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Résumé

Cette thèse porte sur la modélisation probabiliste de l’hétérogénéité des populations
humaines et de son impact sur la longévité. Depuis quelques années, de nombreuses
études montrent une augmentation alarmante des inégalités de mortalité géographiques
et socioéconomiques. Ce changement de paradigme pose des problèmes que les modèles
démographiques traditionnels ne peuvent résoudre, et dont la formalisation exige une ob-
servation fine des données dans un contexte pluridisciplinaire. Avec comme fil conducteur
les modèles de dynamique de population, cette thèse propose d’illustrer cette complexité
selon différents points de vue: Le premier propose de montrer le lien entre hétérogénéité et
non-linéarité en présence de changements de composition de la population. Le processus
appelé Birth Death Swap est défini par une équation dirigée par une mesure de Poisson
à l’aide d’un résultat de comparaison trajectoriel. Quand les swaps sont plus rapides que
les évènements démographiques, un résultat de moyennisation est établi par convergence
stable et comparaison. En particulier, la population agrégée tend vers une dynamique
non-linéaire. Nous étudions ensuite empiriquement l’impact de l’hétérogénéité sur la
mortalité agrégée, en s’appuyant sur des données de population anglaise structurée par
âge et circonstances socioéconomiques. Nous montrons par des simulations numériques
comment l’hétérogénéité peut compenser la réduction d’une cause de mortalité. Le
dernier point de vue est une revue interdisciplinaire sur les déterminants de la longévité,
accompagnée d’une réflexion sur l’évolution des outils pour l’analyser et des nouveaux
enjeux de modélisation face à ce changement de paradigme.





Abstract

This thesis deals with the probabilistic modeling of heterogeneity in human populations
and of its impact on longevity. Over the past few years, numerous studies have shown
a significant increase in geographical and socioeconomic inequalities in mortality. New
issues have emerged from this paradigm shift that traditional demographic models are
not able solve, and whose formalization requires a careful analysis of the data, in a
multidisciplinary environment. Using the framework of population dynamics, this thesis
aims at illustrating this complexity according to different points of view: We explore the
link between heterogeneity and non-linearity in the presence of composition changes in the
population, from a mathematical modeling viewpoint. The population dynamics, called
Birth Death Swap, is built as the solution of a stochastic equation driven by a Poisson
measure, using a more general pathwise comparison result. When swaps occur at a faster
rate than demographic events, an averaging result is obtained by stable convergence
and comparison. In particular, the aggregated population converges towards a nonlinear
dynamic. In the second part, the impact of heterogeneity on aggregate mortality is
studied from an empirical viewpoint, using English population data structured by age
and socioeconomic circumstances. Based on numerical simulations, we show how a cause
of death reduction could be compensated in presence of heterogeneity. The last point of
view is an interdisciplinary survey on the determinants of longevity, accompanied by an
analysis on the evolution of tools to analyze it and on new modeling issues in the face of
this paradigm shift.





A mes parents Hafid et Sylvie,
A Céline,

No man is an island,
Entire of itself;

Every man is a piece of the continent,
A part of the main.

John Donne
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Chapter 1

Introduction

In over two centuries, the world population has been transformed dramatically, under
the effect of considerable changes induced by demographic, economic, technological,
medical, epidemiological, political and social revolutions. The age pyramids of ageing
developed countries look like “colossus with feet of clay”, and the complexity of involved
phenomena make the projection of future developments very difficult, especially since
these transitions are unprecedented.
The problem does not lie so much in the lack of data or empirical studies. For several
years now, a considerable amount of data have been collected at different levels. A
number of international organizations1 have their own open databases, and national
statistical institutes2 have been releasing more and more data. On top of that, more
than fifty public reports are produced each year. The private sector is also very active
on these issues, especially pension funds and insurance companies which are strongly
exposed to the increase in life expectancy at older ages.
However, the past few years have been marked by a renewed demand for more efficient
models. This demand has been motivated by observations of recent demographic trends
which seem to be in contradiction with some firmly established ideas. New available
data seem to indicate a paradigm shift over the past decades, toward a more complex
and individualized world. Countries which had similar mortality experiences until the
1980s now diverge, and a widening of health and mortality gaps inside countries has been
reported by a large number of studies. These new trends have been declared as key public
issues by several organizations, including the WHO in its latest World report on ageing

1 For instance, the United Nations (UN) (unstats.un.org), the World Bank (WB) (data.worldbank.org)
or the World Health Organisation (WHO) (who.int/gho).

2such as the Institut National de la Statistique et des Etudes Economiques (INSEE) and the Institut
National d’Etude Demographique (INED) in France, or the Office for National Statistics (ONS) in the
United Kingdom.
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Introduction

and health (World Health Organization (2015)), and the National Institute on ageing in
the United States, which created in 2008 a panel on Understanding Divergent Trends
in Longevity in High-Income Countries, leading to the publication of a comprehensive
report in National Research Council and Committee on Population (2011). There is
thus an important need for finer grained models capable of integrating the population
heterogeneity, interactions at several scales or variability of the environment.
In the first part of the introduction of this thesis, we first give a general background on the
evolution of human longevity. In the second part, we give a more detailed description of
the issues which motivated this thesis, followed by an outline of the different approaches
used in this thesis. A summary of the results of the thesis is given in the last part of the
introduction.

1.1 General background

As stated by Vaupel and coauthors in their famous 2009 article, “The remarkable gain of
about 30 years in life expectancy in western Europe, the USA, Canada, Australia, and
New Zealand—and even larger gains in Japan and some western European countries,
such as Spain and Italy—stands out as one of the most important accomplishments of
the 20th century ” (Christensen et al. (2009)). For more than 150 years, record female
life expectancy has grown at the pace of almost 2.5 years per decade (Oeppen and
Vaupel (2002)). In France, the investigations of Louis Henry in the field of Historical
Demography have allowed the construction of historical mortality tables going back to the
mid-eigteenth century, thanks to the remarkable work of Vallin and Meslé (2001). Based
on their estimations, life expectancy at birth was estimated to be about be 25 years of
age in the mid-eighteenth century. By 1830, it had attained 40 years and remained stable
until the 1870s. Less than a century later, in 1950, life expectancy had increased of more
than 30 years, to 69 years for females and 63 for males. Today, life expectancy in France
is estimated to have reached the age of 85 for females, and 79 for males3. Obviously,
these dramatic changes have been accompanied by major societal and economic changes,
and the future consequences of such levels of longevity are the source of numerous and
urgent debates, both in the research community and in the civil society.

The demographic transition The sustained improvement of the duration of life,
together with fertility decline, is part of the larger process of the demographic transition,

3Source: Cambois et al. (2009), Institut National de la Statistique et des Etudes Economiques
(INSEE) (https://www.insee.fr/fr/statistiques/2416631).
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1.1 General background

which has been ongoing in most developed country since the mid-eighteenth century.
These major demographic changes have been both the source and the consequence of
massive social and economic upheavals which include the industrial revolution, rampant
urbanization, the increase of living standards and educational levels, together with greater
social and political equality, especially between men and women with the entry of women
in the labor force. The demography transition was “the most important social and
economic change to take place in Europe in centuries” (Reher (2011)). In countries which
experienced the historic transition4, important public health and medical advances have
significantly contributed to mortality declines during the twentieth century5 (Cutler et al.
(2006)). At the same time, the reduction of mortality at younger ages, which took place
before the beginning of fertility declines, led to a spectacular growth of the population
and the increase of the proportion of individuals of working-age until some time between
the late 1950s and the early 1980s. Consequently, these economically advantageous
age-structures have contributed to create favorable conditions for the development of
national pension schemes, in which the large working-age population could pay pension
benefits for a small group of elderly people (Reher (2011)). In turn, the improvement of
social welfare has probably contributed to further mortality declines.

New challenges brought by the demographic transition But today, the impact
of longevity improvements is also producing new issues and challenges at multiple societal
levels. Population ageing poses a major challenge to the sustainability of intergenerational
risk sharing mechanisms such as pay-as-you-go systems and public health systems. In the
recent years, pension funds and governments have been closing Defined Benefit retirement
plans or shifting them toward a Defined Contribution system6. This shows an indicator
of a transfer of the demographic risk back to the policyholders (Barrieu et al. (2012)).
As also stated in Barrieu et al. (2012), the insurance industry is facing challenges linked
to increasing longevity, in the form of greater regulatory capital and the need to transfer
part of their risk to reinsurers and financial markets. The increase in longevity is also
generating a whole new paradigm in the way the life course is perceived, and the timescale
of many life course strategies have deeply changed. The traditional three broad periods
of life (childhood, adulthood and old age) have been replaced by a four period model,
with the third age period being divided in two stages, “young old” and “oldest old”, the

4The historic transition affected most of European countries and countries with European roots
(Argentina, Uruguay, the United States, Canada, New Zealand (Reher (2011)).

5We will return to the demographic transition and the importance of public health in Chapter 5.
6 A Defined Benefit retirement plan means that pension benefits are predetermined, based on

paramaters such as the level of income. In a Defined Contribution plan, contributions rates are
predetermined, but future pension benefits are not known.
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latter being characterized by reduced autonomy and greater medical needs (Christensen
et al. (2009)). The notion of age itself has changed. At a fixed age, individuals seem to
have rejuvenated: individuals now “become old at older ages” than before (d’Albis and
Collard (2013)). As retirement age has been raised in several countries, there is also a
need to redefine and redistribute work within these populations which are simultaneously
ageing and rejuvenating, as argued in Vaupel and Loichinger (2006).

An heterogeneous evolution of longevity If the increase in record life expectancy
has been rather stable, a more detailed analysis of underlying processes is by no means
simple. Historically, the decline in mortality was not uniform in age, and while life
expectancy at birth increased by 30 years in England between 1841 and 1950, life
expectancy at age 10 increased of only 15 years and life expectancy at 65 remained
virtually constant until 1950. Studies on socioeconomic inequalities in mortality, which is
one of the main topics of this thesis, can be traced back to the early eighteenth century.
For instance, Villermé (1830) was one of the first people to exhibit a link between
mortality rates and socioeconomic status7. More recently a growing amount of evidence
seems to indicate that along with the increase of life expectancy, developed countries
have also experienced a widening of socioeconomic gaps in health and mortality since the
second half of the twentieth century ( Cutler et al. (2006); Elo (2009); National Research
Council and Committee on Population (2011); Olshansky et al. (2012)). For instance,
Olshansky et al. (2012) in the United States have found out that the life expectancy gap
(at birth) between females with less than 12 years of education and females with more
than 16 years of education grew from 7.7 years in 1990 to 10.3 years in 2008 (13.4 to
14.2 for males). Life expectancy of less educated white females and males even decreased
during this 18-year period.
The pervasive effect of socioeconomic factors on health and mortality is also at the source
of economic and social issues, and has become an important public problem for many
countries and international organizations. For instance the World Health Organization
(WHO) named the reducing of inequities one of the key issues for public health action
in their last report on ageing and health (World Health Organization (2015)). Beside
reducing the fundamental inequity in the correlation of the duration of life with one’s
income or social status, they recommended to target policies overcoming these inequities,
in the sense that “strategies must look not just improve conditions for the best-off or
the average older person. Attention must also be given to [..] narrowing the gaps in

7For this purpose, he studied deaths in Paris per borough and did what is now called a data linkage
with tax authorities statistics, by comparing mortality rates to rates of non-taxable households per
borough (see Mireaux (1962) for more details).
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1.1 General background

the total inequalities observed among older individuals”. To that matter, understanding
the social determinants at the root of these inequalities is critical for designing efficient
policies. However, underlying factors responsible for socioeconomic differences in health
and mortality are still not clearly understood. As a consequence, policy recommendations
can differ substantially, according to the theory taken into account in order to model
pathways involved into translating socioeconomic status into mortality outcomes. These
issues are discussed in more detail in Chapter 5.
Socioeconomic differences in mortality can also impact the equity of national pension
schemes by allocating more resources to individuals higher in the socioeconomic ladder,
already benefiting from better health and longevity (Villegas and Haberman (2014)).
Furthermore, not taking heterogeneity into account might lead to significant errors when
assessing pensions liabilities or regulatory capital. A striking and simple example is
the evolution of the socioeconomic composition of cohorts of seniors. As individuals in
the same cohort grow older, low-income pensioners die at earlier ages, so that average
benefits increase and costs rise (Edwards and Tuljapurkar (2005)). This phenomenon
is typically nonlinear, and is one of many issues generated by the interactions between
the evolution of an heterogeneous population and aggregate indicators, to which we will
come back to in Chapter 4.

Two centuries of interdisciplinary literature All these challenges have generated
a considerable amount of research, producing an interdisciplinary literature in fields
ranging from mathematics to history, and also including actuarial science, biodemography,
biology, computer science, demography, economics, epidemiology, medical research, public
health or sociology8. In 1825, B. Gompertz presented to the Royal Society of London
his “ law of human mortality”, describing age specific mortality rates as an exponential
function of age, with only two parameters (Gompertz (1825), see also Kirkwood (2015) for
a commentary on Gompertz’s original article). Gompertz, who was an English actuary,
was actually interested in improving the calculation of rates for the selling and purchasing
of annuities. Almost two centuries later, his law of mortality is still regarded as a kind of
“fundamental law of mortality”, and seems to hold for a wide range of species. On the
other hand, a justification for the existence of this law has not been widely established
yet. This illustrates how little we still know on the evolution of human longevity and its
societal impacts, as many questions are still open and the source of heated debates. In
the new context of open data, population data have also been increasingly released by

8 This list is not exhaustive, and scientific fields such as biodemography or gerontology are at the
crossroad of several fields.
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governmental statistical institutions and international agencies. For instance, The United
Nations, the World Bank or the WHO now all have their own online open database.
These data allow new questions to be explored and shed a new light on issues at stake.
Thus, the multiplicity of approaches and data accounts for both the richness and the
difficulty of this subject. This thesis lies within the broader scope of understanding these
approaches and their link to social issues, in order to provide a theoretical and simulation
framework to compare and question some of the common practices. In the remainder
of this section, we will detail more precisely the questions which served as guidelines
for this thesis, and then move to a brief description of the different approaches used to
address the concerned issues.

1.2 Motivations of the thesis

What can population dynamics do for longevity ? The aggregate longevity
observed at the macroscopic level of a national population is the result of complex
non-linear demographic mechanisms. In presence of heterogeneity, significant longevity
variations could be induced by changes in the cohorts’ composition or size, caused for
instance by changes in the fertility processes or interactions between individuals. Even
the estimation of quantities such as annual death probabilities can be a complex task.
Usually, these quantities are estimated on samples as large as possible, due to the rare
occurrence of death events. However, an increase in the sample population size might
also mean an increase of its heterogeneity. The more heterogeneous a population is, the
further from average may individuals behave, thus increasing the variance of estimators
and creating a trade-off on the population size.
Standard statistical mortality models such as the Lee-Carter model and its extensions
(Lee and Carter (1992); Renshaw and Haberman (2006)) or the Cairns-Blake-Dowd
(CBD) model (Cairns et al. (2006)) are based on the modeling of age-specific mortality
rates as time series, in order to make projections of future mortality rates. More recently,
a new modeling method for mortality rates has been proposed by Ludkovski et al. (2016),
based on Gaussian Processes models, and able to quantifies uncertainty associated with
smoothed historical experience. The dramatic changes in the demographic and societal
structure of populations in developed countries question however the ability of historic
data to be a “good guide to the future”. In Metropolitan France for instance, the
population rose from 41.7 millions in 1950 to 64 millions in 2014, an increase of over
54%. 11% of the population was more 65 years old in 1950, in comparison with over 18%

6



1.2 Motivations of the thesis

today9.The age pyramids of Metropolitan France in 1950 and 2014 are represented in
Figure 1.1. Those evolutions have changed the way seniors are perceived, which in turn
might have influenced the evolution of their mortality. The composition of the population
has also changed significantly. For instance, the proportion of individuals of age 30-45
with no diploma or only a primary school diploma has dropped from about 40% in 1980
to less than 15% in 201010. There is thus an inherent complexity in comparing inside the
same time series populations so different, in order to make robust projections.
Furthermore, insurers or pensions funds are mainly interested in mortality at older ages,
typically above 65, and sometimes consider these ages only in their models. Limiting
data to this age class constitutes however a substantial loss of information, by failing
to capture information on younger cohorts (social composition, smoking habits...) and
which can give valuable insights into the future, since “ today’s youths are tomorrow’s
seniors”.
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Fig. 1.1 Age pyramid of metropolitan France (Source: INSEE)

Heterogeneous population dynamics For these reasons, this thesis focuses on
the probabilistic modeling of heterogeneous population dynamics rather than on the
statistical projection of mortality rates, by taking on an approach similar to that of N.

9Source: INSEE.
10Source: Echantillon Démographique Permanent (EDP), INSEE. The EDP is the french longitudinal

study.
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El Karoui and coauthors (Bensusan (2010) and Boumezoued (2016)). We are interested
in the mathematical modeling of complex population dynamics, as an experimenting and
simulation tool to generate scenarios, rather than to make realistic predictions.
As for all human systems, the study of human population dynamics is complex due
to the very nature of underlying mechanisms. Phenomena are often non-stationary,
heterogeneous, and often include interactions taking place at different scales and with
sometimes opposite effects. Due to these difficulties, producing a pertinent modeling
directly at the macro-level appears to be a very complicated, if not impossible, task.
Hence, demographic models have increasingly shifted towards a finer-grained modeling
of the population in the last decades. Understanding the aggregated dynamic is thus
a major challenge brought by these non-linear “micro” models. One way of proceeding
is to reduce the complexity of the aggregated population dynamic in order to obtain a
tractable model.
With the rise of available data and computing power, so-called Microsimulation models
have been developed in social sciences for the past decades (Li, J. and OD́onoghue,
C. (2013)). Used by government and institutional bodies11, they provide a simulation
tool in order to address a broad variety of questions, ranging from evaluating the
impact of policy changes and demographic shocks to the study of kinship structure.
These models are mostly data-driven and their description often relies on a simulation
algorithm. These features constitute an important limitation to their implementation,
which needs a considerable amount of data (Silverman et al. (2011)). Furthermore, the
complexity of microsimulation models can be significantly limited by computational
costs. For instance, inter-individual interactions are often limited in microsimulation
models, due to specification problems caused by data limitation or unobservable hidden
processes (Zinn (2017)), as well as too high computational costs and time. Capturing the
influence of “micro” behaviors at the aggregated level is also a difficult task, in a purely
data-driven approach which does not allow for testing behavioral changes. A robust
approach to the mathematical modeling of these complex dynamics could help us reach
greater understanding on how heterogeneity and interactions operate at the macro-levels.
In addition, this approach could also serve as a means to escape the tyranny of data
described by Silverman et al. (2011), in order to alleviate “some of the burdens of the
time-consuming and combinatorially expensive data collection required to continue in the
traditional fashion”.

11For instance, the MiCore tool have been developed as part of the European project Mic-Mac
(2005-2009). Another widely used microsimulator is SOCSIM, which originates from a collaboration
between Peter Laslett, Eugene Hammel and Kenneth Wachter.
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1.2 Motivations of the thesis

In very different fields, recent advances in probability, mathematical biology and ecology
have contributed to the development of a new mathematical framework for individual-
based stochastic population dynamics (see e.g. Champagnat et al. (2006); Fournier and
Méléard (2004); Méléard and Tran (2009)). These models have been applied for the study
of human population dynamics in Bensusan (2010) and Boumezoued (2016). In particular,
in order to model the dynamic evolution of heterogeneity inside a population, the latter
included change of characteristics for individuals, such as changes of occupational class or
marital status. However, these changes are described within a linear framework, while the
behavior of individuals is often influenced by interactions with others. Thus, modeling
the dynamic changes of the population composition within a non-linear framework and
analyzing the aggregated dynamics produced by such models remains an important
challenge.
Finally, the individual scale is not always the best chosen granularity for our purpose.
Indeed, longitudinal data can be scarce and it can be sometimes more interesting to
group individuals into larger risk classes. We will return to these questions in Chapter 2
and 3.

Guidelines of the thesis To sum up, let us state the main line of questioning that
have served as general guidelines for this thesis:

• How can we define a general framework for the modeling of stochastic heterogeneous
populations? How does (socioeconomic) heterogeneity impact aggregated dynamics?
What approximations can be made in order to reduce the complexity of the studied
evolution?

• What ingredients are needed for a more realistic theoretical modeling of human
population dynamics, yielding populations with real-life characteristics?

• How can we provide an analytical and simulation framework serving as an experi-
mental laboratory in order to support decision making? How can we test the validity
or potential consequences of existing theories and common practices?

The complexity and the scope of these questions have led us to recognize the necessity of
adopting an integrated approach, both theoretical and empirical, as neither theoretical
modeling nor data seem to be sufficient to provide satisfactory explanations. On the
one hand, theoretical modeling can be used to test the validity of some theories, when
empirical studies can’t. Human social experiences are mostly non reproducible, and the
ability to modify individuals’ behaviors or risk exposures is often limited and ethically
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challenging (National Research Council and Committee on Population (2011)). Moreover,
theoretical modeling allows us to derive and/or justify approximations in order to simplify
complex dynamics. On the other hand, the study of data throws light on important
problems that need to be taken into account for a relevant modeling. The ability of data
to point us in the right direction has been greatly increased in the current context of
important data releases, which have in turn generated a need to provide a theoretical
framework to study and deal with them. The fundamental interdisciplinary nature of the
study of human populations prevents us from adopting too naive a modeling approach.
Opportunities for mathematical developments arise in multiple directions when taking a
cross-disciplinary approach, especially since theoretical models are able to incorporate
qualitative data, for instance by defining specific interactions or behavior rules.
In this thesis, the modeling of heterogeneous population dynamics is addressed to from
three different points of views: The first part (Chapter 2 and 3) is devoted to the modeling
of non-linear changes of composition in a stochastic heterogeneous population model,
and to the analysis of the aggregated dynamics produce by such models in presence
of several timescale. The second part (Chapter 4) studies the impact over time of
socioeconomic heterogeneity on aggregated longevity from an empirical point of view,
based on recent English data by level of deprivation. The third and last part (Chapter 5)
is a cross-disciplinary survey of selected topics on the evolution of human longevity and
demographic models. The following sections give a overview of the specific motivations
and result of each part of the thesis.

10
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1.3 Part I: Overview and summary of the results

The results presented in Chapter 2 and 3 have been obtained as part of an joint work
with Nicole El Karoui.

1.3.1 Introduction

A number of empirical studies have highlighted diverging trends in lifespan since several
decades, with growing differences within and among countries. If these inequalities are
now well documented, the interpretation of empirical measurements made at different
points in time is much more complex within this new heterogeneous framework. There is
a real difficulty in comparing several subgroups at different points in time, due in part
to time dependent phenomena changing dynamically the composition of the subgroups.
For instance, while increases of geographical differences in health and mortality have
been reported by several studies, it remains difficult to interpret mechanims underlying
the observed inequalities: they could either be interpreted as true “trends” between
different areas, or as the consequence of non observable changes of composition inside the
areas, generated by changing patterns of internal migration. Dowd and Hamoudi (2014)
take the example of migration between rural and urban areas in the US. Before the 70s,
migrations from a rural to an urban county might have concerned more socioeconomically
disadvantage individuals, while the reverse might have been true for individuals born
during the post 1955 baby boom and moving during the late 70s/early 80s. Thus, these
changing social patterning of migration could have generated an “artefactual trend” in
mortality differentials between rural and urban areas.
Estimating flows of population between several areas or changes in the socioeconomic
characteristics of a population is often a challenge. This may be due to a lack of
information on incoming flows in cross-sectional data (we don’t know “where” people
are coming from), or to sample size of longitudinal study that are to small to provide
reliable estimates. Furthermore, individuals are not independent, and their behavior is
influenced by interactions with others, resulting in the introduction of non-linearity or
density dependence in the population dynamics. For instance, the ability for individuals
to change of characteristics could be influenced by the number of individuals in the
population. In that case, the composition of a particular area would be influenced not
only by the social patterning of migration but also by the intensity of the incoming flow
of individuals.
Thus, changes of the population composition add significant complexity to the population
dynamics, and one of the great challenges posed by this rising heterogeneity is to
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understand how these changes affect the population and its longevity on a aggregated
level. Indeed, the dynamic modeling of the population heterogeneity can produce
unexpected or counter-intuitive effects at the aggregated level, which cannot be directly
modeled by traditional “macro” demographic models.
The first part of this thesis focuses on the stochastic modeling of compositional changes
in an heterogeneous population structured by discrete subgroups, and the study of
the aggregated dynamic produced by such dynamics. Due to the complexity already
introduced by changes of composition, the age-structure of the population is however not
taken into account in the modeling. In this sens, the model does not focus particularly
on human populations. For instance, similar models have been studied by Auger and
coauthors in a deterministic framework, motivated by the study of spatial ecological
systems (see e.g. Auger et al. (2000, 2012); Marvá et al. (2013))12.
In the classical framework of Markov multi-type Birth Death processes, heterogeneous
populations are usually described by demographic events, that is by births (or entry) and
deaths occurring in the subgroups. Here, changes in the composition of the population
are also taken into account. They are described by so-called swap events, corresponding
to the move of an individual from one subgroup to another. Furthermore, the population
evolution here is not assumed to be Markovian, in order to take into account additional
randomness expressing the variability of the environment and time dependence (for
instance the reduction of the mortality intensity over time). The heterogeneous population
dynamics is thus called a Birth Death Swap (BDS) system.
These features lead us to adopt a point of view different than usual, by representing
the population using multivariate counting processes on a state space different than the
population state space. This point of view has proven to be very effective, as we detail
in the outline below. In particular, in this representation, no specific assumptions are
made to explain mechanisms generating swap or demographic events, so that the studied
dynamics are very general.
The complexity generated by the presence of swap events makes it difficult to apprehend
the population dynamic directly on an aggregated level. However, a separation of
timescale can be observed between swap and demographic events in many cases. In
particular, when changes in the composition of the population are fast in comparison
with the demographic timescale, a simpler approximation of the aggregated population
dynamics can be derived. The separation of timescale allows us to obtain an averaging
result, reducing the Birth Death Swap system to an “autonomous” multi-type Birth
Death process, with averaged intensities: due to swap events, non-linearities emerge at

12Examples of such models are detailed at the beginning of Chapter 2.
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the aggregated level. Classical averaging results such as those obtained by Kurtz (1992)
or Yin and Zhang (2012) cannot be applied here. In order to overcome this difficulty, we
rely strongly on the pathwise representations of BDS system introduced in Chapter 2, as
well as on the stable convergence of concerned processes.

Outline The general model is presented in the first section of Chapter 2. Our presen-
tation gives an algebraic decomposition of the population, based on the multivariate
process counting the number of events occurring in the population, called the jumps
counting system.
The second section is dedicated to the pathwise representation of the jumps counting
system, as the solution of a multivariate Stochastic Differential System (SDE) driven by
an extended Poisson measure. The existence of the jumps counting system is derived
from a more general result obtained on the construction of multivariate counting systems
by strong domination by a non-exploding process. The existence of BDS systems is then
obtained as a simple corollary. The construction by strong domination offers several
advantages. In particular, the existence of the jumps counting system is obtained under
weaker assumptions than usual sub-linear growth or Lipschitz assumptions of the intensi-
ties, and “free” tightness properties are derived from the construction in Chapter 3. In
the last section of Chapter 2, an alternative construction of BDS systems is presented,
called the Birth Death Swap decomposition algorithm. The decomposition algorithm
allows us to disentangle swap events from demographic events, for instance when they
are supposed to have their own timescale.
In Chapter 3, the BDS system is studied in the presence of two timescales, in which
swap events are assumed to occur at a much faster timescale than demographic events.
The model in presence of two timescales is described in the second section. In the third
section of Chapter 3, a general identification result for the processes counting the number
of demographic events is proven, in the limit when swap events become instantaneous
with respect to demographic events. At the limit, the intensity of demographic events
are averaged against stable limits of the population, when seen on a suitable space.
This result is then applied in the last section, in which a convergence result is obtained
in the particular case of deterministic swap intensities, but with general birth and death
intensities. In particular, we show that the aggregated population converges to an au-
tonomous (non Markov) non-linear Birth Death process, with birth and death intensities
which have been averaged against stationary distribution of pure Swap processes. In
order to prove the result, we heavily rely on the BDS decomposition algorithm of Chapter
2.
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1.3.2 Pathwise constructions of Birth Death Swap systems
(Chapter 2)

Birth Death Swap systems

Let us introduce the stochastic model which serves as a basis for the results presented in
Chapter 2 and 3. The population is structured in p discrete subgroups, and the state of
the population is described at time t by the random vector Zt = (Z1

t , .., Zp
t ) , where Zi

t

is the number of individuals in subgroup i. The temporal evolution of the population
is thus described by the Np-valued càdlàg process Z = (Zt)t≥0, called the population
process.
As stated above, we consider two different types of events: demographic events - corre-
sponding to a birth or death in a given subgroup - and swap events - corresponding to the
move of an individual from one subgroup to another. To our knowledge, the terminology
Birth Death Swap has been introduced in discrete time by Huber (2012), for the very
different purpose of generating random variables as stationary distribution of pure jumps
processes.
The evolution of the population is described by listing the events which change the
composition of the population, rather than describing what happen to individuals. For
instance, no information is given on the origin of a birth. A birth event can be either
endogenous to the population - the individual has parents in the population whose
characteristics determine his subgroup - or exogenous - the individual is an immigrant.
This approach, quite different from the usual description of individual based models, has
the advantage of providing important flexibility in the modeling. In particular, dynamics
including strong non-linearity due to complicated interactions can be described very
simply.

Jumps counting process In Section 2.2, an algebraic representation of the population
dynamic is given, based only on the study of the number of demographic and swap
events. All processes are defined on a given probability space (Ω, G, P), equipped with
equipped with a filtration (Gt) verifying the usual assumptions of right-continuity and
completeness.
We first define a unified description of the different types of events, particularly useful in
the rest of the chapter. The set of all types of events is defined by a set J of cardinal
p(p + 1) (p birth events, p death events, and p(p − 1) swaps). With each type of event is
associated a corresponding jump ϕ(γ) of the population process:
- If γ = (b, j) is an event of type “birth in subgroup j”, an individual is added to subgroup
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j and the corresponding jump is ϕ(b, j) = ej, where ej = (0, .., 1j, 0..).
- If γ = (d, i) is an event of type “death in subgroup i”, an individual is removed to
subgroup i and the corresponding jump is ϕ(d, i) = −ei. Observe that this event cannot
occur if the subgroup is empty.
- Finally, if γ = (i, j), i ̸= j, is a swap event from i to j, an individual is simultaneously
removed to subgroup i and added to subgroup j. This is also only possible if the subgroup
i is not empty, and the resulting change in the population is ϕ(i, j) = ej − ei.
As a càdlàg pure jump process, the population process Z can be written as the sum of
its jumps and by distinguishing the different types of events we obtain that

Zt = Z0 +
∑
γ∈J

ϕ(γ)Nγ
t , with Nγ

t =
∑

0<s≤t

1{∆Zs=ϕ(γ)}. (1.3.1)

For each type of event γ ∈ J , the counting process Nγ is the process which counts the
number of events of type γ which happened in the population. By assumptions, two
events cannot occur at the same time and the processes Nγ have no common jumps.
Thus, the process N = (Nγ)γ∈J indexed by J is a well defined multivariate counting
process, called the jumps counting process of Z. The previous affine relation can be
rewritten as Zt = Z0 + ϕ ⊙ Nt. A matrix interpretation of ϕ is given in the beginning of
Chapter 2.
Actually, the jumps counting process is no other than a rewriting of the jump measure of
Z. This algebraic representation can thus be applied to any pure jump process generated
by a finite or countable type of jumps. For instance, a similar representation is used in
Anderson and Kurtz (2015) in the particular case of Continuous Time Markov Chains
for the modeling of chemical reaction network. However, this representation is to our
knowledge less usual for population dynamics.
In many cases, the choice of time 0 for the initial condition Z0 is very arbitrary, and there
is a real interest in relaxing this condition. For instance, Massoulié (1998) defines the
initial condition as the state at time 0 of some Np-valued process (ξt)t≤0. In our setting,
we consider a generalized initial condition starting at a random date τ ≥ 0 from state
ζτ ∈ Np, defined by the entry process ξt = ζτ1{τ≤t} . The population is then rewritten as,

Zt = ξt + ϕ ⊙ Nt, Nγ
t = ∑

τ<s≤t
1{∆Zs=ϕ(γ)}.

Population system Due to the many tools available for the study of counting processes,
we are interested in the reverse approach, that is the construction of a population process
from an entry process and a multivariate counting process. Given a couple (ξ, N), a
population could be defined by the affine relation (1.3.1). However, such a process is

15



Introduction

not necessarily a well defined population process since its components can take negative
values. A necessary and sufficient condition for the population process to be well-defined
is actually the support condition (1.3.2), which ensures that no death or swap event can
occur from an empty population (support condition), and that N does not increase on
the set {t; ξt− = 0} (starting condition).

Definition 1.3.1 (Population system with random departure (Definition 2.2.1)).
a) Let (ξt = ζτ1{τ≤t}) be an Np-valued entry process. A p(p + 1)-multivariate counting
process N indexed by J is called a jumps counting process starting from ξ iff Starting condition 1{ξt−=0}dNt = 0

Support condition 1{ξi
t−+(ϕ⊙N)i

t−=0}dN i,β
t = 0 ∀i ∈ Ip, ∀β ∈ I(i) (1.3.2)

b) The companion population process of (ξ, N) is defined by Zt = ξt + ϕ ⊙ Nt. In
paticular, Z is a well-defined population process with the jumps counting process N and
initial condition ξ. The triplet (ξ, N, Z) is called a population system.

The populations in which no demographic events occur are called swap processes and
will play a very important role in the following. As for population systems, a swap
system is defined by a triplet (ξ, Nsw, X), where the swap jumps counting process Nsw is
now indexed by the set of swap events denoted by J sw. The restriction of the function
ϕ to swap events is denoted by ϕs, and the companion swap process is defined by
Xt = ξt + ϕs ⊙ Nsw

t .
Several useful transformations on population systems can be directly obtained from
this algebraic representation of population systems. For instance a population system
(Z0, N, Z) starting from 0 in state Z0 can be decomposed at a random time τ . The
population system stopped at time τ is (Z0, Nτ

t = Nt∧τ , Zτ
t = Zt∧τ ). We can also define

a population process starting from τ in state Zτ ,
ξτ

t (Z) = Zτ 1{τ≤t}, Nτ+
t =

∫ t
0 1]τ,∞)(s)dNs, Z

τ+
t = ξτ

t (Z) + ϕ ⊙ Nτ+
t .

The population process can be decomposed in Z = Zτ + ϕ ⊙ Nτ+ and N = Nτ + Nτ+ .

Birth Death Swap intensity By describing the events changing the population
composition rather than the behavior of individuals, a very flexible algebraic description
of the population is obtained, based on the jumps counting system. Thanks to this
general representation, Birth Death Swap systems are defined in the last part on the
first section, by transferring the support conditions onto the intensity of jumps counting
process. In order for the population system to become a Birth Death Swap system,
additional assumptions are made on the multivariate intensity of the jump counting
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system.
Since only the companion population process Z is usually observed, the intensity process
is assumed to be a functional of the population process rather than of the jump counting
process itself. To go further and take into account some additional time-dependent
randomness, the multivariate intensity process is also assumed to depend in a predictable
way on additional randomness.

Definition 1.3.2 (BDS intensity functional and BDS system (Definition 2.2.2)).
a) A BDS intensity functional µ(ω, t, z) = µ(t, z) = (µγ(t, z))γ∈J is a multivariate
G-predictable non-negative functional depending on z ∈ Np, satisfying

µ(t, 0) ≡ 0 and
∑
i∈Ip

∑
β∈I(i)

µi,β(t, z)1{zi=0} ≡ 0, dt ⊗ dP a.s. (1.3.3)

b) A Birth Death Swap (BDS) system of intensity functional µ is a population system
(ξ, N, Z) such that the jumps counting process N is a multivariate counting process of
Gt-intensity λt = µ(t, Zt−) = µ(t, ξt− + ϕ ⊙ Nt−).

Linear intensities: For each type of event γ, µγ(t, Zt−) is the intensity corresponding to
the occurrence of the event of type γ in all the population, and not the rate at which
the event of type γ can occur to one individual. A direct interpretation of intensities
in term of individual rates can be derived in the case of linear intensities. For instance,
if the death intensity in subgroup i is µ(d,i)(ω, t, z) = di(ω, t)zi, the interpretation is
that all individuals in subgroup i die independently at death rate di(ω, t). A similar
interpretation can be given for linear swap or birth intensities.
Markov BDS: When the BDS intensity functional is an homogeneous deterministic
function µ(z), the BDS system is a Continuous Time Markov Chain (CTMC), and can
be described using classical tools of CTMC.

Birth Death Swap Differential equation

In section 2.3 of Chapter 2, we tackle the issue of BDS systems and their pathwise
realization. The two main results of this section are in the spirit of the recent renewed
interest for pathwise representations of point processes, which has led to the development
of a consequent body of literature in various domains. These representations are based
on the pathwise realization of point processes as solutions of Stochastic Differential
Equations (SDE) driven by Poisson measures. In particular, solutions are obtained from
the thinning of an “augmented Poisson measure”.
We apply these representations in order to realize the jumps counting processes N as
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solution of multivariate SDEs driven by a Poisson measure. Focusing on the jumps
counting process allows us to adopt the point of view of point processes, within a general
framework similar to that of Massoulié (1998).
Non-explosion is often central in the analysis of SDEs driven by Poisson measures, and
in our setting, solutions are considered to be well-defined iff they stay finite in finite time
with probability one.
The main point of the Section 2.3 is that the existence of BDS systems is derived from a
more general result which is first obtained, on the construction of multivariate counting
processes by strong domination by a non-exploding process. In particular, some of the
usual assumptions on the intensity functional that are Lipschitz or sublinear growth
conditions can be relaxed by using this result.

Construction of multivariate counting processes by strong domination Theo-
rem 1.3.1 is the first main result of Section 2.3, and concerns the construction of solutions
of SDEs driven by a Poisson measure by strong domination by a multivariate counting
process driven by the same Poisson measure. Before stating the result, we give in this
introduction a brief overview of the thinning of Poisson measure, which is described in
more details in Subsection 2.3.1 of Chapter 2.
Given a multivariate Poisson measure Q̄(dt, dθ) = (Qı(dt, dθ))ı=1...ρ with components of
intensity q(dt, dθ) = dt × dθ, and a ρ-multivariate predictable intensity process (λ̄t), a
multivariate Cox process of Gt-intensity λt can be obtained by thinning and projection of
Q̄, Q̄λ

t =
∫ t

0
∫

R+ 1{0<θ≤λs}Q̄(ds, dθ) =
∫ t

0 Q̄(ds, ]0, λs]). Keeping the mark θ is sometimes
interesting, and a random measure Q̄∆(dt, dθ) can be defined as the restriction of Q̄

to the random set ∆ = {(t, θ); 0 < θ ≤ λt}: Q̄∆(dt, dθ) = 1∆(t, θ)Q(dt, dθ). Q∆ is a
random measure of random intensity measure q∆(dt, dθ) = 1∆(t, θ) dt × dθ. When the
intensity λ̄ of the multivariate counting process Q̄λ is a predictable functional of Q̄λ itself,
the thinning equation becomes a stochastic differential equation, driven by the Poisson
measure Q̄.
A ρ-multivariate counting process Ȳ α is said to be strongly dominated by Ȳ β, Ȳ α ≺ Ȳ β iff
Ȳ β − Ȳ α is a multivariate counting process, or equivalently iff all jumps of Ȳ α are jumps
of Ȳ β. In Theorem 2.3.1, the solution Ȳ α (of intensity functional ᾱ(t, y)) of a multivariate
SDE is built by strong comparison with a dominating process Ȳ β (of intensity functional
β̄(t, y)), under the following assumption:

αı(t, ỹ) ≤ βı(t, ȳ), ∀1 ≤ ı ≤ ρ, ỹ ≤ ȳ ∈ Nρ.

Theorem 1.3.1 ((Theorem 2.3.1)). Let Q̄(dt, dθ) = (Qı(dt, dθ))ı∈E be a multivariate
Poisson measure, and ᾱ and β̄ two predictable ρ-dimensional intensity functionals defined
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on Y = Nρ, where ᾱ is assumed to be dominated by β̄ (ᾱ ≤ β̄).
Assume the existence of a unique non-exploding solution Ȳ β ∈ Nρ of the multivariate
SDE:

dȲ β
t (ȳ) = Q̄(dt, ]0, β̄(t, ȳ + Ȳ β

t−(ȳ))]), (1.3.4)

Then, for all ỹ ≤ ȳ, there exists a unique (non-exploding) solution to the equation,

dȲ α
t (ỹ) = Q̄

(
dt, ]0, ᾱ(t, ỹ + Ȳ α

t−(ỹ))]
)

(1.3.5)

Furthermore, Ȳ α(ỹ) is strongly dominated by Ȳ β(ȳ): Ȳ α(ỹ) ≺ Ȳ β(ȳ).

Sketch of the proof: The thinning procedure is well-adapted to solve this problem, and
for Cox processes the answer is immediate. If two Cox processes Qλi

t = Q(]0, t]×]0, λi
t]),

i = 1, 2 have ordered intensities λ1
t ≤ λ2

t , then the thinning construction using the same
Poisson measure for both processes directly yields that Qλ1 ≺ Qλ2 . The key to the proof
is to rewrite Qλ1 as Qλ1

t = Q(]0, t]×]0, λ1
t ∧ λ2

t ]) = Q∆2(]0, t]×]0, λ1
t ]). This means that

Qλ1 can be obtained by thinning of Q∆2 instead of Q. In particular, all jump times of
Qλ1 are jump times of Qλ2 , and Qλ1 ≺ Qλ2 .
The direct application to general multivariate counting processes is not straightforward,
since the order ᾱ ≤ β̄ on the intensity functionals does not necessary imply a natural
order on the stochastic intensities α(t, ỹ + Ȳ α

t−) and β(t, ȳ + Ȳ β
t−). The key idea of the

proof is however similar to the case of Cox processes. The idea is to study a slightly
different version of (1.3.5), by replacing Q̄ with the measure Q̄∆β :

dỸ α
t = Q̄∆β (dt, ]0, ᾱ(t, ỹ + Ỹ α

t−)]) = Q̄(dt, ]0, ᾱ(t, ỹ + Ỹ α
t−) ∧ β̄(t, ȳ + Ȳ β

t−)]), (1.3.6)

Ỹ α is obtained by thinning of Q∆β , which guarantees the strong domination of Ỹ α by
Ȳ β. The existence and uniqueness of solutions of (1.3.6) is easier to prove, since the
jump times of Q̄∆β can be enumerated in increasing order, which is not the case for Q̄.
The proof is concluded by showing the equivalence of Equation (1.3.5) and (1.3.6).
Theorem 1.3.1 generalizes the results of Rolski and Szekli (1991) for the comparison
of Cox processes, and of Bhaskaran (1986) for the comparison of pure birth Markov
processes. The proof of 1.3.1 can actually be extended to the case of Point processes with
continuous marks, and with intensity functional depending on the past of the process.
This is the subject of a ongoing work with N. El Karoui.

