
HAL Id: tel-01887642
https://theses.hal.science/tel-01887642v1

Submitted on 4 Oct 2018

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Contributions to the use of analogical proportions for
machine learning : theoretical properties and application

to recommendation
Nicolas Hug

To cite this version:
Nicolas Hug. Contributions to the use of analogical proportions for machine learning : theoretical
properties and application to recommendation. Artificial Intelligence [cs.AI]. Université Paul Sabatier
- Toulouse III, 2017. English. �NNT : 2017TOU30117�. �tel-01887642�

https://theses.hal.science/tel-01887642v1
https://hal.archives-ouvertes.fr

THÈSETHÈSE
En vue de l’obtention du

DOCTORAT DE L’UNIVERSITÉ DE TOULOUSE

Délivré par : l’Université Toulouse 3 Paul Sabatier (UT3 Paul Sabatier)

Présentée et soutenue le 5 juillet 2017 par :
Nicolas Hug

Contributions to the use of analogical proportions for machine learning:
Theoretical properties and application to recommendation.

JURY
Antoine Cornuéjols Professeur des universités Rapporteur
Hélène Fargier Directeur de recherche CNRS Examinateur
Aurélien Garivier Professeur des universités Membre invité
Jean Lieber Maître de conférences HDR Rapporteur
Laurent Miclet Professeur honoraire Membre invité
Henri Prade Directeur de recherche CNRS Examinateur
Gilles Richard Professeur des universités Directeur de thèse
Agnès Rico Maître de conférences Examinateur
Mathieu Serrurier Maître de conférences HDR Directeur de thèse
François Yvon Professeur des universités Président du jury

École doctorale et spécialité :
MITT : Domaine STIC : Intelligence Artificielle

Unité de Recherche :
Institut de Recherche en Informatique de Toulouse

Directeur(s) de Thèse :
Gilles Richard et Mathieu Serrurier

Rapporteurs :
Antoine Cornuéjols et Jean Lieber

Abstract

Analogical reasoning is recognized as a core component of human intelligence. It has
been extensively studied from philosophical and psychological viewpoints, but recent
works also address the modeling of analogical reasoning for computational purposes,

particularly focused on analogical proportions. We are interested here in the use of analogical
proportions for making predictions, in a machine learning context.

In recent works, analogy-based classifiers have achieved noteworthy performances, in par-
ticular by performing well on some artificial problems where other traditional methods tend
to fail. Starting from this empirical observation, the goal of this thesis is twofold. The first
topic of research is to assess the relevance of analogical learners on real-world, practical applica-
tion problems. The second topic is to exhibit meaningful theoretical properties of analogical
classifiers, which were yet only empirically studied.

The field of application that was chosen for assessing the suitability of analogical classifiers in
real-world setting is the topic of recommender systems. A common reproach addressed towards
recommender systems is that they often lack of novelty and diversity in their recommendations.
As a way of establishing links between seemingly unrelated objects, analogy was thought as
a way to overcome this issue. Experiments here show that while offering sometimes similar
accuracy performances to those of basic classical approaches, analogical classifiers still suffer
from their algorithmic complexity.

On the theoretical side, a key contribution of this thesis is to provide a functional definition
of analogical classifiers, that unifies the various pre-existing approaches. So far, only algorithmic
definitions were known, making it difficult to lead a thorough theoretical study. From this
functional definition, we clearly identified the links between our approach and that of the
nearest neighbors classifiers, in terms of process and in terms of accuracy. We were also able to
identify a criterion that ensures a safe application of our analogical inference principle, which
allows us to characterize analogical reasoning as some sort of linear process.

i

Le raisonnement par analogie est reconnu comme une des principales caractéristiques
de l’intelligence humaine. En tant que tel, il a pendant longtemps été étudié par les
philosophes et les psychologues, mais de récents travaux s’intéressent aussi à sa modéli-

sation d’un point de vue formel à l’aide de proportions analogiques, permettant l’implémen-
tation de programmes informatiques. Nous nous intéressons ici à l’utilisation des proportions
analogiques à des fins prédictives, dans un contexte d’apprentissage artificiel.

Dans de récents travaux, les classifieurs analogiques ont montré qu’ils sont capables d’obtenir
d’excellentes performances sur certains problèmes artificiels, là où d’autres techniques tradi-
tionnelles d’apprentissage se montrent beaucoup moins efficaces. Partant de cette observation
empirique, cette thèse s’intéresse à deux axes principaux de recherche. Le premier sera de con-
fronter le raisonnement par proportion analogique à des applications pratiques, afin d’étudier la
viabilité de l’approche analogique sur des problèmes concrets. Le second axe de recherche sera
d’étudier les classifieurs analogiques d’un point de vue théorique, car jusqu’à présent ceux-ci
n’étaient connus que grâce à leurs définitions algorithmiques. Les propriétés théoriques qui
découleront nous permettront de comprendre plus précisément leurs forces, ainsi que leurs
faiblesses.

Comme domaine d’application, nous avons choisi celui des systèmes de recommandation.
On reproche souvent à ces derniers de manquer de nouveauté ou de surprise dans les recomman-
dations qui sont adressées aux utilisateurs. Le raisonnement par analogie, capable de mettre
en relation des objets en apparence différents, nous est apparu comme un outil potentiel pour
répondre à ce problème. Nos expériences montreront que les systèmes analogiques ont tendance
à produire des recommandations d’une qualité comparable à celle des méthodes existantes,
mais que leur complexité algorithmique cubique les pénalise trop fortement pour prétendre à
des applications pratiques où le temps de calcul est une des contraintes principales.

Du côté théorique, une contribution majeure de cette thèse est de proposer une défini-
tion fonctionnelle des classifieurs analogiques, qui a la particularité d’unifier les approches
préexistantes. Cette définition fonctionnelle nous permettra de clairement identifier les liens
sous-jacents entre l’approche analogique et l’approche par k plus-proches-voisins, tant au plan
algorithmique de haut niveau qu’au plan des propriétés théoriques (taux d’erreur notamment).
De plus, nous avons pu identifier un critère qui rend l’application de notre principe d’inférence
analogique parfaitement certaine (c’est-à-dire sans erreur), exhibant ainsi les propriétés linéaires
du raisonnement par analogie.

ii

Remerciements

Mes remerciements s’adressent d’abord naturellement à mes trois directeurs de thèse,
Messieurs Henri Prade, Gilles Richard et Mathieu Serrurier. Jusqu’au moindre résultat,
les contributions apportées dans ce manuscrit sont le fruit d’une étroite collaboration

avec mes directeurs de thèse, sans qui rien de tout ça ne serait arrivé. Je leur suis très
reconnaissant pour leur précieuse expertise, ainsi que pour l’énergie et la patience qu’ils m’ont
accordées, en me laissant toujours le degré d’autonomie dont j’avais besoin.

Je remercie également Mesdames et Messieurs :
• Antoine Cornuéjols,

• Hélène Fargier,

• Aurélien Garivier,

• Jean Lieber,

• Laurent Miclet,

• Agnès Rico,

• et François Yvon
pour avoir accepté de prendre part au jury de cette thèse. Parmi eux, ma gratitude va
particulièrement à Antoine Cornuéjols et Jean Lieber pour leurs critiques éclairées et leurs
rapports minutieux, qui m’ont permis d’améliorer significativement la qualité de ce manuscrit.

Je remercie également chaleureusement Miguel Couceiro avec qui nous avons dernièrement
beaucoup collaboré, et sans qui le chapitre 6 de cette thèse n’aurait jamais vu le jour.

Je terminerai enfin en envoyant de gros bisous à Lauriane et Audren, pour avoir enduré la
(première !) relecture. De toute ma vie, je n’avais jamais vu autant de rouge.

iii

Table of Contents

Page

Introduction 1

1 Computational models of analogical reasoning 9
1.1 Models without analogical proportions . 10

1.1.1 First attempts by Pólya and Hesse . 10
1.1.2 Analogy as a structural mapping . 12
1.1.3 Logical view of analogical reasoning . 15

1.2 Models with analogical proportions . 16
1.2.1 Solving geometric problems . 16
1.2.2 Analogical reasoning as distance minimization on a vector space 18
1.2.3 The Copycat program . 19
1.2.4 Analogy and the Minimum Description Length Principle 21
1.2.5 Case-Based Reasoning . 23

2 Formal analogical proportions 27
2.1 Formal definitions . 28

2.1.1 The geometric and arithmetic proportions 29
2.1.2 Analogical proportions between sets . 32
2.1.3 The Boolean proportion . 33

2.2 Geometrical insights of the Boolean and arithmetic proportions 38
2.2.1 Equivalence classes of analogical proportions 38
2.2.2 The Boolean and arithmetic proportions as parallelograms 40

2.3 Analogical inference principle and equation solving 42

3 A functional definition of analogical classifiers 51
3.1 Analogical classification . 52

3.1.1 Conservative classifier . 53
3.1.2 Extended classifier . 57
3.1.3 Analogical classifier: a functional definition 61

3.2 Theoretical properties of analogical classifiers 64

v

3.2.1 Study of convergence . 64
3.2.2 Vapnik Chervonenkis (VC) dimension of analogical classifiers 66
3.2.3 Accuracy analysis . 67

3.3 Experiments and empirical validation . 69
3.3.1 Evaluation protocol . 69
3.3.2 Comments and discussion . 71

4 Background on recommender systems 77
4.1 Taxonomy of recommender systems . 78

4.1.1 Content-based techniques . 78
4.1.2 Collaborative filtering . 79
4.1.3 Knowledge-based systems . 80

4.2 Recommendation by rating prediction . 81
4.2.1 Problem formalization and notation . 81
4.2.2 Recommender system evaluation . 84

4.3 Two collaborative filtering techniques: neighborhood-based, and matrix factorization 87
4.3.1 The neighborhood approach . 87
4.3.2 Matrix factorization techniques . 92

5 Analogical recommendation 99
5.1 An algorithm using arithmetic proportion . 100

5.1.1 Algorithm . 100
5.1.2 Experiments and results . 103

5.2 A “clone”-based view of analogical recommendation 106
5.2.1 Two new analogical algorithms . 107
5.2.2 Current advances in neighborhood-based techniques 110
5.2.3 Experiments and discussion . 111
5.2.4 Towards an ordinal view of ratings . 113

5.3 Mining analogical proportions . 116
5.3.1 Association rules . 117
5.3.2 Looking for analogies in an incomplete database 119
5.3.3 Experiments and discussion . 122

6 Analogy-preserving functions 133
6.1 Extending a training set . 135

6.1.1 Previous works on training set extension 136
6.1.2 Analogy preserving functions: a safe way to extend a training set 138

6.2 A complete characterization of analogy preserving functions 139
6.2.1 Preliminary background on Boolean functions 140

vi

6.2.2 The class of Analogy Preserving functions 143
6.2.3 The class of Strongly Analogy Preserving functions. 146

6.3 Beyond Boolean Analogy Preserving functions 149
6.3.1 Approximately AP functions and experiments 149
6.3.2 Extension to nominal attributes . 152
6.3.3 Extension to real-valued functions . 155

Conclusion 159

Bibliography 167

List of Tables 179

List of Figures 180

List of Definitions 181

vii

Introduction

Analogical reasoning is widely recognized as a powerful ability of human intelligence.
It can lead to potential conclusions for new situations by establishing links between
apparently unrelated domains. One well-known example is the Rutherford-Bohr model

of atom where electrons circle around the kernel, which was analogically inspired by the model
of planets running around the sun. Unsurprisingly, this kind of reasoning has generated a lot of
attention from the artificial intelligence community.

In this work we will focus on a particular model of analogical reasoning, based on analogical
proportions. An analogical proportion is a statement of the form a is to b as c is to d, and
expresses the fact a differs from b in the same manner as c differs from d. For example, one
could say that France is to Paris as Germany is to Berlin, or that electrons are to the kernel
as planets are to the sun. In some cases, when the element d of the proportion is not known1, it
can be inferred from the three other elements a, b, c. It seems indeed natural that even a child
with basic geographic knowledge could answer the question France is to Paris as Germany is to
what? with the correct answer: Berlin. And even in the event that our subject does not know
that the name of the correct answer is Berlin, they could still imagine a city which is the
capital of Germany, and suppose that this hypothetical city corresponds to the correct answer.
We witness here two key cognitive processes that can be triggered using analogical proportions:
inference, and creativity.

As a tool that allows inductive inference, analogical reasoning has been proposed for plausible
reasoning and for machine learning purposes. Indeed, analogical proportion-based learning has
been addressed in recent works: we may cite for instance [SY05a] for an application in linguistics
(verb conjugation task), and [BMD07] for classification problems in a Boolean setting. Our
investigations follow on from these two works, and the goal of this thesis is twofold. The first
topic is to apply analogical reasoning to practical problems, and the second one is to
exhibit some theoretical properties of analogical classifiers.

The application of analogical reasoning to concrete tasks is motivated by the fact that the
previous empirical investigations were only led in standard artificial settings. To our knowledge,
the analogical learners were still to be experienced in real-world problems to assess their
suitability in concrete applications, where the requirements for success are often significantly

1Or any other element, actually.

1

different. We have chosen here to apply analogical learning to the field of recommender systems.

Also, our theoretical investigations are motivated by the fact that so far, analogical classifiers
were only known from their algorithmic descriptions. In fact, each implemented classifier provides
a clean description of how to compute, but we definitely miss a clean description of what do we
actually compute. The previous experimental investigations were not directed to provide an
analytical view, and as a result analogical classifiers were yet quite poorly understood: we had
no clear knowledge about their strengths and weaknesses.

Road map and contributions
Chronologically, we first focused on the applicative side. Our first contributions were indeed

devoted to applying analogical reasoning to the task of recommendation. Later, we led our
theoretical investigations on analogical classification.

In this document, we will choose to present our work somehow differently. After having
recalled the necessary background on analogical proportions in Chapters 1 and 2, we will present
some of our theoretical results in Chapter 3. Then, we will fully describe our contributions to
analogical recommendation in Chapters 4 and 5, and finally we will address more theoretical
considerations in Chapter 6. Simply put, our contributions to the theoretical side will be split
up by the topic of analogical recommendation.

This choice is in fact motivated by pedagogical reasons. It will indeed become clear that
the topic of analogical recommendation (Chapters 4 and 5) is a lot easier to introduce and to
understand once we have enough background on analogical classification (Chapter 3), as our
methods for analogical recommendation are strongly inspired by previous works on analogical
classification. Moreover, whereas the motivations for Chapter 6 could have been directly derived
from the results of Chapter 3, it will be more interesting to account for Chapter 6 in the light
of the results of Chapter 5.

We now provide the detailed structure of this document.

The first chapter will provide the necessary background on existing models of analogical
reasoning, with a strong emphasis on models that allow to perform computational inference. It
will appear that these models are, for the most part, motivated by cognitive and psychological
aspects, and depart from our main computational tool: formal analogical proportions.

Formal analogical proportions are the subject of the second chapter. We will provide their
definitions in various algebraic settings, focusing on the two proportions that we will mostly
use: the arithmetic proportion (dealing with real numbers), and the Boolean proportion. In
addition, we will try to give a geometrical insight on these two proportions, which to the best
of our knowledge had never been done before. We will also go through a toy classification

2

problem that will allow us to describe the process of analogical equation solving2, and the
analogical inference principle that underlies all of our investigations. In a classification
context, this principle states that if a is to b as c is to d, then we should also have that f(a) is to
f(b) as f(c) is to f(d), where f(x) is the function that determines the class of x. It is obviously
an unsound inference principle, in that the conclusion does not follow from the premise. But
as we will see, it can still be used for classification tasks, which is the subject of the third chapter.

The study of analogical classification is indeed the object of Chapter 3, which corresponds
to a detailed version of our ECAI paper: [HPRS16a]. In this chapter, we will start to address
one of the two main objectives of this thesis: identifying theoretical properties of analogical
classifiers. Our first contribution will be to provide a functional definition of analogical classi-
fiers, that will unify the two pre-existing approaches mentioned earlier ([SY05a] and [BMD07]).
This new definition will bring more insight into these classifiers, enabling us to derive results
related to their Vapnik-Chervonenkis dimension, as well as their error rate. Our functional
definition will also reveal the close links between the analogical classifiers and the k-nearest
neighbors (k-NN) techniques. We will show indeed that the analogical classification process
can be viewed as a two-step procedure that first consists in extending the training set (by
generating new examples), and then applying a k-NN classifier. Quite remarkably, the two
key cognitive processes related to analogical proportions (inference and creativity), are here
blended together. From these results, a natural question arises: how can we ensure a training
set extension that is completely error-free? This question will be addressed later in Chapter
6, while the following two chapters (4 and 5) will be devoted to our second main objective:
applying analogical reasoning to the task of recommendation.

Chapter 4 will be dedicated to the necessary background on recommender systems. We will
briefly review the three main families of recommender systems, namely content-based tech-
niques, collaborative filtering, and knowledge-based systems. We will also formally define the
problem that we plan to address, which is that of rating prediction: given a database of user-
item interactions taking the form of ratings, the goal is to predict all the ratings for the pairs
(user, item) that are not in the database. The different measures allowing to assess the quality of
the predictions will be presented. Finally, as our contributions will be of a collaborative nature,
we will thoroughly detail two popular methods for collaborative filtering: the neighborhood-
based techniques, and the matrix-factorization-based methods. These two families of algorithms
will serve as benchmarks to compare the performance of our own algorithms.

In Chapter 5, we will present our contributions to the topic of recommender systems. We
will first describe our preliminarily investigations, which are a direct adaptation of the analogi-

2Very roughly, analogical equation solving is the process of finding the unknown x in the proportion a is to b
as c is to x, e.g. France is to Paris as Germany is to What?

3

cal classifier described in the previous chapter. These first investigations were the object of a
paper published at ISMIS [HPR15]. It will become clear that while offering similar accuracy
to the traditional approaches, analogical recommenders suffer from their cubic complexity.
Acknowledging this fact, we developed another view of analogical recommendation, taking into
account the fact that some users may have different interpretation of the rating scale. The
algorithms that we derived were much more scalable than the previous ones, and these investi-
gations were described in a Fuzz-IEEE paper [HPRS16b]. Finally, we will address the problem
of mining analogical proportions between users (or items) in a rating database [HPRS16c].
Our results will help us to retrospectively interpret the modest performances of our analogical
recommenders: as bland as it may seem, it turns out that there were just not enough decent
analogies to be found in the available databases.

But this down-to-earth observation will lead us to the very questioning of the analogical
inference principle that had been underlying all of our investigations so far. In the last chap-
ter, we will go back to our theoretical considerations, and provide a criterion that allows us
to apply analogical inference in a sound way. We have briefly described that the analogical
inference principle states that if four elements a, b, c, d are in proportion, then their classes
f(a), f(b), f(c), f(d) should also be in proportion. We will provide a complete characterization
of the functions f such that when four elements are in proportion, then their image by f are
also in proportion: these functions ensure a safe use of the analogical inference principle. It will
be clear that these functions are also the ones that allow to extend a training set by analogy
in a perfectly safe way. We will call these functions the analogy preserving functions, and
they will turn out to be the well-known affine functions, both in Boolean and real settings.
These investigations led to an IJCAI paper [CHPR17], and provide various future research tracks.

We will now start with the first chapter, dedicated to the description of previous (and
current) attempts at formalizing analogical reasoning.

4

Introduction in French

Le raisonnement par analogie est largement considéré comme une caractéristique clef de
l’intelligence humaine. Il permet d’arriver à de potentielles conclusions pour de nouvelles
situations, en établissant des liens entre des domaines en apparence très différents. Un exemple
connu est celui du modèle de l’atome de Rutherford-Bohr, où les électrons gravitent autour du
noyau, comme les planètes du système solaire gravitent autour du soleil. Ce type de raisonnement
a fait l’objet de nombreuses études de la part des psychologues et des philosophes, mais il
intéresse aussi la communauté de l’intelligence artificielle.

Ce travail s’intéresse à un mode particulier de raisonnement par analogie, à savoir le
raisonnement par proportions analogiques. Une proportion analogique est une proposition de
la forme a est à b comme c est à d, et exprime le fait que a diffère de b comme c diffère de d.
On pourrait par exemple affirmer que la France est à Paris ce que l’Allemagne est à Berlin,
ou encore que les électrons sont au noyau ce que les planètes sont au soleil. Dans certains cas,
lorsque l’élément d n’est pas connu, on pourra l’inférer à partir des trois autres éléments a, b, et
c. Il semble en effet naturel qu’un enfant doté de connaissances géographiques basiques pourrait
répondre à la question La France est Paris ce que l’Allemagne est à quoi ? Et même dans
l’éventualité où l’enfant ne connaîtrait pas le nom de la ville Berlin, il pourrait tout de même
s’imaginer une hypothétique ville au nom inconnu, mais qui serait la capitale de l’Allemagne.
L’utilisation des proportions analogiques nous permet ici de toucher du doigt deux processus
cognitifs clefs : l’inférence, et la créativité.

En tant qu’outil permettant une forme d’inférence inductive, le raisonnement par analogie
a déjà été envisagé pour des problèmes d’apprentissage artificiel. On pourra citer par exemple
[SY05a] pour une application en linguistique, ainsi que [BMD07] pour des problèmes de
classification dans des domaines booléens. Nos recherches s’inscrivent dans la lignée de ces
deux précédents travaux, et le but de cette thèse est double. Le premier sujet de recherche est
d’appliquer le raisonnement analogique à des problèmes concrets, et le second est d’étudier les
classifieurs analogiques d’un point de vue théorique, afin d’en exhiber des propriété théoriques
intéressantes.

L’application du raisonnement analogique à des problèmes concrets est motivée par le fait
que les précédentes recherches ont principalement été menées d’un point de vue expérimental,
dans des environnements assez artificiels. A notre connaissance, aucun travail n’avait été mené
pour évaluer la pertinence des classifieurs analogiques sur des tâches concrètes, où les critères
de succès sont souvent différents. Nous avons ici choisi d’appliquer le raisonnement analogique
au problème de la recommandation, et plus particulièrement à celui de la prédiction de notes.

D’autre part, nos recherches théoriques sont motivées par le fait que jusqu’alors, les clas-
sifieurs analogiques n’étaient connus que via leurs descriptions algorithmiques. On avait une
connaissance claire de comment calculer la sortie d’un classifieur analogique, mais la nature de
ce qui était effectivement calculé restait encore assez floue. On manquait alors d’outils pour

5

caractériser les forces et les faiblesses de tels classifieurs.

Annonce du plan et contributions
Chronologiquement, nous nous sommes d’abord intéressés à la partie applicative : nos pre-

mières contributions concernaient l’application du raisonnement analogique à la recommandation.
Ensuite, dans un second temps, nous nous sommes intéressés à la partie théorique.

Nous avons choisi de présenter nos travaux d’une manière quelque peu différente. Nous allons
d’abord exposer les connaissances requises sur les proportions analogiques dans les chapitres 1
et 2, puis nous présenterons une partie de nos résultats théoriques dans le chapitre 3. Ensuite,
nous nous attaquerons à la partie applicative dans les chapitres 4 et 5. Enfin dans le chapitre 6,
nous reviendrons sur des aspects théoriques.

Ce choix est en fait motivé par des raisons pédagogiques. En effet, il apparaîtra clair que le
sujet de la recommandation analogique (chapitres 4 et 5) s’introduit et se comprend beaucoup
plus facilement une fois que l’on a déjà étudié le chapitre 3 qui traite de classification analogique.
De plus, bien que l’on aurait pu s’attaquer au chapitre 6 directement après le chapitre 3, il sera
d’autant plus intéressant d’étudier le chapitre 6 à la lumière des conclusions des chapitres 4 et
5.

Ce document est organisé comme suit.

Le premier chapitre donnera les prérequis nécessaires sur différents modèles de raisonnement
par analogie, en insistant particulièrement sur les modèles permettant l’inférence. Il apparaîtra
clair que ces modèles sont, pour la plupart, motivés par des recherches en sciences cognitives
ou psychologiques, ce qui les distingue de notre principal outil : les proportions analogiques.

Les proportions analogiques seront l’objet du deuxième chapitre. Nous donnerons leurs
définitions dans différents domaines algébriques, en insistant sur les deux proportions que nous
utiliserons le plus : la proportion arithmétique et la proportion booléenne. De plus, nous es-
saierons d’aborder ces proportions d’un point de vue géométrique afin d’en mieux saisir les
différentes caractéristiques. Nous étudierons aussi un problème de classification jouet, ce qui
nous permettra d’introduire la notion de résolution d’équation analogique, ainsi que le principe
d’inférence analogique qui est sous-jacent à toutes nos recherches. Dans un contexte de classifi-
cation, ce principe stipule que si a est à b ce que c est à d, alors on devrait aussi avoir que f(a)
est à f(b) comme f(c) est à f(d), où f(x) est la fonction qui détermine la classe de l’élément
x. Ce principe est évidemment non correct, dans le sens où la conclusion (les classes sont en
proportion) n’est pas logiquement déductible de la prémisse (les éléments sont en proportion).
Comme nous le verrons, il reste néanmoins utilisable dans des tâches de classification, ce qui
sera l’objet du troisième chapitre.

6

L’étude des classifieurs analogiques sera en effet le sujet du chapitre 3. Ce chapitre cor-
respond à une version étendue d’un papier publié à l’ECAI [HPRS16a]. Nous commencerons
ici à nous attaquer à un des deux thèmes principaux de cette thèse : identifier des propriétés
théoriques des classifieurs analogiques. Notre première contribution sera de proposer une défini-
tion fonctionnelle des classifieurs analogiques, qui unifie les deux approches préexistantes déjà
mentionnées ([SY05a] et [BMD07]). Cette nouvelle définition nous permettra de dériver des
résultats relatifs à la VC-dimension des classifieurs, ainsi que leur taux d’erreur. Cette définition
fonctionnelle permettra aussi de mettre clairement en lumière les liens qui relient les classifieurs
de type plus-proches-voisins (k-NN) et les classifieurs analogiques. En effet, on montrera que
la classification analogique peut se concevoir comme la successions de deux étapes. Dans un
premier temps, on étend l’ensemble d’apprentissage en ajoutant de nouveaux exemples, puis on
utilise ensuite un classifieur k-NN sur cet ensemble étendu (appelé extension analogique). On
remarquera que les deux processus cognitifs mentionnés précédemment au sujet des proportions
analogiques (créativité et inférence) sont ici intimement liés. De ces résultats, une question
naturelle se pose : comment assurer que l’extension analogique soit saine, c’est-à-dire comment
être certain que les exemples générés ont été associés à la bonne classe ? Cette question sera
résolue dans le chapitre 6, mais les deux chapitres suivants (4 et 5) s’intéresseront à l’application
du raisonnement par analogie au problème de la recommandation.

Le chapitre 4 sera dédié aux prérequis nécessaires sur les systèmes de recommandation. Nous
décrierons brièvement les trois principales familles de systèmes de recommandation, à savoir
les techniques content-based, le filtrage collaboratif, et les techniques knowledge-based. Nous
décrirons aussi formellement le problème que l’on se propose d’étudier, qui est celui de la pré-
diction de notes : étant donné un ensemble de notes données par des utilisateurs pour des items,
le but est de prédire d’autres notes qui ne sont pas dans la base de données. Les différentes
mesures qui permettent d’évaluer la qualité d’un système de recommandation seront présentées.
Enfin, comme nos algorithmes seront de type filtrage collaboratif, nous décrirons en détail deux
techniques de prédiction collaborative qui nous serviront à comparer les performances de nos
algorithmes : les méthodes de voisinage, et les méthodes fondées sur la factorisation de matrice.

Dans le chapitre 5, nous présenterons nos contributions au problème de la recommandation.
Nous décrirons d’abord nos premières investigations, qui sont une adaptation directe des classi-
fieurs analogiques décrits dans le chapitre 3. Ces recherches ont fait l’objet d’un papier publié à
ISMIS [HPR15]. Il apparaîtra que ces algorithmes, bien que proposant une précision semblable
à celle des méthodes par voisinage, se révèlent d’une complexité calculatoire telle qu’il n’est pas
raisonnable de les envisager comme des candidats potentiels à une implémentation dans un
système effectif. Fort de ce constat, nous envisagerons une autre version de la recommandation
analogique, cette fois fondée sur le fait que les utilisateurs ont tous une différente interpré-

7

tation de l’échelle de note. Les algorithmes qui en découleront proposeront une complexité
algorithmique tout à fait raisonnable et sont l’objet d’un papier Fuzz-IEEE [HPRS16b]. Enfin,
nous nous intéresserons au problème de la fouille de proportions analogiques dans une base de
données partiellement renseignée, telle que celles dont on dispose lorsque l’on s’attaque à la
prédiction de notes. Les résultats obtenus nous permettront de rétrospectivement interpréter
les modestes performances de nos premiers algorithmes de recommandation analogique : même
si cela semble tristement banal, il apparaîtra qu’il n’existait probablement tout simplement pas
de bonnes analogiques dans les bases de données utilisées.

Mais cette observation quelque peu terre-à-terre ne nous empêchera pas de remettre en
question le principe d’inférence analogique même. Dans le dernier chapitre, nous reviendrons à
nos considérations théoriques, et nous proposerons un critère qui permet d’appliquer ce principe
d’inférence de manière correcte. Nous avons brièvement décrit ce principe, qui stipule que
si quatre élément a, b, c, d sont en proportion, alors leurs classes f(a), f(b), f(c), f(d) doivent
aussi être en proportion. Nous donnerons une caractérisation complète des fonctions f telles
que lorsque quatre éléments sont en proportion, alors leurs images par f le sont aussi. Ces
fonctions permettent d’utiliser le principe d’inférence analogique de manière sûre, et assurent
une extension analogique saine (c’est-à-dire sans erreur). Nous les appellerons les fonctions
qui préservent l’analogie, et nous montrerons qu’elles correspondent aux fonctions affines dans
les domaines booléens et réels. Ces travaux ont abouti à la publication d’un papier IJCAI
[CHPR17], et ouvrent la voie à différentes pistes de recherche.

8

C
h

a
p

t
e

r 1
Computational models of analogical reasoning

Content

Page
1.1 Models without analogical proportions . 10

1.1.1 First attempts by Pólya and Hesse . 10
1.1.2 Analogy as a structural mapping . 12
1.1.3 Logical view of analogical reasoning . 15

1.2 Models with analogical proportions . 16
1.2.1 Solving geometric problems . 16
1.2.2 Analogical reasoning as distance minimization on a vector space 18
1.2.3 The Copycat program . 19
1.2.4 Analogy and the Minimum Description Length Principle 21
1.2.5 Case-Based Reasoning . 23

Roughly speaking, analogy is a matter of establishing parallels between two different
situations. Reasoning by analogy allows to infer properties about one of the two
situations based on our knowledge of the other. Closely related to analogical reasoning

is the idea of analogical proportion, which is a statement of the form a is to b as c is to d, often
written a : b :: c : d. Here also, one of the four elements may sometimes be inferred if the three

9

other are known: this is called the solving of the analogical equation a : b :: c : ?.

The first two chapters of this document will provide the necessary background on formal
analogical models and especially analogical proportions. In this first chapter, we provide an
overview of various attempts to formalize analogical reasoning, with a strong emphasis on
computational models (the interested reader may refer to [PR14b] for an historical overview of
analogical reasoning models). In the next chapter we will describe in more details the modeling
of analogical proportions, especially in the Boolean and real settings and their application to
machine learning tasks. This chapter is structured as follows.

Section 1.1 will be devoted to the description of existing models that do not make explicit
use of analogical proportions, and Section 1.2 will describe models that make use of analogical
proportions in one way or another, but that still do not use analogical proportions in a formal
way (these models will be the object of the next chapter).

1.1 Models without analogical proportions

In this first section, we will review some past attempts at modeling analogical reasoning, where
no use is made of analogical proportions.

1.1.1 First attempts by Pólya and Hesse

In his famous book How to Solve It [Pol45], the mathematician George Pólya suggests to his
readers various ways of reaching the solution of mathematical problems. Among the different
heuristics that are proposed, analogy has a prominent place. Considering the problem of
finding the center of gravity of a homogeneous tetrahedron, Pólya suggests to observe that the
tetrahedron and the triangle have many similar features, and to first find the center of gravity
of the triangle: a somewhat simpler problem. He writes:

Knowing that the triangle and the tetrahedron are alike in many respects, we
conjecture that they are alike in one more respect. It would be foolish to regard the
plausibility of such conjectures as certainty, but it would be just as foolish, or even
more foolish, to disregard such plausible conjectures.

As the center of gravity of a triangle is the meeting point of the three medians, the analogical
argument suggests that the center of gravity of the tetrahedron is the meeting point of the
six median planes. The work of Pólya is probably the most elaborated analysis of analogical
reasoning as a tool for problem solving in the modern era. Later in [Pol54], Pólya formalizes

10

Bovine Equid

Is mammal Is mammal
Has hoofs Has hoofs
Eats grass Eats grass
∼ 1.6 meters high ∼ 1.6 meters high
Harmless Harmless
Domesticated Domesticable?

Table 1.1: The tabular representation of an analogy between cows and horses.

this idea in what he calls a pattern of plausible inference:

a is analogous to b
a is true

b is more credible

Another early attempt at formalizing analogical reasoning is due to the philosopher of
science Mary Hesse. In [Hes66], Hesse proposes to represent an analogy in a tabular form, as
illustrated in Table 1.1. We already recognize here a mapping between two domains: a source
domain (the bovine domain) and a target domain (the equid domain). In Hesse’s theory, an
analogy should follow three general principles to be considered seriously. The first (questionable)
requirement is the requirement of material analogy: for Hesse, material similarities (i.e.
observable similarities) between the two domains are more important than formal similarities,
which emerge when the two domains can be seen as two different interpretations of a unifying
model. In that sense, Hesse rejects the deep underlying similarities that may bond the two
domains. The second requirement is that when it comes to inferring a property Q (e.g. is a
horse domesticable?), there should be a causal relationship between the known properties P

and the one we need to infer. For example in our example of Table 1.1, the fact that the animals
are harmless and that they eat grass probably helps us to domesticate them. Whether they
have hoofs is however fairly irrelevant for the matter. Finally, the no essential difference
condition states that if a property P is causally related to the hypothetical property Q in the
source domain, then it should also be the case in the target domain. For example if the horse
was not harmless, or if it had a very special dietary regime, then we should probably not infer
that it is easily domesticable.

Let us also briefly mention that in [Hes59], Mary Hesse outlined a formal framework allowing
to define analogical proportions in a modular lattice, anticipating quite remarkably other future
works that will be reviewed in Chapter 2.

11

1.1.2 Analogy as a structural mapping

The role of a structural mapping between a source domain and a target domain has been
recognized for a long time as a key component of analogical reasoning: see for example Pólya
in [Pol54], or Hesse’s theory that we have just described. As such, this principle has led to
numerous theories and computational models that we briefly (and non-exhaustively) recall here.

Gentner’s Structure Mapping Theory
Probably the most influential model of analogical reasoning is the Structure Mapping Theory

(SMT), introduced by the American cognitive scientist Dedre Gentner in [Gen83]. The main
feature of SMT is to consider that good analogies are those that result from strong, deep,
relations and dependencies between the source and the target domains, rather than on some
superficial characteristics. In this regard, SMT departs from Hesse’s theory in a significant way.

The point of Gentner is that superficial similarities are often irrelevant, while what matters
in an analogy are the underlying structural, high order relations between the objects at play.
To exemplify, Gentner argues that when one says that a battery is like a reservoir, the analogy
stands because at some abstract level, a battery and a reservoir serve the same purpose: to
release some potential energy that has been stored for some time. The fact that batteries come
in different shapes, colors and sizes than reservoirs does not play any role in the relevance of
the analogy. This principle is called the systematicity principle, for which we now give some
technical details.

The world is assumed to be represented by objects (belonging either to the source domain
S or to the target domain T), along with some predicates that deal with one or more objects
of the same domain. The distinction is made between predicates that only take one argument
(attributes of objects), and those that take at least two arguments (relations). Higher-order
relations are relations for which arguments are themselves relations, instead of simple objects.
To illustrate these syntactic distinctions, TALL(Bob) and BLONDE(Alice) are attributes over
the objects Bob and Alice. ARE_FRIENDS(Bob, Alice) and HAVE_DINNER(Bob, Alice) are
first-order relations, and CAUSE[ARE_FRIENDS(Bob, Alice), HAVE_DINNER(Bob, Alice)]
is a second-order relation.

In SMT, an analogy is defined as a one-to-one mapping M from S to T that maps relations
(and only relations) between the two domains. The systematicity principle mentioned earlier
states that during the mapping, attributes of objects (considered to be superficial features)
are discarded and not taken into account, while higher-order relations are given priority over
lower-order ones. Also, out of two relations of the same order, the one that is the most involved
into other (higher-order) relations is the most likely to be mapped in the target domain. This
last requirement gives an implicit rule to somehow assess the relevance of a relation in an
analogy.

Note that this definition of analogy involves purely structural and syntactical features. The

12

semantic underlying the relations (or the objects) are completely out of concern. In our example,
the fact that Alice and Bob are actually friends is of no importance: for SMT this relation is
nothing but a first-order relation, with no particular meaning. As far as SMT is concerned,
Alice and Bob could just as well be arch-enemies, it would not make any difference during a
potential mapping process with a target domain (which would, for example, involve two other
individuals with a similar relationship).

While SMT is a purely theoretical framework for analogy, these ideas have been practically
implemented in a software called the Structure Mapping Engine (SME) [FFG89] written in
LISP, leading to numerous applications. A recent example is that of a program that is able to
solve Raven’s Progressive Matrices [LFU10], a typical kind of visual geometric puzzles. The
SME algorithm, in complete accordance with SMT, can be conceptually summarized as follows:

1. Look for all potential matches between relations in the source domain and the target
domain.

2. Try to group matches into maximally consistent collections of matches.

3. From each collection, infer some relations that might stand in the target domain.
In its most simple form, the SME algorithm can be viewed as the finding of a maximum common
subgraph between two graphs, namely those representing the source and the target domains.
As such, SME is part of the connectionist approaches.

In [CFH92], Chalmers, French, and Hofstadter point out various concerns about SMT and
SME. Among them is the fact that SME is too reliant on the (human-made) description inputs
of the source and target domains, and that the intelligence mostly comes from these descriptions:

when the program’s discovery of the correspondences between the two situations is a
direct result of its being explicitly given the appropriate structures to work with, its
victory in finding the analogy becomes somewhat hollow. Since the representations
are tailored (perhaps unconsciously) to the problem at hand, it is hardly surprising
that the correct structural correspondences are not difficult to find.

Also, while the systematicity principle is undoubtedly at the core of many analogies, it
should seem natural to challenge it in some other situations. It is indeed quite easy to find
analogies were superficial features are the most decisive ones [Bar10, Bar16].

Prior to SMT: Winston’s theory
We should mention that SMT and SME are not the first theory/engine couple that models

analogical reasoning based on the mapping of two situations. Indeed in [Win80], Patrick H.
Winston already presents a theory along with a program that also rely on this general view.
Winston uses a propositional representation of the two situations that are extracted from
natural language sentences.

13

Contrary to SMT, Winston’s view of analogy is fairly close to that of Hesse. For Winston,
the matching between the two situations should not only involve high order relations, but also
the attributes of the objects. Moreover, he acknowledges the importance of causal relations
to guide the mapping process, which is compliant with Hesse’s theory. Winston also considers
that the mapping process is constraint-based, which may have inspired the model of Holyoak
and Thagard that we describe now.

The Constraint Satisfaction Theory
As some of the most influential theories of analogical reasoning, SMT and Winston’s model

have opened the way to various other models such as that of Holyoak and Thagard [HT89].
Here as well, an analogy is considered to be a mapping between two domains S and T 1. Taking
over Gentner’s systematicity principle (in a relaxed form), Holyoak and Thagard exhibit two
additional dimensions of importance in an analogical process. First, the semantics behind the
objects at hand, i.e. the meaning that human agents associate with these objects, are taken
into account. In this theory, the two relations ARE_FRIENDS and ARE_ENEMIES are not
the same. This clearly stands in contrast with SMT, where all object attributes are simply
discarded (along with their meanings), and seems to be in accordance with Hesse’s requirement
of material analogy. Second, this theory also involves the pragmatic considerations of the human
agent: the goal and purpose of the analogist should somehow guide the mapping process in
some direction or another. Mappings that serve the purpose of the agent are therefore given
higher priority than others.

Another main difference with SMT, where the systematicity principle is a fixed, inflexible
rule, is that here the three dimensions (systematicity, semantic similarity and pragmaticity)
are interpreted as constraints and not as rigid directions. These constraints are only here to
guide the mapping process.

Holyoak and Thagard’s theory has been implemented in a LISP software called ACME
(Analogical Constraint Mapping Engine), in a similar fashion as the Copycat program (detailed
later in Section 1.2.3) in that they are both cooperative algorithms. Much like SME, ACME is
part of the connectionist approaches.

Heuristic-Driven Theory Projection
Another framework where structural mapping is considered at the core of an analogical

process is the so-called Heuristic-Driven Theory Projection proposed by Gust, Kühnberger
and Schmid [GKS06]. While in SME and ACME the main algorithm boils down to finding a
maximum common subgraph between the two domain representations, HDTP banks on a more
formal approach. The two domains are formally described in first-order logic as a set of facts
(variable-less formulas such as TALL(Bob)) and a set of laws (quantified formulas, such as ∃x,

1with the exception that the mapping goes here from T to S.

14

TALL(x)). Using an anti-unification (generalization) process, the two domains (or theories)
S and T are mapped through a generalized theory G described in a second-order logic. As
expected from the name of the framework, the way the mapping is performed is heuristic-based.
From this generalized theory, a transfer of knowledge can be applied to the target domain, thus
allowing the inference of new facts and laws, provided that they are in accordance with the
already known formulas. This process of generalization followed by a transfer phase is what is
called a theory projection.

1.1.3 Logical view of analogical reasoning

We have seen so far various models of analogical reasoning that mostly rely on some heuristic.
In contrast with this tendency, Davies and Russel [DR87] proposed first order description of
the analogical inference process, and most importantly a set of conditions required for this
inference process to be sound. Concretely, they provide some sufficient conditions that must
hold on two properties P and Q for the following inference rule to be valid:

P (S) ∧Q(S)
P (T)

Q(T)
,

where S and T are the source and target objects. Naturally, this framework can perfectly be
generalized with many properties P1, P2, · · ·Pn. It is clear that for now, this inference rule is
not sound and the problem is now to add a premise such that the conclusion can be logically
deduced.

A first obvious option would be to add as a premise the following implication:

∀x, P (x) =⇒ Q(x).

But this is unsatisfactory, because in this case the inference simply reduces to

P (T)
∀x, P (x) =⇒ Q(x)

Q(T)
,

where no use of the source S is made. It is clear that this inference cannot be reasonably
considered as an analogy: the additional premise must not lead to a conclusion by only involving
the target T . Some knowledge about the source S must be taken into account.

To solve this issue, Davies and Russel introduce what they call the determination rule
i.e. the fact that the value of P determines that of Q:

(∀x P (x) =⇒ Q(x)) ∨ (∀x P (x) =⇒ ¬Q(x)) .

15

This reads as all P ’s are Q’s, or none of them are. More generally, this relation can be considered
as being a functional dependency between P and Q, i.e. Q = f(P). This determination rule
has the two required properties: it allows a sound deduction of Q(T), and forces to inspect the
source S to rule out one of the two parts of the disjunction. In the end, the complete analogical
inference principle of Davies and Russel can be described as:

P (S) ∧Q(S)
P (T)

(∀x P (x) =⇒ Q(x)) ∨ (∀x P (x) =⇒ ¬Q(x))

Q(T)

It is clear that when we have P (S) ∧Q(S), the right disjunct ∀x P (x) =⇒ ¬Q(x) cannot
be true so the inference principle is still reduced to the simpler form mentioned above. The
determination rule still has the merit of requiring to inspect the source S, at least in the first
step of the process.

We have to mention here that the contribution of Davies and Russel is in fact a bit more
sophisticated than the one we have described here for the sake of understanding. Indeed, the
more complex determination rule that they propose is as follows:

∀(y, z), [∃x P (x, y) ∧Q(x, z)] =⇒ [∀x P (x, y) =⇒ Q(x, z)] .

If P (x, y) expresses that the car x has the color yellow and if Q(x, z) expresses that the car x

has the price $10,000, then the expression [∃x P (x, y) ∧Q(x, z)] =⇒ [∀x P (x, y) =⇒ Q(x, z)]
means that if we can find a yellow car that costs $10,000, then all yellow cars cost $10,000.
Because of the universal quantifier ∀(y, z), this determination rule should have to be checked for
every possible color, and every possible price. Unfortunately, this quickly becomes impractical
because of the computational complexity, and because it is fairly unlikely to observe data
satisfying these conditions.

1.2 Models with analogical proportions

In this section, we will describe models that have made explicit use of analogical proportions.

1.2.1 Solving geometric problems

The ANALOGY program of Thomas Evans [Eva64] is one of the pioneer works in the design
of programs capable of analogical reasoning. ANALOGY, written in LISP2, is able to solve
analogical equations in the form of geometrical problems, such as that of Figure 1.1: given

2And according to its author, the largest LISP program at the time (1963)!

16

three geometrical patterns, choose the fourth among a list of candidates that leads to the best
proportion.

?

Figure 1.1: A geometrical analogy problem: figure A is to figure B as figure C is to which
candidate?

The inputs to the program are rough, hand-built low-level descriptions of the figures. For
example, simple geometric shape such as circles, rectangles or triangles are all described with
one single primitive: SIMPLE_CLOSED_CURVE(…), where the arguments are the start and
end of the (multiple) lines, and their curvatures. The program is then divided into two distinct
parts.

The role of the first part is to build high level representations of the figures from these raw
descriptions. After identifying coherent shapes (such as triangle, square, etc.) as independent
objects, the program tries to find relations of the kind INSIDE(Obj1, Obj2) or ABOVE(Obj1,
Obj3) between figures. Finally, similarities between every pair of objects are computed. The
similarity measure is based on the transformability of the first object into the second one, using
traditional geometrical transformations (rotation, scale, reflections, etc.). All the information
computed by the first part are given as input (on punched cards!) to the second part.

The second part relates to the analogical solving process per se. Using the output of the first
part, ANALOGY will try to find a set of rules that transform figure A into figure B. A rule
would for example state REMOVE(Obj1), ROTATE(Obj2, 45◦), etc. Then, by generalizing each
rule, it tries to establish a correspondence between these rules and those transforming C into
one of the candidate solutions. The chosen solution is the one that maximizes the resemblance
between the two sets of rules.

An interesting fact is that ANALOGY analyses the way to go from A to B and applies it to
go from C to D, but it does not make use of central permutation3: it may just as well analyze
the way to go from A to C and transpose it to go from B to D. Note also that in ANALOGY
the semantics behind the relations and the geometrical objects are not taken into account. In
this respect, ANALOGY is close to Gentner’s Structure Mapping Theory (but preexisting by
far).

3The central permutation axiom, described in the next chapter, states that A : B :: C : D ⇐⇒ A : C :: B : D.

17

1.2.2 Analogical reasoning as distance minimization on a vector space

At a time where most models of analogy used to take the form of complex computer programs
(such as that of Evans), the two cognitive scientists David Rumelhart and Adele Abrahamsen
proposed a simple theoretical model of analogical reasoning [RA05]. Their model is of great
interest for us because as it will become clear, their view of analogy is in total accordance with
our use of analogy in machine learning (or should we say more humbly that our use of analogy
is fully compliant with their earlier model).

