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Chapter 1

Introduction

1.1 Background and motivation
High performance computing (HPC) platforms are providing more and more pow-
erful computational resources, allowing scientists to address the simulation of larger
and larger modeled problems through parallel computing. Yet for a very wide class
of software applications, it is still a challenge to take full advantage of massively
parallel platforms. On one hand, these applications have to face a non negligible
probability of resource failure, and on the other hand, they inherently feature an
efficiency limit well known through the Amdahl’s law [1]. About this second aspect,
Figure 1.1 shows how small serial portions of an overall parallel algorithm may de-
crease its expected performance, while the number of processing units (processors)
increases. More importantly, one can notice that there is an upper bound on how
faster (speedup) we may expect to be, no matter the number of processors we use.
For instance with 5% of sequential steps, we are not able to compute more than 20
times faster by using parallel machines, and actually this bound is nearly reached (19
times) with only 512 processors! An important part of the parallel scientific com-
puting field therefore aims to reduce these serial proportions as much as possible, in
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Figure 1.1: Limits of parallel computing. Illustration with α serial portion.
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16 CHAPTER 1. INTRODUCTION

order to put such scalability limits off.
To design highly scalable parallel algorithms, domain decomposition methods

(DDM) [2] introduce a natural approach which basically consists of

• restricting a problem to different parts of a domain on which the solution is
defined,

• separately solving each resulting sub-problem,

• ensuring that the aggregation of the sub-solutions actually gives the solution
of the initial global problem.

On one hand, as the sub-problems can be separately solved, the processing steps are
totally parallel. On the other hand however, ensuring the global consistency of the
sub-solutions (interface problem) requires data management steps, which introduces
globally serial portions. These data management steps are achieved by communi-
cation between the parallel processes either via shared-memory access or through
message passing, often based on a graph of data dependency. A lot of efforts is
therefore made in graph partitioning [3] to minimize the inter-process dependency
while ensuring a well-balanced workload between the sub-domains. Furthermore, as
the interface problem is generally solved in an iterative manner, many studies pro-
pose interface conditions that improve the convergence rate of the iterative algorithm
by either a continuous (see, e.g., [4, 5, 6]) or a discrete approach (see, e.g., [7, 8, 9]).
All these advances significantly increase the upper bound on the expected speedup,
however classical iterations remain sequential, so that the parallel processes have
to complete communication steps at each iteration. The performance of such ap-
plications thus strongly depends on the performance of underlying communication
platforms.

On another hand, parallel-in-time algorithms propose fully parallel time-dependent
iterations. Although breaking the time-line causality appears unnatural, some at-
tempts did succeed, like waveform relaxation methods [10, 11] which distribute the
space domain of time-dependent partial differential equations (PDE) and then per-
form a slightly improved Picard iteration on each subproblem. Multiple shoot-
ing [12] and time-multigrid [13] methods have led to the recent Parareal method [14]
and, more generally, parallel implicit time-integration algorithms (PITA) [15], where
a time domain is decomposed to consider two levels of time grid for the time-
integration of PDEs. Solution of the problem on the coarse grid provides initial
boundary values (IBV) for each subproblem defined on the fine grid in each time
sub-domain. Then parallel solution of subproblems is used for the correction of
IBVs obtained from a next coarse solution. In this sense, the Parareal compu-
tational model can also be considered as an iterative predictor-corrector scheme.
What is actually notable for parallel-in-time methods is that, while fully paralleliz-
ing time-dependent iterations, a second level of iterations is however required, which
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on the other side remain sequential. They thus face same speedup bounds previously
pointed out.

In such a context, the only way to totally break sequential computation is to
resort to asynchronous iterations [16], which therefore, by removing speedup bounds
and self-adapting to resource failures, could constitute so far the most interesting
algorithmic approach for HPC applications. Basically, asynchronous iterations are
described by a computational model where each component of the solution vector is
updated on the basis of arbitrary several previous iterations, not necessarily only the
last one. There is therefore no more a single sequence of iterations for approximating
the whole solution, here each component is updated by following its own successive it-
erations. Communication can thus be completely overlapped by computation, which
results in a totally parallel procedure without speedup bound, albeit such a compu-
tational model particularly exacerbates issues about convergence conditions, conver-
gence rate and convergence detection. Several asynchronous fixed-point computa-
tional models have been proved to be convergent under various general contraction
conditions (see, e.g., [17, 18, 19, 20]), particularly implied by some practical proper-
ties of the equations being solved (see, e.g., [21, 22, 23, 24]). Despite lower conver-
gence rates in number of iterations, their practical efficiency in execution times over
classical fixed-point methods is undoubtedly established, thanks to extensive studies
addressing various computational problems (see, e.g., [18, 25, 26, 27, 28, 29, 30, 31]).
An exhaustive overview of application fields can be found in [32].

In the end, despite a concise corresponding algorithmic pattern, random execu-
tion of asynchronous iterations requires much more than a straightforward update
of classical iterations loops, depending however on the communication middleware
under use. Moreover, because of their non-deterministic behavior, the accurate eval-
uation of a residual-based stopping criterion becomes an issue, as introduced by [33].
In classical programming patterns, to be able to detect the moment when parallel
iterations have converged, a reduction operation is performed at each iteration. For
efficient random execution of asynchronous iterations, blocking communication re-
quests are avoided, which makes it hard to isolate and handle any global vector, even
less in message-passing environments. One thus has to deal with various convergence
detection protocols, according to both effectiveness and efficiency expectation (see,
e.g., [16, 34, 35, 36, 37]). Two main libraries therefore emerged to help easily as-
sess asynchronous iterative methods. Based on Java Remote Method Invocation
(RMI), Jace [38] provides a message-passing framework which particularly suits to
asynchronous iterations. The library is continuously improved, mainly in view of
resource failure support (see [39]), and it now includes the convergence detection
protocol from [40], which is an extension of [37] to volatile computing environments
(see [41]). Still, such an approach for terminating asynchronous iterations is quite
robust but not exact. As an alternative to Java performance limits, Crac [42] is
a similar C++ communication library featuring same message-passing semantics.
These libraries particularly target grid computing environments and manage multi-
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site cluster architectures, however they are not based upon the Message Passing
Interface (MPI) standard, which is undoubtedly the most popular communication
framework for scientific distributed computing. Indeed, since the MPI specification
has been designed on general basis for all kinds of distributed algorithms, the peculiar
communication pattern of asynchronous iterations does not naturally fit into such a
framework, even less in a non-intrusive manner which would totally encapsulate the
management of pure communication-related objects.

In this study, we address the development of asynchronous iterative algorithms
within either time or space domain decomposition frameworks. Every main aspect
of such an application of asynchronous iterations is covered, from theoretical con-
vergence analysis to efficient implementation, including accurate termination.

1.2 Outline
Chapter 2 proposes an overview of convergence conditions established for asyn-
chronous iterations. This includes various computational models related to relax-
ation of linear algebraic equations and, more generally, arbitrary fixed-point prob-
lems. In linear cases, Theorem 2.2 provides a sufficient and necessary condition on
the relaxed constraint. Theorem 2.3 allows us then to deduce several more practical
sufficient conditions on the initial problem, provided classical relaxation schemes are
used. Theorem 2.7 and Theorem 2.8 extend these sufficient conditions to two-stage
relaxations (either classical or allowing flexible communication) arising from block
decomposition of the equations system. In any cases, convergence of fixed-point
methods may be addressed through Theorem 2.4, which features sufficient contrac-
tion conditions with respect to a component-wise vector norm. This result is further
generalized by Theorem 2.5, using a weighted maximum norm. Finally, norm-based
conditions are strictly included into a contraction framework inspired from level sets
techniques, yielding Theorem 2.6. Corollary 2.2 and Corollary 2.3 deduce same re-
sults for non-stationary iterative mappings which are a generalization of the classical
two-stage relaxation model. At last, Theorem 2.9 extends the maximum-norm-based
contraction condition to iterative mappings defined on a couple of vectors. This gen-
eralizes the computational model of two-stage relaxations with flexible communica-
tion. The even more general Theorem 2.10 and Theorem 2.11 apply the respective
component-wise and maximum norms contraction conditions to iterative mappings
defined on an arbitrary number of vectors, referred to as asynchronous iterations
with memory.

Chapter 3 extends asynchronous iterations models to a sub-structuring frame-
work for the solution of algebraic linear systems, generally arising from either finite
elements or finite differences discretization of PDEs. The partitioning framework is
first described (illustrated by Figure 3.1), leading to a corresponding Schur comple-
ment inversion problem defined on the interface between the different substructures.
Lemma 3.1, Lemma 3.2 and Lemma 3.3 first recall useful results in the theory of M-
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matrices, then Proposition 3.1 and Proposition 3.2 provide two respective practical
splittings of the Schur complement, under common conditions which are sufficient
for the convergence of any classically derived asynchronous iterative model. Then, a
parallel scheme actually based on the partitioning of the discrete domain is analyzed
through the particular iterative model it implies on the assembled interface Schur
problem. Lemma 3.5 first recall a preliminary key result from the Perron-Frobenius
theory of nonnegative matrices, then Lemma 3.6 and its Corollary 3.1 lead to The-
orem 3.1, which asserts asynchronous convergence conditions equivalent to those
of classical algebraically non-overlapping additive Schwarz methods [43, 44]. From
there, considering a sub-structuring parallel scheme where only the interface nodes
are assembled, Lemma 3.7 and Theorem 3.2, also based on Corollary 3.1, follow same
analysis principles to establish nearly same asynchronous convergence conditions for
a new derived sub-structuring method.

While main studies about asynchronous iterations focused on space domain de-
composition, Chapter 4 advocates a novel research direction which tackles time do-
mains, by introducing an asynchronous parallel-in-time method derived from the
Parareal approach. The goal is to verify the reliability of the inherent prediction
and correction operators when they are not synchronized. In view of comparison
on both convergence conditions and computational efficiency sides, Parareal itera-
tions are first analyzed through a discrete fixed-point formulation. Proposition 4.1
exhibits an exponential upper bound of the iterated error in a similar manner as
in the continuous case for ordinary differential equations (see [45]). Corollary 4.1
therefore highlights the induced convergence condition, which depends on the num-
ber of time sub-domains. While Proposition 4.3 ensures correct finite termination
of Parareal-based asynchronous iterations, it does not provide information about
possible performance gain over fully sequential resolution. This is rather obtained
by Proposition 4.4 in the norm-based contraction framework from Theorem 2.11,
featuring a convergence condition asymptotically equivalent to its counterpart in
the synchronous case (Corollary 4.1). Proposition 4.5 successfully establishes a
corresponding exponential upper bound of the iterated error, and the norm-based
convergence result is generalized by Proposition 4.7 to allow for the coupling of dif-
ferent asynchronous parallel-in-time schemes. At last on computational efficiency
side, Proposition 4.2 and Proposition 4.6 give time complexities of Parareal and
Parareal-based asynchronous iterations respectively, both for which Corollary 4.2
and Corollary 4.3 reveal speedup limits, however an expectable better performance
of asynchronous iterations.

Chapter 5 addresses the problem of terminating asynchronous iterations. We
propose simple non-intrusive exact methods to compute a convergence residual dur-
ing asynchronous iterations, in order to accurately assess whether convergence is
reached or not. Principles of distributed snapshot [46] are followed to devise Algo-
rithm 3 and Algorithm 4 which assemble a global iterated vector under first-in-first-
out (FIFO) restriction on the communication channels. Algorithm 5 and Algorithm 6
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embed computation data into the snapshot messages, which removes the FIFO con-
dition. Algorithm 9, on another hand, squarely avoids using snapshot messages,
and is based instead on comparison between two successively received data on each
channel. Nonetheless, to effectively manage the non-FIFO context without such
both communication and memory overhead costs, Algorithm 10 and Algorithm 11
assume an approximation of the maximum degree of out-of-order message deliver-
ing. Proposition 5.3 formally establishes their accuracy, from which Proposition 5.4
provides a practical way of setting residual-based stopping criteria for contracting
mappings in weighted maximum norms.

