
HAL Id: tel-01968062
https://theses.hal.science/tel-01968062

Submitted on 2 Jan 2019

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Environmental demogenetic model
Arnaud Becheler

To cite this version:
Arnaud Becheler. Environmental demogenetic model. Populations and Evolution [q-bio.PE]. Univer-
sité Paris Saclay (COmUE), 2018. English. �NNT : 2018SACLS145�. �tel-01968062�

https://theses.hal.science/tel-01968062
https://hal.archives-ouvertes.fr

Environmental
demogenetic models

Thèse de doctorat de l'Université Paris-Saclay
préparée à l’Université Paris-Sud

École doctorale n°567 Sciences du Végétal

Spécialité de doctorat: Biologie

Thèse présentée et soutenue à Gif-sur-Yvette, le 30 Mai 2018, par

 Arnaud Becheler
Après avis des rapporteurs :

Solenn Stoeckel (Chargé de Recherche, INRA Rennes)
Lacey L. Knowles (Professeur, Université du Michigan)

Composition du Jury :

Myriam Harry
Professeur Paris-Sud, Paris-Saclay (UMR EGCE) Présidente
Solenn Stoeckel
Chargé de Recherche, INRA Rennes (UMR IGEPP) Rapporteur
Christine Dillmann
Professeur, INRA (UMR GQE-Le Moulon) Examinatrice
Mathilde Carpentier
Maître de Conférences, Sorbonne Université (UMR ISYEB) Examinatrice
Renaud Vitalis
Directeur de Recherche, INRA (CBGP Montferrier-sur-Lez) Examinateur
Stéphane Dupas
Chargé de Recherche, IRD (UMR EGCE) Directeur de thèse
Camille Coron
Maître de Conférences, Paris-Saclay (LMO) Co-encadrante

N
N

T
 : 2

0
18

S
A

C
L

S
14

5

UNIVERSITÉ PARIS-SACLAY

DOCTORAL THESIS

Environmental demogenetic models

Author:

Arnaud BECHELER

Supervisor:

Dr. Stéphane DUPAS

Co-supervisor:

Dr. Camille Coron

A thesis submitted in fulfillment of the requirements

for the degree of Doctor of Biology

in the

Laboratoire Evolution, Génomes, Comportement, Ecologie

Pôle Evolution et Ecologie

September 16, 2018

http://www.university.com
http://www.egce.cnrs-gif.fr/?lang=fr
http://www.egce.cnrs-gif.fr/?page_id=3773

ii

We shall not cease from exploration

And the end of all our exploring

Will be to arrive where we started

And know the place for the first time.

Through the unknown, remembered gate

When the last of earth left to discover

Is that which was the beginning;

At the source of the longest river

The voice of the hidden waterfall

And the children in the apple-tree

Not known, because not looked for

But heard, half-heard, in the stillness

Between two waves of the sea.

T.S. Eliot, Four Quartets

iii

UNIVERSITÉ PARIS-SACLAY

Abstract

Université Paris-Saclay

Pôle Evolution et Ecologie

Doctor of Biology

Environmental demogenetic models

by Arnaud BECHELER

HTTP://WWW.UNIVERSITY.COM
https://www.universite-paris-saclay.fr/en
http://www.egce.cnrs-gif.fr/?page_id=3773

iv

Résumé

Les invasions biologiques sont un aspect majeur du changement global et une

des principales menaces pesant sur la biodiversité. Leur étude est donc fondamen-

tale pour proposer aux décideurs les scenarios prédictifs dont ils ont besoin pour

mettre au point des mesures de conservation adaptées. Pour renseigner ces scénar-

ios, des données doivent être collectées. Une source de données de moins en moins

coûteuse consiste en un échantillon génétique de la population à étudier, où des in-

dividus sont échantillonnés en divers points géographiques et/ou temporels puis

génotypés en différents points du génome.

Renseigner des modèles populationnels spatiallement explicites sur la base de

données génétiques peut être extrêmement complexe à mettre en oeuvre mathéma-

tiquement si le modèle n’est pas trivial (par exemple si l’hétérogénéité du milieu est

prise en compte dans les patrons de croissance ou de migration des populations). Au

prix de quelques approximations, des méthodes de simulation numérique comme

le Calcul Bayésien Approché (ABC) permettent alors l’étude de ces modèles com-

plexes. Toutefois, les bases de code informatique existante pour la simulation de

génétique de populations en paysage explicite sont assez rigides et permettent peu

de flexibilité dans la définition des modèles simulatoires. Notamment, les lois de

migration et de croissance des populations sont très difficilement modifiable : cela

est problématique pour adapter les ressources de code existantes à de nouveaux

scénarios biologiques spécifiques. De plus, la comparaison de modèles étant une

étape clé de la méthodologie ABC, cela impose que différentes versions de simu-

lateurs de coalescence puissent être rapidement développées et maintenues pour

permettre de trouver le meilleur modèle représentant le mieux les données. Enfin,

lorsque l’invasion étant assez récente, les mutations génétiques peuvent être consid-

érées comme un facteur négligeable de la structuration de la diversité génétique de

l’échantillon: cette hypothèse ouvre la voie à des méthodes statistiques originales

qui ne sont pas implémentables avec les simulateurs actuels.

L’apport majeur de cette thèse est Quetzal: une bibliothèque C++ de code ouverte,

assez générale pour pouvoir aisément s’adapter à un grand nombre de modèles pos-

sibles et qui permet d’intégrer facilement ces hypothèses dans le code de simulation

sans toutefois s’y limiter. Quetzal inclue des algorithmes originaux et génériques.

v

Les principaux concepts de programmation permettant d’utiliser et d’étendre Quet-

zal sont exposés à travers les différents chapitres.

La crétation de Quetzal a été initialement motivée par l’étude de l’invasion du

frelon asiatique (Vespa velutina) en Europe, étude pour laquelle les simulateurs exis-

tants ne sont pas adaptés car faisant des hypothèses trop spécifiques. Quetzal a donc

été conçue pour permettre d’implémenter facilement un modèle où la croissance

des populations dans chaque unité paysagère est décrite par n’importe quelle fonc-

tion des conditions environnementales locales, tandis que les flux migratoires entre

populations sont tirés dans des lois dont les densités peuvent également être libre-

ment définies par l’utilisateur (par exemple comme une fonction de la distance géo-

graphique à parcourir ou comme fonction de l’hétérogénéité paysagère). Certains

paramètres de ces fonctions sont inconnus et doivent être estimés. Conditionnelle-

ment à la démographie, un processus de coalescence permet de simuler l’histoire

génétique de l’échantillon. Une fois la simulation achevée, la procédure ABC per-

met de accepter/rejeter les valeurs de paramètres en fonction de la plausibilité des

données génétiques qu’ils permettent de générer.

Enfin, nous mettons à profit les particularités du contexte d’étude du frelon asi-

atique pour développer une méthodologie spécifique reposant sur le formalisme

des partitions floues et qui permet, en recentrant l’analyse sur les processus dé-

mographiques très récents et en négligeant les mutations, de réduire le nombre

d’hypothèses, le nombre de paramètres et le coût simulatoire de l’analyse. L’estimation

des paramètres d’un modèle réaliste de génétique des populations pour le frelon asi-

atique n’est pas présenté ici.

Mots-clés : invasions biologiques, Vespa velutina, génétique des populations, co-

alescence, Calcul Bayésien Approché, simulation, bibliothèque C++, développement

logiciel, partitions floues.

vi

Abstract

Biological invasions are a major aspect of global change and one of the most chal-

lenging threats to biodiversity. Studying them is then fundamental in order to pro-

vide relevant predictive scenarios for conservation policies guidance. Data have to

be collected to inform these scenarios. Genetic sampling of populations is a possible

source of information: individuals are sampled at various geographic or temporal

points, and genotyped at various points in the genome.

Informing spatially explicit populations models based on genetic data can be

mathematically extremely complex if the model is not trivial (for example if account-

ing for the environmental heterogeneity effects on migration or growth patterns). At

the cost of some approximations, numerical simulations methods like the Approxi-

mated Bayesian Computation (ABC) allow to study complex models. However, the

existing computer code bases for simulating population genetic diversity in explicit

landscapes are quite rigid and do not allow to easily modify the simulation mod-

els definition. Importantly, the dispersal and growth laws are hardly modifiable:

this complicates the adaptation of the existing simulation resources to new and spe-

cific biological scenarios. Furthermore, models comparison is a key step of the ABC

methodology that requires various simulators versions to be easily developed and

maintained in order to identify the best model that best represent the data. Finally,

when the invasion is recent enough, genetic mutations can be neglected in shap-

ing the genetic sample structure: this hypothesis opens the way for new statistical

methods that are currently not implementable with the available simulators.

The major contribution of this thesis is Quetzal: an open-source C++ library that

is general enough to be easily adapted to a wide range of possible models and that

allows to integrate easily specific modeling hypothesis in the simulation code. Quet-

zal includes original generic algorithms. The main programming concepts allowing

to use and extend Quetzal are exposed through the various chapters.

Quetzal design was initially motivated by the study of the Asian hornet (Vespa

velutina) in Europe, for which the existing simulators were not relevant because of

their specific hypothesis. Consequently, Quetzal has been designed to allow the user

to easily implement a model where the population growth in each landscape unit is

described by a user-defined function of the local environmental features, whereas

vii

the migration flux between populations are sampled in laws which densities can be

freely defined by the user (for example as a function of the geographical distance

or of the environmental features). Some of the parameters of these functions are

unknown and should be estimated. Conditionally to the demography, a coalescence

process allows for simulating the genetic history of the sample. Once the simulation

done, the ABC method allows for accepting/rejecting the parameters values as a

function of the data plausibility they generate.

Finally, we take advantage of the biological context to develop a specific method-

ology built on the fuzzy partitions formalism. It allows to focus only on the very re-

cent demographic processes by neglecting the mutational process, and consequently

to reduce the number of hypothesis, the number of parameters, and the simulation

cost of the analysis. Estimating the parameters of a realistic demogenetic model that

relevant for the hornet invasion is beyond the scope of this thesis.

Keywords: biological invasions, Vespa velutina, population genetics, coalescence,

Approximate Bayesian Computation, simulation, C++ library, software development,

fuzzy partitions.

viii

Synthèse en français des travaux présentés

Les invasions biologiques sont un aspect important du changement global et

représentent une des principales menaces pesant sur la biodiversité. Leur étude

est donc fondamentale pour proposer aux décideurs publics ou privés les scenar-

ios prédictifs dont ils ont besoin pour mettre au point des mesures de conservation

adaptées. Renseigner ces scénarios nécessite la mise au point de modèles dont cer-

tains paramètres doivent être renseignés par des données. Une source de données

de moins en moins coûteuse consiste en un échantillon génétique de la population à

étudier, où des individus sont échantillonnés en divers points géographiques et/ou

temporels puis génotypés en différents points du génome.

Renseigner des modèles populationnels spatiallement explicites sur la base de

données génétiques (c’est à dire construire des estimateurs pour les paramètres con-

sidérés) peut être extrêmement complexe à mettre en oeuvre mathématiquement si

le modèle n’est pas trivial. Par exemple la prise en compte de l’hétérogénéité spatio-

temporelle du milieu dans les patrons de croissance des population, de dispersion

des individus ou de mutation des génomes complexifie énormément l’analyse math-

éamtique. Dès lors, il peut être impossible de construire mathématiquement ces es-

timateurs.

Au prix de quelques approximations, des méthodes de simulation numérique

comme le Calcul Bayésien Approché (ABC) permettent l’étude de ces modèles com-

plexes. Les méthodologies ABC consistent à simuler des données sous un mod-

èle dont les paramètres sont tirés dans des lois connues a priori qui résument les

connaissance à priori sur le modèles. Par un algorithme d’acceptation/rejet, les

paramètres des simulations menant à des données simulées très proches des don-

nées observées permettent de reconstruire des distributions a posteriori qui affinent

la connaissance des paramètres du modèle.

Toutefois, les bases de code informatique existantes pour la simulation de géné-

tique de populations en paysage explicite sont assez rigides et permettent peu de

flexibilité dans la définition des modèles simulatoires. Notamment, les lois de mi-

gration et de croissance des populations sont très difficilement modifiables : cela est

problématique pour adapter les ressources de code existantes à de nouveaux scé-

narios biologiques. Par exemple, lorsque l’invasion biologique est très récente, les

ix

mutations génétiques peuvent être considérées comme un facteur négligeable de la

structuration de la diversité génétique de l’échantillon: cette hypothèse ouvre alors

la voie à des méthodes statistiques originales qui ne sont pas implémentables avec

les simulateurs actuels qui sont tous orientés vers la simualtion explicite de muta-

tions. De plus, la comparaison de modèles étant une étape clé de la méthodologie

ABC, cela impose que différentes versions de simulateurs de coalescence puissent

être rapidement développées et maintenues pour permettre de trouver le meilleur

modèle représentant le mieux les données. Idéalement, le développement inforam-

tique d’un nouveau modèle simulatoire devrait pouvoir s’appuyer sur des biblio-

thèques de composantes suffisamment abstraites et générales pour pouvoir être ré-

utilisées.

L’apport majeur de cette thèse est Quetzal: une bibliothèque C++ de code ou-

verte, dont chaque composante est assez générale pour pouvoir aisément s’adapter

à un grand nombre de modèles possibles. Quetzal permet d’intégrer facilement des

hypothèses variées dans le code de simulation, sans toutefois s’y limiter grâce à une

extensibilité importante. Quetzal inclue des algorithmes originaux et génériques.

Les principaux concepts de programmation permettant d’utiliser et d’étendre Quet-

zal (programamtion générique, abstractions, classes de traits, classes de politiques)

sont exposés à travers les différents chapitres.

La crétation de Quetzal a été initialement motivée par l’étude de l’invasion du

frelon asiatique (Vespa velutina) en Europe, étude pour laquelle les simulateurs exis-

tants ne sont pas adaptés car faisant des hypothèses trop spécifiques. Quetzal a donc

été conçue pour permettre d’implémenter facilement un modèle où la croissance

des populations dans chaque unité paysagère est décrite par n’importe quelle fonc-

tion des conditions environnementales locales, tandis que les flux migratoires entre

populations sont tirés dans des lois dont les densités peuvent également être libre-

ment définies par l’utilisateur (par exemple comme une fonction de la distance géo-

graphique à parcourir ou comme fonction de l’hétérogénéité paysagère). Certains

paramètres de ces fonctions sont inconnus et doivent être estimés. Conditionnelle-

ment à la démographie, un processus de coalescence permet de simuler l’histoire

génétique de l’échantillon. Une fois la simulation achevée, la procédure ABC per-

met de accepter/rejeter les valeurs de paramètres en fonction de la plausibilité des

données génétiques qu’ils permettent de générer.

x

Enfin, nous mettons à profit les particularités du contexte d’étude du frelon asi-

atique pour développer une méthodologie spécifique reposant sur le formalisme

des partitions floues et qui permet, en recentrant l’analyse sur les processus dé-

mographiques très récents et en négligeant les mutations, de réduire le nombre

d’hypothèses, le nombre de paramètres et le coût simulatoire de l’analyse. L’estimation

des paramètres d’un modèle réaliste de génétique des populations pour le frelon asi-

atique n’est pas présenté ici.

xi

Acknowledgements
Après quelques milliers de lignes de code écrites, plus encore d’effacées, après

trois années de thèse (et quelques mois grapillés), voici le moment de remercier les

gens qui, d’une manière ou bien d’une autre, y ont participé.

Merci tout d’abord à mes deux directeurs, Stéphane et Camille. Je vous dois énor-

mément. Je garde pour souvenir de vos qualités et de votre encadrement cette réu-

nion que nous avions eu sur la distance de transfert floue: Stéphane parlant de Biolo-

gie, Camille de Mathématiques et moi d’Informatique. Nous trouvions enfin le lan-

gage dans lequel nous comprendre et j’apprenais enfin le sens de l’interdisciplinarité.

Stéphane, pour la confiance que tu m’as accordée dès le début de ce projet, un

immense merci. Je regarde le chemin parcouru pendant les trois dernières années, et

je me dis que je ne serais pas ici à cet instant si tu ne m’avais placé sur ce chemin, ou

si tu ne m’y avais pas accompagné. Ton inventivité, ta sympathie, ta créativité et ta

grande intuition sont des qualités essentielles à tout projet. Je suis heureux d’avoir

choisi ton sujet de thèse et d’avoir appris à te connaître. Je garde de ton encadrement

l’image d’un jaillissement permanent d’idées nouvelles, d’un sentiment de liberté et

d’humanité parmi des encouragements toujours renouvellés.

Camille, merci de ta très grande aide. Tu as été le pilier sur lequel s’appuyer,

et "pertinence" me semble être le maître-mot de ton encadrement. Pertinence de

tes conseils scientifiques évidemment, quand tu venais à compléter les intuitions de

Stéphane avec une méthode toute mathématique. Pertinence de tes conseils profes-

sionnels, en m’exhortant sans relâche à garder le lien biologique. Mais pertinence

de tes conseils humains aussi, que je garde bien présents à l’esprit. Charles Elton,

en travaillant avec Lotka, a laissé échappé ces mots à son propos: "Comme la plupart
des mathématiciens, il mène le biologiste plein d’espoir au bord d’une mare, fait remarquer
qu’une bonne technique de nage l’aidera beaucoup dans sa tâche, puis le pousse et le laisse
là à se noyer". Tu m’as montré que cette barrière inter-disciplinaire, pouvait, comme

toute autre barrière, être dépassée. Tu m’as offert un masque, un tuba, des palmes,

une bouée, et m’a bien fait comprendre qu’on est toujours libre de sauter ou pas

dans la pataugeoire, et que, quoi qu’il advienne, il n’y a jamais d’échec. Merci.

Ambre, l’encadrante dans l’ombre, merci de m’avoir guidé sur les chemins tortueux

du C++ moderne et du paradigme générique, sans rien attendre en retour. Je me sou-

viens t’avoir rencontrée avec un code obscur, rigide, au bord de l’effondrement. Tu

m’as appris à diviser, isoler, structurer, organiser, généraliser, abstraire: concevoir.

Tu m’as appris qu’un bout de code pouvait être simple, beau, et émouvant aussi.

Tu m’a appris que le C++ était une langue qui avait son propre rythme et sa propre

poésie, ses propres paysages de conscience. Ton temps, tes conseils, ton amitié ont

été des alliés précieux ces deux dernières années, et le Quetzal d’aujourd’hui te dois

bien des plumes. Je n’oublierai pas ces heures passées chez toi, ni la sensation de ma

xii

tête vacillant sous la densité de tes propos, ni le grisement né de l’imagination d’un

dragonneau en plein vol (Fifi forever).

Merci à Olivier Dangles, au labex BASC et à la Chaire MMB pour les finance-

ments qui ont aidé à l’aboutissement de ce projet.

I wish to express all my thanks to Lacey Knowles and Solenn Stoeckel for having

accepted to be rapporteurs of this thesis.

Merci à mon équipe et à mon laboratoire pour chacune des heures de chacun des

jours que j’ai passé à EGCE. Laure, Catherine, vous êtes de remarquables repons-

ables hiérarchiques. Merci aux secrétaires pour leur travail admirable. Romain, mon

cher co-bureau/détenu/galérien/locataire (rayer la mention inutile), merci pour avoir

supporté mes feuilles volantes, mes piles de publis mal alignées, mes feutres étalés

et mon sempiternel yaourt tiède. Andreas, Cécile, Hannah, Damien, Florian, Vin-

cent et tous les autres, vous rencontrer a été une grande joie. Cher EGCE, merci pour

ton amitié, ta tolérance, tes conseils. Tu vas me manquer et j’ai beaucoup appris.

J’espère trouver pareille bienveillance à l’avenir.

Lucie, je ne sais pas bien comment te remercier de ces 371 heures. Sans doute

que pour toi, ces quelques mots suffiront: Lapinou, Colton, FDBP, MCMC, Stephen,

théière volante, pompier, "e" jaune comme euro, filtres à mâchoires, boldemort, mon-

sieur tartine, majorrrr tom to grrround contrrrrol, nina talbet, tamalatamala, rise up,

Derek et Léonin, et bien sûr . . . Nolwenn (celui-là m’a pris du temps).

Flonasse & Jujuille, merci pour tous ces fou rires et ces bons moments. J’ai un

joli bouquet de souvenirs à emporter en post-doc: 12 poussins empaillés, 12 petits

pouces qui dansent et 12 frelons du nord. Merci pour votre soutien incessant (mon
beau sapiiiiin), vos encouragements (regarde, on dirait ta thèse !), et votre patience (je

ne vous en veux presque plus pour la fausse conférence et le piscine-gate).

Merci à Iryna, Alexandre, Elodie, Claire, Alix, Julien, Irène, pour la fidélité de

votre amitié, et pour m’avoir accompagné toutes ces années, avec patience, confiance

et bienveillance, à devenir ce que j’étais déjà.

Aymeric, Jordane: sans cette soirée rock il y a quatre ans, je n’aurais sans doute

jamais osé faire de thèse.

Maïlys, Sacha, merci pour votre support (lol), la bassine restera toujours ma copine.

Je saurai être un meilleur adc et gagner les défis.

Merci à Nathan, pour toutes ces pauses houblonnées parsemées de conseils en

papillon et d’envolées métaphysiques aux touches de fatalisme russe.

Merci à mes compagnons de natation (Amandine, Alex, Jojo, Quentin . . .) et de

Water-Polo (Petit Putois, Fred, Clacla. . .) pour votre amitié, votre soutien, nos éclats

de rire et d’eau mêlés. Didine la combine, promis on ira jouer des maracasses à Cuba

chez Pepito (tchiktchikiboum). Merci au CAO pour l’apaisement que me procuraient

les bassins. Mes plus plates excuses à toutes les personnes à qui j’aurais pu dire un

jour "je peux pas j’ai piscine", personnes que je serais d’ailleurs bien en peine de citer

xiii

tant la liste doit être longue (mais qui inclue toutefois mes deux directeurs): pour

toute réclamation, veuillez vous adresser au CAO sus-cité.

Merci aux copains du master B2E-parcours-écologie-et-biodiversité-mention-darwin-

environnement-je-sais-plus-très-bien-les-qualificatifs. Copains de galère un jour, co-

pains de galère toujours: Lucie, Alain, Marine, Rémi, Camille, Yoann, Blaise, Théo et

Félise, c’est toujours bon de savoir que l’on pagaye ensemble.

Merci aux INHPiens, pour les bonheurs passés, présents, et à venir. Inès, Boris,

Benoit, Julia, Fannoch, Antoine, Marion... Justin... Vous trottez et trotterez encore

dans les recoins de mon cerveau comme au bord de l’étang Saint-Nicolas.

Chère smallah, je te dois tant. Papa, Maman, les fruits ne tombent jamais bien

loin de l’arbre. Mais il arrive que certains roulent quelque temps pour germer

plus loin. De la pédologie à la métaprogrammation pour la coalescence en paysage

hétérogène, il y a un chemin qui garde votre empreinte. On revient toujours à ce

qu’on aime. Ronan, merci de ton exemple, c’en est presque facile de marcher dans

tes pas. Enora, merci d’être le lien indéfectible qui me ramène souvent sur Terre.

Orane, merci d’être le petit soleil du matin qui récompense toutes les nuits de labeur

(avec ou sans crème solaire IP 180). Merci à Lise et Mylio pour me permettre de

voir plus loin devant, à Mimi et Grand-Père pour pouvoir regarder loin derrière, et

à tous les autres pour me faire me sentir feuille parmi les feuilles d’un arbre bien

plus grand.

Etre arbre. Un arbre ailé. Dénuder ses racines
Dans la terre puissante et les livrer au sol

Et quand, autour de nous, tout sera bien plus vaste,
Ouvrir en grand nos ailes et nous mettre à voler.

Pablo Neruda - Cuadernos de Temuco (1919-1920)

xv

Contents

Abstract iv

Acknowledgements xi

1 Introduction 1

1.1 Global change and loss of biodiversity 1

1.2 Biological invasions . 3

1.2.1 Definition . 3

1.2.2 The yellow legged hornet invasion in Europe 5

Generalities . 5

Life cycle . 7

Predation behavior . 7

Questions of interest . 7

1.3 Need for prediction: statistical modelling 9

1.3.1 Intuition of inferencial processes 9

1.3.2 Example : infering a demographic feature 10

The biological problem . 10

A possible mathematical representation 11

The likelihood function . 12

What for more complex data and models ? 14

1.4 The demogenetic approach . 14

1.4.1 Problem: data scarcity makes it difficult to inform models . . . 14

1.4.2 Solution: incorporate genetic data in the analysis 15

1.4.3 Bypass the likelihood function analysis with ABC 16

1.4.4 On the need of simulation resources 16

1.5 Thesis outline . 17

1.5.1 Chapter 2 . 18

1.5.2 Chapter 3 . 20

xvi

1.5.3 Chapter 4 . 23

1.5.4 Conclusion . 24

2 Development of Quetzal, a C++ library for coalescence 29

2.1 Reflexion about natural languages and their abstractions 29

2.1.1 Words creation . 30

2.1.2 Generalization and loss of details 30

2.1.3 Complexity reduction . 31

2.1.4 Incrementality of abstraction: defining new abstractions with

old abstractions . 32

2.2 Programming languages . 32

2.2.1 “An absolute gulf between intelligence and bullshit.“ 32

2.2.2 Unbreakable rules: Vocabulary, Grammar and Semantics 34

2.2.3 Liberties: if the word doesn’t exist, invent it 34

2.2.4 Libraries: Invent it; But first be sure it doesn’t exist 35

Motivations . 35

Benefits of libraries: correctness, efficiency, maintainability . . . 36

What is a "suitable level of abstraction" ? 37

2.3 Constructing abstractions with the C++ language 39

2.3.1 Why C++ ? . 39

2.3.2 A step-by-step abstraction design 40

Primitive built-in types and good variable names 40

Type aliasing for expressive types 41

Standard Library for more advanced abstractions 41

A "wrong level of abstraction" feeling 42

Classes for enforcing invariants 44

Information hiding . 47

2.4 Writing code that is resistant to changes 48

2.4.1 Motivations . 48

2.4.2 The problems comes from code dependencies. 48

2.4.3 Symptoms of a poor design . 49

Rigidity . 49

Fragility . 50

Immobility . 50

xvii

Viscosity . 50

2.5 Design principles: managing dependencies with S.O.L.I.D. 50

2.5.1 Motivations . 50

2.5.2 S - Single Responsibility Principle (SRP) 51

2.5.3 O - Open/Closed Principle (OCP) 52

Write a code once for all . 52

A random walk case . 53

Manipulating different forms of a same idea: polymorphism . . 54

Static polymorphism with generic programming 54

Runtime polymorphism with subtyping 56

Choose the right type of polymorphism 57

2.5.4 L - Liskov Substitution Principle (LSP) 58

2.5.5 I - Interface Segregation Principle (ISP) 60

2.5.6 D - Dependency Inversion Principle (DIP) 61

2.6 QUETZAL - an open source C++ template library for coalescence-

based environmental demogenetic models inference 62

2.6.1 Abstract . 62

2.6.2 Introduction . 63

Motivations . 63

Context . 63

2.6.3 Ecological and mathematical demogenetic model 68

Motivations . 68

Geography . 68

Demography . 68

Coalescence . 70

2.6.4 Abstraction of the ancestry relationship 70

Motivations . 70

Object-oriented paradigm . 71

Generic paradigm . 71

Counting hanging subtrees leaves 73

Construct a Newick tree format 74

2.6.5 Quetzal components for simulation 76

Discrete landscape construction 76

Demographic variables definition 78

xviii

Compile-time functions composition 78

Dispersal patterns . 80

Coalescence features . 80

2.6.6 Quetzal components for inference 81

Features . 81

The GenerativeModel concept . 81

Prior predictive distribution sampling 82

Rejection samplers . 83

2.6.7 Implementing a custom generative model 84

ABC-compatible interface . 84

Encapsulating θ . 86

Constructing the prior . 86

2.6.8 Acknowledgements . 87

2.6.9 Data Accessibility . 87

2.6.10 Authors Contribution . 88

3 Strategies for coalescence simulation 89

3.1 Wright-Fisher sampling algorithms . 89

3.1.1 Theoretical setup . 90

The neutral Wright-Fisher model 90

The large population size approximation 91

3.1.2 Common abstractions for coalescence algorithms 92

Abstracting the concept of data sequences: iterators 92

Abstracting the tree data structure: template variable type . . . 92

Abstracting behavioral details: function objects 93

3.1.3 Binary merge algorithm . 95

Expected behavior . 95

Generic implementation . 95

3.1.4 Simultaneous multiple collisions algorithm 97

Expected behavior . 97

Generic implementation . 98

3.1.5 Guidelines for designing interchangeable strategies at compile-

time . 100

Multiplicity of possible designs 100

xix

Combinatorial explosion of possible behaviors 100

Decomposing a complex behavior into policy classes 101

3.2 Algorithms for fast simulation of discrete-time coalescents with si-

multaneous multiple merger. 102

3.2.1 Abstract . 102

Motivation . 102

Results . 102

Availability . 102

3.2.2 Introduction . 102

3.2.3 Approach . 104

Occupancy spectrum . 104

Direct sampling in the occupancy spectrum probability distri-

bution . 105

3.2.4 Methods . 106

Truncated spectrum . 108

Approximated distribution . 108

Performance comparison . 108

3.2.5 Discussion . 109

3.2.6 Conclusion . 111

4 Using fuzzy partitions for ABC inference of recent demographic processes113

4.1 Introduction . 113

4.1.1 The two main ABC approximations 114

Summarizing full data sets using low-dimensional summary

statistics . 114

k-nearest neighbors procedure and kernel density estimation . 115

4.1.2 Approximations consequences 116

4.1.3 Related decisions in the modeling step 117

4.2 Material and methods . 117

4.2.1 Justifying the non mutation hypothesis 117

4.2.2 Hard partitions . 119

4.2.3 Fuzzy partitions . 121

Fuzzy sets . 121

Fuzzy inclusion . 122

xx

Refinement . 124

4.2.4 The genealogical partitioning process 126

4.2.5 Why fuzzy partitions formalism is useful in the coalescence

framework . 127

Unphased data . 127

The demic structure hypothesis 128

4.2.6 Constructing the fuzzy partitions: examples 129

Observed fuzzy partition . 129

Simulated fuzzy partitions . 129

4.2.7 Comparing simulated and observed fuzzy partitions 130

The Fuzzy Transfer Distance . 130

Implementation . 131

4.2.8 Method validation . 132

Model . 132

Sampling in the predictive prior distribution 132

Rejection step . 133

Numerical application . 133

Posterior stability . 133

4.3 Results . 133

4.4 Discussion . 136

Bibliography 139

xxi

For Justin, who taught me perseverance, faith and friendship.

1

Chapter 1

Introduction

1.1 Global change and loss of biodiversity

There is growing evidence that the Earth system has recently moved away from

the range of its natural variability during the last half million years: lands, polar

regions, atmosphere, life, societies, oceans and other Earth system constituents have

seen their state and the interactions between them dramatically altered (Pachauri et

al., 2014).

The progressive understanding of this phenomenon started in 1980 with the

World Climate Research Programme (WCRP) foundation, aiming at "a better un-

derstanding of the climate system and the causes of climate variability and change":

it progressively became clear that climate change was only a part of a larger phe-

nomenon, termed "global change", affecting all Earth system constituents at all scales

(Vitousek, 1994). If in the past, planetary changes were driven by processes like vol-

canism, plate tectonic, solar variation, meteorits or variations in the orbital charac-

teristics of the Earth, there is large evidence showing that the current changes are

driven by human resources collection (Matson et al., 1997), transportation, transfor-

mation and waste production (Pachauri et al., 2014).

Human societies built on a given Earth system state: important cities were built

on rather stable coastlines, population distribution levels followed water availabil-

ity, agricultural systems and their related social systems developed accordingly to

the local ecological properties (soil, water, climate, surrounding lifeforms). Global

change is concerning for societies, because it questions the implicit assumption that

this state will remain the same and consequently it actually questions our ability

to adapt to a new Earth system trajectory: sea level rise threatens coastal cities de-

velopment (Church and White, 2006; Nicholls and Cazenave, 2010), water resources

2 Chapter 1. Introduction

FIGURE 1.1: First results from Google for the biodiversity keyword as
an illustration of the socio-cultural representation of the concept. Us-
ing variety of colors and forms are key in the concept representation.
Species shown in pictures are attractive or remarkable, like lions, gi-
raffes, orchids. In several pictures, moral values are associated to the
concept, with the underlying idea that biodiversity is beneficial for

the human well-being.

management systems need to adapt to the new context of global change (Pahl-Wostl,

2007), and agricultural systems have to face soils erosion (Montgomery, 2007), higher

climate instability (Howden et al., 2007; Schlenker and Lobell, 2010), local extinction

of some life forms and incoming of undesirable ones (Thrupp, 2000; Frison, Cherfas,

and Hodgkin, 2011).

Among other important perturbations, the causes and consequences of the var-

ious life forms distribution modification across the planet has been widely studied,

and raised remarkable awareness about the biodiversity concept at multiple levels of

the society (Escobar, 1998; Spash et al., 2009). For non-scientific audiences, the term

biodiversity is generally related to the abundance and diversity of life form: numer-

ous, colorful, exotic and attractive species representations are central in communi-

cating the concept (Figure 1.1). This diversity type (the species diversity) is only one

part of the definition in the scientific representation of the concept, that also includes

the diversity of the interactions between life forms and their environment, as well as

the genetic diversity between individuals or populations.

Biodiversity brings many amenities (see Figure 1.2) called ecosystem services which

value can be quantified (De Groot et al., 2012), like food production (Bommarco,

Kleijn, and Potts, 2013), water purification (Van Houtven, Powers, and Pattanayak,

1.2. Biological invasions 3

2007), pollination (Kremen et al., 2007), climate or disease regulation. Altering its

state is generally considered as risky (Díaz et al., 2006). This naturally leads to the

development of management programs for conversation, protection and restoration

of ecosystems (Bullock et al., 2011). Consequently, considerable efforts have been

made during the last decade to understand the past, present and future state of

biodiversity (Dirzo and Raven, 2003), to decide what the reference state should be

(Nielsen et al., 2007), to understand how human activities affect the system trajec-

tory (Hooper et al., 2005) and to propose predictive scenarios for decision-makers

(Pereira et al., 2010; Fisher, Turner, and Morling, 2009). Defining a reference state is

uneasy, because systems are inherently dynamics (Blois et al., 2013).

For example, there have been in the past spectacular shifts in the distribution

of biological diversity, known as massive extinctions. About 375–360 millions years

ago, the apparition of the first massive photosynthesizing forests on the continents

may have caused a global cooling by removing carbon dioxide (a greenhouse gas)

from the atmosphere: interestingly, the apparition of our dearest forests coincide

with the extinction of 75% of the former species (Algeo, Scheckler, and Maynard,

2001).

The colonization process (when some individuals reach a new territory, settle

and proliferate) is a fundamental process by which biodiversity is redistributed: all

species witnessed, to some extent, a modification of its distribution. However, the

rate and scale at which this process occurs increased dramatically during the last

decades, mainly due to human activities (Vitousek et al., 1997). As modern advances

in the transport technologies allow to travel further, faster and more often, biological

material can easily be spread all around the world, like plankton transported along

sea routes in the ships ballasts. For some cases and under some circumstances, this

phenomenon is perceived negatively by the society, that then uses the term of biolog-

ical invasion to designate it.

1.2 Biological invasions

1.2.1 Definition

There has been some debate around the invasive species definition (see e.g. Valéry et

al., 2008; Shah and Shaanker, 2014), certainly because the desired degree of general-

ization of the concept is very high (i.e. and that it aims at representing a very large

4 Chapter 1. Introduction

FIGURE 1.2: Relationships between biodiversity and human well-being. Biodiversity is af-
fected by global change drivers, but is as well a factor affecting the levels of human well-
being. Regulating services are obtained from ecosystem processes regulation. Supporting
services are necessary for all other services to be provided. Dark arrows (resp. highlighted
text) indicate the links (resp. the concepts) that are tightly related to the thesis: the invasion
of Vespa velutina results in a modification of the biodiversity components state in terms of
number, abundance, composition, spatial distribution of species and genes, the modalities
of which can vary according the landscape local features and must be elucidated. The dark
dashed arrow indicates the links that motivates the thesis, but that are not directly answered
by the research questions: the predation behavior of Vespa velutina threatens the pollina-
tors, especially the local honeybee Apis mellifera that provides honey and cultural amenities.
Consequently this invasion process causes fears, worries and passionate reactions at various

levels of the society. Modified from Díaz et al. (2006) and Dıaz et al. (2005).

