additional fictitious
dependences that minimizes the critical path is NP-complete; hence, we rely on heuristics. Specifically,

x

we detect a cut of the graph corresponding to a set of files that may be stored simultaneously in a sched-
ule, but does not fit into memory. Then, we design several heuristics which add a fictitious dependence
in order to prevent the scheduler to reach this cut. This procedure is repeated until no such cut exists.
Simulations on realistic graphs show that such a strategy allows to efficiently prevent memory shortage
while preserving enough parallelism in the graph.

Chapter 5: Minimizing I/Os when processing a tree [W1]

Contrarily to the case studied in the previous chapter, some applications may require too much memory,
so that it is impossible to execute them using exclusively the main memory. We target in this chapter the
elimination tree workflows that arise in multifrontal factorizations. The considered DAG is therefore a
tree, for which we assume that no schedule fits into the main memory. The objective is then to minimize
the transfers (or I/Os) between the core memory and an infinite disk. Several related problems have
already been studied. Deciding whether a graph can be computed without I/Os is polynomial for trees
but NP-complete for DAGs. If the files produced by the tasks have to be either totally in core memory
or totally in secondary storage, minimizing the I/Os is again NP-hard. We focus here on files which
can be divisible: fractions of the files can be moved to secondary storage. This model is relevant when
dealing with large files which can be split in several pages. We first study a subclass of schedules,
named postorder traversals, which completely process a subtree before starting another one. This class
of schedules is often used in actual solvers for data locality reasons. The optimal schedule of this class
can be computed in polynomial time. We prove that its performance can be arbitrarily far from that
of general schedules, but is optimal when all files have a unit size. In order to address the general
problem, we propose an integer linear program and a polynomial heuristic, which appears to be close to
the optimal solution in simulations. The complexity of the general problem remains however open.

Chapter 6: Data structures for external memory [C3, C5]

Nota Bene: This chapter briefly exposes the results obtained during a research visit at the Stony Brook
University, NY USA, in the team of Michael Bender. The subject is therefore not related to the title of
this manuscript.

In this chapter, we design several data structures aimed at performing well under the external mem-
ory model. As in the previous chapter, this model accounts for two levels of memory, which can be
named as RAM and disk. Operations have to be performed on RAM. When this memory is full, a
memory transfer, or I/O, is necessary in order to move contiguous elements from RAM to disk. These
transfers may dictate the final running time and need then to be minimized.

In a first project, we study the complexity of computing prime number tables. Since the sieve of
Eratosthenes, most studies have focused only on the number of operations and the space usage. We
design data structures which dramatically reduce the required I/Os, while performing few operations.
The second project focuses on history-independent data structure. This property ensures that the current
state of the structure reveals no information on past operations. We first design a skip list (a history-
independent and simple data structure performing the same operations as a self-balancing binary search
tree) matching the optimal external memory bounds with high probability. The second data structure
yields a near-optimal history-independent cache-oblivious B-tree, i.e., one of the standard search struc-
ture in external memory. This data structure maintains a dynamic set of elements in sorted order in a
linear-size array. We design a history-independent version with the same complexity guarantees.

Contents

Introduction v

French summary xv

Preliminaries xxv

1 The speedup model of Prasanna and Musicus for parallel tasks 1
1.1 Related work . 3

1.1.1 Models of parallel tasks . 3
1.1.2 Results for moldable tasks . 4
1.1.3 Results for malleable tasks . 4
1.1.4 Series-parallel graphs . 4

1.2 Experimental evaluation of the model . 4
1.3 Application model . 8
1.4 Optimal solution for shared-memory platforms . 9
1.5 Simulations . 14
1.6 Extensions to distributed memory . 16

1.6.1 Two homogeneous multicore nodes . 16
1.6.2 Two heterogeneous multicore nodes . 25

1.7 Conclusion . 28

2 The two-threshold roofline speedup model for parallel tasks 29
2.1 Application model . 30
2.2 Experimental validation of the model . 32
2.3 Problem complexity . 34
2.4 Heuristics description and approximation analysis . 38

2.4.1 Performance analysis of Proportional Mapping 39
2.4.2 Optimizations of Proportional Mapping . 40
2.4.3 A novel algorithm: Greedy-Filling . 41
2.4.4 The FlowFlex algorithm . 43

2.5 Experimental comparison . 44
2.5.1 Datasets . 44
2.5.2 Results . 45

2.6 Conclusion . 48

xi

xii CONTENTS

3 Exploiting hybrid platforms in an online setting 49
3.1 Related work . 50
3.2 Lower bound on online algorithms competitiveness . 51
3.3 Competitive algorithms . 58

3.3.1 The Quick Allocation (QA) algorithm . 58
3.3.2 A tunable competitive algorithm which performs well in practice 63

3.4 The allocation is more difficult than the schedule . 64
3.5 Extension to multiple types of processors . 66
3.6 Simulations . 68

3.6.1 Baseline heuristics . 68
3.6.2 Experimental setup . 69
3.6.3 Results . 69

3.7 Towards an offline approximation algorithm . 72
3.8 Conclusion . 75

4 Coping with a limited available memory 77
4.1 Related work . 78
4.2 Problem modeling . 79

4.2.1 Formal description . 79
4.2.2 Emulation of other memory models . 81
4.2.3 Peak memory minimization in the proposed model 84

4.3 Computing the maximal peak memory . 84
4.3.1 Complexity of the problem . 85
4.3.2 Explicit algorithm . 86

4.4 Lowering the maximal peak memory of a graph . 88
4.4.1 Complexity analysis . 89
4.4.2 Finding an optimal partial serialization through ILP 91
4.4.3 Heuristic strategies to compute a partial serialization 93
4.4.4 Computing a sequential schedule for MINLEVELS 94

4.5 Simulation results . 95
4.6 Conclusion . 103

5 Minimizing I/Os when processing a tree 105
5.1 Related work . 106
5.2 Problem modeling and basic results . 107

5.2.1 Model and notation . 107
5.2.2 Towards a compact solution . 108
5.2.3 Related algorithms . 109

5.3 Existing solutions are not satisfactory . 110
5.3.1 Computing the best postorder traversal . 110
5.3.2 POSTORDERMINIO is optimal on homogeneous trees 111
5.3.3 Postorder traversals are not competitive . 117
5.3.4 OPTMINMEM is not competitive . 118
5.3.5 Unknown complexity . 119

5.4 ILP formulation of the problem . 122
5.5 Heuristic . 124
5.6 Numerical results . 126

CONTENTS xiii

5.6.1 Datasets . 126
5.6.2 Results . 127

5.7 Conclusion . 130

6 Data structures for external memory 131
6.1 Introduction to the computational model . 132
6.2 The I/O complexity of computing prime tables . 132
6.3 History-independent sparse tables and dictionaries . 134

6.3.1 External memory skip list . 134
6.3.2 History-independent packed-memory array . 135

6.4 Conclusion . 135

Conclusion 137

Appendices 141

A The I/O complexity of computing prime tables [LATIN 2016 conference] 141

B Anti-persistence on persistent storage: history-independent sparse tables and dictionaries
[PODS 2016 conference] 177

Bibliography 193

List of publications 203

xiv CONTENTS

French summary

Les plates-formes de calcul modernes sont conçues pour résoudre des problèmes scientifiques de plus
en plus complexes, qui viennent de domaines variés tels que l’astronomie, la génomique, la géophysique
ou le traitement d’images. Ces applications peuvent bénéficier d’une performance accrue de plusieurs
manières. Dans le contexte des simulations numériques, cette amélioration peut être utilisée pour utiliser
un modèle mathématique plus complexe, étudier un système plus grand, augmenter la longueur de la
simulation ou améliorer la précision en diminuant le pas de temps ou la taille de la grille. La puissance
de calcul des plates-formes modernes augmente grâce à l’utilisation en parallèle de plusieurs unités
de calcul, qui peuvent être spécialisées en différents types de calcul: un ordinateur typique est main-
tenant composé d’un grand nombre de composants CPU (Central Processing Unit) classiques associés à
plusieurs unités spécialisées tels que des GPU (Graphics Processing Unit) ou des Xeon Phi. Puisque les
plates-formes modernes sont composées d’un grand nombre d’unités de calcul, ces unités sont divisées
en nœuds qui sont eux-mêmes organisés selon une hierachie spécifique. La mémoire disponible est à son
tour distribuée parmi ces nœuds. Cette distribution et l’utilisation de plusieurs niveaux de mémoire de
différentes vitesses conduisent à des accès mémoires complexes, phénomène connu sous le nom d’une
architecture NUMA (Non-Uniform Memory Access). En outre, transférer des données entre deux nœuds
demande beaucoup de temps, et ce coût dépend de la connection entre les nœuds impliqués. Deux ordi-
nateurs diffèrent donc dans de multiples aspects: le nombre d’unités de calcul, le type de chaque unité
de calcul, la quantité de mémoire disponible, les temps d’accès mémoire, la manière dont ces ressources
sont organisées en une hiérarchie, . . . À cause de la complexité et des particularités des plates-formes
modernes, implémenter une application de manière à exploiter au mieux les capacités d’une plate-forme
donnée est loin d’être une tâche facile, et le manque de portabilité est de plus fortement problématique.

Plusieurs approches ont été menées pour abstraire les particularités de la plate-forme visée afin de
permettre au programmeur d’écrire un code parallèle efficace et portable. L’un des moyens les plus na-
turels pour exploiter le parallélisme potentiel d’un code séquentiel consiste à identifier certaines boucles
qui peuvent être exécutées en parallèle, comme implémenté dans l’interface OpenMP sortie en 1997.
Un défaut de cette approche est la restriction des possibilités de parallélisation, car des points de syn-
chronisation superflus peuvent être introduits. Durant la même période, l’interface Cilk propose une
approche différente, qui a ensuite été adoptée dans OpenMP 3.0 en 2008. Le programmeur a ici la
possibilité d’appeler une fonction à travers une tâche, qui peut être éxécutée sur un thread différent, et
peut attendre le calcul de certains résultats avant d’être démarrée. Cette méthode permet d’implémenter
facilement des algorithmes parallèles récursifs, qui suivent par exemple le méchanisme diviser pour
régner. Elle souffre néanmoins de limitations pour des programmes plus complexes. Un paradigme per-
mettant un parallélisme plus général a été développé assez récemment et est maintenant généralement
adopté, par exemple dans OpenMP 4.0 depuis 2013: les graphes de tâches. L’utilisateur créé des tâches,
comme précédemment, mais spécifie directement leurs dépendances. Tout graphe de tâche (acyclique)
peut donc être construit. Typiquement, une application est composée de quelques opérations principales
utilisées très souvent (e.g., un produit de matrices). L’idée pour exploiter des plates-formes hybrides

xv

xvi CONTENTS

Problème Modèle Programme Graphe Ordonnancement Machine Solution

FOR k = 0 . . TILES−1
FOR n = 0 . . k−1

A[k] [k] <− DSYRK(A[k] [n] , A[k] [k])
A[k] [k] <− DPOTRF(A[k] [k])
FOR m = k + 1 . . TILES−1

FOR n = 0 . . k−1
A[m] [k] <− DGEMM(A[k] [n] , A[m] [n] , A[m] [k])

A[m] [k] <− DTRSM(A[k] [k] , A[m] [k])

POTRF−1

TRSM−4−1 TRSM−2−1 TRSM−3−1

GEMM−4−2−1

GEMM−4−2−0 GEMM−4−3−0

GEMM−4−3−1

GEMM−4−1−0

TRSM−1−0

GEMM−2−1−0 GEMM−3−1−0

GEMM−3−2−1

TRSM−4−0

POTRF−0

TRSM−3−0TRSM−2−0

GEMM−3−2−0

SYRK−1−1−0

SYRK−4−4−0

SYRK−4−4−1

SYRK−2−2−0

SYRK−2−2−1 SYRK−3−3−1

SYRK−3−3−0

Cadre de
cette thèse

Figure 2: Plusieurs étapes d’un problème scientifique au calcul d’une solution.

consiste à fournir plusieurs implémentations de chaque opération afin de permettre leur exécution sur
différents types de processeurs. Un logiciel dédié, appelé un ordonnanceur runtime, construit le graphe
de tâches correspondant au programme et ordonnance les tâches en allouant chacune sur des ressources
de la plate-forme visée. Ce logiciel décide de l’allocation de chaque tâche: combien d’unités de calcul
et lesquelles sont dédiées à une tâche. Le développeur de l’application scientifique n’a donc pas besoin
de prendre en compte les particularités de la plate-forme visée dans son code: tout est dans les mains de
l’ordonnanceur. Ce concept a été appliqué dans de nombreux contextes, souvent motivés par l’algèbre
linéaire, comme en atteste le nombre de logiciels actuellement développés et dédiés à l’ordonnancement
de graphes de tâches sur des plates-formes parallèles. Parmi eux, nous pouvons citer: StarPU de Inria
Bordeaux, France; XKAAPI de Inria Grenoble, France; StarSS du Barcelona Supercomputing Center,
Espagne; QUARK et PaRSEC de l’ICL, University of Tenessee, Knoxville, États-Unis. La bibliothèque
d’algèbre linéaire dense MAGMA repose aussi sur des graphes de tâches.

Pour prendre du recul, le processus complet d’un problème jusqu’au calcul d’une solution peut
être schématiquement résumé par la figure 2. Suivant l’example de prédictions météorologiques, des
modèles mathématiques ont été conçus pour décrire les interactions physiques pertinentes. La Terre et
son atmosphère sont divisées en une grille tridimensionnelle. Les interactions entre les cases de la grille,
suivant le modèle mathématique, sont implémentées dans un programme informatique. Ce programme
est ensuite interprété comme un graphe de tâches. Un ordonnancement de ce graphe sur la machine
visée est calculé par un ordonnanceur dédié. Finalement, l’exécution de cet ordonnancement mène au
résultat, ici, une prédiction météorologique. L’objectif de cette thèse est de fournir des algorithmes et
résultats théoriques afin d’aider les ordonnanceurs à calculer un ordonnancement satisfaisant pour un
graphe de tâche sur une plate-forme donnée.

Représenter une charge de travail conséquente comme un graphe de tâches plus petites n’est en
fait pas une idée nouvelle. Avant son usage généralisé dans les ordonnanceurs, ce concept a été util-
isé dans plusieurs domaines de l’ordonnancement. Même avant l’étude d’ordonnancements informa-
tiques, la gestion scientifique du travail se servait déjà d’un paradigme similaire. Dans ce contexte, la
charge de travail ne représente pas des programmes à exécuter sur un ordinateur, mais un projet qui
doit être traité par une main d’œuvre humaine. Dans les années cinquante, le programme PERT (Pro-
gramme Evaluation and Review Technique) développé pour la marine américaine, ainsi que la méthode
du chemin critique (Critical Path Method), utilisaient déjà cette technique pour identifier les tâches cri-
tiques, i.e., les tâches pour lesquelles tout délai retarde la date de finition du projet, afin de les traiter
en priorité. Ce fût une avancée majeure dans la gestion scientifique de projets, initiée à la fin du XIXe

CONTENTS xvii

siècle par le Taylorisme puis le Fordisme, car des projets plus complexes pouvaient être étudiés, con-
trairement aux traditionnels diagrammes de Gantt, introduits au début du XXe siècle. Dans les années
soixante et soixante-dix, beaucoup de problèmes d’ordonnancements ont été étudiés en informatique,
considérant par exemple plusieurs machines de différents types, des tâches indépendantes ou des con-
traintes de précédence, et différents objectifs comme la minimization du temps d’exécution ou la somme
des temps de terminaison, classifiés selon la notation de Graham α |β |γ désormais largement adoptée.
L’algorithme d’ordonnancement de liste de Graham, conçu à la fin des années soixante pour ordon-
nancer des graphes sur des plates-formes parallèles est encore une référence. En parallèle, les arbres de
tâches ont été utilisés pour représenter des expressions arithmétiques, où chaque nœud représente une
unique opération. Ce modèle a mené à des algorithmes assurant par exemple une utilisation efficace
des registres. Des techniques similaires ont ensuite été utilisées pour réduire la consommation mémoire
d’applications d’algèbre linéaire. Avec l’importance accrue des architectures hétérogènes, le modèle de
graphe de tâches a été profondément étudié, comme exposé plus haut. L’un des algorithmes les plus
connus est HEFT (Heterogeneous Earliest Finish Time), une heuristique de faible complexité conçue en
2002 pour minimiser le temps d’exécution d’un graphe sur une plate-forme hétérogène. L’amélioration
de la puissance de calcul des plates-formes modernes et la généralisation du modèle de graphes de tâches
apporte de nouveaux défis en ordonnancement. Nous allons explorer quelques-uns d’entre eux dans ce
manuscrit.

Dans cette thèse, nous considèrons le problème d’ordonnancement d’un graphe de tâches sur une
plate-forme moderne, donc complexe. Comme expliqué au début de cette introduction, de telles plates-
formes présentent de nombreuses particularités, qui ne peuvent être toutes prises en compte dans ce
manuscrit. On se concentre donc sur des plates-formes à mémoire partagée, qui peuvent représenter un
nœud d’une plate-forme complexe. Plus précisément, nous considèront les trois défis suivants.

• Certaines applications sont décrites par des graphes de tâches où chaque tâche peut être paral-
lélisée, ce qui est appelé parallélisme de tâche. Allouer plus de processeurs sur une tâche permet
généralement de diminuer son temps d’exécution. En outre, plusieurs tâches du graphe peuvent
être exécutées simultanément (parallélisme de graphe). Il y a donc deux types de parallélisme
contradictoires à exploiter: plusieurs tâches peuvent être exécutées simultanément, mais chaque
tâche peut être terminée plus rapidement en utilisant plus de ressources. L’ordonnanceur doit
donc décider du nombre de ressources allouées à chaque tâche, en plus du problème tradition-
nel d’ordonnancement. Nous étudions ce problème sur une plate-forme homogène composée de
processeurs identiques.

• Les plates-formes hybrides comportent plusieurs types de processeurs, par exemple des CPU et
des GPU. Le temps d’exécution de chaque tâche est typiquement plus court sur une des ressources.
À cause de leur côut, les GPU sont généralement moins nombreux, et constituent donc une
ressource rare: beaucoup de tâches pourraient être accélérées sur GPU, mais un ordonnance-
ment efficace doit généralement en allouer la plupart sur les CPU. Une des principales décisions
dans ce contexte consiste à choisir le type de ressource sur lequel chaque tâche sera exécutée.
Nous étudions ce problème dans un contexte online (ou en ligne), le graphe étant progressivement
découvert, ce qui augmente la difficulté de la décision.

• La puissance de calcul des plates-formes modernes augmente plus rapidement que la mémoire
disponible. En conséquence, pour de plus en plus d’applications exécutées sur une plate-forme à
mémoire partagée, la priorité devient de réduire la consommation mémoire afin d’éviter de coû-
teux transferts de mémoire. Nous étudions deux scenarios sous cette perspective. Tout d’abord,

xviii CONTENTS

nous prenons pour objectif d’empêcher un ordonnanceur dynamique d’être à court de mémoire.
Ces ordonnanceurs démarrent généralement beaucoup de tâches en parallèle, ce qui peut entraîner
une pénurie de mémoire. Nous étudions comment restreindre le parallélisme tout en maintenant un
bon niveau de performance. Ensuite, si les fichiers de données manipulés sont trop volumineux, la
mémoire disponible ne sera pas suffisante. Dans ce cas, l’objectif n’est plus d’éviter ces transferts,
mais d’optimiser leur efficacité, afin de minimiser leur effet.

Les travaux conduits dans cette thèse se concentrent sur l’aspect théorique des problèmes. Par con-
séquent, nous n’affirmons pas que nos contributions peuvent être implémentées directement dans les
ordonanceurs actuellement développés. L’objectif est plutôt d’influencer les futures implémentations de
ces ordonnanceurs, en fournissant des algorithmes efficaces sous un modèle bien défini mais néanmoins
réaliste. Dans chaque étude, nous visons à saisir les principaux aspects qui mènent à des problèmes
complexes d’ordonnancement afin de proposer des solutions génériques, qui sont indépendantes de la
nature du graphe de tâche ou des particularités de la plate-forme visée, à condition que le modèle adopté
soit adequat.

Les contributions principales de chaque chapitre sont résumées ci-dessous.

Chapitre 1: Le modèle d’accélération de Prasanna et Musicus pour les tâches parallèles

Nous nous intéressons dans les deux premiers chapitres de cette thèse à l’ordonnancement de tâches par-
allèles, ce qui veut dire que plusieurs processeurs peuvent être alloués à chaque tâche, et plus précisément
aux tâches malléables, pour lesquelles l’allocation peut varier au cours de l’exécution de la tâche. Dans
ce cadre, l’objectif de minimiser le temps d’exécution sur une plate-forme composée de processeurs
identiques a été étudié dans de nombreux travaux, mais la plupart s’intéresse à un cadre général et mène
à des algorithmes complexes. Nous nous concentrons sur des applications spécifiques pour lesquelles il
est possible d’estimer l’accélération des tâches, i.e., le rapport entre le temps d’exécution séquentiel et
le temps d’exécution sur plusieurs processeurs en fonction du nombre de processeurs alloués à la tâche.
L’objectif est de concevoir des algorithmes à la fois simples à mettre en œuvre dans un ordonnanceur et
avec des garanties de performances.

Dans ce chapitre, nous nous intéressons aux applications correspondant aux arbres d’élimination qui
interviennent lors de la factorisation multifrontale de matrices creuses. Les graphes étudiés ont donc
une structure d’arbre. Des simulations montrent qu’une accélération égale à pα, où p est le nombre de
processeurs alloués et α est un nombre entre 0 et 1, correspond plutôt bien au comportement obtenu
en utilisant certains noyaux de factorisation pour un nombre de processeurs raisonnable. Un tel modèle
d’accélération a déjà été étudié par Prasanna et Musicus, et la stratégie optimale a été définie à travers
l’utilisation de techniques complexes d’optimisation. Nous proposons une nouvelle preuve plus simple
de cette stratégie optimale qui donne plus d’intuition sur les concepts sous-jacents. Nous généralisons
ensuite le problème à deux nœuds multi-cœurs, où une tâche ne peut être divisée sur les deux nœuds.
Nous montrons que ce problème est NP-complet, fournissons une approximation lorsque les nœuds sont
identiques et une FPTAS pour des tâches indépendantes quand le nombre de cœurs par nœud diffère.

Chapitre 2: Le modèle d’accélération à deux seuils et un plateau pour les tâches paral-
lèles

Le modèle d’accélération adopté dans le chapitre précédent s’est avéré comporter plusieurs limitations
et être trop spécifique. Afin de pallier ces faiblesses, nous concevons dans ce chapitre un modèle
d’accélération plus précis et général pour le même problème. En se basant sur des mesures réélles,

CONTENTS xix

nous considérons que l’accélération d’une tâche se compose de trois phases. Lorsque peu de pro-
cesseurs sont alloués à la tâche, l’accélération est parfaite. Lorsque beaucoup de processeurs sont al-
loués, l’accélération demeure constante. Lorsqu’un nombre intermédiaire de processeurs est alloué,
l’accélération est linéaire mais imparfaite. Les seuils définissant ces phases, ainsi que la valeur de
l’accélération maximale, dépendent de la tâche. Les mesures de temps d’exécution de noyaux d’algèbre
linéaire montrent que ce modèle permet de modéliser des tâches réelles avec une grande précision.
Minimiser le temps d’exécution d’un graphe dans ce contexte est malheureusement NP-dur. Deux
algorithmes venant de la littérature et non conçus spécialement pour ce modèle présentent un fac-
teur d’approximation dépendant de l’accélération des tâches. Nous proposons une nouvelle politique
d’ordonnancement qui utilise la connaissance de ce modèle et possède le même facteur d’approximation.
Cette heuristique se révèle être plus efficace que les autres sur des graphes synthétiques.

Chapitre 3: Utilisation efficace de plates-formes hétérogènes dans un contexte en ligne

La plate-forme étudiée dans les précédents chapitres est composée de processeurs identiques. Comme
motivé plus haut, les plates-formes modernes comportent de plus en plus d’unités de calcul dédiées,
comme des GPU ou des Xeon Phi, combinées avec un grand nombre de CPU traditionnels. Cette
hétérogénéité dans les ressoures de calcul mène à des choix d’ordonnancement difficiles: sur quel type
de processeur chaque tâche doit-elle être exécutée ? Typiquement, une tâche peut être accélérée en étant
exécutée sur l’un des GPU disponibles, mais cette ressource rare pourrait être utilisée plus efficacement
sur une autre tâche. Cette question est prépondérante dans la conception d’ordonnanceurs dynamiques.
En effet, pour certaines applications, le graphe de tâches à ordonnancer n’est pas connu à l’avance,
ou est trop grand pour permettre des calculs complexes. Ainsi, lorsqu’une tâche devient disponible,
l’ordonnanceur doit décider de son allocation avec peu d’informations sur le reste du graphe. Il est par-
fois néanmoins possible de précaculer certaines informations sur les descendants de chaque tâche. Nous
nous concentrons sur une plate-forme composée de deux types de processeurs, par exemple m CPU et k
GPU, avec m ≥ k. Chaque tâche est séquentielle (i.e., ne peut être exécutée que sur un seul processeur)
et son temps d’exécution sur chaque type de ressource est connu. Notre contribution est double. Du
côté théorique, nous montrons plusieurs bornes inférieures sur la compétitivité des algorithmes en ligne.
Un algorithme connaissant seulement les tâches disponibles ne peut être

p
m/k - compétitif. Nous étu-

dions l’effet sur cette borne de l’ajout de flexibilité sur la manière dont les tâches sont ordonnancées
et d’informations pré-calculées sur le graphe. Du côté algorithmique, nous améliorons un algorithme
en ligne existant pour obtenir un algorithme (2

p
m/k +1) - compétitif. Nous avons également conçu un

algorithme qui se comporte mieux sur les instances non pathologiques, tout en maintenant un facteur
de compétitivité en O(

p
m/k). Nous montrons via des simulations que cette heuristique présente des

performances proches d’un algorithme hors ligne (qui connaît le graphe entier). Tous les résultats ont
finalement été étendus à plusieurs types de processeurs.

Chapitre 4: Ordonnancement sous une mémoire limitée

Dans les chapitres précédents, nous n’avons pas pris en compte la consommation mémoire des ordonan-
ncements calculés, et avons donc implicitement supposé que peu de transferts de données étaient néces-
saires pour les applications visées. En effet, lorsque l’objectif est uniquement de minimiser le temps
d’exécution, les ordonnancements typiques exécutent un grand nombre de tâches simultanément. Si la
mémoire disponible n’est pas suffisante, cela peut mener à une pénurie de mémoire, et l’ordonnancement
calculé doit donc se résoudre à des échanges de mémoire ou une exécution hors-cœur. Ces opérations
ont une grande influence sur le temps d’exécution final, et doivent donc être évitées ou optimisées.

xx CONTENTS

Nous nous concentrons d’abord sur le cas où il est possible d’éviter des transferts de mémoire.
L’ordonnancement obtenu est ainsi généralement largement plus efficace. Pour aborder ce problème,
nous considèrons un graphe dont l’exécution peut tenir dans la mémoire disponible ou non en fonction
de l’ordre dans lequel les tâches sont exécutées. Un résultat intéressant établit que décider s’il existe un
ordonnancement qui ne tient pas en mémoire est polynomial. Les ordonnanceurs dynamiques utilisent
généralement des stratégies efficaces pour minimiser le temps d’exécution pourvu qu’il n’y ait pas de
pénurie de mémoire. Ces stratégies sont typiquement adaptées de résultats théoriques comme ceux
développés dans les chapitres précédents. Le problème est alors de guider ces ordonnanceurs afin de les
empêcher de faire des choix qui mèneraient à une pénurie de mémoire. Cette question est difficile sur
des graphes arbitraires car décider s’il existe un ordonnancement tenant en mémoire est NP-dur. Cepen-
dant, les graphes considérés sont généralement faciles à ordonnancer séquentiellement sans dépasser
la mémoire disponible. Notre solution consiste à ajouter des dépendances à un graphe afin d’obtenir
un graphe pour lequel chaque ordonnancement tient en mémoire. Nous utilisons le chemin critique du
graphe résultant pour estimer la qualité d’une solution, i.e., le temps d’exécution qui sera obtenu par
un ordonnanceur. Malheureusement, même avec la connaissance d’un ordonnancement séquentiel ef-
ficace en mémoire, calculer un tel graphe avec des dépendances factices additionnelles qui minimise
le chemin critique est NP-dur. Nous nous reposons donc sur des heuristiques. Précisément, nous dé-
tectons une coupe dans le graphe correspondant à un ensemble de fichiers qui peuvent être enregistrés
simultanément dans un ordonnancement, mais qui ne tient pas en mémoire. Ensuite, nous concevons
plusieurs heuristiques qui ajoutent une dépendance factice afin d’empêcher l’ordonnanceur d’atteindre
cette coupe. Cette procédure est répétée jusqu’à ce qu’aucune telle coupe n’existe. Les simulations
sur des graphes réalistes montrent qu’une telle stratégie permet d’éviter efficacement une pénurie de
mémoire tout en préservant assez de parallélisme dans le graphe.

Chapitre 5: Minimisation des transferts mémoire lors de l’ordonnancement d’un arbre

Contrairement au cas étudié dans le chapitre précédent, certaines applications peuvent demander trop de
mémoire, de telle sorte qu’il est impossible de les exécuter en utilisant seulement la mémoire principale.
Nous nous intéressons dans ce chapitre aux arbres d’élimination apparaissant lors des factorisations
multifrontales de matrices creuses. Le graphe considéré est donc un arbre, pour lequel nous supposons
qu’aucun ordonnancement ne tient en mémoire. L’objectif est alors de minimiser les transferts (ou E/S)
entre la mémoire principale et un disque infini. Plusieurs problèmes reliés ont déjà été étudié. Décider
si un graphe peut être exécuté sans E/S est polynomial pour un arbre mais NP-dur pour un graphe
général. Si les fichiers produits par les tâches ne peuvent être partagés entre la mémoire principale et le
disque, minimiser les E/S est NP-dur. Nous nous intéressons ici à des fichiers qui peuvent être divisés:
il est possible de déplacer une partie de ces fichiers sur le disque. Ce modèle est pertinent lorsque
les fichiers sont de taille conséquente et peuvent être découpés en plusieurs pages mémoire. Nous
étudions d’abord une sous-classe d’ordonnancement, appelée postordre, qui exécute totalement chaque
sous-arbre avant de démarrer un autre sous-arbre. Cette classe d’ordonnancements est souvent utilisée
dans les ordonnanceurs pour des raisons de localité mémoire. L’ordonnancement optimal de cette classe
peut être calculé efficacement. Nous montrons qu’il peut mener à un nombre d’E/S arbitrairement
plus grand qu’un ordonnancement non postordre, mais qu’il est optimal si les fichiers sont de taille
unitaire. Afin d’aborder le problème général, nous proposons un programme linéaire en nombres entiers
et une heuristique polynomiale, qui se révèle proche de la solution optimale dans les simulations. La
complexité du problème général demeure cependant ouverte.

CONTENTS xxi

Chapitre 6: Structures de données pour la mémoire externe

Nota Bene: Ce chapitre expose brièvement les résultats obtenus durant une visite de recherche à
l’université de Stony Brook. Le sujet n’est donc pas relié au titre de ce manuscrit.

Dans ce chapitre, nous concevons plusieurs structures de données conçues pour avoir une bonne
performance dans le modèle de mémoire externe. Comme dans le chapitre précédent, ce modèle prend
en compte deux niveaux de mémoires, qui peuvent être appelées RAM et disque. Les opérations doivent
être réalisées sur la RAM. Lorsque cette mémoire est pleine, un transfert de mémoire, ou E/S, est néces-
saire afin de déplacer un ensemble d’éléments contigus de la RAM vers le disque. Ces transferts ont une
grande influence sur le temps d’exécution total et doivent donc être minimisés.

Dans un premier projet, nous étudions la complexité de calculer un tableau de nombres premiers.
Depuis le crible d’Eratosthène, la plupart des études se sont concentrées seulement sur la minimisa-
tion du nombre d’opérations et de l’espace mémoire nécessaire. Nous concevons des structures de
données qui réduisent grandement le nombre d’E/S requis, tout en nécessitant peu d’opérations. Le
second projet se concentre sur les structures de données indépendantes de l’historique. Cette propriété
assure que l’état courant de la structure de données ne révèle aucune information sur les opérations
passées. Nous concevons tout d’abord une liste à enjambement, ou skip list (une structure de données
simple et indépendante de l’historique réalisant les même opérations qu’un arbre binaire de recherche
auto-équilibré) atteignant les complexités optimales en mémoire externe avec forte probabilité. La deux-
ième structure de données mène à un arbre-B indépendant du cache (cache-oblivious) et de l’historique,
presque optimal, i.e., une des structures de recherches classiques en mémoire externe. Cette structure
de données maintient un ensemble dynamique d’éléments trié dans un tableau de taille linéaire. Nous
concevons une version indépendante de l’historique avec les mêmes garanties de complexité.

Conclusion

Perspectives à court terme

Poursuite du travail théorique

Au cours de cette thèse, plusieurs questions théoriques restant à adresser ont été identifiées. Exposées
dans les chapitres concernés, la plupart consiste à améliorer le rapport d’approximation d’algorithmes
existants, déterminer l’existence d’algorithmes garantis lorsque seule une heuristique a été proposée,
ou étendre les résultats à un contexte plus général. Deux problèmes majeurs non résolus sont détaillés
ci-dessous.

• Élaborer un algorithme hors-ligne (offline) pour ordonnancer un graphe de tâche sur deux types
de processeurs avec un ratio d’approximation au plus 6, qui ne repose pas sur la programmation
linéaire (Chapitre 3). Comme suggéré par cet énoncé, il existe un algorithme basé sur la program-
mation linéaire avec un ratio d’approximation égal à 6. Un algorithme basé sur des considérations
purement d’ordonnancement aurait des intérêts à la fois théoriques, car cela donne plus d’intuition
sur la solution, et pratiques, car la complexité attendue est alors plus faible, donc plus proche d’un
algorithme utilisable en pratique. Un tel algorithme s’inscrirait dans la continuité naturelle de la
littérature existante sur les tâches indépendantes et des résulats en-ligne établis dans cette thèse.

• Déterminer la complexité du problème de minimisation d’E/S (I/O) lors de l’ordonnancement
d’un arbre, où une E/S peut concerner une fraction de fichier de données (Chapitre 5). Ce résultat
s’inscrirait dans la continuité d’une branche de l’ordonnancement théorique initiée par Liu dans

xxii CONTENTS

les années 1980. Ses travaux ont montré que déterminer si l’on peut ordonnancer un arbre sans
E/S est polynomial, alors que ce problème est NP-dur sur un graphe général. Plus récemment, il
a été prouvé que minimiser les E/S sur un arbre lorsque les fichiers ne peuvent pas être divisés
entre les deux mémoires est NP-dur. La complexité de ce problème lorsque les fichiers peuvent
être divisés reste donc à déterminer. Nous avons prouvé dans cette thèse que la solution optimale
n’appartient pas à une classe d’ordonnancements qui, intuitivement, semblent performant.

Vers des heuristiques prêtes à être implémentées

Comme détaillé plus tôt dans l’introduction, la plupart des solutions proposées dans cette thèse n’ont
pas pour vocation à être implémentées telles quelles dans des ordonnanceurs. En effet, les modèles
considérés sont souvent idéaux, ce qui est nécessaire pour comprendre la complexité sous-jacente sans
avoir à traiter de multiples paramètres. Par exemple, les temps de communication sont souvent négligés
comme dans de nombreuses études théoriques. Ajouter ces contraintes complexifie grandement les
problèmes d’ordonnancement, donc les ignorer permet de se concentrer sur les spécificités du problème
étudié. En outre, les solutions proposées peuvent avoir une grande complexité, restant polynomiale,
comme par exemple les heuristiques développées dans le chapitre 4.

Une manière d’utiliser le travail effectué dans cette thèse pour obtenir des algorithmes implémenta-
bles consiste à diminuer les attentes afin de réduire la complexité des algorithmes. L’algorithme pro-
posé dans le chapitre 4 ajoute une grande quantité d’arêtes fictives pour assurer qu’aucun ordonnance-
ment ne dépasse la limite de mémoire, ce qui est très coûteux. Une idée similaire pourrait être utilisée
pour ajouter beaucoup moins d’arêtes, en ciblant seulement les points critiques. L’objectif pourrait être
alors de limiter la consommation mémoire sans assurer qu’aucune E/S ne sera nécessaire: il peut être
préférable d’autoriser quelques E/S plutôt que d’avoir un processus d’ordonnancment très lourd à exé-
cuter. Une deuxième direction est de considérer de nouvelles contraintes primordiales, dans un contexte
simplifié. Par exemple, les chapitres 1 et 2 ne prennent pas en compte les temps de communication,
qui sont difficiles à modéliser correctement et empêchent des algorithmes peu coûteux d’être efficaces.
Un moyen de les prendre en compte pourrait être d’améliorer l’ordonnancement Proportional Mapping,
qui présente à la fois des performances théoriques convenables et de très bonnes propriétés de localité,
en apportant quelques modifications heuristiques sur l’allocation. Un tel processus pourrait mener à un
ordonnancement efficace à la fois théoriquement et en volume de communications.

Perspectives à long terme

Les travaux conduits dans cette thèse concernent une plate-forme à mémoire partagée. Une extension na-
turelle consiste alors à considérer des plates-formes distribuées. Dans un tel contexte, les unités de calcul
sont regroupées en plusieurs nœuds qui sont eux-mêmes organisés selon une structure hiérarchique. Les
processeurs d’un même nœud partagent typiquement une mémoire commune, donc les modèles étudiés
dans ce manuscript peuvent être appliqués à l’intérieur d’un nœud. Transférer des données entre deux
nœuds demande beaucoup de temps, donc ces communications sont idéalement effectuées seulement si
elles sont nécessaires. Par conséquent, l’un des problèmes d’ordonnancement primordiaux sur une ar-
chitecture distribuée consiste à décider sur quel nœud chaque tâche sera exécutée. De manière analogue
aux travaux présentés dans cette thèse, l’étude de problèmes d’ordonnancement sur une architecture
distribuée peut être décomposée en plusieurs aspects.

L’un des objectifs serait de minimiser le temps de complétion d’un graphe, sans se préoccuper de
considérations relatives à la mémoire, comme étudié dans les chapitres 1 à 3. Plusieurs défis doivent être
relevés dans ce contexte. L’un des principaux problèmes consiste à décider d’une allocation statique des

CONTENTS xxiii

tâches sur les nœuds. À cause des longs temps de transfert, une solution pourrait être de diviser le graphe
en utilisant des algorithmes de partitionnement (clustering), puis en allouant chaque groupe à un nœud.
Ces algorithmes peuvent bénéficier d’un nouveau paradigme actuellement développé dans le logiciel
StarPU: les tâches hiérarchiques, aussi appelées bulles ou tâches à gros grain. Chaque bulle représente
un sous-graphe, qui est seulement révélé à l’ordonnanceur lorque cette bulle est exécutée. Ce concept,
qui généralise le modèle de tâches parallèles étudié dans les chapitres 1 et 2, permet de bénéficier à
la fois des avantages de l’ordonnancement à gros grain et à grain moyen. En effet, le graphe initial a
une taille raisonnable, mais l’ordonnancement peut être adapté plus finement à la plate-forme une fois
le sous-graphe de chaque bulle découvert. Les temps d’exécution d’algorithmes de partitionnement sur
ces graphes à bulles ne devraient pas être prohibitifs, et chaque bulle sera donc allouée à un nœud.
Comme dans cette thèse, des algorithmes permettant de traiter des tâches parallèles et des unités de
calcul hétérogènes devront être développés. Afin de pallier aux erreurs de prédiction sur les temps
d’exécution et de communication, il sera peut-être nécessaire d’adapter l’allocation dynamiquement.

L’utilisation mémoire des solutions proposées devra aussi être optimisée. Pour les plates-formes à
mémoire partagée, nous avons proposé dans le chapitre 4 une solution pour empêcher les ordonnanceurs
dynamiques d’être à court de mémoire, tout en maintenant assez de parallélisme pour éviter d’avoir des
processeurs non utilisés. Une telle méthode sera difficile à appliquer dans un contexte distribué, car la
mémoire elle-même est distribuée: si les calculs effectués sur un nœud demandent trop de mémoire, une
partie de la charge de travail devrait être migrée vers un autre nœud, ce qui ne peut être forcé par des
modifications sur le graphe d’entrée comme en mémoire partagée. Il est donc nécessaire de développer
une solution pour adapter les allocations calculées dans le contexte précédent à la mémoire distribuée
disponible.

xxiv CONTENTS

Preliminaries

In this part, we introduce the model which will be used throughout this thesis, as well as some notations
common to multiple chapters, summarized in Table 1.

We first define what is a task graph. A directed acyclic graph of tasks will be denoted by G =
(V ,E), where V is the set of vertices (also called tasks or nodes), and E is the set of edges (also called
dependences). We note n = |V |. The tasks of the graph will usually be named Ti ∈ V , for i ∈ {1, . . . ,n},
except in Chapters 4 and 5 where we will simply use i ∈V . If (Ti ,T j) ∈ E , we say that T j is a successor
of Ti , and Ti is a predecessor of T j . A task may have different characteristics depending on the scope
of the chapter. Nevertheless, wi always represents the time needed to execute task Ti on one processor,
which may be called the weight or the length of Ti .

In addition, a task may be executed on several processors, which decreases its computing time. The
terminology of Drozdowski [57, chapter 25] distinguishes four types of tasks: sequential (not amenable
to parallel processing), rigid (requesting a given number of processors), moldable (able to cope with any
fixed number of processors) or even malleable (processed on a variable number of processors). When
considering moldable and malleable tasks, one has to define how the processing time of a task depends
on the number of allocated processors. This relation is given by the speedup function, noted s, and used
in Chapters 1 and 2. Under a speedup defined by s, the processing time of a task Ti on pi processors
equals wi /s(pi).

The platform on which the graph has to be scheduled contains p identical processors, except in
Chapter 3 where we consider two types of processors. Note that the term processor is used to describe a
computing unit, on which a single task can be executed. It is preferred to computing core for readability
and consistency with the scheduling literature. In Chapters 4 and 5, we also assume that the size of the
available memory is M .

A schedule of a graph G will be denoted by S . It contains among others the starting times of each
task Ti , sometimes denoted σ(i). We also use the completion time of a task Ti , which is equal to the
starting time plus the processing time of task Ti , and is denoted by Ci . The makespan of a schedule S

is defined as the maximal completion time among the tasks of G , and is therefore denoted by Cmax.
We also introduce some common definitions. A path of a graph G is a list of tasks [u1,u2, . . . ,uk]

such that for every i ∈ {1, . . . ,k}, we have (ui ,ui+1) ∈ E . We then say that u1 is an ancestor of uk and
that uk is a descendant of u1. The length of a path is the sum of the sequential computing times of its
tasks (except in Chapter 2, where we adapt this definition to parallel tasks). A critical path of a graph
G is a path of maximal length. The top-level of a task Ti is the maximal length of a path ending in Ti .
Similarly, the bottom-level of a task Ti is the maximal length of a path starting at Ti . Note that in this
manuscript, the computing time of Ti is counted in both its top-level and its bottom-level.

For some applications, we may have additional knowledge on the structure of the graph of tasks G .
For instance, we focus in several places of this manuscript on the problem of scheduling an elimination
tree or assembly tree: a workflow that arises during the factorization of sparse matrices, see Section 1.2,
Chapter 1 for details. Therefore, in these cases, the graph G has an in-tree structure, also called tree: each

xxv

xxvi CONTENTS

Graph

G = (V ,E) Graph of tasks, where V is the set of vertices and E the edges
n Number of vertices of G , i.e., n = |V |

Ti (or i) Task belonging to V
wi Sequential processing time of task Ti

mi , j Memory size of the file associated to the edge (Ti ,T j) ∈ E (Chapter 4)
mi Memory size of the file associated to the task Ti ∈V (Chapter 5)

si or s Speedup function of task Ti (Chapter 2) or for all tasks (Chapter 1)

Platform

t Time (t ∈R+)
p or p(t) Available number of processors (depends on time in Chapter 1)

m Number of CPUs in Chapter 3
k Number of GPUs in Chapter 3
M Maximal memory available (Chapters 4 and 5)

Schedule

σ(i) Starting time of task Ti

S Schedule solution
Cmax Makespan of a schedule
OPT Optimal schedule or optimal makespan
pi (t) Number of processors allocated to task Ti at time t (Chapters 1 and 2)

Table 1: Generic notations.

node has a single successor (which is then called its parent). Furthermore, we also consider slightly more
general graphs, named series-parallel graphs or SP-graphs. An SP-graph can be recursively defined as
a single task, the series composition of two SP-graphs, or the parallel composition of two SP-graphs.
A tree can easily be transformed into an SP-graph by joining the leaves according to its structure (see
Figure 3).

1

2

4 65 3

Figure 3: Example of a tree transformed into an SP-graph.

Chapter 1

The speedup model of Prasanna and Musicus
for parallel tasks

« Comment puis-je faire quelque chose que
j’ignore ? »

Olaf Grossebaf, Astérix et les Normands

As detailed in the introduction, the model of task graphs is widely used to describe the parallelism
that can be exploited in an application. In this model, several tasks can be processed simultaneously
as long as the given precedence constraints are respected. A challenge in expressing an application as
a graph of tasks is to define the boundaries of each task. If each task contains few instructions, there
will be two problems. First, the graph will be too large, and the time necessary to compute a schedule
will damage the final performance. Second, the duration of each task will be short, and more time
will be devoted to scheduling operations (e.g., determine the allocation, move the data) than to actual
computations. On the opposite, if a task is too large, the application may lose some parallelism, as this
task could have been split into smaller ones. A way to overcome these limitations is to consider parallel
tasks, on which several processors can be allocated in order to reduce the computing time. In this chapter,
we furthermore consider that tasks are moldable (can be scheduled on any number of processors) and
even malleable (the number of processors allocated to a task can vary throughout the task execution). A
parallel task is therefore not only defined by its sequential computing time, but also by a function, named
the speedup, determining the computing time given the number of processors allocated. Formally, the
speedup si of a task Ti for a number of processors pi is defined as the sequential computing time of Ti

divided by the computing time of Ti under pi processors. When computing a schedule minimizing the
makespan, the number of processors allocated to each task has to be determined. There are therefore
two conflicting types of parallelism to exploit: allocating more processors to a given task, or executing
more tasks simultaneously.

The proposed algorithms to tackle this problem can be divided in two groups. The first group makes
no to little assumption on the speedup function (e.g., monotonicity, concavity). The problem is then
obviously more difficult, and the results obtained are either non-guaranteed heuristics or constant-factor
approximation relying on complex optimization techniques, which makes them difficult to implement in
a practical setting. However, for some applications, the tasks are similar (e.g., a matrix-matrix product)
and therefore present comparable speedups. It is then natural to exploit this property in order to design
specific low-complexity algorithms. In this chapter, we focus on task graphs coming from sparse linear
algebra, and especially from the factorization of sparse matrices using the multifrontal method. Liu [104]
explains that the computational dependences and requirements in Cholesky and LU factorization of

1

2 CHAPTER 1. The speedup model of Prasanna and Musicus for parallel tasks

sparse matrices using the multifrontal method can be modeled as a task tree, called the assembly tree.
We therefore focus on dependences that can be modeled as a tree.

We consider in this chapter a speedup model advocated by Prasanna and Musicus [122] for matrix
operations. The objective of this study is to determine the validity and the limits of this model, as well
as designing a simpler proof of the schedule minimizing the makespan on identical processors. The
speedup function of each task is equal to si (pi) = pα

i , where pi is the number of processors allocated to
the task, and 0 <α≤ 1 is a global constant. In particular, when the share of processors pi allocated to a
task Ti is constant, its processing time is given by wi /pα

i , where wi is the sequential duration of Ti . The
case α = 1 represents the unrealistic case of a perfect linear speedup, and we rather concentrate on the
case α< 1 which takes into consideration the cost of the parallelization. In particular α< 1 accounts for
the cost of intra-task communications, without having to decompose the tasks in smaller granularity sub-
tasks with explicit communications, which would make the scheduling problem intractable. As in [122],
we also assume that it is possible to allocate non-integer shares of processors to tasks. This amounts
to assume that processors can share their processing time among tasks. When task A is allocated 2.6
processors and task B 3.4 processors, one processor dedicates 60% of its time to A and 40% to B . Note
that this is a realistic assumption, for example, when using modern task-based runtime systems such
as StarPU [17], KAAPI [68], or PaRSEC [36]. This allows to simplify the scheduling problem and to
derive optimal allocation algorithms.

The objective of such a model is not to fit exactly the actual speedup of the targeted tasks. The only
way to have such a perfectly accurate model is to make no assumption on the speedup fucntion, see [85].
The objective here is to gain some insights on the tasks behavior and to understand the optimal schedule
in this idealized model in order to apply the conclusions in a runtime scheduler. There is then a trade-off
between the accuracy of the model and the theoretical properties it presents which can be exploited to
design efficient schedules. This paragraph can be summarized by the famous quote of George E. P. Box:
“All models are wrong, but some are useful”.

In [121, 122], the same problem has been addressed by Prasanna and Musicus for series-parallel
graphs (or SP-graphs). Such graphs are built recursively as series or parallel composition of two smaller
SP-graphs. Trees can be seen as a special-case of series-parallel graphs, and thus, the optimal algorithm
proposed in [121, 122] is also valid on trees. They use optimal control theory to derive general theorems
for any strictly increasing speedup function. For the particular case of the speedup function pα, Prasanna
and Musicus prove some properties of the unique optimal schedule which allow to compute it efficiently.
Their results are powerful (a simple optimal solution is proposed), but to obtain these results they had
to transform the problem in a shape which is amenable to optimal control theory. Thus, their proofs
do not provide any intuition on the underlying scheduling problem, yet it seems tractable using classic
scheduling arguments.

Main contributions. In this chapter, we show that the model of malleable tasks using the pα speedup
function is justified in the context of sparse matrix factorization. We propose a new and simpler proof of
the optimal schedule on series-parallel graphs, using pure scheduling arguments. We extend the previous
study on distributed memory machines, where tasks cannot be split across several distributed nodes.
We provide NP-completeness results and approximation algorithms. Finally, we evaluate the optimal
algorithm on a set of realistic trees and estimate its improvement compared to more straightforward
solutions which are unaware of the pα speedup function.

The rest of this chapter is organized as follows. In Section 1.1, we review the related work concerning
parallel task graph scheduling, including both moldable and malleable tasks. In Section 1.2, we motivate
the speedup model proposed. In Section 1.4, we propose a new proof for the results of [121, 122]. In

1.1. Related work 3

Section 1.6, we extend the previous study on distributed memory machines. In Section 1.5, we evaluate
the gain of the optimal solution via simulations.

1.1 Related work

In this section, we thoroughly review the related work on malleable task graph scheduling for models of
tasks that are close or similar to our model. We also present some basic results on series-parallel graphs.
Note that this survey is also relevant to Chapter 2.

1.1.1 Models of parallel tasks

The literature contains numerous models for “parallel tasks”; names and notations vary and their usage
is not always consistent. The simplest model for parallel tasks is the model of rigid tasks, sometimes
simply called parallel tasks [77]. A rigid task must always be executed on the same number of processors
(that must be simultaneously available). In the model of moldable tasks, the scheduler has the freedom to
chose on which number of processors to run a task, but this number cannot change during the execution.
This model is sometimes called multiprocessor tasks [56]. The most general model is that of malleable
tasks: the number of processors executing a task can change in any way at any time throughout the
task execution. However, numerous articles use the name malleable to denote moldable tasks like, for
instance, [77, 90, 101]. Depending on the variants, moldable and malleable tasks can run on any number
of processors, from 1 to p, or each task Ti may have a maximum parallelism which is often denoted by
δi [56]. Furthermore, depending on the assumptions, tasks may be preempted to be restarted later on
the same set of processors, or on a potentially different one (preemption+migration). It should be noted
that the model of malleable tasks is a generalization of the model of moldable tasks with preemption and
migration.

An important feature of the models for moldable and malleable tasks is the task speedup functions
that relate a task execution time to the number of processors it uses. Some studies, for instance [77,
85], do not make any assumption on the speedup functions. More commonly, it is assumed that the
task execution time is a non-increasing function of the number of processors [63, 85, 101, 107]. Another
classical assumption is that the work is a non-decreasing function [63, 85, 101] —the work is the product
of the execution time and of the number of processors used— which defines the model sometimes called
monotonous penalty assumptions. Some other works consider that the speedup function is a concave
function [107]. The algorithms developed for these models, although polynomial, rely on complex
optimization techniques, which makes them difficult to implement in a practical setting. Therefore, other
studies have focused on specific models, for which low-complexity dedicated algorithms are designed.
Several of the models considered in the literature satisfy all above assumptions: non-decreasing concave
speedup function and non-decreasing work.

This is for instance the case with the model studied by Prasanna and Musicus [121] where the
processing time Pi of task Ti is Pi (k) = wi /kα with α being a task-independent constant between 0
and 1 and k the number of allotted processors [121]. Another instance is the simple single-threshold
model, that is, the linear model [20, 55, 114, 143, 148]: Pi (k) = wi /k. Kell and Havill [94] added to
that model an overhead affine in the number of processors used: Pi (k) = (k −1)c +wi /k. This model is
also closely related to the Amdahl’s law where Pi (k) = w (s)

i +w (p)
i /k. Amdahl’s law is considered in the

experimental evaluation of [63].
Finally, the number of processors alloted to a task can, depending on the assumptions, either only

take integer values, or can also take fractional ones [107, 121].

4 CHAPTER 1. The speedup model of Prasanna and Musicus for parallel tasks

1.1.2 Results for moldable tasks

Du and Leung [58] have shown that the problem of scheduling moldable tasks with preemption and
arbitrary speedup functions is NP-complete.

Günther et al. [77] proposed an FPTAS with no assumption on the processing times. Hunold [85]
developed a heuristic for this model based on the CPA algorithm introduced in [124].

In the scope of the monotonous penalty model, Lepère, Trystram, and Woeginger [101] presented a
3+

p
5 ≈ 5.23606 approximation algorithm for general DAGs, and a 3+

p
5

2 +ε≈ 2.61803+ε approximation
algorithm for series-parallel graphs and DAGs of bounded width. With the additional requirement of a
concave speedup, Jansen and Zhang [91] present a 3.3-approximation. If the processing time is strictly
decreasing, Chen and Chu [42] improve this factor to 2.96.

Wang and Cheng presented [143] a 3 − 2
p -approximation algorithm to minimize the makespan

while scheduling moldable task graphs with linear speedup and maximum parallelism δ j (problem
P |prec,any,spdp-lin,δ j |Cmax).

1.1.3 Results for malleable tasks

The problem of scheduling independent malleable tasks with linear speedups, maximum parallelism
per task, and with integer allotments, that is P |var,spdp-lin,δ j |Cmax, can be solved in polyno-
mial time [55, 142] using a generalization of McNaughton’s wrap-around rule [111]. Drozdowski
and Kubiak showed in [55] that this problem becomes NP-hard when dependences are introduced:
P |prec,var,spdp-lin,δ j |Cmax is NP-hard. Balmin et al. [114] present a 2-approximation algorithm for
this problem. Their algorithm builds integral allotments by first scheduling the DAG on an infinite
number of processors and then using the optimal algorithm for independent tasks to build an integral-
allotment schedule for each interval of the previous schedule during which a constant number of proces-
sors greater than p was used.

Makarychev and Panigrahi [107] consider the problem P |prec,var|Cmax under the monotonous
penalty assumption and when allotments are rational. They provide a (2+ ε)-approximation algorithm,
of unspecified complexity (their algorithm relies on the resolution of a rational linear program; this lin-
ear program is not explicitly given). Furthermore, they prove that there is no “online algorithm with
sub-polynomial competitive ratio” (an online algorithm is an algorithm that considers tasks in the order
of their arrival).

1.1.4 Series-parallel graphs

Series-parallel graphs can be recognized and decomposed into a tree of series and parallel combinations
in linear time [141]. It is well-known that series-parallel graphs capture the structure of many real-world
scientific workflows [30]. A possible way to extend algorithms designed for series-parallel graphs to
general graphs is to first transform a graph into a series-parallel graph, using a process sometimes called
SPization [71] before applying a specialized algorithm for SP-graphs. This was for example done in [46].
However, note that no SPization algorithm guarantees that the length of the critical path is increased by
only a constant ratio.

1.2 Experimental evaluation of the model

In this section, we concentrate on evaluating the model proposed by Prasanna and Musicus in [121,
122] for our target application. The scheduling algorithm proposed by Prasanna and Musicus under

1.2. Experimental evaluation of the model 5

this model has already been implemented in a real multifrontal solver [23]. Due to special constraints
in the task parallelization, the authors first measured a surprising super linear speedup, with α = 1.15.
Nevertheless, using the Prasanna and Musicus allocation allowed them to overtake the performance of
a simple allocation proportional to the task sizes previously designed by Pothen and Sun in [120]. As
in [121, 122], they assumed non-integer processor allocation, which was achieved at runtime by using
time-sharing among tasks.

The model of Prasanna and Musicus states that the instantaneous speedup of a task processed on pi

processors is s(pi) = pα
i . Thus, the completion time of a task Ti of size wi which is allocated a share of

processors pi (t) at time t is equal to the smallest value Ci such that

∫ Ci

0

(
pi (t)

)αd t ≥ wi ,

where α is a task-independent constant. When the share of processors pi is constant, the processing
time is simplified to: wi /pα

i . Our goal is (i) to find whether this formula well describes the evolution
of the task processing time for various shares of processors and (ii) to check that different tasks of the
same application have the same α parameter. We target a modern multicore platform composed of a set
of nodes each including several multicore processors. For the purpose of this study we restrict ourselves
to the single node case for which the communication cost will be less dominant. In this context, pi (t)
denotes the number of cores dedicated to task Ti at time t .

We consider applications having a tree-shaped task graph constituted of parallel tasks. This kind of
execution model can be met in sparse direct solvers where the matrix is first factorized before the actual
solution is computed. For instance, either the multifrontal method [59] as implemented in MUMPS [11]
or qr_mumps [39], or the supernodal approach as implemented in SuperLU [103] or in PaStiX [80],
are based on tree-shaped task graphs (namely the assembly tree [14]). Each task in this tree is a partial
factorization of a dense sub-matrix or of a sparse panel. In order to reach good performance, these
factorizations are performed using tiled linear algebra routines (BLAS): the sub-matrix is decomposed
into 2D tiles (or blocks), and optimized BLAS kernels are used to perform the necessary operations on
each tile. Thus, each task can be seen as a task graph of smaller granularity sub-tasks, which we call
kernels to avoid confusion. See Figure 1.1 for an illustration.

updated

decomposed

(a) Tiled dense sub-matrix to be partially decomposed.

POTRF−1

TRSM−4−1 TRSM−2−1 TRSM−3−1

GEMM−4−2−1

GEMM−4−2−0 GEMM−4−3−0

GEMM−4−3−1

GEMM−4−1−0

TRSM−1−0

GEMM−2−1−0 GEMM−3−1−0

GEMM−3−2−1

TRSM−4−0

POTRF−0

TRSM−3−0TRSM−2−0

GEMM−3−2−0

SYRK−1−1−0

SYRK−4−4−0

SYRK−4−4−1

SYRK−2−2−0

SYRK−2−2−1 SYRK−3−3−1

SYRK−3−3−0

(b) Corresponding kernel graph.

Figure 1.1: Example of the decomposition of a task of the DAG of a Cholesky decomposition into
smaller kernels.

As computing platforms evolve quickly and become more complex (e.g., because of the increasing
use of accelerators such as GPUs or Xeon Phis), it becomes interesting to rely on an optimized dynamic
runtime system to allocate and schedule tasks on computing resources. These runtime systems (such
as StarPU [17], KAAPI [68], or PaRSEC [36]) are able to process a task on a prescribed subset of the
computing cores that may evolve over time. This motivates the use of the malleable task model, where

6 CHAPTER 1. The speedup model of Prasanna and Musicus for parallel tasks

the share of processors allocated to a task vary with time. This approach has been used and evaluated [83]
in the context of the qr_mumps solver using the StarPU runtime system.

In order to assess whether tasks used within sparse direct solvers fit the model introduced by
Prasanna and Musicus in [122] we conducted an experimental study on several dense linear algebra
tasks. We used a test platform composed of 4 Intel E7-4870 processors having 10 cores each clocked at
2.40 GHz and having 30 MB of L3 cache for a total of 40 cores. The platform is equipped with 1 TB
of memory with uniform access. We considered three dense kernels which are representative of what
can be met in sparse linear algebra computations: the Cholesky and the QR factorization kernels from
the Morse dense linear algebra library1 and the standard frontal matrix factorization kernel used in the
qr_mumps solver2. All experiments were made using the StarPU runtime.

Figures 1.2(a) to 1.2(c) present the timings obtained when computing the QR decomposition of a
M × N matrix for several values of M and N , or the Cholesky factorization of a square matrix. The
logarithmic scales show that the pα speedup function models well the timings, except for small matrices
when p is large. In this case, there is not enough parallelism in the task to exploit all available cores. We
have performed a linear regression on the portion where p ≤ 10 to compute the value of α for different
task sizes. We performed similar experiments with a QR decomposition with M = 1024, and for a
Cholesky factorization. The obtained values of α are gathered in Table 1.1. All these values are very
close to one, which means that the parallelization is almost perfect.

N Value of α for QR, Value of α for QR, Value of α
M = 1024 M = 4096 for Cholesky

5000 0.95 0.988 0.94
10000 0.98 0.997 0.98
15000 0.99 0.998 0.99
20000 0.99 0.999 0.99
25000 0.99 0.999 0.99
30000 0.99 0.999 1.00
35000 1.00 0.999 0.98
40000 1.00 0.999 0.98

Table 1.1: Values of α measured for dense kernels

Figures 1.3(a) and 1.3(b) present the same timings for the qr_mumps frontal matrix factorization
kernel, which is more relevant to this study as it is a basic block for the factorization of sparse matrices.
As before, for each matrix size, the value of α was computed using linear regression on the first part
of the graph (p ≤ 10 for 1D partitioning, p ≤ 20 for 2D partitioning). Table 1.2 gathers the results. As
previously, we notice that the value of α does not vary significantly with the matrix size, which validates
our model. The only notable exception is for the smallest matrix (5000x1000) with 1D partitioning: it
is hard to efficiently use many cores for such small matrices (when restricting to p ≤ 4, we compute
α = 0.87 which is very close to the other values). In all cases, for a number of processor larger than a
given threshold, the performance deteriorates and stalls: using more processors is not enough to further
decrease the processing time. This threshold increases with the matrix size. Our speedup model is only
valid below this threshold. We claim that this is not harmful for our study, as the allocation schemes
developed in the next sections allocate large numbers of processors to large tasks at the top of the tree

1http://icl.cs.utk.edu/projectsdev/morse/index.html
2Block sizes were chosen to obtain good performance: Cholesky and QR experiments use a block size of 256, qr_mumps

kernel uses either block-columns of size 32 (1D partitioning) or square blocks of size 256 (2D partitioning).

http://icl.cs.utk.edu/projectsdev/morse/index.html

1.2. Experimental evaluation of the model 7

1
2 4

10
20 40

Number of processor (log. scale)

0.05

0.1

0.2

0.4

0.6
0.8

1

2

3
4

6
8

K
er

n
el

 p
ro

ce
ss

in
g
 t

im
e

(s
ec

o
n
d
s,

 l
o
g
.
sc

al
e)

(a) QR kernel for M = 1024.

1
2 4

10
20 40

Number of processor (log. scale)

0.2

0.5

1

2

5

10

20

50

100

K
er

n
el

 p
ro

ce
ss

in
g
 t

im
e

(s
ec

o
n
d

s,
 l

o
g
.

sc
al

e)

N=40000

N=35000

N=30000

N=25000

N=20000

N=15000

N=10000

N=5000

(b) QR kernel for M = 4096.

1
2 4

10
20

Number of processor (log. scale)

0.1

1

10

100

1000

K
er

n
el

 p
ro

ce
ss

in
g

 t
im

e
(s

ec
o

n
d

s,
 l

o
g

.
sc

al
e)

N=40000

N=35000

N=30000

N=25000

N=20000

N=15000

N=10000

N=5000

(c) Cholesky kernel (M = N).

Figure 1.2: Timings (points) and model (lines) of QR and Cholesky kernels.

8 CHAPTER 1. The speedup model of Prasanna and Musicus for parallel tasks

and smaller numbers of processors for smaller tasks. Thus, our speedup model fits the timings for the
range of allocations which are reasonable for each task.

The conclusions of this study should however be put into perspective. The timing points do not
exactly fit the model, which is difficult to see because of the logarithmic scales here, but is obvious in
the more extensive simulations conducted in Chapter 2, Section 2.2. Therefore, the model exhibits a
significant behavior up to a threshold, but is not highly accurate.

1
2 4

10
20 40

Number of processor (log. scale)

0.1

1

10

100

K
er

n
el

 p
ro

ce
ss

in
g

 t
im

e
(s

ec
o

n
d

s,
 l

o
g

.
sc

al
e)

5000x1000
20000x5000
10000x2500

(a) 1D partitioning.

1
2 4

10
20 40

Number of processor (log. scale)

0.1

1

10

100
20000x5000
10000x2500
5000x1000

(b) 2D partitioning.

Figure 1.3: Timings (points) and model (lines) of qr_mumps frontal matrix factorization kernel with two
types of partitioning.

Matrix Value of α Value of α
size for 1D partitioning for 2D partitioning

5000x1000 0.78 0.93
10000x2500 0.88 0.95
20000x5000 0.89 0.94

Table 1.2: Values of α measured for qr_mumps tasks

Finally, we notice that the value of α depends on the parameters of the problem (type of factorization,
partitioning, block size, etc.). It has to be determined before the execution when considering a new kernel
or new blocking parameters. The values of α obtained here are quite high thanks to the good memory
performance of the considered computing platform. On other platforms, smaller values of α can be
expected.

1.3 Application model

We assume that the number of available computing resources may vary with time: p(t) gives the (pos-
sibly rational) total number of processors available at time t , also called the processor profile. For the
sake of simplicity, we consider that p(t) is a step function.

The objective is to schedule an SP-graph G = (V ,E) of n malleable tasks T1, . . . ,Tn . The length, that
is the sequential processing time, of task Ti is denoted by wi . As motivated in the previous section,
we assume that the speedup function for a task to which p processors are allocated is s(p) = pα, where
0 < α ≤ 1 a fixed parameter. A schedule S is a set of nonnegative piecewise continuous functions

1.4. Optimal solution for shared-memory platforms 9

{
pi (t) | Ti ∈V

}
representing the time-varying share of processors allocated to each task. During a time

interval ∆, the task Ti performs an amount of work equal to
∫
∆ pi (t)α d t . Then, Ti is completed when

the total work performed is equal to its length wi . The completion time of task Ti is thus the smallest
value Ci such that: ∫ Ci

0
pi (t)αd t ≥ wi .

We define worki (t) as the ratio of work of task Ti that is done during the time interval [0, t]:

worki (t) = 1

wi

∫ t

0
pi (x)α d x

A schedule is a valid solution if and only if:

1. it does not use more processors than available: ∀t ,
∑

Ti∈V pi (t) ≤ p(t));

2. it completes all the tasks: ∃t , ∀Ti ∈V worki (t) = 1;

3. and it respects precedence constraints: ∀(Ti ,T j) ∈ E , ∀t , if p j (t) > 0 then worki (t) = 1.

The makespan Cmax of a schedule is computed as min{t | ∀i worki (t) = 1}. Our objective is to
construct a valid schedule with optimal, i.e., minimal, makespan.

Note that because of the speedup function s(p) = pα, the computations in the following sections
will make a heavy use of the functions s : x 7→ xα and s−1 : x 7→ x(1/α). We assume that we have at our
disposal a polynomial time algorithm to compute both s and s−1. We are aware that this assumption
is very likely to be wrong, as soon as α < 1, since s and s−1 produce irrational numbers. However,
without these functions, it is not even possible to compute the makespan of a schedule, and hence the
problem is not in NP. Furthermore, this allows us to avoid the complexity due to number computations,
and to concentrate on the most interesting combinatorial complexity, when proving NP-completeness
results and providing approximation algorithms. In practice, any implementation of s and s−1 with a
reasonably good accuracy will be sufficient to perform all the computations and, for example, compute
the makespan of a schedule.

In the next section, following Prasanna and Musicus, we will not consider trees but more general
graphs: series-parallel graphs (or SP-graphs). An SP-graph can be recursively defined as a single task,
the series composition of two SP-graphs, or the parallel composition of two SP-graphs.

As already noticed in the Preliminaries section, a tree can easily be transformed into an SP-graph
by joining the leaves according to its structure (see Figure 1.4). We will use (i ∥ j) to represent the
parallel composition of tasks Ti and T j and (i ; j) to represent their series composition. The SP-graph of
Figure 1.4 can be represented as: (((

((4∥5)∥6) ; 2
)
∥ 3

)
; 1

)
.

Thanks to this construction, an algorithm which solves the previous scheduling problem on SP-graphs
also gives an optimal solution for trees.

1.4 Optimal solution for shared-memory platforms

The purpose of this section is to give a simpler proof of the results of [121, 122] using only scheduling
arguments. We consider an SP-graph to be scheduled on a shared-memory platform (each task can be
distributed across the whole platform). We assume that α < 1 and prove the uniqueness of the optimal
schedule.

10 CHAPTER 1. The speedup model of Prasanna and Musicus for parallel tasks

1

2

4 65 3

Figure 1.4: Example of a tree transformed into an SP-graph.

Our objective is to prove that any SP-graph G is equivalent to a single task TG of easily computable
length: for any processor profile p(t), graphs G and TG have the same makespan. We prove that the ratio
of processors allocated to any task Ti , defined by ri (t) = pi (t)/p(t), is constant from the moment at
which Ti is initiated to the moment at which it is terminated. We also prove that in an optimal schedule,
the two subgraphs of a parallel composition terminate at the same time and each receives a constant
total ratio of processors throughout its execution. We then prove that these properties imply that the
optimal schedule is unique and obeys to a flow conservation property: the shares of processors allocated
to two subgraphs of a series composition are equal. When considering a tree, this means that the whole
schedule is defined by the ratios of processors allocated to the leaves. Then, all the children of a node
Ti terminate at the same time, and its ratio is the sum of its children ratios.

We first need to define the length LG associated to a graph G , which will be proved to be the length
of the task TG . Then, we state a few lemmas before proving the main theorem.

Definition 1.1. We recursively define the length LG associated to an SP-graph G:
• LTi = wi ;
• LG1 ;G2 =LG1 +LG2 ;

• LG1 ∥G2 =
(
L 1/α

G1
+L 1/α

G2

)α
.

Lemma 1.1. An allocation minimizing the makespan uses all the processors at any time.

Proof. The proof is established by contradiction. We assume that there exists an interval ∆ throughout
which some of the processors are (at least partially) idle. Without loss of generality we assume that no
job completes during ∆. We distribute the unused processing power from ∆ among the tasks propor-
tionally to their allocation during ∆. The work performed during ∆ is strictly increased, as the speedup
function s : p 7→ pα is increasing, and we therefore obtain a schedule with a shorter makespan.

We define a clean interval with regard to a schedule S as an interval during which no task is
completed in S .

Lemma 1.2. When the number of available processors is constant, any optimal schedule allocates a
constant number of processors per task on any clean interval.

Proof. By contradiction, we consider an optimal schedule S of makespan Cmax, and we suppose that
one task j is not allocated a constant number of processors3 on a clean interval ∆= [t1, t2]. By definition
of a clean interval, no task completes during ∆. |∆| = t2 − t1 denotes the duration of ∆. I denotes the set
of tasks that receive a non-empty share of processors during ∆, and p the constant number of available
processors. The share of processors allocated to task Ti at time t ∈∆ in S is noted pi (t).

3Formally, an allocation is constant on ∆ if it is equal to a given constant except, maybe, on a subset of ∆ of null measure.

1.4. Optimal solution for shared-memory platforms 11

We want to show that there exists a valid schedule with a makespan smaller than Cmax. To achieve
this, we define an intermediate and not necessarily valid schedule S ′, which nevertheless respects the
resource constraints (no more than p processors are used at time t). This schedule is equal to S except
on ∆. The constant share of processors qi allocated to every task Ti on ∆ in S ′ is defined by:

qi =
1

|∆|

∫
∆

pi (t)d t .

For all t , we have
∑

i∈I pi (t) = p because of Lemma 1.1. We get
∑

i∈I qi = p. So S ′ respects the
resource constraints. Let W ∆

i (S) (resp. W ∆
i (S ′)) denote the work done on Ti during ∆ under schedule

S (resp. S ′). We have:

W ∆
i (S) =

∫
∆

pi (t)αd t = |∆|
∫

[0,1]
pi (t1 + t |∆|)αd t

W ∆
i (S ′) =

∫
∆

(
1

|∆|

∫
∆

pi (t)d t

)α
d x = |∆|

(∫
[0,1]

pi (t1 + t |∆|)d t

)α
.

As α < 1, the function x 7→ xα is concave and then, by Jensen inequality [78], W ∆
i (S) ≤ W ∆

i (S ′).
Moreover, as x 7→ xα is strictly concave, this inequality is an equality if and only if the function t 7→
pi (t1 + t |∆|) is equal to a constant on [0,1[except on a subset of [0,1[of null measure [78]. Then,
by definition, p j is not constant on ∆, and cannot be made constant by modifications on a set of null
measure. We thus have W ∆

j (S) <W ∆
j (S ′). Therefore, T j is allocated too many processors under S ′. It

is then possible to distribute this surplus among the other tasks during ∆, so that the work done during ∆
in S can be terminated earlier. This remark implies that there exists a valid schedule with a makespan
smaller than Cmax; hence, the contradiction.

We recall that ri (t) = pi (t)/p(t) is the instantaneous ratio of processors allocated to a task Ti .

Lemma 1.3. Let G be the parallel composition of two tasks, T1 and T2. If p(t) is a step function, in any
optimal schedule, up to the completion of G , r1(t) is constant and equal to:

π1 =
1

1+ (w2/w1)1/α
= w1/α

1

L 1/α
1∥2

.

Proof. First, we prove that r1(t) is constant on any optimal schedule. Therefore, as by Lemma 1.1 we
have r2(t) = 1−r1(t), r2(t) will also be proved constant. This results implies in particular that both tasks
terminate simultaneously as the ratios never drop to zero before the graph is completely processed.

We consider an optimal schedule S , and two consecutive time intervals A and B such that p(t) is
constant and equal to p on A and q on B , and S does not complete before the end of B . Suppose also
that |A|pα = |B |qα (shorten one interval otherwise), where |A| and |B | are the durations of intervals A
and B . By Lemma 1.2, r1(t) has constant values r A

1 on A and r B
1 on B . Suppose by contradiction that

r A
1 6= r B

1 .
We want to prove that S is not optimal, and so that we can do the same work as S does on A∪B in

a smaller makespan. We set r1 = 1
2

(
r A

1 + r B
1

)
. We define the schedule S ′ as equal to S except on A∪B

where the ratio allocated to T1 is r1 (see Figure 1.5).
The work W1 on task T1 under S and W ′

1 under S ′ during A∪B are equal to:

W1 = |A|pα
(
r A

1

)α+|B |qα (
r B

1

)α
W ′

1 = rα1
(|A|pα+|B |qα)

.

12 CHAPTER 1. The speedup model of Prasanna and Musicus for parallel tasks

S

T2

T1

T1

T2

r A
1

r B
1

1

0
A B

time

⇒
T2

T1 T1

T2

r1

1

0

S ′

A B

time

Figure 1.5: Schedules S and S ′ on A∪B . The ordinates represent the ratio of processing power.

By the concavity of the function s : x 7→ xα, we have:

(
r B

1

)α− (r1)α

r B
1 − r1

< (r1)α−
(
r A

1

)α
r1 − r A

1

|B |qα
((

r B
1

)α− (r1)α
)
< |A|pα

(
(r1)α−

(
r A

1

)α)
because r B

1 − r1 = r1 − r A
1 and |B |qα = |A|pα

|A|pα
(
r A

1

)α+|B |qα (
r B

1

)α < rα1
(|A|pα+|B |qα)

W1 <W ′
1.

Symmetrically, we also have W2 < W ′
2. Therefore, S ′ performs strictly more work for both tasks

during A∪B than S . Thus, S ′ can be modified as in the proof of Lemma 1.2 to do the same work in a
smaller makespan. Therefore, S is not optimal. So r1(t) is constant in optimal schedules.

There remains to prove that in an optimal schedule S , r1(t) = π1; hence, the optimal schedule is
unique. As p(t) is a step function, we define the sequences (Ak) and

(
pk

)
such that Ak is the duration of

the k-th step of the function p(t) and p(t) = pk > 0 on Ak .4 The sum of the durations of the Ak’s is the
makespan of S . Then, as S completes both T1 and T2 with constant rates, if we note V = ∑

k |Ak |pα
k

and r1 the value of r1(t), we have:

w1 =
∑
k
|Ak |rα1 pα

k = rα1 V

w2 =
∑
k
|Ak |(1− r1)αpα

k = (1− r1)αV.

Then, w2 =
(

1− r1

r1

)α
w1 and r1 =

1

1+
(

w2
w1

)1/α
=π1.

Lemma 1.4. Let G be the parallel composition of tasks T1 and T2, p(t) a step function, and S an
optimal schedule. Then, the makespan of G under S is equal to the makespan of the task TG of length
LG =L1∥2.

Proof. We characterize p(t) by the sequences (Ak) and (pk) as in the proof of Lemma 1.3. Let ∆ be
the domain of definition of S , so that ∆= [0,Cmax]. We define, for both tasks Ti , the function worki (t)
representing the ratio of its work done during [0, t]:

worki (t) = 1

wi

∫ t

0
pi (x)α d x.

4Exceptionally, in the proofs of Lemmas 1.3 and 1.4, pk refers to a value of p(t) and not to the number of processors
allocated to a task.