Dominating processes Once given this result, the key is to find a class of non-
exploding multivariate counting processes large enough to serve as reasonable dominating
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processes. The most simple example of such processes is the one dimensional Markov
pure birth process, also called online Markov pure birth process, of intensity function
here denoted by Kg(y). It is well-known that if the function g verifies the Feller criterion

∞∑
j=1

1
g(j) = ∞, (1.3.7)

the process does not explode in finite time. The multivariate case is an easy extension
when the multivariate intensity function is a function of the size ȳ♮ = ∑ρ

1 yı of the birth
process, Kḡ(ȳ) = (Kgı(ȳ♮)). Non-explosion is guaranteed if all functions gı satisfy the
Feller criterion.
However, the domination by a multivariate Markov birth process is often not satisfactory.
The assumption can be relaxed by using Cox Birth processes as dominating processes.
Cox Birth processes are multivariate counting processes with product intensity ktḡ(ȳ♮).
They are obtained by replacing the constant K of Markov Births with a locally bounded
predictable process (kt), i.e bounded by a sequence (Kp) along a nondecreasing sequence of
stopping times (Sp) going to ∞. The existence and non-explosion of Cox Birth processes
is a corollary of Theorem 1.3.1, since the solutions of (1.3.5) with intensity functional
ᾱp(t, ȳ) = (kt ∧ Kp)ḡ(ȳ♮) are dominated by the Markov birth intensity β̄(t, ȳ) = Kpḡ(ȳ♮)
and do not depend on p on the interval [0, Sp].

Birth Death Swap multivariate SDE In the last part of the section, we come back
to the study of BDS systems defined in 1.3.2, and introduce the so-called Birth Death
Swap multivariate SDE:

Definition 1.3.3 ( BDS multivariate SDE (Definition 2.3.1)).
Let Q = (Qγ)γ∈J be a multivariate Poisson measure, µ(t, z) a BDS intensity functional
and (ξt) be an entry process. The Birth Death Swap multivariate SDE associated with
the entry process ξ and intensity functional µ is defined by

dNt = Q(dt, ]0, µ(t, ξt− + ϕ ⊙ Nt−)]), with Zt = ξt + ϕ ⊙ Nt. (1.3.8)

If N is a solution of (1.3.8), then (ξ, N, Z) is a BDS system of entry process ξ and BDS
intensity functional µ.

In order to obtain the existence and uniqueness of solutions (1.3.8), we give sufficient
conditions on the birth intensities in order to obtain a solution of (1.3.8) by strong
domination with a non-exploding process. In order to use the point process point of
view of Theorem 1.3.1, the BDS intensity functional is expressed in terms of the jumps
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counting process, rather than in terms of the population process. Np-valued vectors are
written as z = ξ + ϕ⊙ν, with ν = (νb, νd, νs) a vector indexed by J . The BDS intensity
functional µ can be rewritten as functional of ν instead of z, λ(t, ν) = µ(t, ξt + ϕ ⊙ ν).
The following assumption on the birth intensity is made:

Cox Birth Hyp ∀i ∈ Ip, λ(b,i)(t, ν) = µ(b,i)(t, ξt + ϕ ⊙ ν) ≤ kt g(b,i)(ξ♮
t + νb,♮) (1.3.9)

where ktgb = (ktg
(b,i)) is a p-Cox birth intensity functional.

No further assumptions are made on the swap and death intensities, which are naturally
dominated by an increasing function of the number of births:

Swap and death inequality λ(i,β)(t, ν) = µ(i,β)(t, ξ♮
t + ν) ≤ µ̂(i,β)(t, ξ♮

t + νb,♮) (1.3.10)

The dominating process is the p(p + 1) multivariate counting process G = (Gγ)γ∈J

defined in the following two steps:
The first step is to introduce the p-Cox Birth process Gt solution of the following
multivariate SDE:

dGb
t = Qb(dt, ]0, kt gb(ξ♮

t + Gb,♮
t−)]). (1.3.11)

The second step consist in introducing “swap and death coordinates” to Gb, defined by
the p and p(p − 1) multivariate Cox processes:

dGd
t = Qd(dt, ]0, µ̂(t, ξ♮

t− + Gb,♮
t−)]), dGs

t = Qs(dt, ]0, µ̂(t, ξ♮
t− + Gb,♮

t−)]). (1.3.12)

The(p(p + 1) multivariate counting process G = (Gb, Gd, Gs) is non-exploding and is
called the dominating process.
Finally, the existence of the BDS multivariate SDE is obtained at the end of Section 2.3,
under the Cox Birth domination assumption:

Theorem 1.3.2 (Theorem 2.3.2). Assume that the Cox Birth assumption (1.3.9) is
verified: µb(t, z) ≤ kt gb(z♮) where the components of gb are non-decreasing and satisfy
the Feller criterion (1.3.7). Moreover, assume that kt, µs(t, K) and µd(t, K) are locally
bounded in time for any K.
Then, there exists a unique solution to Equation (1.3.8),

dNt = Q(dt, ]0, µ(t, ξt− + ϕ ⊙ Nt−)]), with Zt = ξt + ϕ ⊙ Nt.
The triplet (ξ, N, Z) is a well-defined BDS system of BDS intensity functional µ and
entry process ξ. Furthermore, N is strongly dominated by G, N ≺ G.
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BDS decomposition algorithm

There are many advantages in the construction by domination, in particular since the
BDS jumps counting process N can be localized by a sequence of increasing stopping
times which do not depend on the process itself. However, the same property can be a
drawback when simulating the BDS system by strong domination. Indeed G can have
much more jumps that N, making the simulation inefficient.
In Section 2.4 of Chapter 2, an alternative construction of the solution of (1.3.8) is
presented, called the Birth Death Swap decomposition algorithm and based on the
disentanglement of swap and demographic events. The decomposition algorithm is better
suited to the simulation of BDS systems when swap and demographic intensities are of a
very different nature, for instance when they are supposed to have their own timescale.
The disentanglement of swap and demographic events will also be instrumental in the
proof of Theorem 3.5.1 in Chapter 3.
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1.3.3 Averaging of BDS systems in the presence of two timescales
(Chapter 3)

BDS system in the presence of two timescales

In Chapter 3, the BDS system built in the previous chapter is studied in the presence
of two timescales. Swap events are assumed to happen at a much faster timescale
than demographic events. Intuitively, this means that demographic events happen with
intensities of order “O(1)”, while swap events occur with greater intensities of order
“O(1

ϵ
)” depending on a small parameter ϵ.

t

0 T d
1 T d

2 T d
3

Fig. 1.2 Example of distribution of swap events and demographic events

More formally, the BDS system now depends on a small parameter ϵ, and is denoted by
(ξ, Nϵ, Zϵ). The BDS multivariate SDE (1.3.8) becomes:

Zϵ
t = ξt + ϕs ⊙ Ns,ϵ

t + Nb,ϵ
t − Nd,ϵ

t , (1.3.13)

dNdem,ϵ
t = Qdem(dt, ]0, µdem(t, Zϵ

t−)]), dNs,ϵ
t = Qs(dt, ]0,

1
ϵ
µs(t, Zϵ

t−)]).

The swap part and the demographic part of the counting system behave very differently
in this separation of timescale framework. On the one hand, the swap counting system
Ns,ϵ evolves on a fast timescale and depends on the small parameter ϵ through the
population process and its intensity functional 1

ϵ
µs(t, z). Thus, Ns explodes in finite

time when ϵ → 0. On the other hand, the demographic counting system Ndem,ϵ only
depends on ϵ through Zϵ. The population process Zϵ is now a two-time scale Gt-adapted
process, with swap events generated by the multivariate counting process Ns,ϵ occurring
on a much faster timescale than demographic events generated by Ndem,ϵ.
The aim of Chapter 3 is to study the convergence of the BDS system in the limit when
swap events become instantaneous with respect to demographic events (ϵ → 0).
Population process: Due to the explosion of swap events, the family of population
processes (Zϵ)ϵ>0 is not tight in the space of càdlàg pure jump processes on Np. However,
the tightness of (Zϵ) in a weaker framework is obtained at the beginning of the chapter,
by not seeing the population process as a dynamic process anymore, but rather as an
Np-valued random variable Zϵ(ω, s) defined on the product space Ω × R+. The key to
this result is once again to control the size of the population.
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Demographic counting system: In the two timescales framework, the dominating process
Gϵ as defined in Chapter 2 only depends on ϵ through its swap components, Gϵ =
(Gdem, Gs,ϵ). This consequence of the construction by strong domination is critical, since
this means that the family of demographic counting systems (Ndem,ϵ) is uniformly strongly
dominated by Gdem. A key consequence of this property is that the family (Ndem,ϵ) of
demographic counting systems is tight in the space of 2p-multivariate counting processes.
In Section 3.4 of Chapter 3, a general identification result is proven. The intensity of stable
limits of the demographic counting systems is identified with the demographic intensity
functional µdem which is averaged against stable limits of the population processes (viewed
as Np random variables). The notion of stable convergence is critical here. Due to the
non-Markov framework of BDS systems, classical averaging results based on the weak
convergence, such as in Kurtz (1992), cannot be applied here. In particular, no further
assumptions are needed on the dependence of the BDS intensity functional µ(ω, t, z) on
(ω, t), as it is often required.
This result is then applied in Section 3.5, in which a convergence result is obtained in
the particular case of deterministic swap intensities. In order to prove the result, we will
heavily rely on the BDS decomposition algorithm of Chapter 2.

Recall on the stable convergence

Stable convergence Section 3.3 is dedicated to an overview on the stable convergence.
In order to state the results of the chapter, let us recall some basic principles of the
stable convergence.
A sequence (Yn(ω)) of X -valued random variables (r.vs) defined on the same probability
space (Ω, G, P) is said to converge stably iff there exists a random probability kernel
Γ(ω, dx) from (Ω, G) to (X , B(X )) such that for all bounded G-measurable random
variable K(ω) and bounded continuous function f :

E[K(ω)f(Yn)] → E[K(ω)
∫

X f(x)Γ(ω, dx)] = E[K(ω)Γ(ω, f)].
In particular, (Yn) converges in distribution to the probability measure defined by
µ(f) = E[Γ(f)]. The stable convergence is actually a stronger mode of convergence
than the convergence in distribution, since it allows to keep information on the initial
probability space. The previous definition, however, is not necessarily the most useful in
the applications.
The stable convergence can be seen as an extension of the convergence in distribution to
the convergence of probability measures defined on an enlarged product space (Ω̄, Ḡ) =
(Ω × X , G ⊗ B(X )), with fixed marginals on Ω equal to P. The set of such probability
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measures is called the set of rules and is denoted by R(P, X ). Furthermore, any rule
R ∈ R(P, X ) can be disintegrated in R(dω, dx) = P(dω)Γ(ω, dx), with Γ a random
probability kernel from (Ω, G) to (X , B(X )).
The extended class of test functions for the convergence of rules is the space Cbmc(Ω × X )
of Ḡ-measurable and bounded functionals H, continuous in x for any ω but without any
regularity in ω. Thus, a sequence of rules (Rn) is said to converge stably to R ∈ R(P) iff

Rn(H) converges to R(H), ∀H ∈ Cbmc(Ω × X ). (1.3.14)

It is actually enough to use product functionals H(ω, x) = K(ω)f(x) as test functions.
A rule RY can be associated with every X -valued random variable, RY (dω, dx) =
P(dω)δY (ω)(dx). Thus, when Rn = RYn , the stable convergence of (Rn) to R is equivalent
to the stable convergence of (Y n) to Γ. Furthermore, the stable limit of (Yn) can be
realized on the extended space (Ω̄, Ḡ, R). The r.vs (Yn) can be naturally extended on
(Ω̄, Ḡ, R) by setting Yn(ω, x) = Yn(ω), and the stable convergence of (Rn) to R can be
interpreted as the stable convergence of (Yn) to the canonical variable Υ on the extended
space (Ω̄, Ḡ, R).
The stable convergence can also be interpreted as a mode of convergence for the sequence
of random kernels (δYn):

∀f ∈ Cb(X ), ΓYn(f) = f(Yn) converges to Γ(f) weakly in L1(Ω, G, P),
where we recall that a sequence of r.vs (ξn) converges to ξ weakly in L1(Ω, G, P) iff for
any bounded random variable H, E[H ξn] → E[H ξ].

Stable relative compactness One of the most interesting property of the stable
convergence is that relative compactness for the stable topology is “free”, in the sense
that if a sequence (Yn) converges in distribution, then there exists a subsequence of (Yn)
which converges stably to a rule R, whose marginal on X is the limit distribution. More
formally,

The sequence (RYn) is relatively compact in R(P) iff (Yn) is tight.
For the sake of simplicity, the abuse of notation “(Yn) or (ΓYn) is stably relatively compact”
is also used.

Application to the population process

The given probability space As stated at the beginning of this section, the family of
population processes (Zϵ) is not tight in the space of Np-valued càdlàg processes, due to
the explosion of swap events. The idea is to not see the population processes as dynamic
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processes anymore, but rather as Np-valued r.vs, defined on the product-space:
(Ω̃, G̃) = (Ω × R+, G × B(R+)), with Zϵ(ω̃) = Zϵ(ω, s) = Zϵ

s(ω).
The space (Ω̃, G̃) is equipped with the probability measure P̃(dω, ds) = P(dω) ⊗ λe(ds).
In this new space, for any G̃-measurable functional H(ω̃, z),

Ẽ[H(ω̃, Zϵ(ω̃))] = E[
∫

R+ H(ω, s, Zϵ
s(ω))λe(ds)] = E[

∫
R+ e−sH(ω, s, Zϵ

s(ω))ds],
and the distribution measure of Zϵ is the probability distribution on Np, defined by
µ̃ϵ(f) = E[

∫
R+ e−sf(Zϵ

s)ds].

Tightness and stable relative compactness Since the demographic counting systems
(Ndem,ϵ) are uniformly strongly dominated by Gdem, the size of the population Zϵ,♮ =
N b,♮,ϵ − Nd,♮,ϵ is bounded by Gb,♮, ∀ϵ > 0. Thus, the Np r.vs Zϵ(ω̃) are uniformly bounded
by Gb(ω̃). It follows, that (µ̃ϵ) is tight, or equivalently that (Zϵ) is stable relatively
compact in R(P̃,Np). Up to a subsequence, the family (Zϵ(ω̃)) converges stably to a
random kernel Γ̃(ω, s, dz) from Ω̃ to Np, and for all bounded measurable functionals
H(ω, s, z):

Ẽ[H(ω, s, Zϵ)] −→
ϵ→0

Ẽ[
∫
Np

H(ω, s, z)Γ̃(ω, s, dz)] = E[
∫ ∞

0

∫
Np

H(ω, s, z)Γ̃(ω, s, dz)λe(ds)].
(1.3.15)

The usual notation Γ̃(ω, s, H) =
∫
Np H(ω, s, z)Γ̃(ω, s, dz) is used. We also show that the

kernel Γ̃(ω, s, dz) inherits the (Gt)-adaptation of the population processes Zϵ.
When applying the previous equation to the demographic intensity functional µdem, the
following result is obtained:

Proposition 1.3.1. (Proposition 3.3.1) Under the dominating assumption and up to
a subsequence, the predictable compensator Aϵ

t∧τ of the demographic counting system
Ndem,ϵ

t∧τ converges weakly in L1(Ω, G, P) to At∧τ for all t ≥ 0; where is A a continuous non
decreasing process whose density is µdem averaged again the optional kernel (Γ̃(., t, dz)),
that is:

Aϵ
t∧τ =

∫ t

0
µdem(s, Zϵ

s)ds cv weakly − L1 to At∧τ =
∫ t∧τ

0
Γ̃(s, µdem(s, .))ds (1.3.16)

Convergence of the demographic counting systems

In Section 3.4 of Chapter 3, a general identification result is proven concerning the stable
limits of the demographic counting system Ndem,ϵ, solution of:

dNdem,ϵ
t = Qdem(dt, ]0, µdem(t, Zϵ

t−)]) ≺ dGdem
t .

Since Ndem only depends on ϵ through the population process Zϵ, a stronger convergence
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than for the population process can be considered. The subspace of D(N2p) composed
of N2p-valued functions, with components only increasing with unit jumps and with
no common jumps, is denoted by A2p. The family Ndem,ϵ is considered as a family of
A2p-valued r.vs on the given space (Ω, G, P).
The first result of the section concerns the tightness of (Ndem,ϵ):

Proposition 1.3.2 (Proposition 1.3.2). The family of A2p-valued random variables
(Ndem,ϵ) is tight. Equivalently, (Ndem,ϵ) is stably relatively compact in R(P, A2p).

The result is obtained rather straightforwardly as a consequence of the strong domination
of (Ndem,ϵ) by Gdem.
Stable limit points of the demographic counting systems can be realized on the extended
space (Ω̄, (Ḡt)) = (Ω × A2p, (Gt ⊗ FA

t )), where (FA
t ) is the canonical filtration of A2p.

The canonical variable on A2p is denoted by N̄dem(ω, α) = α.
By equivalence between tightness and stable relative compactness, there exists, for each
sequence (Ndem,ϵk) converging in distribution, a subsequence (denoted with the same
notations) converging stably to N̄dem on (Ω̄, (Ḡt)), R). R ∈ R(P, A2p) is the limit rule, and
the marginal of R on A2p is the limit distribution of (Ndem,ϵk). In particular, the strong
domination still holds at the limit and N̄dem ≺ Gdem, R-a.s.. This representation of the
limit on the extended space allows the structure of the initial problem to be maintained.

Joint stable convergence of (Ndem, Zϵ) The main result of Section 3.4 is an iden-
tification result for stable limit points of (Ndem,ϵ, Zϵ). The first step is to define both
processes on the same probability space,since the population processes Zϵ are considered
as Np-valued r.vs on the product space Ω̃ = Ω × R+, while the demographic counting sys-
tems Ndem,ϵ are A2p-valued r.vs on Ω. However, the demographic counting systems can be
extended without further difficulty to (Ω̃, G̃, P̃) by setting Ndem,ϵ(ω, s) = Ndem,ϵ(ω). Limit
rules R in R(P, A2p) are extended to R(P̃, A2p) by R̃(d(ω, s), dα) = R(dω, dα)λe(ds).
The family (Ndem,ϵ, Zϵ)ϵ is stably relatively compact in R(P̃, A2p ×Np). Let R∗ be a limit
rule of (Ndem,ϵ, Zϵ)ϵ. Due to a disintegration result on random kernels (see e.g. Theorem
1.25 in Kallenberg (2017)) and since (Ndem,ϵ(ω̃)) does not depend on s, the limit rule
can be rewritten as:

R∗(dω̃, d(α, z)) = R(dω, dα)Γ(ω̃, α, dz).
In particular, if (Ndem,ϵk , Zϵk) converges stably to R∗, then (Ndem,ϵk(ω)) converges stably
to R in R(P, A2p) and (Zϵk(ω̃)) converges stably to the R-expectation of Γ.
Thus, with N̄dem(ω, α) = α the canonical variable on Ω×A2p as defined above, the stable
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convergence of (Ndem,ϵk , Zϵk) to R∗ can be reinterpreted as follows:

Ẽ[1B×[0,t]h(Ndem,ϵ)f(Zϵ)] −→
ϵ→0

R[1Bh(N̄dem)
∫ t

0
Γ(ω, s, N̄dem, f)λe(ds)], (1.3.17)

for all B ∈ G, t ≥ 0 , h ∈ Ccb(A2p) and f ∈ Cb(Np)13. Based on this representation,
stable limit points of (Ndem,ϵ, Zϵ) are denoted by (R, Γ).

Identification result We can now state the main result of the section, keeping the
same notations as above:

Theorem 1.3.3 (Identification result). Let (R, Γ) be a limit point of the stably relatively
compact family (Ndem,ϵ, Zϵ), where R is a rule in R(P, A2p).
Let us consider the process (Γ(., t, N̄dem

, µdem))o which is the (R, Ḡ)-optional projection
of process t 7→ Γ(., t, N̄dem

, µdem).
Then, the canonical demographic process N̄dem(ω, α) = α is characterized by the following
property:

N̄dem has the (R, Ḡ)-compensator
∫ t

0
(Γ(s, N̄dem

, µdem))ods. (1.3.18)

Sketch of the proof: (1.3.18) is equivalent to the fact that N̄dem
t −

∫ t
0 Γ(ω, s, N̄dem, µdem)ds

is a Ḡt-martingale. The proof of the theorem essentially relies on Equation (1.3.17) to
prove that the Gt-martingale property of Ndem,ϵ

t −
∫ t

0 µdem(s, Zϵ)ds still holds on the
extended space by replacing (Ndem,ϵ, Zϵ) by its stable limits.

Application to the case of Markov swaps

In last section of Chapter 3, Theorem 1.3.3 is applied to obtain the convergence in
distribution of the demographic counting systems, in the particular case when the swap
intensity functional is a deterministic function of the population process, µs : z ∈ Np →
µs(z) ∈ Rp(p−1). Thus, pure swap processes of intensity function µs(z) are Markov
processes. Under an ergodic assumption for pure swap processes associated with µs, we
show in the main result of the section that the family of demographic counting systems
converges in distribution towards an averaged jumps counting process of a pure Birth
Death system. In particular, the dynamic of the aggregated population Z♮ is reduced to
a Birth-Death process.
In the case when all intensities are deterministic and time homogeneous, an averaging

13Where Ccb(A2p) is the space of continuous bounded functions on A2p and Cb(Np) is the space of
bounded functions on Np.
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result for the demographic counting systems can be derived from Kurtz (1992), under an
ergodic assumptions for the swap processes. In our framework, we rely on the results of
the previous section and on the BDS decomposition algorithm to extend these results to
the case where only swap intensities are deterministic.

Swap CTMC An example of realization of a Markov Swap is the pure Swap process
X, solution of:

Xt = ξ0 + ϕs ⊙ Nsw
t , dN sw

t = Qs(dt, ]0, µs(Xt−)]).
X is a Continuous Time Markov Chain of intensity matrix:

Lswf(z) =
∑

(i,j)∈J s

µij(z)(f(x + ϕ(i, j)) − f(z)), ∀x ∈ Np.

If the swap starts in state ξn
0 ∈ Un, where Un is the state of populations of size n, then at

all times Xt ∈ Un (swap events don’t change the size of the population). The following
assumption is made on the restrictions of Markov swap processes to the spaces Un:

Ergodicity of the Swap process on Un(Assumption 1) ∀n ≥ 0, The Swap CTMC
restricted to Un is assumed to be irreducible. Since Un is finite, this means that the Swap
CTMC restricted to Un admits a unique stationary measure denoted by (π(n, dz))z∈Un .

Convergence of the demographic counting systems Due to Assumption 1, we
show that at the limit, the intensity of the demographic counting systems (Ndem,ϵ) are
averaged against the stationary measures of the Markov swaps. The demographic counting
systems converge toward the jumps counting process of a true (non Markov) Birth-Death
system, with intensities only depending on the size of the population:

Theorem 1.3.4 (Convergence of the demographic counting systems (Theorem (3.5.1)).
Let (Z0, Nϵ, Zϵ) be BDS system with deterministic swap intensity function. Under As-
sumption 1, the family of demographic counting systems (Ndem,ϵ) converges in distribution
in A2p.
Furthermore, there exists an extension (Ω̄, (Ḡt), R) of the given space (Ω, (Gt), P)and a
multivariate counting process N̄dem = (N̄b, N̄d) ∈ A2p defined on this space such that:
(i) N̄dem has the (Ḡt)-cumulative intensity:

At =
∫ t

0 π(Z̄♮
s, µdem(ω, s, ·))ds, Z̄♮

s = Z0 + N̄ b,♮
s − N̄d,♮

s .

(ii) (Ndem,ϵ) converges to the distribution to N̄dem.

It is important to note that at the limit, the aggregated process Z̄♮ counting the number
of individuals in the population is also a (one dimensional) Birth-Death process, which
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was not the case before.
In the last part of Section 3.5, the result of the theorem is applied in the particular
example of non linear swap intensities, coupled with linear (non deterministic) death
intensities. More specifically, we show how non-linearities in the death intensity can
emerge in the limit aggregated population, even when death intensities in each subgroup
are linear. These non-linearities are the results of a non trivial aggregation of the subgroup
specific death intensities, due to the swap events. Thanks to the approximation of the
aggregated process by a simpler Birth Death process in the two timescale framework, we
can see how swap events can modify the behavior of the population.
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1.4 Part II: Overview and summary of the results

The results presented in Chapter 4 have been obtained as part of an ongoing collaboration
with Héloïse Labit Hardy14, Nicole El Karoui and Séverine Arnold (-Gaille)15.

1.4.1 Introduction

In the second part of this thesis the impact of socioeconomic heterogeneity on aggregated
mortality indicators is studied from an empirical point view. The widening of the
socioeconomic gap in health and mortality has led a number of international organizations,
governments, pension funds or insurance companies to rethink their models in order to
tackle this heterogeneity issue and to understand the potential impact of socioeconomic
inequalities. For instance the Life & Longevity Markets Association (LLMA) and the
Institute and Faculty of Actuaries (IFoA) in the UK have recently commissioned a report
on longevity basis risk16. The aim of this report was to assess the basis risk originating
from using population level mortality to manage the longevity risk in pension benefits or
annuitant liabilities (Haberman et al. (2014)). In the area of public health, Alai et al.
(2017) have shown that the recommendations from the WHO targeting specific causes of
death could actually increase life expectancy gaps in England, despite an increase of the
national life expectancy.
A recent literature has taken an interest in the joint modeling and forecasting of the
mortality of socioeconomic subgroups (see e.g Jarner and Kryger (2011); Villegas and
Haberman (2014)), based on a relative approach. Individuals are grouped into so-called
risk classes, assumed to have an acceptable level of homogeneity, and the mortality of risk
classes is modeled with respect to the mortality of a large reference population, often the
aggregated population. The impact of heterogeneity on cause-specific mortality has also
been well-documented. However, there are still a lot of open questions on the consistency
of sub-national and national estimations and forecasts. This subject was discussed very
recently by Shang and Haberman (2017); Shang and Hyndman (2017), using methods
based on recent developments in grouped functional time series methods.
However, the impact of composition changes on aggregated mortality indicators induced
by the heterogeneous evolution of the population has been, to the best of our knowledge,
less studied. Any changes in the composition of cohorts or age classes could lead to
potential substantial changes in the age-specific mortality rates of the global population.

14ARC Centre of Excellence in Population Ageing Research (CEPAR), UNSW Australia, Sydney.
15Département de Sciences Actuarielles (DSA), Université de Lausanne.
16The basis risk is defined as the risk that policyholders experience a different longevity from a

reference population, for instance the national population.
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In particular, understanding the combined effect of changes in the composition of the
population and of cause-specific reductions in socioeconomic subgroups cannot be done
by the sole analysis of mortality rates time series.
Important recent releases of data allow a more detailed analysis of these composition
effects. We argue that there is a real need and possibility to study the whole population
and not only mortality rates to better understand the effect of heterogeneity on aggregate
indicators. The population dynamics point of view allows us to represent the data
differently than what is usually done when the focus is on mortality only, and to consider
issues beyond those that are typically addressed.

Outline The aim of Chapter 4 is to illustrate possible impacts of changes in pop-
ulation composition, based on the English population and Cause-of-Death mortality
data by deprivation level. In Section 4.2, we introduce the data used to carry out our
study. Particular emphasis is being placed on the evolution of the age structure of
the subpopulations grouped by level deprivation. In section 4.3, a simple deterministic
of McKendrick-Von Foerster multi-population model is presented, for the modeling of
age-structured heterogeneous population dynamics. Section 4.4 presents our numerical
results, based on the model presented in the previous section. We first show how the
heterogeneity of the initial age pyramid can impact the life expectancy and mortality
improvement rates. In a second phase, we study how a cause of death reduction could
be compensated by changes in population composition induced by heterogeneous birth
rates.

1.4.2 How can a cause-of-death reduction be compensated in
presence of heterogeneity? A population dynamics ap-
proach

In Section 4.2 of Chapter 4, we present the two databases used in this article. Particular
emphasis is made on the evolution of the age structure of the subpopulations grouped by
level deprivation. This is an important contribution of the study.

Databases

The data we use provide mid-year population estimates in England by age class and
socio-economic circumstances for the years 1981-2015, combined with the number of
deaths by age, cause and socioeconomic circumstances. The data have been obtained
from two databases for the period 1981-2006 and 2001-2015. In particular, the last
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database have been publicly released by the ONS in the UK very recently (April 2017).
In both databases, socioeconomic circumstances are measured by the Index of Multiple
Deprivation (IMD). The IMD is a geographically based index, created in order to provide
an official measure of multiple deprivation dimensions at the small area level of so-
called LSOA17. The IMD is a measure of deprivation based on seven socioeconomic
factors: income, employment, health, education, barriers to housing and services, living
environment and criminality; and it is computed for each small living area in England.
One advantage of the IMD is to provide information on the living environment (physical
and social) of individuals, in addition to serve as substitute for individual socioeconomic
characteristics.
Our two data sources are based on a relative measurement of deprivation. LSOAs are
ranked by their IMD scores and grouped into five deprivation quintiles numbered from
1 to 5: IMD quintile 1 for the least deprived quintile to IMD quintile 5 for the most
deprived quintile. Specific features of each database are summarized in Table 4.1 and 4.2
in Chapter 4.
It is worth noting that in addition to updating the data for years 2007-2015, this second
database provides disaggregated data by single year of age, as well as data for young ages
below age 25. This constitutes an important improvement, in particular by facilitating
significantly the interpretation of the graphical representations of data.

Evolution of the composition of the population

Following the presentation of the two databases, some insights are given on the important
heterogeneity and evolution in time of the composition of the different age classes and
cohorts. We summarize here some of the results, but we refer to Chapter 4 for a more
complete description.

Age pyramids Figure 1.3 reproduces the age pyramids of the least and most deprived
quintiles for years 2001 and 2015, along with England age-pyramid.

17In 2007 there were 32,482 LSOAs in England (34,753 in 2011), each composed of about 1500
individuals.
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Fig. 1.3 Age pyramids in 2001 and 2015 (Figure 4.1)
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The vertical reading of Figure 1.3 shows for each point in time, the form of the age
pyramids are very different among the deprivation quintiles and England population. The
most deprived population (IMD quintile 5), (Figure 1.3e and 1.3f) is much younger on
average than the least deprived population (IMD quintile 1), (Figure 1.3c and 1.3d), with
a median age of 33 years, ten years younger than for the least deprived subpopulation.
We also note that the baby-boom generation (born in the years after the World War II)
and their children are more largely represented among the least deprived subpopulation.
The horizontal reading Figure 1.3 shows that significant temporal changes have also
occurred from 2001 to 2015, with different effects according to the deprivation level. As
an example, the median age in the most deprived quintile has decreased of over 1%, from
33.4 to 33 years, while it has increased of almost 10% in the least deprived subpopulation,
from 40 to 44. From 2001 to 2015, the most deprived population has thus rejuvenated,
despite the general tendency of the ageing of the population.
There is an inherent difficulty in representing the time evolution of data structured in age.
In order to better understand the evolution of the composition of the population, the
evolution over the period 1981-2015 of the composition of specific age classes (the same
age class is represented at different dates) and cohorts (the same cohort is represented at
different dates) are also represented in Chapter 4.

Fixed age class Figure 1.4 represents the evolution of the distribution of males in
each IMD quintile, for the years 1981, 1990, 2005 and 2015 and for two fixed ages classes:
65-74 (Figure 1.4a) and 25-34 (Figure 1.4b).
The composition of the age class 65-74 has significantly varied from 1981 to 2015, to the
benefit of the least deprived populations. This could be explained by an improvement
over time of living conditions for older individuals, but also, as noted above, by a baby-
boom cohort effect. Indeed, the individuals born during the English baby-boom are less
deprived than the immediately preceding and following cohorts, regardless of the global
improving trend.
Younger age classes are more deprived than older ones, this being true for the whole
period 1981-2015. However, the relative deprivation of younger age classes has increased
with time.
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Fig. 1.4 Proportion of males by age class and IMD quintile (Figure 4.2)

Fixed cohorts Looking at the data structured confirms the observations made on
Figure 1.4 (see Figure 4.3 in Chapter 4, which is not reproduced in this introduction).
By comparing the evolution of the cohorts born in 1956-1960 and in 1976-1980, we
observe that not only the younger cohort (1976-1980) was more deprived at age 25-29
(in 2005) than the older one (age 25-29 in 1985), but also that the improvement over
time of the deprivation of the older cohort is more important than the improvement of
the deprivation of the younger one.
To summarize, the population data show an important heterogeneity in the composition
of the different age classes, associated with important temporal changes in the age classes
composition, such as the important evolution of the composition of the 65-74 age class
between 1981 and 2015. Mortality rates are affected differently according to the age or
time. Thus this varying heterogeneity generates additional complexity in the study of
aggregated death rates. In particular, one might wonder how the increase of deprivation
observed among younger cohorts will impact future mortality in England.

Mortality data

At the end of the second section of Chapter 4, mortality data by gender, deprivation
quintile and cause of death is also represented, with central death rates (Figure 4.4),
average annual mortality improvement rates (Figure 4.5 and 4.6), distribution of causes
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1.4 Part II: Overview and summary of the results

of deaths (Figure 4.7) and life expectancy evolution (Figure 4.8). The results, which are
more classical, are not reproduced here. Central death rates and mortality improvement
rates for the period 1981-2015 have been higher in the most deprived quintiles, at all
ages and for both males and females. It is worth noting that annual average mortality
improvement rates are rather different for the period 1981-1995 and 2001-2015 (Figure
4.6). In particular males of the most deprived quintile have experienced over the period
2001-2015 a sharp deceleration of mortality improvement at ages above 60. All indicators
support the thesis of a widening of socioeconomic gaps (see e.g. Figure 4.8).
The distribution of causes of death has also varied significantly during the period 1981-
2015. In 1981, circulatory diseases were the first cause of death for the age class 65-85,
whereas it was neoplasm in 2015. We also note the significant difference in the prevalence
of respiratory diseases between the most and the least deprived quintile (Figure 4.7).

Population dynamics model

We begin in this first approach with simple assumptions on the evolution of the population
dynamics. We show how mortality patterns can be impacted by heterogeneity even in a
simple framework.

Evolution of the subpopulations The joint evolution of subpopulations inside a
global population (IMD quintiles in our case) is modeled by an age-structured McKendrick-
Von Foerster multi-population model, with no interactions. One of the advantages of
this framework is to allow the derivation of closed formula and asymptotic results for a
number of indicators, in order to better understand the complex interactions between
heterogeneity and mortality.
The vital parameters of the model are the birth and mortality rates of each subpopulation
and are assumed to be deterministic functions of age and time. The first assumption
can actually be extended without difficulty to the broader scope of stochastic intensities,
depending for instance on a random environment. The other assumptions are discussed
at the beginning of the third section.
Each subpopulation j = 1...p is described by the function (gj(ϵ, a, t)), where gj(ϵ, a, t) is
the number of individuals of gender ϵ = m of f , between age a and a + da at time t and
in subpopulation j. The evolution of the population is given by the transport partial
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differential equation:

(∂t + ∂a)gj(ϵ, a, t) = −µj(ϵ, a, t)gj(ϵ, a, t), ∀a, t > 0 (balance law) (1.4.1)

gj(ϵ, 0, t) = pϵ
∫ a†

0
bj(a, t)gj(f, a, t)da, (birth law) (1.4.2)

gj(ϵ, a, 0) = gj
0(ϵ, a), (initial population)

where µj and bj are the mortality and birth rates in subpopulation j.
The previous equation is usually solved along its characteristics curves, or equivalently
by following the evolution of the population cohort by cohort. The resolution method
can be interpreted as counting the number of survivors at time t in each cohort, with two
distinct regimes: individuals who were present in the initial population and individuals
born after the initial time.
Thus, at a small time t, the age pyramid is mostly shaped by the time translated initial
age pyramid. On a longer term, the initial population is naturally erased and the shape
of the future age pyramid is only characterized by the birth and survival functions.

Aggregated population We call aggregated population the global population com-
posed of all subpopulations g(ϵ, a, t) =

p∑
j=1

gj(ϵ, a, t). The dynamics of the aggregated
population is derived from the dynamics of the subpopulations,
(∂t + ∂a)g(ϵ, a, t) = −∑p

1 µj(ϵ, a, t)gj(ϵ, a, t), g(ϵ, 0, t) = pϵ
∫ a†

0 (∑p
1 bj(a, t)gj(f, a, t)da).

The mortality rate at age a and time t of the aggregated population is thus

d(ϵ, a, t) =
p∑

j=1
µj(ϵ, a, t)wj(ϵ, a, t), with ωj(ϵ, a, t) = gj(ϵ, a, t)

g(ϵ, a, t) . (1.4.3)

Actually, the mortality intensity in the aggregated population should be denoted by
d(ϵ, a, t, (gj)j=1..p), since it depends on the age pyramids of all subpopulations. By simple
aggregation of linear dynamics, a non-linear dynamic is produced at the aggregated level,
whose mortality rates are strongly dependent on the age pyramids of each subpopulation.
At small times t, the weights ωj(ϵ, a, t) are mostly determined by the initial population
and the cohort survival function. On a longer term, they are mainly governed by the
birth patterns. Detailed formula for each regime are presented in Section 4.3.

Numerical results

In the last section of Chapter 4, the previous model is applied to show the impact of
heterogeneity in two different cases: on the short term in Section 4.4.1 (influence of the

38



1.4 Part II: Overview and summary of the results

initial pyramid) and on a longer term (influence of birth patterns) in Section 4.4.2. For
illustrative purposes, an heterogeneous population composed of only the most and least
deprived IMD quintiles is considered.
In order to isolate the influence of changes in the population composition, we assume
that mortality rates in each IMD quintile do not depend on time. The aggregated death
rate is thus only modified through changes in the population composition.
In different applications, the initial age pyramids and mortality rates are estimated in
each scenario for a given year from the data presented in Section 4.2.2. In the baseline
scenario of Section 4.4.2, birth rates are assumed to be the same in each IMD quintile,
and are estimated from England data available on the ONS website.

Influence of heterogeneity on the short-term In Section 4.4.1, the population is
simulated on the short-term (30 years) in two scenarios: initial pyramids and mortality
rates of year 1981 and initial pyramids and mortality rates of year 2015. The evolution
of the composition of the aggregated population is shown in Figures 4.9 and 4.10, which
are not reproduced in this introduction.
We observe the evolution of the period life expectancy at age 65 (Figure 4.11), along
with average annual mortality improvement rates at ages above 65 which are reproduced
in Figure 1.5 below. All computed indicators concern individuals who were of age 35 and
above in the initial pyramids and only evolve due to changes in the age pyramids of the
IMD quintiles. Birth rates have no influence here.
The results show that indicators move in opposite directions, according to the year
chosen for the initial pyramids. For year 1981, the evolution of the age pyramids in
the least and most deprived IMD quintiles contributes positively to the evolution of the
period life expectancy at age 65, and average annual improvement rates are positive. On
the contrary, the evolution of the age pyramids for year 2015 contributes negatively to
the improvement of the aggregated mortality, supporting the observations made on the
second section of more deprived younger cohorts.
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Fig. 1.5 Males averaged annual improvement rates (Figure 4.12)

Influence of heterogeneity on the long term The effect of cause-specific reductions
is often studied, especially when assessing or choosing public health measures. It is less
common to study the impact of heterogeneity in birth rates. In the last part of Chapter
4, we study the influence on aggregated life expectancy of heterogeneity in birth patterns,
in comparison with a cause reduction occurring in the most deprived IMD quintile, for
instance as a consequence of a targeted public action. The effects of birth heterogeneity
(a more important birth rate in the most deprived subpopulation) and of cause-specific
reductions are first presented separately in Figure 4.14. Finally, we study the combined
effect of both birth and mortality changes. In particular, we show how a cause-specific
reduction can be compensated in presence of heterogeneity (Figure 4.15 and 4.16). Thus,
if only the aggregated data are studied, a cause specific reduction could be missed in the
presence of heterogeneity.
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1.5 Part III: Overview and summary of the results

The survey presented in Chapter 5 has been written in collaboration with Nicole El
Karoui and Kaouther Hadji18.

1.5.1 Introduction

The last part of this thesis is a cross-disciplinary survey of selected topics on the evolution
of human longevity and demographic models. Facing the considerable amount of literature,
data and points of view concerning the evolution of human longevity and populations
in the last two century, we came to the conclusion that it was necessary to bring out a
number of key observations to avoid the pitfalls of an overly naive approach.
The goal of the survey presented in Chapter 5 is to help a modeler of human population
dynamics to find a coherent way (for instance by taking into account the whole population
dynamics and not only old ages) around this mass of multidisciplinary information. Based
on numerous surveys from various academic disciplines and many contradictory readings,
we propose a subjective selection of what we believe to be the most important ideas or
facts, from a mathematical modeling perspective.
Whenever possible, the key ideas are illustrated with examples supporting the intuition
about mentioned phenomena. However, if the discussion is greatly enriched by the
multidisciplinary nature of the field, the presentation of ideas is also made more difficult,
especially for matters of vocabulary. It should also be noted that issues related to medical
advances and to the biology of human ageing are dealt with in a very cursory way in
Chapter 5, as we focus mainly on economic and social issues.

Outline Chapter 5 is composed of three main parts which are briefly summarized in
the next subsection. The first part deals with the historic demographic transition. The
importance of public health is studied, with a specific focus on the cholera epidemic
outbreaks that took place in France and in the UK during the nineteenth century. Other
features of the historic demographic transition are also considered. In particular, we
explore the relationship between the economic growth and mortality improvements
experienced during the past century.
In the second part of Chapter 5, we examine the implications for population modeling
and the key feature of this shift in paradigm that has been observed since the 2000s.
We first give a brief overview of the so-called demographic transition, and the move
toward the description of increased complexity and diverging trends that has recently

18LPMA, Université Pierre et Marie Curie, Paris
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been observed, based principally on the experience of developed countries. A special
attention is paid to socioeconomic differences in health and mortality.
The last part of Chapter 5 is dedicated to a short review of two types of demographic
modeling exercises: microsimulation models and agent based models.

1.5.2 Inextricable complexity of two centuries of worldwide
democratic transition, a fascinating modeling challenge

The historic demographic transition

In order to understand this “new modeling paradigm”, it appeared necessary to understand
first of all the main components of the historic demographic transition, which began in
the nineteenth century in most European countries and countries with European roots,
and was completed in over a century (∼ (1850 − 1960)). This historical process is mainly
refered to as “the secular shift in fertility and mortality from high and sharply fluctuating
levels to low and relatively stable ones” (Lee and Reher (2011)).
Infectious diseases constituted the vast bulk of the historic fall in mortality. The cholera
epidemic of the nineteenth century is often viewed as a starting point of the demographic
transition as well the real spark which lit the tinder of the global public health movement.
Public health measures are considered as one a main determinants of the reduction of
the mortality reduction during the first half of the twentieth century (Bloom and Luca
(2016); Cutler et al. (2006)). The management of the crisis of the cholera, in France
and England, but also at the international level, is very instructive on the contexts that
enable the development of public measures. The nineteenth century was also a period of
major upheavals brought about by the industrial revolution, which shaped many aspects
of the contemporary society. There is a remarkable persistence of certain mechanisms,
with for instance the important time delays (of about one or two generations) in public
health response, which has not changed since the nineteenth century.
The cholera is also an iconic example where medicine was confronted to statistics, with the
remarkable work W. Farr, “the architect of England’s national system of vital statistics”
(Eyler (1973)). The use of statistics made by Farr contributed to a better understanding
of the disease. Yet the ambition to find causal factors by the sole analysis of data led to
some important errors in interpretations, which is somehow reminiscent of the current
challenges of this new “ data science era”.
The twentieth centurywas also the century of “the emergence for the first time in history
of sustained increases in income per head” (Canning (2011)). The links between economic
growth and mortality improvements have been extensively discussed by economists. In
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his seminal article, Preston (1975) showed the existence of a curvilinear relation between
life expectancy at birth and national income per head. But he also showed that economic
growth was far from explaining of all the observed mortality decline. Furthermore, the
relationship between demographic changes and level of income is often thought of as
bidirectional, which makes interpretation very difficult. This issue still generates a lot
of debate. Some points of view on these topics are presented at the end of the second
section.