Chapter 6 then focuses on the design of Jack2, a non-intrusive MPI-based commu-
nication library which allows quick efficient implementation of asynchronous itera-
tions. Algorithm 13 and Algorithm 14 respectively give distributed synchronous and
asynchronous iterative schemes describing the algorithmic framework taken as the
leading implementation pattern. In this framework, Algorithm 15 is derived from
snapshot-based convergence detection protocols to introduce non-blocking global
synchronization of asynchronous iterative processes. Listing 6.1 illustrates a clas-
sical programming pattern of iterative methods within the MPI framework, from
which Listing 6.2 shows a slight improvement by use of persistent requests. List-
ing 6.3 then presents the corresponding Jack2 framework, within which Listing 6.5
specifically describes the implementation of asynchronous iterations featuring a clas-
sical global residual-based stopping criterion evaluated by means of the non-blocking
synchronization routine. Through Listing 6.6 which achieves a non-intrusive imple-
mentation of the snapshot-based convergence detection approach, Listing 6.7 suc-
cessfully provides a unique Jack2-based programming pattern for both classical and
asynchronous iterative methods. Finally, after the main overall architecture of the
library is described by Figure 6.1, the management of point-to-point communications
is discussed around Listing 6.8 and Listing 6.9. The chapter ends with the detailed
description of non-blocking collective routines (Figure 6.2 to Figure 6.7), especially
related to convergence detection.

At last, Chapter 7 presents experimental results related to implementation, ter-
mination and efficiency of asynchronous distributed iterative methods. The practi-
cal interest of studying asynchronous iterations is clearly introduced with Table 7.1
which shows their performance even within a poorly scalable domain partitioning
configuration (Figure 7.1), on a convection-diffusion problem decomposed by means
of an additive Schwarz scheme. Table 7.2 then focuses on the MPI options for
implementing point-to-point communication, relatively to both message reception
and message sending rates, while Table 7.3 addresses the effectiveness and efficiency
of snapshot-based convergence detection protocols. Sub-structuring methods are
then targeted on a gravitational potential Poisson problem illustrated through Fig-
ure 7.7 to Figure 7.9. Table 7.5 and Table 7.6 report scalability results comparing
both classical and substructures-based parallel schemes of matrix Jacobi splittings,
on two different problem sizes, respectively. Finally, experiments of the Parareal
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time-integration method are presented on a heat evolution problem illustrated by
Figure 7.11. Table 7.7 compares execution times of synchronous and asynchronous
iterations while varying both the simulated physical time and the number of proces-
sor cores.

1.3 Contribution
As one can see, this work addresses several matters covering the whole procedure
of designing and experimenting distributed asynchronous iterative methods. With
Chapter 2, we first provide a mathematical toolbox for the application of the asyn-
chronous iterations theory, which gives a quick access to main general asynchronous
iterations models, along with various useful properties guaranteeing their conver-
gence. We then achieved the following results by successfully targeting some partic-
ular domain decomposition schemes.

The parallel iterative model (3.11) and the related Theorem 3.2 constitute our
main result in the application of asynchronous iterations theory to space domain
decomposition methods. It consists of a new asynchronous iterative sub-structuring
method which converges under conditions barely stronger than those of classical
asynchronous algebraically non-overlapping additive Schwarz methods [43, 44]. Same
conditions were derived for the iterative sub-structuring method investigated in [47],
however our iterative model (3.11) clearly implies a far more efficient parallel com-
putation. Our other related contributions include:

• the parallel iterative model (3.8) and the related Theorem 3.1, which strongly
suggest the possibility of a general unified framework for both asynchronous
convergence analysis of Schwarz and sub-structuring methods;

• Proposition 3.1 and Proposition 3.2, which basically provide asynchronously
convergent splittings of a Schur complement, without requiring it to be explic-
itly generated, contrarily to classical splittings (Jacobi, Gauss-Seidel and their
derivatives);

• and, to the best of our knowledge, Corollary 3.1, which proposes a new gen-
eral application of the Perron-Frobenius theory of nonnegative matrices, more
precisely, based on relations between spectral radii and weighted maximum
norms.

Proposition 4.4 is our main result related to the Parareal time-integration method.
Its significance lies in its comparison with Corollary 4.1 which we derived from
our Proposition 4.1 obtained from a discrete Parareal scheme on partial differential
equations, similar to the continuous approach from [45] about ordinary differential
equations.The convergence of asynchronous iterations generally requires restrictions
on the iterations mapping which are stronger, comparatively to their synchronous
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counterparts. This aforementioned set of new theoretical results suggests, for the
Parareal time-integration method, synchronous and asynchronous convergence con-
ditions which are asymptotically equivalent, as the number of time sub-domains
grows. Our other related contributions include:

• Proposition 4.3 which ensures, at least, a finite termination of Parareal asyn-
chronous iterations, with the same solution as that given by a corresponding
sequential fine time integration. This kind of result was shown in [15] for the
synchronous PITA, which is a generalization of the Parareal.

• Proposition 4.5 gives an upper bound of the asynchronous iterative error which,
compared to Proposition 4.1, suggests a better convergence rate of synchronous
iterations, which however gets closer to the asynchronous one as the number of
time sub-domains grows. Still, it also clearly shows how this actually depends
on the gap of execution speed between each synchronous and asynchronous
iteration.

• Corollary 4.3 sets a limit on the possible performance gain from asynchronous
iterations,

• and Proposition 4.7 finally suggests general coupling of different convergent
asynchronous parallel-in-time iterative schemes.

Our related publications include:
• F. Magoulès, G. Gbikpi-Benissan, Asynchronous parareal time discretization

for partial differential equations, SIAM Journal of Scientific Computing (under
revision).

Focusing now on experimental matters, methods for terminating asynchronous
iterations (i) either require a modification of the iterative algorithm such that the
computation actually terminates in finite time, (ii) or involve another algorithm
concurrently monitoring the convergence state. In view of being non-intrusive, for
evident practical reasons, most of the latest results in this field follow the second
approach. Nevertheless, to the best of our knowledge, only the snapshot-based
method from [35] successfully managed to be both decentralized, formally accurate
and totally non-intrusive. Indeed, even though the verification phase idea from [37]
is quite robust, it is not totally effective, and piggybacking requirements make it
slightly intrusive in the end, on implementation aspects. Similarly, while the macro-
iterations solution from [48] provides a thorough formal result, its implementation
also suggests intrusive piggybacking techniques. Algorithm 10 and Algorithm 11
constitute our main results related to the termination of asynchronous iterations,
particularly improving [35] by successfully avoiding supplementary exchange of ap-
plication data, which could constitute non-negligible communication overhead costs.
Our Proposition 5.3 and Proposition 5.4 formally establish the reliability of these
new snapshot-based algorithms. Our other related contributions include:
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• Algorithm 3 and Algorithm 4 which show direct possible extensions of the
reference snapshot protocol [46] to the asynchronous iterations termination
problem;

• Algorithm 5 and Algorithm 6 which take off a prior tree-based centralization
phase featured by [35] (also featured by [37], but in a non-deterministic way),
and thus are the first accurate, totally non-intrusive and totally decentralized
convergence detection protocols;

• and, at last, Algorithm 9 which derives a message-free monitoring algorithm
based on only application messages.

Our related publications include:

• F. Magoulès, G. Gbikpi-Benissan, Distributed convergence detection based
on global residual error under asynchronous iterations, IEEE Transactions on
Parallel and Distributed Systems, 2017 (see [49]).

Last matters cover the efficient implementation of asynchronous iterations, re-
quiring however the minimum possible amount of changes in classical iterations
programming patterns. The MPI specification does not naturally extend to asyn-
chronous iterations, which makes it hard to simply render the asynchronous seman-
tics by means of non-blocking MPI communication procedures. Therefore, well-
known libraries providing general communication semantics which easily include
asynchronous iterations does not rely on MPI libraries, even though the MPI cur-
rently constitutes the most prominent communication framework for implement-
ing distributed scientific applications. Our contribution here is the design and
implementation of an MPI-based communication library which proposes a unique
message-passing programming interface for implementing both synchronous and
asynchronous iterative methods, such that the asynchronous semantics can now be
rendered at run-time, at an only internal communication level. Our related results
include:

• Algorithm 15 which introduces a non-blocking collective synchronization rou-
tine for convergence detection, derived from our analysis of snapshot-based
termination algorithms. Listing 6.5 and Listing 6.6 propose a corresponding
new iterations programming pattern where local residual is no more computed
at each local iteration, which clearly leads to far faster iterative solvers, as
shown in Figure 7.4. This also allows a classical monitoring of global residual
during asynchronous iterations, as shown in Figure 7.5.

• Listing 6.8 and Listing 6.9, at last, propose a point-to-point communication
semantic which provides a finer, more efficient, handling of communicated
data, compared to the currently advocated non-MPI put/get semantic.

Our related publications include:
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• F. Magoulès, G. Gbikpi-Benissan, JACK2: an MPI-based communication li-
brary with non-blocking synchronization for asynchronous iterations, Advances
in Engineering Software, 2018 (see [50]);

• G. Gbikpi-Benissan, F. Magoulès, JACK2: A new high-level communication
library for parallel iterative methods, Proceedings PARENG, 2017 (see [51]);

• F. Magoulès, G. Gbikpi-Benissan, JACK: an asynchronous communication
kernel library for iterative algorithms, The Journal of Supercomputing, 2017
(see [52]).



Chapter 2

Asynchronous iterations

2.1 Introduction
This chapter is a quick survey of several very useful results from the theory of
asynchronous iterations. They all relate to particular contraction properties over
the iterative computational model derived from either a linear or an arbitrary fixed-
point problem. We exhibit three kinds of iterations mappings, characterizing a
general fixed-point problem of the form

fk(x, x, . . . , x) = x, ∀k ∈ N, fk : Em → E, m ∈ N, m > 0,

where k is an iteration number, fk denotes a mapping depending on k, and Em, the
Cartesian product of m sets E. For each of these three successive cases, given by

1. m = 1, f 0 ≡ f 1 ≡ · · · ,

2. m = 1,

3. f 0 ≡ f 1 ≡ · · · ,

state-of-the-art convergence conditions are presented, first in an initial linear frame-
work, then for its corresponding general arbitrary mapping.

2.2 Fixed-point iterations
2.2.1 Linear model
Let n be a strictly positive integer, let A be a nonsingular n × n real matrix, and
let b be a vector with n real components. We consider the problem of determining
a vector x such that

Ax = b. (2.1)

25
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Let then M and N be two matrices such that

A =M −N,

with M being nonsingular. Instead of directly finding the vector x∗ which satis-
fies (2.1), a sequence {xk}k∈N of vectors is iteratively generated such that for all k,
xk+1 satisfies the relaxed constraint

Mxk+1 = Nxk + b, (2.2)

with x0 being given. As examples, the Jacobi relaxation consists of taking{
mi,i = ai,i,

mi,j = 0, i ̸= j
, i, j ∈ {1, . . . , n},

while the Gauss-Seidel relaxation is given by:{
mi,j = ai,j, j ≤ i,

mi,j = 0, j > i
, i, j ∈ {1, . . . , n},

where mi,j and ai,j are entries of M and A respectively. Now let T and c be the
matrix and the vector defined by:

T =M−1N, c =M−1b,

and let f be the mapping given by:

f : Rn → Rn

x 7→ Tx+ c
. (2.3)

We then have
xk+1 = f(xk), ∀k ∈ N, (2.4)

and it clearly appears that

Ax = b ⇐⇒ x = f(x),

which reformulates (2.1) as the problem of finding a fixed point of f .

Definition 2.1 (Convergent iterations). An iterative computational model is con-
vergent when, for any matching sequence {xk}k∈N,

lim
k→∞

xk = x∗.
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Theorem 2.1 (also see, e.g., Theorem 2.1 in [53]). The computational model (2.4)
is convergent for any given x0 ̸= x∗, if, and only if, the spectral radius ρ(T ) of T
satisfies:

ρ(T ) < 1.

Proof. We have:
xk − x∗ = f(xk−1)− f(x∗),

= T k(x0 − x∗),

and then,

lim
k→∞

xk = x∗ ⇐⇒ lim
k→∞

T k(x0 − x∗) =
[
0 · · · 0

]T
,

⇐⇒ lim
k→∞

T k = O,

where O is the null matrix. Let λi, with 1 ≤ i ≤ n, be any eigenvalue of T and let
u be the associated eigenvector. We have:

lim
k→∞

T k = 0 ⇐⇒ lim
k→∞

T ku =
[
0 · · · 0

]T
,

⇐⇒ lim
k→∞

λki u =
[
0 · · · 0

]T
,

⇐⇒ lim
k→∞

λki = 0,

⇐⇒ −1 < λi < 1,

and then,
lim
k→∞

xk = x∗ ⇐⇒ |λi| < 1, ∀i ∈ {1, . . . , n},

⇐⇒ ρ(T ) < 1.

At last, let p, n1, n2, . . . , np be strictly positive integers satisfying:
p∑

i=1

ni = n, (2.5)

and let fi, with 1 ≤ i ≤ p, be mappings defined such that

f(x) =
[
f1(x1, . . . , xp) · · · fp(x1, . . . , xp)

]T
. (2.6)

For instance, with ni × n matrices Ti such that

T =
[
T1 · · · Tp

]T
,
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one would have
fi(x) = Tix+ c.