1.4. Optimal solution for shared-memory platforms 13

Hence, worki (0) = 0 and worki (Cmax) = 1. For every t ∈∆, let k(t) be the index such that p(t) is in
its k(t)-th step at time t ; hence, p(t) = pk(t). Formally, we have:∑

k<k(t)
|Ak | ≤ t <

∑
k≤k(t)

|Ak |.

Let t̄ = t − (∑
k<k(t) |Ak |

)
. By Lemma 1.3, the ratio of processors allocated to T1 is constant over ∆

and equal to:

r1 =
w1/α

1

w1/α
1 +w1/α

2

=
(

w1

L1∥2

)1/α

.

Then, we have:

work1(t) = 1

w1

(
t̄
(
pk(t)r1

)α+ ∑
k<k(t)

|Ak |
(
pk r1

)α)

= 1

L1∥2

(
t̄ pα

k(t) +
∑

k<k(t)
|Ak |pα

k

)
.

Similarly, for T2, we have:

work2(t) = 1

w2

(
t̄
(
pk(t)(1− r1)

)α+ ∑
k<k(t)

|Ak |
(
pk (1− r1)

)α)

= 1

L1∥2

(
t̄ pα

k(t) +
∑

k<k(t)
|Ak |pα

k

)
.

We define work(t) as the ratio of work that is done for the equivalent task TG of length L1∥2 when
allocated p(t) processors at time t , until the task is terminated. We have:

work(t) = 1

L1∥2

(
t̄ pα

k(t) +
∑

k<k(t)
|Ak |pα

k

)
= work1(t) = work2(t).

The three ratios are identical, so they all reach 1 at time Cmax. Then, G and TG have the same optimal
makespan under any step-function processor profile p(t).

Theorem 1.1. For every graph G , if p(t) is a step function, G has the same optimal makespan as its
equivalent task TG of length LG (computed as in Definition 1.1). Moreover, there is a unique optimal
schedule, and it can be computed in polynomial time.

Proof. In this proof, we only consider optimal schedules. Therefore, when the makespan of a graph is
considered, we implicitly mean its optimal makespan. We first remark that in any optimal schedule, as
p(t) is a step function and because of Lemma 1.2, only step functions are used to allocate processors to
tasks, so Lemma 1.4 can be applied on any subgraph of G without checking that the processor profile is
also a step function for this subgraph. We now prove the result by induction on the structure of G .

• G is a single task. The result is immediate.

• G is the series composition of G1 and G2. By induction, G1 (resp. G2) has the same makespan
as task TG1 (resp. TG2) of length LG1 (resp. LG2) under any processor profile. Therefore, the
makespan of G is equal to LG = LG1 ;G2 = LG1 +LG2 . The unique optimal schedule of G under
p(t) processors is the concatenation of the optimal schedules of G1 and G2.

14 CHAPTER 1. The speedup model of Prasanna and Musicus for parallel tasks

• G is the parallel composition of G1 and G2. By induction, G1 (resp. G2) has the same makespan as
task TG1 (resp. TG2) of length LG1 (resp. LG2) under any processor profile. Consider an optimal
schedule S of G and let p1(t) be the processor profile allocated to G1. Let S̃ be the schedule of
(TG1 ∥TG2) that allocates p1(t) processors to TG1 . S̃ is optimal and achieves the same makespan
as S for G because TG1 and G1 (resp. TG2 and G2) have the same makespan under any processor
profile. Then, by Lemma 1.4, S̃ (so S) achieves the same makespan as the optimal makespan
of the task TG of length LG1 ∥G2 =LG . Moreover, by Lemma 1.3 applied on (TG1 ∥TG2), we have
p1(t) =π1p(t). By induction, the unique optimal schedules of G1 and G2 under respectively p1(t)
and (p(t)−p1(t)) processors can be computed. Therefore, there is a unique optimal schedule of
G under p(t) processor: the parallel composition of these two schedules.

Therefore, there is a unique optimal schedule for G under p(t). Moreover, it can be computed in
polynomial time. We describe here the algorithm to compute the optimal schedule of a tree G , but it can
be extended to treat SP-graphs. The length of the equivalent task of each subtree of G can be computed
in polynomial time by a depth-first search of the tree (assuming that raising a number to the power α
or 1/α can be done in polynomial time). Hence, the values π1 and π2 for each parallel composition
can also be computed in polynomial time. Finally, these values can be used to compute in linear time
the ratios of the processor profile that should be allocated to each task after its children are completed,
which describes the optimal schedule.

1.5 Simulations

In this section, we present the results of simulations which compare the optimal allocation presented in
Section 1.4 (referred to as the PM strategy, for Prasanna-Musicus) to allocations that are unaware of the
speedup function pα. Our objective is to show the potential gain in makespan obtained by taking this
speedup function into account.

We compare the PM strategy to two other strategies. The first one will be referred to as the DIVISI-
BLE strategy. It assumes that the speedup is equal to p, which means that the parallelization of each task
is perfect. Therefore, it schedules the tasks sequentially, by allocating all the processing power to one
task at a time. The second one, which will be referred to as the PROPORTIONAL strategy, is known as
‘proportional mapping’ and has been designed in [120], as already mentioned in Section 1.2. It allocates
a constant processing power to each subtree, which is proportional to the sum of the lengths of its tasks.
Actually, this strategy is equal to the PM strategy when α = 1. Both DIVISIBLE and PROPORTIONAL

are optimal when α= 1, but PROPORTIONAL is more robust to smaller values of α as it allocates smaller
shares of processors to each task.

In order to compare these strategies to PM, we use a data set that contains assembly trees of a set
of sparse matrices obtained from the University of Florida Sparse Matrix Collection [52]. The details
concerning the computation of the data set can be found in [62]. Specifically, the trees were obtained
by performing an amalgamation of elimination trees corresponding to a Cholesky factorization of 76
matrices ordered using either MeTis or amd. The data set consists in more than 600 trees each containing
between 2,000 and 1,000,000 nodes with a depth ranging from 12 to 75,000. We have two models
assuming that either 40 or 100 processors are available (p(t) = 40 or p(t) = 100).

A problem resides in the fact that the speedup is equal to pα even when p < 1, in which case it is
superlinear and so unrealistic. To avoid this issue, we modify each tree in order that each task is allocated
at least one processor by the PM schedule. When we detect that a subtree of a given node u is allocated
less than one processor, this subtree is processed using the whole share of processors allocated to u,
right before the processing of u. This procedure mimics what is implemented in practice, where small

1.5. Simulations 15

tasks are scheduled sequentially. Figure 1.6 presents an example of this iterative aggregation, which
is described in details in the following paragraphs. Note that this process transforms the tree into an
SP-graph.

1

2

3 4 5

6

7 8

9 ⇒

1

2

3 4 5

96

7 8

⇒

1

2

3

4 5

96

7 8

Figure 1.6: Example of the iterative aggregation of the left tree where the tasks that are allocated less
than one processor in the PM schedule are shaded. The subtree rooted at task 2 is moved then modified.

More precisely, we convert each tree into an SP-graph using a recursive routine Agreg(G , p,α)
where the parameter G is the SP-graph to modify. For each value of α, we iterate this routine on each
graph until no task is allocated less than 1 processor under the PM schedule. The routine is described in
the following paragraph.

On a single task, Agreg allocates all p processors. On a series composition, it makes recursive calls
on each subgraph, with the same parameters. For a parallel composition G0, we consider all its maximal
subgraphs rooted at either a series composition or a task (this can be seen as the “true” children of G0).
Agreg computes the equivalent length L (defined in Section 1.4) of each of these subgraphs. Agreg
then processes these subgraphs by non-decreasing equivalent length. Agreg computes the share of
processors pi allocated to the subgraph Gi . If pi < 1, Gi is moved to be scheduled after the considered
parallel composition on p processors. Then, Agreg transforms the subgraph Gi with parameter p into
a subgraph G ′

i . If pi ≥ 1, Agreg transforms the subgraph Gi with parameter pi into a subgraph G ′
i .

For instance, Agreg launched on the parallel composition (G1 ∥G2 ∥G3 ∥G4 ∥G5) can return the graph(
(G ′

3 ∥G ′
4 ∥G ′

5) ;G ′
2 ;G ′

1

)
where G ′

i is the graph returned by the corresponding call of Agreg on Gi . A
more complex example is illustrated on Figure 1.6.

For a fixed α, 0 < α ≤ 1, and an assembly tree, we compute the makespan obtained by each strat-
egy on the tree modified by the above method. We know that PM never uses less than one processor,
and computes an optimal schedule (by Theorem 1.1). Nevertheless, PROPORTIONAL builds a different
allocation and may use less than one processor for some tasks. As the speedup function is not realis-
tic in this case, we evaluate the schedule computed by PROPORTIONAL using a slightly modified and
more realistic model: the speedup is equal to pα when p ≥ 1 and p otherwise. The criteria used for the
comparison is the percentage of relative distance to PM: the percentage corresponding to the makespan
overhead with respect to PM divided by the PM makespan.

We have computed this percentage for each tree in the data set and for values of α varying between
0.5 and 1. We plot in Figure 1.7 the results of the simulations for p(t) = 40. For both DIVISIBLE and
PROPORTIONAL strategies and each value of α, the boxplot represents the first and last decile, the first
and last quartile and the median. Predictably enough, the relative distance to PM decreases when α

gets close to 1, as both strategies are also optimal for α= 1. We conclude that, under these hypotheses,
DIVISIBLE is not an acceptable strategy because the median relative distance approximately increases
by 8% each time α decreases by 0.05, which for example gives a median relative distance of 16% for
α= 0.9. The PM strategy also offers an improvement compared to PROPORTIONAL, which is somewhat
limited for large values of α: for α= 0.9, only half of the data set results in a makespan 3% larger with

16 CHAPTER 1. The speedup model of Prasanna and Musicus for parallel tasks

0

2

4

6

8

10

12

14

0.5 0.6 0.7 0.8 0.9 1%
of

re
la

ti
ve

di
st

an
ce

to
P

M

value of α

Comparison with Proportional

0
20
40
60
80

100
120
140
160
180
200

0.5 0.6 0.7 0.8 0.9 1%
of

re
la

ti
ve

di
st

an
ce

to
P

M

value of α

Comparison with Divisible

Figure 1.7: Comparison to the PM schedule with p(t) = 40.

0
2
4
6
8

10
12
14
16
18

0.5 0.6 0.7 0.8 0.9 1%
of

re
la

ti
ve

di
st

an
ce

to
P

M

value of α

Comparison with Proportional

0

50

100

150

200

250

0.5 0.6 0.7 0.8 0.9 1%
of

re
la

ti
ve

di
st

an
ce

to
P

M

value of α

Comparison with Divisible

Figure 1.8: Comparison to the PM schedule with p(t) = 100.

PROPORTIONAL. We have also performed these tests with 100 processors, see Figure 1.8, which results
on average in a 25% (resp. 10%) increase in the relative distance with PROPORTIONAL and (resp. with
DIVISIBLE).

1.6 Extensions to distributed memory

The objective of this section is to extend the previous results to the case where the computing platform
is composed of several nodes with their own private memory. In order to avoid the large communication
overhead of processing a task on cores distributed across several nodes, we forbid such a multi-node
execution: the tasks of the tree can be distributed on the whole platform but each task has to be pro-
cessed on a single node. We prove that this additional constraint, denoted by R, makes the problem
much more difficult. We concentrate first on platforms with two homogeneous nodes and then with two
heterogeneous nodes.

In this part, we make use of the shared-memory makespan-minimizing schedule induced by Theo-
rem 1.1, which is referred to as the PM schedule SPM (that stands for Prasanna and Musicus, who first
depicted it).

1.6.1 Two homogeneous multicore nodes

In this section, we consider a multicore platform composed of two equivalent nodes having the same
number of computing cores p. We also assume that all the tasks Ti have the same speedup function pα

i
on both nodes. We first show that finding a schedule with minimum makespan is weakly NP-complete,
even for independent tasks:

1.6. Extensions to distributed memory 17

Theorem 1.2. Given two homogenous nodes of p processors, n independent tasks of sizes w1, ..., wn and
a bound T , the problem of finding a schedule of the n tasks on the two nodes that respects R, and whose
makespan is not greater than T , is (weakly) NP-complete for all values of the α parameter defining the
speedup function.

The proof relies on the PARTITION problem, which is known to be weakly (i.e., binary) NP-
complete [66], and uses tasks of length wi = aαi , where the ai ’s are the numbers from the instance
of the PARTITION problem. We recall that we assume that functions x 7→ xα and x 7→ x1/α can be
computed in polynomial time.

Proof. Let α be a fixed value.
Let A = {ai , i ∈ [1,n]} be an instance of the PARTITION problem. The objective is to decide whether

there exists a partition of A in two sets that sum to the same value. Let a = ∑
i ai . We reduce this

problem to the homogeneous scheduling problem. Let p = a/2 and let wi for 1 ≤ i ≤ n be equal to
wi = aαi . We recall that the computation of the wi s is assumed polynomial. Let J be the instance of the
homogeneous scheduling problem composed of p, the wi s and the bound T = 1. We show that there is
a solution to the partition problem A if and only if I has a solution.

The PM schedule of the n independent tasks of size wi on 2p processors has a makespan of

Cmax =
(∑

i w1/α
i

2p

)α
= 1 = T

Then, by Theorem 1.1, the only schedules that achieve a makespan not greater than T on 2p processors
are those who allocate to each task Ti the share pi = 2p ·w1/α

i /a = ai (such schedules are not differen-
tiated in the shared memory model of the previous section). Therefore, only such a schedule can be a
solution to I .

Such a schedule respects the R constraint if and only if the pi s can be partitioned between the two
nodes of the platform. This is equivalent to state that a subset of the pi s sums to p = a/2, which is
equivalent to state that A has a solution to the partition problem as for all i , pi = ai .

We also provide a constant ratio approximation algorithm for an arbitrary tree. Note that we consider
in-trees in the proof (the children are computed before their parent), but the same results apply to out-
trees.

Theorem 1.3. There exists a polynomial time
(4

3

)α-approximation algorithm for the makespan mini-
mization problem when scheduling a tree of malleable tasks on two homogenous nodes.

The proof of Theorem 1.3 consists in comparing the proposed solution to the optimal solution on
a single node made of 2p processors, denoted SPM. Such an optimal solution can be computed as
proposed in the previous section, and is a lower bound on the optimal makespan on 2 nodes with p
processors. The general picture of the proposed algorithm is the following. First, the root of the tree is
arbitrarily allocated to the p processors of one of the two nodes. Then, the subtrees Tri rooted at the
root’s children are considered. If none of these subtrees is allocated more than p processors in SPM, then
we show how to “pack” the subtrees on the two nodes and bound the slow-down by

(4
3

)α in Lemma 1.6.
On the contrary, if one subtree Tri is allocated more than p processors in SPM, then we allocate p
processors to its root, and recursively call the algorithm on its children and on the remaining subtrees.
The proof of Theorem 1.3 is then done by induction, the heredity property relying on Lemmas 1.7 to 1.9.
Lemma 1.5 allows the restriction to a slightly simpler class of graphs. We therefore state the necessary
lemma before proving the main theorem.

18 CHAPTER 1. The speedup model of Prasanna and Musicus for parallel tasks

Definition 1.2 (SPM). Let SPM be the optimal schedule of G on 2p processors without the constraint
R.

The makespan of SPM is C PM
2p = LG

/
(2p)α, which is then a lower bound of the optimal makespan

with the restriction R. One can observe that a 2α approximation is immediate: a solution is the PM
schedule of G with only p processors, whose makespan is C PM

p =LG
/

pα. As the optimal makespan is
not smaller than C PM

2p , C PM
p is indeed a 2α-approximation.

The following lemma, whose proof is immediate, allows to restrict the following discussion on a
slightly simpler class of graphs.

Lemma 1.5. We can suppose without loss of generality that the length of the root of G is 0 and the root
has at least two children.

Proof. Otherwise, the chain starting at the root can be aggregated in a single task of length 0 before
finding the schedule on this modified graph. It is then immediate to adapt it to the original graph, by
allocating p processors to each task of this chain. Any optimal schedule would have the same allocation
for this chain.

Definition 1.3 (ci , Tri and x). Let {ci }, for i ∈ {1, . . . ,nc }, be the set of children of the root of G , and
let Tri be the subtree of G rooted at ci and including its descendants. We can suppose than the indices
are ordered such that the LTri ’s are in decreasing order. Let x ∈ [0,2] be such that xp processors are
dedicated to Tr1 in SPM. See Figure 1.9 for an illustration.

Formally, we have:

x =
2L 1/α

Tr1∑nc

i=1 L 1/α
Tri

.

root

c1

· · ·

c2

· ·

c3

·
Tr1 Tr2 Tr3

c1 c2 c3

xp

ti
m

e

p p

SPM

Figure 1.9: Structure of the graph G and of the schedule SPM with x ≥ 1.

The following lemma focuses on the simpler case of the proof, i.e., when no subtree is allocated
more than p processors in SPM.

Lemma 1.6. If we have x ≤ 1, then a
(4

3

)α-approximation is computable in polynomial time.

Proof. Let pi be the constant share of processors allocated to Tri in SPM. By hypothesis, we have
pi ≤ p for all i , as LTr1 is the largest LTri and its share is equal to xp ≤ p.

If the root has two children (nc = 2), then p1 = p2 = p. Therefore, the schedule SPM respects the
restriction R, is then optimal and so is a

(4
3

)α approximation.

1.6. Extensions to distributed memory 19

Otherwise, we have nc ≥ 3 and we partition the indices i in three sets S1, S2, S3 such that the sum
Σk of pi ’s corresponding to each set Sk is not larger than p: ∀k ∈ {1,2,3}, Σk = ∑

i∈Sk
pi ≤ p, which

is always possible because no pi is larger than p and the sum of all pi ’s is 2p. Indeed, we just have
to iteratively place the largest pi in the set that has the lowest Σk . If a Σk exceeds p, it was at least
equal to p/2 at the previous step, and both other Σk also: the sum of all pi ’s then exceeds 2p, which is
impossible.

Then, we define a schedule S in which we place the set with the largest Σk , say S1, on one half of
the processing power, and aggregate the two smallest, S2 ∪S3 in the other half. See Figure 1.10 for an
illustration. We now compute the PM schedule of S1 with p processors and S2 ∪S3 with p processors.
The makespan of S is then:

Cmax =
max

(
LS1 ,LS2 ∥S3

)
pα

= LS2 ∥S3

pα
.

Indeed, we have Σ1 ≤ p ≤ Σ2 +Σ3 and LS1

/
Σα1 = LS2 ∥S3

/
(Σ2 +Σ3)α, as these quantities represent the

makespan of each subpart of the tree in SPM, and all subtrees Tri terminate simultaneously in SPM. So
LS1 ≤LS2 ∥S3 .

We know that Σ1 ≥ max(Σ2,Σ3) and Σ1 +Σ2 +Σ3 = 2p, so Σ1 ≥ 2
3 p, then Σ2 +Σ3 ≤ 4

3 p. Therefore,
in SPM, Σ2 +Σ3 ≤ 4

3 p processors are allocated to S2 ∪S3. Then, the makespan of SPM verifies C PM
2p ≥

LS2 ∥S3

/(4
3 p

)α, and so Cmax/C PM
2p ≤ (4

3

)α. Therefore, S is indeed a
(4

3

)α approximation.

c1 c2 c3

xp

p p

SPM

ti
m

e

=⇒

c1 c2 c3

p p

S

Figure 1.10: Illustration of the transformation of the schedule SPM into S when x ≤ 1, nc = 3, and
S1 = {Tr3}.

We now focus on the case not covered by Lemma 1.6, and therefore assume that x > 1.

Definition 1.4 (Rq). For any 0 < q ≤ p, let Rq be the constraint that forces q processors to be allocated
to c1.

We denote by B the subgraph G \ {root} \ Tr1.

Definition 1.5 (Su , vu and Cu). We define the schedule Su parametrized by u ∈]0, p]∪ {xp}, which
respects Ru but not R. It allocates a constant share u ≤ p of processors to c1 until it is terminated.
Meanwhile, 2p −u processors are allocated to schedule a part Bu of B . Bu may contain fractions of
tasks. Before, the rest of the graph, which is composed of Tr1 \ {c1} and of the potential remaining part
B̄u of B , is scheduled on 2p processors by a PM schedule, regardless of the R constraint. We denote by
vu the share allocated to Tr1 \ {c1} and by Cu the makespan of the schedule.

20 CHAPTER 1. The speedup model of Prasanna and Musicus for parallel tasks

See Figure 1.11 for an illustration of this definition. Let Gu,1 be the graph (Tr1 \ {c1})∥ B̄u and Gu,2

be the graph c1 ∥Bu . We denote by ∆u,1 (resp. ∆u,2) the time interval during which Gu,1 (resp. Gu,2)
is executed in Su . Then, Cu = |∆u,1| + |∆u,2|. Note that the PM schedule SPM is equal to Sxp , where
u = vu = xp.

Su

c1

Tr1 \ {c1}

Bu

p p

u

vu

∆u,2

∆u,1

B̄u

ti
m

e

SPM

c1

Tr1 \ {c1}

Bxp

p p

xp

∆xp,2

∆xp,1

B̄xp

Figure 1.11: A schedule Su , for u < p on the left and the schedule SPM =Sxp on the right.

Lemma 1.7. For any u ∈]0, p], under the constraint Ru , the makespan-optimal schedule is Su .

Proof. Let S be the the makespan-optimal schedule that respects the constraint Ru . We want to show
that S =Su .

First, suppose that c1 terminates before B in S . This means that 2p processors are dedicated to
schedule B at the end of the schedule. We can slightly modify S by allocating 2p processors to B at the
beginning of the schedule, for the same amount of time. This leads to the same makespan as there is no
heredity constraint between B and Tr1, and the same tasks of B can be performed in the new allocation,
by a PM schedule on B . Indeed, B has the same makespan as a single task under any allocation by
Theorem 1.1, and the makespan of a single task is unchanged under this new allocation. Therefore, we
now assume that the schedule terminates at the execution of c1.

Because of Ru , S must allocate u processors to c1 at the end of the schedule. In parallel to c1, only
B can be executed, and before the execution of c1, both subgraphs B and Tr1 \ {c1} can be executed.

Suppose that S and Su are different during the interval ∆u,2. This means that, in S , B is not
scheduled according to PM ratios during ∆u,2. Then, the schedule S can be modified to schedule B in
a smaller makespan by Theorem 1.1, and then to schedule the whole graph G in a smaller makespan,
which contradicts the makespan-optimality of S .

So S and Su are equal during the time interval ∆u,2. Then, it remains to schedule the graph
Gu,1 = (Tr1 \ {c1})∥ B̄u , which has a unique optimal schedule, the PM schedule, that is followed by Su .
Therefore, S =Su .

Lemma 1.8. If x > 1, then Sp is the makespan-optimal schedule among the Sw for w ∈]0, p], i.e., we
have p = argminw∈]0,p] (Cw).

Proof. Let uOPT = argmin
w∈]0,p]

(Cw). We will prove here that uOPT = p.

For the sake of simplification, we denote in this proof uOPT by u, vu by v , ∆u,1 by ∆1 and ∆u,2 by
∆2. We will then consider the schedule Su , which is makespan-optimal among the Sw , for w ∈]0, p].

Suppose by contradiction that u < p. We will build a schedule S̄ following the constraint Rū for a
value ū such that u < ū < p, that will contradict the optimality of Su .

1.6. Extensions to distributed memory 21

Proof that v is larger than p Note that this result can be intuitively deduced from an observa-
tion of the schedules.

As we have x > 1, we know that:

LTr1\{c1} >LB̄xp
=LB −LBxp >LB −Lc1 .

The first inequality holds because in Sxp , the subgraphs Tr1 \ {c1} and B̄xp are scheduled in parallel,
and each subgraph is scheduled according to the PM ratios. Then, each subgraph has the same makespan
as its equivalent task. Moreover, xp (resp. (2− x)p) processors are allocated to Tr1 \ {c1} (resp. B̄xp).
Therefore, we get |∆xp,1| =LTr1\{c1}/(xp)α =LB̄xp

/((2−x)p)α. As x > 1, more processors are allocated
to Tr1 \ {c1}, so LTr1\{c1} >LB̄xp

. By the same reasoning between c1 and Bxp in Sxp , we get LBxp <Lc1

and the second inequality holds. See Figure 1.11 for an illustration.
With similar arguments between the subgraphs c1 and Bu in the schedule Su , and using the hypoth-

esis u < p, we get LBu > Lc1 . The difference with the previous case is that the share of processors
allocated to both subgraphs is not computed by the PM ratios, but as Bu is scheduled under (2p −u)
processors with the PM ratios, it has the same makespan as its equivalent task:

|∆u,2| =
LBu

(2p −u)α
= Lc1

uα
so LBu >Lc1 .

Combining these two inequalities, we have LB̄u
< LB −Lc1 < LTr1\{c1}, and by using the same

reasoning in the other way with the parallel execution of Tr1 \{c1} and B̄u in Su , we finally prove v > p.

Su

c1

Tr1 \ {c1}

B

p p

u

v

∆2

∆1

ti
m

e

S̄

c1

Tr1 \ {c1}

B

p p

ū = u +ε|∆1|

v̄ = v −ε|∆2|

∆2

∆̄ of length
Cu = |∆1|+ |∆2| < C̄

Figure 1.12: Schedules Su and S̄ , assuming that B begins after Tr1 in S̄ .

Definition of the schedule S̄ and exhibition of a contradiction Let ε> 0 small enough
such that u +ε|∆1| < p and v −ε|∆2| > p. Let ū = u +ε|∆1| and v̄ = v −ε|∆2|. Note that 0 < u < ū < p <
v̄ < v .

Let S̄ be the schedule allocating ū processors to Tr1 during a time interval of length |∆2| at the end
of the schedule, and v̄ processors to Tr1 before. The subgraph B is scheduled following PM ratios in
parallel to Tr1, in such a way that it terminates at the same time as c1 and there is no idle time after the
beginning of its execution. The subgraph Tr1 is scheduled in the same way as B , following PM ratios as
soon as its execution begins. Note that B and Tr1 may not begin simultaneously. See Figure 1.12 for an
illustration of the case where B begins after Tr1. Let C̄ be the makespan of S̄ .

22 CHAPTER 1. The speedup model of Prasanna and Musicus for parallel tasks

As ū > u, the processing time of c1 is smaller than |∆2| in S̄ , so S̄ respects the constraint Rū .
Then, by Lemma 1.7, as S̄ 6= Sū , we know that C̄ > Cū . In addition, by the definition of Cu , we get
C̄ >Cū ≥Cu .

We can assume without loss of generality that Tr1 and B are both a unique task, because both
subgraphs are scheduled under the PM ratios in S̄ and Su , once the (time varying) share of processors
allocated to each subgraph is fixed.

Let ∆̄ be the interval of time ending when Su terminates and having a length equal to Cu = |∆1|+|∆2|.
See Figure 1.12 for an illustration.

Let W̄Tr (resp. W̄B) be the total work of the task Tr1 (resp. B) that is executed in S̄ during ∆̄.
Similarly, we define WTr (resp. WB) the total work of the task Tr1 (resp. B) that is executed in Su .
These two last quantities are equal to:

WTr = |∆1|vα+|∆2|uα
(=LTr1

)
WB = |∆1|(2p − v)α+|∆2|(2p −u)α (=LB)

As C̄ >Cu , we cannot have both W̄Tr ≥WTr and W̄B ≥WB . Indeed, in this case, all the tasks of G would
be completed by S̄ in a makespan smaller than Cu , which is a contradiction. For both tasks B and Tr,
we consider two cases.

If Tr1 begins in S̄ during ∆̄, then W̄Tr =LC =WTr because the execution of Tr1 would hold entirely
in ∆̄. Otherwise, we have:

W̄Tr = |∆1|v̄α+|∆2|ūα.

We know that 0 < u < ū < v̄ < v . Therefore, by the concavity of the function s : x 7→ xα, we conclude
that W̄Tr is larger than WTr:

ūα−uα

ū −u
> vα− v̄α

v − v̄
ūα−uα

ε|∆1|
> vα− v̄α

ε|∆2|
|∆2|

(
ūα−uα

)> |∆1|
(
vα− v̄α

)
|∆2|ūα+|∆1|v̄α > |∆2|uα+|∆1|vα

W̄Tr >WTr .

Therefore, in any case, we have W̄Tr ≥WTr .

Then, we treat similarly the subgraph B . If B begins in S̄ during ∆̄, then W̄B =LB =WB .

Otherwise, we have:

W̄B =∆1(2p − v̄)α+∆2(2p − ū)α

1.6. Extensions to distributed memory 23

Similarly, we know that 2p −u > 2p − ū > 2p − v̄ > 2p − v > 0. Therefore, by the concavity of the
function s : x 7→ xα, we have:

(2p −u)α− (2p − ū)α

ū −u
< (2p − v̄)α− (2p − v)α

v − v̄
(2p −u)α− (2p − ū)α

ε|∆1|
< (2p − v̄)α− (2p − v)α

ε|∆2|
(2p − ū)α− (2p −u)α

ε|∆1|
> (2p − v)α− (2p − v̄)α

ε|∆2|
|∆2|

(
(2p − ū)α− (2p −u)α

)> |∆1|
(
(2p − v)α− (2p − v̄)α

)
|∆2|(2p − ū)α+|∆1|(2p − v̄)α > |∆2|(2p −u)α+|∆1|(2p − v)α

W̄B >WB

Then, in any case, we have both W̄Tr ≥WTr and W̄B ≥WB , so we get the contradiction.
Therefore, we have u ≥ p and so u = p.

Lemma 1.9. If x > 1, then the makespan of Sp is not smaller than the minimal makespan of a schedule
respecting R.

Proof. Let SOPT be a schedule respecting R of minimal makespan. Note that in SOPT, a constant share
of u∗ ≤ p processors must be allocated to c1 due to R, as in Su∗ . Indeed, if this share is not constant,
because of the concavity of the function s : x 7→ xα, it would be better to always allocate the mean value
to c1. This would allow to terminate earlier both c1 and the tasks executed in parallel to c1 on the same
part, as proved by Lemma 1.3.

Therefore, SOPT respects the constraint Ru∗ . So its makespan is not smaller than the one of Su∗ by
Lemma 1.7. Therefore, it is not smaller than the one of Sp by Lemma 1.8, which proves the lemma.

We are now ready to prove Theorem 1.3. The corresponding approximation algorithm is provided
in Algorithm 1.

Algorithm 1: HOMOGENEOUSAPP(G ,p)

1 G̃ ←G
2 Modify G as in Lemma 1.5
3 Compute the PM schedule SPM of G on 2p processors
4 Determine the ci , the Tri , B , and x
5 if x ≥ 1 and c1 is a leaf then
6 Build S : shrink from SPM the share of processors allocated to c1 to p processors

7 else if x ≤ 1 then
8 Build S : schedule the Tri ’s as in Lemma 1.6, and compute the PM schedule on each part

9 else
10 Compute the schedule Sp and partition G in Gp,1 and Gp,2 as in Definition 1.5
11 S r ← HOMOGENEOUSAPP(Gp,1, p)
12 Build S : schedule Gp,1 as in S r then Gp,2 as in Sp

13 Adapt S to the original graph G̃ if G 6= G̃ by scheduling the additional tasks on p processors
14 return S

24 CHAPTER 1. The speedup model of Prasanna and Musicus for parallel tasks

c2c1

p p

SPM
ti

m
e =⇒

c1 c2

p p

S

Figure 1.13: Illustration of SPM and an optimal schedule S when x ≥ 1 and c1 is a leaf.

Proof of Theorem 1.3. We prove here by induction on the tree structure of G that Algorithm 1 is a
(4

3

)α-
approximation.

If G has only one task, the result is immediate.
As stated in Lemma 1.5, we can suppose that the root has length 0 and has at least two children.

Otherwise, the root and the chain rooted at it can be optimally scheduled on p processors without
increasing the approximation ratio.

Then, we treat the cases that do not need the heredity property.

• if x ≥ 1 and c1 is a leaf, then the makespan of SPM is equal to Lc1 /(xp)α. Then, the schedule that
differs from SPM by reducing the allocation of c1 to p, the maximum possible under the constraint
R, achieves the minimal makespan. See Figure 1.13 for an illustration.

• if x ≤ 1, the result is given by Lemma 1.6.

Now, we suppose the result true for a graph G of less than n nodes. The case remaining is when c1

is not a leaf and x > 1. Consider such a graph G of n nodes.
We consider the schedule Sp , whose makespan Cp is not larger than the makespan of SOPT as stated

in Lemma 1.9.
We now build the schedule S , which achieves a

(4
3

)α-approximation respecting R. At the end of
the schedule, Gp,1 is scheduled as in Sp . At the beginning of the schedule, we use the heredity property
to derive from Sp a schedule of Gp,2 that follows the R constraint. See Figure 1.14 for an illustration.

BTr1

c1

p p

SPM

ti
m

e →

Sp

c1

Tr1 \ {c1}

Bp

B p

p p

⇒

S

c1 Bp

Recursive call

p p

Figure 1.14: Illustration of the construction of S , when c1 is not a leaf and x > 1.

More formally, we have Gp,2, which is the parallel composition (Tr1 \{c1})∥ B̄p , composed of at most
n−1 nodes. So, by induction, a schedule S r achieving a

(4
3

)α-approximation can be computed for Gp,2.
This means that its makespan C r

max is at most
(4

3

)α
∆p,2, as Sp completes Gp,2 with PM ratios in a time

∆p,2, which is then the optimal time.

1.6. Extensions to distributed memory 25

Consider the schedule S of G that schedules Gp,2 as in S r , then schedules Gp,1 as in Sp . The time
necessary to complete Gp,1 is then equal to ∆p,1. The makespan Cmax of S then respects:

Cmax =∆p,1 +C r
max ≤∆p,1 +

(
4

3

)α
∆p,2 ≤

(
4

3

)α (
∆p,1 +∆p,2

)≤ (
4

3

)α
Cp ≤

(
4

3

)α
COPT.

Then, S is a
(4

3

)α-approximation, so Algorithm 1 is a polynomial-time
(4

3

)α-approximation.

1.6.2 Two heterogeneous multicore nodes

We suppose here that the computing platform is made of two processors of different processing capabil-
ities: the first one is made of p cores, while the second one includes q cores, and all cores are identical.
We also assume that the parameter α of the speedup function is the same on both processors. As the
problem gets more complicated, we concentrate here on n independent tasks, of lengths w1, ..., wn . The
(p, q)-SCHEDULING problem consists in finding a schedule of minimal makespan. Thanks to the ho-
mogeneous case presented in Section 1.6.1, we already know that scheduling independent tasks on two
nodes is NP-complete.

This problem is close to the SUBSET SUM problem. Given n numbers, the optimization version of
SUBSET SUM considers a target K and aims at finding the subset with maximal sum smaller than or
equal to K . There exists many approximation schemes for this problem. In particular, Kellerer et al. [95]
propose a fully polynomial approximation scheme (FPTAS). Based on this result, an approximation
scheme can be derived for our problem. The full proof is detailed below. We assume that each w1/α

i is an
integer in order to apply the FPTAS for SUBSET SUM, which is valid only on integers. This assumption
is necessary as the complexity of the algorithm depends on the precision required. In practice, any
encoding of these numbers can be interpreted as integers.

We first need a few definitions before stating Theorem 1.4 which implies the construction of an
FPTAS for a restricted version of the (p, q)-SCHEDULING problem in Corollary 1.1.

Consider an instance I of (p, q)-SCHEDULING. We define the following quantities:

xi = w1/α
i ; S =

n∑
i=1

xi ; X = {
xi , i ∈ {1, . . . ,n}

}
; r = max

(
q

p
,

p

q

)
.

We use the notation A to represent the subset of the indices of the tasks allocated to the p-part in a
given schedule, and Ā is the complementary of A. Then, the schedule that partitions the tasks according
to the subset A and performing a PM schedule on both parts is denoted by SA .

For λ > 1, a λ-approximation of (p, q)-SCHEDULING returns a schedule whose makespan is not
larger than λ times the optimal makespan. For 0 < κ < 1, a κ-approximation of the SUBSET SUM

instance composed of the set X and a target K returns a subset A of X such that the sum of its elements
ranges between κOPT and OPT , where:

OPT = max
A | ∑

A xi≤K

∑
A

xi .

We furthermore define ελ =λ1/α−1 and εκ = 1−κ. An approximation scheme A resolving SUBSET

SUM is defined as follows. Given an instance J of SUBSET SUM and a parameter 0 < κ< 1, it computes
a solution to J achieving a κ-approximation in a time complexity fA (n,εκ). An approximation scheme
B resolving (p, q)-SCHEDULING is defined as follows. Given an instance I of the (p, q)-scheduling
problem and a parameter λ > 1, it computes a solution to I achieving a λ-approximation in a time
complexity fB(J ,ελ).

26 CHAPTER 1. The speedup model of Prasanna and Musicus for parallel tasks

Remark 1.1. There exist an FPTAS for SUBSET SUM: Kellerer et al. [95] have designed an FPTAS of
time complexity O

(
min

(
n/εκ,n +1/ε2

κ log(1/εκ)
))

and space complexity 0(n +1/εκ).

As previously mentioned, we design an FPTAS for a restricted version of (p, q)-SCHEDULING,
where the xi ’s are integer. This problem is defined in Definition 1.6 as (p, q)-SCHEDULING RE-
STRICTED. This allows to use algorithms designed to solve the integer problem SUBSET SUM. The
proposed scheme is defined in Algorithm 2 and its complexity when using the FPTAS of [95] is given
in Corollary 1.1 of Theorem 1.4.

Definition 1.6. The (p, q)-SCHEDULING RESTRICTED problem is defined from the (p, q)-
SCHEDULING problem by replacing the input wi by xi = w1/α

i , and is restricted to the case where the
xi are integers, and p and q are given in unary.

Theorem 1.4. Given a κ-approximation scheme A of SUBSET SUM of time complexity (n,εκ) 7→
fA (n,εκ), Algorithm 2 performs is a λ-approximation scheme to (p, q)-SCHEDULING RESTRICTED

with time complexity (n, p, q,α,λ) 7→O
(
n + fA

(
n, ελr

))
, assuming that raising a number to the power α

or 1/α can be done is constant time.

Corollary 1.1. The (p, q)-SCHEDULING RESTRICTED problem admits an FPTAS of time complex-

ity O

(
min

(
nr
ελ

,n +
(

r
ελ

)2
log

(
r
ελ

)))
and space complexity 0

(
n + r

ελ

)
: use Algorithm 2 with the FPTAS

of [95].

Algorithm 2: HETEROGENEOUSAPP(w1, . . . , wn , p, q , λ, A)

1 r ← max
(

p
q , q

p

)
; S ←∑

Ti∈V w1/α
i ; ελ←λ1/α−1; X ← {

w1/α
i | i ∈ {1, . . . ,n}

}
;

2 if λ> (1+ r)α then
3 return the PM schedule on the largest node

4 A ←A
(

X , pS
p+q , ελ

r

)
; B ←A

(
X , qS

p+q , ελ
r

)
;

5 return the schedule with the minimum makespan between SA and SB̄

Proof of Theorem 1.4. Let I be an instance of (p, q)-SCHEDULING RESTRICTED, λ > 1 and A be
an approximation scheme of SUBSET SUM. We recall that raising a number to the power α or 1/α is
assumed feasible.

If λ≥ (1+r)α, it suffices to compute the PM schedule on the largest node of the platform. We assume
in the following that λ< (1+ r)α. We define κ= (

1− 1
r (λ1/α−1)

)
, so that εκ = 1−κ= ελ

r and 0 < κ< 1.

A lower bound on the makespan is Cideal =
(

S
p+q

)α
. Indeed, it represents the makespan of the PM

schedule on p + q processors, which may respect the constraint for some values of the xi . In this
schedule, we have

∑
i∈A xi = pS

p+q . Let Σideal denotes this quantity.
Let SOPT be an optimal schedule of I , and AO the subset of the tasks allocated to the p-part of the

platform in SOPT. We first assume that SOPT terminates to schedule the tasks of AO before the time
Cideal, which is equivalent to say, with ΣOPT =∑

i∈AO
xi , that

ΣOPT ≤Σideal =
pS

p +q
. (1.1)

1.6. Extensions to distributed memory 27

Therefore, the makespan of SOPT, which we name COPT, is equal to the makespan on the q-part of
the schedule, so we have:

COPT =
(∑

i∈ĀO
xi

q

)α
=

(
S −ΣOPT

q

)α
.

Let Λ be the set of subsets of X such that:

Λ=
{

A ⊂ X

∣∣∣∣∣ (1−εκ)ΣOPT ≤
∑
i∈A

xi ≤ΣOPT

}
.

We prove in the following paragraph that a subset A ∈Λ is computed by the algorithm A launched
on the set X , with the target K =Σideal = pS

p+q , and the precision εκ. Recall that the xi are assumed to be
integers in the formulation of (p, q)-SCHEDULING RESTRICTED.

By the definition of ΣOPT, we have AO ∈Λ. Then, no subset A of X verifies ΣOPT <∑
i∈A xi ≤Σideal,

because the associated schedule SA would have a makespan smaller than COPT, which contradicts the
optimality of SOPT. So AO is an optimal solution of the instance submitted to A . Therefore, A launched
on this instance with the parameter εκ will return a set A ∈Λ in time fA (n,εκ).

Let A be an element of Λ. We know that the makespan C A of the corresponding schedule SA

allocating the tasks corresponding to A on the p-part is:

C A =
(
max

(∑
i∈A xi

p
,

∑
i∈Ā xi

q

))α
As A ∈Λ, we have:

∑
i∈Ā

xi = S −
∑
i∈A

xi and
∑
i∈A

xi ≥ κΣOPT so
∑

i∈Ā xi

q
≤ S −κΣOPT

q
.

Because A ∈Λ and we assumed that Equation 1.1 is valid, we have:∑
i∈A

xi ≤ΣOPT ≤Σideal.

This last inequality implies that the makespan is equal to the makespan of the q-part of the platform:
C A = (∑

i∈Ā xi /q
)α. Therefore, we have:(

C A

COPT

)1/α

≤ S −κΣOPT

S −ΣOPT
.

Then, as 0 < κ< 1 and ΣOPT ≤Σideal, we get:(
C A

COPT

)1/α

≤ S −κΣideal

S −Σideal
≤

1− κp
p+q

1− p
p+q

≤ p +q −κp

q
≤ 1+ p

q
(1−κ).

Then, r is not smaller than p
q , so:

C A

COPT
≤ (1+ r (1−κ))α =λ.

We have supposed so far that Equation 1.1 holds. Note that otherwise, we have a symmetric inequal-
ity exchanging p and q: ∑

i∈ĀO

xi ≤ S − pS

p +q
= qS

p +q
.

28 CHAPTER 1. The speedup model of Prasanna and Musicus for parallel tasks

Then, as the problem is also symmetric in p and q , by an analogue reasoning, one we prove that A

launched on the set X , the target qS
p+q , and the precision εκ returns a set B in:

Λ′ =
{

B ⊂ X

∣∣∣∣∣ (1−εκ)
∑

i∈ĀO

xi ≤
∑
i∈B

xi ≤
∑

i∈ĀO

xi

}
.

The schedule that associates B to the q-part of the processors then has a makespan smaller than
λCOPT. To conclude, Algorithm 2 launched with the parameter λ computes a set A ∈Λ and a set B ∈Λ′,
then returns the schedule that has the minimum makespan between SA and SB̄ . Therefore, regardless
of whether Equation 1.1 is valid, the returned schedule has a makespan smaller than λCOPT, and so
Algorithm 2 achieves a λ-approximation.

The complexity of computing the makespan of these schedules is linear if we assume that raising a
number to the power α or 1/α can be done in constant time. Adding the complexity of the approximation
scheme A , we get a total complexity equal to O

(
n + fA

(
n, ελr

))
.

1.7 Conclusion

In this chapter, we have studied how to schedule trees of malleable tasks whose speedup function on
multicore platforms is pα. We have first motivated the use of this model for sparse matrix factorizations
by actual experiments. When using factorization kernels actually used in sparse solvers, we show that
the speedup follows quite well the pα model for reasonable allocations. On the machine used for our
tests, α is in the range 0.85–0.95. Then, we proposed a new proof of the optimal allocation derived
by Prasanna and Musicus [121, 122] for such trees on single node multicore platforms. Contrarily to
the use of optimal control theory of the original proofs, our method relies only on pure scheduling
arguments and gives more intuitions on the scheduling problem. Based on these proofs, we proposed
several extensions for two multicore nodes: we prove the NP-completeness of the scheduling problem
and propose a

(4
3

)α-approximation algorithm for a tree of malleable tasks on two homogeneous nodes,
and an FPTAS for independent malleable tasks on two heterogeneous nodes. Finally, we have estimated
the potential gain of using an optimal allocation compared to simpler allocations from the literature on
a single multicore node by extensive simulations. Although the improvement over simpler allocations
may seem small in the measured range of α values, it has to be noted that (i) even a 5% improvement
is interesting when comparing real software implementations, which is also why the optimal allocation
under this particular speed-up model has already been considered for sparse solvers [23], (ii) the value
of α is expected to be smaller for machine with weaker memory bandwidth and (iii) memory bandwidth
increases at a smaller pace than core computing rates [75], which is likely to make smaller values of α
more relevant in the future.

The speedup model studied however suffers from several limitations. There is no lower bound on the
processing time of a task, whereas every task has a sequential part that has to be processed and cannot be
shortened. Moreover, the value of α must be the same for every task, which is a very strong hypothesis
when dealing with highly heterogeneous tasks. The accuracy of the model even when choosing the best
value for α is not totally satisfactory. Furthermore, it would be preferable to avoid using rational numbers
of processors allocated to each task. These observations, combined with the fact that the observed gain is
significant but not large, lead us to study a more general model, which is the subject of the next chapter.

Chapter 2

The two-threshold roofline speedup model
for parallel tasks

« J’ai pas plus rapide. »

Panoramix, Astérix et Obélix: Mission
Cléopâtre

In this chapter, we study the problem of scheduling parallel task graphs to minimize the makespan, as
in Chapter 1. We target the same applications, i.e., the assembly tree arising in multifrontal factorizations
of sparse matrices. Hence, we focus on scheduling task trees, but also consider series-parallel graphs
and even general DAGs. The main objective of this chapter is to design and validate a more accurate and
general speedup model for these applications, before designing scheduling algorithms specific for this
model. We recall that the speedup function si of a task Ti for pi processors is defined as the sequential
processing time of Ti divided by its processing time under pi processors. The speedup model of the
previous chapters presented several limitations. For instance, the speedup could be arbitrarily large,
whereas it is always bounded by a threshold in practice; and all the tasks of a graph were modeled by the
same speedup function, which is very constraining. We now therefore consider a more flexible model.

The proposed speedup model, validated on linear algebra kernels benchmarks, is a continuous piece-
wise linear function, depending on two thresholds on the processor allotment: before a first threshold,
the speedup is perfect, that is, equal to the number of processors; between the two thresholds, it is
linear, but not perfect anymore; after the second threshold, it stalls and stays constant. The intuition
behind this model is the following. In the first part, all the processors are fully used so the parallelism
is close to perfect. In the last part, the maximum parallelism has been reached, so no further progress
can be made. In the middle part, additional processors are underused but still beneficial. Therefore, the
speedup of each task is parameterized by three quantities: the two thresholds and the maximal speedup,
which allows accounting for different behaviors among the tasks of the graph. This model extends the
well-studied simple single-threshold model, with a perfect speedup before the threshold, and constant
speedup thereafter. This simplified model has been studied both in theoretical scheduling [55] and for
practical schedulers [114]. Contrarily to most existing studies, we also assume that tasks are preemptible
(a task may be interrupted and resumed later), malleable (the number of processors allocated to a task
can vary over time) and we allow fractional allocation of processors. We claim that this model is rea-
sonable based on the following two arguments. Firstly, changing the allocation of processors is easily
achieved using the time sharing facilities of operating system schedulers or hypervisors: actual runtime
schedulers are able to dynamically change the allocation of a task [84]. Secondly, given preemption
and malleability, it is possible to transform any schedule with fractional allocation to a schedule with

29

30 CHAPTER 2. The two-threshold roofline speedup model for parallel tasks

integral allocation using McNaughton’s wrap-around rule [111] (as shown in Section 2.1). Hence, we
can consider fractional allocations that are simple to design and analyze, and then transform them into
integral ones when needed.

Main contributions. In this chapter, we propose a practical piecewise linear speedup model which
is divided into three parts. Up to a first threshold the speedup is perfect, equaling the number of pro-
cessors. Then it grows linearly, but with a slope smaller than one until a second threshold is reached,
after which the speedup remains constant. This model is validated experimentally: it closely follows
speedup curves typical for linear algebra kernels. For this model, we show the NP-completeness of the
decision problem associated with the minimization of the makespan for a given graph. We study previ-
ously proposed algorithms PROPMAPPING (Proportional Mapping) which is commonly used by runtime
schedulers, and FLOWFLEX, and propose model-optimised variants of these algorithms. Furthermore,
the novel GREEDYFILLING is proposed, designed for the new speedup model. Both GREEDYFILLING

and PROPMAPPING are shown to be 2-approximation algorithms with a single threshold. Finally, we
perform simulations both on synthetic series-parallel graphs and on real task trees from linear algebra ap-
plications demonstrating the general superiority of the new GREEDYFILLING and the model-optimized
variants of the traditional algorithms.

The rest of this chapter is organized as follows. Section 2.1 details the model and Section 2.2
validates it experimentally. The complexity of the problem is depicted in Section 2.3. In Section 2.4, we
describe and prove the performance of several algorithms, which are then compared via simulations in
Section 2.5. A review of the relevant related work on malleable task graph scheduling can be found in
Section 1.1, Chapter 1.

2.1 Application model

We consider a workflow of tasks whose precedence constraints are represented by a task graph G = (V ,E)
of n nodes, or tasks: a task can only be executed after the termination of all its predecessors. We assume
that G is a series-parallel graph. Such graphs are built recursively as series or parallel composition of
two or more smaller SP-graphs, and the base case is a single task. Trees can be seen as a special-case of
series-parallel graphs.

Each task Ti ∈ V is associated with a weight wi that corresponds to the work that needs to be done
to complete the task. By extension, the weight of a subgraph of G is the sum of the weights of the tasks
it is composed of. The start time of a task Ti is defined as the time when the processing of its work starts
for the first time. Denoted by p is the total number of identical processors available to schedule G . Tasks
are assumed to be preemptible and malleable; each task Ti may be allocated a fractional, time-varying
amount pi (t) of processors at time t . The speedup of each task, illustrated in Figure 2.1, is a piecewise
linear function of the number of processors allocated to the task. Task Ti is associated with two integer
thresholds, δ(1)

i and δ(2)
i , on the number of processors and a maximum speedup Ωi , which define the

speedup of the task:
• for a number of processors smaller than, or equal to, the first threshold, the task is perfectly

parallel;
• for a number of processors larger than the second threshold, the speedup is bounded by the maxi-

mum speedup;
• between the two thresholds, the speedup is linear but not perfect.

2.1. Application model 31

δ(1)
i δ(2)

i

δ(1)
i

Ωi

nb. of processors p

speedup si (p)

Figure 2.1: Illustration of the proposed speedup model and its notations.

Formally, the speedup function is a continuous piecewise linear function defined as

si (p) =


p if p ≤ δ(1)

i

δ(1)
i +

(p −δ(1)
i)(Ωi −δ(1)

i)

δ(2)
i −δ(1)

i

if δ(1)
i ≤ p ≤ δ(2)

i

Ωi if p ≥ δ(2)
i

(2.1)

The completion or finish time of task Ti is thus defined as the smallest value Ci such that∫ Ci

0
si (pi (t))d t = wi .

The objective is to minimize the makespan of the application, that is the latest task finish time.

Model variants There exists a notable special case of our model: when both thresholds are equal
(δ(1)

i = δ(2)
i) we necessarily get Ωi = δ(1)

i and we get back to a capped perfect threshold. The problem of
minimizing the makespan of a graph with this model is noted P |prec,var, frac,spdp-lin,δ j |Cmax and is
studied in [55, 114].

Some of the algorithms presented in this paper also apply to some restricted variants of the problem.
A notable one is the case of moldable tasks, which prohibits any variation in the set of processors used
by a task: in this case, pi (t) must be constant on some time interval, and null elsewhere.

Other notations In the following, we will often use the length of a path, which is defined as
the minimum time needed to complete all the tasks of this path, provided that an unlimited number of
processors is available. This corresponds to the definition introduced in the Preliminaries section, where
the duration of each task is set to wi /Ωi . The critical path CP of the graph and the bottom-level of a
task follow from this definition.

Extension of McNaughton wrap-around rule

When scheduling tasks with perfect speedup, it is possible to remove the assumption of fractional al-
location without degrading the makespan thanks to malleability, using the so-called “MacNaughton
wrap-around rule” [111]. We adapt here this result to our model with two integer thresholds. For the
sake of simplicity, the proof is presented only for two tasks but easily extends to any allocation.

32 CHAPTER 2. The two-threshold roofline speedup model for parallel tasks

Lemma 2.1. Consider two tasks T1 and T2 sharing an integer number of processors p : T1 (resp. T2) is
allocated a fractional number of processors p1 (resp. p2). We can produce a schedule with preemption
where T1 and T2 are allocated integer numbers of processors at all times, and in which both tasks
perform the same amount of work.

Proof. Let Cmax be the finish time of the original schedule. We build a schedule where
⌊

p1
⌋

(resp.⌈
p2

⌉
) processors are allocated to task T1 (resp. T2) during t units of time, and

⌈
p1

⌉
(resp.

⌊
p2

⌋
) during

Cmax − t units of time. t is chosen such that the area dedicated to task T1 is the same as in the original
allocation, which means:

t
⌊

p1
⌋+ (Cmax − t)

⌈
p1

⌉=Cmaxp1,

so t =Cmax(
⌈

p1
⌉−p1). The same holds correspondingly for task T2. This ensures that we can apply this

transformation to both tasks without exceeding the processor limit.
Now, we want to prove that in the new allocation, T1 performs the same amount of work (and

correspondingly for T2). We denote by s(·) the speedup function of task T1. The work done on task T1

is given by:

t × s(
⌊

p1
⌋

)+ (Cmax − t)× s(
⌈

p1
⌉

) =Cmax × s(
⌈

p1
⌉

)− t (s(
⌈

p1
⌉

)− s(
⌊

p1
⌋

))

=Cmax

(
s(

⌈
p1

⌉
)−

⌈
p1

⌉−p1⌈
p1

⌉−⌊
p1

⌋ (s(
⌈

p1
⌉

)− s(
⌊

p1
⌋

))

)
.

We know that: ⌈
p1

⌉−p1⌈
p1

⌉−⌊
p1

⌋ = s(
⌈

p1
⌉

)− s(p1)

s(
⌈

p1
⌉

)− s(
⌊

p1
⌋

)
,

because s is linear between
⌈

p1
⌉

and
⌊

p1
⌋
, as the thresholds are integer. Finally, we get:

t × s(
⌊

p1
⌋

)+ (Cmax − t)× s(
⌈

p1
⌉

) =Cmax × s(p1),

which completes the proof.

Note that this may add a number of preemptions proportional to the number of tasks for each interval.

2.2 Experimental validation of the model

In this section, we show that the proposed model is realistic enough to model parallel tasks coming
from an actual application. In order to do this, we ran tasks coming from linear algebra applications
on a parallel platform of 24 cores. It consists of two Haswell Intel Xeon E5-2680 processors, each one
containing 12 cores running at 3.30 GHz, and embeds 128 GB of DDR4 RAM (2133MHz).1

To compute the speedup graph as shown in Figure 2.1, we ran each task with p = 1, . . . ,24 cores. Note
that on this platform, the “number of processors” has to be understood as “number of cores”. We first
tested a dense numerical algebra routine: the dense Cholesky factorization. We noticed that the speedup
of such dense tasks was perfect, i.e., equal to the number of cores used, up to using the full platform
(p = 24). However, usual parallel applications are not made (only) of tasks with perfect parallelism, and
our model precisely aims at taking these speedup limitations into account. Thus, we focused on another

1 These experiments were carried out using the PlaFRIM experimental testbed (https://www.plafrim.fr/), be-
ing developed under the Inria PlaFRIM development action with support from Bordeaux INP, LABRI and IMB and other
entities: Conseil Régional d’Aquitaine, Université de Bordeaux and CNRS (and ANR in accordance to the programme
d’investissements d’Avenir).

https://www.plafrim.fr/

2.2. Experimental validation of the model 33

linear algebra application, which is the multifrontal QR decomposition of sparse matrices as performed
by QR_MUMPS [6], with 2D partitioning. Each task of this application is the QR decomposition of a
dense rectangular matrix. Similar tasks have already been studied in the evaluation of the model used
in Chapter 1, see Section 1.2. For the set of matrices described in Section 2.5, we computed the size
of all the dense QR decompositions associated to its multifrontal QR decomposition. For each of the
ten thousand resulting sizes, we timed such a task on p = 1, . . . ,24 cores. Each timing was performed 5
times using random data and we retain the average performance.

0 5 10 15 20 25

2

4

6

Processors

Sp
ee

d
u

p

(a) Matrix size 1984x1834

0 5 10 15 20 25

2

4

6

8

Processors

Sp
ee

d
u

p

(b) Matrix size 1072x22385

0 5 10 15 20 25
0

5

10

15

20

Processors

Sp
ee

d
u

p

(c) Matrix size 13007x15575

Figure 2.2: Speedup and fitted model for different matrix sizes.

In the following, we present the speedup of three tasks which are representative of all possible sizes.
The first case, presented in Figure 2.2(a), corresponds to small matrix sizes. The green dots represent the
actual speedup measured on the platform. Note that for up to 10 processors, the speedup increases with
the number of processors and then the performance decreases and exhibits a larger variability for larger
number of processors: when adding too many processors, more time is spent in communicating and
synchronizing the processors, which hinders the performance. This behaviour is not unusual; a “smart”
implementation of the task would be aware of this and would limit the number of processors to be used
to 10, even if more processors are allocated to the task. Thus, we first transform the measured speedup
so that it is never decreasing with the number of processors. Formally, this corrected speedup, plotted
with blue dots on the figures, is given by:

correctedSpeedup(p) = max
k≤p

measuredSpeedup(k)

In order to fit our speedup model to this corrected speedup, we computed the values of the parameters
(δ(1), δ(2), Ω) that minimize the sum of the squares of the distance between the model and the corrected
measurements for all p values between 1 and 24. Given the limited range of possible values for the
thresholds (which are integers in {1,2, . . . ,24}) and maximum speedup (in [1;24]), we decided to simply
test all possible values of the parameters (with fixed precision for the maximum speedup) and select the
ones that minimize the sum of residuals. The resulting speedup model is plotted in red.

Figures 2.2(b) and 2.2(c) plots the same measured speedup, corrected speedup and fitted model for
larger matrices: a medium-size matrix on Figure 2.2(b) with one large dimension and one small, and a
large matrix on Figure 2.2(c). As expected, we notice that the thresholds increase with the matrix size.
For the larger matrices, the second threshold is set to 24 although it would probably be larger on a larger
platform. Overall, we notice that the fitting of the model is very accurate, the median coefficient of
determination being larger than 0.98 (a value of 1 means a perfect fit).

34 CHAPTER 2. The two-threshold roofline speedup model for parallel tasks

0 5 10 15 20 25

2

4

6

Processors

Sp
ee

d
u

p

(a) Matrix size 1984x1834

0 5 10 15 20 25

2

4

6

8

Processors
Sp

ee
d

u
p

(b) Matrix size 1072x22385

0 5 10 15 20 25
0

5

10

15

20

Processors

Sp
ee

d
u

p

(c) Matrix size 13007x15575

Figure 2.3: Speedup and single-threshold model for different matrix sizes.

Some available algorithms for solving our problem consider the single-threshold variant presented
in the previous section. Thus, we also fitted the previous (corrected) speedup measurements with this
model, composed of a first perfect linear speedup and then a plateau where the speedup is equal to the
threshold. Figure 2.3 plots the obtained speedup model using the same matrix sizes as Figure 2.2. We see
that this model is less accurate, the median coefficient of determination being 0.90: it is too optimistic
before the threshold, as the task is not perfectly parallel, and it is too pessimistic for many processors
allocated, as better performance can be reached with a number of cores larger than the threshold.

We also studied the accuracy of the model adopted in Chapter 1, for which the speedup is equal to
p 7→ pα, where α is identical for all tasks. In Figure 2.4, we plotted the obtained model for the same
matrix sizes as Figure 2.2, with a value of α equal to 0.9. This value was chosen to fit the timings of
Figure 2.4(b) before the parallelism stalls. We can see that the model is accurate when few processors
are allocated, but it then rapidly underestimates or overestimates the computing time for different matrix
sizes. Other values of α would be more adequate, and the plateau is not correctly modeled.

0 5 10 15 20 25

2

4

6

Processors

Sp
ee

d
u

p

(a) Matrix size 1984x1834

0 5 10 15 20 25

2

4

6

8

Processors

Sp
ee

d
u

p

(b) Matrix size 1072x22385

0 5 10 15 20 25
0

5

10

15

20

Processors

Sp
ee

d
u

p

(c) Matrix size 13007x15575

Figure 2.4: Speedup and fitted model of Chapter 1 for different matrix sizes, with α= 0.9.

2.3 Problem complexity

Task malleability and perfect speedup make this problem much easier than most scheduling problems.
However, quite surprisingly, adding limiting the possible parallelism with thresholds is sufficient to
make it NP-complete. We restrict ourselves here to the model where both thresholds are equal (δi =

2.3. Problem complexity 35

δ(1)
i = δ(2)

i =Ωi for all tasks i) as it is already NP-complete. Note that a similar result already appeared
in [55], however its proof is more complex and not totally specified, which makes it difficult to check;
this is why we propose this new proof.

Theorem 2.1. The problem of minimizing the makespan is NP-complete.

Proof. We start by proving that this problem belongs to NP. Without loss of generality, we restrict to
schedules which allocate a constant share of processors to each task between any two task completions.
Note that from a schedule that does not respect this condition, we can construct a schedule with the same
completion times simply by allocating the average share of processors to each task in each such interval.
Given a schedule that respects this restriction, it is easy to check that it is valid in time polynomial in the
number of tasks.

To prove completeness, we perform a reduction from the 3SAT problem which is known to be NP-
complete [66]. An instance I of this problem consists of a boolean formula, namely a conjunction of m
disjunctive clauses, C1, . . . ,Cm , of 3 literals each. A literal may either be one of the n variables x1 . . . xn

or the negation of a variable. We are looking for an assignment of the variables which leads to a TRUE

evaluation of the formula.

Instance definition From I , we construct an instance J of our problem. This instance is made of
2n + 1 chains of tasks and p = 3 processors. The first 2n chains correspond to all possible literals of
instance I ; they are denoted Lxi or Lxi

and called literal chains. The last chain is intended to mimic
a variable “processor profile”, that is a varying number of available processors over time for the other
chains, and is denoted by Lpro. Our objective is that for every pair of literal chains (Lxi and Lxi

), one of
them starts at some time ti = 2(i −1) and the other at time ti +1. The one starting at time ti +1 will have
the meaning of TRUE. We will construct the chains such that (i) no two chains of the same pair can start
both at time ti +1 and (ii) at least one chain Lxi or Lxi

corresponding to one of the three literals of any
given clause starts at time ti +1.

For any chain, we consider its critical path length, that is, the minimum time needed to process it
provided that enough processors are available. The makespan bound M of instance J is equal to the
critical path length of the last chain Lpro, and will be specified later. Thus, to reach M , all tasks of Lpro
must be allocated their threshold, and no idle time may be inserted between them.

In constructing the chains, we only use tasks whose weight is equal to their threshold, so that their
minimum computing time is one. Then, a chain is defined by a list of numbers [a1, a2, . . .]: the i -th task
of the chain has a threshold and a weight ai . As a result, the critical path length of a chain is exactly
the number of tasks it contains. We define ε= 1/4n and present the general shape of a literal chain La ,
where a is either xi or xi :

La = [1,ε,ε, . . . ,ε︸ ︷︷ ︸
2(n−i)

,SelectClause(a)︸ ︷︷ ︸
2m tasks

,ε, . . . ,ε︸ ︷︷ ︸
2(n−i)

,1].

The leftmost and rightmost parts of the chain are dedicated to ensuring that in each pair of literal chains,
one of them starts at time ti = 2(i −1) and the other at time ti +1. The central part of the chain is devoted
to clauses, and ensures that for each clause, at least one chain corresponding to a literal of the clause
starts at time ti +1:

SelectClause(a) = [InClause(C1, a),ε, . . . , InClause(Cm , a),ε],

where:

InClause(Ck , a) =
{

[1− 2
3 nε] if a appears in Ck

[ε] otherwise

36 CHAPTER 2. The two-threshold roofline speedup model for parallel tasks

time

processor usage

Lpr o

Lx1

Lx1

Lx2

Lx2

t1 = 0 t2 M − t2 M − t1

Figure 2.5: Example of a possible schedule for the instance J associated to the formula x1 ∨x2 ∨ x̄2.

In total, the chain La includes 4n+2m−4i +3 tasks. Finally, the profile chain is defined as follows:

Lpro = [2,2−ε, . . . ,2− (2n −1)ε︸ ︷︷ ︸
2n tasks

, L10,L10, . . . ,L10︸ ︷︷ ︸
2m tasks

, 2− (2n −1)ε, . . . ,2−ε,2︸ ︷︷ ︸
2n tasks

],

where L10 = [1−(2
3 n−2)ε,3ε]. The critical path length of Lpro defines M = 2m+4n. Figure 2.5 presents

a valid schedule for the instance corresponding to the formula (x1 ∨ x2 ∨ x2), which corresponds to the
assignment {x1 = x2 = FALSE}.

From a truth assignment to a valid schedule We assume here that we are given a solution to
I , i.e. a truth assignment of its variables: let vi denote the value of variable xi in this assignment. We
construct the following schedule for J : for all chains, each task is allocated a number of processors
equal to its threshold and no idle time is inserted between any two consecutive tasks. Chain Lpro starts
at time 0 while chain Lxi (respectively Lxi

) starts at time ti +1 if vi is TRUE (resp. FALSE), otherwise it
starts at time ti . It is straightforward to check that this schedule is valid. Here, we only concentrate on
the most critical part, namely the central part which corresponds to the clauses. We count the number of
processors used during time interval [2n +2(k −1),2n +2k] which corresponds to clause Ck :

• In the first half of this interval, at most 2 literal chains can have a task of size 1− 2
3 nε since at least

one in the three literals of the clause is true. Together with the other literal chains and the profile,
the maximum processor occupancy is at most (remember ε= 1/4n):

2

(
1− 2

3
nε

)
︸ ︷︷ ︸

FALSE literal chains

+ (2n −2)ε︸ ︷︷ ︸
other literal chains

+1−
(

2

3
n −2

)
ε︸ ︷︷ ︸

Lpro

= 3.

(This is maximum, because 1− 2
3 nε> ε.)

• In the second half of this interval, at most 3 literal chains can have a task of size (1− 2
3 nε), which

may result in a maximum number of busy processors of:

3

(
1− 2

3
nε

)
︸ ︷︷ ︸

TRUE literal chains

+ (2n −3)ε︸ ︷︷ ︸
other literal chains

+ 3ε︸︷︷︸
Lpro

= 3.

The resulting schedule has a makespan of M and is thus a solution to J .

From a valid schedule to a truth assignment We now assume that instance J has a valid
schedule S and we aim at reconstructing a solution for I . First we prove some properties on the starting
times of chains through the following lemma.

2.3. Problem complexity 37

Lemma 2.2. In any valid schedule S for J ,
i. each pair of chains Lxi ,Lxi

is completely processed during time interval [ti , M − ti],
ii. one of them is started at time ti and the other one at time ti +1,

iii. all tasks of both chains are allocated their threshold,
iv. there is no idle time between any two consecutive tasks of each chain.

Proof. The proof is done by induction on i , by carefully checking when the first and last tasks of chains
Lxi ,Lxi

may be scheduled, given the resources which are not used by the previous chains and by Lpro.
Base case: Consider i = 1. The critical path of chains Lx1 and Lx1

is 4n+2m−4i +3 = 4n+2m−1.
With M = 4n +2m, both have to start in the interval [0,1].

The following discussion of the base case is written in general terms (that is for any i) to reuse it in
the inductive step, but applies here for i = 1, with t1 = 0.

We consider the first task of chain Lxi and the first task of chain Lxi
. Both tasks have weight 1. Let A

denote the first of these two tasks to complete (at a time tA) and let B be the other one (which completes
at time tB). Given the 2(i − 1) chains already scheduled (none for i = 1), the number of processors
available during interval [ti , ti +1] is 1 and during interval [ti +1, ti +2] is 1+ε. A and B both complete
at or after time ti +1. We note tA = ti +1+∆1 and tB = ti +1+∆1 +∆2 (∆1 ≥ 0 and ∆2 ≥ 0). Note that
because of the critical path length of the remaining tasks of both chains and the limited time span, ∆1 ≤ 1
and ∆1 +∆2 ≤ 1. Figure 2.6 illustrates the previous notations and the amount of processors available for
tasks A and B (note that after time tA , B may use only δB = 1 processor).

t

p

1 ∆1 ∆2

1

1+ε

tA tB

Figure 2.6: Illustration of the notations used in Lemma 2.2.

Since w A +wB = 2 work units have to be performed before time tB , we have:

1+∆1(1+ε)+∆2 ≥ 2,

and thus ∆2 ≥ 1−∆1(1+ε) and tB ≥ ti +2−∆1ε.
We symmetrically apply the same reasoning to the last tasks C and D of these two chains, and their

starting times tC and tD , assuming that C is started before D. By setting tD = M − ti −1−∆′
1, we get

tC ≤ M − ti −2+∆′
1ε. We distinguish between two cases, depending on the chains to which A, B , C , and

D belong to:
• In the first case, we assume that A and D belong to the same chain. We consider the other chain,

containing B and C . Because exactly 4(n − i)+2m +1 tasks need to be processed between these
two tasks, we have:

tC ≥ tB +4(n − i)+2m +1,

which gives:
∆′

1ε≥ 1−∆1ε.

38 CHAPTER 2. The two-threshold roofline speedup model for parallel tasks

We have ∆1 ≤ 1 and similarly, ∆′
1 ≤ 1. Together with the previous inequality, this gives ε ≥ 1/2

which is not possible since ε= 1/4n. Hence B and C cannot belong to the same chain.
• In the second case, we consider that A and C belong to the same chain. Because exactly 4(n− i)+

2m +1 tasks need to be processed between A and C (and between B and D), we have:

tC ≥ tA +4(n − i)+2m +1 and tD ≥ tB +4(n − i)+2m +1,

which gives:
2m +4n − ti −2+∆′

1ε≥ ti +1+∆1 +4(n − i)+2m +1,

and
2m +4n − ti −1−∆′

1 ≥ ti +2−∆1ε+4(n − i)+2m +1,

which are simplified (using ti = 2(i −1)) into:

∆′
1ε≥∆1 and ∆′

1 ≤∆1ε.

This leads to ∆1 ≤∆1ε
2. As 0 < ε< 1, we have ∆1 = 0, so tA = ti +1. Then, no processor can be

allocated to B during [ti , ti+1].
In other words, one task among the first task of Lxi and the first task of Lxi

is fully processed during
interval [ti , ti +1] and the other one is not processed before ti +1. Because of its critical path length, the
chain starting second must be processed at full speed (each task being allocated a number of processors
equal to its threshold) and without idle time in the interval [ti + 1, M − ti]. The last task of the chain
starting at time ti must then be completed at time M−ti −1 and thus this chain must also be processed at
full speed and without idle time. This also implies that all available processors are used in the intervals
[ti , ti +2] and [M − ti −2, M − ti].

Inductive step: Now assume that the lemma holds for i −1. With t1 = 0 and the inductive property
on the last observation we know that no processor is available for chains Lxi and Lxi

before 2(i −1) and
after M −2(i −1). The time span available for the remaining chains is thus 4n +2m −4i +4 while the
critical path of chains Lxi and Lxi

is 4n+2m−4i +3: these chains cannot be started after 2(i −1)+1 to be
completed within the time span. Setting ti = 2(i +1) we reuse the above argument about the scheduling
of the two chains Lxi and Lxi

, which proves (i)-(iv).

For each literal chain which starts at time ti +1, we associate the value TRUE in an assignment of
the variables of I , and we associate the value FALSE to all other literals. Thanks to the previous lemma,
we know that exactly one literal in the pair (xi , xi) is assigned to TRUE. Furthermore, not three tasks of
size 1− 2

3 nε can be scheduled at time 2n +2(k −1) because of the profile chain Lpro, as this would lead
to a number of occupied processors of:

3

(
1− 2

3
nε

)
︸ ︷︷ ︸

3 FALSE literal chains

+ (2n −3)ε︸ ︷︷ ︸
other literal chains

+1−
(

2

3
n −3

)
ε︸ ︷︷ ︸

Lpro

= 4− 2

3
nε= 4− 1

6
> 3 = p.

Thus, at least one literal of each clause is set to TRUE in our assignment. This proves that it is a solution
to I .

2.4 Heuristics description and approximation analysis

We now move to the description and analysis of three heuristics. Two of them come from the literature
(PROPMAPPING and FLOWFLEX) while a third one, called GREEDYFILLING is novel. For both pre-
existing heuristics, we present their original version as well as some optimizations for our model.

2.4. Heuristics description and approximation analysis 39

2.4.1 Performance analysis of Proportional Mapping

A widely used algorithm for this problem, which has been implemented in the simulations of Chapter 1,
is known as “proportional mapping” [120]. In this algorithm, a sub-graph is allocated a number of pro-
cessors that is proportional to the ratio of its weight to the sum of the weights of all sub-graphs under
consideration. Based on the structure of the considered SP-graph G , Algorithm 3 allocates a share of
processors to each sub-graph and eventually each task. Any given graph G (with SP-graph characteris-
tics) can be decomposed into its series and parallel components using an algorithm from [141], and thus
be processed by Algorithm 3. Observe that thresholds are not considered in this proportional mapping.

Algorithm 3: PROPMAPPING (G = (V ,E , w), p)

1 if top-level composition is series composition of K sub-graphs then
2 Allocate pk = p processors to each subgraph

3 else top-level composition is parallel composition of K sub-graphs G1, . . . ,GK

4 Allocate pk = wGk∑
j wG j

p processors to subgraph Gk , 1 ≤ k ≤ K , where wGk is the weight of Gk

5 Call PROPMAPPING (sub-graph k, pk) for each sub-graph k

The schedule corresponding to this proportional mapping simply starts each task as soon as possible
(i.e., after all its predecessors have completed), as given in Algorithm 4.

Algorithm 4: PROPSCHEDULING (G = (V ,E , w), p)

1 Call PROPMAPPING (G , p) to determine pi for each task Ti ∈V
2 foreach Ti ∈V do
3 Start Ti with pi processors as soon as possible, i.e., after all its predecessors completed

Indeed, given the proportional mapping of processors, there are always enough processors available
to do that. It is worth noting that the created schedule is compatible with the moldable model: each task
uses the same number of processors throughout its entire execution. As such, Algorithm 4 can also be
used for the moldable model.

In the case of perfect parallelism (i.e., δ(1)
i ≥ p, ∀Ti ∈G), there is no idle time as all tasks of a parallel

composition terminate at exactly the same time (due to the proportional mapping). Hence, this schedule
achieves the optimal makespan C∞ = 1

p

∑
i∈V wi . For the general case the following theorem holds.

Theorem 2.2. PROPSCHEDULING is a (1 + r)-approximation algorithm for makespan minimization
where r = maxi δ

(2)
i /Ωi .

Proof. We first note that the optimal makespan when all tasks have perfect parallelism, C∞, is a lower
bound on the optimal makespan with thresholds COPT. We have thus C∞ ≤COPT ≤Cmax, where Cmax is
the makespan obtained by PROPSCHEDULING, and we want to show that Cmax ≤ (1+ r)COPT.

The critical path cp of G , as defined in Section 2.1, is a longest path in G , where the length is defined
as the sum of the work of each task on the path divided by its maximum speedup, len(cp) = ∑

i∈cp
wi
Ωi

.
Naturally, the critical path length is another lower bound on the optimal makespan, len(cp) ≤COPT.

Consider the schedule produced by PROPSCHEDULING. There is at least one path Φ in G from
the entry task to the exit task, with no idle time between consecutive tasks. In other words, on Φ the
execution of a task starts when the execution of the preceding task finishes. Such a path always exists
because we start tasks as early as possible, so this property is always true between the tasks of a serial

40 CHAPTER 2. The two-threshold roofline speedup model for parallel tasks

composition, and it is true for at least one task in each parallel composition. The execution length of Φ
is the makespan Cmax, because it includes no idle time and that it goes from entry to exit task. It is given
by:

Cmax =
∑
i∈Φ

wi

si

(
min

{
pi ,δ(2)

i

}) .

Let us divide the tasks of Φ into two sets: the set A of tasks executed with their threshold processors
pi = δ(2)

i and the set B of tasks executed with the allocated number of processors pi < δ(2)
i , with A∪B =

Φ. We then have:
Cmax =

∑
i∈A

wi

si

(
δ(2)

i

) + ∑
i∈B

wi

si (pi)
=

∑
i∈A

wi

Ωi
+

∑
i∈B

wi

si (pi)
.

The first term (called C A) is per definition smaller than or equal to the length of the critical path
len(cp). The second term (CB) consists only of tasks that are executed with their proportionally allocated
processors. Therefore, these tasks are allocated as many processors as in the schedule achieving the
optimal makespan C∞ when ignoring thresholds. This means that

C∞ ≥
∑
i∈B

wi

pi
=

∑
i∈B

wi

si (pi)

si (pi)

pi
≥ min

i∈B

(
si (pi)

pi

)
CB .

With the definition of the si ’s given in Equation 2.1, we know that functions x 7→ si (x)

x
are non-

increasing, so min
i∈B

(
si (pi)

pi

)
≥ 1

r
. Therefore,

rC∞ ≥CB .

We then get the desired inequality:

M ≤ len(cp)+ rC∞ ≤ (1+ r)COPT.

The complexity of PROPSCHEDULING is O(|V |), as it consists of a simple traversal of the SP-graph.