1.2. Biological invasions 5

variety of complex and particular instances of the phenomenon). Consequently the

concepts used in any of its possible definitions are very abstract and subjects to inter-

pretation and subjectivity (Valéry, Fritz, and Lefeuvre, 2013; Colautti and Richard-

son, 2009).

While some definitions stress out the importance to account for the impact of in-

vasive populations in the new area, others insist on the underlying dispersal pattern,

as the following one.

Definition 1.2.1. (Biological invasion, Valéry et al., 2008) A biological invasion con-

sists in a species acquiring a competitive advantage following the disappearance

of natural obstacles to its proliferation, which allows it to spread rapidly and to

conquer novel areas within recipient ecosystems in which it becomes a dominant

population.

As stated by Wilson et al. (2009), definition 1.2.1 fails to identify an intuitive

concept. For example, definition 1.2.1 assumes population dominance, but this can

not be guaranteed. Indeed, even what we intuitively would like to class as inva-

sive species can suddenly undergo a dramatic population size reduction, and even

witness repeated collapses (Simberloff and Gibbons, 2004).

As a number of points debated in the biological invasion literature are irrelevant

in our context study, we prefer to use definition 1.2.2.

Definition 1.2.2. (Invasive population, Estoup and Guillemaud, 2010) Set of indi-

viduals that has been introduced into a new area, in which these individuals have

established themselves, increased in number and spread geographically.

1.2.2 The yellow legged hornet invasion in Europe

Generalities

The dramatic development of the yellow-legged hornet (Vespa velutina) in Europe is

a remarkable example of biological invasion. Vespa velutina is a social insect origi-

nating from Asia (Perrard et al., 2014, Figure 1.3).

There is reasonable evidence that the first queens arrived in Europe at a sin-

gle point (Nerac, South-West France) in 2004, as Chinese bonsai poteries were im-

ported by a local horticulturist (Villemant, Haxaire, and Streito, 2006b; Villemant,

Haxaire, and Streito, 2006a). According to genetic studies (Arca et al., 2015), the in-

troduced individuals originate from the provinces of Jiangsu and Zhejiang (China).

6 Chapter 1. Introduction

FIGURE 1.3: Known distribution of the different colour morphs of
Vespa velutina across south-east Asia, borrowed from Perrard et al.

(2014)

1.2. Biological invasions 7

Subsequently, colonies expanded rapidly, reaching Spain (López, González, and

Goldarazena, 2011), Portugal (Grosso-Silva and Maia, 2012), Belgium (Rome et al.,

2013), Italy (Bertolino et al., 2016) and Great-Britain (Keeling et al., 2017).

Life cycle

Nests are initiated by young females, called foundresses. They start the construc-

tion of a structure large enough to allow the development of some eggs into grown

workers able to expand the nest and to collect food. In the fall, young foundresses are

mated and overwinter. The colony dies as winter comes. In spring, the foundresses

disperse and found new nests. Using mills experiments where foundresses are at-

tached to a mill for measurement of flight duration, it has been shown that they

could actually fly an average of 18 km/day, and possibly fly over 200 km over

10 days (Robinet, Suppo, and Darrouzet, 2017). The importance of both human-

mediated dispersal and self-mediated dispersal has been stressed out, as foundresses

are suspected to be able to disperse along long distances, possibly transported by hu-

man means (Robinet, Suppo, and Darrouzet, 2017). These dispersal features could

explain the rapid rate at which the yellow-legged hornet spread in France (around

100 km/year) and why various nests have been found more than 200 km from the

invasion front (Villemant et al., 2011; Robinet, Suppo, and Darrouzet, 2017). Notably,

three locations at which colonization have been observed are considered as resulting

from long-distance dispersal events (Villemant et al., 2011).

Predation behavior

V. velutina predates various pollinators in its native area, including the local honey

bee (Apis cerana). In Europe, its full impact on ecosystems is still not assessed, but it

remains clear that V. velutina predates Apis mellifera, that does not show the defense

and avoidance behaviors that allow the Asian bee populations to resist the predation

pressure. Consequently, beekeepers are worried about the range and impact of the

ongoing expansion, especially since a large part of Europe appears to be favorable

to the development of new colonies (Villemant et al., 2011).

Questions of interest

The invasion of V. velutina raises a variety of questions implying multiple theoretical

approaches and data to answer them (see Figure 1.4).

8 Chapter 1. Introduction

Introduction points Perhaps the most important point is to be able to predict its

future range expansion. Accordingly, it requires first to know if the incoming of

individuals for Asia is frequent or not, that is to test if the hypothesis of a unique

introduction site is relevant. If not, the spatio-temporal coordinates of the multiple

introduction points should be estimated.

Dispersal Then, to predict the future of the invasive process, the various disper-

sal modes should be elucidated. Dispersal distance, that is the geographic distance

between ‘start’ and ‘end’ points of a dispersal event, is fundamental to describe the

dispersal process (see Nathan et al., 2012, for a review). A large number of math-

ematical descriptions of the distribution of the dispersal distance (dispersal kernel)

exists (Nathan et al., 2012). Furthermore, if geographic distance is the most basic

spatial descriptor of dispersal, the effect of landscape heterogeneity on dispersal

patterns should not be underestimated, since V. velutina seems very sensitive to the

opening up of the environment and possibly follows rivers and valleys during the

dispersal phase (personal communication of Claire Villemant). Several GIS-based

approaches like least cost path method and circuit theory allow to identify dispersal

corridors across the landscape, given habitat heterogeneity as a friction layer using

geospatial and environmental data (Vignieri, 2005; McRae and Beier, 2007).

Population growth patterns The relationship between populations growth and

landscape heterogeneity should be investigated. There is a large number of ways to

describe this growth process, including using logistic growth models (Currat, Ray,

and Excoffier, 2004a; Estoup et al., 2010a) and using species distribution modeling

to synthesize the landscape heterogeneity into habitat suitability (He, Edwards, and

Knowles, 2013a). Importantly, as climate change would positively affect the habitat

quality of European territories for V. velutina (Villemant et al., 2011; Barbet-Massin

et al., 2013), accounting for the landscape spatio-temporal heterogeneity is funda-

mental to correctly predict the species’ future distribution patterns.

Objectives The present thesis does not aim to answer directly these biological

questions. Instead of choosing one sub-question and the related model special case

to develop the corresponding methodology (with limited extensibility), the thesis

takes the decision to first develop a general framework into which the multiplicity

of models and data can be efficiently handled by the research community members

1.3. Need for prediction: statistical modelling 9

(see Figure 1.5). The application of this framework to the special case of the Asian

hornet is an ongoing work that is not presented here, even if the methodologies

presented here are rooted in this context. Hopefully, this framework will allow re-

searchers to be more efficient while analyzing data with the statistical models that

are most suited to their question of interest.

1.3 Need for prediction: statistical modelling

1.3.1 Intuition of inferencial processes

Being able to predict phenomenons implies to have collected and processed some

form of information related to them, that is to have gained some knowledge about

the system we are trying to forecast. This information can be direct observations of

several instances of the process, or more indirect forms of knowledge.

For example, if a magician asks me to predict the color of the first rabbit he will

draw out of his hat, and that I have never attended to one of his shows, then I ac-

tually have no direct observation to use to forecast the next outcome of this magic

trick. However, since I am an average (i.e. bayesian) human being, I can entirely rely

on the knowledge I have a priori of this magical random experience. Interestingly,

through my past experience of magic tricks, and through social representations of

rabbit magical sampling (movies, books, pictures), I have actually considerable in-

formation concerning this process: usually, the magician draws a white rabbit out of

his hat. Consequently I will try the white rabbit answer, because it seems to me the

most likely output.

Interestingly, Tarzan, coming from his jungle, and knowing nothing about magi-

cians, hats nor rabbits, has no clue of the correct answer, as he has no prior knowledge

about this magical process.

The magician laughs at hearing our answers, and he begins to draw a small series

of rabbits:

{pink, pink, red, pink, pink}

At looking the observations, it first comes to my mind that this strange magi-

cian radically annihilates my a priori representation of a traditional rabbit magical

10 Chapter 1. Introduction

sampling. As the magician ensures us that there is no link between the color of suc-

cessive rabbits, Tarzan and I quickly agree on betting on pink as being the color of

the next rabbit.

Then the magician, frustrated by our previous success, defies us to predict the

behavior of another hat, where entire groups of polychromous rabbits are randomly

sampled out of the hat. As a hint, he tells us that the colors proportion in each

group is in some way related to the hat temperature oscillations that have happened

10 seconds before the sampling, while mixing each rabbit fur colors should yield to

white. With a sardonic smile, he then pulls out a series of two groups of rabbit, and

asks to Tarzan and me to guess the next group configuration.

"What a strange magician, . . . " whispers Tarzan to me, ". . . we should look for a math-

ematician.". He is right. Or for a statistician. Or both. Guessing accurately the next

rabbit group configuration implies analyzing complex relationship between multi-

ple aspects (dimensions) of the process (time, temperature, ...) and multiple aspects

(dimensions) of the data we observe (each individuals color composition). Tarzan’s

brain and mine are totally overwhelmed by these details.

When data and the process generating them are simple enough (one monochrome

rabbit is drawn out of a unique hat), our mental performance is often enough to es-

tablish sound conclusions of some observations and gain intuition about the char-

acteristics of the future observations. However, when things become trickier our

intuition for future observations is rapidly overwhelmed.

Here comes the need for mathematical modeling and statistical methods, that

will help us to formulate the problem into clear terms by forgetting minor details,

and to carefully manipulate these terms in such a way that finally solid conclusions

and predictions can be drawed from observations by running some computations.

1.3.2 Example : infering a demographic feature

The biological problem

Consider now a more biological (but less funny) example: a biologist daring me to

guess the number of children of a random female in the population. First he tests

me about the European human population. I can easily estimate it from my social

experience: I answer 2-3 by remembering and averaging over the various family ex-

amples I met during my life. The biologist seems satisfied by my answer, and he

1.3. Need for prediction: statistical modelling 11

moves to the yellow-legged hornet population: as I have no available prior informa-

tion, I ask for some data to update my knowledge. Nicely, the biologist allows me to

access its hornet database, where he carefully recorded independent observations of

the number of eggs laid by 3 hornet queens he collected in the same forest:

x1 x2 x3

12 8 16

A possible mathematical representation

The first step is to formalize the intuition we have of the biological process under-

lying these data. We are looking for a way to define a little better our intuition, but

staying vague enough for not introducing unjustified specifications.

A reasonable assumption is that since the queens are issued from the same popu-

lation, they likely share same biological properties, including fecundity: we assume

that there is not structure or fundamental differences between individuals, and that

queens have a fixed life time.

It is not impossible for a female to be sterile, that is not to be able to lay any egg,

but from what we know of insect queens, it is unlikely. On the other hand, being

confronted to a super-queen able to lay billions of eggs looks like something out of a

science fiction movie, and sounds a bit too dramatic for a realistic situation. And we

have the intuition that in a given time interval, a particular queen i, with her defined

physiological state, energy reserve, stress level, will not lay any number of eggs, but

rather that she is likely to lay a certain number of eggs (call it λ).

• x is the number of times an egg is layed in the queen life time.

• We assume that the fact that an egg is layed does not affect the probability that

a second egg will be layed later: laying events occur independently.

• The rate at which eggs are layed occur is constant. The rate cannot be higher

at some periods of time and lower in other periods.

• Two eggs cannot be layed at exactly the same instant; instead, at each very

small sub-interval of time exactly one event either occurs or does not occur.

• The probability of an event in a small sub-interval of time is proportional to

the length of the sub-interval.

12 Chapter 1. Introduction

The average number of eggs in the lifetime is designated λ: it is the rate at which

eggs are layed. In this model, the λ value can be seen as the fecundity: i.e this is a

possible, non-unique way to mathematically precise the rather abstract concept of

fecundity.

The probability of observing x events in an interval is given by the equation:

P(x) =
λx

x!
e−λ

Knowing λ, I can draw the unique associated form. As we are free to change the λ

value, this formula still captures an infinite number of forms. The inference prob-

lem is to find, among this variety of forms, the one that is most consistant with the

observation, that is, to estimate lambda.

The likelihood function

The inferencial method is the way we draw conclusions about λ when looking at the

data. Intuitively, we can imagine λ as a tuning button of the process (model) that

generates the data: changing the tuning changes the properties of the data that are

generated, and observing the properties of the data give insights about the tuning.

Consequently, it is rather instinctive to look for the value of lambda that maximizes

the probability of observing the data. Finding the maximum of a function is an

optimization problem we learnt to solve in highschool.

The first step is to formalize what is meant by "the probability of the data". Call this

function L (in the statistical literature, it is known as a likelihood function). Remember

xi the number of eggs layed by the female i. As we saw in highschool, since all xi

are independent, then the probability of observing the sequence of data (x1, . . . xn)

is the product of the probability of observing each xi.

L(x1, . . . xn; λ) =
n

∏
i=1

λx
i

xi!
e−λ = e−nλ

n

∏
i=1

λx
i

xi!

If L is differentiable (this is not always the case), then we learnt that finding

the maxima (or minima) of a function can be done by studying the properties of its

derivative. We are actually looking for the value of λ for which the derivative is null

(graphically, this represents the point at which the curve slope becomes horizontal)

that is to solve the following equation:

1.3. Need for prediction: statistical modelling 13

dL(x1, . . . xn; λ)

dλ
= 0

As the derivative of a product does not allow comfortable manipulation of the

formula, this is equivalent (and simpler) to maximize the natural logarithm of the

likelihood (the likelihood being positive), because the logarithm properties allow to

transform the product into a sum:

ln L(x1, ..., xi, ..., xn; λ) = ln e−λn + ln
n

∏
i=1

λxi

xi!

= −λn +
n

∑
i=1

ln
λxi

xi!

= −λn + ln λ
n

∑
i=1

xi −
n

∑
i=1

ln(xi!)

Finding the value of λ for which the first derivative is null is done by solving the

following equation:

dlnL(x1, . . . xn; λ)

dλ
= 0

For which the solution is:

λ̂ =
∑n

i=1 xi

n

So the point λ̂ is an extremum. The study of the second derivative allows to

precise if it is a maximum or a minimum of the function.

∂2 ln L(x1, ..., xi, ..., xn; λ)

∂λ2 = −∑n
i=1 xi

λ2 ≤ 0

As this expression is always negative, then λ̂ is a maximum of the likelihood

function. The probability of the data (x1, . . . xn) is maximal when the λ parameter

of the model equates ∑n
i=1 xi
n . We just find a maximum likelihood estimator of the

fecundity (it is normal to find it equal to the empirical mean). So finally, I can answer

to the biologist, that under our hypothesis, we estimate that the fecundity of the

yellow-legged hornet queens is 12.

14 Chapter 1. Introduction

What for more complex data and models ?

The previous simple data and model do not really reflect the complexity of real-

world biological problems.

In the case of the invasion of the yellow-legged hornet, of course that we have the

intuition that it should exist some kind of fecundity, but we have reasons to believe

that the fecundity will depend on the location of the queen. For example, we can

reasonably expect a queen installed in a luxuriant forest to be more prolific than

a queen lost in a cold and rocky mountain. It means that the numbers of eggs of

queens sampled at different locations are sampled in different distributions: this

complicates the expression of the likelihood function.

Moreover, obtaining direct data such as the number of children of a yellow-

legged hornet is difficult, if not impossible. It is feasible to have access to the number

of eggs laid during a short period of time by a queen in its natural conditions, by

opening the nest and counting the number of children in each life stage (egg, larva,

pupa). It is feasible to directly study the laying dynamics of a queen in a correct lab-

oratory experiment, for example with a continuous camera recording of the laying

process. However, in natural conditions, this kind of data are hardly accessible.

On the other hand, as biological invasions are dynamical processes, a more ac-

curate picture of the process can be given by a spatio-temporal sampling (collecting

various data a various times and at different locations). But doing so, it introduces

spatial and temporal dependencies between the observed data. For example, the

number of hornets observed at Bordeaux in 2006 is highly correlated with the num-

ber of hornets observed in its suburbs in 2005. Such dependencies means that we

can not easily consider the probability of the observations set as being the product

of each observation. This complicates again the likelihood function.

Sometimes the likelihood function simply does not exist, or maximum likelihood

estimates of the parameters do not exist (for example if L is not differentiable).

1.4 The demogenetic approach

1.4.1 Problem: data scarcity makes it difficult to inform models

Mathematical models are important to predict the invasion process. But the data

scarcity concerning the yellow-legged hornet invasion makes it difficult to build and

1.4. The demogenetic approach 15

inform realistic models, especially concerning growth and spread patterns (Keeling

et al., 2017). For example, Keeling et al. (2017) used a stochastic yearly time-step dif-

ference equation to predict the spread of Asian hornet in Great Britain. The model

assumes that each nest produces a Poisson distributed number of new founders (that

is a measure of the reproductive potential r). The mean of the Poisson distribution is

reduced by different factors, including a competition term C, the local environmental

suitability E and the latitude of the nest considered as a climate proxy. They assume

a linear decrease in the mean of queens per nest with latitude, acknowledging that

there is little data support for this hypothesis. Furthermore, some parameters are

estimated using empirical data, but the choice of precise values for several key pa-

rameters (foraging behavior parameters and mean flight distance) comes with little

justification, possibly because there is little data support, or because infering these

parameters is difficult in this modeling framework.

1.4.2 Solution: incorporate genetic data in the analysis

Using genetic data has been proved to bring invaluable support in the analysis of

past demographic events: integrating genetic data in species range dynamics allows

for more robust predictions of species responses to environmental changes (Ford-

ham et al., 2014). Indeed, the demographic history of species to environmental

changes has left marks in the genes (Marske, Rahbek, and Nogués-Bravo, 2013):

present genetic data can then be linked to past ecological processes by coupling de-

mographic models accounting for the spatio-temporal landscape heterogeneity with

genetic variation models. Genetic models based on coalescent approaches (Nord-

borg, 2001; Hein, Schierup, and Wiuf, 2004; Wakeley, 2009) are useful when the stud-

ied genetic variation is neutral.

The coalescence of two gene copies into a parent copy is simply the replication of

the ADN viewed backward in time. The genealogy of the sampled genes copies can

be defined backward in time conditionally to the demographic process which itself

can be defined before tackling genetical aspects. This is an important theoretical link

between a genetic sample and the historical processes that shaped it, and it can be

used for constructing statistical models allowing to estimate properties of these past

processes on the basis of the present sample.

16 Chapter 1. Introduction

Constructing such estimates often relies on the study of the likelihood. The like-

lihood function can be derived under simple coalescence models, but as theoreti-

cal advances steered models towards higher levels of complexity (migration (Beerli

and Felsenstein, 1999), recombination (Kuhner, Yamato, and Felsenstein, 2000), se-

lection), the likelihood function became harder and harder to calculate, especially

because the sampled genes are not independent (they share a common genealogical

history), and because considering spatial heterogeneity dramatically increases the

likelihood complexity.

1.4.3 Bypass the likelihood function analysis with ABC

Approximate Bayesian Computation (ABC) methods (see Marin et al., 2012, for a re-

view) has considerably extended the range of Ecology and Evolution models under

which inference was possible (Beaumont, 2010; Csilléry et al., 2010). ABC bypasses

the complex task of evaluating the likelihood function by combining two approxima-

tions making the problem computationally tractable: (i) observed data are reduced

to lower-dimensional quantities (the so-called summary statistics), (ii) the inference

is tolerant to small distortions of the observed summary statistics. More formal ex-

planations can be found in Blum et al. 2013 and Section 4.1.1.

These approximations make possible for ABC procedures to estimate posterior

densities of the parameters by simulating data under the model while exploring the

parameter space conditionally to a prior distribution, and accepting only the values

of the parameters for which simulated data are close enough to the observations.

Despite its apparent ease, ABC methods present important methodological pitfalls

(one of them is the choice of the dimensional reduction function), but many studies

have paved the way for the non-statisticians (see Bertorelle, Benazzo, and Mona,

2010, for an excellent methodological guide).

1.4.4 On the need of simulation resources

The popularity of ABC methods encouraged the development of more complex

coalescence-based simulation computer programs, and their authors put remark-

able efforts in successfully delivering novative, usefull and user-friendly products

to the community of population geneticists. SPLATCHE (Currat, Ray, and Excoffier,

2004b) simulates coalescents based on complex demographic simulations in a spa-

tially explicit landscape, incorporating landscape heterogeneity. Various versions

1.5. Thesis outline 17

of SPLATCHE largely fostered the rapid expansion of the so-coined iDDC mod-

eling approach (integrated distributional, demographic and coalescent modeling,

He, Edwards, and Knowles 2013b). iDDC uses Approximate Bayesian Computation

with spatially explicit demographic simulation model (possibly integrating land-

scape heterogeneity) to estimate quantities of interest such as populations growth

rate or dispersal law parameters (Lacey Knowles and Alvarado-Serrano, 2010; Es-

toup et al., 2010b; Massatti and Knowles, 2016). DIY ABC (Cornuet et al., 2014) is

an open-source program that provides the ability to conduct inference under a wide

range of complex biological scenarios combining an arbitrary number of admixture,

divergence or demographic change events. It offers very strong ABC support and an

intuitive Graphic User Interface (GUI). IBDsim (Leblois, Estoup, and Rousset, 2009)

is an open-source program for simulating genetic variation under isolation by dis-

tance, and provides much flexibility in the choice of dispersal kernels. MSMS (Ewing

and Hermisson, 2010) puts emphasis on incorporating selection and proposing ex-

tensible design. These programs, and others, have provided invaluable support to

the non-developer communities for a wide range of applications and studies.

However, most of these programs were aimed at biologists rather than at com-

puter developers: consequently they are much more black boxes than plateforms

for future development. For example, SPLATCHE does not allow to change the dis-

persal kernel or the local growth model, and most of programs aim to write only

standard genetic summary statistics in output files. This current state of the art does

not scale with the virtually infinite number of arbitrarily complex evolutionary or

demographic models and the ever-growing number of statistical methods variants.

We need standard, general, reusable tools for helping us to quickly build programs

that can simulate and analyze new models.

1.5 Thesis outline

The research presented here focuses on studying the contemporaneous demographic

history of invasive populations, using coalescence approaches and simulation meth-

ods and ABC to draw inference from genetic data collected on the field and taking

advantage of possible theoretical assumptions (see Figure 1.5). The project is espe-

cially focused on studying how spatial and temporal landscape heterogeneity affects

18 Chapter 1. Introduction

patterns of growth and dispersion by coupling niche models with the considered de-

mographic models.

1.5.1 Chapter 2

With no existing reusable codebase, simulating such new coalescence models is a

task of a daunting magnitude. That is why time has mainly been invested in the

development of Quetzal, an open-source C++ library designed to ease the imple-

mentation of a wide range of spatially explicit coalescence-based stochastic models.

It now allows to simulate new models of invasions and to test new methods of infer-

ence. However, the journey towards this acceptable software solution has been long,

tortuous and full of pitfalls. Considerable time has been lost in writing code that ex-

perienced programmers would have known doomed at first sight. Considerable

time has been spent in acquiring the required expertise with the software engineer-

ing community, of which our own biology-oriented community is little aware. It is

counter-intuitively hard to precisely identify what is bad in codes, mainly because

codes can be considered as bad even if it actually works. A bad code (even without

bugs) provokes bad feelings when working with it, because the code is cryptic, or

complicated, or too long... The community uses the word bad smell to designate such

bad feelings, a term defined by Martin Fowler as "a code smell is a surface indication

that usually corresponds to a deeper problem in the system". Code smells are not bugs, but

rather certain structures in the code that slow development and increase the risk of

future bugs. The reasons of many bad feelings we can have when writing or reading

code have been identified and solved years ago by developpers, who have much to

share about. The intended objective of this chapter is to be, if not a bridge between

two worlds, at least a trail of breadcrumbs left for the following biologist across the

jungle of the programming problems and solutions.

As models comparison is a corner stone of ABC, it is very important to be aware

of the multiplicity of the possible models of coalescence to pass on a same dataset.

And at the same time, the community of researchers can not lose time in contin-

uously re-implementing programs from scratch each time a new model version is

needed. Yet, multiplicity is very challenging to tackle when writing the code, be-

cause it requires to express things in a programming language in such a way that

the following objectives are met:

1.5. Thesis outline 19

• simulate the envisioned models

• keep the door open for unplanned models

• propose an easy replacement or reuse of code components

• allow the behavior of a component to be customized without having to modify

its code

• guaranty acceptable performances

The Chapter 2 takes the position that that these objectives can be achieved by in-

vesting efforts in learning advanced programming languages features to design not

programs, but generic tools helping to write particular instances of programs. It is

advocated that writing code in terms of the most basic language features is frustrat-

ing, disappointing, confusing and deceptive in the long-run, both for the program-

mer and its community. In contrast, advanced language features allow to express

things in a clear, flexible and secured way. Amusingly, far from being unnecessarily

technical, learning to write high-quality code is more of a philosophical and con-

ceptual adventure: after all programming languages are still languages, and as such

they allow to create words to express ideas, concepts, and communicate subtle in-

tentions to the programmer’s first interlocutor: the machine. Consequently, many

charms of natural languages manipulation find in some way an equivalent in pro-

gramming languages, and the programming activity can be funny and recreative:

computer programming is an art, because it applies accumulated knowledge to the world,

because it requires skill and ingenuity, and especially because it produces objects of beauty.

(Donald Knuth, 1974). We explore further these similarities in Chapter 2.

Section 2.1 presents very general thoughts about natural languages and how they

allow us to design and manipulate abstract concepts. Key concepts are creation of

new words, generalization by loss of details, and progressive accumulation of ab-

straction. Section 2.2 presents the principal characteristics of a programming lan-

guage, and the fundamental importance of designing collections of small code com-

ponents (called library) that can be combined in more complex components. Ideas

exposed in these two first sections are non-technical, simple enough for any reader,

and essential to understand how programming languages imitate natural languages

ways to allow elegant forms of expression .

20 Chapter 1. Introduction

Section 2.3 is written as a step-by-step guide for the beginner to understand how

a programming language can be used to express ideas that are closer from the hu-

man thought than from the machine representations. As concrete examples were

needed to illustrate ideas, the C++ language is introduced. As a C++ tutorial is out of

the scope of this thesis, and even if the code was intended in its simplest form, the

novice will surely meet unknown code syntax or vocabulary. This is generally not

too important, as we hope that reading this section will enable the reader to step-

aside from the cliché that code as to be a never-ending succession of details and to

appreciate it more like a literary form of expression.

Section 2.4 is written to help the programmer to identify a common problem in

the programming activity, namely the frequency at which objectives change, and

to understand both that this instability is inherent to its activity, and that without

precautions it can have disastrous effects on the code base. This effects are presented

here as symptoms of a bad software design, for which solutions are presented in

section 2.5 as a well-known set of five engineering principles (the SOLID principles).

This section is inevitably abstract and technical, and consequently will surely make

little sense to the novice: it still remains of fundamental important for those who are

interested in identifying and solving bad design effects in their code base.

Section 2.6 is in substance the article draft presenting Quetzal, the C++ tem-

plate library for coalescence. Quetzal as a set of thoroughly tested generic compo-

nents with extensive documentation, which algorithms and data structures can be

parametrized to match any user-specific context, and can be freely combined to sim-

ulate an open-ended number of coalescence models accounting for arbitrary user-

defined dispersal kernel, environment, growth models or data structures. Quetzal

integrates ABC components to embed efficiently any simulation model for simpler

and faster analysis. Using Quetzal, simpler, safer, faster code can be written in hun-

dreds of lines instead of thousands. The section briefly justifies the key abstractions

as design decisions driving the code production, and illustrates the flexibility of the

code components through various application examples.

1.5.2 Chapter 3

Most current statistical tools aiming to estimate demography are based on the King-

man coalescent, that neglects the probability that more than two lineages merge

during a coalescence event (Kingman, 1982): this assumption holds if the number

1.5. Thesis outline 21

of lineages is much smaller than the number of parents. However, there is a large

range of problems for which this assumption does not hold, because the population

size is not constant in time.

For example, several programs (notably various versions of SPLATCHE, Currat,

Ray, and Excoffier 2004a) implementing one or another variation of an environmen-

tal demogenetic model have been used in the context of bioinvasions. In this context,

the population size distribution over space and time is constructed by some complex

stochastic process accounting for environmental dynamics, and is not meant to be

directly estimated. A limited number of introduced individuals spread and repro-

duce across the landscape, so Nt
x, the population size in deme x at time t, is highly

stochastic. If the population size depends on parameters to estimate, the random

parameter sampling which is part of the ABC procedures makes it harder to guar-

antee that nt
x << Nt

x. Actually, at some point of the simulation (for example for

long-distance dispersal events) Nt
x can be close to 1. Obviously the probability that

more than two gene copies have the same parent is no more negligible, so a binary

merge algorithm (BMA) is irrelevant and a simultaneous multiple merge algorithm

(SMMA) should be used, because it improves demographic estimations (Montano,

2016).

Current implementations do not allow to flexibly and efficiently change simula-

tion features accordingly to the theoretical framework. The first part of the chapter

3 presents the programming techniques that allow the simulation strategies to be

decided before the program even runs. Briefly, it is actually possible for the pro-

grammer to express choices (that is, to pass options) that are evaluated at compile

time (and not at run time!): this enables the compiler to rewrite the code in an opti-

mal way, leading to very high performances.

Section 3.1 presents the design of small algorithms able to build genealogies un-

der (i) the multiple merge coalescence hypothesis or (ii) the binary merge coales-

cence hypothesis. We hope that they can be considered as standard generic imple-

mentations and easily reused. We used standard generic paradigm techniques to

enable the user to use the genealogical object type that is most suited to its context

and manipulate it accordingly. As these algorithms are expected to be used in the

deepest parts of the programs, changes in the coalescence hypothesis can have great

impacts in the whole code stability minimized whenever the simulation hypothesis

change. We anticipate this by designing the algorithms as small components with

22 Chapter 1. Introduction

a common interface allowing them to be freely exchangeable at compile-time. This

common interface is explained in section 3.1.2. We believe that the programing el-

ements presented in this section can be useful for the C++ beginner willing to add

flexibility in its code, or for the potential user of the library. The algorithms fulfill

the standard logic of the modern C++ approach, what is beneficial for the users.

Section 3.1.3 (respectively section 3.1.4) presents the behavior and the C++ imple-

mentation of a binary merge (respectively simultaneous multiple merge) coalescence

event. Their reading can be enlightening to fully understand how the algorithms

work (that is, how operations are performed), and to understand the programming

techniques that enable the user to freely define the exact nature of these operations

(that is, to achieve true genericity).

Section 3.1.5 presents guidelines for the developer willing to write code that can

adapt to changes in the coalescence model hypothesis, that is writing code where

switching from BMA to SMMA is straightforward and requires no code modifica-

tion.

While designing these algorithms, a small simulation test program was designed

to check the validity of the estimation method presented in Chapter 4, section 4.2.8:

the true parameter estimation completely failed. Coalescence with multiple merges

is known to dramatically slow down the simulation (what is opposed to the perfor-

mance constraint imposed by ABC procedures), so I assessed that more simulations

were needed for the posterior to converge and I began to search if some reasonable

optimization was possible in the simulation of the coalescence events. It appeared

that instead of assigning a parent to each coalescence line then merge lines with

same parent, it was possible to directly sample a coalescence configuration in a pre-

computed, memoized probability distribution, and I designed a new algorithm to

generate the distribution support. This new algorithm fixed the error and allowed

correct estimation, but for the wrong reason: it appeared some time later that the

initial algorithm was in fact bugged ! However, it was not in vain, as the design

effort required here allowed important enhancements in the coalescence algorithms

genericity, and that the new version of the coalescence algorithm leads to 50% faster

simulations in our study. The rest of the chapter 3 (section 3.2) relates this little ad-

venture.

1.5. Thesis outline 23

1.5.3 Chapter 4

Usually in ABC coalescent studies of complex demographic processes, the model

parameters inference is made possible by finding the sampled genes most recent

common ancestor (MRCA) through the reconstruction of their genealogy. Doing

so, the modeler has to account for an history that can be far more ancient than the

processes of interest: the MRCA can indeed be found in a remote spatio-temporal

window, leading to a number of problems that are related to the two ABC main

approximations. These approximations are detailed in section 4.1.1.

First the quality and the quantity of available information drop when going back-

ward in time: it will result difficult to reliably inform the model, whether for model

specification (prior distributions, model hypothesis) or data (availability and consis-

tency).

Second the rejection rate of ABC will unnecessarily increase since the remote-

time topology of the coalescent strongly conditions the data likelihood: a genealogy

which bottom topology is consistent with observations can be rejected if its top topo-

logical properties are inconsistent with the observations. This is a waste of compu-

tational time because respectively to the recent history process, it should have been

accepted.

To avoid the simulation of the top genealogy, a solution would be to randomly

draw the allelic state of ancestors before the MRCA is found. This is not satisfying

as generally the prior distribution of the states is unknown, with little information

available in the literature. Furthermore, infering the ancestral allelic states would

increase the dimensionality of the model.

The idea developed here is to build on the very recent genealogical clustering

process to assess its consistency with the observed genetic clustering. Whenever

the non-mutation hypothesis holds, it allows to conserve the anonymous nature of

the allelic states, as they are conserved along the bottom branches fragments. The

non-mutation hypothesis is justified in section 4.2.1

By stating that as the mutational process can be negligible compared to the recent

genealogical process in shaping the sample configuration, we can consider that data

at one locus actually entirely reflects a partition of the dataset by the underlying

coalescent hanging subtrees. Briefly, the coalescence process does not have to be

simulated until MRCA is found.

24 Chapter 1. Introduction

Observed data (based on true allelic states) and simulated data (having anony-

mous allelic state) can be thought as being a certain type of mathematical objects

-fuzzy partitions. Classical (respectively fuzzy) partitions formalism is presented

in section 4.2.2 (respectively section 4.2.3). Using this general mathematical frame-

work allows to reuse the existing fuzzy partitions comparison methods to compare

simulated and observed data in the ABC method.

Doing so, the ancient history and the ancestral allelic states do not have to be

inferred anymore, while the inference can be done without summary statistics using

the Fuzzy Transfer Distance presented in section 4.2.7. The implementation of this

method will soon be available in Quetzal after publication.

1.5.4 Conclusion

In this thesis is presented a set of methodological and computational tools for the

ABC inference of the modern history of invasive population.

Fist, we presented Quetzal, a C++ library that aims at easy the development

of new programs. It allows to widden the range of models that can be simulated,

while ensuring high performances, and allows inference by offering an ABC mod-

ule. Joint benefits of Quetzal are not met by current avalaible software solutions.

Even if the code base is already quite important, important features that are useful

for the community are still missing. This is not alarming: in the long run, future

applications to different biological models should lead to a natural extension of the

library features, and the open-ended design of the library makes it possible for users

to combine the existing features with their own. If the collaborative effort follows, I

expect that it should end up with an incremental gathering of fundamental features

that are presently dispersed in various coalescence simulators. For example, tak-

ing into account coalescence for linked loci would allow to treat sequence data, but

time was not spent in implementing non-critical features not required by the current

project: this is probably one of the first features that would be implemented in the

next versions, along with a summary statistics library based on available code (Ar-

lequin). The documentation website traffics is regular, but still too modest and too

sparse to draw useful insights for project development. It is generally admitted that

it can take years for open-source projects to reach the critical mass of features able to

attract users and collaborators.

1.5. Thesis outline 25

Then, we presented various algorithms that provide flexibility in the behavioral

details of coalescence algorithms. Their interest is not limited to discrete-time mod-

els, even if discrete-time models are used as a general framework all along the thesis.