For Rumelhart and Abrahamsen, a human reasoning process can be defined by two compo-
nents: a memory structure in which the remembered objects are stored, and an algorithm that
manipulates these data to produce a result. In their paper, they define these two components
for the analogical reasoning.

With regards to the memory structure, their assumption is that it can be considered as
an m-dimensional Euclidean space. This assumption is originally that of Henley [Hen69] who
showed, with the help of social experiments, that a set of 30 mammals could be fairly well
represented in the 3-dimensional space R3 with the three axes ferocity, humanness, and size. It
is supposed that the semantic similarity that people associate with two concepts is inversely
proportional to their distance in the Euclidean space R3. For example, cow and horse should
be fairly close, but rat would likely be far from both.

Rumelhart and Abrahamsen are interested in the problem of solving an analogical equation
(although they never state it in these terms): given three concepts A, B, C and a set of
candidate solutions D1, D2, · · · , Dn, which Di is the best candidate for A : B :: C : Di?
Their assumption is the following: for a human agent, the best solution is the closest
Di to the (potentially hypothetical) perfect solution I, defined as I = C − A + B.
This principle is illustrated in figure 1.2. To assess the soundness of this hypothesis, diverse
social experiments are led by the authors. For example, students are asked to choose the best
candidates for various randomly generated analogies, e.g. rat is to pig as goat is to [chimpanzee,
cow, rabbit, sheep].

Figure 1.2: Analogical equation solving process as in [RA05]. The solution is here D2.

As it will become clear, this idea that an analogy A : B :: C : D is better when D is close
(as measured by a distance on a metric space) to the true solution I is entirely compatible with

18

the notion of analogical dissimilarity that will be defined in Chapter 3.
More recently, various techniques have been proposed to generate a vector-space embedding

for words from a large corpus of text documents, for example Word2Vect [MCCD13]. In these
continuous spaces also, some interesting analogies between words can be found that give even
more power to the works of Rumelhart and Abrahamsen. The most classical example of word-
analogy in such a space is given by man is to woman as king is to queen, where the vector
queen was found to be the one that is the closest to the vector king - man + woman, which is
in perfect accordance to the idea of Rumelhart and Abrahamsen. Other meaningful analogies
can be found, and some of them are illustrated in Figure 1.3. See [MYZ13] for more details on
finding linguistic regularities in word space embeddings.

Figure 1.3: Analogies between words in the Word2Vect model. Image source: https://www.
tensorflow.org/versions/master/tutorials/word2vec.

1.2.3 The Copycat program

Copycat [Mit93] (see also [HM+94]) is another famous program that performs analogical reason-
ing tasks, introduced by Melanie Mitchell and Douglas Hofstadter. The problems considered by
Copycat are the solving of analogical equations in a microworld of strings of letters. A typical
Copycat problem looks as follows:

abc : abd :: ijk : x.

What should the value of x be? Various answers may be relevant here, such as ijd (replace
the right-most letter by d), but the most natural answer probably is ijl: replace the right-most
letter by its successor. How about zrq? Well, not really convincing. The point of the authors,
however, is that a priori every single option should be given equal chances of success.

This principle is strongly reflected in the Copycat program which is probabilistic in nature:
for the same problem, various solutions can be found depending on the initial condition. For
example the equation abc : abd :: mrrjjj : x leads to mrrkkk in 70% of the cases (over

19

https://www.tensorflow.org/versions/master/tutorials/word2vec
https://www.tensorflow.org/versions/master/tutorials/word2vec

1000 experiments), and to mrjjk 20% of the time. Other less plausible solutions make up the
remaining 10%.

At the beginning of the program, each option is equally available. Then, on the basis of their
validity, some hypotheses are given a stronger chance to survive till the end of the program,
while others are discarded. Conceptually, this process emerges from the interoperability of three
main components: the workspace, the codelets, and the temperature.

• The workspace, is the place where objects and relations live. In the workspace, diverse
conceptual structures are built-in: successor, predecessor, left-most, right-most, orientation,
etc. When the program starts, none of these structures are activated: this will be the role
of the codelets.

• The codelets, are competing agents trying to explore and build perceptual structures
and relations between the objects in the workspace. Their behaviour depends on the
temperature.

• The temperature could be also defined as the entropy of the system. When relations in
the workspace are strong and well established, the temperature is low. At the beginning
of the program, the temperature is the highest, leading to a multitude of codelets being
run in every single direction. This concept of temperature can be viewed as the trade-off
between exploration (trying every possible hypothesis) and exploitation (the actual use of
a well established hypothesis). When the temperature goes below a given threshold, the
program stops and the current hypothesis is outputted.

Figure 1.4: Snapshot of Copycat during an equation solving process. Image taken from [Mit01].

Figure 1.4 illustrates the internal state of Copycat during the solving of abc : abd :: mrrjjj :
x. 195 codelets have run so far, so the temperature is average and some structure have been
properly established, such as the successor group abc and the sameness group jjj. The rr group
is also being defined, though still weaker than the others at this stage. Also, a rule describing
the change from abc to abd has been established: replace the right-most letter by its successor.
Depending on the future behaviour of the codelets, this rule with either stick till the end of the
program or change to lead to the most common prediction x = mrrkkk.

20

Copycat is clearly a complex adaptative system where a global behaviour emerges from
small, independent parts. According to its authors, Copycat’s architecture is neither symbolic
nor connectionist, nor a hybrid of the two; rather, the program has a novel type of architecture
situated somewhere in between these extremes.

1.2.4 Analogy and the Minimum Description Length Principle

Ockham’s razor (also Occam), due to the Franciscan philosopher William of Ockham (1285 - 1347),
is a well known principle in machine learning theory. The main and most useful interpretation
of the original Latin version states that when trying to explain a situation, if two hypotheses
give the same answer then the best one is probably the simplest one. In practice, what makes
an hypothesis simple remains quite vague, at least from a computational point of view. Yet this
principle has been formalized into Rissanen’s Minimum Description Length Principle (MDLP)
[Ris78], which is based on Kolmogorov complexity. Despite the difficulty to build inferential
models from this principle (Kolmogorov complexity is often intractable and impossible to com-
pute, and can only be estimated), it has shown to be quite influential in the field of machine
learning, at least from a theoretical point of view.

With this in mind, Antoine Cornuéjols proposed a framework for assessing the quality of an
analogy [Cor96b] (see also [Cor96a]). In these papers, Cornuéjols hypothesizes that the best
analogy between a source and a target model is the simplest one, meaning that its description
length is minimal, in terms of Kolmogorov complexity.

Let us first recall some basic knowledge about Kolmogorov complexity, before diving into
more technical details. The Kolmogorov complexity of a string of characters x, denoted K(x),
is the length of the shortest computer program capable of outputting x on a universal Turing
machine. K(x) is supposed to capture the intrinsic complexity of x. Intuitively, K(′aaaaabbbbb′)
is supposed to be lower than K(′abaabbabab′), because a clear pattern emerges in the first
string, leading to a simple program: first print a five times, then do the same for b. The second
string seems more or less random, which makes it difficult to factorize into a concise program.
In some sense, the Kolmogorov complexity captures how well a string x can be compressed. The
conditional complexity K(x | y) is the size of the shortest program that outputs x when given y

as an input.

Now, let’s get back to our analogical concerns. As illustrated in figure 1.5, Cornuéjols
considers an analogy as a process involving an object xS in a source domain, an object xT

in a target domain, and two functions fS and fT transforming xS and xT into yS and yT

respectively: yS = fS(xS) and yT = fT (xT). Each domain S and T lives inside a theory or
model (namely MS and MT), that can describe their corresponding objects.

For Cornuéjols, the best analogy is the one that minimizes the following sum of Kolmogorov

21

Figure 1.5: The two domains S and T in Cornuéjols’ model.

complexities:

K(MS) + K(xS |MS) + K(fS |MS) + K(MT |MS) + K(xT |MT) + K(fT |MT),

where:
• K(MS) is the cost associated with the source theory,

• K(xS |MS) is the cost of xS as described in the source theory,

• K(fS |MS) is the cost of fS as described in the source theory,

• K(MT |MS) is the cost of describing the target theory from the source theory,

• K(xT |MT) is the cost of xT as described in the target theory,

• and finally K(fT |MT) is the cost of fT as described in the target theory.
Notice that the terms yi are not considered in this cost function, because they are entirely

defined by their corresponding xi and fi.
Cornuéjols illustrates the plausibility of his model using experiments in the microworld of

Copycat. After defining the Kolmogorov complexity of the built-in relations (direction, length,
etc.), and those of the representations of the inputs, the solutions of the analogical equations
are set as those minimizing the above criterion. The empirical results show that this model,
in addition to its theoretical appeal due to the proximity with MDLP, is at the very least an
interesting option that deserves further investigations. In a recent work, this model of analogy
has been applied to a task of transfer learning [MC16].

Adopting a different (but close) approach, the association between Kolmogorov complexity
and the evaluation of the quality of an analogy has also been recently advocated in [BPR12].
In this work, the authors propose that if four objects a, b, c, d are in proportion, then it should
be as complicated to go from a to b as to go from c to d, and it should also be as complicated to
go from b to a as to go from d to c. More formally:

a : b :: c : d =⇒ K(b | a) = K(d | c) and K(a | b) = K(c | d).

This criterion was used to automatically discriminate good analogies from bad analogies, where
objects were concepts represented as words of the natural language, and where their Kolmogorov

22

complexity was roughly approximated using online search-engine queries. The experiments
showed that the system was able to differentiate credible analogies from fishy ones in about
75% of the time.

1.2.5 Case-Based Reasoning

We will here describe the field of Case-Based Reasoning (CBR). First of all, let us note that
CBR is not literally a computational model of analogy, but is rather a general problem solving
paradigm that makes use of some particular form of analogical reasoning. As discussed in
[AP94], CBR and analogical reasoning are often mixed up in the literature. We choose to briefly
describe CBR now, because we need to clarify how our approach to problem solving will differ
from that of CBR.

CBR is a very general paradigm for problem solving, where a new problem is solved
using the knowledge of some similar past experiences. This model can be motivated by its
psychological appeal: it is indeed well acknowledged that, when confronted with an unknown
situation, humans tend to make use of their past knowledge about some other similar situation
to solve the problem at hand. As an example, the recipe of a strawberry pie could be easily
inferred using the past knowledge on the recipe of other fruit pies (e.g. apple pie, pear pie, etc.).

In its most general form, CBR is a way of reaching the unknown solution S to a problem P

using the known solutions Si to problems Pi that are similar to P . Each pair (Si, Pi) is called
a case, hence the name of the paradigm. The term problem is here used in its most general
sense. In [AP94], a CBR process is described by the succession of the following four steps:

1. Retrieve: this first step is to retrieve all cases (Si, Pi) where Pi is similar to the initial
problem P . The way these cases are chosen is entirely dependent of the current setting,
and greatly differ depending on the application. Sometimes, only a single case is selected.

2. Reuse: the solutions Si associated to the most relevant Pi are aggregated in some way,
and adapted if needed to build up the final solution S.

3. Revise: the relevance and the adequacy of the chosen solution S are evaluated, and S is
modified if needed.

4. Retain: if the revised solution S ended up being a good choice, then the solution is
retained and the pair (P, S) is bound to be used in the solving of some future problems.

Before moving further to the next chapter, we would like to point out a significant difference
between the CBR approach and the one we will address in this document. In a way, the CBR
process can be viewed as building the following analogical proportions:

Pi : Si :: P : S,

where S is unknown and inferred from all the Si. We can indeed consider that problem Pi is to
solution Si as problem P is to solution S. Each of these analogical proportions is built on the

23

basis that Pi and P are similar, so S should be similar to Si.
But as we will see in the next chapter, an analogical proportion a : b :: c : d is not restricted

to having a close to c and b close to d! It is quite the contrary actually: all elements are allowed
to be extremely distinct. And indeed, if we are able to capture how a given Pi (that is not
close to P) differs from P , then applying the same transformation to Si should give us a
relevant potential solution S. Acknowledging this fact, our approach to analogical learning will
rather follow another conceptual scheme: we will try to retrieve the proportions of the form
Pi1 : Pi2 :: Pi3 : P , and the solution S will be inferred by extrapolation4 from the associated
equations: Si1 : Si2 :: Si3 : S. This allows us to consider problems Pi that are both similar and
different from P , which may allow to find more interesting solutions S.

Conclusion

This first chapter was devoted to the description of past works on the modeling of analogical
reasoning. We chose here to distinguish between two groups of models: those that make explicit
use of analogical proportions (either as a key component of the model or as a simple use-case
example), and those that do not. Among the models that use analogical proportions, we will
see that the model of Rumelhart and Abrahamsen (derived from a psychological perspective)
will be in perfect accordance to our view of analogical classification, and analogical learning in
general.

It is fairly clear that these past works are, with a few exceptions, mostly motivated by
cognitive and psychological investigations. It is only recently that some authors [FPY95, LS96]
have provided a formal framework to deal with analogical proportions in general algebraic
settings, which opened the door to many computational applications. These formal analogical
proportions are a key concept for our work. We will now review this topic in the next chapter.

Résumé du chapitre D’une façon générale, une analogie établit des parallèles entre deux
situations différentes. Le raisonnement par analogie permet alors d’inférer des propriétés sur
l’une des situations, en utilisant nos connaissances de l’autre situation. Un type particulier de
raisonnement par analogie est celui lié aux proportions analogiques, qui sont des expressions de
la forme a est à b ce que c est à d, souvent écrit a : b :: c : d. Là aussi, on peut parfois déduire
la valeur d’un des quatre éléments sur la base de notre connaissance des trois premiers. Ce
processus s’appelle la résolution d’équation analogique.

Les deux premiers chapitres de ce document seront dédiés à fournir les prérequis nécessaires
concernant les modèles de raisonnement par analogie, et en particulier ceux relatifs aux propor-
tions analogiques. Dans ce premier chapitre nous décrivons brièvement différentes tentatives de

4The way S is extrapolated will be described in the next chapter as the solving of the analogical equation.

24

formaliser le raisonnement par analogie, accordant une attention particulière aux modèles qui
peuvent s’utiliser à des fins inférentielles.

Nous avons choisi ici de faire la distinction entre deux types de modèles : ceux qui ne font
jamais référence aux proportions analogiques, et ceux qui recourent aux proportions analogiques
d’une manière ou d’une autre : les proportions sont alors soit une composante clef du modèle
(par exemple sections 1.2.1 et 1.2.2), soit une simple possibilité d’application (sections 1.2.3 et
1.2.4).

Ces différentes propositions sont, en grande partie, inspirées par des travaux provenant des
sciences cognitives et psychologiques. Ce n’est qu’assez récemment que certains auteurs [FPY95,
LS96] ont proposé divers modèles formels permettant l’usage des proportions analogiques au sein
de structures algébriques. Ces proportions analogiques sont le principal objet de nos travaux,
et nous les décrivons en détail dans le prochain chapitre.

25

C
h

a
p

t
e

r 2
Formal analogical proportions

Content

Page
2.1 Formal definitions . 28

2.1.1 The geometric and arithmetic proportions 29
2.1.2 Analogical proportions between sets . 32
2.1.3 The Boolean proportion . 33

2.2 Geometrical insights of the Boolean and arithmetic proportions 38
2.2.1 Equivalence classes of analogical proportions 38
2.2.2 The Boolean and arithmetic proportions as parallelograms 40

2.3 Analogical inference principle and equation solving 42

After a first introduction of past works on analogical reasoning in Chapter 1, we will
now provide all the necessary background on formal analogical proportions, the most
important concept of this document.

An analogical proportion is a statement of the form “a is to b as c is to d”. It is a relation
between the two pairs (a, b) and (c, d), which expresses that what is common to a and b is
also common to c and d, and what is different between a and b is also different between c and
d. There are numerous examples of such statements, with which everybody will more or less

27

agree, such as “a calf is to a cow as a foal is to a mare”, or “Paris is to France as Berlin is to
Germany”. As a relation involving both similarities and dissimilarities between four objects, an
analogical proportion is able to model complex associations.

The three axioms of analogical proportions
It has been agreed since Aristotle time that an analogical proportion A is a quaternary

relation satisfying the three following axioms, for any a, b, c, d:

1. A(a, b, a, b) always holds (Reflexivity)

2. A(a, b, c, d) =⇒ A(c, d, a, b) (Symmetry)

3. A(a, b, c, d) =⇒ A(a, c, b, d) (Central permutation)

When there is no ambiguity over A and its domain, the infix notation a : b :: c : d is often
used. Considering again the farm example, the symmetry axiom states that if a calf (a) is to a
cow (b) as a foal (c) is to a mare (d), then a foal (c) is to a mare (d) as a calf (a) is to a cow (b),
which seems perfectly sound. The central permutation axiom leads to the natural consequence
that a calf (a) is to a foal (c) as a cow (b) is to a mare (d).

This chapter is structured as follows. In the first section of this chapter, we will provide the
definition of analogical proportions in various settings, with a strong emphasis on the arithmetic
and Boolean proportions, which will turn out to be very close. We will further investigate
this bond in the second section, which will be devoted to describe these two proportions from
a geometrical perspective. In the last section, we will consider a toy classification problem,
which will help us introduce two other key concepts: the analogical inference principle, and
the process of analogical equation solving. This last section will also serve as a transition
towards the next chapter, which will be devoted to describe our contributions to analogical
classification.

2.1 Formal definitions

The goal of this first section is to provide the definitions of analogical proportions in various
settings. We will particularly focus on the arithmetic proportion that deals with real numbers,
and on the Boolean proportion.

The use and definition of formal analogical proportions is not new and dates back1 to
works such as those of Federici, Pirelli and Yvon [FPY95, PY99], who proposed definitions
of proportions between strings and between symbolic features (thus implicitly providing a
definition for the Boolean proportion). Almost in parallel, the works of Lepage [LS96, Lep98]
explore similar concerns with a distance-based definition of analogy between words.

1We ignore for now the works of Klein and Piaget, which will be describe later in Section 2.1.3.

28

2.1.1 The geometric and arithmetic proportions

A factorization-based definition of analogical proportions
We will start here by a general factorization-based definition of analogical proportions in

semigroups, provided in [SY05a] and [SY05b]:

Definition 2.1 (Proportion in semigroups). Let (U,⊕) be a semigroup, i.e. U is a set and ⊕
is an associative binary operation. Four elements a, b, c, d ∈ U , are in proportion if there exists
some factorization

a = a1 ⊕ a2 ⊕ · · · ⊕ an

b = b1 ⊕ b2 ⊕ · · · ⊕ bn

c = c1 ⊕ c2 ⊕ · · · ⊕ cn

d = d1 ⊕ d2 ⊕ · · · ⊕ dn,

such that for all i ∈ [1, n],
ai = bi and ci = di

or

ai = ci and bi = di.

Example:
A use of this definition can be found in [SY05b], where the authors define an analogy between
words of a finite alphabet using the concatenation operator, which allows to build proportions
such as:

eat : eating :: look : looking.

This analogy was used in an automatic verb conjugation task that we will briefly describe in
the next chapter.

Analogical proportions between real numbers
To further illustrate the use of Definition 2.1, it will be insightful to instantiate U as the set

of natural number N and ⊕ as the usual multiplication ×.

Example:
In this setting, let’s consider the prime factorization of:

29

a = 30 = 1× 2× 3× 5

b = 60 = 2× 2× 3× 5

c = 25 = 1× 1× 5× 5

d = 50 = 2× 1× 5× 5.

For each i, we either have ai = bi and ci = di (i = 2, 3, 4) or ai = ci and bi = di (i = 1, 4).
We can then say that a, b, c, d are in proportion, i.e. 30 : 60 :: 25 : 50. We recognize here the
geometric proportion: 30

60 = 25
50 .

Definition 2.2 (Geometric proportion). Four elements a, b, c, d in R∗ are in geometric pro-
portion if

a

b
= c

d
,

or equivalently if
a× d = b× c.

It now becomes clear why analogical proportions are effectively called proportions: it is
precisely because they generalize the well-known numerical geometric proportion to more
complex structures. Actually, Aristotle stated the three aforementioned axioms on the basis of
the geometric proportion.

In fact, when R is equipped with the multiplication ×, the pair (R,×) is a group (i.e. a
set equipped with an operation that satisfies closure, associativity, identity and invertibility).
When dealing with a group (instead of a semigroup), Definition 2.1 can be greatly simplified:

Proposition 2.1 (Proportion in groups). Let (U,⊕) be a group. Four elements a, b, c, d ∈ U ,
are in proportion if:

a⊕ d = b⊕ c.

The geometric proportion is clearly a direct instance of this definition. Another proportion
can be defined over real numbers, using this time the addition operator + for the group (R, +):

Definition 2.3 (Arithmetic proportion). Four elements a, b, c, d in R are in arithmetic
proportion if:

a + d = b + c,

or equivalently if
a− b = c− d.

Analogical proportions over vectors
An analogical proportion in R is great, but what will be more useful is a proportion in Rm, so

30

that we can deal with vectors. Let us make a brief notation note: in the rest of this document,
vectors will be denoted by boldface letters and their components will be denoted by regular
letters. For example, a vector x ∈ Xm will be defined as x = (x1, x2, . . . , xm).

It is actually fairly easy to define a proportion in a given set Xm provided that we already
have a proportion in X. Indeed, a natural extension to Xm is to require that each of the m

dimensions make up valid proportions in X:

Definition 2.4 (Proportion for vectors). Let A be an analogy over a set X. We can define an
analogy Am over Xm in a component-wise fashion by:

Am(a, b, c, d) if A(ai, bi, ci, di) for all i ∈ [1, m],

where a, b, c, d are vectors in Xm. More often than not, Am will simply be denoted A for the
sake of brevity.

Thanks to Definition 2.4, we now have the definition of two numerical proportions in Rm: one
that generalizes the geometric proportion and one that generalizes the arithmetic proportion.
The interpretation of the geometric proportion in Rm can be opaque, but that of the arithmetic
proportion is very clear: four vectors a, b, c, d of Rm are in arithmetic proportion if a−b = c−d,
i.e. if they are the four vertices of a parallelogram, as illustrated in Figure 2.1.

Figure 2.1: a, b, c, d are in arithmetic proportion iff they are the four vertices of a parallelogram.

Let us mention that even if they did not explicitly mention the parallelogram view of
analogy, Rumelhart and Abrahamsen (Section 1.2.2) clearly used the arithmetic proportion for
their psychological model of analogical reasoning.

Starting from the general lines of Definition 2.1, other proportions have been defined in
various domains, e.g. analogies between trees, lattices, or matrices [MD04, SY05b, MBD08].
However, we will not detail them further here and rather focus on other domains of interest,
namely analogies between sets. Defining analogies between sets will indeed allow us to derive
the definition of an analogical proportion for Boolean values, which is the main subject of this
document.

31

2.1.2 Analogical proportions between sets

In [Lep03], Lepage defines an analogy between sets as follows: four subsets A, B, C, D of a
universal set X are in proportion if A can be transformed into B by adding and deleting the
same elements as to transform C into D. A more formal definition has been given in [SY05b]:

Definition 2.5 (Proportion between sets (i)). Let A, B, C, D ⊆ X. A, B, C, D are in proportion
if there exist four subsets U, V, W and Z (not necessarily disjoint) such that:

A = U ∪ V

B = U ∪W

C = Z ∪ V

D = Z ∪W.

The requirements of Lepage are clearly respected here: to go from A to B, one needs to add
W and remove V . To go from C to D, one needs to do the exact same thing: add W and remove
V . This definition is completely compliant with our informal introduction at the beginning of
this chapter, where we explained that an analogical proportion a : b :: c : d expresses that what
is common to a and b is also common to c and d, and what is different between a and b is also
different between c and d.

An equivalent definition of analogy between sets has been given in [MP09]:

Definition 2.6 (Proportion between sets (ii)). Let A, B, C, D ⊆ X. A, B, C, D are in proportion
if:

A \B = C \D and B \A = D \ C.

Definition 2.6 reads as A differs from B as C differs from D, and B differs from A as D differs
from C, which is naturally equivalent to the statement of Definition 2.5: A \B = C \D = V ,
and B \ A = D \ A = W . Finally, a last equivalent definition can be given as follows (not
without using various ingenious tweaks):

Definition 2.7 (Proportion between sets (iii)). Let A, B, C, D ⊆ X. A, B, C, D are in propor-
tion if:

A ∩D = B ∩ C and A ∪D = B ∪ C.

These three equivalent definitions are illustrated in Figure 2.2.

Example:
For a more concrete example, let us consider A = {a, b, c, g}, B = {a, b, d, e, g}, C = {c, f, g}
and D = {d, e, f, g}, as summed-up in Table 2.1. Setting U = {a, b, g}, V = {c}, W = {d, e}
and Z = {f, g}, the conditions of Definition 2.5 are clearly satisfied. Also, A \B = C \D =
{c} = V , and B \A = D \ C = {d, e} = W . Finally, A ∪D = B ∪ C = {a, b, c, d, e, f, g} and
A ∩D = B ∩ C = {g}.

32

Figure 2.2: The four sets A, B, C, D are in proportion. In general, U, V, W, Z do not need to be
disjoint.

a b c d e f g

A × × × ×
B × × × × ×
C × × ×
D × × × ×

Table 2.1: Four sets A, B, C, D in analogical proportion.

Analogies between sets are important because they allow us to derive the definition of the
Boolean proportion, which is the object of the next subsection.

2.1.3 The Boolean proportion

Formal definition
We are now in a position to give a formal definition of the Boolean proportion, which can be

directly derived from Definitions 2.6 or 2.7 by considering the set B = {0, 1} [MP09]:

Definition 2.8 (Boolean proportion (i)). Four elements a, b, c, d in B = {0, 1} are in Boolean
proportion if

[(a ∧ ¬b)↔ (c ∧ ¬d)] ∧ [(¬a ∧ b)↔ (¬c ∧ d)] , or equivalently

(a ∧ d↔ b ∧ c) ∧ (a ∨ d↔ b ∨ c),

where ↔ stands for the equivalence connective.

The first expression is the direct counterpart of Definition 2.6, and states that a differs
from b as c differs from d, and conversely b differs from a as d differs from c. The
second expression directly comes from Definition 2.7.

In a Boolean setting, there are exactly 24 = 16 different valuations of a, b, c, d. Definition
2.8 tells us that exactly 6 of these valuations (or patterns) lead to valid Boolean proportions.
Table 2.2 illustrates the 6 valid patterns and the 10 invalid ones. We recognize in Table 2.2 that
all the valid patterns express that we need to perform the same operation to go from a to b as

33

a b c d A(a, b, c, d)

0 0 0 0 1
1 1 1 1 1
0 0 1 1 1
1 1 0 0 1
0 1 0 1 1
1 0 1 0 1

a b c d A(a, b, c, d)

0 0 0 1 0
0 0 1 0 0
0 1 0 0 0
1 0 0 0 0
1 1 1 0 0
1 1 0 1 0
1 0 1 1 0
0 1 1 1 0
0 1 1 0 0
1 0 0 1 0

Table 2.2: The six valid patterns of the Boolean proportion (left), and the ten invalid patterns
(right).

to go from c to d, and that this is not the case for the invalid patterns. This is compliant with
what we expect from an analogical proportion, as discussed earlier. With regards to this, the
last two invalid patterns (namely 0 : 1 :: 1 : 0 and its counterpart 1 : 0 : 0 : 1) have a particular
status: we could indeed claim that they express the fact that b is the negation of a just like c is
the negation of d, so in some sense we still could say that a differs from b as c differs from d.
We will discuss this point further when we will mention the works of Sheldon Klein, who came
up with a different definition of the Boolean analogical proportion.

We observe from Table 2.2 that some sort of code independence axiom is satisfied, which
guarantees that 0 and 1 play symmetric roles:

Property 2.1. Let a, b, c, d in B. Then

a : b :: c : d ⇐⇒ ¬a : ¬b :: ¬c : ¬d,

where ¬x is the negation of x.

This code independence property is actually extremely important for representational
purposes, because it means that we do not have to care about the coding convention of the
Boolean vectors that we use [PR13b].

We gave the definition of the Boolean proportion as a consequence of the definition of
proportions between sets, but let us note that in fact, the 6 valid patterns of Table 2.2 could
have been derived directly from the 3 axioms of an analogical proportion: the first axiom tells
us that the proportion a : b :: a : b holds for any value of a and b in B. This means that the
four following proportions are valid:

• 0 : 1 :: 0 : 1;

• 1 : 0 :: 1 : 0;

34

• 0 : 0 :: 0 : 0;

• 1 : 1 :: 1 : 1.
Using the central permutation axiom (a : b :: c : d ⇐⇒ a : c :: b : d), we can then derive two
additional proportions, which makes a total of 6 proportions that are indeed those of Table 2.2:

• 1 : 1 :: 0 : 0;

• 0 : 0 :: 1 : 1.

The Boolean proportion as a particular case of the arithmetic proportion
By paying attention to Table 2.2, we notice that the Boolean proportion can actually be

defined in a simpler way:

Definition 2.9 (Boolean proportion (ii)). Four elements a, b, c, d in B are in Boolean pro-
portion if:

a = b and c = d

or

a = c and b = d,

or equivalently if
a− b = c− d.

Naturally, the values a− b and c− d do not necessarily belong to B, but it does not really
matter: we just have to temporarily consider that a, b, c, d are in R. We are here witnessing a
close bond that links the Boolean proportion and the arithmetic proportion: when restricted
to B, the arithmetic proportion and the Boolean proportion are equivalent. The
connections between these two proportions will be more and more obvious as we go through
this document.

If the Boolean and the arithmetic proportion are equivalent in B, the geometric proportion
only offers a necessary condition to define the Boolean proportion: a× d = b× c is satisfied by
all of the valid patterns in Table 2.2, but also for the pattern 0 : 0 : 0 : 1 which is not a valid
analogy. In that sense, the Boolean proportion is closer to the arithmetic proportion than to
the geometric proportion.

The Boolean proportion of Sheldon Klein
We cannot talk about formal Boolean proportions without going back to the 80s and mention

the pioneering work of Sheldon Klein who, to some extent, defined his own Boolean analogical
proportion [Kle83]. His definition states that a, b, c, d in B are in proportion if a⊕ b = c⊕ d,
where ⊕ is the XOR operator. This definition is less restrictive than Definition 2.8, and amounts
to considering that in addition to the 6 valid patterns from Table 2.2, two other patterns are
also valid, namely 0 : 1 :: 1 : 0 and its counterpart 1 : 0 :: 0 : 1.

35

These two patterns seem appealing at first sight, because they capture the fact that
a : ¬a :: b : ¬b. However, they also lead to the fact that a : b :: c : d ⇐⇒ b : a :: c : d, which
seems quite unnatural for an analogy. Indeed, if a calf (a) is to a cow (b) as a foal (c) is to a
horse (d), it seems unnatural to say that a cow (b) is to a calf (a) as a foal (c) is to a horse
(d). This notion will become clear in the next section when we will present the equivalence
classes of analogical proportion (here, (a, b, c, d) and (b, a, c, d) are not in the same equivalence
class). In practice, it is often observed that using the modeling of Klein leads to less accurate
classifiers than using the standard modeling.

In fact, Klein’s definition of the Boolean proportion a : b :: c : d ⇐⇒ a ⊕ b = c ⊕ d is
equivalent to a⊕ d = b⊕ c, due to the singular properties of the XOR operator. This definition
is actually a direct instance of Proposition 2.1 (analogies in groups), which is natural because of
the fact that when the set B = { 0, 1 } is equipped with the XOR operator, we obtain a group.

The logical proportion of Jean Piaget and its generalization
Another remarkable precursor work is that of Jean Piaget who, in the annex of a French

book from 1952 [Pia52], defined what he called a logical proportion as follows: four propositions
a, b, c, d are in proportion if (a∧ d↔ b∧ c)∧ (a∨ d↔ b∨ c). This definition is clearly equivalent
to what we refer to now as the Boolean analogical proportion, and was likely derived by
Piaget when he was trying to give a Boolean counterpart to the geometric proportion, where
the exchange of extreme and means plays a key role. In fact, it turns out that Piaget never
made any reference to analogy in this work.

This concept of logical proportion has been generalized in recent works (see e.g. [PR13b]).
A logical proportion is here defined as a pair of equivalences of the form:

I1(a, b)↔ I2(c, d) ∧ I3(a, b)↔ I4(c, d),

where a, b, c, d are Boolean variables and each Ii is either an indicator of similarity or an
indicator of dissimilarity. An indicator of similarity I(x, y) is either of the form x ∧ y or
of the form ¬x ∧ ¬y: it captures what is common to x and y, or what is both not in x and
not in y. Conversely, a dissimilarity indicator I(x, y) will be of the form ¬x ∧ y or x ∧ ¬y, and
captures what is in y and not in x, or what is in x and not in y. A logical proportion then
expresses a semantic equivalence between the two pairs of variables (a, b) and (c, d), in terms of
similarities and/or dissimilarities. The Boolean analogical proportion that we are studying here
is a particular instance of logical proportion.

There is a total 120 possible logical proportions (see [PR12] for a derivation), and quite
interestingly each of these logical proportions are true for exactly 6 valuations of a, b, c, d. This
makes them quite rare, because there are in fact

(16
6
)

= 8008 propositions that are true for 6
valuations only, out of the 16 possible valuations. Out of these 120 logical proportions, only 8
of them support the code independency property (Property 2.1) which makes the remaining

36

112 proportions unsuitable for representational purposes.
Out of these 8 code-independent proportions, 4 proportions exhibit interesting cognitive

properties, that we name the homogeneous proportions. These proportions are characterized
by the fact that all the expressions Ii(x, y) are different, and by the fact that I1 and I2 are of
the same kind (i.e. they are both similarity indicators, or both dissimilarity indicators), and the
same goes for I3 and I4. These four proportions are called the paralogy, the reverse analogy,
the inverse paralogy, and naturally the analogy. We will however not make use of these logical
proportions in this document (except the Boolean analogical proportion of course!), so we will
not detail them further.

Extension to multiple-valued logics
In [PR13a], the authors propose an extension of the Boolean proportion to a multiple-valued

logic where the elements can take real values in the interval [0, 1]. This extension was proposed
on the basis of the definition A(a, b, c, d) ⇐⇒ [(a ∧ ¬b)↔ (c ∧ ¬d)] ∧ [(¬a ∧ b)↔ (¬c ∧ d)],
and using the following mapping between operators:

• The central ∧ becomes the min operator.

• x↔ y becomes 1− |x− y|.

• x ∧ ¬y becomes max(0, x− y).
The graded view of the analogical proportion then becomes:

A(a, b, c, d) =

1− |(a− b)− (c− d)| if a ≥ b and c ≥ d, or a ≤ b and c ≤ d

1−max(|a− b|, |c− d|) if a ≥ b and c ≤ d, or a ≤ b and c ≥ d.

The conditions may seem complicated but they actually express simple facts: the first one states
that a differs from b in the same direction as c differs from d, and the second one states the
reverse. It is clear that this definition is quite closely linked to that of the arithmetic proportion.

Let us note that there are other ways to transform the Boolean operators into multiple-valued
logic operators. If we had started from a different expression of the Boolean proportion, or if
we had used alternative choices of operators, we would have ended up with a different potential
definition of this analogical proportion. However, some combinations lead to definitions that do
not completely suit the requirements that one can expect from an analogical proportion. So
in practice, the choice of operators is dictated by the plausibility of the final expression (see
[PR13a] for a discussion). We here chose to describe this definition because of its links to the
arithmetic proportion, and because we will make use of this graded view of analogy later in
Chapter 5.

Conclusion
This first section was devoted to the description of various definitions of analogical proportions

in different settings: we have reviewed analogies between real numbers, between sets, between

37

Boolean numbers, and an extension to multiple-valued logics. In this document, the two kinds
of proportions that we will deal with are the Boolean proportion and the arithmetic proportion,
which we have shown to be extremely close. As having a deep understanding of how these two
proportions work will be very insightful for us, the next section is devoted to give a geometrical
interpretation of the Boolean and arithmetic proportions.

2.2 Geometrical insights of the Boolean and arithmetic
proportions

The goal of this section is to demystify the Boolean and arithmetic proportions, which will
be used in all of the investigations described in this document. To this end, we shall provide
geometrical insights of how these proportions connect the four elements a, b, c, d. We have
already seen in the previous section that the arithmetic proportion is a relation between four
elements that build up the vertices of a parallelogram. In this section, we will show that this
parallelogram-based view of analogical proportions can be extended to the Boolean setting.

Before moving on to the geometric insights, we will first make a quick detour in the first
subsection, and describe what we call the equivalence classes of analogical proportions. We
have chosen to introduce these general concepts here, because they are best illustrated by
examples from the arithmetic and Boolean proportions, and because they are paramount to
properly understand the geometrical properties of these proportions.

2.2.1 Equivalence classes of analogical proportions

We place ourselves here in a very general setting, and consider four elements of a given set X

that are in proportion. Starting from the assertion A(a, b, c, d) and by successive application
of the symmetry and central permutation axioms2, we arrive to the following 8 equivalent
proportions:

A(a, b, c, d)

⇐⇒ A(c, d, a, b) Symmetry

⇐⇒ A(c, a, d, b) Central permutation

⇐⇒ A(d, b, c, a) …

⇐⇒ A(d, c, b, a)

⇐⇒ A(b, a, d, c)

⇐⇒ A(b, d, a, c)

⇐⇒ A(a, c, b, d).

2Recall that the symmetry axiom states that A(a, b, c, d) ⇐⇒ A(c, d, a, b), and the central permutation
axiom states that A(a, b, c, d) ⇐⇒ A(a, c, b, d).

38

If we applied one more time the central permutation axiom, we would end up with our
initial proportion A(a, b, c, d): we say that these 8 proportions constitute an equivalence class.
There are exactly 4! = 24 ways to order the four elements a, b, c, d, and we have just seen that
8 of these orderings form an equivalence class. In fact, the 16 remaining orderings are also
part of two other equivalence classes, each of 8 proportions. Indeed, if we had started with the
proportion A(a, b, d, c), by successive applications of the central permutation and symmetry
axiom, we would have ended up again with 8 equivalent forms that are all different from those
that are generated by A(a, b, c, d). The third equivalence class is generated by A(a, c, d, b). In
total, we end up with 24 = 3× 8 distinct proportions, which correspond to the 24 = 4! possible
orderings of a, b, c, d.

Example:
The point here that if we say that a calf (a) is to a cow (b) as a foal (c) is to a mare (d)
(A(a, b, c, d)), then we can actually say it in 7 other equivalent ways. Also, we cannot say that
a calf (a) is to a cow (b) as a mare (d) is to a foal (c) (second equivalence class A(a, b, d, c)),
because such a statement would implicitly express that a young is to an adult as an adult is
to a young, which seems wrong: we cannot go from a young to an adult in the same way as
we go from an adult to young. We cannot say either that a calf (a) is to a foal (c) as a mare
(d) is to a cow (b) (third equivalence class A(a, c, d, b)), because this would suggest that a
bovine is to an equid as an equid is to a bovine: here again, we cannot transform the concept
bovine into equid in the same way as we would transform the concept equid into bovine.

Another illustration of the three classes of proportions is illustrated in Figure 2.3, using the
arithmetic proportion.

Figure 2.3: The three equivalence classes: A(a, b, c, d1), A(a, b, d2, c) and A(a, c, d3, b). See
also [PR13b].

Let us mention an important point: if a, b, c, d are not all distinct, the equivalence classes
contain less than 8 proportions. This is natural, because there are no longer 24 different orderings
of a, b, c, d. For example if a = c and b = d, then the equivalence class that is generated by
A(a, b, c, d) is only made of 4 proportions:

A(a, b, c, d) def= A(a, b, a, b) ⇐⇒ A(a, a, b, b) ⇐⇒ A(b, b, a, a) ⇐⇒ (b, a, b, a).

39

Although these notions may seem shallow at first sight, they will actually turn out to be
paramount to grasp the geometrical view of Boolean proportions that we now address.

2.2.2 The Boolean and arithmetic proportions as parallelograms

What we know so far is that the arithmetic proportion in Rm involves the four vertices of a
parallelogram. As for the Boolean proportion, we know from Definition 2.4 that four Boolean
vectors a, b, c, d are in proportion if each component build up a valid proportion, i.e. that each
of the (ai, bi, ci, di) follows one of the 6 valid patterns of Table 2.2 on page 34.

Example:
For example in B2, the four vectors a = (0, 0), b = (1, 0), c = (0, 1) and d = (1, 1) are in
proportion because the two component-wise proportions a1 : b1 :: c1 : d1 and a2 : b2 :: c2 : d2

are valid: we have 0 : 1 :: 0 : 1 and 0 : 0 :: 1 : 1.
The four vectors a = (0, 0), b = (1, 0), c = (0, 1) and d = (1, 0) are not in proportion

because a2 : b2 :: c2 : d2 is not a valid pattern.

We have also seen that in B, the Boolean proportion and the arithmetic proportion are
equivalent. This is also naturally the case in Bm! This means that a proportion in Bm can
also be represented as a (potentially flat) parallelogram. By flat parallelogram we mean that
the four vertices are not all distinct: this will all become clear by looking at the two following
illustrations, in B2 and in B3.

The 36 proportions of B2

Figure 2.4 illustrates the proportions that one can build in B2:
• The proportion a : b :: c : d and its 7 other equivalent forms, making up the parallelogram

abcd (remember that when all elements are distinct, the equivalence class represented by
A(a, b, c, d) is composed of 8 elements).

• The proportions that we can build using any pair of vertices, for example a : d :: a : d.
Each of these proportions has 3 other equivalent forms: in this case a : a :: d : d,
d : a :: d : a and d : d :: a : a. As there are

(4
2
)

= 6 pairs of vertices in B2, there are
exactly 6× 4 proportions of this kind, all of which are flat3.

• The 4 proportions involving each vertex independently, for example b : b :: b : b. These
proportions are also flat, naturally.

All in all, this makes up to 36 = 8+6×4+4 proportions: 8 proportions from the parallelogram
abcd, 6× 4 proportions from the pairs of vertices, and 4 proportions from the 4 vertices. In
fact, this number of 36 proportions could have been derived directly by remembering that in
B2 the proportions are defined in a component-wise fashion, and that there are exactly 6 valid

3The flat proportion are those that make up flat parallelograms. This naming convention is actually fortunate,
because these proportions are in practice absolutely useless, as it will soon become clear in the next section.

40

Figure 2.4: The 36 proportions in B2.

patterns of proportions in B: as a proportion in B2 is the concatenation of two proportions in
B, the number of valid proportions in B2 necessarily is 6× 6 = 36.

Let us also note though that only 1 + 6 + 4 = 11 of them can be considered unique (up
to equivalence) and only one is non-flat. In the next section, we will further investigate the
number of unique proportions that can be built in Bm.

The proportions of B3

Going a dimension further can still be insightful. Figure 2.5 illustrates the 12 non-flat
proportions that exist in B3. These proportions are the parallelograms making up the 6 faces of
the 3-cube, and six other diagonal parallelograms passing through the center of the cube. The
flat proportions are not shown for the sake of clarity.

000

001
010

011

100

101

110

111

Figure 2.5: The 12 non-flat parallelograms in B3: the six faces of the cube, and 3× 2 diagonal
parallelograms, e.g. (000) : (010) :: (101) : (111).

Let us finally note the following remarkable property, which will be useful to us later in
Chapter 6:

Property 2.2. Let a, b, c, d in Bm, and let H(x, x′) be the Hamming distance between x and
x′, i.e. the number of components we need to flip to transform x into x′ (or the reverse).
If a : b :: c : d, then these three equalities hold:

41

H(a, b) = H(c, d)

H(a, c) = H(b, d)

H(a, d) = H(b, c).

We can easily verify this property in B from Table 2.2, and the general case in Bm immedi-
ately follows from Definition 2.4. Sadly, Property 2.2 only offers a necessary condition for a
proportion to hold, and not a sufficient one: indeed taking a = d = 1 and b = c = 0 in B, the
three equalities are clearly respected but 1 : 0 :: 0 : 1 is not a valid proportion. The first two
properties H(a, b) = H(c, d) and H(a, c) = H(b, d) are classical properties for parallelograms,
but interestingly the third one H(a, d) = H(b, c) is only true for rectangles. In fact, the paral-
lelograms that we can build in Bm are always rectangles.

This closes this discussion on the geometric interpretation of Boolean proportions. In the
next section we will apply the previously described notions to a task of classification, which
will help us to introduce new concepts, and also to make a smooth transition towards the next
chapter.

2.3 Analogical inference principle and equation solving

The goal of this last section is to introduce two other fundamental notions that will be used
in our investigations: the analogical inference principle, and the process of analogical
equation solving. Once combined, these two concepts allow us to perform inference, and to
apply analogical reasoning to machine learning tasks such as classification.

We will here consider a toy classification problem in a Boolean setting, which will help us
introduce these two fundamental notions. This toy problem will also serve as an introduction to
the next chapter, where we will study the theoretical properties of analogical classifiers. Because
of the nature of the problem, this section will be a mix of particular and general considerations.

Problem setting
We now have enough background on Boolean proportions to start doing some machine

learning. Here is our problem. We consider the set Bm and its 2m elements. For various x ∈ Bm,
we know the value of f(x), where f is a function from Bm to B. The value f(x) is called the
class of x, or its label. The set S (Bm of elements for which f(x) is known is called the
training set. For any element x /∈ S, f(x) is unknown and our goal is to guess it: this is a
binary classification problem.

Let us suppose that we are in B3 and consider Figure 2.6. We know the values of f(x) for
every single element x but h, so S = {a, b, c, d, e, f , g}. There are numerous methods at hand
to go guess the value of f(h). One of the most famous one is the nearest neighbors heuristic,

42

a

b

c

d

e

f

g

h

0

1

1

0

1

0

0

?

Figure 2.6: A classification problem in B3. Labels f(x) are on the right cube.

which would lead us to consider that the label of h is the same as that of its neighbors, i.e. the
elements that are close to h with respect to a given distance function. Using the Hamming
distance, we would assign to h the label 0, because the 3 closest neighbors of h, namely d, f , g,
are all labeled with 0.

The analogical inference principle
Our point is here to describe the process of analogical classification, so we will forget the

nearest neighbor heuristic and we will instead make use of the so-called analogical inference
principle, which states that if four elements x, y, z, t are in proportion, then their labels should
also be in proportion:

Analogical inference principle
x : y :: z : t

f(x) : f(y) :: f(z) : f(t)

This is obviously an unsound principle, in that the conclusion does not logically follows
from the premise. But as we will see in this document, it can still be useful.

The key point here is that if the value of f(t) is unknown, it can be recovered from the
values of f(x), f(y), f(z) by the process of analogical equation solving that we explain now.

We here want to guess the value of f(h). The analogical inference principle leads us to look
for all 3-tuples (x, y, z) ∈ S3 such that x : y :: z : h holds. The principle then states that for all
of these 3-tuples, we should have f(x) : f(y) :: f(z) : f(h). Figure 2.5 tells us that there are 6
(non-flat) parallelograms involving h as a vertex. The six unique corresponding proportions are:

1. a : b :: g : h

2. a : d :: e : h

3. a : c :: f : h

4. b : d :: f : h

5. e : f :: g : h

6. c : g :: d : h.

Applying the analogical inference principle to the first proportion a : b :: g : h leads to

43

f(a) : f(b) :: f(g) : f(h), which is equivalent to:

0 : 1 :: 0 : f(h).