Now let {P k}k∈N be a sequence of integer subsets, with

P k ⊆ {1, . . . , p},

and satisfying:

∀i ∈ {1, . . . , p}, card{k ∈ N | i ∈ P k} = ∞. (2.7)

Let also τ ij , with 1 ≤ i ≤ p and 1 ≤ j ≤ p, be nonnegative integer-valued functions,
with

τ ij(k) ≤ k,

and satisfying:
∀i, j ∈ {1, . . . , p}, lim

k→∞
τ ij(k) = ∞. (2.8)

We consider here asynchronous iterations generating a sequence {xk}k∈N such that

xk+1
i =

 fi

(
x
τ i1(k)
1 , . . . , x

τ ip(k)
p

)
, i ∈ P k,

xki , i /∈ P k.
(2.9)

Classical iterations modeled by (2.4), e.g., Jacobi relaxations, are therefore particular
cases of asynchronous iterations where P k = {1, . . . , p} and τ ij(k) = k, which yields:

xk+1
i = fi

(
xk1, . . . , x

k
p

)
, i ∈ {1, . . . , p}. (2.10)

From a computational point of view, (2.7) and (2.8) are trivially satisfied when none
of the parallel processes definitively stops neither iterating nor receiving updated
data for all its dependencies.

Theorem 2.2 (Chazan and Miranker, 1969). The computational model (2.9) is
convergent if, and only if,

ρ(|T |) < 1,

where |T | denotes the matrix whose each entry is the absolute value of the corre-
sponding entry of T .

Proof. See [21].

Remark 2.1 (see, e.g., [21]). If the convergence condition in Theorem 2.1 is fulfilled
for the Jacobi splitting of A+ = (a+i,j), with{

a+i,i := ai,i,

a+i,j := −|ai,j|, i ̸= j,

then the convergence condition in Theorem 2.2 is fulfilled for the Jacobi splitting of
A.
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Definition 2.2 (Diagonally dominant matrix). An n× n matrix B = (bi,j) is diag-
onally dominant when

∀i ∈ {1, . . . , n},
n∑

j=1
j ̸=i

|bi,j| ≤ |bi,i|,

where bi,j are entries of B. B is strictly diagonally dominant when this inequality is
strict (for all i ∈ {1, . . . , n}).

Definition 2.3 (Irreducible matrix). A square matrix B is irreducible when there
exists no permutation matrix P such that

PBPT =

[
B1,1 B1,2

O B2,2

]
,

where B1,1 and B2,2 are two square sub-matrices.

Definition 2.4 (Irreducibly diagonally dominant matrix). A square matrix B is
irreducibly diagonally dominant when B is irreducible and diagonally dominant with
strict inequality holding for at least one row.

Definition 2.5 (Stieltjes matrix). A square matrix B is a Stieltjes matrix when all
off-diagonal entries of B are non-positive, and B is symmetric and positive definite.

Remark 2.2 (see, e.g., [21]). If the matrix A is either

• symmetric and strictly diagonally dominant, or

• irreducibly diagonally dominant, or

• a Stieltjes matrix,

then the convergence condition in Theorem 2.2 is fulfilled for the Jacobi splitting of
A.

Consider now that the matrices A and M are of the form

A =


A1,1 A1,2 · · · A1,p

A2,1 A2,2 · · · A2,p

... ... . . . ...
Ap,1 Ap,2 · · · Ap,p

 , M =


A1,1 O · · · O

O A2,2
. . . ...

... . . . . . . O

O · · · O Ap,p

 ,

where Ai,i, with 1 ≤ i ≤ p, are nonsingular ni × ni sub-matrices. Such a decompo-
sition yields the block-Jacobi relaxation given by:

Ai,ix
k+1
i = (Nxk + b)i, ∀i ∈ {1, . . . , p}. (2.11)
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Definition 2.6 (Comparison matrix). The comparison matrix ⟨B⟩ = (⟨b⟩i,j) of a
square matrix B = (bi,j) is defined by:{

⟨b⟩i,i := |bi,i|,
⟨b⟩i,j := −|bi,j|, i ̸= j.

Definition 2.7 (M-matrix). A square matrix B is an M-matrix when there exists a
real γ0 > 0 and a matrix C ≥ O such that

B = γ0I − C, γ0 > ρ(C).

Remark 2.3 (see, e.g., [54]). A square matrix B = (bi,j) is an M-matrix when B is
nonsingular and {

bi,j ≤ 0, i ̸= j,

B−1 ≥ O.

Remark 2.4 (see, e.g., Corollary 3.24 in [55]). If a matrix B is a Stieltjes matrix,
then B is an M-matrix.

Definition 2.8 (H-matrix). A square matrix B is an H-matrix when its comparison
matrix ⟨B⟩ is an M-matrix.

Remark 2.5 (see, e.g., [56]). If a matrix B is either

• strictly diagonally dominant, or

• irreducibly diagonally dominant, or

• an M-matrix,

then B is an H-matrix.

Notation 2.1 (Matrix splitting). A splitting (M,N ) of a matrix B is a couple of
matrices satisfying:

B = M−N .

Definition 2.9 (H-splitting). A splitting (M,N ) of a matrix B is an H-splitting
when the matrix ⟨M⟩ − |N | is an M-matrix.

Remark 2.6 (see, e.g., Proof of Lemma 4.2 in [57]). If a matrix B is an H-matrix,
then a block-Jacobi splitting of B is an H-splitting.

Theorem 2.3 (Frommer and Szyld, 1992). If the splitting (M,N) of A is an H-
splitting, then the convergence condition in Theorem 2.2 is fulfilled.

Proof. See [56].
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2.2.2 General model
Now let

f : E → E, fi : E → Ei, 1 ≤ i ≤ p, (2.12)
be arbitrary mappings, but still satisfying (2.6), with

E = E1 × · · · × Ep.

We consider here the general fixed-point problem consisting of determining a vector
x such that

f(x) = x. (2.13)
Let then

∥.∥(i) : Ei → R, 1 ≤ i ≤ p,

be p given norms, and ψ, the norm given by:

ψ : E → Rp

x 7→
(
∥x1∥(1), . . . , ∥xp∥(p)

) .
Theorem 2.4 (Miellou, 1975). If there exists a matrix T ≥ O (nonnegative matrix),
with ρ(T ) < 1, such that

∀x, y ∈ E, ψ(f(x)− f(y)) ≤ T ψ(x− y),

then the problem (2.13) has a unique solution x∗, and the computational model (2.9)
is convergent.

Proof. See [17].

Let ∥.∥w∞, with w ∈ (R+,∗)p, denote weighted maximum norms given by:

∥x∥w∞ = max
1≤i≤p

∥xi∥(i)
wi

, x ∈ E. (2.14)

Theorem 2.5 (El Tarazi, 1982). If the problem (2.13) has a solution x∗, if there
exists a vector w > 0 (positive vector) and a positive real α < 1 such that

∀x ∈ E, ∥f(x)− x∗∥w∞ ≤ α∥x− x∗∥w∞,

then the computational model (2.9) is convergent.

Proof. See [19].

Corollary 2.1 (El Tarazi, 1982). If there exists a vector w > 0 and a positive real
α < 1 such that

∀x, y ∈ E, ∥f(x)− f(y)∥w∞ ≤ α∥x− y∥w∞,

then the problem (2.13) has a unique solution x∗, and the computational model (2.9)
is convergent.
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Proof. See [19].

At last, let {Et}t∈N be a sequence of nonempty subsets of E, with

Et+1 ⊂ Et, ∀t ∈ N,

satisfying, for any sequence {xt}t∈N such that xt ∈ Et:

x ∈ {xt}t→∞ ⇐⇒ x = f(x),

where {xt}t→∞ denotes the set of limit points of {xt}t∈N. Let also {Et
i}t∈N, with

1 ≤ i ≤ p, be sequences of subsets of Ei such that

∀t ∈ N, Et = Et
1 × · · · × Et

p.

Theorem 2.6 (Bertsekas, 1983). If the mapping f satisfies:

∀t ∈ N, x ∈ Et =⇒ f(x) ∈ Et+1,

then for any sequence {xk}k∈N matching the computational model (2.9),

x ∈ {xk}k→∞ ⇐⇒ x = f(x),

for any given x0 ∈ E0.

Proof. See [20] or, e.g., [16].

2.3 Two-stage fixed-point iterations
2.3.1 Linear model
Consider again the problem (2.1) and the relaxed constraint (2.2). Let, as an ex-
ample, M satisfy the block-Jacobi relaxation (2.11). Let then M (i) and N (i), with
1 ≤ i ≤ p, be matrices such that

Ai,i =M (i) −N (i),

with M (i) being nonsingular. Once more, instead of directly finding a vector (xk+1)∗

which satisfies (2.2), sequences{(
xk+1
i

)k(i)}
k(i)∈N

, 1 ≤ i ≤ p,

are iteratively generated such that for all k(i), a secondary relaxed constraint

M (i)
(
xk+1
i

)k(i)+1
= N (i)

(
xk+1
i

)k(i)
+
(
Nxk + b

)
i
, (2.15)
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is satisfied, with (
xk+1
i

)0
= xki .

Let f t
i , with t ∈ N and 1 ≤ i ≤ p, be mappings recursively given by:

f t
i (x) =M (i)−1

N (i)f t−1
i (x) +M (i)−1

(Nx+ b)i, x ∈ Rn,

with f 0
i (x) = xi, so that we thus have(

xk+1
i

)k(i)+1
= fk(i)+1

i

(
xk
)
.

At last, let {mk
i }k∈N, with 1 ≤ i ≤ p, be sequences of positive integers. We are now

interested in extending the model (2.9) to:

xk+1
i =

 f
mk

i
i

(
x
τ i1(k)
1 , . . . , x

τ ip(k)
p

)
, i ∈ P k,

xki , i /∈ P k.
(2.16)

Definition 2.10 (H-compatible splitting). A splitting (M,N ) of a matrix B is an
H-compatible splitting when

⟨B⟩ = ⟨M⟩ − |N |.

Remark 2.7 (see, e.g., Section 2.6 of [58]). Jacobi and Gauss-Seidel relaxations are
H-compatible splittings.

Theorem 2.7 (Frommer and Szyld, 1994). If (M,N) is an H-splitting, and (M (i), N (i))
are H-compatible splittings, then the computational model (2.16) is convergent.

Proof. See [22].

2.3.2 General non-stationary model
Now suppose, just as before, the general fixed-point problem (2.13), and let

fk : E → E, fk
i : E → Ei, 1 ≤ i ≤ p, k ∈ N,

be arbitrary mappings, with

fk(x) =
[
fk
1 (x) · · · fk

p (x)
]T
.

We consider here a secondary fixed-point problem reformulating (2.13) by:

f(x) = x ⇐⇒ fk(x) = x, ∀k ∈ N.

A more general formulation of (2.16) is then given by:

xk+1
i =

 fk
i

(
x
τ i1(k)
1 , . . . , x

τ ip(k)
p

)
, i ∈ P k,

xki , i /∈ P k.
(2.17)
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Corollary 2.2 (of Theorem 2.5; Frommer and Szyld, 1994). If the problem (2.13)
has a solution x∗, if there exists a vector w > 0 and a positive real α < 1 such that

∀x ∈ E, ∀k ∈ N, ∥fk(x)− x∗∥w∞ ≤ α∥x− x∗∥w∞,
then the computational model (2.17) is convergent.
Proof. See [22].
Corollary 2.3 (of Theorem 2.6; Frommer and Szyld, 2000). If

∀t ∈ N, ∀k ∈ N, x ∈ Et =⇒ fk(x) ∈ Et+1,

then for any sequence {xk}k∈N matching the computational model (2.17),
x ∈ {xk}k→∞ ⇐⇒ x = f(x),

for any given x0 ∈ E0.
Proof. See [57].

2.4 Two stages with flexible communication
2.4.1 Linear model
Consider once more the linear problem (2.1), the two-stage relaxation (2.15) and the
derived computational model (2.16). Here, instead of delivering xk+1

i , with i ∈ P k,
only after arbitrary mk

i inner iterations, one would like to deliver another sequence
{xk′}k′∈N such that

xk
′

i =
(
xk+1
i

)k(i)
, k(i) ∈ {0, . . . ,mk

i }, i ∈ P k′ ,

where {P k′}k′∈N is another sequence of subsets of {1, . . . , p} also satisfying (2.7).
This yields the more flexible delivering scheme

M (i)xk
′+1

i = N (i)xk
′

i +
(
Nxk + b

)
i
, i ∈ P k′ ,

with
k′ ≥ k + k(i).