Continuous-time models of coalescence with simultaneous multiple collision exist,

and they can be interfaced with Quetzal’s policy classes.

Finally, we presented an original manner to conduct inference of very recent de-

mographic processes.

As said earlier, their development is grounded in the study of the invasion of the

Asian hornet (Vespa velutina) in Europe, a predator of honeybees. Using these tools

to infer the dispersal and ecological features of V. velutina and to reconstruct its in-

vasive history is still in development, and is not presented here. It involves possibly

collaborating with a biologist specialist of V. velutina (Juliette Poidatz, Université de

Bordeaux) and integrating species distribution models by collaborating with Alice

Fournier (Université d’Orsay).

26 Chapter 1. Introduction

F
IG

U
R

E
1.4:

T
he

invasion
of

V.velutina
raises

a
variety

of
questions.

First,it
is

stillto
be

thoroughly
tested

that
the

hypothesis
of

the
unique

introduction
site

is
relevant.Ifnot,the

coordinates
ofthe

m
ultiple

introduction
points

should
be

estim
ated.Then,to

predictthe
future

ofthe
invasive

process,the
various

dispersalm
odes

should
be

elucidated,and
the

relationship
betw

een
populations

grow
th

and
landscape

heterogeneity
should

be
investigated.This

diversity
ofquestions

leads
to

an
im

portantnum
ber

ofpossible
m

odels
and

data
to

inform
them

.
T

his
thesis

does
notdirectly

answ
er

the
biologicalquestions,butitrather

prepares
a

m
ethodologicalfram

ew
ork

into
w

hich
this

m
ultiplicity

can
be

efficiently
handled.

1.5. Thesis outline 27

FIGURE 1.5: The theoretical framework presented along the thesis has strong connections
with a number of phylogeographic approches (see e.g. He, Edwards, and Knowles, 2013b).
Tackling this variety of questions, models and data has strong consequences on the simula-
tion resources development methods, that are explained in Chapter 2. The biological inva-
sion setup comes with interesting features: few ancestors were introduced few generations
before sampling, and population sizes are (both spatially and temporally) very heteroge-
neous. These features have important impacts on the assumptions that can be made, (i) for
the coalescence process (explored in Chapter 3), (ii) for the simulation of data for ABC, (iii)
for the distance-based comparison in the ABC rejection algorithm (explored in Chapter 4).

29

Chapter 2

Development of Quetzal, a C++

library for coalescence

Approximate Bayesian Computation methods require that models can be simulated ef-

ficiently. The state of the art does not allow to easily develop the new coalescence-based

simulators that are essential in answering questions related to biological invasions. This

chapter attempts to solve this problem by presenting a C++ library that is general enough to

simulate data under an open-ended number of coalesence-based models. The first part of this

chapter presents guidelines through the abstraction principle, that enables the production of

code with enhanced flexibility, efficiency and reusability. Library production shares similari-

ties with the development of new words and concepts in a natural language: these similarities

are exploited through the chapter to ease an intuitive understanding of the most important

programming concepts. The second part presents Quetzal, a C++ library helping to rapidly

develop coalescence-based simulators, possibly in explicit heterogeneous landscapes.

2.1 Reflexion about natural languages and their abstractions

The world was so recent that many things lacked names, and in order to indicate

them it was necessary to point.

One Hundred Years of Solitude

Gabriel García Márquez

30 Chapter 2. Development of Quetzal, a C++ library for coalescence

Nouns, verbs and adjectives. Lightness and rigour form the secret of this precious

alloy: the language. Express as precisely as possible, without heaviness, let the

beauty appear. The language is music made of liberty and unbreakable rules.

Une étoile qui danse sur le chaos, free translation

Eve Ricard

2.1.1 Words creation

Take a look at the nearest window: details and variations are a fundamental and

overwhelming component of the natural world. Even two neighbouring trees of

a same species will have remarkable differences in all dimensions: height, colors,

number of branches or number of leaves. Let us go back to the time where words

were not yet. Without words, I can distinguish these two objects by pointing to one

or another. But as soon as I will move away and loose eye-contact with these objects,

I will loose this ability to point, and I will be unable to communicate about them.

Here comes the support of the language, as creating words make us able to refer to

distant things: if I can at least emit two different sounds, I can give a name for each

of these two trees, like Aba and Ada. I can instruct an interlocutor, pointing at one

tree by pronouncing “Aba“, then pointing to the other pronouncing “Ada“. As we

would meet again in a distant place at a distant time, at the evocation of a name our

memory will invoke the appropriate object. As language is open-ended, I can easily

name a third tree Abada, and a fourth Abadaba. But as we go forward in life, the

number of things that have to be referred grows beyond our capacity to remember

or pronounce the names designing each thing and sets of things. We reasonably can

not rely on the enumeration of the sole name of each particular instance of objects

to address the set formed by the reunion of these objects. In other words, how to

communicate efficiently about the four trees Aba, Ada, Abada and Abadaba if we

did not define the concept of a tree species ? And how to communicate about this set

without forgetting what makes each particular tree distinguishable from the others

? Here comes the need for oblivion, for loss of details and generalization.

2.1.2 Generalization and loss of details

When observing Aba and Ada, despite all their differences, some of our intuitive

mental process will discard the details that make them distinct entities, retaining

what they share in common rather than what they do not share, leading us to class

2.1. Reflexion about natural languages and their abstractions 31

them as being instances of a same set. I can invent a name designing this set: Quer-

cus. I can instruct my interlocutor by pointing successive trees and repeating “Quer-

cus, Quercus . . . “. Among their details and variations he will rapidly capture their

common properties and associate their conjunction with the definition of the word I

just created. Later, he shall encounter a new object and be able to determine if this

instance fulfills the requirements of being a Quercus. Based on the decision, he will

initiate some appropriate action, like harvesting the comestible fruits or ignore them.

As we meet again later, the evocation of the Quercus will encompass the full gener-

ality of this set of common properties. Of course we can refine the definition if we

discover that new constraints define new usefull subsets: Quercus robur and Quercus

petraea provide long-lasting heartwood and comestible acorns, both are a (fulfill the

constraints of being a) Quercus but are distinguishable by the form of their leaves.

Quercus does not design Aba nor Ada, it designs the idea of both of them. It is

at the same time more and less than Aba. More, because it represents also Ada and

any possible tree fulfilling its constraints. Less, because it is unaware of all the details

that make them different and identifiable. In some strange, cryptic but unavoidable

way, our brain alleviates us from the overwhelming mass of details by constructing

artificial and simplified representations of objects: concepts, that we can name and

share, refine and extend. This process has been termed abstraction.

Definition 2.1.1. Abstraction The process of formulating generalized ideas or con-

cepts by extracting common qualities from specific examples.

Amusingly, abstraction is so intuitive and powerful that it requires tremendous

efforts to formalize the species concept definition, even though we could distinguish

an oak from a poplar from our earliest years.

2.1.3 Complexity reduction

Abstraction is also a natural way to decrease the complexity of a problem to a reason-

able level. If we try to compare men and women salaries, the observed distributions

of salaries would certainly be abstracted to (approximated by) some distribution law

(e.g. the normal distribution). As the details of the reality of the sample will be ab-

stracted away, its dimension will dramatically drop to the comfortable number of

parameters of the law (two in the case of the normal distribution: mean and vari-

ance). Instead of being overwhelmed by the smallest details of the sample, our brain

32 Chapter 2. Development of Quetzal, a C++ library for coalescence

can now focus on its principal variations and proceed to extra work, for example

mean comparison. The quantity of information lost is hopefully compensated by

the information gained by being able to manipulate this approximation in a rigor-

ous, mathematically formalized statistical framework.

2.1.4 Incrementality of abstraction: defining new abstractions with old

abstractions

Words creation coupled to generalization is a fundamental aspect of intellectual

work and communication. Science communication makes full use of abstraction as

new concepts are created daily from pre-existing concepts. The word ecosystem was

created and loosely defined in 1935 by the botanist Arthur George Tansley, and its

definition has been progressively refined to its present accepted formulation:

Definition 2.1.2. Ecosystem All the living things in an area and the way they affect

each other and the environment (Cambridge online dictionary).

First we can appreciate again the benefit of defining new words by imagining

how it would be difficult to exchange about ecology if the word ecosystem had not

been created and that we had to repeatedly enounce its full definition instead. Sec-

ondly we can appreciate the full generality of the definition, as it is defined in terms

of secondary abstractions: living things, affect, environment. We will see that a main

purpose of programmers is to imitate this linguistic process that creates new power-

full abstractions.

2.2 Programming languages

2.2.1 “An absolute gulf between intelligence and bullshit.“

Fondamentalement, l’ordinateur et l’homme sont les deux opposés les plus

intégraux qui existent. L’homme est lent, peu rigoureux et très intuitif.

L’ordinateur est super rapide, très rigoureux et complètement con. On essaie de

faire des programmes qui font une mitigation entre les deux. Le but est louable.

Mais de là à y arriver . . .

Gerard Berry

2.2. Programming languages 33

Solving problems with a computer requires a communication system between

the human and the computer; that is a programming language. As a human pro-

grammer, then my first interlocutor is a computer, and my first task is to write a

set of instructions that are understandable by both humans and computers. This is

complicated and discussion is incredibly uneasy. As often with communication, the

incomprehension is largely due to cultural differences. In our human culture, all

communications are based on small memory, great intuition. No need to mention

our ability to deal with homonyms and ambiguities, that leads to word games, hu-

mour and poetry. It is amazing that humans are able to communicate in languages

that allow for so much uncertainty and ambiguities. We expect that our interlocutor

will be able to detect small errors in our speech, correct them, and clarify ambigui-

ties by choosing the most appropriate meaning or by asking. Above all, we expect

that the discussion will not be overwhelmed by quantities of useless details.

Any person who once wrote some code would surely have a mirthless laughter

by reading these lines. Indeed, a computer will likely never be this ideal companion:

computers are way too dumb. Even if computers are incredibly fast and handle

tons of details, they perform poorly at generalizing, guessing, infering meaning and

intentions.

An interesting human metaphor was given by Jorge Luis Borges in Funes the

Memorious (1942), a tale where Ireneo Funes acquires after a head injury the ability

to remember everything. His thinking leads the narrator, a version of Borges himself,

to state:

I suspect, nevertheless, that he was not very capable of thought. To

think is to forget a difference, to generalize, to abstract. In the overly

replete world of Funes there were nothing but details, almost contiguous

details.

For humans, abstraction of details is everything. For computers, the details are

everything. Humans and computers are so different that communication between

them (that is, programming) is uneasy, requires years of training, decades of practice

and that generations of researchers and engineers spent their time in trying to ease

it. We will see that solutions have been found, as modern programming languages

propose features that allow human developers to build powerful abstractions that

34 Chapter 2. Development of Quetzal, a C++ library for coalescence

can be then used to write code that hopefully is more than “almost contiguous details“

and that can be understood both by humans and machines.

2.2.2 Unbreakable rules: Vocabulary, Grammar and Semantics

A programming language is formed by:

• an alphabet (e.g. ASCII or Unicode)

• a formal grammar (defining the syntactic rules between elements of the lan-

guage)

• a semantics (that gives the meaning of a sentence in a language).

Remark. As in natural languages, semantics and grammar can be thought indepen-

dently: the well-known sentence "Colorless green ideas sleep furiously" (see Chom-

sky, 1957, p.15) is grammatically correct but semantically nonsensical.

A programming language provides a basic vocabulary, that is a set of primary ab-

stractions hiding the details of a computer functioning. For example, manipulating

numbers is expected by humans to be easy and intuitive, and one expects to per-

form additions or divisions by writing without caring about number how numbers

are represented in the computer, or about the algorithms defining how mathematical

operations are performed. This basic vocabulary is essential, because number repre-

sentation and computer arithmetic constitute a distinct discipline requiring years of

study (see e.g Parhami, 1999).

2.2.3 Liberties: if the word doesn’t exist, invent it

Writing a non-trivial program only in terms of the basic vocabulary of a language

would be as cumbersome and inefficient as writing a thesis only with a 5 years

old child’s vocabulary: it is possible, but it would require a huge amount of large

and complex sentences carrying little meaning and expressiveness for the human

interlocutor. A funny counterpart in natural languages is given by the Definitional

literature. It is a poetic form and technique coming from OuLiPo (a group of mathe-

maticians, authors and painters aiming at inventing a new literature) that starts from

a statement and rewrites it by recursively replacing each word by its definition. The

statement:

2.2. Programming languages 35

The study and management of ecosystems represents the most dy-

namic field of contemporary ecology (Publishing, 2018)

is transformed into:

The application of the mind to the acquisition of knowledge, as by

reading, investigation, or the act or manner to take charge of a system,

or a group of interconnected elements, formed by the interaction of a

community of organisms with their environment, designate a very active

area of activity or interest of relationships between the air, land, water,

animals, plants, etc.

It is naturally hardly understandable due to the many details obfuscating the

primal meaning.

Just as prehistoric human proto-languages did not know (nor need) the concept

of ecosystem or the intermediary subconcepts organisms or environment, programming

languages are fairly young and natively do not know anything about them. But just

as a strength of human languages is to conceal the potential for creating an open-

ended number of words, a strength of programming languages is to give the ability

to define new abstractions in terms of other abstractions so that they can be used to

express ideas in a synthetic and efficient way. We will see in the further sections the

various tools that are given to build them. Gathering a set of abstractions suitable to

a given field (e.g the coalescence) is exactly the role of libraries.

2.2.4 Libraries: Invent it; But first be sure it doesn’t exist

Motivations

A library can be seen as a semantic field that is required to conveniently address in

the programming language the family of problems arising from the discipline. The

abstractions contained by the library allow to represent directly into the code con-

cepts and behaviors that are familiar and well-defined into the field, rather than ma-

nipulating inappropriate vocabulary coming from lower abstractions. Importantly,

these abstractions are designed to be highly reusable (see Figure 2.1).

36 Chapter 2. Development of Quetzal, a C++ library for coalescence

FIGURE 2.1: Library seen as a collection of components (abstractions) that have a defined
behavior (they have a special purpose) and that can be combined if they present compatible
interfaces. The library user writes a program by picking the desired behaviors in the library,
so a program can be written. The program itself has a defined behavior that depends on the
input given by its user. In this example, it conduces some inference using genetic data as

input. The program user and the library user may not be the same person.

Definition 2.2.1. (Library) A collection of implementations of behavior, written in

terms of a language, that has a well-defined interface by which the behavior is in-

voked (Wikipedia, 2018). Figure 2.1 gives an intuition of the difference between a

program and a library.

When a library adressing a problem does not exist, it is generally worth to design

it, because in the long way much time will be spared. The main goal and difficulty of

designing the library will be to construct abstractions implementing small, atomics

behaviors that are easy to understand and easy to reuse.

Benefits of libraries: correctness, efficiency, maintainability

Using libraries has a well-known number of benefits that were summarized in Strous-

trup (2003):

The key to fast development, correctness, efficiency, and maintain-

ability is to use a suitable level of abstraction supported by good libraries.

2.2. Programming languages 37

Fast development comes from the fact that since the administrative tasks (organiza-

tion of the program into small pieces and memory management) are services offered

by the library, the programmer is free too focus on describing its own computational

problem in terms of the library concepts.

Correctness comes from the fact that as the library code is regularly reused, its

correctness is more likely to be tested, and if an undesirable behaviors is raised, it

can be reported and corrected by the library maintainers.

Maintainability stems from the fact that by definition, a library decomposes com-

plex tasks into much smaller and simpler behaviors, allowing to easily perform

changes (to fix a bug or add a feature, to enhance performance or usability) with-

out introducing new bugs in the system. Since complexity has been breaked down,

the system is understandable by new developers that can make a progressive explo-

ration of the collection.

Efficiency is due to the fact that since a library code is likely to be reused many

times, an important quantity of time can be invested in the optimization of its most

critical components. Shared knowledge coming from users feedbacks and collab-

orators suggestions participate to progressively increase the efficiency of the most

important library components, at no cost for the user.

What is a "suitable level of abstraction" ?

Call him Voldemort, Harry. Always use the proper name for things. Fear of a

name increases fear of the thing itself.

Harry Potter and the Sorcerer’s Stone

J.K. Rowling

Being able to use a suitable vocabulary with the right level of abstraction to ex-

pose a problem is obviously a quality for natural languages speakers. For example

in giving a talk, a young phD student in landscape genetics will naturally manip-

ulate landscapes because it is a convenient abstraction in the natural language. The

landscape word is charged with meanings, but it does not specify which aspects (to-

pography, soil occupancy ...) are considered, and it does not precise the spatial extent

of the landscape. It does not even precise the geometry of the geographical space.

Far from being a problem, this lack of precision helps the audience to focus on more

advanced points.

38 Chapter 2. Development of Quetzal, a C++ library for coalescence

Reciprocally, using an inappropriate vocabulary or a wrong level of abstraction

to expose a problem is obviously disruptive and inefficient. Most of communica-

tion problems between scientists of different fields come from the fact that the levels

of abstractions have to be constantly adjusted, and most of the efforts in interdis-

ciplinary projects consist in acquiring the abstraction level of the others fields (or

at least informing a common and comfortable subset), so ideas can be efficiently

appropriated and passed around. As each field has built very high abstractions,

communicating with the newcomer is commonly associated with a lowering of the

abstraction level that sometimes does not reflect anymore the true nature of things.

This does not necessarily threaten the quality of short interactions, but it can prevent

any attempt to treat more advanced problems.

Similarly in programming, very short programs do not necessarily suffer from

using low-level of abstraction, but long ones will. If the problem has been exhaus-

tively specified, that there is absolutely no risk that requirements change, and that very

few lines of code are necessary to describe the problem in terms of the language most

basic feature, obviously the problem is a low-level problem, so using higher level ab-

stractions will not help. But if the problem is not that obvious, then programmers

can greatly benefit from finding the right level of abstraction. When they fail to

identify it, problems arise.

For example, if the previous student has to write a program for solving non-

trivial landscapes problems and that he finds no library offering a landscape abstrac-

tion, the risk exists that, ignorant or reluctant about the tools allowing to represent

such a degree of abstraction in the code, he will be tempted to over-specify details

and to use built-in and low-level abstractions, or inappropriate abstractions coming

from another field. He will likely use matrices from some mathematical library to

represent lattice landscapes, and row index and column index to indicate coordi-

nates. Instead of writing code using landscapes, he will write code using matrices. At

the beginning of the project, it will seem simple enough. But very soon, all his code

will be pervaded with matrices of values. As matrices are charged with a strong

matrix semantics, manipulating them is going to be of an absurd complexity. As

matrices ignore the concept of time, he will be tempted to use a list of matrices to

represent a time changing landscape. As a landscape can have more than one di-

mension (altitude, temperature . . .), a list of list of matrices is going to replace the

previous definition. And paradoxically, there is going to be no other choice than

2.3. Constructing abstractions with the C++ language 39

using this utterly complex and counter-intuitive aggregate to represent landscapes

of one dimension that is constant in time and space (where one value should have

been enough). This is paradoxical, because using matrices seemed initially a simple

and sound option.

Indeed, problems come from the semantic gap between a landscape and a matrix.

We expect from a lattice landscape to have some notion of width or resolution (for

example in kilometers), but a matrix semantics gives no indication about this crucial

information. We expect to easily compute geographical distances across two random

points in a landscape, but a matrix does not propose any related feature. Obviously

this is not a lack in the matrix definition: they are just meant to be used as matrices,

not landscapes. The problem is that we are using the wrong level of abstraction: even if

in some cases a matrix can be an acceptable representation for a physical value sam-

pled in a two-dimensional lattice landscape, a matrix is definitely not a landscape.

They do not present the same behaviors and multiplying a landscape by a vector

makes no sense. This difference should be stated in the code as clearly as the fact

that a whale is not a fish even if they both swim.

Making this distinction explicit is essential, because we are intuitive beings and

when reading a text we tend to perform projections on the potential behavior and

qualities of things. Obviously these projections will be profoundly different is the

thing is a matrix or a landscape: using the wrong term for an object is almost always

confusing and deceitful. “If names be not correct, language is not in accordance with the

truth of things“ said Confucius. Experience tends to show how much he was true

about programming languages too.

In conclusion, when willing to represent a concept in a code, one should first

search for the suitable abstraction in existing libraries. If not found, it should not be

feared to build this abstraction using the programming language features (they exist

for this very purpose) and to give it a proper name.

2.3 Constructing abstractions with the C++ language

2.3.1 Why C++ ?

At some point, one has to decide which programming language will be used to ad-

dress the computational problem. There is a wide range of available languages and

choosing among them is not straightforward: comparing languages is a very tricky

40 Chapter 2. Development of Quetzal, a C++ library for coalescence

issue. In most cases, the choice of a language is related to situational (rather than

technical) aspects like the possibility to run the software on the material, licenses,

developers experience or the community culture.

The C++ language is a royalty-free portable language, that has been widely used

to implement coalescence simulation programs. This popularity can be explain by

the fact that C++ design is particularly relevant for applications requiring high per-

formances (Stroustrup, 1994). It allows both for low-level manipulation of data rep-

resentations (pointers, manual memory management) and for building of higher-

level structures using the language features such as classes, class hierarchies, tem-

plates, exceptions, and namespaces. These features allow to build and use efficient li-

braries. As C++ has static typing (that is, types are known and checked during com-

pilation, and not at runtime), it allows the compilers to optimize the code for better

runtime efficiency. C++ supports various styles of programming (among them pro-

cedural programming, object-oriented programming, generic programming) that al-

low to choose the appropriate style to solve a problem in the most elegant way (that

is, the simplest and the most efficient one).

2.3.2 A step-by-step abstraction design

Primitive built-in types and good variable names

At some point in writing the program, it will be necessary to store some interme-

diary result in a variable, that is to reserve space in memory: variables are memory

locations where values can be stored. The type of the variable determines how much

memory the operating system should reserve, the variable name allows to refer to it.

The C++ language offers several built-in types: boolean types, character types,

integers types and floating point types. As said earlier, these types act as primary ab-

stractions hiding the details of the data representation : for example, one can declare

two floating point values to represent the longitude and latitude of a sample point

without having to feel concerned about how floating point values are represented in

memory. Furthermore, the variable name is a very basic liberty for the programmer

to elevate a bit the level of abstraction of its code:

double latitude = 45.5;

double longitude = 1.2;

2.3. Constructing abstractions with the C++ language 41

Type aliasing for expressive types

The type aliasing is a feature allowing to add a bit of abstraction that will help the

understanding of the code in an explicit and secured way. For example, imagine we

want to precise that the coordinates are expressed in decimal degrees. We could of

course add a line of comments:

// double represents decimal degrees

double latitude = 45.5;

double longitude = 1.2;

The use of comments (when, where and how to write them) is still a very active

debate. In my opinion, the main problem is that comments are by definition not

checked by the compiler, they are only written, read, and checked by humans, and

that humans are fallible and very hurried beings. Because of this, after having mod-

ified a code snippet, the programmer forgets often (intentionally or not) to modify

the comment explaining the code. Consequently, the histories of comments and real

code tend to diverge, and that often leads to comments that are in contradiction with

the implemented behaviors. This occurs a lot, and consequently a recurring motto

is to write code that is self-explanatory: no one should rely on comments to express

key concepts if the language features allow to express the same concept in the very

language, in an explicit, concise and secured way. Indeed, type aliasing allows to

add some information to a type, in a way that is compiler-proof:

using decimal_degree = double;

decimal_degree latitude = 45.5;

decimal_degree longitude = 1.2;

Standard Library for more advanced abstractions

The Standard Library provides key components that are pivotal in the code pro-

duction: algorithms, containers, functions and iterators. Containers are used to

store values of any built-in types or any user-defined type fulfilling some basic con-

straints. For reducing the library complexity, algorithms and functions are designed

to be independent of containers on which they operate. This is accomplished by

using iterators, an abstraction that allows to represent any type of container.

The Standard Library is widely used for building the very first levels of abstrac-

tion in a project. For example, any function using geographic coordinates would

42 Chapter 2. Development of Quetzal, a C++ library for coalescence

have to take as an argument the longitude and the latitude. This can be cumber-

some if several coordinates are needed:

void foo(decimal_degree lon1 , decimal_degree lat1

decimal_degree lon2 , decimal_degree lat2);

Code complexity can be reduced by associating latitude and longitude in a same

structure, like a pair of values: the Standard Library offers the std::pair container

to represent it. Arbitrarily, the first element (accessed by x.first will be set as the

longitude, and the second element (accessed by x.second) as the latitude. Each (lon-

gitude, latitude) couple is then represented by a coord_type object (that type is an

alias on a std::pair<double>). This reduce complexity and function calls begin to

look better:

using decimal_degree = double;

using coord_type = std::pair <decimal_degree >;

void foo(coord_type x, coord_type y);

However, depending on the context, it may be that the application needs to

evolve (what happens often in research), and that the altitude should finally be part

of the coordinate definition. We can anticipate this evolution by not constraining a

coordinate to be a couple of value. Like many problems in software development,

this can be done in more than one way. Using a std::vector<decimal_degree>

would certainly be the first reflex of the beginner willing to represent a set of values

(i.e. abstracting away the number of elements).

In the code lines above, only the type aliasing definition has to be changed:

using coord_type = std::vector <decimal_degree >;

Because of type aliasing, the signature of foo does not need to change, as it was

not defined in terms of std::pair but in terms of an abstraction (the coord_type

type alias). We see here a first advantage of using abstractions: that leads to code

that is more robust to details changes.

A "wrong level of abstraction" feeling

However, this solution is still unsatisfying, as it is not clear if longitude or latitude

is referred first. The standard EPSG:4326 recommends to use the latitude, longitude

ordering. But an appreciable number of software use longitude, latitude ordering, so

2.3. Constructing abstractions with the C++ language 43

there is much confusion. Apparently trivial, this problem caused so serious damages

in the geospatial community that GeoTools, a GeoSpatial library, found it worth to

document the history of the problem (GeoTools, 2018).

The problem comes from the ordering of information elements (latitude, longi-

tude) that are not meant to be ordered. Obviously using an abstraction based on

an ordering is the wrong level, as it offers an information that is misleading. Just

like the std::pair implementation did the arbitrary contract that the first element

would be the longitude and the second element would be the latitude, so does the

std::vector implementation, adding that the third element (if it exists, what still

needs to be checked) would be the altitude. As these contracts are implicit (that is

not specified as compiled code), it becomes the task of the developer to remember

and to respect all these points, loosing time and energy by constantly asking the

code he is writing (or reading):

using coord_type = std::vector <decimal_degree >;

coord_type x = {45.5, 1.2, 10.0}

// much further in code ...

x[0] = 9855625; // does it access to longitude or latitude ?

// is the new value relevant ?

x[2] = -10; // what was the elevation unit again ?

// decimal degree ? Really ?

// was the third element defined ?

// if not , this is a bug.

Moreover, there is no tenable reason that could ever justify why the altitude

shares the same value type with longitude and latitude: altitude unit should be pre-

cised independently. This point could be naively fixed using a std::tuple (that is

a container of heterogeneous types) to define an alias for coord_type, but it would

not improve the readability and the expressiveness of the code using coordinates,

nor would it improve the security checks:

• is longitude in its validity range, that is [−180, 180] ?

• is latitude in its validity range, that is [−90, 90] ?

• is elevation relevant relatively to Earth diameter ?

44 Chapter 2. Development of Quetzal, a C++ library for coalescence

These questions must hold true during execution of the program: they are called

invariants. To enforce these requirements by design in a clear and explicit way, the

best solution is to define a new type, a class, where it is guaranteed that invariants,

expressed in the code using assertions, are always respected.

Classes for enforcing invariants

At some point, one wants to represent in the code an object of the real-world that has

some internal state, some internal functioning and some actions that are possible to

perform on it. As the previous example of geographic coordinates is rather abstract,

we will first consider a more trivial object, say a lamp that we got at our favorite

shop. The lamp switch can be on or off, the lamp can be connected or disconnected,

and the bulb can be functional or burnt-out. If the lamp is disconnected or if the

bulb is burnt-out, the lamp can not be alight, even if the switch is on. Of course at all

times the lamp is either alight or not. To model the state of the lamp and the actions

one can perform on the lamp, using only basic types will not be satisfying: indeed

several dependent variables are involved (alight state, switch position, connection

state...), and modifying one variable has repercussions on the others (connecting

the lamp lets the switch position untouched but will alight the lamp if the switch

was on). If not hidden and carefully managed, these dependencies among variables

will seriously hinder code reliability and readability. Rather than cryptic variables

manipulations, one would likely prefer to write (or read) something like this:

Lamp lamp = our_favorite_shop :: buy_lamp ();

lamp.connect ();

lamp.turn_on ();

if(!lamp.is_alight () & !lamp.is_bulb_burnt ()){

std::cout << "defective␣item" << std::endl;

}

The main task of the programmer will be to define the Lamp class in such a way

that these actions can be performed and that the state of the lamp is always valid,

from its construction to its destruction. Any action performed on the lamp should

never put the lamp in an invalid state (for example an lamp alight with its switch

off). Consequently, one should avoid to enable the lamp user to turn off the switch

2.3. Constructing abstractions with the C++ language 45

without feeding back this action on the lamp state. This can only be done by for-

bidding the direct access to the state, and imposing the user to access the state by

calling carefully designed functions. This is the role of the private and public fields

of a class:

class Lamp{

private:

// Implementation details , generally state

bool is_switch_off;

bool is_alight;

bool is_connected;

// ... more details

public:

// Public interface , generally behaviors

bool is_alight () const;

void connect ();

void turn_on ();

}

The private field contains the member variables (and member functions) that

describe the internal details of the class. They can not be directly accessed from out-

side the class: only the members described in the public field are accessible. The

implementation of the turn_on function will ensure that the is_alight member is

set to true if and only if the is_switch_off member is evaluated to false and the

is_connected member is evaluated to true. This secures the access and modifi-

cation of the information by the user, as he would not be able to directly set the

is_switch_off member. Instead he will will have to pass by a secured public mem-

ber function that automatically avoids dysfunctions.

Reconsidering the coordinate data type previously presented, creating a class

that is dedicated to its representation allows to design quite easily a set of services

that is both very expressive and difficult to corrupt (Figure 2.2). An example is the

following very minimalist implementation of a GeographicCoordinates:

class Coordinates{

public:

46 Chapter 2. Development of Quetzal, a C++ library for coalescence

FIGURE 2.2: Class services: a set of complex behaviors is hidden be-
hind a class that offers a clear and intuitive interface that the user
can easily predict, understand and use. A metaphor can be given by
a coffee machine, where complex details (pipes, electronics, pumps,
water alimentation...) are hidden behind few intuitive buttons and an

electric plug.

// type aliasing

using decimal_degree = double;

using km = double;

Coordinates(decimal_degree lat , decimal_degree lon);

decimal_degree lat() const;

decimal_degree lon() const;

km great_circle_distance_to(Coordinates other) const;

bool operator ==(const Coordinates& other) const;

private:

// details the user do not care about

}

When creating a coordinate object, the constructor will be called, and invariants

will be tested here. As the class has only const methods (that is methods that do not

modify the state of the instance), the invariants are ensured to hold true. The class

gives a read-only access to longitude and latitude values through public methods

lat() and lon(), so the client code depending on these methods is ensured to be

2.3. Constructing abstractions with the C++ language 47

self-explanatory : coord.lat() or coord.lon(). The only place where confusion is

possible is pushed back to the constructor, where the place of arguments could be

exchanged, even if it follows the recommendations of EPSG:4326. This design choice

can holds if the coordinates objects can not be constructed by the library user, but

only accessed for read-only purposes (this kind of scenario happens when the con-

struction is actually hidden by another producer class, a geospatial dataset reader

for example).

Information hiding

The principle to distinguish implementation details (the private field) and the pub-

lic interface (the public field) is called information hiding, that is often assimilated to

the term of encapsulation. Information hiding is the way computer science performs

abstraction and it is quite different from the way mathematical science does. Mathe-

matics rely on information neglect to build complex inference systems whose general-

ity comes from the elimination of irrelevant information, whereas computer science

manages the complexity of systems by hiding (not neglecting) information details,

that are crucial for the processing, but irrelevant in the current programming context

(Colburn and Shute, 2007).

Indeed, they are irrelevant because the details of the data representation change

often, but the general behaviors that we expect from the class do not change that

easily: although we can not guarantee that the state of a lamp will always be repre-

sented by three booleans, we can always expect from a lamp that it is alight or not,

connected or not: they are services we can expect from the class. This design approach

that emphasizes behaviors rather than data allows to design more robust systems,

where objects state are manipulated via carefully designed interfaces. It also enables

flexible programming, as various kinds of objects (that is, classes) differing only by

details can be abstracted to the subset of their common behaviors. For example, both

lamps and televisions have in common that both can be connected to the electrical

network, then it is possible to model a third software component that buys and in-

stalls an electrical device in an house and that applies to both lamps and television.

48 Chapter 2. Development of Quetzal, a C++ library for coalescence

2.4 Writing code that is resistant to changes

2.4.1 Motivations

Changes are everywhere. Perhaps even more in science research where the very dy-

namic activity is to constantly try new ways to solve new problems. As a landscape

geneticist, you are working on a small butterfly: you design the model, write some

code, process the data, begin to have some preliminary results. You present them to

colleagues, and based on their suggestions you change some details in the hypothe-

sis of the model. Thanks to a collaboration, you enrich your dataset. A statistician re-

marks that some details in the statistical framework could finally benefit from some

rearrangement. You think you can reuse the code you wrote for the first paper: why

not ? after all you just performed minor changes in some details. Very soon you under-

stand that these changes have such repercussions on the implementation that your

code is beyond salvation. Depending on the project, hours, days, months, or years

of hard work can be lost (in my case I lost eleven months of code base, on a three

years project). How did this happen ? The reason is simple: for computers, details are

absolutely everything. The number of parameters of your model, their type (integers,

decimals), their name, the dimensionnality of your data, the type of the variables in

your data: you did not realize that you wrote the code in terms of the most ultimate

details of your problem. Facing the change, you barely begin to appreciate every-

thing that made the specificity of the problems you were willing to solve. Do not

panic: you are just becoming a developer. Generations of programmers have faced

the same problem: textbooks, blogs, articles were written, conferences, seminaries

were organized, even languages evolved to address the same issue: writing code

that resists to changes. Problems have been identified and solutions exist.

2.4.2 The problems comes from code dependencies.

Willing to represent geospatial coordinates, you wrote the entire code in terms of the

Coordinates class, because it seemed a very solid abstraction. In any function were

geographic coordinates were involved, you used the Coordinates class in the signa-

ture declaration, and the function definition. In any class composed of geographic

coordinates, you used the Coordinates class in the member declaration. Doing so, a

tight dependencies have been introduced between the class and its client (the code us-

ing it). It can seem reasonable, as obviously at some point geographic functions have

2.4. Writing code that is resistant to changes 49

to interact with geographic coordinates. But it must be acknowledged that this class

is very basic and that sooner or later it will reach its limits, for example because it is

for now totally unaware of the altitude, or of the geodetic datum modelling the form

of the Earth. Anyone thinking it is a detail that will never change should have a look

to the complexity and the diversity of the existing coordinates systems to get con-

vinced that it can not reasonably be guaranteed that a more advanced representation

of a geographic coordinate will ever be needed. Moreover you will certainly want

to test the simulation code with simplistic models were the geographic space can be

just two points, or some regular points along a line: in that case using geographic

coordinates will bring many difficulties, as it is the wrong level of abstraction.

Inevitably at some point the meaning of a geographic coordinate will slightly

change: if the design of the application is robust, a single line will need to be changed.

If the design is rotten, the application will break at every dependency point between

the system and GeographicCoordinate. Thus, a dependency should never be estab-

lished if it can not not be guaranteed it will never change. Dependencies propagate

very rapidly in the code and have a number of toxic side effects. They are rigidity,

fragility, immobility, and viscosity, defined in martin_design as symptoms of a poor

design.

2.4.3 Symptoms of a poor design

Rigidity

It is defined by the difficulty to make even slight modifications to a software. When

dependencies have pervaded a system, a modification at a given place triggers fur-

ther modifications in the dependent parts of the software. The snowball effect can

be very serious, transforming what should be a minor change into a major recon-

sideration of various modules. As the dependencies chains grow rapidly beyond

possible appreciation, the time costs of a modification can no longer be estimated,

and deadlines becomes untenable. Because of fear to break the system, no one dares

to bring modifications. At some point, rigidity can become so strong that non-critical

modification to the software is tacitly or explicitly forbidden.