By referring to Table 2.2 on page 34, we notice that f(h) should be equal to 1 for the proportion
f(a) : f(b) :: f(g) : f(h) to be a valid one, because 0 : 1 :: 0 : 1. So we keep 1 in the back of our
head as a possible candidate for f(h): we say that 1 is a candidate solution for f(h). What
we have just done is the solving of an analogical equation.

Analogical equation solving in general
Generally speaking, an analogical equation is a proportion a : b :: c : x in a context where x

is unknown. Determining the value of x is then called the solving of this equation. Depending
on the nature and values of a, b, c, there may or may not exist a solution, and it might not be
unique.

In fact, we have all been solving analogical equations since our childhood, because in the case
of the geometric proportion it reduces to the well known rule of three: 5

2 = 10
x =⇒ x = 2×10

5 = 4,
and generally a : b :: c : x =⇒ x = b×c

a (a 6= 0). The solution of the arithmetic proportion
a− b = c− x is also extremely simple and is given by x = c− a + b.

In a Boolean setting, an equation is solvable for 6 patterns of a, b, c (the 6 patterns of Table
2.2, naturally):

Proposition 2.2. Let a, b, c in B. The analogical equation a : b :: c : x is solvable if and only if
a = b or a = c. The solution denoted sol(a, b, c) is always unique and is given by:

sol(a, b, c) def= c if a = b,

sol(a, b, c) def= b if a = c,

or more generally:
sol(a, b, c) def= c− a + b,

because the Boolean proportion is a particular case of the arithmetic proportion. The values of
sol(a, b, c) for all the Boolean 3-tuples (a, b, c) are given in Table 2.3.

Back to the estimation of f(h)
Let’s get back to the estimation of f(h). Applying the analogical inference principle to

the second proportion a : d :: e : h leads f(a) : f(d) :: f(e) : f(h), and to the solving of
0 : 0 :: 1 : f(h). Here again, the solution is 1, just like the candidate of the first proportion. The
third proportion a : c :: f : h leads to the solving of 0 : 1 :: 0 : f(h), also claiming that 1 is a
good candidate.

44

a b c sol(a, b, c)

0 0 0 0
1 1 1 1
0 0 1 1
1 1 0 0
0 1 0 1
1 0 1 0
1 0 0 ?
0 1 1 ?

Table 2.3: The solutions sol(a, b, c) for every Boolean 3-tuple (a, b, c). The question mark ?
means that sol(a, b, c) is undefined. We can verify that sol(a, b, c) = c− a + b when the solution
is defined.

And now the fourth proportion b : d :: f : h, which leads to 1 : 0 :: 0 : f(h). This equation
is not solvable: neither 1 : 0 :: 0 : 1 nor 1 : 0 :: 0 : 0 are valid proportions. We can also check
this fact from Table 2.3. We thus simply discard the proportion b : d :: f : h as a potential
source of information about f(h), because we are not in a position to apply the analogical
inference principle. We can easily verify that the fifth and sixth proportions also lead to non-
solvable equations.

All in all, we are left with three candidates coming from the first three proportions, all of
which are equal to 1. Our guess will thus be that f(h) should be equal to 1, so we will set the
estimation of f(h) as f̂(h) = 1. Notice that we have so far completely ignored all the flat
proportions, i.e. proportions where the four elements are not all distinct. This is because none of
these proportions allow us to derive a solvable equation. Considering for example d : h :: d : h,
we’re led to the solving of f(d) : f(h) :: f(d) : f(h), or equivalently of 0 : f(h) :: 0 : f(h). Both
values 0 and 1 could lead to equally valid proportions here, so there is simply no predictive power
in the flat proportions. We have also only considered unique proportions, up to equivalence.
The first proportion a : b :: g : h for example is equivalent to a : g :: b : h (using central
permutation), which we could have used instead. As any two equivalent proportions lead to
the same solution for their associated class equations, we usually choose to ignore all other
equivalent proportions, which allows to divide the number of equation solving processes by a
factor of 2.

The analogical classification process: summary
Here is a small outline of the classification process we have just followed, that was entirely

governed by the analogical inference principle. Our goal was to guess the value of f(h):

• We first looked at all the 3-tuples (x, y, z) ∈ B3 such that:

– f(x), f(y) and f(z) are known;

45

– x : y :: z : h holds;

– the class equation f(x) : f(y) :: f(z) : s is solvable. s is called a candidate
solution.

Each of the three candidate solutions s1, s2, s3 agreed on the same prediction: si = 1 for
all i.

• We thus estimated that f(h) should indeed be equal to 1.

Open questions
This minimal example of analogical classification raises a few concerns, which will be thor-

oughly addressed in the rest of this document:
1. All of the three candidate solutions for f(h) agreed on the same prediction: 1. What if

one of them predicted 0? A first drastic option is to refuse to classify h, on the basis that
if the candidates cannot agree on their predictions, then we should not trust any of them.
As it will become clear, in practice the candidates never really completely agree, even
though sometimes a clear majority emerges. So this strategy would make the prediction
impossible for most elements x /∈ S. A wiser option is to consider an aggregation of the
candidate solutions: the most common one, for example. This is the option that has been
taken on so far, as we will see in the next chapter.

2. Here, by chance, the set of candidate solutions for f(h) was not empty: we found three
candidate solutions. What happens if we cannot find any candidate? This case arises
when there are no 3-tuple (x, y, z) ∈ S3 such that x : y :: z : h holds and such that the
associated equation f(x) : f(y) :: f(z) : f(h) is solvable. In the works of Stroppa and
Yvon ([SY05a]), such an h cannot be classified. The notion of analogical dissimilarity
as used in [BMD07] will allow to bypass this issue. In the next chapter, we will detail
these two versions of analogical learning, and one of the contributions of our work is to
provide a unifying view of the two techniques.

3. We have entirely relied on the analogical inference principle to classify f(h). How safe is
this inference principle? Can we find some theoretical guarantees that could allow us to
use it on a sound basis? In Chapter 6, we will provide a complete characterization of the
Boolean functions f that allow to derive sound conclusions.

Before moving further to the next section, let us consider a seemingly trivial question: how
many proportions can we build in Bm? As we will see, this question will provide us with some
further insight about the Boolean proportion. This last discussion is, however, not as important
as the previous ones and can safely be ignored by the impatient reader.

How many proportions can we build in Bm?
Exactly 6m! And it is fairly easy to derive: there are 6 proportions in B. As a proportion in

46

B2 is the concatenation of any two proportions in B, there are exactly 62 = 36 proportions in
B2, as seen in the previous section. Analogical proportions in Bm are defined component-wise,
i.e. they are the concatenation of m proportions in B. Equivalently, a proportion in Bm is the
concatenation of a proportion in Bm−1 and a proportion in B. By trivial induction, we can
build 6m proportions in Bm.

But let’s now ask a more relevant and challenging question: how many useful proportions
can we build in Bm? By useful, we mean proportions that could be used for classification
purposes. We have seen in this section that the only proportions a : b :: c : d that are useful
for classification purposes are those where all elements a, b, c, d are distinct, i.e. the non-flat
proportions. We thus want to exclude from the 6m proportions those that comply with one of
the following patterns:

• a : a :: a : a;

• a : b :: a : b, and its three equivalent forms a : a :: b : b, b : a :: b : a, and b : b :: a : a.

Now, let’s count them.

• Each of the 2m vertices a will generate a proportion of the form a : a :: a : a, so there are
exactly 2m proportions of this kind.

• Every pair (a, b) of vertices will generate four proportions:

– a : b :: a : b;

– a : a :: b : b;

– b : a :: b : a;

– b : b :: a : a.

There are
(2m

2
)

distinct pairs of vertices, so in total this makes 4 ·
(2m

2
)

proportions of the
form a : b :: a : b with its equivalent forms.

We are then left with the number of 6m− 2m− 4 ·
(2m

2
)

useful proportions. We know that for
each of these proportions, all elements a, b, c, d are distinct. For each of them, there are thus
7 other equivalent forms, which reduces the number of useful and unique (up to equivalence)
proportions to:

Pm = 1
8

[
6m − 2m − 4 ·

(
2m

2

)]
.

Table 2.4 gives the values of Pm for the first 10 values of m. Naturally, P2 and P3 are in
accordance with the empirical results from Figures 2.4 and 2.5. The fact that P1 = 0 means
that no inference can be done with analogical proportion in B, which is perfectly normal: in B,
all proportions are flat (i.e. the pattern is always a : b :: a : b or a : a :: b : b).

In fact, it turns out that this sequence of numbers 0, 1, 12, 100 . . . is already known as the
A016283 sequence from the OEIS4. This sequence actually describes the number of rectangles

4The On-line Encyclopedia of Integer Sequences (http://oeis.org/A016283).

47

http://oeis.org/A016283

m Pm

1 0
2 1
3 12
4 100
5 720
6 4816
7 30912
8 193600
9 1194240
10 7296256

Table 2.4: Number of unique non-flat proportions in an m-dimensional cube.

that can be formed from the vertices of an m-dimensional cube, which is exactly equivalent to
the number of useful proportions that we wanted to compute. The formula given by the OEIS
is:

Pm = 6m

8 − 4m−1 + 2m−3.

Using the fact that
(n

k

)
= n

k

(n−1
k−1

)
, it can be shown that the two formulas 1

8

[
6m − 2m − 4 ·

(2m

2
)]

and 6m

8 − 4m−1 + 2m−3 are, fortunately, equivalent. It would be interesting to find out how the
OEIS formula was derived, but in all fairness we have no idea of the process that was used.

Conclusion

In this chapter, we have given the necessary background on formal analogical proportions,
mostly focusing on Boolean proportions. We have seen that an analogical proportion A is a
quaternary relation following three simple axioms that were already known in Aristotle times.

In the first section, we formally defined various analogical proportions in different settings,
starting from the most general definitions for semigroups and groups, until we reached the
Boolean proportion. We also presented an extension of the Boolean proportion to multiple-
valued logics, which we will use much later in Chapter 5.

In the second section, we extended our knowledge and understanding of the Boolean
proportion. We illustrated the close bonds that exist between the Boolean proportion and the
arithmetic proportion, and we showed that both can be seen as a relation between the four
vertices of a parallelogram in Bm or in Rm.

The third section was devoted to the description of the analogical inference principle and of
the analogical equation solving process. By solving an analogical equation, we are able to infer
some information about any of the four elements at play in an analogy, provided that the three
others are known. This process can be seen as a simple generalization of the rule of three that

48

we have been using since childhood: 4
2 = 6

x =⇒ x = 3. Using this powerful tool and applying
the analogical inference principle, we were able to go trough a simple classification problem in
a Boolean setting.

The aim of these first two chapters was to provide an overview of past works in analogical
reasoning, and to provide the necessary background to understand the contributions made in
this thesis. In the next chapter, we will describe our contributions to the task of analogical
classification.

Résumé du chapitre Ce chapitre est dédié à la présentation du principal outil utilisé dans
ces travaux : les proportions analogiques. Une proportion analogique est une expression de la
forme a est à b ce que c est à d. Cette expression exprime le fait que ce qui est commun à a et
b l’est aussi à c et d, et ce qui diffère entre a et b diffère aussi entre c et d. On pourra trouver
de nombreux exemples de proportion analogique, par exemple “le veau est à la vache comme le
poulain est à la jument”.

Selon Aristote, une proportion analogique A est une relation quaternaire qui satisfait les
trois axiomes suivant, pour tout élément a, b, c, d :

1. A(a, b, a, b) est toujours vrai (réflexivité)

2. A(a, b, c, d) =⇒ A(c, d, a, b) (symétrie)

3. A(a, b, c, d) =⇒ A(a, c, b, d) (permutation centrale)

Lorsqu’il n’y a pas d’ambiguité sur A et son domaine, on se permettra d’utiliser la notation
infixe a : b :: c : d. Considérant à nouveau notre exemple fermier, l’axiome de symétrie indique
si le veau (a) est à la vache (b) ce que le poulain (c) est à la jument (d), alors le poulain (c) est
à la jument (d) ce que le veau (a) est à la vache (b), ce qui semble tout à fait naturel. L’axiome
de permutation centrale indique qu’une autre conséquence est que le veau (a) est au poulain
(c) ce que la vache (b) est à la jument (d).

Dans la première section, nous avons formellement défini les proportions analogiques dans
divers domaines algébriques, partant de la définition générale dans les semi-groupes pour arriver
aux proportions booléennes. Nous avons aussi brièvement présenté une extension multi-valuée
de la proportion booléenne qui nous sera utile bien plus tard au chapitre 5.

Dans la deuxième section, nous avons illustré les liens étroits qui relient la proportion
booléenne et la proportion arithmétique via diverses considérations géométriques. En particulier,
nous avons illustré le fait que ces deux proportions mettent en jeu les quatre sommets d’un
parallélogramme soit dans Bm, soit dans Rm.

Dans la troisième section, nous nous sommes intéressés à la résolution d’équations analogiques,
ainsi qu’au principe d’inférence analogique. En résolvant une équation analogique, nous sommes
capables d’inférer des propriétés relatives à l’un des quatre éléments de la proportion. Ce pro-
cessus est en fait une sorte de généralisation de la fameuse règle de trois : 4

2 = 6
x =⇒ x = 3.

Nous avons appliqué cet outil inférentiel à un problème de classification, en se reposant sur

49

le principe d’inférence analogique qui stipule que lorsque quatre éléments sont en proportion,
alors cela doit aussi être le cas pour leurs labels respectifs.

50

C
h

a
p

t
e

r 3
A functional definition of analogical classifiers

Content

Page
3.1 Analogical classification . 52

3.1.1 Conservative classifier . 53
3.1.2 Extended classifier . 57
3.1.3 Analogical classifier: a functional definition 61

3.2 Theoretical properties of analogical classifiers 64
3.2.1 Study of convergence . 64
3.2.2 Vapnik Chervonenkis (VC) dimension of analogical classifiers 66
3.2.3 Accuracy analysis . 67

3.3 Experiments and empirical validation . 69
3.3.1 Evaluation protocol . 69
3.3.2 Comments and discussion . 71

In the previous chapter, we briefly described a basic process of analogical classification in an
informal way. In this chapter, we will clearly and formally define analogical classification,
which will help us clarify some of the grey areas that we have glimpsed before. Also, we

will describe our contributions to this problem.

51

A first form of analogical classifiers has been defined in the works of Stroppa and Yvon
[SY05a], which we will refer to as conservative classifiers. These works extend some previous
proposal on learning by analogy in the setting of natural language processing [PY99]. Another
form of analogical classifiers has later been proposed in the works of Bayoudh, Delhay and
Miclet [MBD08, BMD07], referred-to here as extended classifiers.

Though the theoretical groundings of the conservative and extended classifiers have a lot
in common (they are both analogical classifiers after all), we will see that their practical
implementations are actually quite different. We will show however that the extended classifier
is a generalization of the conservative one, and most importantly that these two approaches
can be factorized into a single, unifying framework.

So far, only algorithmic descriptions of both methods were available. Our unifying framework
will allow us to give a general and functional definition of analogical classifiers, opening the
door to some theoretically grounded research.

This chapter is an extended version of [HPRS16a] and it structured as follows. In Section
3.1, we will review and detail the two previous approaches to analogical classification, that we
will name here the conservative and the extended classifiers. We will then get to the heart of
the matter and start describing our first contribution, that consists in factorizing these two
approaches into a single functional description. Thanks to this functional definition of analogical
learners1, we will be able in Section 3.2 to derive some theoretical properties about analogical
learners. We will indeed show that their VC-dimension is infinite, and that their accuracy is
closely related to that of the k-NN classifier. Finally in Section 3.3, we will empirically verify
our results and provide some insights that will motivate the topic of Chapter 6.

3.1 Analogical classification

This first section will be devoted to the unification of two seemingly different analogical
approaches to classification. Let us first define the problem of classification, one of the main
subfields of machine learning. The aim is simple: a classifier has to estimate the class of any
element given as input on the basis of some other elements for which the class is known. Formally,
we denote Xm our universe which is usually a Cartesian product: Xm = X1 ×X2 × . . .×Xm.
We have at our disposal a subset S (Xm × Y of n pairs (x, f(x)), called the training set.

S =
{ (

x(i), f(x(i))
)
∈ Xm × Y

∣∣∣ i ∈ [1, n]
}

.

For any x ∈ Xm, the value f(x) is called its class or label. The functional notation f(x)
suggests that all labels are defined by an underlying function f : Xm → Y , which is the usual
general view point of machine learning (usually, x is also considered as a random variable). In
the case of classification, Y is a finite set of size C where C is the number of different classes.

1In what follows, we will abuse language and use analogical learner and analogical classifier as synonyms.

52

The goal of a classifier is to learn the function f on the basis of the elements in S, called the
examples. The output of a classifier is a function f̂ : Xm → Y that is as close as possible the
ground truth function f .

3.1.1 Conservative classifier

We will here describe what we call a conservative classifier. Without further ado, let us
consider Algorithm 1 which describes such classifiers.

Algorithm 1 The Conservative classifier.
Input: A training set S and an element x ∈ Xm \ S for which f(x) is unknown.
Output: f̂(x), an estimation of f(x).
Init: C(x)← ∅ // A multiset of candidate labels.
for all (a, b, c) ∈ S3 such that a : b :: c : x do

if f(a) : f(b) :: f(c) : y is solvable then
y ← sol (f(a), f(b), f(c))
C(x)← C(x) ∪ y

end if
end for
f̂(x)← Mode(C(x)) // The most common value in C(x) (undefined if C(x) = ∅).

// Ties broken at random.

It should be easy to see that the process of Algorithm 1 is extremely similar to the one
we followed on our first introduction to classification with Boolean proportions in Section 2.3.
Here again the key underlying process is the analogical inference principle, which states that if
four elements are in proportion, then their classes should also be in proportion. But Algorithm
1 is slightly more general than what we have glimpsed in Section 2.3: it allows to deal with
cases where some of the candidate solutions y do not agree with each other. The fix here is to
consider that the prediction f̂(x) will be the most common candidate solution among all the
predictors. This definition of analogical classification comes from the work of Stroppa and Yvon
[SY05a, SY05b], and to our knowledge it is the first instance of analogical learner that has ever
been proposed, following ideas that can be already found in [PY99]. We note however that the
authors did not explicitly state that the class equations must be solvable to be useful.

Note that if the multiset C(x) is empty, i.e. if we cannot find 3-tuples in S3 such that they
are in proportion with x and such that the related class equation is solvable, then the value
f̂(x) is undefined and x cannot be classified (hence the name conservative).

At first sight, we are here in a setting where the examples in S are stored for future use,
without any generalization process. We will thus consider (for now) that the conservative
classifier ranges among the category of lazy learners, i.e. learners that only rely on the
training set S without any actual learning stage, or without building any model of the data.
The most popular instance of lazy learner certainly is the famous k-NN algorithm.

53

In the following, we will give a functional definition of f̂(x) as outputted by a conservative
classifier. To this end, we will define two crucial concepts: the analogical extension of a
training set S, and the analogical root of an element x. Both the analogical extension and the
analogical root were first defined in [SY05b], with some minor differences with our definitions.

Definition 3.1 (Analogical extension). Denoting S a training set and f the ground truth
function of the labels, the analogical extension of S using f is:

Ef
S

def=
{

x ∈ Xm
∣∣∣ ∃(a, b, c) ∈ S3, a : b :: c : x and f(a) : f(b) :: f(c) : y is solvable

}
.

Intuitively, Ef
S can be regarded as the set of all x ∈ Xm that are in proportion with at least

one 3-tuple in S, provided that the equation related to the associated labels is also solvable.
For any S and any f , Ef

S satisfies some elementary properties:
1. S ⊆ Ef

S , since x : x :: x : x always holds;

2. Ef
∅ = ∅, and Ef

Xm = Xm;

3. S1 ⊆ S2 =⇒ Ef
S1
⊆ Ef

S2
.

We will denote by Ef∗
S the set of elements in Ef

S that are not in S:

Ef∗
S

def= Ef
S \ S.

In a setting where for any a, b, c the equation a : b :: c : x is always solvable (as is the case for
the arithmetic proportion) and such that the associated class equation is also solvable, we can
show that the size of Ef∗

S is exactly 1
2n2(n− 1) [BMMA07]. This value is thus a loose upper

bound for | Ef∗
S |, because in practice equations are not always solvable.

Example:
To polish our understanding of the analogical extension, let us consider Figure 3.1. The
training set S is { a, b, d, e }. Taking (b, d, a) ∈ S3, we notice that b : d :: a : c, and the
associated class equation 0 : 1 :: 0 : y is solvable. So c is in Ef

S . The same goes for f with the
3-tuple (a, b, e) ∈ S3. However, even if we can find (b, d, e) ∈ S3 such that b : d :: e : g, the
associated class equation 0 : 1 :: 1 : y is not solvable, so g /∈ Ef

S . At last, vertex h will suffer
the same fate because the class equation f(a) : f(e) :: f(d) : y is not solvable either. In the
end, Ef

S = {a, b, c, d, e, f } and Ef∗
S = { c, f }.

The dual concept of the analogical extension is what we call the analogical root of a given
element x ∈ Xm:

Definition 3.2 (Analogical root). Denoting S a training set and f the ground truth function
of the labels, the analogical root of an element x ∈ Xm is:

Rf
S(x) def=

{
(a, b, c) ∈ S3

∣∣∣ a : b :: c : x and f(a) : f(b) :: f(c) : y is solvable
}

.

54

a

b

c

d

e

f

g

h

0

0

1

1

Figure 3.1: With S = { a, b, d, e }, we have Ef∗
S = { c, f }.

Rf
S(x) is simply the set of 3-tuples in S which are analogically linked to x.

Example:
Considering again the example of Figure 3.1, we have Rf

S(c) = { (b, d, a), (b, a, d) }. However,
the two corresponding proportions b : d :: a : c and b : a :: d : c are equivalent, and we will
follow the convention that the analogical root should only contain non-equivalent 3-tuples,
so technically Rf

S(c) is entirely described by { (b, d, a) }. We also have Rf
S(f) = { (a, b, e) },

Rf
S(a) = { (a, a, a), (b, b, a), (d, d, a), (e, e, a) }, and Rf

S(h) = ∅.

It is clear that in general,
Rf

S(x) = ∅ ⇐⇒ x /∈ Ef
S .

It should also be clear that even if we only consider unique 3-tuples (up to equivalence) in the
analogical root, Rf

S(x) may contain more than one 3-tuple: for example in Rm or Bm with the
arithmetic (or Boolean) proportion, x may be the involved in more than one parallelogram, as
illustrated in Figure 3.2.

Figure 3.2: With S = { a, b, c, a′, b′, c′ }, we have x ∈ Ef
S and Rf

S(x) = { (a, b, c), (a′, b′, c′) }.
Class equations are all assumed to be solvable.

We need to introduce one last definition before we can go on with the functional view of
conservative classifiers:

55

Definition 3.3 (Analogical label). For any element x of Ef
S , we denote C(x) the multiset of

solutions to the class equations associated with x:

C(x) def=
{

y
∣∣∣ f(a) : f(b) :: f(c) : y, with (a, b, c) ∈ Rf

S(x)
}

We then define the analogical label of x, denoted f(x), as:

f(x) def=

f(x) if x ∈ S

Mode (C(x)) if x /∈ S

where Mode(C) returns the most frequent element of the multiset C. In case of a tie, the
returned element is chosen at random between the most frequent elements.

We are now in position to give a functional definition of the conservative classifier:

Definition 3.4 (Conservative classifier). Given a training set S with an underlying ground
truth function f , a conservative classifier sets the prediction of an element x as follows:

If x ∈ Ef
S , f̂(x) def= f(x). Else, f̂(x) is undefined.

As previously mentioned, a conservative classifier is not able to output a prediction if x does
not belong to the analogical extension. We have already made this observation when describing
Algorithm 1: for a given x, the set of candidate solutions C(x) is empty if and only if x /∈ Ef

S .
Also, we now understand why f(x) is simply set to f(x) when the x ∈ S: for such an x it is
natural to want f̂(x) = f(x)!

Example:
Going back to our example with Figure 3.1, we will have f̂(c) def= f(c) = 1, because Rf

S(c) =
{ (b, d, a) } and C(c) = { 1 }. Also, f̂(f) def= f(f) = 1, because Rf

S(f) = { (a, b, e) } and
C(f) = { 1 }. Here, we did not need to use the majority-vote procedure as there was only
one candidate solution for each prediction. As g and h do not belong to Ef

S , both f(g) and
f(h) stay undefined.

Let us note that in Algorithm 1, the analogical extension Ef
S is never explicitly computed.

Instead, for a given x, we look for every 3-tuple in S3 and check if they belong to Rf
S(x). One

drawback is that the search in S3 has to be done for every new element x that we want to
classify, and can prove to be quite expensive in computation time, even for small sizes of S.
However, taking advantage of our functional definition, we can reformulate the learning process
of a conservative classifier as follows:

• First, compute Ef
S . While Ef

S is being computed, it is trivial to also compute the set of
candidates C(x) for each x ∈ Ef

S .

56

• Then, for all x ∈ Ef
S , compute f(x) def= Mode(C(x)).

Whenever we are asked to classify a given x, all we need now is to check whether x belongs
to Ef

S or not. The output f̂(x) is then immediate. This way to proceed has the undeniable
advantage to perform the search in S3 only once. Obviously, this saving in computation time is
done at the expense of memory consumption, because the size of Ef

S can be drastically greater
than that of S. This alternative view also leads us to reconsider our previous statement about
conservative classifiers belonging to the class of lazy learners. Here, the computation of the
analogical extension can be viewed as a generalization process, even if not all elements of the
universe Xm are affected by this generalization.

We will end this discussion on conservative classifier by sketching a use-case described in
[SY05b], where an analogical proportion is defined on the set of words over a finite alphabet,
and the task is to learn the conjugation of English verbs. This setting is slightly different from
that of classification that we have settled-in, but all definitions and concepts remain valid.
Here, solving the analogical equation view : reviewer :: search : y leads to researcher, using the
definition of the analogy and the concatenation operator.

Example:
We have a training set S =

{
x(1), x(2), x(3), x(4), x(5)

}
where x(1) = (read, 3, reads), x(2) =

(read, G, reading), x(3) = (view, 3, views), x(4) = (view, G, viewing), x(5) = (eat, 3, eats).
(read, 3, reads) means that read is transformed into reads when conjugated at the third person
singular, and G stands for the gerund form.

Given a new element x = (eat, G, ?), Rf
S(x) =

{ (
x(1), x(2), x(5)

)
,
(
x(3), x(4), x(5)

) }
. The

prediction is as expected f̂(x) = eating, which is the solution of the equations reads : reading ::
eats : y and views : viewing :: eats : y. There is no solution for x = (absurd, G, y), just because
Rf

S(x) = ∅.

The fact that conservative learners cannot output a prediction for any x can here be
considered a good thing: it would not be natural to look for the gerund form of absurd. However,
in many use-cases we do want our classifier to be able to predict the label of any element.
This is why other options have been implemented to overcome this problem, and to extend in
some sense the generalization ability of analogical learners. This is the purpose of extended
classifiers described in the next section.

3.1.2 Extended classifier

We now want our analogical classifier to be able to predict the label of any input element
x ∈ Xm, and not just the ones in Ef

S . The main bottleneck of Algorithm 1 is that we require
the 3-tuples in S3 to be in perfect proportion with the element x we want to classify. Such
3-tuples are not always available in the training set, so necessarily some elements of Xm are
excluded from Ef

S .

57

The key concept that will help us overcome this issue is what we call an analogical
dissimilarity, first introduced in [BMD07]. The analogical dissimilarity is a measure that
quantifies in some sense how far a relation a : b :: c : d is from being a perfectly valid proportion.

We keep the initial notation AD(a, b, c, d) to denote the analogical dissimilarity between 4
elements. Some minimal properties have to be satisfied by such a dissimilarity AD : (Xm)4 −→
R+ to fit with the intuition. For any a, b, c, d, e, f ∈ Xm, the following properties should hold:

• AD(a, b, c, d) = 0 ⇐⇒ a : b :: c : d (Consistency with the Analogy)

• AD(a, b, c, d) = AD(c, d, a, b) (Symmetry)

• AD(a, b, c, d) = AD(a, c, b, d) (Central permutation)

• AD(a, b, e, f) ≤ AD(a, b, c, d) + AD(c, d, e, f) (Triangle inequality)

• AD(a, b, c, d) 6= AD(b, a, c, d) (except if a = b)
Naturally, the symmetry and central permutation properties lead to the same three classes of
equivalence that we have for the analogical proportion. In particular, the equivalence class that
is generated by AD(a, b, c, d) is:

AD(a, b, c, d) = AD(c, d, a, b) = AD(c, a, d, b) = AD(d, b, c, a) = AD(d, c, b, a) =

AD(b, a, d, c) = AD(b, d, a, c) = AD(a, c, b, d).

The definition of an analogical proportion strongly relies on the structure and operators
available on Xm, and the same goes for the definition of the analogical dissimilarity: there
are a lot of possibilities. For the arithmetic proportion in Rm, the analogical dissimilarity
AD(a, b, c, d) should capture how far are a, b, c, d from making up a perfect parallelogram.
This can be achieved using the following definition:

Definition 3.5 (Analogical dissimilarity for real vectors). Given four vectors a, b, c, d of Rm

equipped with the standard p-norm ‖·‖p, the analogical dissimilarity related to the arithmetic
proportion is defined as:

AD(a, b, c, d) = ‖(a − b)− (c− d)‖p.

Of course, we will need an analogical dissimilarity in Bm, but we will start small and consider
B first:

Definition 3.6 (Analogical dissimilarity for Boolean values). Given four elements a, b, c, d of
B, the analogical dissimilarity AD(a, b, c, d) is defined as the number of values that have to be
flipped to get a proper analogy.

Table 3.1 shows the values of AD(a, b, c, d) for 8 patterns. The 8 remaining patterns have the
same values of AD as their negated versions and have thus been ignored. The natural extension
to Bm is again to consider component-wise proportions. The analogical dissimilarity in Bm is

58

a b c d AD(a, b, c, d)

0 0 0 0 0
0 1 0 1 0
0 0 1 1 0
0 0 0 1 1
0 0 1 0 1
0 1 0 0 1
1 0 0 0 1
0 1 1 0 2

Table 3.1: The values of AD(a, b, c, d) for 8 patterns of a, b, c, d in B. The 8 remaining patterns
are the negated versions of these.

thus defined as the sum of the m individual ADs:

AD(a, b, c, d) =
m∑

i=1
AD(ai, bi, ci, di).

We get an analogical dissimilarity whose co-domain is [0, 2m]. In fact, if we use the 1-norm defined
as ‖x‖1 =

∑m
i=1 |xi|, Definition 3.5 is equivalent to Definition 3.6. This means that for a, b, c, d

in Bm, AD(a, b, c, d) = ‖(a − b)− (c− d)‖1. Note that the expression ‖(a − b)− (c− d)‖1 is
nothing but the Hamming distance between the two vectors2 (a − b) and (c − d). Actually,
we could use any p-norm in Bm, so Definition 3.5 could also be used to give a more general
definition of the analogical dissimilarity in Bm. Here again, we are witnessing the close bond
that links the Boolean proportion and the arithmetic proportion.

As a measure of how poorly an analogical proportion holds, the analogical dissimilarity will
help us to define more flexible classifiers. The main underlying idea is to consider approximate
analogies which are not valid stricto sensu, but not too far to be valid. In [BMD07], after
defining analogical dissimilarity, the authors build an extended classifier allowing classification
of elements that do not belong to Ef

S . Algorithm 2 gives a description of their classifier.
This algorithm is similar to the conservative one, but instead of looking for pure, flawless

proportions, we allow for some analogies not to be perfect when we need to. This translates into
the fact that we now only look for 3-tuples in S3 such that the class equation is solvable. We
do not care if they are in perfect proportion with x. Such 3-tuples always exist in S3, simply
because we can choose any 3-tuple (a, a, a) with a ∈ S. Hence, Algorithm 2 is able to predict
the label of any element x ∈ Xm.

For the sake of simplicity, we ignored here a small but relevant detail: in their implementation

2Bm is not closed under addition (or subtraction), so technically it may happen that (a − b), (c − d), or
their difference are not in Bm but in Rm.

59

Algorithm 2 The extended classifier.
Input: A training set S, an element x ∈ Xm for which f(x) is unknown, and a constant
k > 0.
Output: f̂(x), an estimation of f(x).
Init: C(x)← ∅ // A multiset of candidate labels.
for all (a, b, c) ∈ S3 such that f(a) : f(b) :: f(c) : y is solvable do

compute AD(a, b, c, x) and store it
end for
for all k least values of AD(a, b, c, x) do

y ← sol (f(a), f(b), f(c))
C(x)← C(x) ∪ y

end for
f̂(x)← Mode(C(x)) // The most common value in C(x)

[BMD07], the authors actually look for all the 3-tuples that have the same analogical dissimilarity
as the kth one. For example if the kth 3-tuple has an AD of 5, they will actually consider all
the 3-tuples that have an AD less than or equal to 5, bringing the number of candidates to k′

with k′ ≥ k. This is fortunate because it allows their extended classifier to fit with the previous
conservative approach in the case of a perfect proportion (or equivalently, in the case where
x ∈ Ef

S). Indeed, when the kth 3-tuple (a, b, c) has an AD of 0, i.e. a : b :: c : x stands, they
will consider all other 3-tuples (a′, b′, c′) such that a′ : b′ :: c′ : x, which is consistent with the
conservative approach. Clearly, the extended classifier is a generalization of the conservative
one.

Example:
To better grasp the behaviour of the extended classifier, we will consider again Figure 3.1 that
we repeat here for the sake of convenience on page 61. Let us go through the classification
process of c, f , g and h. We will here consider k to be equal to 1. For c, the 3-tuple in S3

with the least value of AD is (b, d, a) with AD(b, d, a, c) = 0. The set C(c) is thus { 1 },
and leads to the prediction f̂(c) = 1. For f , the best 3-tuple is (a, b, e) and leads to the
prediction f̂(f) = 1. For these two elements in Ef

S , the extended classifier outputs the same
predictions as the conservative one, and most importantly, the underlying process is the same
(to some extent, this is due to the fact that we have chosen k = 1).

Consider now g /∈ Ef
S . We know that we won’t find any 3-tuple in perfect proportion

with g (else the conservative classifier would have been able to output f̂(g)), but the 3-tuple
(e, e, e) ∈ S3 has AD(e, e, e, c) = 1. We have k = 1, so strictly following Algorithm 2 would
lead us to stick to this only 3-tuple. However, considering the above remark we are allowed to
look for all other 3-tuples that also have an AD of 1. Actually, the 3-tuple (b, d, a) also has
AD(b, d, a, g) = 1, as can be verified on table 3.2. We thus have C(g) = { 1, 1 }: one solution
comes from the solving of f(e) : f(e) :: f(e) : y and the other solution comes from the solving
of f(b) : f(d) :: f(a) : y. Finally, we have f̂(g) = 1. As for h, we have C(h) = { 1, 1 }: one

60

b d a g AD(bi, di, ai, gi)

0 0 0 1 1
0 1 0 1 0
1 1 0 0 0

Table 3.2: AD(b, d, a, g) = 1.

solution comes from f(a) : f(b) :: f(e) : y and the other comes from f(d) : f(d) :: f(d) : y,
and we end up with f̂(h) = 1.

a

b

c

d

e

f

g

h

0

0

1

1

Figure 3.1: With S = { a, b, d, e }, we have Ef∗
S = { c, f }. (Repeated from page 55).

In [BMD07], the authors evaluated this classifier on a Boolean setting Bm over 8 benchmarks
from the UCI repository. This approach led to remarkable results in terms of accuracy, when
compared to off-the-shelf standard classifiers. Nonetheless, this algorithmic description of the
extended classifier does not allow us to grasp its inherent working behaviour, and it is difficult to
extract theoretical properties. The aim of the next subsection is to give a functional translation
of this algorithmic description.

3.1.3 Analogical classifier: a functional definition

As we have previously seen, we can generally assume that AD(a, b, c, d) def= ‖(a − b)− (c− d)‖p,
whether we are dealing with the arithmetic proportion or the Boolean proportion. A key
observation is that we can formulate this expression with a distance function on Xm. Indeed, a
simple rewriting leads to the following expression:

AD(a, b, c, d) = ‖d− (c− a + b)‖p =
∥∥d− d′∥∥

p,

where d′ def= c− a + b. Actually, d′ is nothing but the 4th vertex of the parallelogram abcd′, or
equivalently, d′ is the solution of the equation a : b :: c : x. All this means that AD(a, b, c, d)
simply is the distance between d and this 4th vertex d′: AD(a, b, c, d) = δ(d, d′), where δ is

61

the distance defined by the p-norm. Figure 3.4 schematically sums up all the aforementioned
properties. Note that when (a, b, c) ∈ S3 and when the associated class equation is solvable,
we naturally have d′ ∈ Ef

S .

Figure 3.4: The analogical dissimilarity AD(a, b, c, d) is equal to the distance δ(d, d′).

Example:
Let us consider (again) Figure 3.1 on page 61. We have already seen that AD(b, d, a, g) = 1,
as proved by Table 3.2 on page 61. We now can reinterpret this statement: AD(b, d, a, g)
should be equal to the distance between g and another vector that makes up a perfect
parallelogram with the 3-tuple (b, d, a). This vector is naturally sol(b, d, a) = c and have
indeed H(c, g) = AD(b, d, a, g) = 1, where H is the hamming distance! The same can be
observed for h: AD(a, b, e, h) = H(h, f), where f = sol(a, b, e).

We are now finally ready for our unifying functional definition of analogical classifiers. As we
have seen, for a given x ∈ Xm, Algorithm 2 tries to minimize AD(a, b, c, x) over all the 3-tuples
(a, b, c) ∈ S3. In the light of what has just been explained, we see that this is equivalent to
finding the closest vertex d′ ∈ Ef

S from x for any (a, b, c) ∈ S3. In other words, looking for
the k 3-tuples in S3 that have the smallest value of AD with x amounts to finding
the k closest elements to x in Ef

S . We will call these elements the k nearest analogical
neighbors of x:

Definition 3.7 (The k nearest analogical neighbors). For any x ∈ Xm, and any training set
S (X, we define the k nearest analogical neighbors of x as the set:

k-nan (x, S) def=

 k
arg min
d′∈AY

E (S)
δ(x, d′)

 ,

where arg mink
Σ δ(x, ·) returns the k elements in Σ with the least value of δ. Another equivalent

way of defining k-nan is:
k-nan (x, S) def= k-nn

(
x, Ef

S

)
,

where k-nn (x, Σ) is the set of k nearest neighbors of x in the set Σ. Ties are broken at random.

62

Figure 3.5: Classification process of an extended analogical learner. f̂(x) = f(d′).

For any x ∈ Xm, the elements in k-nan(x, S) all belong to Ef
S , so they all have an analogical

label. The prediction f̂(x) of an extended classifier is thus nothing but the most frequent
analogical label:

Definition 3.8 (Extended classifier). Given a training set S with an underlying ground truth
function f , an extended classifier with parameter k sets the prediction of an element x ∈ Xm

as follows:

f̂(x) def= Mode
{

f(d′)
∣∣∣ d′ ∈ k-nan (x, S)

}
.

In some sense, an analogical classifier behaves as a NN classifier3 but on an extended training
set. The above definitions lead us to understand the process of analogical classification as follows:

1. First, extend the training set S to its analogical extension Ef
S . Ef

S can be viewed as an
extended training set that has class noise: the labels associated with elements in Ef∗

S

are their analogical labels as defined in Definition 3.3, and they may not be equal to the
ground truth value f(x).

2. Then, simply apply a classical k-NN strategy over this extended training set.
Figure 3.5 gives an illustration of the classification process for k = 1: the label of x ∈ X is

unknown, and we set it to that of d′ ∈ Ef
S (a circle), which is its nearest analogical neighbor.

To show that the analogical label of d′ has itself been inferred, it is depicted as transparent
instead of plain black. Let us note that topologically speaking, Figure 3.5 is not representative
of a real case: even if we always have S ⊆ Ef

S ⊆ Xm, this does not mean that these sets are
embedded into one another as shown in the drawing. Actually, if the underlying probability
distribution of Xm is uniform, the elements of S (and thus of Ef

S) are scattered over the whole
universe.

3In the following, NN and NAN will denote classifiers. k-nn and k-nan denote sets, as in Definition 3.7.

63

Example:
Going back (for the last time!) to Figure 3.1, our new functional view allows us to consider
the following steps:

1. First extend S = { a, b, d, e } to Ef
S = { a, b, c, d, e } with f̂(c) = f(c) = 1 and

f̂(f) = f(f) = 1.

2. Then, to classify g, we simply look to its nearest neighbors in Ef
S , which are c and e.

The aggregation of their analogical labels leads to f̂(g) = 1. The nearest neighbors of
h are d and f , which also leads to f̂(h) = 1.

As far as we know, this is the first time a functional definition of analogy-based classifiers is
given. This definition clearly fits with the known algorithms but obviously, some implementation
details cannot be exactly caught up by such a high level description. It is indeed possible to find
a few edge cases where this functional definition may not output the same result as algorithm
2: this is the case for example when the nearest analogical neighbor (nan) of x is not unique.
It is also the case with the Boolean proportion when the closest vertex d′ does not belong to
Bm. However, as we will see later, these cases are not likely to occur and the two approaches
(that of Algorithm 2 and that of Definition 3.8) produce very similar results, thus empirically
validating this functional definition.

Since we now have a clear functional definition of analogical classifiers, we are in position to
examine some general theoretical properties of analogical learners. This is the purpose of the
next section.

3.2 Theoretical properties of analogical classifiers

The functional definition of analogical learners opens the door to the study of various theoretical
properties of analogical classifiers, which had only been described algorithmically so far. Just
like for the k-NN literature, theoretical results are easier to derive when k = 1. We will therefore
mostly focus on the properties of the 1-NAN classifier.

3.2.1 Study of convergence

Let us consider the case where Xm = Rm, and let δ be any distance function defined from a
norm. Simply because S ⊆ Ef

S for any S, the following inequality holds for any x ∈ Xm :

δ(x, 1-nan(x, S)) ≤ δ(x, 1-nn(x, S)).

Now, let us consider x(i) an i.i.d. sequence of random variables in Rm, where Rm is
equipped with a probability measure denoted P . The training set will be denoted Sn ={ (

x(i), f(x(i))
)

, i ∈ [1, n]
}

. As Sn is random, then 1-nan(x, Sn) can also be considered as a

64

random element of Xm. We then are exactly in the same context as the work of Cover & Hart
who studied the 1-NN algorithm ([CH67]), and we obtain a similar result:

Property 3.1. For any x, its nan 1-nan(x, Sn) converges almost surely towards x as n tends
to infinity:

P
(

lim
n→∞

1-nan(x, Sn) = x
)

= 1.

Proof. The proof can be easily derived from the results of Cover & Hart in [CH67]. Indeed,
they have already showed that the nearest neighbor of x converges almost surely towards x as
n tends to infinity:

P
(

lim
n→∞

1-nn(x, Sn) = x
)

= 1.

To prove this result, they simply start from the fact that δ(x, 1-nn(x, Sn)) converges in proba-
bility towards 0:

∀ε > 0, lim
n→∞

P
(
δ(x, 1-nn(x, Sn)) > ε

)
= 0.

Using the previous fact that δ(x, 1-nan(x, Sn)) ≤ δ(x, 1-nn(x, Sn)), the convergence in proba-
bility of δ(x, 1-nan(x, Sn)) towards 0 is immediate. Then, it naturally follows that 1-nan(x, Sn)
converges almost surely towards x, following the same steps as Cover & Hart.

Let us note the following points:
1. The result of Cover and Hart was actually proved in a less restrictive setting than ours.

They have proven their result for any separable metric space, without any additional
structure. Unfortunately, we are not able to follow these lines here, because there is no
known way to define an analogical dissimilarity on a metric space, without the help of
any other structure or operator (see [MBD08] for a detailed discussion on this issue).

2. Cover & Hart proved that when n tends to infinity, the probability of error of the 1-NN
classifier is less than twice that of the Bayes probability of error, and therefore less than
twice the probability of error of any other classifier. We have not been able to prove such
a strong result for the 1-NAN classifier, but its probability of error will be thoroughly
investigated in Section 3.2.3.

3. We have to be careful about the interpretation of Property 3.1 in terms of machine learning.
Indeed, another key property is proved in [CH67]: for an integrable function f over
Rm with regards to the probability measure P , the expectation of f(1-nn(x, Sn))− f(x)
converges to 0 when n tends to infinity. This means that asymptotically, the nearest
neighbor of x has the same properties as x, and particularly: they have the same label,
which is a very powerful property when we are dealing with a classification task. Sadly,
such a property has not been proven for 1-nan(x, Sn).

4. Finally, it is clear that when n goes to infinity, the behavior of an analogical classifier tends
to that of a nearest neighbors classifier. Indeed, when Sn is very big, the nearest analogical
neighbor of an element x simply is its nearest neighbor, in most cases. Moreover, when

65

the nan and the nn are too close, paying the price of the noise related to the nan may
not be worth it. This supports the common acknowledgement that analogical reasoning
is mostly useful when very few data are available. In this latter case, extending a small
training set with its analogical extension may be particularly beneficial, as we will see in
Chapter 6.

To conclude this discussion, even if the convergence result is interesting in itself, it does not say
a lot in terms of machine learning. A much more interesting and powerful theoretical result of
analogical classifiers will be proven in Chapter 6. Let us now focus on their VC-dimension.

3.2.2 Vapnik Chervonenkis (VC) dimension of analogical classifiers

The notion of VC-dimension was originally defined by Vapnik and Chervonenkis [Vap98], and
introduced into learnability theory by Blumer et al. [BEHW89]. Roughly speaking, the VC-
dimension (denoted VC) of a class of learners is a numerical measure of their discrimination
power. One of the main results about the VC-dimension is that it allows to bound the true risk
R of a learner. With probability 1 − η, and under some theoretical conditions that we omit
here, we have:

R ≤ Remp +
√

1
n
· [VC(log(2n/VC) + 1)− log(η/4)],

where Remp is the probability of error on a training set Sn, and VC is the VC-dimension of the
learner. In our setting,

• R
def= P

(
f̂(x) 6= f(x)

∣∣ x ∈ Xm
)
, and

• Remp
def= P

(
f̂(x) 6= f(x)

∣∣ x ∈ Sn

)
.

This theoretical upper bound on the true risk R is what makes the VC-dimension of a
class of learners an essential element of their theoretical study. The VC-dimension is defined as
follows:

Definition 3.9 (VC-dimension). We consider a class of learners C and a set Sn of n labeled
elements in Xm. There are exactly 2n ways to label each of the n elements. If for any labeling,
there exists a learner in C that correctly labels all the elements in Sn, we say that C shatters
Sn. The VC-dimension of C is the biggest n such that there exists a set of n points Sn that
can be shattered by C. When there exists a set Sn that can be shattered for any size n, we say
that the VC-dimension is infinite.

Let’s first consider the class of nearest neighbors classifiers: CNN = {k-NN classifiers, k ∈ N∗}.
It is clear that the VC-dimension of CNN is infinite: taking k = 1, any training set of any size
can be perfectly labeled by 1-NN, because every element is its own nearest neighbor. Actually,
we can easily show the same result for the analogical learners.

Proposition 3.1. The class ACk of analogical learners has infinite VC-dimension.

66

Proof. Considering Definition 3.8 on page 63 with k = 1, we see that the predicted label of any
element x is that of its nan. For any element x in Sn, x is its own nan (just like x is its own
nearest neighbor). Hence, any training set Sn of size n is correctly labeled by 1-NAN, and thus
can be shattered by ACk. Therefore, the VC-dimension of ACk is infinite.