2.4.2 Optimizations of Proportional Mapping

The main drawback of PROPMAPPING is that it assumes perfect speedup. When applied to actual
tasks with imperfect speedup functions, some tasks may finish later than expected by the algorithm.
In some cases, sibling tasks (tasks that share the same successor) may complete earlier, thus leaving
some processors idle, which induces performance loss. In order to address this issue, a natural idea is
to redistribute the processors left idle by the termination of some task Ti to Ti ’s siblings, that is, to the
tasks that share the same successor T j and are still running. This is for example what is done in [83]. We
design such an algorithm, called PROPMAPREBALSIBLINGS, which redistributes the processing power
of terminated tasks to their siblings, proportionally to the weight of the target tasks.

Note that both the original PROPMAPPING or this optimization are agnostic of both thresholds.
Thus, we introduce a new variant of PROPMAPPING called PROPMAPREBALTHRESHOLD that takes
advantage of the speedup model introduced above. It also consists of redistributing processors left idle
when a task terminates while its successor is not ready yet. The main difference with the previous
variant is that idle processors are not redistributed only to siblings, but to all currently running tasks for
which pi < δ(2)

i . Again, the redistribution is done according to the weight of the tasks. Both variants are
detailed in Algorithm 5 and Algorithm 6, and have a complexity of O(|V |2).

2.4. Heuristics description and approximation analysis 41

Algorithm 5: PROPMAPREBALSIBLINGS (G = (V ,E , w), p)
1 Call PROPMAPPING (G , p) to determine pi for each task Ti ∈G
2 FreeTasks ← source tasks
3 while FreeTasks 6= ; do
4 t ← time when the first task Tk ∈ FreeTasks is completed using pk processors
5 foreach task Ti ∈ FreeTasks do
6 allocate pi processors to Ti until time t

7 FreeTasks ← FreeTasks \ {Tk }
8 foreach task Ti ∈ FreeTasks siblings of Tk do
9 pi ← pi + share of pk proportional to the weight of Ti

10 foreach T ′ ∈ successors(Tk) such that T ′ has no unprocessed predecessors do
11 FreeTasks ← FreeTasks∪ {T ′}

Algorithm 6: PROPMAPREBALTHRESHOLD (G = (V ,E , w,δ(2)), p)
1 Call PROPMAPPING (G , p) to determine pi for each task Ti ∈G
2 FreeTasks ← source tasks
3 while FreeTasks 6= ; do
4 foreach task i ∈ FreeTasks do Surplusi ← 0
5 Surplus ← p −∑

i∈FreeTasks pi

6 foreach Ti such that pi < δ(2)
i do

7 p ′
i ← pi+(share of Surplus proportional to the weight of Ti)

8 t ← time when the first task Tk ∈ FreeTasks is completed with p ′
k processors

9 foreach task i ∈ FreeTasks do
10 allocate p ′

i processors to Ti until time t

11 FreeTasks ← FreeTasks \ {Tk }
12 foreach T ′ ∈ successors(Tk) such that T ′ has no unprocessed predecessors do
13 FreeTasks ← FreeTasks∪ {T ′}

2.4.3 A novel algorithm: Greedy-Filling

Proportional mapping is a common approach. However, it does not make use of the malleability of tasks
and it is restricted to SP-graphs. In this section we study an algorithm, called GREEDYFILLING, which
may schedule any DAG and takes advantage of the tasks’ malleability. It considers one task at a time
and greedily allocates it the largest possible processing power.

We now detail this algorithm, presented in Algorithm 7. First, each task is given a priority. In
practice, we use for each task Ti its bottom-level, as it is a lower bound on the overall completion time
once task Ti has started. The algorithm builds the schedule in chronological order while maintaining
the set of free tasks. The difference is that, instead of sharing the resources according to the weight of
tasks, we consider them in the order defined by priorities. We allocate each task Ti up to δ(1)

i processors
if possible, so as to stay in the perfect parallelism zone. If there are processors in excess, we reconsider
the tasks in the same order, increasing their allocation up to δ(2)

i .
It is interesting to note that since the total number of processors p and all thresholds are integers

(∀Ti ∈V , δ(1)
i ,δ(2)

i ∈N), all allocated processors pi are integers too.

42 CHAPTER 2. The two-threshold roofline speedup model for parallel tasks

Algorithm 7: GREEDYFILLING (G = (V ,E , w ,δ(1),δ(2)), p)

1 Assign a priority to each task Ti ∈V
2 FreeTasks ← source tasks
3 while FreeTasks 6= ; do
4 Sort FreeTasks by non-increasing priorities;
5 for each task i in FreeTasks do
6 allocate at most δ(1)

i processors to task i without exceeding p in total

7 if some processors are not yet allocated then
8 for each task i in FreeTasks do
9 allocate at most δ(2)

i processors to task i without exceeding p in total

10 Schedule tasks until some task Tk completes
11 Remove Tk from FreeTasks, add its successors whose predecessors have all completed

Theorem 2.3. GREEDYFILLING is a 1+r − δ(2)
min
p approximation for makespan minimization, with δ(2)

min =
min
Ti∈V

δ(2)
i and r = maxTi∈V δ(2)

i /Ωi .

Proof. This proof is a transposition of the classical proof by Graham [72]. In any schedule produced by
GREEDYFILLING, let T1 be a task whose completion time is equal to the completion time of the whole
task graph. We consider the last time t1 prior to the start of the execution of T1 at which not all processors
were fully used. If the execution of T1 did not start at time t1 this is only because at least one ancestor T2

of T1 was executed at time t1. Then, by induction we build a dependence path Φ= Tk → . . . → T2 → T1

such that all processors are fully used during the execution of the entire schedule except, maybe, during
the execution of the tasks of Φ.

We consider the execution of any task Ti of Φ. At any time during the execution interval(s) of Ti

(due to malleability it might be executed in disconnected intervals), either all processors are fully used,
or some processors are (partially) idle and then, because of Step 9, δ(2)

i processors are allocated to Ti .
Therefore, during the execution of Ti , the total time during which not all processors are fully used is at
most equal to wi /Ωi and there are at most p −δ(2)

i idle processors. Let Idle denote the sum of the idle
areas in the schedule, i.e., idle periods multiplied by idle processors. Then we have:

Idle ≤
k∑

i=1

(
wi

Ωi
×

(
p −δ(2)

i

))
≤

(
p −δ(2)

min

)
×

k∑
i=1

wi

Ωi
≤

(
p −δ(2)

min

)
len(cp) ≤

(
p −δ(2)

min

)
COPT.

Let Used denote the sum of the busy areas in the schedule. As si is concave (cf. Equation 2.1), the
busy area dedicated to schedule the task Ti is maximized when Ti is allocated to δ(2)

i processors. Then,
the area is equal to δ(2)

i wi /Ωi and:

Used ≤
∑

Ti∈V

δ(2)
i wi

Ωi
.

Now, let r = maxi
δ(2)

i
Ωi

. Note that COPT ≤∑
i

wi
p . Then we have:

Used ≤
∑

Ti∈V
wi r ≤ r pCOPT.

2.4. Heuristics description and approximation analysis 43

The makespan of the considered schedule is then equal to:

Cmax =
1

p
(Idle+Used) ≤

(
1+ r −

δ(2)
min

p

)
COPT.

Note that the above proof makes little reference to how the schedule of G has been constructed. The
only important characteristic is that the algorithm never leaves a processor deliberately idle if there are
tasks that could be scheduled. Hence, the above approximation factor will also apply to other algorithms
which adhere to that characteristic:

Corollary 2.1. Any scheduling algorithm which never deliberately leaves a processor idle if it could
benefit to any available task is a 1+ r −δ(2)

min/p approximation for makespan minimization, with δ(2)
min =

minTi∈V δ
(2)
i and r = maxi δ

(2)
i /Ωi .

The proof of Theorem 2.3 can easily be adapted to the single threshold model, which gives the
following result. This is particularly useful to prove that the FLOWFLEX algorithm, presented below, is
an approximation algorithm.

Corollary 2.2. In the single threshold model (δi = δ(1)
i = δ(2)

i = Ωi), any scheduling algorithm which
never deliberately leaves a processor idle if it could benefit to any available task is a 2− δmin

p approxi-
mation for makespan minimization where δmin is the smallest threshold among all tasks.

The complexity of GREEDYFILLING is O(|V |2) as the main loop is iterated O(|V |) times, going over
O(|V |) tasks each time. The total management and ordering of FreeTasks can be done in O(|V | log |V |),
e.g. with a priority queue.

2.4.4 The FlowFlex algorithm

We now introduce FLOWFLEX, a scheduling algorithm introduced in [114] and designed for a model
similar to the single threshold variant described in Section 2.1, which considers that δi = δ(1)

i = δ(2)
i =Ωi

for all tasks i . FLOWFLEX first allocates to each task its maximal number of processors δi , as if there was
an infinite number of processors available. Then, in each time interval where the allocation is constant,
if the total number of allocated processors exceeds p, the allocation is scaled down proportionally. This
algorithm is detailed in Algorithm 8.

In its original version, FLOWFLEX assumes a perfect speedup before the threshold. Thus, scaling
down the shares of the tasks proportionally preserves the simultaneous completion of the amount of
work performed in the original interval. This is no longer true with imperfect speedup functions. This
is why we introduce an optimized version FLOWFLEXREBALANCE that redistributes idle processors
among running tasks once a task completes the amount of work it had to process in a given interval. The
redistribution is done proportionally to the thresholds δi , which corresponds to the original allocation
before scaling. This optimized variant is described in Algorithm 9.

The complexity of FLOWFLEX is O(|V |2) as there are at most |V | constant intervals, and each it-
eration of the main loop is linear in |V |. The complexity of FLOWFLEXREBALANCE O(|V |3) as the
redistribution procedure is done linearly in |V |.

44 CHAPTER 2. The two-threshold roofline speedup model for parallel tasks

Algorithm 8: FLOWFLEX (G = (V ,E , w ,δ), p)
1 S ← schedule obtained by allocating δi processors to Ti and starting tasks as soon as they are free
2 Sort tasks by non-decreasing completion times ti , with t0 = 0
3 t ← 0
4 for i = 0 to n −1 do
5 foreach T j do work j ← amount of work completed by task T j in interval [ti ; ti+1] of S

6 L ← set of tasks T j such that work j > 0
7 foreach T j in L do
8 p j ← p ×δ j /

∑
k∈L δk

9 Starting at time t , allocate p j processors to T j until it completes work j at some time t ′j
10 t ← max j∈L t ′j

Algorithm 9: FLOWFLEXREBALANCE (GD AG = (V ,E , w ,δ), p)
1 S ← schedule obtained by allocating pi processors to Ti and starting tasks as soon as they are available
2 Sort tasks by non-decreasing completion times ti , with t0 = 0
3 t ← 0
4 for i = 0 to n −1 do
5 foreach T j do work j ← amount of work completed by task T j in interval [ti ; ti+1] of S .
6 L ← set of tasks T j such that work j > 0
7 foreach T j in L do
8 p j ← p ×δ j /

∑
k∈L δk

9 repeat
10 Starting at time t , allocate p j processors to each T j ∈ L until one task T` completes a work of

work`
11 t ← time when task Tl has completed the work work`
12 Remove T` from L
13 foreach T j in L do
14 p j ← p j +pl ×δ j /

∑
k∈L δk

15 Redistribute pk over the p j of the tasks of L, proportionally to their threshold δ(2)

16 until L is empty

2.5 Experimental comparison

In this section we compare through simulation the new heuristic (GREEDYFILLING), reference heuris-
tics (PROPMAPPING and FLOWFLEX) and the proposed extensions of these reference heuristics
(PROPMAPREBALTHRESHOLD, PROPMAPREBALSIBLINGS and FLOWFLEXREBALANCE). These
simulations use either synthetic graphs of synthetic tasks, or actual task trees whose task execution
times were recorded through actual executions, as detailed below. Each algorithm has been simulated
in C++: given a graph of tasks, and a speedup function for each task, the schedule is computed. We
compare all heuristics through their makespan (total completion time).

2.5.1 Datasets

First, we consider a set of 30 synthetic random SP-graphs composed each of 200 nodes. In order to
compute a random SP-graph of x > 1 nodes, we follow the following recursive strategy: toss k uniformly
in [1, x−1]; with a probability of 1/2, build a series composition of two random SP-graphs of respectively

2.5. Experimental comparison 45

k and x−k nodes and, otherwise, build a parallel composition of these graphs. Then, in order to generate
a random task (i.e., a random graph of x = 1 node), we choose its weight w uniformly in [1;1000]. The
first threshold, δ(1), is defined by δ(1) = dw/100e; hence, δ(1) ∈ [1;10]. The second threshold, δ(2),
is uniformly drawn in [δ(1),2δ(1)]. The slope between the thresholds is uniformly drawn in [0.5,1].
Therefore, in this dataset (called SYNTH), each task perfectly follows our speedup model.

Second, we consider a set of 24 trees whose size vary from 39 to 5900 nodes. These elimination
trees have been generated (with either colamd [51] or scotch [117] ordering) using QR_MUMPS [6]
on matrices from the University of Florida Sparse Matrix Collection [52], such that each task of a tree
corresponds to the dense QR factorization of the associated matrix. The completion time of a task solely
depends on the dimensions of the matrix. In order to determine the actual behavior of such a task,
we benchmarked the time necessary to perform this task for a number of processors ranging from 1 to
24, as detailed in Section 2.2. Thus, in this dataset (called TREES), a task is characterized both by its
parameters in our model (δ(1), δ(2) and Ω) and by the set of its completion times recorded through actual
executions for up to 24 processors. The actual execution times are used in the experiments to determine
the finish times of the scheduled trees (makespans).

2.5.2 Results

In order to compare the performance of these algorithms, we use a generic tool called performance
profile [54]. For a given dataset, we compute the performance of each heuristic on each graph and for
each considered value for the total number of available processors (namely 1, 2, 4, 6, 8, 10, 12, 16,
20 and 24). Then, instead of computing an average above all the cases, a performance profile reports
a cumulative distribution function. Given a heuristic and a deviation τ expressed in percentage, we
compute the fraction of test cases in which the performance of this heuristic is at most τ% larger than
the best observed performance, and plot these results. Therefore, the higher the curve, the better the
method: for instance, for a deviation τ= 5%, the performance profile shows how often a given method
lies within 5% of the smallest makespan obtained.

0.00

0.25

0.50

0.75

1.00

0% 5% 10% 15% 20%

Deviation to best

F
ra
ct
io
n
of

te
st

ca
se
s

1.0

1.1

1.2

1.3

0 5 10 15 20 25

Number of processors

N
or
m
al
iz
ed

m
a
k
es
p
an

Algorithm
GreedyFilling

PropScheduling

PropMapRebalThreshold

PropMapRebalSiblings

FlowFlexRebalance

FlowFlex

Figure 2.7: Performance profiles for up to 24 processors on SYNTH (left, where the best performance
is top-left) and performance of the heuristics on a sample graph (right, where the best performance is
bottom). Note that the following figures use the same legend.

In Figure 2.7, we present the performance profiles for the SYNTH dataset on the left, and the
makespan obtained by each heuristic on a sample graph on the right. On this latter plot, the y-axis
has been normalized by the classical lower bound on makespan: the maximum of the critical path and
of the total work divided by the number of processors.

46 CHAPTER 2. The two-threshold roofline speedup model for parallel tasks

The first result is that GREEDYFILLING clearly outperforms the other algorithms: it has the best re-
sult in almost 95% of the test cases. On the other hand of the spectrum, FLOWFLEX and PROPMAPPING

are the two worst heuristics. Both of them are clearly outperformed by their variants. Of all these vari-
ants, the best one is obviously PROPMAPREBALTHRESHOLD which achieves very good performance.
Although the difference with GREEDYFILLING is striking, one should remark that PROPMAPRE-
BALTHRESHOLD achieves a makespan within 5% of the best one in more than 93% of the instances.
The overall hierarchy could have been expected as GREEDYFILLING is the only heuristic to be aware
of both thresholds, and among the other, only PROPMAPREBALTHRESHOLD makes use of δ(2). In turn
these results suggest that the proposed speedup model with two thresholds can be used effectively to
shorten the produced schedules.

The right-hand side of Figure 2.7 presents the typical results for a sample graph. The respective
performance of heuristics is roughly independent of the number of available processors, and GREEDY-
FILLING presents the best results. Overall, the shape of the curves were predictable: when there are very
few available processors, there is little possibility of wasting computational resources and all heuristics
achieve near-perfect performance; when the number of processors is very large all heuristics that are
aware of the second threshold provide similar processor allocation and achieve similar near-perfect per-
formance. The hardest part is in the intermediate zone when the most significant differences can be
observed.

0.00

0.25

0.50

0.75

1.00

0% 2% 4% 6% 8%

Deviation to best

F
ra
ct
io
n
of

te
st

ca
se
s

Figure 2.8: Performance profiles for up to 24 processors on TREES. Note the scale difference to Fig-
ure 2.7.

We present the performance profile for the TREES dataset in Figure 2.8, with additional representa-
tive samples in Figures 2.9(a) and 2.9(b). The legend of these graphs is the same as the one of Figure 2.7.
The first observation to be made is that the difference between the graphs has significantly decreased.
For each of the four heuristics GREEDYFILLING, PROPMAPREBALTHRESHOLD, PROPMAPREBAL-
SIBLINGS, and FLOWFLEXREBALANCE, in 80% of the cases the deviation is at most 2% and in 63%
of the cases it is at most 1%.

An explanation for this is that the trees of this dataset often contain a task (near the root one) whose
completion time is far beyond the rest of the graph, as illustrated on the right in Figures 2.9(a) and 2.9(b).

Within the small difference between the algorihtm, the results are similar to the previous data set (ig-
noring GREEDYFILLING for the moment): FLOWFLEX and PROPMAPPING are the two worst heuris-
tics; both heuristics are clearly outperformed by their variants; PROPMAPREBALTHRESHOLD achieves
the best performance among these variants, but this time the performance of PROPMAPREBALSIB-
LINGS is almost indistinguishable from that of PROPMAPREBALTHRESHOLD. GREEDYFILLING also
performs better than the previously proposed algorithms FLOWFLEX and PROPMAPPING, but its rel-

2.5. Experimental comparison 47

1.00

1.05

1.10

0 5 10 15 20 25

Number of processors

N
or
m
al
iz
ed

m
ak

es
p
an

(a) Tree lp-nug30-colamd.

1.00

1.05

1.10

1.15

0 5 10 15 20 25

Number of processors

N
or
m
al
iz
ed

m
a
k
es
p
an

(b) Tree GL7-d24-scotch.

Figure 2.9: Performance of the heuristics and visual representation of two trees of the TREES dataset,
where the area of a node is proportional to its sequential execution time.

ative performance compared with the proposed variants has changed: its performance on actual trees
(Figure 2.8) is now slightly behind these variants, when it was clearly the best solution on synthetic ones
(Figure 2.7). The better performance of PROPMAPREBALSIBLINGS compared to GREEDYFILLING

may be surprising because PROPMAPREBALSIBLINGS does not have any knowledge on the computed
(estimated) thresholds. This performance is actually due to the structure of the graphs, as detailed below.

One should recall that the performance profiles gather results over the whole dataset. Varying per-
formance of an algorithm can depend upon the structure of the tree and the processing power available.
GREEDYFILLING achieves very good results when the structure of the graph is well-balanced, which
is generally the case in the SYNTH dataset (Figure 2.7) as the graphs are generated recursively, as well
as in the actual tree of Figure 2.9(a). This remark comes from the fact that GREEDYFILLING tries to
maximize the efficiency of the allocation from the beginning of the schedule: if possible, it limits the
allocation to every task to its first threshold, so that the overall speedup remains perfect. This explains
why GREEDYFILLING is the best heuristic for medium numbers of processors in Figure 2.9(a): the
tree is well-balanced, and for this range of processors, maintaining a perfect speedup is more efficient
than balancing the allocation in the way PROPMAPREBALSIBLINGS does. However, GREEDYFILLING

performance degrades relatively when some branches in the tree are far from being critical and should
have their execution delayed, even if this means exceeding the first threshold on other tasks and having a
non-perfect speedup. Therefore it only achieves average performance on the TREES dataset (Figure 2.8),

48 CHAPTER 2. The two-threshold roofline speedup model for parallel tasks

where other heuristics frequently have slightly better performance. For instance, the tree of Figure 2.9(b)
has a highly critical branch on the right side, and GREEDYFILLING does not allocate enough proces-
sors to this branch at the beginning of the schedule, which leads to performance worse than that of the
simple PROPSCHEDULING for average numbers of processors. With few processors, GREEDYFILLING

fully prioritizes the critical branch as the first thresholds are not reached yet, and therefore achieves very
good performance. In such a tree and with sufficient processing power, PROPMAPREBALSIBLINGS and
PROPMAPREBALTHRESHOLD are the better choice as they progress quicker on the critical branches.

PROPMAPREBALTHRESHOLD achieves very good performance for synthetic graphs and is then
only surpassed by GREEDYFILLING. It also achieves the best performance (with PROPMAPREBAL-
SIBLINGS) for actual graphs. Therefore, PROPMAPREBALTHRESHOLD is never a bad choice (for the
tested configurations). No other heuristic has this characteristic. One can also note that if PROPMAPRE-
BALSIBLINGS achieves rather bad performance for synthetic graphs, it represents one of the best heuris-
tics for actual graphs. This heuristic furthermore presents a practical advantage over PROPMAPRE-
BALTHRESHOLD, whose effect is not taken in account in our model: it preserves the locality of the
computations, allocating idle processors on tasks from the same branch as the node they were executing.

2.6 Conclusion

In this chapter, we have proposed a simple, but practical speedup model for graphs of malleable tasks,
which is an interesting trade-off between tractability and accuracy. We have first provided an NP-
completeness proof of the makespan minimization problem under this model. This was followed by
a study of heuristic solutions, where we proposed model-optimized variants of the existing algorithms
PROPMAPPING and FLOWFLEX. Designed for the new speedup model, we also proposed the novel
GREEDYFILLING algorithm and studied the approximation ratio of these algorithms. To evaluate the al-
gorithms, we performed simulations both on synthetic series-parallel graphs and on real task trees from
linear algebra applications. They demonstrated the general superiority of the new GREEDYFILLING

and the model-optimised variants of the traditional algorithms. In general, employing the new speedup
model helps to improve the scheduling results.

The studies conducted here may be extended in several directions. On the theoretical side, there
obviously exist constant-factor approximations for our model, as it falls into the hypotheses of existing
algorithms, see Section 1.1. However, these algorithms rely on complex optimization techniques, so it
remains to design a low-complexity constant-factor approximation. On the practical side, the next step
is to implement such strategies into an actual runtime scheduler, in order to evaluate their efficiency.

The main limitation of the studies conducted in Chapter 1 and in this chapter comes from the fact that
the platform is idealized: there are no communication times considered between tasks, the processors
are all identical, and the memory storage is not considered. Such simplifications are close to the reality
for some applications. However, when handling large data files or when a hybrid platform composed of
different types of processors is targeted, we need to resort to different strategies. The objective of the
following chapters is precisely to address these kinds of issues.

Chapter 3

Exploiting hybrid platforms
in an online setting

« Mais je ne pouvais pas le deviner. . . »

Prolix, Le Devin

In Chapters 1 and 2, we focused on a platform composed of identical processors. However, modern
computing platforms increasingly use specialized hardware accelerators, such as GPUs or Xeon Phis:
as of November 2017, 102 of the supercomputers in the TOP500 list include such accelerators, while
several of them include different accelerator types [138]. Therefore, the methods studied in Chapters 1
and 2 cannot be used on such a platform. Furthermore, the increasing complexity of these platforms
makes it hard to predict the exact execution time of computational tasks or of data movement. Thus,
dynamic runtime schedulers are often preferred to static ones, as they are able to adapt to variable
running times and to cope with inaccurate predictions. Indeed, with the widespread heterogeneity of
computing platforms, many scientific applications now rely on runtime schedulers such as OmpSs [126],
XKaapi [32], or StarPU [17]. While task graphs have been widely studied in the theoretical scheduling
literature [57], most of the existing studies (as Chapters 1 and 2) concentrate on static scheduling in the
offline context: both the graph and the running times of the tasks are known beforehand.

We believe that there is a crucial need for online schedulers, that is, for scheduling algorithms that
rely neither on the structure of the graph nor on the knowledge of tasks’ running times. First, not all
graphs are fully available at the beginning of the computation: sometimes the graph itself depends on
the data being processed, and different inputs may result in different task graphs. This is in particular
the case when the behavior of an iterative application depends on the accuracy of the output. Second,
in most existing runtimes, even if the graph does not depend on the input data, it is not fully submitted
at the beginning of the computation; instead, tasks are dynamically uncovered during the computation.
Third, even if part of the graph is available, schedulers usually avoid traversing large parts of the graph
each time they take a decision in order to strongly limit the time needed to take decisions. Finally, tasks’
processing times are not always known beforehand, and the occasionally available predictions may not
be very accurate, as two successive executions of the same task may result in slightly different timings.

There has recently been an effort of the scheduling community to fill the gap between the assump-
tions used in theoretical studies and those underlying schedulers for runtime systems (see details in
Section 3.1). Schedulers for independent tasks on hybrid platforms have first been proposed [21, 34,
40]. Recently, an online scheduler for independent tasks on hybrid platforms [87] has been adapted for
task graphs [8].

49

50 CHAPTER 3. Exploiting hybrid platforms in an online setting

In the present chapter, we concentrate on the online scheduling of task graphs on a hybrid platform
composed of 2 types of processors, that we call CPU and GPU for convenience. There are m CPUs and
k GPUs, where m ≥ k ≥ 1. Note that we do not make any assumptions on the CPUs and GPUs, so that
these results may be symmetrically applied to the converse case with more GPUs. The objective is to
schedule a DAG G of tasks, so as to minimize the total completion time, or makespan. Each task can be
assigned either to a single CPU or to a single GPU. The processing time of task Ti on a CPU is noted by
wi and on a GPU by wi .

We consider the following online problem. At the beginning, the algorithm is aware of all the input
tasks of the graph, and can schedule each one on either a CPU or on a GPU. A task is released and
becomes available to the scheduler only when all its predecessors are terminated. At any given point in
the computation, the scheduler is totally unaware of tasks that have not yet been released, but it knows
the processing times wi and wi of all available tasks. We do not take into account the time needed for
moving data and assume that there is no delay between the release of a task and the start of its processing.

The closer related work considering the very same problem is [8] which provides a 4
p

m/k-
competitive algorithm for this problem. The number

p
m/k will be used throughout the chapter as

it appears to be deeply connected to this problem. We will therefore use the notation τ=
p

m/k.

Main contributions. In this chapter, we prove that the competitive ratio of any online algorithm on
a hybrid platform is lower-bounded by τ=

p
m/k. We study how the knowledge of the task graph and

the flexibility of the scheduler may influence the lower bound; we especially prove that knowing the
bottom level of any task or having preemptive tasks does not help much, whereas the knowledge of the
number of descendants allows to reduce the lower bound to 1

2

p
τ. We propose a (2τ+1) - competitive

algorithm, where the state-of-the art algorithm was proved to be 4τ-competitive. We then propose a
simple heuristic, based on the system-oriented heuristic EFT, which is both a competitive algorithm
and performs well in practice, as we show with a comprehensive simulation set. Finally, we extend our
results to more than two types of processors, for which we extend both the lower bounds and the online
algorithms.

The rest of the chapter is organized as follows. In Section 3.1, we briefly review the related work.
In Section 3.2, we study lower bounds on the competitive ratio of any online algorithm. In Section 3.3,
we propose two online algorithms. In Section 3.4, we show that the main difficulty of the problem is to
decide whether each task has to be allocated to CPUs or to GPUs. When these decisions are fixed, any
list scheduling algorithm is then 3-competitive. In Section 3.5 we study the generalized problem with
more than two types of processors. In Section 3.6, we study through simulations the behavior of several
online algorithms on different datasets, composed either of actual or synthetic task graphs.

3.1 Related work

We briefly position our contributions in comparison to the existing work, starting with the offline case
when the whole scheduling problem (both task dependences and running times) is known beforehand.

Offline algorithms. Several schedulers for independent tasks on hybrid platforms have been pro-
posed. Bleuse et al. [34] designed a polynomial but expensive

(4
3 + 1

3k

)
-approximation. Low complexity

algorithms, which are closer to our work, have been studied in [21, 40] and achieve approximation ratios
respectively equal to 2 and 2+

p
2. For tasks with precedence constraints, Kedad-Sidhoum et al. [93]

provided a tight 6-approximation based on linear programming.

3.2. Lower bound on online algorithms competitiveness 51

In a different context, Chudak and Shmoys [44] provided a log(p)-approximation for the
Q | prec | Cmax problem: scheduling a graph of tasks on p machines with different speeds. Considering
independent moldable tasks (tasks can be assigned to multiple CPUs or one GPU), Bleuse et al. [33]
provide a 2-approximation.

Online algorithms. When tasks with precedences are released over time, Graham’s List Scheduling
algorithm [73] is (2−1/m)-competitive on homogeneous processors. Svensson proved in [134] that no
polynomial offline algorithm can have a better competitive ratio assuming P 6= N P and a variant of the
Unique Games Conjecture.

On the problem of scheduling independent tasks on two sets of processors, Imreh [87] proposed a
(4− 2/m)-competitive algorithm. The principle of this algorithm is to schedule a task Ti on GPU if
wi /wi ≥ m/k, or if Ti can be terminated on GPU given the current schedule before time wi . Chen
et al. [43] later refine a similar algorithm by introducing four tunable parameters. A combination of
parameters lead to an improved competitive ratio equal to 3.85. They also show that any online algorithm
has a competitive ratio at least 2.

Based on this work, Amaris et al. [8] exhibited an online algorithm for precedence constraints,
achieving a competitive ratio of 4

p
m/k. The main difference with the previous algorithms is that a task

is scheduled on GPU if it is accelerated by a factor at least
p

m/k (and not at least m/k).

Runtime strategies. Actual runtime schedulers usually rely on low-complexity scheduling policies
to limit the time needed to allocate tasks. For instance, StarPU [17] builds a performance model of tasks
that enables to predict their processing times. When a new task is submitted, it is allocated to the resource
that will complete it the soonest (when using the dm policy, previously called heft-tm in [16]), which
corresponds to the classical Earliest Finish Time (EFT) scheduling policy [102]. Other strategies have
been proposed that take into account communication times, or precomputed task priorities, depending
on the descendants of each task. We include similar information in the design of the lower bounds on
competitive ratios (Section 3.2).

3.2 Lower bound on online algorithms competitiveness

In this section, we provide a lower bound on the competitive ratio of any online algorithm: no online
algorithm has a competitive ratio smaller than τ =

p
m/k for any values of m and k (Theorem 3.1)

and smaller than τ+1 for infinitely many values of m and k (Lemma 3.1). We also study how adding
flexibility to task processing or giving some knowledge of the graph to the scheduler impacts this lower
bound.

Intuitively, the main difficulty for this problem arises from choosing on which type of resource (CPU
or GPU) a given task should be processed, and not to come up with the final schedule. This is indeed
proven in Theorem 3.6, Section 3.4: if the allocation of the tasks is fixed, any online list scheduling
algorithm is

(
3− 1

m

)
-competitive, which is optimal.

The proof of Theorem 3.1 heavily relies on the fact that an online algorithm has no information on the
successors of each task. In practice, it is sometimes possible to get some information on the task graph,
for example by pre-computing some information offline before submitting the tasks. For instance, offline
schedulers usually ranks available tasks with priorities based on the dependences. On homogeneous
platforms, the bottom-level of a task is commonly used, and is defined as the maximum length of a
path from this task to an exit node, where nodes of the graphs are weighted with the processing time
of the corresponding tasks. In the heterogeneous case, the priority scheme used in the standard HEFT

52 CHAPTER 3. Exploiting hybrid platforms in an online setting

algorithm [139] is to set the weight of each node as the average processing time of the corresponding
task on all resources.

Knowing the bottom-level does not change the lower-bounds of Theorem 3.1 and Lemma 3.1, see
Theorem 3.2. The only benefit is a diminution by a factor 2 if there is exactly one GPU. An interesting
component of this proof is that all the tasks are equivalent (same CPU and GPU computing times) so
other heterogeneous variants of the bottom level are also captured.

When the online scheduler is given the knowledge of the number of descendants of each submitted
task in addition to their bottom-level, the lower bound of Theorem 3.1 is reduced to 1

2

p
τ when m/k is

large enough (see Theorem 3.3), so no constant-factor competitive algorithm exists. Note that all the
tasks are also equivalent in this proof; so it also captures, for instance, the knowledge of the CPU and
GPU computing times of all the descendants; only the pattern of precedence relations remains unknown.
Note that, however, no algorithm has been proposed that reaches this bound.

Another interesting question is whether adding flexibility on how tasks are processed changes this
bound. Allowing task spoliation (where tasks can be canceled and restarted on another resource, as done
in [21]) does not change any lower bound. Allowing task migration (where tasks can be interrupted and
resumed on another resource) divides the lower bounds obtained by a factor 2.

Table 3.1 summarizes the results for all combination of knowledge given to the scheduler and flexi-
bility on the task processing. The best known competitive ratio for every setting is smaller than 2τ+1,
and is achieved by the QA algorithm we design in Section 3.3.1. This algorithm does not use all the
knowledge or flexibility as it does not practice spoliation or migration, does not use any information on
the bottom level or the descendants, and schedules tasks one by one, without looking at other available
tasks.

Flexibility Knowledge Lower bound Proof Note

None or Spoliation

None τ Th. 3.1 τ+1 for specific instances

Bottom Level τ Th. 3.2 1
2τ if k = 1; τ+1 for spec. inst.

BL + descendants 1
2

⌊p
2τ∗

⌋
Th. 3.3 –

Migration

None 1
2τ Th. 3.1 –

BL 1
2τ Th. 3.2 1

4τ if k = 1

BL + descendants 1
4

⌊p
2τ∗

⌋
Th. 3.3 –

Table 3.1: Summary of the results obtained for various versions of online models.
τ∗ represents the largest triangular number such that τ∗ ≤ τ. If τ is large, we have

⌊p
2τ∗

⌋≥p
τ.

First, we consider algorithms that are not aware of the bottom level of the tasks.

Theorem 3.1. No online algorithm has a competitive ratio smaller than τ, even when spoliation is
authorized. If preemption with migration is authorized, no online algorithm has a competitive ratio
smaller than τ

2 .

Proof. Consider an online algorithm A , making use of spoliations. We assume for the moment that τ
is an integer. We consider an integer n as large as we want. A large n will lead to a large graph and a
competitive ratio closer to τ. We will use an adversary proof, by building a graph composed of nm tasks
denoted by T j

i , with 1 ≤ j ≤ nτ and 1 ≤ i ≤ kτ. The CPU processing time of each task equals τ and the
GPU processing time equals 1.

The procedure can be cut into nτ phases. During the j th phase, tasks T j
i for i from 1 to kτ are

independent and available. The adversary selects the task that A completes the latest, breaking ties

3.2. Lower bound on online algorithms competitiveness 53

arbitrarily. Let T j
∗ be this task. The kτ tasks of the next phase are then made successors of T j

∗ . See
Figure 3.1 for an illustration of a built graph.

T 1
1 T 2

1 T 3
1 T 4

1 T 5
1 T 6

1 T 7
1 T 8

1

T 1
2 T 2

2 T 3
2 T 4

2 T 5
2 T 6

2 T 7
2 T 8

2

T 1
3 T 2

3 T 3
3 T 4

3 T 5
3 T 6

3 T 7
3 T 8

3

T 1
4 T 2

4 T 3
4 T 4

4 T 5
4 T 6

4 T 7
4 T 8

4T 1
iT 1
∗

T 2
iT 2
∗ T 3

iT 3
∗

T 4
iT 4
∗

T 5
iT 5
∗ T 6

iT 6
∗

T 7
iT 7
∗

Figure 3.1: Example of built graph with τ= 2, k = 2, n = 4.

We now show how to build an efficient (offline) schedule S of the resulting graph. A bucket is de-
fined as a set of processors, a starting time and a duration time. We use buckets to book some processors
for an amount of time, and schedule a set of tasks in a given bucket. We consider n + 1 buckets, as
illustrated in Figure 3.2. Buckets Bi for i from 1 to n each concerns all m CPUs, lasts a time τ, and
starts at time iτ. Note that m tasks fit into each bucket. The last bucket, B concerns one GPU, starts at
time 0 and lasts a time nτ.

S schedules the nτ tasks T j
∗ successively on a single GPU, which fit into bucket B . In parallel, S

schedules the remaining tasks on CPU. More precisely, it puts in bucket B` tasks T j
i such that (`−1)τ<

j ≤ `τ, except for tasks T j
∗ . They all fit into the bucket as there are less than τ×kτ ≤ m such tasks.

Moreover, task T `τ
∗ completes at time `τ. Therefore, every task T j

i with (`−1)τ< j ≤ `τ can be started
at time `τ, and thus can be scheduled into bucket B`. Therefore, S achieves a makespan equal to
(n +1)τ.

CPU

GPU

B1

τ

B2

τ

B3

τ

B4

τ

B
nτ= 4τ

Figure 3.2: Buckets used by S with n = 4.

Now, we consider algorithm A , and we show that the makespan obtained is at least nτ2. At each
phase, the adversary reveals the next phase only when all the tasks of the current phase are completed.
If one task of the phase is scheduled on CPU, it takes a time τ. Otherwise, all kτ tasks are scheduled on
GPU, and the last one completes at time at least kτ/k = τ. Therefore, A completes each phase in time
at least τ. As there are nτ phases, the whole graph cannot be scheduled in time smaller than nτ2. The
competitive ratio of A is then at least:

nτ2

(n +1)τ
−→

n→∞ τ.

54 CHAPTER 3. Exploiting hybrid platforms in an online setting

Now, consider an algorithm A ’ which makes use of preemption with migration. The adversary
strategy and the schedule S is unchanged. We first prove by contradiction that A ’ cannot terminate a
phase in a makespan smaller than τ/2. Assume that one phase is terminated in time τ/2. We consider
the fraction of each task performed on a CPU. All tasks have a processing time of τ on CPU, so for
each task, this fraction cannot be larger than one half. Therefore, at least half of each task is executed
on a GPU, which takes a time 1/2 for each task, so it takes kτ/2 units of GPU computing time. As we
assumed that the phase is terminated in time τ/2, there is no more than kτ/2 work units available on the
k GPUs, which thus cannot process more than one half of each task. Therefore, at least half of each task
is processed on CPUs, from the very beginning to the very end of the phase. This requires to execute
each task simultaneously on a CPU and on a GPU, which is not possible even with migration. Therefore,
A ’ cannot terminate one phase in time τ/2 (and a fortiori in a shorter time). Thus, A ’ requires a time
larger than nτ2/2 to complete all nτ phases. The competitive ratio of A ’ is then at least:

1
2 nτ2

(n +1)τ
−→

n→∞
τ

2
.

In a last step, we now relax the constraint that τ is an integer. Let q be an integer as large as we want,
and r = ⌊

q(τ−bτc)
⌋
, so that r /q ≤ τ−bτc ≤ (r +1)/q . A large q will lead to a greater precision. We adapt

the graph in the following way: there are now n(bτc+r) phases each containing kbτc+1 tasks. For each
phase j such that (j mod n) ≤ bτc, the tasks have a CPU computing time τ and a GPU computing time
1. In the remaining nr phases, tasks have a CPU computing time equal to τ/q and a GPU computing
time equal to 1/q . Intuitively, we split the phases corresponding to the fractional part of τ into multiple
phases of smaller tasks.

We now adapt the schedule S which still fits inside the buckets (as previously defined). The tasks
T j
∗ all fit inside bucket B . Indeed, there are composed of nbτc tasks of GPU computing time 1 and

nr tasks of GPU computing time 1/q; the time needed to process them sequentially is then equal to
n(bτc+ r /q) ≤ nτ. For bucket B1, we execute the tasks T j

i for j = 1, . . . ,bτc+ r and i = 1, . . . ,kbτc+1,
except tasks T j

∗ . The corresponding tasks T j
∗ are completed before the start of bucket B1. Inside bucket

B1, we execute kbτc2 tasks of CPU computing time τ and kr bτc tasks of CPU computing time τ/q . The
number of processors needed is then:

kbτc2 +
⌈

k
r

q
bτc

⌉
≤ kbτc2 +dk (τ−bτc)bτce

≤ kbτc2 −kbτc2 +dkτbτce ≤ ⌈
kτ2⌉= m.

Therefore, the first bτc+ r phases fit into bucket B1. The same reasoning applies to the following
buckets, so S achieves a makespan equal to (n +1)τ.

Concerning the algorithm A (assuming it does not make use of preemption with migration), the
phases where tasks have a GPU computing time equal to 1 still need a time τ to be completed: if one
task is scheduled on CPU, it takes a time τ; if all kbτc+1 tasks are scheduled on GPUs, this takes at
least a time bτc+1 ≥ τ. Similarly, the other phases need a time τ/q to be completed. The total makespan
is then at least nτ

(
bτc+ r

q

)
≥ nτ

(
τ− 1

q

)
. When q and n tend to infinity, the competitive ratio tends to

τ. Note that if A makes use of preemption with migration, this ratio tends to τ/2, which terminates the
proof.

The proof of Theorem 3.1 heavily relies on the fact that the online algorithm has zero information
on the successors of each task. As mentioned earlier, it is sometimes possible to get some information,
such as the bottom level of each task. On heterogeneous platforms, several adaptations exist to the

3.2. Lower bound on online algorithms competitiveness 55

bottom level, as discussed at the beginning of this section. We prove that using such information does
not improve the bound.

Theorem 3.2. If k ≥ 2, no online algorithm has a competitive ratio smaller than τ, even when spoliation
is authorized, and the bottom level of each task is known. If preemption with migration is authorized, no
online algorithm has a competitive ratio smaller than τ

2 .
If k = 1, then we obtain the same bounds divided by a factor 2.

Proof. The proof relies on the construction used to prove Theorem 3.1. We assume for the moment that
k ≥ 2. For simplification, we rely on the construction for an integer τ but the modification easily extends
to a decimal τ.

We add nτ tasks U j to the built graph, with 1 ≤ j ≤ nτ, where there is a dependence from U j to
U j+1 for each j . Each task has a CPU computing time equal to τ and a GPU computing time equal to 1,
as tasks T j

i . For each task T j
i , we add a dependence from T j

i to U j . See Figure 3.3 for an illustration of
the graph.

The longest path starting from any task T j
i to an endpoint of the built graph then has a length equal to

nτ− j +2: it is composed for instance of task T j
i and tasks U j to U nτ. Note that tasks T j

∗ have multiple
paths of length nτ− j +2, see Figure 3.3.

T 1
1 T 2

1 T 3
1 T 4

1 T 5
1 T 6

1

T 1
2 T 2

2 T 3
2 T 4

2 T 5
2 T 6

2

T 1
3 T 2

3 T 3
3 T 4

3 T 5
3 T 6

3

T 1
4 T 2

4 T 3
4 T 4

4 T 5
4 T 6

4

U 1 U 2 U 3 U 4 U 5 U 6

T 1
iT 1
∗

T 2
iT 2
∗ T 3

iT 3
∗

T 4
iT 4
∗

T 5
iT 5
∗

Figure 3.3: Example of built graph with τ= 2, k = 2, n = 3. In gray, the tasks and dependences existing
in the previous proof.

Therefore, for any j , the kτ tasks T j
i have the same bottom level. So when A terminates task T j

i ,
the adversary can choose whether T j

∗ is equal to T j
i or not, while respecting the bottom level furnished

to A . Then, the lower bound on the makespan reached by A (and A ’ if preemption with migration is
allowed) still holds.

It remains to define the schedule S with the added tasks, and to show that its makespan is at most
(n +2)τ. Recall that we assumed k ≥ 2. We add another bucket BU concerning a different GPU than B
(as k ≥ 2), starting at time 2τ and lasting nτ units of time, see Figure 3.4. Task U j is scheduled in BU

at time 2τ+ j . Note that for any `, tasks U (`−1)τ to U`τ are executed after bucket B`, which contains
tasks T j

i for (`−1)τ< j ≤ `τ. Therefore, every task T j
i is terminated before task U j is scheduled, so no

precedence constraints are violated.
The lower bounds proved in the Theorem 3.1 are then unchanged.
If k = 1, we define the bucket BU on the unique GPU, starting at time nτ and terminating at time 2nτ.

The makespan obtained by S is then twice longer, so the lower bounds obtained are twice smaller.

56 CHAPTER 3. Exploiting hybrid platforms in an online setting

CPU

GPU

B1

τ

B2

τ

B3

τ

B4

τ

B5

τ

B
nτ= 5τ

BU

nτ= 5τ

Figure 3.4: Buckets used by S with n = 5.

In the proof of Theorem 3.2, we used the fact that the bottom level is no longer useful to differentiate
tasks T j

∗ from other tasks T j
i . However, the former may have many more descendants than the latter

(Θ(nm) compared to Θ(nτ) for small j). A metric that could then still be used is the total weight of
the descendants of a task. We nevertheless prove in Theorem 3.3 that this knowledge cannot lead to
constant-factor approximations, as we prove a lower-bound in Θ(

p
τ). As discussed at the beginning of

this section, all the tasks used in the following proof are identical, so the weight can actually capture
several functions such as the number of descendants, the average computing time. . .

Theorem 3.3. No online algorithm has a competitive ratio smaller than 1
2

⌊p
2τ∗

⌋
, even when spoliation

is authorized, and both the bottom level and the total weight of the descendants of each task is known.
If preemption with migration is authorized, no online algorithm has a competitive ratio smaller than
1
4

⌊p
2τ∗

⌋
.

In these bounds, τ∗ is the largest triangular integer not larger than τ. Recall that τ is a triangular
integer if we have τ= 1+2+ . . .+⌊p

2τ
⌋
.

Proof. The proof relies on the construction used to prove Theorem 3.2, but using less phases and adding
several tasks. We first assume that τ is a triangular integer larger than 1, which means that there exists
an integer q > 1 such that

∑q
i=1 i = τ. The exact value of q is 1

2

p
1+8τ− 1

2 = ⌊p
2τ

⌋
. The graph built in

this proof contains q +1 phases of kτ tasks each.
We add m tasks V j

i to the built graph, with 1 ≤ j ≤ q and for each j , with 1 ≤ i ≤ (q +1− j)kτ. By
definition of q , this indeed sums to kτ2 = m additional tasks. All these tasks have a CPU computing
time equal to τ and a GPU computing time equal to 1, as tasks T j

i .

We now build the graph so that for each j , the kτ tasks T j
i have the same number of descendants.

For each j ≤ q , we add dependences from every task T j
i except T j

∗ to every task V j ′

i such that j ′ ≥ j .
See Figure 3.5 for an illustration of the graph, where all tasks T j

∗ have been set to T j
kτ for simplification,

and where tasks sharing the same successors and predecessors have been agglomerated. In this example,
we have q = 3, τ = 6 and m = 36. For instance, T 3

1 has 6 new successors (tasks V 3
1...6), T 2

1 has 18 new
successors and T 1

1 has m = 36 new successors.

Let j be fixed. In this graph, the descendants of task T j
∗ are tasks U j ′ for j ′ ≥ j , tasks T j ′

i for j ′ ≥ j

and tasks V j ′

i for j ′ > j . The descendants of any task T j
i except T j

∗ are tasks U j ′ for j ′ ≥ j and tasks

V j ′

i for j ′ ≥ j . The difference is that task T j
∗ has the (q +1− j)kτ tasks T j ′

i as successors but not the
(q +1− j)kτ tasks V j

i . Therefore, at j fixed, the number of successors is the same for each task T j
i .

So when A terminates a task j
i , the adversary can choose whether T j

∗ is equal to T j
i or not, while

respecting the bottom level and number of descendants furnished to A . Then, the lower bound on the

3.2. Lower bound on online algorithms competitiveness 57

makespan reached by A (and A ’ if preemption with migration is allowed) on each phase still holds.
Therefore, A leads to a makespan of at least (q +1)τ and A ′ to a makespan of at least 1

2 (q +1)τ.

T 1
1...5 T 2

1...5 T 3
1...5

T 1
1...5 T 2

1...5 T 3
1...5

U 1 U 2 U 3 U 4

T 4
1...6T 4
1...6T 1

1...5.T 1
∗ T 2

1...5.T 2
∗ T 3

1...5.T 3
∗

V 1
1...18 V 2

1...12 V 3
1...6

Figure 3.5: Example of built graph with τ= 6, q = 3, k = 1, m = 36. In gray, the tasks and dependences
existing in the previous proof.

It remains to define the schedule S with the added tasks, and to show that its makespan is at most
2τ+q+1. The schedule S is similar to the one of the previous proof, except that tasks V j

i are executed on
CPU after tasks T j

i . As there are m such tasks, this takes a time τ. To summarize, tasks T j
∗ are executed

on GPU in time q , then the remaining tasks T j
i are executed on CPU in time τ, then, in parallel, tasks

U j are executed on GPU in time q +1 and tasks V j
i are executed on CPU in time τ, see Figure 3.6. The

makespan obtained is then equal to τ+q +max{τ, q +1} = 2τ+q . The last equality is valid as for τ≥ 3,
we have q ≤ τ−1.

CPU

GPU T j
∗

q

T j
i

τ

U j

q +1

V j
i

τ

Figure 3.6: Shape of the schedule S .

Recalling that τ= q(q +1)/2, the competitive ratio of A is then at least:

(q +1)τ

2τ+q
= 1

2

q(q +1)2

q(q +1)+q
> q

2

(q +1)2

(q +1)2 = q

2
> 1

2

⌊p
2τ

⌋
.

Similarly, the competitive ratio of A ’ is at least 1
4

⌊p
2τ

⌋
.

If τ is not a triangular integer, or even not an integer, the same proof applies where q is the maximal
integer such that

∑q
i=1 i ≤ τ. The exact value of the computing ratio obtained is then:

1

2

⌊√
2τ+ 1

4
− 1

2

⌋
=Θ(p

τ
)

.

58 CHAPTER 3. Exploiting hybrid platforms in an online setting

Theorems 3.1 and 3.2 prove a lower bound valid for any value of m and k. In the following lemma,
we improve the result of Theorem 3.2 for specific values of m and k. This lemma implies that no online
algorithm can have a competitive ratio smaller than τ+1 for every value of m and k.

Lemma 3.1. There exist infinitely many values of m and k for which no online algorithm has a com-
petitive ratio smaller than τ+1, even when spoliation is authorized and the bottom level of each task is
known.

Proof. We assume throughout this proof that τ is an integer and that k ≥ 2(τ+1). This proof is adapted
from the proof of Theorem 3.2 when τ is an integer, and where each occurrence of τ is replaced by τ+1.

Specifically, the graph built in this proof is composed of n(τ+1) phases of kτ+1 tasks, along with a
chain of n(τ+1) tasks, for an arbitrarily large n. The CPU computing time of each task is equal to τ+1
and the GPU computing time is equal to 1. The dependences are built as in the proof of Theorem 3.2.

Any online algorithm needs a time τ+1 to schedule each phase. Indeed, in each phase, either τ+1
tasks are scheduled on a single GPU, or one task is scheduled on CPU. Therefore, the makespan obtained
by any online algorithm on the total n(τ+1) phases is at least n(τ+1)2.

We now build an offline schedule similar to the one of Theorem 3.2, except that k −1 tasks of each
phase are scheduled simultaneously on GPUs. Therefore, with the tasks of the additional chain, the
GPUs are all busy (except at the beginning and the end of the schedule). As each phase contains kτ+1
tasks, it remains to schedule k(τ−1)+2 tasks per phase on the CPUs. The objective is to schedule τ+1
phases simultaneously in each bucket, where the length of a bucket is equal to τ+1 units of time. The
number of tasks per bucket is then:

(k(τ−1)+2)(τ+1) = k
(
τ2 −1

)+2(τ+1)

= m −k +2(τ+1)

≤ m.

The last inequality comes from the assumption on k. Each task can be scheduled on one CPU so
the relevant tasks of τ+1 phases fit into each bucket. Therefore, by similar arguments to the proof of
Theorem 3.2, we conclude that the optimal schedule has a makespan at most (n +2)(τ+1).

When n increases, we obtain the result.

3.3 Competitive algorithms

3.3.1 The Quick Allocation (QA) algorithm

Amaris et al. [8] designed an online algorithm named ER-LS composed of two phases. For each available
task, it firsts decides whether it should be allocated to CPUs or GPUs, and then schedule it on the
appropriate resource type. More precisely, ER-LS can be described as follows:

1. Take any available task Ti .
(a) If Ti can be terminated on GPU in the current schedule before time wi , allocate it to GPU.
(b) If wi /wi ≤ τ=

p
m/k, then allocate Ti to CPU, otherwise assign it to GPU.

2. Schedule Ti as soon as possible on the assigned type of processor
3. If there are remaining tasks, return to Step 1.

This algorithm is proved to be 4τ-competitive. We propose here a simplified version of this algo-
rithm, for which we prove a better competitive ratio. The improvement comes both from the simplifica-
tion and a tighter analysis. We define the algorithm QA, which stands for Quick Allocation. Rule 1a of
ER-LS is deleted, so the allocation phase is then simplified to:

3.3. Competitive algorithms 59

• Take any available task Ti . If wi /wi ≤ τ, then allocate Ti to the CPU side, otherwise allocate it to
the GPU side.

Note that this allocation phase does not take into account any precedence relation or current schedule.
Once this task is allocated to the CPU or GPU side, it is scheduled on the processor of this side which
has completed its tasks the soonest.

One could wonder why the ratio τ is the best choice in the allocation phase. Intuitively, there are
more CPUs than GPUs, so if wi /wi < 1, task Ti is executed faster on CPU, which is a lesser rare
resource, therefore task Ti should be allocated to CPU. On the contrary, if wi /wi > m/k, then not only
task Ti is executed faster on GPU, but if there are many independent tasks with the same processing
times to compute, they will be executed faster all on GPUs than all on CPUs. Therefore we can allocate
Ti to GPU without wasting a rare resource. When this ratio is between 1 and m/k, the loss is minimized
when switching resource at the geometric mean of 1 and m/k, which is equal to τ.

We now show that QA is
(
2τ+1− 1

kτ

)
– competitive and that this ratio is almost tight, as we provide

an example on which QA leads to a makespan
(
2τ+1− 1

k

)
times larger than the optimal solution.

Theorem 3.4. QA is
(
2τ+1− 1

kτ

)
– competitive.

Proof. We consider a graph, an online instance of this graph, and the schedule S computed by QA, of
makespan Cmax. We also consider an optimal schedule of this graph (later referred to by the optimal
solution), and we let OPT be its makespan.

Let Wc (resp. Wg) be the total load on the CPUs (resp. GPUs). Let cp be a critical path the task
graph given the allocation of S , and CP be the sum of the processing times of the tasks of cp in S .

The objective is to prove that:

Cmax ≤
(
2τ+1− 1

kτ

)
OPT .

We first use Lemma 3.2 to bound Cmax using the processor loads (Wc and Wg) and the length of the
critical path (CP). Then, we bound the expression obtained in function of OPT to prove the result.

Lemma 3.2.

Cmax ≤
Wc

m
+ Wg

k
+

(
1− 1

m

)
CP.

Proof. We consider the path p defined as being the longest path (in terms of execution time in S) that
contains a task that terminates at time Cmax in S . By definition, the length of p is at most CP. In order
to simplify the reasoning, we assume that there is a task T0 of null processing time that is the predecessor
of every task in the graph, and that this task belongs to p.

Consider a moment t when no task of p is being executed in S . Let T` be the last task of p to
be executed before t and Tn be the next task of p to be executed after t in S . Note that both tasks
always exist because T0 is executed at the start of the graph and a task of p is executed at the end of the
schedule S . Suppose first that Tn is executed on CPU. As Tn is not scheduled immediately after T`,
and the schedule has been obtained by a list algorithm, no CPU is idling between the termination of T`
and the start of Tn . Symmetrically, if Tn is executed on GPU, no GPU is idling in this period.

Therefore, when no task of p is being executed, either all the CPU are busy or all the GPU are busy.
The CPU (resp. GPU) can be all busy for at most a time of Wc /m (resp. Wg /k). And the tasks of p are
executed during a time at most CP.

Hence, we have:

60 CHAPTER 3. Exploiting hybrid platforms in an online setting

Cmax ≤
Wc

m
+ Wg

k
+CP.

We can further refine this inequality. Let Pc (resp. Pg) be the processing time of the tasks of p on
CPU (resp. GPU). Then, these processing times can be removed from the total loads in the inequality:

Cmax ≤
Wc −Pc

m
+ Wg −Pg

k
+Pc +Pg

≤ Wc

m
+ Wg

k
+ m −1

m
Pc +

k −1

k
Pg

≤ Wc

m
+ Wg

k
+ m −1

m

(
Pc +Pg

)
≤ Wc

m
+ Wg

k
+ m −1

m
CP.

Bounding the loads We denote by Ac (resp. Ag) the set of tasks placed on CPU (resp. GPU)
both by S and in the optimal solution. We denote by Cc (resp. Cg) the set of tasks placed on CPU (resp.
GPU) by S but not in the optimal solution. The lowercase denotes the sum of the processing times of
these sets.

The optimal makespan OPT is at least equal to the average work on CPU (and on GPU) in the
optimal solution. In this solution, the tasks executed on CPU are tasks of the sets Ac and Cg . Tasks of
Ac have the same processing time in S and in the optimal solution, as they are executed on CPU in both
cases. Tasks of Cg are completed faster in S than in the optimal solution. More precisely, the allocation
phase ensures that any task Ti of Cg verifies wi ≥ τwi . Therefore, bounding OPT by the average work
on CPU gives the following inequality:

OPT ≥ 1

m

(
ac +τcg

)
. (3.1)

Similarly, bounding OPT by the average work on GPU gives:

OPT ≥ 1

k

(
ag +

cc

τ

)
. (3.2)

Using the fact that kτ≤ m, we multiply by τ both sides of Equation 3.1 to get:

m

kτ
OPT ≥ m

kτ

ac

m
+ m

kτ

τcg

m
≥ ac

m
+ cg

k
.

We then simplify Equation 3.2 using that kτ≤ m:

OPT ≥ 1

k

(
ag +

cc

τ

)
≥ ag

k
+ cc

m
.

Summing these two inequalities, we get:

(
1+ m

kτ

)
OPT ≥ ac + cc

m
+ ag + cg

k
≥ Wc

m
+ Wg

k
(3.3)

3.3. Competitive algorithms 61

Bounding the critical path We now bound the length of the critical path produced: every
task of this critical path is also scheduled in the optimal schedule, and forms a path. Each task can be
accelerated by a factor at most τ in the optimal schedule, so the time dedicated to process this path in
the optimal schedule is at least CP/τ. Therefore, we have

CP ≤ τOPT . (3.4)

Conclusion of the proof Finally, from Lemma 3.2 we get:

Cmax ≤
Wc

m
+ Wg

k
+

(
1− 1

m

)
CP.

Equations 3.3 and 3.4 lead to:

Cmax ≤
(
1+ m

kτ

)
OPT +

(
τ− τ

m

)
OPT . (3.5)

Using that τ2 ≥ m/k so τ/m ≥ 1/kτ, we deduce:

Cmax ≤ (1+τ)OPT +
(
τ− 1

kτ

)
OPT ≤

(
2τ+1− 1

kτ

)
OPT .

Hence, the theorem.

Note that up to Equation 3.5, the only property of τ that has been used in the above proof is that
τ ≤ m/k. Therefore, this equation is also valid for the following variant of QA, which we name QA’,
and has a slightly smaller competitive ratio.

• Take any available task Ti . If wi /wi ≤ τ′, then allocate Ti to the CPU side, otherwise allocate it
to the GPU side, where

τ′ = τ
√

m

max(k,m −1)
.

Lemma 3.3. The competitive ratio of QA’ is 3− 1
m when τ= 1 and 1+2τ

√
1− 1

m otherwise.

Proof. First, if τ = 1, then m = k so τ′ = τ and QA’ is equivalent to QA. The result is thus given by
Theorem 3.4. We now assume that τ> 1 so τ′ = τ

√
m

m−1 , because k ≤ m −1.
As τ′ ≤ m/k, we can use a proof similar to Theorem 3.4 to derive Equation 3.5, which gives the

following result:

Cmax ≤
(
1+ m

kτ′
)

OPT +τ′
(
1− 1

m

)
OPT

≤
(

1+τ
√

m −1

m

)
OPT +τ

√
1− 1

m
OPT

≤
(

1+2τ

√
1− 1

m

)
OPT .

Hence, the lemma.

62 CHAPTER 3. Exploiting hybrid platforms in an online setting

We now prove that the competitive ratio of QA is almost tight in the following theorem.

Theorem 3.5. The competitive ratio of QA is at least
(
2τ+1− 1

k

)
.

Proof. We let ε be a small processing time and we define q = (k −1)k.
Consider a graph composed of q +mk +2 tasks, labeled by Ti for i from 1 to q +mk +2. The first

q +mk +1 tasks are all independent. These tasks are composed of four groups:

• The first q tasks have an infinite CPU processing time and a GPU processing time equal to x =
(k −1)/q = 1/k.

• The next mk tasks have a CPU processing time of (1+ε)/k and a GPU processing time of 1/
p

mk.

• The next task, Tq+mk+1 has an infinite CPU processing time and a GPU processing time of ε.

• The last task of the graph, Tq+mk+2 is a successor of Tq+mk+1. Its CPU processing time is equal
to τ, and its GPU time is equal to 1+ε.

CPU

GPU

QA

T1...q

1− 1
k

Tq+1...mk+q

τ

ε

Tq+mk+2
τ

CPU

GPU

OPT

T1...q

1

Tq+1...mk+q

1+ε

ε Tq+mk+2

1+ε

Figure 3.7: Schedule obtained by QA (left) and the optimal one (right).

We consider the online setting in which the tasks Ti arrive in the order given by i . The ratio of CPU
time over GPU time is larger than τ for every task except the last one. Then, QA schedules the first q
tasks on k GPUs in time qx/k = (k −1)/k. Then, it schedules the next mk tasks on k GPUs in time
m/

p
mk = τ. Task Tq+mk+1 is then scheduled on GPU in a time ε, after which the last task is scheduled

on CPU. The makespan obtained is then equal to:

MQA = 2τ+ k −1

k
+ε.

Another possibility consists in scheduling first Tq+mk+1 then Tq+mk+2 on a single GPU, which take
a time 1+2ε. In parallel, tasks T1 to Tq are scheduled on the remaining (k−1) GPUs, which takes a time
qx/(k −1) = 1. In parallel, we schedule tasks Tq+1 to Tq+mk on m CPUs, which are then completed at
time 1+ε. The makespan obtained is then:

M = 1+2ε.

The schedules obtained are illustrated on Figure 3.7.
The ratio of the makespan obtained by QA divided by M is then equal to:

MQA

M
=

2τ+ k−1
k +ε

1+2ε
−→
ε→0

2τ+ k −1

k
.

3.3. Competitive algorithms 63

3.3.2 A tunable competitive algorithm which performs well in practice

EFT, which stands for Earliest Finish Time, is one of the most intuitive algorithm to solve this problem:
it schedules each task on the resource on which it will be completed the soonest. This algorithm has
good performance in practice, as the load between resources is maintained balanced. However, on
some instances, it can achieve makespans m/k +2− 1

k times longer than the optimal solution or the one
computed by QA, even on independent tasks, as proved in Lemma 3.4.

Lemma 3.4. The competitive ratio of EFT is at least (m/k +2− 1
k), even on independent tasks.

Proof. Let ε be arbitrary small. We assume that k divides m and k > 1.
We first prove a weaker result, by exposing an instance on which EFT achieves a makespan equal to

m/k where the optimal result is 1+ε.
Consider (m +k)m/k tasks composed of two types. m tasks of type A have a CPU computing time

equal to 1+ε and a GPU computing time equal to 1. The remaining m2/k tasks, of type B , have a CPU
computing time equal to 1 and a GPU computing time equal to ε.

The online instance is decomposed into m/k phases, each starting by k tasks of type A followed by
m tasks of type B .

An optimal schedule allocates each task A on a single CPU, and all the tasks B on GPUs. This
achieves a makespan equal to 1+ε.

EFT allocates the first k tasks A on GPU as they complete faster (1 versus 1+ε). Then, all the GPUs
are busy until time 1, so EFT allocates the next m tasks of type B on CPU. Therefore, at the end of the
first phase, all the processors are busy until time 1. Consequently, after the m/k phases, EFT achieves
a makespan equal to m/k. We have then proved the first result.

This instance can now be modified to prove the lemma. Split the last phase into k −1 sub-phases,
where each sub-phase contains the same tasks, but which computing time are divided by k. EFT sched-
ules this phase in time 1− 1

k , using all processors, achieving a makespan equal to (m−1)/k. An optimal
schedule uses k −1 CPUs to schedule the A tasks in time 1, and schedules the B tasks on GPUs. Now,
add a new phase at the end of the instance composed of one task of type A followed by k tasks of type
C , which have an infinite CPU computing time and a GPU computing time equal to 1. The schedules
obtained are represented in Figure 3.8. The last A task is noted A′ to differentiate it from the previous A
tasks.

CPU

GPU

EFT

A

m−1
k

A′
1

C
1

C
1

B CPU

GPU

OPT

B

nε

C

1

A

1+ε

A′

Figure 3.8: Schedule obtained by EFT (left) and an optimal one (right).

The optimal schedule executes the task A on the last idling CPU, and each task C on a GPU. The
makespan obtained is then at most 1+nε, where n is the number of tasks in the graph.

EFT schedules the k +1 tasks of this phase on GPU. Its makespan is then increased by 2, to reach a
value of m/k +2− 1

k ; hence, the lemma.

64 CHAPTER 3. Exploiting hybrid platforms in an online setting

We propose a new tunable algorithm, named MIXEFT that benefits both from the performance of
EFT on most instances, and from the robustness of QA on the hardest graphs. The idea is to improve
EFT by switching to a guaranteed algorithm if EFT does not perform well enough. The algorithm is
composed of two phases. In the first phase, it is equal to EFT except that it also simulates the schedule
that QA would have produced on the same instance. If the makespan obtained by EFT is more than
λ times larger than the makespan obtained by the simulated QA (for a fixed positive parameter λ) we
switch to the second phase, and MIXEFT from this point behaves as QA. A small λ leads to a smaller
competitive ratio, but may degrade the performance of MIXEFT in practice. We propose to use a value
of λ between 1 and 2. The pseudocode is provided in Algorithm 10.

Algorithm 10: MIXEFT (λ)

1 PQA ← simulated platform
2 PEFT ← simulated platform
3 StayEFT ← yes
4 while there is a new task Ti do
5 if StayEFT then
6 On PEFT, Schedule Ti as soon as possible on the resource on which it completes the

earliest
7 On PQA, schedule Ti as soon as possible on CPU if wi /wi ≤ τ and on GPU otherwise
8 if makespan in PEFT is λ times larger than the makespan in PQA then
9 StayEFT ← no

10 if StayEFT then
11 Schedule Ti as soon as possible on the resource on which it completes the earliest
12 else
13 Schedule Ti as soon as possible on CPU if wi /wi ≤ τ and on GPU otherwise

The competitive ratio of this algorithm is in O(λτ). Indeed, if OPT represents the length of the
optimal schedule, QA solves the whole graph in less than (2τ+1)OPT . Therefore, the time to complete
the first phase is less than λ times this quantity. For the second phase, it is less than this quantity. The
whole graph is then completed in less than (λ+1)(2τ+1)OPT .

We however conjecture that the competitive ratio of MIXEFT is similar to max(λ,2τ+1). This
statement is motivated by two ideas. It seems unlikely that EFT performs worse than QA on an instance
in which QA is far from the optimal. So, when the switch occurs, we expect the makespan to be at most
max(λ,2τ+1)OPT . Secondly, when the switch occurs, it is likely that many resources are busy in the
optimal solution. Therefore, we expect the makespan of the optimal solution to increase between the
switch and the end of the graph. The competitive ratio is then smaller than the addition of the competitive
ratio of both phases.

3.4 The allocation is more difficult than the schedule

The proofs of the lower bounds presented in Section 3.2 and the competitive algorithms designed in
Section 3.3 focus substantially more on the allocation decisions (i.e., deciding whether to execute a task
on CPUs or on GPUs) than on the scheduling decisions (e.g., if a task is allocated to CPUs, deciding its
starting time and the CPU). In this section, we support this observation by showing that if the allocation

3.4. The allocation is more difficult than the schedule 65

decisions are given by an oracle, then any online list scheduling algorithm is (3− 1
m) - competitive, which

is the best competitive ratio achievable.

Theorem 3.6. If the allocation of each task is fixed, any online list scheduling algorithm is(
3− 1

m

)
- competitive.

Proof. Consider a graph where each task has a fixed alllocation, an online instance of this graph, and the
schedule S computed by any online list scheduling algorithm, of makespan Cmax. Let Wc (resp. Wg)
be the total load on the CPUs (resp. GPUs). Let cp be a critical path of S , and CP be the sum of the
processing times of the tasks of cp in S .

The result of Lemma 3.2 stated in the proof of Theorem 3.4 holds, therefore we have:

Cmax ≤
Wc

m
+ Wg

k
+

(
1− 1

m

)
CP.

Let OPT be the optimal makespan given the fixed allocation. The m CPUs have to execute tasks
whose execution time sum to Wc , so OPT ≥Wc /m. Similarly, OPT ≥Wg /k, and as CP is the length of
the critical path, we have OPT ≥ CP. Therefore, we conclude that:

Cmax ≤
(
3− 1

m

)
OPT .

We now show that this upper bound is tight.

Lemma 3.5. If the allocation of each task is fixed, no online scheduling algorithm has a competitive
ratio smaller than

(
3− 1

m

)
.

Proof. We assume m ≥ 2. Note that the result also holds for m = 1, with a simpler example without
the second group of tasks built below. Let A be an online scheduling algorithm. We let n be an integer
multiple of km(m −1) and an adversary will build a graph G composed of the 2n +1 following tasks:

• tasks T1 to Tn have a GPU computing time equal to k/n and an infinite CPU computing time;

• tasks Tn+1 to T2n have a CPU computing time equal to (m −1)/n and an infinite GPU computing
time;

• task T2n+1 has a CPU computing time equal to 1 and an infinite GPU computing time.

In the graph G , there will exist i ∈ [1,n] and j ∈ [n +1,2n] such that the dependences of G are from
task Ti to tasks Tn+` for every `> 0 and from task T j to task T2n+1.

Every such graph can be scheduled in time 1+ (k +m−1)/n: schedule each task as soon as possible
starting task Ti at time 0, task T j at time k/n and task T2n+1 at time (k+m−1)/n, see Figure 3.9. Tasks
T1...n are completed on k GPUs in time n/k ∗k/n = 1, tasks Tn+1...2n are completed on m CPUs in time
(m −1)/n ∗n/(m −1) = 1, and task T2n+1 in time 1.

Now, consider algorithm A . The adversary selects the last task of T1...2n to be terminated as the
predecessor of every task Tn+` for every ` > 0. Similarly, it selects the last task of Tn+1...2n to be
terminated as the predecessor of task T2n+1. The makespan obtained is then at least the time necessary
to complete T1...n on k GPUs, plus the time to complete Tn+1...2n on m CPUs, plus the time to complete
T2n+1 on 1 CPU, see Figure 3.9:

66 CHAPTER 3. Exploiting hybrid platforms in an online setting

CPU

GPU

A

T1...n

1

Tn+1...2n

1− 1
m

T2n+1
1

CPU

GPU

OPT

T1...n

1

Tn+1...2n

1

T2n+1
1

Figure 3.9: Schedules obtained by A and OPT .

1+ n

m

m −1

n
+1 = 3− 1

m
.

Therefore, the competitive ratio of A is at least:

3− 1
m

1+ 1
n (k +m −1)

−→
n→∞ 3− 1

m
.

3.5 Extension to multiple types of processors

In this section, we generalize our study to Q ≥ 2 types of processors, which allows to model a platform
composed of several accelerator types. For comparison, in the offline setting, Amaris et al. [7] provide
a Q(Q +1)-approximation. We denote by mq the number of processors of type q , and we assume that
they are ordered such that mq ≥ mq+1. The computing time of task Ti on processor type q is denoted
by wi ,q .

Our first result directly extends the lower bounds of Section 3.2 for Q processor types. We only
detail the proof of Theorem 3.7 here, but the same generalization can be done for every lower bound
presented in Table 3.1, replacing τ by

√∑Q−1
q=1 mq /mQ .

Theorem 3.7. No online algorithm for Q processor types has a competitive ratio smaller than√∑Q−1
q=1 mq /mQ .

Proof. Let P be the target platform composed of Q types of processors. Consider an alternative platform
P ′ composed of 2 types of processors, m′ CPUs and k ′ GPUs, with m′ =∑Q−1

q=1 mq and k ′ = mQ .
Any instance G ′ on P ′ can be simulated by an instance G on P , which has the same vertices and

edges as G ′. The processing times of the tasks of G are defined as follows: for any task Ti , wi ,Q is equal
to the GPU processing time of Ti on P ′ and wi ,q , for q = 1, . . . ,Q −1, is equal to its CPU processing
time. Therefore, a schedule of G on P can be adapted as a schedule of G ′ on P ′ achieving the same
makespan, and vice-versa: the processor types 1 to Q −1 are equivalent in P and can be mapped to the
CPUs of P ′.

Suppose by contradiction that an online algorithm has a competitive ratio smaller than√∑Q−1
q=1 mq /mQ =

p
m′/k ′ on P . Its competitive ratio on P ′ is then smaller than

p
m′/k ′, which

violates Theorem 3.1.

3.5. Extension to multiple types of processors 67

We also adapt the QA algorithm (and thus MIXEFT) for this setting, by changing its allocation
phase:

• Allocate Ti to a processor type q that minimizes wi ,q
/p

mq .

Note that with Q = 2, this algorithm is equal to the original QA. Theorem 3.8 (proved below) gener-
alizes the competitive ratio. However, the gap with the lower bound proved above increases with Q, as
the lower bound is roughly the square root of the sum of ratios mq /mQ whereas the competitive ratio of
QA is roughly the sum of the square roots of the same ratios.

Theorem 3.8. On Q types of processors, QA is

(√
m1

mQ
+

Q∑
q=1

√
mq

mQ

)
- competitive.

In comparison, there is an instance similar to the one of Lemma 3.4 on which EFT achieves a ratio
larger than

∑Q
q=1 mq /mQ . Indeed, by setting identical computing times to processor types 1 to Q −1,

EFT behaves as if there were
∑Q−1

q=1 mq CPUs and mQ GPUs, which leads to this result.
The generalization of QA may seem straightforward, but it brings new insights on the underlying

principles. We can see that the value τ =
p

m/k hides several concepts. Comparing the processing
times ratio wi /wi to τ is actually a way to select the resource type q that minimizes wi ,q

/p
mq . The

competitive ratio of QA on two types of processors, 2τ+1, is the sum of two terms. The first one is
the maximal deceleration of a task compared to the optimal schedule, which is equal to τ on two types
of processors and generalized to

√
m1/mQ . The second one is the maximal loss when scheduling too

many tasks on the fastest resource type while all the others may idle, which is equal to τ+1 on two types
of processors, and generalizes to

(∑Q
q=1

p
mq

/p
mQ

)
. The gap with the lower bound of Theorem 3.7

is explained by the fact that the proposed lower bound does not exploit the different execution times of
tasks on the Q −1 first resource types. The construction proposed in Section 3.2 actually strongly relies
on the fact that tasks have only two different processing times: either all tasks are executed on GPU, or
at least one of them is not executed on GPU. Both cases must lead to the same processing time for the
lower bounds to hold. It should be noted that this generalization exhibits another meaning of the value
τ: it is equal to the value

√∑Q−1
q=1 mq /mQ when Q = 2.

Proof of Theorem 3.8. This proof is similar to the one of Theorem 3.4.
We consider a graph G and the schedule S computed by QA, of makespan Cmax. We consider also

an optimal offline solution, to which we will refer as the optimal solution, of makespan OPT . Let Wq be
the total load on the processors of type q for each q ∈ {1, . . . ,Q −1}. Let cp be a critical path of S , and
CP be the sum of the processing times of the tasks of cp in S .

First, we prove that:

Cmax ≤
Q∑

q=1

Wq

mq
+CP. (3.6)

As in Theorem 3.4, consider a path p of tasks of G whose execution starts the soonest and terminates
exactly at time Cmax in S . When no task of p is being executed, one type of processor is necessarily
busy because of the scheduling strategy, which always schedules an available task if one processor of
each type is idle. The total amount of time during which at least one type of processor has no idle
resource is at most

∑Q
q=1

Wq

mq
; hence, the result.

We now bound CP. Consider a task Ti that is executed on processor type ` in QA and q in the
optimal solution. We have, by definition of QA, m1 and mQ :

wi ,` ≤
√

m`

mq
wi ,q ≤

√
m1

mQ
wi ,q . (3.7)

68 CHAPTER 3. Exploiting hybrid platforms in an online setting

Summing over the tasks of cp, we obtain:

CP ≤
√

m1

mQ
OPT . (3.8)

We consider the workload W ∗
q on processor type q in the optimal solution, which is not larger than

mq OPT . For any processor type `, let C`
q be the sum of the computing times on processors of type ` of

tasks allocated to processor type ` in QA and to processor type q in the optimal solution. We can lower
bound W ∗

q in the optimal solution by the quantities C q
`

, using the first inequality of Equation 3.7:

OPT ≥
W ∗

q

mq
≥ 1

mq

Q∑
`=1

√
mq

m`
C`

q√
mq

mQ
OPT ≥

Q∑
`=1

C`
qp

mQ m`
≥

Q∑
`=1

C`
q

m`
.

Now, summing over all processor types q , we get:

1
p

mQ

(
Q∑

q=1

√
mq

)
OPT ≥

Q∑
q=1

Q∑
`=1

C`
q

m`
≥

Q∑
`=1

1

m`

Q∑
q=1

C`
q

≥
Q∑
`=1

W`

m`
. (3.9)

Finally, combining Equations 3.6, 3.8 and 3.9, we get the result:

Cmax ≤
1

p
mQ

(
p

m1 +
Q∑

q=1

√
mq

)
OPT .

3.6 Simulations

We now provide simulations to illustrate the performance of both competitive algorithms and simple
heuristic strategies on various task graphs.