Let then f̃i, with 1 ≤ i ≤ p, be mappings given by:

f̃i(x, y) =M (i)−1
N (i)xi +M (i)−1

(Ny + b)i, x, y ∈ Rn.

The model (2.9) is thus extended to:

xk
′+1

i =

 f̃i

(
xk

′
, x

τ i1(k
′)

1 , . . . , x
τ ip(k

′)
p

)
, i ∈ P k′ ,

xk
′

i , i /∈ P k′ .
(2.18)

Theorem 2.8 (Frommer and Szyld, 1998). If (M,N) is an H-splitting, and (M (i), N (i))
are H-compatible splittings, then the computational model (2.18) is convergent.
Proof. See [59].
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2.4.2 General multi-variable model
Finally, let

f̃ : E × E → E, f̃i : E × E → Ei, 1 ≤ i ≤ p,

be arbitrary mappings, with

f̃(x, y) =
[
f̃1(x, y) · · · f̃p(x, y)

]T
,

and consider the secondary fixed-point problem reformulating (2.13) by:

f(x) = x ⇐⇒ f̃(x, x) = x.

A more general formulation of (2.18) is then also given by:

xk+1
i =

 f̃i

(
x
ρi1(k)
1 , . . . , x

ρip(k)
p , x

τ i1(k)
1 , . . . , x

τ ip(k)
p

)
, i ∈ P k,

xki , i /∈ P k,
(2.19)

where ρij, with 1 ≤ i ≤ p and 1 ≤ j ≤ p, are nonnegative integer-valued functions,
with

ρij(k) ≤ k,

and satisfying:
lim
k→∞

ρij(k) = ∞.

Theorem 2.9 (Frommer and Szyld, 1998). If the problem (2.13) has a solution x∗,
if there exists a vector w > 0 and a positive real α < 1 such that

∀x, y ∈ E, ∥f̃(x, y)− x∗∥w∞ ≤ αmax {∥x− x∗∥w∞, ∥y − x∗∥w∞} ,

then the computational model (2.19) is convergent.

Proof. See [59].

Even more generally, let us consider mappings

F̃ : Em → E, F̃i : E
m → Ei, 1 ≤ i ≤ p,

satisfying:

F̃ (x1, . . . , xm) =
[
F̃1(x

1, . . . , xm) · · · F̃p(x
1, . . . , xm)

]T
,

with m ∈ N, Em being the Cartesian product of m sets E, and such that

f(x) = x ⇐⇒ F̃ (x, x, . . . , x) = x.
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It yields an iterative model of the form:

xk+1
i =

 F̃i

((
x
τ i1,1(k)

1 , . . . , x
τ ip,1(k)
p

)
, . . . ,

(
x
τ i1,m(k)

1 , . . . , x
τ ip,m(k)
p

))
, i ∈ P k,

xki , i /∈ P k,
(2.20)

introduced by [18] as asynchronous iterations with memory.

Theorem 2.10 (Baudet, 1978). If there exists a matrix T ≥ O (nonnegative), with
ρ(T ) < 1, such that

∀X,Y ∈ Em, ψ(F̃ (X)− F̃ (Y )) ≤ T max{ψ(x1 − y1), . . . , ψ(xm − ym)},

with
X := (x1, . . . , xm), Y := (y1, . . . , ym),

then the problem (2.13) has a unique solution x∗, and the computational model (2.20)
is convergent.

Proof. See [18].

Theorem 2.11 (El Tarazi, 1982). If the problem (2.13) has a solution x∗, if there
exists a vector w > 0 and a positive real α < 1 such that

∀x1, . . . , xm ∈ E, ∥F̃ (x1, . . . , xm)−x∗∥w∞ ≤ αmax
{
∥x1 − x∗∥w∞, . . . , ∥xm − x∗∥w∞

}
,

then the computational model (2.20) is convergent.

Proof. See [19].

2.5 Conclusion
Linear fixed-point methods are classically derived from a splitting

A =M − (M − A)

of a matrix A, where M is a nonsingular matrix, in order to solve an equation

Ax = b,

x being a column vector, by means of iterations

Mxk+1 = (M − A)xk + b.

A sufficient and necessary condition for the convergence of such methods is to have
a contracting behavior implied by the spectral radius bound

ρ(I −M−1A) < 1.



2.5. CONCLUSION 37

In [21] then, the slightly more restrictive bound

ρ(|I −M−1A|) < 1

is established for asynchronous convergence, indicating as well that asynchronous
convergence implies classical synchronous convergence. We then saw that many
sufficient conditions were derived according to some properties of both A and M ,
related, for instance, to diagonal dominance, irreducibility, Stieltjes matrices, M-
matrices, H-splittings, and other close matrix characterizations.

While generalizing the spectral radius bound to arbitrary fixed-point problems,
key sufficient contraction conditions were established with component-wise norms
(see [17]), weighted maximum norms (see [19]) and nested sets (see [20]). The most
general formulation of the norm-based results lies in the framework of asynchronous
iterations with memory, which features mappings with an arbitrary number of vector-
inputs (see [18, 19]). This framework will constitute our main theoretical tool for
designing new asynchronous domain decomposition methods, both in space and time.
The next chapter addresses the case of space domains.



Chapter 3

Asynchronous space domain
decomposition

3.1 Introduction
Asynchronous iterations were largely applied to overlapping Schwarz domain de-
composition methods (see, e.g., [60, 61, 62, 29]), according to their tight relation
with block-Jacobi and Gauss-Seidel fixed-point methods (see, e.g., [44]). Recently,
optimized Schwarz methods have been investigated (see [63]), which can be non-
overlapping, just as sub-structuring methods, for which some primal approach has
been asynchronously applied in [47].

Primal domain sub-structuring methods yield a Schur complement inversion
problem defined on the junction interface shared by the different sub-domains. Ide-
ally however, this Schur complement is disassembled over the set of sub-domains, for
instance in an additive way which corresponds to an interface problem of the form

p∑
i=1

S(i)z =

p∑
i=1

d(i),

where p is the number of sub-domains. Direct application of asynchronous iter-
ations based on classical matrix splittings would lead to a completely assembled
Schur complement, and hence, one would loose the advantages from substructures-
based parallel computation, where even the sub-complements S(i) do not need to be
explicitly generated. We therefore address here the design and analysis of more suit-
able matrix splittings which effectively allow us to ensure, at convergence, interface
continuity given by

z∗ = z(1)∗ = · · · = z(p)∗,

without assembling the whole interface problem.

38
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Figure 3.1: Partitioning and reordering of a finite element mesh.

3.2 Partitioning-based Schur complement
3.2.1 Problem formulation
Let us consider a partial differential equation (PDE) which solution function u∗ is
defined on an arbitrary geometric shape Ω. Let x∗ be a discrete approximation of u∗,
based on a finite-element meshing of Ω, such that x∗ satisfies some linear algebraic
equation

Ax = b. (3.1)
Consider now a partitioning of Ω, with a reordering of the nodes of the finite elements
mesh, as illustrated for instance by Figure 3.1. By also considering, however, a non-
disjoint set of interface nodes (nodes 6, 23, 40 and 57 of Figure 3.1, top), the matrix
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A arising from the discrete formulation of the PDE has the form

A =



A1,1 O · · · O A1,p+1

O A2,2
. . . ... ...

... . . . . . . O Ap−1,p+1

O · · · O Ap,p Ap,p+1

Ap+1,1 · · · Ap+1,p−1 Ap+1,p Ap+1,p+1


,

where lines i, with 1 ≤ i ≤ p, relate to the ni internal nodes of the substructure i,
and lines p + 1 relate to the np+1 interface nodes (see [64]). The problem (3.1) can
therefore be expanded as:

Ai,ixi + Ai,p+1xp+1 = bi, ∀i ∈ {1, . . . , p},
p∑

i=1

Ap+1,ixi + Ap+1,p+1xp+1 = bp+1,

so that, by considering
xi = −A−1

i,i (Ai,p+1xp+1 − bi)

in the second equation, one reduces (3.1) to:

−
p∑

i=1

Ap+1,iA
−1
i,i (Ai,p+1xp+1 − bi) + Ap+1,p+1xp+1 = bp+1,(

Ap+1,p+1 −
p∑

i=1

Ap+1,iA
−1
i,i Ai,p+1

)
xp+1 = −

p∑
i=1

Ap+1,iA
−1
i,i bi + bp+1,

which corresponds to a problem of the form

Sxp+1 = d, (3.2)

with S being the Schur complement defined on the interface between the discrete sub-
structures of Ω. While from there, classical matrix splittings (Jacobi, Gauss-Seidel,
SOR, ...) could be applied to S = (si,j), with i, j ∈ {1, . . . , np+1}, our goal here is
however to yield an iterative mapping which does not require to explicitly generate
coefficients si,j, mainly in view of possible substructures-based parallel computation.

3.2.2 Practical matrix splittings
Let then, first, (M,N) be a splitting of S given by:

M := γI. (3.3)
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Lemma 3.1 (also see, e.g., Theorem 3.18 in [55]). If a square matrix B = (bi,j) is
an M-matrix, then

bi,i > 0, ∀i.
Proof. By Definition 2.7 of M-matrices, we have

B = γ0I − C,

with
C = (ci,j) ≥ O, γ0 > ρ(C).

We know that (see, e.g., [65])

C ≥ O =⇒ ρ(C) ≥ ci,i, ∀i.

The lemma thus directly follows as:
γ0 > ρ(C) ≥ ci,i, ∀i,

bi,i = γ0 − ci,i > 0, ∀i.

Definition 3.1 (M-splitting). A splitting (M,N ) of a matrix B is an M-splitting
when M is an M-matrix and N ≥ O.
Lemma 3.2 (Frommer and Szyld, 1992). An M-splitting of an M-matrix is both an
H-splitting and an H-compatible splitting.
Proof. See [56].
Proposition 3.1. If S is an M-matrix, and

γ ≥ max
1≤i≤np+1

si,i, (3.4)

then the splitting (3.3) of S induces a convergent asynchronous iterative model (2.9).
Proof. S being an M-matrix, we have, from Lemma 3.1, that

si,i > 0, ∀i ∈ {1, . . . , np+1},

which implies, with (3.4), that
γ > 0,

and then both M = γI is an M-matrix and

N = γI − S ≥ O.

It follows by Definition 3.1 that (M,N) is an M-splitting of S, and S being an M-
matrix, (M,N) is also an H-splitting, according to Lemma 3.2. From Theorem 2.3,
this implies that

ρ(|T |) < 1, T :=M−1N,

which is a sufficient condition for the convergence of an asynchronous iterative
model (2.9), according to Theorem 2.2.
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Now let (Mp+1,p+1, Np+1,p+1) be a splitting of Ap+1,p+1 and consider another split-
ting (M,N) of S given by:

M :=Mp+1,p+1. (3.5)

Definition 3.2 (Principal sub-matrix). A sub-matrix B(i1, . . . , im; j1, . . . , jm), with
m ∈ N, formed by rows i1, . . . , im and columns j1, . . . , jm of a matrix B, is a principal
sub-matrix of B when

{i1, . . . , im} = {j1, . . . , jm}.

Remark 3.1 (see, e.g., [55], p. 92). If B is an M-matrix, then any principal sub-
matrix of B is an M-matrix.

Lemma 3.3 (Crabtree and Haynsworth, 1969). If B is an M-matrix, then any Schur
complement from B is an M-matrix.

Proof. See [66].

Proposition 3.2. If A is an M-matrix, and (Mp+1,p+1, Np+1,p+1) is an M-splitting
of Ap+1,p+1, then the splitting (3.5) of S induces a convergent asynchronous iterative
model (2.9).

Proof. (Mp+1,p+1, Np+1,p+1) being an M-splitting, we have that M = Mp+1,p+1 is an
M-matrix, and

Np+1,p+1 ≥ O.

A being an M-matrix, we have, ∀i ∈ {1, . . . , p},

Ap+1,i ≤ O, Ai,p+1 ≤ O,

and Ai,i are M-matrices too, which implies that

A−1
i,i ≥ O,

and then

N = Np+1,p+1 +

p∑
i=1

Ap+1,iA
−1
i,i Ai,p+1 ≥ O.

It therefore follows that (M,N) is an M-splitting of S, and S being an M-matrix too,
due to Lemma 3.3, (M,N) is also an H-splitting, according to Lemma 3.2. From
Theorem 2.3, this implies that

ρ(|T |) < 1, T :=M−1N,

which is a sufficient condition for the convergence of an asynchronous iterative
model (2.9), according to Theorem 2.2.
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Remark 3.2. If a matrix B = (bi,j) is an M-matrix, then the Jacobi splitting (M,N )
of B is an M-splitting, since, on one hand, bi,i > 0 and then M is an M-matrix,
and, on the other hand, −bi,j ̸=i ≥ 0 and then N ≥ O.