A new era of diverging trends

In the early 1970s, many demographers and population scientists supported the idea that
populations would ultimately reach the last stage of the classical demographic transition,
described as an “older stationary population corresponding with replacement fertility (i.e.,
just over two children on average), zero population growth, and life expectancies higher
than 70years” (Lesthaeghe (2014)). Yet, it turned out that this state of equilibrium and
homogeneity in populations was never realized. Actually, fertility rates remained too
low to ensure the replacement of generations; mortality rates, especially at advanced
ages, declined at a faster rate than ever envisaged; and contemporary societies seem to
be defined by more and more heterogeneity and diverging trends. A the beginning of
the third section, we present a brief overview of the main components of this second
demographic transition, as formulated by Lesthaeghe and Van de Kaa.
The viewpoint of the second demographic transition shed an interesting light on recent
observations of diverging trends in longevity, which is the main focus of the second part
of the section. As the average life expectancy has been rising unprecedentedly, gaps have
also been widening at several scales. What may be somehow surprising is that up until
the 1980s, high income countries had roughly similar life expectancy levels. For example,
the comparison of the female life expectancy at age 50 in ten high income countries
showed that the gap was of less than one year in 1980. By 2007, the gap had risen to
more than 5 years (National Research Council and Committee on Population (2011)).
On another scale, a great amount of evidence shows that socio-economic differentials
have also widened within high income countries (Elo (2009)). If there is a general
consensus on the pervasive effects of the socioeconomic status on health and longevity,
underlying mechanisms are much less precisely understood, with several competing
theories. Furthermore, the impact of this heterogeneity on the aggregated indicators or
in term of public policy is even more complicated.
Thus, the aim of the last part of the section point out some aspects of the complexity in
understanding current longevity trends, which cannot be disentangled from the evolution
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of the whole population, requires a multiscale analysis of phenomena, with in the mean
time keeping in mind that obtaining comparable and unbiased data is also a major
challenge for explaining longevity.

Modeling complex population evolution

In the last section of Chapter 5, we present two types of “micro” population models,
widely used in social sciences and in demographic applications: microsimulation models
and agent based models.
Since the 60s, microsimulation models have been extensively used by governments and
international (or regional) organizations, with the aim to test policy reforms or to evaluate
pension costs for instance. Several examples are given in the Chapter 5. The main feature
of microsimulation models is to study heterogeneous individual trajectories in order to
obtain macro outcomes by aggregation, in the form of a data-driven complex model. As
stated at the beginning of this introduction, these models often rely on vast amounts of
data. Furthermore, there are mostly linear and cannot include many interactions.
In the last part of the section, we give a short review of agent based models. Agent
based model allow the modeler to take into account individual interactions, in order to
explain macroscopic regularities. In this class of models, agents are described by behavior
rule, determining how they interact with the simulated environment. One of the major
difficulty of agent based models is to defined these behavior rules.
After a discussion on microsimulation and agent based models, we present some very
recent application combining the two types of models, and developed for instance by
(Zinn (2017)).
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Chapter 2

Pathwise representations of BDS
systems

2.1 Introduction

The recent years have seen a renewed interest for the modeling of heterogeneous population
dynamics, motivated in part by the study ecological systems. In these systems, the
behavior of individuals is often influenced by a certain family of characteristics, also called
traits. Examples of charactertistics are the the location of individuals or their level of
agressiveness. For instance, Fournier and Méléard (2004) study a spatial ecological system
in which the demographic behavior of individuals (birth and death rate) is determined
by their location. Auger et al. (2000) considers a deterministic model population of
fishes divided in two spatial patches. The first one contains food and resources but is
also exposed to parasites attacks, while the second one is safe from parasitism but does
not provide enough resources. Other examples are given in Auger and Pontier (1998);
Marvá et al. (2013), in which individuals demographic rates are affected by the level of
aggressiveness they deploy in order to have access to resources.
An important difference between Fournier and Méléard (2004) and Auger et al. (2000)
is the possibility to move from one patch to another. In the former article, individuals
cannot change of location (for instance in the case of plants). In the latter, fishes move
frequently between the two patches, which adds significant complexity to the population
dynamics. Furthermore, the behavior of individuals is also often influenced by interactions
with other individuals, resulting in the introduction of non-linearity or density dependence
in the population dynamics.
In human populations, it is also well-known that certain characteristics have a significant
behavior on demographic rates. Gender is a key determinant of longevity, with differences
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in males and females life expectancy at birth of up to six years. Socioeconomic differentials
are also important. In particular, the neighborhood is considered to be an accurate
predictor of socioeconomic status (see Chapter 4 for more details on this issue). This
presents a difficulty since geographical characteristics cannot be taken into account in the
same way as stable characteristics such as gender. Indeed, the main issue when modeling
two-sex population is to maintain the stability of the composition of the population while
changes in the composition of the population are determinant in the case of socioeconomic
characteristics. In addition, human demographic intensities are characterized by a strong
non stationarity and often depend on additional randomness expressing the variability of
the global environment.
In this chapter, we study a general class of heterogeneous population dynamics structured
by discrete characteristics, called Birth Death Swap (BDS) systems. Two types of events
can modify the composition of the population: a demographic events describes a birth
or death, and a swap event describes a change of characteristics of an individual. In
particular, no specific assumptions are made to explain mechanisms responsible for swap
or demographic events, so that the studied dynamics are very general.
Usually, the temporal evolution of such processes is assumed to be Markovian. When only
demographic events happen, the process is known as the classical spatial (or multi-type)
Birth-Death processes. When only swap events happen, the process is a Continuous Time
Markov Chain (CTMC) describing the evolution of a population of constant size. These
classes of Markov processes are very usual in many counting problems. A less common
approach is to consider both dynamics together in a non Markovian framework, which
is our setup. The age-structure of the population is however not taken into account in
the modeling, due to the complexity already introduced by swaps. To the best of our
knowledge, the terminology Birth Death Swap has been introduced in discrete time by
Huber (2012) for the very different purpose of generating random variables as stationary
distribution of pure jumps processes.
In Section 2.2, the setup of the model is presented. Our presentation gives an algebraic
decomposition of the so-called population process, based on the multivariate process
counting the number of events occurring in the population, called the jumps counting
process, and a generalized initial condition, called entry process. In particular, some
useful transformations on the population can be made without further assumptions on
the distribution of the process.
In Section 2.3, we give a pathwise representation of jumps counting process, as the
solution of a multivariate Stochastic Differential System (SDE) driven by an extended
Poisson measure. The existence of BDS systems is derived from a more general result
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obtained on the construction of multivariate counting processes by strong domination with
a non-exploding process. The construction by strong domination offers many advantages,
and for instance “free” tightness properties are obtained in Chapter 3 thanks to this
construction.
In Section 2.4, an alternative construction of BDS systems is presented, called the
Birth Death Swap decomposition algorithm. The decomposition algorithm allows us to
disentangle swap events from demographic events, for instance when they are supposed
to have their own timescale.

2.2 Birth Death Swap systems

2.2.1 Setup

We describe the evolution of a general class of heterogeneous population, in which
individuals differ by a finite number of characteristics. The population is structured by
discrete subgroups indexed by 1..p, such that individuals in the same subgroup share the
same set of characteristics and have similar demographic behaviors. The diversity of
the population is measured by the size of the different subgroups. At a given time, the
quantity of interest is thus the vector of the number of individuals in each subgroup, also
called the state of the population.
Random changes in the population occur at random dates and are described by the move
of a single individual at a time. Different types of events can modify the composition of
the population. A demographic event is a birth (or entry) or death in a given subgroup. A
swap event happens when a individual changes of characteristics, resulting in a move from
one subgroup to another. No information is given on the “origin” of events. “Parents”
for newborns are not specified, and interactions leading to a change of characteristics
or death are not known. This description, only based on changes in the population
composition allow us to include a large class of dynamics in the model.
The assumption that individuals in the population differ only by a finite number of
characteristics is introduced for ease of exposition, and can easily be extended to a
countable set of characteristics.

State space

Before introducing the model, let us introduce some algebraic notations in order to
simplify the description of the state space of the population process.
Notations: The vector space Zp is equipped with the canonical basis (ei)1≤i≤p, with
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ei =t(0, · · · , 0, 1i, 0). The usual scalar product is denoted by <, >,

z =t(z1, .., zp), zi =< z, ei > and z =
p∑

i=1
< z, ei > ei.

The unit vector is denoted by 1 =t(1, .., 1). Finally, the notation z♮ =< 1, z >=
p∑

i=1
zi

will often refer to the size of a “population” vector z ∈ Np in the sequel.
Population state space: The population is divided in p subgroups of indistinguishable
individuals sharing the same set of characteristics, for instance living in the same patch
or neighborhood, or with the same level of income. Individuals in the same subgroup
are assumed to have the same demographic or “swap” behavior, and the subgroups are
indexed by the set Ip = {1, 2, · · · , p}. The state of the population is described by the
number of individuals in the each subgroup, that is by a vector of Np, considered as a
subset of Zp.

Elementary events representation.

We first described the events which can happen in the population. The analysis of moves
(or events) in the population is inspired by the framework of Preston (1975) for spatial
birth death process and Huber (2012) for birth death swap process in discrete time, but
with continuous state space of characteristics. We give a more unified description, based
on the observation that swap events and demographic events have a strong similarity.
a) A swap event from i to j (j ̸= i) is a move of an individual from subgroup i to the
subgroup j. Observe that since individuals in the same subgroup are indistinguishable,
a swap move can also be interpreted as the simultaneous removing of an individual
taken randomly in subgroup i and addition of an individual in subgroup j. This swap
event linking at the same time the two subgroups i and j is indexed by the ordered pair
κ = (i, j).
A swap event from i to j can only occur if the subgroup i is not empty, zi ̸= 0. In
this case, the change induced in a population z =t(z1, .., zp) ∈ Np affects the subgroup
j whose size becomes zj + 1 and the subgroup i whose size becomes zi − 1 ≥ 0. The
new population composition is ϵi,j(z) = z + (ej − ei). The family of the swap events is
indexed by the set J s = {κ = (i, j)| i, j ∈ Ip, i ̸= j}.
b) A demographic event is a birth or death in a subgroup. An event of type “birth in
subgroup j” means that an individual is added to the subgroup j, inducing a change
zj 7→ zj + 1 in the jth subgroup. Then, after a birth event in subgroup j, the population
is ϵb,j(z) = z + ej. There is some ambiguity in using the word “birth” in this context
since no information is given on the “parents” of the newborn, and a birth event is not a
priori endogenous to the population.
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An event of type “death in subgroup i” can only occur if the subgroup is not empty, and
means that an individual is removed from subgroup i, inducing a change zi 7→ zi − 1 in
the ith population, if zi > 0. Then, after a death event in subgroup i, the population is
ϵd,i(z) = z − ei. The families of birth events and death events are respectively by indexed
by the sets J b = {(b, j)| j ∈ Ip} and J d = {(d, i)| i ∈ Ip}. The set of all demographic
events is denoted by J dem = J b ∪ J d.
In order to have a unified description of swap and demographic events, it is convenient to
add an “hypothetical” infinite subpopulation, denoted by {∞}. All functions are assumed
to be null on {∞}, and the vector e∞ is the null vector e∞ =t(0, · · · , 0). Then, the event
“birth in subgroup j” may be viewed as a swap event (∞, j) = (b, j) from ∞ to j, with
ϵb,j(z) = ϵ∞,j(z) = z +ej −e∞; and the event “death in the no empty subgroup i” may be
viewed as a swap event (i, ∞) = (d, i) from i to ∞, with ϵd,i(z) = ϵi,∞(z) = z + e∞ − ei.
The indexing sets are modified as follows to include this additional subgroup:

• Characteristics set: I = Ip ∪ {∞} with the additional notation I(i) = I \ {i}.

• Set of all events: J = {γ = (α, β); α ∈ I, β ∈ I(α)}.

• Set of swap events: J s = {κ = (i, j); i ∈ Ip, i ∈ I(i)
p }.

• Set of demographic events: J dem = {(∞, j); j ∈ Ip} ∪ {(i, ∞, j); i ∈ Ip}.

• card(I) = p + 1, card(J ) = p(p + 1), card(J s) = p(p − 1), card(J dem) = 2p.

General event notation and calculation

We close this section with some simple algebraic calculations. In particular, the focus
is shifted from the population state space to the space of counting vectors, defined as
integer-valued vectors indexed by the set of all events J . These calculations will be
particularly useful in the following sections, in which the population will be represented
using a larger vector counting the number of events in the population.
Counting vectors are Np(p+1) vectors indexed by J , and denoted in the following by
ν = (νγ)γ∈J . For γ ∈ J , νγ should be interpreted as the number of events of type γ

which occurred in the population. It can be interesting to isolated the swap part and
the demographic part. Thus, we also write ν = (νs, νdem), where νs = (νκ)κ∈J s is the
swap part of ν, and νdem = (νb, νd) is the demographic part, with νb = (νb,i)i∈Ip and
νd = (νd,i)i∈Ip . Sometimes, we also write νs + νdem = ν by abuse of notation.

Jumps For any γ = (α, β) ∈ J , ϕ(γ) = eβ − eα is the Zp-valued vector representing the
jump of the population associated with the event of type γ = (α, β). As stated in the
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previous paragraph, the state of the population after event γ is ϵα,β(z) = z + ϕ(γ) =
z + eβ − eα. In particular, ϕ(b, j) = ϕ(∞, j) = ej, ϕ(d, i) = ϕ(i, ∞) = −ei.
ϕ can be seen as the (p, p(p + 1)) matrix with columns ϕ(γ). With obvious notations, we
write ϕ = ϕs + ϕdem, as for counting vectors. Let us note that the matrix ϕdem = (ϕb, ϕd)
is very simple since ϕb is the p identity matrix and ϕd = −ϕb.

Frequently used calculations For a counting vector ν indexed by J , the notation
ϕ ⊙ ν ∈ Zp denotes the matrix product of ϕ and ν,

ϕ ⊙ ν =
∑
γ∈J

ϕ(γ)νγ = ϕs ⊙ νs + νb − νd, (ϕ ⊙ ν)i =
∑

α∈I(i)

να,i −
∑

β∈I(i)

νi,β. (2.2.1)

The population size (ϕ ⊙ ν)♮ =< 1, ϕ ⊙ ν >= ∑
i∈Ip

(ϕ ⊙ ν)i is given by:

(ϕ ⊙ ν)♮ = (ϕdem ⊙ νdem)♮ = νb,♮ − νd,♮, since(ϕs ⊙ νs)♮ = 0. (2.2.2)

2.2.2 Population process and jumps counting process

From now on, all processes are assumed to be defined on a given probability space (Ω, G, P),
equipped with a filtration (Gt) verifying the usual assumptions of right-continuity and
completeness. The predictable σ-field generated by adapted left-continuous processes is
denoted P(G).
The evolution of the population is described by an adapted càdlàg Np-valued pure jump
process Z, called the population process. Jumps of the population process are assumed
to be swap or demographic jumps as described above. We also assume that two events
cannot happen simultaneously. At time t the state of the population is Zt = (Z1

t , .., Zp
t ),

with Zi
t the number of individuals in subgroup i.

Jumps counting process

Jumps counting process As a multivariate pure jump process, the population process
Z has piecewise constant and càdlàg paths, and can be written as the sum of its jumps,
denoted by ∆Zs = Zs − Zs−. With the unified notations introduced above, the jump
size corresponding to the event γ = (α, β) is ϕ(γ), so that,

Zt = Z0 +
∑

0<s≤t

∆Zs = Z0 +
∑

0<s≤t

∑
γ∈J

1{∆Zs=ϕ(γ)} ϕ(γ) (2.2.3)
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For each type of event γ ∈ J , the counting process Nγ defined by Nγ
t = ∑

0<s≤t 1{∆Zs=ϕ(γ)}

is the process which counts the number of events of type γ. By assumptions, the processes
Nγ have no common jumps. Thus, the process N = (Nγ)γ∈J indexed by J is a well
defined multivariate counting process, called the jumps counting process of Z.
Interchanging the sums in Equation (2.2.3) shows that the population process is an affine
function of the jumps counting process N,

Affine relation Zt = Z0 +
∑
γ∈J

ϕ(γ)Nγ
t = Z0 + ϕ ⊙ Nt (2.2.4)

Observe that Zt is an affine function of (Z0, Nt), but Nt is depending on all the history
Z[0,t] of the population process Z on [0, t], so that Nt = H(Z[0,t]). Using the notations in-
troduced in 2.2.1, the affine relation can also be written as Zt = Z0 + ϕs ⊙ Ns

t + Nb
t − Nd

t .
An equivalent point of view is to consider the jump measure of the population process
instead of the jumps counting process,

J(dt, dγ) =
∑
s>0

∑
γ∈J

1{∆Zs=ϕ(γ)}δγ(dγ)δs(dt) (2.2.5)

Thus, this representation can be applied to any pure jump process generated by a finite
or countable number of jumps types. In particular, a similar representation is used
in Anderson and Kurtz (2015) in the case of Continuous Time Markov Chains for the
modeling of chemical reaction network. To the best of our knowledge, this representation
is less usual for population dynamics. Furthermore, the constraint Z ∈ Np implies that
the jumps counting process cannot be defined independently of the population, due to a
support condition.

Support Condition An individual can be removed from subgroup i in several cases: a
death, definitive exit, or a swap move to another subgroup j. These events are indexed
by couples (i, β), β ∈ I(i). Recall that such events cannot happen if the subpopulation
i is empty. This means that for any such (i, β), the counting process N i,β satisfies the
support condition

Support condition ∀β ∈ I(i),
∫ t

0
1{Zi

s−=0}dN i,β
s = 0, P-a.s. (2.2.6)

The process N i,β cannot be defined independently of the population process in order to
respect the constraint that the components of Z are non negative.
The situation is different for events leading to the addition of an individual in the
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subgroup j. Since no reference is made on the origin of the new individual, such events
include swap moves, but also birth (from parents in the population) or external entry
(of immigrants). In a closed population (without immigration), it is assumed that no
event can happen in an empty population, so that

∫ t
0 1{Zs−=0}dNs = 0, or equivalently∫ t

0 1{Zs−=0}dN ♮
s = 0, a.s..

Initialization procedure In the previous description of the population process, little
attention has been paid to the role of the initial condition Z0. In many problems, the date
0 for the initial condition is very arbitrary, and the state Z0 gives a poor information on
the past of the population dynamics. Massoulié (1998) suggests to define the population
process on R in place of R+, and to model the initial condition as the state at time 0
of some Np-valued dynamic process (ξt)t≤0. It is thus natural to consider a generalized
initial condition starting at a random date τ ≥ 0 (generally a stopping time) from state
ζτ ∈ Np. This information is summarized by the so-called entry process ξt(ζ) = ζτ1{τ≤t}

(often denoted ξt or ξτ
t for simplicity), with in this generalized setting
Zt = ξt + ϕ ⊙ Nt, Nγ

t = ∑
τ<s≤t

1{∆Zs=ϕ(γ)}.

In particular, the jumps counting process does not increase on the set {t; ξt− = 0} and
still satisfies the support condition (2.2.6).

Population system with entry process

The representation of the population using a larger multivariate counting process is very
advantageous, due to the many tools available for the study of point processes. In the
rest of this chapter and in Chapter 3, we strongly rely on the description of population
processes using jumps counting processes.
We are thus interested in the inverse modeling approach, that is in the construction of a
population process from an entry process and a jumps counting process. Given a couple
(ξ, N), the population is obviously characterized by the affine relation (2.2.4). However,
such a process is not necessarily a well defined population since its components can take
negative values. A necessary and sufficient condition for the population process to be
well-defined is actually the support condition (2.2.6).

Definition 2.2.1 (Population system with random departure).
a) Let (ξt = ζτ1{τ≤t}) be an Np-valued entry process. A p(p + 1)-multivariate counting
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process N indexed by J is called a jumps counting process starting from ξ iff Starting condition 1{ξt−=0}dNt = 0
Support condition 1{ξi

t−+(ϕ⊙N)i
t−=0}dN i,β

t = 0 ∀i ∈ Ip, ∀β ∈ I(i) (2.2.7)

b) The companion population process of (ξ, N) is defined by Zt = ξt + ϕ ⊙ Nt. In
paticular, Z is a well-defined population process with jumps counting process N and entry
process ξ. The triplet (ξ, N, Z) is called a population system.

A demographic event in the population corresponds to a jump of one of the processes
Nb = (N∞,j) or Nd = (N i,∞). By application of the elementary calculations of Paragraph
2.2.1, the size of the companion population process (also called the aggregated process)
is Z♮ = ξ♮ + (ϕ ⊙ N)♮ = ξ♮ + N b,♮ − Nd,♮. This can be simply interpreted as the initial
size of the population to which is added the total number of births minus the number of
deaths. Since N b,♮

t and Nd,♮
t have no common jumps, the size of the population process is

constant between two demographic events. The process Ndem,♮ = N b,♮ + Nd,♮ counts the
total number of demographic events.

Swap processes Populations in which no demographic event occur are called Swap
processes, and will play a very important role in the following. As for population systems,
a swap system is defined by a triplet (ξ, Nsw, X), where the swap jumps counting process
Nsw is now indexed by J sw, and verifies the starting and support conditions with ϕs in
place of ϕ. The companion swap process is defined by Xt = ξt + ϕs ⊙ Nsw

t .
By Equation (2.2.2), The swap size X♮ after τ is equal to ξ♮

τ . Thus, the size of the
swap process is constant after the random start, and determined by the size of its initial
condition. For each n ∈ N, let Un = {z ∈ Np; z♮ = n} be the finite space of populations
of size n. Then, the swap process lives in space Uξ♮

τ
after the random start τ . We will

come back to specific properties of swap processes in the following.

Temporal transformation of population system

Several transformations on population systems can be directly obtained from the previous
algebraic definition. The two examples presented in this paragraph will be particularly
useful in Section 2.4, in order to disentangle swap events from demographic events.

population decomposition Let (Z0, N, Z) be a population system starting from 0 and τ

a random time. The system stopped at time τ is denoted by (Z0, Nτ
t = Nt∧τ , Zτ

t = Zt∧τ ).
Since Nτ

t =
∫ t

0 1]0,τ ](s)dNs, Nτ verifies the support condition. Obviously Nτ don’t jump
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after time τ .
A population system starting from τ in state Zτ can also be defined, from the entry
process ξτ

t (Z) = Zτ 1{τ≤t} and the jumps counting process Nτ+:
Nτ+

t = 1]τ,∞) ∗ Nt with 1]τ,∞) ∗ Nt =
∫ t

0 1]τ,∞)(s)dNs = Nt − Nτ
t .

Then, Nτ+ is a jumps counting process starting from ξτ (Z), associated with the companion
population process Zτ+ = ξτ (Z) + ϕ ⊙ Nτ+ . By definition,

Z = Z0 + ϕ ⊙ (N − Nτ + Nτ ) = Zτ + ϕ ⊙ Nτ+ .
This means that the companion population Zτ+ coincides with Z on [τ, ∞). Furthermore,
a decomposition of the initial population system is given by:

N(Z0) = Nτ (Z0) + Nτ+(ξτ (Z)), Z(Z0) = Zτ (Z0) − ξτ (Z) + Zτ+(ξτ (Z)) (2.2.8)

Population process with only one demographic event Let us now assume that
only one demographic event (birth or death) occurs in the population, at time T dem = τ .
τ is the first jump of the demographic counting process Ndem, or equivalently of N ♮,dem =
N ♮,b + N ♮,d. On [0, τ [, Ndem is the null process and Zt = Z0 + ϕs ⊙ Ns

t is a “pure swap
process”. Since two events cannot occur at the same time, the process Z0 + ϕs ⊙ Ns

t∧τ can
be extended by continuity to [0, τ ], and can be considered on this interval as a stopped
pure Swap process Xτ . By definition, the population process has a jump at time τ

equal to Nb
τ − Nd

τ , where Ndem = (Nb, Nd) has only one non-zero component. Then, the
population process stopped at time τ can be written as Zτ = Xτ

t + Nb
t − Nd

t . Finally,
since only one demographic event occurs, the process Zτ+ starting at time τ is a pure
Swap process.
Observe that this description actually defines a continuous pasting procedure of two
Swap processes evolving on different state spaces. The demographic event is used as
switch process, from state space UZ♮

0
to UZ♮

0+Nb,♮
τ −Nd,♮

τ
, and also defines the starting state

of the second Swap. This kind of decomposition will be the building block of the
decomposition algorithm of Section 2.4.

2.2.3 Birth Death Swap Intensity

By describing the events changing the composition of the population rather than the
behavior of individuals, we have obtained a very flexible algebraic description of the
population, based on the jumps counting process. We can now define the so-called Birth
Death Swap (BDS) system. Thanks to the theory on point processes and their pathwise
representations, the BDS system is characterized by properties of the multivariate
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intensity of the jumps counting process. Let us first give a brief recall on the intensity
process, followed by the classical example of the Poisson measure.

Brief overview on intensity processes and Poisson measures

Intensity process A Gt-adapted counting process N (Gt is not necessarily the canonical
filtration of N) is said to have the Gt-intensity process λ iff λ is a non-negative, Gt-
predictable process and

Mλ
t = Nt −

∫ t

0
λs ds is a Gt - local martingale (2.2.9)

Informally, λtdt is the linear estimate of N between ]t, t + dt], conditionally to the
strict information given by Gt: E[Nt+dt − Nt|Gt−] ≃ λtdt. In particular, the predictable
intensity process reflects any predictable support condition on the process N , since for
any predictable subset ∆,

∫ t

0
1∆(s) dNs = 0 ⇐⇒ 1∆(s)λs = 0, ds × dP a.s.. (2.2.10)

In the standard theory motivated by statistical estimation issues, the intensity is often
defined in reference to the minimal filtration Ft = σ(Ns; s ≤ t) generated by the past
history of the counting process, also called canonical filtration. Then, the intensity may
only be a function of the past of the counting process. Here, working with larger filtration
actually facilitates the analysis of the jumps counting process, in particular by adding
flexibility to the setting.
For a multivariate counting process N = (Nγ)γ∈J whose components have no common
jumps, the Gt-multivariate intensity process is the vector λ = (λγ)γ∈ℑ, where λγ is
the Gt-intensity of process of Nγ. The concept of spatial counting measure N(dt, dγ)
is sometimes preferred to the vector representation. The correspondence is given by:
N([0, t] × {γ}) = Nγ

t . The associated intensity measure is λ(dt, dγ) = dt λγ
t dγ, where

dγ is the counting measure on J .

Poisson measures Obviously, a Gt-adapted spatial counting measure can be defined on
a more general (complete, separable, metric) space (E, E). When its Gt-intensity measure
is a deterministic product measure λ(dt, dx) = dtµ(dx), with µ is a σ-finite measure
on (E, E), the counting measure Q(dt, dx) is known to have a Poisson distribution in
the following sense: for disjoints sets A1, .., An ∈ E such that µ(Ai) < ∞, the processes
(Qt(Ai) = Q([0, t] × Ai)), i = 1..n, are independent Poisson processes (they have no
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jumps in common) of Gt-intensity µ(Ai).
All properties of spatial Poisson measures are defined in reference to the large filtration
(Gt). In particular, the conditional increments of the Poisson process Qt+h(A) − Qt(A)
are independent of Gt. This property implies weak non causality in the sense of Florens
and Fougere (1996) between the filtration G and the canonical filtration of the Poisson
measure Q. In a probabilistic point of view, this notion is known as the (H)-assumption.
A constructive algorithm for the simulation of Q can be given when the measure µ(dx)
is finite, with mass µ(E). In this case, a sequence of random variables (Ti, χi) is defined,
where (τi = Ti − Ti−1, χi) is an iid sequence, with τi an exponential random variable with
parameter µ(E) and χi an independent mark distributed as µ(dx)/µ(E). The Poisson
measure Q is generated by using Dirac measures, Q(dt, dx) = ∑

n δTi
(dt)⊗δχi

(dx). In this
case, Q is often called a marked Poisson process. In particular, an ordered enumeration
of its jump times can be given. This construction, however, does not hold if µ is only
σ-finite. In this case, a similar construction can be obtained by restricting the intensity
to sets R+ × En, with E = ⋃

En, µ(En) < ∞. However, there is no ordered enumeration
of the jump times of Q when µ is only σ-finite.

Birth Death Swap systems

The jumps counting process of a population system cannot have a deterministic intensity,
due to the the support conditions (2.2.7) which are transferred onto the intensity process
of the jumps counting process by (2.2.10). In order for the population system (ξ, N, Z) to
become a Birth Death Swap system, additional assumptions are made on the multivariate
intensity of N. Only the companion population process Z is usually observed, and a
natural assumption is that the intensity process depends on the population process rather
than on the jumps counting process. This assumption is implicit in a Markov framework.
To go further and take into account some additional time-dependent uncertainty, such
as a random environment, the multivariate intensity process is assumed to depend in a
predictable way on additional randomness, not explicitly modeled.

Definition 2.2.2 ( BDS intensity functional and BDS system).
a) A BDS intensity functional µ(ω, t, z) = µ(t, z) = (µγ(t, z))γ∈J is a multivariate
Gt-predictable non-negative functional depending on z ∈ Np, satisfying

µ(t, 0) ≡ 0 and
∑
i∈Ip

∑
β∈I(i)

µi,β(t, z)1{zi=0} ≡ 0, dt ⊗ dP a.s. (2.2.11)
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b) A Birth Death Swap (BDS) system of intensity functional µ is a population system
(ξ, N, Z) such that the jumps counting process N is a multivariate counting process of
Gt-intensity λt = µ(t, Zt−) = µ(t, ξt− + ϕ ⊙ Nt−).

The second part of (2.2.11) ensures that the BDS system (ξ, N, Z) verifies the support con-
dition (2.2.7). The condition µ(t, 0) ≡ 0 ensures that the starting condition is also verified.
Indeed, the starting condition means that the first jump time T1 of N verifies T1 > τ , i.e∫
1{ξt− =0}∩{t≤T1}dNt = 0. By (2.2.10), this is equivalent to 1{ξt− =0}∩{t≤T1}µ(t, Zt−) = 0,

dt × dP p.s. By definition, Zt− = 0 on {ξt− = 0} ∩ {t ≤ T1}, and since µ(t, 0) = 0 by
(2.2.11), this means that N verifies the starting condition. This condition is actually
not necessary, and could have been replaced by more general condition µ(t, z)1{ξt− =0}.
However, we prefer the former condition which lead to simpler notations.
In the case of pure Swap processes, the swap intensity functional is defined by (µκ(t, x))κ∈J s

and satisfying a support condition equivalent to (2.2.11). Swap systems of intensity µs

are denoted by triplets (ξ, Nsw, X).
The swap and demographic part of a population process can be isolated by writing
Zt = ξt + ϕs ⊙ Ns

t + Nb
t − Nd

t . However, disentangling the swap and the demographic
part is not an easy task, since the support conditions introduce a non-linear dependence
between them. In particular, N s is not a swap jumps counting process. We come back
to this problem in Section 2.4.

Examples of BDS intensities

Let us give some examples of BDS intensity functional.

a) Linear intensities and individual rates For an event γ ∈ J , µγ(t, Zt−) is the
intensity corresponding to the occurrence of the event of type γ in all the population.
This should not be confused with the rate at which the event γ can occur to one individual.
The intensity µγ is called linear if the functional depends linearly on the number of
individuals in each subgroup. Linear intensities allow a direct interpretation of intensities
in term of individual rates:
-Death and Swap intensities: for an event (d, i) of type death in the subgroup i, a classical
linear intensity functional is µ(d,i)(ω, t, z) = di(ω, t)zi. The intensity can be interpreted
as follow: all individuals in subgroup i die independently with a death rate di(ω, t). A
similar interpretation can be given for linear swap events.
- Birth intensities: For an event (b, j) of type birth in the subgroup j, the equivalent
is to take µ(b,j)(ω, t, z) = bj(ω, t)zj. This means that all individuals in subgroup j give
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birth to an individual of same characteristics at rate bj(ω, t). Mutations at birth can
be included, µ(b,j)(ω, t, z) = ∑p

i=1 bi(ω, t)zim(ω, t, i, j), where m(ω, t, i, j) is the random
probability for a individual born at time t from a parent in subgroup i to be in subgroup
j. A stochastic intensity λt can also be added to the birth intensity, in order to model
the entry of immigrants at rate λt.

b) Markov BDS system: When the BDS intensity functional is an homogeneous deter-
ministic function µ(z), the BDS system is a Continuous Time Markov Chain (CTMC). In
this case, the process can be described using classical tools of CTMC. If the population
has the initial state Z0, the first jump time is distributed as an exponential of parameter
µ♮(Z0), and the event of type γ is chosen as the first event independently with probability
µγ(Z0)/µ♮(Z0). The BDS system can be built by iterating the last two steps.

c) Nonlinear Swap intensity: Let us give an example of a BDS system with general birth
and death intensities and deterministic nonlinear swap intensity functional. We consider
here the case of two subgroups or patches (p = 2), where subgroup 2 is a favorable
subgroup with lower death intensity: µ(d,1)(t, z) ≥ µ(d,2)(t, z), a.s. Two regimes can be
distinguished for the swap events, depending on the size of the population: when the
population is small, z♮ ≤ M , individuals can swap more easily to the favorable subgroup
2, at a rate k12(z♮)α, with α > 0. When the population size is large, z♮ > M , access to
the subgroup 2 is limited and individuals swap from 1 to 2 at a constant rate kM

12 . In
both cases, individuals swap from the favorable subgroup 2 to subgroup 1 at constant
rate k21. To summarize, the swap intensity is defined as follow:

µ(1,2)(z) = k12(z♮)αz11{z♮≤M} + kM
12 z11{z♮>M}, µ(2,1)(z) = k21z

2. (2.2.12)

In particular, pure Swap processes with intensity defined as above are CTMC. Since
pure Swap processes have a constant size determined by their initial condition, the
intensity regime is determined by the size n of the Swap process, and individuals swap
independently from 1 to 2 at a constant rate equal to k12n

α or kM
12 according to the size

of the Swap. We come back to this example in the next chapter.

2.3 Birth Death Swap Differential Equations

The question of the existence of BDS systems can be complex considering the feedback
effect induced by the intensity functional. Markovian assumptions are generally made for
Birth Death processes or for Swap processes, yielding to a distributional point of view
on the existence of such processes. Since the 1990s, a pathwise point of view, allowing
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more flexibility on intensity processes, has been considered by many authors (see e.g
Bansaye and Méléard (2015); Brémaud and Massoulié (1996); Fournier and Méléard
(2004); Garcia and Kurtz (2008, 2006); Massoulié (1998); Nassar and Pardoux (2017)).
This point of view is based on the pathwise realization of point processes as solutions
of Stochastic Differential Equations (SDE) driven by Poisson measures. In particular,
solutions are obtained from the thinning of an “augmented Poisson measure”.
In this section, we rely on these representations in order to give a pathwise representation
of the BDS system, based on the realization of the jumps counting process as the solution
of a multivariate SDE. Focusing on the jumps counting process allows us to adopt the
point of view of point processes, within a general framework similar to that of Massoulié
(1998).
In their paper on the modeling of recurrent events (another terminology used in statistics
for counting processes), Gjessing et al. (2010) highlight the importance of non-explosion
properties, in order to avoid fitting errors due to the uncontrollable nature of exploding
systems. Non-explosion is also central in the analysis of solutions of SDEs driven by
Poisson measures. In the rest of this part, all solutions of stochastic differential equations
driven by Poisson measures are considered to be well-defined if they are “honest” in the
terminology of Cox and Miller (1977), also used in Gjessing et al. (2010), that is if they
stay finite in finite time with probability one.
The existence of BDS systems is derived from a more general result obtained in 2.3.1,
on the construction of multivariate counting processes by strong domination with a
non-exploding process. In particular, this construction allows us to relax some of the
usual assumptions on the intensity functional that are Lipschitz or sublinear growth
conditions. Furthermore, the strong domination construction will be every useful in
Chapter 3, by providing “free” tightness properties.

2.3.1 Thinning of Poisson measure and Markov birth process

Let us first introduce the basic principles of the thinning procedure. As a first example,
a thinning construction of the classical Markov birth process is presented. By convention,
all Poisson measures are assumed to be defined on the given probability space (Ω, (Gt), P).

Thinning of Poisson measure

Let us first consider the simple case of a Poisson measure Q(dt, dθ), with marks θ defined
on (R+, B(R+)) and deterministic intensity measure q(dt, dθ) = dt × m(dθ), where m is
the Lebesgue measure (m(dθ) = dθ). Let also λ be a non negative predictable process,
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dt-integrable over compact intervals, and ∆ the the subset of P(G) × B(R+) defined by
∆ = {(t, θ); 0 < θ ≤ λt}.
A new random measure Q∆(dt, dθ) can be defined as the restriction of the Poisson
measure Q to the random set ∆,

Q∆(dt, dθ) = 1∆(t, θ)Q(dt, dθ).
Q∆ is a random measure of random intensity measure q∆(dt, dθ) = 1∆(t, θ)dt × m(dθ).
Furthermore, its projection on R+ is the Cox process

Qλ
t =

∫ t
0
∫
R+ 1{0<θ≤λs}Q(ds, dθ) =

∫ t
0 Q(ds, ]0, λs]),

of Gt-compensator
∫ t

0 ds
∫
R+ 1{0<θ≤λs}dθ =

∫ t
0 λs ds. The process Qλ of Gt-intensity λ

is thus obtained by thinning and projection of the augmented Poisson measure Q. As
stated in Paragraph 2.2.3, there is no monotone enumeration of the jump times of Q,
and we cannot define an iterative construction of Qλ from Q which would be based on
an increasing sequence of jump times of Q, as it is sometimes incorrectly done.
However, since Qλ is a well-defined counting process, its jump times can be enumerated
increasingly, and Q∆ can be characterized by a sequence (Ti, Θi), with (Ti) the increasing
sequqence of jump times of Qλ, and Θi the mark of Q associated with Ti. This description
is particularly useful since it allows us to define a unique iterative construction for processes
obtained by thinning of Q∆, using a similar construction to that presented in Lewis and
Shedler (1979) for the construction of inhomogeneous Poisson processes.
The thinning procedure can be extended to more general Poisson measures Q(dt, dx, dθ),
with marks (x, θ) defined on (E × R+, E × B(R+)) and intensity measure q(dt, dx, dθ) =
dt × ν(dx) × dθ, where ν(dx) is a σ-finite measure on E. A Cox measure Qλ(dt, dx) =
Q(dt, dx, ]0, λ(t, x)]) can be defined similarly by thinning and projection of Q based on a
P(G)⊗E process λ(t, x). The stochastic intensity of Qλ is qλ(dt, dx) = λ(t, x) dt × ν(dx),
and the measure Q(dt, dx, dθ) is called the driving Poisson measure of Qλ.
In many applications, the space E is a finite space of cardinal ρ, with elements denoted
by ı and equipped with the uniform counting measure dı. In the case of BDS systems
for instance, E is the set J of all events types, with ı = γ (ρ = p(p + 1)). It is thus
interesting to use a vector version of the foregoing. The Poisson measure Q(dt, dı, dθ) is
reinterpreted as a family of independent Poisson measures Q̄(dt, dθ) = (Qı(dt, dθ); ı ∈ E),
and λ(t, ı) becomes a multivariate intensity λ̄ = (λı)ı∈E. Finally, the Cox measure is
rewritten as the multivariate Cox process Q̄λ(dt, ]0, λ̄t]) =

(
Qı(dt, ]0, λ(t, ı)])

)
ı∈E

. A
multivariate random measure Q̄∆(dt, dθ) = 1]0,λ̄t](θ)Q̄(dt, dθ) can also be defined as in
the one dimensional case.
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2.3 Birth Death Swap Differential Equations

Multivariate Markov Birth process

When the intensity λ̄ of the multivariate counting process Q̄λ is a predictable functional
of Q̄λ itself, the thinning equation becomes a stochastic differential equation, driven
by the multivariate Poisson measure Q̄. The most simple example of such a process is
probably the one dimensional Markov pure Birth process, also called online Markov Birth
process, and which has extensively been studied since the 60s. In particular, the famous
Feller criterion (Feller (1968)) guarantees the non-explosion of the online Markov process.
In this paragraph, we give a brief overview of the thinning construction of the Markov
Birth process, followed by a generalization to multivariate Markov Birth processes.

Online Markov Birth process An online Markov Birth process B is characterized
by its intensity functional, here denoted by Kg(y) (with g(0) = 0). The most classical
example is the Yule process, in the linear case when g(y) = by. The linear case is useful
to prove the finitude of some moments as explained in Bansaye and Méléard (2015). A
realization of B can be obtained as solution of the following SDE driven by a Poisson
measure Q,

 Bt(y) = y + NB
t and dNB

t = Q(dt, ]0, K g(Bt−(y))]).
Feller criterion ∑∞

j=1
1

g(j) = ∞
(2.3.1)

Let us give some elements of the proof of the (strong) existence and uniqueness of the
previous equation.
Sketch of the proof: The first jump of the counting process NB is the first jump time
of the Gt-Poisson process Qt(]0, K g(y)]) = Q(]0, t]×]0, K g(y)]), and is distributed as
an exponential variable with parameter Kg(y). By a recursive argument, the jumps
of the counting process NB occur at times T1, T2, Tj.., where Tj is the first jump time
of a Poisson process starting at time Tj−1 and of intensity Kg(y + j − 1), obtained
by thinning of Q. In particular, their increments are exponentially distributed with
parameter 1

K g(y+j−1) . The Feller condition for non-explosion is equivalent to the property
that limn Tn = ∞. Thus, B is a non-explosive pure Birth process, which is by construction
the unique solution of Equation (2.3.1).