3.6.1 Baseline heuristics

In addition to the four online algorithms discussed above (ER-LS from [8], QA, EFT, and MIXEFT,
implemented with λ = 2 unless otherwise specified), we consider two simple strategies that follow the
same scheme as QA, with a different allocation criteria: QUICKEST allocates each task to the resource
type on which its computing time is smaller; RATIO allocates a task on GPUs if and only if its GPU
computing time is at least m/k times smaller than its CPU computing time. Intuitively, QUICKEST

should perform well on graphs on which the critical path is preponderant. On the opposite, RATIO

should perform well on graphs with a high parallelism throughout the execution.
We also used the offline HEFT algorithm [139], which is known to perform well in practice, as a

baseline to compare all online strategies. Moreover, backfilling is performed following HEFT insertion
policy.

3.6. Simulations 69

3.6.2 Experimental setup

We used three types of instances: realistic DAGs corresponding to the Cholesky factorization, random
DAGs used in the literature, and ad hoc instances designed to be difficult for this problem and specifically
for QA.

Cholesky factorization is a linear algebra application whose parallel implementation usually uses
a blocked algorithm on a tiled matrix for performance issues. We consider matrix sizes ranging from
2× 2 tiles to 15× 15 tiles, which leads to DAGs with 4 to 680 tasks. Tasks correspond to four linear
algebra kernels: GEMM, SYRK, TRSM, and POTRF. Their respective processing times on a CPU are
set to 170ms, 95ms, 88ms, and 33ms, and on a GPU to 5.95ms, 3.65ms, 8.11ms, and 15.6ms, which
corresponds to measures [5, 22] made using the Chameleon software [41].

The random instances come from the STG set [135], which is often used in the literature to com-
pare the performance of scheduling strategies. The set contains instances with 50 to 5000 nodes. We
report here the simulations made with 180 graphs of 300 nodes each. In these instances, 45 graphs are
generated by each random DAG generator (layrpred, layrprob, samepred and sameprob).
Both layrpred and layrprob generators lead to graphs with nodes structured by layers, whereas
samepred and sameprob lead to more intricate graphs. In contrast to their counterpart with the
suffix -prob, generators with the suffix -pred specify the average number of predecessors for each
task. We consider that the cost generated by the STG random generator is the processing time of the
corresponding task on a GPU. Based on the previous measures for linear algebra kernels, we assume
that the average speedup between CPU and GPU is around 15 with a large variance. Thus, to obtain the
processing time of a task on CPU, we multiply its cost on GPU by a random value with expected value
15 and standard deviation 15. For that, we use a gamma distribution because it has been advocated for
modeling job runtimes [64], it is positive and it is possible to specify its expected value and standard
deviation by adjusting its parameters.

Finally, specific random instances have been designed to test the limitations of QA. These ad hoc
instances consist of a chain of tasks together with a set of independent tasks, such that all cores are
expected to finish simultaneously if a GPU is dedicated to the chain and all independent tasks are load-
balanced on the other cores. The expected processing time of a task on a GPU is 1 (with a standard
deviation of 0.1) and the expected processing time on a CPU varies from (m/k)−1/4 to (m/k)5/4 (with a
standard deviation equal to 10% of this expected value). For a given expected CPU cost µ, the number
of tasks in the chain is d n

m/µ+k e, where n = 300 is the total number of tasks. Therefore, the larger µ, the
longer the chain.

3.6.3 Results

Figures 3.10 to 3.13 depict the performance of the six online scheduling algorithms for m = 20 CPUs
and k = 2 GPUs because it best highlights the difference between the online strategies. Except when
varying its parameter λ (Figure 3.13), MIXEFT performs exactly as EFT (and is thus omitted for better
readability).

On Cholesky DAGs (Figure 3.10), EFT (and thus MIXEFT) is always the best strategy. The only
difference between QA and ER-LS concerns the first tasks (as we removed Step 1a in QA), which
explains why their behavior is similar for large graphs. QA, ER-LS, and RATIO all put POTRF tasks
on a CPU, which leads to performance loss when the graph is small because its parallelism is limited
and the GPUs are often idle. However, it is acceptable for larger graphs in which many tasks may be
executed in parallel on the GPUs. On the contrary, QUICKEST puts all tasks on the GPUs. This is
efficient for small graphs with low parallelism but it becomes worse than RATIO for large graphs.

70 CHAPTER 3. Exploiting hybrid platforms in an online setting

1.0

1.2

1.4

1.6

1.8

10 100

Number of tasks

R
at
io

to
H
E
F
T

Algorithm EFT QA ER-LS Ratio Quickest

Figure 3.10: Ratios of the makespan over HEFT for EFT, QA, ER-LS, RATIO, and QUICKEST with
m = 20 CPUs and k = 2 GPUs on Cholesky instances. MIXEFT is not shown because it performs
exactly as EFT.

1.0

1.5

2.0

2.5

3.0

layrpred layrprob samepred sameprob

Graph generator

R
at
io

to
H
E
F
T

Algorithm EFT QA ER-LS Ratio Quickest

Figure 3.11: Ratios of the makespan over HEFT for EFT, QA, ER-LS, RATIO, and QUICKEST with
m = 20 CPUs and k = 2 GPUs on random instances with n = 300 tasks from the STG data set. MIXEFT
is not shown because it performs exactly as EFT.

3.6. Simulations 71

1

3

5

7

9

1 10

Expected CPU cost µ

R
at
io

to
H
E
F
T

Algorithm EFT QA ER-LS Ratio Quickest

Figure 3.12: Ratios of the makespan over HEFT for EFT, QA, ER-LS, RATIO, and QUICKEST with
m = 20 CPUs and k = 2 GPUs on 300 ad hoc instances with n = 300 tasks. MIXEFT is not shown
because it performs exactly as EFT.

Cholesky STG Ad hoc

QA 0.8 1 1.2 1.4 EFT QA 0.8 1 1.2 1.4 EFT QA 0.8 1 1.2 1.4 EFT

1

2

3

4

MixEFT parameter λ

R
at
io

to
H
E
F
T

Figure 3.13: Ratios of the makespan over HEFT for QA, MIXEFT, and EFT with m = 20 CPUs and
k = 2 GPUs on 14 Cholesky, 180 STG, and 300 ad hoc instances. ER-LS, RATIO, and QUICKEST are
discarded.

72 CHAPTER 3. Exploiting hybrid platforms in an online setting

Figure 3.11 shows that layrpred graphs from the STG data set yield the largest difference between
QA/ER-LS and the best algorithms (HEFT and EFT). Additionally, RATIO is often better than QUICK-
EST. This suggests that using additional CPUs increases the efficiency and that layrpred graphs have
some parallelism. sameprob graphs leads to opposite conclusions because QUICKEST performs well.
Contrarily to layrpred graphs in which each layer becomes ready step by step, allowing the CPUs
to execute some of the tasks without slowing down the GPUs, sameprob graphs have more intricate
dependences that provide limited parallelism.

Figure 3.12 first shows that EFT (and MIXEFT) is almost always the best online heuristic for these
ad hoc graphs. For extreme values of the expected CPU processing time µ (significantly smaller than
1 or larger than m/k), all four other heuristics are equivalent and perform well. Otherwise, when µ

is slightly larger than 1, the instance contains many independent tasks and QUICKEST is almost m/k
worst than HEFT because scheduling the independent tasks on GPUs is not efficient. Symmetrically,
when µ is slightly smaller than m/k, the instance contains a large critical path and RATIO shows poor
performance, because it schedules the critical path on CPUs. QA and ER-LS take the best of these two
strategies, and have a worst performance

p
m/k ≈ 3 times larger than HEFT, when µ is close to

p
m/k.

Figure 3.13 shows that MIXEFT behaves like QA when its parameter λ is smaller than 1, and rapidly
changes to mimic EFT when the parameter increases and exceeds 1. This transition occurs for a lower
λ for Cholesky instances than for STG and ad hoc ones.

Figure 3.14 shows the performance for various platform sizes for the Cholesky dataset. EFT is
always the best online heuristic and its ratio to HEFT is never more than 1.2 (i.e., 20% worse than HEFT).
This also applies to MIXEFT. Depending on the number of CPUs and GPUs, the other algorithms (QA,
ER-LS, RATIO, and QUICKEST) follow one of the following three strategies: 1) all tasks on CPUs – this
is the case for RATIO when m/k = 20; 2) POTRF tasks (the least accelerated tasks) on CPUs and other
tasks on GPUs – this is the case for QA and ER-LS when m/k ≥ 5, and RATIO when 3 ≤ m/k ≤ 10; 3)
all tasks on GPUs – all the other cases. This first strategy is the worst one except when there are many
tasks and CPUs, and a single GPU. In this case, it outperforms the third strategy because the instances
present a large parallelism for which CPUs can be exploited. The second strategy is often inefficient
for small instances because POTRF tasks are on the critical path and benefit from being accelerated on
the GPUs. Finally, the last strategy significantly deviates from EFT only for low k and large number of
tasks, which suggests that it is advantageous to exploit CPUs for large graphs when there are few GPUs.

Note that in all studied instances, EFT was never far from HEFT and that there is no practical gain of
using MIXEFT rather than EFT. The main advantage of MIXEFT lies in its competitive ratio whereas
EFT can lead to very large makespans on specific instances.

3.7 Towards an offline approximation algorithm

In this chapter, we have focused on the online problem of scheduling a task graph on m CPUs and k
GPUs, with little knowledge on the remainder of the graph. For some applications, it is nevertheless pos-
sible to know the complete graph before the execution. We therefore focus in this section on the offline
problem. As stated in Section 3.1, the reference algorithm in this setting is HLP-EST, a tight polynomial-
time 6-approximation based on linear programming, designed by Kedad-Sidhoum et al. in [93]. Two
main challenges remain to be addressed. First, we do not know whether there exists a polynomial
algorithm with a smaller approximation ratio. The related work includes a 2-approximation on ho-
mogeneous processors [73], a

(4
3 + 1

3k

)
- approximation for independent tasks [34], a low-complexity 2-

approximation for independent tasks [40] named BALANCEDESTIMATE, and a low-complexity (2+
p

2)-
approximation algorithm named HETEROPRIO. Second, it would be interesting both theoretically and

3.7. Towards an offline approximation algorithm 73

k = 1 k = 2 k = 4 k = 8

m
/
k
=

1
m
/k

=
2

m
/k

=
3

m
/k

=
5

m
/k

=
10

m
/k

=
20

10 100 10 100 10 100 10 100

1.0

1.5

2.0

2.5

1.0

1.5

2.0

2.5

1.0

1.5

2.0

2.5

1.0

1.5

2.0

2.5

1.0

1.5

2.0

2.5

1.0

1.5

2.0

2.5

Number of tasks

R
a
ti
o
to

H
E
F
T

Algorithm EFT QA ER-LS Ratio Quickest

Figure 3.14: Ratios of the makespan over HEFT for EFT, QA, ER-LS, RATIO, and QUICKEST on
Cholesky instances. MIXEFT is not shown because it performs exactly as EFT. In the bottom-right
plot, RATIO does not appear because its ratio is too large.

74 CHAPTER 3. Exploiting hybrid platforms in an online setting

practically to design a low-complexity approximation algorithm, which does not rely on linear program-
ming.

The main challenge when designing such an algorithm consists in determining a proper allocation
(i.e., whether each task is computed on CPUs or GPUs). Indeed, as proved in Section 3.4, there is a
simple 3-approximation scheduling algorithm when the allocation is fixed. In order to obtain the same
guarantees as HLP-EST (a 6-approximation), it would then be sufficient that the optimal makespan
of the allocation returned is at most twice the optimal makespan for any allocation. One may think
that an approximation algorithm can be obtained by designing variants of BALANCEDESTIMATE or
HETEROPRIO to allocate and schedule the (independent) available tasks, with additional information
such as their bottom-levels. However, such an attempt cannot lead to a constant-approximation ratio as
proved in Theorem 3.3.

The main concept of BALANCEDESTIMATE consists in first allocating each task on the processor
type (CPUs or GPUs) on which its computing time is smaller, and then moving tasks from the most
loaded processor type to the other one. The tasks that are moved first are the ones that suffer the less: the
ones for which the computing time is increased by a smaller factor. Some tasks also need to be moved
back on their original resource type. Typically, it may be better to substantially slow down a small task
than to slightly slow down a large task.

We have tried to extend such an idea with precedence constraints, by deciding the allocation of all
the tasks in the same phase, and not only of available tasks. Therefore, this does not lead to an online
algorithm and the results of Section 3.2 do not apply. However, most of our attempts failed on the
instance GABCD described in Example 3.1. In this instance, the optimal solution, depicted in Figure 3.15,
schedules the chain composed of n tasks A on the unique GPU, followed by the n2 tasks B scheduled
each on one CPU. In parallel to tasks A, tasks C are scheduled on CPUs. In parallel to tasks B , tasks D
are scheduled on the GPU. The achieved makespan is then equal to 2n +nε.

Example 3.1. Let n be an integer, and ε > 0 be arbitrary small. Consider a platform with n2 CPUs
and 1 GPU. The graph GABCD is composed of n4 +2n2 +n tasks split in four types, see Table 3.2 for the
details. The A tasks form a chain, and B tasks cannot be started before all tasks A are terminated. Tasks
C and D have no precedence constraints.

Task Type Number of tasks w (CPU) w (GPU) Optimal allocation

A n n 1+ε GPU
B n2 n 1 CPUs
C n2 n 1−ε CPUs
D n4 n ε GPU

Table 3.2: Tasks composing the graph GABCD, to be executed on n2 CPUs and 1 GPU.

If we apply a concept similar to BALANCEDESTIMATE, all tasks are first allocated to the GPU. The
next phase consists in selecting which tasks should be moved to CPUs, considering them by decreasing
ratio of w/w . Therefore, tasks A are considered first, then tasks B , C , and D. In order to obtain an
approximation algorithm, most tasks A have to be scheduled on the GPU, and most tasks B on CPUs.
We first considered two parameters to determine if a task should be moved to CPUs: whether moving
it to CPUs increases the critical path, and whether moving it to CPUs increases the current makespan
(computed either by a list algorithm or by an oracle giving the optimal schedule). The issue is that,
in this initial state, because of tasks C , moving tasks A or B to CPUs increases the critical path but
decreases the current makespan. As tasks A are considered first, these parameters are not sufficient to

3.8. Conclusion 75

CPU

GPU

n = 2 n = 2
C B
C B

A
1+ε

C B
C B

A
1+ε

D D D D D D D D D D

Figure 3.15: Scheme of the optimal schedule of Example 3.1 for n = 2.

move only tasks B to CPUs. A workaround would be for instance to initially move to CPUs every task
that does not increase the critical path nor the makespan. But such a procedure would move both tasks
C and D to CPUs, which leads to a high makespan. Some algorithms designed were able to schedule
this example, but then either fail on independent tasks or on instances used in Theorems 3.2 and 3.3.

The main difficulty with this problem resides in the fact that, given an allocation, there does not
seem to be any simple metric to determine whether a given task should be moved on a slower resource.
Indeed, it can be advantageous to move a set of tasks to a slower resource whereas there is no gain in
moving only one task. The challenge remains in determining whether a given task belongs to such a
set. In [93], the authors successfully tackle this issue by relying on linear programming and rounding
methods to design a 6-approximation named HLP-EST.

3.8 Conclusion

In this chapter, we have focused on the problem of scheduling task graphs on hybrid platforms made
of two types of processors, such as CPUs and GPUs. We have studied the online case, when only the
tasks whose predecessors are all completed are known to the scheduler, and the graph is thus gradually
discovered. We proved that no scheduling algorithm can have a competitive ratio smaller than

p
m/k,

and studied how this ratio varies when more knowledge on the graph is given to the scheduler and/or
tasks may be migrated between processors. We have proposed a (2

p
m/k +1)-competitive algorithm as

well as a mixed strategy, which is both Θ(
p

m/k)-competitive and performs as well as the best heuristics
in practice. This is demonstrated through an extensive set of simulations. We have also extended the
lower bounds and the competitive algorithms to the case with more than two types of processors.

Future work includes several directions. For independent tasks, there is still a gap between the
best lower bound on online algorithms competitive ratio (2) and the best online algorithm (3.85-
competitive) [43]. As discussed in Section 3.7, an offline approximation algorithm to schedule DAGs
not relying on linear programming would have both theoretical and practical interests. The results ob-
tained in this chapter exhibit some difficult instances to test candidate algorithms. The current best
approximation ratio being 6, we can also wonder whether it can be improved. Another research direc-
tion consists in exploiting task parallelism, such as in Chapters 1 and 2. A 2-approximation has been
exhibited for offline scheduling of independent tasks on hybrid platforms in [33], but this problem with
precedence constraints remains unexplored. Finally, in order to model more closely realistic problems,
it remains to take into account communication times when moving data from/to the GPUs, and to cope
with inaccurate processing time estimates.

76 CHAPTER 3. Exploiting hybrid platforms in an online setting

Chapter 4

Coping with a limited available memory

« Encore un papyrus ! Ma pauvre mémoire
est pleine ! Parfois, j’ai l’impression de ne
plus rien pouvoir graver ! »

Archéopteryx, Le Papyrus de César

One of the main objectives that have been considered in the literature (and in the previous chapters
of this manuscript) concerning task graph scheduling consists in minimizing the makespan, or total
completion time. However, with the increase of the size of the data to be processed, the memory footprint
of the application can have a dramatic impact on the application execution time, and thus needs to be
optimized [4, 125]. This is best exemplified with an application which, depending on the way it is
scheduled, will either fit in the memory, or will require the use of swap mechanisms or out-of-core
execution. There are few existing studies that take into account memory footprint when scheduling task
graphs, as detailed below in the related work section.

Our focus in this chapter concerns the execution of highly-parallel applications on a shared-memory
platform. Depending on the scheduling choices, the computation of a given task graph may or may
not fit into the available memory. The goal is then to find the most suitable schedule (e.g., one that
minimizes the makespan) among the schedules that fit into the available memory. A possible strategy
is to design a static schedule before the computation starts, based on the predicted task durations and
data sizes involved in the computation, similarly to what we did in Chapters 1 and 2. However, for some
applications, there is little chance that such a static strategy would reach high performance: task duration
estimates may be inaccurate, data transfers on the platform are hard to correctly model, and the resulting
small estimation errors may accumulate and cause large delays. Thus, most practical schedulers such as
the runtime systems cited above rely on dynamic scheduling, where task allocations and their execution
order are decided at runtime, based on the system state. The risk with dynamic scheduling, however,
is the simultaneous scheduling of a set of tasks whose total memory requirement exceeds the available
memory, a situation that could induce a severe performance degradation.

Main contributions. In this chapter, our aim is both to enable dynamic scheduling of task graphs
with memory requirements and to guarantee that at no time during the execution the available memory
is exceeded. We achieve this goal by adding fictitious dependences in the graph to cope with memory
constraints: these additional edges will restrict the set of valid schedules and in particular forbid the
concurrent execution of too many memory-intensive tasks. This idea is inspired by [128], which applies
a similar technique to graphs of smaller-grain tasks in which all the data have size 1. The quality of a

77

78 CHAPTER 4. Coping with a limited available memory

solution is measured by the length of the critical path of the graph comprising the fictitious edges. We
prove that the problem of computing such fictitious edges leading to a small critical path is NP-hard.
Therefore, we propose both an ILP formulation and several heuristics, which are evaluated through
simulations.

Note that, contrarily to Chapters 1 and 2, we mainly target sequential tasks in this chapter, and
contrarily to Chapter 3, we consider a shared-memory platform of identical processors. Therefore, we
assume that the critical path of a graph is a good indicator of the makespan obtained by a dynamic
scheduler for this graph on a reasonable number of processors, and that the increase of the critical path
thus should be minimized by the proposed heuristics. However, the other results of this chapter only need
that the memory of the platform is shared and not distributed, and can therefore be applied to parallel
tasks, or even to platforms composed of different types of processors sharing the same memory.1

The rest of the chapter is organized as follows:
• We first briefly review the existing work on memory-aware task graph scheduling (Section 4.1).
• We propose a very simple task graph model which both accurately describes complex memory

behaviors and is amenable to memory optimization (Section 4.2).
• We introduce the notion of the maximum peak memory of a workflow: this is the maximum

peak memory of any (sequential or) parallel execution of the workflow. We then show that the
maximum peak memory of a workflow is exactly the weight of a special cut in this workflow,
called the maximum topological cut. Finally, we propose a polynomial-time algorithm to compute
this cut (Section 4.3).

• In order to cope with limited memory, we formally state the problem of adding edges to a graph
to decrease its maximum peak memory, with the objective of not harming too much the makespan
of any parallel execution of the resulting graph. We prove this problem to be NP-hard and propose
both an ILP formulation and several heuristics to solve it on practical cases (Section 4.4). Finally
we evaluate the heuristics through simulations on synthetic task graphs produced by classical
random workflow generators (Section 4.5). The simulations show that the two best heuristics
have a limited impact on the makespan in most cases, and one of them is able to handle all studied
workflows.

4.1 Related work

Memory and storage have always been a limited parameter for large computations, as outlined by the
pioneering work of Sethi and Ullman [131] on register allocation for task trees. A similar model has been
used in [61] to design parallel schedules using a limited number of available registers while minimizing
the makespan. This model was later translated to the problem of scheduling a task graph under memory
or storage constraints for scientific workflows whose tasks require large I/O data. Such workflows arise
in many scientific fields, such as image processing, genomics, and geophysical simulations. The problem
of task graphs handling large data has been identified by Ramakrishnan et al. [125] who introduce clean-
up jobs to reduce the memory footprint and propose some simple heuristics. Their work was continued
by Bharathi et al. [31] who develop genetic algorithms to schedule such workflows. This problem also
arises in sparse direct solvers, as highlighted by Agullo et al. [4] who study the effect of processor
mapping on memory consumption for multifrontal methods. In some cases, such as for sparse direct
solvers, the task graph is a tree, for which specific methods have been proposed, both to reduce the
minimum peak memory [105] and to design memory-aware parallel schedulers [19]. Directed graphs

1Such an architecture appears for instance when a master core is associated to slave cores, see www.netlib.org/utk/
people/JackDongarra/PAPERS/sunway-report-2016.pdf.

www.netlib.org/utk/people/JackDongarra/PAPERS/sunway-report-2016.pdf
www.netlib.org/utk/people/JackDongarra/PAPERS/sunway-report-2016.pdf

4.2. Problem modeling 79

are also used to model a different type of applications, in which the graph may be cyclic. Data stream
processing in embedded systems, for instance, can be modeled as a set of several nodes performing
operations infinitely often and exchanging output data via buffers. In this context, several authors have
also aimed at minimizing the memory (or total buffer size) usage. Relying on the Synchronous DataFlow
paradigm [99] or related models, several papers [25, 26, 144, 145] studied how to minimize the buffer
usage while maintaining a given minimal throughput (which is related to the makespan in our model). It
should be noted that the problem is quite different in this context as it can be simplified to deciding how
much memory will be allocated to each node. Indeed, the schedule itself is then implicit as each node is
executed every time it has enough input data.

As explained in the introduction, our study is inspired by the work of Sbîrlea at al. [128] from 2014.
This study focuses on a different model, in which all data have the same size. They target smaller-grain
tasks in the Concurrent Collections (CnC) programming model [37], a stream/dataflow programming
language. Their objective is, as ours, to schedule a DAG of tasks under a limited memory. For this,
they associate a color to each memory slot and then build a coloring of the data, in which two data
with the same color cannot coexist. If the number of colors is not sufficient, additional dependence
edges are introduced to prevent two data to coexist. These additional edges respect a pre-computed
sequential schedule to ensure acyclicity. An extension to support data of different sizes is proposed,
which conceptually allocates several colors to a single data, but is only suited for a few distinct sizes.
This concept of adding edges to a DAG in order to ensure that no schedule will use too much memory
has been previously studied by Touati in his PhD thesis conducted in the early 2000s [140, Chapter 4].
In his work, the tasks of the considered graph correspond to fine-grain instructions operating on few
registers, which will be executed on an Instruction Level Parallelism processor. The different computing
units share the same registers. Hence, the model is similar to the one in [128]: all data have the same
size.

In the realm of runtime systems, memory footprint is a real concern. In StarPU, attempts have been
made to reduce memory consumption by throttling the task submission rate [129].

Compared to the existing work, the present work studies graphs with arbitrary data sizes, and it
formally defines the problem of transforming a graph to cope with a strong memory bound: this allows
the use of efficient dynamic scheduling heuristics at runtime with the guarantee to never exceed the
memory bound.

4.2 Problem modeling

4.2.1 Formal description

As stated before, we consider that the targeted application is described by a workflow of tasks whose
precedence constraints form a DAG G = (V ,E). Its nodes i ∈ V represent tasks and its edges e ∈ E
represent precedence, in the form of input and output data. The processing time necessary to complete
a task i ∈ V is denoted by wi . In our model, the memory usage of the computation is modeled only
by the size of the data produced by the tasks and represented by the edges. Therefore, for each edge
e = (i , j), we denote by me or mi , j the size of the data produced by task i for task j . We assume that
G contains a single source node s and a single sink node t ; otherwise, one can add such nodes along
with the appropriate edges, all of null weight. For the sake of simplicity, we define the following sizes
of inputs and outputs of a node i :

Inputs (i) =
∑

j |(j ,i)∈E
m j ,i Outputs (i) =

∑
j |(i , j)∈E

mi , j

80 CHAPTER 4. Coping with a limited available memory

s10

a

20

b

20

c

40

d

25
t 15

1

2

5

6

3

4

Figure 4.1: Example of a workflow, (red) edge labels represent the size mi , j of associated data, while
(blue) node labels represent their computation weight wi .

We propose here to use a very simple memory model, which might first seem unrealistic, but will
indeed prove itself very powerful both to model complex memory behaviors and to express the peak
memory usage. In the proposed model, at the beginning of the execution of a task i , all input data of i
are immediately deleted from the memory, while all its output data are allocated to the memory. That is,
the amount of used memory Mused is transformed as follows:

Mused ← Mused − Inputs (i)+Outputs (i) .

This model, called the SIMPLEDATAFLOWMODEL, is extremely simple, and in particular does not
allow a task to have both its inputs and outputs simultaneously in memory. However, we will see right
below that it is expressive enough to emulate other complex and more realistic behaviors.

Before considering other memory models, we start by defining some terms and by comparing se-
quential schedules and parallel execution of the graph. We say that the data associated to the edge (i , j)
is active at a given time if the execution of i has started but not the one of j . This means that this data
is present in memory. A sequential schedule S of a DAG G is defined by an order σ of its tasks. The
memory used by a sequential schedule at a given time is the sum of the sizes of the active data. The peak
memory of such a schedule is the maximum memory used during its execution. A parallel execution of
a graph on p processors is defined by:

• An allocation µ of the tasks onto the processors (task i is computed on processor µ(i));

• The starting times σ of the tasks (task i starts at time σ(i)).

As usual, a valid schedule ensures that data dependences are satisfied (σ(j) ≥σ(i)+wi whenever (i , j) ∈
E) and that processors compute a single task at each time step (if µ(i) = µ(j), then σ(j) ≥ σ(i)+wi or
σ(i) ≥σ(j)+w j). Note that when considering parallel execution, we assume that all processors use the
same shared memory, whose size is limited.

A very important feature of the proposed SIMPLEDATAFLOWMODEL is that there is no difference
between sequential schedules and parallel execution as far as memory is concerned, which is formally
stated in the following theorem.

Theorem 4.1. For each parallel execution (µ,σ) of a DAG G , there exists a sequential schedule with
equal peak memory.

Proof. We consider such a parallel execution, and we build the corresponding sequential schedule by
ordering tasks in non decreasing starting time. Since in the SIMPLEDATAFLOWMODEL, there is no
difference in memory between a task being processed and a completed task, the sequential schedule has
the same amount of used memory as the parallel execution after the beginning of each task. Thus, they
have the same peak memory.

4.2. Problem modeling 81

This feature will be very helpful when computing the maximum memory of any parallell execu-
tion, in Section 4.3: thanks to the previous result, it is equivalent to computing the peak memory of a
sequential schedule.

4.2.2 Emulation of other memory models

Classical workflow model

As we explained above, our model does not allow inputs and outputs of a given task to be in memory
simultaneously. However, this is a common behavior, and some studies, such as [88], even consider that
in addition to inputs and outputs, some temporary data mtemp

i has to be in memory when processing
task i . The memory needed for its processing is then Inputs (i)+mtemp

i +Outputs (i). Although this
is very different to what happens in the proposed SIMPLEDATAFLOWMODEL, such a behavior can be
simply emulated, as illustrated on Figure 4.2. For all task i , we split it into two nodes i1 and i2. We
transform all edges (i , j) by edges (i2, j), and edges (k, i) by edges (k, i1). We also add an edge (i1, i2)
with an associated data of size Inputs (i)+mtemp

i +Outputs (i). Task i1 represents the allocation of the
data needed for the computation, as well as the computation itself, and its work is thus wii = wi . Task
i2 stands for the deallocation of the input and temporary data and has work wi2 = 0.

i

wi = 10, mtemp
i = 1

2 3
i1

10

i2

0
2 6 3

Figure 4.2: Transformation of a task as in [88] (left) to the SIMPLEDATAFLOWMODEL (right).

Shared output data

Our model considers that each task produces a separate data for every of its successors. However, it may
well happen that a task i produces an output data d , of size mshared

i ,d , which is then used by several of
its successors, and can be freed after the completion of these successors. The output data is then shared
among successors, contrarily to what is considered in the SIMPLEDATAFLOWMODEL. Any task can
then produce several output data, some of which can be shared among several successors. Again, such a
behavior can easily be emulated in the proposed model, as illustrated on Figure 4.3.

i

j

k

mshared
i ,d i

j

k

id

mshared
i ,d

Figure 4.3: Transformation of a task i with a single shared output data into SIMPLEDATAFLOWMODEL.
The plain (red) edge carries the shared data size, while dashed (black) edges have null size.

Such a task i with a shared output data will first be transformed as follows. For each shared output
data d of size mshared

i ,d , we add a task id which represents the deallocation of the shared data d (and thus
has null computation time wid). An edge of size mshared

i ,d is added between i and id : mi ,id = mshared
i ,d .

82 CHAPTER 4. Coping with a limited available memory

Data dependence to a successor j sharing the output data d is represented by an edge (i , j) with null
data size (mi , j = 0) (if it does not already exist, due to an other data produced by i and consumed by j).
Finally, for each such successor j , we add an edge of null size (j , id) to ensure that the shared data will
be freed only when it has been used by all the successors sharing it. The following result states that after
this transformation, the resulting graph correctly models the memory behavior.

Theorem 4.2. Let G be a DAG with shared output data, and G ′ its transformation into SIMPLE-
DATAFLOWMODEL. There exists a schedule S of G with peak memory M if and only if there exists a
schedule S ′ of G ′ with peak memory at most M .

Proof. First, consider a schedule S which executes the graph G with a memory of size M . We assume
that S frees shared output data as soon as possible (otherwise we first transform it into a schedule freeing
shared output data as soon as possible, which does not increase the peak memory). We transform S into
a schedule S ′ of G . When S schedules a node i of G , S ′ schedules the same node i of G ′. When S

frees a shared data d output by node i , S ′ schedules node id . We now show by induction on S that S ′

is a valid schedule on G ′ and that both schedules use the same amount of memory at any time. Suppose
S ′ valid for the first k operations of S , and consider the following one. When S schedules a node i
of G , S ′ schedules the same node of G ′. Its predecessors are then completed. The sum of the sizes of
the output data of i in G and G ′ are equal, as when the transformation removes a shared output data, it
adds a single edge of the same size, along with null-weight edges. If a shared data d output by a task
j is freed in S , then task jd is executed in S ′, which reduces the memory consumption by the size of
the data d . Therefore, S and S ′ have the same memory consumption for an additional operation. By
induction, we get the result.

Now, suppose there exists a schedule S ′ of G ′ with a peak memory equal to M . We transform S ′

into a schedule S of G . When S ′ schedules a node i of G ′, S schedules the same node i of G . When
S ′ schedules node id of G ′, S frees the shared data d output by node i . As in the previous case, We now
show by induction on S ′ that S is a valid schedule on G and that both schedules use the same amount
of memory at any time. Suppose S valid for the first k operations of S ′, and consider the following
one. If S ′ schedules a node i of G ′, S schedules the same node of G . As previously, the precedence is
respected, and the memory consumed is the same in both schedules. If S ′ schedules a node id of G ′, S

frees the shared data d output by task i . The nodes consuming this data are completed, so this operation
is authorized, and the memory consumption is reduced by the size of data d in both cases. By induction,
we get the result.

Pebble game

One of the pioneer work dealing with the memory footprint of a DAG execution has been conducted
by Sethi [130]. He considered what is now recognized as a variant of the PEBBLEGAME model. We
now show that the proposed SIMPLEDATAFLOWMODEL is an extension of PEBBLEGAME. The pebble
game is defined on a DAG as follows:

• A pebble can be placed on a node with no predecessor at any time;

• A pebble can be placed on a node if all its predecessors have a pebble;

• A pebble can be removed from a node at any time;

• A pebble cannot be placed on a node that has been previously pebbled.

4.2. Problem modeling 83

The objective is to pebble all the nodes of a given graph, using a minimum number of pebbles. Note
that the pebble of a node should be removed only when all its successors are pebbled. This is the main
difference with our model, where a node produces a different output data for each of its successors.
Thus, the PEBBLEGAME model ressembles the model with shared output data presented above, with all
data of size one. We thus apply the same transformation and consider that a pebble is a shared output
data used for all the successors of a node. In addition, we add a fictitious successor to all nodes without
successors. Hence, the pebble placed on such a node can be considered as the data consumed by this
successor. Then, we are able to prove that the memory behavior of the transformed graph under SIM-
PLEDATAFLOWMODEL corresponds to the pebbling of the original graph, as outlined by the following
theorem.

Theorem 4.3. Let P be a DAG representing an instance of a PEBBLEGAME problem, and G its trans-
formation into SIMPLEDATAFLOWMODEL. There exists a pebbling scheme P of P using at most B
pebbles if and only if there exists a schedule S ′ of G ′ with peak memory at most B .

Proof. In the PEBBLEGAME model, we can consider that every node outputs a single data of size one
consumed by all its successors. Recall that for a node with no successor, the transformation acts as if a
fictitious successor existed for this node. Therefore, the transformation adds one node for each node u
in the graph P . In order to clarify whether we consider the graph P or G , we call u1 the node of G that
corresponds to the node u of P and u2 the node of G that corresponds to the data output by node u of P .
If u has no successor in P , we denote fu the fictitious node added in G , successor of u1 and predecessor
of u2. See Figure 4.4 for an illustration.

u

v

w

u1

v1

fv

v2

w1

fw

w2

u2
1

1

1

Figure 4.4: Transformation of an instance of the PEBBLEGAME problem into an instance of SIMPLE-
DATAFLOWMODEL.

First, we consider a traversal P which traverses P with B pebbles. We transform P into a schedule
S of G: when P pebbles a node u of P , S executes the node u1 of G , when P removes a pebble
from a node u of P , S executes the node u2 of G . If u has no successor in P , S first executes fu then
u2. We now show by induction on P that S is a valid schedule on G . Suppose S valid for the first k
operations of P , and consider the following one. If P pebbles a new node u, this means that u1 was
not executed before by S , as recomputations are forbidden, and that all the predecessors v i of u have
been pebbled by P , so that the nodes v i

1 have been executed by S in G . These nodes v i
1 correspond to

the predecessors of u1 in G , so the execution of u1 is valid. If P unpebbles a node u, this means that
its successors v i have already been pebbled. Indeed, otherwise, as recomputations are not allowed, P

would not be a valid schedule. Therefore, as the predecessors of u2 in G are u1 and the v i
1, these nodes

84 CHAPTER 4. Coping with a limited available memory

have been executed by S , so the execution of u2 is valid. If u has no successor in P , then the execution
of fu and u2 is valid. Finally, S is a valid schedule. At any time, the memory used by S is equal to
the numbers of nodes u of P such that u1 is executed but not u2. This is equal to the number of pebbles
required by P , so S is a valid schedule of G using a memory of size B .

Now, we consider a schedule S of G with a peak memory equal to B . We transform S into a
traversal P of P : when S executes a node u1, P pebbles the node u, and when S executes a node
u2, P removes the pebble of node u. Nothing is done when S executes a node fu . We now show by
induction on S that P is a valid traversal of P . Suppose P valid for the first k operations of S , and
consider the following one. First, suppose that S executes a node u1. Let v i be the predecessors of u
in P . By the precedence constraints, we know that the nodes v i

1 have already been executed by S , and
that the nodes v i

2 have not. Therefore, P has pebbled the nodes v i , but have not unpebbled them. So P

is allowed to pebble u. Now, suppose that S executes a node u2. The node u1 has already been pebbled
by the precedence constraints, so removing this pebble is a valid move. Therefore, P is a valid traversal
of P . As above, at any time, the memory used by S is equal to the numbers of nodes u of P such that
u1 is executed but not u2. This is equal to the numbers of pebbles used by P .

4.2.3 Peak memory minimization in the proposed model

The emulation of the PEBBLEGAME problem, as proposed above, allows us to formally state the com-
plexity of minimizing the memory of a DAG, as expressed by the following theorem.

Theorem 4.4. Deciding whether an instance of SIMPLEDATAFLOWMODEL can be scheduled with a
memory of limited size is NP-complete.

Proof. The problem of deciding whether an instance of PEBBLEGAME can be traversed with a given
number of pebbles is NP-complete [130]. Then, thanks to Theorem 4.3, we know that an instance of
PEBBLEGAME can be transformed into an instance of SIMPLEDATAFLOWMODEL (with twice as many
nodes), which then inherits of this complexity result.

4.3 Computing the maximal peak memory

In this section, we are interested in computing the maximal peak memory of a given DAG G = (V ,E),
that is, the largest peak memory that can be reached by a sequential schedule of G . Our objective is to
check whether a graph can be safely executed by a dynamic scheduler without exceeding the memory
bound.

We first define the notion of topological cut. We recall that G contains a single source node s and a
single sink node t .

Definition 4.1. A topological cut (S,T) of a DAG G is a partition of G in two sets of nodes S and T such
that s ∈ S, t ∈ T , and no edge is directed from a node of T to a node of S. An edge (i , j) belongs to the
cut if i ∈ S and j ∈ T . The weight of a topological cut is the sum of the weights of the edges belonging to
the cut.

For instance, in the graph of Figure 4.1, the cut ({s, a,b}, {c,d , t }) is a topological cut of weight 11.
In the SIMPLEDATAFLOWMODEL, the memory used at a given time is equal to the sum of the sizes
of the active output data, which depends solely on the set of nodes that have been executed or initiated.
Therefore, the maximal peak memory of a DAG is equal to the maximum weight of a topological cut.

Definition 4.2. The MAXTOPCUT problem consists in computing a topological cut of maximum weight
for a given DAG.

4.3. Computing the maximal peak memory 85

We first prove that this problem is polynomial, by providing a linear program over the rationals
solving it, and then propose an explicit algorithm which does not rely on linear programming.

4.3.1 Complexity of the problem

The MAXTOPCUT problem belongs to the family of problems in which we are interested in computing
a weighted cut in a graph that optimizes some quantity.

The problem of finding a cut of minimum weight (when edge weights are nonnegative) has been
thoroughly studied in the literature, and many polynomial-time algorithms have been proposed to solve
it, both undirected and directed graphs [98]. On the opposite, computing a maximal cut is in general
much more difficult. It is well-known that this problem is NP-complete on general graphs, both undi-
rected and directed [92], and with unit weights [67]. In 2011, Lampis et al. even extend this result to
DAGs [97], which are our scope of interest. However, our problem is more restrictive, as we are only
interested in maximal topological cuts on DAGs, which means that all the edges of the cut have the same
direction. This constraint actually heavily reduces the set of possible cuts. There are 2n possible cuts for
any DAG with n nodes: the number of ways to partition the nodes in two sets. However, the number of
topological cuts can be much lower: only n −1 possibilities for a chain graph on n nodes. The problem
of finding a maximal topological cut is then intuitively easier than finding a maximal cut in a DAG.

We show that MAXTOPCUT is actually polynomial by exhibiting a Linear Program solving it. This
proof is adapted from [118].

Theorem 4.5. The problem of finding a maximal topological cut in a DAG is polynomial.

Proof. We consider a DAG G , where each edge (i , j) has a weight mi , j . We assume that it has a single
source vertex s and a single target vertex t (otherwise, add these nodes with null-weight edges).

We now consider the following linear program P .

max
∑

(i , j)∈E
mi , j di , j (4.1)

∀(i , j) ∈ E , di , j = pi −p j (4.2)

∀(i , j) ∈ E , di , j ≥ 0 (4.3)

ps = 1 (4.4)

pt = 0 (4.5)

Intuitively, an integer solution of P corresponds to a valid topological cut (S,T). The variable pi

represents the potential of vertex i : if it is equal to 1 then i ∈ S and if it is equal to 0 then i ∈ T . Then, di , j

is equal to 1 if the edge (i , j) belongs to the cut (S,T) and 0 otherwise. Finally, the objective function
represents the weight of the cut. However, a general solution of P consists of rational numbers and
not integers, so does not correspond directly to a topological cut. Nevertheless, we show that for this
particular program, a naive rounding algorithm exhibits a topological cut, which can then be computed
in polynomial time.

Note that P is similar to the classic linear program computing the minimal s − t cut [98]. The only
differences are Equation 4.2 being an equality instead of an inequality, and the direction of the objective
function.

We begin by proving that if G admits a topological cut of weight M , there is a solution of the linear
program for which the objective function equals M . Let (S,T) be a topological cut of G . For every node
i , we define pi = 1 if i ∈ S and pi = 0 if i ∈ T . Then, for each edge (i , j) belonging to the cut, we have
pi −p j = 1 and for the remaining edges (i , j), we have pi −p j = 0. Indeed, no edge can be directed from

86 CHAPTER 4. Coping with a limited available memory

T to S by definition. Therefore, we have for all (i , j) ∈ E , di , j = pi −p j ≥ 0 so the proposed valuation
satisfies P , and the objective function is equal to the weight of (S,T).

Now, suppose that P admits a valid rational solution of objective function M∗. We prove that there
exists a topological cut (S∗,T ∗) of G of weight at least M∗. First, note that for any edge (i , j), we have
di , j ≥ 0 so pi ≥ p j . Then, every node of G belongs to a directed path from s to t by definition of s and
t . Therefore, every pi belongs to [0,1]. Indeed, for a given i ∈ V , let v1, v2, . . . , vk be the vertices of a
directed path from i to t , with i = v1 and t = vk . Then, we deduce that pi = pv1 ≥ pv2 ≥ ·· · ≥ pvk = pt =
0. A similar proof with a path from s to i shows that pi is not larger than 1.

In order to prove the existence of (S∗,T ∗), we consider a random topological cut (S,T) defined
as follows: draw r uniformly in]0,1[, and let (S,T) be the cut (Sr ,Tr), with Sr = {i | pi > r } and
Tr = { j | p j ≤ r }. This partition is valid as for any i ∈ Sr and j ∈ Tr , we have pi > p j , so the edge (j , i)
cannot belong to E : this would imply d j ,i < 0 which violates a constraint of P . Now, let us compute
the expected cost M(S,T) of (S,T). The probability for a given edge (i , j) to belong to (S,T) is exactly
di , j = pi −p j , as r is drawn uniformly in]0,1[and all pi belong to [0,1]. Therefore, the expected cost
of (S,T) is given by

E (M(S,T)) =
∑

(i , j)∈E
mi , j Pr

(
(i , j) belongs to (S,T)

)
=

∑
(i , j)∈E

mi , j di , j = M∗.

Therefore, there exists r ∈]0,1[such that M(Sr ,Tr) ≥ M∗, which proves the existence of a topological
cut (S∗,T ∗) of weight at least M∗. Note that an algorithm could then find such a topological cut by
computing M(Spi ,Tpi) for every i ∈V .

We now show that it is not necessary, as, if M∗ is the optimal objective function, then the weight
of any cut (Sr ,Tr) is equal to M∗. First, note that no cut (Sr ,Tr) can have a weight larger than
M∗ by definition. So, for all r , we have M(Sr ,Tr) ≤ M∗. As E (M(S,T)) = M∗, we conclude that
Pr(M(S,T) < M∗)) = 0. It remains to show that no single value of r can lead to a suboptimal cut. As-
sume by contradiction that there exists r0 ∈]0,1[such that M(Sr0 ,Tr0) < M∗. Let r1 = min

{
pi | pi > r0

}
,

which is defined as pt = 1 > r0, and consider any r ∈ [r0,r1[. For every i ∈V , if pi > r0 then pi ≥ r1 > r ,
and if pi ≤ r0 then pi ≤ r , so, by definition of Sr and Tr , we have (Sr ,Tr) = (Sr0 ,Tr0). Therefore, we get

Pr
(
M(S,T) < M∗)

)≥ Pr
(
(S,T) = (Sr0 ,Tr0)

)≥ r1 − r0 > 0.

This inequality contradicts the fact that Pr(M(S,T) < M∗)) = 0.
To conclude, a maximal topological cut can be computed by first solving the linear program P in

rationals, then selecting any cut (Sr ,Tr), for instance by taking r = 1/2.

4.3.2 Explicit algorithm

In the previous section, we have exhibited a linear program solving the MAXTOPCUT problem. We are
now interested in an explicit polynomial algorithm, which allows us to have a different approach on the
problem, and to solve it without relying on a linear program solver. We first consider a problem related
to the dual version of MAXTOPCUT, which we call MINFLOW:

Definition 4.3. The MINFLOW problem consists in computing a flow of minimum value where the
amount of flow that passes through each edge is not smaller than its weight.

4.3. Computing the maximal peak memory 87

We recall that the value of a flow f is defined as
∑

j , (s, j)∈E
fs, j . In this problem the edge weights do

not represent capacities as in a traditional flow, but rather demands: the minimum flow must be larger
than these demands on all edges2. We recall that the MAXFLOW problem consists in finding a flow of
maximum value where the amount of flow that passes through each edge is not larger than its weight. Its
dual version, the MINCUT problem, consists in computing the st-cut (S,T) of minimum weight, where
s ∈ S and t ∈ T . Note that this cut may not be topological. See [47, Chapter 26] for more details. The
MINFLOW problem is described by the following linear program.

min
∑

j | (s, j)∈E
fs, j

∀ j ∈V \ {s, t },

(∑
i | (i , j)∈E

fi , j

)
−

(∑
k | (j ,k)∈E

f j ,k

)
= 0

∀(i , j) ∈ E , fi , j ≥ mi , j

We propose in Algorithm 11 an explicit algorithm to resolve the MAXTOPCUT problem. A similar
algorithm for a very close problem has been proposed in [45]. We first need an upper bound fmax on the
value of the optimal flow solving the dual MINFLOW problem on G . We can take for instance fmax equal
to one plus the sum of the mi , j ’s. The algorithm builds a flow f with a value at least fmax on all edges.
Intuitively, the flow f can be seen as an optimal flow f ∗ solving the MINFLOW problem, on which has
been added an arbitrary flow f +. In order to compute f ∗ from f , the algorithm explicitly computes
f +, by solving a MAXFLOW instance on a graph G+. Intuitively, this step consists in maximizing the
flow that can be subtracted from f ∗. Finally, the maximum topological cut associated to the flow f ∗ is
actually equal to the minimum st-cut of G+ that can be deduced from the residual network induced by
f +. We recall that the residual network of G+ induced by f + contains the edge (i , j) such that either
(i , j) ∈ E and f +

i , j < m+
i , j or (j , i) ∈ E and f +

j ,i > 0, as defined for instance in [45].
The complexity of Algorithm 11 depends on two implementations: how we compute the first flow

f and how we solve the MAXFLOW problem. The rest is linear in the number of edges. Computing the
starting flow f can be done by looping over all edges, finding a simple path from s to t containing a given
edge, and adding a flow going through that path of value fmax. Note that this method succeeds because
the graph is acyclic, so every edge is part of a simple path (without cycle) from s to t . This can be done
in O(|V ||E |). Solving the MAXFLOW problem can de done in O

(|V ||E | log
(|V |2/|E |)) using Goldberg

and Tarjan’s algorithm [69]. Therefore, Algorithm 11 can be executed in time O
(|V ||E | log

(|V |2/|E |)).
Algorithm 11: Resolving MAXTOPCUT on a DAG G

1 Construct a flow f for which ∀(i , j) ∈ E , fi , j ≥ fmax, where fmax = 1+∑
(i , j)∈E mi , j

2 Define the graph G+ equal to G except that m+
i , j = fi , j −mi , j

3 Compute an optimal solution f + to the MAXFLOW problem on G+

4 S ← set of vertices reachable from s in the residual network induced by f + ; T ← V \ S
5 return the cut (S,T)

Theorem 4.6. Algorithm 11 solves the MAXTOPCUT problem.

Proof. First, we show that the cut (S,T) is a topological cut. We have s ∈ S and t ∈ T by definition.
We now show that no edge exist from T to S in G . By definition of S, no edge exist from S to T in the

2This must not be mistaken with the demands of vertices (i.e., the value of the consumed flow) as in the Minimum Cost
Flow problem.

88 CHAPTER 4. Coping with a limited available memory

residual network, so if there exists an edge (j , i) from T to S in G , it verifies f +
j ,i = 0. We then show that

every edge of G has a positive flow going through it in f +, which proves that there is no edge from T to
S.

Assume by contradiction that there exists an edge (k,`) such that f +
k,` is null. Let Sk ⊂V be the set

of ancestors of k, including k. Then, Sk contains s but not t nor ` as G is acyclic. Denoting Tk =V \Sk ,
we get that (Sk ,Tk) is a topological cut as no edge goes from Tk to Sk by definition. The weight of the
cut (Sk ,Tk) is at most the value of the flow f , which is | f |. As f +

k,` = 0, the amount of flow f + that goes
through this cut is at most | f |− fk,` ≤ | f |− fmax. Therefore, the value of f + verifies | f +| ≤ | f |− fmax.

Now, we exhibit a contradiction by computing the amount of flow f + passing through the cut (S,T).
By definition of (S,T), all the edges from S to T are saturated in the flow f +: for each edge (i , j) ∈ E
with i ∈ S and j ∈ T , we have f +

i , j = m+
i , j = fi , j −mi , j . The value of the flow f + is equal to the amount

of flow going from S to T minus the amount going from T to S. Let ES,T (resp. ET,S) be the set of edges
between S and T (resp. T and S). We have the following (in)equalities:

| f +| =
(∑

(i , j)∈ES,T

f +
i , j

)
−

(∑
(j ,i)∈ET,S

f +
j ,i

)

≥
(∑

(i , j)∈ES,T

(
fi , j −mi , j

)) −
(∑

(j ,i)∈ET,S

f j ,i

)

≥ | f | −
(∑

(i , j)∈ES,T

mi , j

)
> | f | − fmax

Therefore, we have a contradiction on the value of | f +|, so no edge exists from T to S and (S,T) is a
topological cut.

Now, we define the flow f ∗ on G , defined by f ∗
i , j = fi , j − f +

i , j ≥ mi , j . We show that f ∗ is an optimal
solution to the MINFLOW problem on G . It is by definition a valid solution as f +

i , j ≤ m+
i , j = fi , j −mi , j

so f ∗
i , j = fi , j − f +

i , j ≥ fi , j +mi , j − fi , j = mi , j . Let g∗ be an optimal solution to the MINFLOW problem on
G and g+ be the flow defined by g+

i , j = fi , j − g∗
i , j . By definition, g∗

i , j ≥ mi , j so g+
i , j ≤ fi , j −mi , j = m+

i , j .
Furthermore, we know that g∗

i , j ≤ fmax because there exists a flow, valid solution of the MINFLOW

problem, of value
∑

(i , j)∈E mi , j ≤ fmax : simply add for each edge (i , j) a flow of value mi , j passing
through a path from s to t containing the edge (i , j). Then, we have g∗

i , j ≤ fmax ≤ fi , j so g+
i , j ≥ 0 and g+

is therefore a valid solution of the MAXFLOW problem on G+, but not necessarily optimal.
So the value of g+ is not larger than the value of f + by optimality of f +, and therefore, the value of

f ∗ is not larger than the value of g∗. Finally, f ∗ is an optimal solution to the MINFLOW problem on G .

Now, we show that (S,T) is a topological cut of maximum weight in G . Let (S0,T0) be any topolog-
ical cut of G . The total amount of flow of f ∗ passing through the edges belonging to (S0,T0) is equal to
the value of f ∗. As for all (i , j) ∈ E we have f ∗

i , j ≥ mi , j , the weight of the cut (S0,T0) is not larger than
the value of f ∗. It remains to show that this upper bound is reached for the cut (S,T). By the definition
of (S,T), we know that for (i , j) ∈ (S,T), we have f +

i , j = m+
i , j = fi , j −mi , j . Therefore, on all these edges,

we have f ∗
i , j = fi , j − f +

i , j = mi , j , so the value of the flow f ∗ is equal to the weight of (S,T).
Therefore, (S,T) is an optimal topological cut.

4.4 Lowering the maximal peak memory of a graph

In Section 4.3, we have proposed a method to determine the maximal topological cut of a DAG, which is
equal to the maximal peak memory of any (sequential or parallel) traversal. We now move to the problem

4.4. Lowering the maximal peak memory of a graph 89

of scheduling such a graph within a bounded memory M . If the maximal topological cut is at most M ,
then any schedule of the graph can be executed without exceeding the memory bound. Otherwise, it
is possible that we fail to schedule the graph within the available memory. One solution would be to
provide a complete schedule of the graph onto a number p of computing resources, which never exceeds
the memory. However, using a static schedule can lead to very poor performance if the task duration
are even slightly inaccurate, or if communication times are difficult to predict, which is common on
modern computing platforms. Hence, our objective is to let the runtime system dynamically choose the
allocation and the precise schedule of the tasks, but to restrict its choices to avoid memory overflow.

In this section, we solve this problem by transforming a graph so that its maximal peak memory
becomes at most M . Specifically, we aim at adding some new edges to G to limit the maximal topological
cut. Consider for example the toy example of Figure 4.1. Its maximal topological cut has weight 11 and
corresponds to the output data of tasks a and b being in memory. If the available memory is only
M = 10, one may for example add an edge (d , a) of null weight to the graph, which would result in a
maximal topological cut of weight 9 (output data of a and d). Note that on this toy example, adding
this edge completely serializes the graph: the only possible schedule of the modified graph is sequential.
However, this is not the case of realistic, wider graphs. We formally define the problem as follows.

Definition 4.4. A partial serialization of a DAG G = (V ,E) for a memory bound M is a DAG G ′ = (V ,E ′)
containing all the edges of G (i.e., E ⊂ E ′), on which the maximal peak memory is bounded by M .

In general, there exist many possible partial serializations to solve the problem. In particular, one
might add so many edges that the resulting graph can only be processed sequentially. In order to limit the
impact on parallel performance of the partial serialization, we use the critical path length as the metric.
The critical path is defined as the path from the source to the sink of the DAG whose total processing
time is maximum. By minimizing the increase in critical path when adding edges to the graph, we expect
that we limit the impact on performance, that is, the increase in makespan when scheduling the modified
graph.

We first show that finding a partial serialization of G for memory M is equivalent to finding a se-
quential schedule executing G using a memory of size at most M . On the one hand, given a partial
serialization, any topological order is a valid schedule using a memory of size at most M . On the other
hand, given such a sequential schedule, we can build a partial serialization allowing only this schedule
(by adding edge (i , j) if i is executed before j). Therefore, as finding a sequential schedule executing G
using a memory of size at most M is NP-complete by Theorem 4.4, finding a partial serialization of G
for a memory bound of M is also NP-complete.

However, in practical cases, we know that the minimum memory needed to process G is smaller than
M . Therefore, the need to find such a minimum memory traversal adds an artificial complexity to our
problem, as it is usually easy to compute a sequential schedule not exceeding M on actual workflows.
We thus propose the following definition of the problem, which includes a valid sequential traversal to
the inputs.

Definition 4.5. The MINPARTIALSERIALIZATION problem consists, given a DAG G = (V ,E), a memory
bound M , and a sequential schedule S of G not exceeding the memory bound, in computing a partial
serialization of G for the memory bound M that has a minimal critical path length.

4.4.1 Complexity analysis

We now show that the MINPARTIALSERIALIZATION problem is NP-complete. As explained above, this
complexity does not come from the search of a sequential traversal with minimum peak memory. To
prove this result, we first propose the following lower bound on the makespan.

90 CHAPTER 4. Coping with a limited available memory

Lemma 4.1. Let G = (V ,E) be a DAG. Any schedule S of peak memory MS and makespan TS verifies:

TS MS ≥
∑
i∈V

Outputs (i) wi .

As a corollary, if G has a maximal peak memory of Mmax, then the length T∞ of its critical path satisfies:

T∞Mmax ≥
∑
i∈V

Outputs (i) wi .

Proof. To prove this result, we consider the function which associates to each time step the memory
usage using schedule S at this time. Its maximum is MS and it is defined between t = 0 and t = TS ,
so the area under the curve is upper bounded by TS MS . Now, for each task, its output data must be in
memory for at least the execution time of this task, hence

∑
i∈V Outputs (i) wi is a lower bound of the

area under the curve, which proves the result.

We now consider the decision version of the MINPARTIALSERIALIZATION problem, which amounts
to finding a partial serialization of a graph G for a memory M with critical path smaller than C P , and
prove that it is NP-complete.

Theorem 4.7. The decision version of the MINPARTIALSERIALIZATION problem is NP-complete, even
for independent paths of length two.

Proof. First, this problem is in NP as given a partial serialization of a graph G for a memory bound M ,
one can check in polynomial time that it is valid: simply compute its maximum peak memory (using
Algorithm 11) and the length of its critical path.

To prove the problem NP-hard, we perform a reduction from 3-PARTITION, which is known to
be NP-complete in the strong sense [66]. We consider the following instance I1 of the 3-PARTITION

problem: let ai be 3m integers and B an integer such that
∑

ai = mB . We consider the variant of the
problem, also NP-complete, where ∀i ,B/4 < ai < B/2. To solve I1, we need to solve the following
question: does there exist a partition of the ai ’s in m subsets A1, . . . , Am , each containing exactly 3
elements, such that, for each Ak ,

∑
i∈Ak

ai = B . We build the following instance I2 of our problem. We
define a DAG G with 6m vertices denoted by ui and vi for 1 ≤ i ≤ 3m. G contains 3m edges, each
pair (ui , vi), which have weights equal to ai . Each vertex ui has a unit work and vi has a null work.
The memory bound is equal to B and the problem asks whether there exists a partial serialization of G
for B with critical path length at most m. A schedule S executing sequentially the pairs ui , vi does
not exceed the memory bound B (not even B/2), so the instance (G ,B ,S) is a valid instance of the
MINPARTIALSERIALIZATION problem.

Assume first that I1 is solvable, let A1, . . . , Am be a solution. We build a solution to I2. Define the
graph G ′ from the graph G with the following additional edges. For i ∈ [1,m − 1], add edges of null
weight between every v j for a j ∈ Ai and every uk for ak ∈ Ai+1. The critical path of G ′ is then equal
to m. Let S, S̄ be a topological partition of the graph G ′, with no edge from S̄ to S, and C be the set of
edges between S and S̄. Assume that C contains an edge (u j , v j): u j ∈ S and v j ∈ S̄. Then let k be such
that a j and ak do not belong to the same set Ai . There is a directed path connecting either v j to uk or
vk to u j , so (uk , vk) ∉C . Therefore, as A1, . . . , Am is a solution to I1, the weight of the cut C is equal to
B , so G ′ solves I2.

Now, assume that I2 is solvable, let G ′ be a partial serialization of G for B whose critical path has
length T∞ at most m. Note that the following bound due to Lemma 4.1 is tight on G ′:

T∞Mmax ≥
∑
i∈V

Outputs (i) wi .

4.4. Lowering the maximal peak memory of a graph 91

Indeed, the length of the critical path verifies T∞ ≤ m, the maximal peak memory Mmax verifies
Mmax ≤ B , for any i ∈ [1,m] ui has a unit weight and vi a null one and Outputs (ui) = ai . Therefore,∑

i∈V Outputs (i) wi = mB so T∞ = m and Mmax = B .
Let U1 be the set of nodes ui without predecessors in G ′. There cannot be more than three nodes in

U1 because the cut (U1,Ū1) would have a weight larger than B . Assume by contradiction that its weight
is less than B . Consider the graph G ′

1 equal to G ′ except that the nodes in U1 have a null work. The
critical path of G ′

1 is equal to m −1 and in G ′
1, we have

∑
i∈V Outputs (i) wi > mB −B = (m −1)B , so

the bound of Lemma 4.1 is violated. Therefore, the weight of the cut (U1,Ū1) is equal to B , so U1 is
composed of three vertices that we will denote by ui1 ,u j1 ,uk1 , and we have ai1 +a j1 +ak1 = B .

Suppose by contradiction that there exists a node ui not in U1 such that there is no path from vi1 ,
v j1 or vk1 to ui . Then, (U1 ∪ {ui },V \ (U1 ∪ {ui })) is a topological cut of G ′

1 of weight strictly larger
than B , which is impossible by definition of I2. Therefore, in G ′

1, the nodes that have no ancestors are
U1 = {ui1 ,u j1 ,uk1 }, and the nodes whose ancestors belong in U1 are {vi1 , v j1 , vk1 }.

We can then apply recursively the same method to determine the second set U2 of three vertices
ui2 ,u j2 ,uk2 without ancestors of positive work in G ′

1. We now define G ′
2 as equal to G ′

1 except that nodes
of U2 have a null work, and continue the induction.

At the end of the process, we have exhibited m disjoint sets of three elements ai that each sum to B ,
so I1 is solvable.

4.4.2 Finding an optimal partial serialization through ILP

We present in this section an Integer Linear Program solving the MINPARTIALSERIALIZATION prob-
lem. This formulation combines the linear program determining the maximum topological cut and the
one computing the critical path of a given graph.

We consider an instance of the MINPARTIALSERIALIZATION problem, given by a DAG G = (V ,E)
with weights on the edges, and a memory limit M . The sequential schedule S respecting the memory
limit is not required. First, for any (i , j) 6∈ E , we set mi , j = 0. We furthermore assume that there is a
single source vertex s and a single target vertex t , as explained above.

We first consider the ei , j variables, which are equal to 1 if edge (i , j) exists in the associated partial
serialization, and to 0 otherwise.

∀(i , j) ∈V 2, ei , j ∈ {0,1} (4.6)

∀(i , j) ∈ E , ei , j = 1 (4.7)

We need to ensure that no cycle has been created by the addition of edges. For this, we compute the
transitive closure of the graph: we enforce that the graph contains edge (i , j) if there is a path from node
i to node j . Then, we know that the graph is acyclic if and only if it does not contain any self-loop. This
corresponds to the following constraints:

∀(i , j ,k) ∈V 3, ei ,k ≥ ei , j +e j ,k −1 (4.8)

∀i ∈V , ei ,i = 0 (4.9)

Then, we use the flow variables fi , j , in a way similar to the formulation of the MINFLOW problem.
If ei , j = 1, then fi , j ≥ mi , j , and fi , j is null otherwise. Now, the flow going out of s is equal to the
maximal cut of the partial serialization, see the proof of Theorem 4.6, so we ensure that it is not larger
than M . Now, note that each fi , j can be upper bounded by M without changing the solution space.
Therefore, Equation 4.11 ensures that fi , j is null if ei , j is null, without adding constraints on the others

92 CHAPTER 4. Coping with a limited available memory

fi , j . This leads to the following inequalities:

∀(i , j) ∈V 2, fi , j ≥ ei , j mi , j (4.10)

∀(i , j) ∈V 2, fi , j ≤ ei , j M (4.11)

∀ j ∈V \ {s, t },
∑
i∈V

fi , j −
∑

k∈V
f j ,k = 0 (4.12)∑

j∈V
fs, j ≤ M (4.13)

This set of constraints defines the set of partial serializations of G with a maximal cut at most M .
It remains to compute the length of the critical path of the modified graph, in order to formalize the
objective. We use the pi to represent the top-level of each task, that is, their earliest completion time
in a parallel schedule with infinitely many processors. The completion time of task s is ws , and the
completion time of another task is equal to its processing time plus the maximal completion time of its
predecessors:

ps ≥ ws

∀(i , j) ∈V 2, p j ≥ w j +pi ei , j

The previous equation is not linear, so we transform it by using W , the sum of the processing times of
all the tasks and the following constraints.

∀i ∈V , pi ≥ wi (4.14)

∀(i , j) ∈V 2, p j ≥ w j +pi −W (1−ei , j) (4.15)

If ei , j is null, then Equation 4.15 is less restrictive than Equation 4.14 as pi < W , which is expected as
there is no edge (i , j) in the graph. Otherwise, we have ei , j = 1 and the constraints on p j are the same
as above.

Finally, we define the objective as minimizing the top-level of t , which is the critical path of the
graph.

Minimize pt (4.16)

We denote P the resulting ILP. We now prove that there exists a solution to P of objective at most
L if and only if there exists a partial serialization PS of G with memory bound M of critical path length
at most L.

Consider a solution of P of objective cost at most L. Let PS be the directed graph composed of
the edges (i , j) for every i , j ∈ V 2 such that ei , j = 1. The weight of such edges is mi , j . First, PS is
acyclic. This can be shown by induction on the size of a potential cycle. No self-loop can exist as all
ei ,i are null. If a cycle contains more than one edge, Equation 4.8 ensures the existence of a strictly
smaller cycle, while Equation 4.9 forbids self-loops. Then, the equations concerning fi , j model the
MINFLOW problem already studied, and ensure that the minimum flow is smaller than M . The only
difference being that each fi , j is bounded by M , which is already the case in any solution. Finally,
consider a critical path (s, i1, i2, . . . , ik , t) of PS. The equations concerning the variables pi ensure that
pt ≥ ws +wi1 +·· ·+wik +wt . Therefore, L is not smaller than the critical path length. Therefore, PS is
a partial serialization for M of critical path length at most L.

Now, consider a partial serialization PS of G for M , of critical path length at most L. We set ei , j = 1
if and only if there exists a path from i to j in PS. This respects the acyclicity constraints as PS is a DAG

4.4. Lowering the maximal peak memory of a graph 93

by definition. The maximum peak memory of PS is at most M , therefore the maximum cut of the graph
induced by the variables ei , j is at most M , so there exists a valuation of the variables fi , j satisfying the
flow constraints. Finally, we set the variables pi equal to the top-level of task i in PS:

∀i ∈V , pi = wi +max
j∈V

{
e j ,i p j

}
.

This valuation satisfies the last constraints and the objective function is then equal to L.

4.4.3 Heuristic strategies to compute a partial serialization

We now propose several heuristics to solve the MINPARTIALSERIALIZATION problem. These heuristics
are based on the same framework, detailed in Algorithm 12. The idea of the algorithm, inspired by [128],
is to iteratively build a partial serialization G ′ from G . At each iteration, the topological cut of maximum
weight is computed via Algorithm 11. If its weight is at most M , then the algorithm terminates, as the
obtained partial serialization is valid. Otherwise, another edge has to be added in order to reduce the
maximum peak memory. We rely on a subroutine in order to choose which edge to add. In the following,
we propose four possible subroutines. If the subroutine succeeds to find an edge that does not create a
cycle in the graph, we add the chosen edge to the current graph. Otherwise, the heuristic fails. Such a
failure may happen if the previous choices of edges have led to a graph which is impossible to schedule
without exceeding the memory.

Algorithm 12: Heuristic for MINPARTIALSERIALIZATION

Input: DAG G , memory bound M , subroutine A

Output: Partial serialization of G for memory M
1 while G has a topological cut of weight larger than M do
2 Compute a topological cut C = (S,T) of maximum weight using Algorithm 11
3 if the call A (G , M ,C) returns (uT ,uS) with no path from node uS to node uT then
4 Add edge (uT ,uS) of weight 0 to G
5 else
6 return Failure

7 return the modified graph G

We propose four possibilities for the subroutine A (G , M ,C), which selects an edge to be added to
G . They all follow the same structure: two vertices uS and uT are selected from the maximum cut
C = (S,T), where uS ∈ S and uT ∈ T and no path exists from uS to uT . The returned edge is then
(uT ,uS). For instance, in the toy example of Figure 4.1, only two such edges can be added: (c,b) and
(d , a). Note that adding such an edge prevents C from remaining a valid topological cut, thus it is likely
that the weight of the new maximum topological cut will be reduced.

We first recall some classical attributes of a graph, already defined in the Preliminaries section:
• The length of a path is the sum of the work of all the nodes is the path, including its extremities;
• The bottom-level of an edge (i , j) or a node i is the length of the longest path from i to t (the sink

of the graph);
• The top-level of an edge (i , j) or a node j is the length of the longest path from s (the source of

the graph) to j .
We now present the four subroutines. The MINLEVELS heuristic, as well as the two following

ones, generates the set P of vertex couples (j , i) ∈ T × S such that no path from i to j exist. Note

94 CHAPTER 4. Coping with a limited available memory

that P corresponds to the set of candidate edges that might be added to G . Then, it returns the couple
(uT ,uS) ∈ P that optimizes a given metric. MINLEVELS tries to minimize the critical path of the graph
obtained when adding the new edge, by preventing the creation of a long path from s to t . Thus, it
returns the couple (j , i) ∈ P that minimizes top_level(j)+bottom_level(i).

The MAXSIZE heuristic aims at minimizing the weight of the next topological cut. Thus, it selects a
couple (j , i) such that outgoing edges of i and incoming edges of j contribute a lot to the weight of the
current cut. Formally, it returns the coupe (j , i) ∈ P that maximizes

∑
k∈T mi ,k +

∑
k ′∈S mk ′, j (considering

that mi , j = 0 if there is no edge from i to j).
The MAXMINSIZE heuristic is a variant of the previous heuristic and pursues the same objective.

However, it selects a couple of vertices which both contribute a lot to the weight of the cut, by returning
the couple (j , i) ∈ P that maximizes min

(∑
k∈T mi ,k ,

∑
k ′∈S mk ′, j

)
.

Finally, the last heuristic is the only one that is guaranteed to never fail. To achieve this, it relies on
a sequential schedule S of the graph that does not exceed the memory M . S is defined by a function σ,
where σ(i) equals the starting time of task i in S . Such a sequential schedule needs to be precomputed,
and we propose a possible algorithm below.

Given such a sequential schedule S , this heuristic, named RESPECTORDER, always adds an edge
(j , i) which is compatible with S (i.e., such that σ(j) ≤ σ(i)), and which is likely to have the smallest
impact on the set of valid schedules for the new graph, by maximizing the distance σ(i)−σ(j) from j to
i in S . Let uT be the node of T which is the first to be executed in S , and uS be the node of S which is
the last to be executed in S . First, note that uS must be executed after uT in S , because otherwise, the
peak memory of S will be at least the weight of C which is a contradiction. The returned couple is then
(uT ,uS). Note that no path from uS to uT can exist in the graph if all the new edges have been added by
this method. Indeed, all the added edges respect the order S by definition. Then, no failure is possible,
but the quality of the solution highly depends on the input schedule S .

4.4.4 Computing a sequential schedule for MINLEVELS

In this section we discuss the generation of the schedule S , which is used as an input for heuristic
RESPECTORDER. By definition, this sequential schedule executes the DAG G using a memory at most
M . As proven in Theorem 4.4, deciding if such a schedule exists is NP-complete. However, most graphs
describing actual workflows exhibit a high level of parallelism, and the difficulty is not in finding a
sequential schedule fitting in memory. As a consequence, we assume that a Depth First Search (DFS)
schedule, which always completes a parallel branch before starting a new one, never exceeds the memory
bound.

The problem with a DFS schedule is that applying RESPECTORDER using such a schedule is likely
to produce a graph with a large critical path. For this objective, a Breadth First Search (BFS) schedule
is more appropriate, but it is not likely to respect the memory bound.

As proposed in [128], a way to solve this problem is to “mix” DFS and BFS schedules, and tune
the proportion of each one to get a schedule respecting the memory bound but still offering good oppor-
tunities for parallelism. Formally, we define the λ-BFSDFS schedule, which depends on the parameter
λ ∈ [0,1] and two schedules, a DFS and a BFS. A 0-BFSDFS schedule is equal to the BFS and a 1-
BFSDFS schedule is equal to the DFS. For a given task i , we note DFS(i) and BFS(i) the rank of task
i according to each schedule (i.e., the number of tasks executed before task i). Then, the λ-BFSDFS

schedules the tasks of G in non-decreasing order of

λDFS(i)+ (1−λ)BFS(i).

4.5. Simulation results 95

DAGGEN LIGO MONTAGE GENOME

dense sparse

Nb. of test cases 572 572 220 220 220

MINLEVELS 1 12 20 1 0
RESPECTORDER 0 0 0 0 0
MAXMINSIZE 2 5 3 0 0

MAXSIZE 6 12 13 0 17
ILP 26 102

Table 4.1: Number of failures for each dataset

The λ-BFSDFS schedule respects the precedence constraints: indeed, if task i has a successor j ,
then i is scheduled before j in both BFS and DFS. Then, as λ and 1−λ are non-negative, λ-BFSDFS

schedules i before j .
The idea consists in starting from the 0-BFSDFS schedule, and then to increase the λ parameter

until the memory of the resulting schedule is not larger than M . As we assumed that DFS (1-BFSDFS)
does not exceed M , this process is guaranteed to success. In practice, we chose in the experiments to
increment λ by step of 0.05 until we find an appropriate schedule.

4.5 Simulation results

We now compare the performance of the proposed heuristics through simulations on synthetic DAGs.
All heuristics are implemented in C++ using the igraph library.

We generated the first dataset, named DAGGEN, using the DAGGEN software [133]. Five parameters
influence the generation of these DAGs. The number of nodes belongs to {25,50,100}. The width, which
controls how many tasks may run in parallel, belongs to {0.2,0.5,0.8}. The regularity, which controls
the distribution of the tasks between the levels, belongs to {0.2,0.8}. The density, which controls how
many edges connect two consecutive levels, belongs to {0.2,0.8}. The jump, which controls how many
levels an edge may span, belongs to {1,2,4}. Combining all these parameters, we obtain a dataset of 108
DAGs. This dataset has already been used to model workflows in the scheduling literature [53, 85]. We
split it in two parts in the representations: the sparse DAGGEN dataset contains the DAGs with a density
of 0.2 and the dense DAGGEN dataset contains the DAGs with a density of 0.8. Indeed, this parameter
leads to significant differences in the results, hence the distinction.

The three other datasets represent actual applications and have been generated with the Pegasus
Workflow Generator [49]. We consider three different datasets, named LIGO, MONTAGE, and GENOME,
each containing 20 graphs of 100 nodes

The sizes given for each file are incoherent, as their value changes if the file is read by several
nodes. Hence, we assumed that the size of a file is the one given by the node that produced it. Sev-
eral nodes can produce data which share the same name. In this case, we assumed that these data are
different, which is coherent with the precedence relations. We assumed that the memory needed during
the execution of a node is negligible compared to the size of the input and output data, which must be
kept in memory during this process. We then apply the transformation presented in Section 4.2 to treat
data that are shared among several tasks, and duplicate the nodes to cope with the memory model of
SIMPLEDATAFLOWMODEL.

96 CHAPTER 4. Coping with a limited available memory

The heuristics have been simulated for eleven memory bounds per DAG, evenly spread between two
bounds. The smallest bound corresponds to the memory required for a DFS schedule, while the largest
bound corresponds to the maximal peak memory of the DAG. In the results, a normalized memory of 0
corresponds to the lowest bound, while 1 corresponds to the largest bound.

One may argue that the range of memory considered can be small for some graphs, and will then be
of little interest. We therefore computed the ratio of the largest memory considered divided by the lowest
for each graph, and we present the statistic summary in Table 4.2. We can see that this ratio is very high
for the LIGO and GENOME dataset: finding a partial serialization achieving the lowest memory bound
means that the maximal memory consumption is divided by more than 20 for most of these graphs. This
ratio has a median of 6 for the MONTAGE, which is also a high potential improvement. It is lower for
the sparse DAGGEN dataset, with a median of 2, and especially for the sparse DAGGEN dataset, with a
median of 1.3. Note that 4 DAGs of the DAGGEN dataset have been discarded because the minimum
memory equals the maximum memory.

DAGGEN LIGO MONTAGE GENOME

dense sparse

First quartile 1.2 1.7 21.2 5.5 20.1
Median 1.3 2 21.7 6.2 21.5

Third quartile 1.4 2.5 22.1 6.8 22

Table 4.2: Statistic summary of the ratio maxmem/minmem for each dataset.

In order to assess the performance of the heuristics, we first examine the critical path length of the
obtained partial serialization. We first normalize each critical path by the critical path of the original
graph. Therefore, for the largest memory bounds, the original graph being itself a valid partial serial-
ization, all the normalized critical paths equal 1. When a method fails to find a solution, we say that
the critical path achieved is infinite. As we focus on the statistical summary of the results, this allows
to fairly compare two heuristics with different success rate, as only the outlier points are not displayed.
Failure rates are reported in Table 4.1.

We plot the results obtained for the sparse and dense DAGGEN dataset in Figures 4.5 and 4.6 respec-
tively. For each heuristic and memory bound, we display the 108 results as a Tukey boxplot. The box
presents the median, the first and third quartiles. The whiskers extend to up to 1.5 times the box height,
and points outside are plotted individually. The first trend that can be observed, is that, as expected, the
lower the memory bound, the larger the critical path. The difference between the minimal and the maxi-
mal memory bound is smaller for dense graphs. Therefore, it is logical that the heuristics lead to a larger
increase of the critical path in sparse graphs. Comparing the heuristics, we can see that MINLEVELS

clearly outperforms the other ones for any value of the memory bound. Then, RESPECTORDER obtains
better performance than MAXMINSIZE and MAXSIZE, except when the memory bound is the lowest,
where these three heuristics are comparable. Note that no significant difference appears when restricting
the dataset to specific values of the generation parameters. The results are widely spread as the graphs
differ in several parameters. We remark therefore that MINLEVELS is highly robust considering the
variety of the graphs. On this dataset, we have also computed the optimal solution by using the Integer
Linear Program presented in Section 4.4. We implemented the ILP using CPLEX with a time limit of
one hour of computation on a standard laptop computer (8 cores Intel i7). When it was unable to provide
a solution within the time limit, we assume a failure. This happens on sparse graphs, especially for low
memory bounds, which is why it is omited on Figure 4.5.

