Development of a microphysical cloud model for the Venus Global Climate Model
Développement d'un modèle microphysique de nuages pour un modèle de climat global vénusien
Résumé
The conditions on the surface of Venus are infernal: temperature of more than 400 C, 90 times the Earth's atmospheric pressure in an atmosphere composed of 96 % of carbon dioxide. A distinctive characteristic of this planet is the 20 km thick opaque cloud layer, which enshrouds the planet. Clouds have a crucial role in radiative transfer, atmospheric dynamics, in the cycle of some chemical species like sulphur and more generally in the climate of Venus. Despite the numerous space missions devoted to this object since 1961, there are few in-situ measurements. The lower cloud layers are di cult to study by satellite, so there are still many questions about clouds: their properties and their radiative, dynamic and chemical impacts are poorly constrained. Predominantly composed of sulphuric acid solution, the particles are supposed to be spherical and liquid and compose the clouds that are vertically spread between approximately 50 and 70 km of altitude, surrounded by hazes between approximately 30 and 50 km and above 70 km. Based on observations the droplets have been classied into three modes according to their size and composition: modes 1 and 2 respectively for small (r = 0.2 μm) and medium particles (r = 1.0 μm), and a third mode that would contain the largest particles (r = 3.5 μm). The latter mode, which has been detected by the Pioneer Venus probe, remains uncertain in composition and existence, and is not taken into account in our study. To complete and better understand the observational data, a modal microphysical model, called MAD-Muphy (Modal Aerosol Dynamics with Microphysics), has been developed. The goal is to integrate MAD-Muphy into the venusian global climate model (IPSL-VGCM), so we must limit the number of variables that the VGCM must follow in time and space (also called tracers). The moment method is already used in the Titan and Mars GCMs and is a good compromise between the accuracy of the results and the computation time. MAD-Muphy is the refore based on this representation for a pressure and a temperature of one atmospheric layer (or 0D). The thesis presented here details the derivation of the mathematical expressions of the microphysical equations with moments, presents the new MAD-Muphy model as well as the hypotheses that were necessary for its development. We will first determine the characteristic timescale of each microphysical process and we will study their behaviour in 0D. Then, our results will be compared with those of the SALSA sectional model in 0D.
Les conditions à la surface de Vénus sont infernales : température de plus de 400 C, pression atmosphérique 90 fois celle sur Terre dans une atmosphère composée à 96 % de dioxyde de carbone. Une particularité de cette planète est la couche opaque nuageuse de 20 km d'épaisseur qui couvre toute la planète. Les nuages ont un rôle crucial pour le transfert de rayonnement, la dynamique atmosphérique, dans le cycle de certaines espèces chimiques comme le soufre et plus généralement pour le climat de Vénus. Malgré de nombreuses missions spatiales consacrées à cet astre depuis 1961, il y a peu de mesures in-situ. Les couches basses des nuages sont diciles à étudier par satellite, par conséquent il existe encore de nombreuses questions au sujet des nuages : leurs propriétés et leurs impacts radiatifs, dynamiques et chimiques sont mal contraints. Composées majoritairement d'acide sulfurique en solution, les particules sont supposées sphériques et liquides et composent des nuages étalés verticalement entre 50 et 70 km d'altitude environ, entourés par des brumes entre 30 et 50 km et au-dessus de 70 km. Les gouttelettes ont été classées, d'après des observations, en trois modes en fonction de leur taille et de leur composition : les modes 1 et 2 respectivement pour les petites (r = 0.2 μm) et moyennes particules (r = 1.0 μm), et un troisième mode qui contiendrait les plus grandes particules (r = 3.5 μm). Ce dernier mode, qui a été détecté par la sonde Pioneer Venus, demeure de composition et d'existence incertaines, et il n'est pas pris en compte dans notre étude. Afin de compléter et de mieux comprendre les données obtenues par l'observation spatiale, un modèle modal de microphysique, nommé MADMuphy (Modal Aerosol Dynamics with Microphysics), a été développé. L'objectif est d'intégrer MAD-Muphy dans le modèle de climat global vénusien (IPSL-VGCM), il faut donc limiter le nombre de variables que le VGCM doit suivre dans le temps et l'espace (également appelé traceurs). La méthode des moments est déjà utilisée dans les GCM de Titan et de Mars et constitue un bon compromis entre la précision des résultats et le temps de calcul. MAD-Muphy est donc basé sur cette représentation pour une pression et une température dé nies pour une couche de l'atmosphère (ou 0D). La thèse présentée ici détaille le développement des expressions mathématiques des équations de la microphysique avec les moments, présente le nouveau modèle MAD-Muphy ainsi que les hypothèses qui ont été nécessaires pour son développement. Tout d'abord, nous déterminerons le temps caractéristique de chaque processus microphysique et nous étudierons leur comportement en 0D. Ensuite, nos résultats seront comparés avec ceux du modèle sectionné SALSA en 0D.
Origine | Version validée par le jury (STAR) |
---|
Loading...