Clearly, the upper bound of the true risk is a decreasing function in n, and an increasing
function in the VC dimension of the learner. As such, we usually want the VC-dimension of our
classifiers to be small. However, we have previously seen that the nearest neighbors classifiers,
despite their infinite VC-dimension, enjoy many interesting theoretical properties, and their
practical efficiency is well-acknowledged. In fact, the upper bound on the true risk does not
even hold for classes of learner whose VC-dimension is infinite [Bur98]. We then need to keep
in mind that even though the analogical learners have an infinite VC-dimension, which is an
interesting result in its own right, this does not necessarily prevent them from being useful
classifiers.

3.2.3 Accuracy analysis

In this section, we study the accuracy of an analogical classifier, and more particularly that
of the NAN classifier. As explained in Section 3.1.3, for a given x ∈ Xm and a training set
S (Xm, the prediction f̂(x) is set as:

f̂(x) def= f(1-nan(x, S)) def= f(1-nn(x, Ef
S)).

We now equip the set Xm with a probability distribution denoted P . The accuracy of the
NANS classifier4 over all the elements of Xm is defined as:

Acc(NANS , Xm) def= P
(
f̂(x) = f(x)

∣∣ x ∈ Xm
)

.

Our main result is given by Proposition 3.2:

Proposition 3.2. The accuracy of NANS over Xm can be seen as the weighted sum of the
accuracy of NN over A and B, using a different training set each time (respectively S and Ef∗

S):

Acc(NANS , Xm) = Acc(NNS , A) · α +

Acc(NNEf∗
S

, B) · (1− α),

where:
• A

def= {x ∈ Xm | 1-nan(x, S) ∈ S }: the elements that have their nan in S.

• B
def= {x ∈ Xm | 1-nan(x, S) ∈ Ef∗

S }: the elements that have their nan in Ef∗
S .

4The S subscript is here to specify that the training set of the NAN algorithm is S. The same notation is
used for the nearest neighbor algorithm: NNΣ is the NN algorithm trained on the set Σ.

67

• α
def= P (x ∈ A) and 1− α = P (x ∈ B).

Naturally, A ∪B = Xm and A ∩B = ∅.

Proof. By observing that for any x, its 1-nan either belongs to S or to Ef∗
S , the accuracy

Acc(NANS , Xm) can be split into two distinct parts as follows:

Acc(NANS , Xm) def= P
(
f̂(x) = f(x)

∣∣ x ∈ Xm
)

= P
(
f(1-nan(x, S)) = f(x)

)
= P

(
[f(1-nan(x, S)) = f(x)] ∧ [1-nan(x, S) ∈ S]

)
+

P
(
[f(1-nan(x, S)) = f(x)] ∧ [1-nan(x, S) ∈ Ef∗

S]
)

= P
(
[f(1-nn(x, Ef

S)) = f(x)] ∧ [1-nn(x, Ef
S) ∈ S]

)
+

P
(
[f(1-nn(x, Ef

S)) = f(x)] ∧ [1-nn(x, Ef
S) ∈ Ef∗

S]
)

= P
(
[f(1-nn(x, Ef

S)) = f(x)]
∣∣ [1-nn(x, Ef

S) ∈ S]
)
× P

(
[1-nn(x, Ef

S) ∈ S]
)

+

P
(
[f(1-nn(x, Ef

S)) = f(x)]
∣∣ [1-nn(x, Ef

S) ∈ Ef∗
S]
)
× P

(
[1-nn(x, Ef

S) ∈ Ef∗
S]
)

Let us denote α
def= P

(
1-nn(x, Ef

S) ∈ S
)
. Obviously, we also have α

def= P (1-nan(x, S) ∈ S).
The above formula becomes:

Acc(NANS , Xm) =

P
(
[f(1-nn(x, Ef

S)) = f(x)]
∣∣ [1-nn(x, Ef

S) ∈ S]
)
∗ α +

P
(
[f(1-nn(x, Ef

S)) = f(x)]
∣∣ [1-nn(x, Ef

S) ∈ Ef∗
S]
)
∗ (1− α).

Let us focus on the first term, temporarily discarding the factor α:

P
(
[f(1-nn(x, Ef

S)) = f(x)]
∣∣ [1-nn(x, Ef

S) ∈ S]
)

.

It is easy to see that the event [1-nn(x, Ef
S) ∈ S] is equivalent to the event [1-nn(x, Ef

S) =
1-nn(x, S)]. As a result, we can transform the first term to get a better grasp of its meaning:

P
(
[f(1-nn(x, Ef

S)) = f(x)]
∣∣ [1-nn(x, Ef

S) ∈ S]
)

= P
(
[f(1-nn(x, Ef

S)) = f(x)]
∣∣ [1-nn(x, Ef

S) = 1-nn(x, S)]
)

= P
(
[f(1-nn(x, S)) = f(x)]

∣∣ [1-nn(x, Ef
S) ∈ S]

)
.

In this form, the first term is just the accuracy of the NNS algorithm over the elements
that have their nearest analogical neighbor in S. As for the second term, the same process
can be applied by observing that the event [1-nn(x, Ef

S) ∈ Ef∗
S] is equivalent to the event

68

[1-nn(x, Ef
S) = 1-nn(x, Ef∗

S)]. This leads to

P
(
[f(1-nn(x, Ef

S)) = f(x)]
∣∣ [1-nn(x, Ef

S) ∈ Ef∗
S]
)

= P
(
[f(1-nn(x, Ef∗

S)) = f(x)]
∣∣ [1-nn(x, Ef

S) ∈ Ef∗
S]
)

.

This second term is then the accuracy of the NNEf∗
S

algorithm over the elements that have

their nearest analogical neighbor in Ef∗
S .

In the light of these interpretations, we can directly rewrite the accuracy formula in the
concise form given in Proposition 3.2.

The value Acc(NNS , A) is the accuracy of NNS over all the elements in A. A theoretical study
of this accuracy has been done in [LI93] when the size of A is known. Regarding Acc(NNEf∗

S
, B),

this is the accuracy of 1-NN when the training set is noisy, and has been studied in [OY97].
This last formula leads to the consistent facts:

1. The smaller Ef∗
S (i.e. analogical reasoning does not bring much more labels), the closer

α is to 1, the closer A is to Xm and the more the accuracy of NANS tends towards the
accuracy of NNS over Xm.

2. In return, if Ef
S is much bigger than S, α is then small, B is close to Xm and the accuracy

of NANS greatly depends on the quality of Ef
S :

Definition 3.10 (Quality of the analogical extension ωf
S). Given a training set S (Xm and a

ground truth function f , the quality of the analogical extension Ef
S is defined as:

ωf
S

def= P
(
f(x) = f(x)

∣∣ x ∈ Ef∗
S

)
.

Note that the value 1− ωf
S corresponds to the class noise of Ef∗

S .

This closes our contributions to the theoretical properties of analogical classifiers. In the
next section, we will empirically investigate and illustrate the soundness of our results.

3.3 Experiments and empirical validation

In order to get an empirical validation of our formulas, we have developed a set of experiments
that we now describe.

3.3.1 Evaluation protocol

Working with Boolean vectors, we have computed the accuracies of the 1-NAN and 1-NN algo-
rithms over Xm = Bm for m = 8. Other values of m have been investigated, leading to very
similar results. The ground truth label of the elements of Xm is defined by different Boolean
functions f :

69

• f1(x) = xi for some i. These functions are called projections, or dictators. They lead to
perfectly linearly separable problems, i.e. there exists an hyperplane that can perfectly
discriminate both classes. As such, they are expected to be fairly easy to learn.

• f2(x) =
⊕k

i=1 xi for some k ∈ [1, m], where ⊕ is the XOR operator (which is associative).
These functions lead to highly non-linearly-separable problems: remember the example
of Figure 2.6 on page 43, who was an instance of a XOR problem. XOR problems are
traditionally difficult to learn.

• f3(x) =
∧k

i=1 xi for some k ∈ [1, m].
• f4(x) =

∨k
i=1 xi for some k ∈ [1, m].

• f5(x) = [
∑m

i=1 xi ≥ k] for some k ∈ [1, m], where the function [cond] is equal to 1 if cond
is verified and 0 else. Simply put, f(x) = 1 iff at least k components are equal to 1.

• f6(x) = [
∑m

i=1 xi = k] for some k ∈ [1, m]. Simply put, f(x) = 1 iff exactly k components
are equal to 1.

Regarding the size of the training set, to be sure to fit with the size of the universe, we
have investigated various sizes between 3 and 100. When dealing with a training set of size 100,
the cubic complexity of the analogical classifier leads to explore a set of approximately 1003

elements: as a consequence, we limit our investigation to a maximum of 100 elements in the
training set in order to get a realistic execution time.

All the accuracy (and other metrics) computations are averaged over a set of 100 experiments.
We have made sure that the class distributions of the training sets are as close as possible to
that of the whole universe Xm. Note that our implementation of the NAN algorithm is not
that of algorithm 2, but is instead that of the functional definition of the analogical classifier
as described in Definition 3.8: we first construct the analogical extension set of S, and then
proceed to a nearest neighbor strategy over this noisy extended training set. We have estimated
probabilities by frequencies, thus implicitly assuming a uniform distribution on Xm.

For each experiment, we have computed the following measures to empirically investigate
the behaviour of the analogical classifier, and assess our theoretical results:

• The empirical accuracy of the 1NAN classifier, defined5 as
Acc(NANS) def= P

(
f̂(x) = f(x)

∣∣ x ∈ Xm \ S
)
.

• The empirical accuracy of the 1NN classifier, whose definition is of course the same but
this time f̂ is the output of the 1NN classifier.

• The theoretical accuracy of 1NAN, as defined in Proposition 3.2. The probability
α

def= P (x ∈ A) has been estimated by the frequency |A|
|Xm| . Both sets A and B are easy to

determine.

• The quality of Ef
S , measured by ωf

S as previously defined in Definition 3.10. ωf
S has been

5We notice here that x is only required to belong to Xm \ S and not to Xm, because classifying elements in
S is pointless.

70

estimated by the frequency
∣∣{ x∈Ef∗

S

∣∣ f(x)=f(x
}∣∣∣∣Ef∗

S

∣∣ .

• Finally, the quantity γf
S

def= P (x ∈ Ef
S), estimated by |Ef

S |
|Xm| : the size of the analogical

extension with respect to that of the whole universe.
It is fairly easy to see that both functions f1 and f2 split the universe Xm into two disjoint

sets of size 2m−1: those for which f(x) is equal to 1, and those with labels equal to 0. We say that
the datasets are balanced. However, the other functions may lead to very unbalanced datasets.
An extreme case is for example f3 with k = m, which leads to f3(x) = x1 ∧ x2 ∧ · · · ∧ xm. The
only element whose label is 1 is the vector x = (1, 1, . . . , 1). For these very unbalanced datasets,
the accuracy of a classifier is not a relevant measure: predicting 0 all the time would lead to an
accuracy of almost 1, but would systematically assign the wrong label to (1, 1, . . . 1). Therefore,
as accuracy is our main concern here, we will focus on functions for which datasets are as
balanced as possible.

In addition to these Boolean functions, we have also run the NAN algorithm over the Monk
datasets over the UCI repository6. They are datasets of 432 binarized elements, among which
exactly 169 of them have been used for training.

3.3.2 Comments and discussion

Our experiments are summed-up by Figure 3.6 on page 72. As they are the result of multiple
averaged experiments, the measures ωf

S and γf
S are here denoted ω and γ. Paying careful

attention to these plots will allow us to draw interesting conclusions about the behaviour of the
1-NAN algorithm.

First, the theoretical accuracy seems to fit perfectly with the empirical accuracy of the
NAN algorithm, thus validating our theoretical study that led to proposition 3.2. Actually, the
maximal difference we observed between the theoretical accuracy and its actual value is of
about 10−10.

An interesting observation is that the value of ω seems to always converge to that of the
theoretical accuracy (and therefore to the actual accuracy) of NAN. This can be easily explained
by paying attention to the value of γ, the proportion of elements of Xm that belong to Ef

S .
We see that in any setting, γ converges to 1 as | S | grows. This means that when | S | is big
enough (but not necessarily that big with respect to Xm), the analogical extension of S covers
the whole universe Xm (obviously, the bigger the dimension m, the slower the convergence
occurs): every element x is then its own nearest analogical neighbor and f̂(x) = f(x). It is
therefore straightforward to see that in this case,

ω
def= P

(
f(x) = f(x)

∣∣ x ∈ Ef∗
S

)
= P

(
f̂(x) = f(x)

∣∣ x ∈ Ef∗
S

)
= Acc(NANS , Ef∗

S).

6https://archive.ics.uci.edu/ml/datasets/MONK's+Problems

71

https://archive.ics.uci.edu/ml/datasets/MONK's+Problems

5 10 20 50 100
0.6

0.7

0.8

0.9

1.0

f1(x) = x4

1-NAN
1-NN

5 10 20 50 100

theo

5 10 20 50 100
0.6

0.7

0.8

0.9

1.0

f2(x) =
4

i = 1
xi

5 10 20 50 100

5 10 20 50 100
0.6

0.7

0.8

0.9

1.0

f3(x) =
2

i = 1
xi

5 10 20 50 100

5 10 20 50 100
0.6

0.7

0.8

0.9

1.0

f4(x) =
2

i = 1
xi

5 10 20 50 100

5 10 20 50 100
0.6

0.7

0.8

0.9

1.0

f5(x) = [
m

i = 1
xi 4]

5 10 20 50 100

5 10 20 50 100
0.6

0.7

0.8

0.9

1.0

f6(x) = [
m

i = 1
xi = 3]

5 10 20 50 100

Figure 3.6: Accuracies (left) of the 1-NAN and 1-NN algorithms over different Boolean functions
(m = 8) and training set sizes, with corresponding values of ω, γ, and theoretical accuracy
(right). The x axis corresponds to the size of the training set.

72

1-NAN APC 1-NN ωf
S γf

S

Monk 1 .961 .98 .787 .961 1
Monk 2 .998 1 .738 .998 1
Monk 3 .963 .96 .829 .963 1

Table 3.3: Accuracies of the 1-NAN, APC and 1-NN algorithms over the Monk datasets.

When γ = 1, the only elements x we want to classify belong to Ef∗
S (otherwise they would be

in S), so this last term exactly corresponds to the accuracy of the classifier. Another way to see
it is to observe that the first term of the expression of Proposition (3.2) Acc(NNS , A) · α is null
because α = 0. Only the second term Acc(NNEf∗

S
, B) · (1− α) is of importance, and its value

corresponds to ω. As expected, this observation allows us to state that estimating the value of
ω is paramount to have a precise idea of the accuracy of an analogical classifier.

A striking result of the experiments is that for the two functions f1(x) = x4 and f2(x) =
x1 ⊕ · · · ⊕ x4, the analogical labels are always correctly predicted: ω = 1, i.e. there is no class
noise. However, the accuracy of 1-NAN is not necessarily equal to 1 especially for f2 with small
training set sizes. The reason is simple: even if all the elements in Ef

S are correctly classified,
Ef

S does not cover the whole space (γ < 1) so the accuracy of 1-NAN still depends on that
of 1-NN. While the accuracy of 1-NN over f1 is not too bad, the one over f2 is absolutely
terrible and actually below 0.3 (a random prediction would have done better!). This is one of
the distinguishing features of the XOR functions: the nearest neighbor of an element is almost
always in a different class. So, sadly, the 1-NN algorithm can do nothing but wrong on these
kind of functions. In Chapter 6, we will prove a strong result showing that both the projections
(like f1) and the XOR functions (like f2) always lead to perfectly sound extensions, for any
training set of any size.

Table 3.3 shows the same metrics for the Monk datasets and also reports the results of
the Analogical Proportion Classifier (APC) from [MBD08], which corresponds to algorithm 2
with k = 100. We note that the functional NAN approach (almost) achieves the same results
as the somewhat more complex algorithm described in Section 3.1.2, and that here again the
analogical extension set covers the whole universe: this means that a conservative approach
would have been sufficient! Actually, this raises the following question: why would we want to
look for more than one analogical neighbor when every element of the universe is already in
Ef

S , and therefore analogically linked to those in S? Our experiments tend to show that this
becomes superfluous, provided that the training set is big enough.

Conclusion

In this chapter, we have provided a functional and unifying definition of analogical learners,
which turned out to be closely related to the k-NN classifiers. Starting from this definition,

73

we were in a position to prove an analytical convergence result, similar to that of the nearest
neighbor algorithm. Obviously, this is not enough to conclude regarding the predictive ability of
analogy-based classifiers. We have also shown that their VC-dimension is infinite. It should not
come as a surprise, as a very particular case of analogical rule (when the analogical proportion
is trivial) is the k-NN rule.

This fact obviously has a consequence on the way we can work to improve analogy-based
classifiers. Indeed, learning by analogy is prone to over-fitting and a relevant learning strategy
should take this fact into account. Nevertheless, we have to keep in mind that the VC-dimension
alone is not a perfect marker of the quality of a machine learning algorithm, especially when it
comes to practical implementation.

In terms of accuracy in a Boolean setting, we have found a strong link between the accuracy
of the NAN algorithm and that of the NN algorithm. Our functional definition tells us that
we can consider the NAN algorithm as a NN strategy on an extended and noisy training set:
the analogical extension Ef

S . This leads us to consider analogical classification as a two-steps
process:

• First, the training set is extended to the analogical extension.

• Then, a k-NN algorithm is used on this extended training set.
Obviously, the accuracy of the NAN algorithm depends on the quality of the analogical extension.
In Chapter 6, we will entirely describe the conditions needed for this extension to be perfectly
sound.

We have to remember that analogical reasoning brings its whole power in the case where
few data are available. If a lot of data are available, it is very likely that we have elements
similar to the one at hand and, in that case, a k-NN style reasoning is natural. In the opposite
case, when we only have a few relevant cases at hand, applying analogical proportion-based
predictions appears to be a meaningful option.

This concludes for now our investigations on analogical classifiers. We have seen that they
have so far mostly been used for natural language processing tasks, or classification in Boolean
settings. One of the main goals of this thesis was to apply analogical proportion-based reasoning
to concrete, real-world applications. We have chosen to investigate the suitability of analogical
proportions in the design of recommender systems. This will be the object of the next two
chapters.

Résumé du chapitre Ce chapitre s’intéresse au problème de la classification analogique, et
décrit nos contributions à ce sujet.

Une première forme de classifieur analogique a été proposée dans les travaux de Stroppa et
Yvon [SY05a] (classifieurs conservatifs). Une autre forme de classifieur analogique est due aux
travaux de Bayoudh, Delhay et Miclet [MBD08, BMD07] (classifieurs étendus). En pratique, ces
deux types de classifieurs ont des implémentations relativement distinctes (même s’ils reposent

74

sur les mêmes fondements théoriques).
Notre première contribution est de proposer une définition fonctionnelle des classifieurs

analogiques, qui a la particularité d’unifier ces deux approches préexistantes. Cette définition
nous permet de dériver diverses propriétés théoriques des classifieurs analogiques telles que leur
VC-dimension (infinie), et leur taux d’erreur qui s’exprime en fonction de celui d’un classifieur
de type plus-proches-voisins (k-NN). En effet, un des autres apports majeurs de cette définition
fonctionnelle, est de révéler les liens étroits qui existent entre les classifieurs analogiques et les
classifieurs k-NN. Aussi, on peut considérer le processus de classification comme la succession
des deux étapes suivantes :

• D’abord, l’ensemble d’apprentissage est étendu pour devenir ce que l’on appelle l’extension
analogique.

• Ensuite, un classifieur k-NN est utilisé sur cette extension analogique, qui fait office
d’ensemble d’apprentissage étendu (et potentiellement bruité).

Naturellement, le taux d’erreur du classifieur analogique dépend de la qualité de l’extension.
Dans le chapitre 6, nous décrirons dans quelles conditions cette extension est non-bruitée.

Jusqu’à présent, l’utilisation des proportions analogiques sur des problèmes d’apprentissage
était principalement cantonnée à des applications artificielles (domaine booléen par exemple).
Un des deux enjeux de cette thèse était d’évaluer la pertinence de l’usage des proportions
analogiques sur des problèmes plus concrets. Cet axe de recherche est l’objet des deux chapitres
suivants, où nous nous intéresserons au problème de la recommandation.

75

C
h

a
p

t
e

r 4
Background on recommender systems

Content

Page
4.1 Taxonomy of recommender systems . 78

4.1.1 Content-based techniques . 78
4.1.2 Collaborative filtering . 79
4.1.3 Knowledge-based systems . 80

4.2 Recommendation by rating prediction . 81
4.2.1 Problem formalization and notation . 81
4.2.2 Recommender system evaluation . 84

4.3 Two collaborative filtering techniques: neighborhood-based, and matrix factorization 87
4.3.1 The neighborhood approach . 87
4.3.2 Matrix factorization techniques . 92

In a world of information overload, automatic filtering tools are essential to extract relevant
information from basic noise [RRSK11, AT05]. In the field of e-commerce, recommender
systems play the role of search engines when surfing the entire web: they filter available

items to provide relevant suggestions to customers. They help to answer questions as diverse
as “which movie to rent?”, “which car to buy?” or “which restaurant to try?”. They do so by

77

providing the user with a list of recommendations.
We have seen in the previous chapter that analogical learners exhibit promising results

when compared to the k-NN algorithms in a Boolean setting. In chapter 5, we will try to apply
analogical learning to a recommendation task to see if analogical learners can prove useful in
these more challenging contexts.

In this chapter, we will provide some necessary background on recommender systems, before
diving into Chapter 5 where we will describe our contributions and experiments. This chapter
is structured as follows. We first provide a taxonomy of current research in the recommender
systems area in Section 4.1, and set ourselves within the collaborative filtering framework. In
Section 4.2, we formally define the specific recommendation problem that we will address in this
document, and we explain how to assess the quality of a recommender system in this context.
In Section 4.3, we extensively describe two collaborative filtering methods: neighborhood-based
algorithms, and matrix factorization-based techniques. These two families of algorithms will
serve as baselines with which we will compare our own prediction algorithms in Chapter 5.

4.1 Taxonomy of recommender systems

Undoubtedly, there are many different tasks that range among the general problem of recom-
mendation. If they all share the ultimate goal of providing users with relevant recommendations,
they greatly differ in nature by the items that are recommended, and by the technical means
that are involved.

To provide a clear view of the vast recommendation landscape, various taxonomies for
recommender systems have been proposed: see for example [Bur02, AT05, Bur07], and more
recently [BR11]. Using that of [BR11], we will successively describe content-based, collab-
orative and knowledge-based approaches in the next three sections, and show that they
generally apply to different problems.

Rest assured that in real systems, the frontiers between these three families are not that
sharp, and practical recommendation solutions usually fall into more than one single category.
We refer to such systems as hybrid recommenders.

4.1.1 Content-based techniques

The general idea of content-based algorithms is as follows: they try to recommend to a user
some items that are similar to those that the user has liked in the past. For example, if the
renting history of a user mainly contains science fiction movies, the aim of the system is to
learn these preferences and to recommend some other science fiction movies to the user. We
recommend [LdGS11] for a recent overview of content-based methods.

To find out similar items to those that a user has liked, these systems usually rely on a
similarity metric whose nature strongly depends on the representation of the items. In large-

78

scale online shopping systems, were items are extremely diverse and abundant, a similarity
measure between two items would for example be the number of web sessions on which the
two item pages have jointly been visited (yes, this is the reason why some online systems will
try to sell you a fridge even though you just bought a brand new one). In systems were items
are more homogeneous, i.e. in a movie store system, more sophisticated approaches can be
built relying on some metadata about the items (hence the name content-based). In the case of
movies, the metadata could be for example the genre, main actors, film director, etc.

As content-based techniques usually do not rely on a set of ratings to compute item
similarities, a nice resulting feature is that new items that have not yet been rated by anybody
can still be recommended provided that the items are properly described (which is not necessarily
easy, as we will see). This is not the case for a new user though: as we have no information
about the items this user may like, a content-based recommender would not be able to output
any prediction. These techniques also stand out by their explanatory potential: the motto “here
are some items that are akin to those you liked” is perfectly understandable and seems sound.
Recommender systems usually strive for explanatory power, because it is recognized that when
confronted with a given recommendation, users are more likely to accept the recommendation
if they understand and acknowledge the underlying process.

However, content-based systems are prone to various behaviours that tend to make them
less competitive than collaborative filtering methods. The first obvious drawback, known as
the problem of limited content analysis, is precisely the need to describe items with metadata
(remember our movie example with genre, actors, etc.). Such descriptions can be extremely
costly to acquire, and can only capture a very limited subset of item features, which are not
necessarily the most important ones when it comes to the users personal tastes. Going back
to our science fiction fan, it could be plausible that the user has a strong preference for the
steampunk sub-genre, and yet is perfectly indifferent to the superhero fiction movies, and both
can still be considered as sub-genres of science fiction. A system that could not distinguish these
two kinds of movies would fail to provide our steampunk fan with relevant recommendations.

Another well-known drawback of content-based recommenders is their tendency to overfit
and recommend only items that users may already know or do not need anymore (such as a
fridge!). The recommendations tend to lack in novelty, surprise and diversity. Also, content-based
systems tend to output much less accurate predictions than the collaborative filtering methods
(the way accuracy is computed will be described in Section 4.2.2). This is why collaborative
filtering methods have gained in popularity.

4.1.2 Collaborative filtering

The main idea behind collaborative filtering algorithms is to recommend items to a user that
other users with similar tastes have liked in the past. In its most general form, collaborative
filtering methods (also called social filtering) try to model the social environment of users and

79

to output recommendations based on the behaviour of their peers.
Probably the most common way of modeling the social environment of a user is to use

historical transactions stored in the system, for example using user-item ratings: two users are
peers if their ratings are similar. If Bob and Alice usually agree on their movie ratings, i.e. they
like the same movies and dislike the same movies, and if Alice has not seen a movie that Bob
has liked, then it will be recommended to Alice.

A main advantage of collaborative filtering methods over content-based ones is that they
do not require any item or user knowledge: only user-item feedback is needed to output a
prediction. Thanks to this, they also allow to build systems that can deal with items of different
natures. It is indeed plausible to imagine a collaborative filtering system recommending both
books and movies, on the basis that users that love the same books usually like the same movies.
As books and movies cannot be described using the same set of features (even though they are
close), the use of content-based techniques would make the task much more difficult, or would
again require largely hand-crafted work.

The main advantage of collaborative filtering methods is also their main weakness. Before
they can become effective, these systems require a serious amount of data (i.e. user-item
interactions) to train a model or to use heuristics efficiently. A side-effect is known as the
cold-start problem: there is no way to yield recommendations for new users that have no known
ratings, and the same goes for new items that nobody has rated.

All the recommendation algorithms that we will propose in this document are of a collabo-
rative nature. Section 4.3 will be devoted to an overview of two main collaborative techniques:
the neighborhood approach and matrix factorization-based methods. They are typical examples
of the two main approaches to collaborative filtering: heuristic-based systems, and model-based
systems.

4.1.3 Knowledge-based systems

The two families we have described so far (content-based and collaborative methods) are only
suitable for certain kinds of items. While movies, books, music or news can all fit quite well
within these two frameworks, this is not the case for some other items such as cars, bank loans,
or real estates. Take for example the problem of car recommendation. A content-based approach
would need to know what kind of cars the user has owned in the past, and would recommend
some new cars that are similar to those past vehicles. This method is obviously bound to fail,
not only because in practice such information about past vehicles is never available, but also
because the recommendations would be based on some years-old preferences. As for collaborative
methods, they would require the system to have a massive amount of past transactions at its
disposal, and people do not buy as many cars as they watch movies: only very few information
would be available, leading to disastrous results.

In broad terms, we refer to knowledge-based systems as any method that is neither content-

80

based nor collaborative. In general, these systems are used in settings where the domain and
contextual knowledge (i.e. the knowledge about the items that are available in the system)
prevails over any other source of information, such as social information for example.

A practical instance of knowledge-based recommendation takes the form of a recommendation
session, where users indicate their needs in an interactive manner, and the systems tries to
match these needs as best as possible to provide useful recommendations. According to [FB08],
there exist two kinds of knowledge-based systems, that differ in the way recommendations are
computed. The first category is made up of the case-based systems. Case-based recommenders
obviously draw from research in case-base reasoning described at the end of the first chapter,
and computations are based on similarities: the system will try to recommend items that are
similar to an ideal item expressed by the user’s needs. In this respect, case-based recommenders
are close to the aforementioned content-based systems. The second kind of knowledge-based
recommenders are the so-called constraint-based systems (see [FFJZ11] for a complete review).
In such systems, users and items are described by a set of properties, along with a set of
constraints. In the car recommendation example, an item constraint could for example express
that a convertible car should not possess a sunroof, and user constraint could state that the car
color should not be green. The problem of recommending an item to a user then takes the form
of a classical constraint satisfaction problem.

We are well aware that these two definitions of case-based and constraint-based systems are
quite general and vague, but the fact remains that practical implementation of such systems
are so domain-dependent that it is difficult to exhibit a clear unifying framework that would
still be accurate.

Now that we have a clear overview of the various tasks that range among the wide topic
of recommendation, we will detail the recommendation problem that will be addressed in the
next chapter.

4.2 Recommendation by rating prediction

In this section, we formally define the recommendation problem that we plan to address later
in Chapter 5. We also describe how to assess the quality of a recommender system.

4.2.1 Problem formalization and notation

Let U be a set of users and I a set of items. For some pairs (u, i) ∈ U × I, a rating rui is
supposed to have been given by user u to express their preferences towards the item i. The way
the preferences are expressed depends on the rating scale that is used, which can be of different
nature. According to [SFHS07], we can distinguish four different kinds of rating scales:

• It is quite common that rui belongs to a numerical rating scale. A typical numerical
scale is [1, 5], where 5 means a strong preference for item i, 1 means a strong rejection,

81

and 3 means indifference, or just an average.

• A sub-case of the previous scale is the binary rating scale, where ratings belong to [0, 1].
In this case, we associate the value 0 with the meaning dislike and the value 1 with the
meaning like.

• An extreme case is the unary rating scale, where a value of 1 translates as a preference,
but rejections (or dislikes) are not addressed.

• Sometimes, the rating scale can be considered as ordinal, where the elements of the
scale have no absolute meaning and are only meaningful when compared to others, e.g.
[rejection, indifference, agreement].

In practice, these semantic distinctions are purely contextual: the [1, 5] rating scale could
perfectly be interpreted as purely numerical, or conversely as purely ordinal. This observation
has been addressed for example in [KS11], and will also be discussed here in the next chapter.
However, the rating scale is a decisive component of a recommender system, and algorithms
are usually designed to work with only one single rating scale.

Ratings may be collected in different ways, and we commonly distinguish explicit and implicit
ratings. Explicit ratings are those for which users have explicitly expressed their preference
towards the items. Implicit ratings belong to a binary or unary scale, and correspond to the
result of collected data about users behaviour, without any active involvement. For example, if
a user has listened to a given track more than 10 times, we might consider this as an implicit
rating of 1. The ability to deal with both explicit and implicit ratings can lead to significant
improvements for a recommender system. In [KS11], a model using only explicit numerical
ratings was extended to deal with implicit ratings, which notably improved the RMSE of the
system (defined later). When no implicit ratings are available, the same authors showed that
the simple modeling of implicit ratings as r′

ui = 1 ⇐⇒ rui ∈ R led to significant improvements.
Here, r′

ui is an implicit rating stating that u has rated i, regardless of the rating value.
In our work, we will mostly focus on the explicit and numerical rating scheme. Also, the

algorithms we will design will be of a collaborative nature, and therefore they will rely on a
dataset containing user-item interactions (in our case, user-item ratings). Let us denote by R

the set of known ratings recorded in the system. In real systems, the size of R is very small
with regard to the potential number of ratings which is |U | × |I|, as a lot of ratings are missing.
The set Ui will denote the set of users that have rated item i, and Uij

def= Ui ∩ Uj is the set of
users that have rated both items i and j. Similarly, Iu is the set of items that user u has rated,
and Iuv

def= Iu ∩ Iv is the set of items that both users u and v have rated.
A very common way of providing personalized recommendations to a target user is to

estimate their tastes regarding the items that the system provides. The taste of a user u for a
given item i is usually represented as the rating that u would give to i. Once these estimations
are made, a simple option is to recommend the items with the highest ratings among all the
estimated scores for the considered user (using the implicit assumption that a user should be

82

interested in the items with high scores).

More formally, a recommender system usually proceeds as follows:

1. Using a prediction algorithm A, estimate the unknown ratings rui (i.e. rui /∈ R). This
estimation A(u, i) will here be denoted r̂ui.

2. Using a recommendation strategy S and in the light of the previously estimated ratings,
recommend items to users. For instance, a basic yet common strategy is to suggest to
user u the items i /∈ Iu with the highest estimation r̂ui.

When using a unary or binary rating scale, these two stages are usually indistinguishable: it
is natural to recommend an item to a user if the estimated predicted rating is 1. In practice,
the recommendation strategy depends a lot on the pragmatic constraints of the system: a store
manager may want to push forward a given item to boost its sales, regardless of the rating
predictions outputted by the algorithm. As a result, most of the research has focused on the
prediction algorithms, and so will we. Note also that this view is only meaningful for non-
ordinal rating scale. When the output of prediction algorithm A are ranks, the recommendation
strategy S is obvious and the distinction between A and S is superfluous.

Prediction algorithm implementations are strongly influenced by the fields of data mining
and of course machine learning. However, we want to emphasize that the general setting of
recommender systems is actually quite different from that of classification or regression, the two
main prediction tasks of machine learning. A naive reasoning could lead us to consider that the
rating prediction problem with the rating scale [1, 5] is nothing but a classification task with
five classes 1, 2, 3, 4, 5. But this is forgetting that the values 1, 2, 3, 4, 5 are actually ordered,
and that the difference between class 1 and class 2 is not the same as the difference between
class 1 and class 4. But most importantly, in classification or regression all the instances belong
to the same space (that space was Xm in our previous chapters), and have the same features.
This is not the case here! In a recommendation problem, if we chose our instances to be the
users and their feature space to be the items, we would end up with instances that are only
very partially described, because of course no user has rated the whole set of items. All
the more, as the number of items is usually very high, we would end up with a very high
dimensional problem, where traditional learning algorithms tend to fail due to the so-called
curse of dimensionality. Our point here is that recommender systems problems do not really
fit within the traditional machine learning setting, and represent a new setting in their own
right. It can be insightful to consider our prediction problem as that of matrix completion: the
dataset R can be viewed as a sparse matrix R ∈M|I|×|U | where columns are users and rows
are items. Our prediction task is to fill-in the missing entries of this matrix.

We now describe how the quality of a prediction algorithm and of a recommendation strategy
can be evaluated.

83

4.2.2 Recommender system evaluation

Providing an accurate measure of the overall quality of a recommender system is not a simple
task, and diverse viewpoints have to be considered. We can distinguish three main evaluation
settings. The first one is to perform user studies, where actual users are asked to interact
with a given system and to provide some feedback. This evaluation process is probably the one
that allows to best capture users need, because feedback is explicitly given. Naturally, this is
also the most expensive kind of experiment to conduct, because it requires a lot of user time.
The second evaluation setting is to perform on-line studies. In its most simple form, this is
equivalent to A/B testing: to see which of the two versions of our recommender performs better,
we provide some users with the first version (A) and some other users with the second version
(B). We can then assess the change in performance between the two versions and decide which
one is the most suitable for our needs.

Finally, the last available option to evaluate recommender systems is to perform off-line
evaluation: in this setting, we dispose of a dataset of past transactions (the set of all ratings
R), and try to simulate user behaviour to compute different measures. In general, we will use
k-folds cross-validation procedures to reliably evaluate each of the performance measures. The
set of all ratings R is divided into k (typically 5) disjoint sets of equal sizes; at each of the
k iterations, the test set Rtest is set to the kth subset and the training set Rtrain is set as the
union of the k − 1 remaining subsets: the system will be trained on Rtrain and tested on Rtest.
The reported performances are then averaged over the k folds.

The first two evaluation settings (users studies and online studies) require the use of an
actual working recommender system. Thus, we will here only focus on measures that can be
calculated in an off-line evaluation process.

Accuracy
The performance of the algorithm A is usually evaluated in terms of accuracy, which measures

how close the rating predictions r̂ui are to the true ratings rui, for every possible prediction. The
Root Mean Squared Error (RMSE) is probably the most common indicator of how accurate an
algorithm is, and is calculated as follows:

RMSE(A) =
√√√√ 1
|Rtest|

·
∑

rui∈Rtest

(r̂ui − rui)2.

Another common indicator for accuracy is the Mean Absolute Error (MAE), where important
errors are not penalized more than small ones:

MAE(A) = 1
|Rtest|

·
∑

rui∈Rtest

|r̂ui − rui|.

As we said, RMSE probably is by far the most popular measure for evaluating the per-

84

formance of a recommender system. The simple fact that $1 million was awarded for a 10%
improvement of RMSE during the Netflix competition illustrates the supremacy of RMSE. Yet
this measure is also criticized, if only because it is not very easy to interpret it in a meaningful
way: if you end up with an RMSE of 0.5, how do you know if it is good or not? You would
need to compare multiple algorithms before knowing what can be thought of as a good RMSE,
which by the way highly depends on the rating scale.

Another issue with RMSE is that they do not properly reflect the way users interact with a
recommendation system [JRTZ16]. Ultimately, the most important feature of a recommender
system probably is how well it can order the different items for a given user, with regards to
their preferences. Indeed, it would be harmful to rank a disliked item higher than an item for
which the user has a strong preference, and conversely predicting a rating r̂ui of 2.5 while the
true rating is 1 (i.e. with a potentially high error) is not as serious, because the corresponding
item would not have been recommended anyway. The point here is that providing accurate
predictions is crucial, but only on a particular subset of predictions.

A related concern is that when using a suitable loss function, some algorithms relying on
an optimization process can have a great RMSE score while still having no recommendation
power. As we will see, in Section 5.2.3, a simple baseline predictor can outperform the RMSE
of many other approaches, and yet this algorithm has absolutely no recommendation power:
the recommendations that it outputs are the same for all the users.

To better reflect the user-system interaction, other precision-oriented metrics are sometimes
used in order to provide a more informed view.

Precision and recall
Precision and recall help measure the ability of a system to provide relevant recommendations,

and are therefore indicators of the performance of the recommendation strategy S. They
are defined by means of the number of true positives, true negatives, false positives and false
negatives. As such, they are mostly used in an implicit rating scheme (or at least with binary
rating scales), but they can also be used when the rating scale is gradual. In this latter case,
the recommendation strategy has to be clearly defined.

In the following, we denote by IS the set of items that the strategy S will suggest to the
users using the predictions coming from A. For ratings in the interval [1, 5], a simple strategy
could be for example to recommend an item i to user u if the estimation rating r̂ui is greater
than 4:

IS def= { i ∈ I | ∃u ∈ U, r̂ui ≥ 4, rui ∈ Rtest } .

We also define I∗ as the set of items that are actually relevant to the users, i.e. the set of
items that would have been recommended to the users if all the predictions made by A were
exact:

I∗ def= { i ∈ I | ∃u ∈ U, rui ≥ 4, rui ∈ Rtest } .

85

The precision of the system is defined as the fraction of recommended items that are relevant
to the users, and the recall is defined as the fraction of relevant recommended items over all
relevant items:

Precision def= | I
S ∩ I∗ |
| IS |

,

Recall def= | I
S ∩ I∗ |
| I∗ |

.

Precision and recall are complementary metrics: it would not make sense to evaluate an
algorithm performance by only looking at the precision, without considering the recall. It is
indeed quite easy to obtain a high recall (by simply recommending all of the items), but that
would lead to a terrible precision. Precision and recall are commonly summarized into the
F-measure, which is their harmonic mean:

F def= 2 · Precision · Recall
Precision + Recall

.

If accurate predictions are crucial, it is widely agreed that it is insufficient for deploying an
effective recommendation engine. Indeed, other dimensions are worth estimating in order to get
a complete picture of the performance of a system [MRK06, HKTR04, KB14]. For instance,
one may naturally expect from a recommender system not only to be accurate, but also to be
surprising, and to be able to recommend a large number of items.

Coverage
In its simplest form, coverage is used to measure the ability of a system to recommend a

large amount of items: it is quite easy indeed to create a recommender system that would only
recommend very popular items. Such a recommender system would drop to zero added value.
We here define the coverage as the proportion of recommended items out of all existing items
(I):

Coverage def= | I
S |
| I |

.

Surprise
Users expect a recommender system to be surprising: recommending an extremely popular

item is not really helpful. Be warned though: surprise is one of the most difficult notions to
grasp, especially when it comes to assess it with numerical measures. Following the works of
[KB14], we will here define the surprise associated with a recommendation with the help of
the pointwise mutual information (PMI). The PMI between two items i and j is defined as
follows:

PMI(i, j) def= − log2
P (i, j)

P (i)P (j)/ log2 P (i, j),

86

where P (i) and P (j) represent the probabilities for the items to be rated by any user, and
P (i, j) is the probability for i and j to be rated together. They are estimated by P (i) ≈ |Ui|

|U |

and P (i, j) ≈ |Ui∩Uj |
|U | . PMI values fluctuate between the interval [−1, 1], −1 meaning that i and

j are never rated together and 1 meaning that they are always rated together. To estimate the
surprise of recommending an item i to a user u, the authors propose two definitions:

• either to take the maximum of the PMI values for i and all other items rated by u, with
Surpmax(u, i) def= max

j∈Iu

PMI(i, j),

• or to take the mean of these PMI values with Surpavg(u, i) def=
∑

j∈Iu
PMI(i,j)

|Iu| .
The overall capacity of a recommender to surprise its users can be defined as the mean

of all the surprise values for each prediction. Because they are defined using the pointwise
mutual information, the lower the values of Surpmax and Surpavg, the most surprising the
recommendations.

Other dimensions
There are many other measures that can assess the performances of a recommender system

(see [SG11] for an extensive survey). We can cite for example trust which characterizes the
confidence that a user would put into a recommendation, or also diversity that evaluates how
the recommendations are distinct from each other. Unfortunately these dimensions are actually
a lot harder to assess in an off-line setting, and there are no popular quantitative measure that
can evaluate them in a satisfactory way.

Now that we know how to evaluate the performances of a recommender system, we will
detail two very popular collaborative filtering algorithms that usually lead to good results.

4.3 Two collaborative filtering techniques:
neighborhood-based, and matrix factorization

We will here present two families of collaborative filtering algorithms: the neighborhood approach
based on the well known k-NN algorithm, and the matrix factorization techniques whose
groundings come from linear algebra and that lead to elegant and accurate models. These two
families of algorithms will serve as baselines against which we will compare the performances of
our own algorithms in the next chapter, so it is important that we understand their functioning
in detail.

4.3.1 The neighborhood approach

4.3.1.1 Prediction framework

The motto of collaborative filtering methods is to recommend some items that are appreciated
by other users having the same tastes. This principle is carried out to the letter in neighborhood

87

methods. Neighborhood approaches are instances of the general k-NN scheme. To estimate the
rating rui of a user u for an item i, the most basic method consists in computing the set of
k users that are most similar to u and that have rated i. We will denote this set Nk

i (u). The
computation of Nk

i (u) depends of course on a similarity measure between users, which is based
on their respective ratings. The estimation r̂ui of rui is then computed as an aggregate of the
ratings rvi, where v is one of the neighbors of u in Nk

i (u). Usually, the aggregation is simply a
mean weighted by the similarity between u and v:

Definition 4.1 (Neighborhood approach). The estimation of a rating rui using the neighbor-
hood approach (also denoted k-NN here) is:

r̂ui =

∑
v∈Nk

i (u)
rvi · sim(u, v)∑

v∈Nk
i (u)

sim(u, v) ,

where Nk
i (u) is the set of users having rated i and having the highest k values of sim with u:

Nk
i (u) def=

{
v ∈ U

∣∣∣∣∣ rvi ∈ R, v ∈ karg max
u′∈U

[
sim(u, u′)

] }

The estimation process of the neighborhood approach is described in Algorithm 3. Obviously,
the training stage only needs to be done once. Then, the similarities can be reused for future
predictions.

Algorithm 3 The neighborhood recommender.
Input: A set of ratings R, and a pair (u, i) for which rui is unknown.
Output: r̂ui, an estimation of rui.
Training stage:
for all (u, v) ∈ U2 do

Compute sim(u, v).
end for
Prediction stage:
denum← 0, num← 0
U s

i ← Sorted(Ui) // Sort by value of sim with u, in decreasing order.
for all v ∈ U s

i [: k] do
I.e. for the k first users in U s

i

denum ←denum +sim(u, v)
num ←num +rvi · sim(u, v)

end for
r̂ui ← num

denum

We need here to make an important point: instead of recommending an item to a user, we
could perfectly recommend a user to an item, which is a symmetric and equivalent point of

88

view. The prediction r̂ui would be the exact counterpart of the one we described above, but
instead of considering similarities between users, we would compute similarities between items:

r̂ui =

∑
j∈Nk

u (i)
ruj · sim(i, j)∑

j∈Nk
u (i)

sim(i, j) .

The set Nk
u (i) is defined as the counterpart of the set Nk

i (u). We can interpret this prediction as
an edge-case of content-based recommendation: the items we are recommending to u are close
to some other items that u has already rated in the past, which is exactly what a content-based
recommender does. In this case though, we did not use any metadata about the items, and
items where represented as vectors of ratings.

The choice between a user-based or an item-based recommendation mainly depends on
the system at hand. When the number of users is high with regard to the number of items,
computing similarities between items can help saving memory and computation time, but it is
also important to assess the potential number of neighbors for any given u or i: it is always
more desirable to compute similarities over a high number of ratings. Also, item-based methods
are more easily justified: when presenting a recommendation to a user u, it is easier to explain
how two items relate to each other rather than involving other users that u does not even know.

4.3.1.2 The similarity measures

There are many ways to define the similarity metric between two users (or items). One of the
most common measure is the Cosine similarity.

Definition 4.2 (Cosine similarity). The Cosine similarity between two users u and v is
defined as:

Cosine sim(u, v) def=

∑
i∈Iuv

rui · rvi√ ∑
i∈Iuv

r2
ui ·

√ ∑
i∈Iuv

r2
vi

.

Here, users u and v are considered as vectors in a vector space defined by the items they
have both rated (the set of common items is Iuv). Their Cosine similarity simply is the cosine
of the angle between the two vectors. An unnatural feature of this metric is that two vectors
with (potentially different) constant values will always have a similarity of 1, because they are
collinear. For example if u = (2, 2) and v = (5, 5), Cosine sim(u, v) = 20√

8
√

50 = 1, while one
would expect u and v to be quite different with regards to their tastes.

Such a flaw can be overcome using the Pearson similarity, which can be viewed as a mean-
centered version of the Cosine similarity.

89

Definition 4.3 (Pearson similarity). The Pearson similarity between two users u and v is
defined as:

Pearson sim(u, v) def=

∑
i∈Iuv

(rui − µu) · (rvi − µv)√ ∑
i∈Iuv

(rui − µu)2 ·
√ ∑

i∈Iuv

(rvi − µv)2
,

where µu and µv are the average rating of users u and v respectively.

One last similarity metric that we will use is the Mean Squared Difference (MSD)1:

Definition 4.4 (Mean squared difference). The Mean Squared Difference between two
users u and v is defined as:

MSD(u, v) def= 1
|Iuv|

·
∑

i∈Iuv

(rui − rvi)2.