50 Chapter 2. Development of Quetzal, a C++ library for coalescence

Fragility

This the propensity of a system to break at multiple points when a single modifica-

tion is done. The unpredictability of the break points location (that can be in very

remote parts of the system) makes it very risky to even fix one single bug, as it raises

multiple other bugs. When fragility is high, the system is not maintainable, as fixing

bugs causes even more bugs.

Immobility

Immobility is characterized by the fact that the parts of a system can not be reused in

another context (another project, or another module of the same project). Immobility

arises when dependencies to the context are too numerous in the system, so a part

can not be easily isolated from its context and it becomes preferable to rewrite the

entire functionality rather than reusing it.

Viscosity

It designate the tendency of a system to favour changes that have a negative impact

of the design. In a design with high viscosity, solving a problem in a quick and dirty

way is easier than using a clear and sound solution.

As dependencies is the root of all these symptoms, various techniques have been

proposed to manage them, aiming at designing variation points in the application

to contain dependencies.

2.5 Design principles: managing dependencies with S.O.L.I.D.

2.5.1 Motivations

SOLID is largely considered as one of the most important acronyms in object-oriented

design. It designates five principles initially identified by Robert Martin in the late

1990s as cornerstones of sound class-level design (Martin, 2002a). Together, they

allow developers to identify more clearly, to reason and to communicate about the

feelings the have of a clean or a bad code. When an application is perceived to suf-

fer from bad design symptoms (rigidity, fragility, immobility, viscosity), it generally

turns out that several of these principles (or even all of them) are violated. Refac-

toring the application to respect these principles generally leads to better feelings

2.5. Design principles: managing dependencies with S.O.L.I.D. 51

about the code. There is no formal proof that these principles actually work, but

accumulated experience of the developers community shows that, in some way, bet-

ter design and less problems result from writing code that respect SOLID principles.

Consequently, they are not meant to be absolute rules to follow at any cost, but are

rather meant as good advices and practical heuristics:

They are common-sense solutions to common problems. They are

common-sense disciplines that can help you stay out of trouble. (Martin,

2009)

2.5.2 S - Single Responsibility Principle (SRP)

Definition 2.5.1. Single Responsibility Principle A class should have one, and only

one, reason to change. (Martin, 2002a, p.95)

In other terms, a class should be related to unique responsibility, defined as “a

reason to change“. Because it requires experience, it can be difficult, when design-

ing a class, to anticipate what could later change. However there are some aspects

that are known to be highly unstable like the format of input or output, or the user

interface. For this reason, the output formatting of an object Coordinates is not

define in the class, because printing output format depends on a context unknown

when designing the class. There are actually many reasons one would like to print a

coordinate object:

• to constitute a bug report.

• to use as a spy, that is a momentary output one use as a debug tool to print out

the state of variables.

• to use as part of a more complex structure, for data exchange purpose.

It is not clear which part of the information is relevant for printing (should the

coordinates unit, i.e. decimal degrees, be part of the information printed ?), it is not

clear how to organize the relevant information (we saw that the longitude, latitude

ordering was an important problem), and it is not clear if an approximated informa-

tion is relevant or not (that is how to decide the the floating point precision of a lati-

tude ?). Obviously, to answer these questions, one should know the context in which

a coordinate needs to be printed. And as contexts tend to change extremely fast in a

52 Chapter 2. Development of Quetzal, a C++ library for coalescence

software life cycle, there will be a constant back-and-forth in the Coordinates class

to modify the way a coordinate information is displayed, even if the others class

services work fine. Each new printing context will be a new reason for the class to

change.

Obviously, printing is not a responsibility of a coordinate: the unique responsi-

bility one should reasonably expect from a geographic coordinate is to locate a point

in a space. Printing should be the responsibility of another class, like a Printer class,

that has access to the relevant information through the Coordinates interface, and

organizes it in a manner specified by the context before to display it.

SRP is the developer first tool for managing the complexity of a system, as it

helps to compartmentalize the services of a system into manageable smaller pieces:

responsibilities, that have each as little reason to change as possible (that is, ideally,

only one). SRP is perhaps the most important principle of SOLID, because it enables

the others: it will be difficult to respect the four other principles if SRP is violated.

2.5.3 O - Open/Closed Principle (OCP)

Write a code once for all

Adding new features is a key step in the life cycle of any software. For example a

biologist studying migration patterns is likely to change the migration model from

time to time according to its current biological model. However, changing the re-

quirements of an application generally causes many modifications in the source

code. This is very unsatisfying, as the pre-existing code has normally been tested

and its behaviors proved to be correct, so there should be nos reason to compromise

all these precious and solid results. Source code modification only bears uncertainty

and potential bugs, so it should be avoided (Martin, 1996d):

Definition 2.5.2. Open/Closed Principle Software entities (classes, modules, func-

tions, etc.) should be open for extension, but closed for modification (Meyer, 1988).

That is, when requirements change (for example when a new migration model is

needed), the new feature should be implemented by adding new code, not by mod-

ifying old code. It can bee seen as contradictory: how to add a feature without mod-

ifying the code ? Various language features make it possible to achieve flexibility

by adding extension points. As these extension points can complicate the design, an

useless extension points is source of problems and should be avoided. The decision

2.5. Design principles: managing dependencies with S.O.L.I.D. 53

to place an extension point should then be based on the probability that the need for

extension will appear in the future. The knowledge of the study domain surely helps

a lot in taking this decision: migration models, mutational models, growth models,

coordinate systems are known to be unstable across studies, so in these cases it is

generally worth to place an extension point rather than a dependency. This is done

by using more abstractions.

A random walk case

Imagine we want to represent a random walk in a landscape. A key step is to sample

the next location conditionally to the present location. A naive approach to tackle

multiple migration models would be to use case statements:

Coordinates walk(Coordinate x, std:: string model){

Coordinate y;

switch (model)

{

case ’gaussian ’:

// sample y in gaussian density conditionnally to x

break;

case ’uniform ’:

// sample y in uniform density conditionnally to x

break;

default:

// error : unknown model

}

return y;

}

}

This code does not respect the Open Close Principle. If a new migration model

is needed, the code using migration models will need to be updated, a new case will

need to be added in the switch statement. Not only does it compromise old working

code, but also it adds much complexity to the code, as it leads to monolithic switch

(or if/else) statements. Any user of the random walk simulation function would

54 Chapter 2. Development of Quetzal, a C++ library for coalescence

have to find, read, understand and update the code if he wants to add a new model.

This is untenable. There is much better to do.

Manipulating different forms of a same idea: polymorphism

Generally speaking, statements with many different cases is a potential symptom of

a bad design. The first thing to do is to think in terms of abstractions, in what is

common across all anticipated cases, and to use this common point to design the al-

gorithm once for all. In other words, we want to make the computer understand that

all possible migration models, are, in some way, just various forms of a same general

concept, and we want to write the algorithm in terms of this general concept, not in

terms of all possible forms. What we want to achieve is called polymorphism. It can

be done in two orthogonal ways: using generic programming (with templates) or

object-oriented programming (that is, subtyping). Generic programming allows the

compiler to have all the type information at compile time. As there is no extra oper-

ation to perform at runtime, this technique is known to be very efficient. In another

hand Subtyping makes use of class hierarchies to achieve polymorphism at runtime,

what can be very useful if the type of an object changes according runtime condi-

tions, but it is known to hinder performances unnecessarily if generic programming

can be used instead (Stroustrup, 2014).

Static polymorphism with generic programming

All we want to do is to sample a new location in a model. We actually want to write

something like:

Location walk(Location x, Model model){

return model.sample(x)

}

This is much simpler than the previous version. However, this code does not

work: the Location and Model classes have not be defined. The generic program-

ming, enabled by the template keyword, allows you to write code in terms of types

(or equivalently, classes) that are unknown at the moment to write the code but that

will be known at the moment where the code should be compiled. This is very

handy to reduce dependencies, and very simple to write:

template <class Location , class Model >

2.5. Design principles: managing dependencies with S.O.L.I.D. 55

Location walk(Location x, Model model){

return model.sample(x);

}

This code will work with any class that defines a function in its interface taking

a Location that has the following signature: Location sample(Location) . There

is much generality in this definition. Further generality can still gained by replacing

the sample function with the call operator:

template <class Location , class Model >

Location walk(Location x, Model model){

return model(x);

}

An open-ended number of possible migration functions and coordinate systems

can then be considered, at the (little) price to use the template syntax. It enables

small unit tests, as you can readily use and test the walk function with simplistic

models (a two-state markov chain) and basic types (booleans representing coordi-

nates):

// type aliasing

coord_type = bool;

// lambda expression are small anonymous functions

auto move_away = [](coord_type from){ return !from ;};

coord_type x = true;

for(int t = 1; t < 10; ++t){

x = walk(x, move_away);

std::cout << x << "␣";

}

std::endl;

Indeed the walk algorithm can work with any types fulfilling basic constraints:

• Model and Location must be copiable types

• Model must be callable

This set of constraints enabling the walk algorithm to work is called a concept,

that is defined (implicitly in the code, explicitly in the documentation) in terms of the

56 Chapter 2. Development of Quetzal, a C++ library for coalescence

Callable and Copiable subconcepts. As many other basic concepts, they are defined

in the C++17 standard (ISO/IEC 14882) (see e.g. cppreference.com, 2018). As explicit

is better than implicit, the C++ normalization committee is working hard on a way

to express these concepts directly in the code, rather than in the documentation. This

should be done with the C++20 norm coming soon.

Runtime polymorphism with subtyping

Another way to achieve polymorphism is to make explicit in the code the idea that

a given abstraction is a special case of an even more general abstraction. It makes

use of inheritance, a technique allowing to build hierarchies of concepts, where base

classes are parent nodes and derived classes (subtypes) are children nodes, and the in-

heritance a IS A relationship. For example one could think that a gaussian model is

a dispersal model. It allows to write code only in terms of the most general abstrac-

tion, without caring about the variety of subcases:

Coordinate walk(Coordinate x, Model& model){

return model ->sample(x);

}

The syntax is a little bit different than for the generic programming. First we

need to use pointer or references to enable runtime polymorphism. Then the Model

class has to be defined:

class Model{

// pure virtual function

virtual Coordinate sample(Coordinate x) = 0;

};

The virtual keyword is essential, as it says to the compiler that the sample be-

havior in the general case can be overriden by the subtypes (that is, that the com-

puter has to use the derived classes dispersal models methods).

Of course, in the context of dispersal models it makes no sense to define a general

implementation for the sample method. That is precisely the meaning of the =0

syntax, that is used to define a pure virtual function:this is just the C++ manner to

express that the Model class is a pure abstraction because there is no general way to

sample a coordinate.

2.5. Design principles: managing dependencies with S.O.L.I.D. 57

Remark. The = 0 syntax seems strange and cryptic. Stroustrup explains that “it was

chosen over the obvious alternative of introducing a new keyword pure or abstract

because at the time I saw no chance of getting a new keyword accepted. [. . .] I used

the tradition C and C++ convention of using 0 to represent not there.“ (Stroustrup,

1994, chapter 13.2.3)

Now that the the general model has been defined, as well as the way to manipu-

late it, various subtypes of a dispersal model can be created, for example:

class GaussianDispersion : public Model{

Coordinate sample(Coordinate x) override {

// use gaussian density to return a coordinate

}

};

class UniformDispersion: public Model{

Coordinate sample(Coordinate x) override {

// use uniform density to return a coordinate

}

};

Now, any of these subtypes can be passed to the walk algorithm, and at runtime

the appropriate behavior will be invoked. The effects can seem quite similar to these

obtained using static polymorphism. However they are a number of inconvenients

using runtime polymorphism.

Choose the right type of polymorphism

Types hierarchies are quite rigid. Because all problems are not of hierarchical nature,

it will often be difficult to add a type in a hierarchy, so constructing the inheritance

hierarchy to represent the problem will result in a counter intuitive design.

Then, as more subtypes are needed, it happens that hierarchies become deeper

and deeper. This should absolutely be avoided, because the inheritance (that is, a

is a relationship) is the strongest form of dependency that is possible to establish

between to types, and this dependency is propagated across all classes of the inher-

itance tree, so bringing modifications to the design will be extremely difficult.

58 Chapter 2. Development of Quetzal, a C++ library for coalescence

Finally, runtime polymorphism can be very inefficient, because the virtual key-

word prevents the compiler to make optimizations like inlining, and this can lead to

code up to 50 times slower (Stroustrup, 2014). Runtime polymorphism can be useful

for example to decide a type according to a simulation context, but it should not be

used carelessly. Actually it should be avoided when no strictly necessary:

Polymorphism is one of the main reasons why object oriented pro-

grams can be less efficient than non-object oriented programs. If you can

avoid virtual functions then you can obtain most of the advantages of ob-

ject oriented programming without paying the performance costs. (Fog,

2012)

2.5.4 L - Liskov Substitution Principle (LSP)

The LSP is a particularly strong definition of a subtyping relation, allowing to build

inheritance relationship in a more robust way. It is a strong behavorial subtyping

principle based on the following requirement:

Definition 2.5.3. Liskov Substitution Principle Let φ(x) be a property provable about

objects x of type T. Then φ(y) should be true for objects y of type S where S is a

subtype of T (Liskov and Wing, 1994).

In other words, that means that a subtype should extend, not substitute, the base

class behavior. A classic example is the relation between a rectangle and a square.

A programmer deciding to formalize the fact the a square is a rectangle will surely

make a Square class derive from a Rectangle class. It can seem reasonable, as math-

ematically speaking a square is indeed a particular case of a rectangle. However, es-

tablishing this relationship in the code will totally break the intuition one has about

a square, because a square does not behave like a rectangle: a rectangle can change its

height and its width independently, but a square as a supplementary invariant, that

is that height and width must be equal in any case. That means that a setHeight

method inherited from the Rectangle class does not make any sense in the context

of the Square class. As said earlier, all concepts do not fit well in a class hierarchy . . .

A somewhat easier definition was given by Robert C. Martin:

Definition 2.5.4. Liskov Substitution Principle Functions that use pointers or refer-

ences to base classes must be able to use objects of derived classes without knowing

it (Martin, 1996c).

2.5. Design principles: managing dependencies with S.O.L.I.D. 59

With this definition, it is easier to understand that a class that does not respect

LSP is violating the OCP, as it would have to be modified each time that a new de-

rived class is added. Runtime Type Information (RTTI) is a common violation of

LSP arising often when one aims at identifying the real type of an object in order

to call the appropriate function. Imagine that we would like to print the parame-

ters values of the model m used for modeling the dispersal. We would like to print

something like mu=0, sigma=1 for a gaussian model instance, and a=0, b=10 for a

uniform model. As the names of the parameters change from one model to another,

one could be tempted to write the following code to obtain the desired behavior:

void PrintModel(const Model& m)

{

if (typeid(m) == typeid(Gaussian))

PrintGaussian(static_cast <Gaussian&>(m));

else if (typeid(s) == typeid(Circle))

PrintUniform(static_cast <Uniform&>(m));

}

The implementation of PrintGaussian and PrintUniform would be something

like:

void PrintGaussian(Gaussian m){

std::cout << "mu=" << m.mu() << ",␣"

<< "sigma=" << m.sigma() << std::endl;

}

void PrintUniform(Uniform m){

std::cout << "a=" << m.a() << ",␣"

<< "b=" << m.b() << std::endl;

}

The design seems to respect the SRP as the responsabilities to represent a math-

ematical model and to print the information about this model are separated. How-

ever it clearly violates the OCP, as adding a new class to the hierarchy (like a fat

tail dispersal kernel) would break this code and force the developer to modify the

existing PrintModel function to update the decision tree. Generally speaking, just

60 Chapter 2. Development of Quetzal, a C++ library for coalescence

as deep inheritance trees, decision trees based on types should be treated with high

suspicion.

2.5.5 I - Interface Segregation Principle (ISP)

Definition 2.5.5. Interface Segregation Principle Clients should not be forced to de-

pend upon interfaces that they do not use (Martin, 1996b).

The best way to understand this principle is by identifying the signs indicating

that ISP is broken.

We defined the Model abstract class to represent any kind of dispersal model.

The sample method was first added because the first desired behavior of a dis-

persal model was to sample a new coordinate. However, as the project grows,

we begin to use dispersal models in an ABC context, where the internal parame-

ters of the dispersal model need to be sampled in some prior distribution: so the

resample_parameters method is added to the Model interface. During the first steps

of the project, only very standard laws are considered, like the gaussian kernel or

the uniform kernel. A bit later, it appears that the density of the underlying proba-

bility distribution may also be known, and that leads to add a third public method,

a get_density_distribution:

class Model{

virtual Coordinate sample(Coordinate x) = 0;

virtual void resample_parameters () = 0;

virtual void get_density_distribution () = 0;

};

Problems arise when designing a new dispersal model that does not need or can

not define the totality of the interface. For example, for a Unit Test on dispersal

features (implemented in terms of the Model abstraction), it is likely that a handy

toy-model would be to implement a two demes dispersal with a Bernouilli law. Ob-

viously ABC resampling is irrelevant in the context of unit testing, and the density

of a Bernouilli law is not defined. But because the dispersal algorithms have been

defined in terms of the Model abstraction, it forces the user to define all the interface

methods, even if some of them are not needed or possible. That leads to loose time in

a forced implementation or to increase the code complexity with strange code where

runtime errors are thrown because the desired behavior makes no sense:

2.5. Design principles: managing dependencies with S.O.L.I.D. 61

class Bernouilli : public Model{

Coordinate sample(Coordinate x) override {

// sample and return a coordinate

}

void resample_parameters () override {

// No time for implementing this behavior

throw std:: runtime_error("Not␣implemented␣here");

}

void get_density_ () override {

// It makes no sense for discrete distributions

throw std:: runtime_error("No␣density");

}

};

Obviously the problem grows as more methods are added to the interface. The

solution is to decompose the big Model interface into smaller interfaces (called role

interfaces), so that the client code can depend only on the interfaces that it uses, what

reduces dependencies and code complexity. In substance, this is the advice given by

the Interface Segregagtion Principle.

2.5.6 D - Dependency Inversion Principle (DIP)

Definition 2.5.6. Interface Segregation Principle High level modules should not de-

pend upon low level modules. Both should depend upon abstractions. Abstractions

should not depend upon details. Details should depend upon abstractions. (Martin,

1996a).

In an application, the direction of dependencies is generally going from high

level components (that reflect the main ideas of the implementation model) to low

level components (that implement the details of a system). If high level components

are defined in terms of low level components, then a change affecting low level com-

ponents will force the higher level to be modified too. It must seem counter-intuitive

(and undesirable!) that the core functionalities of an application could be jeopar-

dized by changes in minor details. Furthermore, this form of dependency prevents

62 Chapter 2. Development of Quetzal, a C++ library for coalescence

high level components to be reused in other contexts. The Dependency Inversion

Principle advises to reverse this conventional direction of dependencies: the depen-

dency is not reduced, but it is rather shifted so that the components that are worth

to be reused (that is the high level components) can be reused.

The way to achieve it is by designing high level components that express what

they need (their dependency) in terms of an interface (like an abstract class). It will

then be the user’s responsibility to provide the desired implementation to the com-

ponent.

For example, a demographic simulator is likely to have some high-level design

(like a loop over time, a loop over space, some form of population growth and some

form of dispersal). The high level component describing this simulator should not

depend on the Gaussian class defined in a dispersal models submodule, but it should

depend on an interface representing any dispersal model. In doing so, the simu-

lator can be reused in another context, where the dispersal models submodule is not

available.

2.6 QUETZAL - an open source C++ template library for coalescence-

based environmental demogenetic models inference

2.6.1 Abstract

The purpose of this article is to introduce an implementation framework enabling us,

using available genetic samples, to understand and foresee the behavior of species

living in a fragmented and temporally changing environment. To this aim, we first

present a model of coalescence which is conditioned to environment, through an ex-

plicit modeling of population growth and migration. The parameters of this model

can be infered using Approximate Bayesian Computation techniques, which sup-

poses that the considered model can be efficiently simulated. We next present Quet-

zal, a C++ library composed of reusable generic components and designed to effi-

ciently implement a wide range of coalescence-based environmental demogenetic

models.

2.6. QUETZAL - an open source C++ template library for coalescence-based

environmental demogenetic models inference
63

2.6.2 Introduction

Motivations

Understanding how species react to spatio-temporal environmental heterogeneity

and how this conditions the patterns of genetic variation is of great importance in the

context of conservation biology, for example to predict future species distributions

under global climate change (Pauls et al., 2013). Spatially explicit simulation studies

have proven to be of fundamental importance when tackling such dynamical pro-

cesses, especially in the context of range expansions (Excoffier, Foll, and Petit, 2009).

Despite a growing number of simulation programs dedicated to coalescence-based

models of genetic variation, code reuse is still limited. We present Quetzal, a new

C++ library with reusable generic components designed to ease the implementation

of a wide range of coalescence-based environmental demogenetic models, and to

embed the simulation in an Approximate Bayesian Computation (ABC) framework.

The code is open-source, and available at https://github.com/Becheler/quetzal

(see Becheler, 2017).

Context

Present genetic data can be linked to past ecological processes by coupling demo-

graphic models accounting for the spatio-temporal landscape heterogeneity with

models of genetic variation (see Figure 2.3). When the studied genetic variation

is neutral, genetic models based on coalescent approaches (Nordborg, 2001; Hein,

Schierup, and Wiuf, 2004; Wakeley, 2009) can be used. In this framework, the coa-

lescence of two gene copies into a parent copy is simply the replication of the ADN

viewed backward in time. The genealogy of the sampled genes copies can be de-

fined backward in time conditionally to the demographic process which itself can

be defined before tackling genetical aspects. This is an important theoretical link

between a genetic sample and the historical processes that shaped it, and it can be

used for constructing statistical models allowing to estimate properties of these past

processes on the basis of the present sample.

Constructing such estimates often relies on the study of the likelihood, that gives

the probability of data to arise, as a function of the parameter θ of the statistical

model. The likelihood function can be derived under simple models, but as theoret-

ical advances steered models towards higher levels of complexity (migration (Beerli

https://github.com/Becheler/quetzal

64 Chapter 2. Development of Quetzal, a C++ library for coalescence

FIGURE 2.3: Inferencial framework from which Quetzal stems. The
red arrow represents the dependency structure under the hypothe-
sis of neutral variation, where processes condition the observed data.
The black arrow represents the inferencial framework, where data al-

low to shed light on processes.

2.6. QUETZAL - an open source C++ template library for coalescence-based

environmental demogenetic models inference
65

and Felsenstein, 1999), recombination (Kuhner, Yamato, and Felsenstein, 2000), se-

lection), the likelihood function became harder and harder to calculate.

Approximate Bayesian Computation (ABC) methods (see Marin et al., 2012) dra-

matically extended the complexity limits of the models under which inference was

possible. ABC bypasses the complex task of evaluating the likelihood function by

combining two approximations making the problem computationally tractable: (i)

observed data are reduced to lower-dimensional quantities (the so-called summary

statistics), (ii) the inference is tolerant to small distortions of the observed summary

statistics (see Blum et al. 2013 for more formal explanations). This makes possible

for ABC procedures to estimate posterior densities of the parameters by simulating

data under the model while exploring the parameter space conditionally to a prior

distribution, and accepting only the values of the parameters for which simulated

data are close enough to the observations. Despite its apparent ease, ABC methods

present important methodological pitfalls (for example the choice of the dimensional

reduction function), but many studies have paved the way for the non-statisticians

(see Bertorelle, Benazzo, and Mona, 2010) for an excellent methodological guide),

and ABC became very popular in Ecology and Evolution (Beaumont, 2010; Csilléry

et al., 2010).

The popularity of ABC methods encouraged the development of more complex

coalescence-based simulation computer programs, and their authors put tremen-

dous efforts in successfully delivering novative, usefull and user-friendly products

to the community of population geneticists. SPLATCHE (Currat, Ray, and Excoffier,

2004b) simulates coalescents based on complex demographic simulations run in a

spatially explicit landscape, incorporating landscape heterogeneity. Various ver-

sions of SPLATCHE largely fostered the rapid expansion of the so-coined iDDC

modeling approach (integrated distributional, demographic and coalescent model-

ing, He, Edwards, and Knowles 2013b). iDDC uses Approximate Bayesian Com-

putation with spatially explicit demographic simulation model (possibly integrat-

ing landscape heterogeneity) to estimate quantities of interest such as populations

growth rate or dispersal law parameters (Lacey Knowles and Alvarado-Serrano,

2010; Estoup et al., 2010b; Massatti and Knowles, 2016). DIY ABC (Cornuet et al.,

2014) is an open-source program that provides the ability to conduct inference un-

der a wide range of complex biological scenarios combining an arbitrary number

of admixture, divergence or demographic change events. It offers very strong ABC

66 Chapter 2. Development of Quetzal, a C++ library for coalescence

support and an intuitive Graphic User Interface (GUI). IBDsim (Leblois, Estoup, and

Rousset, 2009) is an open-source program for simulating genetic variation under iso-

lation by distance, and provides much flexibility in the choice of dispersal kernels.

MSMS (Ewing and Hermisson, 2010) puts emphasis on incorporating selection and

proposing extensible design. These programs, and others, have provided invalu-

able support to the non-developer communities for a wide range of applications

and studies.

Paradoxically, these programs collectively failed to help the software developers

community to write new programs, mainly due to very low rate of reusability in

their source code. Because they put emphasis on the non-developer user, they act

as rigid black boxes taking an input, processing it in some way configured by some

form of User Interface (e.g. command line or GUI) and delivering the output. In-

deed they can not be used if the underlying theoretical model does not belong to

their predefined set of possible options (e.g. SPLATCHE does not allow to change

the dispersal kernel or the local growth model) or if their computational solution

does not answer to the question (e.g. if they write standard genetic summary statis-

tics in output files when we would need to analyze genealogical properties). This

current state of the art does not scale with the virtually infinite number of arbitrar-

ily complex evolutionary or demographic models and the ever-growing number of

statistical methods variants. We need standard, general, reusable tools for helping

us to quickly build programs that can solve new problems. As written in Stroustrup

(2003): “The key to fast development, correctness, efficiency, and maintainability is

to use a suitable level of abstraction supported by good libraries“. Reusable code

such as library’s relies on abstractions, syntactic constructions often opposed to per-

formance. However, when it comes to ABC and massive simulations, performances

become critical. C++ offers the template mechanism, a key feature allowing to build

very high levels of abstraction without loss of efficiency, so we do not have to choose

between reusability and performance.

As a first attempt to offer reusable components to the coalescence software com-

munity, we present here Quetzal, an open-source C++ template library. Quetzal

offers powerful abstractions for building coalescence-based simulation programs.

It contains several independent modules, each directed towards a general simula-

tion purpose (demography, geography, coalescence, genetics, ABC ...) in which are

2.6. QUETZAL - an open source C++ template library for coalescence-based

environmental demogenetic models inference
67

located the files containing the sources of generic components. The extensive docu-

mentation and the wiki (Becheler, 2017), both avalaible on the github project, ease to

pick and combine the desired functionalities and the template mechanism allows to

adapt it to a new problem with minimal recoding (if no recoding at all). We insist on

the possibility to extend the behaviors of the Quetzal algorithms with very few new

lines of code. The high level of abstraction in Quetzal allows its generic components

to be used to write expressive and maintainable code with appreciable terseness and

efficiency. Their genericity make them applicable to a large range of programs and

the user can change the design of its application without major changes in the code

(what typically arises when changing a finally-not-so-minor detail in the theoretical

model). Each documented functionality comes with a small demonstration program

and its output, providing valuable and intuitive insights on the way to manipulate

the component. The library design insists heavily on modularity, extensibility and

efficiency, and is intended to respect the standards of the Standard Template Library

with STL-like algorithms and interfaces. Template rules make the library header-

only.

This first version focuses on coalescence-based environmental demogenetic mod-

els. Consequently, Quetzal first features are designed to bring efficiency and flexibil-

ity in defining demographic quantities as functions of space and time of landscape

heterogeneity, to couple these quantities to the coalescence process, and to use ABC

methodology to conduct inference.

First we present a simple mathematical ecological model for estimating ecologi-

cal features of a species from a genetic sample with the ABC procedure. This model

is purposely general, as it will serve as an illustration to facilitate the understanding

of Quetzal functionalities by enforcing its genericity, but it is still of strong biological

interest as it relaxes several constraints that were previously made in the literature.

Of course Quetzal is flexible and its use is not limited to this model as other fea-

tures can be added or removed. Then we present a core feature of Quetzal for the

coalescence, the abstraction of the ancestry relationship between a child gene copy

and its parent, and we point out its importance to use and extend the library. Lastly,

we give an overview of Quetzal functionalities and concepts and we apply them

in a demonstration program implementing a fully-specified version of the previous

general theoretical model.

68 Chapter 2. Development of Quetzal, a C++ library for coalescence

2.6.3 Ecological and mathematical demogenetic model

Motivations

Let be a spatial sample S of n haploid individuals that have been sampled at time

tS across the landscape and that have been genotyped at a microsatellite locus, and

a dataset giving the values of environmental quantities across the same landscape.

From these data, we want to infer ecological properties of the species such as the

niche functions (defined here as the functions relating the environmental quantities to

demographic quantities, for example the local growth rate) and the dispersal func-

tion, so we need a statistical model to link observed data and processes to infer (see

Figure 2.3). We present here a description of a general bayesian model for estimating

these functions using an ABC framework (see Figure 2.4): a demographic history is

simulated forward in time conditionally to the features of the heterogeneous land-

scape, then the genealogy of the sampled gene copies is simulated backward in time

conditionally to the demography. The uncertainty on the parameters θ ∈ Rp to esti-

mate is defined by the prior distribution Π from which a parameter θ is sampled at

each simulation.

Geography

Let consider a given set of demes X (typically reduced to the geographic coordi-

nates of their centroïd). The environment E is defined by i known ecological quanti-

ties which are functions of space and time, typically climate layers from the World-

Clim global climate database (www.worldclim.org), or a niche suitability dataset es-

timated from an external niche modeling step (He, Edwards, and Knowles, 2013b).

E : X×N 7→ Ri

(x, t) 7→ (Ei(x, t))i∈I .

Demography

The demographic simulation process goes from time t0 to tS and iteratively con-

structs the function N giving the number of individuals in deme x ∈ X at time t:

N : X×N 7→ N

(x, t) 7→ N(x, t) .

2.6. QUETZAL - an open source C++ template library for coalescence-based

environmental demogenetic models inference
69

N is initialized by setting N(., t0) the initial distribution of individuals across demes

at the first time t0. Typically for a biological invasion, this is restricted to the intro-

duction site(s) with the number of introduced individuals (Estoup et al., 2010b). For

endemic species, paleoclimatic distribution can be considered as starting point. The

number of descendants Ñt
x in each deme is sampled in a distribution conditionally

to a function of the the local density of parents, for example Ñt
x ∼ Poisson(g(x, t)),

where g can be for example a discrete version of the logistic growth as in Currat,

Ray, and Excoffier (2004b).

g : X×N 7→ R+

(x, t) 7→ Nt
x×(1+r(x,t))

1+ r(x,t)×Nt
x

K(x,t)

.

The r (respectively k) term is the growth rate (respectively the carrying capacity),

defined as a function of the environmental quantities with parameter θ:

K : X×N 7→ R+

(x, t) 7→ f θ
K(E(x, t)) ,

r : X 7→ R

(x, t) 7→ f θ
r (E(x, t)) .

Non-overlapping generations are considered (the parents die just after reproduc-

tion). The children dispersal is done by sampling their destination in a multinomial

law, that defines Φt
x,y the number of individuals going from x to y at time t:

(Φt
x,y)y∈X ∼M(Ñt

x, (mxy)y) .

The term (mxy)y denotes the parameters of the multinomial law, giving for an

individual in x its proability to go to y. These probabilities are given by the dispersal

law with parameter θ:

m : X2 7→ R+

(x, y) 7→ mθ(x, y) .

After migration, the number of individuals in deme x is defined by the total number

of individuals converging to x:

N(x, t + 1) = ∑
i∈X

Φt
i,x .

70 Chapter 2. Development of Quetzal, a C++ library for coalescence

Coalescence

These quantities are used for defining the coalescence process which is defined by

the following stochastic process going from ts to t0: knowing that a child node c is

found in j ∈ X, the probability for its parent p to be in i ∈ X is :

P(p ∈ i | e ∈ j) =
Φt

i,j

∑k Φt
k,j

.

Knowing that the parents p1 (p2) of nodes c1 (c2) are in x at time t, the probability for

the children to coalesce in the same parent is :

P(p1 = p2 | p1 ∈ i, p2 ∈ i) = 1/Nt
i .

A forest of random coalescent trees is then constructed backward in time, until t0

is reached. Note that at this point the Most Recent Common Ancestor is not neces-

sarily found, and assuming that tS − t0 is small enough no neglect mutations, the

simulation can end with a collection of trees rather than a complete genealogy.

2.6.4 Abstraction of the ancestry relationship

Motivations

When exposing the concept of coalescent trees above in the mathematical model, it

has been useless to define exhaustively the tree properties or the exact nature of its

nodes and branches. These are details humans typically abstract away, which leads to

high generalization and low intellectual overhead. However, a computer program

has to deal with an impressive number of details, and if these details are not care-

fully separated from the general concerns when writing the code, it leads to poor

generalization (see Alexandrescu, 2001, p.xvii). Indicators of a lack of generalization

are typically numerous dependencies across code, monolithic classes and a high rate

of code duplication. Consequences are defined by Martin (2000) and Alexandrescu

(see 2001, p.5) as being rigidity (the software is difficult to change), fragility (the soft-

ware breaks at several points after a small change), immobility (the software can not

be reused in another context, so it is entirely rewritten), gruesome intellectual over-

head and poor performances. Since the devil is in the details, a natural solution

2.6. QUETZAL - an open source C++ template library for coalescence-based

environmental demogenetic models inference
71

is to write code in terms of general abstractions rather than in terms of implementa-

tion details (Dependency Inversion Principle,Martin 2002b), so the designed generic

components can be reused in various contexts.

Object-oriented paradigm

In C++, the genericity of the implementation can be realized by using inheritance

and dynamic binding enable by the virtual keyword (Object Oriented Program-

ming, OOP). Algorithms manipulating trees would then rely on an interface defined

in terms of an abstract class AbstractTree, but will be applied on instances of con-

crete classes that inherit from AbstractTree and that present the specific desired be-

haviors, for example TreeForStoringCoalescenceTimes or TreeForStoringCoalescenceDemes.

This design avoids the well-known problems of a class that would expose a mono-

lithic interface to store all possible features like demes, times, mutations and others,

(Single Reponsability Principle, Martin 2002b) but it has a number of well-known

drawbacks. First, if inheritance can be very useful when the set of classes to be

treated by the algorithm can naturally be thought as a hierarchy of concepts, in most

cases this is not the case: it would result very unnatural to order them into a class hi-

erarchy, and, importantly, it would lead to hardly maintainable code design (Strous-

trup, 2014). Second, it is sometimes natural to expect the algorithms to work with

primitive types or with STL containers, but as primitive types are not classes and as

STL containers are not designed for dynamic polymorphism (they have no virtual

destructor), there is no hope to see the object-oriented approach work with these

types. Finally, the use of inheritance and virtual functions can have runtime over-

head because of an extra lookup in the virtual table when a virtual function is called,

and because virtual methods can not be inlined (Stroustrup, 2014).

Generic paradigm

All the data type manipulated by a same general algorithm do not have to be linked

by the rigid hierarchical relation imposed by OOP : the generic programming allows

for uniform manipulation of independent types. In generic programming an algo-

rithm is not defined in terms a particular type, but in terms of a set of constraints

wielded on the type by the algorithm internals; this set is frequently defined as a

concept and represents an implicit interface. Thus the algorithm will work with any

type fulfilling these constraints, allowing for high abstraction level without loss of

72 Chapter 2. Development of Quetzal, a C++ library for coalescence

efficiency. Generic programming allows to implement the coalescence algorithms

with great generalization, making minimal assumptions on the type handled.