Remark 3.3 (also see, e.g., Lemma 1 in [65]). If A is an M-matrix, then we have:

Ap+1,p+1 ≥ S,

since, from the proof of Proposition 3.2,
p∑

i=1

Ap+1,iA
−1
i,i Ai,p+1 ≥ O.

According to the former splitting (3.3), Remark 3.3 therefore allows us to choose

γ ≥ max
1≤i≤np+1

a
(i,i)
p+1,p+1,

where a(i,i)p+1,p+1 are diagonal entries of Ap+1,p+1, and thus we satisfy the convergence
condition (3.4) without the explicit knowledge of the diagonal entries of S.

3.3 Vector-decomposition of assembled interface
3.3.1 Iterative model
The iterative mapping T :=M−1N induced by the splitting (3.3) can be formulated
as:

T = I − 1

γ
S,

which yields iterations given by:

xk+1
p+1 = xkp+1 −

1

γ

(
Ap+1,p+1 −

p∑
i=1

Ap+1,iA
−1
i,i Ai,p+1

)
xkp+1

− 1

γ

(
p∑

i=1

Ap+1,iA
−1
i,i bi − bp+1

)
.

(3.6)

Let us consider, additionally, a partitioning of the interface nodes into p subsets,
such that the matrix A can be expanded as:

Ap+1,p+1 =


A

(1,1)
p+1,p+1 · · · A

(1,p)
p+1,p+1

... . . . ...
A

(p,1)
p+1,p+1 · · · A

(p,p)
p+1,p+1

 ,
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Ap+1,i =


A

(1)
p+1,i
...

A
(p)
p+1,i

 , Ai,p+1 =
[
A

(1)
i,p+1 · · · A

(p)
i,p+1

]
, ∀i ∈ {1, . . . , p},

which yields:

A =



A1,1 O · · · O A
(1)
1,p+1 · · · A

(p)
1,p+1

O A2,2
. . . ... ... . . . ...

... . . . . . . O A
(1)
p−1,p+1 · · · A

(p)
p−1,p+1

O · · · O Ap,p A
(1)
p,p+1 · · · A

(p)
p,p+1

A
(1)
p+1,1 · · · A

(1)
p+1,p−1 A

(1)
p+1,p A

(1,1)
p+1,p+1 · · · A

(1,p)
p+1,p+1

... . . . ... ... ... . . . ...
A

(p)
p+1,1 · · · A

(p)
p+1,p−1 A

(p)
p+1,p A

(p,1)
p+1,p+1 · · · A

(p,p)
p+1,p+1


.

From Figure 3.1, top, we would have, for instance, the two interface nodes subsets
{6, 23} and {40, 57}. With a corresponding interface vector xp+1 decomposed as:

xp+1 =
[
x
(1)
p+1 · · · x

(p)
p+1

]T
,

iterations (3.6) can then be distributed on each process i ∈ {1, . . . , p} as:

x
(i),k+1
p+1 = x

(i),k
p+1 − 1

γ

(
A

(i,1..p)
p+1,p+1 −

p∑
j=1

A
(i)
p+1,jA

−1
j,jAj,p+1

)
xkp+1

− 1

γ

(
p∑

j=1

A
(i)
p+1,jA

−1
j,j bj − b

(i)
p+1

)
,

where
A

(i,1..p)
p+1,p+1 :=

[
A

(i,1)
p+1,p+1 · · · A

(i,p)
p+1,p+1

]
.

This leads to:

x
(i),k+1
p+1 = x

(i),k
p+1 − 1

γ

p∑
j=1

(
A

(i,j)
p+1,p+1x

(j),k
p+1 − A

(i)
p+1,jA

−1
j,j

(
Aj,p+1x

k
p+1 − bj

))
+

1

γ
b
(i)
p+1,

= x
(i),k
p+1 − 1

γ

p∑
j=1

(
A

(i,j)
p+1,p+1x

(j),k
p+1 − A

(i)
p+1,jA

−1
j,j

(
p∑

l=1

A
(l)
j,p+1x

(l),k
p+1 − bj

))

+
1

γ
b
(i)
p+1,
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which is generalized, for each process i ∈ P k, to:

x
(i),k+1
p+1 = x

(i),τ ii (k)
p+1 − 1

γ

p∑
j=1

(
A

(i,j)
p+1,p+1x

(j),τ ij (k)

p+1 − A
(i)
p+1,jA

−1
j,j

(
p∑

l=1

A
(l)
j,p+1x

(l),τ il (k)
p+1 − bj

))

+
1

γ
b
(i)
p+1.

Consider then that each process j ∈ {1, . . . , p} evaluates

−A(i)
p+1,jA

−1
j,j

(
p∑

l=1

A
(l)
j,p+1x

(l),τ il (k)
p+1 − bj

)
,

which however means that it accesses the delayed components x(l),τ
i
l (k)

p+1 of the process
i. If we therefore take, on each process i ∈ {1, . . . , p},

Ai,ix
(j),k+1
i = −

p∑
l=1

A
(l)
i,p+1x

(l),τ jl (k)
p+1 + bi, ∀j ∈ {1, . . . , p},

we thus reach an iterative model given by:

Ai,ix
(j),k+1
i = −

p∑
l=1

A
(l)
i,p+1x

(l),τ jl (k)
p+1 + bi, ∀j ∈ {1, . . . , p}, i ∈ {1, . . . , p},

x
(i),k+1
p+1 =



x
(i),τ ii (k)
p+1 − 1

γ

p∑
j=1

(
A

(i,j)
p+1,p+1x

(j),τ ij (k)

p+1 + A
(i)
p+1,jx

(i),k+1
j

)
+

1

γ
b
(i)
p+1,

i ∈ P k,

x
(i),k
p+1 , i /∈ P k,

which however synchronizes processes on interface data A(i)
p+1,jx

(i),k+1
j .

Similarly, the splitting (3.5), which yields:

T :=M−1
p+1,p+1

(
Np+1,p+1 +

p∑
i=1

Ap+1,iA
−1
i,i Ai,p+1

)
,

implies iterations given by:

Mp+1,p+1x
k+1
p+1 =

(
Np+1,p+1 +

p∑
i=1

Ap+1,iA
−1
i,i Ai,p+1

)
xkp+1

−

(
p∑

i=1

Ap+1,iA
−1
i,i bi − bp+1

)
.

(3.7)
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Assuming then that Mp+1,p+1 is of the form

Mp+1,p+1 =


M

(1,1)
p+1,p+1 O · · · O

O M
(2,2)
p+1,p+1

. . . ...
... . . . . . . O

O · · · O M
(p,p)
p+1,p+1

 ,
iterations (3.7) can be distributed on each process i ∈ {1, . . . , p} as:

M
(i,i)
p+1,p+1x

(i),k+1
p+1 =

(
N

(i,1..p)
p+1,p+1 +

p∑
j=1

A
(i)
p+1,jA

−1
j,jAj,p+1

)
xkp+1

−

(
p∑

j=1

A
(i)
p+1,jA

−1
j,j bj − b

(i)
p+1

)
,

=

p∑
j=1

(
N

(i,j)
p+1,p+1x

(j),k
p+1 + A

(i)
p+1,jA

−1
j,j

(
p∑

l=1

A
(l)
j,p+1x

(l),k
p+1 − bj

))
+ b

(i)
p+1,

which is generalized, for each process i ∈ P k, to:

M
(i,i)
p+1,p+1x

(i),k+1
p+1 =

p∑
j=1

(
N

(i,j)
p+1,p+1x

(j),τ ij (k)

p+1 + A
(i)
p+1,jA

−1
j,j

(
p∑

l=1

A
(l)
j,p+1x

(l),τ il (k)
p+1 − bj

))
+ b

(i)
p+1.

We thus reach another partitions-based parallel iterative model given by:

Ai,ix
(j),k+1
i = −

p∑
l=1

A
(l)
i,p+1x

(l),τ jl (k)
p+1 + bi, ∀j ∈ {1, . . . , p}, i ∈ {1, . . . , p},

M
(i,i)
p+1,p+1x

(i),k+1
p+1 =


p∑

j=1

(
N

(i,j)
p+1,p+1x

(j),τ ij (k)

p+1 − A
(i)
p+1,jx

(i),k+1
j

)
+ b

(i)
p+1, i ∈ P k,

M
(i,i)
p+1,p+1x

(i),k
p+1 , i /∈ P k,

which, just as the former splitting, also suggests both remote access and partial
synchronization.

Let us therefore consider a more desirable parallel scheme given by:
Ai,ix

k+1
i = −

p∑
j=1

A
(j)
i,p+1x

(j),k
p+1 + bi,

M
(i,i)
p+1,p+1x

(i),k+1
p+1 =

p∑
j=1

(
N

(i,j)
p+1,p+1x

(j),k
p+1 − A

(i)
p+1,jx

k+1
j

)
+ b

(i)
p+1,
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where the inter-process communication can be restricted to interface data x(j)p+1 and
A

(i)
p+1,jxj, at the small computational cost of additionally evaluating, in each process

i, the interface products

A
(1)
p+1,ixi, . . . , A

(i−1)
p+1,ixi, A

(i+1)
p+1,ixi, . . . , A

(p)
p+1,ixi.

Obviously, by fully expressing xk+1
j in the second relation, we still verify:

M
(i,i)
p+1,p+1x

(i),k+1
p+1 =

p∑
j=1

(
N

(i,j)
p+1,p+1x

(j),k
p+1 + A

(i)
p+1,jA

−1
j,j

(
p∑

l=1

A
(l)
j,p+1x

(l),k
p+1 − bj

))
+ b

(i)
p+1,

Mp+1,p+1x
k+1
p+1 =

(
Np+1,p+1 +

p∑
j=1

Ap+1,jA
−1
j,jAj,p+1

)
xkp+1 −

p∑
j=1

Ap+1,jA
−1
j,j bj + bp+1,

which corresponds to the same latter splitting (3.5) of the Schur complement S. We
will then consider in the sequel the fully asynchronous iterative model given by:

Ai,ix
k+1
i =


−

p∑
j=1

A
(j)
i,p+1x

(j),τ ij (k)

p+1 + bi, i ∈ P k,

Ai,ix
k
i , i /∈ P k,

M
(i,i)
p+1,p+1x

(i),k+1
p+1 =



p∑
j=1

(
N

(i,j)
p+1,p+1x

(j),τ ij (k)

p+1 − A
(i)
p+1,jx

ρij(k+1)

j

)
+ b

(i)
p+1,

i ∈ P k,

M
(i,i)
p+1,p+1x

(i),k
p+1 , i /∈ P k.

(3.8)

3.3.2 Asynchronous convergence
Lemma 3.4 (see, e.g., Corollary 1.6 in [55]). Let B be a square matrix. Then, for
any matrix norm ∥.∥, we have:

ρ(B) ≤ ∥B∥.

Proof. Let λ be an eigenvalue of B and let w be the associated eigenvector. Then
we have:

∥B∥∥w∥ ≥ ∥Bw∥ = ∥λw∥ = |λ| ∥w∥,

which implies:
∥B∥ ≥ |λ|,

and concludes the proof.
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Definition 3.3 (Matrix weighted maximum norm). The matrix norm induced by a
weighted maximum norm (2.14) applied to scalar components is given by:

∥B∥w∞ := max
i

1

wi

∑
j

|bi,j|wj,

where B = (bi,j) is a square matrix, and w = (wi), a strictly positive vector.

Notation 3.1. Let B = (bi,j) be a matrix, and let w = (wj) and v = (vi), with
v > 0, be two vectors having as many components as, respectively, the number of
columns and the number of rows in B. We denote by |B|wv = ((|B|wv )i) the vector
given by:

(|B|wv )i :=
1

vi

∑
j

|bi,j|wj.

Notation 3.2 (Component-wise vectors division). Let w = (wi) and v = (vi) be two
vectors of the same size, with v > 0. We denote by w/v = ((w/v)i) the vector given
by:

(w/v)i :=
wi

vi
.

Remark 3.4. We have:
∥B∥w∞ = max

i
|B|ww,

and we also have:
|B|wv = (|B|w)/v =

∑
j

wj|Bj|/v,

where Bj is the j-th column of B.

Lemma 3.5 (see, e.g., Corollary 6.1 in [67]). Let B be a square matrix. Then the
three following statements are equivalent:

1. ρ(|B|) < 1.

2. ∃ w > 0 : ∥B∥w∞ < 1.

3. ∃ α ∈ (0, 1),∃ w > 0 : |B|w ≤ αw.

Proof. Assume that the statement 1 holds. Then we have:

∃ϵ > 0 : ρ(|B|) + ϵ < 1.