Notice that none of these metrics take into account the support between the two users u

and v, i.e. the number of items that they have commonly rated. It would be foolish to have the
same faith in a similarity computed over hundreds of common items as in a similarity computed
only over a few items. This is why in practice, it is common to give a higher weight to the
similarities that have a high support. Another option is to shrink the similarity measure of two
users toward zero if their support is low:

shrunk_sim(u, v) def= | Iuv | −1
| Iuv | −1 + λ

· sim(u, v),

where λ is a sort of regularization constant. Such shrinkage technique can be motivated by a
Bayesian perspective, and usually leads to significant improvements in the system performances.
It only makes sense however for similarity measures that are centered around zero, such as the
Pearson similarity. We will not consider shrinkage in any of our experiments.

4.3.1.3 Similarity computation

We will now describe how to practically compute these similarity metrics. We see that all of the
presented metrics rely on the set of common items Iuv. In practice, the explicit computation of
this set for every single pair of users can be very expensive, and naive algorithms lead to poor
performances. Consider for example the naive similarity computation of Algorithm 4. In the
worst case, we can consider that | Iu |=| Iv |=| I | for all u and v, so the complexity of this
naive algorithm is O(| U |2| I |2).

However, the complexity can be taken down by a great deal if we proceed in a MapReduce
fashion [DG04], as described in Algorithm 5 which exemplifies how to compute the Cosine
similarity. Actually, any other similarity measure that relies on the set Iuv can be computed

1Strictly speaking MSD is actually a distance rather than a similarity metric, so we could take its inverse.

90

Algorithm 4 A general naive algorithm for similarity computation
Input: A set of ratings R.
Output: The similarity between all pairs of users.
for all u ∈ U do

for all v ∈ U do
for all i ∈ Iu do

if i ∈ Iv then
We know now that i ∈ Iuv, so we can use rui and rvi as we please, depending on the
measure that is computed.

end if
end for

end for
end for

Algorithm 5 Computation of the Cosine similarity.
Input: A set of ratings R.
Output: Cosine sim(u, v) for all pairs of users.
Initialization (n is defined as the number of users, i.e. n =| U |):
sim = null_array[n][n]
sum_prod = null_array[n][n]
sum_squ = null_array[n][n]
sum_sqv = null_array[n][n]
for all i ∈ I do

for all u ∈ Ui do
for all v ∈ Ui do

sum_prod(u, v) += sum_prod(u, v) + rui · rvi

sum_squ(u, v) += sum_squ(u, v) + rui
2

sum_sqv(u, v) += sum_sqv(u, v) + rvi
2

end for
end for

end for
for all u ∈ Ui do

for all v ∈ Ui do
sim(u, v) = sum_prod(u,v)√

sum_squ(u,v)·sum_sqv(u,v)
end for

end for

this way (see [SBM12]). Considering again the worst case where | Ui |=| U |, the complexity of
Algorithm 5 is O(| I | · | U |2 + | U |2) = O(| U |2 ·[| I | +1]), which is far less than that of
Algorithm 4. Another undeniable advantage of Algorithm 5 is that it follows the MapReduce
framework, and as such it can be easily parallelized for another significant performance gain.
Indeed, the first three embedded for loops could be dispatched in various clusters, each dealing
with a given set of items (this is the Map stage). Each of the clusters would have its own three
sum matrices sum_prod, sum_squ and sum_sqi, which could then all be merged to rebuild

91

the entire sum matrices (Reduce stage). Let us note however that, even if the similarities
computation can be optimized in various ways, these methods still become intractable when
the number of users is too high, so other methods are usually deployed.

That’s all for the neighborhood methods. In the next section, we describe another very
popular collaborative filtering technique, which models the data in a significantly different (but
meaningful!) way: matrix factorization techniques.

4.3.2 Matrix factorization techniques

About ten years ago, the Netflix company organized a competition where the goal was to
improve the RMSE of their standard prediction algorithm by 10%. The challenge quickly
became very popular, not only because the winning prize was of $1 million, but also because the
dataset was orders of magnitude larger than any other available dataset at the time: about 100
million ratings from 480.000 users and 17.700 movies. Unfortunately, the dataset is no longer
publicly available, but the challenge led to the emergence of many successful recommendation
techniques, among which matrix factorization methods clearly stand out. Let’s be honest: the
author of this document has a crush on matrix factorization techniques, and as a consequence
they will be thoroughly detailed. All the more, just like neighborhood approaches, they have
become one of the main baselines for benchmarking.

The matrix factorization approach we will describe here is heavily inspired by the Singular
Value Decomposition (SVD) of a matrix, one of the highlights of linear algebra. Because having
a basic understanding of SVD will be very insightful for us, we will briefly review it now.

4.3.2.1 Background on SVD

Let’s first dive into the theory (but not for long):

Proposition 4.1. Any real-valued matrix R ∈ Mm×n of rank r can be decomposed as the
product of three matrices2:

R = UΣIt,

where U ∈ Mm×r, Σ ∈ Mr×r is a diagonal matrix, and I ∈ Mn×r. U and I are both
orthogonal matrices, and this factorization is called the Singular Value Decomposition
(SVD) of R.

In practice, we know how to compute the two matrices U and I: their columns are the
eigenvectors3 of the two matrices RtR and RRt, and their associated eigenvalues are the squared
entries of Σ, called the singular values (hence the name of the factorization). As Σ is a diagonal

2The matrix I is not the identity matrix!
3For this reason, SVD and Principal Component Analysis are strongly related.

92

matrix, it only acts as a scaling factor for either U or I. For the sake of simplicity, we will
consider that the decomposition can be written R = UIt, where Σ has been merged into either
U or I.

The key point is that the columns of U are actually an orthonormal basis for the column
space of R, and the columns of I are an orthonormal basis for the row space of R. Maybe
this statement is worth some explanation. The column space of R is the vector space that is
spanned by the n columns or R, i.e. the set of vectors that are a linear combination of the
columns of R. As some of the columns of R may be linearly dependent, this vector space is of
dimension r ≤ n: the rank of a matrix is defined as the number of independent columns, and
equivalently as the number of independent rows. Our statement says that the columns of U

span the columns space or R, and particularly that they form an orthonormal basis of r vectors
for this vector space. The same goes for the r orthogonal columns of I, which span the row
space of R.

A particular case of this general statement is that any column of R can be expressed
as a unique linear combination of the columns of U . As the columns of U are orthonormal,
each column has a unique contribution that cannot be compensated by the others. Symmetrically,
any row of R is a linear combination of the orthogonal columns of I. What does it
have to do with our recommendation problem? Imagine for a moment that R is a dense rating
matrix, where the rows represent items and the columns represent users:

R =

Alice Bob Charlie

4 5 5 Titanic
2 1 1 Toy Story
1 2 2 LOTR
3 3 3 Mad Max
4 2 2 E.T.

=

U1 U2 · · · Ur

 ·

I1

I2
...

Ir

 ,

where U1, . . . , Ur are the columns of U and I1, . . . , Ir are the columns of I (i.e. the lines of It).

When we compute the SVD of R, we find in the columns of U some prototype users that
have no real existence, but that can be combined (linearly) to build up any of the users: Alice,
Bob and Charlie are linear combinations of U1, U2, . . . , Ur. Also, any linear combination of Alice,
Bob and Charlie can be expressed as a linear combination of the Ui. Similarly, the columns of I

are prototype movies that do not properly exist but that can be combined to build up Titanic,
Toy Story, etc., and any of their linear combinations. We can consider each vector Ii to be some
sort of idealized movie type, for example I1 is a typical action movie, while I2 would be a typical
romantic movie, etc. Take the example of Titanic, which is an action-packed romance movie.
Thanks to the SVD, we can express Titanic as a linear combination α1 · I1 + α2 · I2 + · · ·+ αr · Ir,
and as I1 and I2 represent typical action and romantic movies, the values α1 and α2 will be

93

high. Also, if I3 is a typical science-fiction movie, α3 should be fairly low (or even negative) for
Titanic. The magic of SVD is that all these coefficients (or factors) are automatically derived
from the matrix R.

Similarly, the Ui’s can be viewed as some idealized critics, with specific tastes toward some
particular kind of movies. Obviously in practice, there is no way to associate a clear semantic
meaning to the different Ui or Ii, and the way they are defined only depends on the matrix R.
We have here chosen to interpret the prototype movies as action movie or romantic movie for
the sake of simplicity.

Moving further, let us now focus on the modeling of a single rating rui. Each rui ∈ R

is defined as a dot product rui = qi
t · pu, where qi ∈ Rr is a row in U and represents the

item i, and pu ∈ Rr is a column in It and represents the user u. We can now understand
that pu represents how well u agrees with each of the r prototype movies, and qi

represents how well i suits the tastes of the r prototype users.

Example:
As an example, let us consider the rating of Charlie for Titanic. We will assume that the rank
r is 3 and that the three movies types are Action, Romance, and Science fiction. Charlie is a
guy who loves action movies and likes romantic movies, but does not like science fiction at
all. The two vectors pu and qi are described in Table 4.1, and the rating rui is high because
Titanic has all the attributes (or factors) that Charlie likesa.

aThese values are completely arbitrary and obviously are not necessarily those that would appear in the
true SVD of R.

Action Romance Science fiction

Titanic qi 1 3 0
Charlie pu 2 1 -1

Table 4.1: Charlie’s rating for Titanic is qi
t · pu = 1 · 2 + 3 · 1 + 0 · (−1) = 5.

Here, each rating rui is a dot product between two vectors of dimension r, because U and I

are made of r orthogonal column vectors. A strong result related to SVD if we restrict U and I

to U ′ and I ′ with f ≤ r columns vectors (choosing the f vectors associated with the highest
corresponding values in Σ), the matrix product U ′I ′t is still a good approximation of R. It is,
in fact, the best approximation of R of rank f with regards to the Forbenius norm4.

4.3.2.2 Application to recommendation

The above statement is the principal motivation for the use of SVD in recommendation settings.
It postulates the existence of f factors/criteria (whose nature is not necessarily known) that

4The Forbenius norm of a matrix is the square root of sum of its squared entries.

94

determine the value of any rating rui. A user u is modeled as a vector pu ∈ Rf , where each
component of pu models the importance of the corresponding factor for u. Similarly, an item
i is modeled as a vector qi ∈ Rf , where each component of qi models how well i fits the
corresponding criterion. From then, a rating prediction r̂ui is calculated as the dot product of
the two vectors pu and qi:

r̂ui = qi
t · pu.

Once the number of factors f is set5, the problem is here to estimate the vectors pu and qi

for every possible user and item. We saw that when the matrix R is dense (i.e. when there is
no unknown entry), there exists an analytic solution for computing the two matrices U and
I. An equivalent solution is to solve the following minimization problem6, with the constraint
that the vectors qi must be orthogonal, as well as the vectors pu:

∑
rui∈R

(
rui − qi

t · pu

)2
.

But what happens in a recommendation setting, where the matrix R is extremely sparse?
The SVD of R is not even properly defined! One of the main contributions during the Netflix
competition was made by Simon Funk in a blog post7, who empirically showed that we should
actually just not care that the matrix R is sparse, and still solve the same optimization
problem only using the known ratings. When R is sparse, the problem is not convex in both pu

and qi so this optimization will only lead to a local minimum, but this method turned out to be
very efficient in practice. Before that, techniques usually involved a preliminary step where the
matrix R was filled using some heuristic, in order to have a fully defined problem [SKKR00].
Funk’s contribution led him to the top 10 competitors of the Netflix competition at the time,
and was heavily used by other competing teams, including the BellKor team that ended up
winning the contest [Kor09]. It also turns out that the orthogonality constraint is useful for
interpretation purposes, but in practice it usually leads to a lower generalization power, so we
will simply not bother and allow the factor vectors to be non-orthogonal.

The appeal of this basic approach does not only rest upon its link to SVD, but also because
it is easily extendable. It was later improved and theoretically studied in many ways, for example
by incorporating user and items biases [Kor10] (which we will further detail in Section 5.2.2),
by adding the ability to incorporate implicit ratings along with explicit ones [Pat07, Kor10],
or by adding some time-dependent features, taking into account items popularity over time
[Kor09]. Still in [Kor10], a model combining matrix factorization techniques and neighborhood
approaches was proposed. For a complete overview mixing all previously mentioned methods,

5f must be lower than or equal to the rank r. When f < r we end up with a low-rank approximation of
the matrix R.

6From then on we will abuse notation and use R both as a matrix (sparse or dense) and as a rating dataset
as defined in Section 4.2.

7http://sifter.org/~simon/journal/20061211.html

95

http://sifter.org/~simon/journal/20061211.html

see [KB11] or [KBV09].
In [SM08], the matrix factorization we just saw was studied from a Bayesian perspective,

and was named Probabilistic Matrix Factorization (PMF), leading to the following regularized
least squares problem:

min
pu,qi

∑
rui∈R

(
rui − qi

t · pu

)2
+ λ

(
‖qi‖2 + ‖pu‖2

)
,

where λ is a regularization term. Not surprisingly, Stochastic Gradient Descent (SGD) tends to
perform really well when it comes to solving this problem, and is quite simple to implement.
We have already talked too much about matrix factorization, but a few lines more won’t hurt
so we now propose to derive the associated SGD algorithm.

4.3.2.3 Optimization by Stochastic Gradient Descent

When we need to minimize a loss function L of the form L(θ) =
∑

k Lk(θ), where θ is a
(potentially multidimensional) parameter, SGD comes up as a very popular optimization
technique. While a vanilla gradient descent would require to compute the derivative of L

with respect to θ, in SGD we just assume that the derivative of each Lk is enough. SGD is
an iterative optimization process where the value of θ is updated using the following rule:
θ ← θ − α∂Lk

∂θ , where α is the learning rate (or stepsize). This update is performed over all
k’s for a given number of times. Various theoretical guarantees about the convergence of this
algorithm have been derived, that obviously depend on the stepsize and on some regularity
conditions on the loss function L: see [BCN16] for a recent overview.

As far as we are concerned, our loss function is:

L(pu, qi)
def=

∑
rui∈R

(
rui − qi

t · pu

)2
+ λ

(
‖qi‖2 + ‖pu‖2

)
.

Let Lui be the cost associated with a single prediction rui:

Lui
def=
(
rui − qi

t · pu

)2
+ λ

(
‖qi‖2 + ‖pu‖2

)
.

Denoting errui the prediction error (errui
def= rui − r̂ui

def= rui − qi
t · pu), the derivative of Lui with

respect to qi is (remember that qi is a vector):

∂Lui

∂qi
= −errui · pu + 2λqi.

Similarly, the derivative of Lui with respect to pu is:

∂Lui

∂pu
= −errui · qi + 2λpu.

96

With these derivatives in mind, the optimization problem can then be easily solved by following
Algorithm 6. Another optimization technique can be used, by noting that if either pu or qi is

Algorithm 6 Stochastic Gradient Descent for matrix factorization.
Input: A set of ratings R, a learning rate α, a regularization penalty λ and a number of
iterations n.
Output: pu and qi, the user and item factors.
Initialization:
Randomly initialize pu and qi

for iteration ∈ [1, n] do
for all rui ∈ R do

errui = rui − qi
t · pu

qi = qi − α(errui · pu − λqi)
pu = pu − α(errui · qi − λpu)

end for
end for

fixed, we obtain a convex problem that can be solved using classical least squares methods. The
idea is then to first consider all qi as constants and solve the associated linear problem. Then,
the pu are considered constant and the associated problem is solved. Repeating these steps an
arbitrary number of time will also converge to a local solution, and this method is known as
Alternating Least Squares [BK07b].

Conclusion

The purpose of this chapter was to provide the necessary background and tools, in preparation
for the next chapter where we will describe our contributions on analogical recommendation.

We have seen that the three main families of recommender systems are the content-based,
collaborative and knowledge-based techniques. Collaborative filtering is by far the most popular
family of techniques today, so we will try to address it in our contributions. In particular, we
will try to build algorithms that are capable of predicting the rating rui that a user u has given
to an item i, on the basis of some past rating history.

We thoroughly detailed two popular collaborative filtering techniques. The first one is the
neighborhood-based method, which is a direct implementation of the general k-NN strategy.
The neighborhood of each user is computed using a similarity metric that is based on the
ratings: two users are considered close if they like the same items and dislike the same items.
Then, the prediction r̂ui is set as an aggregate (usually a weighted mean) of the ratings of the
neighbors of u for the item i. The neighborhood-based methods tend to model local relationship
in the data. In contrast, the matrix factorization-based techniques, whose popularity has grown
during the Netflix Prize, tend to model global effects in the data. These techniques define
ratings in terms of user and item factors. Each user u is modeled as a vector of factors which

97

indicates how much the user likes the given factors. Each item i is also modeled as a vector of
factors which indicates how well i corresponds to the given factors. The prediction rui is then set
as the scalar product between these two vectors, while the vectors are estimated using a global
estimation procedure (usually) based on stochastic gradient descent. These two techniques
(neighborhood and matrix factorization) will serve as baselines in the next chapter to compare
our algorithms performances.

We now have enough background on the recommender systems field to apply analogical
learning to a recommendation task. This is the purpose of the next chapter.

Résumé du chapitre Nous avons vu dans le chapitre précédent que les classifieurs analogiques
proposaient des résultats prometteurs dans des domaines booléens, comparativement aux
classifieurs k-NN. Nous nous intéressons, dans ce chapitre et dans le suivant, à l’usage de
l’apprentissage par analogie à des tâches plus concrètes, telles que celle de la recommandation.

Les systèmes de recommandation sont des outils de filtrage automatique qui permettent de
fournir des suggestions d’items aux utilisateurs d’un système. Ils permettent de répondre à des
questions aussi variées que “dans quel restaurant manger?”, “quel film visionner?”, etc. Pour cela,
les systèmes de recommandation fournissent des listes de suggestions aux utilisateurs. Le but de
ce chapitre est de donner les prérequis nécessaires au sujet de systèmes de recommandation, en
vue du chapitre suivant où nous décrirons nos contributions à la recommandation analogique.

Nous avons vu qu’il existe trois familles principales de systèmes de recommandation : les
méthodes content-based, les méthodes par filtrage collaboratif, et les méthodes dites knowledge-
based. Le problème que nous nous proposons d’étudier ici est celui de la prédiction de notes : étant
donné un ensemble de notes passées caractérisant les interactions d’un groupe d’utilisateurs avec
un groupe d’items, le but d’un algorithme de prédiction est d’estimer les notes manquantes. Pour
ce genre de problèmes, les systèmes collaboratifs sont généralement nettement plus performants
que les méthodes content-based. Nos contributions seront donc de nature collaborative.

Nous avons décrit en détail deux techniques populaires de filtrage collaboratif. La première
est la technique par voisinage, qui est une généralisation directe des méthodes k-NN. Pour
prédire la note d’un utilisateur pour un item, le voisinage de l’utilisateur est estimé, puis on
procède à une agrégation des notes des voisins pour l’item cible. Le voisinage est généralement
estimé à l’aide d’une mesure de similarité qui caractérise à quel point deux utilisateurs ont
tendance à noter les items avec les mêmes notes. Ce genre de méthode a tendance à modéliser des
interactions locales sous-jacentes aux données, contrairement aux méthodes par factorisation de
matrice qui modélisent des effets globaux. Les techniques par factorisation de matrice modélisent
les utilisateurs et les items comme des vecteurs de facteurs latents, lesquels sont estimés via
un problème d’optimisation. La note d’un utilisateur pour un item est alors donnée par le
produit scalaire entre leurs deux vecteurs respectifs. Ces deux familles de méthodes (voisinage
et factorisation de matrice) nous serviront à comparer les performances de nos algorithmes
dans le prochain chapitre.

98

C
h

a
p

t
e

r 5
Analogical recommendation

Content

Page
5.1 An algorithm using arithmetic proportion . 100

5.1.1 Algorithm . 100
5.1.2 Experiments and results . 103

5.2 A “clone”-based view of analogical recommendation 106
5.2.1 Two new analogical algorithms . 107
5.2.2 Current advances in neighborhood-based techniques 110
5.2.3 Experiments and discussion . 111
5.2.4 Towards an ordinal view of ratings . 113

5.3 Mining analogical proportions . 116
5.3.1 Association rules . 117
5.3.2 Looking for analogies in an incomplete database 119
5.3.3 Experiments and discussion . 122

Now that we have enough background on recommender systems, we are in a position
to present our contribution to analogical recommendation.

99

This chapter is structured as follows. In Section 5.1, we will describe our first approach which
is directly inspired from extended classifiers, and compare it to the neighborhood approach
and matrix factorization-based techniques. In Section 5.2 we will devise a new algorithmic
framework that is still inspired by analogy, but that does not rely on the search of 3-tuples
which will appear to be very costly. Finally in Section 5.3, we will address the problem of
mining analogical proportions in partially described databases, and describe how the solving of
this problem can be applied to a recommendation task. This will also help us to retrospectively
analyze the results obtained in Section 5.1.

5.1 An algorithm using arithmetic proportion

We will here describe our first attempt to use an analogical proportion-based algorithm
for recommender systems. Let us note that applying analogical reasoning to the task of
recommendation has already been addressed in [SAO+11], though with a significantly different
concern. The main idea of our algorithm is quite simple and is directly inspired by the analogical
classifiers that we have extensively studied in Chapter 3.

5.1.1 Algorithm

Here again, we will make use of the analogical inference principle, but we will state it in slightly
different terms. In chapters 2 and 3, the analogical inference principle stated that if four vectors
a, b, c, d are in proportion, then their labels should also be in proportion. Here, we will say
that if an analogical proportion stands between four users a, b, c, d, meaning that for each item
j that they have commonly rated, the analogical proportion raj : rbj :: rcj : rdj holds, then
it should also hold for an item i that a, b, c have rated but d has not (i.e. rdi is the missing
component):

raj : rbj :: rcj : rdj ∀j ∈ Ia ∩ Ib ∩ Ic ∩ Id

rai : rbi :: rci : rdi ∀i ∈ Ia ∩ Ib ∩ Ic, and i /∈ Id

This leads us to estimate rdi as the solution y of the following analogical equation:

rai : rbi :: rci : y.

Naturally, we may find many 3-tuples (a, b, c) that are in proportion with u, so we will need
to aggregate all the candidate solutions y. Given a pair (u, i) such that rui /∈ R, the main
procedure to estimate rui is as follows:

1. Find the set of 3-tuples of users a, b, c such that an analogical proportion stands between
a, b, c, and u and such that the equation rai : rbi :: rci : y is solvable.

2. Solve the equation rai : rbi :: rci : y and consider the solution y as a candidate rating for
rui.

100

3. Set r̂ui as an aggregate of all candidate ratings.
This pseudo-algorithm is exactly that of a conservative classifier described in Section 3.1.1,

except that here, the instance space (i.e. the space of a, b, c, u) changes with every pair (u, i),
and every 3-tuple (a, b, c).

In our implementation, we have used the arithmetic proportion in Rm: a : b :: c : u ⇐⇒
a− b = c−u. The four users a, b, c, u are here considered as vectors of ratings in a space defined
by their common items. For the sake of clarity though, we will not write them with boldface
letters and a will denote both the user a as well as its vectorial representation. Let us consider
Figure 5.1: the four users a, b, c and u are in proportion, i.e. they make up a parallelogram in
the 2-dimensional space of their common items, namely the two movies Titanic and Toy story.
If the three users a, b, c have rated a movie i that u has not rated, the estimation of rui will be
such that a, b, c and u still make up a parallelogram, but this time in a 3-dimensional space.
This process is also explained in Table 5.1.

11 2 3 4 5

11
2

3
4

5

0

Titanic

To
y
 S

to
ry

Figure 5.1: Four users a, b, c, u that are in proportion.

j1 j2 j3 · · · i

a 1 4 3 · · · 2
b 5 2 3 · · · 4
c 1 5 3 · · · 3
u 5 3 3 · · · ?

Table 5.1: The four users a, b, c, u are in proportion for every item j that they have commonly
rated. For an item i that u has not rated, the prediction r̂ui is set as the solution of the
analogical equation 2 : 4 :: 3 :?, i.e. r̂ui = 3− 2 + 4 = 5, using the arithmetic proportion.

Just like with the conservative classifier, we will face the problem that in practice, we may
not find any 3-tuple (a, b, c) such that a perfect proportion stands between a, b, c and u. We will
thus allow some distortion of shape for the parallelogram abcu by choosing another condition,

101

for example that ‖(a− b)− (c− u)‖ ≤ λ, where λ is a suitable threshold and ‖·‖ is any p-norm.
Let us notice that this relaxing of the definition of an analogical proportion exactly corresponds
to the usage of an analogical dissimilarity, so technically our algorithm is very close to that of
an extended classifier.

Our analogical proportion-based algorithm for recommendation is described by Algorithm
7.

Algorithm 7 Analogical proportion-based algorithm for recommendation.
Input: A set of known ratings R, a user u, and an item i such that rui /∈ R.
Output: r̂ui, an estimation of rui.
Init:
C ← ∅ // The set of candidate ratings
for all users a, b, c in Ui such that:
• ‖(a− b)− (c− d)‖ ≤ λ

• rai : rbi :: rci : y is solvable
do

y ← rci − rai + rbi

C ← C ∪ { y } // Add y as a candidate rating
end for
r̂ui ← meany∈C y

We will note here an important point: while an extended classifier would look for the k

3-tuples with the least values of analogical dissimilarity, we here look for all 3-tuples whose AD
is below some given threshold. This is a common variant of the k-NN algorithm: you can either
look for the k nearest neighbors, or look for all instances that are within a given distance.

We have considered a strict condition for the solvability of the equation rai − rbi = rci − y:
as the exact arithmetic result y = rci + rbi − rai does not necessarily belong to the rating scale
used in our experiments (which is [1, 5]), we have considered that the equation is solvable only
when rai = rbi or rai = rci. In both cases, we ensure that the solution y is in [1, 5]. We also
tried another option where an equation is considered solvable when the solution belongs to
[1, 5]. This option led to extremely close results, where differences where not significant.

Just like for the neighborhood approach described earlier, it is perfectly possible to apply
this algorithm in an item-based way rather than in a user-based way. That is to say, instead
of looking for 3-tuples of users, we may look for 3-tuples of items. As both methods lead to
similar results when compared to the performances of the others recommendation algorithms,
we will only focus on the user-based approach described here.

In the next section, we will extensively study the performances of our analogical recommender,
and compare it to other standard recommendation algorithms.

102

5.1.2 Experiments and results

The performances of our analogical recommender are summed up in Table 5.2. Various options
were considered, that we will describe in a moment. We also report the performances of other
standard recommendation algorithms that we have already mentioned:

• The basic neighborhood approach (denoted k-NN) with different similarity metrics,
namely Mean Squared Difference, Cosine similarity and Pearson similarity. For these
three algorithms, the size of the neighborhood was set to k = 40.

• The matrix-factorization algorithm (denoted PMF), as described in section 4.3.2. The
number of factors was set to f = 100, and the optimization problem was solved by a
stochastic gradient descent of 20 iterations with a constant learning rate of 0.005 and a
regularization penalty of 0.02. These values are those recommended by the authors in
[KB11] for the Netflix dataset, and turned out to be quite efficient for our experiments.

• For the sake of completeness we also report results for an algorithm that always predicts
the average of all ratings (r̂ui = µ for all u, i). In addition, we also give the performances
of a random algorithm that predicts random ratings based on the distribution of the
dataset, which is assumed to be normal.

The reported metrics are RMSE, precision, recall, F-measure, coverage, and surprise.
Precision, recall, F-measure and coverage are reported as percentages. Remember that for these
dimensions high values mean high performance, while for RMSE and surprise low values are
better. RMSE is the only measure that only depends on the prediction algorithm A. All the
other dimensions depend on the items that we actually choose to recommend, and rely on the
recommendation strategy S. Here, we have chosen to recommend i to u if r̂ui ≥ 4.

All reported results are averaged over a 5-folds cross-validation procedure. Obviously, the 5
folds are the same for all of the algorithms, to allow for meaningful comparisons. The dataset
that we used is the MovieLens-100K dataset1, composed of 100,000 ratings from 1000 users
and 1700 movies. Each rating belongs to the interval [1, 5], and the sparsity of this dataset
is of about 94%, i.e. only 6% of all possible ratings are actually known. We also report the
computation time of each algorithm (roughly estimated), which is not an average but the total
over the 5 folds. All our experiments have been carried out using Surprise [Hug17], a Python
recommendation library that we have developed specifically for the occasion. The Surprise
package will be described more in depth in the conclusion of this chapter.

We have considered various alternatives for our analogical recommender. In fact, when
trying to predict a single rating rui, looking for all the 3-tuples of users in Ui as described in
Algorithm 7 is simply impractical2: there are often too many users in Ui. As the complexity of
this search is in O(| Ui |3) and as | Ui | can be quite large for some items, strictly sticking to

1http://grouplens.org/datasets/movielens/
2Remember that Ui is the set of users that rated item i.

103

Algorithm Details RMSE Cov Prec Rec F Surpmax Surpavg Time

Parall
Sample n = 100 1.18 57 95 68 79 .419 .166 10m

n = 1000 1.04 23 95 27 42 .418 .168 1h

k-NN k = 20 1.00 31 97 38 54 .421 .176 6h
k = 30 0.99 25 96 31 47 .422 .177 19h

k-NN
MSD k = 40 0.98 23 96 28 43 .423 .175 30s
Cos k = 40 1.02 21 96 26 41 .426 .180 30s
Pears k = 40 1.01 25 95 30 46 .425 .170 30s

PMF f = 100 0.95 38 99 47 64 .422 .178 45s
Mean 1.13 1s
Random 1.52 81 86 89 88 .432 .155 1s

Table 5.2: Performances of recommendation algorithms on the MovieLens-100k dataset.

Algorithm 7 would lead to even worse computation times. We thus have chosen two different
strategies:

• The first one is to randomly sample n times a 3-tuple in U3
i . As in the strict version of

Algorithm 7 the prediction is an average from all the 3-tuples in U3
i , choosing a large

value of n should lead to a fairly good estimate. We have reported the results for n = 100
and n = 1000. Note though that | Ui |3 is usually much larger than 1000, so we only have
a very rough estimation here. This option is referred-to as Parall Sample.

• The second strategy is to consider the 3-tuples (a, b, c) in the neighborhood of u, using
the assumption that the neighbors of u are probably more reliable to yield a prediction
where u is involved. We have used the MSD metric to compute the neighborhood, and we
have considered various sizes of neighborhood, namely k = 20 and k = 30. Unfortunately,
values of k greater than 30 lead to basically never-ending algorithms. This option is
referred-to as Parall k-NN.

RMSE analysis
Out of all the algorithms, the PMF algorithm is by far the most accurate, with an RMSE

of 0.95. Matrix factorization models were extremely popular during the Netflix competition
precisely because of their high accuracy. Note however that even though the matrix factorization
algorithms cannot be overlooked when it comes to performance comparison, their philosophy
remains quite different from that of other classical neighborhood approaches. They tend to
model data structures at a high-level of abstraction, while neighborhood methods tend to
model local features of the data. As such, it makes more sense to compare the performances of
analogical recommenders to those of neighborhood-based techniques, rather than use matrix
factorization-based models as a baseline.

As expected, the RMSE of the Parall Sample algorithm gets better while n grows, but still

104

remains quite far from that of the k-NN algorithms. By paying attention to the Parall k-NN
algorithms, we see that looking for the 3-tuples in the neighborhood of the users significantly
improves the accuracy of our analogy-based algorithms. Their RMSE is better than that of the
neighborhood approaches when using Cosine and Pearson similarity, and it may be expected
that using a neighborhood size of k = 40 would lead to an RMSE close to that of the k-NN
algorithm with MSD similarity.

Coverage
Let us now consider the coverage measure. At first sight, it may appear that the Random

and Parall Sample 100 algorithm have the best recall values. But this would be missing a very
important detail: any measure that evaluates the fitness of the recommendation strategy S

(such as the coverage) greatly depends also on the fitness of the prediction algorithm A, simply
because S highly depends on A. Therefore, the coverage of the Random algorithm cannot be
taken very seriously, because its accuracy (RMSE) is disastrous: it is only by chance that some
items were estimated with a rating greater than 4, and were then recommended. The same
goes for the Parall Sample 100 algorithm, which has a quite bad accuracy. Actually, the most
reasonable choice would probably be the PMF algorithm again, which has the best RMSE
and very decent coverage. With respect to coverage, our other analogy-based algorithms yield
comparable performances to the neighborhood-based methods, with a slight advantage for
analogy-based methods.

Precision and Recall
As for precision, recall and F-measure, we somehow have the same situation: the Random

algorithm seems to be the best one, but this needs to be taken very carefully. Here again,
the PMF algorithm probably yields the best actual trade-off. Comparatively, analogy-based
algorithms have a slightly better F-measure than the neighborhood approaches. This may
describe the fact that our Parall algorithms tend to produce more diverse recommendations, as
would also suggest the results on the coverage.

Surprise
The surprise measures are a bit more tricky to analyze. Looking at Surpmax, which assesses

the least surprising recommendation (averaged over all users), we see that the analogy-based
algorithms tend to perform better, but the Surpavg measure counterbalances this observation.
Undoubtedly, the surprise associated to a recommendation remains an extremely tricky concept
to grasp and to model, and the measures presented here only allow to assess a very rough
aspect of this complex dimension.

Other remarks
As a side note, we have reported only the RMSE for the Mean algorithm, because this

105

algorithm always outputs a prediction of r̂ui = µ = 3.53 which is lower than the threshold we
have chosen for our recommendation strategy S. Therefore, not a single item is recommended
with this algorithm, and the precision, recall, etc. are not defined (or are null).

We are now led to computation time... The nightmare of every analogical proportion-based
algorithm. All of the other algorithms can manage through the 5-folds cross-validation proce-
dure in less than a minute, but our analogy-based algorithms need hours to yield only decent
performances. This issue is linked to the cubic complexity of the analogy-based learners, which
cannot cope with big amounts of data. For now, this limitation prevents analogy-based learners
to be relevant in real-world applications such as recommender systems, where computation
time is one of the most decisive factor.

Nonetheless, it is still possible to design analogy-inspired solutions for recommendation.
In the next section, we describe other algorithms that rely on the notion of clones and that
generalize the classical neighborhood approach.

5.2 A “clone”-based view of analogical recommendation

Considering analogies between four users has shown to be computationally intensive, thus not
really suitable for recommendation purposes, where time is a highly critical dimension. Yet,
other forms of analogy can be addressed in the recommendation task, based on the observation
that some users may be more inclined to give good (or bad) ratings than others. Indeed, ratings
are in no way absolute and greatly depend on the subjective appreciation each user has about
the rating scale. In the [1, 5] scale for example, two users u and v might semantically agree
on an item i describing it as bad, but there is a chance that this agreement is not perfectly
reflected in the ratings: u might have rated i with rui = 1 and v with rvi = 3, simply because
from v’s point of view 3 is a bad rating, while for u a rating of 3 would simply mean decent or
good enough. In the following, we refer to such users that semantically agree on their common
items (but not necessarily numerically) as clones, as illustrated in Figure 5.2. Please note that
the word clone is not used here to mean strictly identical, but rather in the sense that two
clones are two users following parallel paths.

It is obvious that in collaborative filtering, clones are of great interest when it comes to
predicting a user’s ratings, and yet the information they provide is often discarded. Indeed, in
Figure 5.2, Alice and Bob would definitely not be considered as neighbors, so Bob would not
be used to predict Alice’s ratings, and Alice would not be used to predict Bob’s ratings. The
principle underlying the analogical clone-based view is the following: for predicting a missing
rating for u, we not only look at its nearest neighbors but also at the users v whose ratings
are such that rui = rvi + tvu where tvu is a more or less constant correction term that can
be either positive or negative. This correction term is the difference between Bob’s ratings

106

Common items

R
a
ti

n
g
 v

a
lu

e
s

Alice
Bob

Figure 5.2: Bob is a perfect clone of Alice, and Alice is a perfect clone of Bob.

and those of Alice. When two users u and v are clones, we can come back to an analogical
proportion-based viewpoint by noticing that we have:

rui : rvi :: ruj : rvj , ruj : rvj :: ruk : rvk, . . .

where i, j, k, · · · are the common items rated by u and v. The algorithms we will derive will
however be much more efficient than those of the previous section, because they will not rely
on an extensive search of 3-tuples of users.

5.2.1 Two new analogical algorithms

In the following, Ci(u) will denote the set of users that are clones of u and that have rated item
i. From the previous informal definitions, one can easily derive a very general collaborative
filtering framework for predicting a user’s rating by taking into account its clones:

r̂ui = aggr
v∈Ci(u)

(rvi + tvu),

where tvu is a correction term that we need to add to v’s ratings so that they correspond to
those of u. We clearly have a generalization of the neighborhood approach defined in Section
4.3.1, which could be rewritten as:

r̂ui = aggr
v∈Ci(u),
tvu=0

(rvi + tvu).

Following this general framework, one can construct a great variety of algorithms with
various level of complexity. In the next subsections, we will propose a very straightforward
algorithm, and a more efficient one.

107

5.2.1.1 A straightforward prediction algorithm

We will here design a very basic clone-based algorithm, to show that even a basic method can
outperform the classical neighborhood approach.

Let us first introduce the notion of t-clone. In its most simple form, a user v can be considered
to be a t-clone of u if the ratings of v exactly differ from those of u by a constant term t:

t-C(u) def= { v ∈ U | ∀i ∈ Iuv, rui = rvi + t } .

From then on, computing r̂ui amounts to finding all the users v that satisfy this criterion,
and computing an aggregation of their ratings for i, which can simply be an average. We
implemented this basic algorithm described by Algorithm 8, and referred to as brute-force.

Algorithm 8 A brute-force algorithm for clone-based recommendation.
Input: A set of known ratings R, a user u, an item i such that rui /∈ R.
Output: r̂ui, an estimation of rui.
Init:
C ← ∅ // list of candidate ratings
for all users v ∈ Ui do

for all t do
if v ∈ t-Clones(u) then

C ← C ∪ {rvi + t} // add rvi + t as a candidate rating
end if

end for
end for
r̂ui ← aggr

c∈C
c

Of course, one may want to relax the definition of a t-clone, as the current one is too strict
and only very few users will satisfy this criterion. In our implementation, we chose the following
condition:

t-C(u) def=

 v ∈ U

∣∣∣∣∣∣
∑

i∈Iuv

|(rui − rvi)− t| ≤| Iuv |

 ,

which amounts to accept v as a t-clone of u if on average, the difference |rui − rvi| is equal to t

with a margin of 1. The values of t clearly depend on the rating scale. The datasets on which
we tested our algorithms use the [1, 5] interval, so possible values for t that we have considered
are integer values in [−4, 4].

This is obviously a very rough algorithm, to which one could point out numerous flaws. The
first obvious one is its time complexity which is very high, but the purpose of this brute-force
algorithm is simply to show that even such a basic clone-based approach can lead to better
results than a basic neighborhood method, as we will see in the experiments section.

108

5.2.1.2 Modeling clones with the similarity measure

Another option to consider clones is to use the well known neighborhood-based formula,
and capture their effects using an appropriate similarity measure. Recall that the general
neighborhood formula is as follows:

r̂ui =

∑
v∈Nk

i (u)
rvi · sim(u, v)∑

v∈Nk
i (u)

sim(u, v) .

We have seen that this formula is commonly used with classical similarity metrics such as
Pearson similarity, Cosine similarity, or inverse of MSD. However, these similarities are not
fully satisfactory when it comes to clones. Indeed with these metrics, two users are considered
to be close if their common ratings are often the same, but two perfect clones u and v with a
significant correction term tvu would be considered as being far from each other, thus involving
a loss of information.

We propose the following simple choice of metric to measure how two users relate as clones:

Clone_dist(u, v) def= 1
| Iuv |

·
∑

i∈Iuv

[(rui − rvi)− µuv]2 ,

where µvu is the mean difference between ratings of u and v:

µuv
def= 1
| Iuv |

∑
i∈Iuv

(rui − rvi).

We can understand this distance in two ways:
• it can be regarded as the variance of the difference of ratings between u and v,

• or it can be regarded as a simple MSD measure (defined in Section 4.3.1) to which the
mean difference of ratings between u and v has been subtracted.

As our measure Clone_dist is a distance, it needs to be turned into a similarity measure. A
common choice is to take its inverse (while accounting for zero division):

Clone_sim(u, v) = 1
Clone_dist(u, v) + 1 .

Once we know how to find the clones of a user, it is easy to output a prediction using the
classical neighborhood approach:

r̂ui =
∑

v∈Nk
i (u)(rvi + µuv) · Clone_sim(u, v)∑

v∈Nk
i (u) Clone_sim(u, v) .

This algorithm will be referred to as Clone. For the sake of completeness, we also tried the
same formula but with a more basic similarity metric that does not care about clones: MSD.

109

5.2.2 Current advances in neighborhood-based techniques

What we have seen so far in terms of neighborhood methods are the rough, basic techniques
that have existed for a long time. Actually, more sophisticated approaches have been developed,
in particular during the Netflix competition. The one we will describe here has been popularized
in [BK07a], and makes use of baseline predictors:

r̂ui = bui +

∑
v∈Nk

i (u)
(rvi − bvi) · sim(u, v)∑

v∈Nk
i (u)

sim(u, v) ,

where bui is a baseline (or bias) related to user u and item i. Its expression is bui = µ + bu + bi,
where bu is supposed to model how u tends to give higher (or lower) ratings than the average
of all ratings µ, and bi is supposed to model how i tends to be rated higher or lower than µ.
For example, if the mean of all ratings is µ = 3, and the ratings of a user are (2, 2, 1), its bias
bu would be close to −1.

Baselines are computed by solving a regularized least squares problem:

min
bu,bi

∑
rui∈R

[rui − (µ + bu + bi)]2 + λ
(
b2

u + b2
i

)
,

which can be achieved efficiently by stochastic gradient descent, or alternating least squares.
The regularization terms are here to avoid overfitting: they allow to give more confidence to
biases that are computed on a high number of ratings. In our previous example, the user had
only rated 3 items so we cannot reliably say that its real bias is close to −1. The regularization
term will allow to give a value closer to 0 for this user bias.

As a side note, notice that this optimization problem has the same look as the one we used
for the PMF algorithm of Section 4.3.2. In fact, the use of baselines can be easily combined
with the matrix factorization model, leading to the following optimization problem:

min
bu,bi,pu,qi

∑
rui∈R

[rui − r̂ui]2 + λ
(
‖qi‖2 + ‖pu‖2 + b2

u + b2
i

)
,

with r̂ui = µ + bu + bi + qt
ipu. This prediction algorithm is called SVD [KB11], and is nothing

but the PMF algorithm with user and items biases. Its extension to handling implicit ratings is
called SVD++ [KB11], but we will not describe it here.

In their work, the authors have used this particular similarity metric, that is in perfect
accordance with their prediction formula:

sim(u, v) =

∑
i∈Iuv

(rui − bui) · (rvi − bvi)√ ∑
i∈Iuv

(rui − bui)2 ·
√ ∑

i∈Iuv

(rvi − bvi)2
.

110

It is simply a Pearson correlation coefficient, except that instead of centering ratings with
their averages, they are centered with the baseline predictors. This seemingly simple tweak
actually has various consequences that are very interesting. An intuitive and illuminating way
to look at this algorithm as a whole is to see that it conceptually follows these steps:

1. Compute R′, the set of all ratings normalized by the corresponding baselines: r′
ui = rui−bui.

R′ can be regarded as the set where all ratings are given from the same frame of reference
(in this case 0), thus discarding any bias coming from the users or from the items. In R′,
ratings can then be considered as absolute, in the sense that they are not spoiled by the
users’ moods or the items inherent popularity.

2. Using R′, compute similarities between users using the Cosine similarity (the Cosine
similarity is the same as the Pearson correlation coefficient, except that quantities are
not centered).

3. Output a prediction using the basic neighborhood formula. As this prediction belongs to
the same space of R′ where ratings have no bias, it needs to be transposed back to the
space of R for performance evaluation purposes. This is why bui and bvi are added (or
subtracted) in the prediction formula of r̂ui.

In what follows, this algorithm will be referred to as k-NN∗.
It is very clear that the use of the baseline predictors and the use of clone-based recommendation
are motivated by the same reason: they both come from the fact that users (and items) tend to
interpret the rating scale differently. This means that k-NN∗ implicitly takes the idea of clones
into account, and thus a form of analogical reasoning. Differences and resemblances of these
two approaches will be discussed in the next section.

5.2.3 Experiments and discussion

To assess the suitability of our clone-based view of recommendation, we have evaluated the
accuracy of the brute-force and Clone algorithms, and compared them to the previously
mentioned approaches: the basic neighborhood method (k-NN), and the neighborhood method
taking into account user and item biases (k-NN∗). For reasons that will become clear at the
end of this discussion, we also evaluated the Bsl algorithm, whose prediction is simply the
baseline predictor, i.e. r̂ui = bui. The evaluation protocol is the same as that of Section 5.1.2, i.e.
results are averaged over a 5-folds cross-validation procedure. In addition to the MovieLens-100k
dataset presented earlier, we also used the MovieLens-1M dataset containing 1 million ratings
with 6000 users and 4000 movies. For each of these algorithms, the number of neighbors or
clones used to output a prediction is k = 40, except for the brute-force algorithm where the
number of clones cannot be controlled. The RMSE and MAE of the algorithms are reported on
Table 5.3.

It is very clear that even a very straightforward approach of the clone-based recommen-
dation principle significantly outperforms the most basic k-NN algorithm, and thus validates

111

ML-100k ML-1M

Algorithm Details RMSE MAE RMSE MAE

k-NN MSD k = 40 .979 .773 .921 .725
Brute-Force .948 .737

Clone Clone_sim k = 40 .936 .733 .899 .705
MSD k = 40 .931 .732 .897 .707

k-NN∗ k = 40 .921 .721 .869 .680
Bsl .945 .749 .909 .719

Table 5.3: RMSE and MAE of our clone-based algorithms on the MovieLens-100k and 1M
datasets.

the need to take into account biases between users. The brute-force is however a lot heavier to
compute, and thus not very suitable for real world recommendation purposes (its performances
on the MovieLens-1M dataset simply could not be computed). The two other clone-based al-
gorithms, however, have the exact same complexity of any k-NN-based algorithm, which is a
significant improvement from the algorithm described in Section 5.1.

Our two Clone algorithms output (almost) exactly the same accuracies. This may seem
a bit surprising, because the Clone MSD algorithm does not take into account clones in the
similarity measure, and we would expect it to yield a lower accuracy. But this result still gives
a further reason to consider clones as useful predictors: the only difference between the Clone
MSD algorithm and the k-NN MSD algorithm (whose accuracy is much worse) is that in the
prediction of Clone MSD, the mean differences µuv between the ratings of u and its neighbors
are taken into account. If this (seemingly) simple change can make such a significant difference
in the accuracies, this means that the way users relate as clones is an important feature of the
dataset and should not be ignored.

Performances of the Clone algorithms are close to those of the state of the art k-NN∗

algorithm, yet the difference is more striking on the MovieLens-1M dataset. It is however
important to understand that these algorithms differ on the following points:

• The Clone algorithms do not address item bias, which is a significant drawback. It is
not unreasonable to believe that incorporating item bias in the prediction would lead to
better results.