The simple task to merge two nodes uniformly at random in a sequence of nodes

can be defined as follow:

1. randomly permute the k elements of the sequence

2. create of a new node P (the parent)

3. designate the first element as child of P

4. designate the last element as child of P

5. assign P to the first element.

6. return the k− 1 first elements.

When implementing this binary merge algorithm in Quetzal, several details need

to be abstracted away to preserve the generality of the algorithm definition: the na-

ture of the nodes, the nature of the sequence, of the nature of the inheritance rela-

tionship between a child node and its parent.

The nodes could be integers, character strings, a user-defined class or, actually,

anything else. No constraint on this type comes from the algorithm, but various con-

straints can come from the sequence type used to store them. The sequence could

be a standard container (std::vector, std::list ...) or a user-defined type. The

classical way to abstract containers in C++ is passing as argument two iterators (one

pointing to the first element of the sequence and the other pointing to the past-the-

end element) giving the range of data on which the algorithm will operate. As the

algorithm can not modify the external container, the reduction in size caused by the

merge is signaled by returning an iterator pointing to the new past-the-end element.

The only explicit effort the user can have to do is just to precise, conditionally to the

chosen node type, what is meant by “designating node c as child of the parent node p“.

This can done by passing to the algorithm a function-object taking as argument a ref-

erence on the parent and another on the child, returning the result of the branching

event. Or, if no function-object is given, the sum operand is used by default (thus

requiring the expression c + p to be defined).

This abstraction of the ancestry relationship is expected to allow (i) to efficiently

generalize the existing Quetzal algorithms to an open-ended number of specific,

2.6. QUETZAL - an open source C++ template library for coalescence-based

environmental demogenetic models inference
73

user-defined kinds of genealogies and (ii) to give guidance to the developers who

need to write new generic coalescence algorithms.

Counting hanging subtrees leaves

Achieving genericity is of fundamental importance to efficiently tackle a wide range

of situations. For example most of the current simulation softwares focuse on gener-

ating genetic variation samples, because this is most of the time the only information

available. However, in some cases the mutational process can be negligible com-

pared to the recent genealogical process in shaping the sample configuration (see

Becheler et al., in preparation), so topological properties like the number of leaves of

hanging subtrees (see Hein, Schierup, and Wiuf, 2004, p.78) become the desired out-

put. This is very unlikely that the developer of a program could ever foresee this spe-

cific need. Fortunately, it does not mean one should recode everything from scratch

each time a new simulation behavior is needed by a new methodological advance:

Quetzal allows the user to inject the desired behaviors into its generic components.

When implementing the simulation, instead of building complex genealogical

objects, then counting their leaves by tree traversals algorithms, a much more ef-

ficient approach is to directly make the coalescence algorithm sum the number of

leaves of the hanging subtrees, updating it at each coalescence event. The type of

nodes is thus defined as being integers, and the sampled nodes value is set to 1.

Conveniently and by default, the merging algorithm will initialize the new parents

to their default constructor value (which is 0 for integers), and define the branching

event of two nodes by the sum function.

The following small program applies the approach by merging two nodes uni-

formly at random in a sequence of four nodes, updating the leaves number informa-

tion. It can of course be extended to much more complex simulation frameworks.

#include "quetzal/coalescence.h"

#include <random > // std:: mt19937

#include <iostream > // std::cout

#include <algorithm > // std::copy

#include <iterator >

using namespace quetzal :: coalescence;

74 Chapter 2. Development of Quetzal, a C++ library for coalescence

int main (){

using node_type = int;

std::vector <node_type > nodes (4 ,1);

std:: mt19937 rng;

auto last = binary_merge(nodes.begin(), nodes.end(), rng);

std:: ostream_iterator <node_type > it(std::cout , "␣");

std::copy(nodes.begin(), last , it);

return 0;

}

The output gives the number of leaves of each hanging subtree after one genera-

tion of coalescence:

2 1 1

Construct a Newick tree format

Code with a suitable level of abstraction allows to readapt old code to new problems

with ease. Studying genealogies topological properties can be the main statistical

focus, but visualizing genealogies is still the most instinctive way to shed light on

some properties, to assert correctness of algorithms generating them, or to present

results. However, when it comes to data visualization, C++ is not the most suited

platform. Many tree visualizer use a Newick tree format (see Olsen, 1990) as an

input for nice plot rendering. The implementation is straightforward when using

Quetzal abstractions: the type of the nodes is now a character string, the parent node

is by default constructed as an empty string, and the branching event is defined as

a formating function taking the parent node p and the child node c as argument to

build the Newick format character string piece by piece. There are very few lines to

change in the code to entirely redefine the meaning of a coalescence event:

#include "quetzal/coalescence.h"

#include <random > // std:: mt19937

#include <iostream > // std::cout

#include <algorithm > // std::copy

2.6. QUETZAL - an open source C++ template library for coalescence-based

environmental demogenetic models inference
75

#include <iterator >

#include <string >

using namespace quetzal :: coalescence;

int main (){

using node_type = std:: string;

std::vector <node_type > nodes = {"a","b","c","d"};

std:: mt19937 rng;

auto branch = [](auto p, auto c){

if(p.size() == 0)

return "(" + c;

else

return p + "," + c + ")";

};

auto first = nodes.begin ();

auto last = nodes.end();

while(distance(first ,last)>1){

last = binary_merge(first , last , rng , branch);

}

std:: ostream_iterator <node_type > it(std::cout , "␣");

std::copy(nodes.begin(), last , it);

return 0;

}

The output will give the Newick format character string ((d,a),b,c) representing

the following coalescent tree.

76 Chapter 2. Development of Quetzal, a C++ library for coalescence

b c d a

The output can be exported for example on an online tree viewer such as iTol

(Letunic and Bork, 2006). Quetzal is not restricted to this simple example and any

arbitrarily more complex formatting functions can be considered, for example to

represent branches length or nodes position in a landscape.

2.6.5 Quetzal components for simulation

The manipulation of the genealogies is the most fundamental aspect of all coalescence-

based application programs, so the abstraction of the ancestry relationship is ex-

pected to be always useful, and the algorithms written in terms of this abstraction

are expected to be highly reusable. However, an open-ended number of generative

model variants can be considered: we present here a number of components that

are most likely to be necessary when implementing them. Note that these compo-

nents are intended to be independent. For example, if a demographic simulation is

usually run after reading some environmental quantities in a geographic file, this

does not have to be the case. Indeed any user-defined set of coordinates can be used

to represent the demic structure, and environmental quantities can for example be

represented by any mathematical function of the geographic space. Accordingly, the

type of the geographic coordinates used in the geography module does not pervade

the other modules.

Discrete landscape construction

In the geography module, Quetzal uses the Geospatial Data Abstraction Library (GDAL

Development Team, 2017) to read grids of ecological data through the instantiation

of a DiscreteLandscape object. In this class, the demes are represented by the grid

cells and identified by the geographic coordinate of their centroid. The class allows

to retrieve the set of demes centroid geographic coordinates (so it can be used to

represent the demic structure to run spatially explicit simulations), to reproject a set

of sampled coordinates to the nearest centroid (so compatibility is ensured between

2.6. QUETZAL - an open source C++ template library for coalescence-based

environmental demogenetic models inference
77

FIGURE 2.4: Flow chart illustrating the information flows between components of a gen-
eral environmental demogenetic model (see section 2.6.3). In grey parenthesis are indicated
the Quetzal modules (see section 2.6.5) that allow to represent these components in the code.
The way the landscape conditions the demographic processes form the main focus of a num-
ber of approaches (landscape-ABC (Estoup et al., 2010b), iDDC modeling (He, Edwards, and
Knowles, 2013a)) in the literature, such that the inference is usually driven on the underly-
ing niche and/or dispersal model. Infering such ecological properties from a spatial genetic
sample is made possible by using a coalescence model to link the sample to the demographic
processes that shaped it. Inference is run in an ABC framework, where parameters to esti-
mate are sampled in a distribution, allowing a dataset simulated by the generative model to

be compared to the observed data by some dissimilarity function to build the posterior.

78 Chapter 2. Development of Quetzal, a C++ library for coalescence

a spatial sample and the geographic support), or to deliver lightweight function-

objects that give access to the underlying ecological quantities and that are suscep-

tible to be coupled to the demographic model by composing them into arbitrarily

complex mathematical expressions of space and time. The GeographicCoordinates

class allows secured manipulations of longitude and latitude coordinates, and com-

putation of great circle distances (often useful to define dispersal kernels).

Demographic variables definition

In the demography module, Quetzal defines two class templates (PopulationSize and

PopulationFlux) to construct and consult (Nt
x) and (Φt

ij), providing expressive in-

terface for secured and intuitive manipulation. Both class templates do not depend

on geography module as they are templated on the type of the locations (the demes)

and on the type of values that are stored. It makes possible to use any geographic co-

ordinate system (for example longitude/latitude using the geography::GeographicCoordinates)

to spatialize the model. Any arithmetic type can be chosen to define the set in which

(Nt
x) and (Φt

ij) take value (typically NNN or R+R+R+). Indeed, the type of the stored time

values is not necessarily an integer but can be a more complex date type.

Compile-time functions composition

Because growth patterns are species-specific features, the expression of Nt+1
x is typ-

ically user-defined and hence can be any arbitrarily complex function, for example

constant values or discrete version of logistic growth model (Currat, Ray, and Ex-

coffier, 2004b). Quetzal offers tremendous facilities to build these functions, com-

posing function-objects into an expression that can be efficiently passed around. To

this purpose, Quetzal integrates expressive (Marques, 2017), a library making use of

metaprogramming techniques to enable compile-time optimization of function com-

position with high expressiveness.

Consider the discrete logistic growth version (see section 2.6.3) to define Nt+1
x

and let us pretend there is strong biological motivations to want the growth rate r to

be constant (r = 3) over space and time, and the carrying capacity K to be the mean

of heterogeneous environmental quantities E1 and E2, K = E1+E2
2 . As C++ has strong

static typing, it is impossible to directly sum constants (literals) with functions, as

it would be possible under others languages. So the first step is to transform the

2.6. QUETZAL - an open source C++ template library for coalescence-based

environmental demogenetic models inference
79

constants as functions with the same definition space as the other functions we want

to combine:

literal_factory <space_type ,time_type > lit;

auto r = lit (3);

Here r is now callable with time and space arguments, and can be composed with

other expressive callable objects. Assuming that E1 and E2 are function-objects callable

with time and space arguments (for example the function-objects delivered by the

DiscreteLandscape class), the function use allows expressive to manipulate the ex-

pressions and gives them an enriched mathematical interface, so the addition or

division operator can be applied on them:

auto K = (use(E_1)+use(E_2))/ lit (2);

And finally, assuming that N is a function-object callable with space and time

arguments, the whole growth expression can be built:

auto g = (use(N)*(lit (1)+r)/(lit (1)+((r * use(N))/K));

This expression can be captured in a lambda expression to simulate the number of

gene copies after reproduction in deme x at time t:

auto sim_growth = [g](auto x, auto t, auto& gen){

poisson_distribution <N_type > dis(g(x,t));

return dis(gen);

}

This object can be passed around conveniently for further invocation with space and

time arguments:

for(auto t : times){

for(auto x : space){

// ...

auto N_tilde=sim_growth(x,t,gen);

// ...

}

}

This last code snippet illustrates an important benefit of expressive: to allow the sep-

aration of concerns when writing the application code. In other terms, the details

80 Chapter 2. Development of Quetzal, a C++ library for coalescence

of the logistic growth expression are not intricate with the code where the expres-

sion is invoked, what would result in an obfuscated and hardly maintenable code.

Moreover, as the expression is known at compile-time, it is a perfect candidate for all

compile-time optimizations done by the compiler such as inlining: as the compiler

knows exactly which functions will be called when g is called, he should be able to

replace a function call directly by the body of the function, potentially leading to

extremely efficient code with very few indirections.

Dispersal patterns

In the random module, the TransitionKernel class is an implementation of a marko-

vian kernel for sampling the next state x1 of a markovian process conditionally to the

present state x0. It can be used in the dispersal context (in that case the states type

will represent demes coordinates, for example geography::GeographicCoordinates).

The underlying markovian probability distributions associated with each present

state do not need to have the same arrival space, and they are built only if needed

by the simulation context. The weights are computed with an arbitrary mathemat-

ical function conditionally to the present state (for example when only geographic

distance affects dispersal) or to the present state and time (for example when envi-

ronmental spatio-temporal heterogeneity affects dispersal).

Coalescence features

For coalescence under the Wright-Fisher model, a binary merge algorithm is pro-

posed to be used in the simulation contexts where the sample size is small relative

to the population size. A simultaneous multiple merge algorithm can be used when

this approximation does not hold.

The benefit of abstracting the inheritance relationship when simulating the ge-

nealogical graph was presented above along with two examples showing that an

explicit representation of the coalescent was not necessarily desirable. However in

many standard cases, it is needed, for example to save arbitrary information from the

simulation context (times of coalescence events) and access them later for updating

some quantities while descending the genealogy (for example apposing mutations

with a probability conditional to the time spent between two nodes). For these cases,

the Tree class template allows to construct such object, encapsulating an arbitrary

user-defined data field into each node, defining the inheritance relationship between

2.6. QUETZAL - an open source C++ template library for coalescence-based

environmental demogenetic models inference
81

a parent node and a child node in a secured way, proposing topological manipula-

tion operations and tree traversal algorithms.

The Forest class template is designed to ease the manipulation of spatial collec-

tions of trees (of arbitrary type) when using spatially explicit coalescence simulation.

2.6.6 Quetzal components for inference

The Quetzal abc module provides abstractions allowing to embed efficiently an open-

ended range of simulation models into an ABC framework. To this purpose, an ABC

object associates a simulation model and the prior distribution of its (possibly mul-

tidimensional) parameter to conduct inference. We present here key elements of the

abc module, notably the concept of GenerativeModel used to abstract out the model-

specific details.

As ABC-based inference on spatial coalescents involves complex functions for di-

mensional reduction and distance computation that are far beyond the scope of this

article, the ABC inference examples will be presented with a toy generative model

(the poisson distribution), a toy dimensional reduction function η (identity) and a

toy distance ρ (absolute value of the difference).

Then we step away from the toy-model and propose a concrete example of a

class satisfying GenerativeModel and implementing a fully-specified version of the

general theoretical model of coalescence presented in section 2.6.3. This example

will make use of Quetzal components to illustrate how to build original coalescence

simulations objects with ABC-compatible interface.

Features

The GenerativeModel concept

To achieve genericity and propose clear, standard and uniform ways to manipulate

models and parameters, specific simulation models are abstracted to the concept of

GenerativeModel, a Quetzal C++ concept that has been designed to be a generaliza-

tion of the standard C++ RandomNumberDistribution. It notably generalizes the type

of the result that is no more restricted to be an arithmetic type, so more complex type

values (coalescents, genetic data, or summary statistics) can be generated. Further-

more, the returned values are not necessarily generated from a simple probability

density function or a discrete probability distribution, as generally in ABC a complex

82 Chapter 2. Development of Quetzal, a C++ library for coalescence

stochastic simulation function is involved. The list of all requirements can be found

in the documentation. Any model object whose type D satisfies GenerativeModel and

any prior object able to randomly produce an object of type D::param_type can be

used to build an ABC object. Consequently, all the STL random number distribu-

tions are compatible with the abc module, which is very convenient for testing and

demonstration purposes:

using model_type = poisson_distribution <>;

uniform_real_distribution <double > prior (1. ,100.);

model_type model;

auto abc = make_ABC(model , prior);

Here an ABC object is constructed by associating the STL poisson distribution

with a prior on its parameter, the STL uniform distribution, for sampling parameters

in [0,100].

Prior predictive distribution sampling

The generation of the reference table is done by sampling n results in the prior pre-

dictive distribution.

mt19937 g;

auto n = 1000000;

auto table = abc.sample_prior_predictive_distribution(n,g);

The generated ReferenceTable object can compute other table objects. Consid-

ering a function-object representing the summary statistics function η, the raw data

table can produce a second ReferenceTable object associating the parameter value

to generated summary statistics.

auto eta = [](auto x){ return x;};

auto sumstats = table.compute(eta);

Generated data can be accessed, for example to be used as pseudo-observed data

in ABC validation methodology:

auto pod_value = sumstats.begin()->value ();

auto pod_param = sumstats.begin()->param ();

Then, considering a function object representing ρ, the distance function between

observed and simulated dataset,

2.6. QUETZAL - an open source C++ template library for coalescence-based

environmental demogenetic models inference
83

auto rho = [](auto obs , auto sim){ return abs(obs - sim);};

auto distances = sumstats.compute_distance_to(pod , rho);

Finally the syntax of the various interfaces make it intuitive to design a quick

rejection algorithm, sending to output only the parameter values for which the gen-

erated summary statistics was less than a threshold:

double threshold = 2.0;

for(auto const&it : distances){

if(it.value() <= threshold){

cout << it.param (). lambda () << endl;

}

}

Rejection samplers

The simplest samplers is the Rubin rejection sampler (Rubin, 1984). It accepts a

parameter value only if the generated data is strictly equal to the observed data

(the data type has to be EqualityComparable, i.e. having a built-in or a user-defined

comparison operator operator==).

The implementation of the Pritchard rejection sampler (Pritchard et al., 1999)

generalizes the dimensional reduction function (that traditionally computes sum-

mary statistics) and the distance function (that evaluates the distance between ob-

servation and simulation). Therefore, any object-function can be used to transform

data into summary statistics and any type of distance can be used.

More complex sampling algorithms like MCMC-ABC (Marjoram et al., 2003a),

SMC-ABC (Del Moral, Doucet, and Jasra, 2006), or PMC-ABC (Beaumont et al., 2009)

are yet not implemented, but we do not expect that it will hinder Quetzal reliability.

Indeed these algorithms are known to be challenging to calibrate (Marin et al., 2012),

while embedding the simulation model and the inference framework in the same

C++ application code has the benefit to make all the type information available for

the compiler, decreasing the computational cost, so the generation of the reference

table alone is expected to be useful for a wide range of situations. Furthermore,

we expect that if more sophisticated versions of algorithms are needed, the Quetzal

existing concepts will greatly ease their implementation.

84 Chapter 2. Development of Quetzal, a C++ library for coalescence

2.6.7 Implementing a custom generative model

We present here how to construct a class ExampleModel that meets the requirements

of the GenerativeModel. The main general ideas are highlighted here and the program

can be found in the supplementary material.

We consider a landscape reduced to two demes A and B. At time t0, N0 = 10

haploid individuals were introduced in deme A. The local growth rate and the lo-

cal carrying capacity K are assumed to be constant across the landscape. The growth

rate is known (r = 100) while the local carrying capacity K is unknown and assumed

to belong to [1, 500]. The aim of the program is to estimate this value starting with

a uniform prior distribution on [1, 500]. For each individual there is a probability

m = 0.1 to migrate to the other deme. After g = 10 generations, n = 30 individuals

were sampled in B and genotyped at one locus. We assume that each introduced in-

dividual had different allelic states and that mutational process is negligible. Under

these hypotheses, the observed clustering of the data is only shaped by the genealog-

ical process, so we can reject all simulated coalescent forests that do not clusterize

the dataset into as many subsets of same cardinality than in the observed clustering.

Consequently, we just need to construct the vector of the hanging subtrees leaves

count (a way to do it efficiently was presented above) and to compare it to the ob-

served vector of clusters size. We accept the parameter used for the simulation only

if the two vectors are equals. For a demonstration purpose, we construct a reference

table by sampling 5× 105 simulated data into the prior predictive distribution, and

we generate 100 pseudo-observed data under the parameter K = 50 for validation.

Note here that if the pseudo-observed data do not contain 30 individuals in deme B,

no posterior will be estimated. The prior and posterior distributions are shown in

Figure 2.5.

ABC-compatible interface

Declaring the following interface is sufficient to capt the generality of all possible

generative models and enable the ExampleModel class to interact with an ABC object:

class ExampleModel{

public:

using param_type = Param ;

using value_type = ... ;

2.6. QUETZAL - an open source C++ template library for coalescence-based

environmental demogenetic models inference
85

0 100 200 300 400 500
K

̂K = 62.6986481102

0.000

0.005

0.010

0.015

0.020

FIGURE 2.5: Posterior densities obtained by ABC inference conducted
on pseudo-observed data generated under the ExampleModel model
shown in section 2.6.7. True parameter value K = 50 is shown as the
vertical dashed line. The prior distribution is shown in green. The

mean of all posteriors is given as K̂.

86 Chapter 2. Development of Quetzal, a C++ library for coalescence

template <typename Generator >

value_type operator ()(Generator& gen , param_type const& p) const;

};

The member type value_type describes the type of value generated by the model.

The member type param_type encapsulates the details of θ, the multidimensional

parameter to estimate.

Encapsulating θ

The point here is to hide useless details (such as dimensionality) from ABC proce-

dures while allowing the user to have control over its implementation. We warn

against using vectors or arrays to represent multidimensional parameters: it would

impose all dimensions to be of same type, and their index-based value access inter-

face would later favor confusion between dimensions. Instead, we suggest to follow

the STL standards and to implement user-defined small classes, with expressive get-

ter/setter syntax. Here we show an extract of the Param class, where the member

k represents K, the carrying capacity of each deme in the landscape. Other dimen-

sions are not given here, but can be set to constants for better code maintainability,

as found in the supplementary material.

class Param{

private:

double K;

public:

double K() const; // getter

void K(double); // setter

// ... other dimensions

};

Constructing the prior

Instances of this parameter class can be created in a prior distribution i.e a func-

tion that can be called with a random generator and that randomly produces a

param_type object, manipulating the Param object via its interface to set its dimen-

sion values:

2.6. QUETZAL - an open source C++ template library for coalescence-based

environmental demogenetic models inference
87

auto prior = [](auto& gen){

ExampleModel :: param_type params;

params.k(std:: uniform_int_distribution < >(1 ,500)(gen));

params.r(100);

params.m(0.1);

return params;

};

More guidance in the design of this second-order function can be found in the project

wiki. This function-object, representing the parameter joint distribution, will be

passed to the ABC object, that will use it to generate random parameters and pass

them to the model ExampleModel::operator() member function to generate ran-

dom value_type objects. The model details lay in the definition of ExampleModel::operator()

member function, and a possible implementation is proposed in the supplementary

material.

2.6.8 Acknowledgements

We thank Ambre Marques who importantly contributed to the present Quetzal state

by taking on her free-time to provide advice on generic paradigm and design issues,

and to develop the expressive library.

We thank Florence Jornod who participated as an intern.

Arnaud Becheler was funded by a multidisciplinary project founded by the French

Government (LabEx BASC, ANR-11-LABX-0034) that aims to provide new knowl-

edge regarding the drivers of species distribution and to design innovative guide-

lines toward sustainable land management.

This work was partially supported by the Chair "Modélisation Mathématique et

Biodiversité" of VEOLIA-Ecole Polytechnique-MNHN-F.X., by the Mission for Inter-

disciplinarity at CNRS and by the Institute for the Diversity, Ecology and Evolution

of the Living World.

2.6.9 Data Accessibility

Quetzal source code can be found on github project (https://github.com/Becheler/quetzal).

The README file redirects towards Quetzal resources (documentation, wiki, IRC

channel). This program is a free software; you can redistribute it and/or modify it

88 Chapter 2. Development of Quetzal, a C++ library for coalescence

under the terms of the GNU General Public License as published by the Free Soft-

ware Foundation; either version 2 of the License, or (at your option) any later ver-

sion.

2.6.10 Authors Contribution

All authors participated equally in the mathematical model design. Arnaud Becheler

implemented the C++ library. The article and the documentation of the Quetzal

project were written by Arnaud Becheler in cooperation with the other authors.

89

Chapter 3

Strategies for coalescence

simulation

Approximate Bayesian Computation methods require that various models can be effi-

ciently simulated. However, changing hypothesis or details in a model can have important

impacts on the underlying simulation code. This is notably the case of the algorithms used

to perform coalescence. We present here technical solutions to write generic algorithms for

genealogical manipulations. Furthermore, under certain conditions, the common approxima-

tion of considering only binary coalescence events does not hold, and alternative algorithms

must be developed to consider simultaneous multiple coalescence events. According to the

simulation conditions, different versions of these algorithms can be considered to increase

ABC efficiency. These algorithms are presented, along with the technical solutions allowing

to make them exchangeable components of higher-level code structures.

3.1 Wright-Fisher sampling algorithms

The word coalescence comes from the latin coalescere (unite, join). It is used across

different fields to refer to the merging of two or more elements. For example, the

word is used to designate the tendency of two or droplets to merge together. Or

two bubbles, or particles. It can be used to designate the fusion of two biological

tissues. In population genetics, it is used to refer to the merging of genetic lines

backward in time to their most recent common ancestor. As the word coalescence in

natural language is linked to a variety of use context, we will see how to define a C++

concept of coalescence that is able to represent a wide variety of particular meanings.

90 Chapter 3. Strategies for coalescence simulation

This section is for pedagogical and documentation purpose. First, the theoret-

ical coalescence setup in which the algorithms are developed is presented. Then

we show how the details of a particular programming context are abstracted to de-

sign generic algorithms that can adapt to all contexts. This genericity is not found

in the coalescence-based simulators state of the art, but the techniques enabling it is

well-known in the modern C++ community. We bridge this gap in this section by pre-

senting concepts that can be reused to develop new generic coalescence algorithms.

Coalescence algorithms are likely to be unstable, because algorithms are relative

to hypothesis which relevance is tightly linked to a changing user context. Besides,

these algorithms are usually parts of larger structures in the code. We show how

to design both algorithms and higher-level code structures in such a way that al-

gorithms becomes options that can be passed at compile-time to higher-level struc-

tures, in order to choose the appropriate simulation behavior. It allows to reach high

flexibility and code efficiency.

3.1.1 Theoretical setup

The neutral Wright-Fisher model

A central model in population genetics is the Wright-Fisher model, that describes the

evolution of a haploid population through time, by describing how alleles are trans-

mitted between generations. The model was implicitly defined by Fisher (1923) and

explicitly defined by Wright (1931). This model (defined here for haploid popula-

tions) makes a number of assumptions:

• population size is constant in time

• the population described by the model is not spatially structured (panmixia).

• No selection or mutation, i.e. as individuals are equally fitted, their number of

descendants follow the same law.

• Discrete and non-overlapping generations : all individuals reproduce/die at

the same discrete time.

The model can be generalized for variable population size. In that case, these

assumptions allow to define the genealogical process in the following terms: at each

generation t, parents die by giving birth to Nt new individuals that pick their parent

uniformly at random.

3.1. Wright-Fisher sampling algorithms 91

Under this model, the demographic process is defined forward in time. In other

words, the number of descendants is defined conditionally to the number of parents.

In contrast, the genealogical process is defined backward in time: each descendant

picks its parent uniformly at random and independently. Interestingly, it allows

to consider each process separately under the neutral hypothesis: first the demo-

graphic process to determine the number of parents and descendants, and second

the genealogical process to assign each child at each generation to a parent at the

previous generation. This model allows to trace back the ancestry of sampled genes

(or sequences) in the demographic history of the population. As the more similar

genes are expected to find rapidly their common ancestor, it allows to shed light on

the underlying demographic process.

When looking at n sampled genes, some of them may originate from the same

reproduction event in the previous generation, where the parental gene was repli-

cated into several children genes. Forward in time, it looks like a classical reproduc-

tion event. Backward in time and looking at genes lines, everything happens as if

some of the sampled lines merged into a common ancestor: this is called a coalescence

event. Coalescence events lead the building of coalescence trees, where vertices are

common ancestors of children nodes and where edges are ancestry relationship.

The large population size approximation

Coalescence theory has a long tradition of approximations. Whenever the consid-

ered number of lines k is much smaller than the parental population size N, it is

very unlikely to observe more than one coalescence event. Furthermore, the number

of lines that are coalescing is then unlikely to be superior to 2 (as children pick par-

ents uniformly at random, the probability that three children pick the same parent is

1/N2). Based on this approximation, a variety of models give the distribution of the

coalescence times: events times can then be efficiently simulated and two lines can

be sampled uniformly at random to be merged. The popularity of this approxima-

tion in a wide range of models motivates that we implemented an algorithm that is

general enough to merge two nodes at random in a sequence, independently from

the specific modeling framework (that is, we do not care here about coalescence

times, coalescence demes locations, allelic states ...).

In many cases this approximation can not be made. For example, in a biological

invasion context, just after a long distance dispersal event the population size is very

92 Chapter 3. Strategies for coalescence simulation

small. In this case the probability that more than one coalescence is no longer negli-

gible. When 8 lines are coalescing into 3 parents, it is likely to observe simultaneous

events of multiple coalescence (that is, to observe for example a configuration like 4

children coalescing in the first parent, three children in the second parent and 1 not

coalescing). It motivates the design of an algorithm that coalesce lines uniformly at

random according to a given configuration of the collisions. Again, to increase gen-

erality and reusability this algorithm should be designed independently from the

modeling context.

3.1.2 Common abstractions for coalescence algorithms

Abstracting the concept of data sequences: iterators

A common feature of coalescence algorithms under the Wright-Fisher uniform sam-

pling is that they operate on a sequence of nodes. We said earlier that the Standard

Library uses various containers to represent information sequences: the vector class

or the list class are generally good candidates for basic sequences. As different

types of containers are likely to be passed to the algorithm, this difference needs to

be abstracted so the algorithm can work in all cases. The Standard Library makes

use of iterators to abstract containers:

Definition 3.1.1. Iterator The Iterator concept describes types that can be used to

identify and traverse the elements of a container. Iterator is the base concept used

by other iterator types: InputIterator, OutputIterator, ForwardIterator, Bidirection-

alIterator, and RandomAccessIterator. Iterators can be thought of as an abstraction

of pointers (memory adresses where are stored data)

Using iterators, we can move forward in the sequence using the ++, some itera-

tors can move backward using the -- operator, the element pointed by the iterator

can be accessed with the * operator. As they allow to manipulate any kind of con-

tainers, they are of fundamental interest in the design of coalescence algorithms.

Abstracting the tree data structure: template variable type

When writing the algorithm, it is impossible to foresee which C++ class the user

will want to use to represent a coalescent tree in the code. Indeed, previous pro-

grams like simcoal uses a complex class (the TNode class) to represent coalescent

trees that involve the representation of very model-specific features: deme to which

3.1. Wright-Fisher sampling algorithms 93

the node belongs, mutations, mutation rates and range constraints for microsatellite

data. Other coalescence approaches rather aim at simply representing the partition

process that operates on coalescing nodes and do not worry about all these details

(see for example Chapter 4). The nodes type can be abstracted simply by using a

variable type with the template keyword.

Abstracting behavioral details: function objects

The variable node type alone allows to give flexibility on the type accepted by the

algorithm, but it does not help much in calling the desired behavior on nodes to

coalesce. For example, in the following example, two nodes of unknown type T

have to be merged in a newly created parent node. Let’s assume that the tree type

is a binary tree data type like in simcoal (that is each parent node has two children :

left and right):

template <typename T>

T merge(T node1 , T node2){

T parent; // parent node constructed

parent.set_left_child(node1);

parent.set_right_child(node2);

return parent;

}

The problem with this code is that the behavior called on the node type is tightly

dependent on the type itself: a n-ary tree type (with multiple potential children

nodes) has no reason to offer the set_left_child method, so the algorithm will

not work with this type. This problem often leads to code duplication. For example

the following code snippet is a clumsy attempt to "generalize" the merge to more

than two children nodes:

template <typename T>

T merge(T node1 , T node2 , T node3){

T parent;

parent.set_children(node1 , node2 , node3);

return parent;

}

94 Chapter 3. Strategies for coalescence simulation

But again, if native data types like int are used for representing partitions of

data, the algorithm will not work as the integer type does not offer a set_children

in its interface (it would be very ugly to implement its own integer type). It seems

that a new algorithm should be defined each time that a new class is used for the

coalescence: obviously, this approach rapidly does not scale with the open-ended

number of possible types used for representing trees. As the desired behavior is not

defined at the moment where the algorithm is written, it should be abstracted too,

and left at the discretion of the library user to define the right behavior to call. Ab-

stracting behaviors can be done by passing as arguments functions that implement

the desired behavior. There are many types of objects that can behave like functions,

and they are called function objects:

Definition 3.1.2. (Function objects) A function object is any object for which the

function call operator is defined. C++ provides many built-in function objects as

well as support for creation and manipulation of new function objects.

Due to their ability to inject flexible behaviors in algorithms, function objects are

central in the design of the Standard Library. Among all function objects, lambda

functions (a feature brought by C++11) are very handy. This feature allows to build

function objects very easily, with high locality (that is, the function can be declared

next to the point it is used). Their benefits were so important that they radically

changed the way programmers used function objects.

Instead of declaring something like parent.set_left_child(child), a function

object binop (a binary operator, that is an operator taking two arguments) will be

used instead: binop(parent, child); The exact operations that are performed (and

that define the parent-child relationship) are decided in the declaration of the binop

function object, that is outside the merge algorithm (since the object function is passed

as an argument of the algorithm). This way, the merge algorithm can be designed

independently of all context-specific information:

• which object type will be used to represent a genealogy

• the parent-child relation type

• how the parent will be created (its initial internal state)

3.1. Wright-Fisher sampling algorithms 95

3.1.3 Binary merge algorithm

The aim is here to present an algorithm able to realize the Wright-Fisher sampling

for merging two nodes uniformly at random, using the abstractions previously pre-

sented to guarantee a high level of genericity and reusability.

Expected behavior

We want this algorithm:

1. to perform the sampling of two nodes in a set of nodes

2. to create a new parent node

3. to set the sampled nodes as children of the parent

4. to remove the children from the nodes set

5. to add the parent in the nodes set

6. to return the transformed set

Sampling uniformly two nodes at random in a sequence is equivalent to rear-

range uniformly at random the sequence and then to sample its first and last ele-

ment. The Standard Library offers the shuffle algorithm to perform this rearrange-

ment. All standard containers offer the begin and the end methods that give iterators

pointing respectively on the first and on the past-the-end element, the sequence can

be traversed from the beginning to the end by incrementing the iterator. Passing

a container to a generic algorithm can then be done by passing these two iterators

(generally called first and last). As the algorithm modifies the length of the con-

tainer, it can signal it by returning an iterator pointing to the new end of the con-

tainer. Figure 3.1 illustrates the behavior of the algorithm.

Generic implementation

Once the algorithm behavior is specified, it can be implemented with techniques

respecting its genericity:

template <class It, class T, class Binop , class Generator >

It binary_merge(It first , It last , T init , Binop op, Generator& g)

{

96 Chapter 3. Strategies for coalescence simulation

(A) (B) (C)

FIGURE 3.1: Steps of the binary merge algorithm. 3.1a: a four nodes
sequence is given to the algorithm by passing two iterators as argu-
ments: one pointing to the first element of the sequence, the other
pointing to the past-the-end element (this end iterator is represented
as a dotted red node). As nodes have to be picked uniformly at ran-
dom, the nodes in the sequence are first shuffled uniformly at ran-
dom. 3.1b: A parent is initialized with the desired initial state (passed
as an argument), and the first element of the sequence is set to be its
child. 3.1c: then the last element is set to be the second child, and the
reduction of the sequence size is indicated by moving the end iterator
backward and returning it as a result of the algorithm. The updated
sequence can then be accessed by iterating between the begin/end

pair of iterators.

std:: shuffle(first , last , g);

*first = op(init , *first);

*first = op(*first , *(--last));

return last;

}

In the code above, the most important line is the second line, giving the signature

of the function: the function binary_merge takes two iterators (giving the range of

a sequence of nodes) and returns an iterator (others arguments will be inspected

further). This means that the merge algorithm can accept any kind of containers and

that it modifies its size. Interestingly, all types manipulated by the algorithm are

unknown (this is the meaning of the first line template< ... >) : these types will

be decided at the compilation, as the user will apply this algorithm to well-defined

types of nodes, containers, and function objects.

The first operation is the random rearrangement of the elements between first

and last: this is done by using the standard std::shuffle algorithm, called with

the random number generator (of unknown type) given by the user as argument.