Multivariate Markov birth process The multivariate case is an easy extension under
the following assumption: the process B̄ is Nρ-valued and the multivariate intensity
functional of B̄ is a deterministic function of the size ȳ♮ = ∑ρ

1 yı of the birth process,
ḡ(ȳ) = (gı(ȳ♮)). For each ı = 1..ρ, the function gı is assumed to satisfy the Feller criterion,

61



Pathwise representations of BDS systems

and the multivariate birth process B̄ is defined as solution of the differential system
 B̄t(ȳ) = ȳ + N̄B

t and dN̄B
t = Q̄(dt, ]0, K ḡ(B̄♮

t−(ȳ)]).
Multivariate Feller criterion ∀ ı ≤ ρ,

∑∞
n=1

1
gı(n) = ∞

(2.3.2)

Sketch of the proof: The first jump time T 1,♮ of B̄♮ is also the first jump time of the
processes (N̄B) counting the number of births. As solution of Equation (2.3.2), the vector
(N̄B

t ) is equal to the ρ-dimensional Poisson process (Q̄t(]0, K ḡ(ȳ♮)]) before T 1,♮. At time
T 1,♮, one and only one component I1 of Q̄ jumps and defines the component of N̄B which
jumps. In particular, T 1,♮ is an exponential random variable with parameter ∑ρ

1 K gı(ȳ♮),
independent of the random index I1, which verifies P(I1 = ı) = gı(ȳ♮)/∑ρ

1 gı(ȳ♮). This
step can be iterated, by starting from ȳ(I1) = ȳ + 1I1 at time T 1,♮.

Existence and strong comparison of multivariate SDEs driven by Poisson
measures

The comparison of point processes with ordered (stochastic) intensities has been the
subject of many papers (see e.g. Preston (1975); Rolski and Szekli (1991)). The thinning
procedure is well-adapted to solve this problem, and for Cox processes, the answer is
immediate. If two Cox processes Qλi

t = Q(]0, t]×]0, λi
t]), i = 1, 2 have ordered intensities

λ1
t ≤ λ2

t , then the thinning construction using the same Poisson measure for both processes
directly yields that Qλ1

t ≤ Qλ2
t , for all t ≥ 0. Actually, a stronger property is verified.

Since, λ1
t ≤ λ2

t , Qλ1 can be rewritten as Qλ1
t = Q(]0, t]×]0, λ1

t ∧ λ2
t ]) = Q∆2(]0, t]×]0, λ1

t ]).
This means that Qλ1 can be obtained by thinning of Q∆2 instead of Q. In particular, all
jump times of Qλ1 are jump times of Qλ2 , and Qλ1 is strongly dominated (or strongly
majorized in the terminology of Jacod and Shiryaev (1987)) by Qλ2 .
The direct application to general multivariate counting processes is not so easy, since
the natural order of intensity functionals does not necessary imply a natural order on
the stochasic intensities. Nevertheless, for online Markov Birth processes, Bhaskaran
(1986) (see also Bezborodov (2015)) showed that for non exploding processes, an intensity
functional inequality implied a strong domination result. The proof is based on a
thinning procedure slightly different from ours and can be extended to Markov Birth
Death processes.
The following theorem sets a general framework for the strong comparison of multivariate
counting processes. A ρ-multivariate counting process Ȳ α is said to be strongly dominated
by Ȳ β, Ȳ α ≺ Ȳ β iff

Ȳ β − Ȳ α is a multivariate counting process,
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or equivalently iff all jumps of Ȳ α are jumps of Ȳ β. The following result allows us to build
the solution Ȳ α of a multivariate SDE by strong comparison with a dominating process
Ȳ β, assuming that the multivariate intensity functional ᾱ(t, y) of Ȳ α is dominated by
the intensity functional β̄(t, y) of Ȳ β in the following sense:

αı(t, ỹ) ≤ βı(t, ȳ), ∀1 ≤ ı ≤ ρ, ỹ ≤ ȳ ∈ Nρ.
Observe that β̄ is dominated by itself iff β̄ is non-decreasing in y.
The main argument of the result is similar to the case of Cox processes, and relies on
replacing the driving Poisson measure Q̄ by the random measure Q̄∆β associated with
the dominating process.

Theorem 2.3.1 (Strong comparison of multivariate counting processes). Let Q̄(dt, dθ) =
(Qı(dt, dθ))ı∈E be a multivariate Poisson measure, and ᾱ and β̄ two predictable ρ-
dimensional intensity functionals defined on Y = Nρ, where ᾱ is assumed to be dominated
by β̄ (ᾱ ≤ β̄).
Assume the existence of a unique non-exploding solution Ȳ β ∈ Nρ of the multivariate
SDE:

dȲ β
t (ȳ) = Q̄(dt, ]0, β̄(t, ȳ + Ȳ β

t−(ȳ))]), (2.3.3)

Then, for all ỹ ≤ ȳ, there exists a unique (non-exploding) solution to the equation,

dȲ α
t (ỹ) = Q̄

(
dt, ]0, ᾱ(t, ỹ + Ȳ α

t−(ỹ))]
)

(2.3.4)

Furthermore, Ȳ α(ỹ) is strongly dominated by Ȳ β(ȳ): Ȳ α(ỹ) ≺ Ȳ β(ȳ).

Proof. a) The key of the proof is the introduction of a slightly different version of
Equation (2.3.4), based on the multivariate random measure Q̄∆β defined by,

Q̄∆β (dt, dθ) = 1∆β
(t, θ)Q(dt, dθ), with ∆β = {(t, θ); 0 < θ ≤ β(t, ȳ + Ȳ β

t−)}.
By assumption, the solution Ȳ β of Equation (2.3.3) is a well-defined multivariate counting
process. Thus, its jumps can be enumerated by a sequence (Tj, ıj)j≥1, where (Tj) is the
increasing sequence of the jump times of Ȳ β, lim Tj = +∞, and ıj is the index of the
component of Ȳ β jumping at time Tj. As a consequence, Q̄∆β is a marked multivariate
counting process, and can be characterized by the sequence (Tj, ıj, Θj)j≥1, where Θj is
the mark of Q̄ıj associated with Tj.
We can thus introduce the new equation, defined by:

dỸ α
t = Q̄∆β (dt, ]0, ᾱ(t, ỹ + Ỹ α

t−)]) = Q̄(dt, ]0, ᾱ(t, ỹ + Ỹ α
t−) ∧ β̄(t, ȳ + Ȳ β

t−)]), (2.3.5)
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By following a similar constructive algorithm as in 2.2.3, the unique solution of the
modified equation (2.3.5) is given in explicitly by:

Ỹ α,ı
t = ∑∞

j=1 1{Tj≤t}1{ıj=ı}1{Θj≤α(Tj ,ỹ+Ỹ α
Tj−1

)}, ∀ı ∈ E.

b) Existence for Equation (2.3.4): since Ỹ α is obtained by thinning of Q̄∆β , the mul-
tivariate counting process is strongly dominated by Ȳ β by definition. In particular,
ỹ + Ỹ α

t ≤ ȳ + Ȳ β
t for all t ≥ 0 and ỹ ≤ ȳ. Then, since ᾱ ≤ β̄, ᾱ(t, ỹ + Ỹ α

t ) ≤ β̄(t, ȳ + Ȳ β
t ),

and thus ỹ + Ỹ α
t is solution of (2.3.4), which achieves to prove the existence part of the

theorem.
c) Uniqueness: it remains to prove that any solution of (2.3.4) is solution of (2.3.5),
in order to prove the uniqueness of the equation. This is easily obtained by using the
previous iterative argument. Let Ȳ α be a solution of (2.3.4) and T α

1 its first jump time,
associated with the jumping component ıα

1 and the mark Θ1 of Q̄ıα
1 . By definition of the

thinning procedure, Θ1 ≤ α(T1, ỹ) ≤ β(T1, ȳ). Thus, (T α
1 , ıα

1 ) is also a jump of Ȳ β and
Ȳ α

T1 ≤ Ȳ β
T1 . By iteration, we obtain that all jump times of Ȳ α are jump times of Ȳ β, or

equivalently that Ȳ α ≺ Ȳ β. In particular, Ȳ α is the unique solution of (2.3.5), which
achieves the proof of the theorem.

In order to apply Theorem 2.3.1, it is therefore very important to define a class of
dominating non-exploding processes, large enough to enable us to obtain the existence of
multivariate counting processes under reasonable assumptions. In particular, observe that
since the existence or uniqueness is not obtain by controlling moments of the counting
processes, the assumption of sublinear growth is not determinant.

Localization procedure and Cox Birth process A direct application of Theorem
2.3.1 is the existence and uniqueness of the solution of (2.3.4) for all intensity functionals
ᾱ(t, ȳ) bounded by β(t, ȳ) = Kḡ(ȳ♮), with ḡ is a deterministic function verifying the
multivariate Feller criterion. In particular, such processes are honest. In the one
dimensional case, this condition is sometimes known as the Jacobsen condition (Jacobsen
(1982)). However, the domination by a Markov birth process is often not satisfactory.
The assumption can be relaxed by using Cox Birth processes as dominating processes.
Cox Birth processes are defined as multivariate counting processes with product intensity
ᾱ(t, ȳ) = ktḡ(ȳ♮), where (kt) is a locally bounded predictable process, i.e bounded by a
sequence (Kp) along a nondecreasing sequence of stopping times (Sp) going to ∞. The
existence of Cox Birth processes is a corollary of Theorem 2.3.1, since the solutions of
(2.3.4) with intensity functional αp(t, ȳ) = (kt ∧ Kp)ḡ(ȳ♮) do not depend on on p on the
interval [0, Sp].
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2.3.2 BDS mulitvariate SDE controlled by a Cox Birth process

Let us now come back to the existence and pathwise realization of BDS systems of
ρ = p(p + 1) BDS intensity functional µ, as in Definition 2.2.2. In the following, Theorem
2.3.1 is applied in order to realize jumps counting of processes of BDS systems, by strong
domination with a multivariate Cox Birth process. We first present in the next paragraph
the multivariate SDE associated with a BDS system, called the BDS multivariate SDE.

Birth Death Swap multivariate SDE

In reference to the jumps counting process, all multivariate quantities indexed by the set
J of all events are now denoted by bold symbols instead of .̄ Recall that a BDS system
(ξ, N, Z) of BDS intensity functional µ is defined by an entry process ξ and a jumps
counting process N of intensity λt = µ(t, Zt−), with Zt = ξt + ϕ ⊙ Nt the companion
population process. As a multivariate counting process, N can thus be represented as a
solution of a multivariate SDE driven by a Poisson measure Q = (Qγ)γ∈J indexed by J .

Definition 2.3.1 (BDS multivariate SDE).
Let Q = (Qγ)γ∈J be a multivariate Poisson measure, µ(t, z) a BDS intensity functional
and (ξt) be an entry process. The Birth Death Swap multivariate SDE associated with
the entry process ξ and intensity functional µ is defined by

dNt = Q(dt, ]0, µ(t, ξt− + ϕ ⊙ Nt−)]), with Zt = ξt + ϕ ⊙ Nt. (2.3.6)

If N is a solution of (2.3.6), then (ξ, N, Z) is a BDS system of entry process ξ and
intensity functional µ.

Further assumptions on the BDS intensity functional are needed in order to obtain the
existence and uniqueness of the solution (2.3.6). Given that the size of the population Z

is dominated by the number of births, the idea is to control the birth intensity by a Cox
Birth intensity, and then to apply Theorem 2.3.1 for an existence result. In particular,
no assumptions are made on the swap and death intensities.

Existence and uniqueness of the BDS multivariate SDE

In order to apply Theorem 2.3.1, the BDS intensity functional has to be expressed in
terms of jumps counting process, rather than in terms of population process. We use
notations introduced in Subsection 2.2.1, where a counting vector ν indexed by J can be
decomposed into a demographic component νdem = (νb, νd) and a swap component νs.
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Np-valued vectors can be written as z = ξ +ϕ⊙ν. Recall that (ϕ⊙ν)♮ = (ϕdem ⊙νdem)♮ =
νb,♮ − νd,♮ ≤ νb,♮.

Cox Birth dominating assumption The BDS intensity functional µ can be rewritten
as a functional of ν instead of z, λ(t, ν) = µ(t, ξt + ϕ ⊙ ν). Thanks to the result of
Theorem 2.3.1, the problem of the existence and uniqueness of Equation (2.3.6) is reduced
to the existence of a dominating honest multivariate counting process, whose intensity
functional dominates the ν-intensity functional λ(t, ν) of the BDS system.
As stated above, the main problem is the control of the size Z♮ of the population via the
control of the size of the counting birth process Nb,♮. In the rest of this chapter and in
Chapter 3, we now assume that the birth part λb of the intensity functional is dominated
by a Cox Birth intensity functional:

Cox Birth Hyp ∀i ∈ Ip, λ(b,i)(t, ν) = µ(b,i)(t, ξt + ϕ ⊙ ν) ≤ kt g(b,i)(ξ♮
t + νb,♮), (2.3.7)

where the p components of the function gb = (g(b,i)) are non-decreasing and satisfy the
Feller criterion. As before, (kt) is a predictable and locally bounded process.
The swap and death part of the intensity functional can be dominated by a multivariate
functional depending only on the size of the population. When expressed in terms of
population z, the swap and death intensity components are dominated for any (i, β) ∈
J s ∪ J d by

µ(i,β)(t, z) ≤ sup{ζ♮≤z♮} µ(i,β)(t, ζ) = µ̂(i,β)(t, z♮)

By construction, the functional µ̂(i,β)(t, n) is non-decreasing in n. When z = ξt + ϕ ⊙ ν,
we have z♮ ≤ ξ♮

t + νb,♮ and the previous inequality can be rewritten in terms of counting
vector ν, for any (i, β) ∈ J s ∪ J d :

Swap and death inequality λ(i,β)(t, ν) = µ(i,β)(t, ξt + ν) ≤ µ̂(i,β)(t, ξ♮
t + νb,♮) (2.3.8)

Dominating multivariate counting process The previous paragraph shows that
under Assumption (2.3.7), the ν- BDS intensity function λ is dominated by the the
intensity functional λ̂ (λ ≤ λ̂), defined for all γ ∈ J by

λ̂γ(t, ν) =

 ktg
(b,i)(ξ♮

t− + νb,♮) if γ = (b, i) ∈ J b is a birth event,
µ̂(i,β)(t, ξ♮

t− + νb,♮) if γ = (i, β) ∈ J s ∪ J d is a swap or death
(2.3.9)

It thus remains to prove the existence of a non exploding p(p + 1)-dominating process
G = (Gb, Gd, Gs) of intensity functional λ̂. The dominating multivariate counting
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process is built in two steps:
(i) The first step is to introduce the p-Cox Birth process Gb

t(ξ), solution of the multivariate
SDE:

dGb
t = Qb(dt, ]0, kt gb(ξt−natural + Gb,♮

t−)]). (2.3.10)

By the localization procedure defined as a corollary of Theorem 2.3.1, Gb is a well-defined
(non-exploding) p-Cox Birth process.
(ii) The second step is to add “swap and death coordinates” to Gb, by defining the p

and p(p − 1) multivariate Cox processes:

dGd
t = Qd(dt, ]0, µ̂(t, ξ♮

t− + Gb,♮
t−)]), dGs

t = Qs(dt, ]0, µ̂(t, ξ♮
t− + Gb,♮

t−)]). (2.3.11)

Observe that the previous thinning equation is not a differential equation, since the
intensities of the processes Gd and Gs do not depend on the counting processes themselves.
Gd and Gs are thus simple Cox processes, that is Poisson processes with stochastic
intensity.
To summarize, the dominating processes is defined as follow:

Definition 2.3.2 (Dominating process). Let G = (Gb, Gd, Gs) be the p(p + 1) multivari-
ate counting process defined as the solution of (2.3.10)-(2.3.11). Then G is a multivariate
counting process of intensity functional λ̂ defined in (2.3.9), called the dominating process
of the BDS system.

Observe that the dominating process G does not define a population process ξ + ϕ ⊙ G,
since G does not verify the support conditions 2.2.7.

Existence and uniqueness of BDS SDE by strong domination Theorem 2.3.1 allows
us to conclude with the main result of this section:

Theorem 2.3.2. Assume that the Cox Birth assumption (2.3.7) is verified: µb(t, z) ≤
kt gb(z♮), where the components of gb are non-decreasing and satisfy the Feller criterion.
Moreover, assume that kt, µs(t, K) and µd(t, K) are locally bounded in time for any K.
Then, there exists a unique solution to Equation (2.3.6),

dNt = Q(dt, ]0, µ(t, ξt− + ϕ ⊙ Nt−]), with Zt = ξt + ϕ ⊙ Nt.
The triplet (ξ, N, Z) is a well-defined BDS system of BDS intensity functional µ and
entry process ξ. Furthermore, N is strongly dominated by G, N ≺ G.

Since Nb ≺ Gb, all jumps of Nb are jumps of Gb. This can interpreted as follow: “all
individuals born in the Cox Birth population ξ + Gb are also born in the population Z”.
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There are many advantages in the construction by domination, in particular since the
BDS jumps counting process N can be localized by a sequence of increasing stopping
times which do not depend on the process itself. This property will be instrumental in
the next chapter in order to obtain tightness properties. However, the same property
can be a drawback when simulating the BDS system by strong domination. Indeed,
the dominating process G can have much more jumps that N, making the simulation
inefficient.
In the last section of this chapter, an alternative construction of the solution of (2.3.6)
is presented, called the Birth Death Swap decomposition algorithm and based on the
disentanglement of swap and demographic events. The decomposition algorithm is better
suited to the simulation of BDS systems when swap and demographic intensities are of a
very different nature, for instance when they are supposed to have their own timescale.
The disentanglement of swap and demographic events will also be instrumental in the
proof of Theorem 3.5.1 in the next Chapter.

2.4 BDS decomposition algorithm

In the previous section, we have built BDS systems of initial condition ξt and intensity
functional µ as the solution of the multivariate SDE 2.3.6 driven by Q.

Zt = ξt + ϕ ⊙ Nt, dNt = Q(dt, ]0, µ(t, Zt−)]).

This construction of BDS systems, however, is not necessarily the most suitable when the
goal is to disentangle the swap processes from demographic process, especially when they
are supposed to have their own time scales. Recall that swap events can be distinguished
from demographic events by writing the dynamic of the companion population process
as:

Zt = ξt + ϕs ⊙ Ns
t + Nb

t − Nd
t ,

As stated in 2.2.3, Ns is not a swap jumps counting process associated with a well defined
swap process, and Ndem = (Nb, Nd) can not be associated with a birth death process
either, due to the occuring of swap events between two demographic events. In this
section, we present an alternative construction of the BDS system multivariate intensity
based on the study of the population process between two successive demographic events.
This point of view will be instrumental for disentangling the dynamics of Ns and Ndem

in the averaging result of the next Chapter.
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2.4 BDS decomposition algorithm

2.4.1 Direct analysis of the BDS multivariate SDE

The main idea of the BDS decomposition algorithm is to generalize the decomposition of
population with only demographic event given in 2.2.2 to BDS systems.
The sequence of demographic event times, defined as the jumps times of the counting
process Ndem,♮ = N b,♮ + Nd,♮ is denoted by (T0 = 0, T1..Tk, ..) (without the dem reference
for simplicity). For all k ≥ 0, if Tk < ∞ then:

Tk+1 = inf{t > Tk, Ndem,♮
t = k + 1}, Ndem,♮

t = k, ∀t ∈ [Tk, Tk+1[ (2.4.1)

Recall that T1 > τ since the jumps counting process don’t jump before the first jump
time τ of the entry process. Furthermore, due to the construction by strong domination,
limk→+∞ Tk = +∞ and all demographic event times are also jump times of the demo-
graphic part Gdem of the dominating process G.
For all k ≥ 1, the time interval [Tk−1, Tk[ is called the k-th demographic interval. By
definition, Ndem is constant on each demographic interval.

BDS system before the first demographic event The BDS system stopped at the
first demographic event time T1 is an example of population with only one demographic
jump, as described in the previous section in Paragraph 2.2.2.
On the first demographic interval [0, T1[, the demographic counting system is null and
the population process behaves as a pure swap process since Zt = ξτ

t + ϕs ⊙ Ns
t with

dNs = Qs(dt, ]0, µs(t, ξτ
t + ϕs ⊙ Ns

t−)]).
a) Since Qs doesn’t jump at T1, the process defined by X0,1

t = ξτ
t + ϕs ⊙ Ns

t∧T1 is
continuous at time T1 and behaves as a pure swap process X0 stopped at T1. The
definition of the underlying swap process X0 is not unique. The most straight forward
construction might be to consider a swap of intensity functional µs(t, z)1{t≤T1}, null on
]T1, ∞] = {Ndem,♮

t− > 0}. However, our goal is to disentangle Swap and demographic
events, and we prefer to define X0 as the solution of the following Swap multivariate
SDE:

X0
t = ξτ

t + ϕs ⊙ Nsw,0
t , dNsw,0

t = Qs(dt, ]0, µs(t, X0
t−)]). (2.4.2)

By unicity of the previous multivariate SDE, X0,1
t = X0

t∧T1 and the population process
coincides with X0 on the first demographic interval.
b) At the first demographic event time T1, the population process jump of Nb

T1 −Nd
T1 . By

definition, one and only one component of the vector Ndem jumps at T1 and an individual
is either added (birth) or removed (death) to one of the subgroups.
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The important point is that the first demographic event is completely characterized from
the Poisson measure Qdem and the Swap process X0, since dNdem

t = Qdem(dt, [0, µdem(t, Zt−)])
and Zt− = X0

t− on ]0, T1]. Thus,the first demographic event can be expressed as the first
jump of a multivariate counting process K1 = (K1,+, K1,−), called switch process defined
by the following thinning equation:

dK1
t = Qdem(dt, [0, µdem(t, X0

t−)]) (2.4.3)

In particular, ]0, T1] = {t; K1
t− = 0} and the demographic event type is characterized by

the component of K1 which jumps at T1.
The BDS system stopped at the demographic event can then be rewritten as:

Zt∧T1 = X0,1
t + K1,+

t∧T1 − K1,−
t∧T1 = X0,1

t + ϕdem ⊙ K1
t∧T1 . (2.4.4)

c) From there, a new population process Z1+ can be defined, starting at time T1 in
state ZT1 = X0

T1 + K1,+
T1 − K1,−

T1 and of jumps counting process N1 = 1{K1
t− >0} ∗ N. By

definition of K1, N1 = 1]T1,∞] ∗ N and by the stopping procedure defined in 2.2.2, Z1+ is
a population process coinciding with Z on [T1, ∞[. Its first demographic event is T2, and
steps a) and b) can thus be applied to Z1+ in order to obtain a second swap process,
coinciding with the population process on the second demographic interval [T1, T2[, and
a switch process determining the second demographic event.
Observe that we can give a differential version of Equation (2.4.4), which avoids to
enumerate jump times. By equation (2.4.2) and (2.4.4), Zt∧T1 = ξτ

t + ϕ ⊙ (Nsw
t∧T1 + Kt∧T1).

Furthemore, dNsw
t∧T1 = 1]0,T1]dNsw

t (idem for Kt∧T1),and since ]0, T1] = {t; K1
t− = 0}:

Zt∧T1 = ξτ
t + ϕ ⊙ N0,1

t dN0,1
t = 1{K1

t− =0}(dNsw
t + dK1

t ). (2.4.5)

In particular, N0,1 is the jumps counting process of a population with only one demo-
graphic event.

Recursive decomposition on successive demographic intervals The population
can be decomposed at any demographic event time Tk in:

Zt = Zt∧Tk
+ ϕ ⊙ Nk

t , Nk
t = 1]Tk,∞] ∗ Nt = Nt∨Tk

− NTk
.

The analysis of the BDS before the the first demographic event can be applied to
Zk+ = ξk

t (Z) + ϕ ⊙ Nk, where recall that ξk
t (Z) = ZTk

1{Tk≤t}. The first demographic
interval of Zk+ is [Tk, Tk+1[. A swap process with entry process ξk

t (Z) can be defined by:
Xk

t = ξk
t (Z) + ϕs ⊙ Nsw,k

t dNsw,k
t = Qs(dt, [0, µs(t, Xk

t−)]),
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associated with a switch process dKk+1
t = Qdem(dt, [0, µdem(t, Xk

t−)]). Zk+ coincides with
Xk on [Tk, Tk+1[ and Tk+1 is the first jump of Kk+1. Using the differential version 2.4.5,

Zt∧Tk+1 = Zt∧Tk
+ ϕ ⊙ Nk,k+1

t , dNk,k+1
t = 1{Kk+1

t− =0}(dNsw,k
t + dKk+1

t ), (2.4.6)

and a new population can be generated, starting at time Tk+1 in state Zk+1
Tk+1

= Xk
Tk+1

+
Kk+1,+

Tk+1
− Kk+1,−

Tk+1
.

2.4.2 BDS decomposition algorithm

The direct analysis of the BDS system serves as basis for defining the BDS decomposition
algorithm. Our goal is to build a solution of (2.3.6) recursively on its demographic
intervals, by continuous pasting of populations with one demographic event, defined
recursively using Swap and Switch processes. Formally the BDS decomposition algorithm
is defined as follow:

Initialization
Let (X0, K1) be the Swap-Switch process solution of (2.4.2)-(2.4.3). Observe that
solutions of (2.4.2)-(2.4.3) are automatically well defined since swap processes have
a constant size and K1 is a simple multivariate Cox process.
The population is defined on ]0, τ1] = {t; K1

t− = 0} by:
Zt∧τ1 = ξτ

t + ϕ ⊙ N0,1
t , dN0,1

t = 1{K1
t− =0}(dNsw,0

t + dK1
t ) = 1{K1

t− =0}Q(dt, ]0, µ(t, X0
t−)]).

In particular, the first jump of K1 is the first demographic event in the population
and Zt− = X0

t− on [0, τ1].

k + 1th step
Assume now that a sequence (X l, Kl+1)1≤l≤k−1 of Swap-Switch processes have
been defined, alongside with the population process defined on [0, τk].The k + 1th
Swap-Switch process is defined by a swap process Xk starting at time τk in state
Zτk

and solution of the multivariate SDE:
Xk = ξτk(Z) + ϕ ⊙ Nsw,k

t , dNsw,k
t = Qs(dt, ]0, µs(t, Xk

t−)]),
associated with the Switch process dKk+1

t = Qdem(0, ]0, µdem(t, Xk
t−)]). By con-

struction, the first jump time τk+1 of Kk+1 is strictly greater than τk, and the
population is defined on [0, τk+1] by:

Zt∧τk+1 = Zt∧τk
+ ϕ ⊙ Nk,k+1

t ,

dNk,k+1
t = 1{Kk+1

t− =0}(dNsw,k
t + dKk+1

t ) = 1{Kk+1
t− =0}Q(dt, ]0, µ(t, Xk

t−)]).
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By construction, τk+1 is the k + 1th demographic event time and Zt− = Xk
t− on

]τk, τk+1].

By iterating the last step, we obtain a BDS system defined by:

Zt = ξτ
t + ϕ ⊙ Nt, with dNt =

∑
k≥0

1{Kk+1
t− =0}Q(dt, ]0, µ(t, Xk

t−)]). (2.4.7)

Firstly, for all k ≥ 0, Xk
t− = 0 on [0, τk], so that {Kk+1

t− = 0} can be replaced by ]τk, τk+1]
in the r.h.s of the previous equation. Furthermore, since Zt− = Xk

t− on ]τk, τk+1], the
previous equation can be rewritten as:

Zt = ξτ
t + ϕ ⊙ Nt, with dNt = Q(dt, [0, µ(t, Zt−)])∑k≥0 1]τk,τk+1]

In order to conclude, it remains to show that lim τk = ∞. By the Cox Birth domination
assumption (2.3.7), we can actually show using the same reasoning as in the previous
section that the multivariate counting process defined above is strongly dominated by
the non-exploding process G. Thus, lim τk = ∞ a.s. and this achieves to prove that the
solution of the BDS decomposition algorithm is a solution of the BDS thinning equation
(2.3.6).
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Chapter 3

Averaging of BDS systems in the
presence of two timescales

3.1 Introduction

Aggregation methods are important in several fields such as in economics, ecology, biology
or operations research. Indeed, they provide a better understanding of the link between
finer-grained dynamics and aggregated variables. Another common feature of complex
systems is that one can often observe a separation of time scale between different types
of phenomena.
In many populations, the rates at which demographic events and swap events happen
appear to be very different. This is the case for human populations where some changes
in the social structure of the population can sometimes be fast in comparison with the
demographic timescale. In the ecological systems described in Auger et al. (2000); Marvá
et al. (2013), migrations between different patches or changes of strategies occur at a
much faster timescale than demographic events. This separation of timescale often leads
to averaging approximations for the aggregated process. In this chapter, we consider
that swap events happen at a much faster timescale than demographic events, and study
the Birth Death Swap (BDS) system in presence of these two timescales.
The literature on the evolution of populations in presence of several time scales is wide
and interdisciplinary. Motivated by the study of ecological systems, study of deterministic
populations with two timescales can be found in Auger et al. (2000, 2012); Sánchez
et al. (2000), where most of the results are obtain using singular perturbation theory. In
the field of operation research, Yin and Zhang have obtained approximation results for
continuous time Markov chains with two timescales, using asymptotic expansions also
based on singular perturbation theory (Yin and Zhang (2004),Yin and Zhang (2012)).
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In Taylor and Véber (2009), the genealogy of individuals from a subdivided population
that experiences sporadic mass extinction events is studied, where the “fast” process
converge to an absorbing state between two extinction events. However, in other works,
the population is often renormalized in presence of two timescales, which is not the case
here. Futhermore, due to our non Markov framework, we cannot apply classical averaging
results such as Kurtz (1992).
Before going further, we first introduce in the next section the two timescales BDS sytem,
and then describe the scope of the Chapter.

3.2 BDS system in the presence of two timescales

The framework introduced in the previous chapter is the same. We consider BDS systems
as defined in 2.2.2, whose jumps counting processes are built by thinning of a multivariate
Poisson measure Q, as presented in Definition 2.3.6. In particular, all BDS intensity
functionals are assumed to verify the Cox Birth dominating assumption 2.3.7.
In this chapter, we now consider that swap events occur at a much faster timescale than
demographic events. We us first define the BDS in this two timescale framework, and
the present the scope of this chapter.

3.2.1 Two timescales BDS system

Swap events are assumed to occur at a much faster timescale than demographic events.
Intuitively, this means that demographic events happen with low intensities of order “O(1)”
in comparison with swap events occurring with greater intensities of order “O(1

ϵ
)”, de-

pending on a small parameter ϵ. The following figure gives an example of the distribution
of the different types of events in this two timescale framework.

t

0 T d
1 T d

2 T d
3

Fig. 3.1 Example of distribution of swap events and demographic events

Definition of the two timescales BDS system More formally, the BDS system
associated with the given multivariate Poisson measure Q and the BDS intensity functional
(µϵ = µdem + 1

ϵ
µs) is now depending on a small parameter ϵ. The BDS system is now
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3.2 BDS system in the presence of two timescales

denoted by (ξt, Nϵ, Zϵ). The BDS multivariate SDE 2.3.6 becomes:

Zϵ
t = ξt + ϕs ⊙ Ns,ϵ

t + Nb,ϵ
t − Nd,ϵ

t , Ndem,ϵ
t = (Nb,ϵ

t , Nb,ϵ
t )

dNs,ϵ
t = Qs(dt, ]0,

1
ϵ
µs(t, Zϵ

t−)]), dNdem,ϵ
t = Qdem(dt, ]0, µdem(t, Zϵ

t−)]). (3.2.1)

The swap part Ns,ϵ of the jumps counting process is called the swap counting system, and
the demographic part Ndem,ϵ is called the demographic counting system. As stated in the
previous chapter, the swap and the demographic counting systems are entangled due to
their dependence on Zϵ

t = F (Ndem,ϵ
t , Ns,ϵ

t ). However, the behavior of the two multivariate
counting processes is very different in this separation of timescale framework:

− On one hand, the swap counting system Ns,ϵ evolves on a fast timescale. The
process depends on the small parameter ϵ through its intensity functional 1

ϵ
µs(t, z)

and through the population process Zϵ. Thus, Ns,ϵ will explode when ϵ → 0.
− On the other hand, the demographic counting system Ndem,ϵ only depends on ϵ

through Zϵ.
The construction of the two timescale BDS differs significantly from usual constructions
proposed in the literature. Often, the fast evolution is modeled by a change of time and
adapted to a filtration indexed by ϵ. Here, the thinning construction (3.2.1) of the two
timescale BDS system allows all processes to be adapted to the same filtration (Gt), for
all ϵ > 0. This property simplifies the interpretations.

Dominating counting process As before, the solution of (3.2.1) can be obtained
by strong domination with a dominating counting process. The dominating process
of Definition 2.3.2 is also index by ϵ and denoted by Gϵ. The critical property of
the dominating process in the two timescale framework is that its demographic part
Gdem = (Gb, Gd) does not depend on ϵ. Indeed, the Cox Birth process Gb and the Cox
process Gd are still defined by Equations 2.3.10 and 2.3.11, which are not modified:

dGb
t = Qb(dt, ]0, kt gb(ξ♮

t− + Gb,♮
t−)]), dGd

t = Qd(dt, ]0, µ̂d(t, ξ♮
t− + Gb,♮

t−)]), (3.2.2)

On the other hand, the swap part Gs,ϵ is now depending on ϵ since the swap intensity
functional is 1

ϵ
µs. Gs,ϵ is the multivariate Cox process defined by the modified version of

2.3.11,
dGs,ϵ

t = Qs(dt, ]0,
1
ϵ
µ̂s(t, ξ♮

t− + Gb,♮
t−)]) (3.2.3)

Since Gs,ϵ strongly dominates Ns,ϵ, the process also explodes when ϵ goes to 0.
These properties have a major impact on the behavior of the two timescale BDS system.
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Since the demographic part Gdem of the dominating process does not depend on ϵ,
the demographic counting systems Ndem,ϵ are uniformly strongly dominated by the
multivariate counting process Gdem. Furthermore, the size of the population Zϵ,♮

t =
N b,♮,ϵ

t −Nd,♮,ϵ
t is also uniformly bounded by Gb,♮

t at each time t. These domination properties
will be instrumental in obtaining tightness properties for the family of multivariate
counting processes (Ndem,ϵ)ϵ>0, as well as in showing the tightness of (Zϵ), when seen as
a family a random variables defined on a well chosen space.

3.2.2 Scope of the chapter

The aim of this chapter is to study the convergence of the BDS system (3.2.1) when swap
events become instantaneous with respect to demographic events (ϵ → 0). We focus on
convergence properties of the family of demographic counting systems (Ndem,ϵ) and of
the family of population processes (Zϵ).
As stated in the previous paragraph, the family of demographic counting systems (Ndem,ϵ)
is uniformly strongly dominated by the process Gdem. This allows us to consider the
convergence in distribution of the demographic counting systems as dynamic processes,
i.e viewed as random variables taking values in the space in the space of 2p-multivariate
counting processes.
The situation is different for the family of population processes (Zϵ)ϵ>0, which is not tight
in the space of càdlàg pure jump processes on Np, due to the explosion of swap events.
However, the tightness of (Zϵ) can be obtained in a weaker framework, by considering
the population process as an Np-valued random variable Zϵ(ω, s) defined on the product
space Ω × R+ (equipped with the product measure P ⊗ Leb), rather than a dynamic
process.
In the non-Markov framework of BDS systems, intensities are random functionals, and
classical averaging results based on the weak convergence, such as in Kurtz (1992), cannot
be applied here. Nevertheless, the notion of stable convergence (Jacod and Mémin (1981))
allows us to overcome these difficulties. For ease of reading, we first give an overview
of this mode of convergence in Section 3.3, whose advantage is to maintain martingale
properties as well as the “thinning” structure of the problem. At the end of the section,
stable limits of the population processes Zϵ(ω, s) are defined on Ω × R+.
The study of the demographic counting systems is particularly interesting, since the
aggregated population process Z♮,ϵ counting the number of individuals in the population
is a simple function of Ndem,ϵ. In general, Z♮,ϵ is not an “autonomous” Birth Death
process, since its birth and death intensities functionals µb,♮ and µd,♮ depend on the
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whole structure of the population and not just on Z♮,ϵ. In addition, these intensities
are not constant between two demographic events due to the occurrence of swap events.
However, in the presence of two timescales, swap events can have an averaging effect on
demographic intensities, thus reducing the complexity of the aggregated process.
In Section 3.4, a general identification result is proven, characterizing the intensity of
stable limits of the demographic counting systems. By considering the joint stable
convergence of (Ndem,ϵ, Zϵ) on the right space, stable limits of (Ndem,ϵ) are identified as
“autonomous” demographic counting systems with an averaged intensity, corresponding to
the demographic intensity functional µdem averaged against stable limits of the population
process Zϵ(ω, s).
In Section 3.5, a convergence result for the family of demographic counting systems is
obtained in the case of deterministic swap intensities. We show that in this particular
case, the demographic counting systems converge in distribution to the jumps counting
system of a “true” (Non-Markov) multi-type Birth Death process. Due to the averaging
effect of swap events, the limit birth and death intensity functionals only depend on
the size of the process. In the particular, the limit aggregated process is also a (one
dimensional) Birth-Death process. The proof of this result relies heavily on the BDS
decomposition algorithm presented in Section 2.4 of Chapter 2.
Finally, we show on an example how non-linearities in the aggregated birth and death
intensities can emerged, resulting from a non-trivial aggregation of subgroup specific
birth and death intensities.

3.3 Overview on the stable convergence and appli-
cation to the population process

In order to prove the identification result of this section, we shall need the notion of
stable convergence. In the sequel, the stable convergence is applied on one hand to
identify the intensity of stable limit points of the demographic counting systems, and on
the other hand to realize stable limits of the demographic counting systems, with the
aim to preserve the initial structure (martingale properties, thinning ...).

3.3.1 Stable Convergence

Originated by Alfred Rényi, the notion of stable convergence, which is stronger than the
classical weak convergence of probability measures, is used in many limit theorems in
probability and statistics in random environment. Some useful characterizations and
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properties of the stable convergence may be found in Jacod and Mémin (1981), Jacod
and Shiryaev (1987) or Aldous et al. (1978). A very detailled presentation is also given
in the recent book of Häusler and Luschgy (2015).
The introduction of this mode of convergence can be motivated in different ways. The
point of view best suited to our purpose defines the stable convergence as a convergence
of probability measures on an extended space, in which the randomness of the initial
structure is taken into account without change.

Enlarged space of Rules The initial probabilistic structure is a given probability
space (Ω, G, P). We add to this given structure a “canonical” Polish space X , equipped
with its Borel σ-field B(X ). X is the state space of the random variables of interest.
A natural extension preserving the initial structure is to consider the enlarged measurable
product space (Ω̄, Ḡ) = (Ω × X , G ⊗ B(X )), where the “canonical” (identity) variable
on X is denoted by Υ(ω, χ) = χ. The admissible probability measures on (Ω̄, Ḡ), called
rules, are characterized by the constraint to have their marginal on (Ω, G) equal to the
given probability measure P. The set of rules on (Ω̄, Ḡ) is denoted by R(P, X ) (the
notation R(P) is sometimes used when there is no ambiguity on the space X ).
The rule associated with an X -valued random variable Y (ω) is defined by RY (dω, dχ) =
P(dω)δY (ω)(dχ). The integral of any Ḡ-measurable bounded r.v. H(ω, x) is given by

RY (H) =
∫

Ω×X
RY (dω, dχ) H(ω, χ) =

∫
Ω

P(dω)H(ω, Y (ω)) = E[H(., Y )]. (3.3.1)

In particular, the restriction to X of the rule RY is the probability distribution µY of
Y . The RY -distribution of the canonical variable Υ is also µY , and δY (ω)(dχ) is the
RY -conditional distribution of Υ given G.
The Dirac measure can be replaced by a random probability kernel Γ(ω, dχ) from (Ω, G)
to (X , B(X )), and generated a rule defined by

RΓ(dω, dχ) = P(dω)Γ(ω, dχ).
Conversely, any general rule R(dω, dχ) can be disintegrated in the R-conditional distribu-
tion of Υ given G, denoted by ΓΥ(ω, dχ), such that

R(h(Υ)|G) = ΓΥ(·, h), P.a.s., R(dω, dχ) = P(dω)ΓΥ(ω, dχ).

Weak and Stable convergence Different notions of convergence can be defined on
the space of probability measures defined on a polish space X , based on different classes
of test functions. For instance, the usual “weak” convergence is defined from the class
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Cb(X ) of bounded and continuous functions on X by

µn converges weakly to µ iff µn(f) converges to µ(f), ∀f ∈ Cb(X ). (3.3.2)

By abuse of language, a sequence of X -valued random variables (Yn) is said to converge
in distribution to µ iff the sequence (µn) of the distributions of (Yn) converges weakly to
µ, or equivalently

(Yn) converges weakly to µ iff for any f ∈ Cb(X ), E(f(Yn)) →
∫

X f(y)µ(dy).
The weak convergence is a convergence of probability measures on X : a limit random
variable does not have to be specified, and the random variables Yn need not to be
realized on the same probability space.
The stable convergence can be interpreted as an extension of the weak convergence to
the probability rules R defined on the extended space Ω̄. The class of test functions
is extended to the family Cbmc(Ω × X ), of bounded functionals H(ω, χ), Ḡ-measurable,
continuous in χ for any ω but without any regularity in ω. In particular, no topological
structure is required on the space Ω.

Definition 3.3.1 (Stable convergence). Let (Ω̄, Ḡ) = (Ω × X , G ⊗ B(X )) be the enlarged
measurable space defined above.
A sequence of probability rules (Rn) is said to converge stably to R ∈ R(P, X ) iff

∀ H ∈ Cbmc(Ω × X ), Rn(H) converges to R(H).
This property is equivalent to the convergence of the random kernels (Γn) associated with
(Rn) to the random kernel Γ associated with R, in the sense that E[Γn(H)] converges to
E[Γ(H)] for all H ∈ Cbmc(Ω × X ).

It is not necessary to test the convergence on all functionals in Cbmc(Ω × X ). For instance,
it is sufficient to consider only the bounded functionals H(ω, χ) = K(ω)f(χ) where K(ω)
is G-measurable and f is continuous on X .
Moreover, many properties true for the weak convergence are still valid for the stable
convergence (Jacod and Mémin (1981)). For instance, the “porte-manteau” theorem can
be extended to the stable convergence: let F ∈ Ḡ such that ∀ω ∈ Ω, Fω = {y; (ω, y) ∈ F}
is closed. Then, if (Rn) converges to R in R(P),

lim sup
n

Rn(F ) ≤ R(F ). (3.3.3)

In particular, if the rules Rn have supports in the same space F (Rn(F ) = 1, ∀n ≥ 0)
verifying the previous condition, then the same is true for the limit rule (R(F ) = 1).
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3.3.2 Stable convergence of random variables

When the rules Rn are associated with random variables (Yn) defined on the given
probability space, then Rn(H) = RYn(H) = E[H(., Yn)]. In this case, Rn converges stably
to R, iff for any bounded G-random variable K and continuous f on X , E[K f(Yn)]
converges to E[K Γ(f)]. In particular, (Yn) converges weakly to the marginal distribution
RX of R on X .
The advantage of this representation is that the stable limit of (Yn) can be realized on
the extended space (Ω̄, Ḡ, R). The random variables Yn can be naturally extended on
(Ω̄, Ḡ, R) by setting Yn(ω, x) = Yn(ω), and the stable convergence of (Rn) to R can be
interpreted as the stable convergence of (Yn) to the canonical variable Υ on the extended
space (Ω̄, Ḡ, R).