• There is a subtle yet meaningful difference of interpretation between the biases induced
by both algorithms. In the Clone algorithm, biases are all pairwise, meaning that they
involve two users, and they are computed on items that both users have rated. As for
the k-NN∗ algorithm, there is no such thing as a pairwise bias. Bias for a given user is
computed using only its own ratings, and is a result of a global optimization problem
involving the global mean of all ratings, which means that every single rating in R has an

112

impact on the bias. As baselines are computed on the whole training set, they tend to
capture most of the noise when the training set gets bigger. This may explain why the
difference between the Clone algorithms and k-NN∗ is more striking on the MovieLens-1M
dataset.

As previously mentioned in Section 4.3.1.2, it is recommended to perform a shrinkage on the
similarity measure of algorithm k-NN∗, in order to take into account the number of common
items between two users: the more items they share, the more confident we are when computing
their similarity [Kor10]. Such techniques can further improve both RMSE and MAE of the
algorithm. Similarly, in the clone-based approach, it might be of interest to discount clones
that rely on a too small number of common items.

Leaving clones for a moment, let us focus now on the Bsl predictor. Bsl outperforms by far
the RMSE of the k-NN algorithm, and in fact if we go back to table 5.2 on page 104, we see
that it outperforms also the algorithms mentioned there. Yet, this algorithm is unable to output
personalized recommendations: all the recommendations would be the same for any user! This
is simply due to the fact that in the prediction r̂ui = µ + bu + bi, the only user-dependent factor
is the term bu, which is the same in all the predictions regardless of the item. The point of this
remark is to exhibit one of the drawbacks of RMSE that we already mentioned before: RMSE
is not an appropriate measure when it comes to assess user-system interactions.

Indeed, what ultimately matters is how well a recommender system can rank the preferences
of a user for all the items. Also, rather than defining clones with the general numerical criterion
(rui = rvi + tvu), we may instead consider that two users are clones if they order their common
items in the same way. Back to Figure 5.2, we see that Alice and Bob are perfect clones and we
actually do not need to know the real rating values: only the order matters. The goal of the
next section is precisely to investigate this ordinal view of ratings, and to see how it can be
embedded in our clone-based framework.

5.2.4 Towards an ordinal view of ratings

We will here investigate if we can devise a counterpart of the numerical clone-based approach,
which would be compatible with an ordinal view of the ratings. Indeed, an extreme way for
unbiasing and comparing two sets of ratings is to forget about their numerical values, and
only consider their respective rankings. The idea of viewing ratings in a ordinal manner is not
new, and has been advocated for example in [KS11]. In this section, we will discuss an ordinal
counterpart of the analogical approach previously presented. Analogical reasoning with ordinal
data has first been proposed in [BM09], yet with a different concern.

113

5.2.4.1 An algorithm for rank prediction

Indeed, the idea that “the rating of user u for item i is to the rating of user v for item i as the
rating of user u for item j is to the rating of user v for item j” may be understood as well in
an ordinal manner. This leads to state that “the relative ranking of item i among the ratings
given by user u is to the relative ranking of item i among the ratings given by user v as the
relative ranking of item j among the ratings given by user u is to the relative ranking of item j

among the ratings given by user v”.
This means that we need to compare the rankings given by two users u and v on their

common items. In the following, ρui denotes the relative ranking of item i out of all the items
rated by u. Our goal is to estimate all values of ρui, for any user and any item. The main steps
of a possible algorithm would be as follows:

1. Compute similarities between users, based on their rankings. A very popular similarity
ranking measure is the Spearman’s rank correlation coefficient (or Spearman’s rho), that
will be described later.

2. Compute an estimated rank ρ̂ui as an aggregation of all the rankings ρvi extracted from
the k nearest neighbors (using Spearman’s rho as similarity):

ρ̂ui =

∑
v∈Nk

i (u)
ρvi · sim(u, v)∑

v∈Nk
i (u)

sim(u, v) .

This is obviously very similar to the numerical clone-based approach described before, but
instead of predicting a rating, we output the prediction of a rank. This approach is denoted as
RankAnlg.

The computation of Spearman’s rho takes into account the relative rankings of the ratings,
and is computed as follows:

Spearman(u, v) def=
Cov
i∈Iuv

(ρui, ρvi)

std
i∈Iuv

(ρui) · std
i∈Iuv

(ρvi)
,

where Cov naturally stands for covariance and std is the standard deviation. Spearman’s rho is
usually defined as a statistic for random variables, and we here have translated it as a realization
of this statistic in our recommendation setting. A common issue when dealing with rankings is
that there may be ties in the data. Consider for example user u from Table 5.4, whose ratings
are 1, 1, 2, 3, 3, 3 for items i1, i2, i3, i4, i5 and i6. As i1 and i2 have the same ratings, there is
no reason to rank i1 before i2, or i2 before i1. The same goes for i4, i5 and i6, and this is why
the first ranking option (raw rankings) is not a suitable one. Instead, it is common to consider
that the ranking of a given item is the mean of the raw rankings for the items that share the
same rating value. In our case, ρui1 = ρui2 = 1+2

2 , and ρui4 = ρui5 = ρui6 = 4+5+6
3 . This process

114

i1 i2 i3 i4 i5 i6

rui 1 1 2 3 3 3
Raw rankings 1 2 3 4 5 6
Processed rankings ρui 1.5 1.5 3 5 5 5

Table 5.4: Values of ρui for the user u.

leads to a better estimation of Spearman’s rho, and is equivalent to averaging over all possible
permutations between the raw ranks of items with equal ratings.

5.2.4.2 Experiments

We evaluated the performance of our algorithm and compared it to other previously de-
scribed approaches, using the exact same evaluation protocol as in the previous sections. The
MovieLens-1M dataset was not benchmarked, because the computation of Spearman’s rho was
too computationally intensive on this bigger dataset.

RMSE and MAE are good measure for evaluation rating prediction accuracy, but are not
suitable when it comes to evaluate rankings. A better measure is the Fraction of Concordant
Pairs (FCP), which evaluates the probability that given any two items i and j rated by any user
u, the system has correctly estimated whether u prefers i over j, or the reverse. To compute
the FCP, we need to use intermediate measures. Following the notation of [KS11], cu defines
the number of concordant pairs for user u, and du is the number of discordant pairs. The FCP
is then computed over all users as the proportion of concordant pairs.

cu
def=
∣∣∣ { (i, j) ∈ I2

∣∣∣ r̂ui > r̂uj and rui > ruj

} ∣∣∣,
du

def=
∣∣∣ { (i, j) ∈ I2

∣∣∣ r̂ui ≥ r̂uj and rui < ruj

} ∣∣∣,
FCP def=

∑
u∈U

cu∑
u∈U

cu +
∑

u∈U
du

.

Here, r̂ui may represent either a rating prediction or a ranking prediction ρ̂ui.
Results are reported in table 5.5. Unfortunately, even a basic algorithm such as k-NN that

RankAnlg k-NN k-NN∗

FCP .7063 .7096 .7163

Table 5.5: FCP of our rank prediction algorithm on the MovieLens-100k dataset.

was not designed for ranking prediction performs better in terms of FCP. To explain this
difference, one may look at the distribution of average support over all the predictions, as shown

115

on figure 5.3. Between two users u and v, the support is defined as the number of common
items |Iuv| which was used to compute the similarity between u and v. For a given prediction
r̂ui, the average support is the average of all the supports |Iuv| over all users v ∈ Nk

i (u).

0 20 40 60 80 100 120 140

RankAnlg

k-NN

Figure 5.3: Distribution of average support for Spearman’s rho (RankAnlg) and MSD (k-NN).

The use of Spearman’s rho tends to provide with neighbors that have smaller support values,
thus leading to a less significant and less accurate estimation of the neighborhood, which may
explain the differences in performance.

This closes for now our contributions to analogical recommendation. We will come back to
it in the conclusion of this chapter, and we will now focus on a somewhat unrelated problem:
analogical proportion mining in databases. As we will see though, analogical recommendation can
in fact be viewed as both a motivation and a purpose for the mining of analogical proportions.

5.3 Mining analogical proportions

Let us recap a bit the first section of this chapter, where we described our first attempt to design
an analogical-based recommendation algorithm. As it is a direct application of the analogical
inference principle, our algorithm suffers from the same drawbacks as the conservative and
extended learners introduced in Chapter 3: the time complexity is cubic, which makes it
impossible to use in actual systems and hard to evaluate accurately. Also, the performances of
this algorithm were quite modest, even in its most elaborated forms.

Our analogical inference principle used in the first section states that if four users a, b, c, d

are in analogy, then their ratings for an item i that d has not rated should also be in analogy:

raj : rbj :: rcj : rdj ∀j ∈ Ia ∩ Ib ∩ Ic ∩ Id

rai : rbi :: rci : rdi ∀i ∈ Ia ∩ Ib ∩ Ic, and i /∈ Id

But we have so far neglected a central question: do such proportions actually exist in our
database? Can we find enough 4-tuples of users such that their common ratings are in proportion?
And if we can, how good are these proportions? We already acknowledged that absolutely

116

perfect proportions are actually hard to find, and this is why we have relaxed the condition for
an analogy to hold in Algorithm 7.

In this section, we will design an algorithm that is able to answer all of the above questions,
by extracting all the analogical proportions underlying a database that satisfy some given
quality criterion. We will apply this algorithm to the MovieLens database, and see how this
relates to our recommendation task. We will here look for analogies between items (movies in
our case) instead of looking for analogies between users, because the interpretation of a movie-
based proportion is actually easier, and because the parallel with association rules (described
below) will be more natural. Both problems are symmetric though, and our solution can be
adapted to user proportions in a straightforward manner.

Because our method for mining analogical proportions is inspired from the mining of
association rules, we will first review this topic in the next subsection.

5.3.1 Association rules

Association rules are pieces of information that one can extract from a database, and that reveal
dependencies between items. Recommendation is one of the principal application of association
rules. Starting from the association rule i =⇒ j, which means that users that buy i tend to
buy j with high probability, a recommendation system can suggest j as soon as we bought
i (but not yet j). A well-known example of association rule is the famous beer =⇒ diapers
association, which was revealed after mining association rules in a supermarket selling history,
suggesting that people tend to buy beer and diapers altogether. We now formally introduce the
problem of association rule mining.

Let I = { i1, i2, ..., im } be a set of m items, and let T = { t1, t2, ..., tn } be a multiset of
transactions, where each transaction is a subset of I: ∀i, ti ⊆ I. A transaction simply is a set
of items that are purchased together. An association rule is expressed in the form X =⇒ Y ,
where X (I, Y (I, and X ∩ Y = ∅. X and Y are sets of items that we will call itemsets,
and usually Y is restricted to a single item. We define the support supp(X) of an itemset X

as the proportion of transactions that contain it:

supp(X) def= | { t ∈ T | X ⊆ t } |
| T |

.

Sometimes, the support is not defined as a proportion but rather as the absolute number
| { t ∈ T | X ⊆ t } |. Various measures can be used to evaluate the quality of an association
rule, such as the confidence which can be expressed as:

Conf(X =⇒ Y) def= supp(X ∪ Y)
supp(X) .

As could be naturally expected, Conf(X =⇒ Y) is equal to 1 when the items of X and Y are

117

systematically bought together, and decreases if the set X is sometimes found in a transaction
that does not contain Y .

The mining of association rules is a popular research topic, and has been extensively studied.
In a perfect world with unlimited computational resources, a naive association rules mining
algorithm would be as follows:

1. First, generate the power set of I, i.e. the set of all subsets of I that we denote 2I . We
know that the elements in 2I are partially ordered with respect to inclusion, and 2I can
be represented as a lattice where the join is the union and the meet is the intersection.

2. Let IS be any of the 2m itemsets in 2I . Then for each IS , compute all partitions {X, Y }
of IS and calculate the confidence associated with the rule X =⇒ Y . If the confidence is
above a given threshold, then keep the association rule, else discard it.

The second step remains reasonable and cannot really be optimized, but the first one is
obviously impossible to perform in practice due to the terrific size of 2I , when real-world
databases usually contain hundreds or thousands of items. The most famous algorithm for
association rule mining probably is the Apriori algorithm introduced in [AS94], that we will
briefly review. Using Apriori allows to scan the itemset lattice in an efficient way, avoiding
many useless nodes.

Ultimately, we are only interested in association rules where the support of the involved
itemsets is high. An itemset whose support is above some given threshold α is called a frequent
itemset. The downward-closure property of support states that if IS is a frequent itemset, then all
of its subsets are also frequent itemsets. For example, if the itemset { apple, banana, orange } is
found in more than 30 transactions, then the three subsets { apple, banana }, { apple, orange }
and { banana, orange } must also be found in at least 30 transactions. Conversely, if the two
sets { kiwi, pear } and { kiwi, strawberry } are found in less than 30 transactions, we are sure
that their union { kiwi, pear, strawberry } will also be found in less than 30 transactions. So if
we are only interested in itemsets whose support is higher than 30, there is no point in building
the set { kiwi, pear, strawberry }, or any of its supersets.

Taking advantage of this fact, a basic version of the Apriori can be described in the following
steps:

1. Consider all itemsets of size 1 whose support is above α.

2. By joining these 1-itemsets, build all possible 2-itemsets and only keep those whose
support is above α.

3. By joining these 2-itemsets, build all possible 3-itemsets and only keep those whose
support is above α.

4. Repeat the process: all the frequent k-itemsets are built by joining the frequent k − 1
itemsets.

5. Once all the frequent itemsets have been computed, the second step of the above naive
algorithm is used to assess the confidence of the association rules.

118

In the end, we are provided with a set of association rules than comply with some quality
requirements, and that give us insightful information that link the elements of our database.

Just like association rules, the identification of analogical proportions in a database is an
additional information source, and deserves to be addressed. We will now get to the heart of
the matter.

5.3.2 Looking for analogies in an incomplete database

In order to avoid any ambiguity, we will formally define our problem first.

5.3.2.1 Problem definition and links to association rules

We will be looking for analogies between items in the MovieLens database, but our method can
naturally be extended to any other database with the same structure. We dispose of a set of
users U and a set of items I. Each user u has rated (or purchased) a given set of movies Iu ⊆ I.
In this setting, each user u can be considered as a transaction t, as defined in the previous
section. The set of all the ratings rui is denoted R and can be viewed as a sparse matrix where
users are columns and items are rows (or the reverse). For now, we do not care about the rating
values and just focus on whether the rating exists or not (just like we only care about the fact
that an item has been bought in the case of association rules). We will only make use of the
rating values when we will evaluate how good the proportions are, in later subsections.

We need to insist here on the fact that we are dealing with a sparse database. In the
case where all values in R are known, the problem of mining analogical proportion is pretty
trivial: all we need is to look for all 4-tuples of items, and evaluate how good the proportion
a : b :: c : d is. This search is in | I |4 which is extremely expensive, but there is probably no
shortcut. This problem is not really interesting in the sense that there is no need to come up
with an elaborated algorithm. Its parallel in the association rules world corresponds to the case
where each transaction ti contains all the items (∀i, ti = I): the very idea of association rule
does not make sense anymore. The problem we propose to address here is different: the matrix
R is sparse and the set of users that have rated (purchased) the items is different each time:
for all items i and j (or at least for most), we have Ui 6= Uj . We thus cannot just look at all
4-tuples of items and check if they are in analogy. Or more accurately we could, but as we are
ultimately interested in good analogies (i.e. analogies involving a sufficient number of ratings),
we can make use of the downward-closure property just like the Apriori algorithm, which will
allow us to avoid many 4-tuples that could not lead to good analogies.

Let’s now consider four users a, b, c, d, and our task is to find out if these four users make
up a valid analogy. For now, we do not know in which order we need to consider them. Just
like for association rules, the notion of support still makes sense here because these four users

119

make up a 4-itemset:

supp(a, b, c, d) def= | Iabcd |
| I |

,

where Iabcd is the set of items that a, b, c and d have all rated. Here again, we will only be
interested in proportions whose support is greater than some threshold α: a proportion built on
only two components is a lot less meaningful than a proportion built on dozens of components.

When given four items a, b, c, d, the question is now to find out which is the proportion that
actually holds. It could be a : b :: c : d, but it could just as well be a : b :: d : c or a : c :: d : b,
or any of the 24 (4!) combinations of these four elements. Fortunately, we do not have to test
all the 24 orderings. We know from Chapter 2 that there are exactly 3 equivalent classes of
analogies, which are represented by:

• a : b :: c : d,

• a : b :: d : c,

• a : d :: c : b.
Thus, testing these three orderings is enough to find out about the 24 possible forms of analogies.
To assess the quality of a proportion, we will use a function f that plays a similar role to the
confidence function for association rules. Then, it will be natural to only consider analogies
that are above some given quality threshold. Simply put, we would consider a : b :: c : d as
a valid analogy if f(a : b :: c : d) ≥ β. In the end we are left with a set of proportions that
represent analogical relations between four items.

5.3.2.2 Assessing the quality of a proportion

We will here describe various functions f that can assess the quality of a proportion. The four
items a, b, c, d are considered as vectors of ratings in the space of their common users, and we
will consider two cases: that of the binary rating scale [0, 1], and that of the gradual rating
scale [1, 5]. Note that here, in case of the binary rating scale, the value 1 is associated with like
and the value 0 is associated with dislike, but a value of 0 still means that the user u has rated
the item i. In some settings (e.g. with the unary rating scale), a value of 0 can be interpreted
as the absence of rating, but this view is not compatible with our problem: if rui = 0 means
rui /∈ R, the four items a, b, c, d would only be represented as vectors of constant value 1, where
analogies are all trivial because their only pattern is 1 : 1 :: 1 : 1. Instead, when 0 still means
that the user has rated the item, the items can be represented as Boolean vectors, which is
fortunate because we know how to deal with Boolean proportions.

Naturally, the quality functions that we can define will depend on the nature of the rating
scale.

• When we have a binary rating scale, the obvious choice for assessing the quality (or rather
the badness) of a proportion is the analogical dissimilarity defined in Section 3.1.2. For
Boolean vectors, the analogical dissimilarity is defined as the number of components that

120

need to change in order to have a perfect proportion. Note however that we ultimately
want to compare the quality of different proportions, and the fact is that no two 4-tuples
of items will have the same common users, so the item vectors of the two different 4-tuples
will likely have different dimensions. Therefore, it might be wise to consider the relative
analogical dissimilarity, which is the classical AD divided by the dimension of the vectors.

• Another obvious quality measure in Bm simply is the number of components where a
Boolean proportion perfectly holds. It is a slightly less conservative approach than the
above one but still very similar. In practice, this means that the two proportions 0 : 1 :: 1 : 0
and 1 : 0 :: 0 : 1 will be given an AD of 1 instead of 2. Here again, considering a
fraction rather than an absolute number may be more meaningful, because of the different
dimensions.

• When the rating scale is numerical (e.g. [1, 5]), the analogical dissimilarity is defined as
‖(a− b)− (c− d)‖p, and indicates how well the parallelogram abcd holds. Clearly, this
can also be used as a measure of quality of the proportion.

• Another option for the gradual rating scale is to use the definitions of the fuzzy analogy
evaluation described at the end of Section 2.1. As the quality of each proportion is evaluated
in a component-wise fashion, we can choose various aggregation functions to assess the
overall quality: mean, max, min, or also compare two proportions by lexicographic order.
We will give further details in the experiments section.

• Finally, by adopting a statistical point of view, we can try to evaluate the probability
of observing the proportion a : b :: c : d, and consider it a meaningful proportion if it
is unlikely that we could have observed this proportion by random chance alone. This
method is highly linked to statistical test theory.

5.3.2.3 Algorithm

Our algorithm for mining analogical proportions imitates an association rule mining process:
we preliminarily set a threshold α for the support, and a quality evaluation f along with a
threshold β.

After having built all the 4-itemsets whose support is above the threshold α with the Apriori
algorithm, we compute the quality of the proportions associated with the three equivalent
classes, and keep those that satisfy our criterion. These steps are described in Algorithm 9.

In theory, it is possible to end up with two non-equivalent proportions in P that still relate
to the same four items, i.e. we could find in P the proportion a : b :: c : d as well as the
non-equivalent proportion a : b :: d : c. It should not seem natural to have these two proportions
in P, so if this happens, it is probably because the quality function f is too permissive or
because the threshold β is not correctly tuned.

We also want to stress the point that the actual rating values are only used in the second
part of the algorithm, i.e. when we evaluate the quality of the proportions. In the first part

121

Algorithm 9 Analogical proportion mining.
Input: A set of known ratings R, a quality function f , and two thresholds α and β.
Output: A set P of analogical proportions between items.
P ← ∅
Candidate retrieval:
Using Apriori, derive all the 4-itemsets whose support is greater than α.
Quality evaluation:
for all (a, b, c, d) in the set of 4-itemsets do

for all prop ∈ { (a : b :: c : d), (a : b :: d : c), (a : d :: c : b) } do
if f(prop) ≥ β then
P ← P ∪ { prop }

end if
end for

end for

involving the Apriori algorithm, the only information that matter are that a rating exists. Its
value is not taken into account.

5.3.3 Experiments and discussion

As previously indicated, we have considered the MovieLens-100k dataset for our experiments:
100,000 ratings in [1, 5] from 1000 users and 1700 movies. We will first treat ratings as numerical
values, and in the second part of this investigation we will binarize them.

5.3.3.1 Numerical ratings

For our purpose, we actually do not need to set a quality threshold β, which would by the
way be quite arbitrary. Instead, we will only be interested in comparing the quality of the
proportions. We will not make use of the analogical dissimilarity because the AD is dependent
on the dimensions of the vectors, and we will necessarily compare proportions that have
different dimension so this would not make sense. Instead, we have chosen to compare two
proportions by first computing the truth value of each of their component-wise proportions
using the graded-view of analogical proportions described in Section 2.1, and then by comparing
these truth values in lexicographic order. This allows to compare proportions that have different
dimensions in a more meaningful way.

This fuzzy view of analogical proportion is recalled here: for four real elements a, b, c, d ∈ [0, 1],
the quality of the analogical proportion a : b :: c : d is evaluated by:

A(a, b, c, d) =

1− |(a− b)− (c− d)| if a ≥ b and c ≥ d, or a ≤ b and c ≤ d

1−max(|a− b|, |c− d|) if a ≥ b and c ≤ d, or a ≤ b and c ≥ d.

122

Example:
Consider for example the two 4-itemsets of Table 5.6, where ratings [1, 2, 3, 4, 5] have been
mapped to [0, .25, .5, .75, 1]. We will consider that the first 4-tuple i1, i2, i3, i4 (on the left) is a
better proportion than the second one because once their truth values are sorted, it is the one
that comes first. Had we chosen to compare them with the mean of the truth values, the best
proportion would have been the second one. In the remaining of this discussion, a component-
proportion will denote a proportion between ratings (for example the proportion 0 : 1 :: 0 : 1
is the first component-proportion of i1 : i2 :: i3 : i4), and in general a proportion will refer to
an analogy between items (i.e. it is an aggregation of component-proportions).

i1 i2 i3 i4 A

0 1 0 1 1
0 .5 .25 .75 1
1 .5 1 .25 .75
0 .5 1 .25 .25

i5 i6 i7 i8 A

0 0 0 0 1
0 .25 1 .75 .75
1 .5 1 .25 .75
1 1 1 .75 .75

Table 5.6: Two 4-itemsets and their related proportions, with corresponding truth value (A).

Using this comparison procedure, we have looked for the 10 best proportions with a minimum
support of 200 common users. The results are reported on Table 5.7.

i1 i2 i3 i4

1 Star Wars The Emp. Strikes Back Raid. of the Lost Ark Return of the Jedi
2 Star Wars Return of the Jedi Raid. of the Lost Ark The Emp. Strikes Back
3 Star Wars The Emp. Strikes Back Return of the Jedi Raid. of the Lost Ark
4 Star Wars Raid. of the Lost Ark Return of the Jedi I.J. and the Last Crus.
5 Star Wars Return of the Jedi Raid. of the Lost Ark The Fugitive
6 Star Wars Raid. of the Lost Ark Return of the Jedi Back to the Future
7 Star Wars The Emp. Strikes Back Raid. of the Lost Ark I.J. and the Last Crus.
8 Star Wars The Emp. Strikes Back Return of the Jedi I.J. and the Last Crus.
9 Star Wars The Emp. Strikes Back I.J. and the Last Crus. Return of the Jedi
10 Star Wars Raid. of the Lost Ark The Emp. Strikes Back The Fugitive

Table 5.7: The ten best item proportions with a support of more than 200 common ratings,
using A.

The first obvious observation is that only a few movies (exactly 7) make up these 10
proportions. This is not really surprising, as we have set the support threshold quite high, and
only a few movies are rated by more than 200 users. In fact, we found 331 4-itemsets with more
than 200 common users, but they only contain 37 unique movies. Clearly here the involved
movies (Star Wars, Indiana Jones…) are extremely popular, and people tend to give them high
ratings. Using notions introduced in Section 5.2.2, we can say that these movies have a high

123

item bias bi. To confirm this claim, we can check that in average, the mean rating of these 7
movies is of 4.09, while the average rating of all movies is only 3.53.

Some of the analogies are actually quite good though. For example the fourth one Star
Wars (1977) is to Raiders of the Lost Ark (1981) as Return of the Jedi (1983) is to Indiana
Jones and the Last Crusade (1989), or the seventh one which is similar: Star Wars (1977) is to
The Empire Strikes Back as Raiders of the Lost Ark (1981) is to Indiana Jones and the Last
Crusade (1989)

Looking at the first and third proportions, we see that the two forms i1 : i2 :: i3 : i4 and
i1 : i2 :: i4 : i3 are present in the table. These two forms are non-equivalent, and it does not
seem natural to consider these two proportions as (almost) equally valid. But this result can
be explained by looking at the actual rating values: a great number of them are of the form
r : r :: r : r (where r is usually a high rating, given that these movies are popular). In the two
cases, a switch between i3 and i4 has absolutely no effect on the truth values of the analogies.

This leads us to another point: all these analogies are, after all, quite trivial. They all
concern quite similar movies. We do not mean to offend any cinema fan, but we believe it is
still fair to say that the differences between a Star Wars movie and an Indiana Jones movie
are quite shallow. And these similarities are reflected in the ratings, where the most common
pattern is r : r :: r : r (or close to it), suggesting that people like all these movies the same.

To try to discover some more surprising analogies, we basically have two options. The first
one is to tweak a bit our quality function f (and in our case, our comparison function) by
penalizing proportions with the pattern r : r :: r : r, or inversely by promoting the proportions
r : r′ :: r : r′ where r and r′ are quite different. The second option is to lower the minimum
support threshold, to allow movies that are rated by a reasonable (and not necessarily very
high) number of users. As we have seen, movies with a very high number of ratings are likely to
lead to trivial proportions precisely because they are popular, and because people like them all
equally well in general. If we really want to ban popular movies, we can also set a maximum
support threshold. This will also have the benefit to limit the number of itemsets that we
consider, leading to a significant improvement in computation time. These two options will be
explored.

Promoting disagreement proportions
Table 5.8 shows the 10 best proportions with a minimum support of 200, with a tweaked

comparison function. Here, the truth value of a component-proportion r1 : r2 :: r3 : r4 is defined
by:

A′(r1, r2, r3, r4) = 1
2A(r1, r2, r3, r4) + 1

4 |r1 − r2|+
1
4 |r3 − r4|.

We are here promoting proportions where rating values tend to disagree, which should lead
to different proportions from that of Table 5.7. Proportions are still compared using the
lexicographic order of all the A′ values.

124

i1 i2 i3 i4

1 Star Wars Pulp Fiction The Empire Strikes Back The Fugitive
2 Star Wars Pulp Fiction Return of the Jedi The Fugitive
3 Star Wars Pulp Fiction The Empire Strikes Back The Silence of the Lambs
4 Star Wars Twister Return of the Jedi Independence Day
5 Star Wars Return of the Jedi The Silence of the Lambs Fargo
6 Star Wars The Terminator Return of the Jedi Pulp Fiction
7 Star Wars Pulp Fiction Return of the Jedi The Terminator
8 Star Wars The Fugitive The Empire Strikes Back The Silence of the Lambs
9 Star Wars Pulp Fiction Return of the Jedi The Silence of the Lambs
10 Star Wars Pulp Fiction Raiders of the Lost Ark The Silence of the Lambs

Table 5.8: The ten best item proportions with a support of more than 200 common ratings,
using A′.

We still have a lot of Star Wars movies (and a few Indiana Jones), but the movies seem more
diverse: we now have 11 unique movies, instead of just 7 before. 9 of these proportions comply
with the pattern Star Wars movie is to Other Star Wars movie what movie A is to movie B.
This suggests that we should find strong links underlying the connection between Movie A and
Movie B, because the two Star Wars movies are deeply related. Is Pulp Fiction related to The
Fugitive? Is Twister related to Independence Day? Is Fargo related to The Silence of the Lambs?
We will not venture to answer these questions, and leave them to the reader’s appreciation. All
we can say is that some forms of analogy seem to emerge from their respective ratings. One
thing we can note however, is that even though all these movies are very popular just like in
Table 5.7, their genres are however quite different: while we have considered Star Wars and
Indiana Jones to be of the same kind, we can fairly claim that a Star Wars movie is very far
from Fargo, Pulp Fiction or The Silence of the Lambs.

Lowering support threshold
Table 5.9 illustrates the ten best proportions we have found after setting the minimum

support at 10, and a maximum support at 50. This drastically reduces the number of 4-tuples
that are explored, and avoids any highly popular movie. Now, we find up to 20 unique movies
building up these 10 proportions, which is quite an improvement with respect to the previous
settings. But let’s be honest, we have come to a point where the author is unable to further
hide his lack of cinematographic culture. He has never heard of any of these movies, and will
not pretend to.

Still, we shall try to make sense out of this. It seems that our proportions exhibit some
sort of clustering: movies of proportions 1, 3, 8 and 9 are all movies from the 40’-50’s. Clearly
the users that rated the corresponding movies must be some fans of the old movie-making era.
Similarly, proportions 2 and 10 are all movies from 1994 or 1995, suggesting a niche. Here again

125

i1 i2 i3 i4

1 To Catch a Thief Laura Gigi An American in Paris
2 Nick of Time It Could Happen to You Milk Money Only You
3 To Catch a Thief An American in Paris Gigi Meet John Doe
4 Dangerous Minds Money Train Higher Learning With Honors
5 Judge Dredd Under Siege 2: Dark Territory The Shadow Mortal Kombat
6 Terminal Velocity Under Siege 2: Dark Territory Money Train Drop Zone
7 Judge Dredd Under Siege 2: Dark Territory Mortal Kombat Coneheads
8 To Catch a Thief An American in Paris Gigi Laura
9 To Catch a Thief Meet John Doe Gigi An American in Paris
10 Nick of Time It Could Happen to You Only You Milk Money

Table 5.9: The ten best item proportions with a support between 10 and 50.

it is not really surprising that we observe the two patterns a : b :: c : d and a : b :: d : c. This
comes from the fact that these movies are often given similar (and high) ratings. The other
proportions involve movies that are still from the 90’s and that are given pretty bad reviews
from critics: they seem to belong to the so bad it’s good kind.

5.3.3.2 Boolean ratings

To complete this investigation, we have led the same experiments with binary ratings. The
ratings of the MovieLens dataset were binarized by associating the value 1 if the rating rui is
above the user’s average rating µu (i.e. the user liked the movie) and 0 otherwise (the user
disliked the movie):

binary(rui) =

1 if rui ≥ µu

0 else.

The quality of a movie-based proportion is here the fraction of perfect component-proportions.
When setting a minimal support of 200 without any other constraint, it should not come as
a surprise that the movie-proportions that we find are extremely similar to that of Table 5.7.
They involve the same 7 movies and are so alike that we chose not to show them here to avoid
redundancy. Indeed, the set of candidate 4-itemsets are necessarily the same in the two settings:
recall that on the first stage of the algorithm, we do not care about the rating values so the
fact that ratings are binary or numerical does not change anything. The fact that the best
proportions are still the same is an argument in support of the coherence of the two quality
functions.

There are in total 993 candidate 4-itemsets. Figure 5.4 shows the quality of these 993
proportions in descending order. For the best proportions, a perfect analogy stands on more
than 70% of the components. This is quite significant as we are measuring this fraction over
more than 200 components. However, we have seen that much of these proportions are not

126

The 993 potential proportions
0.0

0.2

0.4

0.6

0.8

Q
u
a
lit

y

Figure 5.4: Quality of the 993 proportions. The quality of a proportion is defined as the fraction
of component-proportions that stand perfectly.

really interesting as all the common users tend to agree on the popular movies, and the four
movies of a proportion tend to be clustered into the same genre.

To try to exhibit disagreements in the ratings, we used another quality function. We assign
a truth value of 1 to an analogy r1 : r2 :: r3 : r4 if and only if the proportion complies with one
of the following patterns:

• 0 : 1 :: 0 : 1,

• 1 : 0 :: 1 : 0,

• 0 : 0 :: 1 : 1,

• 1 : 1 :: 0 : 0.

Simply put, we have forbidden the agreeing analogies 0 : 0 :: 0 : 0 and 1 : 1 :: 1 : 1. Figure 5.5
gives us the fraction of correct proportions for the 993 potential analogies, using this custom
quality function. Obviously, the quality drops significantly for the mere reason that we have

The 993 potential proportions
0.0

0.2

0.4

0.6

0.8

Q
u
a
lit

y

Figure 5.5: Quality of the 993 proportions. The quality of a proportion is defined as the fraction
of components that make up perfect proportions, forbidding patterns 0 : 0 :: 0 : 0 and 1 : 1 :: 1 : 1.

forbidden patterns like r : r :: r : r. This tells us that in fact, there are simply not a lot of
interesting analogies: the best proportion that we found is interesting on less than 25% of
its components, which is quite small. This confirms our previous observation that sadly, most
of the analogies we find tend to relate four movies that are actual neighbors. We will see in
the conclusion of this chapter how this fact can retrospectively explain the performances of our
basic analogy-based recommender from the first section.

127

Conclusion

In this chapter, we have detailed our contributions to the field of recommender systems. We
have proposed two frameworks based on analogy for the design of rating prediction algorithms,
and also proposed a method for mining analogical proportions in an incomplete database.

Section 5.1 described our first attempt at building an analogy-based prediction algorithm
for recommendation. This algorithm is a direct application of the analogical inference principle,
and is strongly related to the extended classifier that we have described in Chapter 3. The basic
underlying idea is that if four users (a, b, c, d) are in analogy regarding their common items
(using the arithmetic proportion), then it should also be the case for other items that d has not
yet rated. We presented a user-based view where analogies were considered between users, but
it is perfectly possible to consider analogies between items.

We have compared this algorithm with the two main approaches of collaborative filtering
algorithms, namely neighborhood methods and matrix factorization-based techniques. Our
algorithm yields decent accuracy compared to neighborhood methods, but is extremely expensive
in terms of computational resources. It was clear that this simple and straightforward application
of the analogical inference principle could not be used in real-world settings, where computation
time is a scarce resource.

These observations led us to consider another framework for analogical recommendation
in Section 5.2. Acknowledging the fact that each user tends to have a very personal idea of
what a good (or bad) rating should be, we introduced the notion of clones which captures how
two users tend to agree semantically on a rating. This semantic agreement is not necessarily
reflected in the numerical rating values: for a user u, the value 3 may be a good rating, while for
v it may be a bad one. We derived two algorithms relying on this clone-based view of the ratings.
We also described a quite recent technique in collaborative filtering, that allows to address
user and item biases. This method is based on the fact that some users tend to give higher
ratings than others, and some items tend to be rated higher than others. We discussed how
this view (using biases) is related to our view (using clones), and pointed out the similarities
and differences of the two approaches. It turned out that these two techniques are really close,
and the resemblance is reflected in the algorithms performances. Yet, as the bias-based method
relies on a global optimization problem, it tends to be better at capturing the overall noise in
the data, and still outperforms our method. Our last contribution to analogical recommendation
was to consider an extreme case of clone-users, considering that the rating scale [1, 5] could be
interpreted as purely ordinal. Unfortunately, this track of research did not lead to promising
results.

In Section 5.3, we proposed an algorithm for the mining of analogical proportions in a
partially described database. This general method perfectly applies to the problem of mining
analogies between users or items in a rating dataset, such as the one that was used in the
first two sections. Based on the Apriori algorithm, our method is inspired by the mining of

128

association rules and allows to extract the potential analogies in an efficient way. We proposed
many different quality functions allowing to assess the quality of a proportion, and naturally
some of the quality functions are strongly related to the Analogical Dissimilarity as defined in
Chapter 3. We gave examples of some of the analogies that we found using different variations
of the general mining algorithm, treating ratings as numerical values and as Boolean values.
The main take-away message was that the best analogies that could be extracted between items
were involving users with similar tastes: the four movies of a proportion were mostly neighbors,
in the sense that users tend to agree on their respective ratings. Also, when forcing proportions
to display a disagreement in the ratings of the four movies, the best proportions that were
revealed still had a pretty bad quality.

This allows us to retrospectively interpret the results of our first analogy-based prediction
algorithm. We have seen that its performances were close to that of a neighborhood-based
technique, but in the light of what has just been explained we can fairly say that there were no
analogies to find in the database, except for those involving four neighbors. So after all, our
analogy-based inference principle was reduced to that of the classical k-NN approach. Clearly in
that case, paying the price of the cubic search in the set of all users is really not worth it. This
is entirely dependent on the database that was used (in our case, the MovieLens dataset), and
we may still presume that there should exist a dataset where the use of analogical proportion is
beneficial over a simple neighborhood approach.

Even if our investigations on analogical recommendation did not completely live up to
our expectations, there still is a contribution of ours that is worth mentioning. As pointed
out earlier in the first section, all of our recommendation experiments were carried out using
Surprise3 [Hug17], an open source Python recommendation engine that we have developed.
Quite surprisingly, when we started our experiments a few years ago, there was no Python
library that would allow to easily run cross-validation procedures, or that would make the
implementation of a recommendation algorithm easy. But most importantly, it seemed that
most of the implementation details of the available algorithms were never explicitly mentioned,
so it made comparing performances of the algorithms difficult, if not meaningless. So we decided
to write our own package. We started out by writing our own custom (and hacky) scripts, which
grew up to become a much more complete and fairly popular recommendation engine. As of
April 2017, the main features of Surprise are the following ones:

• Users can have perfect control over their experiments, and to this end a strong emphasis
was laid on documentation, which we have tried to make as clear and precise as possible
by pointing out every detail of the algorithms.

• Dataset handling is made easy. Custom datasets can be used, and the MovieLens datasets
are natively supported.

• Various ready-to-use prediction algorithms are available, such as baseline algorithms,

3http://surpriselib.com

129

http://surpriselib.com

neighborhood methods, matrix factorization (SVD, PMF, SVD++, NMF), and many
others. Also, various similarity measures (Cosine, MSD, Pearson …) are built-in.

• The implementation of new algorithm ideas is made extremely simple.

• Cross-validation procedures can be run very easily, as well as exhaustive search over a
set of parameters for optimization (much like the Grid Search feature of the excellent
machine learning library scikit-learn [PVG+11]).

With that, we now close our discussion on analogical recommendation and on practical
applications of analogy. In the next chapter, having these findings in mind, we will go back to
our original theoretical considerations and try to challenge the analogical inference principle
that we have so far “blindly” followed.

Résumé du chapitre Ce chapitre décrit nos contributions à la recommandation analogique.
Nous avons d’abord décrit nos premières expérimentations relatives à l’implémentation d’un

algorithme de prédiction de notes fondé sur les proportions analogiques. Cet algorithme est
une application directe du principe d’inférence analogique, et il est très étroitement lié aux
classifieurs étendus que nous avons décrits dans le chapitre 3. L’idée principale derrière cet
algorithme est que si quatre utilisateurs (a, b, c, d) sont en proportion vis-à-vis des items qu’ils
ont conjointement notés (en utilisant la proportion arithmétique), alors cela devrait aussi être le
cas pour d’autres items que a, b, c ont noté mais que d n’a pas encore noté. La prédiction de la
note de d pour ces items est alors le résultat de la résolution de plusieurs équations analogiques.
Notons qu’il est parfaitement possible de considérer des proportions entre items plutôt que des
proportions entre utilisateurs.

Nous avons comparé cet algorithme avec les deux principales approches de filtrage collabo-
ratif : les méthodes par voisinage et les méthodes par factorisation de matrice. Les performances
de notre algorithme sont raisonnables du point de vue de la précision, comparativement aux
méthodes par voisinage. Cependant, sa complexité algorithmique leur est bien supérieure et le
rend inadapté à des usages où le temps de calcul est une des contraintes principales.

Ces observations nous ont conduit à proposer une autre façon d’envisager la recommandation
analogique. Pour cela, nous avons introduit la notion de clones : deux utilisateurs sont des
clones s’ils ont tendance à donner des notes sémantiquement équivalentes. Cependant, cette
équivalence sémantique n’est pas forcément reflétée dans les notes : pour un utilisateur u, une
note de 3 peut représenter une bonne note, alors que pour l’utilisateur v cela représenterait
une mauvaise note, ou juste une note moyenne. Nous avons proposé deux algorithmes qui
suivent cette idée. Nous avons aussi présenté une contribution récente de technique par filtrage
collaboratif motivée par le fait que certains utilisateurs ont tendance à donner des notes plus
élevées que d’autres, et que certains items ont tendance à être notés avec plus de clémence.
Nous avons expliqué par quels aspects ces deux approches se rapprochent et diffèrent l’une de

130

l’autre. Du point de vue des performances, les deux méthodes restent assez similaires avec tout
de même un léger avantage pour les méthodes qui ne reposent pas sur les clones.

Enfin, nous avons proposé un algorithme pour la fouille de proportions analogiques dans des
bases de données partiellement complètes. Cette méthode générale s’applique parfaitement au
problème de la fouille de proportions entre utilisateurs ou entre items, dans une base de notes
telle que celle utilisée dans nos précédentes expérimentations. Notre algorithme est inspiré de
la fouille de règles d’associations et repose sur l’algorithme Apriori pour extraire des analogies
potentielles de manière efficace. Nous avons proposé diverses fonctions de qualité permettant
d’évaluer la qualité d’une proportion, lesquelles sont très proches de la dissimilarité analogique
décrite dans le chapitre 3. Nous avons donné divers exemples de proportions trouvées dans
la base de notes, révélant des proportions entre films. Une des principales observations est
que les meilleures analogies que l’on pouvait extraire de cette base ne mettaient en jeu que
des utilisateurs avec des goûts similaires : les quatre films d’une même proportion étaient
généralement également aimés, ou également rejetés. En ce sens, on peut considérer que les
quatre items d’une même proportion sont en fait des voisins.

Ceci nous permet d’interpréter rétrospectivement les résultats modestes de nos premières
expérimentations sur la prédiction de note. Nous avons vu que les résultats de notre algorithme
étaient proches de ceux des méthodes par voisinage, ce qui s’explique maintenant par le fait
que les meilleures proportions dont l’algorithme disposait mettaient en jeu des voisins. En
quelque sorte, notre algorithme analogique était réduit à une approche par voisinage classique.
Il est clair que dans ce cas là, il n’est pas nécessaire d’avoir recours à la recommandation
analogique, puisque l’on est obligé de payer le prix d’une complexité cubique. Il reste à noter
que ces résultats ont été obtenus sur la base de données MovieLens : on peut toujours supposer
que sur une autre base, les proportions potentielles restent significatives et qu’alors l’usage de
la recommandation analogique reste intéressant.

Pour finir, permettons-nous de mentionner que nos expérimentations sur la recommandation
nous ont conduit à développer un package Python appelé Surprise [Hug17] consacré aux
algorithmes de prédiction de notes, dont les principales fonctionnalités sont les suivantes :

• Les utilisateurs peuvent avoir un contrôle total sur le protocole expérimental mis en
oeuvre. A cet effet, une attention particulière a été attachée à la documentation, que l’on
a essayé de rendre la plus claire et détaillée possible.

• La gestion des jeux de données est facilitée. Certaines bases de données classiques sont
pre-intégrées, telle que les bases MovieLens.

• Divers algorithmes de prédiction sont implémentés, tels que les méthodes de voisinage,
des méthodes par factorisation de matrice, et d’autres. D’autre part, plusieurs mesures de
similarité sont disponibles d’office.

• La création de nouveaux algorithmes de prédiction est extrêmement simple.

• Les procédures de validation croisée sont faciles à implémenter. Une autre fonctionnalité

131

intéressante est la possibilité d’effectuer des recherches exhaustives sur l’espace des
paramètres d’un algorithme, pour déterminer la combinaison de paramètres qui produit
les meilleurs résultats (grid search).

132

C
h

a
p

t
e

r 6
Analogy-preserving functions

Content

Page
6.1 Extending a training set . 135

6.1.1 Previous works on training set extension 136
6.1.2 Analogy preserving functions: a safe way to extend a training set 138

6.2 A complete characterization of analogy preserving functions 139
6.2.1 Preliminary background on Boolean functions 140
6.2.2 The class of Analogy Preserving functions 143
6.2.3 The class of Strongly Analogy Preserving functions. 146

6.3 Beyond Boolean Analogy Preserving functions 149
6.3.1 Approximately AP functions and experiments 149
6.3.2 Extension to nominal attributes . 152
6.3.3 Extension to real-valued functions . 155

We first introduced the analogical inference principle in Chapter 2. This principle states
that if four elements are in analogy, then their classes (or any relevant attribute)
should also be in proportion. This is of course an unsound inference principle, in that

the conclusion does not always follow from the premises. Nonetheless, we have seen in Chapter

133

3 that it can still be used to design some classifiers that we have named conservative and
extended classifiers. Both in [BMD07] and in our experiments in Section 3.3, these classifiers
showed promising results, but were still only used in artificial Boolean classification problems.
Analogical classifiers still had to prove their worth in real-world applications, and this was
precisely the purpose of the previous chapter, where we designed various techniques to apply
analogical inference on a recommendation task.

Unfortunately, the results of a direct application of the analogical inference principle did not
quite live up to our expectations. The conclusion of the last chapter offered a partial explanation
to these modest results, stating that there were just too few decent analogies to be found in the
datasets that we used. Even if this argument is perfectly admissible, we cannot spare ourselves
the very questioning of the analogical inference principle. We say that if four elements are in
proportion then so are their classes... But why should it even be true? Actually, this question
of why will probably be best answered by philosophers, rather than by computer scientists. We
can however answer the question of when: when is the analogical inference principle sound?
Said differently, what are the conditions on the function f so that the inference

a : b :: c : d

f(a) : f(b) :: f(c) : f(d)

is sound? The current chapter will be devoted to this question, in a Boolean setting.

It is actually pretty easy to build up simple problems where the application of our analogical
inference principle leads to disastrous results. Take for example the problem of Figure 6.1. We
have a set S of points (on the left) that belong to two classes that are linearly separable: an
instance is a square if it is on the left side of the space, else it is a circle. A naive application
of the analogical inference principle would lead us to believe that for any element that is in
proportion with a 3-tuple in S3 (i.e. the element is the fourth vertex of a parallelogram that we
can build with three elements in S), then the classes of the four vertices are in proportion. In
the right figure, we show all these elements, along with their estimated classes. The result is
absolutely terrible, because the whole space is covered with instances belonging to both classes.
In this example, an analogical classifier would lead to very poor accuracy results.