Abstracting the random number generator is important, as multiple implementa-

tions exist, so the library should not rely on a specific type.

Then the binary operation of unknown type is called with the init and the first

element of the sequence. The result of this operation represents the parent node

having as child the first element of the sequence. This result is then designated as

3.1. Wright-Fisher sampling algorithms 97

the new first element of the sequence (that is, the child is not anymore contained in

the sequence).

In the third line, the last element of the sequence is accessed by decrementing

then dereferencing the past-end iterator last and is used as a child for the parent

(the new first element). As this child should not be part of the nodes sequence any-

more, its iterator is returned to design it as the new past-end iterator: the number of

elements between first and last is finally reduced by 1.

3.1.4 Simultaneous multiple collisions algorithm

The aim is here to present the implementation of an algorithm able to realize the

Wright-Fisher sampling for merging several nodes in several parents uniformly at

random. If the logic of the algorithm differs a bit from the binary merge algorithm

(because it is more general), it makes use of the same abstractions previously pre-

sented. The important difference is that the algorithm needs a supplementary infor-

mation to perform coalescence. This information is a description of the coalescence

configuration, given by an occupancy spectrum (see section 3.2.3). An occupancy

spectrum is a vector of numbers containing the description of how many new par-

ents should be created, and the number of children each parent has.

Expected behavior

Let us consider a vector (M1, . . . , Mn) representing an occupancy spectrum. We

want this algorithm, for each i ∈ J0; nK of a given occupancy spectrum:

1. to create Mi new parent nodes

2. for each parent to perform the sampling of i nodes

3. to set the sampled nodes as children of the parent

4. to remove the children from the nodes set

5. to add the parent in the nodes set

6. to return the transformed set

A way to understand the behavior of this algorithm is to imagine that as new

parents are created, the sequence of nodes is progressively emptied by its end, an

iterator tracking the end of the sequence. Figure 3.2 illustrates the behavior of the

98 Chapter 3. Strategies for coalescence simulation

algorithm where the occupancy spectrum M = 101 has been given: this spectrum

means that over 4 nodes, 1 node will no coalesce, 0 binary merge will occur, and 1

coalescence event with 3 children will occur.

(A) (B) (C) (D)

FIGURE 3.2: Steps of the simultaneous multiple merge algorithm.
3.2a: a four nodes sequence is given to the algorithm by passing two
iterators as arguments: one pointing to the first element of the se-
quence, the other pointing to the past-the-end element (this end itera-
tor is represented as a dotted red node). As nodes have to be picked
uniformly at random, the nodes in the sequence are first shuffled uni-
formly at random. 3.2b: A parent is initialized with the desired initial
state (passed as an argument), and the first element of the sequence
is set to be its child. 3.1c: then the last element is set to be the second
child, and the reduction of the sequence size is indicated by moving
the end iterator backward. 3.2d the new last element is set as being
the third child, and the end iterator is moved backward again. Once
the algorithm is over, the end iterator is returned. The updated se-
quence can then be accessed by iterating between the begin/end pair

of iterators.

Generic implementation

Once again, various template arguments allow to design an algorithm that respects

both the expected behavior previously presented and a full genericity. The abstrac-

tions are mainly identical to those used precedently but their name were changed

for aesthetical purpose only. An abstraction was nevertheless added to represent the

occupancy spectrum. The motivation for not using a simple std::vector is that I

wanted to reserve the possibility to use a dedicated class to represent the occupancy

spectrum invariants (see section 3.2.3, equation 2 and 3).

template <class It, class T, class F, class S, class G>

It simultaneous_multiple_merge(It first , It last , T init , S sp, F op, G& g)

{

std:: shuffle(first , last , g);

// directly go to binary merge

auto m_it = sp.cbegin ();

std:: advance(m_it , 2);

int j = 2;

3.1. Wright-Fisher sampling algorithms 99

// iteration on the occupancy spectrum

while(m_it != sp.cend ()){

// loop on the m_j parents

for(unsigned int i = 1; i <= *m_it; ++i){

*first = op(init , *first);

// loop on the others children

for(int k = 1; k < j; ++k){

*first = op(*first , *(--last));

}

++first;

}

++j;

++m_it;

}

return last;

}

Like the binary merge algorithm, this algorithm needs a sequence of nodes on

which to operate: the sequence is contained between the two iterators passed as ar-

guments. Then, a node model is given to initialize the parents at their initial state,

and a random number generator is given for the random permutation of elements.

The occupancy spectrum is given too, so the algorithm is independent from the ran-

dom process that generates this coalescence configuration.

The first step is to randomly rearrange the elements. Then, the iteration on the

occupancy spectrum numbers begins directly at the binary merge events (j=2). A

first loop is run that creates the desired number of parents with initially one child,

and a second loop affects to the newly created parent the desired number of children.

When a parent has the right number of children, the first iterator is moved forward,

so another cycle can begin. In the meanwhile, the last iterator is moved backward to

signal that the sequence size decreases.

100 Chapter 3. Strategies for coalescence simulation

3.1.5 Guidelines for designing interchangeable strategies at compile-time

Multiplicity of possible designs

The precedent algorithms, deterministic in that they necessarily perform coales-

cence, can be used in higher-level stochastic algorithms. This higher level logic is

associated to a more specific modeling setup. For example in a discrete-time model,

the logic will decide if a coalescence event happens at a given generation. In a

continuous-time setup, the logic will probably sample the time at which coalescence

occurs. But in both cases, there are reasons to want to use either the binary merge al-

gorithm or its multiple collision variant. This choice results from the approximation

that can be (or not) done if the parental population size is large enough relatively to

the number of lines. In discrete-time models, more than 2 children can have the same

parent is the parental population size is small enough. Some continuous-time mod-

els incorporate the possibility for simultaneous multiple collision of lines. In any

cases this choice is the user’s choice, and is likely to change from time to time: this

variability should not compromise the existing code base, and the user should be

able to pass the algorithm version (binary or multiple merge) to use as an argument,

and to do this efficiently.

Combinatorial explosion of possible behaviors

Often there are multiple ways to perform the same task, and this multiplicity is par-

ticularly difficult for the programmer to tackle. For example, in ABC models com-

parison methodology, the same data are simulated according to different models,

and the quality of models is then assessed. In that case, models are a combination of

various submodels (growth, dispersal, mutation ...) for which several variants exist.

The direct and naive solution to represent each general model version by a class im-

plementing a given set of options does not scale with the number of options: as the

options combinations number grows exponentially with the number of options, the

programmer would have to define an exponential number of classes differing only

by some behavioral details. For example, to test the effect of the coalescent topology

(2 modalities: binary tree or k-ary tree), the dispersal kernel (2 modalities: gaussian

or fat-tail kernel) and the growth pattern (2 modalities: logistic or exponential mod-

els), 8 classes would have to be defined, with hardly readable names reflecting what

they exactly do:

3.1. Wright-Fisher sampling algorithms 101

• class ModelBinaryCoalescenceGaussianDispersalLogisticGrowth

• class MultipleCoalescenceGaussianDispersalLogisticGrowth

• class ModelBinaryCoalescenceFatTailDispersalLogisticGrowth

• class ModelBinaryCoalescenceFatTailDispersalExponentialGrowth

• . . .

These classes need to be maintained and are likely to evolve, which will appear

quite complicated. For example, if a supplementary option is envisaged (like a sub-

model to represent the link between the environment and the growth rate), the num-

ber of classes will raise to at least 16. Obviously, this is unmaintainable.

Decomposing a complex behavior into policy classes

Instead of defining multiple classes each implementing a fully specified set of many

behaviors, this is better to define one general-purpose class (the simulation skele-

ton) and to decompose the simulation complex behavior into small independent

behaviors that can be composed at compile time (the key for efficiency). The classes

implementing these orthogonal behaviors are called policy classes.

template <class CoalPolicy , class DispersalPolicy , GrowthPolicy >

class DemogeneticModel;

And assuming some of these policy classes were implemented, they can be passed

as template arguments to obtain the desired behavior:

DemogeneticModel <BinaryMerge , Gaussian , Logistic > model_1;

DemogeneticModel <BinaryMerge , FatTail , Exponential > model_2;

ABC:: compare(model_1 , model_2); // for example

Importantly, the user can define its own policy and give it to the DemogeneticModel

class (assuming its policy implements the correct interface). The DemogeneticModel

class is then open for extension, but closed for modifications, as the variables parts

have been exported.

102 Chapter 3. Strategies for coalescence simulation

3.2 Algorithms for fast simulation of discrete-time coalescents

with simultaneous multiple merger.

3.2.1 Abstract

Motivation

There has been a growing interest in discrete-time coalescent simulation models mix-

ing binary and simultaneous multiple mergers. This allowed to widen the range

of biological models under which genetic data can inform demographic processes

without sacrificing performance. However, generating a multiple collisions config-

uration is still costly and code reuse is still limited.

Results

We address these two problems by presenting a set of generic, reusable simulation

components for coalescent simulation with simultaneous multiple collisions. We

use the occupancy spectrum which is a vector of numbers summarizing a coalescence

configuration as a common interface for various simulation strategies. Among oth-

ers, we notably propose a new algorithm allowing to efficiently sample a spectrum

directly in its probability distribution.

Availability

All components are integrated as parts of Quetzal, an open-source C++ library for

coalescence available at github.com/Becheler

3.2.2 Introduction

Genetic data allow to inform the dynamics of biodiversity in relation to environ-

mental changes, giving access to the phylogeographic history of species (Brown and

Knowles, 2012) or to biological invasions drivers (Estoup et al., 2010a). Considered

the generally high-level complexity of the related models, Approximate Bayesian

Computation (ABC, see e.g. Marin et al., 2012) techniques have shown to be very

useful for estimating ecological parameters (Beaumont, 2010). These techniques rely

on massive simulation capacity and on an efficient implementation. Coalescence

approaches (see e.g. Wakeley, 2009) allow to dramatically lighten the computation

load by focusing on simulating the genetic history of the sample (the coalescent tree)

3.2. Algorithms for fast simulation of discrete-time coalescents with simultaneous

multiple merger.
103

conditionally to a given demography, rather than simulating both the demographic

and the genetic dynamics of the whole population.

We focus here on coalescence models resulting from discrete-time Wright-Fisher

models, where individuals reproduce and die immediately with no generation over-

lap. When implementing the simulation program, the choice of the algorithms gen-

erating the coalescent and the reliability of the underlying assumptions heavily de-

pend on the order relation between the population size N and the sample size n.

Whenever n << N, the probability that more than two gene copies have the same

parent is extremely low, so a fast binary merge algorithm can be used.

However, there is a large range of problems for which this assumption does not

hold. For example, several programs (notably various versions of SPLATCHE, Cur-

rat, Ray, and Excoffier 2004a) implementing one or another variation of an envi-

ronmental demogenetic model have been used in the context of bioinvasions. In

environmental demogenetic approaches (that encompass iDDC modeling, see He,

Edwards, and Knowles, 2013b and Becheler214767), the population size distribution

over space and time is constructed by some complex stochastic process accounting

for environmental dynamics, and is not meant to be directly estimated. In this con-

text, a limited number of introduced individuals spread and reproduce across the

landscape, so Nt
x, the population size in deme x at time t, is highly stochastic. If the

population size depends on parameters to estimate, the random parameter sampling

which is part of the ABC procedures makes it harder to guarantee that nt
x << Nt

x.

Actually, at some point of the simulation, Nt
x can be close to 1. Obviously the prob-

ability that more than two gene copies have the same parent is no more negligible,

so a simultaneous multiple merge algorithm (SMMA) should be used. However

SMMA is known to dramatically slow down the simulation, what is opposed to the

performance constraint imposed by ABC procedures.

In this article we first introduce the term of occupancy spectrum as an abstrac-

tion of a simultaneous multiple coalescence configuration. An occupancy spectrum

resumes all the information needed to coalesce n indistinguishable lineages in N

parents. It has multiple benefits in terms of implementation design. Notably, it acts

as an interface and allows to consider interchangeable strategies for the simulation,

opening the door for user-friendly compile-time customization of the simulation be-

havior.

We then compare different strategies for simulating coalescence configurations.

104 Chapter 3. Strategies for coalescence simulation

First we present a straightforward implementation of a ball-to-urn assignment. Then

we present a second strategy that samples a configuration directly in a distribution

according to its probability. This strategy requires the construction of the discrete

probability distribution of all possible configurations susceptible to arise when co-

alescing n lineages in N parents. So it demands that i) the support of the distribu-

tion can be efficiently constructed, ii) the probability of a configuration can be com-

puted iii) the distribution can be constructed only once and sampled many times

to scale with ABC procedures where massive simulations are needed. We present a

new algorithm that allows to efficiently generate this support. The probability of a

spectrum can be computed using urn and balls problems arguments. Memoization

techniques allow to store the constructed distribution in memory for later sampling

leading to fast coalescent simulations. As the support of the distribution can be

huge, approximation strategies aiming at reducing its size are proposed, and their

performance assessed.

All the algorithms and strategies presented are implemented in C++ as part of

the Quetzal template library (Becheler214767). The project documentation presents

how to easily switch between strategies using the policy classes available in Quetzal,

and how to design customized composite strategies as policy classes for enhanced

efficiency in the user-specific context.

3.2.3 Approach

Occupancy spectrum

Simulating the coalescence of n indistinguishable lines into m parents is actually

an urn and balls experience where n indistinguishable balls are randomly placed

in m urns, each urn having an assignment probability of m−1. If an urn contains r

balls at the end of the random experience, r is said to be the occupancy number of

the urn (see Johnson and Kotz, 1977, p. 115). We then count the number of urns

having the same occupancy number r (i.e the number of urns containing exactly r

balls) is denoted Mr. We introduce the term occupancy spectrum to design the vector

M0, M1, . . . , Mk. We show in Figure 3.3 a possible output of throwing 8 balls in 5

urns, and how the configuration can be summarized by the occupancy spectrum.

This abstraction allows to disentangle the generation of a coalescence configuration

from the concrete implementation details of the coalescence event representation,

3.2. Algorithms for fast simulation of discrete-time coalescents with simultaneous

multiple merger.
105

FIGURE 3.3: Possible output resulting from throwing 8 balls (green
balls) into 5 urns (blue boxes), or equivalently from coalescing 8 lin-
eages in 5 parents. The following terms can be calculated: M0 = 1 is
the number of urns (resp. parents) with no balls (resp. children), i.e.
the number of parents with no descent in the sample. M1 = 1 is the
number of lineages that will not coalesce. M2 = 2 is the number of
simultaneous binary merge events. M3 = 1 is the number of simul-
taneous ternary merge events. The concatenations of M0, M1, M2, M3
terms form the occupancy spectrum M = 1121 that summarizes a co-
alescence configuration with simultaneous multiple collisions. Such
an occupancy spectrum can be randomly generated with Algorithm
1. All possible occupancy spectrum output can be generated using

Algorithm 2.

and, as an interface, it allows to consider interchangeable strategies for generating a

coalescence configuration.

Algorithm 1 is an on-the-fly occupancy spectrum sampling algorithmm. It takes

as an entry the number of balls and urns and by a ball-to-urn random assignment

experience: it assigns uniformly at random a parent among N to each one of the k

lineages, counting those with same parent for constructing the spectrum.

Algorithm 1 On-the-fly occupancy spectrum sampling algorithm (OTF)

1: procedure SAMPLE(n,m)
Require: n number of balls, m number of urns
Ensure: returns an occupancy spectrum.

2: M zero-vector of length n + 1
3: π zero-vector of length m
4: for k ∈ [1, n] do
5: i ∼ uni f (0, m− 1)
6: pi ← pi + 1
7: for j ∈ p do
8: Mj ← Mj + 1

9: printMj

Direct sampling in the occupancy spectrum probability distribution

Instead of repeatedly reconstructing an occupancy spectrum each time a sample is

needed, we propose to sample an occupancy spectrum directly in its probability

distribution. Generating the support of the distribution is not straightforward and

106 Chapter 3. Strategies for coalescence simulation

is expected to be costly, but memoization techniques allow it to be constructed once,

sampled many times, what scales well with ABC methods.

Let Dm
n be the joint distribution of the occupancy spectrums arising when throw-

ing n balls in m urns. Interestingly, the expression of Dm
n has been obtained by von

Mises (1939):

Pr[
n⋂

j=0

(Mj = mj)] =
m!n!

mnΠ[(j!)mj mj!]
(3.1)

with
n

∑
j=0

mj = m (conservation of the number of urns) (3.2)

and
n

∑
j=0

jmj = n (conservation of the number of balls) (3.3)

This result means that if we had an algorithm able to efficiently generate Ωm
n ,

the support of Dm
n , we could directly sample an occupancy spectrum according to

its probability instead of entirely reconstruct it from the ball-by-ball urn assignment

described in Algorithm 1.

As far as we know, such an algorithm has not been published yet, and we present

a version of it in Algorithm 2

3.2.4 Methods

The various components are implemented in C++ as parts of the Quetzal library. The

simultaneous_multiple_merge algorithm takes as arguments a sequence of lines

and the number of parents, and returns the sequence of lines after coalescence events

dictated by an occupancy spectrum created in the function internals. The behavior

of the algorithm concerning the spectrum creation is controlled by a policy class: by

default it invokes the on_the_fly policy that is an implementation of Algorithm 1.

As policy design allows compile-time customization, the spectrum generator can be

set to another policy, included user-defined ones. Quetzal proposes the alternative

policy in_memoized_distribution that will sample an occupancy spectrum directly

in Dm
n , possibly loosing time in constructing Dm

n if the algorithm was never called

before with the couple {n, m}.

3.2. Algorithms for fast simulation of discrete-time coalescents with simultaneous

multiple merger.
107

Algorithm 2 Ωm
k generative algorithm

1: procedure GENERATE(n,m)
Require: n number of balls, m number of urns
Ensure: for each v printed v ∈ Ωm

k .
2: v zero-vector of length n + 1
3: f (n, m, n,v)
4: function F(n, m, λ, v)

Require: n number of balls, m number of urns, λ largest occupancy number of the
spectrum, v an updating occupancy spectrum solution

Ensure: for each v printed v ∈ Ωm
k .

5: if m = 0 & n = 0 then
6: print v return
7: if ! m = 0 then
8: if n = 0 then
9: w← v

10: w0 ← m
11: print w
12: return
13: else
14: if λ > 0 then
15: i← bn/λc
16: while i > 1 do
17: w← v
18: wλ ← i
19: if m > i then
20: b← n− i ∗ λ
21: if b < λ then
22: f (b, m− i, b, w)
23: else
24: f (b, m− i, λ− 1, w)

25: i← i− 1
26: if λ = 0 & n > 0 then
27: return
28: w← v
29: wλ ← 0
30: f (n, m, λ− 1, w)

108 Chapter 3. Strategies for coalescence simulation

Truncated spectrum

As the support of the memoized distribution can be huge, Quetzal offers various

possibilities to reduce its memory footprint. By default, the length of the occupancy

spectrums in Ωm
k is set to k + 1 for homogeneity of behavior with the on_the_fly

policy. However, the last zero-elements of an occupancy spectrum represent an im-

portant part of the memory loads of Ωm
k , in addition to induce useless iterations in

the simultaneous_multiple_merge algorithm, so they could be removed. For exam-

ple the occupancy spectrum coded by 631000 (6 urns with 0 balls, 3 urns with 1 ball,

and 1 urn with 2 balls) can be summarized by 631. The RemoveLastEmptyUrns policy

allows to customize the behavior of in_memoized_distribution by shortening the

size of the generated occupancy spectrums.

Approximated distribution

Many spectrums have a very low probability of occurence. For example, with n = 5

and m = 10, out of 7 possible spectrums, the occupancy spectrum 900001 (9 urns

with 0 balls, 1 urn with 5 balls) has a probability of 10−4. Quetzal proposes a policy

to control the behavior of in_memoized_distribution by deciding wether or not

a spectrum should be kept in memory based on its probability of occurence. The

default behavior is set to keep all the spectrums.

Performance comparison

The performance of the simultaneous_multiple_merge algorithm is compared un-

der three different strategies for generating the occupancy spectrum. These strate-

gies are respectively OTF (On The Fly, implemented by the on_the_fly policy), IMD

(Memoized, implemented by the default settings of the in_memoized_distribution)

and MAT (Memoized, Approximated, Truncated), a composite policy resulting from

sampling the truncated spectrum in a distribution where the spectrums with a prob-

ability of occurence less than 10−6 have been discarded. The effects of the approxi-

mation are not assessed here.

For each condition and each strategy, the execution time of one coalescence gen-

eration is sampled and discarded 30 times (warmup), then a 10000-sample of exe-

cution times is recorded. The execution time distributions for OTF, IMD and MAT

strategies are shown in Figure 3.4 for n = 6 and m = 10. The distributions for

3.2. Algorithms for fast simulation of discrete-time coalescents with simultaneous

multiple merger.
109

FIGURE 3.4: Distributions of runtimes required by Quetzal algo-
rithms to perform simultaneous multiple collisions of n = 11 lines
in m = 10 parents. Algorithm represented by strategy OTF (in
blue) merges the lines conditionally to an occupancy spectrum recon-
structed on the fly each time the algorithm is called (see Algorithm 1).
MEM (in orange) merges the lines conditionally to a spectrum directly
sampled in its exact memoized probability distribution whereas MAT
(in green) approximates this distribution by discarding the spectrums
with low output probability, and truncates the spectrum to reduce

memory loads and avoid useless iterations.

n ∈ J2 ; 20K and m = 10 are shown in Figure 3.5 for OTF and MAT strategies. The

microbenchmark source code can be found in supplementary material.

3.2.5 Discussion

The memoized versions of the algorithm generating the spectrum (MEM and MAT)

are approximately twice faster than the standard procedure (OTF), with less variance

for increasing sample sizes. The MAT strategy outperforms MEM for large enough

values of n. Similar patterns have been observed for variable values of m (results not

shown).

Although our memoized versions of coalescence configuration generation com-

pare favorably with standard ones, care should be taken in the interpretation, as

this analysis suffers from the limitations of microbenchmarks, notably concerning

110 Chapter 3. Strategies for coalescence simulation

FIGURE 3.5: Mean runtime (in nanoseconds) required by Quetzal al-
gorithms to perform simultaneous multiple collisions of n lines in
m = 10 parents. The square deviation is represented by vertical bars.

See Figure 3.4 for explanations about strategies

3.2. Algorithms for fast simulation of discrete-time coalescents with simultaneous

multiple merger.
111

reproducibility and extensibility of the conclusions. First, different compilers ver-

sions may compile code differently and it may be that the results we show are valid

only in our particular hardware and operating system. Furthermore, by definition a

microbenchmark does not evaluate the performance of an algorithms in a complex

simulation context: in many user-specific contexts we expect cache misses to hinder

the performance of the memoized approach. Finally, multithreading contexts are

known to be very difficult to evaluate using benchmarks.

Aware of these limitations, we advise the ordinary user of Quetzal to stick with

the default settings of the coalescence algorithms, as the on-the-fly procedure is more

intuitive, requires no particular C++ policy-based design knowledge, and is suscep-

tible to be satisfying under a vast range of {n, m} conditions.

When there is strong control on the domain where {n, m} takes value, using

memoized approaches can be relevant as a means of last ressort, but it should be

carefully assessed that the performance gain under this domain is worth by profil-

ing the code, possibly reusing or adapting the small benchmark C++ and Python

libraries available in the supplementary material. Notably, the user should be aware

of the effects of cache misses.

In specific contexts, for example when we expect the majority of coalescence

events to occur when repeated bottlenecks reduce the population size to a constant

N, it may be worth to design a small composite policy class to sample in the memo-

ized distribution if m = N, and to generate the occupancy spectrum in all the other

cases.

3.2.6 Conclusion

We developed an algorithm able to generate all possible configurations resulting

from coalescing n lines uniformly at random in m parents. As the probability of each

configuration can be computed, memoization techniques allow to perform random

sampling of configurations many times at little cost in coalescence simulators. These

methods compare favorably with standard procedures simulating configuration by

repeated lines-to-parent assignement, leading to 50% faster simulations in our study.

All strategies presented here are implemented as generic components in Quetzal

(Becheler214767) and are avalaible to be freely reused or combined.

113

Chapter 4

Using fuzzy partitions for ABC

inference of recent demographic

processes

This chapter treats the problem of comparing an observed genetic dataset with a simu-

lated forest of incomplete coalescents, a fundamental step in the ABC rejection algorithm for

infering parameters of recent demographic processes. First we highlight that if the mutational

process can be neglected, the data partition formed by the most recent genealogical fragments

(the bottom parts of a coalescent tree) contains all the information needed for inference. Fur-

thermore, the hypothesis of high recombination between loci allows to treat data locus by

locus using bayesian prior updating for inference. Then we show that as models can not dis-

tinguish gene copies in a same panmictic population unit, it is detrimental no to account for

this uncertainty in the data representation. The fuzzy partition formalism allows to express

that groups of sampled gene copies indistinguishable by the model belong to different allelic

states at some degree. We will finally see that keeping anonymous the simulated clusters

is statistically beneficial and that observed and simulated fuzzy partition can be compared

computing the fuzzy transfer distance. The fuzzy transfer distance can then be used in the

ABC framework, and we show various simulation results validating the approach.

4.1 Introduction

Genetic patterns observed in the field allow to infer demographic processes expe-

rienced by the population. One particular case of such demographic processes is

114
Chapter 4. Using fuzzy partitions for ABC inference of recent demographic

processes

the fast expansion of an initially small population, that is characteristic of biolog-

ical invasions. As various demographic events leave a specific genetic signature,

it enables inference of past processes given present data. A number of inferencial

methods focus on computing the likelihood function, what is often not possible un-

der reasonably realistic models. To bypass this difficulty, Approximated Bayesian

Computation methods (Beaumont et al. 2002, Marjoram et al. 2003) simulate many

datasets to find the parameter values that lead to minimal discrepancy between ob-

servation and simulation.

4.1.1 The two main ABC approximations

Let be a statistical parametric model

{ f (yobs | θ) : yobs ∈ Y , θ ∈ Θ}, Y ⊆ Rn, Θ ⊆ Rp, p ≥ 1, n ≥ 1 .

Let p(θ) be the prior distribution on the parameter θ.

Observing the data yobs, Bayesian inference methods aims at determining the

posterior distribution giving the probability of the parameters values given yobs, that

is p(θ | yobs). To bypass the intractability of the likelihood function p(y | θ), ABC

methods make two approximations:

Summarizing full data sets using low-dimensional summary statistics

First, the observed data yobs is approximated by a lower-dimensional data sobs =

η(yobs), where η : Y → Rq is called a summary statistics in the ABC culture, and in

practice used to designate both η or sobs. The posterior distribution is then approxi-

mated by:

p(θ|yobs) ' p(θ|sobs) ∝ p(sobs|θ)p(θ).

The quality of this approximation depends on how much information is lost by

the summary statistics η:

• if sobs is highly informative on θ, then p(θ|sobs) ' p(θ|yobs)

• if sobs is sufficient, then p(θ|sobs) = p(θ|yobs)

Ideally, a sufficient statistics should be used to avoid an error in the estimation,

but identifying such statistics is known to be a complicated (or impossible) task

(Marjoram et al., 2003b).

4.1. Introduction 115

k-nearest neighbors procedure and kernel density estimation

First we need to present the algorithm 3 introduced by Biau, Cérou, and Guyader

(2015). As stated by the authors, it is noteworthy that it is not the algorithm mainly

used to present the method (see for example Algorithm 1 and 2 in Marin et al. (2012)),

but it reflects how ABC is commonly run by practitioners:

Algorithm 3 ABC sampler

Require: a ∈N and c1 ≤ ka ≤ a
1: for i = 1 to a do
2: Sample a parameter in the prior: θi ∼ p(θ)
3: Simulate a data in the model: yi ∼ p(y | θi)

return The θi’s such that s(yi) is among the ka-nearest neighbors of S(yobs).

In other words, this algorithm performs an i.i.d sampling of size a in the prior

predictive distribution p(y | θ)p(θ) (this sample is called the reference table in the ABC

literature, see e.g. Marin et al. (2016, Algorithm 1)). Then, the ka simulated couple

{yi, θi}s with minimal discrepancy to the observation are retained. This discrepancy

is evaluated by a distance ρ : Rq → R.

Finally, once the ka-sample T of parameters leading to simulated data nearest to

the observation has been returned, a kernel density estimation (see Definition 4.1.1

for a 1-dimensional example) procedure is generally used to estimate the posterior

distribution (Biau, Cérou, and Guyader, 2015). The value of the posterior distribu-

tion density at a point θx is given by:

pABC(θx) =
1

kah

ka

∑
j=1

K(
θx − Tj

ha
) ,

where K : Rp → [0, 1]p is a standard kernel and h is a vector of positive real numbers

(bandwidth).

Definition 4.1.1. (Kernel density estimation) Non-parametric method that estimates

the density function of a random variable, extrapolating a sample to a density. Given

a sample x1, x2, . . . , xn, the density of the population distribution can be approxi-

mated by:

p̂h(x) =
1

nh

n

∑
i=1

K(
x− xi

h
) ,

where K is a probability kernel and h a smoothing parameter. Figure 4.1 illustrates

the method to estimate the density of the probability distribution from which 6 data

were sampled, using a gaussian kernel.

116
Chapter 4. Using fuzzy partitions for ABC inference of recent demographic

processes

FIGURE 4.1: Illustration of a kernel density estimation (see Definition
4.1.1). Gaussian kernels (red, variance set at 0.5) and their sum (blue).
The density is estimated by averaging over kernels. (Oleg Alexan-

drov, 12 January 2005)

4.1.2 Approximations consequences

If the kernel density estimation step is performed in a high-dimensional space (that

is with the number of model parameters p large), counter-intuitive problems arise

and threaten the posterior estimation reliability. Problems arising in high dimension

are known as curse of dimensionality: see e.g Aggarwal, Hinneburg, and Keim (2001)

for surprising behaviors of distances in high dimensional spaces and Domingos

(2012) for examples of counter-intuitive phenomenons in high-dimensional machine-

learning problems.

Intuitively, a key problem of high dimensions is that data are diluted along di-

mensions: 10 points sampled in [0, 1] are not too far away from each other, but the

space between them will grow if they are dispersed in the [0, 1]3 cube. Due to data

spareness, the kernel density estimator converges more slowly towards the target

distribution as dimensionality increases. That is, exponentially more data will are

needed if one wants to achieve good accuracy. For example Scott (2008, Section 7.2)

shows that to estimate a simple Gaussian distribution using a kernel density estima-

tor, 106 observations are necessary in 10 dimensions to conserve the same accuracy

than in 1 dimension where estimation was performed with 50 observations only.

In the ABC framework previously presented, curse of dimensionality involves

that if the number of model parameters is too high, posterior density estimation

will not be reliable unless a tremendous computational effort is made to simulate an

exponentialy-growing number of nearest neighbors T. Consequently, this is a real

motivation for the modeler to keep p as small as possible.

At the same time, it is worth to study the possibility to design a sufficient statis-

tics, knowing its dimension q does not have to be dramatically reduced relatively to

the initial data dimension, as the distance ρ can be defined on a high-dimensional

space.

4.2. Material and methods 117

4.1.3 Related decisions in the modeling step

Usually in ABC coalescent studies of complex demographic processes, the model

parameters inference is made possible by finding the sampled genes most recent

common ancestor (MRCA) through the reconstruction of their genealogy. Doing

so, the modeler has to account for an history that can be far more ancient than the

processes of interest: the MRCA can indeed be found in a remote spatio-temporal

window, leading to a number of problems.

First the quality and the quantity of available information drop when going back-

ward in time: it will result difficult to reliably inform the model, whether for model

specification (prior distributions, model hypothesis) or data (availability and consis-

tency).

Second the rejection rate of ABC will unnecessarily increase since the remote-

time topology of the coalescent strongly conditions the data likelihood: a genealogy

which bottom topology is consistent with observations can be rejected if its top topo-

logical properties are inconsistent with the observations. This is a shame because

respectively to the recent history process, it should have been accepted.

To avoid the simulation of the top genealogy, a solution would be to randomly

draw the allelic state of ancestors before the MRCA is found. This is not satisfying

as generally the prior distribution of the states is unknown, with little information

available in the literature. Furthermore, infering the ancestral allelic states would

increase the dimensionality of the model.

The idea developed here is to build on the very recent genealogical clustering

process to assess its consistency with the observed genetic clustering. Whenever the

non-mutation hypothesis holds, it allows to conserve the anonymous nature of the

allelic states, as they are conserved along the bottom branches fragments. Doing so,

the ancient history and the ancestral allelic states do not have to be inferred anymore,

and the inference can be done without summary statistics using an orignal distance.

4.2 Material and methods

4.2.1 Justifying the non mutation hypothesis

For invasion processes, the total number of generations since invasion (beginning of

the process) is generally known exactly or approximately. This specific fact allows,

118
Chapter 4. Using fuzzy partitions for ABC inference of recent demographic

processes

for recent invasions, to neglect mutation, as is explained now.

In the classical Wright-Fisher model with mutation, mutations are assessed to

occur with constant probability µ at each offspring creation.

Let X be the number of mutations occurring when coalescing ng lines at a given

generation g. X is distributed as a binomial with parameters the number of lines

ng (the number of Bernoulli experiments) and the mutation probability µ (the prob-

ability of success). The probability that there are k mutations occurring at a given

generation g is then

P(X = k) =
(

ng

k

)
· µk(1− µ)ng−k.

Conditionally to a discrete-time coalescent tree T (or equivalently a forest of ran-

dom coalescent trees F), the number of mutations along this tree XT is then the sum

of the number of mutations at each generation Xg. As mutations are assumed neu-

tral in the Wright-Fisher model, mutations across generations are independent, so all

random variables Xg are independent. Mutation rate is assumed constant through

generations.

Assuming Y1 ↪→ B(n1, p) and Y2 ↪→ B(n2, p), when Y1 and Y2 are independent,

Y1 + Y2 ↪→ B(n1 + n2, p).

It follows that:

XT ↪→ B(∑
g

ng, µ)

and the expected number of mutations is

E(XT) = µ. ∑
g

ng

with variance

Var(XT) = µ(1− µ)∑
g

ng

Without conditioning on the coalescent tree, the quantities ng (the number of

lines at each generation), are random variables. Under complex models their distri-

bution is unknown, and so are the quantities E(XT) and Var(XT).

However, as a worst case argument, the total branches length of T is maximal if

the n0 lines do not coalesce during the G generations, or equivalently if they coalesce

4.2. Material and methods 119

at the last generation G− 1. In that case, XT ↪→ B(Gn0, µ) with E(XT) = Gn0µ and

Var(XT) = Gn0µ(1− µ).

For microsatellite loci, µ ' 10−3. For a sample of size n0 = 100 coalescing over 10

generations (what is approximately the Asian hornet dataset setup), we expect in the

worst-tree case only one mutation. So we can reasonably assume that the mutation

process is negligible compared to the genealogical process in shaping the dataset.

4.2.2 Hard partitions

Let us consider a finite set S of elements. We will be interested in this section in

grouping these elements in different subsets of S (called clusters). To bring structure

and information to a set of elements, an intuitive idea will be to group together

elements that share common features.

The Köppen–Geiger climate classification system will be used through the first

part of the chapter to illustrate important concepts about partitions, as it has intuitive

motivations. Later in the chapter, examples will follow with the less-intuitive study

of genetic polymorphism distribution through space (and time).

The Köppen–Geiger climate classification system partitions coordinates of the

geographic space according to bioclimatic features. For example, Paris belongs to

the Cfb cluster, that designates a temperate hot climate without dry season and with tem-

perate summer. Looking at the map of climates (Figure 4.2), regions and their associ-

ated features make much more sense than the underlying raw data list. In this sense,

clustering can lead to very intuitive representations of data. Consequently the Köp-

pen system is widely used across multiple disciplines (such as hydrology, agronomy,

climatology, biology).

To group together the cities of the set {Seattle, Chicago, Houston, Portland} that

share the same clusters in the Köppen system, the following partition notation is

largely used (but it loses the groups name information):

{{Chicago}, {Seattle, Portland}, {Houston}}.

This defines a hard partition of the cities set into 3 subsets (clusters).