4.5. Simulation results 97

1

2

3

4

5

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Normalized memory bound

N
or
m
a
li
ze
d
cr
it
ic
al

p
at
h

Heuristic MinLevels RespectOrder MaxMinSize MaxSize

Figure 4.5: Critical path length obtained by each method for the sparse DAGGEN dataset.

1.0

1.5

2.0

2.5

3.0

3.5

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Normalized memory bound

N
or
m
al
iz
ed

cr
it
ic
al

p
at
h

Heuristic MinLevels RespectOrder MaxMinSize MaxSize ILP

Figure 4.6: Critical path length obtained by each method for the dense DAGGEN dataset.

98 CHAPTER 4. Coping with a limited available memory

The second criterion we use to compare the heuristics consists in evaluating the makespan achieved
by a simple scheduling heuristic on the partial serialization returned by each heuristic on a simulated
platform. The chosen scheduling heuristic is the traditional list-scheduling algorithm, in which whenever
a task terminates, the available task with the highest bottom level is executed. This corresponds to the
well-known HEFT scheduler [139] when adapted to dynamic schedulers, as for example done in the
dmda scheduler of StarPU [17].

We simulated a platform of 2 processors for the dataset DAGGEN, and the results are presented in
Figures 4.7 and 4.8. We can notice that the differences between the heuristics are smaller than previously,
while the hierarchy is not modified. On Figure 4.9, we plotted for each DAG of the DAGGEN dataset
and for each memory bound, the makespan obtained by each heuristic in function of the critical path
obtained.

0.9

1.2

1.5

1.8

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Normalized memory bound

N
or
m
al
iz
ed

m
ak

es
p
an

Heuristic MinLevels RespectOrder MaxMinSize MaxSize

Figure 4.7: Makespan obtained by each method for the sparse DAGGEN dataset.

1.00

1.25

1.50

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Normalized memory bound

N
or
m
al
iz
ed

m
ak

es
p
an

Heuristic MinLevels RespectOrder MaxMinSize MaxSize ILP

Figure 4.8: Makespan obtained by each method for the dense DAGGEN dataset.

We plot the results obtained for the LIGO dataset on Figure 4.10, showing the critical path lengths
achieved by each heuristic for each memory bound. The similar structure of all graphs in this dataset
explains that the results lie in a smaller interval. The hierarchy of the heuristics is the same as in
the DAGGEN dataset: MINLEVELS presents the best performance, RESPECTORDER leads to slightly
longer critical paths, and MAXSIZE and MAXMINSIZE achieve similar results, several times higher
than the first two heuristics. Note that for the lowest memory bound, MINLEVELS never succeeds in

4.5. Simulation results 99

0.0e+00

5.0e+06

1.0e+07

1.5e+07

2.0e+07

0.0e+00 5.0e+06 1.0e+07 1.5e+07 2.0e+07

CriticalPath

M
ak
es
p
an

Heuristic MinLevels RespectOrder MaxMinSize MaxSize ILP

Figure 4.9: Makespan in function of the critical path length obtained by each method for the DAGGEN

dataset.

0

5

10

15

20

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Normalized memory bound

N
or
m
al
iz
ed

cr
it
ic
al

p
at
h

Heuristic MinLevels RespectOrder MaxMinSize MaxSize

Figure 4.10: Critical path length obtained by each method for the LIGO dataset.

100 CHAPTER 4. Coping with a limited available memory

this dataset (hence, it does not appear in the plot), MAXSIZE also presents a high failure rate, whereas
RESPECTORDER and MAXMINSIZE have comparable results.

Figure 4.11 presents the simulation on 5 processors. Except the slightly more scattered results, the
ranking of the heuristics is very similar than the ones obtained with the critical path. Therefore, even if
the final objective is to obtain a graph that we can schedule within a small makespan, our objective of
minimizing the critical path is completely relevant.

0

5

10

15

20

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Normalized memory bound

N
or
m
al
iz
ed

m
ak

es
p
an

Heuristic MinLevels RespectOrder MaxMinSize MaxSize

Figure 4.11: Makespan obtained by each method for the LIGO dataset.

5000

10000

15000

20000

5000 10000 15000 20000

CriticalPath

M
ak
es
p
an

Heuristic MinLevels RespectOrder MaxMinSize MaxSize

Figure 4.12: Makespan in function of the critical path length obtained by each method for the LIGO

dataset.

On Figure 4.12, we plotted for each DAG of the LIGO dataset and for each memory bound, the
makespan obtained by each heuristic in function of the critical path obtained. We can see that when the
critical path achieved is large, the makespan obtained is very close to the critical path length. On the
opposite, for smaller values of the critical path length, we can obtain a makespan several times higher,
because the partial serialization kept more parallelism in the graph.

In Figures 4.13 to 4.15, we present the same results for the GENOME dataset. We observe a trend
similar to the results on the LIGO dataset, except that MINLEVELS never fails, even for the lowest
memory bound.

4.5. Simulation results 101

4

8

12

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Normalized memory bound

N
or
m
al
iz
ed

cr
it
ic
al

p
at
h

Heuristic MinLevels RespectOrder MaxMinSize MaxSize

Figure 4.13: Critical path length obtained by each method for the GENOME dataset.

4

8

12

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Normalized memory bound

N
or
m
al
iz
ed

m
ak

es
p
an

Heuristic MinLevels RespectOrder MaxMinSize MaxSize

Figure 4.14: Makespan obtained by each method for the GENOME dataset.

0e+00

1e+05

2e+05

3e+05

0e+00 1e+05 2e+05 3e+05

CriticalPath

M
ak
es
p
an

Heuristic MinLevels RespectOrder MaxMinSize MaxSize

Figure 4.15: Makespan in function of the critical path length obtained by each method for the GENOME

dataset.

102 CHAPTER 4. Coping with a limited available memory

In Figures 4.16 to 4.18, we present the same results for the MONTAGE dataset. We observe a trend
similar to the results on the LIGO dataset, except that MINLEVELS and RESPECTORDER always present
better results that the other heuristics, even for the lowest memory bound.

4

8

12

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Normalized memory bound

N
or
m
a
li
ze
d
cr
it
ic
al

p
at
h

Heuristic MinLevels RespectOrder MaxMinSize MaxSize

Figure 4.16: Critical path length obtained by each method for the MONTAGE dataset.

4

8

12

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Normalized memory bound

N
or
m
al
iz
ed

m
ak

es
p
an

Heuristic MinLevels RespectOrder MaxMinSize MaxSize

Figure 4.17: Makespan obtained by each method for the MONTAGE dataset.

4.6. Conclusion 103

250

500

750

250 500 750

CriticalPath

M
ak
es
p
an

Heuristic MinLevels RespectOrder MaxMinSize MaxSize

Figure 4.18: Makespan in function of the critical path length obtained by each method for the MONTAGE

dataset.

We have shown in these experiments that we can partially serialize realistic graphs so that any
schedule fits a given memory bound, for a reasonable cost in terms of the critical path and makespan
augmentation. One may argue that the maximal peak memory considered does not reflect the actual
memory consumption of a traditional algorithm. In order to address this problem, we measured the peak
memory achieved by the scheduling heuristic on every graph of the datasets (without fictitious edges).
Then, we normalized it in the same way as in the plots above: a value of 1 means that the maximal
peak memory is actually achieved, and a value of 0 means that the peak memory reached is the same as
the Depth First Search considered. Note that we can obtain negative values, which happened only for
some graphs of the DAGGEN datasets, if the DFS requires a larger memory. The statistical summary is
presented in Table 4.3. We note that the scheduling heuristic uses the maximal peak memory for most
of the graphs of the LIGO and GENOME datasets, and a normalized memory larger than 0.88 for most
of the graphs of the MONTAGE dataset. Therefore, on these realistic graphs, the gain in memory is high.
On the DAGGEN dataset, the partial serialization is not as beneficial, as we obtain a median of 0.53.
However, note that the MINLEVELS heuristic does not lead to a high augmentation of makespan: less
than a 5% increase for the lowest memory bound for 75% of the graphs. Therefore, it is logical that the
memory consumption can not be reduced by a larger factor.

DAGGEN LIGO MONTAGE GENOME

dense sparse

First quartile −0.03 0.39 0.99 0.88 1

Median 0.31 0.6 1 0.9 1

Third quartile 0.71 0.75 1 0.93 1

Table 4.3: Normalized memory used by EFT

4.6 Conclusion

In this chapter, we have focused on lowering the memory footprint of task graphs representing compu-
tational workflows. As we target dynamic schedules (such as in runtime systems), we have focused on

104 CHAPTER 4. Coping with a limited available memory

the transformation of the graphs prior to the scheduling phase. Adding fictitious edges that represent
“memory dependences” prevents the scheduler to run out of memory. After formally modeling the prob-
lem, we have shown how to compute the maximal peak memory of a graph, we have proven the problem
of adding edges to cope with limited memory while minimizing the critical path to be NP-complete,
and proposed both an ILP formulation of the problem and several heuristics. Simulations show that our
best heuristics, RESPECTORDER and MINLEVELS, either never fail, or are able to limit the memory
footprint with limited impact on the parallel makespan for most task graphs.

The most interesting theoretical question that remains to be addressed in this project is to deter-
mine whether the problem of adding edges that prevent the scheduler to exceed the memory limit while
minimizing the resultant critical path length can be approximated. We have shown that computing the
optimal solution is NP-hard, and we have proposed an ILP and polynomial-time heuristics to address
this problem, but we do not know whether computing a constant-factor approximation in polynomial
time is NP-hard.

Although the proposed algorithms are polynomial, their complexity prevents them from begin di-
rectly implemented in a runtime system dealing with large graphs. The most obvious way to improve
the complexity would be to avoid recomputations at each iteration: determining the maximal cut and
the priority of edges for each heuristic may be sped up using previous computations. Similarly, the
strategies developed include many iterations, leading to many redundant fictitious edges. For instance,
if two chains of n tasks must not be run in parallel, we may end with O(n2) edges (and iterations), where
one edge would be sufficient. Even if redundant edges can be easily deleted before the execution of the
graph, it would be interesting to develop a low-complexity algorithm, which directly targets effective
edges. We can also wonder whether the critical path is the best metric to optimize. For instance, with
p processors available, a graph G1 composed of p chains of n tasks of unit processing times can be
scheduled in a time n, equal to its critical path length. A graph G2, composed of a chain of n −1 unit
tasks followed by a fork of (p −1)n+1 unit tasks has the same task set as G1, the same critical path, but
its optimal makespan is almost twice longer (for large values of p and n). Following this idea, it would
be interesting to design a metric aiming at minimizing the idle times on a specific platform.

Finally, another direction consists in dealing with more clever schedulers. The objective of this
chapter is to prevent any schedule to exceed a memory bound. However, modern schedulers may detect
that starting a task will directly lead to a memory shortage, and will therefore postpone it until enough
memory becomes available. In this context, far less fictitious edges would need to be added. Neverthe-
less, this setting also increases the difficulty of computing whether a given graph may lead to a deadlock
or memory shortage.

Chapter 5

Minimizing I/Os when processing a tree

« Aussi, elle est mal entretenue cette forêt: il
y a des arbres partout ! »

Obélix, Astérix légionnaire

In Chapter 4, we focused on graphs for which the computation may or may not fit into the available
memory, depending on the scheduling choices. In this chapter, we consider that the data files manipu-
lated by the tasks are so large that the main memory is insufficient for any schedule. In this case, we
have to resort to using disk as a secondary storage, which is sometimes known as out-of-core execution.
The cost of the I/O operations to transfer data from and to the disk is known to be several orders of mag-
nitude larger than the cost of accessing the main memory. Thus, in the case of out-of-core execution, it
is a natural objective to minimize the total volume of I/O.

One of the motivation for this work comes from numerical linear algebra, and especially the factor-
ization of sparse matrices using direct multifrontal methods [50], as seen in previous chapters. During
the factorization, the computations are organized as a tree workflow called an elimination tree, and, for
large matrices, the huge size of the data involved makes it necessary to reduce the memory requirement
of the factorization. In this chapter, we restrict the study to such rooted in-trees. Each task uses all the
data produced by its children to output new data for its parent. In particular, a task must have enough
available memory to fit the input from all its children.

It is known that the problem of minimizing the peak memory, Mpeak, of a tree traversal, that is,
the minimum amount of memory needed to process a tree, is polynomial [88, 105]. However, it may
well happen that the available amount of memory M is smaller than the peak memory Mpeak. In this
case, we have to decide which data, or part of data, have to be written to disk. The case when the data
cannot be partially written to disk has been studied and proved NP-complete in [88]. However, it is
usually possible to split data that reside in memory, and write only part of it to the disk if needed. This
is for instance what is done using paging: all data are divided in same-size pages, which can be moved
from main memory to secondary storage when needed. Since all modern computer systems implement
paging, it is natural to consider it when minimizing the I/O volume.

Note that as in [88], the present chapter does not directly focus on parallel algorithms. However, par-
allel processing is the ultimate motivation for this work: complex scientific applications using large data
such as multifrontal sparse matrix factorization always make use of parallel platforms. Most involved
scheduling schemes combine data parallelism (a task uses multiple processors) and tree parallelism (sev-
eral tasks are processed in parallel), such as in [62] and in Chapters 1 and 2. However, one cannot hope
to achieve good results for the minimization of I/O volume in a parallel settings until the sequential prob-

105

106 CHAPTER 5. Minimizing I/Os when processing a tree

lem is well understood, which is not yet the case. We present therefore a step towards understanding the
sequential version of this problem.

Main contributions. In this chapter, we provide both theoretical and algorithmic results to the I/O
volume minimization problem. We first formalize in a common framework the results scattered in the
literature. Then, we prove the dominance of postorder traversals when trees are homogeneous (all output
data have the same size), knowing that an algorithm to compute the best postorder traversal has been
proposed by E. Agullo [3]. Concerning heterogeneous trees, we prove that neither the best postorder
traversal nor the memory-peak minimization algorithms are approximation algorithms for minimizing
the I/O volume. We provide an Integer Linear Programming (ILP) formulation that allows us to compute
an optimal solution for small scale problems, and we design a new heuristic that takes advantage of
peak-memory-optimizing algorithms. Finally, we conducted an extensive experimental comparison of
all available strategies (including the ILP for small test cases) through simulations on both synthetic and
realistic trees built from actual sparse matrices. These simulations show the very good performance of
the proposed solution.

The rest of this paper is organized as follows. We give an overview of the related work in Section 5.1.
Then in Section 5.2 we formalize our model and present elementary results. Existing solutions are
studied in Section 5.3. An optimal ILP is presented in Section 5.4. We introduce a new heuristic in
Section 5.5 and evaluate its performance through simulations in Section 5.6. We finally conclude and
present future directions in Section 5.7.

5.1 Related work

As stated above, rooted trees are commonly used to represent task dependences for scientific applica-
tions. This is, for example, the case for some computational physics codes modeling the electronic
properties of semiconductors and metals [96, 100, 109], and for the accurate modeling of the electronic
structure of atoms and molecules in quantum chemistry [18, 86]. In the domain of sparse linear algebra,
Liu [104] gives a detailed description of the construction of the elimination tree already introduced in
Chapter 1, its use for Cholesky and LU factorizations, and its role in multifrontal direct methods. Note
that peak memory minimization is still a crucial question for direct solvers, as highlighted by Agullo et
al. [4], who study the effect of processor mapping on memory consumption for multifrontal methods.

Memory and storage have always been a limited parameter for large computations, as outlined by
the pioneering work of Sethi and Ullman [131] on register allocation for task trees. In the realm of
sparse direct solvers, the problem of scheduling a tree so as to minimize peak memory has first been
investigated by Liu [106] in the sequential case: he proposed an algorithm to find a peak-memory-
minimizing traversal of a task tree when the traversal is required to correspond to a postorder traversal of
the tree. A postorder traversal requires that each subtree of a given node must be fully processed before
the processing of another subtree can begin. A follow-up study [105] presented an optimal algorithm
to solve the general problem, without the postorder constraint on the traversal. Postorder traversals are
known to be arbitrarily worse than optimal traversals for memory minimization [88]. However, they are
very natural and straightforward solutions to this problem, as they allow us to fully process one subtree
before starting a new one. Therefore, they are widely used in sparse matrix software like MUMPS [9, 10],
and achieve good performance on actual elimination trees [88].

As mentioned in the introduction, the problem of minimizing the I/O volume has been studied in [88]
with the constraint that each data either stays in the memory or has to be written wholly to disk. We study
here the case when we have the option to store part of the data, which is also the topic of E. Agullo’s

5.2. Problem modeling and basic results 107

PhD. thesis [3]. In his thesis, Agullo exhibited the best postorder traversal for minimizing I/O volume,
which we adapt to our model in Section 5.3.1. He also studied numerous variants of the model that
are important for direct solvers, as well as other memory management issues—both for sequential and
parallel processing. Based on these preliminaries, he presented an out-of-core version of the MUMPS
solver.

Out-of-core execution is a well-known approach for computing on large data, especially (but not
exclusively) in linear algebra [127, 136].

Our problem can also be related to studies of cache misses, which are conducted in an obviously
different context. A CPU cache allows to speed-up memory access times, by saving previously accessed
memory blocks in a smaller but faster memory. Following the terminology of Hill and Smith [81], a
CPU cache is composed of multiple sets of block frames. Each block of the secondary storage can
only be stored in the block frames of a unique set, given by a mapping function. A cache is fully-
associative if it contains a single set, i.e., each memory block can be stored to any cache block frame. A
fully-associative cache leads to less cache misses, but each cache access is then slower. Cache misses,
i.e., accesses to data which is not present in the cache, can be categorized into three types: compulsory
misses concern data which is accessed for the first time; conflict misses occur when data has been evicted
because all the block frames of a set are full; capacity misses occur when data has been evicted because
all the block frames of the cache are full. In this chapter, we don’t have compulsory misses as data
is not present on secondary storage initially, nor conflict misses as the model we consider is similar to
a fully-associative cache. Therefore, only capacity misses are relevant here. Other studies consider a
fully-associative cache, but focus on the cache replacement policy given a sequence of operations. The
difficulty in this chapter is rather to decide the order of the operations, the optimal replacement policy
being easily computed, similarly to the study in [110], see Theorem 5.1. Indeed, in our study, we are
aware of the whole set of operations when deciding the replacement policy, whereas most cache misses
studies have to decide the eviction procedure without knowing future operations, see [113] for some
mathematical results in this field. Typical cache-eviction heuristics include LRU, which replaces the
Least Recently Used block, or MRU, which replaces the Most Recently Used block. Jain and Lin [89]
review many cache replacement algorithms and propose an original solution using past operations to
predict the future, before applying an adapted version of the optimal clairvoyant replacement policy of
Belady [24] to improve the efficiency on repetitive workflows.

5.2 Problem modeling and basic results

5.2.1 Model and notation

As introduced above, we assume that we have an available memory (or primary storage) of limited size
M , and a disk (or secondary storage) of unlimited size.

We consider a workflow of tasks whose precedence constraints are modeled by a tree of tasks G =
(V ,E). Its nodes v ∈ V represent tasks and its edges e ∈ E represent dependences. All dependences are
directed toward the root (denoted by root): a node can only be executed after the termination of all its
children. The output data of a node i (also named the weight of node i) occupies a size mi in the main
memory. This data may be written totally or partially to the disk after task i produces it. In order for a
node to be executed, the output data of all its children must be entirely stored in the main memory. An
amount of memory m can be moved between the memory and the disk at a cost of m I/O operations,
regardless of which data it corresponds to. We assume that all memory values (M , mi) are given in an
appropriate unit (such as kilobytes) and are integers. We divide the main memory into slots, where each
slot holds one such unit of memory.

108 CHAPTER 5. Minimizing I/Os when processing a tree

During the computation of a task i , we adopt a memory behavior similar to Chapter 4: the input data
are replaced by the output data, so that they never coexist in memory. In other words, at the beginning
of the computation of task i , the output data of i ’s children must be in memory, while at the end of its
computation, its own output data must be in memory. The amount of memory needed in order to execute
node i is thus:

m̄i = max

(
mi ,

∑
(j ,i)∈E

m j

)
.

Again, we choose this model as it is convenient to study and more complex behaviors can be emu-
lated, see Section 4.2.2, Chapter 4. We furthermore assume that M is at least as large as every m̄i , as
otherwise the tree cannot be processed.

Our objective is to find a solution minimizing the total I/O volume. A solution needs to give the
order in which nodes should be executed, and how much of each node should be written out during I/O
operations. In particular, for a tree of n tasks, we define a solution to our problem as a permutation σ
of [1 . . .n] and an I/O function fIO. We call such a solution a traversal. The permutation σ represents
the schedule of the nodes, that is, σ(i) = t means that task i is the t-th task computed. The function fIO

represents the amount of I/O for each task: fIO(i) = m means that m units of the output data of task i
are written to disk (see below). Note that we do not need to clarify which part of the data is written to
disk, as our cost function only depends on the volume. We assume without loss of generality that when
fIO(i) 6= 0, the write operation on the output data of task i is performed right after task i completes (and
produces the data), and the read operation is performed just before the use of this data by task i ’s parent.
Finally, since there are exactly the same number of read and write operations, we only count the write
operations.

In order for a traversal to be valid, it must respect the following conditions:
• Tasks are processed in topological order:

∀(i , j) ∈ E , σ(i) <σ(j).

We say that a node i of parent j is considered active at step t under the schedule σ if σ(i) < t <
σ(j). This means that its output data is either partially in memory and/or partially written to disk
at time t .

• The amount of data written to disk never exceeds the size of the data:

∀i ∈V , 0 ≤ fIO(i) ≤ mi ;

• Enough memory remains available for the processing of each task (taking into account active
nodes):

∀i ∈G ,
∑

(k,p)∈E
σ(k)<σ(i)<σ(p)

(
mk − fIO(k)

)≤ M −m̄i . (5.1)

The problem we are considering in this paper, called MINIO, is to find a valid traversal that mini-
mizes the total amount of I/O, given by

∑
i∈G fIO(i).

We formally define a postorder traversal as a traversal σ such that, for any node i and for any node
k outside the subtree Tri rooted at i , we have either ∀ j ∈ Tri , σ(k) <σ(j) or ∀ j ∈ Tri , σ(j) <σ(k).

5.2.2 Towards a compact solution

Although a traversal is described by both the schedule σ and the I/O function fIO, the following results
show that one can be deduced from the other. The first result is adapted from [3, Property 2.1], which

5.2. Problem modeling and basic results 109

has the same result limited to postorder traversals (see Section 5.1). It states that given a schedule σ, it
is easy to derive an I/O scheme fIO which minimizes the I/O volume of the traversal (σ, fIO).

Theorem 5.1. Consider a tree G , a memory bound M , and a schedule σ. The I/O function fIO following
the Furthest in the Future policy achieves the best performance under σ.

The I/O function fIO following the Furthest in the Future (FiF) policy is defined as follows: during
the execution of σ, whenever the memory exceeds the limit M , I/O operations are performed on the
active nodes which will remain active the furthest in the future, i.e., whose execution come last in the
schedule σ. This result is similar to Mattson et al.’s rule which states that this cache replacement policy
is optimal [110].

Proof. Given a tree G , a memory bound M , a schedule σ, and an I/O function fIO that does not respect
the FiF policy, it is straightforward to transform fIO into another I/O function f ′

IO following the rule.
Consider the first step when an I/O is performed on data i that is not the last to be used among active
data. Let j denote the last-used among active data (so FiF would evict j). We can safely increase f ′

IO(j)
and decrease f ′

IO(i) until either f ′
IO(j) = m j or f ′

IO(i) = 0. As j is active longer than i is, the memory
freed by f ′

IO is available for a longer time than the one freed by fIO, which keeps the traversal valid.
Repeating this transformation, we produce an I/O function which respects the FiF policy.

On the other hand, if we have an I/O function fIO describing how much of each node is written to
disk, we can compute a schedule σ such that (σ, fIO) is a valid traversal (if such a schedule exists).

Theorem 5.2. Consider a tree G , a memory bound M , and an I/O function fIO for which there exists a
valid schedule. Such a schedule can be computed in polynomial time.

The proof of this result is delegated to Section 5.5 where we use a similar method to derive a heuris-
tic: once we know where the I/O operations take place, we may transform the tree by expanding some
nodes to make these I/O operations explicit within the tree structure. If a valid traversal using fIO exists,
the resulting tree may be completely scheduled without any additional I/O, and such a schedule can be
computed using an optimal scheduling algorithm for memory minimization.

Both previous results allow us to describe solutions in a more compact format (as either a schedule
or an I/O function). However, this does not make the problem less combinatorial: there are n! possible
schedules and already 2n functions fIO if we restrict only to functions such that fIO(i) = 0 or mi .

5.2.3 Related algorithms

As mentioned in Section 5.1, the problem of minimizing peak memory, denoted MINMEM, is closely
related to our problem, and has been extensively studied. In this problem, the available memory is
unbounded (which means no I/Os are required) and we look for a schedule that minimizes the peak
memory, i.e., the maximum amount of memory used at any time during the execution. There are at least
two important algorithms for this problem, which we use in the present paper:

• It is possible to compute a schedule minimizing the peak-memory in polynomial time, as proven
by Liu [105]. We refer to this algorithm as OPTMINMEM.

• The best postorder traversal for peak-memory minimization can also be computed in polynomial
time [106]. We refer to this algorithm as POSTORDERMINMEM.

110 CHAPTER 5. Minimizing I/Os when processing a tree

5.3 Existing solutions are not satisfactory

We now detail two existing solutions for the MINIO problem. The first one is the best postorder traversal
for MINIO proposed by Agullo [3]. The second uses the optimal traversal for MINMEM proposed by
Liu [105], and then applies Theorem 5.1 to obtain a valid traversal. After presenting these algorithms,
we prove that neither of them is constant-factor competitive compared to the optimal traversal.

5.3.1 Computing the best postorder traversal

For the sake of completeness, we present the algorithm computing the best postorder traversal for MINIO
from [3] and adapt it to our model. Recall that in a postorder traversal, when a node is processed, its
whole subtree must be processed before any other external node may be started. Given a node i and a
postorder schedule σ, we first recursively define Si as the storage requirement of the subtree Tri rooted
at i . Let Chil(i) be the children of i . Then:

Si = max

mi , max
j∈Chil(i)

S j +
∑

k∈Chil(i)
σ(k)<σ(j)

mk


 .

This expression represents the maximum memory peak reached during the execution. If the peak is
obtained at the end of the execution, it is then equal to mi . Otherwise, it appears during the execution
of the subtree of some child j . In this case, the peak is composed of the weights of the children already
processed, plus the peak S j of Tr j .

We may now consider Ai = min(M ,Si), which represents the amount of main memory used for the
out-of-core execution of the subtree Tri by σ. We recursively define Vi as the volume of I/Os performed
by σ during the execution Tri when I/O operations are chosen using the FiF policy:

Vi = max

0, max
j∈Chil(i)

A j +
∑

k∈Chil(i)
σ(k)<σ(j)

mk

−M

+
∑

j∈Chil(i)
V j .

The expression of Vi has a similar structure to the expression of Si . No I/Os can be incurred when only
the root i is in memory, hence mi has no effect here. The second term accounts for the I/Os incurred on
the children of i . Indeed, during the execution of node j , some parts of children of i must be written to
disk if the memory peak exceeds M , and this quantity is at least A j +

∑σ(k)<σ(j)
k∈Chil(i) mk −M . The last term

accounts for the I/Os occurring inside the subtrees. Note that such I/Os can only happen if the memory
peak of the subtree exceeds M .

It remains to determine which postorder traversal minimizes the quantity Vroot . Note that the only
term sensitive to the ordering of the children of i in the expression of Vi is:

max
j∈Chil(i)

A j +
∑

k∈Chil(i)
σ(k)<σ(j)

mk

 .

Theorem 5.3 states that sorting the children of i in decreasing order of A j−m j achieves the minimum
Vi .

Theorem 5.3 (Lemma 3.1 in [106]). Given a set of values (xi , yi)1≤i≤n , the minimum value of
max1≤i≤n

(
xi +

∑i−1
j=1 y j

)
is obtained by sorting the sequence (xi , yi) in decreasing order of xi − yi .

5.3. Existing solutions are not satisfactory 111

Therefore, the postorder traversal that processes the children nodes by decreasing order of Ai −mi

minimizes the I/O cost among all postorder traversals. This traversal is described in Algorithm 13,
initially called with r = root, and will be referred to as POSTORDERMINIO. Note that in the algorithm
⊕ refers to the concatenation operation on lists.

Algorithm 13: POSTORDERMINIO (G ,r)
Output: a tree G and a node r in G
Output: an ordered list `r of the nodes in the subtree rooted at r , corresponding to a postorder

1 foreach i child of r do
2 `i ← POSTORDERMINIO(G , i)
3 Compute the Ai value using postorder `i

4 `r ←;
5 for i child of r in decreasing order of Ai −mi do
6 `r ← `r ⊕`i

7 `r ← `r ⊕ {r }
8 return `r

5.3.2 POSTORDERMINIO is optimal on homogeneous trees

In this section we focus on homogeneous trees—that is, on trees where all nodes have output data of size
one. We show that POSTORDERMINIO is optimal on these homogeneous trees, i.e., that it performs
the minimum number of I/Os. This somehow generalizes a result of Sethi and Ullman [131], which
considers binary trees from arithmetic expressions and aim at minimizing the number of store/load op-
erations when evaluating these expressions with a limited number of registers. They considered different
variants, and the one with commutative operators closely resembles our problem, where the registers are
replaced by memory slots and load/store by read/write. However, in our work, we do not limit the model
to binary trees, but consider any tree with homogeneous data sizes. In the case that the heterogeneity in
data sizes is limited, our result provides a good strategy of minimizing the amount of I/O operations.

Theorem 5.4. POSTORDERMINIO is optimal for homogeneous trees.

In order to prove this theorem, we need first to define labels on the nodes of a tree. Let Tr be any
homogeneous tree (mv = 1 for all nodes v of Tr). In the following definitions, whenever v is a node of
Tr with k children, v1, . . . , vk will be its children.

Memory bound `(v). For each node v of Tr, we recursively define a label `(v) which represents the
minimum amount of memory necessary to execute the subtree Tr(v) rooted at v without perform-
ing any I/Os:

`(v) =


0 if v is a leaf
max1≤i≤k (`(vi)+ i −1) otherwise

when ordering the children such that
`(vi) ≥ `(vi+1) for 1 ≤ i ≤ k −1

Let POSTORDER be a postorder schedule that executes the children of any node by non-increasing
`-labels (ties being arbitrarily broken). Intuitively, under POSTORDER, while computing the i -th
child, we have i −1 extra nodes in memory, each of size one, so we need `(vi)+ (i −1) memory
slots in total.

112 CHAPTER 5. Minimizing I/Os when processing a tree

I/O indicator c(v). If vi is a child of v , intuitively, c(vi) represents the number of children of v written
to disk by POSTORDER during the execution of Tr(vi). This number can be either 0 or 1. We set
c(v1) = 0 and

c(vi) =
{

0 if `(vi)+∑
1≤ j<i (1− c(v j)) ≤ M

1 otherwise.

We set c(root) = 0 where root is the root of Tr. To ease the writing of some proofs, we use the
notation

m(vi) =
∑

1≤ j<i
(1− c(v j)).

Thus m(vi) represents the number of children of v in memory right before vi is executed. Note
that m(v1) = 0 and m(vi) = (1− c(v1))+∑

2≤ j<i (1− c(v j)) ≥ (1− c(v1)) = 1 for 2 ≤ i ≤ k.

I/O volumes w(v) and W (Tr(v)). w(v) represents the total number of children of v stored by POS-
TORDER:

w(v) =
k∑

i=1
c(vi) =

k∑
i=2

c(vi).

Finally, for a given node v , we define W (Tr(v)) on the subtree rooted at v :

W (Tr(v)) = c(v)+
∑

µ∈Tr(v)
w(µ).

W (Tr(v)) intuitively represents the total volume of communications performed during the execu-
tion of the tree Tr(v) by POSTORDER.

We first state the correctness of the `-labels and the optimality of POSTORDER for the MINMEM

problem.

Lemma 5.1. With infinite memory, POSTORDER uses `(n) slots to compute the subtree rooted at node
n.

Proof. The result follows from the definition of `(v).

Lemma 5.2. With infinite memory, any schedule uses at least `(v) slots to compute the subtree rooted
at v .

Proof. We prove this result by induction on the size of Tr(v). If v is a leaf, the result holds (`(v) = 1).
Otherwise, we assume the lemma to be true for the subtrees rooted at the children v1, . . . , vk of v . We

consider the schedule returned by MINMEM. The memory peak inherent to the execution of a subtree
Tr(vi) is equal to `(vi) by the induction hypothesis. Assume without loss of generality that the children
of v are ordered such that MINMEM first computes a node of Tr(v1), then the next executed node not
in Tr(v1) is in Tr(v2), then the next executed node neither in Tr(v1) nor in Tr(v2) is in Tr(v3), and so
on. Then, the memory peak reached during the execution of Tr(vi) is at least `(vi)+ (i − 1) because,
in addition to Tr(vi), at least i −1 subtrees have been partially executed: Tr(v1), ..., Tr(vi−1). Finally,
the total memory peak is at least equal to max1≤i≤k (`(vi)+ i − 1). By Theorem 5.3, this quantity is
minimized when the nodes are ordered by non-increasing values of `(vi). Hence, the total memory peak
is at least `(v).

We now state the performance of POSTORDER for the MINIO problem (I/Os are performed using
the FiF policy).

5.3. Existing solutions are not satisfactory 113

Lemma 5.3. POSTORDER computes a given tree Tr using at most W (Tr) I/Os.

Proof. We prove this result by induction on the size of Tr. We introduce a new notation: for any node
v of Tr we define W (v) as W (v) =W (Tr(v))−c(v). In other words, W (v) represents the total volume of
communications performed during the execution of the tree Tr(v) if we had nothing to execute but Tr(v)
(in practice Tr(v) may be a strict sub-tree of Tr and, therefore, the execution of Tr(v) in the midst of the
execution of Tr can induce more communications). Note that W (v) =W (Tr(v)) if v is the root of Tr. We
prove by induction on the size of Tr(v) that at most W (v) I/Os are performed during the execution of
Tr(v).

Let us assume that v is a leaf. Because we have assumed (in Section 5.2.1) that M was large enough
for a single node to be processed without I/Os, c(v) = 0 and thus W (Tr(v)) = 0 =W (v)+ c(v).

Now assume that v is not a leaf. By the induction hypothesis, for any i ∈ [1;k], POSTORDER executes
the tree Tr(vi) alone using at most W (vi) I/Os. We prove that to process the tree Tr(vi), after the trees
Tr(v1) through Tr(vi−1) were processed, we need to perform at most W (Tr(vi)) =W (vi)+ c(vi) I/Os.

Let us consider the (i +1)-th child of v . If c(vi+1) = 0, then `(vi+1)+∑
1≤ j<i+1(1−c(v j)) ≤ M . Then,

according to Lemma 5.1, no I/Os are required to execute Tr(vi+1) under POSTORDER even after the
processing of Tr(v1) through Tr(vi). Indeed, before the start of the processing of Tr(vi+1) the memory
contains exactly

∑
1≤ j<i+1(1− c(v j)) nodes. Therefore W (vi+1) = c(vi+1) =W (Tr(vi+1)) = 0.

We are now in the case c(vi+1) = 1; thus `(vi+1)+∑
1≤ j<i+1(1−c(v j)) > M . Recall that for l ∈ [1; i],

`(vl) ≥ `(vi+1). Thus, if `(vi+1) ≥ M , then for l ∈ [2; i], `(vl) ≥ M and c(vl) = 1 (because m(vl) ≥ (1−
c(v1)) = 1). Therefore, after the completion of Tr(vi) there is only one node remaining in the memory:
vi . Then with a single I/O POSTORDER writes vi to disk, the memory is empty, and Tr(vi+1) can then be
processed with at most W (vi+1) I/Os, giving a total of at most W (vi+1)+c(vi+1) =W (Tr(vi+1)) I/Os. The
only remaining case is the case `(vi+1) < M . The processing of Tr(vi) requires at least `(vi+1) empty
memory slots because `(vi) ≥ `(vi+1). Hence, after the completion of Tr(vi) there are at least `(vi+1)−1
empty memory slots (the memory including the node vi itself). Then with a single I/O POSTORDER

can write vi to disk and there are then enough empty memory slots to process Tr(vi+1) without any
additional I/Os. Therefore W (Tr(vi+1)) = 1 =W (vi+1)+ c(vi+1). This concludes the proof.

Lemma 5.5 relies on the following intermediate result.

Lemma 5.4. Consider a node v of a tree Tr with a child, a, whose label `(a) satisfies `(a) > M . Now,
consider any tree Tr′ identical to Tr, except that the subtree rooted at a has been replaced by any tree
whose new label `′(a) satisfies `′(a) ≤ `(a) and `′(a) ≥ M . Then w ′(v) = w(v).

Proof. Let v1, . . . , vk be the children of v , ordered so that `(v1) ≥ ·· · ≥ `(vk). Let j be the index of a:
a = v j . As the label of a in Tr′, `′(a), is not larger than `(a), we can have `′(a) < `′(v j+1). Therefore,
we define another ordering of the children of v denoted by v ′

1, . . . , v ′
k such that `′(v ′

1) ≥ ·· · ≥ `′(v ′
k). Let

j ′ be the index of a in this ordering: v ′
j ′ = a = v j .

Note that j ′ ≥ j . For i ∈ [j +1; j ′], we have vi = v ′
i−1; at j , we have v j = v ′

j ′ ; and for i ∉ [j ; j ′], we
have vi = v ′

i .
If j ′ = 1 then j = 1. This case means that a remains the node with the largest label. The labels of the

other children of v remain unchanged. Because c(v1) = c ′(v1) = 0 by definition, then c ′(vi) = c(vi) for
any child vi of v and, thus, w(v) is equal to w ′(v).

Let us now consider the case j ′ > 1. From what precedes, v ′
j ′−1 = v j ′ . Then `(v j ′) = `′(v ′

j ′−1) ≥
`′(v ′

j ′) = `′(a) ≥ M . However, for any i ∈ [1; j ′], `′(v ′
i) ≥ `′(v ′

j ′) ≥ M and `(vi) ≥ `(v j ′) ≥ M . Therefore,
for any i ∈ [2; j ′], `′(v ′

i)+m′(v ′
i) > M (because m′(v ′

i) ≥ 1− c ′(v ′
1) = 1) and, thus, c ′(v ′

i) = 1. Similarly,
for any i ∈ [2; j ′], `(vi)+m(vi) > M (because m(vi) ≥ m(v1) = 1) and, thus, c(vi) = 1. Therefore,

114 CHAPTER 5. Minimizing I/Os when processing a tree

for i ∈ [1; j ′], c(vi) = c ′(v ′
i). Then, for i ∈ [j ′+1;k], vi = v ′

i , m(vi) = m′(v ′
i), and c(vi) = c ′(v ′

i) by an
obvious induction. Therefore, w ′(v) =∑k

i=2 c ′(v ′
i) =∑k

i=2 c(vi) = w(v).

The following lemma gives a lower bound on the I/Os performed by any schedule.

Lemma 5.5. No schedule can compute a tree Tr performing strictly less than W (Tr) I/Os.

As the proof needs to focus on deep details, we first provide a short summary. The result is proven
by induction on the size of the tree. The case where no I/O is required is deduced from Lemma 5.2.

We then consider a tree Tr for which any schedule performs at least one I/O, and an optimal schedule
S on this tree. We focus on the first node s to be stored under this schedule, and define the tree Tr′

in which Tr(s) is replaced by s. Using the induction hypothesis, we know that any schedule on Tr′,
including the restriction of S on Tr′, performs at least W (Tr′) I/Os. Therefore, we deduce that S

performs at least W (Tr′)+1 I/Os on Tr. Thus, it remains to prove that W (Tr′) ≥W (Tr)−1.
To do so, we focus on the closest ancestor of s to have a label ` larger than M , and denote it as µ.

We first prove that in the new tree Tr′, we have `(µ) ≥ M . This means, by Lemma 5.4, that the w labels
of the ancestors of µ are unchanged in Tr′. Then, we prove through an extensive case study that w(µ)
in Tr′ cannot be smaller than w(µ) in Tr minus one. Finally, we conclude that all the other w labels are
equal in Tr and in Tr′; therefore, W (Tr′) ≥W (Tr)−1.

Proof. We proceed by induction on the number of nodes of Tr.
The base case consists of a tree Tr that can be scheduled without any I/O. For contradiction, assume

that W (Tr) > 0. Then there exists a node v of Tr such that w(v) > 0 and a child vi of v such that
c(vi) = 1. Then, by definition of c(vi) and of `(v), `(v) > M . However, according to Lemma 5.2, “any
schedule uses at least `(v) slots to compute Tr(v)”, so Tr(v), and thus Tr, cannot be scheduled without
I/Os. Hence, a contradiction; thus W (Tr) = 0.

Consider a tree Tr that cannot be scheduled without I/Os, and a schedule S on Tr that minimizes
the total volume of I/Os.

First, by Lemma 5.1, there exists a node v such that `(v) > M . Otherwise, POSTORDER would be
able to schedule Tr without I/Os, which would violate our assumption on Tr. Then, the label of the root
r of Tr also satisfies `(r) > M .

Let s be the first node to be stored under S . Then, the subtree Tr(s) has been scheduled without
I/Os so, by Lemma 5.2, we have `(s) ≤ M and, hence, no node of Tr(s) has a label larger than M . Let
µ be the closest ancestor of s to have a label larger than M . µ exists as `(r) > M and `(s) ≤ M . Let
µ1, . . . ,µk be the children of µ, ordered such that `(µi) ≥ `(µi+1). Let j be such that µ j is either s or one
of its ancestors. Let t = min{i ∈ [1;k] | `(µi)+i −1 > M } (t exists because, by definition, `(µ) > M). See
Figure 5.1 for an illustration of the tree.

Let Tr′ be the tree obtained from Tr by replacing s by a leaf, therefore replacing the subtree Tr(s) by
a single node s. As Tr(s) cannot be empty, Tr′ contains fewer nodes than Tr. Consider a schedule S ′ on
Tr′ that executes the same operations as S on Tr and in the same order, except for the ones concerning
Tr(s).

We use the following notation: as above, `,m,c, w are defined on nodes of the tree Tr, whereas
`′,m′,c ′, w ′ refer to the same values on the tree Tr′. The nodes in Tr′ share the same names as their
equivalent in Tr.

We define, as in the proof of Lemma 5.4, an ordering µ′
1, . . . ,µ′

k on the children of µ, `′(µ′
i) ≥ `′(µ′

i+1).
Furthermore, we assume that this order is consistent with the original one, which means the following.
Let j ′ be such that µ j = µ′

j ′ . Note that j ′ ≥ j . For i ∈ [j +1; j ′], we have µi = µ′
i−1; at j , µ j = µ′

j ′ ; for
i ∉ [j ; j ′], we have µi =µ′

i . In particular, we have µ j ′ =µ′
j ′−1 if j ′ > j and µ j ′ =µ′

j ′ if j ′ = j .

5.3. Existing solutions are not satisfactory 115

s

r

µ
Tr

Tr(s)

µ1 µkµ j

Figure 5.1: Scheme of the composition of the tree Tr.

Note that, except s and its ancestors, every node v of Tr′ satisfies `(v) = `′(v) and w(v) = w ′(v).
Our objective is to prove that W (Tr′) ≥ W (Tr)−1. We first prove that `′(µ) ≥ M . We split into cases
based on the value of t defined above:

1. t < j . The labels of µ1, . . . ,µt are left unchanged so `′(µ) ≥ `′(µt)+ t −1 > M .

2. t = j . By definition of µ, we have `(µ j) ≤ M , so we cannot have t = j = 1. The labels of
µ1, . . . ,µt−1 are left unchanged, and `(µt−1) ≥ `(µt), so

`′(µ) ≥ `′(µt−1)+ t −2 ≥ `(µt)+ t −1−1 > M −1.

3. t > j . Among µ1, . . . ,µt , the only label that changed is µ j . Therefore there are t −2 nodes that
have a label `′ larger than that of µt . Hence,

`′(µ) ≥ `′(µt)+ t −2 > M −1.

Now, we prove that w ′(µ) ≥ w(µ)− 1, by showing that there exists at most one index i such that
c(µi) = 1 and c ′(µi) = 0. Let I be the set of such indexes. Note that no index strictly smaller than j can
be in I as the relevant labels are identical in both trees.

The following studies how the labels c and c ′ can differ. We consider two cases:

1. c(µ j) = 0. Thus j ∉ I . Let a = min{i ∈ [j +1,k] | c(µi) = 1}. There are several cases; in each we
show that I contains at most one element.

(a) First, a does not exist. Then I is empty.

(b) Assume a > j ′. No index in [1; j] can be in I , and thus no index in [1; j ′]. In particular,
c(vl) = 0 for l ∈ [j ; j ′] by definition of a. Because node µ j appears right after node µ j ′

in Tr′, then m′(µ j) = m′(µ j ′)+ (1− c(µ j ′)) = (m(µ j ′)− (1− c(µ j)))+ (1− c(µ j ′)) = m(µ j ′)+
c(µ j)− c(µ j ′) = m(µ j ′). Therefore, we have m′(µ j) = m(µ j ′). As `′(µ j) ≤ `′(µ j ′), we get
m′(µ j)+`′(µ j) ≤ m(µ j ′)+`′(µ j ′). Then, because `′(µ j ′) = `(µ j ′), and by the definition of c,
we conclude that c ′(µ j) ≤ c(µ j ′).
By definition, j ′ ≥ j . Because a > j ′, if j ′ > j , then c(µ j ′) = 0 by definition of a. Otherwise
j ′ = j and we use the assumption c(µ j) = 0 to conclude that in all cases c(µ j ′) = 0. Combined
with c ′(µ j) ≤ c(µ j ′) this gives us c ′(µ j) = 0.

116 CHAPTER 5. Minimizing I/Os when processing a tree

Recall that the labels in [1; j −1] are left unchanged, so c(µi) = c ′(µi) for i ∈ [1; j −1]. From
what precedes, c ′(µ j) = c(µ j) = 0. By definition of a and because j ′ < a, c(µi) = 0 for
i ∈ [j + 1; j ′]. Thus, all these nodes have the same label ` in Tr′ and Tr, and all of them
have m′(µi) ≤ m(µi) (by definition of m: they are preceded by the same nodes so their sums
have the same terms, except node µ j). Therefore, for all these nodes c ′(µi) = 0 and thus
c ′(µi) = c(µi). Hence, m(µ j ′+1) = m′(µ j ′+1). Because `(µ j ′+1) = `′(µ j ′+1) we conclude that
c(µ j ′+1) = c ′(µ j ′+1). We then proceed by a simple induction on the nodes with a larger index
to prove that I is empty.

(c) Now, assume a ≤ j ′. Once again, because the labels in [1; j − 1] are left unchanged, and
because c(µ j) = 0, no index in [1; j] can be in I , and thus no index in [1; a −1] can be in I .
We have two cases to consider, depending on whether a is equal to 2 (recall that by definition
a ≥ j +1 ≥ 2).

i. a = 2. Then j = 1. Therefore, in Tr′, µa is the first child and, by definition of c,
c ′(µa) = 0.

ii. a > 2. By definition of a, c(µa) = 1. Then, either a = j + 1 and then a − 1 = j and
c(µa−1) = c(µ j) = 0, or a > j +1 and then c(µa−1) = 0 by definition of a. In all cases,
c(µa−1) = 0. Therefore, `(µa−1)+m(µa−1) ≤ M . Because `(µa−1) ≥ `(µa) and m(µa) =
m(µa−1)+ 1, `(µa)+m(µa) ≤ M + 1. Because c(µa) = 1 by definition of a, `(µa) =
m(µa) ≤ M +1.
Recall (for the third time) that the labels in [1; j −1] are left unchanged, so c(µi) = c ′(µi)
for i ∈ [1; j−1]. Moreover, by definition of a, c(µi) = 0 for all i ∈ [j+1; a−1]. Therefore,
because c(µ j) = 0, for all i ∈ [j +1; a−1] m′(µi) = m(µi)−1 and thus c ′(µi) = c(µi) = 0.
Also, m′(µa) = m(µa)−1. Then `′(µa)+m′(µa) = `(µa)+m(µa)−1 = M from what
precedes. Therefore, c ′(µa) = 0.

Because c ′(µa) = 0, m′(µa+1) = m(µa+1). Then, by an immediate induction, m′(µi) = m(µi)
for i ∈ [a +1; j ′]. Therefore [a +1; j ′]∩ I = ;. In order to prove that [j ′+1;k]∩ I = ;, we
have two cases to consider:

i. c ′(µ j) = 1. Here, we have m′(µ j ′+1) = m(µ j ′+1). Indeed, the only nodes with an in-
dex not larger than j ′ that have different values for c and c ′ are µ j and a. Therefore
c ′(µ j ′+1) = c(µ j ′+1). We can then proceed by induction to show that no index larger than
j ′ belongs to I .

ii. c ′(µ j) = 0. Here, we have m′(µ j ′+1) = m(µ j ′+1)+1, and therefore c ′(µ j ′+1) ≥ c(µ j ′+1).
We can then proceed by induction to show that for any index i larger than j ′ we have
m′(µi) ≥ m(µi) and c ′(µi) ≥ c(µi).

Therefore, we have I = {a}.

2. c(µ j) = 1. Recall that the labels in [1; j −1] are left unchanged, so no index in [1; j −1] can be
in I . We now want to show that no index in [j +1;k] can be in I . By definition of m and since
c(µ j) = 1, we have m(µ j−1) = m(µ j). Then for all i ∈ [j +1; j ′], we have `(µi) = `′(µi), and we
get by an immediate induction that for all i ∈ [j +1; j ′], we have c(µi) = c ′(µi). In order to prove
the result on the interval [j ′+1;k], we have two cases to consider:

(a) c ′(µ j) = 1. Here, we have m′(µ j ′+1) = m(µ j ′+1), and therefore c ′(µ j ′+1) = c(µ j ′+1). We can
then proceed by induction to show that no index larger than j ′ belongs to I .

(b) c ′(µ j) = 0. Here, we have m′(µ j ′+1) = m(µ j ′+1)+1, and therefore c ′(µ j ′+1) ≥ c(µ j ′+1). We
can then proceed by induction to show that for any index i larger than j ′ we have m′(µi) ≥
m(µi) and c ′(µi) ≥ c(µi).

5.3. Existing solutions are not satisfactory 117

Therefore, I ⊆ { j }.

Putting things together, no node of Tr(s) has a label ` larger than M , so none has a positive label
w . Between µ and s, no node had a label ` larger than M . Therefore, except µ and its ancestors, all the
nodes satisfy w ′(v) = w(v).

As `′(µ) ≥ M , all the ancestors v of µ satisfy `′(v) ≥ M , so by Lemma 5.4, they also satisfy w ′(v) =
w(v). Then, as w ′(µ) ∈ {w(µ)−1, w(µ)}, we have W (Tr′) ≥W (Tr)−1.

By the induction hypothesis, S ′ executes at least W (Tr′) = W (Tr)−1 I/Os, so S executes at least
W (Tr) I/Os, which proves the lemma.

We are now ready to prove Theorem 5.4.

Proof of Theorem 5.4. From Lemma 5.3 and Lemma 5.5, POSTORDER is optimal for homogeneous
trees. Moreover, POSTORDERMINIO is a postorder that minimizes the volume of I/O operations.
Hence, it is also optimal for homogeneous trees.

The POSTORDER algorithm designed in this proof is actually equivalent to POSTORDERMINMEM,
the postorder algorithm minimizing the peak memory, when applied to homogeneous trees. The only dif-
ference with POSTORDERMINIO is that the latter sorts the children by non-increasing Ai = min(M , li)
whereas POSTORDER sorts them by non-increasing li . POSTORDERMINIO is then less specific, as it
does not specify the order among subtrees with li ≥ M : there are more ties that can be arbitrarily broken.
This difference also implies that the schedule given by POSTORDER does not depend on the value of
M . It is thus cache-oblivious [65] and optimal (on homogeneous trees) for any memory size. Therefore,
if we consider several levels of memory (e.g., a cache memory connected to a RAM, itself connected
to a disk), POSTORDER minimizes the memory transfers between every level (e.g., both cache-RAM
and RAM-disk transfers). Note that with heterogeneous trees, this result does not hold anymore, as the
optimal traversal depends on the memory size. Therefore, no algorithm can simultaneously minimize
transfer between all levels of the memory hierarchy.

5.3.3 Postorder traversals are not competitive

Previous research has shown that the best postorder traversal for the MINMEM problem is arbitrarily
far from the optimal traversal [88]. We prove here that postorder traversals may also have bad perfor-
mance for the MINIO problem. More specifically, we prove that there exist problem instances on which
POSTORDERMINIO performs arbitrarily more I/O than the optimal I/O amount. We could exhibit an
example where the optimal traversal does not perform any I/O and POSTORDERMINIO performs some
I/O, but we rather present a more general example where the optimal traversal performs some I/O: in
the following example, the optimal traversal requires 1 I/O, when POSTORDERMINIO requires Ω(nM)
I/Os . The tree used in this instance is depicted on Figure 5.2(a).

It is possible to traverse the tree of Figure 5.2(a) with a memory of size M using only a single I/O,
by executing the nodes in increasing order of the (red) labels next to the nodes. After processing the
minimal subtree including the two leftmost leaves, our strategy is to process leaves from left to right.
Before processing a new leaf, we complete the previous subtree up to a node of weight 1; this way the
leaf and the actives nodes can both fit in memory.

On the other hand, the best postorder traversal must perform a volume of I/O equal to M/2−1 before
processing any leaf, except for the very first processed leaf. This is because the least common ancestor
of any two leaf nodes has two children of size M/2, and all leaves have size at least M −1. Thus, any
postorder traversal performs at least M/2−1 I/Os for all but one leaf node, leading to at least 3M/2−3

118 CHAPTER 5. Minimizing I/Os when processing a tree

I/Os for the tree in Figure 5.2(a) (a best postorder starts from any of the two M leaves and performs
3M/2− 2 I/Os). We can extend this tree as follows: we replace root by a node of size 1, add to it a
parent of size M/2 which is the left child of the new root; the right child of the new root is then a chain
containing a leaf of size M −1 and its parent of size M/2. Doing this repeatedly until n nodes are used
gives the lower bound of Ω(nM). Therefore, POSTORDERMINIO is not constant-factor competitive.

root15

M/214

111

M/210

17

M/26

12

M1

M/25

14

M3

M/29

M −18

M/213

M −112

(a) Example of a tree showing that POS-
TORDERMINIO is not an approximation
algorithm.

root

36

55

24

63

38

57

22

61

(b) Example of a tree
where OPTMINMEM is
not optimal for MINIO
(M = 6).

root

2k4k +4

3k4k +3

2k −14k −2

3k +14k −3

· · ·
k4

4k3

2k 4k +2

3k 4k +1

2k −1 4k

3k +1 4k −1

· · ·
k 2

4k 1

(c) Example of a tree showing that OPT-
MINMEM is not an approximation algo-
rithm (M = 4k).

Figure 5.2: The black label inside node i represents mi . The red label next to the nodes indicates in (a)
the optimal schedule, and in (b) and (c) the OPTMINMEM schedule.

5.3.4 OPTMINMEM is not competitive

Minimizing the amount of I/O in an out-of-core execution seems similar to minimizing the peak memory
when the memory in unbounded. Thus, in order to derive a good solution for MINIO, it seems reasonable
to use an optimal algorithm for MINMEM, such as the OPTMINMEM algorithm presented by Liu [105],
to compute a schedule σ and then to perform I/Os using the FiF policy. In the following, we also use
OPTMINMEM to denote this strategy for MINIO. We prove here that there exist problem instances on
which this strategy will also perform arbitrarily more I/Os than the optimal traversal.

We first exhibit in Figure 5.2(b) a tree showing that OPTMINMEM does not always lead to minimum
I/Os in our model. Let M = 6. The tree of Figure 5.2(b) can be completed with 3 I/Os, by doing one
chain after the other. This corresponds to a peak memory of 9. But OPTMINMEM achieves a peak
memory of 8 at the cost of 4 I/Os by executing the nodes in increasing order of the labels next to the
nodes.

This example can be extended to show that OPTMINMEM may perform arbitrarily more I/Os than
the optimal strategy. The extended tree is illustrated on Figure 5.2(c). It contains two identical chains
of length 2k +2, for a given parameter k, and the memory size is set to 4k. The weights of the tasks in
each chain (in order from root to leaf) are defined by interleaving two sequences: {2k,2k −1, . . . ,k} and
{3k,3k +1, . . . ,4k}. As above, it is possible to schedule this tree with only 2k I/Os, but with a memory
peak of 6k, by computing one entire chain, then the other. However, OPTMINMEM achieves a memory

5.3. Existing solutions are not satisfactory 119

peak of 5k by alternating between chains, each time processing the chain until reaching a node with a
weight smaller than 2k, as represented by the labels besides the nodes. OPTMINMEM performs k I/Os
on each of the k+1 smallest nodes, leading to a cost of k(k+1) I/Os. The competitive ratio is then larger
than k/2, and OPTMINMEM is not constant-factor competitive for the MINIO problem.

5.3.5 Unknown complexity

NP-hardness conjecture

As shown above, polynomial-time approaches based on similar problems fail to even give a constant-
competitive ratio. The main issue facing a polynomial approach is the highly nonlocal aspect of the
optimal solution. For example, since postorder traversals are not optimal, it may be highly useful to stop
at intermediate points of a subtree’s execution in order to process entirely different subtrees.

We conjecture that this problem is NP-hard due to these difficult dependences. As mentioned above,
if we require entire data files to be written to disk, the problem has been shown to be NP-hard by
reduction to Partition [88]. However, this proof highly depends on indivisible data, rather than on the
recursive structure of trees. Taking advantage of the structure of our problem to give an NP-hardness
result could lead to an interesting understanding of optimal solutions, and possibly further heuristics.
We leave this as an open problem. We nevertheless prove in this section that schedules respecting an
intuitively reasonable property can lead to an I/O cost far from the optimal.

Lowcut schedules are not constant-factor approximation

In this section, we slightly change the model in order to simplify the explanations: we consider that
the execution of a tree starts from the root, and is terminated at the leaves. Therefore, each node can
be executed as soon as its parent is terminated. The weight mi of node i corresponds to the size of
its input file (instead of its output file). The (unique) input file of a node must be in memory at the
start of its execution, and its output files must be in memory at the end of its execution. Note that this
model is equivalent to the original one, as we can transform a schedule from one model to the other by
reversing the arrow of time. The tasks scheduled first in one model are then scheduled last in the other;
the number of I/Os required is not modified by this transformation. Before explaining what we call a
lowcut schedule, we need some definitions.

The amplification of a node i in a schedule S is a maximal series of computations on descen-
dants of i . In other words, let u1,u2, . . . ,uk ,uk+1 be the nodes executed right after i in S , such
that uk+1 is the first one not being a descendant of i (thus k ≥ 0). Let C be the set of nodes{
u | ∃ j ∈ [1,k], u is a son of u j

}
\ {u1 . . .uk }. Then we say that i is amplified to the cut C in S , as C

is the set of available descendants of i after the execution of uk . Note that C can be empty if all the
descendants of i are executed.

Consider a node i of weight mi and let Tr(i) be the subtree rooted at i . We define a cut of Tr(i) as a
set of nodes of Tr(i) where no node is a descendant of another one. Note that such a cut is a set of nodes
and not edges, and that it may contain only leaves. Then, a cut C of G is a low cut if there exists a node
i such that C is a cut of Tr(i) where

∑
j∈C m j ≤ mi . In other words, amplifying node i to the cut C leads

to a smaller memory footprint. Note that for each i , there always exists a cut of Tr(i) which is a low cut:
the empty set, which corresponds to executing the whole subtree Tr(i), is obviously a low cut. A cut that
is not low is called high.

We define lowcut schedules as schedules that amplify each node to a low cut. As a side note, there
always exists a schedule minimizing the peak memory that is actually a lowcut schedule: the algorithms
of [88, 105] solving the memory minimization problem return lowcut schedules. Intuitively, one can be

120 CHAPTER 5. Minimizing I/Os when processing a tree

tempted to think that forbidding to amplify a node to a high cut should not harm the I/O performance
very much. Indeed, it seems peculiar to execute a subtree, stop at a point where we need to store more
data than before, and process another part of the workflow. Why not processing this part before, when
more memory was available? Actually, it is possible that some I/Os are enforced by the structure of the
tree, and so every schedule puts on disk some part of a given high cut C . Then, amplifying to this high
cut C from a node that had a slightly smaller weight might actually lead to a smaller memory footprint
after performing the unavoidable I/Os. This gain of memory can then lead to a schedule with arbitrarily
less I/Os, see Lemma 5.6.

We provide below two examples which give insights on the problem, then prove in Lemma 5.6 that
an algorithm returning only lowcut schedules cannot be a constant-factor approximation.

First, Remark 5.1 shows on a small example that the best lowcut schedule is not always optimal and
Remark 5.2 shows on a slightly more complex tree that the best lowcut schedule can lead to twice as
many I/Os as the optimal solution.

Remark 5.1. On some trees, no optimal schedule is a lowcut schedule.

Proof. The targeted tree is depicted on Figure 5.3(a), where the weight mi of each node is written inside
it. The subtrees rooted at nodes a, u1, and u2 are respectively denoted as A, U1, and U2. The available
memory is equal to M = 3. Note that the subtrees U1 and U2 are identical, so we only consider without
loss of generality schedules that compute node u1 before u2. After the completion of U1, the main
memory is empty, so we furthermore consider only schedules that compute U2 straight after U1.

root

1.9u

1

U1

u1

3

1

U2

u2

3

1

A

a

2

(a) Tree to schedule with a memory M = 3

root

2.8r

1.9u

1

U1

u1

4

1

U2

u2

4

1

A

a

3

1

B

b

2

(b) Tree to schedule with a memory M = 4

Figure 5.3: Instances on which no lowcut schedule is optimal. The computation starts at the root and is
terminated at the leaves.

Table 5.1 lists an optimal schedule and all lowcut schedules. Before computing any node except the
root, the input files of nodes a and u are in main memory, which occupies 2.9 out of 3 units of memory.
An optimal solution consists in scheduling u first to get to the (high) cut {u1,u2} which entirely fills
the memory, then performing one I/O on node u2. Performing an I/O on this high cut is unavoidable
because given the trees U1 and U2, any schedule must perform an I/O on u2. Then, the freed memory
slot allows to schedule A, and only one memory unit remains occupied, for the input file of u1. Finally,
U1 and U2 are scheduled without I/O. On the opposite, lowcut schedules either execute A first or A last,
and therefore perform unnecessary I/Os on u or a.

5.3. Existing solutions are not satisfactory 121

Class of schedule I/O cost Schedule I/Os on node
u u2 a

Optimal 1 u, A,U1,U2 1

Lowcut
1.9 A,u,U1,U2 0.9 1
2 u,U1,U2, A 1 1

Table 5.1: Optimal and lowcut schedules of the tree of Figure 5.3(a).

Remark 5.2. There exists a tree in which no lowcut schedule is a 2-approximation.

Proof. The targeted tree is depicted in Figure 5.3(b). The structure of this example is similar to the
one of Remark 5.1, where we add a root over the tree and another branch B in parallel, and the memory
weights are adapted. We have a total memory equal to M = 4. As previously, we consider only schedules
where the node u1 is computed before u2.

In this tree, the optimal schedule first computes r and u. At this point, the memory is full and only
1 I/O on u2 is needed to complete the processing of the whole tree. Indeed, after this I/O, B can be
completed, which frees 1 more units of memory. Then, 2 units of memory are available, so A can be
completed. Finally, only u1 is in memory so both U1 and U2 can be completed.

Class of schedule I/O cost Schedule I/Os on node
r u u2 a b

Optimal 1 u,r,B , A,U1,U2 1

Lowcut

2.7 B , A,Tr(u) 0.8 0.9 1
2.8 B ,Tr(u), A 0.8 1 1
2.9 A,B ,Tr(u) 1.9 1
2.9 A,Tr(u),B 0.9 1 1
3 Tr(u), A,B 1 1 1
3 Tr(u),B , A 1 1 1

Table 5.2: Optimal and lowcut schedules of the tree of Figure 5.3(b).

As in Remark 5.1, without loss of generality, we only consider schedules that compute U2 straight
after U1. Given the configuration of the tree, the lowcut schedules must compute the trees A, B and
Tr(u) = {u,U1,U2} contiguously. Moreover, a lowcut schedule cannot compute A or B directly after u
nor B directly after r . We present the six lowcut schedules in Table 5.2. Therefore, any lowcut schedule
performs at least 2.7 I/Os, when the optimal is 1, which proves the remark.

Lemma 5.6. For any integer k, there exists a tree containing O(k) nodes for which no lowcut schedule
is a k-approximation.

Proof. Let k ∈N and ε< 1/k2. We consider the tree depicted in Figure 5.4, which has a structure similar
to the one of Figure 5.3(b), with k branches. The size of the main memory is equal to M = k +2.

Following the same idea as in Remark 5.2, an optimal schedule will perform only one I/O on node
u2, by computing first nodes rk ,rk−1, . . . ,r1. The memory used before this I/O always lies between
k +2− 1

k and k +2. Performing this I/O frees one slot of memory, which allows computing the branch
whose leaf has a weight 2, then the one whose leaf has a weight 3, etc., and then compute the whole tree

122 CHAPTER 5. Minimizing I/Os when processing a tree

without additional I/O. Similarly to Remark 5.2, the best lowcut schedule will perform 1− iε I/Os on
each node ri , plus one I /O on u2, so will perform at least k +1−∑k

i=1 iε≥ k +1−k2ε> k I/Os, which
completes the lemma.

root

k +1−kεrk

k − (k −1)εrk−1

· · ·
2−εr1

1

k +2

1 u2

k +2

1

k +1

1

4

1

3

1

2

Figure 5.4: Tree on which all lowcut schedules perform k times more I/Os than the optimal, with
M = k +2. The computation starts at the root and is terminated at the leaves.

Although the class of lowcut schedules contains schedules that minimize the peak memory, the I/O
minimization problem therefore cannot be approximated by a constant factor through a restriction to this
class of schedules.

5.4 ILP formulation of the problem

We now present an Integer Linear Program solving the MINIO problem.
The linear program relies on the boolean variables δi j to express the schedule constraints. δi j is

equal to 1 if node i precedes node j in the corresponding schedule and 0 otherwise, as used previously
in [48] for instance. All the variables considered in this linear program are nonnegative. The first con-
straints represent the antisymmetric (Equation 5.2), acyclic (Equation 5.3) and reflexive (Equation 5.4)
properties of the order, and the consistence with the precedence constraints (Equation 5.5).

∀i , j ∈G , δi j +δ j i = 1 (5.2)

∀i , j ,k ∈G , δi j +δ j k +δki ≥ 1 (5.3)

∀i ∈G , δi i = 1 (5.4)

∀(i , j) ∈ E , δi j = 1 (5.5)

∀i , j ∈G , δi j ∈ {0,1} (5.6)

We introduce the variable αi ∈ [0,1] which represents the fraction of node i written to disk.

∀i ∈G , 0 ≤αi ≤ 1 (5.7)

5.4. ILP formulation of the problem 123

The memory constraint is then equivalent to the following nonlinear inequality (that will be linearized
ultimately). Indeed, Equation 5.8 is the transposition of the memory constraint defined as Equation 5.1
in Section 5.2.1, noting that δkiδi p = 1 if and only if node k is active during the execution of node i .

∀i ∈G , max

(
wi ,

∑
(j ,i)∈E

w j

)
+

∑
(k,p)∈E ,
k 6=i ,p 6=i

δkiδi p (1−αk)wk ≤ M (5.8)

Finally, the objective function is to minimize the I/O cost:

Minimize
∑
i∈G

αi wi (5.9)

We have now formalized the MINIO problem described in Section 5.2.1 through a quadratic program
Pquad composed of Equations 5.2 to 5.8. It then remains to linearize Equation 5.8.

We define the variables xi k and yi k . They are constrained to satisfy the following: if node k is active
during the execution of node i , then xi k is equal to 1 and yi k is not larger than αk ; otherwise they are
both null. Note that in the special case when i is either k or its parent, both variables are forced to be 0.

∀(k, p) ∈ E , i ∉ {k, p}, xi k = δki +δi p −1 (5.10)

and 0 ≤ yi k ≤ min
(
δki ,δi p ,αk

)
(5.11)

∀(k, p) ∈ E , xpk = ypk = xkk = ykk = 0 (5.12)

∀i ∈G , max

(
wi ,

∑
(j ,i)∈E

w j

)
+

∑
(k,p)∈E

xi k wk −
∑

(k,p)∈E
yi k wk ≤ M (5.13)

The final integer linear program P lin is then composed of Equations 5.2 to 5.7 and 5.10 to 5.13,
with the objective function described by Equation 5.9. It requires O(n2) variables and O(n3) constraints.
We now prove that the linearization is correct: for any value X of the objective function, there exists a
solution to P lin of objective value X if and only if there exists a solution to Pquad of objective value X .

First, as an intermediate step, we show that if there exists a valuation of variables that satisfies
Equations 5.2 to 5.7 and 5.10 to 5.12, then for (k, p) ∈ E and i ∈ G with i ∉ {k, p}, we have xi k − yi k ≥
δkiδi p (1−αk). We consider such a valuation of the variables. By the precedence constraint (5.5), we
have δkp = 1. Hence, thanks to the antisymmetric (5.2) and acyclic (5.3) constraints, we deduce that we
cannot have both δki = 0 and δi p = 0. Therefore thanks to Equation 5.10, we have xi k = δkiδi p . From
Equation 5.11, we deduce yi k ≤αk and yi k = 0 if δkiδi p = 0. Thus, we have yi k ≤ δkiδi pαk and finally
xi k − yi k ≥ δkiδi p (1−αk).

Assume that P lin allows a feasible valuation of variables V . V respects the conditions of the above
paragraph, so that xi k−yi k ≥ δkiδi p (1−αk). Therefore, the left hand side of Equation 5.13 is not smaller
than the left hand side of Equation 5.8. As Equation 5.13 is satisfied as part of P lin, Equation 5.8 is
satisfied. V (restricted to the δ and α variables) is then a solution of Pquad.

On the contrary, let us assume now that Pquad allows a feasible valuation of variables V . Then, we
complete V by setting, for (k, p) ∈ E and i ∈ G with i ∉ {k, p}, xi k = δkiδi p , yi k = δkiδi pαk , and for
i ∈ {k, p}, xi k = yi k = 0. Let V ′ be the completed valuation. In V ′, Equation 5.13 is then equivalent to
Equation 5.8, which is thus also satisfied. We now show that V ′ satisfies Equations 5.10 and 5.11. Let
(k, p) ∈ E and i ∈G with i ∉ {k, p}. By the precedence constraint (5.5), we have δkp = 1. Hence, thanks
to the antisymmetric (5.2) and acyclic (5.3) constraints, we deduce that we cannot have both δki = 0 and

124 CHAPTER 5. Minimizing I/Os when processing a tree

mi ⇒ mi mi − fIO(i) mi

Figure 5.5: Example of node expansion.

δi p = 0. Therefore, xi k = δkiδi p = δki +δi p −1, so Equation 5.10 is satisfied. Then, yi k = δkiδi pαk

is equal to 0 if δki or δi p is null, and to αk otherwise, so Equation 5.11 is satisfied. Therefore, V ′ is a
solution of P lin, achieving the same objective value as V in Pquad.

5.5 Heuristic

We now move to the design of a novel heuristic, FULLRECEXPAND, whose goal is to improve the perfor-
mance of OPTMINMEM for the MINIO problem. The main idea of this heuristic is to run OPTMINMEM

several times: when we detect that some I/O is needed on some node, we force this I/O by transforming
the tree. This way, the following iterations of OPTMINMEM will benefit from the knowledge of this
I/O. We continue transforming the tree until no more I/Os are necessary.

In order to enforce I/Os, we use the technique of expanding a node (illustrated on Figure 5.5). Under
an I/O function fIO, we define the expansion of a node i as the substitution of this node by a chain of
three nodes i1, i2, i3 of respective weights mi , mi − fIO(i) and mi . The expansion of a node actually
mimics the action of executing I/Os; the weight of the three tasks represent which amount of main
memory is occupied by this node:

1. when it is first completed (mi1 = mi),
2. when part of it is moved to disk (mi2 = mi − fIO(i)),
3. when the whole data is transferred back to main memory (mi3 = mi).
This technique first allows us to prove Theorem 5.2, which states that given an I/O function fIO, we

can find a schedule σ such that (σ, fIO) is a valid traversal if there exists one.

Proof of Theorem 5.2. Consider the tree G ′ obtained from G by expanding all the nodes for which fIO is
not null. Then, consider the schedule σ′ obtained by OPTMINMEM on G ′, and let σ be the corresponding
schedule on G . Then, the memory used by σ on G during the execution of a node i is the same as the
one used by σ′ on G ′ during the execution of the same node i , or of i1 if i is expanded. Then, as
OPTMINMEM achieves the optimal memory peak on G ′, we know that σ uses as little main memory as
possible under the I/O function fIO. Then, (σ,τ) is a valid traversal of G .

The heuristic FULLRECEXPAND is described in Algorithm 14. The main idea of the heuristic is
to expand nodes in order to obtain a tree that can be scheduled without any I/O, which is equivalent to
building an I/O function.

First, the heuristic recursively calls itself on the subtrees rooted at the children of the root, so that
each subtree can be scheduled without any I/O (but using expansions). Then, the algorithm computes
OPTMINMEM on this new tree, and if I/Os are necessary, it determines which node should be expanded
next. This selection is the only part where FULLRECEXPAND can deviate from an optimal strategy. Our
choice is to select a node on which the FiF policy would perform I/Os; if there are several such nodes,
we choose the one whose parent is scheduled the latest. After the expansion, the algorithm recomputes
OPTMINMEM on the modified tree, and proceeds until no more I/Os are necessary.

At the end of the computation, the returned schedule is obtained by running OPTMINMEM on the
final tree computed by FULLRECEXPAND, and by transposing it on the original tree. The I/O perfor-
mance of this schedule is then equal to the sum of the expansions.

5.5. Heuristic 125

Algorithm 14: FULLRECEXPAND (G ,r, M)
Input: tree G , root of exploration r
Output: Return a tree Gr which can be executed without any I/O, obtained from G by

expanding several nodes
1 foreach child i of r do
2 Gi ← FULLRECEXPAND(G , i , M)

3 Gr ← tree formed by the root r and the Gi subtrees
4 while OPTMINMEM(Gr ,r) needs more than a memory M do
5 fIO ← I/O function obtained from OPTMINMEM(Gr ,r) using the FiF policy
6 i ← node for which fIO(i) > 0 whose parent is scheduled the latest in OPTMINMEM(Gr ,r)
7 modify Gr by expanding node i according to fIO(i)

8 return Gr

FULLRECEXPAND is only a heuristic: it may give suboptimal results but also may achieve better
performance than OPTMINMEM.

We illustrate the behavior of FULLRECEXPAND on two small examples. The left-hand side of Fig-
ure 5.6 provides an example where FULLRECEXPAND performs better than OPTMINMEM. OPTMIN-
MEM computes the left branch first until node a, then the right branch until node b, before completing
the left branch. The memory peak reached is 12, but this schedule incurs 4 I/Os with a memory limit
of 10: 2 on node a and 2 on node b. On this example, FULLRECEXPAND expands node b as specified
on the middle diagram. With this expansion, OPTMINMEM schedules the right branch until b2 first,
then the whole left branch, using one more I/O on b2. This node is expanded a second time on the right
diagram, without changing the schedule obtained by OPTMINMEM, yielding to 3 I/Os on the original
tree, all on b. On this instance, FULLRECEXPAND therefore performs 3 I/Os whereas OPTMINMEM

and POSTORDERMINIO perform 4 I/Os.

root

4

8

2a

9

6

4b

10

root

4

8

2a

9

6

4b3

2b2

4b1

10

root

4

8

2a

9

6

4b3

1b2

4b1

10

Figure 5.6: Example on which FULLRECEXPAND is optimal whereas OPTMINMEM and POSTORDER-
MINIO are not, with M = 10. The left tree is the original one, and the others are obtained during the
execution of FULLRECEXPAND after the expansion of b then b2.

Figure 5.7 provides an example where FULLRECEXPAND does not improve OPTMINMEM. On this
instance, OPTMINMEM performs 4 I/Os, 2 on node a then 2 on node b, where POSTORDERMINIO
executes first the left subtree and consumes only 3 I/Os on node c. This instance shows an example

126 CHAPTER 5. Minimizing I/Os when processing a tree

where no optimal solution performs an I/O on a node where OPTMINMEM performs an I/O. Therefore,
the strategy of FULLRECEXPAND cannot be optimal, even if we used a different priority at Line 6.

root

3c

2a

7

3

4b

7

Figure 5.7: Example on which FULLRECEXPAND and OPTMINMEM perform 4 I/Os whereas POS-
TORDERMINIO performs 3 I/Os, with M = 7.

Unfortunately, the complexity of FULLRECEXPAND is not polynomial, as the number of iterations
of the while loop at Line 4 cannot be bounded by the number of nodes, but may depend also on their
weights. We therefore propose a simpler variant, named RECEXPAND, where the while loop at Line 4
is exited after 2 iterations. In this variant, the resulting tree G might need I/Os to be executed. The final
schedule is computed as in FULLRECEXPAND, by running OPTMINMEM on this tree G . We show in
the next section that this variant gives results which are very similar to the original version.

5.6 Numerical results

In this section, we compare the performance of the two existing strategies, OPTMINMEM and POSTOR-
DERMINIO, and the two proposed heuristics, FULLRECEXPAND and RECEXPAND. All algorithms are
compared through simulations on two datasets described below. Because of its high computational
complexity, FULLRECEXPAND is only tested on the first smaller dataset.

5.6.1 Datasets

The first dataset, named SYNTH, is composed of 330 instances of synthetic binary trees of 3000 nodes,
generated uniformly at random among all binary trees. As we considered small trees, we used half-
Catalan numbers in order to draw a tree, similarly to the method described at the beginning of [108].
The memory weight of each task is uniformly drawn from [1;100].