Some properties of stable convergence of variables In particular, for every G-
measurable r.v U , ((Yn, U)) converges in distribution to (Υ, U) (take K(ω) = h(U(ω))).
Conversely, if ((Yn, U)) converges in distribution for every G-measurable random variable
U , then (Yn) converges stably to a rule R. Proving the existence of a well-defined limit
rule is actually not trivial and derive from results on bi-measures (see e.g. Jacod and
Mémin (1981)).
When the limit random kernel Γ is a Dirac mass, δY (ω)(dχ) (i.e. R = RY ), the stable
convergence of (Yn) to R means that (Yn) converges to Y in probability on the given space.
Thus, as stated in the title of Jacod and Mémin (1981), the stable convergence is a mode
of convergence stronger than convergence in distribution but weaker than convergence in
probability.

Stable and weak-L1 convergence: It is interesting to compare the stable convergence
with another mode of convergence which preserves the initial structure (Ω, G, P), the
weak-L1 convergence, defined as follows:
A sequence of random variables (ξn) converges to ξ weakly in L1(Ω, G, P) iff for any
bounded random variable H ∈ bG, E[H ξn] → E[H ξ].
If (Yn) converges stably to R, (f(Yn)) converges weakly in L1(P) to Γ(f) for all f ∈ Cb(X ).
Thus , the stable convergence can be reinterpreted as a mode of convergence for the
sequence random kernels (ΓYn) = (δYn):

∀f ∈ Cb(X ), ΓYn(f) = f(Yn) converges to Γ(f) weakly in L1(Ω, G, P).
This does not mean that (ΓYn) converges in distribution (as Me(X )-valued random
variables) to Γ, since the weak-L1 convergence of (ΓYn(f)) does not imply that (ΓYn(f))
converges in distribution to Γ(f). Thus, the interpretation of the stable convergence as a
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convergence of random measures is quit different from the usual weak convergence of
random measures, in the sense of Kallenberg (1975).

Stable relative compactness One of the most interesting property of the stable
convergence is that relative compactness for the stable convergence is “free”. This is due
to a result of Jacod and Mémin (1981), stating that a sequence (Rn) of rules is relatively
compact in R(P, X ) iff the sequence (Rn

X ) of their marginals on X is tight. Here, we
recall that a sequence (µn) of probability measures on X is tight iff:

∀η > 0, there exists a compact K of X such that µn(Kc) ≤ η, ∀n ≥ 0.
When the (µn) are the probability measures associated with a sequence (Yn) of random
variables, we also say by abuse of language that (Yn) is tight in X .
In terms of random variables, the property means that from any sequence (Yn) converging
weakly, there exists a subsequence of (Yn) which converges stably to a rule R, such that
RX is the limit distribution. Equivalently,

(RYn) is stably relatively compact in R(P, X ) iff (Yn) is tight in X .
For simplicity, we also say “(Yn) or (ΓYn) is stably relatively compact.”
Finally, the boundedness requirement of test functions H can by replaced by a uniform
integrability condition. If Yn converges stably and

lim
a→∞

sup
n

E[|H(ω, Yn)|1{|H(ω,Yn)|>a}] = 0, (3.3.4)

then the stable convergence can also be applied to H.

3.3.3 Application to the population process Zϵ

As stated at the beginning of this section, the family of population processes (Zϵ) is not
tight in the space of Np-valued càdlàg processes, due to the explosion of swap events.
However, by construction, the demographic counting systems Ndem,ϵ are all strongly
dominated by the multivariate counting process Gdem. As a consequence, the size of
the population (Zϵ,♮) = (N b,♮,ϵ − Nd,♮,ϵ) is controlled by Gb,♮. Our aim is to define the
right probability space on which this property can be used to obtain the stable relative
compactness of the family of population processes.

The new “given” probability space The idea is to see the population processes not
as dynamic processes anymore, but rather as Np-valued random variables, defined on the
product-space:
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(Ω̃, G̃) = (Ω × R+, G ⊗ B(R+)), by Zϵ(ω̃) = Zϵ(ω, s) = Zϵ
s(ω).

The space (Ω̃, G̃) should a priori be equipped with the product measure P ⊗ Leb, which is
only a σ-finite measure. To overcome this difficulty, we replace the Lebesgue measure by
the exponential distribution λe(ds) = e−sds and use the measure P̃ = P⊗λe as probability
measure on (Ω̃, G̃). In this new space, for any G̃-measurable bounded functional H(ω̃, z),

Ẽ[H(ω̃, Zϵ(ω̃))] = E[
∫∞

0 H(ω, s, Zϵ
s(ω))λe(ds)] = E[

∫∞
0 e−sH(ω, s, Zϵ

s(ω))ds],

and the P̃-probability distribution of Zϵ is the probability measure on Np, defined by
µ̃ϵ(f) = E[

∫∞
0 e−sf(Zϵ

s)ds].

Tightness and stable relative compactness Thanks to the uniform domination
by the random variable Gb,♮(ω̃) of the size Zϵ,♮(ω̃) of the population Zϵ(ω̃), it directly
follows that the family (µ̃ϵ) is tight in Np, by a simple application of the definition of
tightness in Np. From Subsection 3.3.2, it follows that (Zϵ) is stably relatively compact in
R(P̃,Np). Up to a subsequence, the family (Zϵ(ω̃)) converges stably to a random kernel
Γ̃(ω̃, dz) from Ω̃ to Np. This means that up to a subsequence, the following convergence
holds for all H(ω, s, z) ∈ Cbmc(Ω̃ × X ):

Ẽ[H(ω, s, Zϵ)] −→
ϵ→0

Ẽ[
∫
Np

H(ω, s, z)Γ̃(ω, s, dz)] (3.3.5)

= E[
∫ ∞

0

( ∫
Np

H(ω, s, z)Γ̃(ω, s, dz)
)
λe(ds)] = E[

∫ ∞

0
Γ̃(ω, s, H)λe(ds)]

Finally, the kernel Γ̃(ω, t, dz) considered as a dynamic random measure (Γ̃(ω, t, dz))
inherits the (Gt)-adaptation of the population processes (Zϵ

t ). Indeed, let us consider
a test function H(ω, s, z) = Ms(ω) f(z), where Ms is a bounded (P, Gt)-martingale on
[0, T ], and f a bounded continuous function.
By the chain rule, E[

∫ T
0 Msf(Zϵ

s)ds] = E[
∫ T

0 MT f(Zϵ
s)ds].

The same properties hold at the limit by definition of the stable convergence, so that
E[
∫ T

0 MsΓ̃(., s, f)ds] = E[
∫ T

0 MT Γ̃(., s, f)ds].
In the first term, the process s 7→ Γ̃(., s, f) can be replaced by its G−optional projection
s 7→ Γ̃(., s, f)o, and the two variables

∫ T
0 Γ̃(., s, f)ds and

∫ T
0 Γ̃(., s, f)ods are equal P.a.s

as defining the same measure on GT . Since this property is true for any T , the processes
(Γ̃(., t, f)) can be chosen G-optional, and since X is separable, the property is also true
for the kernel (Γ̃(., t, dz)).

Application to the demographic intensity The example of the application of the sta-
ble convergence to the demographic intensity functional is a good illustration of all these
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properties. On (Ω̃, G̃, P̃), the demographic intensity processes (µdem(ω, t, Zϵ
t )) can be

considered as a functional of the r.v Zϵ(ω̃). µdem(ω̃, ·) is not bounded, but (µdem(ω̃, Zϵ))
verifies the uniform integrability condition (3.3.4) (by strong domination), and the stable
convergence can be still be applied. Then, by application of the convergence 3.3.5, for all
G-stopping time τ and B ∈ G, up to a subsequence,

E
[
1B

∫ t∧τ

0
µdem(s, Zϵ

s)ds
]

= Ẽ[1B1[0,t∧τ ](s)esµdem(s, Z̃ϵ)]

−→
ϵ→0

E
[
1B

∫ t∧τ

0
Γ̃(s, µdem(s, .))ds

]
(3.3.6)

where Γ̃ is a Gt-optional kernel. This is interesting since the multivariate process
Aϵ

t =
∫ t

0 µdem(s, Zϵ
s)ds is the predictable compensator (or cumulative intensity process) of

the demographic counting system Ndem,ϵ. We summarize these results in a proposition:

Proposition 3.3.1. Under the dominating assumption and up to a subsequence, the
predictable compensator Aϵ

t∧τ (or cumulative intensity process) of the demographic count-
ing system Ndem,ϵ

t∧τ converges weakly in L1(Ω, G, P) to At∧τ for all t ≥ 0; where A is a
continuous non decreasing process whose density is µdem averaged again the optional
kernel (Γ̃(., t, dz)), that is:

Aϵ
t∧τ =

∫ t

0
µdem(s, Zϵ

s)ds cv weakly − L1 to At∧τ =
∫ t∧τ

0
Γ̃(s, µdem(s, .))ds (3.3.7)

Remark 3.3.1. The advantage of the weak-L1 convergence is to preserve martingale
properties. However, the stable convergence of Zϵ in R(P̃,Np) does not imply the
convergence in distribution of Aϵ

t to the the averaged process, which is a key point of the
averaging result of Kurtz (1992). Indeed, the weak-L1 convergence does not imply the
convergence in distribution, and the reverse is not true either. Moreover, if both modes of
convergence are true, the weak-L1 limit does not necessarily have the same distribution
than the limit distribution. In fact, this is true only if convergence in probability holds
(Jajte and Paszkiewicz (1999)).

3.4 Convergence of the demographic counting sys-
tems

The previous property will be instrumental in proving the main result of this section,
that is the characterization of the limit points of the demographic counting systems,
(Ndem,ϵ), which only depends on ϵ only through the population process Zϵ. The proof
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relies on the identification of their intensity processes with the demographic intensity
functional µdem, averaged against stable limits in R(P̃,Np) of the population processes.
Contrary to the above, we are also interested in realizing limit distributions of the
demographic counting system as stable limits on the extended space, as defined in 3.3.2.

3.4.1 Tightness of demographic counting systems

Let us first study the tightness of the family of demographic counting systems (Ndem,ϵ)
as dynamic processes. The demographic counting systems are considered as random
variables on (Ω, G, P), taking values in a subspace A2p of the Skorohod space D(N2p).
As stated before, the key to the tightness of the demographic counting systems is the
strong domination by Gdem. The second ingredient is to prove the tightness of the family
in the space of point measures rather than in D(N2p), which simplifies the problem. But
let us first define properly the topology of the state space and recall some properties of
the convergence of counting processes.

Convergence of multivariate counting processes A multivariate counting process
ξ with values in Nk can either be seen as a dynamic process or as random measure:
As a stochastic process, ξ is considered as an Ak-valued random variable, where Ak

is the subspace of the Skorohod space D(Nk), composed of Nk-valued functions whose
components only have unit jump and no common jump (see Jacod and Shiryaev (1987)
for more details on the space Ak). In general, it is not so easy to give tightness conditions
in the Skorohod space.
This problem is simplified by considering ξ as a random measure of the space N k

v =
Nv(R+×Ik) of σ-finite simple point measures on R+×Ik, endowed with the vague topology.
In N k

v , a sequence of random measures (ξn) converges vaguely to ξ iff for all (t1, .., tl) and
(k1, .., kl) such that ξ({ti}×{ki}) = 0 a.s, the random vector (ξn([0, t1]×{k1}), .., ξn([0, tl]×
{kl})) = (ξn

k1(t1), .., ξn
kl

(tl)) converges in distribution to (ξk1(t1), .., ξkl
(tl)) (see Kallenberg

(2017) for more details on the vague convergence of random measures).
Obviously, convergence for the Skorohod topology implies convergence in the vague
topology, but the reverse is usually not true. However, in the case of multivariate
counting processes, the convergence in distribution for the vague and Skorohod topology
are equivalent (Theorem 4.20, Kallenberg (2017)). From this equivalence, tightness
conditions in Ak can be derived from simpler conditions obtained from the random
measure point of view. In particular, the following tightness criterion in N k

v (Lemma
14.15, Kallenberg (2017)) can be easily verified:

A family (ξn) is tight iff for all i ∈ Ik and t ≥ 0 the family (ξn
i (t)) is tight in R+.
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Tightness of demographic counting systems For each ϵ > 0 the demographic
counting system Ndem,ϵ is an A2p (or N 2p

v ) random variable. Furthermore, for all t ≥ 0,
(Ndem,ϵ

t ) is tight in (R+)2p since Ndem,ϵ
t ≤ Gdem

t , ∀ϵ > 0. Hence, (Ndem,ϵ) is tight in N 2p
v

by the previous tightness condition. By equivalence between the the convergence in
distribution for the vague topology and the Skorohod topology in A2p, we obtain that:

Proposition 3.4.1 (Tightness of the demographic counting systems).
The family of demographic counting systems (Ndem,ϵ) is tight in A2p (endowed with the

induced Skorohod topology). Equivalently, (Ndem,ϵ) is also stably relatively compact in
R(P, A2p).

Remark 3.4.1. Note that we could also have proven Proposition 3.4.1 without using the
equivalence with the random measure point of view, by applying more general results on
the tightness of increasing processes (see e.g. Jacod and Shiryaev (1987)).

3.4.2 Realization of stable limits of the demographic counting
systems

Set of rules for counting processes As stated before, the advantage of the realizing
stable limits on the extended space is to preserve the given structure of the problem. Let
us detail in this subsection how stable limits of the the demographic counting systems
are realized on the extended space, as well as properties verified by these limits.
Using notations of 3.3.1, the given space is (Ω, G, P), and X is the space of processes
X = A2p, equipped with the Skorohod topology. The canonical filtration of A2p is
denoted by (FA

t ) = (σ(α(· ∧ t) ; α ∈ A2p)). The canonical variable on A2p is denoted by
N̄dem(ω, α) = α.
On the extended filtered space (Ω̄, (Ḡt)) = (Ω × A2p, (Gt ⊗ FA

t )), the set of admissible
probability measures are the rules R in R(P, A2p). The space R(P, A2p) is closed for the
stable convergence, whose tests functions are the product functions 1B h(N̄dem) with
B ∈ G and h continuous and bounded on A2p.
By the support property deduced from the “portemanteau” inequality (3.3.3), the subset
RG(P, A2p) of R(P, A2p) of probability measures with support included in the domain
F̄ = {(ω, α) ∈ Ω̄; α ≺ Gdem(ω)} (whose sections in ω are closed in of A2p) is closed for
the stable convergence, and for all rule R ∈ RG(P, A2p), the canonical variable N̄dem is R
a.s. strongly dominated by Gdem.
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Stable limits of Ndem,ϵ We are now interested in realizing stable limits of the demo-
graphic counting systems (Ndem,ϵ), strongly dominated by Gdem, on the extended filtered
space (Ω̄, (Ḡt)) associated with limit rules in RG(P, A2p).
By equivalence between tightness and stable relative compactness, there exists for each
sequence (Ndem,ϵk) converging in distribution a subsequence (still denoted with the same
notation) converging stably to a rule R ∈ RG(P, A2p), whose marginal on A2p is the limit
distribution of (Ndem,ϵk) and for which the canonical variable N̄dem is R-a.s. strongly
dominated by Gdem, by the extension of the porte-manteau inequality.
This representation of limit distributions is particularly interesting since it allows the
structure of the primary problem to be maintained. In particular, jump times of N̄dem

are also jump times of Gdem, R, a.s..

3.4.3 Characterization of limit points

Let us now state the main result of this section, which is the characterization of the
limit points of the demographic counting systems. In this result, the intensity of the
stable limits are identified with the optional projection of the demographic intensity
functional µdem averaged against the conditional kernel of stable limits in R(P̃,Np) of
the population processes. To that matter, we shall need to consider the joint stable
convergence of (Ndem,ϵ) and (Zϵ).

Extension of (Ndem,ϵ) to (Ω̃, G̃, P̃) The first step is to define (Ndem,ϵ) and (Zϵ) on the
same probability space. In Subsection 3.3.3, the population processes Zϵ were considered
as Np-valued random variables on the product space Ω̃ = Ω × R+ equipped with the
product probability P̃ = P ⊗ λe.
In Subsection 3.4.1, the demographic counting systems Ndem,ϵ have been seen as A2p-
valued random variables on Ω. However, as all random variables defined on Ω, these
processes Ndem,ϵ can also be considered as random variables depending only on the first
coordinate of the product space (Ω̃, G̃, P̃).
It is direct to show that if (Ndem,ϵ) converges stably to R ∈ R(P, A2p), then (Ndem,ϵ)
converges stably on the new “reference space” (Ω̃, G̃, P̃) to R ⊗ λe ∈ R(P̃, A2p). In
particular, the new conditional kernel is not changed and given by the initial P-kernel,
Γdem.
Conversely, if (Ndem,ϵ) converges stably to the rule R̃(dω̃, dα) = Γ̃(ω̃, dα)P̃(dω̃) ∈
R(P̃, A2p), then Ẽ[1[0,t](.)Γ̃(., h)] = λe([0, t])Ẽ[Γ̃(., h)], for all t ≥ 0 and h ∈ Cbc(A2p),
since this property holds for the processes Ndem,ϵ. Hence, Γ̃ does not depend on s, i.e
Γ̃(ω, s, dα) := Γdem(ω, dα) R̃-a.s.
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Joint stable convergence of (Ndem,ϵ, Zϵ) By tightness of (Ndem,ϵ) and (Zϵ), the fam-
ily of random vectors ((Ndem,ϵ, Zϵ)) is thus stably relatively compact in R(P̃, A2p × Np).
Our goal is to define stable joint limits in such way that the point of view of 3.3.3 and
3.4.2 are preserved.
For any limit rule R∗(dω̃, d(α, z)), there exists a kernel Γ̃∗(ω̃, d(α, z)) from Ω̃ to A2p ×Np

such that R̃∗(dω̃, d(α, z)) = Γ̃∗(ω̃, d(α, z))P̃(dω̃). By Theorem 1.25 in Kallenberg (2017),
the kernel Γ̃∗ can be disintegrated into: Γ̃∗(ω̃, d(α, z)) = Γ̃dem(ω̃, dα)Γ(ω̃, α, dz).
In this decomposition, Γ̃dem is a kernel from Ω̃ to A2p and Γ is a kernel from Ω̃ × A2p to
Np. In particular, the stable limit of the sequence (Ndem,ϵ) (defined on Ω) in R(P̃, A2p) is
R̃(dω̃, dα) = Γ̃dem(ω̃, dα)P̃(dω̃), which means from the paragraph above that the kernel
Γ̃dem does not depend on s, R̃ .a.s. and can be denoted Γdem. This kernel is associated
with the rule in R(P, A2p) defined by R(dω, dα) = Γdem(ω, dα)P(dω).
The limit rule R̃∗ can be rewritten as R̃∗(dω̃, dα) = R(dω, dα)λe(ds)Γ(ω, s, α, dz).
The stable convergence (up to a subsequence) of (Ndem,ϵ, Zϵ) to R̃∗ can be thus reinter-
preted as follows: for all B ∈ G, t ≥ 0, h ∈ Ccb(A2p) and f ∈ Cb(Np),

Ẽ
[
1B×[0,t]h(Ndem,ϵ)f(Zϵ)] = E[1Bh(Ndem,ϵ)

∫ t

0
f(Zϵ

s)λe(ds)
]

−→
ϵ→0

R
[
1Bh(N̄dem)

∫ t

0
Γ(., s, N̄dem

, f)λe(ds)
]
, (3.4.1)

In particular, (Ndem,ϵ) converges stably to R and (Zϵ(ω, s)) converges stably to the
R-expectation of Γ, whose kernel is Γ̃(ω, t, dz) =

∫
A2p Γdem(ω, dα)Γ(ω, t, α, dz), as studied

in Proposition 3.3.1. Recall that this marginal kernel, when considered as measure-valued
process, is G-optional.
Based on this representation, limit points for the joint distribution are now denoted by
(R, Γ).

Theorem 3.4.1 (Identification result). Let (R, Γ) be a limit point of the stably relatively
compact family (Ndem,ϵ, Zϵ), where R is a rule in R(P, A2p).
Let us consider the process (Γ(., t, N̄dem

, µdem))o which is the (R, Ḡ)-optional projection
of process t 7→ Γ(., t, N̄dem

, µdem).
Then, the canonical demographic process N̄dem(ω, α) = α is characterized by the following
property:

N̄dem has the (R, Ḡ)-compensator
∫ t

0
(Γ(s, N̄dem

, µdem))ods. (3.4.2)

Proof. Let ϵk → 0 be a subsequence along which {(Ndem,ϵk , Γϵk)} converges stably to
(R, Γ). Let also 0 ≤ u ≤ t, A ∈ Gu and hu ∈ Cbc(A2p), an FA

u measurable function. The
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martingale property on (Ndem,ϵk − Aϵk) gives

E[1Ahu(Ndem,ϵk)(Ndem,ϵk
t − Ndem,ϵk

u )] = E[1Ahu(Ndem,ϵk)
∫ t

u
µdem(s, Zϵk

s )ds]

By the stable convergence of (Ndem,ϵk) to R, the right hand side of the previous equation
converges to R[1Ahu(N̄dem)(N̄dem

t − N̄dem
u )].

Furthermore, let H(ω, s, α, z) = 1A×[u,t](ω, s)eshu(α)µdem(ω, s, z). The left hand side of
the previous equation is equal to Ẽ[H(ω, s, Ndem,ϵ, Zϵ)], and by applying the joint stable
convergence 3.4.1 to H, we obtain that

R[1Ahu(N̄dem)(N̄dem
t − N̄dem

u )] = R[1Ahu(N̄dem)
∫ t

u

∫
Np

µdem(u, z)Γ(ω, s, N̄dem
, dz)ds],

which gives a non-adapted version of the theorem. To achieve the proof, we have just to
introduce an optional version of the density kernel tested again µdem.

3.5 Application to case of Markov swaps

In the previous section, we characterized the limit points of the distribution of the
demographic counting systems in the presence of a fast evolution of the composition of
the population, due to fast swaps. Without more information on the model and especially
on the BDS intensity functionals, we cannot hope to have a unique limit distribution.
Most of the papers concerned with similar questions of different times scales are set in
a Markov framework, with often ergodic requirements (see e.g. Kurtz (1992); Yin and
Zhang (2012)). As a consequence, the intensity functionals are deterministic functions
of the state of the population. Under these assumptions, the BDS process belongs to
the largely documented family of Continuous Time Markov Chain. Actually, in the case
where all intensities are deterministic and time homogeneous, an averaging result for the
demographic counting systems can be derived for Kurtz (1992) or Yin and Zhang (2012),
under ergodic assumptions for the swap processes.
In our setting, we want to restrict only the behavior of the swap component of the
process, by assuming that the swap intensity functionals are deterministic functions of
the population, and time homogeneous, in the perspective of using ergodicity results to
characterize the limit distribution. On the other hand, no assumptions will be made on
the dependence of the demographic intensity functional µdem(ω, t, z) in (ω, t).
In order to prove the result, we will rely on the decomposition algorithm of Section 2.4
in order to characterize the intensity of the limit distribution. Thus, we assume for the

88



3.5 Application to case of Markov swaps

remainder of this section that the swap intensity functional µs is a deterministic and
time homogeneous function, µs : z ∈ Np → µs(z) ∈ Rp(p−1).
The two timescale BDS (Z0, Nϵ, Zϵ), solution of (3.2.1), is now solution of:

Zϵ
t = Z0 + ϕs ⊙ Ns,ϵ

t + Nb,ϵ
t − Nd,ϵ

t , (3.5.1)

dNs,ϵ
t = Qs(dt, ]0,

1
ϵ
µs(Zϵ

t−)]), dNdem,ϵ
t = Qdem(dt, ]0, µdem(ω, t, Zϵ

t−)]).

As for the BDS decomposition algorithm, Swap processes will play an central role in the
study in the following, even if we are eventually interested in the demographic counting
systems. Recall that the swap counting system Ns,ϵ is not a jumps counting system asso-
ciated with a pure Swap process, due to its entanglement with the demographic counting
system Ndem,ϵ. However, the BDS decomposition algorithm allows the disentanglement
of these two processes, by building the population as a continuous pasting of pure Swap
processes, stopped at demographic events times and reborn on a new space in which an
individual has been either added or retrieved to the population.
These Swap processes of intensity functional µs are obtained by thinning of the p(p − 1)
multivariate Poisson measure Qs.
In the next subsection, we thus begin by studying these Swap processes in the two
timescale setting, under the assumption of deterministic swap intensity functional.

3.5.1 Fast Markov Swap processes

Markov Swap

Swap CTMC When there is are no differences in the events timescale, a realization of
the pure (Markov) Swap of intensity µs starting in state ξ0 can be given by the solution
of the following Swap multivariate SDE:

Xt = ξ0 + ϕs ⊙ Nsw
t , dNsw

t = Qs(dt, ]0, µs(Xt−)]). (3.5.2)

Recall that the size of the swap is constant equal to ξ♮
0 (swap events don’t change the size

of the population). Thus, conditionally to the initial population ξ0, X has a finite state
space and the existence and uniqueness of (3.5.2) is trivial. Since µs is a deterministic
function, the Swap X solution of (3.5.2) is a Gt-CTMC, of intensity matrix Lsw defined
by:

Lswf(z) =
∑

(i,j)∈J s

µij(z)(f(z + ϕ(i, j)) − f(z)), ∀x ∈ Np.
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In the following, Continuous Time Markov Chains of intensity matrix Lsw are called
Swap CTMC

Swap CTMC stationary measures Swap CTMC, when viewed as Markov processes
on the whole state space Np, cannot be ergodic processes since if the Swap starts in the
space Un of population of size n, it will stay in Un and not visit the entire state space.
Nevertheless, restrictions of Swap processes to the spaces Un are from now on assumed
to be ergodic:

Hypothesis 1 (Ergodicity of the Swap process on Un). ∀n ≥ 0, The Swap CTMC
restricted to Un is assumed to be irreducible. Since Un is finite, this means that the Swap
CTMC restricted to Un admits a unique stationary measure denoted by (π(n, dz))z∈Un .

Thus, if X(ξn
0 ) is a swap process starting with an initial population ξn

0 ∈ Un, the swap
has a deterministic constant size ξd,♮

0 = n (X ∈ Un), and ∀f : Un → R+,

1
t

∫ t

0
f(Xs(ξn

0 ))ds −→
t→+∞

π(n, f) =
∫

Un

f(z)π(n, dz) P-a.s, (3.5.3)

E[f(Xt(ξn
0 ))] −→

t→+∞
π(n, f). (3.5.4)

The previous equation shows the importance of the initial size of the population in the
asymptotics of the swap system. To emphasize this dependence, the swap process is
sometimes denoted in what follows by Xt(ξ0), or Xt(τ, ξτ ) when the starting time is
random. In order to simplify equations when the starting time is random, we also assume
without loss of generality that f(0) = 0.

Accelerated and Fast Swap CTMC

In the two-time scale framework, we are now interested in the realization of Swap CTMC
of large intensity (1

ϵ
µs(z)), or equivalently of intensity matrix 1

ϵ
Lsw. Let us present

two realizations of such processes in order to make the link between swap stationary
distributions π(n; ·) and the two-timescale process.

Accelerated Markov Swap Usually, realizations of Swap CTMC X̂ϵ of intensity
matrix 1

ϵ
Lsw, which we call accelerated Markov Swap, are obtained by change of time.

For instance, if X is a Swap CTMC defined by the thinning equation (3.5.2), then the
process X̂ϵ defined by change of time t 7→ t

ϵ
,

X̂ϵ
t = X t

ϵ
= ξ0 +

∫ t
ϵ

0 ϕs ⊙ Qs(ds, ]0, µs(Xs−)])
is a (G t

ϵ
) CTMC of intensity matrix 1

ϵ
Lsw.
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Fast Markov Swap The second realization, called the fast Markov Swap, is based on
the thinning representation, and is defined by:

Xϵ
t = ξ0 + ϕs ⊙ Nsw,ϵ

t , dNsw,ϵ
t = Qs(dt, ]0,

1
ϵ
µs(Xϵ

t−)]). (3.5.5)

Xϵ and X̂ϵ have the same distribution, but contrary to X̂ϵ, the fast Markov Swap Xϵ

is (Gt)-adapted for all ϵ > 0. These two processes illustrate two different constructions
of the Swap CTMC of intensity matrix 1

ϵ
Lsw: the accelerated process rely on the time

component of the Poisson measure Qs in order to increase the intensity, while the fast
process uses the space component θ of the Poisson measure. In the sequel, the second
construction is used since it coincides with swap processes obtained from the BDS
decomposition algorithm.
The trade-off of the second construction lies in the convergence properties of the fast
Markov Swap. On the one hand, by the ergodic Assumption 3.5.3 the accelerated Markov
Swap X̂ϵ verifies the following a.s convergence property:

∫ t

0
f(X̂ϵ

s)ds = ϵ
∫ t

ϵ

0
f(Xu)du −→

ϵ→0
t π(ξ♮

0, f), P-a.s. ∀f ∈ Cb(Np), (3.5.6)

On the other hand, the above convergence does not holds almost surely for the fast Markov
Swap Xϵ, but a priori only in distribution. However, since the limit distribution t π(ξ♮

0, f)
is only random through its dependence on the initial condition ξ0, the convergence (3.5.6)
actually holds in probability for the fast Markov Swap Xϵ.
This result can easily be extended to fast Swap processes starting at a random time τ in
state ξτ , solution of:

Xϵ
t (τ, ξτ ) = ξτ1{t≥τ} + ϕs ⊙ Nsw,ϵ

t , dNsw,ϵ
t = Qs(dt, ]0,

1
ϵ
µs(Xϵ

t−)]). (3.5.7)

On {t ≥ τ}, Xϵ
t (τ, ξτ ) is a fast Markov swap, and by the foregoing:

∀f ∈ Cb(Np) s.t. f(0) = 0,
∫ t

0
f(Xϵ

s(τ, ξτ ))ds −→
ϵ→0

(t − τ)+π(ξ♮
τ , f), in probability.

(3.5.8)

Fast Swap with random start depending on ϵ

In the sequel, we wish to study fast Swap processes with random start (τ ϵ, ξϵ) depending
on ϵ. The following lemma extends the convergence in probability of Equation (3.5.8).
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Lemma 3.5.0.1. Let (τ ϵ, ξϵ)ϵ>0 be a family of random variables in R+ × Np, such that
(τ ϵ, ξ♮,ϵ) converges in distribution. For each ϵ ≥ 0, let Xϵ(τ ϵ, ξϵ) be the fast Swap process
solution of the Swap multivariate SDE (3.5.7), starting at time τ ϵ in state ξϵ.
Then, for all bounded function f on Np and t ≥ 0,

∫ t

0
f(Xϵ

s(τ ϵ, ξϵ))ds − (t − τ ϵ)+π(ξϵ,♮, f) converges in probability to 0.

Proof. In all the proof, we denote by Xϵ(u, z) the fast Swap process solution of the Swap
multivariate SDE (3.5.7), starting in state (u, z). Let M > 0.
The first step of the proof is to reduce the problem to the study of a functional only
depending on the initial state ξϵ through it size ξ♮,ϵ. Thus, let:

Y ϵ(ω, t, u, n) = max
z∈Un

|
∫ t

0 f(Xϵ
s(u, z))ds − (t − u)+π(n, f)|.

Then, by simple domination,

P(|
∫ t

0
f(Xϵ

s(τ ϵ, ξϵ)ds − (t − τ ϵ)+π(ξϵ,♮, f)| ≥ 1
M

) ≤ P(Y ϵ(t, τ ϵ, ξϵ,♮) ≥ 1
M

)

By denoting gϵ(u, n) = P(Y ϵ(t, u, n) ≥ 1
M

), we have:

P(Y ϵ(t, τ ϵ, ξϵ,♮) ≥ 1
M

) = E[gϵ(τ ϵ, ξϵ,♮)].

By Theorem 3.27 in Kallenberg (2006), if (τ ϵ, ξϵ,♮) converges in distribution and gϵ(uϵ, n) → 0
for all uϵ −→

ϵ→0
u , then (gϵ(τ ϵ, ξϵ,♮)) converges in distribution to 0, and thus converges

in expectation since (gϵ(τ ϵ, ξϵ,♮)) is uniformly bounded by 1. By assumption, (τ ϵ, ξϵ,♮)
converges in distribution, is thus remains to prove the second condition. Let uϵ −→

ϵ→0
u.

Firstly, observe that

gϵ(uϵ, n) ≤
∑

z∈Un

P(|
∫ t

0
f(Xϵ

s(uϵ, z))ds − (t − uϵ)+π(n, f)| ≥ 1
2M

)

For all z ∈ Un, (
∫ t

0 f(Xϵ
s(u, z))ds) converges in probability to (t − u)+π(n, f) by (3.5.8),

and (t − uϵ)+π(n, f) −→
ϵ→0

(t − u)+π(n, f). Thus,
∫ t

0 f(Xϵ
s(uϵ, z))ds − (t − uϵ)+π(n, f)

converges to 0,for all z ∈ Un. Since Un is finite, this achieves to prove the Lemma.

3.5.2 Birth Death limit of demographic counting systems

We can now state the main result of this section. As stated many times since the beginning
of Chapter 2, the demographic counting system Ndem,ϵ is not the jumps counting system
of a Birth Death system, due to the presence of Swap events. Furthermore, the aggregated
process Z♮,ϵ is also not an “autonomous” one dimensional Birth Death process. This is
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due to swap events, but also to the fact that the aggregated birth and death intensities
functional µb,♮ and µd,♮ depend on the whole structure of the population and not just on
Z♮,ϵ.
In the setting of deterministic swap intensities, along with the ergodic Assumption 1,
the following theorem shows that the family of demographic counting systems converges
in distribution to the jumps counting system of a “true” (Non-Markov) p Birth-Death
process. Furthermore, due to the averaging effect of the Swap CTMC defined between
two successive demographic events, the aggregated birth and death intensity functionals
only depend on the size of the population at the limit. Thus, the limit aggregated is a
much simpler Birth-Death process.
Recall that the two timescale BDS system (Z0, Nϵ, Zϵ), with deterministic swap intensity
functions, has been defined a the beginning of this section as the solution of the following
BDS multivariated SDE:

Zϵ
t = Z0 + ϕs ⊙ Ns,ϵ

t + Nb,ϵ
t − Nd,ϵ

t ,

dNs,ϵ
t = Qs(dt, [0,

1
ϵ
µs(Zϵ

t−)]), dNdem,ϵ
t = Qdem(dt, [0, µdem(ω, t, Zϵ

t−)]).

The convergence in distribution of the family of demographic counting systems is stated
as follows.

Theorem 3.5.1 (Convergence of the demographic counting systems). Let (Z0, Nϵ, Zϵ)
be the two timescale BDS system with deterministic swap intensity functions, defined
above. Under the ergodic Assumption 1 for Swap CTMC, the family of demographic
counting systems (Ndem,ϵ) converges in distribution in A2p.
Furthermore, there exists an extension (Ω̄, (Ḡt), R) of the given space (Ω, (Gt), P) and a
multivariate counting process N̄dem = (N̄b, N̄d) ∈ A2p defined on this space, such that:
(i) N̄dem has the (Ḡt)-compensator:

Āt =
∫ t

0 π(Z̄♮
s, µdem(s, ·))ds, Z̄♮

s = N̄b,♮
s − N̄d,♮

s .

(ii) (Ndem,ϵ) converges in distribution to N̄dem.

Proof. By Theorem 3.4.1, (Ndem,ϵ, Zϵ) is stably relatively compact in R(P̃, A2p ×Np). Let
(R, Γ) be a limit point as defined in 3.4.1, and R̃ = R ⊗ λe. In order to prove Theorem
3.5.1, we need to prove that:

Γ(ω, s, N̄dem, dz) = π(Z̄♮
s, dz) R̃-a.s. (3.5.9)
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Since we only want to identify Γ, we may assume that (Ndem,ϵ, Zϵ) converge stably to
(R, Γ). Let A ∈ G, h ∈ Cbc(A2p) and f ∈ Cb(Np). Then,

|E[1Ah(Ndem,ϵ)
∫ t

0
f(Zϵ

s)ds] − R[1Ah(N̄dem)
∫ t

0
π(Z̄♮

s, f)ds]|

≤ |E[1Ah(Ndem,ϵ)
∫ t

0
f(Zϵ

s)ds] − E[1Ah(Ndem,ϵ)
∫ t

0
π(Zϵ,♮

s , f)ds]|
I

+ |E[1Ah(Ndem,ϵ)
∫ t

0
π(Zϵ,♮

s , f)ds] − R[1Ah(N̄dem)
∫ t

0
π(Z̄♮

s, f)ds]|
II

.

II: The function α →
∫ t

0 π(αb,♮
s − αd,♮

s , f)ds is a continuous bounded function from A2p

to R, and thus the stable convergence of (Ndem,ϵ) to R imply that the second term II of
the r.h.s of the previous equation converges to 0.
I: In order to prove that I converges to 0, we rely on the BDS decomposition algorithm.
For each ϵ > 0, let (T ϵ

k) be the sequence of demographic event times (i.e the jump times
of (Ndem,ϵ)), and take η > 0.
By Lemma 3.2 of Jacod (1987), the tightness of (Ndem,ϵ) imply that there exists an
integer K such that ∀k > K,

lim sup
ϵ

P(T ϵ
k ≤ t) ≤ η

2t∥f∥∞∥g∥∞
.

By decomposing I onto the Kth first demographic intervals, we obtain that:

I ≤ ∥g∥∞

(
K∑

k=0
E[|
∫ T ϵ

k+1∧t

T ϵ
k

∧t
(f(Zϵ

s) − π(Zϵ
s, f)) ds|] + E[|

∫ t

T ϵ
K+1∧t

(f(Zϵ
s) − π(Zϵ

s, f))ds|]
)

≤ ∥g∥∞

K∑
k=0

E[|
∫ T ϵ

k+1∧t

T ϵ
k

∧t
(f(Zϵ

s) − π(Zϵ
s, f)) ds|] + η

2

For each 0 ≤ k ≤ K, the population process Zϵ coincides on the k + 1th demographic
interval [T ϵ

k , T ϵ
k+1[ with the kth fast Swap process Xk,ϵ, starting at the kth demographic

event time T ϵ
k in state Zϵ

T ϵ
k

and solution of:
Xk,ϵ

t = Xϵ
t (Zϵ

T ϵ
k
, T ϵ

k) = Zϵ
T ϵ

k
1{t≥T ϵ

k
} + ϕs ⊙ Nsw,k,ϵ

t , dNsw,k,ϵ
t = Qsw(dt, ]0, 1

ϵ
µs(Xk,ϵ

t− )]).

By definition, the size of the population Zϵ,♮ is constant on demographic intervals, hence:∫ T ϵ
k+1∧t

T ϵ
k

∧t
(f(Zϵ

s) − π(Zϵ
s, f)) ds =

∫ T ϵ
k+1∧t

0
f(Xk,ϵ

s )ds − (T ϵ
k+1 ∧ t − T ϵ

k)+π(Zϵ
T ϵ

k
, f), P a.s.

As in the proof of Lemma 3.5.0.1, the previous expression can be dominated using the
random variable Y ϵ(ω, r, u, n) = max

z∈Un

|
∫ r

0 f(Xϵ
s(u, z))ds − (r − u)+π(n, f)| which depends

on the size of the Swap process rather than on its initial state:
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|
∫ T ϵ

k+1∧t

0 f(Xk,ϵ
s )ds − (T ϵ

k+1 ∧ t − T ϵ
k)+π(Zϵ

T ϵ
k
, f)| ≤ sup

r≤t
Y ϵ(ω, r, T ϵ

k , Zϵ
T ϵ

k
).

By Lemma 3.5.0.1, (Y ϵ(ω, r, T ϵ
k , Zϵ

T ϵ
k
)) converges in probability to 0 for all r ≤ t, and by

using a diagonal argument, there exists a subsequence along which:
Y ϵ(ω, q, T ϵ

k , Zϵ
T ϵ

k
) −→

ϵ→0
0 for all rationals q ≤ t, P-a.s.

The convergence can be extended by continuity to [0, t]. In addition, the family
(Y ϵ(ω, r, T ϵ

k , Zϵ
T ϵ

k
)) is uniformly bounded by 2t∥f∥∞ and for all r, s ∈ [0, t],

|Y ϵ(ω, s, T ϵ
k , Zϵ

T ϵ
k
) − Y ϵ(ω, r, T ϵ

k , Zϵ
T ϵ

k
)| ≤ 2∥f∥∞|s − r|.

We can thus apply of Arzela-Ascoli theorem, and there exists a subsequence along which
(Y ϵ(ω, r, T ϵ

k , Zϵ
T ϵ

k
)) converges uniformly on [0, t] P-a.s, so that:

sup
r≤t

Y ϵ(ω, r, T ϵ
k , Zϵ

T ϵ
k
) −→

ϵ→0
0 in probability.

Since the family is also uniformly bounded,
E[|
∫ T ϵ

k+1∧t

0 f(Xk,ϵ
s )ds − (T ϵ

k+1 ∧ t − T ϵ
k)+π(Zϵ

T ϵ
k
, f)|] ≤ E[sup

r≤t
Y ϵ(ω, r, T ϵ

k , Zϵ
T ϵ

k
)] −→

ϵ→0
0.

This is true for all k = 1..K, and thus for ϵ small enough, I ≤ η, i.e I → 0.
This achieves to prove that (Ndem,ϵ(ω), Zϵ(ω, s)) converges stably to (R, π(Z̄♮

s, dz)). But
(Ndem,ϵ(ω), Zϵ(ω, s)) also converges to (R, Γ), hence

Γ̃(ω, s, N̄dem, dz) = π(Z̄♮
s, dz) R̃-a.s.

3.5.3 Application

In this last subsection, we apply Theorem 3.5.1 in the example of non-linear swap
intensities presented in (2.2.12). Let us first recall the model.
A population composed of two subgroups is considered. The second subgroup (subgroup
2) has a lower death intensity, µ(d,1)(t, z) ≥ µ(d,2)(t, z), a.s. When the population is
smaller than a given size M , individuals swap to the favorable subgroup 2, at rate
k12(z♮)α, α > 0. When the population is larger than M access to the subgroup 2 is
restricted and individuals swap from 1 to 2 at a lower constant rate kM

12 . Individuals swap
from the favorable subgroup 2 to subgroup 1 at constant rate k21. The swap intensity is
thus defined by:

µ(1,2)(z) = k12(z♮)αz11{z♮≤M} + kM
12 z11{z♮>M}, µ(2,1)(z) = k21z

2.
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Swap CTMC stationary measure The intensity matrix of the Swap CTMC restricted
to the space Un (of population of size n) is defined for all f : Un → R by,

Lsw
n f(z) =

 k12n
αz1(f(z + e2 − e1) − f(z)) + k21z

2(f(z + e1 − e2) − f(z)), if n ≤ M

kM
12 z1(f(z + e2 − e1) − f(z)) + k21z

2(f(z + e1 − e2) − f(z)), if n > M

Actually, the Swap CTMC can be reinterpreted as follow: all individuals evolve as
“independent CTMC” on the state space {1, 2}, with constant transition rates depending
on the initial number of individuals. In particular, this means that the stationary measure
of the Swap CTMC restricted to Un, π(n, ·), is defined as the distribution of the sum of
n i.i.d random variables of distribution ν defined by:

ν2(n) =


k12n

α

k12nα + k21
if n ≤ M

kM
12

kM
12 + k21

if n > M

,

and with ν1(n) = 1 − ν2(n). In particular, π(n, z2) = nν2(n).
Thus, there can be two situations at the limit. If the size of the population is small
enough individuals are able to move more easily to the favorable subgroup 2 which is
more populated on average. On the other hand, when the population becomes crowded,
the access to subgroup 2 is restricted, the proportion of individual in subgroup 2 becomes
smaller.