Definition 4.2.1. (Hard partition) A hard partition PU = {PU1 , PU2 , . . . , PUc} of a set

S is a set of nonempty subsets and disjoint of S covering S:

• PUi 6= ∅∀i ∈ {1, 2, . . . , c} (subsets are nonempty)

120
Chapter 4. Using fuzzy partitions for ABC inference of recent demographic

processes

FIGURE 4.2: The Köppen–Geiger climate classification system assigns
geographic coordinates to clusters according to local bioclimatic con-
ditions (Peel, Finlayson, and McMahon, 2007). It defines a partition

of the geographic space elements in bioclimatic clusters.

• PUi ∩ PU j = ∀i, j ∈ {1, 2, . . . , c} (subsets are pairwise disjoint)

•
⋂c

i=1 PUi = S (subsets cover S)

We will use the term of c-partition to indicate that a hard partition is constituted

of c clusters. If considering a set S of λ elements S =
⋃

i ui belonging to c clusters, a

hard partition of S in c clusters can be described in terms of a hard partition matrix U

of size c× λ

U =

u1 u2 . . . uk . . . uλ

U1 b11 b12 . . . b1k . . . b1λ

U2 b21 b22 . . . b2k . . . b2λ

...
...

...
...

...
...

...

Ui bi1 bi2 . . . bik . . . biλ
...

...
...

...
...

...
...

Uc bc1 bc2 . . . bck . . . bcλ

with the general term bik being equal to 1 if uk ∈ Ui, 0 if not. For example, the

following hard partition matrix gives the attribution of some cities to the Köppen

4.2. Material and methods 121

climatic clusters:

Chicago Seattle Portland Houston

D f a 1 0 0 0

Csb 0 1 1 0

C f a 0 0 0 1

4.2.3 Fuzzy partitions

Hard partitions formalism allows to assign each element at exactly one cluster. How-

ever, in many cases, objects can not be partitioned in well-delimited clusters as it is

not clear if an element belongs to one cluster or another, because of data imprecision

or uncertainty, or because of the very problem definition.

For example, the climatic features of New York city make it possibly belong to

both climatic clusters Cfa or Dfa: the concept of hot and humid continental climate that

defines Dfa is obviously not an absolute, and it is at some point difficult to clearly

separate it from a subtropical humid climate (Cfa). As seen in Chapter 2, this lack of

precision is not necessarily a problem, as this kind of abstraction gives space for

intuition, generalization and communication: belongingness of an object in a collection

is a matter of degree (Bodjanova, 2000).

Consequently, different mathematical theories were developed, aiming at incor-

porating flexibility in representing this kind of data. Zadeh (1965) came with a

mathematical description of belongingness, or membership, introduced in the theory

of fuzzy sets (see Definition 4.2.2).

Fuzzy sets

Definition 4.2.2. (Fuzzy set, Zadeh (1965)) A fuzzy set A in S is defined by a mem-

bership function fA : S→ [0, 1] that associates each element of S to a real number in

[0, 1] representing the grade of membership of the corresponding element in A. Value

1 represents full membership of the element to A, value 0 represents nonmember-

ship to A. A fuzzy set is empty if its membership function is null on S. In fuzzy set

theory, classical sets are called crisp sets.

Consequently, the definition of a hard partition matrix can be extended, and a

more general form of matrix can be used to allow elements to partially belong to

fuzzy clusters. Among other spaces, Bezdek (1981) defines the space of the fuzzy

122
Chapter 4. Using fuzzy partitions for ABC inference of recent demographic

processes

partitions as the set of partitions where the membership coefficients of each column

belong to [0, 1] and sum to 1:

M f cn = {U ∈ Rc n, uik ∈ [0, 1],
c

∑
i=1

uik = 1}.

Each of the λ columns uλ gives the vector of the membership coefficient indi-

cating to which degree element λ belongs to the each of the c clusters of PU . For

example, the following fuzzy partition represents the fact that New York can possi-

bly belong to two climatic regions:

Chicago Seattle Portland Houston NewYork

D f a 1 0 0 0 0.5

Csb 0 1 1 0 0

C f a 0 0 0 1 0.5

The set of the hard partitions Mhcn is included in M f cn and designates the fuzzy

partitions with binary membership coefficients:

Mhcn = {U ∈M f cn, uik ∈ {0, 1}}.

Fuzzy inclusion

Set inclusion is an important structural description of data, providing the basis for

comparing two partitions. In fuzzy theory, the first mathematical definition was

given by Zadeh (1965) as a first attempt to extend the inclusion relationship to fuzzy

sets, see Definition 4.2.3.

Definition 4.2.3. (Zadeh’s inclusion, Beg and Ashraf (2012)) Let F(S) be the set of

all fuzzy subsets of set S. For all A, B ∈ F(S), A is said to be a subset of B if

for all u ∈ S, fA(u) ≤ fB(u), where fA(u) and fB(u) represent the membership

grades of element u in A and B respectively. In this case, we write A ⊆ B and call

it the Zadeh’s inclusion. Two fuzzy sets A and B are said to be equal if and only if

A(u) = B(u)∀u ∈ S.

Subcase 1 Ordinary (nonfuzzy) set inclusion is very direct: all elements of V are

elements of U, so V ⊆ U (Figure 4.3a). Pursuing with the climatic classification ex-

ample, if a climatic set V is defined by “locations where annual temperature mean is less

4.2. Material and methods 123

than 10◦C“, then it delimits a geographic region fully enclosed into the climatic set U

defined by “locations where annual temperature mean is less than 11◦C“: then obviously

V ⊆ U. Importantly, inclusion intuition holds even if sets are not constructed using

the same rule system, e.g. U′ may be defined in terms of a soil quality criteria and

may still define a region that is included in V, even if V is itself defined in terms of

temperature conditions.

Subcase 2 Relaxing the membership bivalency on the set V is intuitively not prob-

lematic. This situation can arise for example if a climatic set U has been categorically

defined, but that the classification system remains quite elusive on defining another

set V, causing an uncertainty about the degree to which coordinates of S belongs to

V. But if the Zadeh’s inclusion definition holds, that is if fV(u) ≤ fU(u) ∀u ∈ S,

as it is the case in Figure 4.3b, then the inclusion of V in U seems natural (if it still

seems counter-intuitive to the reader, then considering the non-inclusion case shown

in Figure 4.3c helps much in making an intuition of what Zadeh’s subsethood is, and

is not).

Remark. Several authors (Bandler and Kohout, 1993, e.g.) stated that as Zadeh’inclusion

made binary decision about being a subset or not, it was too dichotomous for a fuzzy

theory concept, and that a more fuzzy description of subsethood would be relevant.

Consequently important efforts were made to propose a measure of the degree to

which a subset is included in another (see e.g. Beg and Ashraf, 2009; Beg and Ashraf,

2012).

Subcase 3 Considering how much a fuzzy set is included in another fuzzy set

seems at first sight rather counter-intuitive, because we use to formalize sets in a

nonfuzzy way. Intuition comes back when remembering that fuzzy theory aims

precisely at formalizing vagueness: the counter-intuitive Zadeh’s condition can be

understood by progressively switching from Figure 4.3c to Figure 4.3d relaxing full

and non membership assumptions first to make cluster U a little fuzzier, then to

make V a reasonable subset of U. Zadeh’s inclusion definition captures an important

structural property of subsets, even if it is subject to criticism exposed in the previ-

ous remark. For example, considering a climate classification system that remains

elusive in all clusters definitions (for example using only natural vocabulary such as

hot, cold, humid . . . to define climatic regions). Then it should not impede a map to be

124
Chapter 4. Using fuzzy partitions for ABC inference of recent demographic

processes

drawn, even if partial and imprecise, using transparency to represent membership

degrees to which each coordinate belongs to a climatic group. Zadeh’s inclusion can

help in limiting the number of groups in the classification system, by deciding if

the information captured by V is captured more efficiently by U’s definition. If it is

worth to reduce redundancy, V should be removed from the classification system,

as U is sufficient.

Refinement

Refinement is an important structural property of partitions, closely related to the

inclusion definition.

Definition 4.2.4. (Refinement) A c-partition U is a refinement of a r-partition V if

and only if:

• c ≥ r,

• ∀i ∈ {1, 2, . . . , c}, ∃j/Ui ⊆ V j

U is said to be finer than V (V is rawer that U), and this relationship is denoted

U ⊆ V

In the following hard partition example, Uh is finer than Vh:

Uh =

u1 u2 u3 u4

0 1 1 0

1 0 0 0

0 0 0 1

 Vh =

u1 u2 u3 u4

0 1 1 0

1 0 0 1

The following example illustrates the refinement concept with two fuzzy parti-

tions, where U f is finer than Vf :

U f =

u1 u2 u3 u4

0.1 0.8 0.7 0.3

0.9 0.1 0.2 0.2

0 0.1 0.1 0.5

 V f =

u1 u2 u3 u4

1 0.9 0.9 0.5

0 0.1 0.1 0.5

4.2. Material and methods 125

(A) Crisp sets inclusion

(B) Inclusion of a fuzzy set into a crisp set

(C) Non inclusion

(D) Fuzzy sets inclusion

FIGURE 4.3: Simplified examples of various degrees of set inclusion
(or subsethood). Left: graphical representation of a set S partitioned
in two subsets U (blue) and V (yellow) with V ⊂ U. Right: corre-
sponding (schematized) membership functions fU (blue) and fV (yel-
low) associated to the clusters. Subfigure 4.3a: a crisp set is included
in another crisp set. Subfigure 4.3b: a fuzzy set is included in a crisp
set. Subfigure 4.3c: a fuzzy set is not included in a crisp set. Subfigure

4.3d: a fuzzy set is included in another fuzzy set.

126
Chapter 4. Using fuzzy partitions for ABC inference of recent demographic

processes

MRCA

u1 u2 u3 u4 u5 u7 u8 u6

G− 1

FIGURE 4.4: Coalescence of a forest of hanging subtrees dur-
ing G generations: unlike traditional coalescence approaches, the
biological invasion context allows the coalescence process to be
stopped at generation G − 1, possibly before the most recent com-
mon ancestor of the sampled genes copies has been found. The
hanging subtrees define a partition of the sampled gene copies:

{{x1, x2, x3, x4}{x5, x7, x8}{x6}}

4.2.4 The genealogical partitioning process

Let be S the set of n gene copies (nodes) sampled at generation 0. A forest of ran-

dom trees is built backward in time from generation 0 to generation G − 1 by the

coalescence process (see Figure 4.4).

Let define the equivalence relationship ∼ on S «are leaves of a same hanging sub-

tree». At generation g, the equivalence classes define a ng-partition PG−1 of S, where

ng is the number of hanging subtrees at generation g.

The following hard partition describes the clusters of nodes {u1, · · · , u8} formed

by the genealogical hanging subtrees in Figure 4.4:

u1 u2 u3 u4 u5 u6 u7 u8

1 1 1 1 0 0 0 0

0 0 0 0 1 0 1 1

0 0 0 0 0 1 0 0

The observed genetic data define a partition based on an allelic state clustering

of the gene copies, while the coalescence process gives a genealogical-based clus-

tering of them. Under the hypothesis that the mutational process can be neglected,

the leaves of a same hanging subtree share the same allelic state due to the absence

of mutations. Furthermore, two (or more) hanging subtrees can share the same al-

lelic state if their ancestors share same allelic state. In terms of partition structure, it

4.2. Material and methods 127

means that Pg is a refinement of the observed partition. In terms of ABC inference,

it means that considering an observed partition Pobs, all simulated genealogical par-

titions Pg refining Pobs should be accepted, and that all partitions that do not should

(ideally) be rejected.

For example, considering the genealogical process in Figure 4.4 as the true ge-

nealogy and let’s say that the ancestor of {u1, u2, u3, u4} and the ancestor of u6 have

an arbitrary allelic state A, while the ancestor of {u5, u7, u8} is a: when looking only

at allelic states, two genealogical clusters are aggregated. Then the true genealogical

partition {{u1, u2, u3, u4}{u5, u7, u8}{u6}} is a refinement of the observed partition

Pobs = {{u1, u2, u3, u4, u6}{u5, u7, u8}}. Given only Pobs, it will not be possible to

infere which of its refinements is the true one.

4.2.5 Why fuzzy partitions formalism is useful in the coalescence frame-

work

The example in Figure 4.4 was intentionally simple and leads to crisp partition of

data. However, in real-world dataset, various sources of uncertainty appear, making

difficult, if not impossible, to affect objects to well-defined clusters. When looking

at a gene copy in our dataset, there are two main sources of uncertainty, for which

using fuzzy partition to represent and compare data could be useful.

Unphased data

If the dataset is unphased, that is the haplotype is unknown, there is no information

about which one of the chromosome holds the allele. Consequently, when geno-

typing for example a diploid sample and representing it under a table form, any

pairwise permutation of the alleles at a given locus actually encodes the same infor-

mation. This is typically one of many implicit rules that humans (but not computers)

abstract away as undesirable properties of the data structure. Unfortunately, at some

point in the programming activity, implicit rules have to be made explicit: we expose

here how the fuzzy partition formalism cab adresses this point.

Consider the previous example, where the observed partition of gene copies is

Pobs = {{u1, u2, u3, u4, u6}{u5, u7, u8}}, and the true genealogical partition under-

lying the observations is Pg = {{u1, u2, u3, u4}{u5, u7, u8}{u6}}. We mention only

now that the sampled diploid individuals were the pairs {u1, u2} . . . {u7, u8}.

128
Chapter 4. Using fuzzy partitions for ABC inference of recent demographic

processes

As the two alleles of a same individual can be permuted, the memberships of u5

and u6 can be exchanged:

Pg = {{u1, u2, u3, u4}{u5, u7, u8}{u6}} ≡ {{u1, u2, u3, u4}{u6, u7, u8}{u5}} ≡ Pobs

In terms of ABC inference, it means that these two genealogical partitions are

equivalent regarding Pobs and that none can not be rejected without introducing bias

in the posterior estimate. Detecting efficiently this form of equivalency is then im-

portant. When looking at very few individuals, testing all permutations is not prob-

lematic, but it scales poorly with the data size: if d is the ploidy and n the number

of individuals genotyped at l loci, they are dnl ways to represent the same informa-

tion using a a hard partition encoding. Using fuzzy partitions is a way to represent

this phase uncertainty. The following fuzzy partition describes the clusters of nodes

{u1, . . . , u8} formed by the genealogical hanging subtrees in Figure 4.4:

A

{u1, u2} {u3, u4} {u5, u6} {u7, u8}

1 1 0 0

0 0 0.5 1

0 0 0.5 0

Note that A is a refinement of the fuzzy representation of Pobs:

Pobs ≡

{u1, u2} {u3, u4} {u5, u6} {u7, u8}

1 1 0.5 0

0 0 0.5 1

The demic structure hypothesis

When analyzing spatial (or spatio-temporal) samples of genetic material with discrete-

space populations models, the gene copies sampled inside a same deme are not

distinguished by the model. Then it will be difficult to assess how much a simu-

lated spatial coalescence forest of hanging subtrees agrees with an observed spatial

dataset. Using fuzzy partitions to incorporate the model demic structure uncertainty

in the data representation avoids brute-force approaches.

4.2. Material and methods 129

4.2.6 Constructing the fuzzy partitions: examples

Observed fuzzy partition

In Figure 4.5, Instead of representing the fact that a gene copy belongs to an allelic

state cluster with probability 1, a fuzzy partition is used to represent the degree to

which the various groups of gene copies belong to each allelic clusters. In the spatial

sampling framework, these groups are defined in terms of a same location. The term

same location can refer to the exact sampling geographic coordinates or to the same

panmictic population unit defined by the model. In this case, the fuzzy partition can

be seen as a representation of the spatial distribution of allelic frequencies.

Coordinates A1 A2

x1 10 10
x2 20 12
x3 20 10
x3 10 12

≡

x1 x2 x3

0 0.5 0.25
1 0 0.5
0 0.5 0.25

FIGURE 4.5: Observed genotypes at one locus for 4 individuals at
3 different geographic locations x1, x2, x3. The traditional dataframe
representation (left) bears the semantics that the gene copies are dis-
tinguishable and each belongs with probability 1 to an allelic state
cluster (color), what is actually inexact in the model framework. Us-
ing a fuzzy partition (right) allows to confound the gene copies sam-
pled in a same deme that are undistinguishable, and to compute the
membership coefficients giving the degree to which groups of undis-

tinguishable gene copies belong to each allelic state cluster.

Simulated fuzzy partitions

Here, we consider the equivalence relationship ∼ defined at section 4.2.4. The ge-

nealogical process defines equivalence classes. Instead of representing the fact that

a singular gene copy belongs to a hanging subtree with probability 1, it is more

relevant to give the degree to which each group of undistinguishable gene copies

belong to a subtree. So a spatial coalescent can be represent ed using a fuzzy parti-

tion, where nodes in a same deme are confounded (see Figure 4.6). As some ances-

tral gene copies can have same allelic state, various clusters of the partition can be

merged (this is equivalent to adding the corresponding rows of the partition matrix).

130
Chapter 4. Using fuzzy partitions for ABC inference of recent demographic

processes

≡
(x1 x2 x3

2/2 1/2 0/4
0/2 1/2 4/4

)

FIGURE 4.6: Simulated anonymous genotypes at one locus for 4 in-
dividuals at 3 different geographic locations. Using a fuzzy partition
allows to confound the gene copies sampled in a same deme. Mem-
bership coefficients give the degree to which demes belong to each
allelic state cluster (colors). As mutation is neglected, allelic states do

not have to be explicitly simulated.

4.2.7 Comparing simulated and observed fuzzy partitions

The Fuzzy Transfer Distance

Campello (2010) defines FTD(U, V) the fuzzy transfer distance between two c-partitions

of λ elements U and V by extending the definition of the transfer distance described

for hard partitions by Charon et al. (2006):

Definition 4.2.5. (Fuzzy Transfer Distance)

FTD(U, V) = min
T∈Γ

∑
ij
| Vij − (TU)ij | ,

where

Γ = { (Tij)16i6c
16j6λ

| Tij ∈ {0, 1} , ∑
j

Tij = 1 , ∑
i

Tij = 1 }

is the set of permutation matrices.

FTD(U, V) describes the minimal quantity of membership coefficients that has

to be added and/or removed from the U columns to make them equal to the columns

of V, up to a permutation of the rows.

In terms of fuzzy set theory, it allows to find the best way to assign U clusters to

V clusters such that the discrepancy between each pair of membership functions is

minimal (Figure 4.7).

4.2. Material and methods 131

(A) Fuzzy partition U of S

(B) Fuzzy partition V of S

FIGURE 4.7: Simplified example of Fuzzy Transfer Distance applica-
tion. Left: graphical representation of a fuzzy partition of a set S in 3
clusters. Right: corresponding (schematized) membership functions
associated to each clusters. Computing the Fuzzy Transfer Distance
automatically assigns respectively the blue, red, orange clusters of
partition U (subfigure 4.7a) to the yellow, black, green cluster of V
(subfigure 4.7b) and returns a value indicating how similar are these

two partitions.

In terms of allelic distribution and inference, the FTD gives a way to measure

the similarity between an observed partition U based on explicit allelic state, and a

simulated partition V that does not explicitly defines clusters in terms of allelic state.

That is, there is no need to simulate the {A, T, G, C} values for a SNP marker, or to

simulate the number of repetitions of a microsatellite marker: the FTD automati-

cally finds the best way to compare a coalescent-based clustering to an allelic-based

clustering.

Implementation

A bipartite graph between U and V clusters is constructed to find the best assigne-

ment between clusters of U and V (Figure 4.8). Each edge is valuated by

wij =
n

∑
k=1
|uik − vjk|.

132
Chapter 4. Using fuzzy partitions for ABC inference of recent demographic

processes

x1 x2 x3

0 0.5 0.25
1 0 0.5
0 0.5 0.25

x1 x2 x3

1 0.5 0
0 0.5 1
0 0 0

FIGURE 4.8: Application example of the Kuhn-Munkres algorithm:
a bipartite graph is constructed for finding a best assignment (dark
lines) between clusters (colors) of observed (left) and simulated
(right) fuzzy partitions. Edges are valuated by wij = ∑n

k=1 |uik − vjk|
(not shown). Minimal cost defines the fuzzy transfer distance (here

FTD=2.25) Campello, 2010.

The Kuhn-Munkres algorithm, also called Hungarian algorithm (Kuhn, 1955;

Munkres, 1957) allows to find the perfect matching of minimal weight in polynomial

time. The minimal weight (dark edges in Figure 4.8) defines the FTD (Campello,

2010).

4.2.8 Method validation

Model

To test the validity of this approach, a first step is to check that it allows sound

inference of parameters under a first simple model. We will here focus on estimating

the recent history of a population for which we can only assess that the Wright-Fisher

hypothesis holds for the last g generations before sampling. That is, the population

history older than the last g generations will remain unknown. Mutational process is

neglected. The population size parameter N is estimated using ABC approach with

FTD taking as data for inference a pseudo-observed (pod) fuzzy partition made of k

sampled gene copies, which clustering was simulated by coalescence under a well-

known population size Nr:

yo ∼ p(y|Nr)

The aim is to correctly re-estimate the true parameter value Nr.

Sampling in the predictive prior distribution

A reference table is constituted:

• Parameter is sampled in the prior distribution : N′ ∼ p(N)

• n fuzzy partitions are simulated under the model: y′ ∼ p(y|N′)

4.3. Results 133

• The fuzzy transfer distance FTD(y′, yo) is computed.

• The couple {N′, FTD(y′, yo)} is memorized in the table.

Rejection step

According to the FTD distribution properties, a threshold ε is chosen for the ABC

rejection step: only those couples (y′, θ′) for which FTD(y′, yo) 6 ε are used for

estimating the posterior distribution using kernel density estimation. It is expected

that for decreasing ε values, the posterior mean converges towards the true value of

the parameter N, that is Nr.

Numerical application

Figure 4.9 illustrates this validation test run with Nr = 200, n = 105, g = 50, k = 50

and for various values of ε taken as deciles of the computed FTD values distribution.

Prior distribution p(N) is a uniform distribution U[1, 10000].

Posterior stability

It is important to check that the posterior estimation quality is stable across various

pseudo-observed data. Since the model is stochastic, we expect the estimation qual-

ity to vary among pods. Some pods can be very likely under a parameter value θ

and very unlikely under all other parameter values: this leads to very accurate esti-

mation. However, most of the time things are not that extreme, and some generated

pods can be not very typical of the true parameter value, leading to some error in

the estimation. In Figure 4.10, multiple pseudo-observed data were generated under

the model, with Ntrue = 200, n = 105, g = 50, k = 50 and ε taken as deciles of the

computed FTD values distribution. Prior distribution p(N) is a uniform distribution

U[1, 10000].

4.3 Results

The FTD method has been implemented in Quetzal and will part of the next release

after publication. A Fuzzifier class allows to transform a genetic dataset into a

134
Chapter 4. Using fuzzy partitions for ABC inference of recent demographic

processes

FuzzyPartition. The fuzzy_transfer_distance member function allows to com-

pute FTD between two FuzzyPartition objects. The following unit testing small

program illustrates how to use the class:

#include "FuzzyPartition.h"

#include "RestrictedGrowthString.h"

#include <map >

#include <vector >

#include "assert.h"

// Defining useful type aliases

using membership_function_t = std::vector <double >;

using element_t = std:string;

using coefs_t = std::map <element_type , membership_function_t >;

int main (){

// Elements a, b, c belong to 4 clusters to various degrees:

coefs_type c = { {"a" ,{0.0, 0.1, 0.9, 0.0}},

{"b" ,{0.4, 0.1, 0.2, 0.3}},

{"c" ,{0.0, 0.3, 0.6, 0.1}}

};

// Class with nicer interface

FuzzyPartition <element_type > A(c);

assert(A.nElements () == 3);

assert(A.nClusters () == 4);

auto B = A;

// Encodes the partition {{1 ,2}{3}{4}}

RestrictedGrowthString RGS({0,0 ,1,2});

// Merge clusters 1 and 2 according to RGS

4.3. Results 135

FIGURE 4.9: Posterior densities for various ε taken as the computed
FTD distribution deciles (1 pseudo-observed data, 105 simulations).
True population size (N = 200) is indicated by the vertical dashed

line.

B.merge_clusters(RGS);

assert(B == FuzzyPartition <int >({ {"a" ,{0.1, 0.9, 0.0}},

{"b" ,{0.5, 0.2, 0.3}},

{"c", {0.3, 0.6, 0.1}}

}));

double d = A.fuzzy_transfer_distance(B);

assert(d == 0.4);

return 0;

}

These classes allowed us to design small programs to test the statistical quality

of the FTD methodology. Figure 4.9 shows that more stringent rejections (smaller

ε values) lead to smaller error on the parameter estimate (that is, the mode of the

distribution is nearer from the true parameter value). Figure 4.10 shows that the es-

timation seems stable across multiple pseudo-observed data, with posteriors picked

around the true parameter value.

136
Chapter 4. Using fuzzy partitions for ABC inference of recent demographic

processes

FIGURE 4.10: Posterior densities for 30 pseudo-observed data, with ε
taken as the first percentile of the FTD distribution (105 simulations).
The true population size (Ntrue = 200) is indicated by the vertical

dashed line.

4.4 Discussion

We presented a set of hypothesis that are particularly relevant under a biological in-

vasion context when the recent demographic processes only are the point of interest:

• natural selection is neglected

• mutation can be neglected

• loci are independent (infinite recombination)

The non-mutation hypothesis has been justified, and the independence of loci is

currently assumed in microsatellite data set analysis.

Together, these hypothesis enable ABC inference without summary statistics, us-

ing the FTD, a function derived from the fuzzy set theory that computes a distance

between simulated and observed objects in a highly multi-dimensional space. Each

multi-dimensional object is a fuzzy partition that represents the data clustering.

The observed clustering is based on allelic state features and can be considered as

a representation equivalent to the full allelic frequencies distribution (frequencies of

gene copies with same allelic state in the same deme). The full allelic distribution has

already been used to perform ABC inference without summary statistics (Sousa et

4.4. Discussion 137

al., 2009), but other types of distance was used, and the simulation had to explicitly

simulate allelic states, what is not the case of the original approach presented here.

A key point of using the FTD is that it allows to spare hypothesis and/or pa-

rameters, while keeping high acceptance rate, by allowing the simulated clustering

to be defined in terms of anonymous allelic state. Importantly, the distribution of

allelic states at the beginning of the invasion does not need to be infered (reduced

number of parameters), and the remote history of the population does not need to

be specified (reduced number of hypothesis).

Of course the representation of a genetic data set under the form of a fuzzy parti-

tion could be considered as a sufficient summary statistics, but as Sousa et al. (2009),

we prefer to use the ”without summary statistics” terminology to clearly distinguish

this approach from the others.

Results of the method validity test (Figure 4.9 and 4.10) show that we can reason-

ably trust the FTD methodology to estimate very recent demographic processes fea-

tures. Although this conclusion is for now restricted to the quite simplistic demon-

stration model used here (a Wright-Fisher population), it is expected that spatial ver-

sions will be at least as powerful as traditional methods based on summary statistics.

The main reason why more complex models were not tested is that it requires more

important code efforts and that extrapolating the method validity across different

models is by no means straightforward: it should be kept in mind that the method

validity testing is a key part of any ABC analysis that should be assessed each time

a new model setup is required.

An important extension of the method is its applicability to the analysis of spatio-

temporal sampling schemes: elements (columns) of the partition would not geo-

graphic coordinates anymore, but rather spatio-temporal coordinates. Values are

still allelic frequencies (implicit or explicit) at each spatio-temporal coordinate. Con-

sequently it allows to make full use of genetic data sets, accounting for temporal

dynamics of the allelic state distribution. This will be very useful in the application

of the FTD methodology to the analysis of the Vespa velutina microsatellite dataset,

in which diploid individuals were sampled at various locations at different times.

Although the hypothesis of independent loci is common, traditional ABC analy-

sis use multilocus statistics to summarize data over all loci, possibly inflating the re-

jection rate. Sousa et al. (2009) proposed to permute loci to find a best match between

observation and simulation to increase acceptance rate of ABC. Although relevant, it

138
Chapter 4. Using fuzzy partitions for ABC inference of recent demographic

processes

leads to complicated code design, and brute-force approaches in combinatorial prob-

lems is prone to combinatorial explosions making the method to scale poorly with

the number of studied loci. Furthermore it is not clear how the FTD computed across

multiple loci should be defined. We note that if loci are assumed independent, then

data chunks at each of the l loci can be considered as l i.i.d observations of the same

process. This seems suitable to the use of Sequential Bayesian Updating (SBU) (see

e.g. Oravecz, Huentelman, and Vandekerckhove, 2016) to sequentially update the

knowledge about parameters by analyzing each new locus: posteriors distributions

obtained at locus i could used as prior distributions for analyzing locus i + 1.

139

Bibliography

Aggarwal, Charu C, Alexander Hinneburg, and Daniel A Keim (2001). “On the sur-

prising behavior of distance metrics in high dimensional space”. In: International

conference on database theory. Springer, pp. 420–434.

Alexandrescu, Andrei (2001). Modern C++ design: generic programming and design pat-

terns applied. Addison-Wesley.

Algeo, TJ, SE Scheckler, and JB Maynard (2001). “Effects of early vascular land plants

on weathering processes and global chemical fluxes during the Middle and Late

Devonian”. In: Plants Invade the Land: Evolutionary and Environmental Perspectives.

Columbia University Press, New York, pp. 213–236.

Arca, M. et al. (Aug. 2015). “Reconstructing the invasion and the demographic his-

tory of the yellow-legged hornet, Vespa velutina, in Europe”. en. In: Biological

Invasions 17.8, pp. 2357–2371. ISSN: 1387-3547, 1573-1464. DOI: 10.1007/s10530-

015-0880-9. URL: http://link.springer.com/10.1007/s10530-015-0880-9

(visited on 06/08/2017).

Bandler, Wyllis and Ladislav Kohout (1993). “Fuzzy power sets and fuzzy implica-

tion operators”. In: Readings in Fuzzy Sets for Intelligent Systems. Elsevier, pp. 88–

96.

Barbet-Massin, Morgane et al. (2013). “Climate change increases the risk of invasion

by the yellow-legged hornet”. In: Biological Conservation 157, pp. 4–10.

Beaumont, Mark A. (Dec. 2010). “Approximate Bayesian Computation in Evolu-

tion and Ecology”. en. In: Annual Review of Ecology, Evolution, and Systematics

41.1, pp. 379–406. ISSN: 1543-592X, 1545-2069. DOI: 10.1146/annurev-ecolsys-

102209-144621. URL: http://www.annualreviews.org/doi/10.1146/annurev-

ecolsys-102209-144621 (visited on 03/02/2017).

Beaumont, Mark A et al. (2009). “Adaptive approximate Bayesian computation”. In:

Biometrika 96.4, pp. 983–990.

Becheler, A. (2017). Quetzal. https : / / github . com / Becheler / quetzal. [Online;

accessed 28-September-2017].

https://doi.org/10.1007/s10530-015-0880-9
https://doi.org/10.1007/s10530-015-0880-9
http://link.springer.com/10.1007/s10530-015-0880-9
https://doi.org/10.1146/annurev-ecolsys-102209-144621
https://doi.org/10.1146/annurev-ecolsys-102209-144621
http://www.annualreviews.org/doi/10.1146/annurev-ecolsys-102209-144621
http://www.annualreviews.org/doi/10.1146/annurev-ecolsys-102209-144621
https://github.com/Becheler/quetzal

140 Bibliography

Beerli, Peter and Joseph Felsenstein (1999). “Maximum-Likelihood Estimation of Mi-

gration Rates and Effective Population Numbers in Two Populations Using a Co-

alescent Approach”. In: Genetics 152.2, pp. 763–773. ISSN: 0016-6731. URL: http:

//www.genetics.org/content/152/2/763.

Beg, Ismat and Samina Ashraf (2009). “Fuzzy Inclusion And Fuzzy Similarity With

Gödel Fuzzy Implicator”. In: New Mathematics and Natural Computation 5.03, pp. 617–

633.

— (2012). “Fuzzy inclusion and design of measure of fuzzy inclusion”. In: RIMAI J

8.

Bertolino, Sandro et al. (2016). “Spread of the invasive yellow-legged hornet Vespa

velutina (Hymenoptera: Vespidae) in Italy”. In: Applied entomology and zoology

51.4, pp. 589–597.

Bertorelle, G., A. Benazzo, and S. Mona (June 2010). “ABC as a flexible framework

to estimate demography over space and time: some cons, many pros: the ABC

revolution in nine steps”. en. In: Molecular Ecology 19.13, pp. 2609–2625. ISSN:

09621083, 1365294X. DOI: 10.1111/j.1365-294X.2010.04690.x. URL: http://

doi.wiley.com/10.1111/j.1365-294X.2010.04690.x (visited on 02/26/2017).

Bezdek, James C (1981). “Objective Function Clustering”. In: Pattern recognition with

fuzzy objective function algorithms. Springer, pp. 43–93.

Biau, Gérard, Frédéric Cérou, Arnaud Guyader, et al. (2015). “New insights into ap-

proximate Bayesian computation”. In: Annales de l’Institut Henri Poincaré, Proba-

bilités et Statistiques. Vol. 51. 1. Institut Henri Poincaré, pp. 376–403.

Blois, Jessica L et al. (2013). “Climate change and the past, present, and future of

biotic interactions”. In: Science 341.6145, pp. 499–504.

Blum, M. G. B. et al. (May 2013). “A Comparative Review of Dimension Reduc-

tion Methods in Approximate Bayesian Computation”. en. In: Statistical Science

28.2, pp. 189–208. ISSN: 0883-4237. DOI: 10 . 1214 / 12 - STS406. URL: http : / /

projecteuclid.org/euclid.ss/1369147911 (visited on 08/24/2017).

Bodjanova, Slavka (2000). Fuzzy Partitions.

Bommarco, Riccardo, David Kleijn, and Simon G Potts (2013). “Ecological intensifi-

cation: harnessing ecosystem services for food security”. In: Trends in ecology &

evolution 28.4, pp. 230–238.

http://www.genetics.org/content/152/2/763
http://www.genetics.org/content/152/2/763
https://doi.org/10.1111/j.1365-294X.2010.04690.x
http://doi.wiley.com/10.1111/j.1365-294X.2010.04690.x
http://doi.wiley.com/10.1111/j.1365-294X.2010.04690.x
https://doi.org/10.1214/12-STS406
http://projecteuclid.org/euclid.ss/1369147911
http://projecteuclid.org/euclid.ss/1369147911

Bibliography 141

Brown, Jason L. and L. Lacey Knowles (Aug. 2012). “Spatially explicit models of dy-

namic histories: examination of the genetic consequences of Pleistocene glacia-

tion and recent climate change on the American Pika: SPATIALLY EXPLICIT

MODELS OF DYNAMIC HISTORIES”. en. In: Molecular Ecology 21.15, pp. 3757–

3775. ISSN: 09621083. DOI: 10.1111/j.1365-294X.2012.05640.x. URL: http://

doi.wiley.com/10.1111/j.1365-294X.2012.05640.x (visited on 08/23/2017).

Bullock, James M et al. (2011). “Restoration of ecosystem services and biodiversity:

conflicts and opportunities”. In: Trends in ecology & evolution 26.10, pp. 541–549.

Campello, R.J.G.B. (July 2010). “Generalized external indexes for comparing data

partitions with overlapping categories”. en. In: Pattern Recognition Letters 31.9,

pp. 966–975. ISSN: 01678655. DOI: 10.1016/j.patrec.2010.01.002. URL: http:

//linkinghub.elsevier.com/retrieve/pii/S0167865510000048 (visited on

02/28/2017).

Charon, Irene et al. (2006). “Maximum transfer distance between partitions”. In: Jour-

nal of classification 23.1, pp. 103–121.

Chomsky, Noam (1957). “Syntactic structures.” In:

Church, John A and Neil J White (2006). “A 20th century acceleration in global sea-

level rise”. In: Geophysical research letters 33.1.

Colautti, Robert I and David M Richardson (2009). “Subjectivity and flexibility in

invasion terminology: too much of a good thing?” In: Biological Invasions 11.6,

pp. 1225–1229.