The second dataset, named SMALLSYNTH, is composed of 30,000 synthetic binary trees of 30
nodes, generated with the same method as the trees of SYNTH. This dataset contains trees small enough
to allow the determination of the optimal solution by solving the ILP directly.

The last dataset, named TREES, is composed of 329 elimination trees of actual sparse matrices from
the University of Florida Sparse Matrix Collection [52] already used in Chapter 1 (see [62] for more
details on elimination trees and the data set). Our dataset corresponds to the 329 smallest of the 640
trees presented in [62], with trees ranging from 2000 to 40000 nodes.

For each tree of each dataset, we first computed the minimal memory size necessary to process
the tree nodes: LB = maxi m̄i . We also computed the minimal peak memory for an incore execution
Peakincore (using OPTMINMEM). We eliminated all trees from the TREES dataset where Peakincore = LB
(i.e., trees for which out-of-core execution is useless whatever the memory bound M), leaving us with
133 remaining trees in this dataset. In all other cases, note that the possible range for the memory
bound M such that some I/Os are necessary is [LB,Peakincore − 1]. The main memory bound we use

5.6. Numerical results 127

in our simulation is the middle of this interval Mmid = (LB+Peakincore − 1)/2. For a more complete
analysis, we also perform the same simulations with the two extreme memory bounds Mmin = LB and
Mmax = Peakincore −1.

5.6.2 Results

Our objective in this study is to minimize the total amount of I/Os needed to process the tree. In order
to summarize and compare the performance of the different strategies we choose here to consider the
number of I/Os and the memory bound M : performing 10 I/Os when the optimal only needs 1 does not
have the same significance if the main memory consists of M = 10 slots vs. M = 1000 slots. Therefore,
in this section, if a schedule performs k I/Os, we define its relative I/O volume as (M +k)/M . Then, a
schedule with no I/O operations has a relative I/O volume of 1 while a schedule needing M I/Os has a
relative I/O volume of 2.

In order to compare the performance of these algorithms, we use a generic tool called performance
profile [54], which has already been used in Chapter 2. For a given dataset, we compute the relative
I/O volume of each algorithm on each tree and for each memory limit. Then, rather than computing an
average above all the cases, a performance profile reports a cumulative distribution function. We define
the deviation of a heuristic on a given instance as the relative I/O volume of this heuristic divided by the
best relative I/O volume achieved for this instance. We then use the deviation to the best heuristic for
the datasets SYNTH and TREES, and the deviation to the optimal solution for the dataset SMALLSYNTH,
which is computed with the ILP. Given a heuristic and a deviation τ expressed in percentage, we com-
pute the fraction of test cases for which the heuristic has a deviation not larger than τ, and plot these
results. Therefore, the higher the curve, the better the method: for instance, for a deviation τ= 5%, the
performance profile shows how often a given method lies within 5% of the smallest relative I/O volume
obtained.

0.00

0.25

0.50

0.75

1.00

0% 50% 100% 150% 200% 250%

Deviation to best

F
ra
ct
io
n
of

te
st

ca
se
s

0.00

0.25

0.50

0.75

1.00

0% 10% 20% 30%

Deviation to best

F
ra
ct
io
n
of

te
st

ca
se
s

Algorithm OptMinMem RecExpand PostOrderMinIO FullRecExpand

Figure 5.8: Performance profiles of FULLRECEXPAND, RECEXPAND, OPTMINMEM and POSTOR-
DERMINIO on the SYNTH dataset with the Mmid memory bound (right: same performance profiles
without POSTORDERMINIO).

The left plot of Figure 5.8 presents the performance profile of the four heuristics for the complete
dataset SYNTH using the memory bound Mmid. The first result is the poor performance of POSTORDER-
MINIO in this dataset: it almost always has a deviation of at least 50%, and even of 100% in 75% of the
cases. Thus, the right plot of the figure presents the performance profiles of exclusively OPTMINMEM,
RECEXPAND, and FULLRECEXPAND. RECEXPAND performs far better than OPTMINMEM: it pro-
duces strictly less I/Os than OPTMINMEM on 90% of the instances, and on half of them, OPTMINMEM

128 CHAPTER 5. Minimizing I/Os when processing a tree

0.00

0.25

0.50

0.75

1.00

0% 20% 40% 60%
Deviation to optimal

Fr
ac

tio
n

of
te

st
ca

se
s

0.97

0.98

0.99

1.00

0% 5% 10% 15% 20%
Deviation to optimal

Fr
ac

tio
n

of
te

st
ca

se
s

Algorithm OPTMINMEM RECEXPAND POSTORDERMINIO FULLRECEXPAND

Figure 5.9: Performance profiles for the SMALLSYNTH dataset with the Mmid memory bound (right:
same performance profiles without POSTORDERMINIO; note that we zoom in on the top part of the
y-axis to better display instances where the heuristics are non-optimal).

has a deviation of at least 4%. We can also note that FULLRECEXPAND performs only slightly better
than RECEXPAND, but both heuristics are far ahead of OPTMINMEM, so the gain in the complexity
of the algorithm is only balanced by a small loss of performance. For instance, RECEXPAND has a
deviation larger than 2% over FULLRECEXPAND on only 3% of the instances.

We present the performance profiles for the dataset SMALLSYNTH and the memory bound Mmid

on Figure 5.9. In this figure, the deviation is computed using the optimal solution obtained via the ILP,
which allows us to analyze the quality of the solutions returned by FULLRECEXPAND and RECEXPAND.
As the left graph shows, the heuristics observe the same hierarchy as in the SYNTH dataset with larger
trees, but as one could expect, the differences of performance are less significant: POSTORDERMINIO
has a deviation of less than 10% over the optimal solution in 75% of the instances. OPTMINMEM is
non-optimal in 3% of the instances. FULLRECEXPAND and RECEXPAND achieve better performance
as they are non-optimal in respectively 0.72% and 0.74% on the instances. The performance profile on
the subset of trees where at least one of these heuristics is non-optimal is presented on the right graph.

0.00

0.25

0.50

0.75

1.00

-5% 0% 5% 10% 15% 20%

Deviation to best

F
ra
ct
io
n
of

te
st

ca
se
s

0.92

0.94

0.96

0.98

1.00

-5% 0% 5% 10% 15% 20%

Deviation to best

F
ra
ct
io
n
of

te
st

ca
se
s

Algorithm OptMinMem RecExpand PostOrderMinIO

Figure 5.10: Performance profiles for the complete TREES dataset with the Mmid memory bound (left)
and zoom on the top part corresponding to instances where the heuristic results differ (right).

The left plot of Figure 5.10 presents the performance profiles of the three heuristics POSTORDER-
MINIO, RECEXPAND and OPTMINMEM for the complete dataset TREES using the memory bound
Mmid. The first remark is that the three heuristics are equal on more than 90% of the 329 instances.
Therefore, we now focus on the right plot, which presents the top part of the same performance profile,

5.6. Numerical results 129

corresponding to the 25 cases where the heuristics do not all give equal performance. We can see that
the hierarchy is the same as in the previous dataset (RECEXPAND is never outperformed, and OPTMIN-
MEM performs better than POSTORDERMINIO) but with smaller discrepancies between the heuristics.
We observe a deviation larger than 5% on only 3% of the instances for POSTORDERMINIO and 1% of
the instances for OPTMINMEM.

0.00

0.25

0.50

0.75

1.00

0% 50% 100% 150%
Deviation to best

Fr
ac

tio
n

of
te

st
ca

se
s

0.00

0.25

0.50

0.75

1.00

0% 10% 20% 30%
Deviation to best

Fr
ac

tio
n

of
te

st
ca

se
s

Algorithm OPTMINMEM RECEXPAND POSTORDERMINIO FULLRECEXPAND

Figure 5.11: Performance profiles of FULLRECEXPAND, RECEXPAND, OPTMINMEM and POSTOR-
DERMINIO on the SYNTH dataset with the Mmin memory bound (right: same performance profiles
without POSTORDERMINIO).

0.00

0.25

0.50

0.75

1.00

0% 20% 40% 60%
Deviation to optimal

Fr
ac

tio
n

of
te

st
ca

se
s

0.900

0.925

0.950

0.975

1.000

0% 10% 20% 30% 40% 50%
Deviation to optimal

Fr
ac

tio
n

of
te

st
ca

se
s

Algorithm OPTMINMEM RECEXPAND POSTORDERMINIO FULLRECEXPAND

Figure 5.12: Performance profiles for the SMALLSYNTH dataset with the Mmin memory bound (right:
same performance profiles without POSTORDERMINIO, zoom on the top part corresponding to in-
stances where the heuristic results differ).

We now consider the memory bound Mmin = LB, which represents the minimum memory bound
for which it is possible to compute a given tree. We plot the corresponding performance profiles for
the SYNTH dataset in Figure 5.11, the SMALLSYNTH dataset in Figure 5.12, and the TREES dataset
in Figure 5.13. The main conclusion that can be made in comparison to the previous results is that
the difference between OPTMINMEM and RECEXPAND is significantly larger with this memory bound.
Indeed, in the SYNTH dataset, there is a deviation of 10% for OPTMINMEM in 90% of the cases whereas
such a deviation was reached in only 15% of the cases previously. This can be explained by the fact that
the memory bound considered here is further from the memory required by MINMEM. On the other
hand, the difference between POSTORDERMINIO and RECEXPAND is smaller in this case: there is a
deviation of 100% for POSTORDERMINIO in half of the cases whereas we had this property in 75%
of the cases with a higher memory bound. The same tendency can be observed for the TREES dataset

130 CHAPTER 5. Minimizing I/Os when processing a tree

0.00

0.25

0.50

0.75

1.00

0% 5% 10% 15% 20%
Deviation to best

Fr
ac

tio
n

of
te

st
ca

se
s

0.925

0.950

0.975

1.000

0% 5% 10% 15% 20%
Deviation to best

Fr
ac

tio
n

of
te

st
ca

se
s

Algorithm OPTMINMEM RECEXPAND POSTORDERMINIO

Figure 5.13: Performance profiles for the complete TREES dataset with the Mmin memory bound (left)
and zoom on the top part corresponding to instances where the heuristic results differ (right).

in Figure 5.13, even if it is less significant. For the SMALLSYNTH dataset, the proportion of non-
optimal cases is around 3.5 times larger than with the previous memory bound for the three heuristics
FULLRECEXPAND, RECEXPAND, and MINMEM, so they are also further from the optimal, but the
modification of the memory bound did not significantly modify the behavior of POSTORDERMINIO.

For the sake of completeness, we have also considered the memory bound Mmax = Peakincore −1,
which is the opposite case: the largest memory bound for which I/Os are required in order to compute a
tree. With this memory bound, OPTMINMEM, RECEXPAND, and FULLRECEXPAND are always equal
(and even optimal for the SMALLSYNTH dataset), and only POSTORDERMINIO achieves worse perfor-
mance. This can be explained by the fact that M2 is right below the memory required by OPTMINMEM

to compute a tree without I/Os. Therefore, we can argue that it is closer to the optimal algorithm and
FULLRECEXPAND does not improve the few I/Os performed by MINMEM. Nevertheless, the deviation
of POSTORDERMINIO is smaller than with the other memory bounds.

5.7 Conclusion

In this chapter, we revisited the problem of minimizing I/O operations in the out-of-core execution of
task trees. We proved that existing solutions allow us to optimally solve the problem when all output data
have identical size, but that, in the general case, none of them has a constant competitive factor compared
to the optimal solution. In addition to an ILP formulation of the problem, which allows us to compute an
optimal solution for small trees, we proposed a novel heuristic solution. Through simulations, we show
that this new heuristic is very efficient in practice, achieves better performance than existing solutions,
and achieves near optimal performance on small trees. Despite our efforts, the complexity of the problem
remains open. Determining this complexity would definitely be a major step, although our findings
already lay the basis for more advanced studies. These include moving to parallel out-of-core execution
(as was already done for parallel incore execution [62]) as well as designing competitive algorithms for
the sequential problem.

Chapter 6

Data structures for external memory

« - La production a augmenté, mais tu as
toujours un problème de livraison. Tes
circuits de distribution sont à revoir.

- EH ?
- Ah oui, pardon. . . Toi y en a pas apporter

assez de menhirs à la fois. »

Caïus Saugrenus, Obélix et compagnie

Nota Bene: This chapter briefly exposes the results obtained during a research visit at the Stony
Brook University, NY USA, in the team of Michael Bender. The subject is therefore not related to the title
of this manuscript. The full details can be found in the published papers [C3, C5] which are attached in
the appendix of this manuscript.

In Chapters 4 and 5, we studied several techniques to cope with a limited main memory while
scheduling an application dealing with large data. The same problem arises in many domains where the
computations cannot be described by a graph of task. A classic instance is the maintenance of a large
database, which can be modeled by the dictionary problem. In this setting, the objective is to main-
tain a set of elements while supporting four standard operations: insertion of a new element, deletion
of an existing element, lookup whether an element exists, and range query (lookup of k consecutive
elements). Most data structures used to address this problem (which are then named dictionaries) be-
long to self-balancing search trees, and perform each operation in a logarithmic number of operations.
However, when dealing with a large database, the time spent on memory transfers is far from negligible.
These transfers can occur between different parts of the memory hierarchy. As in Chapter 5, we focus
on the transfers of blocks between the main memory, named RAM, and a secondary storage, named
disk. The same model can be applied to the transfer of cache lines between RAM and cache memory.
An I/O operation consists in the transfer of a block of contiguous memory slots from secondary storage
to primary storage. The size of a block is set by the system and is therefore a parameter of the problem.
Continuing on the dictionary problem, implementing a lookup on a search tree consists in repetitively
bringing a block into main memory and performing few comparisons in order to decide which block
will be brought in next. Therefore, the computing time is completely negligible compared to the mem-
ory transfer delays. This observation is the main motivation of the Disk Access Model, introduced by
Aggarwal and Vitter [1] under which we will conduct the studies in this chapter: the complexity of an
algorithm is solely defined by the number of I/Os performed.

131

132 CHAPTER 6. Data structures for external memory

Main contributions. In this chapter, we first study the I/O complexity of computing prime number
tables. Since the sieve of Eratosthenes, most studies have focused on the number of operations and
the space usage. We design data structures which dramatically reduce the required I/Os, while still
performing few operations. We next focus on history-independent data structures. This property ensures
that the current state of the structure reveals no information on past operations. We first design a skip list
(a history-independent and simple dictionary) matching the optimal external memory bounds with high
probability. The second data structure yields a near-optimal history-independent cache-oblivious B-tree,
i.e., one of the standard dictionaries in external memory. This data structure maintains a dynamic set of
elements in sorted order in a linear-size array. We design a history-independent version with the same
complexity guarantees.

6.1 Introduction to the computational model

As mentioned in the introduction, we use in this chapter the DAM model of Aggarwal and Vitter [1].
We consider two levels of memory: the RAM of size M and the disk which is arbitrarily large. A block
of B < M contiguous memory slots can be written from disk to RAM (or vice-versa) at the cost of one
I/O. The complexity of an algorithm is then equal to the number of I/Os performed.

The parameters M and B are known to the algorithms, which generally helps to decrease the I/O
complexity. This model is extended by the cache-oblivious model, introduced by Frigo et al. [65],
in which the parameters M and B are unknown. Remarkably, several problems, which can often be
expressed recursively, have asymptotically optimal (and practical) cache-oblivious solutions, including
the dictionary problem. Such a solution is then asymptotically optimal for any value of M and B , and
therefore for multi-levels memory hierarchies.

The primary indexing data structure used in databases is the B-tree. The B-tree is a search tree in
which each node has B elements and thus fits within one I/O, and B children. Self-balancing mechanisms
allow to keep the depth of each leaf in Θ(logB N), where N is the number of elements currently present
in the data structure. Therefore, the lookups, insertions and deletions cost O(logB N) I/Os, and the
complexity of a range query of k elements is in O(logB N +k/B). A cache-oblivious version of the B-
tree has been designed by Bender et al. in [27], and achieves almost the same guarantees. The insertion
and deletion costs are instead in O

(
logB N + log2 N /B

)
. Another relevant external-memory result is a

sorting algorithm with an I/O complexity of SORT (N) = O
(N

B logM/B
N
B

)
provided by Aggarwal and

Vitter [1], which they prove optimal.

6.2 The I/O complexity of computing prime tables

In this study, we revisit the classical problem of computing prime tables: a list of all primes from 2
to N , for any given large N . Such prime-table-computation problems have a rich history, dating back
23 centuries to the sieve of Eratosthenes [82]. Until recently, all efficient prime-table algorithms were
sieves, which use a partial (and expanding) list of primes to find and disqualify composites [15, 76].
For example, the sieve of Eratosthenes maintains an array representing 2, . . . , N and works by crossing
off all multiples of each prime up to

p
N starting with 2. The surviving numbers, those that have not

been crossed off, comprise the prime numbers up to N . Polynomial-time primality testing [2] makes
another approach possible: independently test each i ∈ {2, . . . , N } for primality. The approaches can be
combined; sieving steps can be used to eliminate many candidates cheaply before relatively expensive
primality tests are performed. This is a feature of the sieve of Sorenson [132].

6.2. The I/O complexity of computing prime tables 133

Prime-table algorithms are generally compared according to two criteria. One is the standard run-
time complexity, that is, the number of RAM operations. However, when computing very large prime
tables that do not fit in RAM, such a measure may be a poor predictor of performance. Therefore, there
has been a push to reduce the working-set size, that is, the size of memory used other than the output
itself [15, 60, 132]. The hope is that if the working-set size gets small enough to fit in memory for
larger N , larger prime tables will be efficiently computable. Sieves and primality testing offer a trade-
off between the number of operations and the working-set size of prime-table algorithms. For example,
the sieve of Eratosthenes performs O(N loglog N) operations on a RAM but has a working-set size of
O(N), or O(

p
N) for the segmented variant1. The fastest primality tests take polylogarithmic time in N ,

and so run in O(N polylogN) time for a table but enjoy polylogarithmic working space. This run-time
versus working-set-size analysis has lead to a proliferation of prime-table algorithms that are hard to
compare.

A small working set does not guarantee a fast algorithm for two reasons. First, even slowly growing
working sets may become too big for RAM. But more importantly, even if a working set is small, an
algorithm can still be slow if the output table is accessed with little locality of reference.

We have designed data structures based on recent external-memory algorithms (the buffer tree, a
B-tree variant [12], and a specific priority queue [13]) for efficient implementation of the sieve of Er-
atosthenes [82], the linear sieve of Gries and Misra [76] (called GM Linear), the sieve of Atkin [15],
and the sieve of Sorenson [132]. Our algorithms work even when N À M . The complexity analysis
consists in the number of I/Os each algorithm induces, in addition to the number of operations. Indeed,
contrarily to the DAM model, the number of operations must not be occulted by the I/O complexity:
running a simple primality test on all the table leads to the optimal I/O complexity (i.e., O

(
N

B log N

)
, in

order to output the table) but with far too many operations.

Table 6.1 summarizes our main results (recall that SORT (N) = O
(N

B logM/B
N
B

)
). The GM Linear

sieve and the sieve of Atkin both slightly outperform the classical sieve of Eratosthenes. The sieve of
Sorenson on the other hand induces far fewer I/O operations, but the RAM complexity is dependent on
some number-theoretic unknowns, and may be far higher. Its complexity is thus not reported here, see
[C5] for details. Note that the working-set sizes are not substantially modified by the new implemen-
tations, so the (segmented) sieve of Eratosthenes and the sieve of Atkins use O(

p
N) working space,

whereas GM Linear uses O(N) working space. This is consistent with our observation that the working
space is not predictive of the I/O complexity of an algorithm.

Sieve Original complexity Obtained complexity Space

Operations I/Os Operations

Eratosthenes N loglog N SORT (N) B SORT (N)
p

N

GM Linear N SORT
(

N
loglog N

)
B SORT

(
N

loglog N

)
N

Atkin N
loglog N SORT

(
N

loglog N

)
B SORT

(
N

loglog N

) p
N

Table 6.1: Summary of the results for three studied sieves. The obtained (asymptotic) complexities are
simplified under the assumption that N is large compared to M and B , see [C5].

1We assume that operations are performed on machine words, and that a machine word has Ω(log N) bits. Therefore,
comparing, multiplying or adding machine words cost O(1), and the main memory contains M machine words.

134 CHAPTER 6. Data structures for external memory

6.3 History-independent sparse tables and dictionaries

A data structure is history-independent if its internal representation reveals nothing about the sequence
of operations that led to its current state [112, 115]. History independence in a database can have major
advantages, depending on the kind of data that is being stored and the security requirements. History-
independent data structures naturally support information-theoretically-secure delete. In contrast, with
more standard secure delete (where the file system overwrites deleted data with zeros), information
about deleted data can leak from the memory representation. For example, it reveals how much data
was deleted and where in the keyspace it might have been. In fact, one of the original motivations for
history independence comes from data retrieved from public documents in which it was supposed to be
erased [79]. However, history independence has rarely been explored in the external-memory model,
which is surprising as this model is the most suited for databases.

In this project, we study history independence for persistent, disk-resident dictionary data struc-
tures. Specifically, we give a history-independent external-memory skip list and a history-independent
cache-oblivious B-tree, which are both history-independent alternatives to the B-tree. One of the main
contributions is a data structure we build on the way: a history-independent packed memory array. The
packed memory array (PMA) [27, 29] was actually an unlikely candidate data structure to be made
history-independent, since traditional PMAs rely fundamentally on history. The history-independent
PMA is one of the primary building blocks in the history-independent cache-oblivious B-tree.

As our data structures are randomized, we do not study their complexity in the worst case, but with
high probability. An operation has a complexity in O(f (N)) with high probability if for every constant
c, there exists a constant d such that the complexity is larger than d · f (N) with probability at most n−c .

6.3.1 External memory skip list

The skip list is an elegant history-independent dictionary introduced by Pugh in [123], which handles
lookups, insertions and deletions in O(log N) operations, and range queries in O(log N +k) operations
with high probability. A skip list consists in maintaining a sorted list containing all the elements, which
allows a fast range query, insertion, and deletion once the pointer to an element is known. In order
to improve the lookup complexity, each element gets promoted to a second level with probability 1/2.
These elements form a second list which contains pointers to the previous list, and are again promoted
one level higher with probability 1/2. This process continues until no element remains. With high
probability, the skip list obtained contains Θ(log N) levels, and any lookup starting at the highest level
costs O(log N) operations.

The objective of this section is to design a history-independent skip list achieving the I/O guarantees
of the B-tree, amortized and with high probability. Several studies such as Golovin’s in [70] modify the
promotion probability to 1/B , in order to obtain Θ(logB N) levels. The sublists between two promoted
elements are stored consecutively so that the lookups cost one I/O per level on average. However,
with high probability, there are Ω(B log N) consecutive non-promoted elements at the main level, which
leads to lookup operations costing Ω

(
log N

B

)
I/Os. In order to resolve this issue, our method consists in

increasing the promotion probability to 1/B 0.7 for instance (any constant between 0.5 and 1 also works).
As this damages the range query complexity, we also group the sublists between two doubly-promoted
elements at the main level. Details on how to maintain this structure with the desired complexity while
staying history-independent can be found in [C3].

6.4. Conclusion 135

6.3.2 History-independent packed-memory array

One of the classic data-structural problems is called sequential file maintenance: maintain a dynamic
set of elements in sorted order in a linear-sized array. If there are N elements, then the array has Θ(N)
empty array positions or gaps interspersed among the elements to accommodate future insertions. The
gaps allow some elements to shift left or right to open slots for new elements—like shifting books on a
bookshelf to make room for new books.

Remarkably, there are data structures for these problems that are efficient even for adversarial inserts
and deletes. Indeed, the number of element moves per update is only O(log2 N) in the worst case [146],
which is optimal [38]. In external memory, this data structure is called a packed-memory array [27,
29], as already introduced. It supports inserts, deletes, and range queries. Given the location where we
want to insert or delete (which can be found using a separate indexing structure, e.g., [28]), it takes only
O(1+ (log2 N)/B) amortized I/Os to shift the elements. Given the starting point, a range query costs
O(1+k/B) I/Os (so only O(1) gaps can separate two consecutive elements). The objective of this study
is to build a history-independent PMA achieving these bounds with high probability.

Prior PMAs operate as follows. To insert a new element after an existing element or to delete an
element, find an enclosing subarray or range, and perform a rebalance. This spreads out the elements
(and gaps) within that range. The rebalance range is chosen based upon the density within the range,
where ranges have minimum and maximum allowed densities. The larger a range is, the less variability
is allowed in its density. The algorithmic subtlety has to do with choosing the right rebalance ranges and
the right minimum and maximum density thresholds for each range size.

However, range densities are very history dependent. If you repeatedly insert towards the front of
an array or if you repeatedly delete from the back of the array, then the front of the array will be denser
than the back. The challenge is to make a version of this data structure that is history independent—that
is, where newly inserted (or deleted) elements do not seem to increase (or decrease) some local density.

The solution we provide relies on randomness to balance the elements and guarantee the following
with high probability amortized complexity bounds: O(log2 N) operations and O(1+ (log2 N)/B) I/Os
per update, and O(1+k/B) additional I/Os for a range query of k elements. Our version of the PMA
follows a randomized recursive structure. Schematically, the array is divided in two subarrays, where the
split element is randomly chosen among a set of Θ(N /log N) elements in the middle of the array. When
an insertion or a deletion occurs, this element may change, following a history-independent process. In
this case, which is quite rare, the two subarrays are rebuilt from scratch. Each subarray is recursively
maintained with the same method.

The cache-oblivious B-tree introduced in [27] heavily relies on a PMA implementation. Replacing
the original implementation by the history-independent variant, along with other modifications of the
algorithm, we obtain a history-independent cache-oblivious B-tree, matching the bounds exposed in
Section 6.1, amortized and with high probability.

6.4 Conclusion

In this chapter, we have designed several data structures in the external memory model. We have pro-
posed an implementation of several sieves which allow to compute large prime tables while performing
both few I/Os and few operations. In a second project, we have designed an external-memory skip list
with high probability bounds. The main contribution of this chapter may be the history-independent
PMA: a data structure maintaining a set of elements in sorted order into a linear-size array. Indeed, the
existence of a history-independent implementation of the PMA with the same complexity guarantees
seemed unlikely, as the state of the data structure strongly depends on history in the original version.

136 CHAPTER 6. Data structures for external memory

Conclusion

In this thesis, we have studied three main aspects of task graph scheduling on modern platforms. We have
developed models and algorithms allowing the efficient exploitation of task parallelism, especially for
linear algebra applications. When several types of processors are available, we have designed guaranteed
algorithms for online scheduling. In the context of a limited available memory, we have proposed a
method to prevent dynamic schedulers from exceeding the memory limit whenever possible, and have
studied the problem of minimizing memory transfers otherwise. The main contributions of each chapter
are stated in the following paragraphs.

The speedup model of Prasanna and Musicus for parallel tasks

We have first studied the problem of scheduling parallel task graphs under the speedup model p 7→ pα,
for 0 < α < 1. This model has been previously introduced and used to represent linear algebra opera-
tions, and more specifically the workflow corresponding to the elimination tree arising in multifrontal
factorization of sparse matrices. Benchmarks showed that this model is reasonable for some cases but
still has a limited accuracy. We proposed a new and simpler proof of the optimal schedule on identical
processors, and designed approximation algorithms for two nodes of identical cores.

The two-threshold roofline speedup model for parallel tasks

In order to correct the limitations of the model of the previous chapter, we have designed and studied
a more general and accurate speedup model for the same problem. It is composed of three phases. Up
to a first threshold the speedup is perfect, equaling the number of processors. Then it grows linearly,
but with a slope smaller than one until a second threshold is reached, after which the speedup remains
constant. These thresholds depend on the tasks, so that this model leads to a high accuracy for the
conducted benchmarks on linear algebra kernels. As minimizing the makespan on identical processors
is NP-complete under this model, we studied two algorithms from the literature and proposed a new
scheduling policy specifically designed for this model. These algorithms have the same approximation
ratio, but our new policy is more competitive on synthetic graphs.

Exploiting hybrid platforms in an online setting

We have then considered online task graph scheduling on a hybrid platform composed of m CPUs and
k GPUs. We proved that no online algorithm can have a competitive ratio smaller than

p
m/k, even

when some information on the remainder of the graph or additional scheduling power is allowed. We
improved an existing online algorithm to obtain a competitive ratio smaller than 2

p
m/k + 1, and we

designed a O(
p

m/k)-competitive algorithm which performs well on conducted simulations. Finally, we
extended these results on multiple types of processors.

137

138 Conclusion

Coping with a limited available memory

The third main theme of this thesis concerns task graph scheduling under a limited memory. In this
context, we have designed a method to prevent dynamic runtime schedulers from using too much par-
allelism and exceeding a given memory limit. This method consists in adding fictitious dependences
in order to ensure that any schedule will not exceed the memory limit, while maintaining the critical
path as small as possible. The first step was to propose a simple yet powerful model to describe the
memory operations. In this framework, we designed an algorithm detecting at which point of the graph
the memory may be exceeded, by computing a maximal-weight topological cut of a DAG. Then, we
proposed an integer linear program and several heuristics to select the new dependences that will be
added; the problem of finding the best dependences is NP-hard, even given a known memory-efficient
schedule. Simulations on realistic graphs showed that two heuristics present good performance, one of
them is better on average but may fail on difficult cases.

Minimizing I/Os when processing a tree

The second studied problem dealing with limited memory is the minimization of I/Os while scheduling
a tree. This problem is NP-hard when files cannot be split between the main memory and the secondary
storage, but its complexity when tasks can be split remains open. Minimizing the peak memory on
trees can be done in polynomial time, but the corresponding schedule may lead to arbitrarily many
unnecessary I/Os. We showed that the best postorder schedule is optimal when files have a unit size but
can also be arbitrary far from the optimal in the general setting. In order to address the general problem,
we proposed an integer linear program and a polynomial heuristic, which appeared to be close to the
optimal solution in simulations.

Data structures for external memory

In this additional project, we designed several data structures which target external memory efficiency.
First, we studied the complexity of computing prime number tables. Since the sieve of Eratosthenes,
most studies have focused only on the number of operations and the space usage. We designed data
structures which dramatically reduce the required I/Os, while performing few operations. In a second
part, we focused on history-independent data structure. We designed a skip list matching the optimal
external memory bounds with high probability. We then designed a history-independent packed memory
array (a data structure that maintains a dynamic set of elements in sorted order in a linear-size array),
which yields a near-optimal history-independent cache-oblivious B-tree.

139

The work conducted in this thesis can be extended in several directions. We review here some
short-term and long-term perspectives.

Short-term perspectives

Pursuit of the theoretical work

In this thesis, we have identified several theoretical questions that remain to be answered. They have been
exposed in the appropriate chapters, and many of them consist in improving the approximation ratios
of existing algorithms, determining the existence of a guaranteed algorithm where we only proposed a
heuristic, or extending the results to a more general framework. In this conclusion, we would like to
stress two major unsolved problems:

• Designing an offline algorithm to schedule task graphs on two types of processors with an approx-
imation ratio at most 6, not relying on linear programming (see Chapter 3). As suggested by this
question, an existing algorithm based on linear program rounding achieves a tight approximation
ratio of 6. An algorithm based on pure scheduling considerations instead of linear programming
would be interesting both theoretically, as it provides more insights on the solution, and practi-
cally, as its complexity is generally lower, so is closer to an implementable algorithm. Such an
algorithm would be the natural continuity of existing literature on independent tasks, and of the
online results we provide.

• Determining the complexity of the problem of minimizing I/Os while scheduling a tree, when an
I/O may contain only a fraction of a file (see Chapter 5). This result would be the continuity of a
branch of theoretical scheduling initiated by Liu back in the 1980s. He proved that determining
whether scheduling a tree requires no I/Os is polynomial, whereas this problem is NP-hard on
general DAGs. More recently, it has been proved that minimizing I/Os on a tree when files may
not be split between the main memory and the secondary storage is NP-hard. Therefore, it remains
to determine the complexity of minimizing I/Os on a tree when files may be split. We have proved
in this thesis that the optimal solution may not belong to an intuitive class of schedule.

Towards implementable heuristics

As already emphasized in the introduction, most solutions proposed in this thesis are not intended to
be implemented as such in an actual scheduler. Indeed, the considered models are often ideal, which
is necessary to understand the underlying complexity without coping with multiple parameters. For
instance, communication times are neglected as in many theoretical studies. Indeed, it is notorious that
adding these constraints complexifies scheduling problems, so ignoring them allows to focus on the
specific complexity of the studied problem. In addition, the solution proposed may have an important
complexity, although polynomial, as for instance the heuristic proposed in Chapter 4.

A way to derive implementable algorithms from our studies is to lower the expectations in order to
decrease the complexity of the algorithms. The algorithm proposed in Chapter 4 adds many fictitious
dependences to ensure that no schedule exceeds the memory limit, at the cost of an expensive process. A
similar idea could be used to add far fewer dependences, by targeting only critical points. The objective
would then be to limit the memory consumption without ensuring that no I/O will be performed: it may
be preferable to allow some I/Os rather than to have a very complex scheduling process. A second di-
rection consists in taking into account new and important constraints, under a simplified framework. For
instance, Chapters 1 and 2 do not include communication times, which are difficult to correctly model

140 Conclusion

and which prevent low-complexity algorithms to be efficient. A way to take them into account could be
to improve the proportional mapping algorithm, which presents both an acceptable theoretical perfor-
mance and very good locality properties, by performing some heuristic modifications on the allocation.
Such a process would lead to both an efficient theoretical schedule and few communications.

Long-term perspectives

The studies conducted in this thesis focused on a shared-memory platform. A natural extension is
therefore to model distributed platforms. In such a setting, the computing units are divided into nodes
which are themselves organized following a hierarchical structure. Processors inside a given node typi-
cally share a common memory, so the models considered in this thesis can be applied to a single node.
Transferring data between two nodes is highly time-consuming, so such communications are ideally
performed only when necessary. Therefore, one of the crucial scheduling problems on distributed archi-
tecture is to decide on which node each task should be executed. Similarly to the work conducted in this
thesis, the study of scheduling problems on a distributed architecture can be decomposed into several
aspects.

First, one objective could be to minimize the theoretical makespan without focusing on memory
constraints, as we did in Chapters 1 to 3. Several challenges have to be addressed in this setting. One of
the main problems is to decide a static allocation of the tasks to the nodes. Because of the large transfer
times, one solution would be to divide the graph relying on clustering algorithms, and then allocate
each cluster to a node. These algorithms could benefit from a new paradigm currently developed in
the StarPU [17] software: hierarchical tasks, also called bubbles or coarse-grain tasks. Each bubble
represents a subgraph, which is revealed to the scheduler only at the execution of this bubble. This
concept, which generalizes the parallel tasks considered in Chapters 1 and 2, allows to have benefits
from both coarse-grain and medium-grain task scheduling. Indeed, the initial graph has a reasonable
size, but the schedule can be finely adapted to the platform once the subgraphs inside each bubble are
discovered. The running time of clustering algorithms on this bubble graph should not be prohibitive,
and each bubble will be allocated on a node. As in this thesis, algorithms to handle parallel tasks and
hybrid computing units in this context will need to be developed. In order to correct the computing
and communication time estimates, it may be also necessary to resort to dynamic adaptations of the
allocation.

The memory usage of the proposed solutions also needs to be optimized. In shared-memory plat-
forms, we proposed in Chapter 4 a solution to prevent dynamic schedulers from running out of memory,
while maintaining enough parallelism to avoid idle processors. Such a method would be difficult to
apply in a distributed setting, as the memory itself is distributed: if the computations of one node is
memory-bound, some workload should be migrated to another node, which cannot be enforced by graph
modifications as in the shared-memory case. There is therefore a need for a solution to adapt the alloca-
tions computed in the previous context to the available distributed memory.

Appendix A

The I/O complexity of computing prime tables
[LATIN 2016 conference]

141

The I/O Complexity of Computing Prime Tables

Michael A. Bender1, Rezaul Chowdhury1, Alex Conway2,
Martı́n Farach-Colton2, Pramod Ganapathi1, Rob Johnson1,
Samuel McCauley1, Bertrand Simon3, and Shikha Singh1

1 Stony Brook University, Stony Brook, NY 11794-2424, USA.
{bender,rezaul,pganapathi,rob,smccauley,shiksingh}@cs.stonybrook.edu

2 Rutgers University, Piscataway, NJ 08854, USA.
{farach,alexander.conway}@cs.rutgers.edu

3 LIP, ENS de Lyon, 46 allée d’Italie, Lyon, France.
bertrand.simon@ens-lyon.fr

Abstract. We revisit classical primes sieves and analyze their performance in the
external-memory model. Most prior sieves are analyzed in the RAM model, where
the focus is on minimizing both the total number of operations and the size of
the working set. One reason for parameterizing by working-set size is that if the
working set fits in RAM, then there is a better chance that the sieve has good I/O
performance.

We analyze our algorithms directly in terms of I/Os and operations. Unlike in the
RAM model, where permutation is trivial, in the external-memory model, permu-
tation can be the most expensive aspect of sieving. We show how to implement
classical sieves so that they have both good I/O performance and good RAM
performance, even when the problem size N becomes huge—superpolynomially
larger than RAM. Towards this goal, we give two I/O-efficient priority queues that
are optimized for the number of operations incurred by these sieves.

Keywords: External Memory Algorithms, Prime Tables, Sorting, Priority Queues

1 Introduction
According to Fox News [20], “Prime numbers, which are divisible only by themselves
and one, have little mathematical importance. Yet the oddities have long fascinated
amateur and professional mathematicians.” Indeed, finding prime numbers has been the
subject of intensive study for millennia.

Prime-number-computation problems come in many forms, and in this paper we
revisit the classical (and Classical) problem of computing prime tables: how efficiently
can we compute the table P [a, b] of all primes from a to b and the table P [N] = P [2, N].
Such prime-table-computation problems have a rich history, dating back 23 centuries to
the sieve of Eratosthenes [17, 27].

Until recently, all efficient prime-table algorithms were sieves, which use a partial
(and expanding) list of primes to find and disqualify composites [6, 8, 15, 27]. For
example, the sieve of Eratosthenes maintains an array representing 2, . . . , N and works
by crossing off all multiples of each prime up to

√
N starting with 2. The surviving

numbers, those that haven’t been crossed off, comprise the prime numbers up to N .
Polynomial-time primality testing [2, 18] makes another approach possible: indepen-

dently test each i ∈ {2, . . . , N} (or any subrange {a, . . . , b}) for primality. Nevertheless,
sieving steps can be used to cheaply eliminate many candidates before the relatively

142 APPENDIX A. The I/O complexity of computing prime tables [LATIN 2016 conference]

expensive tests are performed, thus improving their performance. This is a feature of
the sieve of Sorenson [28] (discussed in Section 5), and can also be used to improve the
efficiency of AKS [2] when implemented over a range.

Prime-table algorithms are generally compared according to two criteria [6, 23, 24,
27, 28]. One is the standard run-time complexity, that is, the number of operations such
algorithms take in RAM. However, when computing very large prime tables that do not
fit in RAM, such a measure may be a poor predictor of performance. Therefore, there
has been a push to reduce the working-set size, that is, the size of memory used other
than the table itself [6, 12, 28]. The idea is that if the working-set size is smaller, it will
fit in memory for larger N , thus allowing larger prime tables to be computed efficiently.

Sieves and primality testing offer a tradeoff between the number of operations and
the working-set size of prime-table algorithms. For example, the sieve of Eratosthenes
performs O(N log logN) operations on a RAM but uses a working space of size O(N).
The fastest primality tests take polylogarithmic time in N , and so run in O(NpolylogN)
time, but enjoy polylogarithmic working space. Sieves are also less effective at computing
T [a, b]. For primality-test algorithms, one simply checks the b− a+ 1 candidate primes,
whereas sieves generally require computing many primes smaller than a.

A small working set does not guarantee a fast algorithm for two reasons. First,
eventually even slowly growing working sets will be too big for RAM. But more
importantly, even if a working set is small, an algorithm can still be slow if the output
table is accessed with little locality of reference. This run-time versus working-set-size
analysis has lead to a proliferation of prime-table algorithms that are hard to compare.

In this paper, we analyze a variety of algorithms in terms of the number of block
transfers they induce, in addition to the number of operations. We use the standard
disk access machine (DAM) model [1] (also called the external-memory model or I/O
model). For out-of-core computations, these block transfers are page faults, and for
smaller computations, they are cache misses. The DAM model is often more predictive
of the efficiency of an algorithm than the size of the working set or of the instruction
count, since it directly counts all I/Os, both on the working set and the output array.

Let’s begin by analyzing the sieve of Eratosthenes. Each prime is used in turn to
eliminate composites, so the ith prime pi touches all multiples of pi in the array. If
pi < B, every block is touched. As pi gets larger, every dpi/Beth block is touched. We

bound the I/Os by
∑√N

i=2 N/(Bdpi/Be) ≤ N log logN . In short, this algorithm exhibits
essentially no locality of reference and for large N , most instructions induce I/Os.

As a lead-in to our work in Section 2, we can improve the I/O complexity of the
sieve of Eratosthenes as follows. Compute the primes up to

√
N recursively. Then for

each prime, make a list of all its multiples. The total number of elements in all lists is
O(N log logN). Sort, using an I/O-optimal sorting algorithm, and remove duplicates:
this is the list of all composites. Take the complement of this list. The total I/O-complexity
is dominated by the sorting step, so the time is O(N

B (log logN)(logM/B
N
B)). Although

this is a considerable improvement in the number of I/Os, it represents a slowdown in
the number of operations, which increases by a log factor to O(N logN log logN).

In our analysis of the I/O complexity of diverse prime-table algorithms in this
paper, one thing becomes clear. All known fast algorithms produce prime numbers,
or equivalently composite numbers, out of order. Indeed, it seems to be the careful

2

143

representation of integers according to some order other than by value that allows for
sublinear sieves.

Consequently, the resulting primes or composites need to be permuted. In RAM,
permuting values (or equivalently, sorting small integers) is trivial. In external memory,
permuting values is essentially as slow as sorting [1]. Therefore, our results will involve
sorting bounds. Until an in-order sieve is produced, all fast external-memory algorithms
are likely to involve sorting.

Our main result is a collection of data structures based on buffer trees [3] and
external-memory priority queues [3–5] that allow prime tables to be computed quickly,
with less computation than sorting implies.

1.1 Background and Related Work
In this section we discuss some previous work on prime sieves. For a more extensive
survey on prime sieves, we refer readers to [27].

Much of previous work on sieving has focused on optimizing the sieve of Er-
atosthenes. Recall that the original sieve uses O(N) working space and performs
O(N log logN) operations. The notion of chopping up the input into intervals and
sieving on each of them, referred to as the segmented sieve of Eratosthenes [8], is
frequently used in practice [6, 10, 12, 26, 27]. It performs the same number of operations
as the original but with only O(

√
N) working space. On the other hand, linear variants

of the sieve [9,15,19,25] improve the operation count by aΘ(log logN) factor toO(N),
but also require a working set of Θ(N); see Section 3.

Recent advances in sieving use new approaches to achieve better performance. We
discuss the sieves of Atkin and Sorenson in Sections 4 and 5.

Alternatively, a primality testing algorithm such as AKS [2] can be used to test the
primality of each number directly. Using AKS leads to very small working set size but a
large computation cost. On the other hand, the sieve of Sorenson uses a hybrid sieving
approach, including elements of both sieving and direct primality testing. This results in
polylogarithmic working space, but a larger RAM complexity (see Section 5 for details).

A common technique to increase sieve efficiency is a wheel sieve. A wheel sieve
preprocesses a large set of potential primes, quickly eliminating composites with small
divisors. Specifically, a wheel sieve begins with a number W , which is a product of the
first p primes (for some p). All multiples less than W of the first p primes are marked.
Note that if x < W is composite, then x + W is composite as well (since x and W
must share a divisor). Thus we iterate through each interval of W consecutive potential
primes, marking off certain composites. Since this is just a scan, it takes at most linear
work and I/Os, and marks off all composites divisible by one of the first p primes. We
will use this technique in Sections 3 and 4. See, for example, [6] for more details.

Previously, Arge and Thorup created a priority queue that is simultaneously efficient
in RAM and external memory [5]. We use this data structure as a black box in Sections 2
and 4. Their results also provide an alternative to our priority queue in Section 3.

Specifically, the bounds in Theorem 3 can be achieved by both Arge and Thorup’s
priority queue, and the priority queue presented in Section 3; however, there are several
distinctions. The data structure in [5] requiresM < N/2 (an upper bound onM) whereas
ours requires

√
M/B > logM/B N/B (a lower bound on M). Thus, the approaches are

complimentary, covering different ranges of M while achieving the same bounds.

3

144 APPENDIX A. The I/O complexity of computing prime tables [LATIN 2016 conference]

Arge and Thorup’s priority queue also differs substantially in structure. Their priority
queue is based on integer sorting techniques to lower the RAM complexity, whereas
ours uses properties of our specific sequence of inserts. Thus our priority queue avoids
the heavy machinery of integer sorting, but is only applicable in this specific context. It
would be interesting to further explore the relationship between these techniques.

1.2 External-Memory Model and Prime Tables
We analyze our sieves using the external memory or disk-access machine (DAM) model
of Aggarwal and Vitter [1]. The DAM model focuses on the block transfers between any
two levels of the memory hierarchy. In this paper, we denote the smaller level by RAM
or main memory and the larger level by disk or external memory.

We use the RAM model for counting operations. It costs O(1) to compare, multiply,
or add machine words. As in the standard RAM, a machine word has Θ(logN) bits.

The prime table P [N] is represented as a bit array that is stored on disk and needs
to be filled in. We say that P [i] = 1 means that i is prime and P [i] = 0 means that i is
composite. We are interested in values of N , such that P [N] is too large to fit in main
memory. Thus, the prime table fills Θ(N/ logN) words.

RAM is divided into M words. Disk is modeled as arbitrarily large. Data is trans-
ferred between RAM and Disk in blocks of size B words (Θ(B logN) bits). On a
DAM (rather than a RAM), performance is measured in terms of block transfers, and
computation is modeled as free [1, 29].

In this paper, we are interested in both the I/O complexity CI/O and the RAM com-
plexity CRAM. We indicate an algorithm’s performance using the notation 〈CI/O, CRAM〉.
For example, the array implementation of the sieve of Eratosthenes can be shown to run
in 〈Θ(N), Θ(N log logN)〉.

If the problem size is large (N = Ω(M2)), other sieves perform poorly as well. In
this case, segmenting the sieve of Eratosthenes does not lead to any improvements, and
the sieve of Atkin requires 〈O(N/ log logN), O(N/ log logN)〉.

In contrast, a primality-checking sieve based on AKS runs in
〈Θ (N/(B logN)) , Θ(N logcN)〉, as long as M = Ω (logcN), a factor of
B logN better in memory transfers but nearly logcN worse in terms of operations.4

1.3 Our Contributions
We present data structures for four main sieves with the objective of optimizing both the
number of I/Os and the operation count. Our algorithms work even when M � N . We
consider the sieve of Eratosthenes [17], the linear sieve of Eratosthenes [15], the sieve of
Atkin [6], and the sieve of Sorenson [28].

We use the notation SORT (x) = O(x
B logM/B

x
B). Thus, the I/O lower bound of

permuting x elements can be written as min(SORT (x) , x) [1].
We summarize our main results below.

1. Sieve of Eratosthenes. We show that the standard sieve of Eratosthenes can be
implemented to run in 〈SORT (N) , O(N logM/B N + N log logN log logM)〉

4 Here the representation of P [N] matters most, because the I/O complexity depends on the size
(and cost to scan) P [N]. For most other sieves in this paper, P [N] is represented as a bit array
and the I/O-cost to scan P [N] is a lower-order term.

4

145

p← 2; v′ ← 2; k ← p; v ← 2;
print p; Q.INSERT(〈k, k2〉);
while v ≤ N do
〈k, v〉 ← Q.DELETEMIN();
if v = v′ + 2 then

p← v − 1; print p;
Q.INSERT(〈p, p2〉)

v′ ← v; Q.INSERT(〈k, v + k〉)

primes in

 220
, 221

primes in

 221
, 222

primes in

 22(log log 𝑁)−1
, 22log log 𝑁

𝑄1

𝑄2

𝑄log log 𝑁

values in 𝑄′ are the minimum priority
values from 𝑄1, 𝑄2, … , 𝑄log log 𝑁

𝑄′

𝑄

Fig. 1. (a) Original sieve of Eratosthenes using a priority queue, (b) A key-sensitive priority queue.

cost, under the assumption that M = Ω
(
B log1+ε logN

)
for any constant ε > 0.

We achieve these bounds using a new priority queue data structure in which the
cost of any operation on an item with key k depends only on k instead of the total
number of items in the data structure (as in standard priority queues).

2. Linear sieve of Eratosthenes. We implement the linear sieve
of Eratosthenes using a buffer-tree-like data structure in
〈SORT (N/ log logN) , O((N/ log logN) logM/B(N))〉 under the assump-
tion that

√
M/B = Ω(max{logM/B(N

B) , log2
M/B(N

B)/ log logN}).
3. Sublinear sieve of Atkin. We show that the sublinear sieve of Atkin can be

implemented using I/O- and RAM- efficient priority queues [5] to run in〈
SORT (N/ log logN) , O

((
N

log log N

)
(logM/B(N) + log logM)

)〉
.

4. Sieve of Sorenson. We analyze the sieve of Sorenson in external memory and show
that it runs in 〈O(N/B), O(Nπ(p))〉, where π(p) denotes the smallest i such that
the pseudosquare Lpi

> N/(i log2N), where pi is the ith prime. We also show that
given the availability of pseudosquare tables, this sieve can be adapted to sieve the
interval [a, b] in 〈O(1 + (b− a+ π(p) log2 b)/B), O((b− a)π(p) + π(p) log2 b)〉.

2 Sieve of Eratosthenes
In this section we show that the sieve of Eratosthenes can be implemented to achieve
I/O- and RAM-efficiency simultaneously using sublinear space. We start with a standard
priority queue based implementation of the sieve (shown in Figure 1(a)), and show
that by using a new data structure which we call a key-sensitive priority queue, we can
achieve sorting bound in I/Os without sacrificing RAM performance.

We start by analyzing the performance of the sieve using the recently proposed and
only known RAM-efficient external-memory priority queue from [5]. We then observe
that the smaller the prime the larger the number of priority queue operations performed
on it, and so we can potentially improve the performance of the algorithm by reducing
the cost of operations on smaller primes.
Sieve of Eratosthenes using a RAM-efficient external-memory priority queue. The
sieve of Eratosthenes can be implemented efficiently using the priority queue of Arge and
Thorup as a black box [5]. We describe this in detail in Appendix C.1. This achieves a per-
formance of 〈SORT (N log logN) , O(N log logN(logM/B N + log logM))〉. How-
ever, we can shave off the log logN factor using a new type of priority queue.

5

146 APPENDIX A. The I/O complexity of computing prime tables [LATIN 2016 conference]

Sieve of Eratosthenes using a key-sensitive priority queue. In a key-sensitive priority
queue the amortized access cost of an operation on an item with key k depends on
k instead of the size of the data structure. This property is useful in improving the
performance of the folklore priority-queue-based implementation of sieve of Eratosthenes
(given in Figure 1(a)). In that implementation, the number of priority queue operations
performed on items with a given prime k as the key varies inversely with k. Thus, a
reduction in the cost of operations on smaller primes has the potential of reducing the
total cost of all operations. Indeed, we use such a priority queue to achieve sorting bound
on I/Os in the sieve of Eratosthenes.

A key-sensitive priority queue Q has two parts—the top part consisting of
a single internal-memory priority queue Q′, and the bottom part consisting of
dlog logNe external-memory priority queues Q1, Q2, . . . , Qdlog log Ne. Priority queues
store 〈key, value〉 pairs where key is an integer in [1, N] and value is the priority of
the item. For our sieving application, key will be a prime in [1,

√
N] and value will be

a multiple of that prime. For any given key there will be at most one 〈key, value〉 pair
in the entire data structure.

Each Qi in the bottom part of Q is a RAM-efficient external-memory priority
queue [5] that stores 〈k, v〉 pairs such that k is a prime in [22i

, 22i+1

). Hence, Qi will
contain fewer than Ni = 22i+1

items. Then with a cache of size M , Qi will support
insert and delete-min operations in 〈O((logM/B Ni)/B), O(logM/B Ni + log logM)〉
amortized cost [5]. But note that in Qi, each key satisfies log k = Θ (logNi). Thus the
cost reduces to 〈O((logM/B k)/B), O(logM/B k+ log logM)〉 for an item with key k.
Though we divide the cache equally among all Qi’s, the asymptotic cost per operation
remains unchanged assuming M > B(log logN)1+ε for some constant ε > 0.

The queue Q′ in the top part will include only the item with the smallest value from
each Qi. So the size of Q′ will be Θ (log logN). We use the dynamic integer set data
structure from [21] to implement Q′ so that insert, delete and delete-min operations on
Q′ can be supported in O (1) time each using only O (log n) space (in words). We also
maintain an array A[1 : dlog logNe] such that A[i] stores Qi’s contributed item to Q′ so
that we can access it constant time.

The priority queue Q only needs to support insert and delete-min operations. To
perform an delete-min we extract the smallest item from Q′, check its key to find the
Qi it came from, extract the smallest item from that Qi and insert it into Q′. To insert
an item we first check its key to determine its destination Qi, compare it with the item
in A[i], and depending on the result of the comparison we either insert the new item
directly into Qi or move Qi’s current item in Q′ to Qi and insert the new item into Q′.
The following lemma summarizes the performance bounds of the operations on Q.
Lemma 1. Let each Qi be a RAM-efficient external-memory PQ as described in
[5], and let Q′ be a priority queue based on the dynamic integer set data struc-
ture given in [21]. Then in the resulting data structure, the amortized cost of
insert on an item with key k is 〈O((logM/B k)/B), O(logM/B k)〉 and delete-
min is 〈O((logM/B k)/B), O(logM/B k + log logM)〉, assuming M > logN +

B(log logN)1+ε for any constant ε > 0.

We use this key-sensitive priority queue to efficiently implement the sieve of Er-
atosthenes. The following theorem follows from the observation that a prime p will be

6

147

involved in Θ (N/p) priority queue operations in Q, and because it is known that there
are approximately

√
N/(ln(

√
N)− 1) prime numbers in [1,

√
N] [7], and the i-th such

prime number is approximately i ln i [16].

Theorem 1. Using the priority queue from Lemma 1, the sieve of Eratosthenes costs
〈SORT (N) , O(N(logM/B N + log logM log logN))〉 and uses O(

√
N) space, pro-

vided M > logN +B(log logN)1+ε for some constant ε > 0.

3 Linear Sieve of Eratosthenes
There are several variants of the sieve of Eratosthenes [9, 14, 15, 19] that perform O(N)
operations by only marking each composite exactly once. See [25] for a survey.

Even though each composite is marked exactly once, resulting in O(N) operations,
many of these algorithms have poor data locality. The marking requires large jumps
around the array, leading to O(N) I/Os—very poor locality.

In this section, we improve the locality of such linear sieves, while also taking
advantage of the bit-complexity of words to improve the performance further. We use a
buffer-tree-like data structure (adapted from Arge [3]) to improve the locality, resulting
in a cost of 〈SORT (N/ log logN) , O((N logM/B N/ log logN)〉.

We focus on one of the linear variants, the linear sieve algorithm by Gries and
Misra [15], henceforth referred to as the linear sieve of Eratosthenes.5 The linear sieve
of Eratosthenes is based on the following fundamental property of composite numbers.

Theorem 2 ([15]). Each composite C can be represented uniquely as C = prq where p
is the smallest prime factor of C, and p does not divide q (unless p = q).

C ← {1}; p← 1;
while p ≤

√
N do p← InvSuccC(p); q ← p;

while q ≤ N/p do
for r = 1, 2, . . . , logp(N/q) do
InsertInC(prq);

q ← InvSuccC(q);
return [1;N] \ C;

Algorithm 1: Linear SoE

Thus, each composite has a unique
normal form based on p, q and r. Crossing
off the composites in a lexicographical
order based on these (p, q, r) ensures that
each composite is marked exactly once.
Thus the RAM complexity is O(N).

Algorithm 1 describes the linear sieve in terms of subroutines. It builds a set C of
composite numbers, then returns its complement.

The subroutine InsertInC(x) inserts x in C. Inverse successor (InvSuccC(x))
returns the smallest element larger than x that is not in C.

While the RAM complexity is an improvement by a factor log logN over the classic
sieve of Eratosthenes, the algorithm (thematically) performs poorly in the DAM model.
The overall complexity of this algorithm is 〈O (N) , O (N)〉. In the rest of the section
we improve the I/O complexity while maintaining good RAM performance.
Using a buffer-tree-like structure. As a first step, we introduce the classical buffer tree
of Arge [3]; we will then modify the structure to improve the bounds of the linear sieve.
We give a high-level overview of the data structure here; for details see Appendix A.

The classical buffer tree has branching factor M/B, with a buffer of size
M at each node. We assume a complete tree for simplicity, so its height is

5 Note that the other linear-sieve variants, such as [9, 14, 19] share the same underlying data-
structural operations as the sieve of Gries and Misra.

7

148 APPENDIX A. The I/O complexity of computing prime tables [LATIN 2016 conference]

dlogM/B N/Me = O(logM/B N/B). Newly-inserted elements are placed into the
root buffer. If the root buffer is full of M elements, all of its elements are flushed:
sorted, and then placed in their respective children; this takes O(M/B) I/Os and
O(M logM) RAM complexity. This process is repeated recursively for any newly-
full buffers. Since each element is only flushed to one node at each level, and the
amortized cost of a flush is 〈O(1/B), O(logM)〉, the cost to flush all elements is
〈O(N/B logM/B N/B), O(N logN)〉.

Inverse successor can be performed by searching within the tree. However, these
searches are very expensive, as we must search every level of the tree—it may be
that a recently-inserted element changed the inverse successor. Thus it costs at least
〈O(M/B logM/B N/B), O(M logM/B N/B)〉 for a single inverse successor query.

To achieve better bounds, we need to improve the inverse successor time to match
the insert time. At the same time, we improve the computation time considerably; we
only do O(B) computations per I/O, the best possible for a given I/O bound.

As a first step, we perform a wheel sieve using the primes up to
√

logN . By an
analogue of Merten’s Therem, this leaves only N/ log logN candidate primes. This
reduces the number of insertions into the buffer tree.

To avoid the I/Os along the search path for the inverse successor queries, our buffer
tree has branching factor

√
M/B rather than M/B, doubling the height. We partition

each buffer into
√
M/B subarrays of size

√
MB; one for each child. Then as we scan

the array, we can store the path from the root to the current leaf in
√
MB logM/B N/B

words. If
√
M/B > logM/B N/B this path fits in memory. Thus the inverse successor

queries can avoid the path-searching I/O cost, without affecting the amortized insert cost.
Next, since the elements of the leaves are consecutive integers, each can be encoded

using a single bit, rather than an entire word. Since we use the word RAM model
(Section 1.2), we can read Θ(B logN) of these bits in a single block transfer.

Storing the elements in a bit array could potentially speed up queries, but only if we
can guarantee that the inverse successor can always be found by scanning only the bit
array. During an inverse successor scan, we maintain the path in memory; thus, we can
flush all elements along the path without any I/O cost. This guarantees that we can get
the correct inverse successor by scanning the array, maintaining the path as we scan.

Finally, since our array is static, we can improve the computation required during a
flush. Specifically, since the leaves divide the array evenly, we can calculate the child
being flushed to using modular arithmetic (see Appendix A for details).

In total, we insert N/ log logN elements into the buffer tree. Each must be flushed
through O(logM/B N/B) levels, where a flush costs O(1/B) amortized I/Os and O(1)
computation. The inverse successor queries must scan through N log logN elements
(by the analysis of the sieve of Eratostheses), but due to our bit array representation this
only takes 〈O(N log logN/B logN), O(N log logN/ logN)〉, a lower-order term.

Theorem 3. The linear sieve of Eratosthenes implemented using buffer
trees, assuming M > B2,

√
M/B > logM/B(N/B), and

√
M/B >

log2
M/B(N/B)/ log logN , uses O(N) space and has a complexity of

〈SORT (N/ log logN) , O((N logM/B N/B)/ log logN)〉.

8

149

4 Sieve of Atkin
The sieve of Atkin [6, 13] is one of the most efficient known sieves in terms of RAM
computations. It can compute all the primes up to N in O(N/ log logN) time using
O(
√
N) memory. We first describe the original algorithm from [6] and then use various

priority queues, including the key-sensitive priority queue from Section 2, to improve its
I/O efficiency.

The algorithm works by exploiting the following characterization of primes using
binary quadratic forms. Note that every number that is not trivially composite must
satisfy one of the three congruences. For an excellent introduction to the underlying
number theoretic concepts, see [11].

Theorem 4 ([6]). Let k be a square-free integer with k ≡ 1 (mod 4) (resp. k ≡ 1
(mod 6), k ≡ 11 (mod 12)) . Then k is prime if and only if the number of solutions to
x2 + 4y2 = k (resp. 3x2 + y2 = k, 3x2 − y2 = k) is odd.

For each quadratic form f(x, y), the number of solutions can be computed by brute
force, iterating over the set L = {(x, y) | 0 < f(x, y) ≤ N}. This requires O(N)
memory; however, by “tracing” the level curves of f , this can be reduced to O(

√
N)

(see Appendix B). Then, the number of solutions that occur an even number of times
are removed. Then by precomputing the primes less than

√
N , the numbers that are not

square-free can be sieved out leaving only the primes as a result of Theorem 4.
The algorithm as described above requires O(N) operations, as it must iterate

through the entire domain L. This can be made more efficient by first performing
a wheel sieve. If we choose W = 12 · ∏p2≤log N p, then by an analog of Merten’s
theorem, the proportion of (x, y) pairs with 0 ≤ x, y < W such that f(x, y) is a unit
mod W is 1/ log logN . By only considering the W -translations of these pairs we obtain
L′ ⊆ L, with |L′| = O(N/ log logN) and f(x, y) composite on L \ L′. The algorithm
can then proceed as above.

Using priority queues. The above algorithm and its variants require that M = O(
√
N).

By utilizing a priority queue to store the multiplicities of the values of f over L, as well
as one to implement the square-free sieve, we can trade this memory requirement for I/O
operations. In what follows we use an analog of the wheel sieve optimization described
above, however we note that the algorithm and analysis can be easily adapted to omit
this. See appendix B.3 for a more detailed algorithm description.

Having performed the wheel sieve as described above, we insert the values of each
quadratic form f over each domain L into an I/O- and RAM-efficient priority queue
Q [5]. This requires |L| such operations (and their subsequent extractions), and so this
takes 〈SORT (|L|) , O(|L| logM/B |L| + |L| log logM/ log logN)〉. Because we have
used a wheel sieve, |L| = O(N/ log logN), and so this reduces to

〈
SORT

(
N

log logN

)
, O

(
N logM/B N

log logN
+
N log logM

log logN

)〉
. (1)

The remaining entries in Q are now either primes or squareful numbers. In order to
remove the squareful numbers, we sieve the numbers in Q and for every prime we find,
we maintain a record of the multiples of its square. We will track these as pairs 〈p, v〉 in

9

150 APPENDIX A. The I/O complexity of computing prime tables [LATIN 2016 conference]

another I/O+RAM efficient priority queue Q′. With each value v we pull from Q, we
repeatedly extract the min value 〈p, w〉 from Q′ and insert 〈p, w + p2〉 until either v is
found in which case it is not square-free and thus not a prime, or exceeded, in which
case it is prime.

For each prime p less than
√
N that was not sieved by the wheel, this part of the

algorithm will perform 〈O(N(logM/B N)/Bp2), O(N(logM/B N + log logM)/p2)〉
operations. Integrating over p, the total number of operations in this phase of the algo-
rithm is less than 〈O (SORT (N) /(B logN)) , O ((SORT (N) + log logM)/ logN)〉 .

Theorem 5. The sieve of Atkin implemented with a wheel sieve, as well as I/O and RAM
efficient priority queues runs in 〈SORT (N/ log logN) , O((N logM/B N)/ log logN +
N log logM/ log logN)〉, using O(N) space.

See Appendix B.1 for a description of how to reduce the space usage to O(
√
N).

5 Sieve of Sorenson
The sieve of Sorenson [28] uses a hybrid approach. It first uses a wheel sieve to re-
move multiples of small primes. Then, it eliminates nonprimes using a test based on
pseudosquares. Finally it removes composite prime powers with another sieve.

The pseudosquare Lp is the smallest non-square integer with Lp ≡ 1 (mod 8) that
is a quadratic residue modulo every odd prime q ≤ p. The sieve of Sorenson is based
around the following lemma—its steps satisfy each requirement of the lemma explicitly.
Following the theorem, we set p so that Lp is the smallest pseudosquare satisfying
Lp > N/(π(p) log2N), and s = bN/Lpc+ 1.

Theorem 6. [28] Let x and s be positive integers. If the following hold: (i) All prime
divisors of x exceed s, (ii) x/s < Lp, the pth pseudosquare for some prime p, and
(iii) p

(x−1)/2
i ≡ ±1 (mod x) for all primes pi ≤ p, and (iv) 2(x−1)/2 ≡ −1 (mod x)

when x ≡ 5 (mod x) and p(x−1)/2
i ≡ −1 (mod x) for some prime pi ≤ p when x ≡ 1

(mod 8), then x is a prime or a prime power.

To begin, the algorithm must calculate Lp. We refer to the original paper for a
method that performs this calculation in o(N), but which further points out that the
first 73 pseudosquares (available online at https://oeis.org/A002189/b002189.txt) are
sufficient for any N < 2.9× 1024. Next, the algorithm calculates the first s primes.

The algorithm divides allN integers into segments of size∆ = π(p) logN . For each
such segment, it goes through the following three phases. We assume that M >> π(p).

In the first phase, the algorithm performs a (linear) wheel sieve to eliminate multiples
of the first s primes. All remaining numbers satisfy the first requirement of Theorem 6.

In the second phase, the algorithm considers each remaining integer k in turn. It
first performs a base-2 pseudoprime test, determining if 2(k−1)/2 ≡ −1 (mod k). If k
does satisfy this, then for each pi ≤ p, it determines if p(k−1)/2

i ≡ ±1 (mod k), with
p

(k−1)/2
i ≡ −1 (mod k) for some pi ≤ p, as well as if k ≡ 1 (mod 8). Note that this

is testing the remaining requirements of Theorem 6.
To analyze the RAM complexity, first note that only O(N/ logN) numbers up

to N pass the base-2 pseudoprime test (mentioned in [22, 28], among other places).

10

151

Furthermore, in a single segment, only O(∆/ log s) elements remain after the wheel
sieve. Performing the base 2 pseudoprime test takes O(logN) time, for a total time of
O(N logN/ log s) = o(N logN). Performing the remaining tests, if required, takes
π(p) exponentiations, costing O(logN) operations each, leading to a total cost of
O(Nπ(p)) over all segments.

In the third phase, the algorithm must remove all prime powers. If N ≤ 6.4× 1037,
only primes remain and this phase is unnecessary [28, 30]. Otherwise the algorithm
explicitly removes all perfect powers as follows. First, the algorithm constructs by
brute force a list of all the perfect powers less than N by repeatedly exponentiating
every element of the set {2, . . . , b

√
Nc} until it passes N . This list has O(

√
N logN)

elements, so these can be sorted and removed from the list of prime candidates in
〈O(N/B), O(N)〉. Therefore the complexity of the algorithm is dominated by the
second phase, leading to the following theorem.

Theorem 7. The sieve of Sorenson runs in 〈O
(
N
B

)
, O(Nπ(p))〉.

We can phrase the complexity in terms of N alone by bounding p. The best
known bound for p leads to a running time of O(N1.132). On the other hand, the
Extended Riemann Hypothesis implies p < 2 log2N , and Sorenson conjectures
that p ∼ 1

log 2 logN log logN [28]; under these conjectures the RAM complexity is
O(N log2N/ log logN) and O(N logN) respectively.
Sieving an interval. Similar analysis shows that we can efficiently sieve an interval with
Sorenson as well. See Appendix C.2 for details.

Acknowledgments
We thank Oleksii Starov for suggesting this problem to us.

References
[1] A. Aggarwal and S. Vitter, Jeffrey. The input/output complexity of sorting and related

problems. Communications of the ACM, 31(9):1116–1127, 1988.
[2] M. Agrawal, N. Kayal, and N. Saxena. Primes is in P. Annals of Mathematics, pages

781–793, 2004.
[3] L. Arge. The buffer tree: A technique for designing batched external data structures.

Algorithmica, 37(1):1–24, 2003.
[4] L. Arge, M. A. Bender, E. D. Demaine, B. Holland-Minkley, and J. I. Munro. Cache-

oblivious priority queue and graph algorithm applications. In Proc./ of the 34th Annual
Symposium on Theory of Computing, pages 268–276, 2002.

[5] L. Arge and M. Thorup. Ram-efficient external memory sorting. In Algorithms and
Computation, volume 8283, pages 491–501. 2013.

[6] A. Atkin and D. Bernstein. Prime sieves using binary quadratic forms. Mathematics of
Computation, 73(246):1023–1030, 2004.

[7] J. Barkley Rosser and L. Schoenfeld. Approximate formulas for some functions of prime
numbers. Illinois J. Math, 6:64–94, 1962.

[8] C. Bays and R. H. Hudson. The segmented sieve of Eratosthenes and primes in arithmetic
progressions to 1012. BIT Numerical Mathematics, 17(2):121–127, 1977.

[9] S. Bengelloun. An incremental primal sieve. Acta informatica, 23(2):119–125, 1986.
[10] R. P. Brent. The first occurrence of large gaps between successive primes. Mathematics of

Computation, 27(124):959–963, 1973.

11

152 APPENDIX A. The I/O complexity of computing prime tables [LATIN 2016 conference]

[11] D. A. Cox. Primes of the form x2 + ny2: Fermat, Class Field Theory, and Complex
Multiplication. Wiley, 1989.

[12] B. Dunten, J. Jones, and J. Sorenson. A space-efficient fast prime number sieve. IPL,
59(2):79–84, 1996.

[13] M. Farach-Colton and M. Tsai. On the complexity of computing prime tables. In Algorithms
and Computation - 26th International Symposium, ISAAC’15, 2015.

[14] R. Gale and V. Pratt. CGOL–an algebraic notation for MACLISP users, 1977.
[15] D. Gries and J. Misra. A linear sieve algorithm for finding prime numbers. Communications

of the ACM, 21(12):999–1003, 1978.
[16] G. H. Hardy and E. M. Wright. An introduction to the theory of numbers. Oxford University

Press, 1979.
[17] S. Horsley. KOΣKINON EPATOΣΘENOYΣ. or, The Sieve of Eratosthenes. Being an

Account of His Method of Finding All the Prime Numbers, by the Rev. Samuel Horsley,
FRS. Philosophical Transactions, pages 327–347, 1772.

[18] H. W. Lenstra Jr and C. Pomerance. Primality testing with gaussian periods. Lecture Notes
in Computer Science, pages 1–1, 2002.

[19] H. G. Mairson. Some new upper bounds on the generation of prime numbers. Communica-
tions of the ACM, 20(9):664–669, 1977.

[20] F. News. World’s largest prime number discovered – all 17 million digits. https:
//web.archive.org/web/20130205223234/http://www.foxnews.com/
science/2013/02/05/worlds-largest-prime-number-discovered/,
February 2013.

[21] M. Patrascu and M. Thorup. Dynamic integer sets with optimal rank, select, and predecessor
search. In FOCS, pages 166–175, 2014.

[22] C. Pomerance, J. L. Selfridge, and S. S. Wagstaff. The pseudoprimes to 25·109. Mathematics
of Computation, 35(151):1003–1026, 1980.

[23] P. Pritchard. A sublinear additive sieve for finding prime number. Communications of the
ACM, 24(1):18–23, 1981.

[24] P. Pritchard. Linear prime-number sieves: A family tree. Science of computer programming,
9(1):17–35, 1987.

[25] P. Pritchard. Linear prime-number sieves: A family tree. Science of computer programming,
9(1):17–35, 1987.

[26] R. C. Singleton. Algorithm 357: An efficient prime number generator. In Communications
of the ACM, pages 563–564, 1969.

[27] J. Sorenson. An introduction to prime number sieves. Technical Report 909, University of
Wisconsin-Madison, Computer Sciences Department, 1990.

[28] J. P. Sorenson. The pseudosquares prime sieve. In Algorithmic number theory, pages
193–207. 2006.

[29] J. S. Vitter. External memory algorithms and data structures: Dealing with massive data.
ACM Computing surveys (CsUR), 33(2):209–271, 2001.

[30] H. C. Williams. Edouard lucas and primality testing. Canadian Mathematics Society Series
of Monographs and Advanced Texts, (22), 1998.

12

153

A Linear Eratosthenes’s sieve with buffer trees
In this section, we provide further details for the algorithm given in Section 3 and prove
its correctness.

We first recall the version of the linear sieve of Gries and Misra [15].
Note that we begin by pre-sieving the interval by the

√
logN smallest primes.

This operation speeds up the execution without violating its correctness, as the resulting
candidate primes are exactly those encountered by the algorithm after the loop where p =
p1+
√

log N . This has a cost of 〈O (N/B logN) , O (N/ logN)〉, using the algorithm
in Appendix C and leaves N̄ = N/ log logN potential primes. We will use N̄ in the
following to refer to the number of elements inserted.

Data: S = {2, 3, · · · , N}
Result: S = {p | p ∈ P, p ≤ N}
// p and q are global variables, accessible in any

function
// C represents the set of numbers known as

composites. The operations Insert and
InverseSuccessor are implicitly on C

1 C ← integers less than N multiple of any of the first
√

logN primes;
2 T ← bitarray where T [i] = 1 iff i ∈ C;
3 p← p1+

√
log N ;

4 while p ≤
√
N do

5 q ← p;
6 while q ≤ N/p do
7 for r = 1, 2, . . . , logpN/q do
8 Insert(prq);
9 q ← InverseSuccessor(q);

10 p← InverseSuccessor(p);
11 return GetSet(); // this is [2;N] \ C

Algorithm 2: Linear Sieve with Buffer Tree
We now present how we implement these subroutines to achieve an efficient algo-

rithm in both I/O and RAM complexity, then prove its correctness and complexity.

A.1 Implementation
We expose in this part how the subroutines Insert and InverseSuccessor are
actually implemented in our algorithm. First, we give a global description of the data
structure used. Then, after setting some preliminary definitions and notations, we present
the actual implementation of the subroutines.

Description of the data structure. We use a modified buffer tree which can ef-
ficiently handle the two necessary operations to maintain the set C, Insert and
InverseSuccessor. The original structure has been introduced by Arge [3], but our
implementation is significantly different to achieve a lower RAM complexity.

The buffer tree is a complete tree with branching factor
√
M/B and N/M leaves.

Its depth is then d = 2
⌈
logM/B

N
M

⌉
. We will assume for simplicity that the tree is

complete even at the leaf level.

13

154 APPENDIX A. The I/O complexity of computing prime tables [LATIN 2016 conference]

Each node has an associated buffer of size M . This buffer consists of
√
M/B pages

of size
√
MB, one for each child, which are internally unsorted. These pages contain

the elements in that buffer that are intended for the corresponding child; see Figure 2.
Each leaf corresponds to M consecutive elements between 1 and N . Similar to the

internal nodes, the buffer of a leaf is separated in
√
M/B pages, each associated with

exactly
√
MB elements.

In addition to the buffer tree, the data structure used contains a boolean array T ,
indexed from 1 to N , where, at the end of the algorithm, T [i] = 1 if and only if i is
composite. Intervals of T corresponding to a leaf page are considered linked to this
page: when the entire page is brought into memory, this interval is too. This array is
saved as a bit-array, which means that one machine word contains at least logN bits,
and operations on a machine word can be done in constant time.

Each page P of an internal (non-leaf) node is partitioned into
√
M/B + 1 unsorted

lists. The first one, called P ∗, is the list where the new elements are appended. Each other
list corresponds to a page Q of the child linked to P , and is denoted by PQ. Elements
moved to a page Q of the next level are either moved directly from P ∗, or first moved to
the list PQ then later to Q. See Figure 3 for an illustration; an element can follow blue
or red arrows to go to the next level. For consistency, the unique list of a leaf page L will
be denoted L∗.

At each level, the numbers present in a node are smaller than the numbers present
in the next node. Therefore, inside each node, the numbers present in a page are also
smaller than the numbers present in the next page. Each page of the level k, counting the
root as the level 0, can then contain

√
MB numbers among a fixed interval of length

N/ (MB)
(k+1)/2. Therefore, for example, the ith leave, which is at level d (starting the

count at 0), consists in M slots to store a subset of [iM + 1 ; (i+ 1)M].
Note that no element is ever moved to an upper level nor removed from the tree,

except to be inserted in T . Elements can only be moved deeper or to T . In addition, no
duplicates are possible.

See Figure 2 for an illustration of the data structure.

Preliminaries We expose here some notations and definitions used throughout the
explanation of the algorithm and the proof.

The nodes are indexed by the letter N , the pages by the letter P , and the leaf pages
by the letter L.

The least common ancestor page of two leaf pages L and L′ will be noted
LCAP(L, L′) and its level LCA(L, L′).

Above means closer to the root level and deeper means closer to the leaf level.
LCA-ABOVE(L) is the property: For all leaves L′, no element of L′ is above

LCA(L, L′). In addition, no element of L is in L∗: they are all in T .
LCA-ABOVE(L, k) is the property: For all leaf L′, no element of L′ is above

min(LCA(L, L′), k). Note that LCA-ABOVE(L, d) allows elements of L to be in
L∗, and, by convention, LCA-ABOVE(d+ 1) is equivalent to LCA-ABOVE(L).

Note that if k′ ≥ k, LCA-ABOVE(L, k′) implies LCA-ABOVE(L, k).
Access functions: Due to the static structure of the tree, the following operations can be
implemented with a complexity of 〈0, O(1)〉. When a page P is passed in argument or

14

155

√
MB

√
MB

√
MB. . .

M

√
MB

√
MB

√
MB. . .

M
√

MB
√

MB
√

MB. . .
M

√
MB

√
MB

√
MB. . .

M
√

MB
√

MB
√

MB. . .
M

√
M

B

N

M

Θ
(lo

g
M

/
B
(N
/M

))
le

ve
ls

T 1 2 M N − M N.