From Perron–Frobenius theory of nonnegative matrices (see, e.g., Proposition 6.6
in [67]), we have that for every ϵ > 0,

∃w > 0 : ∥|B|∥w∞ ≤ ρ(|B|) + ϵ.
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We thus deduce the statement 2, for such a vector w, by:

∥B∥w∞ = ∥|B|∥w∞ ≤ ρ(|B|) + ϵ < 1.

Now assume that the statement 2 holds. Then, according to Notation 3.1, Nota-
tion 3.2 and Remark 3.4, we have:

∥B∥w∞ = max
i

|B|ww = max
i

(|B|w)/w < 1,

which means:

(|B|w)i
wi

< 1, ∀i,

|B|w < w,

and therefore,
∃α ∈ (0, 1) : |B|w ≤ αw.

Finally by assuming the statement 3, we have:

(|B|w)i ≤ αwi, ∀i,∑
j

|bi,j|wj ≤ αwi, ∀i,

1

wi

∑
j

|bi,j|wj ≤ α, ∀i,

which means:
∥|B|∥w∞ = ∥B∥w∞ ≤ α < 1.

By considering Lemma 3.4, we deduce the statement 1 by:

ρ(|B|) ≤ ∥|B|∥w∞ < 1,

which concludes the proof.

Lemma 3.6. Let C = (ci,j) and B = (bj,l) be two matrices such that the number of
columns in C equals the number of rows in B. Let z = (zj), with z > 0, v = (vi),
with v > 0 and w = (wl) be three vectors having as many components as, respectively,
the number of columns in C, the number of rows in C and the number of columns
in B. Let, at last, u = (uj) be the vector with as many components as the number
of rows in B and given by:

uj := 1, ∀j.

Then we have:
|B|wz < u =⇒ |CB|wv < |C|zv.
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Proof. We have, according to Remark 3.4:

|CB|wv =
∑
l

wl|(CB)l|/v,

where (CB)l is the l-th column of the product (CB) = ((CB)i,l). We also have:

(CB)i,l :=
∑
j

ci,jbj,l,

(CB)l =
∑
j

bj,lCj,

where Cj is the j-th column of C. These imply:

|CB|wv =
∑
l

wl

∣∣∣∣∣∑
j

bj,lCj

∣∣∣∣∣ /v
≤
∑
l

wl

∑
j

|bj,lCj|/v

=
∑
l

∑
j

wl|bj,l||Cj|/v.

(3.9)

By Notation 3.1, each entry of the vector |B|wz = ((|B|wz )j) is given by:

(|B|wz )j :=
∑
l

wl
|bj,l|
zj

.

This implies then, by resuming (3.9):

|CB|wv ≤
∑
l

∑
j

wl|bj,l||Cj|/v

=
∑
l

∑
j

wl
|bj,l|
zj

zj|Cj|/v

=
∑
j

(∑
l

wl
|bj,l|
zj

)
zj|Cj|/v

=
∑
j

(|B|wz )jzj|Cj|/v,

which means, for each entry of the vector |CB|wv = ((|CB|wv )i):

(|CB|wv )i ≤
∑
j

(|B|wz )jzj(|Cj|/v)i,
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where (|Cj|/v)i is the i-th entry of the vector |Cj|/v. If therefore we have:

|B|wz < u,

which means:
(|B|wz )j < uj = 1, ∀j,

then we also have:

(|B|wz )jzj(|Cj|/v)i < zj(|Cj|/v)i, ∀j, ∀i,

(|CB|wv )i ≤
∑
j

(|B|wz )jzj(|Cj|/v)i <
∑
j

zj(|Cj|/v)i, ∀i,

which means:
|CB|wv <

∑
j

zj|Cj|/v.

This concludes the proof, given that (still from Remark 3.4):

|C|zv =
∑
j

zj|Cj|/v.

Corollary 3.1. Let B be a square matrix block-decomposed as:

B =

[
O B1,2

B2,1 B2,2

]
.

Then we have:

ρ(|B|) < 1 =⇒ ρ(|B2,2|+ |B2,1B1,2|) < 1.

Proof. According to Lemma 3.5, we have:

ρ(|B|) < 1 =⇒ ∃w > 0 : ∥B∥w∞ < 1.

Let such a vector w be decomposed as:

w =

[
w1

w2

]
,

and let u1 = (1, 1, ..., 1) and u2 = (1, 1, ..., 1) be respective size-corresponding vectors
of units. Then, recalling that

∥B∥w∞ = max |B|ww,
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we also have:

max |B1,2|w2
w1
< 1, max

(
|B2,1|w1

w2
+ |B2,2|w2

w2

)
< 1,

|B1,2|w2
w1
< u1, |B2,1|w1

w2
+ |B2,2|w2

w2
< u2.

Lemma 3.6 therefore implies:

|B2,1B1,2|w2
w2
< |B2,1|w1

w2
,

|B2,1B1,2|w2
w2

+ |B2,2|w2
w2
< |B2,1|w1

w2
+ |B2,2|w2

w2
< u2,

|(|B2,1B1,2|+ |B2,2|)|w2

w2
< u2,

max |(|B2,1B1,2|+ |B2,2|)|w2

w2
< 1,

∥(|B2,1B1,2|+ |B2,2|)∥w2

∞ < 1,

which concludes the proof, given that

ρ(|B2,1B1,2|+ |B2,2|) ≤ ∥(|B2,1B1,2|+ |B2,2|)∥w2

∞ ,

according to Lemma 3.4.

Remark 3.5. Let B be a square matrix block-decomposed as:

B =


O · · · O B1,m

... . . . ... ...
O · · · O Bm−1,m

Bm,1 · · · Bm,m−1 Bm,m

 ,

with m ∈ N. Then Corollary 3.1 is obviously generalized as follows:

ρ(|B|) < 1 =⇒ ρ(|Bm,m|+
m−1∑
i=1

|Bm,iBi,m|) < 1,

by using same proof principles and Lemma 3.6 to notice that:

|Bm,iBi,m|wm
wm

< |Bm,i|wi
wm
, ∀i ∈ {1, . . . ,m− 1}.

Theorem 3.1. Let (Mp+1,p+1, Np+1,p+1) be a splitting of Ap+1,p+1, which yields a
splitting (3.5) of the Schur complement

S := Ap+1,p+1 −
p∑

i=1

Ap+1,iA
−1
i,i Ai,p+1.
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Let (M,N ) be a corresponding splitting of the initial matrix A, given by:

M :=



A1,1 O · · · O O

O A2,2
. . . ... ...

... . . . . . . O O

O · · · O Ap,p O

O · · · O O Mp+1,p+1


.

If we have:
ρ(|T |) < 1, T := M−1N ,

then the computational model (3.8) is convergent.

Proof. From the first equation of the iterative model (3.8), we have:

x
ρij(k+1)

j = −A−1
j,j

(
p∑

l=1

A
(l)
j,p+1x

(l),τ jl (ρ
i
j(k+1)−1)

p+1 − bj

)
, ∀j ∈ {1, . . . , p}, i ∈ P k.

We can thus rewrite iterations (3.8) as, for i ∈ P k:

M
(i,i)
p+1,p+1x

(i),k+1
p+1 =

p∑
j=1

(
N

(i,j)
p+1,p+1x

(j),τ ij (k)

p+1

+A
(i)
p+1,jA

−1
j,j

(
p∑

l=1

A
(l)
j,p+1x

(l),τ jl (ρ
i
j(k+1)−1)

p+1 − bj

))
+ b

(i)
p+1.

This implies supplementary delay functions τ il,j given by:

τ il,j(k) := τ jl (ρ
i
j(k + 1)− 1),

which still satisfy:

k → ∞ =⇒ ρij(k + 1)− 1 → ∞ =⇒ τ il,j(k) → ∞,

and verify:
ρij(k + 1) ≤ k + 1,

τ il,j(k) ≤ ρij(k + 1)− 1 ≤ k.

We thus have:

M
(i,i)
p+1,p+1x

(i),k+1
p+1 =

p∑
j=1

(
N

(i,j)
p+1,p+1x

(j),τ ij (k)

p+1 + A
(i)
p+1,jA

−1
j,j

(
p∑

l=1

A
(l)
j,p+1x

(l),τ il,j(k)

p+1 − bj

))
+ b

(i)
p+1,
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which induces a mapping F given by:

Fi(x̃, ỹ
1, . . . , ỹp) :=M

(i,i)−1

p+1,p+1

(
N

(i,1..p)
p+1,p+1x̃+

p∑
j=1

A
(i)
p+1,jA

−1
j,j

(
Aj,p+1ỹ

j − bj
)
+ b

(i)
p+1

)
,

F (x̃, ỹ1, . . . , ỹp) :=M−1
p+1,p+1

(
Np+1,p+1x̃+

p∑
j=1

Ap+1,jA
−1
j,j

(
Aj,p+1ỹ

j − bj
)
+ bp+1

)
,

with, by analogy,

x̃ =


x
(1),τ i1(k)
p+1

...
x
(p),τ ip(k)

p+1

 , ỹj =


x
(1),τ i1,j(k)

p+1
...

x
(p),τ ip,j(k)

p+1

 , 1 ≤ j ≤ p.

The computational model (3.8) thus lies in the general framework (2.20) of asyn-
chronous iterations with memory. Let us then consider

X̃ =
(
x̃, ỹ1, . . . , ỹp

)
, X̂ =

(
x̂, ŷ1, . . . , ŷp

)
.

We have:∣∣∣F (X̃)− F (X̂)
∣∣∣ = ∣∣∣∣∣M−1

p+1,p+1

(
Np+1,p+1(x̃− x̂) +

p∑
j=1

Ap+1,jA
−1
j,jAj,p+1(ỹ

j − ŷj)

)∣∣∣∣∣
≤
∣∣M−1

p+1,p+1Np+1,p+1

∣∣ |x̃− x̂|

+

p∑
j=1

∣∣M−1
p+1,p+1Ap+1,jA

−1
j,jAj,p+1

∣∣ ∣∣ỹj − ŷj
∣∣

≤

(∣∣M−1
p+1,p+1Np+1,p+1

∣∣+ p∑
j=1

∣∣M−1
p+1,p+1Ap+1,jA

−1
j,jAj,p+1

∣∣)

max

{
|x̃− x̂| , max

1≤j≤p

{∣∣ỹj − ŷj
∣∣}} ,

and let us define:

Q :=
∣∣M−1

p+1,p+1Np+1,p+1

∣∣+ p∑
j=1

∣∣M−1
p+1,p+1Ap+1,jA

−1
j,jAj,p+1

∣∣ .
According then to Theorem 2.10, convergence is guaranteed if

ρ (Q) < 1,

which is easily deduced from Corollary 3.1, given that we assume:

ρ (|T |) < 1, T := M−1N ,
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and by noticing (see Remark 3.5) that the mapping T is explicitly given by:

T =


O · · · O −A−1

1,1A1,p+1

... . . . ... ...
O · · · O −A−1

p,pAp,p+1

−M−1
p+1,p+1Ap+1,1 · · · −M−1

p+1,p+1Ap+1,p M−1
p+1,p+1Np+1,p+1

 .

3.4 Sub-structuring method
3.4.1 Iterative model
Consider again the splitting (3.5), yielding:

S =Mp+1,p+1 −

(
Np+1,p+1 +

p∑
i=1

Ap+1,iA
−1
i,i Ai,p+1

)
,

and iterations

Mp+1,p+1x
k+1
p+1 =

(
Np+1,p+1 +

p∑
i=1

Ap+1,iA
−1
i,i Ai,p+1

)
xkp+1 −

(
p∑

i=1

Ap+1,iA
−1
i,i bi − bp+1

)
.

Let us consider, additionally, a substructures-based distribution of Np+1,p+1 given
by:

Np+1,p+1 =

p∑
i=1

N
(i)
p+1,p+1, (3.10)

which yields:

Mp+1,p+1x
k+1
p+1 =

(
p∑

i=1

N
(i)
p+1,p+1 +

p∑
i=1

Ap+1,iA
−1
i,i Ai,p+1

)
xkp+1 −

p∑
i=1

Ap+1,iA
−1
i,i bi

+ bp+1

=

p∑
i=1

(
N

(i)
p+1,p+1 + Ap+1,iA

−1
i,i

(
Ai,p+1x

k
p+1 − bi

))
+ bp+1.