Colburn, Timothy and Gary Shute (2007). “Abstraction in computer science”. In:

Minds and Machines 17.2, pp. 169–184.

Cornuet, Jean-Marie et al. (Apr. 2014). “DIYABC v2.0: a software to make approxi-

mate Bayesian computation inferences about population history using single nu-

cleotide polymorphism, DNA sequence and microsatellite data”. en. In: Bioinfor-

matics 30.8, pp. 1187–1189. ISSN: 1460-2059, 1367-4803. DOI: 10.1093/bioinformatics/

btt763. URL: https://academic.oup.com/bioinformatics/article-lookup/

doi/10.1093/bioinformatics/btt763 (visited on 08/24/2017).

cppreference.com (2018). Library Concepts. [Online; accessed 27-January-2018]. URL:

\url{http://en.cppreference.com/w/cpp/concept}.

Csilléry, Katalin et al. (July 2010). “Approximate Bayesian Computation (ABC) in

practice”. en. In: Trends in Ecology & Evolution 25.7, pp. 410–418. ISSN: 01695347.

https://doi.org/10.1111/j.1365-294X.2012.05640.x
http://doi.wiley.com/10.1111/j.1365-294X.2012.05640.x
http://doi.wiley.com/10.1111/j.1365-294X.2012.05640.x
https://doi.org/10.1016/j.patrec.2010.01.002
http://linkinghub.elsevier.com/retrieve/pii/S0167865510000048
http://linkinghub.elsevier.com/retrieve/pii/S0167865510000048
https://doi.org/10.1093/bioinformatics/btt763
https://doi.org/10.1093/bioinformatics/btt763
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btt763
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btt763
\url{http://en.cppreference.com/w/cpp/concept}

142 Bibliography

DOI: 10.1016/j.tree.2010.04.001. URL: http://linkinghub.elsevier.com/

retrieve/pii/S0169534710000662 (visited on 08/24/2017).

Currat, M., N. Ray, and L. Excoffier (Jan. 2004a). “splatche: a program to simulate ge-

netic diversity taking into account environmental heterogeneity: program note”.

en. In: Molecular Ecology Notes 4.1, pp. 139–142. ISSN: 14718278, 14718286. DOI:

10.1046/j.1471-8286.2003.00582.x. URL: http://doi.wiley.com/10.1046/

j.1471-8286.2003.00582.x (visited on 08/23/2017).

— (Jan. 2004b). “splatche: a program to simulate genetic diversity taking into ac-

count environmental heterogeneity: PROGRAM NOTE”. en. In: Molecular Ecol-

ogy Notes 4.1, pp. 139–142. ISSN: 14718278, 14718286. DOI: 10.1046/j.1471-

8286.2003.00582.x. URL: http://doi.wiley.com/10.1046/j.1471-8286.2003.

00582.x (visited on 08/24/2017).

De Groot, Rudolf et al. (2012). “Global estimates of the value of ecosystems and their

services in monetary units”. In: Ecosystem services 1.1, pp. 50–61.

Del Moral, Pierre, Arnaud Doucet, and Ajay Jasra (2006). “Sequential monte carlo

samplers”. In: Journal of the Royal Statistical Society: Series B (Statistical Methodol-

ogy) 68.3, pp. 411–436. URL: http://onlinelibrary.wiley.com/doi/10.1111/

j.1467-9868.2006.00553.x/full (visited on 09/06/2017).

Dıaz, Sandra et al. (2005). “Biodiversity regulation of ecosystem services”. In: Trends

and conditions, pp. 279–329.

Díaz, Sandra et al. (2006). “Biodiversity loss threatens human well-being”. In: PLoS

biology 4.8, e277.

Dirzo, Rodolfo and Peter H Raven (2003). “Global state of biodiversity and loss”. In:

Annual Review of Environment and Resources 28.1, pp. 137–167.

Domingos, Pedro (2012). “A few useful things to know about machine learning”. In:

Communications of the ACM 55.10, pp. 78–87.

Escobar, Arturo (1998). “Whose knowledge, whose nature? Biodiversity, conserva-

tion, and the political ecology of social movements”. In: Journal of political ecology

5.1, pp. 53–82.

Estoup, Arnaud and Thomas Guillemaud (2010). “Reconstructing routes of invasion

using genetic data: why, how and so what?” In: Molecular ecology 19.19, pp. 4113–

4130.

Estoup, Arnaud et al. (Sept. 2010a). “Combining genetic, historical and geographi-

cal data to reconstruct the dynamics of bioinvasions: application to the cane toad

https://doi.org/10.1016/j.tree.2010.04.001
http://linkinghub.elsevier.com/retrieve/pii/S0169534710000662
http://linkinghub.elsevier.com/retrieve/pii/S0169534710000662
https://doi.org/10.1046/j.1471-8286.2003.00582.x
http://doi.wiley.com/10.1046/j.1471-8286.2003.00582.x
http://doi.wiley.com/10.1046/j.1471-8286.2003.00582.x
https://doi.org/10.1046/j.1471-8286.2003.00582.x
https://doi.org/10.1046/j.1471-8286.2003.00582.x
http://doi.wiley.com/10.1046/j.1471-8286.2003.00582.x
http://doi.wiley.com/10.1046/j.1471-8286.2003.00582.x
http://onlinelibrary.wiley.com/doi/10.1111/j.1467-9868.2006.00553.x/full
http://onlinelibrary.wiley.com/doi/10.1111/j.1467-9868.2006.00553.x/full

Bibliography 143

Bufo marinus: RECONSTRUCTING BIOINVASION DYNAMICS”. en. In: Molec-

ular Ecology Resources 10.5, pp. 886–901. ISSN: 1755098X. DOI: 10.1111/j.1755-

0998.2010.02882.x. URL: http://doi.wiley.com/10.1111/j.1755-0998.2010.

02882.x (visited on 08/23/2017).

— (Sept. 2010b). “Combining genetic, historical and geographical data to recon-

struct the dynamics of bioinvasions: application to the cane toad Bufo marinus:

reconstructing bionvasion dynamics”. en. In: Molecular Ecology Resources 10.5,

pp. 886–901. ISSN: 1755098X. DOI: 10.1111/j.1755-0998.2010.02882.x. URL:

http://doi.wiley.com/10.1111/j.1755- 0998.2010.02882.x (visited on

08/23/2017).

Ewing, Gregory and Joachim Hermisson (Aug. 2010). “MSMS: a coalescent simula-

tion program including recombination, demographic structure and selection at

a single locus”. en. In: Bioinformatics 26.16, pp. 2064–2065. ISSN: 1460-2059, 1367-

4803. DOI: 10.1093/bioinformatics/btq322. URL: https://academic.oup.

com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btq322

(visited on 08/24/2017).

Excoffier, Laurent, Matthieu Foll, and Rémy J. Petit (Dec. 2009). “Genetic Conse-

quences of Range Expansions”. en. In: Annual Review of Ecology, Evolution, and

Systematics 40.1, pp. 481–501. ISSN: 1543-592X, 1545-2069. DOI: 10.1146/annurev.

ecolsys.39.110707.173414. URL: http://www.annualreviews.org/doi/10.

1146/annurev.ecolsys.39.110707.173414 (visited on 05/14/2017).

Fisher, Brendan, R Kerry Turner, and Paul Morling (2009). “Defining and classifying

ecosystem services for decision making”. In: Ecological economics 68.3, pp. 643–

653.

Fisher, Ronald A (1923). “XXI.—On the Dominance Ratio”. In: Proceedings of the royal

society of Edinburgh 42, pp. 321–341.

Fog, Agner (2012). “Optimizing software in C++ - An optimization guide for Win-

dows, Linux and Mac platforms”. In: Copenhagen University College of Engineering-

2012-168 p.

Fordham, Damien A et al. (2014). “Better forecasts of range dynamics using genetic

data”. In: Trends in Ecology & Evolution 29.8, pp. 436–443.

Frison, Emile A, Jeremy Cherfas, and Toby Hodgkin (2011). “Agricultural biodiver-

sity is essential for a sustainable improvement in food and nutrition security”.

In: Sustainability 3.1, pp. 238–253.

https://doi.org/10.1111/j.1755-0998.2010.02882.x
https://doi.org/10.1111/j.1755-0998.2010.02882.x
http://doi.wiley.com/10.1111/j.1755-0998.2010.02882.x
http://doi.wiley.com/10.1111/j.1755-0998.2010.02882.x
https://doi.org/10.1111/j.1755-0998.2010.02882.x
http://doi.wiley.com/10.1111/j.1755-0998.2010.02882.x
https://doi.org/10.1093/bioinformatics/btq322
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btq322
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btq322
https://doi.org/10.1146/annurev.ecolsys.39.110707.173414
https://doi.org/10.1146/annurev.ecolsys.39.110707.173414
http://www.annualreviews.org/doi/10.1146/annurev.ecolsys.39.110707.173414
http://www.annualreviews.org/doi/10.1146/annurev.ecolsys.39.110707.173414

144 Bibliography

GDAL Development Team (2017). GDAL - Geospatial Data Abstraction Library, Ver-

sion 2.2.1. [Online; accessed 28-September-2017]. Open Source Geospatial Foun-

dation.

GeoTools (2018). Axis Order — GeoTools. [Online; accessed 27-January-2018]. URL:

\url{http://docs.geotools.org/latest/userguide/library/referencing/

order.html}.

Grosso-Silva, José Manuel and Miguel Maia (2012). “Vespa velutina Lepeletier, 1836

(Hymenoptera, Vespidae), new species for Portugal.” In: Arquivos entomolóxicos

6, pp. 53–54.

He, Qixin, Danielle L. Edwards, and L. Lacey Knowles (Dec. 2013a). “Integrative

testing of how environments from the past to the present shape genetic structure

across landscapes”. en. In: Evolution 67.12, pp. 3386–3402. ISSN: 00143820. DOI:

10.1111/evo.12159. URL: http://doi.wiley.com/10.1111/evo.12159 (visited

on 08/23/2017).

— (Dec. 2013b). “Integrative testing of how environments from the past to the present

shape genetic structure across landscapes”. en. In: Evolution 67.12, pp. 3386–3402.

ISSN: 00143820. DOI: 10.1111/evo.12159. URL: http://doi.wiley.com/10.

1111/evo.12159 (visited on 03/22/2017).

Hein, J., M. Schierup, and C. Wiuf (2004). Gene Genealogies, Variation and Evolution: A

primer in coalescent theory. Oxford University Press, USA. ISBN: 978-0-19-154615-0.

URL: https://books.google.fr/books?id=QBC_SFOamksC.

Hooper, David U et al. (2005). “Effects of biodiversity on ecosystem functioning: a

consensus of current knowledge”. In: Ecological monographs 75.1, pp. 3–35.

Howden, S Mark et al. (2007). “Adapting agriculture to climate change”. In: Proceed-

ings of the national academy of sciences 104.50, pp. 19691–19696.

Keeling, Matt J et al. (2017). “Predicting the spread of the Asian hornet (Vespa ve-

lutina) following its incursion into Great Britain”. In: Scientific reports 7.1, p. 6240.

Kingman, John Frank Charles (1982). “The coalescent”. In: Stochastic processes and

their applications 13.3, pp. 235–248.

Kremen, Claire et al. (2007). “Pollination and other ecosystem services produced by

mobile organisms: a conceptual framework for the effects of land-use change”.

In: Ecology letters 10.4, pp. 299–314.

Kuhn, Harold W (1955). “The Hungarian method for the assignment problem”. In:

Naval Research Logistics (NRL) 2.1-2, pp. 83–97.

\url{http://docs.geotools.org/latest/userguide/library/referencing/order.html}
\url{http://docs.geotools.org/latest/userguide/library/referencing/order.html}
https://doi.org/10.1111/evo.12159
http://doi.wiley.com/10.1111/evo.12159
https://doi.org/10.1111/evo.12159
http://doi.wiley.com/10.1111/evo.12159
http://doi.wiley.com/10.1111/evo.12159
https://books.google.fr/books?id=QBC_SFOamksC

Bibliography 145

Kuhner, Mary K., Jon Yamato, and Joseph Felsenstein (2000). “Maximum likelihood

estimation of recombination rates from population data”. In: Genetics 156.3, pp. 1393–

1401. URL: http://www.genetics.org/content/156/3/1393.full-text.pdf+

html (visited on 08/24/2017).

Lacey Knowles, L. and Diego F. Alvarado-Serrano (Sept. 2010). “Exploring the pop-

ulation genetic consequences of the colonization process with spatio-temporally

explicit models: insights from coupled ecological, demographic and genetic mod-

els in montane grasshoppers: geneitc consequence of distribution shifts”. en. In:

Molecular Ecology 19.17, pp. 3727–3745. ISSN: 09621083. DOI: 10.1111/j.1365-

294X.2010.04702.x. URL: http://doi.wiley.com/10.1111/j.1365-294X.2010.

04702.x (visited on 08/23/2017).

Leblois, RaphaëL, Arnaud Estoup, and FrançOis Rousset (Jan. 2009). “IBDSim: a

computer program to simulate genotypic data under isolation by distance”. en.

In: Molecular Ecology Resources 9.1, pp. 107–109. ISSN: 1755098X, 17550998. DOI:

10.1111/j.1755-0998.2008.02417.x. URL: http://doi.wiley.com/10.1111/

j.1755-0998.2008.02417.x (visited on 08/24/2017).

Letunic, Ivica and Peer Bork (2006). “Interactive Tree Of Life (iTOL): an online tool

for phylogenetic tree display and annotation”. In: Bioinformatics 23.1, pp. 127–

128.

Liskov, Barbara H and Jeannette M Wing (1994). “A behavioral notion of subtyp-

ing”. In: ACM Transactions on Programming Languages and Systems (TOPLAS) 16.6,

pp. 1811–1841.

López, S, M González, and A Goldarazena (2011). “Vespa velutina lepeletier, 1836

(Hymenoptera: Vespidae): first records in Iberian Peninsula”. In: EPPO Bulletin

41.3, pp. 439–441.

Marin, Jean-Michel et al. (2012). “Approximate Bayesian computational methods”.

In: Statistics and Computing 22.6, pp. 1167–1180. URL: http://link.springer.

com/article/10.1007/s11222-011-9288-2 (visited on 03/02/2017).

Marin, Jean-Michel et al. (2016). “ABC random forests for Bayesian parameter infer-

ence”. In: arXiv preprint arXiv:1605.05537.

Marjoram, Paul et al. (2003a). “Markov chain Monte Carlo without likelihoods”. In:

Proceedings of the National Academy of Sciences 100.26, pp. 15324–15328.

Marjoram, Paul et al. (2003b). “Markov chain Monte Carlo without likelihoods”. In:

Proceedings of the National Academy of Sciences 100.26, pp. 15324–15328.

http://www.genetics.org/content/156/3/1393.full-text.pdf+html
http://www.genetics.org/content/156/3/1393.full-text.pdf+html
https://doi.org/10.1111/j.1365-294X.2010.04702.x
https://doi.org/10.1111/j.1365-294X.2010.04702.x
http://doi.wiley.com/10.1111/j.1365-294X.2010.04702.x
http://doi.wiley.com/10.1111/j.1365-294X.2010.04702.x
https://doi.org/10.1111/j.1755-0998.2008.02417.x
http://doi.wiley.com/10.1111/j.1755-0998.2008.02417.x
http://doi.wiley.com/10.1111/j.1755-0998.2008.02417.x
http://link.springer.com/article/10.1007/s11222-011-9288-2
http://link.springer.com/article/10.1007/s11222-011-9288-2

146 Bibliography

Marques, Ambre (2017). expressive. https://github.com/ambre- m/expressive.

[Online; accessed 28-September-2017].

Marske, Katharine Ann, Carsten Rahbek, and David Nogués-Bravo (2013). “Phy-

logeography: spanning the ecology-evolution continuum”. In: Ecography 36.11,

pp. 1169–1181.

Martin, Robert C (1996a). “The dependency inversion principle”. In: C++ Report 8.6,

pp. 61–66.

— (1996b). “The interface segregation principle: One of the many principles of OOD”.

In: C++ Report 8, pp. 30–36.

— (1996c). “The Liskov substitution principle”. In: C++ Report 8.3, p. 14.

Martin, Robert C. (2000). “Design principles and design patterns”. In: Object Mentor

1.34. URL: http://staff.cs.utu.fi/staff/jouni.smed/doos_06/material/

DesignPrinciplesAndPatterns.pdf (visited on 08/27/2017).

Martin, Robert C (2002a). Agile software development: principles, patterns, and practices.

Prentice Hall.

Martin, Robert C (2002b). Agile software development: principles, patterns, and practices.

Prentice Hall.

Martin, Robert Cecil (1996d). “The Open-Closed Principle”. In: Archived August 22,

2006, at the Wayback Machine. URL: \url{https://drive.google.com/file/d/

0BwhCYaYDn8EgN2M5MTkwM2EtNWFkZC00ZTI3LWFjZTUtNTFhZGZiYmUzODc1/view}.

— (2009). Getting a SOLID start - Clean Coder. Website. [Online; accessed 28-January-

2018]. URL: \url{https://sites.google.com/site/unclebobconsultingllc/

getting-a-solid-start}.

Massatti, Rob and L. Lacey Knowles (Aug. 2016). “Contrasting support for alter-

native models of genomic variation based on microhabitat preference: species-

specific effects of climate change in alpine sedges”. en. In: Molecular Ecology 25.16,

pp. 3974–3986. ISSN: 09621083. DOI: 10.1111/mec.13735. URL: http://doi.

wiley.com/10.1111/mec.13735 (visited on 08/24/2017).

Matson, Pamela A et al. (1997). “Agricultural intensification and ecosystem proper-

ties”. In: Science 277.5325, pp. 504–509.

McRae, Brad H and Paul Beier (2007). “Circuit theory predicts gene flow in plant

and animal populations”. In: Proceedings of the National Academy of Sciences 104.50,

pp. 19885–19890.

Meyer, Bertrand (1988). “Object oriented software construction”. In:

https://github.com/ambre-m/expressive
http://staff.cs.utu.fi/staff/jouni.smed/doos_06/material/DesignPrinciplesAndPatterns.pdf
http://staff.cs.utu.fi/staff/jouni.smed/doos_06/material/DesignPrinciplesAndPatterns.pdf
\url{https://drive.google.com/file/d/0BwhCYaYDn8EgN2M5MTkwM2EtNWFkZC00ZTI3LWFjZTUtNTFhZGZiYmUzODc1/view}
\url{https://drive.google.com/file/d/0BwhCYaYDn8EgN2M5MTkwM2EtNWFkZC00ZTI3LWFjZTUtNTFhZGZiYmUzODc1/view}
\url{https://sites.google.com/site/unclebobconsultingllc/getting-a-solid-start}
\url{https://sites.google.com/site/unclebobconsultingllc/getting-a-solid-start}
https://doi.org/10.1111/mec.13735
http://doi.wiley.com/10.1111/mec.13735
http://doi.wiley.com/10.1111/mec.13735

Bibliography 147

Montano, Valeria (2016). “Coalescent inferences in conservation genetics: should the

exception become the rule?” In: Biology letters 12.6, p. 20160211.

Montgomery, David R (2007). “Soil erosion and agricultural sustainability”. In: Pro-

ceedings of the National Academy of Sciences 104.33, pp. 13268–13272.

Munkres, James (1957). “Algorithms for the assignment and transportation prob-

lems”. In: Journal of the society for industrial and applied mathematics 5.1, pp. 32–

38.

Nathan, Ran et al. (2012). “Dispersal kernels”. In: Dispersal Ecol Evol, pp. 187–210.

Nicholls, Robert J and Anny Cazenave (2010). “Sea-level rise and its impact on coastal

zones”. In: science 328.5985, pp. 1517–1520.

Nielsen, SE et al. (2007). “A new method to estimate species and biodiversity intact-

ness using empirically derived reference conditions”. In: Biological Conservation

137.3, pp. 403–414.

Nordborg, Magnus (2001). “Coalescent theory”. In: Handbook of statistical genetics.

URL: http://onlinelibrary.wiley.com/doi/10.1002/0470022620.bbc21/full

(visited on 08/24/2017).

Oleg Alexandrov, Wikipedia contributor (12 January 2005). Parzen window illustra-

tion — Wikipedia, The Free Encyclopedia. [Online; accessed 27-February-2018]. URL:

\url{https://fr.wikipedia.org/wiki/Estimation_par_noyau#/media/File:

Parzen_window_illustration.svg}.

Olsen, G. (1990). Gary Olsen’s Interpretation of the "Newick’s 8:45" Tree Format Standard.

http://evolution.genetics.washington.edu/phylip/newick_doc.html.

[Online; accessed 28-September-2017].

Oravecz, Zita, Matt Huentelman, and Joachim Vandekerckhove (2016). “Sequential

Bayesian updating for big data”. In: Big Data in Cognitive Science, p. 13. URL:

https://books.google.com/books?hl=en&lr=&id=qDclDwAAQBAJ&oi=fnd&pg=

PA13&dq=%22velocity,+volume,+and+variety+of+big+data+present+both+

challenges+and+opportunities+for+cognitive%22+%22in+which+crowd-

sourced+data+are+used+to+study+Alzheimer%E2%80%99s+Dementia.+We+%EF%

AC%81t+an+extended%22+&ots=a7NRcVsvvn&sig=5wLBPNiXFQmw6SfV6SIdfU_

5R64 (visited on 06/09/2017).

Pachauri, Rajendra K et al. (2014). Climate change 2014: synthesis report. Contribution

of Working Groups I, II and III to the fifth assessment report of the Intergovernmental

Panel on Climate Change. IPCC.

http://onlinelibrary.wiley.com/doi/10.1002/0470022620.bbc21/full
\url{https://fr.wikipedia.org/wiki/Estimation_par_noyau#/media/File:Parzen_window_illustration.svg}
\url{https://fr.wikipedia.org/wiki/Estimation_par_noyau#/media/File:Parzen_window_illustration.svg}
http://evolution.genetics.washington.edu/phylip/newick_doc.html
https://books.google.com/books?hl=en&lr=&id=qDclDwAAQBAJ&oi=fnd&pg=PA13&dq=%22velocity,+volume,+and+variety+of+big+data+present+both+challenges+and+opportunities+for+cognitive%22+%22in+which+crowd-sourced+data+are+used+to+study+Alzheimer%E2%80%99s+Dementia.+We+%EF%AC%81t+an+extended%22+&ots=a7NRcVsvvn&sig=5wLBPNiXFQmw6SfV6SIdfU_5R64
https://books.google.com/books?hl=en&lr=&id=qDclDwAAQBAJ&oi=fnd&pg=PA13&dq=%22velocity,+volume,+and+variety+of+big+data+present+both+challenges+and+opportunities+for+cognitive%22+%22in+which+crowd-sourced+data+are+used+to+study+Alzheimer%E2%80%99s+Dementia.+We+%EF%AC%81t+an+extended%22+&ots=a7NRcVsvvn&sig=5wLBPNiXFQmw6SfV6SIdfU_5R64
https://books.google.com/books?hl=en&lr=&id=qDclDwAAQBAJ&oi=fnd&pg=PA13&dq=%22velocity,+volume,+and+variety+of+big+data+present+both+challenges+and+opportunities+for+cognitive%22+%22in+which+crowd-sourced+data+are+used+to+study+Alzheimer%E2%80%99s+Dementia.+We+%EF%AC%81t+an+extended%22+&ots=a7NRcVsvvn&sig=5wLBPNiXFQmw6SfV6SIdfU_5R64
https://books.google.com/books?hl=en&lr=&id=qDclDwAAQBAJ&oi=fnd&pg=PA13&dq=%22velocity,+volume,+and+variety+of+big+data+present+both+challenges+and+opportunities+for+cognitive%22+%22in+which+crowd-sourced+data+are+used+to+study+Alzheimer%E2%80%99s+Dementia.+We+%EF%AC%81t+an+extended%22+&ots=a7NRcVsvvn&sig=5wLBPNiXFQmw6SfV6SIdfU_5R64
https://books.google.com/books?hl=en&lr=&id=qDclDwAAQBAJ&oi=fnd&pg=PA13&dq=%22velocity,+volume,+and+variety+of+big+data+present+both+challenges+and+opportunities+for+cognitive%22+%22in+which+crowd-sourced+data+are+used+to+study+Alzheimer%E2%80%99s+Dementia.+We+%EF%AC%81t+an+extended%22+&ots=a7NRcVsvvn&sig=5wLBPNiXFQmw6SfV6SIdfU_5R64
https://books.google.com/books?hl=en&lr=&id=qDclDwAAQBAJ&oi=fnd&pg=PA13&dq=%22velocity,+volume,+and+variety+of+big+data+present+both+challenges+and+opportunities+for+cognitive%22+%22in+which+crowd-sourced+data+are+used+to+study+Alzheimer%E2%80%99s+Dementia.+We+%EF%AC%81t+an+extended%22+&ots=a7NRcVsvvn&sig=5wLBPNiXFQmw6SfV6SIdfU_5R64

148 Bibliography

Pahl-Wostl, Claudia (2007). “Transitions towards adaptive management of water fac-

ing climate and global change”. In: Water resources management 21.1, pp. 49–62.

Parhami, Behrooz (1999). Computer arithmetic. Vol. 20. 00. Oxford university press.

Pauls, Steffen U. et al. (Feb. 2013). “The impact of global climate change on genetic

diversity within populations and species”. en. In: Molecular Ecology 22.4, pp. 925–

946. ISSN: 09621083. DOI: 10.1111/mec.12152. URL: http://doi.wiley.com/10.

1111/mec.12152 (visited on 08/23/2017).

Peel, Murray C, Brian L Finlayson, and Thomas A McMahon (2007). “Updated world

map of the Köppen-Geiger climate classification”. In: Hydrology and earth system

sciences discussions 4.2, pp. 439–473.

Pereira, Henrique M et al. (2010). “Scenarios for global biodiversity in the 21st cen-

tury”. In: Science 330.6010, pp. 1496–1501.

Perrard, Adrien et al. (2014). “Geographic variation of melanisation patterns in a hor-

net species: genetic differences, climatic pressures or aposematic constraints?” In:

PloS one 9.4, e94162.

Pritchard, J. K. et al. (Dec. 1999). “Population growth of human Y chromosomes:

a study of Y chromosome microsatellites”. en. In: Molecular Biology and Evolution

16.12, pp. 1791–1798. ISSN: 0737-4038, 1537-1719. DOI: 10.1093/oxfordjournals.

molbev.a026091. URL: https://academic.oup.com/mbe/article-lookup/doi/

10.1093/oxfordjournals.molbev.a026091 (visited on 08/31/2017).

Publishing, Springer (2018). Ecosystems - Springer. Website. [Online; accessed 27-

January-2018]. URL: \url{https://link.springer.com/journal/10021}.

Robinet, Christelle, Christelle Suppo, and Eric Darrouzet (2017). “Rapid spread of

the invasive yellow-legged hornet in France: the role of human-mediated dis-

persal and the effects of control measures”. In: Journal of Applied Ecology 54.1,

pp. 205–215.

Rome, Quentin et al. (2013). “Spread of the invasive hornet Vespa velutina Lepeletier,

1836, in Europe in 2012 (Hym., Vespidae)”. In: Bulletin de la Société entomologique

de France 118.1, pp. 21–22.

Rubin, DB (1984). “Bayesianly justifiable and relevant frequency calculations for the

applied statistician”. In: Annals of statistics 12.4, pp. 1151–1172.

Schlenker, Wolfram and David B Lobell (2010). “Robust negative impacts of climate

change on African agriculture”. In: Environmental Research Letters 5.1, p. 014010.

https://doi.org/10.1111/mec.12152
http://doi.wiley.com/10.1111/mec.12152
http://doi.wiley.com/10.1111/mec.12152
https://doi.org/10.1093/oxfordjournals.molbev.a026091
https://doi.org/10.1093/oxfordjournals.molbev.a026091
https://academic.oup.com/mbe/article-lookup/doi/10.1093/oxfordjournals.molbev.a026091
https://academic.oup.com/mbe/article-lookup/doi/10.1093/oxfordjournals.molbev.a026091
\url{https://link.springer.com/journal/10021}

Bibliography 149

Scott, David W (2008). “The curse of dimensionality and dimension reduction”. In:

Multivariate Density Estimation: Theory, Practice, and Visualization, pp. 195–217.

Shah, Manzoor A and R Uma Shaanker (2014). “Invasive species: reality or myth?”

In: Biodiversity and conservation 23.6, pp. 1425–1426.

Simberloff, Daniel and Leah Gibbons (2004). “Now you see them, now you don’t!–

population crashes of established introduced species”. In: Biological Invasions 6.2,

pp. 161–172.

Sousa, V. C. et al. (Apr. 2009). “Approximate Bayesian Computation Without Sum-

mary Statistics: The Case of Admixture”. en. In: Genetics 181.4, pp. 1507–1519.

ISSN: 0016-6731. DOI: 10 . 1534 / genetics . 108 . 098129. URL: http : / / www .

genetics.org/cgi/doi/10.1534/genetics.108.098129 (visited on 12/08/2016).

Spash, Clive L et al. (2009). “Motives behind willingness to pay for improving bio-

diversity in a water ecosystem: Economics, ethics and social psychology”. In:

Ecological Economics 68.4, pp. 955–964.

Stroustrup, Bjarne (1994). The design and evolution of C++. Pearson Education India.

— (2003). Abstraction, libraries, and efficiency in C+. http://www.stroustrup.com/

abstraction.pdf. [Online; accessed 28-September-2017]. (Visited on 08/24/2017).

— (2014). Five Popular Myths about C++. http://www.stroustrup.com/Myths-

final.pdf. [Online; accessed 28-September-2017]. (Visited on 08/26/2017).

Thrupp, Lori Ann (2000). “Linking agricultural biodiversity and food security: the

valuable role of agrobiodiversity for sustainable agriculture”. In: International af-

fairs 76.2, pp. 283–297.

Valéry, Loïc, Hervé Fritz, and Jean-Claude Lefeuvre (2013). “Another call for the end

of invasion biology”. In: Oikos 122.8, pp. 1143–1146.

Valéry, Loïc et al. (2008). “In search of a real definition of the biological invasion

phenomenon itself”. In: Biological invasions 10.8, pp. 1345–1351.

Van Houtven, George, John Powers, and Subhrendu K Pattanayak (2007). “Valu-

ing water quality improvements in the United States using meta-analysis: Is the

glass half-full or half-empty for national policy analysis?” In: Resource and Energy

Economics 29.3, pp. 206–228.

Vignieri, Sacha N (2005). “Streams over mountains: influence of riparian connectiv-

ity on gene flow in the Pacific jumping mouse (Zapus trinotatus)”. In: Molecular

Ecology 14.7, pp. 1925–1937.

https://doi.org/10.1534/genetics.108.098129
http://www.genetics.org/cgi/doi/10.1534/genetics.108.098129
http://www.genetics.org/cgi/doi/10.1534/genetics.108.098129
http://www.stroustrup.com/abstraction.pdf
http://www.stroustrup.com/abstraction.pdf
http://www.stroustrup.com/Myths-final.pdf
http://www.stroustrup.com/Myths-final.pdf

150 Bibliography

Villemant, C, J Haxaire, and J Streito (2006a). “The discovery of the Asian hornet

Vespa velutina in France”. In: Insectes 143.4, p. 5.

Villemant, Claire, Jean Haxaire, and Jean-Claude Streito (2006b). “Premier bilan de

l’invasion de Vespa velutina Lepeletier en France (Hymenoptera, Vespidae)”. In:

Bulletin de la Société entomologique de France 111.4, pp. 535–538.

Villemant, Claire et al. (2011). “Predicting the invasion risk by the alien bee-hawking

Yellow-legged hornet Vespa velutina nigrithorax across Europe and other conti-

nents with niche models”. In: Biological Conservation 144.9, pp. 2142–2150.

Vitousek, Peter M (1994). “Beyond global warming: ecology and global change”. In:

Ecology 75.7, pp. 1861–1876.

Vitousek, Peter M et al. (1997). “Human domination of Earth’s ecosystems”. In: Sci-

ence 277.5325, pp. 494–499.

Wakeley, John (2009). Coalescent theory: an introduction. 575: 519.2 WAK.

Wikipedia (2018). Library (computing) — Wikipedia, The Free Encyclopedia. [Online; ac-

cessed 27-January-2018]. URL: \url{https://en.wikipedia.org/wiki/Library_

(computing)}.

Wilson, John RU et al. (2009). “Biogeographic concepts define invasion biology”. In:

Trends in Ecology & Evolution 24.11, p. 586.

Wright, Sewall (1931). “Evolution in Mendelian populations”. In: Genetics 16.2, pp. 97–

159.

Zadeh, LA (1965). “Fuzzy sets”. In: Information and Control 8.3, pp. 338–353.

\url{https://en.wikipedia.org/wiki/Library_(computing)}
\url{https://en.wikipedia.org/wiki/Library_(computing)}

Titre : Modèles de démogénétique environnementale

Mots clés : génétique des populations, dispersion, niche écologique, coalescence

Résumé : Les invasions biologiques étant des
processus raisonnablement limités dans le temps
et l'espace, elles fournissent un cadre propice à
l'étude de modèles complexes par simulation
numérique. Nous mettons à profit la méthode de
Calcul Bayésien Approché (ABC) pour étudier
l'invasion du frelon asiatique (Vespa velutina),
en essayant d’estimer les paramètres d'un
modèle probabiliste démographique et
génétique spatialement explicite. La croissance
des populations dans chaque unité paysagère est
décrite par une fonction des conditions
environnementales locales, tandis que les flux
migratoires entre populations sont tirés dans des
lois dont les densités sont fonctions de la
distance géographique à parcourir. Certains
paramètres de ces fonctions sont inconnus et
doivent être estimés. Conditionnellement à la
démographie, un processus de coalescence
permet de simuler l'histoire génétique de
l'échantillon. Une fois la simulation achevée, la
procédure ABC permet de accepter/rejeter les
valeurs de paramètres en fonction de la

plausibilité des données génétiques qu'ils
permettent de générer. La comparaison de
modèles étant une étape clé de la méthodologie
ABC, cela impose que différentes versions de
simulateurs de coalescence puissent être
rapidement développées. A cette fin, cette thèse
propose Quetzal, une bibliothèque assez
générale pour pouvoir aisément s'adapter à un
grand nombre de modèles possibles, et qui
inclue des algorithmes originaux et génériques.
Les principaux concepts de programmation
permettant d'utiliser et d'étendre Quetzal sont
également exposés à travers les différents
chapitres. Enfin, nous mettons à profit les
particularités du contexte d'étude du frelon
asiatique pour développer une méthodologie
spécifique reposant sur le formalisme des
partitions floues et qui permet, en recentrant
l'analyse sur les processus démographiques très
récents, de réduire le nombre d'hypothèses, le
nombre de paramètres et le coût simulatoire de
l'analyse.

Title : Environmental demogenetic models

Keywords : populations genetics, dispersal, niche theory, coalescence

Abstract : Because biological invasions are
processes well delimited in both space and
time, they offer a unique framework in which
complex models can be studied by numerical
simulations. We use the Approximated
Bayesian Computation method (ABC) to study
the Vespa velutina invasion, seeking to
estimate the parameters of a spatially explicit
demographic and genetic probabilistic model.
The population growth in each landscape unit
is described by a function of the local
environmental features, whereas the migration
flux between populations are sampled in laws
which densities are functions of the
geographical distance. Some of the parameters
of these functions are unknown and should be
estimated. Conditionally to the demography, a
coalescence process allows for simulating the

genetic history of the sample. Once the
simulation done, the ABC method allows for
accepting/rejecting the parameters values as a
function of the data plausibility they generate.
Models comparison requires that various
versions of coalescence-based simulators can
be quickly developed. This thesis offers
Quetzal, a library general enough to be easily
adapted to an open-ended number of models
variants. Finally, we take advantage of the
biological context to develop a specific
methodology built on the fuzzy partitions
formalism. It allows to focus only on the very
recent demographic processes, and
consequently to reduce the number of
hypothesis, the number of parameters, and the
simulation cost of the analysis.

Université Paris-Saclay
Espace Technologique / Immeuble Discovery
Route de l’Orme aux Merisiers RD 128 / 91190 Saint-Aubin, France