Fig. 2. Illustration of the buffer tree and T .

. . .

M

.

M

P ∗

P1 P2 PK

P ∗1 P ∗2 P ∗K

Fig. 3. Illustration of a page of the buffer tree: the list P ∗ can be flushed to any page of the corre-
sponding child node in Flush. The other lists can only be flushed to one page in PartialFlush
or in Flush. An insertion is always executed on the list P ∗ of each page. We have K =

√
M/B.

15

156 APPENDIX A. The I/O complexity of computing prime tables [LATIN 2016 conference]

returned by a function, only an identifier is implied, and not all the numbers contained,
hence the null I/O cost.

– GetPage(x, k): returns the page associated to the number x at level k ≤ d
– GetPage(L, k): returns the page associated to numbers of leaf page L at level
k ≤ d

For the sake of simplicity, for any number x, we will note Lx = GetPage(x, d).
For instance, the leaf pages Lp = GetPage(p, d) and Lq = GetPage(q, d) can be
computed in any function.

We define the set Pp,q by the set of pages associated to p or q plus the pages of
the root. This set will be assumed to be in memory in the design of the algorithms.
This assumption in proved later, together with the complexity proof. Note that Pp,q is
modified during the execution of the algorithm. More formally, the definition of Pp,q is:

Pp,q = {P | ∃k ≤ d, P = GetPage(p, k) or P = GetPage(q, k)}
∪
{
P | P is of level 0

}

Note that saying that Pp,q is in memory includes the relevant slots of T .

Subroutines We expose here a detailed explanation on how both subroutines are
implemented, along with the associated pseudo-code.
Management of T : The implementations of basic operations performed on T are
detailed in Algorithm 6. An insertion in T simply modifies the corresponding bit. The
function NextInT (x) computes the next candidate to be prime. All integers skipped
are confirmed composites. This function uses the bit-array structure of T to gain a logN
speedup, as we will show later.
Insertions: The algorithm Insert is presented in Algorithm 2.

Basically, an element x is inserted at a given level k by computing the appropriate
page P and appending it to the list P ∗. If this page is full, i.e., it already contains

√
MB

elements, these elements are moved to the next level via Procedure Flush. In addition,
if x is associated to a page of Pp,q in the next level, it is inserted to the deepest page of
Pp,q possible.

These moves are done directly from the list P ∗, and the appropriate page of the next
level is computed for each element. This process follows the blue arrows on Figure 3.

A call to Insert in Algorithm 2 triggers a call to insert the element at level 0. It can
be inserted deeper according to Pp,q as illustrated in Figure 4, and trigger some flushes.

At the end of the algorithm, the call to GetSet flushes all the tree into the array T ,
then returns T .
Inverse Successor: The algorithm InverseSuccessor is presented in Algorithm
13.

The objective of InverseSuccessor is to compute the next element that is not
in C, which means that is not in the tree or in T . A naive algorithm would be to check
in each page if the element is present or not, but this achieves a very high complexity.
The strategy of InverseSuccessor is to ensure that the next elements cannot be in

16

157

√
MB

√
MB

√
MB. . .

M

√
MB

√
MB

√
MB. . .

M
√

MB
√

MB
√

MB. . .
M

√
MB

√
MB

√
MB. . .

M
√

MB
√

MB
√

MB. . .
M

√
MB

√
MB

√
MB. . .p

M
√

MB
√

MB
√

MB. . .x

M
√

MB
√

MB
√

MB. . .q

M

Fig. 4. Illustration of the insertion of x. The leaves in which p, q and x belong are drawn. The
green rectangle is the page where x will be inserted. The colored pages are pages of Pp,q . T is not
represented.

Procedure InsertInT (x)
Input: A multiple x with T [x] = 0
Result: Add x in T
T [x]← 1 ; // This only modifies one bit

Procedure NextInT (x)
Input: An integer x with T [x] = 0
Result: An integer z > x such that ∀t ∈ (x, z), T [t] = 1
// We even have T [t] = 0 in this version but it is not

required
1 w′ ← machine word containing T [x];
2 w ← w′ with all bits not after T [x] set to 1;
3 while w has no bit equal to 0 do
4 w ← machine word representing the elements of T after w;
5 z ← index of T corresponding to the first bit of w equal to 0;
6 return z;

Algorithm 3: Operations on T

17

158 APPENDIX A. The I/O complexity of computing prime tables [LATIN 2016 conference]

Algorithm Insert(x)
Input: A number x 6∈ C
Invariant: LCA-ABOVE(Lp) and LCA-ABOVE(Lq)
Result: Insertion of x in the buffer tree or in T , so in C
Insertion(x, 0);

Procedure Insertion(x, k)
Input: A number x and a level k ≤ d
Data: x is not in the buffer tree nor in T
Result: Insertion of x at level max (LCA(Lx, Lp), LCA(Lx, Lq), k), deeper, or

in T
1 if Lx equals Lp or Lq then
2 InsertInT (x) ;
3 return;
4 P ← GetPage(x, k);

// if the page of the next level is in Pp,q, insert deeper
5 Pp ← GetPage(p, k + 1); Pq ← GetPage(q, k + 1);
6 if k < d and GetPage(x, k + 1) is equal to Pp or to Pq then
7 Insertion(x, k + 1) ; // k < d
8 else
9 if k < d and |P | =

√
MB then

10 Flush(P, k);
11 append x to P ∗ ;

Procedure Flush(P, k)
Input: A full page P of level k < d
Result: P is empty
// Note that all the elements will be inserted in the

same node
1 foreach x ∈ P do
2 remove x from P ;
3 Insertion(x, k + 1);

Procedure GetSet()
Result: A bit array caracterising the set [2;N] \ C by the value 0

1 Call Flush on every page for any pre-ordering (children after parents);
2 return T ;

Algorithm 4: Insertion algorithm and sub-functions

18

159

a node: they are in T . This is done by a call to the procedure PartialFlush. Then, it
is efficient to compute the next element that is not in C by scanning T .

It is still inefficient if PartialFlush has to scan each level of the tree to move
the appropriate elements to T , so this function uses the fact that the inserts are done at
the deepest page possible in Pp,q. This way, as InverseSuccessor is only called
on the previous value of p or q, PartialFlush does not need to scan a page high
in Pp,q: no relevant element has been inserted here. For instance, on Figure 4, when
PartialFlush will be called on Lx, it will not check the root node.

This process avoids a high I/O complexity, but still needs a high RAM complexity:
for each page scanned, all the elements are checked to see if they can be inserted deeper

in Pp,q . This means that an element at a page can be scanned
√

M
B times, once per child

page, where we want a constant cost. Thus, PartialFlush actually scans only the
list P ∗ of each page, and move the elements to the appropriate list PQ. Then, it moves
all elements from the relevant list PQ to the next level. This process follows the red
arrows in Figure 3.

A.2 Analysis
We first begin by proving the correctness of the implementation, then its complexity. The
optimization of the RAM complexity will be discussed after.

Correctness of the algorithm. We need to prove that the algorithms Insert and
InverseSuccessor are correct. Correct means that if the input, the data, and the
invariant requirements are verified when a function is called, then the output and invariant
requirements are verified when the function terminates, and the function does not violate
Lemma 2. In addition, no insertion of a new element in the tree not mentioned in the
result requirement is performed.

Lemma 2. An element is never moved to an upper level. No duplicates are possible. If
an element is removed from the tree, it is added to T .

Proof. This lemma will be proved by Theorem 8, which states that the algorithms are
correct.

Lemma 3. For any k, x, P , the procedures Insertion(x, k) and Flush(P, k) are
correct.

Proof. We prove this result by induction on d− k.
If k = d, the call to Insertion(x, k) adds x either to the array T or to the

appropriate page leaf so is correct. Flush cannot be called on such input, so the
property is verified.

Suppose the property true for k − 1, and we now prove it for k.
Consider the procedure Flush. For each element of the page P , it is removed from

P , then, by induction, inserted to a deeper level or in T . So Flush is correct as it does
not violate Lemma 2 and empty P .

Consider the procedure Insertion.
If the test Line 2 occurs, x is inserted in T so the call is correct.

19

160 APPENDIX A. The I/O complexity of computing prime tables [LATIN 2016 conference]

Algorithm InverseSuccessor(x)
Input: A number x 6∈ C
Data: LCA-ABOVE(Lx)
Output: The smallest number y greater than x and not present in C
Result: LCA-ABOVE(Ly)

1 y ← x;
// scan T to find y

2 repeat
3 tmp ← y;
4 y ← NextInT (y);
5 if Ly 6= Ltmp then

// flush the next elements from the buffer tree to
T

6 PartialFlush(d, Ly , Ltmp);
7 until T [y] = 0;
8 return y;

Procedure PartialFlush(k, L, Ltmp)
Input: A level k ≤ d and two leaves L and Ltmp

Data: LCA-ABOVE(Ltmp)
Result: LCA-ABOVE(L, k + 1)

1 P ← GetPage(L, k);
// Flush partially the ancestor pages starting from

LCAP(L, Ltmp)
2 if k > 0 and GetPage(Ltmp , k) 6= P then
3 PartialFlush(k − 1, L, Ltmp)
4 if k = d then // in this case, we have P = L

// move the leaf page to T
5 foreach z ∈ L∗ do
6 remove z from L∗;
7 InsertInT (z);
8 else

// move each unlabeled element to its corresponding
list

9 foreach z ∈ P ∗ do
10 move z to PGetPage(z, k + 1) ;

// Move deeper the elements that are in the same page
as L

11 foreach z ∈ PGetPage(L, k + 1) do
12 Remove z from P ;
13 Insertion(z, k + 1);

Algorithm 5: Insertion algorithm and sub-functions

20

161

Now suppose that max (LCA(Lx, Lp), LCA(Lx, Lq)) > k. Then, the
recursive call Line 7 occurs. By induction, x is inserted at a level larger than
max (LCA(Lx, Lp), LCA(Lx, Lq) , k), so the current call is correct.

Otherwise, Flush is called line 10, then x is inserted at level k. So the function is
correct as it does not violate Lemma 2 and respects the result requirements.

Lemma 4. For any k, L, Lx, the procedure PartialFlush(k, L, Ltmp) is correct.

Proof. We prove this result by induction on k.
If k = 0, for any L′, if LCA(L, L′) > 0 then elements of L′ in the root are moved

deeper or to T in Line 13, as the Insertion procedure is correct by Lemma 3, so the
call of PartialFlush is correct.

Suppose the property true for k − 1, and we now prove it for k < d.
First, suppose that LCA(L, Ltmp) < k. Then, the recursive call Line 3 occurs, and

by induction, we have LCA-ABOVE(L, k). For any L′ such that LCA(L, L′) > k, if
elements of L′ are in P , they are moved deeper or to T at Line 13, as the Insertion
procedure is correct. If they were in P ∗, they are moved to the appropriate page on Line
10. So we have LCA-ABOVE(L, k + 1).

Therefore, as the procedure respects Lemma 2, it is correct.
Then, suppose that LCA(L, Ltmp) ≥ k. We have LCA-ABOVE(Ltmp), let’s prove

that we then have LCA-ABOVE(L, LCA(L, Ltmp)). We will illustrate the cases by
Figure 5. Let L′ be a leaf page.

If LCA(L, Ltmp) ≥ LCA(L, L′), then LCA(L, L′) ≤ LCA(Ltmp , L
′). As

we have LCA-ABOVE(Ltmp), no element of L′ is above LCA(Ltmp , L
′) so no element

of L′ is above LCA(L, L′). This corresponds to the case where L′ is at the position
of Node B, C or D in Figure 5. Note that only the position B implies LCA(L, L′) <
LCA(Ltmp , L

′).
Otherwise, we have LCA(L, Ltmp) < LCA(L, L′). Then, we have

LCA(Ltmp , L
′) = LCA(L, Ltmp) and by definition of LCA-ABOVE(Ltmp), no

element of L′ is above LCA(Ltmp , L
′) so LCA(L, Ltmp). This corresponds to the

page A of Figure 5.
In both cases, the property LCA-ABOVE(L, LCA(L, Ltmp)) is then respected.
Therefore, we have LCA-ABOVE(L, LCA(L, Ltmp)) so we have the weaker

property LCA-ABOVE(L, k). Then, as previously, the moves of Line 13 ensure
LCA-ABOVE(L, k + 1) and the correctness of the procedure.

Then, if both cases, the procedure is correct.
Now, we prove the result for k = d. By induction, we have LCA-ABOVE(L, k) after

Line 3, if L = Ltmp or not. In Line 6, all the elements of Ly are moved to T , so we get
LCA-ABOVE(L, k + 1).

Therefore, the procedure is correct for any k.

Theorem 8. The algorithms Insert and InverseSuccessor are correct.

Proof. First, we study the Insert algorithm.
As the procedure Insertion is correct and x 6∈ C, the call to Insertion

has a valid input and x is inserted in the tree at a level not smaller than
max (LCA(Lx, Lp), LCA(Lx, Lq)). If Lx equals Lp or Lq , x is inserted directly in

21

162 APPENDIX A. The I/O complexity of computing prime tables [LATIN 2016 conference]

LCA({L,Ltmp}, C)

LCA(L, Ltmp)
LCA(Ltmp , {A,D})
LCA(L, {B,D})

LCA(L, A)

L A D

LCA(Ltmp , B)

B Ltmp C

Fig. 5. Abstract tree representing the position of the Least Common Ancestors between two leaf
pages L, Ltmp and four leaf pages A, B, C, D representing all the possible cases.

T . So the invariant is respected as no element has been moved to a smaller level and x
does not violate it.

Now, we study the InverseSuccessor algorithm. After each call
to PartialFlush Line 5, we have LCA-ABOVE(Ly, k + 1), which is
LCA-ABOVE(Ly). In particular, all elements of Ly are in T . This property is ensured
at the beginning by the requirement LCA-ABOVE(Lx). The algorithms maintain this
property each time y is in a new leaf page, so when the tests Line 7 occur, they are
equivalent to testing y 6∈ C. Therefore, the output of InverseSuccessor is correct.
Furthermore, there exists a list of leaf pages L = {l1 . . . lt} (which is the list of succes-
sive Ltmp) such that l1 = Lx, lt = ly and for each i, a call to PartialFlush(d, li,
li+1) has been triggered. When such a call is triggered, if we had LCA-ABOVE(li), we
get LCA-ABOVE(li+1).

So, as we have LCA-ABOVE(Lx) at the beginning of the InverseSuccessor
call, we have LCA-ABOVE(Ly) at the end. So the procedure InverseSuccessor is
correct.

Complexity of the algorithm. Now, we analyze the total complexity of the algorithm.
We assume Assumption 9 concerning the size of B and M . Apart from the tall cache

assumption, this assumes that the order of B is larger than a logarithmic function of N .
We recall that N̄ represents the number of elements inserted. N̄ is equal to N in the
original algorithm and to N/ log logN with the pre-sieving step.

Assumption 9 We suppose that
√
M/B > logM/B(N/M) and

√
M/B >

log2 logN/ logM/B
N
B .

We analyze the cost of the inserts and the inverse successor queries separately. Note
that the height of the tree is d = dlog√

M/B
N/Me = O(logM/B N/M).

22

163

Lemma 5. It is possible to always maintain simultaneously in memory all the pages of
Pp,q .

Proof. These pages represent one node of size M and Θ
(

logM/B
N
M

)
pages of size

√
MB. By Assumption 9, this sums to a number of elements m equal to:

m = O

(
M +

√
MB logM/B

N

M

)

m = O

(
M +

√
MB

√
M

B

)

m = O (M)

Then, we assume, to compute the I/O complexity, that the set Pp,q is in memory
at the beginning of the functions, and when p or q is changed, the new set Pp,q must
be brought in memory at the end of the function. In other words, during the execution
of InverseSuccessor, Pp,q is always in memory, and at the end, Pp,q plus all the
pages related to y are in memory.

Lemma 6. The complexity of performing all Insert and Insertion calls is
〈O
(

N̄
B logM/B

N
B

)
, O

(
N̄ logM/B

N
B

)
〉, assuming that when PartialFlush calls

Insertion on Line 13, the corresponding page is already in memory.

Proof. The cost of performing one flush, ignoring the cost of the recursive flushes, is
〈O
(√

M/B
)
, O

(√
MB

)
〉. We must move

√
MB elements to the next level; each

requires O(1) computation to find the page it occurs in. The cost to write out
√
MB

elements consecutively requires O(
√
M/B) I/Os. Then we get the above time, plus we

may need to do an extra I/O per list when the block is initially brought in. Since there
are O(

√
M/B) lists, this gives a total of O(

√
M/B) I/Os per flush. We move

√
MB

elements during this flush, so the per-element flush cost is O(1/B).

Each element can be involved in at most d = Θ
(

logM/B
N
B

)
flushes and insertions,

the depth of the tree. Therefore, the amortized cost of the total number of flushes per
element is 〈O

(
1
B logM/B

N
B

)
, O

(
logM/B

N
B

)
〉.

When a call to Insertion occurs, only the actions listed below can have a non-null
I/O cost and a non-constant RAM cost.

On Line 7, this extra insertion has a null I/O cost, because the deeper page is already
in memory by Lemma 5.

On Line 10, the cost of this flush is already counted above.
On Line 11, we need to separate the cases. If the call of Insertion comes from

Insert, then by Lemma 5, the root is already in memory so the I/O cost is null. If
the call comes from Flush, then the cost is already counted above. If the call comes
from PartialFlush, by hypothesis of the Lemma, the page P is already in memory
so the I/O cost is null. If the call comes from the recursive call Line 7, the I/O cost is

23

164 APPENDIX A. The I/O complexity of computing prime tables [LATIN 2016 conference]

null because by Lemma 5, this page is already in memory. In all cases, the RAM cost is
constant.

On Line 2, by Lemma 5, the corresponding slot of T is already in memory.
Therefore, as there are less than N elements inserted, the complexity of performing

the total number of insertions is 〈O
(

N̄
B logM/B

N
B

)
, O

(
N̄ logM/B

N
B

)
〉.

We now need to prove Lemma 7, which analyzes the complexity of a toy
algorithm, Algorithm 6, before proving Lemma 8 on the I/O complexity of the
InverseSuccessor calls.
Lemma 7. The I/O complexity, amortized against the calls to Insertion, of
Algorithm 6 is O

(
b√
MB

+ b
B log N

)
and the total number of recursive calls to

PartialFlush is O
(

b√
MB

)
.

Proof. Let’s compute the cost of Algorithm 6, assuming it is launched in Algorithm 2,
so that all the pages related to a are in memory.

Algorithm InverseSuccessorLoop(a, b)
Input: Two numbers such that a < b, and a = p in Algorithm 2

1 x← a;
2 while x < b do
3 x← InverseSuccessor(x);

Algorithm 6: Theoretical study algorithm
First, we have to show that when PartialFlush(d, Ly, Ltmp) occurs, the I/O

complexity, without the calls to Insertion, is O
(√

M
B (d− LCA(Ly, Ltmp))

)
.

Indeed, during one call, only the page P has to be brought into memory, plus what
the recursive call requires. The recursive call cannot be called on a level higher than
LCA(Ly, Ltmp), so there are at most d− LCA(Ly, Ltmp) recursive calls. Note that
for the last call, the page is also associated to Ly, so is already in memory. The cost to
bring the page P into memory is Θ(1 + k/B) = O(

√
MB) where k is the number of

elements contained in P at the time when the page is brought.
We now compute the I/O complexity of Algorithm 6. The subarray of T between a

and b has to be brought into memory for the tests on T Line 7 in InverseSuccessor,
which has a cost of O

(
b−a

B log N

)
. Indeed, each machine word contains logN bits.

Then, we define the list L as in the proof of Theorem 8. L is the list of leaves
L = {l1 . . . lt} (which is the list of successive Ltmp) such that l1 = La, lt = Lb and
for each i, a call to PartialFlush(d, li, li+1) has been triggered inside a call to
InverseSuccessor. The number of pages contained in L is exactly

∑

i

(d− LCA(li, li+1))

This term is bounded by the number of pages of the tree surrounding La and Lb. See
Figure 6 for an illustration.

We split this set of pages into a set of O
(
b−a
M

)
internal pages and O

(
b−a√
MB

)
leaf

pages. We count a cost of O
(√

M
B

)
I/Os to bring into memory an internal page and

24

165

4

2

1

x 1

2 3

2 3

4

4

y

Fig. 6. Illustration of the successive calls to PartialFlush in a call of InverseSuccessor.
The ancestors of x are assumed to be in memory. The calls are done on a leaf, then on its ancestors.
The ith call to PartialFlush scans the nodes labeled by i.

O
(
1 + kP

B

)
I/Os to bring into memory a leaf page, where kp is the number of elements

in this page.
Therefore, the I/O complexity is

O

(
b− a
M

√
M

B
+

b− a√
MB

+
∑

P∈L

kP
B

)
= O

(
b− a√
MB

+
1

B
(# insertions in T)

)

Indeed, each element present in a leaf page will be added to T . As each element can
only be inserted once in T , we can amortize this cost against the insertion cost, so the
additional I/O cost of Algorithm 6 is

O

(
b− a√
MB

+
b− a
B logN

)

Now, we need to compute the total number of recursive calls of PartialFlush.
During a call to InverseSuccessorLoop(a, b), each page of the tree surrounding
La and Lb makes one recursive call. So the number of recursive calls is O

(
b√
MB

)
, by

the same argument as above.

Lemma 8. The complexity of performing all InverseSuccessor calls, in addition
to the total cost of the Insertion calls, is

〈O
(
N log logN

B logN

)
, O

(
N log logN

logN

)
〉

Furthermore, when a call to Insertion is done, the concerned page is already in
memory.

25

166 APPENDIX A. The I/O complexity of computing prime tables [LATIN 2016 conference]

Proof. We can group the calls to InverseSuccessor in Algorithm 2 in one
call to InverseSuccessorLoop(1,

√
N) for the ps and for each p, one call to

InverseSuccessorLoop(p, n
p) for the qs associated. Indeed, as by Lemma 5,

the appropriate pages are kept in memory, the I/O complexity is not changed by this
modification.

By Lemma 7, the total I/O complexity of all the calls to InverseSuccessor is
then:

CI/O = O



√
N

B
+

∑

p∈P, p<
√
N

(
N

p

(
1√
MB

+
1

B logN

))


= O

(√
N

B
+
N log logN√

MB
+
N

B

log logN

logN

)

= O

(
N log logN

B logN
+
N log logN√

MB

)

Concerning the RAM complexity, in the total calls to PartialFlush, the cost of
moving the elements is bounded by the complexity of the total calls to Insertion.
Indeed, only a constant RAM complexity per element per level is needed: to move it
from a list P ∗ to its list PQ, which can happen only once per element per page. For the
leaves level, again, only a constant cost per element is required. Therefore, we amortize
this cost against the insertion cost, and do not count it here.

We have to add a constant cost per recursive call, to take into account the calls where
no element is moved, which, by Lemma 7, sums to:

C1
RAM = O

(
N√
MB

log logN

)

The only term remaining to compute the total RAM complexity of
InverseSuccessor is the term without counting the calls to PartialFlush.
We know that there are O(N̄ +

√
N) = O(N̄) calls to InverseSuccessor. Indeed,

there is one call per modification of the value of p or q.
After each call to NextInT Line 4, we have T [y] = 0. Therefore, either

a call to PartialFlush is triggered Line 5, or the call terminates. There are
O
(

N√
MB

log logN
)

calls to PartialFlush, so O
(

N√
MB

log logN + N̄
)

calls to
NextInT .

Now, note that the RAM cost of the function NextInT called on x and returning y
is O

(
1 + y−x

log N

)
, as each line executes in constant time and a machine word contains

logN bits. Therefore, the remaining RAM term is equal to :

26

167

C2
RAM = O


 N√

MB
log logN + N̄ +

∑

p∈P, p<
√
N

(
N

p logN

)


= O

(
N̄ +N log logN

(
1√
MB

+
1

logN

))

= O

(
N̄ +

N log logN

logN
+
N log logN√

MB

)

So the additional RAM complexity, with regards to the cost of the insertions, is:

CRAM = O

(
N log logN

logN
+
N log logN√

MB

)

Now, note that by Assumption 9, we have
√
M/B = Ω(log2 logN/ logM/B

N
B),

so

N log logN√
MB

=
N

B

log logN√
M/B

= O

(
N logM/B

N
B

B log logN

)

Therefore, the total additional cost of the InverseSuccessor calls is:

〈O
(
N log logN

B logN

)
, O

(
N log logN

logN

)
〉

Therefore, by combining the above results, we get

Theorem 10. The linear sieve of Eratosthenes implemented with buffer trees, assuming
that

√
M/B > logM/B N and

√
M/B > log2

M/B(N/B)/ log logN , has a complexity
of

〈O
(
N

B

logM/B
N
B

log logN

)
, O

(
N

logM/B
N
B

log logN

)
〉

and a space requirement of

O

(
N

(√
B

M
+

1

logN

))

Proof. Indeed, the insertions and flushes, including the last call to GetSet that empties
the tree, have a complexity of

〈O
(
N̄

B
logM/B

N

B

)
, O

(
N̄ logM/B

N

B

)
〉

=〈O
(
N

B

logM/B
N
B

log logN

)
, O

(
N

logM/B
N
B

log logN

)
〉

27

168 APPENDIX A. The I/O complexity of computing prime tables [LATIN 2016 conference]

and the additional complexity of the pre-sieve step and the InverseSuccessor
calls is

〈O
(
N log logN

B logN

)
, O

(
N log logN

logN

)
〉

Now, as we have M/B = O(N) and logN = Ω(log2 logN), we have

log logN

logN
= O

(
1

log logN

)
= O

(
logM/B

N
B

log logN

)

So the global complexity for the entire algorithm is

〈O
(
N

B

logM/B
N
B

log logN

)
, O

(
N

logM/B
N
B

log logN

)
〉

Concerning the space complexity:
For the pre-sieve, we need a space O(N/ logN). For the whole tree but the leaves,

we need a space of O(N
√
B/M). For the bitarray, we need a space O(N/ logN).

For the leaf pages, we can actually shrink their size by a factor logN , so that they
can contain at most

√
MB/ logN elements. Indeed, as these elements will be flushed

in a portion of T that fits in
√
MB/ logN machine words, the amortized cost of such a

flush per element is O(1/B), which is the desired bound. The space used per each page
is then O(1 +

√
MB/ logN). So the space used to store all the O(N/

√
MB) leaves is

O
(
N/
√
MB +N/ logN

)
. Note that this space optimization has not been depicted in

the pseudo-code for clarity.
Therefore, the space requirement is

O

(
N

(√
B

M
+

1

logN

))

B Sieve of Atkin
We present here the pseudo-code depicting the different versions of the sieve of Atkins [6].
The two first sections only reformulate the original algorithms, and Appendix B.3 depicts
our contribution: an I/O-efficient version of the sublinear sieve of Atkins.

B.1 Level Curve Tracing
We first present the non-optimized version of the sieve of Atkins, which has a linear time
complexity, and does not optimize I/Os.

If M = N1/2+o(1), then the sieve can be performed in memory. Let f(x, y) be a
binary quadratic form and let L = {(x, y) ∈ N2|f(x, y) ≤ N}. Suppose that M can
hold an array of∆ values. Then we can subdivide L = L0∪L1∪· · ·∪Ldn/me−1, where
Li = {(x, y) ∈ L|i∆ < f(x, y) ≤ (i+ 1)∆}, and use our array to count the values of
f over each Li. For conciseness, we only describe the algorithm for the first quadratic
form, but the other cases are similar.

28

169

generate a list of primes P up to
√
N by any reasonable means;

for i← 0 to dN/∆e − 1 do
A[1]← 0, A[2]← 0, . . . , A[∆]← 0;
x← 1;
while x2 + 4 ≤ (i+ 1)∆ do

y ←
⌈
1/2
√

(i∆)− x2
⌉

, k ← x2 + 4y2;

while k ≤ (i+ 1)∆ do
if k ≡ 1 (mod 4) then

A[k − i∆]← A[k − i∆] + 1;
y ← y + 2, k ← x2 + 4y2;

x← x+ 2;
foreach p ∈ P do

j ←
⌈
i∆/p2

⌉
;

while p2j ≤ (i+ 1)∆ do
A[p2j − i∆]← 0, j ← j + 1;

for j ← 1 to ∆ do
if Odd(A[j + i∆]) then

Print(j + i∆);
Algorithm 7: The “linear” sieve of Atkin for primes congruent to 1 mod 4

Each Li is the region between two level curves, and the algorithm operates on them
individually. For each x the algorithm calculates the smallest viable y within the region
and then keeps incrementing it until it escapes the region. Because of the size of M and
the choice of ∆, each x with f(x, 1) ≤ (i+ 1)∆ has at least one y such that (x, y) ∈ Li.
Thus the overhead is at most linear.

f(x, y) = i∆ f(x, y) = (i+ 1)∆

Fig. 7. This figure depicts the algorithm “tracing” the points between level curves of f . The y
values of the encircled points must be calculated.

29

170 APPENDIX A. The I/O complexity of computing prime tables [LATIN 2016 conference]

B.2 Pre-sieving with a wheel
Here we show the algorithm with a wheel sieve on L. For brevity we describe the
strategy for a general binary form f(x, y). This can then be implemented for each of
the binary forms from Theorem 4 in Section 4. This algorithm has a time complexity of
N/ log logN , and is the main contribution of [6].

Let W = 12 ∗∏
√

log N
i=1 pi = No(1), and let U ⊆ [W]2 be the set of points (x, y)

such that f(x, y) is a unit mod W . Because f(x+ aW, y + bW) ≡ f(x, y) (mod W)
for any a, b ∈ Z, we can reduce the domain on which we work to the W -translates of
U . This is because the value of f on each of the remaining points must be of the form
kW + c where c shares a factor with W . Thus we loop through U , and for each point
d = (x, y) ∈ U , we count the occurrences of the values of f on each of the W -translates
within L. This is illustrated for a particular d in Appendix B.2. Then those values which
occur an odd number of times will be primes or squareful. Those squareful numbers
must be sieved, which can be done in a manner analogous to the sieve of Eratosthenes.

(0,W)

(W, 0)

W

W

Fig. 8. A visualization of the wheel pre-sieve. Here the red points are the unit-valued points on
[W]2, and the grey points in [W]2 have been eliminated. The black points are W -translates of
d = (x, y), and the grey points outside of [W]2 are W -translates of other points in U .

Because of the choice of W , it follows from Merten’s Theorem that
|U | = O(|W |2/ log logN). Thus the counting phase of the algorithm will take
O(N/ log logN) time. Since we have already sieved the first

√
logN primes, it can be

shown that the squarefree sieve can also be completed in O(N/ log logN).

B.3 Using a priority queue
The pseudo-code functions below describe our variant of the sieve of Atkins. Priority
queues are used instead of arrays to improve the I/O efficiency. This version requires

30

171

O
(
N1+o(N)

)
space, but it can be segmented among level curves as in Appendix B.1

to use O
(
N1/2+o(N)

)
. Note that in what follows objects are passed to functions as

references. The code for some functions has been omitted.

W ← ComputeWheelModulus(N);
U ← ComputeUnitsMod(W);
create three empty lists of pairs L1, L2 and L3;
L1← ConstructPrincipalDomain(W,U,1,4,1,4);
L2← ConstructPrincipalDomain(W,U,3,1,7,12);
L3← ConstructPrincipalDomain(W,U,3,-1,11,12);
create an empty min priority queue Q that only stores values;
InsertValuesFromDomain(Q,W,L1, 1, 4) ;
InsertValuesFromDomain(Q,W,L2, 3, 1) ;
InsertValuesFromDomain(Q,W,L3, 3,−1) ;
Q.Insert(∞);
create an empty queue S;
S ← EliminateEven(Q);
Print all the primes dividing W ;
EliminateSquaresAndPrint(S);

Algorithm 8: The main process of the Sieve of Atkin in external memory

ConstructPrincipalDomain(W,U, a, b, c, d)
create an empty list L;
foreach (x, y) ∈ [W]2 do

if ax2 + by2 ∈ U +WZ and ax2 + by2 ≡ c (mod d) then
L.Add((x, y));

return L;
Algorithm 9: ConstructPrincipalDomain: Relative to f(x, y) = ax2 + by2, returns a
list of all the unit-valued (mod W) points (x, y) in [W]2 with f(x, y) ≡ c (mod d)

31

172 APPENDIX A. The I/O complexity of computing prime tables [LATIN 2016 conference]

InsertValuesFromDomain(Q,W,L, a, b)
foreach (x, y) ∈ L do

i← 1;
while a(x+ iW)2 + by2 ≤ N do

j ← 1;
while a(x+ iW)2 + b(y + jW)2 ≤ N do

Q.Insert((x+ iW)2 + 4(y + jW)2);
j ← j + 1;

i← i+ 1;
return;

Algorithm 10: InsertValuesFromDomain: Relative to f(x, y) = ax2 + by2, inserts
the value of f on every W -translate of every point in L into Q.

EliminateEven(Q)
create an empty queue S;
p′ ← 0, c← 0, k ← 0;
while Q 6= ∅ do

p← Q.Extract-Min();
if p 6= p′ then

if Odd(c) then
k ← k + 1, S.Enqueue(p′);

c← 1;
else

c← c+ 1;
p′ ← p;

return S;
Algorithm 11: EliminateEven: Returns a queue with all the values in Q that occur an
odd number of times.

32

173

EliminateSquaresAndPrint(S)
create an empty key-sensitive min priority queue Q′ that can store 〈key, value〉 pairs;
c← S.Dequeue();
Q′.Insert(〈c, c2〉);
while S 6= ∅ do
〈p, v〉 ← Q′.Find-Min();
c← S.Dequeue();
while v < c do

Q′.Extract-Min();
Q′.Insert(〈p, v + p2〉);
〈p, v〉 ← Q′.Find-Min();

if v = c then
while v = c do

Q′.Extract-Min();
Q′.Insert(〈p, v + p2〉);
〈p, v〉 ← Q′.Find-Min();

else
Print(c);
Q′.Insert(〈c, c2〉);

return;
Algorithm 12: EliminateSquaresAndPrint: Prints the squarefree numbers in S, which
in this context are the primes (excluding those removed by the wheel, which are printed
in the main procedure).

33

174 APPENDIX A. The I/O complexity of computing prime tables [LATIN 2016 conference]

C Sieving the first
√
logN primes

We describe here a method to compute the numbers smaller than N that are co-prime
to the first

√
logN primes. This method is used by the algorithm in Appendix A. First,

we present the pseudo-code of the algorithm, before proving its correctness and its
complexity.

Data: S = {2, 3, · · · , N}
Result: A bit vector expliciting the co-primes to {p1 . . . p√log N} up to N
Compute the first

√
logN primes p1 . . . p√log N ;

Compute P =
∏

1<i<
√

log N pi;
Sieve SP = {1 . . . P} with the first primes in a bit vector sP (value COMPOSITE

or COPRIME);
Compute s′P equal to sP but with bits before p√log N set to COMPOSITE;
Concatenate sP with copies of s′P to form a N -long bit vector s;
return s;

Algorithm 13: Low-primes sieving

Lemma 9. This algorithm is correct: the returned bit vector explicits the co-primes to
to {p1 . . . p√log N} up to N .

Proof. We need to show that for all x < N , s[x] is COMPOSITE if and only if there
exists k ≤ √logN such that pk divides x.

First, suppose x < P . This property is ensured by the explicit sieving of SP .
If x is greater than P , let i = x mod P . Then, for any k ≤ √logN , pk divides

x if and only if pk divides i. If i ≤ p√log N , there exists k ≤ √logN such that pk
divides i, so x. And s[x] = s′P [i] = 0, so the property is true. If i > p√log N , there
exists k ≤ √logN such that pk divides i if and only if sP [i] = COMPOSITE, and
s[x] = s′P [i] = sP [i].

Theorem 11. The complexity of this algorithm is 〈O (N/(B logN)) , O (N/ logN)〉.

Proof. First, note that P is equivalent to

P = exp
(

(1 + o(1))
√

logN log logN
)

= O(N
log log N√

log N)

Computing the first primes, P , and s′P from sP do not exceed the bound.
Sieving SP successively with

√
logN primes has a time complexity ofO(

√
logNP)

and an I/O complexity of O(
√

logNP/(B logN)), which does not exceed the bound.
Creating s from s′P means achievingN/P copies of s′P , which has a time complexity

of O(N/ logN) and an I/O complexity of O(N/(B logN)).

34

175

C.1 Sieve of Eratosthenes using a RAM-efficient external-memory
priority queue.

The RAM and I/O performance of sieve of Eratosthenes can be improved using the
recently proposed RAM-efficient external-memory priority queue [5] in a folklore
priority queue based implementation of the sieve.

The straightforward folklore sieve implementation is shown in Figure 1(a). The
priority queue Q stores 〈k, v〉 pairs, where k is a prime (key) and v is its multiple (value).
Initially, 〈2, 4〉 is inserted into Q. When a pair 〈k, v〉 is deleted from Q, we check if v
is two more than the last value v′ deleted, and if so, p = v − 1 is not a multiple of any
prime, and hence must be a prime itself. We then insert 〈p, p2〉 into Q. We always insert
the next multiple v + k of k into Q.

The performance bounds of the sieve above with a RAM-efficient external-memory
priority queue [5] Q is given by the theorem below. The bounds follow from the obser-
vation that the sieve performs Θ

(∑
prime p∈[1,

√
N]

N
p

)
= Θ (N log logN) operations

on Q costing 〈O
(

1
B log M

B
N
)
, O

(
log M

B
N + log logM

)
〉 each.

Theorem 12. The sieve of Eratosthenes (shown in Figure 1(a)) implemented
using a RAM-efficient external-memory priority queue [5] has a complexity
of 〈O (SORT (N log logN)) , O

(
N log logN

(
log M

B
N + log logM

))
〉 and uses

O
(√

N
)

space for sieving primes in [1, N].

C.2 Sieve of Sorenson on a Segment
The sieve of Sorenson can be adapted to sieve for primes on the interval [a, b] provided a
sufficiently large pseudosquare table is available. We further assume that M = Ω(s) =
Ω(π(p) log2 b), where here and below p is determined as above but by b rather than N .
In that case, we can determine the primes up to s in O(s). We then perform the initial
wheel sieve phase in memory on each segment, which takesO((b−a)+s) = O((b−a)+
π(p) log2 b) operations andO((b−a)/B+s/B+1) = O((b−a)/B+π(p) log2 b/B+1)
I/Os.

In the second phase we must exponentiate each number in the segment for (poten-
tially) each pseudoprime up to p. It takes 〈O(b−a

B + 1), O((b− a)π(p))〉.
In the third phase we can for each k = 2, 3, . . . , blog bc compute r = da1/ke. Then

we create the list of perfect powers in [a, b] by taking rk, (r + 1)k, . . . for each k until
we reach b. This list will have O((

√
b −√a) log b) elements and can be computed in

O((
√
b−√a) log2 b+ log2 b). Thus all the perfect powers can be sorted and removed

from the candidate list in 〈O((b− a)/B), O((b− a) + log2 b)〉. We have shown:

Theorem 13. On a segment from a to b, the sieve of Sorenson runs in 〈O((b − a +
π(p) log2 b)/B + 1), O((b− a)π(p) + π(p) log2 b)〉

35

176 APPENDIX A. The I/O complexity of computing prime tables [LATIN 2016 conference]

Appendix B

Anti-persistence on persistent storage:
history-independent sparse tables and dic-
tionaries [PODS 2016 conference]

177

Anti-Persistence on Persistent Storage:
History-Independent Sparse Tables and Dictionaries

Michael A. Bender
∗

Stony Brook University
Jonathan W. Berry

†
Sandia National Laboratories

Rob Johnson
∗

Stony Brook University

Thomas M. Kroeger
‡

Sandia National Laboratories
Samuel McCauley

∗
Stony Brook University

Cynthia A. Phillips
†

Sandia National Laboratories

Bertrand Simon
§

Ecole Normale Supérieure de
Lyon

Shikha Singh
∗

Stony Brook University
David Zage

¶
Intel Corporation

ABSTRACT
We present history-independent alternatives to a B-tree, the primary
indexing data structure used in databases. A data structure is his-
tory independent (HI) if it is impossible to deduce any information
by examining the bit representation of the data structure that is not
already available through the API.

We show how to build a history-independent cache-oblivious B-
tree and a history-independent external-memory skip list. One of
the main contributions is a data structure we build on the way—a
history-independent packed-memory array (PMA). The PMA sup-
ports efficient range queries, one of the most important operations
for answering database queries.

Our HI PMA matches the asymptotic bounds of prior non-HI
packed-memory arrays and sparse tables. Specifically, a PMA
maintains a dynamic set of elements in sorted order in a linear-
sized array. Inserts and deletes take an amortized O(log2 N) el-
ement moves with high probability. Simple experiments with our
implementation of HI PMAs corroborate our theoretical analysis.
Comparisons to regular PMAs give preliminary indications that the
practical cost of adding history-independence is not too large.

Our HI cache-oblivious B-tree bounds match those of prior non-

∗Department of Computer Science, Stony Brook University,
Stony Brook, NY 11794-2424 USA. Email: {bender, rob,
smccauley,shiksingh}@cs.stonybrook.edu.
†MS 1326, PO Box 5800, Albuquerque, NM 87185 USA.
Email: {jberry,caphill}@sandia.gov.
‡PO Box 969, MS 9011, Livermore, CA 94551 USA.
Email: tmkroeg@sandia.gov.
§LIP, ENS de Lyon, 46 allee d’Italie, 69364 Lyon, France.
Email: bertrand.simon@ens-lyon.fr.
¶Intel Corporation, 2200 Mission College Blvd, Santa Clara, CA
95054 USA. Email: zage@cerias.net.

ACM acknowledges that this contribution was authored or co-authored by an em-
ployee, or contractor of the national government. As such, the Government retains
a nonexclusive, royalty-free right to publish or reproduce this article, or to allow oth-
ers to do so, for Government purposes only. Permission to make digital or hard copies
for personal or classroom use is granted. Copies must bear this notice and the full ci-
tation on the first page. Copyrights for components of this work owned by others than
ACM must be honored. To copy otherwise, distribute, republish, or post, requires prior
specific permission and/or a fee. Request permissions from permissions@acm.org.

PODS’16, June 26-July 01, 2016, San Francisco, CA, USA
c© 2016 ACM. ISBN 978-1-4503-4191-2/16/06. . . $15.00

DOI: http://dx.doi.org/10.1145/2902251.2902276

HI cache-oblivious B-trees. Searches take O(logB N) I/Os; in-
serts and deletes take O(log2 N

B
+ logB N) amortized I/Os with

high probability; and range queries returning k elements take
O(logB N + k/B) I/Os.

Our HI external-memory skip list achieves optimal bounds with
high probability, analogous to in-memory skip lists: O(logB N)
I/Os for point queries and amortized O(logB N) I/Os for in-
serts/deletes. Range queries returning k elements run in
O(logB N + k/B) I/Os. In contrast, the best possible high-
probability bounds for inserting into the folklore B-skip list, which
promotes elements with probability 1/B, is just Θ(logN) I/Os.
This is no better than the bounds one gets from running an in-
memory skip list in external memory.

1. INTRODUCTION
A data structure is history independent (HI) if its internal
representation reveals nothing about the sequence of opera-
tions that led to its current state [43, 47]. In this paper, we
study history independence for persistent, disk-resident dic-
tionary data structures.

We give two efficient history-independent alternatives to
the B-tree, the primary indexing data structure used in
databases. Specifically, we give an HI external-memory skip
list and an HI cache-oblivious1 B-tree.

One of the main contributions of the paper is a data struc-
ture we build on the way: a history-independent packed-
memory array (PMA). As we explain, the PMA [14, 18] is
an unlikely candidate data structure to be made history in-
dependent, since traditional PMAs rely on history so funda-
mentally. The HI PMA is one of the primary building blocks
in the HI cache-oblivious B-tree. However, it can also be
bolted onto any dictionary data structure, using the PMA to
hold the actual elements and deliver fast range queries.

Notions of History Independence
Informally, history independence partially protects a disk-
resident data structure when the disk is stolen by—or given
to—a third party (the “observer”). This observer can access
the data structure through the normal API but can also see
1A cache-oblivious [29, 30, 51] algorithm or data structure is
memory-hierarchy universal, in that it has no memory-hierarchy-
specific parameterization (see Section 1.1).

178 APPENDIX B. History-independent sparse tables and dictionaries [PODS 2016 conference]

its bit and pointer representation on disk. An HI data struc-
ture’s bit representation never leaks any information to the
observer that he could not learn through the API.

There are two notions of history independence, weak his-
tory independence (WHI) and strong history independence
(SHI) [47]. The notions are distinguished by how many
times the observer can look at the data structure—that is by
how many times an interloper can steal (or otherwise gain
access to) the disk on which the data structure resides. A
weakly history-independent data structure is history inde-
pendent against an observer who can see the memory rep-
resentation once. A strongly history-independent data struc-
ture is history independent against an observer who can see
the memory representation multiple times.

In this paper, we focus on weak history independence.
From a performance perspective, weak HI is a stronger no-
tion because it allows provably stronger performance guar-
antees (see Section 2). Protecting against multiple observa-
tions reduces achievable performance.

Weak history independence is the appropriate notion of
history independence in situations where only one observa-
tion is possible. For example, when the data is on a device
that can be separated from the owner (say a portable or em-
bedded device), the owner no longer interacts with the de-
vice. WHI provides the same level of protection in this case
with significantly better performance compared to SHI.

History Independence and Data
History independence in a database can have major advan-
tages, depending on the kind of data that is being stored and
the security requirements.

HI data structures naturally support information-
theoretically-secure delete. In contrast, with more standard
secure delete (where the file system overwrites deleted data
with zeros), information about deleted data can leak from
the memory representation. For example, it reveals how
much data was deleted and where in the keyspace it might
have been. In fact, a long history of failed redactions is one
of the original motivations for history independence [36].
History independence guarantees that the memory repre-
sentation will leak no information about these previous
(now secure) deletes. Encryption is not a panacea to protect
history unconditionally, since determined attackers can
recover the key used to encrypt on-disk data [35].

In a database, the source of the data can be more sensitive
than the data itself. As a toy example, consider a database of
known organized crime members maintained by the police.
The police might want to share such a database with select
individuals without revealing the order and times in which
the data was added to the database. Revealing this order
might leak information about how and when the data was
collected, which could reveal sources that the police want
to stay hidden. Journalists may desire the same property to
ensure their sources’ anonymity.

In such cases, we need to be particularly careful about
avoiding information leaks by side channels. Since leakage
can be subtle and hard to quantify, it is beneficial to have a
guarantee that nothing extraneous is revealed, which is ex-
actly what history independence guarantees. HI data struc-
tures naturally hide the order in which data was inserted.

History Independence in Persistent Storage
This paper focuses on history independence for external-
memory dictionaries. This area of history independence was
initiated by Golovin [32, 33]; see Section 1.4 for details.

The ubiquitous (non-history-independent) external-
memory dictionary is the B-tree.

Our objective is to build history-independent, I/O effi-
cient external-memory dictionaries.We support standard dic-
tionary operations: insertions, deletions, searches, and range
queries. Our two external-storage computational models
(the external-memory model [3] and the cache-oblivious
model [29, 30, 51]) apply to both rotating disks and SSDs.

We give weakly history-independent data structures for
persistent storage; these are easy to implement and retain
strong performance guarantees. We show that even range-
query data structures that seem to be inherently history de-
pendent—in particular, packed-memory array or sparse ta-
bles [14,16–18,38,41,66]—can be made weakly history in-
dependent. Overall, our results demonstrate that it is pos-
sible to build efficient external-memory (and even cache-
oblivious) history-independent data structures for indexing.

History Independence in Persistent Storage vs. RAM
History independence has been vigorously explored in the
context of data structures that reside in RAM [20, 21, 23, 36,
43, 46, 47, 61] (see Section 1.4), but significantly less so in
external memory. Although there is some theoretical work
on history-independent on-disk data structures [31–33] and
experimental work on history-independent file systems [10–
12, 56], the area is substantially less explored.

This lacuna may seem surprising, since many of the classi-
cal arguments in support of history independence especially
apply to disks. Hard drives are more vulnerable than RAM
because they are persistent and easier to steal, making it eas-
ier for an attacker to observe on-disk data.

1.1 I/O and Cache-Oblivious Models
We prove our results using the classic models for analyz-
ing on-disk algorithms and data structures: the disk-access
machine (DAM) model of Aggarwal and Vitter [3] and the
cache-oblivious model of Frigo et al. [29,30,51]. The DAM
has an internal memory (RAM) of size M and an arbitrarily
large external memory (disk). Data is transferred between
RAM and disk in blocks of size B < M . The performance
measure is transfers (I/Os). Computation is free.

The cache-oblivious model extends the DAM model. Now
parameters B and M are unknown to the algorithm designer
or coder. They can only be used as parameters in analyses.

Thus, an optimal cache-oblivious data structure is not pa-
rameterized by any block, cache or RAM size, or memory-
or disk-access times. Remarkably, many problems have op-
timal (and practical) cache-oblivious solutions, including B-
trees [14, 15, 22]. Informally, a cache-oblivious B-tree has
approximately optimal memory or I/O performance at every
level of an unknown multilevel memory hierarchy.

1.2 Packed-Memory Arrays and External-
Memory Dictionaries

In this paper, we give a history-independent PMA and two
external-memory dictionaries: a history-independent exter-
nal skip list and a history-independent cache-oblivious B-
tree. This subsection puts our results in context.

We first define a PMA. Then we describe the technical
issues involved in making a history-independent PMA. We
(this paper’s authors) were surprised when we first suspected
that a history-independent PMA could indeed exist. Here,
we try to articulate why the PMA might seem to be an un-
likely candidate data structure to make history independent,
but why it is nonetheless possible.

179

We next explain why a history independent PMA leads, al-
most directly, to an HI cache-oblivious B-tree, the first non-
trivial history-independent cache-oblivious data structure.

Finally, we discuss the history-independent external-
memory skip list. This HI data structure still offers high-
probability guarantees, analogous to in-memory skip lists.
See Section 2 for the definition of with high probability,
which we also write as “whp”.

Although the idea of a B-skip list, which promotes ele-
ments with probability 1/B rather than probability 1/2 is
folklore and has appeared in the literature repeatedly [1, 25,
26,33], we prove that its high-probability I/O guarantees are
asymptotically no better than those of an in-memory skip list
run in external memory.

Packed-Memory Arrays
One of the classic data-structural problems is called sequen-
tial file maintenance: maintain a dynamic set of elements
in sorted order in a linear-sized array. If there are N ele-
ments, then the array has Θ(N) empty array positions or
gaps interspersed among the elements to accommodate fu-
ture insertions. The gaps allow some elements to shift left or
right to open slots for new elements—like shifting books on
a bookshelf to make room for new books.

Remarkably, there are data structures for these prob-
lems that are efficient even for adversarial inserts and
deletes. Indeed, the number of element moves per update
is only O(log2N) both amortized [38, 63] and in the worst
case [64–66], which is optimal [24].

In external memory, this data structure is called a packed-
memory array [14,18]. It supports inserts, deletes, and range
queries. Given the location where we want to insert or delete
(which can be found using a separate indexing structure,
e.g., [15, 22]), it takes only O(1 + (log2N)/B) amortized
I/Os to shift the elements. Given the starting point, a range
query returning k elements costs Θ(1 + k/B) I/Os.2

Prior PMAs operate as follows. To insert a new element
after an existing element or to delete an element, find an en-
closing subarray or range, and rebalance. This spreads out
the elements (and gaps) within that range. The rebalance
range is chosen based upon the density within the range,
where ranges have minimum and maximum allowed den-
sities. These thresholds depend upon the size of the range:
small ranges have high thresholds for the maximum density
and low thresholds for the minimum density. The larger a
range is, the less variability is allowed in its density. The
algorithmic subtlety has to do with choosing the right rebal-
ance ranges and the right minimum and maximum density
thresholds for each range size.

However, range densities are very history dependent. For
example, if you repeatedly insert towards the front of an
array or if you repeatedly delete from the back of the ar-
ray, then the front of the array will be denser than the back.
How could we possibly make a version of this data structure,
that is history independent—that is, where newly inserted (or
deleted) elements do not seem to increase (or decrease) some
local density? We answer this question in this paper.

To use a more evocative image, picture a long trough
where you are pouring sand in one location (corresponding
to inserts) and letting out sand in another location (corre-
sponding to deletes). As the sand piles up, the pile gradually
2This scanning bound is a further requirement on how the elements
are distributed. Beyond the O(N) overall space limitation, only
O(1) gaps can separate two consecutive elements.

flattens (corresponding to local rebalances). Although rebal-
ances may flatten out the pile, we may still expect a bump for
newly arrived sand, and a depression for recently departed
sand. Perhaps surprisingly, we can avoid bumps and depres-
sions with mostly local rebalances.

Cache-Oblivious B-Trees
A B-tree is a dictionary supporting search, insert, delete,
and range query operations. There are cache-oblivious ver-
sions [13, 15, 22, 40, 55].

A history-independent PMA can immediately yield a
history-independent cache-oblivious B-tree. The idea is to
take a PMA and “glue” it to a static cache-oblivious B-
tree [51]. For details, see [15, 22]. We use a similar method
to construct our history-independent cache-oblivious B-tree
in Section 3.

External-Memory Skip Lists
The skip list is an elegant search-tree alternative introduced
by Pugh [53]. Skip lists are randomized data structures hav-
ing a weakly history independent pointer structure [31, 53].

Skip lists with N elements support searches, inserts, and
deletes in O(logN) operations whp and range queries re-
turning k elements in O(logN + k) operations whp [27,
42, 50]. They are heavily used in internal-memory algo-
rithms [5, 8, 9, 28, 34, 37, 39, 49, 57].

This paper gives a simple and provably good external-
memory history-independent skip list, which has high prob-
ability guarantees. Specifically, our skip list supports insert,
deletes, and searches with O(logB N) I/Os whp, and range
queries returning k elements withO(logB N+k/B) whp—
which is just the search plus scan cost. Thus, our history
independent, external memory skip list has high-probability
bounds matching those of a B-tree.

Our challenge is to tweak the folklore B-skip list [1,25,26,
33] as little as possible (and in a history-independent way)
so that we can achieve high-probability bounds for searches
and inserts while maintaining optimal range queries.

1.3 Results
We begin by giving an efficient, history-independent packed
memory array.

THEOREM 1. There exists a weakly history-independent
packed-memory array on N elements which can perform
inserts and deletes in O(log2N) amortized element moves
with high probability. This PMA requires O(N) space,
can perform inserts and deletes in amortized O

(
log2N
B +

logB N
)

I/Os with high probability, and can perform a
range query for k elements in O(1 + k/B) I/Os.

When B = Ω(logN log logN) (reasonable on today’s
systems), then log2N

B = O(logB N), so inserts and deletes
in our PMA have the same I/O complexity as in a B-tree.

Theorem 1 directly yields a history-independent cache-
oblivious B-tree with these performance bounds:

THEOREM 2. There exists a weakly history-independent,
cache-oblivious B-tree on N elements which can perform
inserts and deletes in O

(
log2N
B + logB N

)
amortized I/Os

with high probability. This cache-oblivious B-tree requires
O(N) space and can answer a range query for k elements
inO(logB N+k/B) I/Os, i.e., the search plus the scan cost.

180 APPENDIX B. History-independent sparse tables and dictionaries [PODS 2016 conference]

We give a simple and provably good external-memory
history-independent skip list, which has high probability
guarantees analogous to in-memory skip lists.

THEOREM 3. There exists a weakly history-independent,
external-memory skip list on N elements which can perform
look-ups in O(logB N) I/Os with high probability. For a
parameter ε > 0, the skip-list requires O(logB N) amor-
tized I/Os for inserts and deletes, with a worst case of
O(Bε logN) I/Os, all with high probability. This skip-list
requires O(N) space and can answer a range query for k
elements in O(1

ε logB N + k/B) I/Os with high probability.

The parameter ε indicates a small trade-off between the
worst-case rebuild cost after an update and the cost of
medium-size range queries (see Section 6).

We contrast our data structure with the B-skip list, which
promotes elements from one level to the next with proba-
bility 1/B. We prove that with high probability, there exist
at least Ω(

√
NB) elements where the cost to search for any

one of them is O(log N
B). Thus, the high-probability I/O

bounds for searching in a B-skip list are not asymptotically
better than for searching in a regular (internal-memory) skip
list that is implemented in external memory.

1.4 Related Work

History of History Independence
The history of history independence spans nearly four
decades. The central notions of history independence pre-
date its formalism.

One of the key ideas of history independence is unique
representation, which was studied as far back as 1977 by
Snyder [59]. Many uniquely represented data structures
were published before the conception of history indepen-
dence [4, 6, 7, 52–54, 59, 60]. Similar to unique repre-
sentation, the idea of randomized structures that are uni-
formly represented, that is, have representations drawn from
a distribution irrespective of the past history, emerged with
Pugh’s skip list [52, 53] and Aragon and Seidel’s treap [7].

Nearly a decade later, Micciancio [43] defined oblivious
data structures as those whose topology does not reveal the
sequence of operations that led to the current state. In 2001,
Naor and Teague [47] strengthened obliviousness to history
independence (“anti-persistence”), generalizing it to include
the entire bit representation of the structure, including mem-
ory addresses.

Hartline et al. [36] proved that a reversible data structure
(i.e. one whose state graph is strongly connected) is SHI if
and only if it fixes a canonical representation for each state
depending only on initial (possibly random) choices made
before any operations are performed.

Buchbinder and Petrank [23] further explored strong ver-
sus weak history independence, proving a separation be-
tween the two notions for heaps and queues in a comparison-
based model.

History-independent data structures are well-studied when
the objective is to minimize RAM computations. Exam-
ples include SHI hashing [20,46,47], dictionaries and order-
maintenance [20], and history-independent data structures
for computational geometry [21, 61].

Golovin [32, 33] began an algorithmic study of history-
independent data structures in external-memory. First,
Golovin proposed the B-treap [32], a strongly history-

independent external-memory B-tree variant based on
treaps [7].

Golovin notes that while the B-treap is a unique-
representation data structure supporting B-tree operations
with low overhead, from a practical point of view, it is
complicated and difficult to implement [33]. Golovin thus
proposes a strongly history-independent B-skip list [33] as
a simpler alternative to the B-treap. This data structure
achievesO(logB N) I/Os in expectation for searches and up-
dates and O(k/B + logB N) I/Os in expectation for range
queries returning k elements.

Golovin’s B-skip list builds upon the folklore extension
of skip lists (see e.g., [1, 25, 26, 33]): promote an element
from one level to the next with probability 1/B, rather
than 1/2. The folklore B-skip list’s I/O bounds are only
in expectation, and do not extend to good high probability
bounds (see Lemma 15).

Other Applications of History Independence
The theoretical work on history independence in external
memory complements the security and experimental work
on history-independent data structures for persistent stor-
age, such as file systems, cloud storage, voting systems and
databases [10–12, 19, 44, 45, 56].

History independence has many applications in security
and privacy. For example, history-independent data struc-
tures help to guarantee privacy in incremental signature
schemes [43] and vote-storage mechanisms [19, 44, 45].

History-independent data structures often have nice prop-
erties. For example, skip lists [53] have weakly history-
independent topologies, and are weight balanced [48] in a
randomized sense. Canonical representations [36] find ap-
plications in other areas besides security, e.g. concurrent
data structures [58], equality testing [60] and dynamic and
incremental algorithms [2, 52].

2. PRELIMINARIES
An eventEn on a problem of size n occurs with high proba-
bility (whp) if Pr [En] ≥ 1−1/nc for some constant c. Often
the event En is parametrized by some constant d, in particu-
lar, because the event is defined using Big Oh notation. (See,
e.g., Theorem 11.) In this case, we can say more strongly
that for every c, there is a d so that Pr [En] ≥ 1− 1/nc. We
use high probability guarantees to bound a data structure’s
performance more tightly than can be done using expectation
alone. Even if a data structure performs well in expectation,
it may have a large number of poorly-performing operations
(see, for example, Lemma 15).

Two instances I1 and I2 of a data structure are in the same
state if they cannot be distinguished via any sequence of op-
erations on the data structure. The memory representation
of an instance I of a data structure is the bit representation
of I , including data, pointers, unused buffer space, and all
auxiliary parts of the structure, along with the physical ad-
dresses at which they are stored.

DEFINITION 4 (WEAK HISTORY INDEPENDENCE).
A data structure is weakly history independent (WHI) if,
for any two sequences of operations X and Y that take
the data structure from initialization to the same state,
the distribution over memory representations after X is
performed is identical to the distribution after Y .

181

2.1 Building Blocks for History Independence
We use history-independent allocation [47] as a black box.
We also use the weak history-independent dynamic ar-
rays [36], rather than strongly independent dynamic ar-
rays [36, 47].3

Weakly history-independent dynamic arrays take constant
amortized time per update with high probability. The idea is
to maintain the following invariants. For array A storing n
elements: (1) the size |A| is uniformly and randomly chosen
from {n, . . . , 2n − 1}, and, (2) after each insert or delete
resize with probability Θ(1/|A|).

2.2 Performance Advantages of WHI over
SHI

We focus on weak history independence because of its per-
formance benefits. In particular, weak history independence
allows us to have high-probability guarantees in our data
structures.

Strong history independence for reversible data structures
requires a canonical representation [36].4 While canonical
representations are useful to have, maintaining them im-
poses strict limitations on the design and efficiency of the
data structure, as argued by several authors [23, 36]. More-
over, amortization, strong history independence, and high-
probability guarantees are largely incompatible.

In particular, SHI dynamic arrays cannot achieve the same
with high probability guarantees as WHI dynamic arrays.

OBSERVATION 1. No strongly-history-independent dy-
namic array can achieve o(N) amortized resize cost per in-
sert or delete with high probability.

PROOF. Consider a strongly-history-independent dy-
namic array that needs to be strictly greater than 50% full.
(The proof generalizes to arbitrary capacity constraints.) For
integer k, the adversary chooses a random ` ∈ {k, k +
1, . . . , 2k}. Then the adversary inserts up to ` elements into
the array, and then alternates between adding and removing
an element from the array, so that the array alternates be-
tween having ` and `+ 1 elements.

Given the capacity constraints on the array, there must be
at least two different canonical representations for the arrays
of sizes k, k + 1, . . . , 2k. Thus, there is a probability of at
least 1/k that the adversary forces an array resize (with cost
Ω(N)) on every insert and delete in the alternation phase.

Observe that k can be arbitrarily large. No matter how
long the data structure runs, it cannot avoid an Ω(N) resize
with probability greater than 1− 1/k.

Most importantly, this observation applies to PMAs as
well. A PMA with N elements at a given time is required
to have size Θ(N), so it generalizes the dynamic array. That
is, Observation 1 lets us conclude the following:

REMARK 1. A strongly history-independent PMA cannot
give any o(N) amortized with high probability operation
bounds. In contrast, our weakly history-independent PMA
has a O(log2N) bound (Theorem 1).

3Here it is assumed the contents of the dynamic array are stored
(internally) in a history independent manner—thus the size of the
array should not depend on the history of inserts and deletes.
4A data structure is reversible if the state-transition graph is
strongly connected [36], which is true of all structures in this paper
and most structures that support deletes.

Observation 1 similarly generalizes to other amortized data
structures with large worst-case costs. Thus, while strong
history independence provides stronger security guarantees,
it can come at a high performance cost.

2.3 Oblivious Adversary and Oblivious Ob-
server

Our performance analyses assume an oblivious adversary,
which determines the sequence of operations presented to
the data structure. The oblivious adversary cannot see the
outcomes of the data structure’s coin flips nor the current
state of memory. Said differently, the adversary is re-
quired to choose the entire sequence of operations before
the data structure even starts running. The oblivious adver-
sary is used for analyzing randomized structures such as skip
lists [53] or treaps [7].

Our (weak) history-independence analyses assume an
oblivious observer. The observer cannot control the input
sequence and does not see the data structure’s coin flips. The
observer gets to observe the data structure’s memory repre-
sentation once. We prove history independence by showing
that for every state of the data structure, the distribution of
memory representations is the same, regardless of how the
data structure got to that state.

3. HISTORY-INDEPENDENT PACKED
MEMORY ARRAY

This section gives a history-independent packed memory ar-
ray (PMA). A PMA is an Θ(N)-sized array that stores a se-
quence of elements in a user-specified order. There are up to
O(1) gaps between consecutive elements to support efficient
insertions and deletions.

A PMA with N elements supports the following:

• Query(i, j)—return the ith through jth elements of the
PMA, inclusive, where 0 ≤ i ≤ j < N .
• Insert(i, x)—insert x as the ith element of the PMA,

where 0 ≤ i ≤ N . Elements with rank i through N − 1
before the insert become the elements with i + 1 though
N after the insert.
• Delete(i)—delete the ith element of the PMA, where

0 ≤ i < N .

The PMA’s performance is given in Theorem 1.

3.1 High-Level Structure of HI PMA
Packed-memory arrays and sparse tables in the literature [14,
16–18, 38, 41, 66] are not history independent; the size of
the array, densities of the subarrays, and rebalances depend
strongly on the history.

We guarantee history independence for our PMA as fol-
lows. First, we ensure the size of the PMA is history inde-
pendent. We resize using the HI dynamic array allocation
strategy [36], as summarized in Section 2.1.

Next, we ensure that the N elements in the array of size
NS = Θ(N) are spread throughout the array according to a
distribution (given below) that is independent of past opera-
tions.

We maintain this history-independent layout recursively.
At the topmost level of recursion, we (implicitly) maintain
a set of size Θ(NS/ logNS), which we call the candidate
set. The candidate set consists of elements that have rank
N/2 ± Θ(NS/ logNS). We pick a random element from
the candidate set, which we call the balance element. If the

182 APPENDIX B. History-independent sparse tables and dictionaries [PODS 2016 conference]

balance element has rank r, then we recursively store the first
r−1 elements in the first half of the array and the remaining
N − r − 1 elements in the second half of the array.

In general, when we are spreading elements out within
a subarray A of the PMA, the candidate set has size
Θ(|A|/ logNS), and as before, the balance element is ran-
domly chosen from this set. The base case is when |A| =
Θ(logNS), at which point the elements are spread evenly
throughout A.

Thus, how the elements are spread throughout the PMA
depends only on the size NS (which is randomly chosen
as described in Section 2.1), the number of elements in the
PMAN , and the random choices of all the balance elements.

We maintain the balance elements in each candidate set
using a simple generalization of reservoir sampling [62] in
which there are deletes, described below. In this particular
instance of reservoir sampling, the size of a candidate set at
any given level of recursion stays the same, unless the size
of the entire PMA changes.

See Figure 1 for an illustration of our PMA. The top part
represents how each level of recursion partions the elements
into ranges. We show repeated elements across levels to aid
visualization; they are only stored once in the data structure
(at the bottom level). The division of elements into ranges at
each level helps in maintaining the balance elements, which
are stored in a separate structure.

3.2 Reservoir Sampling with Deletes
We first review a small tweak on standard reservoir sam-
pling [62], reservoir sampling with deletes, which we use
to help build the PMA.

Game: We have a dynamic set of elements. The objective
is to maintain a uniformly and randomly chosen leader of
the set, where each element in the set has equal probability
of being selected as leader. In other words, we are interested
in reservoir sampling with a reservoir of size 1.

Since the set is dynamic, at each step t, an element may be
added to or deleted from the set. The adversary is oblivious,
which means that the input sequence cannot depend on the
particular element chosen as leader.

We can maintain the leader using the following technique.
Let nt denote the number of elements in the set at time t
(including any newly-arrived element). Initially, if the set is
nonempty, we choose the leader uniformly at random. When
a new element y arrives, y becomes the leader with probabil-
ity 1/nt; otherwise the old leader remains. When an element
is deleted, there are two cases. If that element was the leader,
then we choose a new leader uniformly at random from the
remaining elements in the set. If the deleted element was not
the leader, the old leader remains.

LEMMA 5 ([62]). At any time step t, if there are nt el-
ements in the pool, then each element has a probability 1/nt
to be the leader.

3.3 Detailed Structure of the HI PMA
The size NS of our history-independent PMA is a random
variable that depends on the number of elements N stored
in the PMA (similar to dynamic arrays in Section 2.1). We
select parameter N̂ randomly from {N, . . . , 2N − 1}, and
NS is a function of N̂ (as described below).

We view the PMA as a complete binary tree of ranges,
where a range is a contiguous sequence of array slots. This
tree has height h = dlog N̂ − log log N̂e. The root is the
entire PMA and has depth 0. The leaves in the binary tree are

ranges comprising dCL log N̂e slots, and CL is a constant to
be determined later. Thus, the PMA has a total of NS =
2hdCL log N̂e ≤ (2CL + 1)N̂ = Θ(N) slots.

Consider a range R in the binary tree with left child R1
and right child R2. Recall from Section 3.1 that the balance
element bR of R is the first element of R2; all the elements
in R of smaller rank than bR are stored in R1. The values of
bR for each range/node are stored in a separate tree.

For each non-leaf rangeR at depth d, define the candidate
set MR to be the dc1N̂2−d/ log N̂e middle elements of R.
More precisely, if R holds ` elements, then we fix the size of
MR and set the first element of MR to be the 1 + d`/2e −
d|MR|/2eth element of R.

Our PMA is parameterized by a constant 0 < c1 <

1−6/ log N̂ .5 A larger c1 reduces the amortized update time
and increases the space. We requireCL ≥ 1+c1+6/ log N̂ .
The value of CL and c1 need not change as N̂ changes—
values such as c1 = 1/2 and CL = 2 will work for suffi-
ciently large N̂ (over 4096 in this case).

3.4 Dynamically Maintaining Balance Ele-
ments

As elements are inserted into or deleted from the PMA, the
candidate set MR for some range R could change. This
change might be caused by a newly inserted or deleted el-
ement that belongs to MR or just because insertions at one
end of R cause the median element of R to change.

As the candidate set MR changes, we maintain the invari-
ant that the balance element bR is selected uniformly and
randomly from MR. (In particular, this means that bR is
selected history-independently.) We use reservoir sampling
with deletes as the basis for maintaining this invariant.

INVARIANT 6. After each operation, for each range R,
balance element bR is uniformly distributed over the candi-
date set MR.

Whenever one element leaves their candidate set, another
one joins, since the candidate set size of each range is fixed
between rebuilds of the entire PMA. Thus, we describe how
to maintain the candidate set when exactly one element is
added, and one leaves.

If the balance element is the element leaving the candidate
set, we select the new balance element uniformly at random.
Otherwise, when a new element enters the candidate set, it
has a 1/|MR| chance of becoming the new balance element
(as in reservoir sampling).

When the balance element of a range changes, we rebuild
the entire range and all of its subranges. Rebuilding a range
of |R| slots can be done in Θ(|R|) time; see Lemma 10.

3.5 Detecting Changes to the Candidate Set
In order to determine how inserts and deletes affect the can-
didate set of a range R, we need to know the rank of the
element being inserted or deleted, the current candidate set
of R, and the rank of the current balance element of R.

The rank of the element being inserted and deleted is spec-
ified as part of the insert or delete operation.

To compute the other information, our PMA maintains an
auxiliary data structure containing the number of elements

5When N̂ ≤ 64, no such c1 exists. For such small N̂ , we use a
dynamic array instead.

183

8

8

8

8

11

11

11

11

14

14

14

14

16

16

16

16

18

18

18

18

19

19

19

19

20

20

20

20

21

21

21

21

22

22

22

22

24

24

24

24

25

25

25

25

27

27

27

27

28

28

28

28

30

30

30

30

33

33

33

33

35

35

35

35

36

36

36

36

37

37

37

37

40

40

40

40

43

43

43

43

46

46

46

46

49

49

49

49

50

50

50

50

53

53

53

53

54

54

54

54

56

56

56

56

59

59

59

59

60

60

60

60

leaf range internal rangeinternal range

su
bd

iv
is

io
ns

ar
ra

y

candidate setbalance element

Figure 1: Illustration of our PMA showing the subdivisions of elements into ranges. In each range, the balance element is framed
and the candidate set is hatched. The actual array is represented in the bottom, where occupied slots are shaded. The candidate-set
size at any given level does not depend on the range. The rank of each balance element is stored in a separate tree.

`R in each range R. During an insert or delete, as we de-
scend the tree of ranges, we keep track of the ranks of the
first and last element in each range as follows. Suppose we
are at range R whose first element has rank x. If we descend
to R1, then we know the rank of the first element of R1 is
also x. If we descend to R2, then the rank of its first element
is x+ `R1 . Given the rank of the first element of a range and
the number of elements in that range, it is easy to compute its
candidate set. Note also that the rank of the balance element
of a range R whose first element has rank x is x+ `R1

.
We need to store `R for each range so that it can be

accessed efficiently, both in terms of operations and I/Os.
Since the ranges form a complete binary tree, we store the
numbers `R in a binary tree organized in a Van Emde Boas
layout (see [14,51]). We call this auxiliary data structure the
rank tree.

The Van Emde Boas layout is a deterministic, static,
cache-oblivious—and hence history-independent—layout of
a complete binary tree. It supports traversing a root-to-leaf
path inO(logN) operations andO(logB N) I/Os. Thus, the
rank tree is history independent.

Whenever the size of a range changes due to an insert or
delete, we update the corresponding entry in the rank tree.
Whenever we rebuild a range R in the PMA, we update all
entries of the rank tree corresponding to descendants of R.
Whenever we rebuild the entire PMA, we rebuild the entire
rank tree.

4. CORRECTNESS AND PERFORMANCE

4.1 Balance-Element Structural Lemmas
First, we show correctness—the data structure always finds
a slot for any element it needs to store.

LEMMA 7. At all times, the size of a range is larger than
the number of elements it contains.

PROOF. Consider a range at depth d. This range has
NS/2

d = 2h−ddCL log N̂e ≥ CLN̂/2
d slots. We will

show that the maximum number of elements it can contain
is smaller than this number of slots.

The number of elements in the range is at most half of
the elements in its parents range, plus half of the size of the

parent’s candidate set (rounding up). In other words, if S(d)
is the maximum number of elements in a range at depth d,
S(0) ≤ N̂ and

S(d) ≤ dS(d− 1)/2e+ dMR/2e

≤ dS(d− 1)/2e+
1

2

⌈
c1N̂

2d−1 log N̂

⌉
+

1

2

≤ S(d− 1)

2
+

c1N̂

2d log N̂
+

3

2
.

By induction,

S(d) ≤ N̂

2d
+

c1dN̂

2d log N̂
+ 3.

Since d ≤ log N̂ , and N̂/2d ≥ N̂/2h ≥ (log N̂)/2,

S(d) ≤ N̂

2d
(1 + c1) + 3 ≤ N̂

2d

(
1 + c1 +

6

log N̂

)
.

Since we chooseCL ≥ 1+c1+6/ log N̂ , we have S(d) ≤
CLN̂/2

d.

As Lemma 7 establishes, each leaf range in the PMA
(which has Θ(logN) slots) never fills up completely. Us-
ing a similar argument, it can be shown that each leaf also
contains Ω(logN) elements if c1 < 1 − 6/ log N̂ . Because
the elements are spread out evenly in the leaves, this implies
there are O(1) gaps between two consecutive elements.

LEMMA 8. If c1 < 1 − 6/ log N̂ , the leaves are always
constant-factor full. There is O(1) space between two con-
secutive elements in the array.

Next, we prove weak history independence. As mentioned
in Section 3.1, when we are spreading elements out within
a subarray A of the PMA, the balance element is randomly
chosen from the candidate set. The elements of A are re-
cursively split between its children according to this balance
element. The base case is when |A| = Θ(log N̂), at which
point the elements are spread evenly throughout A.

184 APPENDIX B. History-independent sparse tables and dictionaries [PODS 2016 conference]

Thus, how the elements are spread throughout the PMA
depends only on N̂ (and the related NS), the number of el-
ements in the PMA N , and the random choices of all the
balance elements. This immediately gives weak history-
independence, as formalized in the following lemma.

LEMMA 9. This PMA is weakly history independent.

PROOF. We show that the memory representation of the
PMA is based only on N and some randomness (in particu-
lar, the random choices made during balance element selec-
tion and the random choice of N̂).

Let the PMA contain a set of elements S of size N , with
a set of balance elements P . Then P partitions the elements
of S into leaf ranges.

Since the elements are evenly spaced in each leaf range,
the position of each element within the leaf is determined by
the number of elements in that leaf. Since S is partitioned
into leaf ranges by P , P determines the position of each ele-
ment in the PMA. Thus P , N̂ , andN determine the memory
representation of the data structure. By Invariant 6, P is se-
lected from a distribution based only on N and N̂ .

Thus, any two sequences of operationsX and Y that insert
S into the PMA result in the same distribution on P , and the
same distribution on memory representations.

4.2 Proving the Performance Bounds
We begin by bounding the cost of a rebalance. Then we
bound the total number of rebalances.

LEMMA 10. Rebuilding a range R containing |R| slots
takes O(|R|) RAM operations and O(|R|/B + 1) I/Os.

PROOF. The algorithm first recursively chooses the bal-
ance elements for all ranges contained in this range R and
updates them in the rank tree; this takes O(|R|) time and
O(|R|/B + logB |R|+ 1) = O(|R|/B + 1) I/Os. Then, all
elements in R are gathered, and inserted into the appropriate
leaf range using a sequence of linear scans.

Our goal is to bound the cost of our PMA operations.
Specifically, we want to show Theorem 11.

THEOREM 11. Consider k (not necessarily consecutive)
operations on a PMA during which its maximum size isNM ,
its minimum size is Ω(NM), and k = Ω(NM). The amor-
tized cost of these operations isO(log2NM) with high prob-
ability with respect to k: in other words, these k operations
requireO(k log2NM) total RAM operations with high prob-
ability.

Before proving this theorem, we need some supporting
lemmas and definitions.

DEFINITION 12. A rebuild that is not charged to a range
R is called a free rebuild. Free rebuilds come from two
sources: (1) they are rebuilds of an ancestor range (whose
cost is charged to the ancestor), or (2) they are triggered by
the interstitial operations between the nonconsecutive oper-
ations of Theorem 11.

We further categorize non-free rebuilds by their causes.
An out-of-bounds rebuild is a rebuild caused by the pivot
leaving the candidate set. A lottery rebuild is a rebuild
caused by deleting the pivot or by inserting into the can-
didate set an element that becomes a new pivot.