Linear death intensities Let us now assume that the death intensity functionals
µ(d,i)(ω, t, z), i = 1, 2, are linear, equal to:

µ(d,i)(ω, t, z) = di(ω, t)zi.

By Theorem 3.5.1, the aggregated death intensity of the limit process is:
λd(ω, t, n) = π(n, µd,♮) , where µd,♮ = µ(d,1) + µ(d,2).

In the case of linear death intensities, the previous equation can be rewritten as:

λd(ω, t, n) =
∑

i=1,2
di(ω, t)π(n, zi) = n(d1(ω, t)(1 − ν2(n)) + d2(ω, t)ν2(n)). (3.5.10)

This shows how non-linearities in the death intensity can emerge in the limit aggregated
population, even when death intensities in each subgroup are linear. This results from
a non trivial aggregation of the subgroup specific death intensities, due to the swap
events. In this particular example, the death rate of individuals in the limit aggregated
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population - which approximates the behavior of the aggregated population when swaps
occur on a faster timescale - depends non trivially on the size of the population. Due
to the two regimes of swap events, the individual death rate in the limit aggregated
population is lower when the population is small.
Thus, thanks to the approximation of the aggregated process by a simpler Birth Death
process in the two timescale framework, we can better understand how swap events
modify the behavior of the population ,by creating non-linearities at the aggregated level.
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Chapter 4

How can a cause-of-death reduction
be compensated in presence of
heterogeneity? A population
dynamics approach

4.1 Introduction

When studying a large population such as a national population, it is well known that the
population usually shows some heterogeneity, in the sense that individuals with different
characteristics (e.g. gender, social characteristics, neighborhood...) can exhibit different
demographic behaviors (different mortality and fertility rates). Whenever possible, to
take into account these individual characteristics for modeling mortality and population
evolution gives additional information.
Research on the relationship between socioeconomic status and mortality can be traced
back as far as the nineteenth century. Since then, an important body of work have
investigated the links between socioeconomic status (SES) and health, and there is now
a broad consensus on the strong correlation between SES and mortality. This correlation
holds as well for causes of death. Indeed, many studies have shown that individuals with
different socioeconomic status are affected differently by diseases. For example, diseases
linked to smoking habits or obesity are more likely to impact individuals with lower
socioeconomics status (see e.g. National Research Council and Committee on Population
(2011)).
More recently, a growing number of studies, in different countries, have highlighted the
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increasing gap between different socioeconomic subgroups (see e.g. the review of Elo
(2009)). Those divergences generate a high heterogeneity in populations, and socioeco-
nomic subgroups can experience mortality rates rather different from the mortality rates
estimated from aggregated data such as national data.
The widening of these socioeconomic gaps has led a number of pension funds and in-
surance companies to rethink their models in order to tackle this heterogeneity issue
and to understand the potential impact of socioeconomic inequalities. Indeed, the non-
consideration of socioeconomic differences can have substantial impacts for insurance
companies or governments, by leading for instance to errors in funding of annuity and
pension obligation (see e.g. Meyricke and Sherris (2013); Villegas and Haberman (2014))
or to increase the basis risk (variation between sample and population mortality).
For instance, the Life & Longevity Markets Association (LLMA) and the Institute and
Faculty of Actuaries (IFoA) in the UK have recently commissioned a report on longevity
basis risk (Haberman et al. (2014)). By studying recommendations from the World
Health Organization targeting specific causes of death, Alai et al. (2017) have shown
that these recommendations could increase life expectancy gaps in England, despite an
increase of the national life expectancy. Indeed, a public policy could as well increase
inequalities when differences between SES are disregarded.
Consequently, a growing literature has recently taken an interest in the joint modeling
and forecasting of the mortality of socioeconomic subgroups (see e.g Jarner and Kryger
(2011); Villegas and Haberman (2014)). This new class of models is based on a relative
approach. Individuals are grouped into so-called risk classes, assumed to have an accept-
able level of homogeneity, and the mortality of risk classes is modeled with respect to the
mortality of a large reference population, often the aggregated population. The impact
of heterogeneity on cause-specific mortality has also been well-documented. However,
there are still a lot of open questions on the consistency of sub-national and national
estimations and forecasts. An approach to this issue has been proposed very recently by
Shang and Haberman (2017); Shang and Hyndman (2017), based on recent developments
in grouped functional time series methods.
However, the impact of composition changes on aggregated mortality indicators induced
by the heterogeneous evolution of the population has been, to the best of our knowledge,
less studied. Any changes in the composition of cohorts or age classes could lead to
substantial changes in the age-specific mortality rates of the global population. In partic-
ular, understanding the combined effect of changes in the composition of the population
and of cause-specific reductions in socioeconomic subgroups cannot be done by the sole
analysis of mortality rates time series.
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Important recent releases of data allow a more detailed analysis of these composition
effects. We argue that there is a real need and possibility to study the whole population
and not only mortality rates to better understand the effect of heterogeneity on aggregate
indicators. The population dynamics point of view allows us to represent the data
differently than what is usually done when the focus is on mortality only, and to consider
issues beyond those that are typically addressed.
The aim of this chapter is to illustrate possible impacts of changes in population compo-
sition, and is organized as follows. In Section 4.2, we introduce the data used to carry
out our study, which is a unique database obtained from the UK Office for National
Statistics (ONS), containing information on cause-specific death rates by age, gender
and deprivation level for the period 1981-2015. Particular emphasis is being placed
on presenting the main features of the age structures of the subpopulations grouped
by level deprivation, and their evolution over time. In Section 4.3, we present the
population dynamics framework which is used in Section 4.4. One of the advantages of
this framework is to allow the derivation of closed formula and asymptotic results for a
number of indicators, in order to better understand the complex interactions between
heterogeneity and mortality. Section 4.4 presents our numerical results. We first show
how different socioeconomic composition of the age classes can impact the life expectancy
and mortality improvement rates. In a second phase, we show how a cause of death
reduction can be compensated by changes in the composition of the population induced
by heterogeneity in fertility rates, and thus could be misinterpreted.
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4.2 What can be learned from the data

More and more data are available from various statistical institutions, allowing us to
take into account more complex information in population modeling, in order to better
understand the past and future evolution. When assessing demographic changes, those
new data bring to light complex interactions between longevity and the population
dynamics, especially due to the social heterogeneity of the population. In this section,
we present the two databases used in this article. Particular emphasis is made on the
evolution of the age structure of the subpopulations grouped by level deprivation, which
we consider to be an important contribution of the study.

4.2.1 Databases

The data we use provide mid-year population estimates in England by age class and
socio-economic circumstances for the years 1981-20151, combined with the number of
deaths by age, cause and socioeconomic circumstance. Our study is based two data
sources:
(i) The first database was provided to us by the Department of Applied Health Research
(DAHR) of the University College London in UK, and is based on the Index of Multiple
Deprivation 2007 (IMD 2007) for the 1981-2006 period2.
(ii) The second database was released in 2017 by the Office for National Statistics in
UK (ONS)3, and is based on the Index of Multiple Deprivation 2015 (IMD 2015) for the
2001-2015 period.

Deprivation Criterion In both databases, socio-economic circumstances are measured
by the Index of Multiple Deprivation (IMD). The concept of deprivation has been defined
by Townsend as the lack of “types of diet, clothing, housing, household facilities and fuel
and environmental, educational, working and social conditions, activities and facilities
which are customary” (Townsend (1979), cited in Noble et al. (2007)). The IMD is a
geographically based index, created by the British Department for Communities and
Local Government in order to provide an official measure of these multiple deprivation
dimensions at the level of small areas called LSOAs4 (see Noble et al. (2007) and

1Population estimations are based on decade census data, see Office for National Statistics (2012) for
more details.

2The authors thank Madhavi Bejekal for her great help in obtaining the data and her explanations.
3Publicly available on the ONS website (www.ons.gov.uk) under the reference number 006925.
4 In 2007, there were 32,482 Lower Layer Super Outupt areas (LSOAs) in England (34,753 in 2011),

each composed of about 1500 individuals (Office for National Statistics (2012)).
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Department for Communities and Local Government (2015) for more details). More
precisely, the IMD is based on the measure of seven broad socioeconomic factors: income,
employment, health, education, barriers to housing and services, living environment and
crime; and it is computed for each small living area in England. The IMD score of a
small area is used as SES proxy for individuals living in the LSOA. Furthemore, the
index also includes information on the physical and social environment of individuals
(by including for instance the road distance to a GP surgery and supermarket, or crime
statistsics), which can have a significant influence on health outcomes (Diez Roux and
Mair (2010); Nandi and Kawachi (2011)).
One limitation of using area based measurements is to apply the same deprivation to
all individuals living in the same area. However, LSOAs are rather small areas4 and
geographical data are often more available on a large scale than multiple individual
socioeconomic measurements. We also note that the IMD is computed at fixed dates,
while being applied to a longer time period (e.g. IMD 2007 applied to the period 1981-
2007). The implications of using a fixed IMD quintile allocation have been discussed
comprehensively in Bajekal et al. (2013) and in Appendix D of Lu et al. (2014), based on
the period 1981-2001. Our comparison of data computed with the IMD 2007 and IMD
2015 for the overlapping period 2001-2006 also gives very similar results. See Appendix
A for a more detailed discussion on this issue.

Structure of data sources Our two data sources are based on a relative measurement
of deprivation. Small living areas are ranked by their IMD scores and grouped into five
deprivation quintiles numbered from 1 to 5: IMD quintile 1 for the least deprived quintile,
to IMD quintile 5 for the most deprived quintile. It is worth noting that for each year,
the five deprivation quintiles have approximately the same number of individuals, see
Section 4.2.2.
Population data are structured by age-class and deprivation quintile, while deaths data
are structured by age-class, deprivation quintile and cause of deaths. Specific features of
each database are summarized in Table 4.1 and 4.2.
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Database 1 Database 2
Deprivation index IMD 2007 IMD 2015
Time period 1981-2006 2001-2015
Ages 25-85+ 0-90+
Populations age group 5 years 1 year
Deaths age group 5 years 1 year

5 years per cause

Table 4.1 Databases

Causes of death also differ in both databases. The following table summarizes the
different causes of death available in both databases5.

Database 1 Database 2
Circulatory diseases × ×
Neoplasms × ×
Respiratory diseases × ×
External causes × ×
Diabetes ×
Digestives diseases ×
Mental diseases ×
Neonatal deaths ×

Table 4.2 Causes of death in each database

The compilation method of Database 1 is described in Lu et al. (2014). See also
Labit Hardy (2016) for a detailed description of the dataset. Those data have also
been used in papers focusing on the study of mortality improvements and healthy life
expectancy by deprivation (e.g. Bajekal (2005), Lu et al. (2014)) or in mortality modeling
(e.g. Villegas and Haberman (2014)).
Database 2 has been only very recently released by ONS. In addition to updating the
data for years 2007-2015, this second database provides disaggregated data by single
year of age, as well as data for young ages below age 25. This constitutes an important

5In Database 2, circulatory diseases are divided in ischemic heart diseases, strokes and other circulatory
diseases; external causes in intentional and unintentional injuries.
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contribution to our paper, by allowing a more precise analysis of the population by
deprivation.

4.2.2 About the data

In the rest of this section, selected representations of the data are presented, with a
particular focus on the population evolution. Our goal is to use the data to give the
reader some insights on the complex interactions between the aggregated mortality and
the evolution of the composition of the population.

Population composition

Age Pyramids In order to illustrate differences in the composition of populations per
deprivation quintile, age pyramids of the least and most deprived quintiles are represented
on Figure 4.1 for years 2001 and 2015, along with the age pyramid of England.
By reading Figure 4.1 vertically, we can see that for each year, the form of the age
pyramids are very different between the different deprivation quintiles and England
population. The most deprived population, IMD quintile 5, represented on Figure 4.1e
and 4.1f, is much younger on average than the least deprived population, IMD quintile 1,
which is represented on Figure 4.1c and 4.1d. For instance, the median age in 2015 was
of 33 years (35.5 for the mean age) in the most deprived population, while the median
in the least deprived population was of 44.2 (42.6) and of 39 years (39.7) in England.
Some cohorts are also more represented among a particular subpopulation. For instance,
the English baby-boom generation (born in the years after the World War II) and their
children are more represented among the least deprived subpopulation.
The horizontal reading of Figure 4.1 shows that in addition to this heterogeneity in age,
significant temporal changes in the age pyramids occurred from 2001 to 2015, due to the
population ageing but also to internal and external migrations6. During this period, the
largest flows of populations can be observed around ages 20-35. They are characterized
by an inflow of individuals in the most deprived quintiles and in the general population,
and an outflow of individuals around age 20 in the least deprived quintiles, follow by
an inflow of individuals at ages 25-35. Furthermore, these changes in the age pyramids
are quite different according to the level of deprivation. For instance, the median age in
the most deprived quintile has dropped of over 1%, from 33.4 to 33 years, while it has
increased of more than 9% in the least deprived subpopulation, from 40 to 44, and of

6Here, internal migrations correspond to the migration of individuals in between IMD quintiles,
whereas external migrations correspond to the migration of individuals from/to places outside of England.
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about 5% in the general population, from 37.1 to 39. Thus, the most deprived population
has become more youthful from 2001 the 2015, despite the general tendency of the ageing
of the population.
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Fig. 4.1 Age pyramids in 2001 and 2015
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To compare the age distribution of the subpopulations more continuously through time,
the evolution of the ages distribution in each of the IMD quintiles is represented in
Appendix B.1, Figure B.1.
There is an inherent difficulty in representing the time evolution of data structured in
age. In order to better understand the evolution of the composition of the population, we
also represent the evolution of the composition of specific age classes (the same age class
is represented at different dates), and of specific cohorts (the same cohort is represented
at different dates), over the period 1981-2015.

Fixed age classes Figure 4.2 represents the evolution of the distribution of males
in each IMD quintile, for the years 1981, 1990, 2005 and 2015 and for two fixed ages
classes: 65-74 (Figure 4.2a) and 25-34 years (Figure 4.2b); plots for females are available
in Appendix B.2. All results for males also hold for females.
The composition of the age class 65-74 significantly varied from 1981 to 2015, to the
benefit of the least deprived populations. Thus, the proportion of males in the two least
deprived quintiles (IMD quintiles 1 and 2) increased from 38% in 1981 to 46% percent
in 2015; on the contrary the proportion of males in the two most deprived quintiles
(IMD quintiles 4 and 5) decreased from 41% to 32%. This could be explained by an
improvement over time of living conditions for older individuals, but also, as noted above,
by a baby-boom cohort effect. Indeed, individuals born during the English baby-boom
are less deprived than the immediately preceding and following cohorts, regardless of the
global improving trend.
As already observed in Figure 4.1, the level of deprivation is more important in younger
age classes, this being true for the whole period 1981-2015. However, as shown in Figure
4.2b, the composition of the age class 25-34 also varied from 1981 to 2015, and the
relative deprivation of this age class increased over time. For instance, the proportion of
males in the age class 25-34 for IMD quintiles 1 and 2 has decreased from 36% to 31%,
while the proportion of males in the most deprived quintiles 4 and 5 has increased from
43% to 49%.
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Fig. 4.2 Proportion of males by age class and IMD quintile

Fixed cohorts Data can also be represented in the cohort dimension. Figures 4.3a
and 4.3b represent the evolution of the proportion of males in each IMD quintile for the
cohorts with ages 25-34 in 1985 (born in 1956-1960) and in 2005 (born in 1976-1980);
plots for females are available in Appendix B.2. The 1976-1980 cohort could only be
represented up to ages 35-39.
The average deprivation of both cohorts improved over time, due to internal and external
migrations (internal migrations correspond to individuals moving) and of different level
of mortality rates. However, the improvement of the deprivation for the older cohort,
Figure 4.3a, is much more important than that of the younger cohort, Figure 4.3b, which
confirms observations of Figure 4.2b. Thus, the proportion of males in the 1956-1960
cohort at age 35-39, in year 1995, for the two most deprived quintiles was of 39%, against
43% in the 1976-1980 cohort at the same age (in 2015). Similarly, the proportion in the
two least quintiles was of about 41% in the oldest cohort (1956-1960) against 37% in the
youngest cohort (1976-1980).
At old ages, a classical selection effect can be observed, as cohorts become less and less
deprived due to differences in the mortality rates, see also Figure B.2 in Appendix B.2.
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Fig. 4.3 Proportion of males by cohort and IMD quintile

The population data show an important heterogeneity in the composition of the different
age classes, combined with significant temporal changes in the age classes composition,
such as the striking evolution of the composition of the 65-74 age class between 1981 and
2015.
This varying heterogeneity impacts mortality rates differently according to the age or
time, and generates additional complexity in the study of aggregated death rates. In
particular, one might wonder how the increase of deprivation observed among younger
cohorts will impact future mortality in England.

Mortality

Let us now give some insights on the mortality per deprivation in England, over the
period 1981-2015. As mortality data are more commonly studied, we only give here a
brief overview of the main stylized facts, with a particular focus on database 2. For more
details on the mortality data of database 1, we refer to Bajekal (2005), Lu et al. (2014)
or Villegas (2015).

Mortality rates Central death rates can be computed by age, gender, deprivation
quintiles and cause of death. They are estimated from our data by taking the number
of deaths over the mid-year population, which is assumed to be an accurate estimate
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of the exposure to risk. For more details on the estimation of central death rates, see
e.g. Delwarde and Denuit (2006). Central death rates by single year of age in 2015 are
represented on a log-scale in Figure 4.4 for the English population, the least and the
most deprived IMD quintiles. Central death rates for all IMD quintiles are represented
in Figure B.3 of Appendix B.3. Both levels and shapes of central death rates vary with
the level of deprivation, with a mortality higher at all ages for the most deprived IMD
quintile 5.
Before age 35-40 (with the exception of age 0), differences are less pronounced and central
death rates in all IMD quintiles are lower than 1%�. Let us give an example to illustrate
differences in shape and level after age 40. After age 40, central death rates first attain
the level of 10%� at age 58 for males in the most deprived quintile 5, while this value is
only attained at age 68 for males in the least deprived quintile 1. Similar differences can
be observed for females. In the most deprived quintile, central death rates attain 10%�
at age 62, in comparison with 72 in least deprived quintile.
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Fig. 4.4 Central death rates per single year of age and IMD quintile in 2015

Improvement rates Average annual rates of improvement in mortality over the 1981-
2015 period are represented in Figures 4.5a and 4.5b7, for ages classes 25 and older. In
this paragraph, improvement rates are smoothed for visualization purpose only. Figure

7Improvement rates are computed as the yearly improvement rates of central death rates over five
year age classes.
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4.5 shows that at all ages, the most deprived quintiles have experienced higher rates
of improvement in mortality than the least deprived quintiles (with the exception of
ages 25-34 for females). Males experienced overall higher improvement in mortality
than females, with the highest differentials in deprivation being at ages 40-44 and 45-50.
Females experienced the highest differentials in the rate of mortality improvement at
ages 35-39 and 40-44.
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(b) Females

Fig. 4.5 Average annual rates of improvement in mortality, 1981-2015

Figures 4.6a and 4.6b represent the average annual mortality improvement rates for
males over two distinct periods: 1981-1995 and 2001-2015. The two figures illustrate
a clear widening of the gap in annual improvement in mortality at older ages, which is
consistent with the observations of Lu et al. (2014) and Villegas and Haberman (2014)
over the period 1981-2007.
Over the period 1981-1995, the two most deprived quintiles (4 and 5) actually experienced
a deterioration of mortality at ages under 40, while improvements in mortality under
40 have been more important in IMD quintiles 4 and 5 than in the two least deprived
quintiles over the period 2001-2015. Over the period 2001-2015, at ages above 60, the gap
in mortality improvement rates increased significantly, with the highest differentials being
at ages 75-79 and 80-84 (in comparison with 30-34 and 35-39 over the period 1981-1995).
The improvements in mortality at younger ages have also changed significantly.
Plots for females are presented in Appendix B.3, Figure B.4. It is worth noting that over
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the period 2001-2015 and for females of age above 65, the gap in mortality improvement
rates between the most and least deprived IMD quintile has been higher than for males.
This can be explained by a sharp deceleration of mortality improvement for females of
the most deprived quintile, already reported by Villegas and Haberman (2014) for the
period 1981-2007.
A discussion on the potential drivers of these widening of socioeconomic gaps can be
found in Lu et al. (2014).
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Fig. 4.6 Average annual rates of improvement in mortality, males

Causes of death Over the whole period 1981-2015, circulatory diseases constituted
the first cause of death in England for ages above 25, followed by cancers (neoplasms)
and respiratory diseases. However, recent changes in cause of death trend have been
observed since the early 2000s, with neoplasms becoming a more prominent cause of
death, larger than circulatory diseases. These evolutions occurred at different speed
following the deprivation degree, the gender and the age class. For example, for males of
age 25-85 in the least deprived IMD quintile, neoplasms became the first cause of death
in 2005, while it only became the first cause of death in 2010 for males in the same age
class in the most deprived IMD quintile.
Figures 4.7a and 4.7b represent the proportion of deaths per causes of death for males at
ages 65-85, in the most and least deprived IMD quintiles and for years 1981 and 2015.
Plots for females are available in Appendix B.4. For this age class, circulatory diseases
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were the first cause of death in 1981 for both quintiles, whereas the first cause of death
was neoplasms in 2015. Differences in cause-of-death mortality per deprivation can be
observed for neoplasms, circulatory and respiratory diseases. In 1981, differences between
the least and the most deprived quintiles were mainly on circulatory diseases (53% of all
deaths for IMD quintiles 1 and 48% for IMD quintile 5), while differences were mostly on
neoplasms in 2015 (40% of all deaths for IMD quintiles 1 and 34% for IMD quintile 5).
During the whole period, differences in the proportion of death from respiratory diseases
remained rather stable.
It is interesting to note as well that at young ages, the most deprived quintiles are more
affected by neonatal deaths and accidents (see e.g. Guildea et al. (2001); Oakley et al.
(2009) for more details on mortality at younger ages). We aslo refer to Villegas (2015)
for more details on trends in cause-of-death mortality per deprivation over the period
1981-2007.
Plots for males and females in the age class 45-65 are also presented in Appendix B.4,
Figures B.5 and B.5.
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Fig. 4.7 Males deaths per cause and IMD quintile for ages 65-85

Period life expectancy The period life expectancy at age 65 per IMD quintile is
represented over the period 1981-2015 in Figures 4.8a and 4.8b, for males and females.
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As for death rates, we note a difference in level between the subpopulations for both
genders, especially for males. The period life expectancy at age 65 increased over the
years for all IMD quintiles. But despite a common improvement in mortality, the gap in
life expectancy between IMD quintiles appears to have widened over time. For instance,
the gap in life expectancy between the least and the most deprived quintiles has grown
from 2.2 years for females and 2.9 years for males in 1981, to respectively 4.2 and 3.9
years in 2015. The evolution of the period life expectancy at age 25 for males and females
is represented in Appendix B.5, Figure B.7.
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Fig. 4.8 Life expectancy at age 65 over 1981-2015

To summarize, the analysis of the data show that at the same time, gaps in mortality
improvements by deprivation seem to have widened, while significant changes of com-
position have taken place in the population. Thus, understanding the evolution of the
population dynamics appears to be instrumental in order to better understand the impact
of this heterogeneity on the aggregated mortality. In the next section, the population
dynamics is modeled under simple assumptions, in order to illustrate how mortality
patterns can be impacted by compositional changes, even in a simple framework.
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4.3 Population dynamics model

The joint evolution of subpopulations inside a global population (IMD quintiles in our
case) is modeled by a linear and deterministic McKendrick-Von Foerster multi-population
model, with no interactions. One of the advantages of this framework is to allow the
derivation of closed formula and asymptotic results for a number of indicators, in order
to better understand the complex interactions between heterogeneity and mortality.
The vital parameters of the model, i.e the birth and mortality rates, are assumed to be
deterministic and only depending on age and time. The first assumption can actually
be extended without difficulty to the broader scope of stochastic rates, depending for
instance on a random environment. The second assumption means that vital rates do not
depend on the population dynamics itself (the model is linear), which means that hetero-
geneity impacts the aggregated mortality only by “composition” effects. The assumption
of no-interactions means that we assume that subpopulations evolve independently, in
the sense that there are no internal (or external) migrations between the subpopulations.
Even if this assumption can be unrealistic for young adults, it allows us to isolate the
impact of heterogeneity in birth patterns, which can also to a certain extent reproduce
certain patterns of internal migrations by changing cohort compositions. Finally, subpop-
ulations dynamics are assumed to be deterministic: the evolution of the age pyramid is
known, given the vital rates. The deterministic model is linked to stochastic population
models recently developed by Tran (2008) in the field of mathematical ecology, and
extended by Bensusan (2010) and Boumezoued (2016) to the framework of heteroge-
neous human populations, possibly in a random environment. Indeed, the deterministic
model can be seen as a limit model when the size of the population becomes very large.
However, the notion of limit model should be applied cautiously, since it does not allow
the computation of “average” indicators when the studied quantities are non linear (see
Boumezoued (2016), Arnold et al. (2016), Ferriere and Tran (2009) for further discussions
on these matters).
In this section, we first recall briefly the McKendrick-Von Foerster model for a two-sex
population with time dependent vital rates, and then move on to the description of the
joint evolution of the subpopulations and of the aggregated population.

4.3.1 McKendrick-Von Foerster population dynamic model

The so-called McKendrik-Von Foerster model is a classical age-structured deterministic
population model, first introduced by McKendrick (1926) and Von Foerster (1959), and
which can be easily adapted into a two-sex model. The model is continuous in age and
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time, in which the population is described at time t by the function of gender and age
(g(ϵ, a, t)), for a ∈ [0, a†[ and ϵ = f or m respectively for females and males. g(ϵ, a, t)
should be understood as the number of individuals of gender ϵ between age a and a + da

at time t. It follows that
∫ a†

0 g(ϵ, a, t)da is the total number of individuals of gender ϵ in
the population at time t. The model is determined by two vital rates functions: mortality
and birth rates.

Vital rates functions

(i) Mortality rate: For each gender ϵ, the mortality rate (or force of mortality) at age
a and time t is denoted by µ(ϵ, a, t). Two types of mortality indicators are usually
computed, cohort indicators and period indicators:
- The classical period survival function is denoted S(ϵ, a, t) = e−

∫ a

0 µ(ϵ,x,t)dx and represents
the probability to survive to age a, in the mortality conditions of time t. The period life
expectancy at age a and time t is given by:

e(ϵ, a, t) =
∫ a†

a
e−
∫ x

a
µ(ϵ,s,t)dsdx = 1

S(ϵ, a, t)

∫ a†

a
S(ϵ, x, t)dx.

- The cohort survival function is denoted by Sc(ϵ, a, t) = e−
∫ a

0 µj(ϵ,s,t−a+s)ds, and represents
the probability for an individual born at time t − a to survive until age a. The cohort life
expectancy, which is the averaged time that individuals born at time t − a will live after
age a, conditional to surviving to this age, is denoted by:

Ec(ϵ, a, t) =
∫ a†

a
e−
∫ x

a
µ(ϵ,s,t−a+s)dsdx = 1

Sc(ϵ, a, t)

∫ a†

a
Sc(ϵ, x, t)dx.

We also denote by S(ϵ, a − x, a, t) and Sc(ϵ, a − x, a, t) the respective period and cohort
survival probabilities from age a − x to age a at time t, with S(ϵ, 0, a, t) = S(ϵ, a, t) (the
same holds for Sc).
Observe that the period and cohort indicators do not provide the same information at all.
The cohort life expectancy is “real”, in the sense that it gives information on particular
individuals living in the population. On the contrary, the period life expectancy is only an
indicator which aggregates information on all individuals living in a given population at
a specific date t. The period life expectancy can be interpreted as “the average duration
of life of a representative individual living in the mortality conditions of time t”.
(ii) Birth rate The rate of birth for an individual with gender ϵ and age a at time t is
be denoted by b(ϵ, a, t). In a two-sex population, modelling births can be quite complex
(Iannelli et al. (2005), Arnold et al. (2016)). In this article, we adopt the usual assumption
that only women give births (the number of births does not depend on the number of
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males in the population), so that b(m, a, t) = 0. Females are assumed to give birth to a
female with a probability pf = p and to a male with probability pm = 1 − p. For sake of
simplicty, the female birth rate b(f, a, t) is now denoted by b(a, t).

McKendrick-Von Foerster transport equation

The evolution of the population is given by the solution of the following transport partial
differential equation:

(∂t + ∂a)g(ϵ, a, t) = −µ(ϵ, a, t)g(ϵ, a, t), ∀a, t > 0 (balance law) (4.3.1)

g(ϵ, 0, t) = pϵ
∫ a†

0
b(a, t)g(f, a, t)da (birth law) (4.3.2)

g(ϵ, a, 0) = g0(ϵ, a) (initial population)

Due to the balance law, a proportion (1 − µ(ϵ, a, t)) of individuals of age a and gender ϵ

ages to age a + da between time t and t + dt. The birth law states that at each time t

women of age a give birth to b(a, t)g(f, a, t) individuals of age 0.
Equations (4.3.1)-(4.3.2) are usually solved along its characteristics curves, or equivalently
by following the evolution of the population cohort by cohort. The resolution method can
be interpreted as counting the number of survivors at time t in each cohort of individuals,
either taken from the initial population or born after the initial time. Two regimes can
thus be distinguished in the evolution of the population:
(i) Individuals present in the initial population (a ≥ t): At time t, individuals who were
already present in the initial population are individuals of age a ≥ t. Their number
at time t is the number of individuals of age a − t in the initial population, and who
survived until time t:

g(ϵ, a, t) = g0(ϵ, a − t)Sc(ϵ, a − t, a, t), a ≥ t. (4.3.3)

where recall that Sc(ϵ, a− t, a, t) = e
−
∫ a

a−t
µ(ϵ,s,t−a+s)ds is the cohort survival function from

age a − t to a, for individuals of age a at time t or equivalently born at time t − a.
(ii) Individuals born after the initial time (a < t): At time t, individuals born after t = 0
are individuals of age a < t. Their number at time t is thus the number of individuals
born at time t − a and who survived until time t:

g(ϵ, a, t) = pϵB(t − a)Sc(ϵ, a, t), a < t, (4.3.4)
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where B(t) is the birth function at time t which corresponds to the number of individuals
(males and females) born at time t:

B(t) =
∫ a†

0
b(a, t)g(f, a, t)da. (4.3.5)

Thus, if we look at the population at a small time t, the age pyramid will be mostly
shaped by the time translated initial age pyramid, and will follow the idea that “today’s
youths give us most of the information on tomorrow’s seniors”. On a longer term, the
initial population is naturally erased and the shape of the future age pyramid is only
characterized by the birth and survival functions.

Stable age profile

The Stable theory provides useful indicators of the vital rates of a population, see Keyfitz
and Caswell (2005) for more details and application of the stable theory and see Webb
(1985) for a more general framework of multi-populations. The stable theory defines
a stable age profile, given a fixed regime of time-independent age-specific vital rates.
As for the period life expectancy, the stable age profile gives information on a fictive
population, living in the mortality and fertility conditions of a given time. For instance
its comparison with the real age profile of the population allows us to observe if strong
changes in birth or mortality rates have occurred in the past.
For now, the vital rates are assumed to depend only on age and are denoted by µ(ϵ, a)
and b(a). Since only women give birth, only the female stable age-profile is defined in a
first step, and for simplicity of notation the variable ϵ will be omitted when considering
the female population.

Stable solution of the McKendrick-Von Foerster equation A stable solution
of the McKendrick-Von Foerster evolution Equation (4.3.1)-(4.3.2) (for females) is a
solution which can be expressed as ϕ(a)T (t), with ϕ a function of age and T a function
of time. In particular, a solution of this type is called stable because its age profile, or
age distribution, remains constant over time. The size of the population is not constant
but the proportion of individuals in each age class [a1, a2[ is constant and equal to:∫ a2

a1
ϕ(a)da∫ a†

0 ϕ(a)da
.

By replacing g(a, t) by ϕ(a)T (t) in (4.3.1)-(4.3.2), it follows that:
ϕ(a) = e−λ∗a−

∫ a

0 µ(x)dx,
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where λ∗ is the unique solution of:

1 = pf
∫ ∞

0
b(a)e−λ∗a−

∫ a

0 µ(x)dxda. (4.3.6)

The previous equation is called the characteristic equation of the model and λ is called
the intrinsic growth rate of the population, which we justify now in the next paragraph.

Asymptotic exponential growth Actually, a much deeper property is that the
solution of (4.3.1-4.3.2) with initial population g0 and time independent vital rates µ(ϵ, a)
and b(ϵ, a) behaves asymptotically as a stable solution. After a long period of time, the
population increases or decreases exponentially at rate λ∗. This means that the birth
function B, which determines the shape of the age pyramid on the long term, has the
following asymptotic exponential growth:

B(t) ∼
t→+∞

C(λ∗, g0)eλ∗t.

Recalling that the population evolution is defined on the long term by equation (4.3.4),
the previous equation gives an asymptotic stable equivalent for the age pyramid:

g(ϵ, a, t) ∼
t→∞

C(λ∗, g0)eλ∗(t−a)S(a). (4.3.7)

The constant C(λ∗, g0) can be rewritten as C(λ∗, g0) = V (λ∗, g0)
M(λ∗) , where V (λ∗, g0) is

called the total reproductive value of the initial population and M(λ∗) the mean age at
childbirth for the stable distribution.
The total reproductive value tells us how the initial age pyramid of women will weigh on
the future number of births. V (λ∗, g0) is an increasing function of the total size of the
initial population of women and decreasing in its mean age.
The mean age at childbirth under the stable distribution is a decreasing function of λ∗;
Intuitively, the greater the intrinsic growth rate is, the younger females will have children.
To come back to the solution of the McKendrick-Von Foerster equation with time
dependent rates, Equation (4.3.7) can be interpreted as follows: at a given time t0, the
right hand side of (4.3.7) is the shape that the age pyramid at t0 would have if the vital
rates had been constant in the past, equal to µ(a, t0) and b(a, t0). Thus, the constant λ∗

summarizes the combined effects on the population of birth and death rates at time t0.
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4.3.2 Joint evolution of the subpopulations

Subpopulations evolution

In the sequel, we consider the evolution of p socioeconomic subpopulations (for instance
IMD quintiles). For each j = 1...p, the population j is described by the solution of the
McKendrick-Von Foerster Equations (4.3.1)-(4.3.2)): gj(ϵ, a, t) with initial population
gj

0 and vital rates µj(a, t) and bj(a, t). Let us recall that gj(ϵ, a, t) is the number of
individuals at time t in population j, gender ϵ and between age a and a + da.

Aggregated population

We call aggregated population the global population composed of all subpopulations,
denoted by g(ϵ, a, t) with:

g(ϵ, a, t) =
p∑

j=1
gj(ϵ, a, t).

The dynamics of the global population is derived from the dynamics of the subpopulations,
(∂t + ∂a)g(ϵ, a, t) = −∑p

1 µj(ϵ, a, t)gj(ϵ, a, t), g(ϵ, 0, t) = pϵ
∫∞

0 (∑p
1 bj(a, t)gj(f, a, t)da).

Aggregated mortality The mortality rate at age a in the aggregated population
corresponds to the proportion of individuals of age a (for each gender) dying between a
short interval of time dt. Here, the previous partial differential equation can be rewritten
as:

(∂t + ∂a)g(ϵ, a, t) = −
( p∑

1
µj(ϵ, a, t)gj(ϵ, a, t)

g(ϵ, a, t)

)
g(ϵ, a, t).

The mortality rate of the aggregated population is thus:

d(ϵ, a, t) =
p∑

j=1
µj(ϵ, a, t)wj(ϵ, a, t), with ωj(ϵ, a, t) = gj(ϵ, a, t)

g(ϵ, a, t) . (4.3.8)

Actually, the mortality rate in the aggregated population should be denoted by d(ϵ, a, t, (gj)j=1..p),
since it depends on the age pyramids of all subpopulations: the dynamics is non-linear.
The time dependence of the aggregate mortality rate is caused not only by the time-
dependence of the specific mortality rates in each subpopulation, but also by the evolution
of the proportions wj(ϵ, a, t) of individuals in each subpopulation and age class.
In order to better understand how these weights could impact the aggregated population,
let us again make the distinction between the two cases a ≥ t and a < t. In order to
simplify the notations, we consider for the remainder of this section that the aggregated
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population is composed of two subpopulations (p = 2). When there is no ambiguity, we
also omit the gender variable ϵ.

Aggregated mortality on the short term For individuals present in the initial
population (of age a ≥ t at time t), the age pyramid of the subpopulations are mostly
shaped by the initial subpopulations and Equation ((4.3.3)) yields for a ≥ t:

d(a, t) = g1
0(a − t)Sc

1(a − t, a, t)µ1(a, t) + g2
0(a − t)Sc

2(a − t, a, t)µ2(a, t)
g1

0(a − t)Sc
1(a − t, a, t) + g2

0(a − t)Sc
2(a − t, a, t). (4.3.9)

For small times t, the previous equation holds for most ages and the aggregated mortality
depends on three ingredients:
- The subpopulations mortality rates µ1 and µ2.
- The initial subpopulations g1

0 and g2
0: the aggregated mortality rate at age a depends

on the initial composition of the age class a − t, since individuals are assumed to stay in
the same subpopulation. In particular, if the initial age pyramid is very heterogeneous
in age, i.e if the age classes are composed very differently, aggregate death rates could
experience significant changes (for instance if younger individuals are more deprived than
older ones, this could lead to an increase of aggregated mortality rate on the short term).
- Cohorts survival: if the initial age pyramids in each subpopulation are equal (g1

0 = g2
0)

Equation ((4.3.9)) becomes:

d(a, t) = Sc
1(a − t, a, t)µ1(a, t) + Sc

1(a − t, a, t)µ2(a, t)
Sc

1(a − t, a, t) + Sc
2(a − t, a, t) a ≥ t.

This illustrates a well known “selection” effect which is that if a subpopulation, say
subpopulation 2, experiences a higher overall mortality, population 1 will have more and
more weight at older ages and the aggregated mortality will tend to the mortality rate of
subpopulation 1.

Aggregated mortality on the long-term On a longer term when t is large, the
subpopulations evolution is mainly governed by the birth functions B1 and B2 and for
a < t

d(a, t) = pϵ B1(t − a)Sc
1(a, t)µ1(a, t) + B2(t − a)Sc

2(a, t)µ2(a, t)
B1(t − a)Sc

1(a, t) + B2(t − a)Sc
2(a, t) . (4.3.10)

Thus, if the subpopulations experience heterogeneity in birth patterns for a certain period
of time, this can induce a temporary variation in the aggregated mortality rates and
generate a so-called cohort effect (see for instance Boumezoued (2016) for an example in
a stochastic framework).
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In the case of time-independent vital rates, we can obtain a stable equivalent for the
aggregated death rate by replacing the birth functions by their asymptotic expression as
in equation (4.3.7):

d(a, t) ∼ pϵ C(λ∗
1, g1

0)eλ∗
1(t−a)S1(a)µ1(a) + C(λ∗

2, g2
0)eλ∗

2(t−a)S2(a)µ2(a)
C(λ∗

1, g1
0)eλ∗

1(t−a)S1(a) + C(λ∗
2, g2

0)eλ∗
2(t−a)S2(a)

(4.3.11)

4.4 Numerical Results

This section presents presents the preliminary results of different simulations using the
model presented above.
The model presented in Section 4.3 is applied in this section in order to illustrate different
potential impacts of heterogeneity on the mortality experienced by the aggregated
population, in two different cases:
We shall first start by showing in Section 4.4.1 how heterogeneity in age in the initial
pyramid can affect the aggregated life expectancy and improvement rates on the short
term. Then, in 4.4.2, we study the impact of heterogeneity in birth patterns on a longer
term. In particular, we show how a cause specific reduction could be compensated in the
presence of unfavorable birth patterns.
In order to isolate the influence of changes in the population composition, we assume in the
following applications that the death rates in each subgroup do not depend on time. Thus,
the death rate in each subgroup j is now denoted by µj(ϵ, a). The aggregated mortality
rate defined in Equation (4.3.8) is now equal to d(ϵ, a, t) = ∑p

j=1 µj(ϵ, a)wj(ϵ, a, t), and is
only modified through changes in the composition of the population.
For illustrative purposes, we consider in the remainder of this section the evolution of
a synthetic heterogeneous population composed of two subgroups: the most and least
deprived IMD quintiles (IMD quintile 1 and 5).

Parameters of the model A common denominator of all population models is that
vital rates are considered as input functions of the model. Coupled to an initial age
pyramid, they are the determinants of the future shape of the age pyramid. Any changes
in these inputs will thus impact the population evolution on the short and long term,
which will, therefore, impact the aggregate longevity indicators of the global population.
In our case, the parameters of the model, i.e. the birth rates, mortality rates, and initial
age pyramids for the two IMD quintiles have to be specified.
In the different applications presented in this section, initial age pyramids and mortality
rates are estimated for each scenario based on a given year, from the data presented in
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Section 4.2.2. Since only central death rates per five-year age class are given in both
databases, death rates are estimated based on the fitting procedure described in Appendix
C.1. Furthermore, individuals in each IMD quintile of age above 85 are grouped in the age
class “85 and older” (90 and older for database 2). To overcome this difficulty, we assume
that individuals are distibuted in age classes until age 110 as in the UK population8.
This assumption is consistent with the observation that deaths rates of all IMD quintles
converge at old ages (see e.g. Figure 4.4).
In the baseline scenario, birth rates are assumed to be the same in each population,
and estimated from Office for National Statistics (2015) (see Arnold et al. (2016) for
more details on the estimation). The English females birth rates are given for 5-year age
classes for ages 15 to 44. Over the reporting period 1981-2015, the probability pf to give
birth to a female is estimated to be between 0.4843 and 0.4886 (depending on the year).

Numerical implementation The general model is implemented by discretization of
the transport partial differential equation 4.3.1, using a first order implicit Euler scheme.
More details on the convergence and stability of the scheme, as well as other numerical
methods can be found in the review of Pelovska and Iannelli (2006). The implementation
of the model is further discussed in Appendix C.2.

4.4.1 Impact of heterogeneity in the initial age pyramid

As seen in Section 4.2.2, the English population shows a strong heterogeneity in age,
meaning that the composition of the population can vary a lot according to the age class.
Furthermore, the composition of the population has also varied significantly over time.
In this first subsection, we illustrate how the heterogeneity in age of the age-pyramid can
impact two different indicators of the evolution of mortality in the aggregated population:
the period life expectancy at age 65 and the average annual mortality improvement rates
at ages above 65.
The population is simulated on the short term (30 and 40 years) according to two
different scenarios. In the first scenario, the initial age pyramids and mortality rates of
the synthetic population (composed on the most and least deprived quintiles) are based
on the population and mortality data of year 1981. In the second scenario, the initial
age pyramids and mortality rates of the IMD quintiles are based on the population and
mortality data of year 2015.