But if it is so easy for our analogical inference principle to fail, then why does it work well
in some other cases? Back to Figure 3.6 on page 72, the accuracies of the NAN algorithm were
definitely not as bad as that of the problem we have just seen, and some of them were actually
really good. A first obvious difference between the two experiments is that the one we just
described deals with the arithmetic proportion with real-valued instances, while the other one
deals with Boolean attributes. Does it mean that the analogical inference principle is bound to
fail with the arithmetic proportion? We will probably not be able to completely answer this
question, even though we will provide some insights. We will instead focus on the Boolean
setting which has seemed to be the most promising for analogical inference so far, and from

134

Figure 6.1: A naive application of the analogical inference principle in R2.

there we will derive some links with the real-valued case.
In this chapter, we will provide a complete characterization of functions that are fully

compatible with the analogical inference principle in a Boolean setting. Let us restate the
inference principle in this context to explain what we mean: for any four elements a, b, c, d in Bm,
the analogical inference principle states that if a : b :: c : d holds, then f(a) : f(b) :: f(c) : f(d)
also holds, where f is a Boolean function from Bm to B. We have said it before: this principle
is unsound. The goal of this chapter is to identify all of the functions f that lead to a valid
conclusion, i.e. the functions such that a : b :: c : d =⇒ f(a) : f(b) :: f(c) : f(d) (with some
minimal and natural requirements). We will say that these functions are analogy preserving
(AP).

We will tackle this problem by adopting the general point of view of the training set
extension. In Section 6.1, we will first define the problem of training set extension, describe some
previous works and explain how this problem can motivate the research of analogy preserving
functions. In Section 6.2, we will give a complete and accurate depiction of analogy preserving
functions by showing that the class of analogy preserving functions is the class of (Boolean)
affine functions. This strong theoretical result will be complemented in Section 6.3, where we
will study some functions that derive from AP in various ways. We also address the identification
of AP functions in a nominally valued setting and in a real setting, where we will once again
witness the close links between the Boolean proportion and the arithmetic proportion. This
chapter is an extended version of [CHPR17].

6.1 Extending a training set

We have proved in Chapter 3 that the analogical classification process can be formalized via
two new conceptual steps:

1. First, the analogical extension Ef
S of the training set is computed. This extension is the set

of all elements in the instance space that are in analogy with one 3-tuple in the training

135

set, provided that the associated class equation is solvable. Each element of the extension
is associated with an estimated label: the analogical label denoted f(x).

2. Then, a k-NN algorithm is run, considering that the training set is now the analogical
extension. This k-NN classifier allows to classify all the elements of the universe that are
not in the analogical extension.

But then a natural question arises: why should we stick to a k-NN classifier? The reason why
the k-NN algorithm is used is because in their algorithmic description, extended learners rely
on an analogical dissimilarity, which is strongly related to a distance on the instance space. But
now that we have an equivalent definition of extended classifiers that does not rely explicitly on
an analogical dissimilarity, nothing actually prevents us from using any other classifier such as
a decision tree, a support vector machine, or any of the dozens of learners available out there.
This would lead us to a different paradigm for analogical learning: you first extend the training
set by building the analogical extension, and then you are free to do how you please and use
this extension as a bigger training set with any classifier.

In the next subsection, we will formally describe the problem of training set extension, and
present some previous works on this subject. Then in subsection 6.1.2, we will introduce the
class of analogy preserving functions, which lead to a perfectly sound training set extension in
all cases.

6.1.1 Previous works on training set extension

Machine learning algorithms usually require training on sufficiently large datasets. The problem
of learning from few examples is not new and is referred-to as one-shot learning, where we rely
on a transfer of knowledge from known classes to unknown classes: see for example [LFFP06]
in a pattern recognition context. But other options are available when the number of training
instances is small, and training set extension naturally comes in as a handy tool. Indeed, the
extension of the training set is a simple idea to improve the generalization power of the learner.
The more examples you have, the better you learn! The point is here to add to the training set
S some new examples, and to try do that in a way that preserves the quality of S.

Formally, we start with a set S = {x(i) ∈ Xm|i ∈ [1, n]} of examples (n is supposed to be
small), where x(i) is an element of a Cartesian product Xm = X1 × . . .×Xm. For each element
x(i) ∈ S, we associate a target f(x(i)) = y(i) ∈ Y . In the case of regression y(i) ∈ R, and in the
case of classification y(i) belongs to a finite set.

Actually, only a few methods have been proposed for extending a training set with new
examples, and most of them are specific to a particular application. For example in [CPCAL02],
some techniques are proposed but they are only relevant for character recognition tasks. In the
general case, we may consider that we can build a new example starting from 1, 2 or 3 known
examples.

136

1. With one example, a natural way to proceed is to use the classical neighborhood approach:
given one example (a, f(a)), we can generate a new example (b, f(b)) where b is not
too far from a and f(b) is not too far from f(a). In the classification case, f(b) may be
chosen as f(a). This is the setting in which [CPCAL02] operates, where new characters
are generated by slanting, shrinking, and dilating of training instances.

2. With two examples, the previous neighborhood option is still available and leads to
interpolate the new example from the two given ones. A somehow different option is the
Feature Knockout procedure [WM04], which amounts to build a third example obtained
by modifying a randomly chosen feature of the first example with that of the second
one. This way to proceed enjoys nice properties and appears to be equivalent to the
popular Tikhonov regularization technique in the case of linear regression (also known as
Ridge regression). A related idea is used in a recent proposal [BPR16] which introduces a
measure of oddness with regard to a class that is computed on the basis of pairs made of
two nearest neighbors in the same class; this is equivalent to replacing the two neighbors
by a fictitious representative of the class.

3. With three examples (a, f(a)), (b, f(b)), (c, f(c)), the previous options remain available
and lead to build a fourth example which is somehow in-between the three other ones: we
still have some kind of interpolation. A quite different idea is to extrapolate the fourth
item on the basis of analogical proportions. In this perspective, this fourth element is not
necessarily in the neighborhood of the three others. In fact, this idea has been addressed
in [BMMA07], where the authors generated new examples that had the least analogical
dissimilarity with some 3-tuples in S3. The analogical dissimilarity was an AD between
sequences, and they used it to generate new examples of handwritten characters modeled
using the Freeman coding, which is a sequence of symbols indicating the successive
directions of the pen that are needed to write the character. They used their extended
training set to train an SVM and a Radial Basis Function Network for a classification task,
and results showed that the classifiers had better results when they were trained with the
analogically-extended training set than when they were trained with an extended training
set using other generation techniques (such as those of [CPCAL02]). Note though that
just like the algorithmic description of the extended classifier using analogical dissimilarity,
we here only have an algorithmic description of this training set extension procedure. The
authors in [BMMA07] never explicitly refer to the analogical extension set Ef

S , and this
is normal because the unifying framework between the works in [BMD07] and the works
in [SY05a] were only made later in [HPRS16a], as described in Chapter 3.

As far as we know, the problem of generation of new examples has never been addressed
from a theoretical point of view (except for the Knockout procedure, which is only relevant in
some particular settings), and this is actually quite understandable. Before they can be used
in an extended training set, the new generated examples have to be assigned an estimated

137

label... But how do we estimate these labels? Well there is a name for such problems: it is called
classification, and classification was the actual reason why we wanted to extend the training
set in the first place, so we have a vicious circle here. In some sense, extending a training set
with potentially noisy data amounts to nothing but performing classification on a specific set of
instances.

However, training set extension can still be extremely useful if we are perfectly sure that
the new added examples are sound, i.e. that their estimated labels are the correct ones. In
the next subsection, we will formally define this problem in the context of analogical learning.
Section 6.2 will then be devoted to the identification of the cases where such a perfect extension
is feasible.

6.1.2 Analogy preserving functions: a safe way to extend a training set

In the rest of this chapter, we will address the problem of extending a training set using
analogical proportions in a Boolean setting. Instead of using an analogical dissimilarity like in
[BMMA07], we will use our equivalent functional framework described in Chapter 3, i.e. we
will consider that the extension of the training set S is the analogical extension Ef

S , where f is
the function underlying the ground truth labels. Algorithmically, the generation of Ef

S and the
computation of the analogical labels goes as follows:

1. Add every x ∈ S to Ef
S . Then, for every a, b, c ∈ S such that f(a) : f(b) :: f(c) : y is

solvable and such that there is x ∈ Bm \ S with a : b :: c : x, add x to Ef
S and save the

solution sol(f(a), f(b), f(c)) as a candidate for f(x).
2. Then for every x ∈ Ef∗

S
def= Ef

S \ S, run a majority-vote procedure: set f(x) as the
most common candidate among all solutions sol(f(a), f(b), f(c)) where (a, b, c) is in the
analogical root of x. In case of a tie between two labels, then one of the values is chosen
at random. For elements in S, f(x) is simply set to f(x).

The extension Ef
S is then considered to be an extended training set, where the labels are the

analogical labels, which are not necessarily correct. Indeed for some elements x ∈ Ef∗
S ,

it may happen that f(x) 6= f(x), simply because the analogical inference principle may not
be suitable for the function f . In this chapter, we are precisely interested in the identification
of all Boolean functions f that lead to perfectly sound extensions, i.e. extensions where the
analogical labels f(x) are always equal to the ground truth values f(x). These functions will
be called Analogy preserving functions:

Definition 6.1 (Analogy preserving functions). We say that Ef
S is sound if f(x) = f(x) for

every x ∈ Ef∗
S . In other words, Ef

S is sound if ωf
S

def= P
(
f(x) = f(x)

∣∣ x ∈ Ef∗
S

)
= 1.

Also, if Ef
S is sound for all S ⊆ Bm, we say that f is Analogy Preserving (AP).

Proposition 6.1 gives an equivalent definition of AP functions, that will be more useful to
convey our proofs:

138

Proposition 6.1. A function f : Bm → B is AP iff for every a, b, c, d ∈ Bm, f suits the
following requirement:a : b :: c : d and

solvable(f(a), f(b), f(c))
=⇒ sol (f(a), f(b), f(c)) = f(d).

Proof. If f fulfills this requirement, then it is clear from the algorithmic description given above
that for any S ⊆ Bm and x ∈ Ef∗

S , all the candidates for f(x) are equal to f(x), so f(x) will
be invariably set to f(x) by the majority-vote procedure, which makes f AP.

If f does not suit this requirement, then there exist a, b, c, and d ∈ Bm such that a : b :: c : d
but the solution sol(f(a), f(b), f(c)) is not equal to f(d). Taking S0 = {a, b, c} we obtain
Ef∗

S0
= {d}, and since f(d) = sol(f(a), f(b), f(c)) 6= f(d), then Ef

S0
is not sound so f is not

AP.

It should be clear from Proposition 6.1 that looking for the functions that lead to a perfect
extension (i.e. the AP functions) is equivalent to looking for the functions that are compatible
with the analogical inference principle, which was the first purpose of this chapter. Indeed,
saying that sol (f(a), f(b), f(c)) = f(d) is equivalent to saying that f(a) : f(b) :: f(c) : f(d).

Let us note that many natural functions are not AP. Consider for example the binary
function f(x1, x2) = x1 ∧ x2, along with a, b, c, d ∈ B2 in Table 6.1. We have a : b :: c : d and
f(a) : f(b) :: f(c) : y is solvable, yet the solution is sol(f(a), f(b), f(c)) = 0, which is different
from f(d) = 1 so f is not AP. This actually comes from the fact that analogical proportions
are not stable by conjunction combination. It is also the case for the disjunction [PR14a].

x1 x2 f(·)

a 0 0 0
b 0 1 0
c 1 0 0
d 1 1 1

Table 6.1: f(x1, x2) = x1 ∧ x2 is not AP.

The following section will be devoted to a complete characterization of AP functions in a
Boolean setting.

6.2 A complete characterization of analogy preserving
functions

We will show in this section that the class of AP functions is the class of affine functions, which
will be defined later. To complete our proofs, we will first need to recall some background

139

knowledge on Boolean algebra and Boolean functions, which is the purpose of the next subsection.

6.2.1 Preliminary background on Boolean functions

Our first step will be to use a unifying notation for all of the Boolean functions, and to adopt
an algebraic point of view. In the following, the AND operator ‘∧’ will be denoted ‘·’, and ‘+’
will now denote the modulo-2 addition, equivalent to the XOR operator. We shall make use of
the polynomial representation of Boolean functions, that we now describe. A monomial is a
term of the form:

xI =
∏
i∈I

xi,

for some possibly empty finite set of positive integers I, where |I| is called the degree of xI .
Simply put, a monomial is a conjunction of variables. We take the convention that 1 is the
empty monomial x∅. A polynomial is a sum of monomials and its degree is the largest degree
of its monomials. It is well-known [Sto36, Zhe27] that any function f : Bm → B is uniquely
represented by a polynomial, also called the Algebraic Normal Form (ANF) of f :

f(x1, . . . , xm) =
∑

I⊆{1,...,m}
aI · xI ,

where each aI belongs to B. The degree of a function f : Bm → B, denoted d(f), is defined as
the degree of the unique polynomial representing f . In the following, we will often refer to f as
both a function object and as the associated ANF.

Example:
To illustrate this concept, here are the ANF of some common Boolean functions in B2 or B:

• AND(x1, x2) = x1 · x2;

• OR(x1, x2) = x1 + x2 + x1 · x2;

• XOR(x1, x2) = x1 + x2;

• NEG(x1) = x1 + 1;

• The constant function f(x1, x2) = 0 is represented by a∅ ·x∅ with a∅ = 0. The constant
function f(x1, x2) = 1 is also represented by a∅ · x∅, but this time a∅ = 1.

Another key concept of our proof is the notion of essential and inessential variables. For
k ∈ [1, m], α ∈ Bm, and c ∈ B, let αc

k be the tuple in Bm whose i-th component is set to c

if i = k, and to αi otherwise. A variable xi is said to be inessential in f : Bm → B if for all
α ∈ Bm and c ∈ B, f(αc

i) = f(α¬c
i). Otherwise, xi is said to be essential in f , or that f

depends on xi. In simple terms, an essential variable is a variable that has the ability to change
the value of f . In fact, it can be shown that if xi is an inessential variable for a function f ,
then xi does not appear in the ANF of f . For example in f(x1, x2, x3) = x1 · x3, x1 and x3 are

140

essential variables while x2 is inessential. We denote by ess(f) the number of essential variables
of f (or essential arity).

Two functions f : Bm → B and g : Bn → B are said to be equivalent if there exist two
mappings σ : [1, n]→ [1, m] and σ′ : [1, m]→ [1, n] such that:

f(x1, . . . , xm) = g(xσ(1), . . . , xσ(n)) and

g(x1, . . . , xn) = f(xσ′(1), . . . , xσ′(m)).

In other words, f and g are equivalent if one can be obtained from the other by permutation of
variables, addition of inessential variables, or identification of inessential variables. Another
point of view is to consider that two functions are equivalent if their ANF is the same,
up to the renaming of variables. For example, f(x1, x2, x3) = x1 · x3 and g(x1, x2) = x1 ·
x2 are equivalent functions. Two equivalent functions necessarily have the same number of
essential variables. For further background on the theory of essential variables of functions, see
[CP08, CL09, Sal63, Wil96]. In our demonstrations, we will use the following property:

Property 6.1. Let f : Bm → B and g : Bn → B be equivalent functions. Then f is AP if and
only if g is AP.

This can be verified by noting that as the analogy in Bm is defined in a component-wise
fashion, the permutation of variables has no effect on the equation and its solution. Also,
manipulation of inessential variables does not change the value of the function f , and thus the
AP property still holds.

We now define the concept of section of a function, also known as a restriction, or
equivalently as the result of partial application in computer science. Let f be a function
Bm → B, and (I, J) be a partition of [1, m]. With x ∈ Bm and α ∈ B|I|, the I-section (or simply
section) fα

I : B|J | → B is the function that is obtained after setting all variables in I to the
components of α. More formally, let us define (xα

I) ∈ Bm as follows:

(xα
I)i

def= xi if i /∈ I

(xα
I)i

def= αj where j is the index of i in I.

Concretely, xα
I is nothing but the vector x where the components at the indices in I have been

replaced by the successive components of α. For instance, with m = 5, x = (0, 1, 1, 0, 0), I =
{1, 3, 4} and α = (1, 0, 0), we have (xα

I) = (1, 1, 0, 0, 0). The I-section fα
I is the function from

B|J | → B defined as:
∀y ∈ B|J |, fα

I (y) def= f((xα
I)y

J).

The arity of fα
I is |J | and is always less than the arity of f , and ess(fα

I) ≤ ess(f). As an

141

example, let us consider the function f : B3 → B such as:

f(x1, x2, x3) = x1 · x2 · x3 + x1 · x2 + x3.

The section f
(1,0)
{1,3} is a function from B to B and is defined by f

(1,0)
{1,3}(x2) = x2. A main result

about sections that will be used in other proofs is stated in Property 6.2:

Property 6.2. If f : Bm → B is AP, then every section of f is also AP.

Proof. This statement is actually pretty obvious but sadly, its proof is quite ugly. Let f be
an AP function from Bm to B, (I, J) a partition of [1, m], and α ∈ B|I|. We will consider the
section fα

I . Let us now assume that we have a, b, c, d ∈ B|J | with the two following properties:

a : b :: c : d

solvable(fα
I (a), fα

I (b), fα
I (c)).

We want to prove that this implies that sol(fα
I (a), fα

I (b), fα
I (c)) = fα

I (d). First, let us note
that the following property holds:

∀a, b, c, d ∈ B|J |, J ([1, m], x ∈ Bm, a : b :: c : d =⇒ xa
J : xb

J :: xc
J : xd

J ,

simply due to the fact that x : x :: x : x always holds.
Regarding the first condition a : b :: c : d, since ∀x ∈ Bm, we have that xα

I : xα
I :: xα

I : xα
I ,

and we deduce: (xα
I)a

J : (xα
I)b

J :: (xα
I)c

J : (xα
I)d

J . By definition fα
I (y) = f((xα

I)y
J), and the second

condition is just:
solvable(f((xα

I)a
J), f((xα

I)b
J), f((xα

I)c
J)).

Since f is AP, we have that sol(f((xα
I)a

J), f((xα
I)b

J), f((xα
I)c

J)) = f((xα
I)d

J) def= fα
I (d), which is

precisely the condition for fα
I to be AP.

This section was quite dense so let us recap what we have seen. We described functions by
their ANF, which is a polynomial representation. This ANF allowed us to define the degree of
a function, which has a similar meaning to the notion of degree for real valued polynomials. We
also defined the notion of equivalent functions, and showed that two equivalent functions are
either both AP, or none of them are. Finally, we defined the section of a function which is a
function of lower arity, and saw that sectioning an AP function leads to another AP function.

We are now in a position to examine some examples of AP functions. We will first show
that any affine function is AP, and we will then prove that these functions are actually the only
AP functions.

142

6.2.2 The class of Analogy Preserving functions

Let us first define the class of affine functions:

Definition 6.2 (Affine functions). The class L of affine functions is the set of functions f of
the form:

f(x1, . . . , xm) = α1 · x1 + . . . + αm · xm + α0,

where α0, . . . , αm are elements of B. We also write:

f(x) = α · x + α0,

where α ∈ Bm and · is here a scalar product. If α0 = 0, we say that f is linear.

We used the polynomial representation of the function f , and we can see that L is precisely
the set of functions whose degree is less than or equal to 1. Informally, a linear function is a
function that computes the exclusive OR between any subset of variables. The class L of affine
functions is then the set of all linear functions along with their negations (because f + 1 =
¬f). A particular case of affine functions are the projections or dictator functions, defined
by f(x) = xi + α0. These functions will be of interest in the next subsection.

Now, we will prove that every affine function is AP:

Proposition 6.2. Any affine function f is AP.

Proof. Let f : Bm → B ∈ L. Using the obvious fact that f is AP iff f + 1 = ¬f is AP, we
may assume without loss of generality that α = 0. Also, considering that f essentially depends
on n ≤ m variables (n is then the number of αi equal to 1), f is equivalent to the function
g : Bn → B defined by g(x1, · · · , xn) = x1 + · · ·+ xn. Using Property 6.1, we just need to prove
that g is AP to show that f is also AP.

This function g has the remarkable property1 that changing the value of any xi changes the
value of g: ∀i, g(x1, · · · , xi, · · · , xn) = ¬g(x1, · · · ,¬xi, · · · , xn), as illustrated on Figure 6.2.
From this property, it is easy to see that:

∀x, x′ ∈ Bn, g(x) = g(x′) ⇐⇒ H(x, x′) is even,

where H is the Hamming distance function.
Let a, b, c, d ∈ Bn such that the two hypotheses in the definition of AP are satisfied, i.e.

a : b :: c : d and g(a) : g(b) :: g(c) : y is solvable.

1This is the reason why affine functions lead to classification problems that are, in fact, highly non linearly
separable.

143

This equation is solvable in two possible cases: either g(a) = g(b), or g(a) = g(c). This
can be verified in Table 2.2 on page 34, or by referring to Proposition 2.2. Also, we know
from Property 2.2 that as a : b :: c : d, we have H(a, b) = H(c, d) and H(a, c) = H(b, d).
Therefore, we either are in one of the two following cases:

1. g(a) = g(b), and in this case the solution is sol(g(a), g(b), g(c)) = g(c). As g(a) = g(b), then
H(a, b) is even, and so is H(c, d). Then, g(c) = g(d), and thus sol(g(a), g(b), g(c)) = g(d).

2. g(a) = g(c), and in this case the solution is sol(g(a), g(b), g(c)) = g(b). As g(a) = g(c), then
H(a, c) is even, and so is H(b, d). Then g(b) = g(d), and thus sol(g(a), g(b), g(c)) = g(d).

In both cases we have sol(g(a), g(b), g(c)) = g(d), thus showing that g is AP. As g and f

are equivalent functions, then any function f ∈ L is AP.

0

1

1

0

1

0

0

1

Figure 6.2: The labels as determined by the affine function g(x1, x2, x3) = x1 + x2 + x3. Each 1
is surrounded by three 0, and each 0 is surrounded by three 1. Note that solving any (solvable)
analogical equation leads to the correct solution: this is because g is AP. Also, we see that we
have here a classification problem that is highly non-linearly separable.

Proposition 6.2 can now retrospectively explain the results of Figure 3.6 on page 72 for the
two functions f1 and f2, which are both instances of affine functions. We saw that for these
two functions, ωf

S (defined as the proportion of elements x in Ef∗
S for which f(x) = f(x)) was

always equal to 1. This result is now obvious and directly comes from the fact that both f1

and f2 are actually analogy preserving functions: f1 was a projection function while f2 was a
general affine function.

We now know that every affine function is AP. We will here give a stronger result: the affine
functions are the only AP functions. In the previous subsection, we introduced the ANF of
Boolean functions and also defined their degree. We also mentioned that the class of functions
with degree at most 1 is exactly the class L of affine functions, which are AP. We will show
that the class of AP functions is the class of affine functions by proving that if a function f is
AP, then d(f) ≤ 1. Let us first consider the case where d(f) = 2:

Property 6.3. Let f : Bm → B with d(f) = 2. f is not AP.

144

Proof. Let us consider f with d(f) = 2 and ess(f) ≥ 2. We denote xI one of the monomial of
f of degree 2. We consider the section f0

J , where J = [1, m] \ I, and 0 denotes the constant
0 vector in B|J |. All variables that are not part of the monomial xI have been set to 0. This
section f0

J has a unique monomial of degree 2 (namely xI) and ess(f) = 2. f0
J is necessarily

equivalent to one of the following functions:
f1(x1, x2) = x1 · x2 + α0

f2(x1, x2) = x1 · x2 + x1 + α0

f3(x1, x2) = x1 · x2 + x1 + x2 + α0.

To see that none of these functions are AP, consider Table 6.2 which gives the values of f1, f2

and f3 (with α0 = 0) for the 4-tuple (a, b, c, d). It is clear that the counter-example (a, b, c, d)

x1 x2 f1 f2 f3

a 0 0 0 0 0
b 0 1 0 0 1
c 1 0 0 1 1
d 1 1 1 0 1

Table 6.2: Examples for f1, f2, f3 showing that they are not AP.

shows that f1 is not AP because we have a : b :: c : d and the equation f1(a) : f1(b) :: f(c) : y

is solvable, but the solution is 0 while f(d) is 1. Similarly, (a, b, c, d) is also a counter-example
for f2 and (d, c, b, a) is a counter-example for f3.

As f1, f2, f3 are not AP, f0
J cannot be AP either because it is equivalent to one of the fi.

As f0
J is a section of f , f cannot be AP.

All we need now is a property that could allow us to decrease the degree of a function
without changing the fact that it is AP. This is the purpose of Property 6.4.

Property 6.4. Let f : Bm → B be a function with d(f) = k ≥ 2. Then there is a section g of
f with d(g) = k − 1.

Proof. Suppose that d(f) = k ≥ 2, and let xI be a monomial of f of maximum degree, i.e.
|I| = k. Here again, consider the section g = f0

J where J = [1, m] \ I and 0 denotes the constant
0 vector in B|J |. It is clear that g is represented by a polynomial that has a unique monomial of
maximal degree k, namely xI , and maybe some other monomials of degree strictly less than k.
Let us choose any i ∈ I: then g′ = g1

{i} is a section of g of degree (and arity) k − 1. As g′ is a
section of g, it is also a section of f which completes the proof.

We are now in position to prove our main result.

145

Proposition 6.3. The class of AP functions is the class L of affine functions.

Proof. We have seen that every affine function is AP, i.e. if d(f) ≤ 1, then f ∈ AP . On the
other hand, Property 6.3 tells us that if d(f) = 2, then f /∈ AP . So suppose that d(f) ≥ 3. By
successive applications of Property 6.4, it follows that there is a section g of f with d(g) = 2.

As g is not AP, then f is not AP either. All in all, if d(f) ≥ 2 then f is not AP, so the class
of AP functions is L.

In the end, we have proved that the class of functions that ensure a sound analogical
extension of any training set S ⊆ Bm is the class of affine functions L. If the function
is not affine, then there exists a training set S ⊆ Bm for which ES(f) is unsound. We can now
finally give a definite answer to our initial problem: a function f is compatible with the
analogical inference principle if and only if f is affine.

In the next subsection, we will focus on some AP functions that are still compatible with
the analogical inference principle, but in a stronger sense.

6.2.3 The class of Strongly Analogy Preserving functions.

Let us come back to the analogical inference principle for a moment, which states that if we
have a : b :: c : d, then we should also have f(a) : f(b) :: f(c) : f(d):

a : b :: c : d

f(a) : f(b) :: f(c) : f(d)

Something we have overlooked so far but that is of importance, is that implicitly this inference
principle requires that the class equation f(a) : f(b) :: f(c) : y is solvable as soon as we
have a : b :: c : d. Indeed if the equation is not solvable, then we simply cannot have
f(a) : f(b) :: f(c) : f(d). Therefore, a more explicit writing of the analogical inference principle
is as follows:

Inference Principle A
a : b :: c : d

solvable(f(a), f(b), f(c))
f(a) : f(b) :: f(c) : f(d)

Yet, in the end, the ultimate use of this principle is to infer the value of f(d), and we can
only do that by the actual solving of the equation f(a) : f(b) :: f(c) : y (remember that when
we build the analogical extension, we always require the class equation to be solvable). This was
also the case when we were dealing with the algorithmic description of the conservative classifier
(see e.g. Algorithm 1). So if the equation is not solvable, we are unable to infer anything
about f(d). This is why the AP functions are defined as the functions such that we have
f(a) : f(b) :: f(c) : f(d) provided that a : b :: c : d stands and that f(a) : f(b) :: f(c) : y is

146

solvable. With regard to this, we can say that the class of AP functions is the class of functions
that allow the following inference principle to be sound:

Inference principle B
a : b :: c : d

solvable(f(a), f(b), f(c))

f(a) : f(b) :: f(c) : f(d)

This one is the inference principle that is actually useful in practice: if the
equation is not solvable then we simply try another 4-tuple. The first one is too restrictive
on the function f because it requires that a : b :: c : d =⇒ solvable(f(a), f(b), f(c)), and in
practice this requirement is not needed.

We have shown that the AP functions are those that lead the inference principle B to be
sound. For the sake of completeness however, we will also identify the functions that lead the
inference principle A to be sound. These functions will be called Strongly Analogy Preserving
functions (SAP):

Definition 6.3 (Strongly analogy preserving functions). A function f is Strongly Analogy
Preserving (SAP) if:

∀a, b, c, d ∈ Bm, a : b :: c : d =⇒

solvable(f(a), f(b), f(c))

f(a) : f(b) :: f(c) : f(d).

We will show that the SAP functions are the dictator functions, i.e. functions of the form
f(x) = xi + α0 for some i ∈ [1, m]. Naturally, these are a subclass of affine functions, because
every SAP function is necessarily AP. In Property 6.5, we prove that every dictator function is
SAP.

Property 6.5. Let f be a dictator function, i.e. an affine function of the form:

f(x1, x2, · · · , xm) = xi + α0,

where i ∈ [1, m] and α0 ∈ B. Then f is SAP.

Proof. Let f be a dictator function: f(x) = xi (we consider α0 to be 0 for now). Consider
a, b, c, d ∈ Bm such that a : b :: c : d.

As the analogy is defined component-wise, this means that we have in particular ai : bi ::
ci : di, which is strictly equivalent to f(a) : f(b) :: f(c) : f(d), so f is SAP. The case where
α0 = 1 is derived in the same obvious way.

It is also easy to show that the two constant functions are SAP. We now show that the
dictators and the constant functions are the only SAP functions:

147

Proposition 6.4. The class of SAP functions is the class of dictators and constant functions.

Proof. We already know that a SAP function is an AP function, so a SAP function necessarily
is affine. Consider a function f that is affine but that is neither a dictator function nor a
constant, i.e. f is of the form:

f(x) = α1 · x1 + · · ·+ αm · xm + α0,

with at least αi = 1 and αj = 1 for two non-zero indices i and j with i 6= j. Without loss of
generality, we will assume that α0 = 0. Consider now the 4-tuple (a, b, c, d) such that:

• ak = 0 for all k 6= i and k 6= j (ai = aj = 1)

• bk = 0 for all k 6= i (bi = 1)

• ck = 0 for all k 6= j (cj = 1)

• dk = 0 for all k.
The 4-tuple is summarized in Table 6.3, where we clearly see that we have a : b :: c : d, but

the equation f(a) : f(b) :: f(c) : y is not solvable, so f is not SAP, QED.

xi xj f(·)

a 1 1 0
b 1 0 1
c 0 1 1
d 0 0 0

Table 6.3: f is not SAP because f(a) : f(b) :: f(c) : y is not solvable.

This section was quite dense, so let us recap a bit what we have seen so far. We have given
two different instances of the analogical inference principle:

Inference Principle A
a : b :: c : d

solvable(f(a), f(b), f(c))
f(a) : f(b) :: f(c) : f(d)

and
Inference principle B

a : b :: c : d
solvable(f(a), f(b), f(c))

f(a) : f(b) :: f(c) : f(d)

148

It is obvious that the second version (B) is less restrictive on the function f , and it is the
one that is useful in practice. In Section 6.2.2, we showed that the inference principle B is sound
if and only if f is an affine Boolean function. We also showed in Section 6.2.3 that the inference
principle A is sound for dictator functions (a particular case of affine functions).

These are strong theoretical results, but obviously real-world problems are not limited to
the Boolean case, and the function f underlying the labels of a classification problem is almost
never completely affine. We will address these issues in the next section.

6.3 Beyond Boolean Analogy Preserving functions

The aim of this section will be to complement the theoretical results of Section 6.2. We will first
stay in the Boolean setting in Section 6.3.1 and empirically study the behaviour of functions
that are close from being AP. In Sections 6.3.2 and 6.3.3, we will derive some more theoretical
results about AP functions when dealing with nominal values and with real values.

6.3.1 Approximately AP functions and experiments

While the theoretical result of Proposition 6.3 is interesting on its own, it is obvious that purely
affine functions are not representative of what would be encountered in a real-world Boolean
environment. This leads to the following question: what remains of the quality of the analogical
extension ES(f) when f deviates from being AP in different ways? We will here investigate
this question.

ε-close functions from L′

Recall that for a given training S, we defined ωf
S as the quality of the extension Ef

S with
ωf

S
def= P

(
f(x) = f(x)

∣∣ x ∈ Ef∗
S

)
. By definition, ωf

S = 1 for all S iff f is AP. What we want to
know now is how ωf

S is affected when f is not a purely affine function. What we mean by not
purely affine is that f is at a distance at most ε from the set of affine functions. We will define
these notions now.

Given two Boolean functions f and g, we define their distance dist(f, g) def= P (f(x) 6= g(x)),
where P is the uniform distribution over Bm. Here, x ∈ Bm is also considered as a random
variable.

Definition 6.4 (ε-close functions). We say that f is ε-close to g if dist(f, g) ≤ ε, and that f

is ε-close to a set of functions Σ if ∃g ∈ Σ such that f is ε-close to g.

We want to study here the value of ωf
S when f is ε-close from L, the set of affine functions.

Note however that thanks to the code-independency property of the Boolean proportion (1
and 0 play symmetric roles), we have that for any S and any f , ωf

S = ω¬f
S . As the set of affine

149

Figure 6.3: ω for ε-close functions to L.

functions is the set of linear functions and their negations, it is enough to study the value
of ωf

S when f is ε-close to L′, the set of linear functions.
This question is clearly of interest, because in practice there exists some statistical test

allowing the practitioner to query a partially-known function f to find out if it is ε-close to L′.
This test is the BLR test [BLR93], whose steps are as follows:

• Choose randomly and independently x and y in Bm.

• Compute f(x + y) and f(x) + f(y).
• If f(x + y) = f(x) + f(y), return Accept.

The main useful result is given in Property 6.6:

Property 6.6. If BLR accepts f with a probability at least 1− ε, then f is ε-close to the set
of linear functions L′.

So if we can exhibit a clear probabilistic dependence between ωf
S and ε, this would allow

the practitioner to have guarantees about ωf
S because we can know ε from the BLR test.

Let us first consider the following experiment. Starting from a linear function g : B8 → B
defined as g(x) = x1 + · · · + x8, we introduce some noise by negating its output g(x) with
probability ε. We thus obtain some functions fε that are ε-close to L′, and report the value of
ωfε

S averaged over 50 experiments. Figure 6.3 gives an illustration of the variation of ωfε

S (simply
denoted ω) against ε for different sizes of S (as a percentage of |Bm|). Other experiments
have been carried out with other affine functions (i.e. with less essential variables or different
arity), leading to very similar results. As a side note, ε only needs to be taken in [0, 1

2], because
fε = ¬f1−ε and for any f , we have ωf

S = ω¬f
S .

When ε = 0, i.e. when fε is AP, we get ω = 1 as expected from Proposition 6.3. We
observe an almost linear decrease in ω as ε grows to 0.3 then leading to a plateau where ω = 1

2 ,
indicating that the analogical labels f(x) are more or less random. Moreover, ω appears to

150

ω βS

Monk 1 .96 .73
Monk 2 .96 .69
Monk 3 .98 .87

Table 6.4: ω and β over the Monk’s problems.

decrease faster for small training set S. This is due to the fact that the analogical labels f(x)
are the result of a majority-vote procedure among the candidate solutions that one can build
from S, and the number of candidates becomes smaller as | S | decreases, thus altering the
quality of the prediction.

We only have an empirical study here. Ultimately, it would be very interesting to prove a
result like

P (ωf
S ≥ η) > 1− δ,

where η ∈ [0, 1] and δ ∈ [0, 1
2] are parameters depending on ε and | S |. Such a result would be

strongly linked to the PAC learning theory [Val84], and is the object of current research.

Other non-AP functions
We have studied so far the variation of ωf

S when f deviates from the set of affine functions.
We now focus on another point: the variation of ωf

S when f deviates from being AP in a
different way. Let us note the following point: even though a function f is far from being AP,
the quality ωf

S of the extension Ef
S may still be very high. To illustrate this, let us define the

value β which is an indicator of how far is f from being completely AP. For each x ∈ Ef∗
S , we

define βx as the proportion of candidates sol(f(a), f(b), f(c)) (with (a, b, c) ∈ Rf
S(x)) that

led to the correct label, i.e. the proportion of candidate solutions that are equal to f(x). β is
defined as the average of all the βx. Obviously, a function f is AP iff β = 1 for all S, i.e. iff
βx = 1 for all x ∈ Ef∗

S and for all S.
Table 6.4 reports the values of ω and β over three datasets from the UCI repository, namely

the three Monk’s problems2 [Lic13]. Results are averaged over 100 experiments, where the
training set S is each time randomly sampled with a size of 30% of the universe of possible
instances.

We observe that for each dataset, β is significantly lower than 1. This suggests that the
Boolean functions underlying these datasets are highly not AP, because on average, there is a
high proportion (around 20%) of candidates that predicted the wrong label. However, ω is not
lower than 96%, implying extensions of very high quality. This is where the majority-vote
comes into play: in some cases, it may be able to compensate for the predictors that were

2As these datasets are nominally-valued, they have been binarized.

151

wrong. This is what happens here in 96%, 96% and 98% of the cases respectively. Here again,
obtaining theoretical guarantees about the majority-vote procedure is currently investigated.

In the next subsection, we will extend our theoretical results about Boolean AP functions
to a more general setting where instances are nominally valued.

6.3.2 Extension to nominal attributes

When it comes to real life applications, it is quite rare to get a purely Boolean dataset. It is
generally the case that the dataset is a mix between Boolean attributes and nominal attributes
taking their values in finite sets. For instance, an attribute color typically takes its values in, let
us say, { red, green, blue }. Unfortunately, on this set of values for attribute color, there is no
structure, no order and no known operator. Nevertheless, there is still a way to deal with such
attributes within the analogical framework, and to characterize AP functions in such settings.
This is what we will investigate in this subsection.

We have already seen in Chapter 2 that we can define an analogical proportion on a set X

by restricting the accepted analogical patterns to a : b :: a : b and a : a :: b : b. Formally, an
analogy A over X is a subset of X4 defined as:

A
def= { (a, a, b, b) | a, b ∈ X } ∪ { (a, b, a, b) | a, b ∈ X } .

Back to the color attribute, it means that we consider red : blue :: red : blue as a valid
analogical proportion but red : blue :: red : green is not valid. We can easily extend component-
wise this analogy to a Cartesian product Xm =

∏m
i=1 Xi which is now equipped with an

analogical relation. In classification, this allows to deal with any kind of nominal attributes.
In this setting, a binary classification function f is a function from Xm =

∏m
i=1 Xi to B. The

question we want to address here is the same as that of Section 6.2: we want to characterize all
the functions f that lead to a perfectly sound analogical extension. Unfortunately, we cannot
turn to the previous framework because the Cartesian product Xm is made of distinct sets and
is not a power of B anymore. So we will not be able to entirely identify these functions, simply
because we do not even know how to write them. When dealing with Boolean functions we
used an algebraic point of view that allowed us to write the functions in their Algebraic Normal
Form, and we identified the AP functions as those that have a particular ANF. But this will
not be possible here, because there is no algebraic structure on the Cartesian product that is
the domain of our functions.

Nonetheless, we will still find close links between the AP Boolean functions and the AP
functions of our current setting, and these links are based on the binarization of the nominal
attributes. Indeed, any nominal attribute with k values can be binarized into k Boolean
attributes. We can also choose k− 1 attributes, or some other fancy binarization procedure, but
we will stick to the simplest one: binarizing the color attribute leads to three binary attributes

152

(is_red, is_green, is_blue) so that red is coded as (1, 0, 0), green is coded as (0, 1, 0) and blue

is coded as (0, 0, 1). Obviously, the k Boolean attributes are not independent: for example
(1, 1, 1) is not a valid value. More formally, let us denote bin this injective embedding going
from Xi = {v1, . . . , vk} to Bk:

bin(vi)
def= (0, . . . , 0, 1, 0, . . . 0),

where 1 is at position i. So if we have a set of nominal attributes x1, . . . , xm where xi takes its
values in a finite set Xi, the Cartesian product

∏m
i=1 Xi can be mapped into the set

∏m
i=1 B|Xi|

by applying the injective embedding bin in a component-wise fashion:

bin(
m∏

i=1
Xi)

def=
m∏

i=1
bin(Xi).

From the very definition of this embedding, we have the following immediate and obvious
property:

Property 6.7. For any a, b, c, d ∈ Xm =
∏m

i=1 Xi,

a : b :: c : d ⇐⇒ bin(a) : bin(b) :: bin(c) : bin(d).

Note that the proportion a : b :: c : d holds in Xm while the proportion bin(a) : bin(b) ::
bin(c) : bin(d) is a usual Boolean proportion that holds in

∏m
i=1 B|Xi|. Now, every function f

from
∏n

i=1 Xi to B can be associated to a partial Boolean function f b from
∏m

i=1 B|Xi| to B
where f b is defined as follows:

f b(bin(x)) def= f(x).

As the initial nominal universe
∏m

i=1 Xi has been compiled into a Boolean universe, it is
tempting to consider the framework that has been developed in Section 6.2. Unfortunately,
the whole set

∏m
i=1 B|Xi| is not the exact image of

∏m
i=1 Xi: it is bigger, and some elements in∏m

i=1 B|Xi| are not the image of an element of
∏m

i=1 Xi using bin. Ultimately, the domain of
f b is just bin(

∏m
i=1 Xi), which is included in

∏m
i=1 B|Xi|. This is why f b is considered to be a

partial function.

Nevertheless, the AP property is still relevant for functions that are only partially defined:
a partially defined function that always leads to a perfectly sound analogical extension for any
training set S will also be said to be Analogy Preserving, and will be called PAP for Partial AP.
Just like in Section 6.2, a natural way to characterize PAP functions is given in Definition 6.5:

Definition 6.5 (Partial analogy preserving functions). A partial function f b is Analogy

153

Preserving (PAP) if for all a, b, c, d ∈ dom(f b):

a : b :: c : d and

solvable(f b(a), f b(b), f b(c))
=⇒ sol(f b(a), f b(b), f b(c)) = f b(d).

Proposition 6.5 will provide us with the link between f and f b, when one of them is AP:

Proposition 6.5. Let f be a function from
∏n

i=1 Xi to B. Then f is AP if and only if f b is
PAP.

Proof. Let us assume that f is AP and let be 4 elements belonging to the domain of f b:
bin(a), bin(b), bin(c), bin(d) ∈ bin(

∏m
i=1 Xi) such that:

bin(a) : bin(b) :: bin(c) : bin(d) and

solvable(f b(bin(a)), f b(bin(b)), f b(bin(c))).

Thanks to Property 6.7, we have seen that in this case we also have a : b :: c : d. Since
by definition f(x) = f b(bin(x)), the second condition simply is solvable(f(a), f(b), f(c)). As
f is AP, sol(f(a), f(b), f(c)) = f(d), and f(d) = f b(bin(d)). So in the end, we have that
sol((f b(a), f b(b), f b(c)) = f b(bin(d)), which proves that f b is PAP.

Let us now focus on the reverse implication. Consider a PAP function f b and 4 elements
a, b, c, d ∈

∏m
i=1 Xi such that:

a : b :: c : d and

solvable(f(a), f(b), f(c)).

Thanks again to Property 6.7, bin(a) : bin(b) :: bin(c) : bin(d) holds. The second condition
is just solvable(f b(bin(a)), f b(bin(b)), f b(bin(c))) because by definition f(x) = f b(bin(x)).
Because f b is PAP, we have that sol(f b(bin(a)), f b(bin(b)), f b(bin(c))) = f b(bin(d)). As
f b(bin(d)) = f(d) by definition, we have that f is AP.

In the end, the notion of AP function is smoothly transferable to the notion of PAP function.
This result is only purely theoretical, and sadly there is not much more we can extract from
it for practical use. Proposition 6.5 tells us that when dealing with nominal attributes, if the
function underlying the ground truth labels is affine once the dataset has been binarized, then
we can safely extend our training set. As there are no common operators on the set

∏n
i=1 Xi,

we are not able to give a more accurate characterization of AP functions in such settings.
In the next subsection, however, we will see that in a real setting the AP functions are also

precisely the affine (real) functions.

154

6.3.3 Extension to real-valued functions

Section 6.2 was devoted to the identification of Boolean functions that were fully compatible
with the analogical inference principle, and we saw that these functions are the Boolean affine
functions. One may wonder what would these functions be in a real setting, i.e. using functions
from Rm to R with the arithmetic proportion?

We already know that the Boolean proportion and the arithmetic proportion are really
close. Once again, we will witness this close bond: in a real setting, the affine functions are also
AP. Luckily, the proof is a lot easier to derive. Let us first (re)define the arithmetic proportion:

Property 6.8. Four elements a, b, c, d ∈ Rm are in arithmetic proportion if d = c− a + b.
Also, for any a, b, c ∈ R, the equation a : b :: c : y is always solvable and the solution is

sol(a, b, c) = c− a + b.

Please note that here, + is the regular addition operator (not the modulo-2 addition as in
the previous sections).

Definition 6.6. Real affine functions A real function f from Rm to R is affine if f is of the
form:

f(x) = α · x + α0,

where α ∈ Rm, α0 = f(0) ∈ R, and · is here the usual dot product.

Proposition 6.6. All real affine functions are AP (w.r.t. the the arithmetic proportion)

Proof. A real function f is AP iff for all a, b, c, d ∈ Rm,

a : b :: c : d =⇒ sol(f(a), f(b), f(c)) = f(d).

Equivalently, thanks to property 6.8, f is AP iff:

d = c− a + b =⇒ f(c)− f(a) + f(b) = f(c− a + b).

Let f be an affine function. ∀a, b, c ∈ Rm,

f(c− a + b) = α · (c− a + b) + α0

= α · c−α · a + α · b + α0

= f(c)− f(a) + f(b),

which means that f is AP.

Proposition 6.6 is illustrated in Figure 6.4.
In contrast with the Boolean setting, the equivalence between AP functions and affine

functions does not hold in the real case. It is indeed possible to find functions f : R → R

155

Figure 6.4: When f is affine, sol(f(a), f(b), f(c)) = f(d).

satisfying f(c− a + b) = f(c)− f(a) + f(b) that are not affine. Using a result from Darboux
[RRA09] about Cauchy’s functional equation3, we can show that these functions are highly
pathological: they are for instance discontinuous at every point, and clearly they would never
be encountered in a regression problem. To our knowledge, no such result has been proved for
functions f : Rm → R (m > 1), but we may still conjecture that AP functions that are not
affine would be quite pathological.

In any case, let us note that the fact that real affine functions are AP is not really significant:
when the function is (supposed to be) affine, there are much more efficient techniques such as
least-squares regression. Using analogical learning in such settings would not be reasonable.
This property is mainly interesting because it stresses once again the close links between the
arithmetic and Boolean proportion.

Conclusion

The main contribution of this chapter was to provide a complete characterization of Boolean
functions that are fully compatible with the analogical inference principle that we have used
so far in all the previous chapters of this document. Using an appropriate representation for
Boolean functions (namely their algebraic normal form), we have been able to prove that the
class of AP functions is the class of affine functions, i.e. functions whose degree is less than 1.

We have chosen to tackle the problem of finding the class of AP functions from the angle of
training set extension. It became clear that the class of AP functions can be seen as the class
of functions which allow a perfectly sound extension, or equivalently as the class of functions
which allow the analogical inference principle to be sound.

We also provided a more explicit version of the analogical inference principle which is in
fact less restrictive than the one we had claimed so far. The distinction between the strict
version and the relaxed version is that the class equation f(a) : f(b) :: f(c) : y is not always

3Cauchy’s functional equation is: f(x + y) = f(x) + f(y) with x, y ∈ R

156

solvable, and the relaxed version takes this fact into account. The class of AP functions is
fully compatible with the relaxed version, but we have also identified the functions that are
compatible with the strict version, which turned out to be the class of projection (or dictator)
functions.