If, for instance, Mp+1,p+1 is the diagonal part of Ap+1,p+1, such a distribution (3.10)
of its off-diagonal coefficients can be seen as tearing the interface edges or faces, as
shown in Figure 3.2. Let us then consider p identical iterations, each one given by:

Mp+1,p+1x
(i),k+1
p+1 =

p∑
j=1

(
N

(j)
p+1,p+1 + Ap+1,jA

−1
j,j

(
Aj,p+1x

(i),k
p+1 − bj

))
+ bp+1,
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Figure 3.2: Interface edges tearing.

which, furthermore, are interleaved by using each other iterative solution, such that:

Mp+1,p+1x
(i),k+1
p+1 =

p∑
j=1

(
N

(j)
p+1,p+1 + Ap+1,jA

−1
j,j

(
Aj,p+1x

(j),k
p+1 − bj

))
+ bp+1.

Therefore, by taking on each process i, with 1 ≤ i ≤ p:

Ai,ix
k+1
i = −Ai,p+1x

(i),k
p+1 + bi,

and, afterward:
y
(i),k+1
p+1 = N

(i)
p+1,p+1x

(i),k
p+1 − Ap+1,ix

k+1
i ,

we can write:

Mp+1,p+1x
(i),k+1
p+1 =

p∑
j=1

y
(j),k+1
p+1 + bp+1.

While such an algorithm is still sequential, we can generalize it (and its convergence
analysis) to a fully parallel sub-structuring method by means of the asynchronous
iterative model given by:

Ai,ix
k+1
i = −Ai,p+1x

(i),k
p+1 + bi, i ∈ P k,

y
(i),k+1
p+1 = N

(i)
p+1,p+1x

(i),k
p+1 − Ap+1,ix

k+1
i , i ∈ P k,

Mp+1,p+1x
(i),k+1
p+1 =


p∑

j=1

y
(j),τ ij (k+1)

p+1 + bp+1, i ∈ P k,

Mp+1,p+1x
(i),k
p+1 , i /∈ P k.

(3.11)

3.4.2 Asynchronous convergence
Lemma 3.7. Let

F1 : E × E 7→ E, F2 : E × E 7→ E,

be two mappings, and let P1 ≥ O, P2 ≥ O be two nonnegative matrices, with:

ρ(P1) < 1, ρ(P2) < 1,
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and such that, for any vectors x̃, ỹ, x̂, ŷ ∈ E,

|Fi(x̃, ỹ)−Fi(x̂, ŷ)| ≤ Pi max {|x̃− x̂|, |ỹ − ŷ|} , ∀i ∈ {1, 2}.

Now let
H : E4 7→ E2,

be a mapping given by:

H(x̃1, ỹ1, x̃2, ỹ2) :=

[
F1(x̃1, ỹ1)

F2(x̃2, ỹ2)

]
.

Then, there exists a matrix Q ≥ O, with

ρ(Q) < 1,

such that, for any vectors x̃i, ỹi, x̂i, ŷi ∈ E, with i := 1, 2,

|H(x̃1, ỹ1, x̃2, ỹ2)−H(x̂1, ŷ1, x̂2, ŷ2)| ≤ Qmax

{∣∣∣∣∣
[
x̃1

x̃2

]
−

[
x̂1

x̂2

]∣∣∣∣∣ ,
∣∣∣∣∣
[
ỹ1

ỹ2

]
−

[
ŷ1

ŷ2

]∣∣∣∣∣
}
.

Proof. We have:

|H(x̃1, ỹ1, x̃2, ỹ2)−H(x̂1, ŷ1, x̂2, ŷ2)| =

[
|F1(x̃1, ỹ1)−F1(x̂1, ŷ1)|
|F2(x̃2, ỹ2)−F2(x̂2, ŷ2)|

]

≤

[
P1max {|x̃1 − x̂1|, |ỹ1 − ŷ1|}
P2max {|x̃2 − x̂2|, |ỹ2 − ŷ2|}

]

=

[
P1 O

O P2

][
max {|x̃1 − x̂1|, |ỹ1 − ŷ1|}
max {|x̃2 − x̂2|, |ỹ2 − ŷ2|}

]

= Qmax

{∣∣∣∣∣
[
x̃1

x̃2

]
−

[
x̂1

x̂2

]∣∣∣∣∣ ,
∣∣∣∣∣
[
ỹ1

ỹ2

]
−

[
ŷ1

ŷ2

]∣∣∣∣∣
}
,

with

Q :=

[
P1 O

O P2

]
.

ρ(Q) < 1 then obviously follows from ρ(P1) < 1 and ρ(P2) < 1, which concludes the
proof.

Remark 3.6. Lemma 3.7 can be recursively applied to the case of m ∈ N contracting
mappings

Fi : E
m 7→ E, 1 ≤ i ≤ m,
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yielding a global contracting mapping

H :=


F1

...
Fm

 .
In the case of the computational model (3.11), we have by analogy:

F1 ≡ F2 ≡ · · · ≡ Fp,

therefore its convergence can be analyzed through the sole unique mapping applied on
every process. Obviously, at convergence, one should thus have:

x
(1)∗
p+1 = x

(2)∗
p+1 = · · · = x

(p)∗
p+1.

Theorem 3.2. Let (Mp+1,p+1, Np+1,p+1) be a splitting of Ap+1,p+1, which yields a
splitting (3.5) of the Schur complement

S := Ap+1,p+1 −
p∑

i=1

Ap+1,iA
−1
i,i Ai,p+1.

Let (M,N ) be a corresponding splitting of the initial matrix A, given by:

M :=



A1,1 O · · · O O

O A2,2
. . . ... ...

... . . . . . . O O

O · · · O Ap,p O

O · · · O O Mp+1,p+1


.

Furthermore, let Np+1,p+1 be given by:

Np+1,p+1 =

p∑
i=1

N
(i)
p+1,p+1.

If we have:
ρ(|T |) < 1, T := M−1N ,

and, additionally:∣∣∣∣∣
p∑

i=1

M−1
p+1,p+1N

(i)
p+1,p+1

∣∣∣∣∣ =
p∑

i=1

∣∣∣M−1
p+1,p+1N

(i)
p+1,p+1

∣∣∣ ,
then the computational model (3.11) is convergent.
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Proof. Following the same pattern as in the proof of Theorem 3.1, we have that the
computational model (3.11) induces a mapping F given by:

F (ỹ1, . . . , ỹp) :=M−1
p+1,p+1

(
p∑

j=1

(
N

(j)
p+1,p+1 + Ap+1,jA

−1
j,j

(
Aj,p+1ỹ

j − bj
))

+ bp+1

)
.

Let us then consider

X̃ =
(
ỹ1, . . . , ỹp

)
, X̂ =

(
ŷ1, . . . , ŷp

)
.

We have:∣∣∣F (X̃)− F (X̂)
∣∣∣ = ∣∣∣∣∣M−1

p+1,p+1

p∑
j=1

(
N

(j)
p+1,p+1 + Ap+1,jA

−1
j,jAj,p+1

) (
ỹj − ŷj

)∣∣∣∣∣
≤

p∑
j=1

∣∣∣M−1
p+1,p+1

(
N

(j)
p+1,p+1 + Ap+1,jA

−1
j,jAj,p+1

)∣∣∣ max
1≤j≤p

{∣∣ỹj − ŷj
∣∣}

≤
p∑

j=1

(∣∣∣M−1
p+1,p+1N

(j)
p+1,p+1

∣∣∣+ ∣∣M−1
p+1,p+1Ap+1,jA

−1
j,jAj,p+1

∣∣)
max
1≤j≤p

{∣∣ỹj − ŷj
∣∣}

=

(
p∑

j=1

∣∣∣M−1
p+1,p+1N

(j)
p+1,p+1

∣∣∣+ p∑
j=1

∣∣M−1
p+1,p+1Ap+1,jA

−1
j,jAj,p+1

∣∣)
max
1≤j≤p

{∣∣ỹj − ŷj
∣∣} ,

and let us define:

Q :=

p∑
j=1

∣∣∣M−1
p+1,p+1N

(j)
p+1,p+1

∣∣∣+ p∑
j=1

∣∣M−1
p+1,p+1Ap+1,jA

−1
j,jAj,p+1

∣∣ .
If therefore ∣∣∣∣∣

p∑
j=1

M−1
p+1,p+1N

(j)
p+1,p+1

∣∣∣∣∣ =
p∑

j=1

∣∣∣M−1
p+1,p+1N

(j)
p+1,p+1

∣∣∣ ,
we have:

Q =

∣∣∣∣∣
p∑

j=1

M−1
p+1,p+1N

(j)
p+1,p+1

∣∣∣∣∣+
p∑

j=1

∣∣M−1
p+1,p+1Ap+1,jA

−1
j,jAj,p+1

∣∣
=
∣∣M−1

p+1,p+1Np+1,p+1

∣∣+ p∑
j=1

∣∣M−1
p+1,p+1Ap+1,jA

−1
j,jAj,p+1

∣∣ .
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According then to Theorem 2.10, convergence is guaranteed if

ρ (Q) < 1,

which is easily deduced from Corollary 3.1, given that we assume:

ρ (|T |) < 1, T := M−1N ,

and by noticing (see Remark 3.5) that the mapping T is explicitly given by:

T =


O · · · O −A−1

1,1A1,p+1

... . . . ... ...
O · · · O −A−1

p,pAp,p+1

−M−1
p+1,p+1Ap+1,1 · · · −M−1

p+1,p+1Ap+1,p M−1
p+1,p+1Np+1,p+1

 .

3.5 Conclusion
Classical matrix splittings for asynchronous iterations cannot be applied in a domain
sub-structuring framework, where the interface problem is not explicitly given, in
practice. For primal approaches leading to the inversion of a Schur complement,
we proposed here two suitable matrix splittings, still applicable to derive classical
asynchronous iterative models. We further analyzed one of these two splittings (and
reasonably expect similar results for the other one), both in an additive Schwarz
and a primal sub-structuring frameworks. Surprisingly, very close sufficient asyn-
chronous convergence conditions are obtained for these two main types of domain
decomposition, and moreover, by means of the same theoretical tool based on a
component-wise norm under the model of asynchronous iterations with memory
(see [18] or Theorem 2.10).

Methods for space domains decomposition are commonly designed, and such new
results easily suggest further developments in the application of the asynchronous
iterations theory. To therefore keep enlarging this application scope, we now tackle,
in the subsequent discussion, the under-investigated field of decomposition methods
targeting domains defined as simulated time intervals.



Chapter 4

Asynchronous time domain
decomposition

4.1 Introduction
Inherently, time-parallel methods somehow constitute a kind of asynchronous time-
iterations, as they intend to perform “future” iterations without necessarily follow-
ing the precedence order implied by the elapsing time which is simulated. Unfor-
tunately, successful attempts, till now, require another level of classical iterations
which remains sequential. The only application of the asynchronous iterations the-
ory to this second iterative level has been targeting Waveform relaxation methods
(see, e.g., [60, 57]), which however still feature the decomposition of a space do-
main whereon the time-dependent problem is solved. In this chapter, we address
actual time domain decomposition through the well-known Parareal method [14],
for the solution of time-dependent partial differential equations (PDE). From an al-
gebraic fixed-point formulation of the method, we successively analyze synchronous
and asynchronous iterations for a theoretical comparison about both convergence
conditions and algorithmic time complexity.

4.2 Problem formulation
Let Ω be a bounded domain in R3 with a Lipschitz boundary ∂Ω, and let [0, T ],
with T ∈ R, be considered as a time domain. One would like to solve, in parallel, a
time-dependent PDE

∂u

∂t
(x, t) + Lu(x, t) = f(x, t), (x, t) ∈ Ω× [0, T ],

u(x, t = 0) = u0(x), x ∈ Ω,

BC(u(x, t)) = g(x), (x, t) ∈ ∂Ω× [0, T ],

(4.1)

61
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where L is a second-order linear elliptic operator, and BC(u) are suitable boundary
conditions. To this end, we consider a decomposition of the time domain [0, T ] into
N time frames [Tn, Tn+1], n ∈ {0, 1, . . . , N − 1}, such that

Tn = n∆T, ∀n ∈ {0, 1, . . . , N},

with ∆T = T/N . The problem (4.1) reduces in each time sub-domain to
∂un
∂t

(x, t) + Lun(x, t) = fn(x, t), (x, t) ∈ Ω× [Tn, Tn+1],

un(x, t = Tn) = λn(x), x ∈ Ω,

BC(un(x, t)) = g(x), (x, t) ∈ ∂Ω× [Tn, Tn+1],

(4.2)

with 0 ≤ n < N and fn = f|[Tn,Tn+1]. It results the problem of “predicting” a
collection {λn}n∈{0,...,N} which will satisfy

lim
ε→0

un(x, Tn+1 − ε) = λn+1(x), ∀n ∈ {0, . . . , N − 1}, (4.3)

with ε > 0, so that subproblems (4.2) can then be solved independently.
Let us assume that the solution of (4.1) can be sufficiently approximated by

using some given time and space discretization schemes with a time step δt. In the
remainder, we write λn to denote the discrete approximation of a function λn(x), with
x ∈ Ω, and Γn is the corresponding vector space. Then, based on this discretization,
one defines a fine propagator F to solve (4.2) such that we have

λ∗n+1 = F (λ∗n), ∀n ∈ {0, . . . , N − 1},

where each λ∗n is a sufficiently fine approximation of u(x, Tn). Similarly, a coarse
propagator G is considered, based on the time step ∆T , and which can be used to
less accurately solves (4.1). We may thus set

wn+1 := G(λ∗n), ∀n ∈ {0, . . . , N − 1},

with wn+1 being a coarse approximation of u(x, Tn+1). The Parareal iterative scheme
defines sequences {λkn}k∈N which are expected to converge to the collection {λ∗n} such
that 

λ00 = u0,

λ0n+1 = G(λ0n), 0 ≤ n < N,

λk+1
0 = λk0,

λk+1
n+1 = G(λk+1

n ) + F (λkn)−G(λkn), 0 ≤ n < N.