8The English age pyramid after age 85 is provided by the Human Mortality Database (The Hu-
man Mortality Database (2016)).
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Evolution of the aggregated population The evolution of the aggregated popula-
tion is shown in Figure 4.9 for the population based on the 1981 data, and in Figure 4.10
for the population based on the 2015 data. The initial age pyramids are displayed in
Figure 4.9a and Figure 4.10a. Each age class is represented by the addition of individuals
in the most deprived IMD quintile (in red) and in the least deprived IMD quintile (in
green). The green line in each graph represents the age-pyramid of the least deprived
IMD quintile.
The age-pyramids are structured differently, due to the two different databases, database
1 - structured by 5 year age class - and database 2 - structured by single year of age.
It makes the comparison of the two pyramids more difficult. However, we can see that
there are more individuals from the baby boom cohort (of age around 30-35 in 1981 and
65-70 in 2015) in the least deprived quintile than in the most deprived quintile. We can
also see that older individuals are more deprived in the 1981 synthetic age pyramid than
in the 2015 age pyramid, as already noted in section 4.2.2.
Moreover, there are no data for the age class 0-25 in database 1 (differences between
the two databases are summarized in Table 4.1). In Figure 4.9a, individuals of age in
0-25 are distributed uniformly in each IMD quintile, based on the English population.
However, this hypothesis has no influence here since only indicators at ages above 65 are
considered over a period of 40 years. Thus, only individuals who were initially more than
25 years old are taken into account in the computation of the aggregated indicators.
The age pyramids after 30 years are represented in Figures 4.9b and 4.10b. The two
regimes in the population evolution described in (4.3.1) are distinguished in each figure by
the black dashed line. Individuals of age over 30 were initially present in the population,
and the age pyramid is defined by Equation (4.3.3). Individuals of age under 30 were
born after the initial time, and the age pyramid is defined by Equation (4.3.4). For both
populations, birth rates are assumed to be the same in each IMD quintile. However,
birth rates have no influence in this first part since as stated above, we only consider
indicators based on individuals who were initially more than 25 years old. This justifies
our terminology “short term”.
For the population based on the 1981 data (Figure 4.9b), a decrease in deprivation can
be observed for individuals over 60. This can be explained by the fact that younger
cohorts were initially less deprived than older ones. Despite the important differences
in mortality rates between the most and the least deprived quintiles, there was initially
more individuals of age over 60 in the most deprived IMD quintile.
The population based on the 2015 data (Figure 4.10b) presents important differences
in cohorts sizes. We can observe the evolution of the larger cohort of individuals born
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during the the 60s, who were initially of age 45-55, and of age 75-85 after 30 years. The
size of the age class 75-85 increases significantly over the 30 year period. However, the
proportion of individuals in each IMD quintile appears to be rather stable, with around
60% of individuals in the least deprived IMD quintile.
The composition of the age class 55-70 has changed significantly. Initially in this age
class, individuals were much less deprived, with more individuals in the least deprived
quintile. However, the situation is reversed 30 years later with an increase in the number
of individuals in the most deprived quintile, as shown Figure 4.10b.
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Fig. 4.9 Aggregated age pyramid with initial population based on the 1981 data
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Fig. 4.10 Aggregated age pyramid with initial population based on the 2015 data

Period life expectancy Let us now study the impact on the period life expectancy
at age 65 of the changes in the age pyramids observed in the previous paragraph. The
evolution of the male period life expectancy at age 65 is represented for each scenario
in Figure 4.11. Graphs for the female period life expectancy are presented in Appendix
D.1, Figure D.1. As explained at the beginning of this subsection, only individuals who
were initially of age over 25 are taken into account. The period life expectancy is thus
computed based on the aggregated death rate defined in Equation (4.3.9). Note that
since mortality rates in each IMD quintile are assumed to be not dependent on time,
the cohort and period survival functions are equal in each IMD quintile, and do not
depend on time. Thus, the period life expectancy only evolves due to changes in the age
pyramids of the IMD quintiles.
The results show that the indicator moves in opposite directions, according to the year
chosen for the initial pyramid, Figure 4.11a for initial year 1981 and Figure 4.11b for
initial year 2015. The axe on top of each graph represents the age at initial time (t = 0)
of individuals who are 65 years old at time t.
The evolution of the life expectancy at age 65 for the population based on the 1981 data
is represented on Figure 4.11a. The evolution of life expectancy between t = 30 and
t = 40 should be interpreted with caution. Indeed, we observe significant internal and
external migrations in the data at ages 25-35, due to individuals moving (see e.g. Figure
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4.3). Thus, the decrease of the period life expectancy between t = 30 and t = 40 in
Figure 4.11a can be caused by the fact that the model does not take these changes into
account.
The evolution of life expectancy at age 65 for the population based on the 2015 data is
represented on Figure 4.11b. Contrary to Figure 4.11a, the life expectancy decreases of
about 6 months in this case, after a short initial increase of the life expectancy. Thus, the
evolution of the age pyramids of 2015 in the least and most deprived quintiles contributed
negatively to the evolution of the life expectancy.
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Fig. 4.11 Evolution of males life expectancy at age 65

Average annual mortality improvement rates To supplement the analysis, we
compute the average annual mortality improvement rates over the first 30 years of
simulation, for ages above 65. Average improvement rates for males are presented in
Figure 4.12. Graphs for females are also presented in Figure D.2 of Appendix D.1.
The study of average annual mortality improvement rates confirms the observations made
on the evolution of the life expectancy. In the conditions of 1981, averaged mortality
improvement rates are positive at all ages, meaning that the evolution of the composition
of the population contributed positively to the reduction of mortality rates. On the
contrary, in the conditions of 2015, average improvement rates are negative at all ages
below 80.
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Fig. 4.12 Males average annual mortality improvement rates

To summarize, the two examples presented above demonstrate the importance of the
heterogeneity of the age pyramid. The results show that the favorable changes in the
composition of the population since 1981 probably contributed to the increase in the
aggregated life expectancy. On the other hand, the model shows that based on the popu-
lation of 2015, changes in the composition of the population might contribute negatively
to the evolution of the aggregated life expectancy, and might offset improvements in the
IMD quintiles mortality rates.

4.4.2 Cause of death reduction and compensation effect

In this subsection, we now focus on a particular mechanism which can create changes in
the composition of the population: birth patterns. In order to understand the effect of
changes in birth patterns, the population is thus studied on a longer term.
Many studies have shown that fertility differs also according to the socioeconomic status
(The fertility rates of the most deprived quintile were around 1.18 times higher than the
English general population fertility rates in 2015). Thus, in presence of heterogeneity,
different birth patterns can induce changes in the composition of the population, and in
turn influence the aggregated mortality of the global population. For example, in his
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study of the so-called golden cohort in England9, Willets (2004), noted that the important
mortality improvements experienced by the cohort might have been a consequence of
specific fertility rates in the 1930s, inducing a particular socioeconomic composition of
the cohort (see Boumezoued (2016) for a more detailed discussion on the golden cohort).
On the other hand of the spectrum, the consequence of causes of death reductions
due to medical breakthroughs or public policies are more commonly investigated, and
more and more studies take into account the heterogeneity of the population (see e.g.
Alai et al. (2017); Labit Hardy (2016); National Research Council and Committee on
Population (2011)). More and more recommendations on public health policy focus
on the reduction of socioeconomic inequalities, for instance by advocating for policies
targeting more deprived areas and/or causes of deaths which are more important among
the most deprived individuals.
At the same time, in presence if changes in population composition and/or in cause-
specific mortality in a given socioeconomic subgroup, the analysis of aggregated data
can be quite complex. Based on these remarks, we illustrate in this subsection how a
cause of death reduction can be compensated in presence of heterogeneity, and could be
misinterpreted due to changes in birth patterns.
We consider the same synthetic population as in subsection 4.4.1, composed of the most
deprived and the least deprived IMD quintile. In order to minimize the impact of the
initial pyramid and focus on changes induced by birth rates, we now use the same initial
age-pyramid for each IMD quintile, based on the age-pyramid of the English population.
The initial pyramid is then composed of 50% of IMD quintile 1 and 50% of IMD quintile
5 at each age. In all scenarios, the demographic rates are based on the data of year 2015.
The evolution of the aggregated population is simulated under different scenarios. The
indicator used is the aggregated life expectancy at 25. In a first step, changes in birth
rates and in mortality rates (due to a cause specific reduction) are studied separately.
More precisely, we study the evolution of the aggregated life expectancy when a cause is
reduced or when birth rates are increased in the most deprived quintile (IMD quintile
5). Since the IMD is based on geographic areas, the cause reduction could for instance
be interpreted as an effect of a target policy. In a second step, the evolution of the
population is studied when both demographic rates change at the same time.
In order to compare the results, we define a baseline scenario (numbered 0) in which
birth rates and initial pyramids of each subpopulation are identical: only mortality rates

9The golden cohort is composed of individuals in the UK born around 1930. The terminology golden
cohort is used because the cohort appears to have experienced particularly high mortality improvement
rates.
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differ among the subpopulations. In scenario 1(a), the impact on the aggregated period
life expectancy of birth rate changes in IMD quintile 5 (most deprived) is studied. The
impacts of cause of death reduction in IMD quintle 5 are then analyzed in scenario 1(b),
under the assumption of independence between causes of death. We refer to Chiang
(1968) or Arnold et al. (2016) for a discussion on this assumption. Finally, both changes
are coupled in scenario 2.
To summarize, the aggregate life expectancy at age 25 is studied under the following
scenarios: in scenario 0, we consider the same initial age pyramids for both subpopulations
by using the age pyramid of the global English population in 2015, both populations
have the same birth rate equal to the English birth rate in 2015. In scenarios 1(a) and
1(b), the population dynamics is modified by changing demographic rates separately
(births 1(a) and deaths 1(b)). Finally, scenario 1(a) and (b) are coupled in scenario 2.
The different scenarios are summarized in Table 4.3.

# Initial pyramids:
[g1(a, t0); g5(a, t0)]

Birth rates:
[b1(a); b5(a)]

Death rates:
[µ1(a, t0); µ5(a, t0)]

0 [gEng(a, t0); gEng(a, t0)] bEng(a, t0) [µ1(a, t0); µ5(a, t0)]
1(a) [gEng(a, t0); gEng(a, t0)] [bEng(a, t0); b

(∗)
Eng(a, t0)] [µ1(a, t0); µ5(a, t0)]

1(b) [gEng(a, t0); gEng(a, t0)] bEng(a, t0) [µ1(a, t0); µ
(∗)
5 (a, t0)]

2 [gEng(a, t0); gEng(a, t0)] [bEng(a, t0); b
(∗)
Eng(a, t0)] [µ1(a, t0); µ

(∗)
5 (a, t0)]

Table 4.3 Scenarios tested, t0 = 2015

Baseline scenario (0) The evolution of the male (period and cohort) life expectancy
at age 25 over time is represented in Figure 4.13. The plot for females is available in
Appendix D.2. The initial (aggregated) period life expectancy at age 25 under scenario 0
is of 54.2, while the initial cohort life expectancy is of 54.5. Those values are between
the life expectancy of the least deprived quintile 1, which is around 58, and the most
deprived quintile 5, around 51. Let us note that since mortality rates are assumed to
be independent of time in each subpopulation, the period and cohort life expectancy in
each subpopulation are equal and constant over time.
The difference between the initial aggregated period and cohort life expectancy can be
explained by the choice of the initial age pyramid. On the one hand, the aggregated
period life expectancy is computed based on the initial age pyramid, composed of 50% of
the two subpopulations at each age. On the other hand, the cohort life expectancy is
computed by considering the evolution of the cohort composed of individuals who were
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initially 25 years old. Even if the mortality rates in each subpopulation are considered to
be time independent, the composition of the cohort is modified over time, due to the
difference in mortality rates between the two subopulations. Since individuals in the
most deprived quintile have a higher mortality, the cohort composition will change in
favor of the least deprived quintile, as individuals grow older. This explains why the
period life expectancy is lower than the initial cohort life expectancy.
Another consequence of the difference in mortality rates is that the intrinsic growth rate
(as defined in (4.3.6)) of the least deprived subpopulation is higher than in the most
deprived subpopulation. As interactions between the subpopulations are not modeled
here, this means that the aggregated life expectancy will tend over a long run to the life
expectancy of the least deprived subpopulation.
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Fig. 4.13 Life expectancy over time

Scenario 1(a) and 1(b) Let us now compare effects of two different natures: changes
in births rates on the one hand (scenario 1(a)), and on the other hand cause specific
reductions (scenario 1(b)), which are more commonly studied. The evolution of the
period life expectancy under those scenarios is represented in Figures 4.14a and 4.14b.
In scenario 1(a), the birth rate of the most deprived subpopulation is slightly increased
(+10% and +20% from the baseline scenario), and is thus higher than in the least deprived

132



4.4 Numerical Results

subpopulation. When increasing the birth rate in the most deprived subpopulation,
the composition of the population changes and the weight of the most deprived IMD
quintile becomes more important in the aggregated population/mortality. Before time
t = 25, the period life expectancy at age 25 is based on individuals present in the initial
population, and thus the three scenarios represented in Figure 4.14a do not differ up
until this time. From time t = 25, the computation of the period life expectancy at age
25 includes individuals born after the initial time. Due to the increase in the birth rate
of the most deprived subpopulation, new cohorts are more deprived. Compared to the
baseline scenarios, the most deprived subpopulation has more weight in scenario 1(a),
which implies a degradation of the aggregated mortality.
On the other hand, we slightly reduce the mortality of the most deprived subpopulation
after age 25 and observe the effects on the aggregated life expectancy (scenario 1(b)).
The population dynamics is modified by reducing ischemic heart diseases (Cause 3) for
the most deprived subpopulation (−10% and −20%), under the independence assumption
between causes of death. Reducing death rates in the most deprived subpopulation
increases the initial aggregated life expectancy, which then increases again due to changes
in the composition of the population, as described for the baseline scenario. It is
interesting to note that whichever cause is eliminated in the most deprived quintile, the
corresponding life expectancy is still smaller than the life expectancy of the least deprived
quintile.
By changing the birth rate in the most deprived subpopulation in scenario 1(a), the
intrinsic growth rate of the population increases and becomes higher than the growth rate
of the least deprived subpopulation, hence the decrease in the aggregated life expectancy.
In scenario 1(b), the growth rate of the most deprived subpopulation also increases and
is higher than in the baseline scenario. However, the intrinsic growth rate in the most
deprived subpopulation is still lower than in the least deprived population.
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Fig. 4.14 Aggregated period life expectancy over time

Scenario 2 Finally we couple both changes in births and deaths rates in the subpopu-
lation 5, in order to study the combined effects. We demonstrate how a cause of death
reduction can be compensated by births and thus could misinterpreted.
In this scenario, we assume that birth rates are higher in most deprived subpopulation
(+10% and +20% from the baseline scenario), while the subpopulation also experiences
a decrease in ischemic heart diseases (−20% from the baseline scenario). The evolution
of the aggregated life expectancy under these scenarios, in comparison with the baseline
scenario, is presented in Figure 4.15. The aggregated life expectancy is initially higher due
to the cause reduction. As in scenario 1(a), birth rates impact the life expectancy from
t = 25. Due to the changes in the cohort composition engendered by the heterogeneous
birth rates, the life expectancy decreases in both versions of scenario 2, and eventually
become lower than in the baseline scenario. For instance, when birth rates of the most
deprived subpopulation are 20% higher than in the baseline scenario, the increase in life
expectancy is compensated when the first individuals born in the population attain age
65.
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Fig. 4.15 Aggregated period life expectancy over time: Ischemic heart diseases reductions

Figure 4.16 presents the aggregate life expectancy at age 25 following the reduction
(−20%) for 5 other causes of death, and with a higher birth rate (+10%) for the most
deprived population. The causes considered are numbered from 1 to 5: neoplasms (1),
respiratory diseases (2), ischemic heart diseases (3), strokes (4), and external causes (5).
The life expectancy evolution under this third scenario is similar for each cause reduction.
Naturally, the direction and magnitude of the impact of the cause reductions depend on
the cause of death that is reduced, since different causes do not impacting all age groups
and socioeconomic categories in the same way. Per order of importance, the causes are
the following: neoplasms, ischemic heart diseases, respiratory diseases, external causes
and strokes.
For instance, we see on Figure 4.16 that a reduction of −20% of strokes in the most
deprived quintile induces variation of life expectancy very similar in magnitude to those
induced by changes in birth rates.
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Fig. 4.16 Aggregated period life expectancy over time

4.5 Concluding Remarks

To conclude, reducing or eliminating a cause of death may not necessarily result in an
improvement of aggregated mortality rates or life expectancy, if the composition of the
population changes at the same time.
The data analysis and the first tests presented in the previous section reveals interesting
interactions between the population dynamics and mortality indicators. They also stress
the importance of studying the whole population dynamics in presence of heterogeneity,
even when only interested in longevity indicators. Indeed, based on our data, we see that
the future evolution of the composition of population could have a very different impact
on mortality than 30 years ago. Furthermore, effects of birth or death rates modifications
in an heterogeneous population are not straightforward. More particularly, a “reverse”
cohort effect could easily compensate a cause-of-death reduction. In this case, the effect
of a public health policy could be missed if only aggregated data are studied.
As part of an ongoing work, we are currently extending these results in order to include
time-dependent demographic rates and interactions between subgroups. However, these
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4.5 Concluding Remarks

first tests already highlight interesting insights on the analysis of the aggregated mortality
for a population composed of different socioeconomic categories.
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Appendix A

IMD over time

The IMD is computed at fixed times, year 2007 and year 2015, and applied to larger
time periods, see Figure A.1. Therefore, the socio-economic evolution of living areas
over the reporting periods is not taken into account. However, the aggregation of small
living areas into quintiles deprivation might dim changes over reasonable periods of
time. For the 1981-2006 period, previous studies have show that the majority of small
areas, especially areas in the extreme quintiles, have stayed in the same deprivation
quintile (se e.g. Bajekal et al. (2013), Appendix A of Lu et al. (2014) or Norman and
Darlington-Pollock (2016) for the 1970-2011 period).

2001 20061981 2015

IMD 2007

IMD 2015

Fig. A.1 IMD2007-IMD2015

We have also compared data over the 2001-2006 period, computed with the IMD 2007 in
the one hand (database 1) and with the IMD 2015 in the other hand (database 2). For
the overlapping period 2001-2006, we obtained differences in life expectancy of less than
one percent.
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Appendix B

Miscellaneous information on data

B.1 Age profiles

Figure B.11 represents the evolution of the age profiles of each IMD quintiles from 2001
to 2015. The age profile of a population corresponds to the distribution of age inside the
population.

Fig. B.1 Age profile per IMD 2015 quintile from 2001 to 2015 (GIF)
1The figure is in GIF format. In order to see the animation, please open the PDF file with a PDF

reader supporting this format.
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B.2 Ages classes and cohorts
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(b) Females proportions

Fig. B.2 IMD 2015 quintile proportions for the Cohort 1921-1930
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Fig. B.3 Central death rates per IMD 1y 1981, 2015
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Fig. B.4 Females improvement rates
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B.4 Causes of death
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Fig. B.5 Deaths per cause and IMD quintile for females of age in 45-65
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Fig. B.6 Deaths per cause and IMD quintile for males of age in 45-65
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B.5 Life Expectancy
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Fig. B.7 Life expectancy at age 25 over 1981-2015
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Appendix C

Numerical implementation and
inputs

C.1 Fitting of death rates

In this paragraph, we consider the mortality of individuals of gender ϵ in a given IMD
quintile j. For simplicity of notations, we omit these variables when there is no ambiguity.
In both databases, deaths are given for each calendar year by 5 years age-classes (with
the exception of the age class 0-5 year divided in two classes, 0-1 and 1-5). As explained
in Section 4.2.2, central death rates at age a and year t for 5 five years age classes can
been estimated by 5m̂(a, t) = 5D(a,t)

5Ê(a,t) ; where 5D(a, t) is the number of individuals who
died during year t (in [t, t + 1[) at an age in [a, a + 5[, and where 5Ê(a, t) is the estimated
exposure. Recall that the real exposure 5E(a, t) is the cumulative time lived during year
t by individuals in the age class1.
In our model, we need to estimate the force of mortality µ(a, t) which is linked to the
theoretical death rate by the following formula:

5m(a, t) =
∫ t+1

t

∫ a+5

a
µ(x, s) g(x, s)∫ t+1

t

∫ a+5
a g(u, h)dudh

dxds (C.1.1)

Equation (C.1.1) can be interpreted as follow: the central death rate is the average force
of mortality on [t, t + 1[×[x, x + 5[, weighted against the population distribution on this
interval.
In the sequel, we make assumption that the force of mortality is constant over 1 year

1An individual attaining age a at time t + s and who died at time t + h + s < t + 1 will weight as h
in the exposure.
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periods, so that for all calendar years t, µ(a, t + s) = µ(a, t) ∀s ∈ [0, 1[. In this case,
Equation C.1.1 can be rewritten as:

5m(a, t) =
∫ a+5

a
µ(x, t)

∫ t+1
t g(x, s)ds∫ a+5

a (
∫ t+1

t g(u, s)du)ds
dx

When data is structured by single year of age, the force of mortality is usually also
assumed to stay constant over age class, so that µ(x, t) = 1m(a, t) for a ≤ x < a + 1.
However, this assumption seems quite unrealistic when data is aggregated over 5 years
classes. The next simpler parametric assumption is to assume that the force of mortality
is piecewise linear in age over the age classes:

µ(x, s) = α(a, t)x + β(a, t) ∀(x, s) ∈ [a, a + 5[×[t, t + 1[. (C.1.2)

When information on the population by single years of age is available, the distribution
of the population on the age class can be approximated by a discrete distribution defined
for 0 ≤ k ≤ 4 by: ∫ t+1

t g(x, s)ds∫ a+5
a

(∫ t+1
t g(u, s)du

)
ds

= Êk, ∀x ∈ [a + k, a + k + 1[,

with Êk is the estimated proportion of individuals of age in [a + k, a + k + 1[ in the
the age class. By replacing µ(a, t) and g(x, s) in C.1.1 with the new assumptions, we
obtain that Equation C.1.2 should be a line passing through 5m(x, t) at the mean age of
individuals in the age class, that is x̄ = ∑4

k=0(x + k + 0.5)ŵk.

From these calculation, an inductive method can thus be defined in order to fit the force
of mortality of year t:
(i) Initialization: choose µ(0, t).
(ii) Induction: Assume that the mortality rate has been fitted until the ith age class
[ai, ai+1[. The mortality rate on the next age class [ai+1, ai+2[ is the line passing through
µ(ai+1, t)− at ai+1 and 5m(xi+1, t) at x̄i+1.
(iii) Reiterate the second step on the next age class...

The main advantage of the piecewise linear approximation is to be consistent with
the theoretical definition of the aggregated and specific central death rates in our
heterogeneous population model. However, the degree of liberty in the choice of the
initial point µ(0, t) is a drawback of the method, and the fitting does not guarantee to
obtain positive death rates. In the numerical applications the initial point µ(0, t) by
an optimization. A similar approach have been proposed by Hautphenne and Latouche
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(2012), with possible discontinuities in the death rates. See also Villegas and Haberman
(2014) for an alternative method.

C.2 Implementation of the model

The numerical scheme corresponding to the heterogeneous population dynamics presented
in Section 4.3 is implement in C++.
The inputs (demographic rates and initial age pyramids) and outputs of the model are
processes using R, and interfaced with the C++ code using the package Rcpp. All graphs
have been made using the R package ggplot2.
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Appendix D

Additional results

D.1 Short term population dynamics (females)
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Fig. D.1 Evolution of female life expectancy at age 65
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Fig. D.2 Females averaged annual improvement rates

D.2 Long-Term population dynamics (females)
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Fig. D.3 Aggregated period life expectancy over time

152



D.2 Long-Term population dynamics (females)
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Fig. D.4 Aggregated life expectancy over time
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Fig. D.5 Aggregated period life expectancy over time with birth and mortality changes
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Chapter 5

Inextricable complexity of two
centuries of worldwide demographic
transition: a fascinating modeling
challenge

5.1 Introduction

The world population has been transformed dramatically over the past two centuries.
These transformations, or rather revolutions, have occurred on multiple levels: demo-
graphic, economic, technological, medical, epidemiological, political or social to name but
a few. The ageing of the developed world has brought on an unprecedented situation,
and the complexity of involved phenomena makes the projection of future developments
very difficult.
In the recent years, a considerable amount of data have been collected at different levels.
For instance, a number of international organizations and national statistical institutes
have their own open databases. Numerous empirical studies and reports are published
each year by academics in various domains, but also by governments and international
organizations. The private sector is also very active on these issues, especially pension
funds and insurance companies which are strongly exposed to the increase in life ex-
pectancy at older ages.
The past few years have also been marked by a renewed demand for new demographic
models, motivated by recent observations which seem to be in contradiction with some
firmly established ideas. New available data seem to indicate a paradigm shift - or second
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demographic transition - toward a more complex and individualized world. Countries
which had similar mortality experiences until the 1980s now diverge, and a widening
of health and mortality gaps inside countries has been reported by a large number of
studies. These new trends have been declared as key public issues by several organiza-
tions, including the WHO in its latest World report on ageing and health (World Health
Organization (2015)), and the National Institute on Aging in the United States which
created in 2008 a panel on Understanding Divergent Trends in Longevity in High-Income
Countries, leading to the publication of a comprehensive report in National Research
Council and Committee on Population and others (2011).
This cross-disciplinary survey aims at helping a modeler of human population dynamics
to find a coherent way (for instance by taking into account the whole population dynamics
and not only old ages) around this mass of multidisciplinary information. In front of the
considerable body of literature, data and contradictory points of views on the evolution
of human longevity, an cross-disciplinary approach appear to be necessary in order to
avoid the pitfalls of an overly naive approach. Our goal is to offer a subjective selection,
based on numerous surveys from various academic disciplines, of what we believe to be
the most important ideas or facts from a mathematical modeling perspective.
As we will not be able to devote the necessary time to each point, we try to illustrate some
of our points with examples that will support the intuition about mentioned phenomena.
It should be emphasized from the start that if the discussion is greatly enriched by the
multidisciplinary nature of the field, the presentation of ideas is also made more difficult,
especially for matters of vocabulary. It should also be noted that issues related to medical
advances and to the biology of human ageing are dealt with in a very cursory way, as we
focus mainly on economic and social issues.
The survey is composed of three main parts which are summarized in the next subsection.
The first part deals with the historic demographic transition. The importance of public
health is dealt with, with a specific focus on the cholera epidemic outbreaks that took
place in France and in the UK during the nineteenth century. Other features of the
historic demographic transition are also considered. In particular, we explore the rela-
tionship between the economic growth and mortality improvements experienced during
the past century.
In the second part of the survey, we examine the implications for population modeling
and the key features of this shift in paradigm that have been observed since the 2000s.
We first give a brief overview of the so-called demographic transition, and the move
toward the description of increased complexity and diverging trends that have been
recently observed, based principally on the experience of developed countries. A special
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attention is paid to socioeconomic differences in health and mortality.
In the last part of the survey, we give a short review of microsimulation models and agent
based models widely used in social sciences, and in particular in demographic applications.
We first describe the main components of a dynamic microsimulation exercise to study
heterogeneous individual trajectories in order to obtain macro outcomes by aggregation
in the form of a data-driven complex model. Then, we present the agent based models
which take into account individual interactions for explaining macroscopic regularities.

5.2 The historic demographic transition

Since the nineteenth century, most countries have experienced a remarkable evolution
of their populations, referenced by demographers and economists as the demographic
transition (Bongaarts (2009)). The historic demographic transition of the developed world1

began in the nineteenth century and was completed in over a century (∼ (1850 − 1960)).
This historical process is mainly referred to as “the secular shift in fertility and mortality
from high and sharply fluctuating levels to low and relatively stable ones” (Lee and Reher
(2011)). These substantial demographic changes caused life expectancy at birth to grow
by more than 40 years over the last 150 ans (for instance, life expectancy at birth rose
in the United Kingdom and France from about 40 years in the 1870s 2, to respectively
81 and over 82 years in 20133), and the world population to grow from around 1 billion
in 1800 to 2.5 billions by 1950 (Bloom and Luca (2016)). The treatment of infectious
diseases constituted the vast bulk of the causes that explain the historic fall in mortality.
For example, infectious diseases had virtually disappeared by 1971 in England and Wales
while they were responsible for 60 percent of deaths in England and Wales in 1848 (Cutler
et al. (2006)). The causes of this reduction have been extensively debated. Among the
main causes that have been put forward are economic growth, improvement in living
standards, education and most importantly social and public health measures (Bloom
and Luca (2016); Cutler et al. (2006)). For instance, Cutler and Miller (2005) estimated
that the purification of water explained half of the mortality reduction in the US in the
first third of the twentieth century.

1The historic demographic transition affected most of European countries and countries with European
roots (Argentina, Uruguay, the United States, Canada, New Zealand (Reher (2011)).

2Cambois et al. (2009); Cutler et al. (2006).
3 Source: World Bank, (https://data.worldbank.org/indicator/SP.DYN.LE00.IN).
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5.2.1 The cholera pandemic: a starting point of the demo-
graphic transition

In order to understand the unprecedented rise of life expectancy during the first half of
the twentieth century, one has to go back 50 years which foreshadow the demographic
transition. At the beginning of the nineteenth century, the Industrial Revolution led to a
total upheaval of society, associated with unbridled urban sprawl and unsanitary living
conditions. In Paris, the population doubled from 1800 to 1850 to attain over one million
inhabitants (Jardin and Tudesq (1983)), while London grew by 2.5 fold during those
50 years, to attain more than 2 million inhabitants (Chalklin (2001)). In this context,
epidemics were frequent and deadly.
The cholera pandemic, which struck fear and left indelible marks of blue-black dying
faces due to cyanose’ on the collective imagination (hence the nickname “blue death”),
had the most important social and economic consequences. It is often refered to as an
iconic example where medicine was confronted to statistics (Dupaquier and Lewes (1989))
and was regarded as “the real spark which lit the tinder of the budding philanthropic
movement, culminating in the social reforms and the foundation of the official public
health movement seventeen years later” (Underwood (1948)). The cholera pandemics
originated in India and spread to Europe in the 1830s. Four subsequent outbreaks (1831,
1848 − 1854, 1866 − 1867 and 1888 − 1889) mainly affected France and England, causing
102.000 deaths in France in 1832 and 143.000 in the 1850s over a population of 36 million
(Haupt and Laroche (1993)). In London, 6536 deaths were reported in 1831 and 14137
deaths during the 1848-1849 cholera outbreak (Underwood (1948)).
In the following paragraphs, we will focus on the cholera outbreaks in France and England,
in order to illustrate the profound changes which occured at different levels (city, state
and international), and which still give valuable insight on contemporary challenges.

Cholera in England

The intensity of the first cholera outbreak in London in 1831, combined with the growing
influence of advocates of public health, brought to light the need for public measures
to improve sanitation. At that time, a lot of reformers considered that statistics were a
prerequisite for any intervention, and the enthusiasm in the field expanded very quickly,
which is somehow reminiscent of the current craze for data science.
In this context, the General Register Office (G.R.O) was created in 1836, with the aim
of centralizing vital statistics. England and Wales were divided in 2193 registration sub
districts, administered by qualified registrars (often doctors). In charge of compiling
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data from registration districts, W. Farr served as statistical superintendent from 1839 to
1880 and became “the architect of England’s national system of vital statistics” (Eyler
(1973)). The precise mortality data collected by the G.R.O during cholera outbreaks
turned out to be instrumental in the analysis of the disease.
In his pioneering Report on the Mortality of Cholera in England, 1848-49 (Farr (1852)),
Farr and the G.R.O produced almost four hundred pages of statistics. His main finding,
based on the collected data of the 1848-49 outbreak, was the existence of an inverse
relationship between cholera mortality rates and the elevation of registration districts
above the Thames. Farr was particularly pleased with this statistical law, since it
validated his beliefs in the prevailing miasmatic theories, which predicted that the passing
on of the disease was airborne. It was actually J. Snow who first claimed that cholera
communication was waterborne, with his famous experiment of the Broad street pump
(Brody et al. (2000)). However, Farr’s statistics were decisive in supporting and validating
his theory.
Although Snow’s theory was not widely accepted, he contributed to raising the issue of
water quality. Under the impulsion of the General Board of Health created in 1848, the
Metropolis Water Act of 1852 introduced for the first time regulations for (private) water
supply companies, to take effect by 1855. At the time of the 1853-54 cholera outbreak,
Farr found out that only one company had complied with the new regulations, and that
in a number of districts, it was competing with another company drawing water from
a highly polluted area. The perfect conditions for a full-scale experiment were brought
together, and Farr and Snow joined their investigations to conclude that without doubt,
water played an important role in the communication of the disease. In 1866, a smaller
outbreak hit London. More specifically, the reintroduction of sewage contaminated water
by the East London Water Company caused in just one week 908 over 5596 deaths in
London (Dupaquier and Lewes (1989),Underwood (1948)) . Despite the overwhelming
amount of evidence, the Medical Officer himself tried to exonerate the company, causing
the wrath of Farr. This event, however, was a wake-up call for the English political class
to guarantee the supply of clean water. Several public health measures were taken from
the 1850s in order to improve public health and water quality. A new administrative
network was established in London in 1855, which undertook the development of the
city’s main drainage system which was completed in 1875. Among other measures were
the Rivers Pollution act in 1876 and the carrying out of monthly water reports from the
1860s (Hardy (1984)).
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Cholera in France

France’s experience with cholera varied from England’s, due to its different scientific
environment and unstable political situation. The first epidemic reached Paris by the
spring of 1832 causing, in four months, the death of almost 2.1% of the 774.338 Parisians
(Paillar (1832)).
In his remarkable report addressed to the Higher Council of Health (Moreau de Jones
(1831) 4), the former military A. Moreau de Jonnès (1778 - 1870) gave considerable
details on the international spread along trade routes of the pandemic that started in
India in 1817, including the treatments and precautions taken against the disease. He
clearly attested that cholera was “incontestably” contagious. In 1833, he became the first
chief of the Statistique Generale de la France (SGF), the nearest equivalent to the G.R.O
in England. Like Farr, Moreau de Jonnès published many reports (13 volumes) and
contributed to the development of Statistics and its applications in France. Unfortunately,
little attention was paid to his findings by the French health care community.
In the end of 1831, France was anticipating a cholera epidemic. Health commissions were
established in Paris and in other departments in order to control the disease with the help
of health councils (conseils de salubrité); but the organization was less systematic and
data collection was less reliable than in England. During the first epidemic, social unrest
among the lower classes, who saw the disease “as a massive assassination plot by doctors
in the service of the state”, were the worst fears of the government (Kudlick (1996)).
The government was supported by the Faculty of medicine in its efforts to reduce fear
and avoid a population uprising, and the latter stated in 1832 that the disease was not
communicable (Fabre (1993)). In 1848, a public health advisory committee was created
and attached to the Ministry of Agriculture and Commerce, in charge of sanitary issues
(housing, water and protection of workers) and prophylactic measures to prevent the
epidemic from spreading Le Mée (1998). As in 1832, this committee stated that cholera
was not contagious (Dupaquier and Lewes (1989)).
In 1849, the second epidemic broke out after the 1848 revolution. Contrary to the first
epidemic characterized by riots and tensions, the reaction to the outbreak was more
peaceful, with more efficient collaboration between scientists and the administration. At
the same time, the perception of the lower classes also changed with the idea of struggling
against destitution in order to prevent revolt (Kudlick (1996)). As a consequence, the
response to the second epidemic was better organized and social laws were passed in
1850 − 51. In the following years, hygiene problems and unsanitary living conditions
caused by the rapid growth of Paris’s population were addressed to by important public

4The report is available on the website of BNF.
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health measures. In particular, the massive public work projects led by Baron Haussman
5 in less than two decades from 1852 to 1870 remains as a symbol of the modernization
of Paris at the end of the nineteenth century (Raux (2014)).

Cholera Pandemic and International Health Organization

The international dimension of the problem raised by cholera, reported in France by
Moreau de Jonnès in 1824-31, was widely publicized by The Lancet, which published in
1831 a map on the international progress of cholera 6 (Koch (2014)). This map suggested
a relation between human travel and the communication of the disease, accelerated by the
industrial revolution in transport, in particular with steamships and railways. Cholera
was regarded as an issue transcending national boundaries, which needed international
cooperation to control it (Huber (2006)). Europe had succeeded in setting up an efficient
protective system against the plague, based on ideas such as quarantine and "cordon
sanitaire". But those measures were very restrictive and seemed inefficient against cholera.
Moreover, in the second half of the nineteenth century, Western European countries were
involved in competitive colonial expansion, and were rather hostile to travel restrictions,
even if increased global circulation was a threat to populations. The opening of the Suez
Canal in 1869 was an emblematic example of those changes.
Under the influence of French hygienist doctors, the first International Sanitary Confer-
ence opened in Paris in 1851 (Huber (2006)) gathering European states and Turkey. It
was the first international cooperation on the control of global risk to human health, and
so the beginning of international health diplomacy. It took more than ten international
conferences over a period of over 50 years to produce tangible results. During the first
five conferences 7, the absence of clear scientific explanation on the origin of cholera
prevented any agreement. It was only with the formal identification of the V. cholerae
bacterium by R. Koch in 18838 and the work of L. Pasteur that infectious diseases
were clearly identified and efficiently fought against. Indeed, technological progress as
evinced through disinfection machines could allow the technological implementation of
new measures (Huber (2006)). Furthermore, advances on germ theory “allowed diplomats
to shape better informed policies and rules” (Fidler (2001)).
At the Seventh Conference (1892), the first maritime regulation treaty was adopted
for ship traveling via the Suez Canal. During the ninth conference (1894), sanitary

5Napoléon III appointed Baron Haussmann as Préfet de la Seine
6The map was completed in 1832 by Brigham to include Canada and the USA
7(1851,1859,1866, 1874 and 1881)
8 The bacterium had been isolated before by other scientists such as F.Pacini in 1854, but his work

did not had a wide diffusion.
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precautions were taken for pilgrims traveling to Mecca. Participants finally agreed that
cholera was a waterborne disease in 1903 during the eleventh conference.
The International Sanitary Conferences provided a forum for medical administrators
and researchers to discuss not only on cholera but also on other communicable diseases,
and brought about the first treaties and rules for international health governance. Ulti-
mately, this spirit of international cooperation gave birth in 1948 to the World Health
Organization, an agency of the United Nations, conceived to direct and coordinate
intergovernmental health activities.

Discussion

In England, Farr’s discoveries could not have been made without the cutting edge or-
ganization and the power of the G.R.O. It is worth noting that only a governmental
organization such as the G.R.O was able to collect the data fast enough for the 1854
experiment of Farr and Snow (Dupaquier and Lewes (1989)) to be possible. The modern
organization of the G.R.O undoubtedly contributed to the remarkable quality of today’s
England vital databases. Across the Channel, France did not manage to create the same
kind of centralized authority. On the grounds of their hostility to the communicable
disease theory, French doctors did not rely on statistics.
On the other hand, the use of statistics made by Farr contributed to a better under-
standing of the disease. It was only more than a century and a half later that a major
breakthrough was made in the understanding of the origins of the disease, with the
work of R. Colwell showing that the V. cholerae bacterium appears naturally in the
environment. Yet the ambition to find causal factors by the sole analysis of data is not
devoid of risks, and thus constitutes a major challenge for the data science era. Farr’s
elevation law is a textbook case of an unexpected correlation that turns out to have
a great influence. Despite claimed impartiality, his choice to highlight the elevation
law among all the findings mentioned in his report on the 1848-49 outbreak was clearly
biased by his beliefs in the predominant (though false) miasma theory. While he later
accepted that epidemics could be waterborne, Farr continued to believe in the prevailing
role of elevation, even when deaths due to cholera during the 1854 and 1866 outbreak
were not consistent with the elevation law. Rather than allowing the discovery of the
causes of cholera, Farr’s statistics were actually more useful for testing and validating
the relationships predicted by Snow’s theory.
Another point is that the conditions that made the 1854 experiment possible were quite
extraordinary. Testing theories regarding the complex events of health and mortality in
human communities is often nearly impossible. Only a handful of studies can take advan-
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tage of natural experiments. More often than not, as stated in National Research Council
and Committee on Population and others (2011), “they are limited ethical opportunities
to use randomized controlled trials to study the question at issue". Furthermore, govern-
ments failed to come to an agreement during the first international conferences because
of the lack of scientific explanations on the origin of cholera. The need of theoretical
arguments for public decisions to be made is still an important issue, especially when
considering human health and longevity, for which no biological or medical consensus has
emerged. As will be developed further in this survey, the use of a mathematical model
and simulations can operate as a proxy to real life experiments and help decision making.
Even when theories are publicized, there are often important delays (one or two genera-
tions) before action is taken. For instance, even if Snow’s theory was better known in
1866, and despite the development of germ theory in the early 1880s, political divergences
prevented any action before 1892. The example of asbestos, which took 50 years to be
banned after the exhibition of its link with cancer, shows us that these delays in public
response did not diminish over time (Cicolella (2010)). More generally speaking, around
30 years elapsed between the first epidemic and the real development of public health
policies in England and in France.
The example of cholera illustrates the complexity of studying mortality evolution, insepa-
rable from societal and political changes. Although cholera outbreaks occurred at about
the same time in France and in England, they were experienced very differently owing
to the different political and scientific climates in both countries. This shows that the
sole study of mortality data could not be sufficient to understand the future trends of
mortality. In particular, the explosion of the London population, whose size was twice
as large as that of Paris, brought about social problems on a much greater scale, which
played a determining role as a catalyst of public health changes.
The cholera outbreaks contributed to the development of important public health mea-
sures, which played a major role in the reduction of infectious diseases. For instance,
Cutler and Miller (2005) estimated that water purification explained half of the mortality
decline in the United States between 1900 and 1930. In comparison, the discoveries
of new vaccines for a number of diseases at the beginning of the twentieth century
seem to have had little impact on the reduction of mortality from those diseases. For
instance, the reduction in mortality due to those diseases (except tuberculosis) following
the introduction of those vaccines is estimated to have contributed to the emergence of
only 3 percent of total mortality reduction (Cutler et al. (2006)). The second half of the
twentieth century was marked by the rise of more intensive medical interventions, and
by an epidemiological transition from infectious diseases to chronic diseases. But public
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health should not be underestimated in this new age of “degenerative and man-made
diseases” (Bongaarts (2014)). Public health campaigns against tobacco have played an
important role in reducing cardiovascular disease mortality caused by smoking (Cutler
et al. (2006)), although with varying degrees of success depending on countries, gender or
social classes. The increase of environmental risks constitutes one of the major challenges
faced by contemporary societies, and public action will play a central role in preventing
and successfully reducing those risks (Cicolella (2010)).