In real-world application though, purely affine functions are extremely rare. This means that
using the analogical inference principle will necessarily produce errors in the label predictions.
We have empirically investigated the quality of the analogical extension (which measures in
some sense how adequate was the use of the analogical inference principle) when a function
deviates from the class of purely affine functions. We have observed that the quality of the
extension linearly decreases, but a strong statistical result still needs to be derived. We also
noted that in some particular cases, a function that is strongly not AP can still lead to a high
extension quality. Indeed, as the analogical labels are the result of a majority-vote procedure, it
may happen that the most common candidate label actually corresponds to the ground truth
label f(x). In this case, the majority-vote procedure is able to compensate for the candidates
that were wrong in their predictions, because it will choose the most common predictor that
happens to be the correct label. Ultimately, even if only 50% + ε (ε > 0) of the candidates are
correct, it is still enough to have a perfectly sound extension. The class of AP functions ensures
that exactly 100% of the candidates are correct, but it is clear that such a requirement is too
strong to be really useful in practice. The derivation of a theoretical result involving the role of
the majority-vote procedure is still a topic of current research.

Our main goal was to identify the class of AP functions in a Boolean setting. We have
extended our results to two other domains. It is often the case that the classification problem
does not involve purely Boolean attributes, but rather a more general domain where instances
are multi-valued. Sadly in these domains, there is no known structure or operators, so it was
not possible to give a clear identification of AP functions such as that of Boolean AP functions.
We were however able to provide a clear link between these AP functions and the Boolean AP
functions by embedding the multi-valued space into a partially defined Boolean space. We also
proved that in a real setting, affine functions are also AP (the reverse implication does not
necessarily hold). This result for real functions was much easier to prove and in the end quite
trivial, but it should be noted that proportion-based learning in regression problems is not very
reasonable.

Résumé du chapitre Nous avons introduit le principe d’inférence analogique au chapitre 2.
Ce principe stipule que si quatre éléments sont en proportion, alors cela doit aussi être vrai
pour leurs classes (ou n’importe quel autre attribut). C’est évidemment un principe non-correct,
puisque la conclusion ne se déduit pas logiquement de la prémisse. Néanmoins, on a pu observer
au chapitre 3, ainsi que dans [BMD07], que les classifieurs analogiques semblaient afficher des
résultats prometteurs (au moins sur certains problèmes). Le but de ce chapitre est d’identifier
clairement et de caractériser les types de problèmes sur lesquels le principe d’inférence analogique

157

est correct. En d’autres termes, nous proposons de caractériser les fonctions booléennes f telles
que l’inférence suivante soit correcte :

a : b :: c : d

f(a) : f(b) :: f(c) : f(d)

Il est en effet assez facile de construire des problèmes simples où l’application du principe
d’inférence analogique mène a des résultats désastreux. Considérons par exemple celui de la
figure 6.1 à la page 135 : l’ensemble d’apprentissage S (à gauche) est linéairement séparable
par une droite verticale. Cependant, lorsqu’il est étendu pour former son extension analogique
(à droite), on constate que l’espace entier est criblé de points appartenant à l’une ou l’autre
des deux classes. Utiliser cette extension analogique comme ensemble d’apprentissage mènera
nécessairement à de très mauvais résultats.

Les fonctions f qui sont compatibles avec le principe d’inférence analogique sont les fonctions
dites qui préservent l’analogie (fonctions AP), c’est-à-dire des fonctions qui satisfont f(a) : f(b) ::
f(c) : f(d) dès lors que a : b :: c : d est vrai (en fait, une définition moins restrictive et plus
utile en pratique consiste à ajouter la prémisse selon laquelle l’équation f(a) : f(b) :: f(c) : y

est soluble).
Dans un contexte booléen, nous avons prouvé que les fonctions AP sont les fonctions affines.

Notre preuve repose sur l’utilisation d’outils algébriques tels que la forme normale algébrique
des fonctions booléennes. Toute fonction booléenne peut être exprimée sous la forme d’un
polynôme, et notre preuve consiste d’abord à montrer que les polynômes de degré 1 (c’est-à-dire
les fonctions affines) sont AP, puis à montrer que tout polynôme de degré supérieur ou égal à 2
n’est pas AP.

Évidemment, dans des problèmes pratiques, les fonctions f rencontrées sont très variées et
ne se cantonnent pas à l’ensemble des fonctions affines. Aussi, nous avons expérimentalement
étudié la qualité de l’extension analogique lorsque la fonction f s’éloigne de l’ensemble des
fonctions AP de différentes manières. D’abord, nous avons observé les variations de la qualité
de l’extension en fonction de la distance ε de f à l’ensemble des fonctions affines. Ensuite,
nous avons observé que même lorsqu’une fonction n’est vraiment pas AP (car une partie des
prédicteurs se trompent régulièrement), il est toujours possible d’obtenir une très bonne qualité
de l’extension analogique grâce à la procédure de vote majoritaire qui permet de compenser les
erreurs des mauvais prédicteurs.

Enfin, nous avons partiellement étendu nos résultats au cas où la fonction f est une fonction
réelle, et au cas où les attributs ne sont plus booléens mais plutôt nominaux.

158

Conclusion

It is now time to conclude this document, whose purpose was twofold: exhibit clear
theoretical properties of analogical classifiers, and apply analogical inference to the field
of recommender systems. Let us first recap our main results and contributions (we will

not necessarily follow the order of the chapters here).

Contributions
The first chapter was dedicated to give the necessary background on existing models of

analogical reasoning, with a strong emphasis on models that allow to build computer programs.
In the second chapter, we thoroughly described various definitions of analogical proportions
in different settings, with a particular focus on the arithmetic and the Boolean proportions.
We have tried to provide the reader with different geometrical insights on these proportions,
which were hopefully useful to gain a better intuition. Finally, we considered a toy classification
problem in a Boolean setting that allowed us to introduce the analogical equation solving
process and most importantly, our analogical inference principle. This principle states that if we
have a : b :: c : d, then we should also have f(a) : f(b) :: f(c) : f(d), where f(x) is the label of
x, or any characteristic of interest. When f(d) is unknown, it can be inferred from the values
of f(a), f(b) and f(c), allowing us to apply this form of analogical reasoning to classification
tasks, or more general problems such as that of rating prediction for recommendation tasks.

Analogical recommendation was addressed in Chapters 4 and 5. Chapter 4 was a background
chapter, where we clearly defined the problem we planned to address, and described two popular
collaborative filtering families (neighborhood methods and matrix-factorization techniques)
that will be compared to our custom algorithms in the experiments.

We then developed in Chapter 5 an algorithm for rating prediction [HPR15], on the basis
that if four users are in proportion (i.e. their respective ratings are in arithmetic proportion),
then it should also be the case for any item that one of the four users has not rated. This
approach is directly inspired from past works on analogical classification. The experiments
showed that this algorithm offers reasonable performance compared to neighborhood techniques,
but its cubic complexity makes it simply impossible to use in real-world scenarios, due to
enormous computation time.

This led us to consider another kind of analogical recommendation, that does not rely on

159

the search of 3-tuples of users. This “clone”-based view [HPRS16b] is motivated by the fact
that some users may have different interpretations of the rating scale that is used. Our results
show that the concept of “clone” is extremely relevant, but it must be noted that this kind of
bias in the user ratings had already been addressed in previous works. As a side note, these
works on the rating prediction task have led us to build a Python library [Hug17] that helps
building and analyzing such prediction algorithms.

Finally, we provided an algorithm for the mining of analogical proportions in incomplete
databases [HPRS16c], strongly inspired from the mining of association rules. We used this
algorithm to extract analogical proportions between items in a rating database, which actually
corresponds to the database that we had been using for our recommendation experiments.
Our results showed that the analogies we found were in fact rather uninteresting, in that they
related four items that were either equally appreciated, or equally disliked. There was no dis-
crepancy in the ratings. In a way, this fact can retrospectively explain the modest results of our
first analogical recommendation algorithm, and its performances that were close to those of
neighborhood methods.

In Chapter 3, we described our contributions to the field of analogical classification
[HPRS16a]. Our first key contribution was to provide a unifying functional definition of
analogical classifiers, which were yet only known from their algorithmic descriptions. From
this definition, we were able to derive various theoretical properties. In particular, we showed
that the VC-dimension of analogical classifiers is infinite, and that their error rate is closely
related to that of the k-NN algorithms, as can be seen on the analytical formula that we de-
rived. In fact, our functional definition establishes clear links between analogical classification
and nearest-neighbors classification. We have showed indeed that analogical classification can
be viewed as a two-steps procedure: first the training set is extended by analogy, where new
examples are generated and assigned a potentially noisy label called the analogical label. Then,
using this extended training set, all the remaining elements can be labeled using the classical
k-NN procedure. This new point of view is quite interesting, because it clearly binds together
the two processes triggered by analogical proportions (inference and creativity) as the two sides
of the same coin.

In Chapter 6, we investigated a question that naturally followed from the results of Chapter
3: how can we ensure that the analogical extension is completely error-free? In other words, is
there a criterion that tells us that the new examples that are generated are associated to the
correct label? We have been able to answer this question in a Boolean setting: the analogical
extension is perfectly sound if and (only if) the Boolean function f underlying the label is
an affine function. This strong result [CHPR17] is reminiscent of that of Davies and Russel
(see Section 1.1.3), who provided a side condition that allowed to safely use an analogical
inference principle. Their analogical inference principle was actually quite different from ours

160

(although we could claim that ours is a particular case of theirs), but the two approaches can
be considered similar from a general point of view. We extended our results to the real setting
and in the case where attributes are nominally-valued. These results open the door to various
speculative research topics, that we will now mention.

Future work
In Section 6.3.1, we presented the concept of approximate AP functions. Indeed in practice,

there is no way to know for sure if the function f that we want to learn is completely affine. So
a clear topic of interest is to obtain statistical guarantees about the quality of the analogical
extension, depending on how far the function f is from the set of affine functions. As previously
mentioned, a result of the following form would be extremely interesting:

P (ωf
S ≥ η) > 1− δ,

where η ∈ [0, 1] and δ ∈ [0, 1
2] are functions depending on ε and | S |. The value ε tells us that

f is ε-close from the set of affine functions. We are currently investigating a somewhat simpler
question:

P (ωf
S < 1) < δ,

where δ is still a function of ε. In other words, we want to have an upper bound of the proba-
bility of the event “Ef∗

S is unsound”.

We have also seen during our experimentations that even though some functions are highly
not AP, the quality of the analogical extension may still be very high. This is because of the
majority-vote procedure that is applied when we compute the analogical label of the elements.
This aspect has been left out of the discussion so far, but it is clear that it is a decisive step of
our inference process, and it has to be thoroughly studied to fully understand the analogical
classification process. We may for example suppose that some 3-tuples should be given a higher
weight in the aggregation, on the basis of some particular static criterion that still needs to be
identified.

Another track of research can be motivated by looking at Figure 6.5. The function f is
not affine, but is instead piecewise affine. We know from our results that for any elements
a, b, c, d ∈ Xm that are on the same simplex (a simplex is here defined as a subset of Xm where
f is affine), then we can correctly predict the value of f(d) from those of f(a), f(b), f(c). Well
in Rm this result is not really useful, but we can actually show that every Boolean function is
piecewise affine! So theoretically, if we can identify all the simplices, this means that we should
be able to produce a sound extension in any case, for any function f , and for any training
set. At this point, only preliminary experiments have been carried out, and a more thorough

161

One simplex

Figure 6.5: A real function f that is piecewise affine.

investigation deserves to be performed.

Finally, we will close this discussion by opening to transfer learning. Transfer learning is a
current trend in the machine learning community, whose purpose is to use the knowledge of
a source problem S to apply it to a less known target problem T . Undoubtedly, transferring
knowledge is the essence of analogy. Current techniques in transfer learning usually involve
statistical tools (see e.g. [PY10] for a survey), and the use of analogical proportions for such
purposes is still entirely to be explored.

162

Conclusion in French

Les deux principaux objectifs de cette thèse étaient les suivants : exhiber des propriétés
théoriques des classifieurs analogiques, et appliquer le raisonnement analogique au problème
de la recommandation. Commençons par rappeler succinctement les principaux résultats et
contributions apportées dans ce document (on ne suivra pas nécessairement l’ordre des chapitres).

Contributions
Le premier chapitre était dévoué aux prérequis nécessaires sur les modèles de raisonnement

analogique existants, en accordant une attention particulière aux modèles qui permettent l’im-
plémentation de programmes informatiques. Dans le deuxième chapitre, nous avons décrit en
détail différentes définitions de proportions analogiques, en insistant particulièrement sur les
proportions booléennes et arithmétiques. Nous avons essayé d’apporter au lecteur quelques
intuitions géométriques sur les propriétés de ces proportions. Enfin, nous avons considéré un
problème de classification booléenne basique, qui nous a permis d’introduire le processus de ré-
solution d’équation analogique, ainsi que le principe d’inférence analogique. Ce principe stipule
que si l’on a a : b :: c : d, alors on devrait aussi avoir f(a) : f(b) :: f(c) : f(d), où f(x) détermine
la classe de x. Lorsque f(d) est inconnu, on peut l’inférer à partir des valeurs de f(a), f(b) et
f(c), ce qui nous permet d’appliquer ce type d’inférence à des tâches de classification ou des
problèmes plus généraux encore comme celui de la prédiction de notes.

La recommandation analogique fut l’objet des chapitres 4 et 5. Le chapitre 4 était un
chapitre de prérequis, où nous avons clairement défini le problème de la prédiction de notes, et
décrit deux familles d’algorithmes (les méthodes par voisinage et par factorisation de matrice)
qui nous servent de base pour comparer nos propres algorithmes.

Nous avons ensuite développé dans le chapitre 5 un premier algorithme pour la prédiction
de notes [HPR15], fondé sur l’idée que si quatre utilisateurs sont en proportion (c’est-à-dire que
leurs notes respectives sont en proportion géométrique), alors cela doit aussi être vrai pour un
item que l’un des utilisateurs n’a pas encore noté. Cette approche est directement inspirée des
travaux en classification analogique. Nos expériences ont montré que les performances de ces
algorithmes sont proches de celles des techniques par voisinage, mais leur complexité cubique
conduit à des temps de calculs prohibitifs.

Cela nous a conduit à considérer une autre approche pour la recommandation analogique, qui
ne repose pas sur la recherche de triplets d’utilisateurs. Cette approche [HPRS16b], qui repose
sur la notion de “clones”, prend en compte le fait que chaque utilisateur a une appréciation
bien particulière de l’échelle de note qui est utilisée. Nos résultats montrent que le concept de
clone est très pertinent et qu’il est primordial de l’intégrer d’une manière ou d’une autre dans
un algorithme de prédiction de notes. Il est cependant nécessaire de noter que ce type de biais
dans les notes avait déjà été considéré dans de précédents travaux. Nous noterons enfin que nos

163

travaux sur les systèmes de recommandation nous ont conduit à développer une bibliothèque
Python [Hug17] qui permet de facilement tester et développer des algorithmes de prédiction de
notes.

Enfin, nous avons proposé un algorithme pour la fouille de proportions analogiques dans des
bases de données incomplètes [HPRS16c], en nous inspirant fortement des travaux en fouille de
règles d’association. Nous avons utilisé cet algorithme pour extraire des proportions analogiques
entre films dans la base de données MovieLens, qui était celle que nous utilisions pour nos
algorithmes de prédiction de notes. Les résultats suggèrent qu’en fait, les analogies potentielles
restent d’un intérêt relativement faible, en ceci qu’elle mettaient généralement en jeu des items
soit également appréciés, soit également désapprouvés. En d’autre termes, les notes relatives
aux différents utilisateurs pour les quatre films d’une même proportion étaient souvent les
mêmes. Ceci nous permet de rétrospectivement interpréter les résultats modestes de notre
premier algorithme pour la prédiction de notes : cela suggère que finalement, l’algorithme
ne pouvait trouver que trop peu de bonnes proportions pour produire des estimations de qualité.

Dans le chapitre 3, nous avons décrit nos contributions au problème de la classification
analogique. Notre première contribution a été de proposer une définition fonctionnelle des
classifieurs analogiques, qui a la particularité d’unifier les approches préexistantes. A partir
de cette définition, nous avons été capables de dériver différentes propriétés théoriques. En
particulier, nous avons montré que la VC-dimension des classifieurs analogiques était infinie, et
que leur taux d’erreur est intimement lié à celui des algorithmes k-NN. En fait, notre définition
fonctionnelle établie clairement le lien qui relie la classification analogique et la classification
par plus-proches-voisins. Nous avons montré en effet que la classification analogique peut se
concevoir en deux étapes. La première étape consiste à étendre l’ensemble d’apprentissage en
ajoutant de nouveaux exemples dont la classe est estimée en utilisant le principe d’inférence
analogique. Ensuite, sur la base de cette extension analogique, un algorithme k-NN est utilisé
pour classer le reste des éléments qui ne sont pas dans l’extension. Ce nouveau point de vue
est assez intéressant car il fait clairement intervenir deux des principales caractéristiques des
proportions analogiques, à savoir la créativité et l’inférence.

Dans le chapitre 6, nous nous sommes intéressés à une question qui découle naturellement
des conclusions du chapitre 3 : comment assurer que l’extension analogique soit saine ? En
d’autres termes, existe-t-il un critère qui nous permette d’être sûr que les éléments de l’extension
analogique sont correctement classés ? Nous avons été capables de répondre à cette question
pour les domaines booléens : l’extension analogique est parfaitement saine si (et seulement si)
la fonction booléenne f qui détermine les labels est une fonction affine. Nous avons étendu
ces résultats aux domaines réels, et au cas où les attributs ont des valeurs nominales. Cette
série de travaux ouvre la porte à diverses pistes de recherches futures, que nous mentionnons
maintenant.

164

Axes de recherches futures
Dans la section 6.3.1, nous avons présenté le concept de fonction approximativement AP

(fonction qui préserve approximativement l’analogie). En effet en pratique, il n’y a aucun moyen
de savoir si la fonction cible f est vraiment affine. Ainsi, il est d’un intérêt crucial d’obtenir
des garanties statistiques relatives à la qualité de l’extension analogique lorsque la fonction f

s’éloigne de l’ensemble des fonctions affines. Un résultat comme le suivant serait très intéressant :

P (ωf
S ≥ η) > 1− δ,

où η ∈ [0, 1] et δ ∈ [0, 1
2] sont des fonctions qui dépendent de ε et de | S |. La valeur ε indique

que f est ε-proche de l’ensemble des fonctions affines. Pour le moment, nous nous intéressons à
un problème un peu plus simple. On se propose en effet de chercher une borne δ telle que :

P (ωf
S < 1) < δ,

où δ est toujours fonction de ε. En d’autres termes, on cherche à borner la probabilité de
l’événement “Ef∗

S contient des erreurs”.

Nous avons aussi remarqué lors de nos expérimentations que même lorsqu’une fonction
ne préserve pas du tout l’analogie, la qualité de l’extension analogique peut tout de même
être très bonne. Cela est dû au fait que la procédure de vote majoritaire permet parfois de
contrebalancer les erreurs de certains predicteurs. Il est clair qu’une compréhension profonde
du rôle de ce vote majoritaire reste une étape clef dans l’étude des classifieurs analogiques.

Un autre axe de recherche possible serait de tirer partie du fait que toute fonction booléenne
est en fait affine par morceaux. Si l’on peut être sûr que quatre éléments sont dans un domaine
où f est affine, alors on peut appliquer de manière correcte le principe d’inférence analogique.
Pour l’instant, nous n’avons mené que des expérimentations très préliminaires à ce sujet.

Enfin, nous terminerons cette discussion en évoquant l’apprentissage par transfert (transfer
learning). L’apprentissage par transfert est un sujet assez populaire de nos jours dans la
communauté de l’apprentissage artificiel, dont le but est de transférer des connaissances d’un
problème source S pour les appliquer à un problème moins bien connu T . Indubitablement,
l’essence même de l’analogie est d’opérer un transfert de connaissances. L’usage des proportions
analogiques appliquées à un tel domaine reste encore entièrement à explorer.

165

Bibliography

[AP94] A. Aamodt and E. Plaza.
Case-based reasoning: Foundational issues, methodological variations, and system

approaches.
AI communications, 7(1):39–59, 1994.

[AS94] R. Agrawal and R. Srikant.
Fast algorithms for mining association rules in large databases.
In Proc. 20th Int. Conf. on Very Large Data Bases, VLDB’94, pages 487–499, San

Francisco, 1994. Morgan Kaufmann Pub, 1994.

[AT05] G. Adomavicius and A. Tuzhilin.
Toward the next generation of recommender systems: A survey of the state-of-the-

art and possible extensions.
IEEE Trans. on Knowl. and Data Eng., 17(6):734–749, June 2005.

[Bar10] P. Bartha.
By parallel reasoning.
Oxford University Press, 2010.

[Bar16] P. Bartha.
Analogy and analogical reasoning.
In E. N. Zalta, editor, The Stanford Encyclopedia of Philosophy. Metaphysics

Research Lab, Stanford University, winter 2016 edition, 2016.

[BCN16] L. Bottou, F. E. Curtis, and J. Nocedal.
Optimization Methods for Large-Scale Machine Learning.
ArXiv e-prints, June 2016.

[BEHW89] A. Blumer, A. Ehrenfeucht, D. Haussler, and M. K. Warmuth.
Learnability and the Vapnik-Chervonenkis dimension.
J. ACM, 36(4):929–965, 1989.

[BK07a] R. Bell and Y. Koren.
Lessons from the Netflix prize challenge.
SIGKDD Explor. Newsl., 9(2):75–79, December 2007.

[BK07b] R. Bell and Y. Koren.

167

Scalable collaborative filtering with jointly derived neighborhood interpolation
weights.

In Data Mining, 2007. ICDM’07, pages 43–52. IEEE, 2007.

[BLR93] M. Blum, M. Luby, and R. Rubinfeld.
Self-testing/correcting with applications to numerical problems.
J. Comput. Syst. Sci., 47(3):549–595, December 1993.

[BM09] N. Barbot and L. Miclet.
La proportion analogique dans les groupes. Applications à l’apprentissage et à la

génération.
In Proc. Conf. francophone sur l’apprentissage artificiel (CAP), Hammamet,

Tunisia, 2009.

[BMD07] S. Bayoudh, L. Miclet, and A. Delhay.
Learning by analogy: A classification rule for binary and nominal data.
Proc. Inter. Joint Conf. on Artificial Intelligence IJCAI07, pages 678–683, 2007.

[BMMA07] S. Bayoudh, H. Mouchère, L. Miclet, and E. Anquetil.
Learning a classifier with very few examples: Analogy based and knowledge based

generation of new examples for character recognition.
In Proc. 18th Europ. Conf. on Machine Learning (ECML’07), pages 527–534.

Springer, 2007.

[BPR12] M. Bayoudh, H. Prade, and G. Richard.
Evaluation of analogical proportions through Kolmogorov complexity.
Knowl.-Based Syst., 29:20–30, 2012.

[BPR16] M. Bounhas, H. Prade, and G. Richard.
Not being at odds with a class: A new way of exploiting neighbors for classification.
In G. A. Kaminka, M. Fox, P. Bouquet, E. Hüllermeier, V. Dignum, F. Dignum,

and F. van Harmelen, editors, Proc. 22nd Europ. Conf. on Artificial Intelligence
(ECAI’16), volume 285, pages 1662–1663. IOS Press, 2016.

[BR11] R. Burke and M. Ramezani.
Matching Recommendation Technologies and Domains, pages 367–386.
In Ricci et al. [RRSK11], 2011.

[Bur98] C. J.C. Burges.
A tutorial on support vector machines for pattern recognition.
Data Mining and Knowledge Discovery, 2:121–167, 1998.

[Bur02] R. Burke.
Hybrid recommender systems: Survey and experiments.
User Modeling and User-Adapted Interaction, 12(4):331–370, 2002.

168

[Bur07] R. Burke.
The adaptive web.
chapter Hybrid Web Recommender Systems, pages 377–408. Springer, Berlin,

Heidelberg, 2007.

[CFH92] D. Chalmers, R. French, and D. Hofstadter.
High-level perception, representation, and analogy: A critique of artificial intelli-

gence methodology.
Journal of Experimental and Theoretical Artificial Intelligence, 4:185–211, 1992.

[CH67] T. M. Cover and P. E. Hart.
Nearest neighbor pattern classification.
In IEEE Transactions on Information Theory, volume 13, pages 21–27. IEEE,

1967.

[CHPR17] M. Couceiro, N. Hug, H. Prade, and G. Richard.
Analogy-preserving functions: A way to extend boolean samples.
In Proceedings of the Twenty-Sixth International Joint Conference on Artificial

Intelligence, IJCAI 2017, Melbourne, Australia, August 19-26, pages 1575–1581,
2017.

[CL09] M. Couceiro and E. Lehtonen.
Generalizations of Swierczkowski’s lemma and the arity gap of finite functions.
Discrete Math., 309(20):5905–5912, 2009.

[Cor96a] A. Cornuéjols.
Analogie, principe d’économie et complexité algorithmique.
Actes des 11èmes Journées Françaises de l’Apprentissage, 1996.

[Cor96b] A. Cornuéjols.
Analogy as minimization of description length.
In G. Nakhaeizadeh and C. Taylor, editors, Machine Learning and Statistics: The

interface, pages 321–336. Wiley and Sons, 1996.

[CP08] M. Couceiro and M. Pouzet.
On a quasi-ordering on Boolean functions.
Theor. Comput. Sci., 396(1-3):71–87, 2008.

[CPCAL02] J. Cano, J-C. Perez-Cortes, J. Arlandis, and R. Llobet.
Training Set Expansion in Handwritten Character Recognition, pages 548–556.
Springer, 2002.

[DG04] J. Dean and S. Ghemawat.
MapReduce: Simplified data processing on large clusters.

169

In Proceedings of the 6th Conference on Symposium on Operating Systems Design
& Implementation - Volume 6, OSDI’04, pages 10–10, Berkeley, CA, USA, 2004.
USENIX Association.

[DR87] T. R. Davies and S. J. Russell.
A logical approach to reasoning by analogy.
In Proceedings of the 10th International Joint Conference on Artificial Intelligence

- Volume 1, IJCAI’87, pages 264–270, San Francisco, CA, USA, 1987. Morgan
Kaufmann Publishers Inc.

[Eva64] T. G. Evans.
A heuristic program to solve geometric-analogy problems.
In Proceedings of the April 21-23, 1964, Spring Joint Computer Conference,

AFIPS’64 (Spring), pages 327–338, New York, NY, USA, 1964. ACM.

[FB08] A. Felfernig and R. Burke.
Constraint-based recommender systems: Technologies and research issues.
In Proceedings of the 10th International Conference on Electronic Commerce,

ICEC’08, pages 3:1–3:10, New York, NY, USA, 2008. ACM.

[FFG89] B. Falkenhainer, K. Forbus, and D. Gentner.
The structure-mapping engine: Algorithm and examples.
Artificial intelligence, 41(1):1–63, 1989.

[FFJZ11] A. Felfernig, G. Friedrich, D. Jannach, and M. Zanker.
Developing Constraint-based Recommenders, pages 187–215.
In Ricci et al. [RRSK11], 2011.

[FPY95] S. Federici, V. Pirrelli, and F. Yvon.
A dynamic approach to paradigm-driven analogy.
In Learning for Natural Language Processing, volume 1040 of Lecture Notes in

Computer Science, pages 385–398. Springer, 1995.

[Gen83] D. Gentner.
Structure-mapping: A theoretical framework for analogy.
Cognitive Science, 7(2):155 – 170, 1983.

[GKS06] H. Gust, K. Kühnberger, and U. Schmid.
Metaphors and heuristic-driven theory projection (HDTP).
Theoretical Computer Science, 354(1):98 – 117, 2006.

[Hen69] N. M. Henley.
A psychological study of the semantics of animal terms.
Journal of Verbal Learning and Verbal Behavior, 8(2):176 – 184, 1969.

[Hes59] M. Hesse.

170

On defining analogy.
In Proceedings of the Aristotelian Society, volume 60, pages 79–100. JSTOR, 1959.

[Hes66] M. Hesse.
Models and Analogies in Science.
University of Notre Dame Press, 1966.

[HKTR04] J. L. Herlocker, J. A. Konstan, Loren G. Terveen, and J. T. Riedl.
Evaluating collaborative filtering recommender systems.
ACM Trans. Inf. Syst., 22(1):5–53, 2004.

[HM+94] D. Hofstadter, M. Mitchell, et al.
The copycat project: A model of mental fluidity and analogy-making.
Advances in connectionist and neural computation theory, 2(31-112):29–30, 1994.

[HPR15] N. Hug, H. Prade, and G. Richard.
Experimenting analogical reasoning in recommendation.
In F. Esposito, O. Pivert, M.-S. Hacid, Z. W. Ras, and S. Ferilli, editors, Proc.

22nd Int. Symp. on Foundations of Intelligent Systems (ISMIS’15), Lyon, Oct.
21-23, volume 9384 of LNCS, pages 69–78. Springer, 2015.

[HPRS16a] N. Hug, H. Prade, G. Richard, and M. Serrurier.
Analogical classifiers: A theoretical perspective.
In Proc. 22nd Europ. Conf. on Artificial Intelligence (ECAI’16), Frontiers in

Artificial Intelligence and Applications, pages 689–697. IOS Press, 2016.

[HPRS16b] N. Hug, H. Prade, G. Richard, and M. Serrurier.
Analogy in recommendation. Numerical vs. ordinal: A discussion.
In 2016 IEEE International Conference on Fuzzy Systems, FUZZ-IEEE 2016,

Vancouver, BC, Canada, July 24-29, 2016, pages 2220–2226. IEEE, 2016.

[HPRS16c] N. Hug, H. Prade, G. Richard, and M. Serrurier.
Proportions analogiques : créativité et fouille de données.
In Rencontres francophones sur la Logique Floue et ses Applications, 2016.

[HT89] K. J Holyoak and P. Thagard.
Analogical mapping by constraint satisfaction.
Cognitive science, 13(3):295–355, 1989.

[Hug17] N. Hug.
Surprise, a Python library for recommender systems.
http://surpriselib.com, 2017.

[JRTZ16] D. Jannach, P. Resnick, A. Tuzhilin, and M. Zanker.
Recommender systems: beyond matrix completion.
Communications of the ACM, 59(11):94–102, 2016.

171

http://surpriselib.com

[KB11] Y. Koren and R. Bell.
Advances in Collaborative Filtering, pages 145–186.
In Ricci et al. [RRSK11], 2011.

[KB14] M. Kaminskas and D. Bridge.
Measuring surprise in recommender systems.
In P. Adamopoulos et al., editor, Procs. of the Workshop on Recommender Systems

Evaluation: Dimensions and Design (Workshop Programme of the 8th ACM
Conference on Recommender Systems), 2014.

[KBV09] Y. Koren, R. Bell, and C. Volinsky.
Matrix factorization techniques for recommender systems.
Computer, 42(8):30–37, August 2009.

[Kle83] S. Klein.
Analogy and mysticism and the structure of culture (and Comments & Reply).
Current Anthropology, 24 (2):151–180, 1983.

[Kor09] Y. Koren.
The BellKor solution to the Netflix grand prize, 2009.

[Kor10] Y. Koren.
Factor in the neighbors: Scalable and accurate collaborative filtering.
ACM Trans. Knowl. Discov. Data, 4(1):1:1–1:24, January 2010.

[KS11] Y. Koren and J. Sill.
Ordrec: An ordinal model for predicting personalized item rating distributions.
In Proceedings of the Fifth ACM Conference on Recommender Systems, RecSys’11,

pages 117–124, New York, NY, USA, 2011. ACM.

[LdGS11] P. Lops, M. de Gemmis, and G. Semeraro.
Content-based Recommender Systems: State of the Art and Trends, pages 73–105.
In Ricci et al. [RRSK11], 2011.

[Lep98] Y. Lepage.
Solving analogies on words: An algorithm.
In COLING-ACL, pages 728–735. Morgan Kaufmann Publishers / ACL, 1998.

[Lep03] Y. Lepage.
De l’analogie rendant compte de la commutation en linguistique.
Habilitation à diriger des recherches, Université Joseph-Fourier - Grenoble I, May

2003.

[LFFP06] R. Fergus L. Fei-Fei and P. Perona.
One-shot learning of object categories.
IEEE Trans. on Pattern Analysis and Machine Intelligence, 28(4):594–611, 2006.

172

[LFU10] A. Lovett, K. Forbus, and J. Usher.
A structure-mapping model of Raven’s progressive matrices.
In Proceedings of CogSci, volume 10, pages 2761–2766, 2010.

[LI93] P. Langley and W. Iba.
Average-case analysis of a nearest neighbor algorithm.
In Proceedings of the 13th Int. Joint Conf. on Artificial Intelligence. Chambéry,

France, August 28 - September 3, pages 889–894. Morgan Kaufmann, 1993.

[Lic13] M. Lichman.
UCI machine learning repository, 2013.

[LS96] Y. Lepage and A. Shin-ichi.
Saussurian analogy: a theoretical account and its application.
In COLING, pages 717–722, 1996.

[MBD08] L. Miclet, S. Bayoudh, and A. Delhay.
Analogical dissimilarity: Definition, algorithms and two experiments in machine

learning.
J. Artif. Intell. Res. (JAIR), 32:793–824, 2008.

[MC16] P-A. Murena and A. Cornuéjols.
Minimum description length principle applied to structure adaptation for classifi-

cation under concept drift.
In 2016 International Joint Conference on Neural Networks, IJCNN 2016, Van-

couver, BC, Canada, July 24-29, 2016, pages 2842–2849, 2016.

[MCCD13] T. Mikolov, K. Chen, G. Corrado, and J. Dean.
Efficient estimation of word representations in vector space.
arXiv preprint arXiv:1301.3781, 2013.

[MD04] L. Miclet and A. Delhay.
Relation d’analogie et distance sur un alphabet défini par des traits.
Technical Report 1632, IRISA, July 2004.

[Mit93] M. Mitchell.
Analogy-making as perception: A computer model.
MIT Press, 1993.

[Mit01] M. Mitchell.
Analogy making as a complex adaptive system.
In Design Principles for the Immune System and Other Distributed Autonomous

Systems, 2001.

[MP09] L. Miclet and H. Prade.
Handling analogical proportions in classical logic and fuzzy logics settings.

173

In European Conference on Symbolic and Quantitative Approaches to Reasoning
and Uncertainty, pages 638–650. Springer, 2009.

[MRK06] S. M. McNee, J. Riedl, and J. A. Konstan.
Being accurate is not enough: how accuracy metrics have hurt recommender

systems.
In G. M. Olson and R. Jeffries, editors, Extended Abstracts Proceedings of the

2006 Conference on Human Factors in Computing Systems (CHI’06), Montréal,
Québec, Canada, April 22-27, pages 1097–1101, 2006.

[MYZ13] T. Mikolov, W.-T. Yih, and G. Zweig.
Linguistic regularities in continuous space word representations.
In HLT-NAACL, volume 13, pages 746–751, 2013.

[OY97] S. Okamoto and N. Yugami.
An average-case analysis of the k-nearest neighbors classifier for noisy domains.
In Proceedings of the Fifteenth Int. Joint Conf. on Artificial Intelligence, IJCAI

97, Nagoya, Japan, August 23-29, pages 238–245. Morgan Kaufmann, 1997.

[Pat07] A. Paterek.
Improving regularized singular value decomposition for collaborative filtering.
In Proceedings of KDD cup and workshop, volume 2007, pages 5–8, 2007.

[Pia52] J. Piaget.
Essai sur les transformations des opérations logiques: les 256 opérations ternaires

de la logique bivalente des propositions.
Presses Universitaires de France, 1952.

[Pol45] G. Polya.
How to Solve It.
Princeton University Press, 2nd ed. 1957, 1945.

[Pol54] G. Polya.
Mathematics and Plausible Reasoning-Vol.1: Induction and analogy in Mathematics,

Vol.2: Patterns of Plausible Inference.
Princeton Univ. Press, 2nd ed. 1968, 1954.

[PR12] H. Prade and G. Richard.
Homogeneous logical proportions: Their uniqueness and their role in similarity-

based prediction.
In KR. AAAI Press, 2012.

[PR13a] H. Prade and G. Richard.
Analogical proportions and multiple-valued logics.

174

In European Conference on Symbolic and Quantitative Approaches to Reasoning
and Uncertainty, pages 497–509. Springer, 2013.

[PR13b] H. Prade and G. Richard.
From analogical proportion to logical proportions.
Logica Universalis, 7(4):441–505, 2013.

[PR14a] H. Prade and G. Richard.
From analogical proportion to logical proportions: A survey.
In Computational Approaches to Analogical Reasoning: Current Trends, pages

217–244. 2014.

[PR14b] H. Prade and G. Richard.
A short introduction to computational trends in analogical reasoning.
In Computational Approaches to Analogical Reasoning: Current Trends, pages 1–22.

2014.

[PVG+11] F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel,
M. Blondel, P. Prettenhofer, R. Weiss, V. Dubourg, J. Vanderplas, A. Passos,
D. Cournapeau, M. Brucher, M. Perrot, and E. Duchesnay.

Scikit-learn: Machine learning in Python.
Journal of Machine Learning Research, 12:2825–2830, 2011.

[PY99] V. Pirrelli and F. Yvon.
The hidden dimension: a paradigmatic view of data-driven NLP.
J. Exp. Theor. Artif. Intell., 11(3):391–408, 1999.

[PY10] S. J. Pan and Q. Yang.
A survey on transfer learning.
IEEE Trans. on Knowl. and Data Eng., 22(10):1345–1359, 2010.

[RA05] D. E. Rumelhart and A. A. Abrahamsen.
A model for analogical reasoning.
Cognitive Psychol., 5:1–28, 2005.

[Ris78] J. Rissanen.
Modeling by shortest data description.
Automatica, 14(5):465 – 471, 1978.

[RRA09] Teodora-Liliana Radulescu, Vicentiu D Radulescu, and Titu Andreescu.
Problems in Real Analysis: advanced calculus on the real axis.
Springer Science & Business Media, 2009.

[RRSK11] Francesco Ricci, Lior Rokach, Bracha Shapira, and Paul B. Kantor, editors.
Recommender Systems Handbook.
Springer, 2011.

175

[Sal63] A. Salomaa.
On essential variables of functions, especially in the algebra of logic.
Ann. Acad. Sci. Fenn. Ser. A I. Math., 339:3–11, 1963.

[SAO+11] T. Sakaguchi, Y. Akaho, K. Okada, T. Date, T. Takagi, N. Kamimaeda, M. Miya-
hara, and T. Tsunoda.

Recommendation system with multi-dimensional and parallel-case four-term anal-
ogy.

In Systems, Man, and Cybernetics (SMC), 2011 IEEE International Conference
on, pages 3137–3143. IEEE, 2011.

[SBM12] S. Schelter, C. Boden, and V. Markl.
Scalable similarity-based neighborhood methods with MapReduce.
In Proceedings of the Sixth ACM Conference on Recommender Systems, RecSys’12,

pages 163–170, New York, NY, USA, 2012. ACM.

[SFHS07] J. B. Schafer, D. Frankowski, J. Herlocker, and S. Sen.
The adaptive web.
chapter Collaborative Filtering Recommender Systems, pages 291–324. Springer,

Berlin, Heidelberg, 2007.

[SG11] G. Shani and A. Gunawardana.
Evaluating Recommendation Systems, pages 257–297.
In Ricci et al. [RRSK11], 2011.

[SKKR00] B. Sarwar, G. Karypis, J. Konstan, and J. Riedl.
Application of dimensionality reduction in recommender system-a case study.
Technical report, DTIC Document, 2000.

[SM08] R. Salakhutdinov and A. Mnih.
Probabilistic matrix factorization.
In Advances in neural information processing systems, pages 1257–1264, 2008.

[Sto36] M. H. Stone.
The theory of representation for Boolean algebras.
Trans. of the American Mathematical Society, 40(1):37–111, 1936.

[SY05a] N. Stroppa and F. Yvon.
An analogical learner for morphological analysis.
In Proceedings of the Ninth Conference on Computational Natural Language

Learning, pages 120–127. Association for Computational Linguistics, 2005.

[SY05b] N. Stroppa and F. Yvon.
Analogical learning and formal proportions: Definitions and methodological issues.
Technical Report D004, ENST-Paris, 2005.

176

[Val84] L. G. Valiant.
A theory of the learnable.
Commun. ACM, 27(11):1134–1142, November 1984.

[Vap98] V. Vapnik.
Statistical Learning Theory.
Wiley, 1998.

[Wil96] R. Willard.
Essential arities of term operations in finite algebras.
Discrete Math., 149(1-3):239–259, 1996.

[Win80] P. H. Winston.
Learning and reasoning by analogy.
Communications of the ACM, 23(12):689–703, 1980.

[WM04] L. Wolf and I. Martin.
Regularization through feature knock out.
MIT Computer Science and Artificial Intelligence Laboratory, (CBCL Memo 242),

2004.

[Zhe27] I. I. Zhegalkin.
On the technique of calculating propositions in symbolic logic.
Mat. Sb, 43:9–28, 1927.

177

List of Tables

1.1 The tabular representation of an analogy between cows and horses. 11

2.1 Four sets A, B, C, D in analogical proportion. 33
2.2 The six valid patterns of the Boolean proportion (left), and the ten invalid patterns

(right). 34
2.3 The solutions sol(a, b, c) for every Boolean 3-tuple (a, b, c). The question mark ?

means that sol(a, b, c) is undefined. We can verify that sol(a, b, c) = c− a + b when
the solution is defined. 45

2.4 Number of unique non-flat proportions in an m-dimensional cube. 48

3.1 The values of AD(a, b, c, d) for 8 patterns of a, b, c, d in B. The 8 remaining patterns
are the negated versions of these. 59

3.2 AD(b, d, a, g) = 1. 61
3.3 Accuracies of the 1-NAN, APC and 1-NN algorithms over the Monk datasets. . . . 73

4.1 Charlie’s rating for Titanic is qi
t · pu = 1 · 2 + 3 · 1 + 0 · (−1) = 5. 94

5.1 The four users a, b, c, u are in proportion for every item j that they have commonly
rated. For an item i that u has not rated, the prediction r̂ui is set as the solution of
the analogical equation 2 : 4 :: 3 :?, i.e. r̂ui = 3 − 2 + 4 = 5, using the arithmetic
proportion. 101

5.2 Performances of recommendation algorithms on the MovieLens-100k dataset. . . . 104
5.3 RMSE and MAE of our clone-based algorithms on the MovieLens-100k and 1M

datasets. 112
5.4 Values of ρui for the user u. 115
5.5 FCP of our rank prediction algorithm on the MovieLens-100k dataset. 115
5.6 Two 4-itemsets and their related proportions, with corresponding truth value (A). 123
5.7 The ten best item proportions with a support of more than 200 common ratings,

using A. 123
5.8 The ten best item proportions with a support of more than 200 common ratings,

using A′. 125
5.9 The ten best item proportions with a support between 10 and 50. 126

179

6.1 f(x1, x2) = x1 ∧ x2 is not AP. 139
6.2 Examples for f1, f2, f3 showing that they are not AP. 145
6.3 f is not SAP because f(a) : f(b) :: f(c) : y is not solvable. 148
6.4 ω and β over the Monk’s problems. 151

List of Figures

1.1 A geometrical analogy problem: figure A is to figure B as figure C is to which candidate? 17
1.2 Analogical equation solving process as in [RA05]. The solution is here D2. 18
1.3 Analogies between words in the Word2Vect model. Image source: https://www.

tensorflow.org/versions/master/tutorials/word2vec. 19
1.4 Snapshot of Copycat during an equation solving process. Image taken from [Mit01]. 20
1.5 The two domains S and T in Cornuéjols’ model. 22

2.1 a, b, c, d are in arithmetic proportion iff they are the four vertices of a parallelogram. 31
2.2 The four sets A, B, C, D are in proportion. In general, U, V, W, Z do not need to be

disjoint. 33
2.3 The three equivalence classes: A(a, b, c, d1), A(a, b, d2, c) and A(a, c, d3, b). See

also [PR13b]. 39
2.4 The 36 proportions in B2. 41
2.5 The 12 non-flat parallelograms in B3: the six faces of the cube, and 3× 2 diagonal

parallelograms, e.g. (000) : (010) :: (101) : (111). 41
2.6 A classification problem in B3. Labels f(x) are on the right cube. 43

3.1 With S = { a, b, d, e }, we have Ef∗
S = { c, f }. 55

3.2 With S = { a, b, c, a′, b′, c′ }, we have x ∈ Ef
S and Rf

S(x) = { (a, b, c), (a′, b′, c′) }.
Class equations are all assumed to be solvable. 55

3.4 The analogical dissimilarity AD(a, b, c, d) is equal to the distance δ(d, d′). 62
3.5 Classification process of an extended analogical learner. f̂(x) = f(d′). 63
3.6 Accuracies (left) of the 1-NAN and 1-NN algorithms over different Boolean functions

(m = 8) and training set sizes, with corresponding values of ω, γ, and theoretical
accuracy (right). The x axis corresponds to the size of the training set. 72

5.1 Four users a, b, c, u that are in proportion. 101
5.2 Bob is a perfect clone of Alice, and Alice is a perfect clone of Bob. 107

180

https://www.tensorflow.org/versions/master/tutorials/word2vec
https://www.tensorflow.org/versions/master/tutorials/word2vec

5.3 Distribution of average support for Spearman’s rho (RankAnlg) and MSD (k-NN). 116
5.4 Quality of the 993 proportions. The quality of a proportion is defined as the fraction

of component-proportions that stand perfectly. 127
5.5 Quality of the 993 proportions. The quality of a proportion is defined as the fraction

of components that make up perfect proportions, forbidding patterns 0 : 0 :: 0 : 0
and 1 : 1 :: 1 : 1. 127

6.1 A naive application of the analogical inference principle in R2. 135
6.2 The labels as determined by the affine function g(x1, x2, x3) = x1 + x2 + x3. Each 1

is surrounded by three 0, and each 0 is surrounded by three 1. Note that solving any
(solvable) analogical equation leads to the correct solution: this is because g is AP.
Also, we see that we have here a classification problem that is highly non-linearly
separable. 144

6.3 ω for ε-close functions to L. 150
6.4 When f is affine, sol(f(a), f(b), f(c)) = f(d). 156
6.5 A real function f that is piecewise affine. 162

List of Definitions

2.1 Proportion in semigroups . 29
2.2 Geometric proportion . 30
2.3 Arithmetic proportion . 30
2.4 Proportion for vectors . 31
2.5 Proportion between sets (i) . 32
2.6 Proportion between sets (ii) . 32
2.7 Proportion between sets (iii) . 32
2.8 Boolean proportion (i) . 33
2.9 Boolean proportion (ii) . 35

3.1 Analogical extension . 54
3.2 Analogical root . 54
3.3 Analogical label . 56
3.4 Conservative classifier . 56
3.5 Analogical dissimilarity for real vectors . 58
3.6 Analogical dissimilarity for Boolean values . 58

181

3.7 The k nearest analogical neighbors . 62
3.8 Extended classifier . 63
3.9 VC-dimension . 66
3.10 Quality of the analogical extension ωf

S . 69

4.1 Neighborhood approach . 88
4.2 Cosine similarity . 89
4.3 Pearson similarity . 89
4.4 Mean squared difference . 90

6.1 Analogy preserving functions . 138
6.2 Affine functions . 143
6.3 Strongly analogy preserving functions . 147
6.4 ε-close functions . 149
6.5 Partial analogy preserving functions . 153
6.6 Definition . 155

182