Gearing up to Lemma 13, we concentrate on the cost of
all rebalances at a single depth d. Let Md be the size of the
candidate set at depth d.

We give a lower bound on the probability that two out-
of-bounds rebuilds happen in quick succession. This lemma
holds regardless of the number of free and lottery rebuilds
that happen in between.

LEMMA 13. After any rebuild of a range R at depth d,
consider a sequence of t operations on R, for any t ∈
{1, . . . , bMd/2c}, with arbitrary free and lottery rebuilds
occurring during these operations. The probability p(t) that
no out-of-bounds rebuild happens during these t operations
is at least 1− 2t/Md.

PROOF. Let pi(t) be the probability that no out-of-bounds
rebuild happens in the first t time steps, given that exactly i
free and lottery rebuilds happen during the first t time steps.
We prove the lemma by induction on i.

Define the guard number as the number of elements be-
tween the pivot and the closest endpoint of the candidate set.

First, the base case: for any t, p0(t) is at least the proba-
bility that the guard number after a rebuild is larger than t.
Indeed, the balance element cannot be moved closer to an
endpoint of the candidate set by more than one element per
operation. As the pivot is sampled uniformly after any type
of rebuild, we have

p0(t) ≥ Pr [guard number > t] ≥ 1− 2t/Md.

Now, assume by induction that pi(t) ≥ 1 − 2t/Md and we
want to show pi+1(t) ≥ 1 − t/Md. Let t′ be the last time
step before the (i+ 1)st non-out-of-bounds rebuild.

The following conditions ensure that there are no out-of-
bounds rebuilds in the first t operations:

1. there is no out-of-bounds rebuild in the first t′ opera-
tions, and

2. there is no out-of-bounds rebuild in the subsequent t−
t′ operations.

These two events are independent since there is a fixed
(free or lottery) rebuild between them. The first occurs with
probability pi(t′) and the second with probability p0(t− t′).
Thus, we have

pi+1(t) ≥ pi(t′) p0(t− t′)
≥ (1− 2t′/Md) (1− 2(t− t′)/Md) ≥ 1− 2t/Md,

and the induction is complete.

DEFINITION 14. Consider an out-of-bounds rebuild of a
range R at depth d.

We call this rebuild a good out-of-bounds rebuild if R
has only free and lottery rebuilds for the next Md/4 opera-
tions.

By Lemma 13, an out-of-bounds rebuild is good with prob-
ability at least 1/2.

We are now ready to prove Theorem 11.
PROOF OF THEOREM 11. Consider the sequence of re-

builds of ranges at a given depth d. We analyze lottery
rebuilds and out-of-bounds rebuilds separately. Since vari-
ations in N̂ slightly change the candidate set size, let M
denote the smallest candidate-set size at depth d over the
k operations. However, since N = Θ(NM) at all times,
M = Θ(|Md|).

We give a (weak) bound on k/M which helps show that
the high-probability bounds hold with respect to k.

185

In particular,

k/M ≥ k logNM
NM

≥ k log k logNM
NM log k

= Ω(log k),

since k/ log k = Ω(NM/ logNM) if k = Ω(NM).
Each operation has probability at most 1/M of causing

a lottery rebuild. Thus, there are k/M lottery rebuilds in
expectation. Then using Chernoff bounds, the probability
that we have more than (1 + δ)k/M rebuilds is less than
e−δk/3M . Recall that k/M = Ω(log k). Substituting, there
are O(k/M) lottery rebuilds with high probability.

Now, we bound the out-of-bounds rebuilds. By the pi-
geonhole principle, there cannot be more than k/(M/4) +
2d = O(k/M) good out-of-bounds rebuilds (the second
term comes from the number of ranges at depth d).

We bound how many bad out-of-bounds rebuilds can hap-
pen before reaching this limit on good out-of-bounds re-
builds. Any out-of-bounds rebuild is good with probability
at least 1/2. Then after k/M = Ω(log k) out-of-bounds re-
builds, we obtain Θ(k/M) good out-of-bounds rebuilds with
high probability, again by Chernoff bounds. As we can only
getO(k/M) good rebuilds, we haveO(k/M) out-of-bounds
rebuilds in total.

Therefore, every k operations, there are O(k/M) out-of-
bounds and lottery rebuilds of ranges at depth d with high
probability. Each rebuild costs O(M logNM) RAM opera-
tions by Lemma 10 (because that is the number of slots in a
range at depth d). Thus, the total rebuild cost for depth d is
O(k logNM).

Having determined the cost of rebalancing at each depth,
we account for the total cost. The amortized rebalance cost,
summing over all h = O(logNM) levels, is O(log2NM).

Each resize costs O(NM) and occurs with probability
O(1/NM) after every insertion. Using Chernoff bounds,
there areO((k logNM)/NM) = Ω(log k) resizes after k op-
erations with high probability, leading to an additional amor-
tized cost of O(logNM).

Finally, each insert or delete requires extra bookkeeping:
we must find the appropriate leaf range to insert the element
by traversing the rank tree. This traversal takes O(logNM)
RAM operations, and rebuilding the leaf so that the elements
are still evenly spaced takes O(logNM) RAM operations.

This gives a total of O(k log2NM) total RAM operations
with high probability.

Using similar analysis, we can also bound the I/O per-
formance. Recall that rebalancing a range of size R takes
O(R/B + 1) I/Os, and traversing a tree in the Van Emde
Boas layout requires O(logB NM) I/Os. Carrying these
terms through the above proof gives the desired bounds.

To complete the proof of Theorem 1, we need to extend
this analysis to handle the PMA changing size significantly.

PROOF OF THEOREM 1. We partition the k = Ω(N) op-
erations on the PMA into types based on the size of the
PMA. In particular, let N̂t be the value of N̂ during the tth
operation. Then operation t is of type 0 if N ≥ N̂t > N/2,
type 1 if N/2 ≥ N̂t > N/4, and type i if N/2i ≥ N̂t >
N/2i+1 for 0 ≤ i ≤ dlogNe.

We analyze each type of operations as a whole, and bound
its total cost, summing to O(k log2N) RAM operations in
total. Each type is analyzed using two cases.

First, consider a type i which has at least
√
N total opera-

tions. Then by Theorem 11, these operations take amortized
O(log2N) RAM operations with high probability.

Second, consider a type i which has less than
√
N op-

erations. We call the operations of these types small-type
operations. We show that the total cost of all small-type op-
erations is a lower-order term.

Since the PMA begins as empty, and each operation can
only insert one element, there are at leastN/2i+1 operations
of type i. Thus, each small-type operation t has N̂t ≤

√
N .

Then overall, a type which has less than
√
N operations

must operate on a PMA of size ≤
√
N . Thus, each type has

total cost O(N). Summing over the O(logN) such types,
we get a worst-case total cost of O(N logN) for small-type
operations; amortizing gives a cost of O(logN) RAM oper-
ations.

Thus the total amortized cost isO(log2N) with high prob-
ability with respect to N . The I/O cost to rebuild range R is
|R|/B by Lemma 10; carrying this term through the above
analysis, we obtain the desired I/O bounds.

4.3 Experimental Results
We implemented a normal PMA and our history-
independent PMA. We found that while there was approxi-
mately a factor of 7 overhead in the run time, the asymptotic
performance matched our analysis.

We also examined the number of element moves required
during an insert. Figure 2 shows the number of moves re-
quired divided by N log2N vs. the number of elements in-
serted. The linear nature of this data supports our theoretical
analysis.

These tests were run on a Dell server with an Intel Xeon
processor (E5-2450 @ 2.10GHz). In these tests, inserting
100 million random numbers took approximately 23 min-
utes. Additionally the space overhead ranged from 1.8 to 5
times the number of elements.

 0.0001

 0.001

 0.01

 0.1

 1

 10

 0 1e+07 2e+07 3e+07 4e+07 5e+07 6e+07 7e+07 8e+07 9e+07

N
u

m
b

e
r

o
f

m
o

v
e

s
 (

n
o

rm
a

liz
e

d
)

Number of insertions

PMA Performance

HIPMA moves/n log^2 n
PMA moves/n log^2 n

Figure 2: Experimental results of runtime for random inserts
on normal and history-independent PMAs.

The history-independence of our PMA depends on the bal-
ance elements being uniformly distributed across the candi-
date set; see Lemma 5. To test this, we inserted values of
1-100,000 sequentially into a history-independent PMA and
recorded the position of the balance for each range within
this PMA where the candidate set size was eight or greater.
We did this test 10,000 times and used the χ2 goodness-of-
fit test to compare these balance elements with a uniform

186 APPENDIX B. History-independent sparse tables and dictionaries [PODS 2016 conference]

distribution. To ensure enough samples we only looked at
ranges where the expected count for each bucket was ten or
greater. This resulted in 148 p-values. If our null hypothesis,
that these balances are uniformly distributed, holds, these p-
values themselves should be uniformly distributed. Running
the χ2 goodness-of-fit test across these p-values showed a re-
sult consistent with data coming from a uniform distribution
(p=0.47, n=148). As a result we can say there is no statisti-
cally significant evidence of that our balance elements have
a deviation from a uniform distribution.

5. HISTORY-INDEPENDENT CACHE-
OBLIVIOUS B-TREE

In this section we prove Theorem 2, which establishes the
performance of our history-independent cache-oblivious B-
tree. This N -element data structure, must, without knowl-
edge of the block size B,
• insert or delete items with O((log2N)/B + logB N)

amortized I/Os with high probability,
• use O(N) space, and
• answer range queries containing k elements in
O(logB N + k/B) I/Os.
When B = Ω(logN log logN), which is reasonable on

today’s systems, log2N
B +logB N = O(logB N), so that our

history-independent cache-oblivious B-tree matches the I/O
complexity of a standard B-tree.

The requirements above are similar to those achieved by
our PMA. The key difference is that PMA items are searched
by rank (before being inserted, deleted, or completing a
range search) rather than value.

By slightly augmenting our PMA, we obtain a cache-
oblivious B-tree achieving the above bounds. We call our
data structure the augmented PMA.

The augmented PMA has an additional, static-topology
tree associated with it. Recall that our PMA has the sizes of
each range stored in a complete binary tree, in a Van Emde
Boas layout. We store an additional tree storing the values
of each balance element. The two trees are identically struc-
tured, and identically maintained. Thus, this leads to only
a constant factor increase in both space and running time.
To search (by value) in the augmented PMA, we traverse a
path in the new tree of balance-element values. This costs
O(logB N) I/Os and O(logN) operations. Once we have
found the element, we can determine its rank by traversing
the rank tree, summing the sizes of any left children each
time we go to a right child.

Once the rank of the element is known, we insert, delete,
or perform range queries as in the normal PMA, establishing
the desired bounds.

6. HISTORY-INDEPENDENT EXTERNAL-
MEMORY SKIP LIST

In this section we prove Theorem 3. We give a history-
independent external-memory skip list.

In-memory skip lists support updates and queries in
O(logN) time whp. The natural extension to external mem-
ory [1, 25, 26, 33] promotes elements with probability 1/B
rather than probability 1/2. We prove that for this exten-
sion, the high-probability I/O bounds are asymptotically no
better than those of an in-memory skip list run in external
memory (Lemma 15).

We build an external-memory skip list with good (i.e., B-
tree-like) high-probability bounds for searches, updates, and

range queries, while retaining the structure of the folklore
B-skip list as much as possible.

6.1 High-Level Structure of the HI External-
Memory Skip List

First, we describe why the folklore B-skip list fails to achieve
high-probability I/O bounds. Then, we present the approach
used in our skip list.

Golovin and others [1, 25, 26, 33] promote elements with
probability 1/B (rather than 1/2, as in the in-memory skip
list). Consider an array, a sequence of contiguous elements
at any level that have not been promoted to the next level
(i.e., lie between two promoted elements). These arrays can
have size O(B logN) whp, which is O(logN) times larger
than the expected length. When this list is embedded in an
array (analogous to the nodes in a B-tree), then a scan to
search for these elements costs O(logN) I/Os whp.

We change the promotion probability to 1/Bγ , where
1/2 < γ < 1 − log logB/ logB. Now, all arrays
have size O(Bγ logN) whp, so searches and updates take
O(Bγ logN/B) = O(logB N) I/Os whp.

While a promotion probability of 1/Bγ results in fast
searches and updates, it slows down range queries. If
we pack arrays at the leaf level (the leaf arrays) of the
skip list into disk blocks [33], then most disk blocks will
be underutilized, containing only Bγ elements on aver-
age. Thus, a range query returning k elements may require
O(logB N + k/Bγ) I/Os, which is worse than the target of
O(logB N + k/B) I/Os.

For efficient range queries, we pack multiple arrays into
disk blocks at the leaf level as follows. Contiguous arrays,
delimited by elements promoted twice, are packed together
into a leaf node. A leaf node is stored consecutively on disk;
see Figure 3.

The packing strategy described above permits some leaf
nodes to get too large, achieving size Θ(B2γ logN). If
we pack elements as densely as possible, then every new
insert would require rewriting the entire node at a cost of
O(B2γ−1 logN) I/Os, which is worse than Θ(logB N) I/Os.

Similar to PMAs and HI dynamic arrays [36], we leave
empty spaces between the elements in the leaves to support
efficient inserts. We do so in a way that maintains history
independence; see Invariant 16.

6.2 Detailed Structure of the HI External-
Memory Skip List

A skip list S is a series of linked lists {S0, S1, . . . , Sh},
where S0 ⊇ S1 ⊇ . . . ⊇ Sh. Let H = {0, 1, . . . , h} be
the levels of the skip list, and h the height of the skip list.
The base list S0 contains all the elements in the skip list; we
call level 0 the leaf level.

Each Si, for 0 < i ≤ h, stores a sorted subset of the
elements from Si−1, along with the special element front
to mark the beginning of the list; see Figure 3. The function
level : S0 → H determines the highest list that contains an
element x, that is, if level (x) = i then x ∈ Sj for all j ≤ i
and x /∈ Sk for i < k ≤ h.

The height of each element is determined randomly, ac-
cording to promotion probability p. Specifically, for i ∈
H − {0}, if an element is in Si−1, it is also in Si with prob-
ability p. Thus, level (x) of an element x is the number of
coin flips before we see a tail, when using a biased coin with
probability p of flipping a head.

Next, we show that the folklore B-skip list, which has a

187

Fr
on

t

1 8 9 12 17 18 20 21 23 26 32 33 39 42 45 52 53

1 8 17 21 23 32 39 52

1 23 52

23

leaf-node leaf-array

internal array

search path
for key 18
gap

Figure 3: Illustration of a search path for element key 18 in the external skip list (B = 3 and p = 1/2).

promotion probability of 1/B, performs poorly for some el-
ements with high probability.

LEMMA 15. In a B-skip list with promotion probability
p = 1/B, there exist Ω(

√
NB) elements with search cost

Ω(log(N/B)) with high probability with respect to N/B.

For our history-independent external-memory skip list, we
choose promotion probability p = 1/Bγ , where 1/2 < γ ≤
1− log logB/ logB is a constant. Let 1/p = Bγ be integral
to simplify analysis. We parameterize our running times by
ε > 0, with γ = (ε+ 1)/2.

The parameter γ can be tuned—there is a trade-off be-
tween the cost of a range query and the worst-case cost of
insertion. Specifically, a range query returning k elements
has a cost of O(1

ε logB N + k/B), while the worst-case in-
sert cost is O(Bε logN) I/Os. The expected insert cost re-
mains O(logB N) I/Os for all allowed values of γ.

We now describe how to partition the elements into arrays
at nonleaf levels. We also describe how to pack the leaf ar-
rays into leaf nodes.

Partitioning Non-Leaf Levels. We partition the list Si
at each level i for 1 ≤ i ≤ h into arrays. The array at
level i starts with a promoted element, i.e., element x with
level (x) ≥ i + 1. It contains all elements up to (and not
including) the next promoted element. The size of an array
is the number of elements stored in it plus any empty slots.
We maintain these sorted arrays history independently [36].

Partitioning the Leaf Level. We store the leaf level com-
pactly to support I/O-efficient range queries. The leaf arrays
at the leaf level are packed into a leaf node. Formally, a leaf
node B is a set of contiguous leaf arrays starting at some el-
ement x that has been promoted twice, that is, level (x) ≥ 2.

We store the leaf arrays history independently (see Sec-
tion 2.1), with the following modification: even when a leaf
array has n elements with n ≤ Bγ elements, we maintain
its size ns ≥ Bγ . We call the extra ns − n array slots gaps.
This modification retains history independence.

INVARIANT 16. Let n be the number of elements in a leaf
array of total size ns then:
• If n ≤ Bγ , then ns is uniform in [Bγ , 2Bγ − 1].
• If n ≥ Bγ , then ns is uniform in [n, 2n− 1].

Searches, Insertions, and Deletions. Search is imple-
mented exactly as in a standard skip list: for an element y,

start at the top list Sh, and scan right till a value x > y is
reached, in which case, descend a level down and continue
till y is found or shown not to exist.

To insert or delete an element y, search for the leaf array
where y belongs and insert or delete it. This involves shift-
ing elements in the leaf array and causes an array resize with
probability O(1/Bγ) by Invariant 16. If a resize occurs, re-
build the entire leaf node containing the array.

When inserting y, determine level (y) = ` by tossing a
biased coin with probability of heads p. At levels 1 ≤ i <
`, y starts an array, splitting the existing array into two. If
` ≥ 2, y starts a leaf node, splitting the existing leaf node
into two.

When deleting y, at levels 1 ≤ i < `, merge the leaf array
that y started with its predecessor. If ` ≥ 2 then merge the
leaf node that y started with its predecessor.

6.3 History Independence of External-
Memory Skip List

The history independence of our external-memory skip list
follows immediately from the following facts:
• level (x) for each element x is generated randomly,
• the elements within an array appear in sorted order,
• the size of each array is chosen history-independently (by

Invariant 16 for leaf arrays and [36] for non-leaf arrays),
• within a leaf node, the leaf arrays are packed contiguously

in sorted order, and,
• each array is allocated in blocks of size Θ(B) history-

independently [47].

6.4 Performance Analysis
We bound the height of the external-memory skip list. The
proof is similar to standard skip lists.

LEMMA 17. An external-memory skip list with promo-
tion probability p has height h = O(log1/pN) whp.

PROOF. For any element x, the probability that its level
is more than O(log1/pN) is given by: Pr[level (x) ≥
c log1/pN] ≤ pc log1/pN = 1/N c.

Applying the union bound we get, Pr[∀x, level (x) ≥
c log1/pN] ≤ N(1/N c) = 1/N c−1.

Thus, the height of our external-memory skip list with p =
1/Bγ is O(logB N).

188 APPENDIX B. History-independent sparse tables and dictionaries [PODS 2016 conference]

Search. To analyze searches, we bound the size of the
arrays and leaf nodes.

An array contains elements between two consecutive pro-
moted elements. Thus, the size of an array is bounded by
the length of the longest sequence of tails, when flipping a
biased coin with Pr[head] = 1/Bγ , which is O(Bγ logN).

LEMMA 18. The number of I/Os required to perform a
search is O(logB N) with high probability.

PROOF. Similar to the backward analysis in standard skip
lists [53], examine the search path from bottom up start-
ing at the leaf level. Each element visited by the path was
either promoted and the search path came from the top,
or was not promoted and the search path came from the
left. The number of down moves is bounded by the height
h = c logB N (Lemma 17). At each level, the search path
traverses at most two arrays.

The total length of the arrays touched by the search
path is bounded by the number of coin flips required
to obtain c logB N heads, where Pr [head] = 1/Bγ .
We need O(Bγ logN) coin flips whp. Thus, the
number of I/Os during the search at nonleaf levels is
O(logN/B1−γ + logB N) = O(logB N) whp, since γ ≤
1− log logB/ logB. At the leaf level, the search scans one
leaf array, which costs O(Bγ logN/B) = O(logB N).

Insert. To bound the insert cost, we bound the cost of
rebuilding a leaf node. The size of a leaf node is the number
of elements stored in it plus the number of gaps.

The number of elements in a leaf node is bounded by the
length of the longest sequence of tails in N coin flips with
Pr [head] = p2 = 1/B2γ , which is O(B2γ logN) whp.

The number of gaps between any k consecutive leaf el-
ements can be shown by a Chernoff bound argument to
be O(k + Bγ logN). Thus, the size of a leaf node is
O(B2γ logN) whp. Rebuilding it costsO(B2γ logN/B) =
O(Bε logN) I/Os.

LEMMA 19. The cost of performing an insert or delete
operation is amortized O(logB N) I/Os whp, with a worst
case cost of O(Bε logN) I/Os whp.

PROOF. When an element y is inserted or deleted, the
splits and merges at levels 1 ≤ i < level (y) are dominated
by the search cost of O(logB N).

The cost of inserting in a leaf array is dominated by the
cost of rebuilding the leaf node: O(Bε logN) I/Os whp. The
rebuild occurs with probability O(1/Bγ). The amortized
I/O cost is then O(B2γ−1 logN/Bγ) = O(logN/B1−γ) =
O(logB N) in expectation and whp with respect to the num-
ber of operations, since γ ≤ 1− log logB/ logB.

Range Query. To analyze a range query on a range of size
k, we bound the number of leaf nodes across which the k
elements are spread. That is, we bound the number of heads
obtained on k biased coin flips with Pr[head] = 1/B2γ .

LEMMA 20. The number of leaf nodes across which k
consecutive leaf elements are stored is O(1

ε logB N + k/B)
with high probability.

LEMMA 21. A range query returning k elements costs
O(1

ε logB N + k/B) I/Os with high probability.

PROOF. We break the analysis into several cases depend-
ing on the source of the cost.

• If the k consecutive elements fit in a single leaf node and
there are no gaps, then the size of each such leaf array
is O(Bγ logN) whp. Thus, O(Bγ logN/B + k/B) =
O(logB N + k/B) I/Os suffice.
• If the k consecutive elements span across arrays with gaps.

The sum of sizes of the gaps between these elements is
O(k + Bγ logN). Thus, a range query takes O(k/B +
Bγ logN/B) = O(logB N + k/B) I/Os.
• If the k consecutive elements span several leaf nodes, by

Lemma 20 they spanO(k/B+ 1
ε logB N) leaf nodes. Ev-

ery time the range query scan crosses a leaf node bound-
ary, we incur an I/O to bring in the next leaf node, which
requires O(k/B + 1

ε logB N) I/Os.
Thus, overall a range query scanning k consecutive elements
takes O(1

ε logB N + k/B).

Space. Finally, we bound the space used.

LEMMA 22. The external skip list on N elements re-
quires Θ(N) space with high probability.

PROOF. The non leaf levels of the external skip list store
Θ(N) elements with only constant factor space. At the leaf
level, the number of gaps between N elements is O(N +
Bγ logN) = Θ(N) whp.

Lemmas 18, 19, 21, and 22 prove Theorem 3.

7. CONCLUSION
We show that adding history independence to some external-
memory data structures can come at low cost. We focus
on history-independent indexing structures, alternatives to
the traditional B-tree, the primary indexing structure used in
databases. We give HI PMAs and cache-oblivious B-trees
with the same asymptotic time and space bounds as their
non-HI counterparts. We give a HI skip list that performs
even better than the non-HI B-skip list because the bounds
are given with high probability rather than in expectation.

Acknowledgments
This research was supported in part by NSF grants
CCF 1114809, CCF 1217708, IIS 1247726, IIS 1251137,
CNS 1408695, and CCF 1439084, and by the Laboratory
Directed Research and Development program at Sandia Na-
tional Laboratories, a multi-program laboratory managed
and operated by Sandia Corporation, a wholly owned sub-
sidiary of Lockheed Martin Corporation, for the U.S. De-
partment of Energy’s National Nuclear Security Adminis-
tration under contract DE-AC04-94AL85000.

8. REFERENCES
[1] I. Abraham, J. Aspnes, and J. Yuan. Skip B-trees. In

Proc. of the 9th Annual International Conference on
Principles of Distributed Systems (OPODIS), page
366, 2006.

[2] U. A. Acar, G. E. Blelloch, R. Harper, J. L. Vittes, and
S. L. M. Woo. Dynamizing static algorithms, with
applications to dynamic trees and history
independence. In Proc. of the 15th Annual ACM-SIAM
Symposium on Discrete Algorithms (SODA), pages
531–540, 2004.

[3] A. Aggarwal and J. S. Vitter. The input/output
complexity of sorting and related problems.
Communications of the ACM, 31(9):1116–1127, Sept.
1988.

189

[4] O. Amble and D. E. Knuth. Ordered hash tables. The
Computer Journal, 17(2):135–142, 1974.

[5] A. Anagnostopoulos, M. Goodrich, and R. Tamassia.
Persistent authenticated dictionaries and their
applications. Information Security, pages 379–393,
2001.

[6] A. Andersson and T. Ottmann. Faster uniquely
represented dictionaries. In Proc. of the 32nd Annual
IEEE Symposium on Foundations of Computer
Science (FOCS), pages 642–649, 1991.

[7] C. R. Aragon and R. G. Seidel. Randomized search
trees. In Proc. of the 30th Annual IEEE Symposium on
Foundations of Computer Science (FOCS), pages
540–545, 1989.

[8] L. Arge, D. Eppstein, and M. T. Goodrich. Skip-webs:
efficient distributed data structures for
multi-dimensional data sets. In Proc. of the 24th
Annual ACM Symposium on Principles of Distributed
Computing (PODS), pages 69–76, 2005.

[9] J. Aspnes and G. Shah. Skip graphs. ACM
Transactions on Algorithms, 3(4):37, 2007.

[10] S. Bajaj, A. Chakraborti, and R. Sion. The foundations
of history independence. arXiv preprint
arXiv:1501.06508, 2015.

[11] S. Bajaj and R. Sion. Ficklebase: Looking into the
future to erase the past. In Proc. of the 29th IEEE
International Conference on Data Engineering
(ICDE), pages 86–97, 2013.

[12] S. Bajaj and R. Sion. HIFS: History independence for
file systems. In Proc. of the ACM SIGSAC Conference
on Computer & Communications Security (CCS),
pages 1285–1296, 2013.

[13] M. A. Bender, R. Cole, and R. Raman. Exponential
structures for efficient cache-oblivious algorithms. In
Proc. of the 29th Annual International Colloquium on
Automata, Languages, and Programming (ICALP),
pages 195–207, 2002.

[14] M. A. Bender, E. D. Demaine, and M. Farach-Colton.
Cache-oblivious B-trees. SIAM Journal on
Computing, 35(2):341–358, 2005.

[15] M. A. Bender, Z. Duan, J. Iacono, and J. Wu. A
locality-preserving cache-oblivious dynamic
dictionary. Journal of Algorithms, 3(2):115–136,
2004.

[16] M. A. Bender, M. Farach-Colton, and B. C. Kuszmaul.
Cache-oblivious string B-trees. In Proc. of the 25th
Annual ACM Symposium on Principles of Database
Systems (PODS), pages 233–242, 2006.

[17] M. A. Bender, J. T. Fineman, S. Gilbert, and B. C.
Kuszmaul. Concurrent cache-oblivious B-trees. In
Proc. of the 17th Annual ACM Symposium on
Parallelism in Algorithms and Architectures (SPAA),
pages 228–237, 2005.

[18] M. A. Bender and H. Hu. An adaptive packed-memory
array. ACM Transactions on Database Systems,
32(4):26, 2007.

[19] J. Bethencourt, D. Boneh, and B. Waters.
Cryptographic methods for storing ballots on a voting
machine. In Proc. of the 14th Network and Distributed
System Security Symposium (NDSS), 2007.

[20] G. E. Blelloch and D. Golovin. Strongly
history-independent hashing with applications. In
Proc. of the 48th Annual IEEE Symposium on

Foundations of Computer Science (FOCS), pages
272–282, 2007.

[21] G. E. Blelloch, D. Golovin, and V. Vassilevska.
Uniquely represented data structures for
computational geometry. In Proc. of the 11th
Scandinavian Workshop on Algorithm Theory (SWAT),
pages 17–28, 2008.

[22] G. S. Brodal, R. Fagerberg, and R. Jacob. Cache
oblivious search trees via binary trees of small height.
In Proc. of the 13th Annual ACM-SIAM Symposium on
Discrete Algorithms (SODA), pages 39–48, 2002.

[23] N. Buchbinder and E. Petrank. Lower and upper
bounds on obtaining history independence. In
Advances in Cryptology, pages 445–462, 2003.

[24] J. Bulánek, M. Kouckỳ, and M. Saks. Tight lower
bounds for the online labeling problem. In Proc. of the
44th Annual ACM Symposium on Theory of
Computing (STOC), pages 1185–1198, 2012.

[25] P. Callahan, M. T. Goodrich, and K. Ramaiyer.
Topology B-trees and their applications. In Proc. of
the 4th International Workshop on Algorithms and
Data Structures (WADS), pages 381–392, 1995.

[26] V. Ciriani, P. Ferragina, F. Luccio, and
S. Muthukrishnan. Static optimality theorem for
external memory string access. In Proc. of the 43rd
Annual IEEE Symposium on Foundations of Computer
Science (FOCS), pages 219–227, 2002.

[27] L. Devroye. A limit theory for random skip lists. The
Annals of Applied Probability, pages 597–609, 1992.

[28] M. Fomitchev and E. Ruppert. Lock-free linked lists
and skip lists. In Proc. of the 23rd Annual ACM
Symposium on Principles of Distributed Computing
(PODS), pages 50–59, 2004.

[29] M. Frigo, C. E. Leiserson, H. Prokop, and
S. Ramachandran. Cache-oblivious algorithms. In
Proc. of the 40th Annual IEEE Symposium on the
Foundations of Computer Science (FOCS), pages
285–298, 1999.

[30] M. Frigo, C. E. Leiserson, H. Prokop, and
S. Ramachandran. Cache-oblivious algorithms. ACM
Transactions on Algorithms, 8(1):4, 2012.

[31] D. Golovin. Uniquely Represented Data Structures
with Applications to Privacy. PhD thesis, Carnegie
Mellon University, Pittsburgh, PA, 2008, 2008.

[32] D. Golovin. B-treaps: A uniquely represented
alternative to B-trees. In Proc. of the 36th Annual
International Colloquium on Automata, Languages,
and Programming (ICALP), pages 487–499. 2009.

[33] D. Golovin. The B-skip-list: A simpler uniquely
represented alternative to B-trees. arXiv preprint
arXiv:1005.0662, 2010.

[34] M. T. Goodrich and R. Tamassia. Efficient
authenticated dictionaries with skip lists and
commutative hashing. US Patent App, 10(416,015),
2000.

[35] J. A. Halderman, S. D. Schoen, N. Heninger,
W. Clarkson, W. Paul, J. A. Calandrino, A. J.
Feldman, J. Appelbaum, and E. W. Felten. Lest we
remember: Cold-boot attacks on encryption keys.
Communications of the ACM, 52(5):91–98, 2009.

[36] J. D. Hartline, E. S. Hong, A. E. Mohr, W. R. Pentney,
and E. C. Rocke. Characterizing history independent
data structures. Algorithmica, 42(1):57–74, 2005.

190 APPENDIX B. History-independent sparse tables and dictionaries [PODS 2016 conference]

[37] M. Herlihy, Y. Lev, V. Luchangco, and N. Shavit. A
simple optimistic skiplist algorithm. Proc. of the 14th
Annual Colloquium on Structural Information and
Communication Complexity (SIROCCO), page 124,
2007.

[38] A. Itai, A. Konheim, and M. Rodeh. A sparse table
implementation of priority queues. Proc. of the 8th
Annual International Colloquium on Automata,
Languages, and Programming (ICALP), pages
417–431, 1981.

[39] R. Jacob, A. Richa, C. Scheideler, S. Schmid, and
H. Täubig. A distributed polylogarithmic time
algorithm for self-stabilizing skip graphs. In Proc. of
the 28th ACM Symposium on Principles of Distributed
Computing (PODS), pages 131–140, 2009.

[40] Z. Kasheff. Cache-oblivious dynamic search trees.
M.eng., Department of Electrical Engineering and
Computer Science, Massachusetts Institute of
Technology, June 2004.

[41] I. Katriel. Implicit data structures based on local
reorganizations. Master’s thesis, Technion – Israel
Inst. of Tech., Haifa, May 2002.

[42] P. Kirschenhofer and H. Prodinger. The path length of
random skip lists. Acta Informatica, 31(8):775–792,
1994.

[43] D. Micciancio. Oblivious data structures: applications
to cryptography. In Proc. of the 29th Annual ACM
Symposium on Theory of Computing (STOC), pages
456–464, 1997.

[44] D. Molnar, T. Kohno, N. Sastry, and D. Wagner.
Tamper-evident, history-independent, subliminal-free
data structures on prom storage-or-how to store ballots
on a voting machine. In Proc. of the 27th Annual IEEE
Symposium on Security and Privacy (S&P), 2006.

[45] T. Moran, M. Naor, and G. Segev. Deterministic
history-independent strategies for storing information
on write-once memories. In Proc. of the 34th
International Colloquium on Automata, Languages
and Programming (ICALP), 2007.

[46] M. Naor, G. Segev, and U. Wieder.
History-independent cuckoo hashing. In Proc. of the
35th International Colloquium on Automata,
Languages and Programming (ICALP), pages
631–642. Springer, 2008.

[47] M. Naor and V. Teague. Anti-persistence: history
independent data structures. In Proc. of the 33rd
Annual ACM Symposium on Theory of Computing
(STOC), pages 492–501, 2001.

[48] J. Nievergelt and E. M. Reingold. Binary search trees
of bounded balance. SIAM Journal on Computing,
2(1):33–43, 1973.

[49] R. Oshman and N. Shavit. The SkipTrie: low-depth
concurrent search without rebalancing. In Proc. of the
32nd Annual ACM Symposium on Principles of
Distributed Computing (PODS), pages 23–32, 2013.

[50] T. Papadakis, J. I. Munro, and P. V. Poblete. Analysis
of the expected search cost in skip lists. In Proc. of the
2nd Scandinavian Workshop on Algorithm Theory
(SWAT), pages 160–172, 1990.

[51] H. Prokop. Cache oblivious algorithms. Master’s
thesis, Department of Electrical Engineering and
Computer Science, Massachusetts Institute of
Technology, June 1999.

[52] W. Pugh. Incremental computation and the
incremental evaluation of functional programs. PhD
thesis, Cornell University, 1988.

[53] W. Pugh. Skip lists: a probabilistic alternative to
balanced trees. Communications of the ACM,
33(6):668–676, 1990.

[54] W. Pugh and T. Teitelbaum. Incremental computation
via function caching. In Proc. of the 16th ACM
SIGPLAN-SIGACT Symposium on Principles of
Programming Languages (POPL), pages 315–328,
1989.

[55] N. Rahman, R. Cole, and R. Raman. Optimised
predecessor data structures for internal memory. In
Proc. of the 5th International Workshop on Algorithm
Engineering (WAE), pages 67–78, 2001.

[56] D. S. Roche, A. J. Aviv, and S. G. Choi. Oblivious
secure deletion with bounded history independence.
arXiv preprint arXiv:1505.07391, 2015.

[57] N. Shavit and I. Lotan. Skiplist-based concurrent
priority queues. In Proc. of the 14th International
Parallel and Distributed Processing Symposium
(IPDPS), pages 263–268, 2000.

[58] J. Shun and G. E. Blelloch. Phase-concurrent hash
tables for determinism. In Proc. of the 26th Annual
ACM Symposium on Parallelism in Algorithms and
Architectures (SPAA), pages 96–107, 2014.

[59] L. Snyder. On uniquely represented data strauctures.
In Proc. of the 18th Annual IEEE Symposium on
Foundations of Computer Science (FOCS), pages
142–146, 1977.

[60] R. Sundar and R. E. Tarjan. Unique binary search tree
representations and equality-testing of sets and
sequences. In Proc. of the 22nd Annual ACM
Symposium on Theory of Computing (STOC), pages
18–25, 1990.

[61] T. Tzouramanis. History-independence: a fresh look at
the case of R-trees. In Proc. of the 27th Annual ACM
Symposium on Applied Computing (SAC), pages 7–12,
2012.

[62] J. S. Vitter. Random sampling with a reservoir. ACM
Transactions on Mathematical Software, 11(1):37–57,
1985.

[63] D. E. Willard. Inserting and deleting records in
blocked sequential files. Technical Report
TM81-45193-5, Bell Labs Tech Reports, 1981. (Cited
in [66]).

[64] D. E. Willard. Maintaining dense sequential files in a
dynamic environment. In Proc. of the 14th Annual
ACM Symposium on Theory of Computing (STOC),
pages 114–121, 1982.

[65] D. E. Willard. Good worst-case algorithms for
inserting and deleting records in dense sequential files.
In ACM SIGMOD Record, volume 15:2, pages
251–260, 1986.

[66] D. E. Willard. A density control algorithm for doing
insertions and deletions in a sequentially ordered file
in a good worst-case time. Information and
Computation, 97(2):150–204, 1992.

191

192 APPENDIX B. History-independent sparse tables and dictionaries [PODS 2016 conference]

Bibliography

[1] A. Aggarwal and J. S. Vitter. “The input/output complexity of sorting and related problems.” In:
Communications of the ACM 31.9 (Sept. 1988), pp. 1116–1127.

[2] M. Agrawal, N. Kayal, and N. Saxena. “PRIMES is in P.” In: Annals of Mathematics (2004),
pp. 781–793.

[3] E. Agullo. “On the Out-Of-Core Factorization of Large Sparse Matrices.” PhD thesis. École
normale supérieure de Lyon, France, 2008.

[4] E. Agullo, P. R. Amestoy, A. Buttari, A. Guermouche, J. L’Excellent, and F. Rouet. “Robust
Memory-Aware Mappings for Parallel Multifrontal Factorizations.” In: SIAM J. Scientific Com-
puting 38.3 (2016).

[5] E. Agullo, O. Beaumont, L. Eyraud-Dubois, and S. Kumar. “Are Static Schedules so Bad? A
Case Study on Cholesky Factorization.” In: Parallel and Distributed Processing Symposium,
2016 IEEE International. IEEE. 2016, pp. 1021–1030.

[6] E. Agullo, A. Buttari, A. Guermouche, and F. Lopez. “Implementing Multifrontal Sparse Solvers
for Multicore Architectures with Sequential Task Flow Runtime Systems.” In: ACM Trans. Math.
Softw. 43.2 (2016), p. 13.

[7] M. Amaris, G. Lucarelli, C. Mommessin, and D. Trystram. Generic algorithms for scheduling
applications on heterogeneous multi-core platforms. Tech. rep. CoRR, 2017.

[8] M. Amaris, G. Lucarelli, C. Mommessin, and D. Trystram. “Generic Algorithms for Scheduling
Applications on Hybrid Multi-core Machines.” In: Euro-Par 2017: Parallel Processing. 2017,
pp. 220–231.

[9] P. R. Amestoy, I. S. Duff, J. Koster, and J.-Y. L’Excellent. “A fully asynchronous multifrontal
solver using distributed dynamic scheduling.” In: SIAM Journal on Matrix Analysis and Appli-
cations 23.1 (2001), pp. 15–41.

[10] P. R. Amestoy, A. Guermouche, J.-Y. L’Excellent, and S. Pralet. “Hybrid scheduling for the
parallel solution of linear systems.” In: Parallel Computing 32.2 (2006), pp. 136–156.

[11] P. R. Amestoy, A. Buttari, I. S. Duff, A. Guermouche, J. L’Excellent, and B. Uçar. “Mumps.”
In: Encyclopedia of Parallel Computing. Ed. by D. A. Padua. Springer, 2011, pp. 1232–1238.

[12] L. Arge. “The buffer tree: A technique for designing batched external data structures.” In: Algo-
rithmica 37.1 (2003), pp. 1–24.

[13] L. Arge and M. Thorup. “RAM-Efficient External Memory Sorting.” In: Algorithms and Com-
putation. Vol. 8283. 2013, pp. 491–501.

[14] C. Ashcraft, R. G. Grimes, J. G. Lewis, B. W. Peyton, and H. D. Simon. “Progress in sparse
matrix methods for large linear systems on vector computers.” In: Int. Journal of Supercomputer
Applications 1(4) (1987), pp. 10–30.

193

194 Bibliography

[15] A. Atkin and D. Bernstein. “Prime sieves using binary quadratic forms.” In: Mathematics of
Computation 73.246 (2004), pp. 1023–1030.

[16] C. Augonnet, J. Clet-Ortega, S. Thibault, and R. Namyst. “Data-Aware Task Scheduling on
Multi-accelerator Based Platforms.” In: 2010 IEEE 16th International Conference on Parallel
and Distributed Systems. Dec. 2010, pp. 291–298.

[17] C. Augonnet, S. Thibault, R. Namyst, and P.-A. Wacrenier. “StarPU: a unified platform for
task scheduling on heterogeneous multicore architectures.” In: Concurrency and Computation:
Practice and Experience 23.2 (2011), pp. 187–198.

[18] W. G. Aulbur. “Parallel implementations of quasiparticle calculations of semiconductors and
insulators.” PhD thesis. The Ohio State University, 1996.

[19] G. Aupy, C. Brasseur, and L. Marchal. “Dynamic memory-aware task-tree scheduling.” In: Pro-
ceedings of the International Parallel and Distributed Processing Symposium (IPDPS). IEEE,
2017, pp. 758–767.

[20] O. Beaumont, N. Bonichon, L. Eyraud-Dubois, and L. Marchal. “Minimizing Weighted Mean
Completion Time for Malleable Tasks Scheduling.” In: Parallel Distributed Processing Sympo-
sium (IPDPS), 2012 IEEE 26th International. May 2012, pp. 273–284.

[21] O. Beaumont, L. Eyraud-Dubois, and S. Kumar. “Approximation Proofs of a Fast and Efficient
List Scheduling Algorithm for Task-Based Runtime Systems on Multicores and GPUs.” In: IEEE
International Parallel and Distributed Processing Symposium (IPDPS). 2017, pp. 768–777.

[22] O. Beaumont, T. Cojean, L. Eyraud-Dubois, A. Guermouche, and S. Kumar. “Scheduling of
Linear Algebra Kernels on Multiple Heterogeneous Resources.” In: International Conference
on High Performance Computing, Data, and Analytics (HiPC). 2016.

[23] O. Beaumont and A. Guermouche. “Task Scheduling for Parallel Multifrontal Methods.” In:
Parallel Processing International Conference (Euro-Par). 2007, pp. 758–766.

[24] L. A. Belady. “A study of replacement algorithms for a virtual-storage computer.” In: IBM Jour-
nal of Research and Development 5.2 (June 1966), pp. 78–101.

[25] M. Benazouz, O. Marchetti, A. Munier-Kordon, and T. Michel. “A new method for minimizing
buffer sizes for cyclo-static dataflow graphs.” In: Embedded Systems for Real-Time Multimedia
(ESTIMedia), 2010 8th IEEE Workshop on. IEEE. 2010, pp. 11–20.

[26] M. Benazouz, O. Marchetti, A. Munier-Kordon, and P. Urard. “A new approach for minimizing
buffer capacities with throughput constraint for embedded system design.” In: Computer Systems
and Applications (AICCSA), 2010 IEEE/ACS International Conference on. IEEE. 2010, pp. 1–8.

[27] M. A. Bender, E. D. Demaine, and M. Farach-Colton. “Cache-Oblivious B-Trees.” In: SIAM
Journal on Computing 35.2 (2005), pp. 341–358.

[28] M. A. Bender, Z. Duan, J. Iacono, and J. Wu. “A Locality-Preserving Cache-Oblivious Dynamic
Dictionary.” In: Journal of Algorithms 3.2 (2004), pp. 115–136.

[29] M. A. Bender and H. Hu. “An adaptive packed-memory array.” In: ACM Transactions on
Database Systems 32.4 (2007), p. 26.

[30] S. Bharathi, A. Chervenak, E. Deelman, G. Mehta, M.-H. Su, and K. Vahi. “Characterization
of scientific workflows.” In: Workflows in Support of Large-Scale Science, 2008. WORKS 2008.
Third Workshop on. Nov. 2008, pp. 1–10.

195

[31] S. Bharathi and A. Chervenak. “Scheduling data-intensive workflows on storage constrained
resources.” In: Proceedings of the 4th Workshop on Workflows in Support of Large-Scale Science
(WORKS’09). ACM, 2009.

[32] R. Bleuse, T. Gautier, J. V. Lima, G. Mounié, and D. Trystram. “Scheduling data flow program in
XKaapi: A new affinity based Algorithm for Heterogeneous Architectures.” In: Euro-Par 2014:
Parallel Processing. 2014, pp. 560–571.

[33] R. Bleuse, S. Hunold, S. Kedad-Sidhoum, F. Monna, G. Mounié, and D. Trystram. “Scheduling
Independent Moldable Tasks on Multi-Cores with GPUs.” In: IEEE Transactions on Parallel
and Distributed Systems 28.9 (2017), pp. 2689–2702.

[34] R. Bleuse, S. Kedad-Sidhoum, F. Monna, G. Mounié, and D. Trystram. “Scheduling independent
tasks on multi-cores with GPU accelerators.” In: Concurrency and Computation: Practice and
Experience 27.6 (2015), pp. 1625–1638.

[35] R. D. Blumofe, C. F. Joerg, B. C. Kuszmaul, C. E. Leiserson, K. H. Randall, and Y. Zhou. “Cilk:
An Efficient Multithreaded Runtime System.” In: SIGPLAN Not. 30.8 (Aug. 1995), pp. 207–216.
ISSN: 0362-1340.

[36] G. Bosilca, A. Bouteiller, A. Danalis, M. Faverge, T. Herault, and J. J. Dongarra. “PaRSEC:
Exploiting heterogeneity for enhancing scalability.” In: Computing in Science & Engineering
15.6 (2013), pp. 36–45.

[37] Z. Budimlić, M. Burke, V. Cavé, K. Knobe, G. Lowney, R. Newton, J. Palsberg, D. Peixotto, V.
Sarkar, F. Schlimbach, et al. “Concurrent collections.” In: Scientific Programming 18.3-4 (2010),
pp. 203–217.

[38] J. Bulánek, M. Koucky, and M. Saks. “Tight lower bounds for the online labeling problem.” In:
Proc. of the 44th Annual ACM Symposium on Theory of Computing (STOC). 2012, pp. 1185–
1198.

[39] A. Buttari. “Fine Granularity Sparse QR Factorization for Multicore Based Systems.” In: Inter-
national Conference on Applied Parallel and Scientific Computing. 2012, pp. 226–236.

[40] L.-C. Canon, L. Marchal, and F. Vivien. “Low-Cost Approximation Algorithms for Schedul-
ing Independent Tasks on Hybrid Platforms.” In: Euro-Par 2017: Parallel Processing. 2017,
pp. 232–244.

[41] Chameleon, a dense linear algebra software for heterogeneous architectures. https : / /
project.inria.fr/chameleon.

[42] C.-Y. Chen and C.-P. Chu. “A 3.42-approximation algorithm for scheduling malleable tasks
under precedence constraints.” In: IEEE Transactions on Parallel and Distributed Systems 24.8
(2013), pp. 1479–1488.

[43] L. Chen, D. Ye, and G. Zhang. “Online Scheduling of mixed CPU-GPU jobs.” In: International
Journal of Foundations of Computer Science 25.06 (2014), pp. 745–761.

[44] F. A. Chudak and D. B. Shmoys. “Approximation algorithms for precedence-constrained
scheduling problems on parallel machines that run at different speeds.” In: Journal of Algorithms
30.2 (1999), pp. 323–343.

[45] E. Ciurea and L. Ciupalâ. “Sequential and parallel algorithms for minimum flows.” In: Journal
of Applied Mathematics and Computing 15.1 (2004), pp. 53–75.

https://project.inria.fr/chameleon
https://project.inria.fr/chameleon

196 Bibliography

[46] G. Cordasco, R. D. Chiara, and A. L. Rosenberg. “Assessing the Computational Benefits of
AREA-Oriented DAG-Scheduling.” In: Euro-Par 2011 Parallel Processing - 17th International
Conference, Euro-Par 2011, Bordeaux, France, August 29 - September 2, 2011, Proceedings,
Part I. 2011, pp. 180–192.

[47] T. H. Cormen, C. E. Leiserson, R. L. Rivest, and C. Stein. Introduction to Algorithms, Third
Edition. 3rd. The MIT Press, 2009. ISBN: 0262033844, 9780262033848.

[48] J. R. Correa and A. S. Schulz. “Single-machine scheduling with precedence constraints.” In:
Mathematics of Operations Research 30.4 (2005), pp. 1005–1021.

[49] R. F. Da Silva, W. Chen, G. Juve, K. Vahi, and E. Deelman. “Community resources for en-
abling research in distributed scientific workflows.” In: e-Science (e-Science), 2014 IEEE 10th
International Conference on. Vol. 1. IEEE. 2014, pp. 177–184.

[50] T. A. Davis. Direct Methods for Sparse Linear Systems. Fundamentals of Algorithms. Philadel-
phia: Society for Industrial and Applied Mathematics, 2006.

[51] T. A. Davis, J. R. Gilbert, S. I. Larimore, and E. G. Ng. “Algorithm 836: COLAMD, a column
approximate minimum degree ordering algorithm.” In: ACM Trans. Math. Softw. 30.3 (2004),
pp. 377–380.

[52] T. A. Davis and Y. Hu. “The University of Florida Sparse Matrix Collection.” In: ACM Trans.
Math. Softw. 38.1 (Dec. 2011), 1:1–1:25. ISSN: 0098-3500.

[53] F. Desprez and F. Suter. “A bi-criteria algorithm for scheduling parallel task graphs on clus-
ters.” In: Cluster, Cloud and Grid Computing (CCGrid), 2010 10th IEEE/ACM International
Conference on. IEEE. 2010, pp. 243–252.

[54] D. E. Dolan and J. J. Moré. “Benchmarking optimization software with performance profiles.”
In: Mathematical Programming 91.2 (2002), pp. 201–213. ISSN: 1436-4646.

[55] M. Drozdowski and W. Kubiak. “Scheduling parallel tasks with sequential heads and tails.”
English. In: Annals of Operations Research 90.0 (1999), pp. 221–246. ISSN: 0254-5330.

[56] M. Drozdowski. “Scheduling multiprocessor tasks — An overview.” In: European Journal of
Operational Research 94.2 (1996), pp. 215–230. ISSN: 0377-2217.

[57] M. Drozdowski. “Scheduling Parallel Tasks – Algorithms and Complexity.” In: Handbook of
Scheduling. Ed. by J. Leung. Chapman and Hall/CRC, 2004. ISBN: 1584883979.

[58] J. Du and J. Y.-T. Leung. “Complexity of Scheduling Parallel Task Systems.” In: SIAM Journal
on Discrete Mathematics 2.4 (1989), pp. 473–487.

[59] I. S. Duff and J. K. Reid. “The multifrontal solution of indefinite sparse symmetric linear sys-
tems.” In: ACM Transactions on Mathematical Software 9 (1983), pp. 302–325.

[60] B. Dunten, J. Jones, and J. Sorenson. “A space-efficient fast prime number sieve.” In: IPL 59.2
(1996), pp. 79–84.

[61] C. Eisenbeis, F. Gasperoni, and U. Schwiegelshohn. “Allocating registers in multiple instruction-
issuing processors.” In: Proceedings of the IFIP WG10. 3 working conference on Parallel archi-
tectures and compilation techniques. IFIP Working Group on Algol. 1995, pp. 290–293.

[62] L. Eyraud-Dubois, L. Marchal, O. Sinnen, and F. Vivien. “Parallel Scheduling of Task Trees
with Limited Memory.” In: TOPC 2.2 (2015), p. 13.

197

[63] L. Fan, F. Zhang, G. Wang, and Z. Liu. “An effective approximation algorithm for the Mal-
leable Parallel Task Scheduling problem.” In: Journal of Parallel and Distributed Computing
72.5 (2012), pp. 693–704. ISSN: 0743-7315.

[64] D. Feitelson. “Workload modeling for computer systems performance evaluation.” In: Book
Draft, Version 1.0.1 (2014), pp. 1–601.

[65] M. Frigo, C. E. Leiserson, H. Prokop, and S. Ramachandran. “Cache-oblivious algorithms.” In:
Proceesdings of the 40th Annual Symposium on Foundations of Computer Science. IEEE. 1999,
pp. 285–297.

[66] M. R. Garey and D. S. Johnson. Computers and Intractability, a Guide to the Theory of NP-
Completeness. W. H. Freeman and Company, 1979.

[67] M. Garey, D. Johnson, and L. Stockmeyer. “Some simplified NP-complete graph problems.” In:
Theoretical Computer Science 1.3 (1976), pp. 237–267. ISSN: 0304-3975.

[68] T. Gautier, X. Besseron, and L. Pigeon. “KAAPI: A Thread Scheduling Runtime System for Data
Flow Computations on Cluster of Multi-processors.” In: International Workshop on Parallel
Symbolic Computation. London, Ontario, Canada, 2007, pp. 15–23. ISBN: 978-1-59593-741-4.

[69] A. V. Goldberg and R. E. Tarjan. “A New Approach to the Maximum Flow Problem.” In: Pro-
ceedings of the Eighteenth Annual ACM Symposium on Theory of Computing. STOC ’86. Berke-
ley, California, USA: ACM, 1986, pp. 136–146. ISBN: 0-89791-193-8.

[70] D. Golovin. “The B-skip-list: A simpler uniquely represented alternative to B-trees.” In: arXiv
preprint arXiv:1005.0662 (2010).

[71] A. González-Escribano, A. J. C. van Gemund, and V. Cardeñoso-Payo. “Mapping Unstructured
Applications into Nested Parallelism.” In: High Performance Computing for Computational Sci-
ence - VECPAR 2002, 5th International Conference, Porto, Portugal, June 26-28, 2002, Selected
Papers and Invited Talks. 2002, pp. 407–420.

[72] R. L. Graham. “Bounds for certain multiprocessing anomalies.” In: Bell System Technical Jour-
nal 45.9 (1966), pp. 1563–1581.

[73] R. L. Graham. “Bounds on multiprocessing timing anomalies.” In: SIAM journal on Applied
Mathematics 17.2 (1969), pp. 416–429.

[74] R. L. Graham, E. L. Lawler, J. K. Lenstra, and A. R. Kan. “Optimization and approximation in
deterministic sequencing and scheduling: a survey.” In: Annals of discrete mathematics. Vol. 5.
Elsevier, 1979, pp. 287–326.

[75] S. L. Graham, M. Snir, C. A. Patterson, et al. Getting up to speed: The future of supercomputing.
National Academies Press, 2005.

[76] D. Gries and J. Misra. “A linear sieve algorithm for finding prime numbers.” In: Communications
of the ACM 21.12 (1978), pp. 999–1003.

[77] E. Günther, F. König, and N. Megow. “Scheduling and packing malleable and parallel tasks with
precedence constraints of bounded width.” English. In: Journal of Combinatorial Optimization
27.1 (2014), pp. 164–181. ISSN: 1382-6905.

[78] G. Hardy, J. Littlewood, and G. Pólya. “Inequalities.” In: Cambridge Mathematical Library.
Cambridge University Press, 1952. Chap. 6.14. ISBN: 9780521358804.

[79] J. D. Hartline, E. S. Hong, A. E. Mohr, W. R. Pentney, and E. C. Rocke. “Characterizing history
independent data structures.” In: Algorithmica 42.1 (2005), pp. 57–74.

198 Bibliography

[80] P. Hénon, P. Ramet, and J. Roman. “PaStiX: A High-Performance Parallel Direct Solver for
Sparse Symmetric Definite Systems.” In: Parallel Computing 28.2 (Jan. 2002), pp. 301–321.

[81] M. D. Hill and A. J. Smith. “Evaluating associativity in CPU caches.” In: IEEE Transactions on
Computers 38.12 (1989), pp. 1612–1630.

[82] S. Horsley. “KOΣKINON EPATOΣΘENOYΣ. or, The Sieve of Eratosthenes. Being an Account
of His Method of Finding All the Prime Numbers, by the Rev. Samuel Horsley, FRS.” In: Philo-
sophical Transactions (1772), pp. 327–347.

[83] A. Hugo, A. Guermouche, P. Wacrenier, and R. Namyst. “A Runtime Approach to Dynamic
Resource Allocation for Sparse Direct Solvers.” In: 43rd International Conference on Parallel
Processing, ICPP 2014, Minneapolis, MN, USA, September 9-12, 2014. 2014, pp. 481–490.

[84] A. Hugo, A. Guermouche, P. Wacrenier, and R. Namyst. “Composing multiple StarPU applica-
tions over heterogeneous machines: A supervised approach.” In: IJHPCA 28.3 (2014), pp. 285–
300.

[85] S. Hunold. “One step toward bridging the gap between theory and practice in moldable task
scheduling with precedence constraints.” In: Concurrency and Computation: Practice and Ex-
perience 27.4 (2015), pp. 1010–1026. ISSN: 1532-0634.

[86] M. S. Hybertsen and S. G. Louie. “Electron correlation in semiconductors and insulators: Band
gaps and quasiparticle energies.” In: Physical Review B 34.8 (1986), p. 5390.

[87] C. Imreh. “Scheduling problems on two sets of identical machines.” In: Computing 70.4 (2003),
pp. 277–294.

[88] M. Jacquelin, L. Marchal, Y. Robert, and B. Uçar. “On optimal tree traversals for sparse matrix
factorization.” In: Parallel & Distributed Processing Symposium (IPDPS), 2011 IEEE Interna-
tional. IEEE. 2011, pp. 556–567.

[89] A. Jain and C. Lin. “Back to the Future: Leveraging Belady’s Algorithm for Improved Cache
Replacement.” In: 2016 ACM/IEEE 43rd Annual International Symposium on Computer Archi-
tecture (ISCA). June 2016, pp. 78–89.

[90] K. Jansen and H. Zhang. “An Approximation Algorithm for Scheduling Malleable Tasks Under
General Precedence Constraints.” English. In: Algorithms and Computation. Ed. by X. Deng
and D.-Z. Du. Vol. 3827. Lecture Notes in Computer Science. Springer Berlin Heidelberg, 2005,
pp. 236–245. ISBN: 978-3-540-30935-2.

[91] K. Jansen and H. Zhang. “Scheduling malleable tasks with precedence constraints.” In: Journal
of Computer and System Sciences 78.1 (2012), pp. 245–259. ISSN: 0022-0000.

[92] R. M. Karp. “Reducibility among combinatorial problems.” In: Complexity of computer compu-
tations. Springer, 1972, pp. 85–103.

[93] S. Kedad-Sidhoum, F. Monna, and D. Trystram. “Scheduling Tasks with Precedence Constraints
on Hybrid Multi-core Machines.” In: IEEE International Parallel and Distributed Processing
Symposium Workshop. 2015, pp. 27–33.

[94] N. Kell and J. Havill. “Improved upper bounds for online malleable job scheduling.” English.
In: Journal of Scheduling 18.4 (2015), pp. 393–410. ISSN: 1094-6136.

[95] H. Kellerer, R. Mansini, U. Pferschy, and M. G. Speranza. “An efficient fully polynomial ap-
proximation scheme for the subset-sum problem.” In: Journal of Computer and System Sciences
66.2 (2003), pp. 349–370.

199

[96] C.-C. Lam, T. Rauber, G. Baumgartner, D. Cociorva, and P. Sadayappan. “Memory-optimal
evaluation of expression trees involving large objects.” In: Computer Languages, Systems &
Structures 37.2 (2011), pp. 63–75.

[97] M. Lampis, G. Kaouri, and V. Mitsou. “On the algorithmic effectiveness of digraph decomposi-
tions and complexity measures.” In: Discrete Optimization 8.1 (2011), pp. 129–138.

[98] E. L. Lawler. Combinatorial optimization: networks and matroids. Courier Corporation, 2001.

[99] E. A. Lee and D. G. Messerschmitt. “Synchronous data flow.” In: Proceedings of the IEEE 75.9
(1987), pp. 1235–1245.

[100] T. J. Lee and G. E. Scuseria. “Achieving chemical accuracy with coupled-cluster theory.” In:
Quantum Mechanical Electronic Structure Calculations with Chemical Accuracy. Springer,
1995, pp. 47–108.

[101] R. Lepère, D. Trystram, and G. J. Woeginger. “Approximation algorithms for scheduling mal-
leable tasks under precedence constraints.” In: International Journal of Foundations of Computer
Science 13.04 (2002), pp. 613–627.

[102] J. Y. Leung. Handbook of scheduling: algorithms, models, and performance analysis. CRC
Press, 2004.

[103] X. S. Li. “An Overview of SuperLU: Algorithms, Implementation, and User Interface.” In: ACM
Transactions on Mathematical Software 31.3 (Sept. 2005), pp. 302–325.

[104] J. W. H. Liu. “The Role of Elimination Trees in Sparse Factorization.” In: SIAM Journal on
Matrix Analysis and Applications 11.1 (1990), pp. 134–172.

[105] J. W. H. Liu. “An application of generalized tree pebbling to sparse matrix factorization.” In:
SIAM J. Algebraic Discrete Methods 8.3 (1987), pp. 375–395.

[106] J. W. H. Liu. “On the storage requirement in the out-of-core multifrontal method for sparse
factorization.” In: ACM Transaction on Mathematical Software (1986).

[107] K. Makarychev and D. Panigrahi. “Precedence-Constrained Scheduling of Malleable Jobs with
Preemption.” In: ICALP 2014. 2014, pp. 823–834.

[108] E. Mäkinen. “Generating random binary trees—a survey.” In: Information Sciences 115.1-4
(1999), pp. 123–136.

[109] J. M. Martin. “Benchmark studies on small molecules.” In: Encyclopedia of Computational
Chemistry (1998).

[110] R. L. Mattson, J. Gecsei, D. R. Slutz, and I. L. Traiger. “Evaluation techniques for storage
hierarchies.” In: IBM Systems Journal 9.2 (1970), pp. 78–117. ISSN: 0018-8670.

[111] R. McNaughton. “Scheduling with Deadlines and Loss Functions.” In: Management Science 6.1
(1959), pp. 1–12.

[112] D. Micciancio. “Oblivious data structures: applications to cryptography.” In: Proc. of the 29th
Annual ACM Symposium on Theory of Computing (STOC). 1997, pp. 456–464.

[113] P. Michaud. “Some mathematical facts about optimal cache replacement.” In: ACM Transactions
on Architecture and Code Optimization (TACO) 13.4 (2016), p. 50.

[114] V. Nagarajan, J. Wolf, A. Balmin, and K. Hildrum. “Flowflex: Malleable scheduling for flows of
mapreduce jobs.” In: Middleware 2013. Springer, 2013, pp. 103–122.

200 Bibliography

[115] M. Naor and V. Teague. “Anti-persistence: history independent data structures.” In: Proc. of the
33rd Annual ACM Symposium on Theory of Computing (STOC). 2001, pp. 492–501.

[116] OpenMP Architecture Review Board. OpenMP Application Program Interface, Version 4.0.
http://www.openmp.org/mp-documents/OpenMP4.0.0.pdf. July 2013.

[117] F. Pellegrini and J. Roman. “Sparse matrix ordering with scotch.” In: International Conference
on High-Performance Computing and Networking. Springer. 1997, pp. 370–378.

[118] Peter Shor (http://cs.stackexchange.com/users/198/peter-shor). Minimum s-t cut in weighted di-
rected acyclic graphs with possibly negative weights. Computer Science Stack Exchange.

[119] J. Planas, R. M. Badia, E. Ayguadé, and J. Labarta. “Hierarchical Task-Based Programming
With StarSs.” In: IJHPCA 23.3 (2009), pp. 284–299.

[120] A. Pothen and C. Sun. “A mapping algorithm for parallel sparse Cholesky factorization.” In:
SIAM Journal on Scientific Computing 14.5 (1993), pp. 1253–1257.

[121] G. N. S. Prasanna and B. R. Musicus. “Generalized Multiprocessor Scheduling and Applications
to Matrix Computations.” In: IEEE TPDS 7.6 (1996), pp. 650–664.

[122] G. N. S. Prasanna and B. R. Musicus. “The Optimal Control Approach to Generalized Multipro-
cessor Scheduling.” In: Algorithmica 15.1 (1996), pp. 17–49.

[123] W. Pugh. “Skip lists: a probabilistic alternative to balanced trees.” In: Communications of the
ACM 33.6 (1990), pp. 668–676.

[124] A. Radulescu and A. J. Van Gemund. “A low-cost approach towards mixed task and data parallel
scheduling.” In: Parallel Processing, 2001. International Conference on. IEEE. 2001, pp. 69–76.

[125] A. Ramakrishnan, G. Singh, H. Zhao, E. Deelman, R. Sakellariou, K. Vahi, K. Blackburn, D.
Meyers, and M. Samidi. “Scheduling Data-IntensiveWorkflows onto Storage-Constrained Dis-
tributed Resources.” In: Proceedings of the IEEE Symposium on Cluster Computing and the
Grid (CCGrid’07). Los Alamitos, CA, USA: IEEE Computer Society, 2007, pp. 401–409.

[126] F. Sainz, S. Mateo, V. Beltran, J. L. Bosque, X. Martorell, and E. Ayguadé. “Leveraging OmpSs
to Exploit Hardware Accelerators.” In: IEEE International Symposium on Computer Architec-
ture and High Performance Computing (SBAC-PAD). 2014, pp. 112–119.

[127] E. Saule, H. M. Aktulga, C. Yang, E. G. Ng, and Ü. V. Çatalyürek. “An Out-of-Core Task-based
Middleware for Data-Intensive Scientific Computing.” In: Handbook on Data Centers. Ed. by
S. U. Khan and A. Y. Zomaya. Springer, 2015, pp. 647–667.

[128] D. Sbırlea, Z. Budimlić, and V. Sarkar. “Bounded memory scheduling of dynamic task graphs.”
In: Proceedings of the 23rd international conference on Parallel architectures and compilation.
ACM. 2014, pp. 343–356.

[129] M. Sergent, D. Goudin, S. Thibault, and O. Aumage. “Controlling the Memory Subscription of
Distributed Applications with a Task-Based Runtime System.” In: Proceedings of the Interna-
tional Parallel and Distributed Processing Symposium Workshops. IEEE. 2016, pp. 318–327.

[130] R. Sethi. “Complete register allocation problems.” In: SIAM journal on Computing 4.3 (1975),
pp. 226–248.

[131] R. Sethi and J. Ullman. “The Generation of Optimal Code for Arithmetic Expressions.” In: J.
ACM 17.4 (1970), pp. 715–728.

[132] J. P. Sorenson. “The pseudosquares prime sieve.” In: Algorithmic number theory. 2006, pp. 193–
207.

http://www.openmp.org/mp-documents/OpenMP4.0.0.pdf

201

[133] F. Suter. DAGGEN: A synthetic task graph generator. https://github.com/frs69wq/
daggen.

[134] O. Svensson. “Hardness of precedence constrained scheduling on identical machines.” In: SIAM
Journal on Computing 40.5 (2011), pp. 1258–1274.

[135] T. Tobita and H. Kasahara. “A standard task graph set for fair evaluation of multiprocessor
scheduling algorithms.” In: Journal of Scheduling 5.5 (2002), pp. 379–394.

[136] S. Toledo. “A survey of out-of-core algorithms in numerical linear algebra.” In: External Memory
Algorithms, Proceedings of a DIMACS Workshop, New Brunswick, New Jersey, USA, May 20-
22, 1998. 1998, pp. 161–180.

[137] S. Tomov, J. Dongarra, and M. Baboulin. “Towards dense linear algebra for hybrid GPU accel-
erated manycore systems.” In: Parallel Computing 36.5-6 (2010), pp. 232–240.

[138] TOP500 Supercomputer Site. http://www.top500.org, List of November 2017.

[139] H. Topcuoglu, S. Hariri, and M. Y. Wu. “Performance-effective and low-complexity task
scheduling for heterogeneous computing.” In: IEEE Trans. Parallel Distributed Systems 13.3
(2002), pp. 260–274.

[140] S. Touati. “Register Pressure in Instruction Level Parallelism.” Theses. Université de Versailles-
Saint Quentin en Yvelines, June 2002.

[141] J. Valdes, R. E. Tarjan, and E. L. Lawler. “The Recognition of Series Parallel Digraphs.” In:
SIAM J. Comput. 11.2 (1982), pp. 298–313.

[142] V. Vizing. “Minimization of the maximum delay in servicing systems with interruption.” In:
USSR Computational Mathematics and Mathematical Physics 22.3 (1982), pp. 227–233. ISSN:
0041-5553.

[143] Q. Wang and K.-H. Cheng. “A Heuristic of Scheduling Parallel Tasks and Its Analysis.” In:
SIAM Journal on Computing 21.2 (1992), pp. 281–294.

[144] M. H. Wiggers, M. J. G. Bekooij, and G. J. M. Smit. “Efficient Computation of Buffer Capacities
for Cyclo-Static Dataflow Graphs.” In: 2007 44th ACM/IEEE Design Automation Conference.
June 2007, pp. 658–663.

[145] M. H. Wiggers, M. J. Bekooij, P. G. Jansen, and G. J. Smit. “Efficient computation of buffer
capacities for cyclo-static real-time systems with back-pressure.” In: Real Time and Embedded
Technology and Applications Symposium, 2007. RTAS’07. 13th IEEE. IEEE. 2007, pp. 281–292.

[146] D. E. Willard. “A density control algorithm for doing insertions and deletions in a sequentially
ordered file in a good worst-case time.” In: Information and Computation 97.2 (1992), pp. 150–
204.

[147] A. YarKhan, J. Kurzak, and J. Dongarra. “Quark users’ guide: Queueing and runtime for ker-
nels.” In: University of Tennessee Innovative Computing Laboratory Technical Report ICL-UT-
11-02 (2011).

[148] Y. Zinder and S. Walker. “Scheduling flexible multiprocessor tasks on parallel machines.” In:
The 9th Workshop on Models and Algorithms for Planning and Scheduling Problems. 2009.

https://github.com/frs69wq/daggen
https://github.com/frs69wq/daggen
http://www.top500.org

202 Bibliography

List of publications1

Articles in International Refereed Journals

[J1] B. Simon, B. Jaumard, and T. H. Le. “Deadlock Avoidance and Detection In Railway Simulation
Systems.” In: Transportation Research Record: Journal of the Transportation Research Board
2448 (2014), pp. 45–52. DOI: 10.3141/2448-06.

[J2] L. Marchal, B. Simon, O. Sinnen, and F. Vivien. “Malleable task-graph scheduling with a prac-
tical speed-up model.” In: IEEE Transactions on Parallel and Distributed Systems (2018). DOI:
10.1109/TPDS.2018.2793886.

Articles in International Refereed Conferences

[C1] B. Simon, B. Jaumard, and T. H. Le. “Deadlock Avoidance and Detection in Railway Simulation
Systems.” In: Joint Rail Conference. American Society of Mechanical Engineers. 2014. DOI:
10.1115/JRC2014-3864.

[C2] A. Guermouche, L. Marchal, B. Simon, and F. Vivien. “Scheduling Trees of Malleable Tasks
for Sparse Linear Algebra.” In: European Conference on Parallel Processing (Euro-Par). 2015,
pp. 479–490. DOI: 10.1007/978-3-662-48096-0_37.

[C3] M. A. Bender, J. Berry, R. Johnson, T. M. Kroeger, S. McCauley, C. A. Phillips, B. Simon, S.
Singh, and D. Zage. “Anti-Persistence on Persistent Storage: History-Independent Sparse Tables
and Dictionaries.” In: Proceedings of the Thirty-Fifth Symposium on Principles of Database
Systems (PODS). 2016. DOI: 10.1145/2902251.2902276.

[C4] M. A. Bender, S. McCauley, B. Simon, S. Singh, and F. Vivien. “Resource Optimization for
Program Committee Members: A Subreview Article.” In: Fun with Algorithms (FUN). 2016.
DOI: 10.4230/LIPIcs.FUN.2016.7.

[C5] M. A. Bender, R. Chowdhury, A. Conway, M. Farach-Colton, P. Ganapathi, R. Johnson, S.
McCauley, B. Simon, and S. Singh. “The I/O Complexity of Computing Prime Tables.” In: 12th
Latin American Theoretical Informatics Symposium (LATIN). 2016. DOI: 10.1007/978-3-
662-49529-2_15.

[C6] L.-C. Canon, L. Marchal, B. Simon, and F. Vivien. “Online Scheduling of Sequential Task
Graphs on Hybrid Platforms.” In: European Conference on Parallel Processing (Euro-Par).
2018.

1Authors are listed in alphabetical order except for [R1, J1, C1].

203

https://doi.org/10.3141/2448-06
https://doi.org/10.1109/TPDS.2018.2793886
https://doi.org/10.1115/JRC2014-3864
https://doi.org/10.1007/978-3-662-48096-0_37
https://doi.org/10.1145/2902251.2902276
https://doi.org/10.4230/LIPIcs.FUN.2016.7
https://doi.org/10.1007/978-3-662-49529-2_15
https://doi.org/10.1007/978-3-662-49529-2_15

204 List of publications

[C7] L. Marchal, H. Nagy, B. Simon, and F. Vivien. “Parallel scheduling of DAGs under memory
constraints.” In: IPDPS 2018-32st IEEE International Parallel & Distributed Processing Sym-
posium. 2018.

Articles in International Refereed Workshops

[W1] L. Marchal, S. McCauley, B. Simon, and F. Vivien. “Minimizing I/Os in Out-of-Core Task Tree
Scheduling.” In: 19th Workshop on Advances in Parallel and Distributed Computational Models.
2017. DOI: 10.1109/IPDPSW.2017.58.

Research Reports

[R1] B. Simon, B. Jaumard, and T. H. Le. Deadlock Avoidance and Detection In Railway Simulation
Systems. Les Cahiers du GERAD: G-2013-43. 2013. URL: https://www.gerad.ca/fr/
papers/G-2013-43.

[R2] L. Marchal, B. Simon, and F. Vivien. Scheduling Malleable Task Trees. INRIA Research Report
8587. 2014. URL: https://hal.inria.fr/hal-01059704.

[R3] A. Guermouche, L. Marchal, B. Simon, and F. Vivien. Scheduling Trees of Malleable Tasks for
Sparse Linear Algebra. INRIA Research Report 8616. 2014. URL: https://hal.inria.
fr/hal-01077413.

[R4] L. Marchal, B. Simon, O. Sinnen, and F. Vivien. Malleable task-graph scheduling with a practi-
cal speed-up model. INRIA Research Report 8856. 2016. URL: https://hal.inria.fr/
hal-01274099.

[R5] L. Marchal, S. McCauley, B. Simon, and F. Vivien. Minimizing I/Os in Out-of-Core Task Tree
Scheduling. INRIA Research Report 9025. 2017. URL: https://hal.inria.fr/hal-
01462213.

[R6] L. Marchal, H. Nagy, B. Simon, and F. Vivien. Parallel scheduling of DAGs under memory
constraints. INRIA Research Report 9108. 2017. URL: https://hal.inria.fr/hal-
01620255.

[R7] L.-C. Canon, L. Marchal, B. Simon, and F. Vivien. Online Scheduling of Sequential Task Graphs
on Hybrid Platforms. INRIA Research Report 9150. 2018. URL: https://hal.inria.fr/
hal-01720064.

https://doi.org/10.1109/IPDPSW.2017.58
https://www.gerad.ca/fr/papers/G-2013-43
https://www.gerad.ca/fr/papers/G-2013-43
https://hal.inria.fr/hal-01059704
https://hal.inria.fr/hal-01077413
https://hal.inria.fr/hal-01077413
https://hal.inria.fr/hal-01274099
https://hal.inria.fr/hal-01274099
https://hal.inria.fr/hal-01462213
https://hal.inria.fr/hal-01462213
https://hal.inria.fr/hal-01620255
https://hal.inria.fr/hal-01620255
https://hal.inria.fr/hal-01720064
https://hal.inria.fr/hal-01720064

	Introduction
	French summary
	Preliminaries
	The speedup model of Prasanna and Musicus for parallel tasks
	Related work
	Models of parallel tasks
	Results for moldable tasks
	Results for malleable tasks
	Series-parallel graphs

	Experimental evaluation of the model
	Application model
	Optimal solution for shared-memory platforms
	Simulations
	Extensions to distributed memory
	Two homogeneous multicore nodes
	Two heterogeneous multicore nodes

	Conclusion

	The two-threshold roofline speedup model for parallel tasks
	Application model
	Experimental validation of the model
	Problem complexity
	Heuristics description and approximation analysis
	Performance analysis of Proportional Mapping
	Optimizations of Proportional Mapping
	A novel algorithm: Greedy-Filling
	The FlowFlex algorithm

	Experimental comparison
	Datasets
	Results

	Conclusion

	Exploiting hybrid platforms in an online setting
	Related work
	Lower bound on online algorithms competitiveness
	Competitive algorithms
	The Quick Allocation (QA) algorithm
	A tunable competitive algorithm which performs well in practice

	The allocation is more difficult than the schedule
	Extension to multiple types of processors
	Simulations
	Baseline heuristics
	Experimental setup
	Results

	Towards an offline approximation algorithm
	Conclusion

	Coping with a limited available memory
	Related work
	Problem modeling
	Formal description
	Emulation of other memory models
	Peak memory minimization in the proposed model

	Computing the maximal peak memory
	Complexity of the problem
	Explicit algorithm

	Lowering the maximal peak memory of a graph
	Complexity analysis
	Finding an optimal partial serialization through ILP
	Heuristic strategies to compute a partial serialization
	Computing a sequential schedule for MinLevels

	Simulation results
	Conclusion

	Minimizing I/Os when processing a tree
	Related work
	Problem modeling and basic results
	Model and notation
	Towards a compact solution
	Related algorithms

	Existing solutions are not satisfactory
	Computing the best postorder traversal
	PostOrderMinIO is optimal on homogeneous trees
	Postorder traversals are not competitive
	OptMinMem is not competitive
	Unknown complexity

	ILP formulation of the problem
	Heuristic
	Numerical results
	Datasets
	Results

	Conclusion

	Data structures for external memory
	Introduction to the computational model
	The I/O complexity of computing prime tables
	History-independent sparse tables and dictionaries
	External memory skip list
	History-independent packed-memory array

	Conclusion

	Conclusion
	Appendices
	The I/O complexity of computing prime tables [LATIN 2016 conference]
	Anti-persistence on persistent storage: history-independent sparse tables and dictionaries [PODS 2016 conference]
	Bibliography
	List of publications