5.2.2 A century of economic growth

The twentieth century was the century of “the emergence for the first time in history of
sustained increases in income per head” (Canning (2011)), and the association of eco-
nomic growth and mortality improvements have been extensively discussed by economists.
During the nineteenth century, individuals in rich and poor countries experienced similar
health conditions. The 1870s were a turning point with the improvement of health in rich
countries (Bloom and Canning (2007)). In his seminal article, Preston (1975) was one of
the first economists to examine the relationship between life expectancy at birth and
national income per head in different countries9, for three different decades: the 1900s,
1930s and 1960s (see Figure 5.1). In each decade, Preston brought to light a strong
positive association between life expectancy and national income. He also stated that the
relationship was curvilinear. For instance, the so-called Preston curve of 1960 appeared
“to be steeper at incomes under 400$ and flatter at incomes over 600$” Preston (1975).
Preston also noted an upward shift of the curve characterized by a rise of life expectancy
over time at all income levels. These empirical results showed that economic growth
alone did not explain the remarkable mortality decline. For instance, the income level
corresponding to a life expectancy of 60 was about three time higher in 1930 than in
1960. Another example is China which had in 2000 the same income level as the USA in
the 1880s, but the life expectancy level of the USA in 1970. Preston (1975) estimated
that national income accounted for only 10 to 25 percent of the growth of life expectancy
between 1930s and 1960s. Bloom and Canning (2007) also estimated that increases in
income between 1938 and 1963 were responsible for about 20% of the increase in the
global life expectancy.

9The national income per head was converted in 1963 U.S dollars.
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Fig. 5.1 Preston curves, 1900, 1930, 1960, reproduced from Preston (1975)

Deaton (2003) represented the Preston curve in 2000 (see Figure 5.2), in which countries
are represented by circles that are proportional to the size of population. The Preston
curve in 2000 (see Figure 5.2) shows that correlation of income with life expectancy is
more tenuous for high income countries.

Fig. 5.2 Preston curve in 2000, reproduced from Deaton (2003)

Furthermore, the relationship between mortality decline and level of income is often
thought as bidirectional. This issue still generates a lot of debate (see e.g. Acemoglu
and Johnson (2007, 2014); Bloom and Canning (2007); Bloom et al. (2014); Cutler et al.
(2006)). On the one hand, some studies on the causal link between health and wealth
suggested that “health can be a powerful instrument of economic development” (Bloom
and Canning (2007)). On the opposite side, Acemoglu and Johnson (2007) argue that
improvements in population health, especially the reduction of children mortality, might
have negative impacts on economic growth, due to the increase in the population size.
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They argue that a positive effect of economic growth on health may be counterbalanced
by the negative effect of population growth on health. However, Reher (2011) describes
the increase in the proportion of working age poeple in the population that occurred in
developed countries during the twentieth century as a situation which had “profound
economic implications for society, as long as the economy was able to generate enough
jobs to accommodate the growing population of working age”.

For a more complete picture, it is thus interesting to go beyond “macro” environmental
indicators such as public health and economic growth, and to look at mortality experiences
on different scales, by exploring differences between countries, and within countries.

5.3 A new era of diverging trends

5.3.1 A second demographic transition?

In the early 1970s, many demographers and population scientists had supported for the
idea that populations would ultimately reach the last stage of the classical demographic
transition, described as an “older stationary population corresponding with replacement
fertility (i.e., just over two children on average), zero population growth, and life ex-
pectancies higher than 70y” (Lesthaeghe (2014)). More generally speaking, populations
were supposed to attain an equilibrium state, characterized by a significant level of
homogeneity. For instance, the nuclear family composed of a married couple and their
children was expected to become the predominant family model.
Yet, in most countries which experienced the historic transition, the baby boom of the
1960s10 was characterized by higher fertility rates, followed by a decline in fertility in the
1970s (baby bust). In response to these fluctuations, attempts were made to modify the
original theory. For instance, Easterlin (1980) developed a cyclical fertility theory, linking
fertility rates to labor-market conditions. Smaller cohorts would benefit from better
living conditions when entering the labor market, leading to earlier marriage and higher
fertility rates. On the contrary, larger cohorts would experience worse living conditions,
leading to later marriage and lower fertility rates.
However, it turned out that this state of equilibrium and homogeneity in populations
was never realized. Actually, fertility rates remained too low to ensure the replacement
of generations; mortality rates, especially at advanced ages, declined at a faster rate
than ever envisaged; and contemporary societies seem to be defined by more and more

10The baby boom affected several countries such as France, the United Kingdom or the United States,
although with different timings from the early 1950s to 1970s.
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heterogeneity and diverging trends. The idea of a renewed or second demographic
transition, distinct from the classical demographic transition, was originally formulated
by Lesthaeghe and Van de Kaa (1986) in an article in Dutch, followed by a series of
articles (Lesthaeghe (2010, 2014); Van de Kaa (2010)).
In the early 1980s, a number of researchers had already observed that a shift of paradigm
(Van de Kaa (2010)) had occured. In particular, the French historian P. Ariès suggested
that motivations explaining the decline birth rate in the West had changed (Ariès (1980)).
During the historic demographic transition, the decline in fertility rates was assumed to
originate from an increased parental investment in the child. P. Ariès explained more
recent declines in fertility by an increasing interest of individuals in self-realization in
which parenthood is only one particular life course choice among many others. More
specifically, Lesthaeghe (2014) characterized the second demographic transition by multi-
ple lifestyle choices and a more flexible life course organization. A striking example can
be found in the emerging of multiple types of family arrangements.
Lesthaeghe and Van de Kaa also define the second demographic transition as a shift in
the value system. The first phase of the demographic transition was a period of economic
growth and aspirations to better material living conditions. In contrast, the past few
years have seen a rise of “higher order” needs and individualization. In this new paradigm,
individuals are overwhelmingly preoccupied by individual autonomy, self-realization and
personal freedom of choice, resulting in the creation of a more heterogeneous world.
Even if the framework of the second demographic transition has been criticized, this
viewpoint shed an interesting light on recent longevity trends. Indeed, divergences in
mortality levels and improvements between and within high income countries are at the
heart of numerous debates and research works. As the average life expectancy has been
rising unprecedentedly, gaps have also been widening at several scales. What may be
somehow surprising is that up until the 1980s, high income countries had roughly similar
life expectancy levels. For example, the comparison of the female life expectancy at
age 50 in ten high income countries11 shows that the gap was of less than one year in
1980. By 2007, the gap had risen to more than 5 years, with the United States at the
bottom of the panel with Denmark, more than 2 years behind Australia, France, Italy and
Japan (National Research Council and Committee on Population and others (2011)). On
another scale, a great amount of evidence shows that socioeconomic differentials have also
widened within high income countries. For instance, the gap in male life expectancy at
age 65 between higher managerial and professional occupations and routine occupations

11Australia, Canada, Denmark, England and Wales, France, Italy, Japan, Netherlands, Sweden and
the United States.
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in England and Wales was of 2.4 years in 1982 to 1986, and rose to 3.9 years in 2007 to
201112.
The following part focuses on two angles of analysis on these diverging trends: the
impact of smoking behaviors and socioeconomic inequalities. The goal of the following
discussion is not to detail further the impact of these risk factors, but rather to show
the complexity of understanding current longevity trends, which cannot be disentangled
from the evolution of the whole population, and which require a multiscale analysis of
phenomena while keeping in mind that obtaining comparable and unbiased data is also a
challenge in order to explain longevity.

5.3.2 Diverging trends between high-income countries: the im-
pact of smoking behaviors.

In the comprehensive report of the National Research Council on explaining divergent
levels of longevity in high income countries (National Research Council and Committee
on Population and others (2011), a panel of experts have debated on the role of different
risk factors for explaining the slower increase of life expectancy in the United States
over the last 30 years, in comparison with other high income countries. From 1980 to
2015, the world ranking for life expectancy of the United States kept falling significantly.
Furthermore, the gap between the United States and other high income countries widened,
due to the slower increase of life expectancy at all ages in the United States. The ranking
of the United States for male life expectancy at age 50 fell from 17th in 1980-85 to
28th in 2010-2015, with an increase of life expectancy of 4.58 years, smaller in absolute
and relative terms than the average of high income countries13. The evolution is even
more striking for women: the ranking for the female life expectancy at age 50 fell from
the 13th to the 31th position, with an increase of only about 60 percent of the average
increase of high income countries. In addition, the gap with higher achieving countries
such as France or Japan grew from less than one year in 1980-85 to more than 3 years in
2010-1514. Netherlands and Denmark also show similar patterns of underachievement in
life expectancy increases.
Although many methodological problems may arise when using cause-of-death statistics,
a cause-of-death analysis can provide a powerful tool for understanding divergences in
mortality trends. In a commissioned background article for the report, Glei et al. (2010)

12Source: Office for National Statistics (ONS).
13High income country classification based on 2014 GNI per capita from the World Bank.
14 United Nations, Department of Economic and Social Affairs, Population Division (2015). World

Population Prospects: The 2015 Revision, custom data acquired via website.
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have studied cause-of-death patterns for 10 different countries in order to identify the
main causes of death possibly responsible for diverging trends. The case of lung cancer
or respiratory diseases, which are relevant indicators concerning smoking is particularly
interesting. Age-standardized mortality rates from lung cancer among men aged 50 and
older in the U.S decreased from 1980 to 2005 while they increased for women, although
they remain higher for men than for women. In addition, the increase of age-standardized
mortality rates due to lung cancer for women was much faster in the U.S, Denmark and
Netherlands than the average increase of the studied countries and especially than Japan
where age-standardized mortality rates remained flat.
These findings of Glei et al. (2010) clearly point out to smoking as the main underlying
factor explaining those divergences. Over the past 30 years, evolution of mortality due to
lung cancer and respiratory diseases has had a positive effect on gains in life expectancy
for males, while the effect was negative for females. These gender differences can be
linked to the fact that women began to smoke later than men, and have been quitting at
a slower pace (Cutler et al. (2006)). In addition, fifty years ago, people smoked more
intensively in the United States, Denmark and the Netherlands than in other European
countries or in Japan.
These differences can give precious information as for future mortality patterns. Because
of its delayed effects on mortality, the impact of smoking behaviors on future trends is
somehow predictable. Just as the causes of death of individuals aged 50 and older give
some insight on what happened in the past, current behaviors among younger individuals
can be a useful indicator of future trends. Thus, life expectancy for males in the United
States is likely to increase rather rapidly following reductions in the prevalence of smoking
over the past twenty years, while slower life expectancy improvements can be expected
for women in the coming years (National Research Council and Committee on Population
and others (2011)). According to a panel of experts, life expectancy in Japan is also
expected to increase at a slower pace in the future due to an increase in the prevalence of
smoking. Differences in the timing of evolutions in smoking behaviors across gender and
countries might also give additional information. The impact of smoking on male life
expectancy in the past could help predict future trends for women, and the experience of
the United States could shed light on the future impact of smoking in Japan.
But smoking is certainly not a sufficient explanation, and other risk factors may have
contributed to the underachievement of the United States. In particular, the obesity
epidemic may partly account for the slower increase in life expectancy experienced
by the United States. Quantifying the impact of the obesity epidemic is much more
complicated, since no clear markers are available such as lung cancer and respiratory
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diseases concerning smoking. According to some researchers, the obesity epidemic in the
United States might even offset gains in life expectancy due to the decline of smoking
(Olshansky et al. (2005); Stewart et al. (2009)).

Discussion The “predictable” effects of smoking could be integrated in a population
dynamic framework taking into account the whole age structure of the population.
Countries experiencing similar phenomena but with different timings could also be
compared in a theoretical framework of population dynamics. Furthermore, a finer-
grained model could help to better understand the future impacts of emerging issues
such as the obesity epidemic, as well as the potential compensating effect of a decrease
in smoking prevalence.

5.3.3 Differences within countries: the impact of social inequal-
ities

Research on the relationship between socioeconomic status and mortality and health can
be traced back as far as the nineteenth century. In France, Villermé (1830) compared
mortality rates in Paris’ boroughs with the rates of non-taxable households in each borough
(Mireaux (1962)). In England and Wales, a systematic documentation of mortality by
occupational class was made by the G.R.O starting from 1851 (Elo (2009)). Since then,
studies have consistently exhibited a pervasive effect of socioeconomic inequalities on
longevity, regardless of the period or country. A recent study based on the French
longitudinal survey has found out that males with managerial and higher professional
occupations have a life expectancy 6.3 years higher than working-class males (in the
mortality conditions of 2000-2008, Blanpain (2011)). Numerous other examples can be
found in the review of Elo (2009).
Moreover, despite unprecedented rise in life expectancy during the 20th century, evidence
shows that socioeconomic inequalities have widened in many developed countries in
recent decades (Elo (2009)), or have remained identical at best (Blanpain (2011)). For
instance, Meara et al. (2008) (cited in National Research Council and Committee on
Population and others (2011)) argue that the educational gradient in life expectancy at
age 25 rose from the eighties to the nineties of about 30 percent. Similarly in England,
socioeconomic status measurements using the geographically based Index of Multiple
Deprivation (IMD) (see next Chapter for more details) have shown that the average
mortality improvement rates at age 65 and older have been about one percent higher in
the least deprived quintile that in the most deprived quintile during the period 1982-2006
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(Haberman et al. (2014), Lu et al. (2014)).
The persistence and widening of socioeconomic inequalities in longevity has created a new
paradigm, in which the increased heterogeneity has brought out even more complexity
in understanding longevity evolution, and which has now to be taken into account in
mortality predictions. New interlinked problems have arisen on multiple scales. On an
individual level, underlying factors linking individuals’ health to their socioeconomic
status are still debated. Another subject of no little interest to us is the critical challenge
of understanding the impact of this rising heterogeneity on aggregated variables.
In the following part, we will focus on some selected topics which have been discussed by
sociologists, demographers, social epidemiologists and other scientists, with the aim of
highlighting modeling challenges and solutions hidden beyond these reflections.

Measuring the socioeconomic status

The concept of socioeconomic status (SES) is broad and can encompass numerous
characteristics, observable or not. Translating socioeconomic status into empirical
measurements in order to better understand the links between SES and health and
mortality, is in itself a challenge. Proxy variables such as educational attainment,
occupation, income or wealth usually serve as SES measures, with different practices and
habits in different countries (Elo (2009)). However, their ability to model the complexity
of the social hierarchy and to produce comparable data through different times and places
are often quite limited. Educational systems, even in groups of similar countries, can
differ substantially from one country to another and make cross-national comparisons
difficult (Elo (2009)). Furthermore, there is a real difficulty in comparing certain groups
at different periods in time. Important changes can occur in group sizes and composition.
For instance, the proportion of women in France with higher managerial and professional
occupations increased from about 2 percent in 1975 to 6 percent in 1999 (10 to 14 percent
for males). The evolution in the number of women long term unemployed or not in the
labor force is even more striking. Their proportion decreased from 45 percent in 1975 to
only 21 percent in 1999. Besides, Blanpain (2011) observed an important widening of
mortality inequalities between this subgroup and other occupational subgroups over the
period. The widening of these gaps is actually a typical consequence of important changes
in the composition of the long term unemployed or not in the labor force subgroup. The
major decrease in the size of the subgroup can be explained by the important decrease of
the number of housewives over time, leaving only the most precarious in the subgroup.
Proxies for the SES can be measured at different periods in the life course of an individual,
and can have different causal relations with health or mortality. Education is rather
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consistent across the lifespan (which allows for an easier dynamic modeling), and permits
to assess the stock of human capital accumulated early in life and available throughout
the individual life course ( Elo (2009)). On the other hand, occupation, income or wealth
allow to take into account latter parts of the life course and might allow to capture
impacts of public policies better than educational attainment measurements (National
Research Council and Committee on Population and others (2011)). However, the
variability of the occupational status through the life course and the difficulty of assigning
an occupational group to individuals is important when studying socioeconomic gradients
by occupational rankings. For instance, the issue of assigning an occupational group
to individuals who are not in the labor force or retirees is classical. Interpretations can
also differ significantly depending on the period in the life course at which occupational
status is measured.
Additional complexity is also generated by the potential bidirectionality of causation,
especially concerning economic measures of SES such as income or wealth, for which causal
pathways are debated. Evidence from the economic literature has shown that ill health
can also lead to a decrease in income or wealth. This is particularly true in countries like
the United States with poorer national health care coverage than most Western Europe
countries, and where poor health is a significant contributor to bankruptcy (Himmelstein
et al. (2009)), retirement or unemployment (Smith (2007), cited in National Research
Council and Committee on Population and others (2011), Case and Deaton (2005), cited
in Cutler et al. (2006)).

Explaining the socioeconomic gradient in health and mortality

The difficulty in interpreting results of empirical measurements of the SES gradient in
mortality reflects our little understanding of the risk factors that underlie the repercus-
sions of socioeconomic inequalities on health and mortality. Theories explaining the SES
gradient are still being debated, and their testing is often not straightforward and not
unbiased as far as the measurements are concerned (see below the discussion on absolute
versus relative measures). Furthermore, the impact of inequalities on aggregated variables
or on the interpretation in terms of public policy can differ substantially according to
different theories.
The mechanisms through which SES is assumed to generate inequalities in health and
longevity are usually grouped in three broad categories: material, behavioral and psy-
chosocial (Cutler et al. (2006)).
Material risk factors Maybe one of the most natural explanation of socioeconomic
differences in health is that wealthier individuals have better access to health care, even

172



5.3 A new era of diverging trends

in countries with national health care coverage where potential two-tiered systems can
also create inequalities. Individuals with a higher income can also maintain a healthier
lifestyle, being able to buy expensive organic food or pay for gym memberships. However,
access to health care or material resources does not appear to be the primary factor
explaining the SES gradient (National Research Council and Committee on Population
and others (2011),Cutler et al. (2006)). For instance, the education gradient in the U.S
steepened between the sixties and the eighties, even though the Medicare program was
enacted in 1965 ( Pappas et al. (1993), cited in Elo (2009)).
Behavioral risk factors The second explanation is that individuals with higher educa-
tional attainment are more likely to adopt healthier behaviors and to avoid risks. By
accumulating knowledge, skills and ressources, individuals who are higher on the SES
ladder should be able to take better advantage of new health knowledge and technological
innovations, as well as to turn more rapidly toward healthier behaviors. This behavioral
explanation of socioeconomic inequalities is linked to the theory of Link and Phelan of
fundamental causes (Link and Phelan (1995), Phelan et al. (2010)). The aim of Link and
Phelan’s theory is to explain the persistence of pervasive effects of social class inequalities
through time, despite dramatic changes in diseases and risk factors. According to the
theory, the accumulation among other resources of so-called human capital allows more
educated individuals to use resources and develop better protective strategies, whenever
they can and no matter what the risks are. Let us take the example of smoking, described
in (Link (2008)). When first evidence linking smoking to lung cancer emerged in the
fifties, smoking was not correlated to SES. But as the knowledge of the harm caused
by smoking spread, strong inequalities in smoking behavior appeared, reflected in the
fact that more educated individuals quit smoking earlier. However, a number of studies
(see National Research Council and Committee on Population and others (2011) for
examples) have shown that if behavioral differences play a significant role in explaining
the SES gradient in mortality, it does not explain everything, and may not even account
for the major part of the differentials. For instance, the famous study of Whitehall civil
servants (Marmot (1994)) showed that health differentials subsisted even when factors
such as smoking or drinking were controlled.
Psychosocial Factors Another prominent and rather recent theory explaining socioeco-
nomic differentials in mortality is that health is impacted by the SES through pyschosocial
factors (Cutler et al. (2006); Wilkinson and Pickett (2009)). Among pyschosocial factors
are stress, anxiety, depression or anger. Accumulated exposure to stress has received
particular attention in literature, due to its pervasive effects on health. Indeed, prolonged
exposure to chronic stress affects multiple physiological systems by shifting priorities
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from systems such as the immune, digestive or cardiovascular systems in favor of systems
responding to threat or danger (Wilkinson and Pickett (2009)), and by leading to a
state of so-called “allostatic load”. The link between low social status and stress has
been supported by a number of studies on primates. For instance, Sapolsky (2005,
2004) showed that among wild baboons, subordinate animals presented higher level of
glucocorticoids, a hormone with a central role in stress response.

The impact on aggregated variables

On an aggregated level, socioeconomic inequalities impact national mortality not only
through the importance of the SES gradient, but also through the composition of the
population and its heterogeneity. For instance, in a study based on the comparison of
the United States with 14 European countries, Avendano et al. (2010) observed that
the unusually high educational gradient in mortality in the United States seems to be
counterbalanced by an attractive educational distribution. As a consequence, they found
out that the Relative Index of Inequality (RII)15 of the United States was not especially
high in comparison with other countries with an educational gradient of lower magnitude.
The age structure of the population also plays a determining role, and the socioeconomic
composition of different age classes can vary a lot (see Chapter 4 for a more detailed
discussion on this subject).
From a material point of view, the relationship between income and health or mortality
was initially thought of as a curvi-linear relation (Preston (1975); Rodgers (1979)).
According to this analysis, a reditribution of income from the wealthiest groups to the
poorest would result in improving the health of the poor rather than endanger the health
of the wealthy. This non-linear relationship shows that the impact of inequality at the
aggregated level of a country is not trivial. For instance, if a country experiences a high
level of income inequalities, the overall mortality in the country can be higher than in a
country with the same average level of income but with a lower level of inequality.
But recent studies, based on the pyschosocial explanation of the SES gradient, seem
to indicate that the relation between aggregated mortality and inequality is even more
complicated. They argue that the presence of inequality itself impacts the health and
mortality of individuals. For instance, Wilkinson et al. (2009) studied the association
between life expectancy and income inequality16 among the 50 richest countries of more

15The RII is an index of inequality which takes into account differences in mortality as well the
populations composition, see Regidor (2004) for details on the computation of the index.

16Income inequality was measured in each country as the ratio of income of the poorest 20% to the
richest 20%.
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than 3 million inhabitants, and found out a correlation of 0.44 between life expectancy
and the level of inequalities, while no significant association was found between life
expectancy and the average income. These results suggest that health and mortality
are impacted by the relative social position of individuals, rather than their absolute
material living standards (Pickett and Wilkinson (2015); Wilkinson and Pickett (2009)).
This is closely linked to the theory of psychosocial factors, which assumes that it is the
relative social ranking which determines the level of exposure to psychosocial problems
and the ability to cope with them. Wilkinson and Pickett (2009) go even further and
argue that inequalities affect not only individuals at the bottom of the socioeconomic
ladder, but the vast majority of the population. For instance, Wilkinson and Pickett
(2008) compared standardized mortality rates in counties of the 25 more equal states in
the US and in counties of the 25 less equal states17 (see Figure 5.3). They found out that
for counties with the same median income, mortality rates were higher in counties in the
more equal states than in counties in less equal states. The relation held at all levels of
median income, with more important differences for counties with lower median income.
When measuring the impact of inequality on health, the size of the area appears to be an
important variable to take into account. On the one hand, the relationship between health
and inequalities, when measured at the level of large areas such as states of big regions,
seems to be fairly strong. On the other hand, Wilkinson and Pickett (2009) note that at
the level of smaller areas such as neighborhoods, the average level of income seems to
matter more than one’s relative social position in the neighborhood. This “neighborhood
effect” has been studied by many authors and constitutes a field of research in itself (se
e.g Diez Roux (2007); Diez Roux and Mair (2010); Kawachi and Berkman (2003); Nandi
and Kawachi (2011)). Societal inequalities, neighborhood environment and individual
socioeconomic characteristics thus impact health and mortality at multiple scales, making
the analysis of factors responsible for poorer health highly difficult. It is even more
difficult to understand what happens at the aggregated level.

17The measure of inequality was based on the Gini coefficient of household income.
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Fig. 5.3 Relationship between median county income and standardized mortality rates
among working-age individuals, reproduced from Wilkinson and Pickett (2009) (Figure
11)

Discussion

The problems surrounding the measure of the SES is revealing of the issues at hand.
The interpretation of data across time and places is a delicate matter. As illustrated by
the major changes in the composition of women occupational subgroups, the effects of
composition changes have to be carefully addressed to. Besides, it is rather unlikely that
a single measure of SES, at only one point in the life course of individuals, could capture
accurately the many pathways by which social status can affect health and mortality
(Elo (2009)). However, there are many limitations in the ability to obtain reliable data
from multiple measures of SES.
There are often limited opportunities for the empirical testing of complex theories such
as the fundamental cause theory or the theory of psychosocial factors. The design of
empirical test is not straightforward, to say the least. Natural experiments, such as
the evolution of smoking behavior, or experiments on non-human populations, such as
Saplosky’s study of baboons, can give valuable insights on theories. However, as stated in
the conclusion of the report of National Research Council and Committee on Population
and others (2011), “ it is sometimes difficult, expensive, and ethically challenging to alter
individual behavior”.
Pathways involved in translating SES into mortality outcomes can differ substantially
according to the theory taken into account. Moreover, the impact of these underlying
mechanisms on aggregated variables can also differ a lot, ranging from composition effects
due to the curvilinear relation between material resources and longevity, to the global
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(non-linear) effects of the social stratification on individuals. From the fundamental
causes point of view, new advances in knowledge and technology related to health will
probably increase the SES gradient in health and mortality (Cutler et al. (2006); Phelan
et al. (2010)).
This illustrates how different underlying factors explaining the SES gradient can influence
our views on the impact of socioeconomic inequalities on aggregated quantities, and in
turn influence choices of public policies. Different types of policy recommendation can
be made, according to the underlying factors or measures of SES which are considered to
be most prominent. For instance, Phelan et al. (2010) recommend two types of public
interventions. The first type focuses on reducing socioeconomic inequality itself in order
to redistribute resources and knowledge. This would be consistent with the views of
Wilkinson and Pickett (2009) on the general impact of inequality in a country. The
second type of recommendations falls into the domain of public health. Governments
should be careful and design interventions which do not increase inequalities, by favouring
for instance health interventions which would benefit everyone automatically.
We believe that the dynamic modeling of the evolution of the population may help to
address these issues. A fine-grained modeling of the population dynamic could help
to evaluate the impact of changes in the composition of socioeconomic subgroups. In
addition, modeling the population dynamics can serve as a simulation tool in order to
take into account various measures of SES, when empirical data are limited. It can
also be used to test hypotheses regarding which aspects of SES are the most important
for reducing socioeconomic inequalities in health and mortality. By using population
simulation as an experimenting tool when real life experiences are not possible, theories
can be tested by comparing the aggregated outcomes produced by the model to what is
observed in reality.
However, the above paragraph shows us the complexity of the phenomena involved.
Socioeconomic inequalities impact health and mortality through complicated pathways.
Phenomena are often non-reproducible - risk factors, as well as the economic, social or
demographic environment have changed dramatically over the recent years - with effects
which are often delayed. Furthermore, findings suggest that the impact of socioeconomic
inequalities is highly non-linear. Individual characteristics do not fully explain the
longevity of individuals. Mechanisms acting at different scales appear to be equally
important. For instance, the neighborhood effect, the relative social position of individuals
or the global level of inequality in society are also important factors to take into account.
From these examples, it is quite easy to see the modeling challenges brought about by
the new paradigm of the second demographic transition. At yet, there is also an urgent
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need for complex population models, for a better understanding of the observed data, as
well as to serve as an alternative when empirical testing is not possible.

5.4 Modeling complex population evolutions

Before the 1980s, demographic models were principally focused on the macro-level, and
used aggregate data to produce average indicators. In view of the previous considerations,
producing a pertinent modeling directly at the macro-level appears to be a more and
more complicated-if not impossible-task. Hence, demographic models have increasingly
shifted towards a finer-grained modeling of the population in the last decades.
There is thus an intrinsic interest in describing the variability and heterogeneity of the
population on a more detailed level, in order to obtain macro-outcomes by aggregation,
to be used forecasting/projections and/or policy recommendations, or in a broader sense
for the analysis of social economic policies.
Over the last two decades, the increase of computing power and improvements in numerical
methods have made it possible to study rich heterogeneous individual models. Indeed, a
wide variety of models simulating individual behavior have been developed for different
purposes and used in different domains. In this section, we give an overview of two
types of models widely used in demography: Standard microsimulation models (MSMs)
and Agent based models (ABMs) which are derived from the idea of Orcutt (1957) (see
Morand et al. (2010)).

5.4.1 Dynamic microsimulation

Microsimulation models

Microsimulation issues A dynamic microsimulation model provides a simulation tool
of individual trajectories in order to obtain macro outcomes by aggregation. It provides
a way of combining different processes (biological, cognitive, social) describing the lives
of people who evolve over time. One main feature of this class of model is its capacity
to interpret macro level changes, represented by macroeconomic complex quantities (or
indicators) (e.g life expectancy, mortality rate,...), resulting from the simulation of the
dynamic life courses of individuals, also called micro units. A dynamic microsimulation
model, usually relying on an important amount of empirical data, is parametrized with
micro-econometrics and statistical methods (Spielauer (2011)).
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Examples of microsimulation models The history of microsimulation in social
sciences goes back to the work of Orcutt (1957), who developed so-called data-driven
dynamic microsimulation models. Following the original model of Orcutt, the first large-
scale dynamic microsimulation model called dynasim18 was developed for the forecasting
of the US population up to 2030. This model considered different demographic and
economic scenarios, meant to analyse the socioeconomic status and behavior of individuals
and families in the US (cost of teenage childbearing for the public sector, unemployment
compensations and welfare programs...). Since then, most statistical or demographical
government bodies in developed countries have used their own microsimulation models,
developed for different purposes. A comprehensive description of various microsimulation
models can be found in the surveys of Li and O’Donoghue (2013); Morand et al. (2010);
Zaidi and Rake (2001). For instance dynacan in Canada was designed to model the
Canada Pension Plan (CPP) and analyze its contributions and benefits at individual
and family level. In Australia, dynamod was developed to carry out a projection
of the outlook of Australian population until the year 2050. In Europe, the micmac
project19 was implemented by a consortium of research centers whose objective is to
provide demographic projections concerning detailed population categories, that are
required for the design of sustainable (elderly) health care and pension systems in the
European Union. The specificity of the micmac consists in providing a micro-macro
modeling of the population, with micro level projections that are consistent with the
projections made by the macro model.
In France, the INSEE developed different versions of a microsimulation model, the
current version being destinie 2 (Blanchet et al. (2009)). This model is used for
instance to measure the efficiency of reforms on state pension systems, and is based on a
representative sample of the national population.

A dynamic microsimulation exercise

A demographic micro-model can be viewed as a population database, which stores dy-
namically information (characteristics) on all members (individuals) of the heterogeneous
population (Willekens (2005)). Zinn (2011) gives the main steps of a microsimulation
exercise which consist of:
(i) State space and state variables: The state space is composed of all the combinations
of the values (attributes) of individuals’ characteristics, called state variables. Age, sex,

18Since then, updated versions were developed, with for example DYNASIM3 in 2004 (Li and
O’Donoghue (2013)).

19The micmac project is documented in Willekens (2005).
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marital status, fertility and mortality status, education or emigration are examples of
state variables. An example of a state is given by the possible values of state variables:
(Female, Married, 1 Child, Alive, Not emigrated, Lower secondary school)20.
(ii) Transition rates: Events occurring during the life course of individuals are character-
ized by individual hazard functions, or individual transition rates / probabilities. Each of
the transition probabilities is related to an event, i.e. a change in one of the state vari-
ables of the individual. These probabilities are estimated conditionally on demographic
covariates (i.e explanatory variables such as gender, age, educational attainment, children
born, ethnicity), and other risk factors that affect the rate of occurrence of some events
(environmental covariates that provide external information on the common (random)
environment) (Spielauer (2011)). In microsimulation models, the covariates are often
estimated by using logit models (see Zinn (2011)).
(iii) Dynamic simulation: Dynamic simulation aims at predicting the future state of the
population, by making the distinction between events influencing the population itself
and those affected by it (population ageing, concentration of wealth, sustainability of
social policies...).
(iv) Internal consistency: Microsimulation models can handle links between individuals,
which can be qualified as “internal consistency” (Van Imhoff and Post (1998)). Individuals
can be grouped together in the database into “families” (for instance, if they are married
or related). When a state variable of an individual in the group changes, the state
variables of the other members are updated if needed. For example, this can be the case
when such events as marriage, divorce or a child leaving the parental home take place.
(v) Output of microsimulation exercise and representation: The output of a dynamic
microsimulation model is a simulated database with longitudinal information, e.g. in
the form of individual virtual biographies, viewed as a sequence of state variables. The
effects of different factors can be revealed more clearly when grouping individuals with
life courses embedded in similar historical context. Usually, individuals are grouped in
cohorts (individuals with the same age) or in generations. The aggregation of individual
biographies of the same cohort yields a bottom-up estimate of the so-called cohort
biography. Nevertheless, in the presence of interactions, all the biographies have to be
simulated simultaneously, which is challenging for large populations.

20The state variables Dead and Emigrated are considered as absorbing states, i.e. once they have been
entered, they will never be left again.
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Sources of randomness

Microsimulation models are subject to several sources of uncertainty and randomness
which have been discussed in detail in the work of Van Imhoff and Post (1998). The
so-called “inherent randomness” is due to the nature of Monte Carlo random experiments
(different simulations produce variable sets of outcomes). This type of randomness can
be diminished when simulating large populations (increasing the number of individuals
in the database) or repeating random experiments many times to average the results,
which implies important computational cost21. In the presence of interactions, one should
be careful since the two techniques are not equivalent. Such is the case of agent based
models, which are discussed in the next section.
The starting population, which is the initial database for the microsimulation model, can
be either a sample of the population based on survey data, or a synthetic population
created by gathering data from different information sources. This initial population is
subject to random variations and sampling errors. Moreover, at the individual level, the
state variables and the covariates must be known before starting the simulation, and
their joint distribution within the initial database is random. Van Imhoff and Post (1998)
note that any deviation of the sample distribution may impact future projections.
These previous sources of randomness can be mitigated by increasing the size of the
database and are probably less important in comparison with the so-called specification
randomness. The outputs of a microsimulation model can be subject to a high degree
of randomness when an important number of covariates are included. Indeed, there
are calibrating errors resulting from the estimation of empirical data each relationship
between probabilities of the model and covariates. Moreover, each additional covariate
requires an extra set of Monte Carlo experiments, with a corresponding increase in Monte
Carlo randomness.
The specification randomness can be reduced by using sorting or alignment methods, a
calibration technique that consists in selecting the simulated life course in such a way that
the micro model respects some macro properties, including the property of producing the
expected values. In destinie 2, this alignment is ensured by adjusting the individual
transition rates to obtain the annual number of births, deaths and migration consistent
with some macro projections (Blanchet et al. (2009)).

21Various techniques to accelerate Monte Carlo simulation coupled with variance reduction has been
developed in many areas.
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Discussion

In many cases, behaviors are more stable or better understood on the micro level than
on aggregated levels that are affected by structural changes when the number or size
of the micro-units in the population changes. Thus, microsimulation models are well
suited to explain processes resulting from the actions and interactions of a large number
of micro-units. For instance, according to Spielauer (2011), an increase of graduation
rates22 at the macro level can lie entirely in the changing composition of the parents’
generations, and not necessarily in a change of individuals’ behaviors.
In order to produce more micro-level explanations for population change, microsimulation
models require an increasing amount of high quality data to be collected. Silverman
et al. (2011) point out the “Over-dependence on potentially immense sets of data” of
microsimulation models and the expensive data collection required to provide inputs
for those models. Most of the time, only large entities such as national or international
institutions are able to complete this demanding task. The size of the samples also has
an impact on the run time of the model; the larger the sample’s size is, the longer the
run speed will be, which will result in a trade-off.
Silverman et al. (2011) argue in favour of the use of more abstract computational models
rather than on highly data-driven research. More recently, Agent Based Models (ABM),
which also derived from individual-based models, have been increasingly applied in
various areas to analyze macro level phenomena gathered from micro units. These models
emphasize interactions between individuals through behavioral rules and individual
strategies. In this context, Zinn (2017) stressed the importance of incorporating behavioral
rules through ABM models (e.g kinship, mate matching models..) since demographic
microsimulation is well suited for population projection, if only the model considers
independent entities.

5.4.2 Agent Based Models (ABM)

What is ABM?

The main purpose of the Agent Based Models (ABM) is to explain macroscopic regularities
by replicating the behavior of complex, real-world systems with dynamical systems of
interacting agents based on the so-called bottom-up approach (Billari (2006); Tesfatsion
(2002)). ABM consists basically of the simulation of interactions of autonomous agents
i.e independent individuals (which can be households, organizations, companies, or

22Graduation rate represents the estimated percentage of people who will graduate from a specific
level of education over their lifetime.
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nations...depending on the application). As in microsimulation, agents are defined by
their attributes. Each single agent is also defined by behavioral rules, which can be
simple or complex (e.g utility optimization, complex social patterns...), deterministic or
stochastic, on whose basis she/he interacts with other agents and with the simulated
environment (Billari (2006); Morand et al. (2010)).

Applications The applications of ABM range from social, economic or political sciences
to demography (Billari (2006)). For instance, Tesfatsion (2002) used Agent-based
Computational economies (ACE) in order to model decentralized economic markets
through the interaction of autonomous agents. In demography, ABM are used in Diaz
et al. (2011) to explain trends in fertility by simple local interactions, in order to solve
the difficult problem of age-specific projection of fertility rates. Billari et al. (2007)
developed an ABM based on the interaction between heterogeneous potential partners,
which typically takes place in the marriage market (partnership formation) and which
is called “The Wedding Ring model”. The purpose of this model is to study the age
pattern of marriage using a bottom-up approach. This model was implemented using
the software package NetLogo (Wilensky (1999)) which is designed for constructing and
exploring multilevel systems23. Burke and Heiland (2006) suggested the use of an agent
based model to explain the differences in obesity rates between women with different
educational attainment in the United States. The model integrates biological complex
agents (variation of women’s metabolism) interacting within a social group, and is able
to reproduce the fact that better educated women experience on average lower weights
and smaller dispersion of weights. For more examples of agent based models applications,
we refer to the work of Morand et al. (2010) that details different examples of ABM
in spatial demography, family demography and historical demography. The book of
Billari (2006) also presents various applications of agent-based computational modeling,
in particular in demography.

A dynamic exercise of an ABM

The key defining feature of an ABM model is the interactions between heterogeneous
individuals. Moreover, an agent based model is grounded on a dynamic simulation, which
means that agents adapt dynamically to changes in the simulated environment. They
act and react with other agents in this environment at different spatial and temporal
scales (Billari (2006)). This contrasts with Microsimulation models (MSM) which rely

23Multi-level agent based models integrate different levels (complementary points of view) of represen-
tation of agents with respect to time, space and behavior.
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on transition rates that are determined a priori (and once).
Agent based models are based on some rules, or heuristics, which can be either determin-
istic or stochastic, and which determine the decision-making process. For example, in
an agent based marriage market model, the appropriate partner can be chosen as the
one who has the most similar education level to the considered agent, or an ideal age
difference (Billari et al. (2007)).
Besides, in comparison with Microsimulation models, which operate on a realistic scale
(real data), but use very simple matching algorithms (often a Monte Carlo “roll the dice”
styled decision rule), agent based models use small and artificial data sets, but show
more complexity in modeling how the agents viewed and chose partners.

Limitations

The design of agent based model needs a certain level of expertise in the determining of
behavioral rules. Furthermore, when modeling large systems (large number of agents),
computational time rises considerably. Indeed, ABM models are not designed for extensive
simulations.
The parameters of an agent based model can be either calibrated using accurate data,
or consider sensitivity analysis incorporating some level of comparison with actual data.
For instance, Hills and Todd (2008) compare the results of their Agent-Based Marriage
and Divorce Model (MADAM) to real age-at-marriage distributions. But the outputs of
an agent based model also depend on the “internal” structure of the model, determined
by the behavioral rules (Gianluca (2014)). Consequently, the strategies to calibrate
parameters, and to overcome the problem of dependency on the model’s structure, rely
on available empirical information. It is important to note that ABMs are designed to
focus on process related factors or on the demonstration of emergent properties, rather
than to make projections.

5.4.3 Conclusion

The interest of dynamic microsimulation is to constitute both a modeling exercise, and
an exercise to run the model and experiment with it (Spielauer (2011)). In addition to
helping to test theory or to picture the future, the exercise may be used as a simulator
by policy makers (or citizens) or for a better assessment of the impact of public policies.
The results/outputs of microsimulation models are population projections rather than
forecasts, which is what would happen if the assumptions and scenarios chosen were to
prove correct on what the future will probably be.
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The discussion on demographic modeling demonstrated that Microsimulation models
(MSM) strongly depend on data Silverman et al. (2011). Then, it faces pragmatic chal-
lenges in collecting and cleaning data, in addition to the different sources of randomness
discussed above. In parallel with the spread of microsimulation models, there is a growing
interest in Agent Based Models, which are suited to model complex systems that take
full account of interactions between heterogeneous agents. The major difficulty in using
of Agent based model is the absence of theoretical model. Indeed, there is no codified
set of recommendations or practices on how to use these models within a program of
empirical research. It is essentially based on the cognition and expertise of the developer.
In this context, new hybrid applications (combining MSM and ABM models) have been
recently proposed in literature. For instance, Grow and Van Bavel (2016) present many
examples that combine MSM and ABM in demographic models. These new models aim
at describing the heterogeneous movements, interactions and behaviors of a large number
of individuals within a complex social system at a fine spatial scale. For instance, Zinn
(2017) uses a combination of MSM and ABM for modeling individuals and couples life
courses by integrating social relations and interactions. The efficiency of these combined
and “sophisticated” models to overcome the loopholes of the simple models is an open
issue.

5.5 Conclusion and perspectives

Facing all these modeling challenges, we advocate the development of a new mathematical
theoretical framework for the modeling of complex population dynamics in demography.
As we have seen in Section 5.3, a number of questions cannot be answered by the sole
study of data, and models allow us to generate and experiment with varyous scenarios,
so as to test theories or causal links for instance. Theoretical models can help us “to
escape from the tyranny of data”, as claimed by Silverman et al. (2011).
On the other hand, empirical evidence point out a number of key issues which cannot be
overlooked, and which demonstrate the “inextricable complexity” of dynamic modeling
of realistic human populations. Variables such as mortality or fertility rates are by no
means stationary; populations are more and more heterogeneous, with socioeconomic
inequality playing an important role at several levels (individual, neighborhood and
societal); interactions between individuals and their environment are bidirectional. These
are just a few examples illustrating the complexity of modeling. An adapted mathematical
framework could contribute significantly to better understand aggregation issues and
find out adequate policy recommendations, in concordance with this new paradigm of
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heterogeneity and non-linearity. More specifically, theoretical models often allow us to
reduce complexity by deriving and/or justifying approximations in population dynamics.
By changing point of view, data can also be represented differently,and thus permit to
go beyond what is usually done.
The historical analysis of these two centuries of demographic transitions show that
populations have experienced dramatic changes and upheavals. But we can also see, a
number of phenomena and timescales present remarkable regularities. These profound
regularities, or “fundamental causes”, have been noted by several authors, in very different
contexts. In our opinion, the identification and understanding of these regularities or
cycles is fundamental.
Age is also a critical dimension when studying human population dynamics. The
age structure of a population generates a lot of complexity in the representation and
statistical analysis of data. This so-called Age Period Cohort (APC) problem has been
well documented in statistical literature, and should be a main focus in the dynamical
modeling of populations. Furthermore, the human life cycle is composed of very different
periods, with transition rates of a different order and phenomena of a different nature at
each stage. Understanding how to take into account this heterogeneity in age is a critical
point. The notion of age itself changes over time. Individuals seem to have rejuvenated,
in the sense that today’s 65-year-olds are “much younger” than individuals of the same
age thirty years ago.
Thus, the shift in paradigm observed in recent demographic trends has highlighted
a number of new issues which force us to reconsider many aspects of the traditional
modeling of human populations. Multiple questions are still open, with difficult challenges
ahead, but also exciting perspectives for the future.
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