(4.4)

Now let {P k}k∈N be a sequence of integer subsets, with

P k ⊆ {0, . . . , N − 1},
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let ρn and τn, with 0 ≤ n < N , be nonnegative integer-valued functions, with

ρn(k) ≤ k, τn(k) ≤ k + 1,

all satisfying :  lim
k→∞

τn(k) = lim
k→∞

ρn(k) = ∞,

card{k ∈ N | n ∈ P k} = ∞.
(4.5)

Our interest is to derive a convergent asynchronous iterative scheme given by :

λ00 = u0,

λ0n+1 = G(λ0n), 0 ≤ n < N,

λk+1
0 = λk0,

λk+1
n+1 =

{
G(λ

τn(k)
n ) + F (λ

ρn(k)
n )−G(λ

ρn(k)
n ), n ∈ P k,

λkn+1, n /∈ P k,

(4.6)

according to which the Parareal iterative model corresponds to the particular in-
stance where we have, for any k, P k = {0, . . . , N −1}, ρn(k) = k, and τn(k) = k+1.

4.3 Parareal iterations
4.3.1 Convergence conditions
We assume, for any λn ∈ Γn:

G(λn) = Rλn + h,

F (λn) = r̂λn + ĥ,

with
r̂ = r

∆T
δt ,

where R (resp. r) and h (resp. ĥ) are a matrix and a vector associated to the coarse
(resp. fine) time and space discretization of the PDE. Let us define

Γ =
N∏

n=0

Γn.

Further, provide all Γn with a norm ∥.∥, and consider the maximum norm given by:

∥λ∥∞ = max
0≤n≤N

∥λn∥, λ ∈ Γ,
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which induces, on an N ×N matrix M defined on Γ:

∥M∥∞ = max
0≤n≤N

N∑
m=0

∥Mn,m∥,

where Mn,m are its block-entries defined on Γn.

Proposition 4.1. There exists θ ≥ ∥R∥, with θ ̸= 1, such that

∥λkn − λ∗n∥ ≤ αke0, ∀n ∈ {0, . . . , N},

with
α =

1− θN

1− θ
∥r̂ −R∥,

and

e0 = max
n

∥∥∥∥∥(Rn − r̂n)λ∗0 +
n−1∑
i=0

Rih− r̂iĥ

∥∥∥∥∥ .
Proof. Let λ, λ̃ ∈ Γ. Parareal iterations apply a global mapping T such that λ̃ =
T (λ) if {

λ̃0 = λ∗0,

λ̃n = Rλ̃n−1 + (r̂ −R)λn−1 + ĥ, n ∈ {1, . . . , N},

which leads to :
T (λ) = A−1Bλ+ A−1c, (4.7)

with

A =



I O O · · · O

−R I O · · · O

O −R I
. . . ...

... . . . . . . . . . O

O · · · O −R I


, B =



O O O · · · O

r̂ −R O O · · · O

O r̂ −R O
. . . ...

... . . . . . . . . . O

O · · · O r̂ −R O


, c =



λ∗0

ĥ

ĥ
...
ĥ


.

We can explicitly express :

(A−1λ)n =
n∑

i=0

Riλn−i,

and

(A−1Bλ)n =
n−1∑
i=0

Ri(r̂ −R)λ(n−1)−i,
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so that we have

∥T (λ)− T (λ̃)∥∞ ≤ ∥A−1B∥∞∥λ− λ̃∥∞,

≤ max
n

n−1∑
i=0

∥Ri(r̂ −R)∥∥λ− λ̃∥∞,

≤
N−1∑
n=0

∥Rn(r̂ −R)∥∥λ− λ̃∥∞,

≤
N−1∑
n=0

∥R∥n∥r̂ −R∥∥λ− λ̃∥∞.

We can set θ = ∥R∥ if ∥R∥ ̸= 1, otherwise take θ = ∥R∥ + ϵ, with ϵ > 0, then
the constant α is deduced by summing the geometric series. Now let {λk}k∈N be a
Parareal iterates sequence. According to the fixed-point mapping formulation, we
verify

λk − λ∗ = (A−1B)k(λ0 − λ∗),

and it follows, for all n ∈ {0, . . . , N},

∥λkn − λ∗n∥ ≤ αk∥λ0 − λ∗∥∞.

Further, we have λ00 = λ∗0 and, for n > 0,

λ0n = Rλ0n−1 + h = Rnλ∗0 +
n−1∑
i=0

Rih,

and thus

λ0n − λ∗n = (Rn − r̂n)λ∗0 +
n−1∑
i=0

Rih− r̂iĥ,

which concludes the proof.

Remark 4.1.
lim

N→∞

1− θN

1− θ
∥r̂ −R∥ < 1 =⇒ θ < 1.

Corollary 4.1. For θ < 1, there exists a positive function e on N, with

lim
i→∞

e(i) = 0, i ∈ N,

such that if
∥R∥+ ∥r̂ −R∥ < 1 + e(N),

then the computational model (4.4) is convergent.
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Proof. It follows from Proposition 4.1 that the Parareal iterates λkn converge to the
fine approximations λ∗n if

1− θN

1− θ
∥r̂ −R∥ < 1, θ ≥ ∥R∥, θ ̸= 1,

(1− θN)∥r̂ −R∥+ θ < 1.

This requires at least θ < 1, and thus ∥R∥ < 1, which leads to

(1− ∥R∥N)∥r̂ −R∥+ ∥R∥ < 1,

∥r̂ −R∥+ ∥R∥ < 1 + ∥R∥N∥r̂ −R∥,

and concludes the proof.

4.3.2 Computational efficiency
Given any standard time discretization scheme, we might consider one time step
resolution as elementary operation. Then, in each time frame, the coarse propagator
G requires one operation while, for the fine propagator F , one performs ∆T/δt
operations. However, as the discretization scheme used for G can differ from that
of F , the underlying elementary operations should be characterized by two different
unitary complexities that we denote by C1,G and C1,F , respectively. Let us mention
that a sequential resolution of the PDE would consist of applying F over the whole
time domain. The sequential time complexity is thus obviously given by

C(1) = T

δt
C1,F .

We assume in the sequel that fine step resolutions are performed in parallel by N
processes.

Proposition 4.2. The computational time induced by the model (4.4) for k iterations
and N processes is given by :

Ck(N) = (k + 1)

(
N − k

2

)
C1,G + k

∆T

δt
C1,F .

Proof. Any Parareal iteration i on a process n is given by :

λin+1 = G(λin) + F (λi−1
n )−G(λi−1

n ),

= G(λin) + F (λi−1
n )− wi−1

n ,

which corresponds to the computational time

C1,G +
∆T

δt
C1,F .
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On the other hand, it is trivial that

∀n < i, G(λin) = G(λi−1
n ),

and therefore, at iteration i, G needs to be sequentially evaluated only over (N − i)
time frames. Then, after k iterations, and accounting the N initializations

λ0n+1 = G(λ0n),

we have

Ck(N) = NC1,G +
k∑

i=1

(N − i) C1,G + k
∆T

δt
C1,F ,

= NC1,G +

(
kN − k(k + 1)

2

)
C1,G + k

∆T

δt
C1,F ,

= (k + 1)

(
N − k

2

)
C1,G + k

∆T

δt
C1,F ,

which concludes the proof.

Corollary 4.2. Let Ek(N) denote the parallel efficiency induced by the model (4.4)
for k iterations and N processes. Then, at the maximum expected speedup for k > 1,
we have

Ek(N) ≤ 1

2
.

Proof. The theoretical speedup obtained after k Parareal iterations is given by

Sk(N) =
C(1)
Ck(N)

=
1

(k + 1)

(
N − k

2

)
δt

T

C1,G
C1,F

+
k

N

,

which reaches its maximum for

N = N̂ :=

√
k

k + 1

T

δt

C1,F
C1,G

.

This yields the efficiency

Ek(N̂) =
Sk(N̂)

N̂
=

1

2k − k

√
k(k + 1)

4

δt

T

C1,G
C1,F

,

and we have, for any given T , δt, C1,G and C1,F ,

E N̂(N̂) < E N̂−1(N̂) < · · · < E1(N̂).
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Considering N̂ ≥ 1, we ensure

T

δt
≥ k + 1

k

C1,G
C1,F

,

and particularly for k = 2, it implies

E2(N̂) =
1

4− 2

√
3

2

δt

T

C1,G
C1,F

≤ 1

2
,

which concludes the proof.

Figure 4.1 (left) illustrates the speedup evolution as the number of time frames
grows, for different numbers of iterations.

4.4 Parareal asynchronous iterations
4.4.1 Convergence conditions
Proposition 4.3. The contraction condition in Theorem 2.6 is fulfilled for the
computational model (4.6).

Proof. We define the set

Γk = {λ ∈ Γ | ∀n ∈ {0, . . . ,min{k,N}}, λn = λ∗n} , k ∈ N.

Then we have
Γk+1 ⊂ Γk ⊂ · · · ⊂ Γ0 ⊂ Γ. (4.8)

Now let λ̃, λ̂ ∈ Γk, and let λ = T̃ (λ̃, λ̂), with T̃ being defined such that{
λ0 = λ∗0,

λn = G(λ̃n−1) + F (λ̂n−1)−G(λ̂n−1), 1 ≤ n ≤ N.

Then for all n ∈ {1, . . . ,min{k + 1, N}},

λn = G(λ∗n−1) + F (λ∗n−1)−G(λ∗n−1),

= λ∗n,

which implies :
T̃ (λ̃, λ̂) ∈ Γk+1, ∀λ̃, λ̂ ∈ Γk. (4.9)

Further, let {λ̃k}k∈N be a sequence such that λ̃k ∈ Γk, for any k ∈ N. Then,

∀k ≥ N, λ̃k = λ∗,
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which implies, for any fixed N ,

lim
k→∞

λ̃k = λ∗. (4.10)

At last, let us define the sets

Γk
n =

{
{λ∗n}, 0 ≤ n ≤ min{k,N}, k ∈ N,
Γn, k + 1 ≤ n ≤ N, 0 ≤ k ≤ N − 1.

Then for all n ∈ {0, . . . , N} and k ∈ N,{
Γk
n ⊂ Γn,

Γk = Γk
0 × · · · × Γk

N .
(4.11)

The proposition follows from (4.8)–(4.11).
Proposition 4.4. If there exists a matrix norm ∥.∥ such that

∥R∥+ ∥r̂ −R∥ < 1,

then the computational model (4.6) is convergent.

Proof. Let λ̃, λ̂ ∈ Γ. Parareal-based asynchronous iterations apply mappings given
by : {

T̃0(λ̃, λ̂) = λ∗0,

T̃n(λ̃, λ̂) = Rλ̃n−1 + (r̂ −R)λ̂n−1 + ĥ, 1 ≤ n ≤ N,

which leads to
T̃ (λ̃, λ̂) = Aλ̃+Bλ̂+ c, (4.12)

with

A =



O O O · · · O

R O O · · · O

O R O
. . . ...

... . . . . . . . . . O

O · · · O R O


, B =



O O O · · · O

r̂ −R O O · · · O

O r̂ −R O
. . . ...

... . . . . . . . . . O

O · · · O r̂ −R O


, c =



λ∗0

ĥ

ĥ
...
ĥ


.

Then for any λ̃, λ̂, ˜̃λ and ̂̂λ in Γ,

∥T̃ (λ̃, λ̂)− T̃ (
˜̃
λ,
̂̂
λ)∥∞ = ∥A(λ̃− ˜̃λ) +B(λ̂− ̂̂λ)∥∞,

≤ ∥A∥∞∥λ̃− ˜̃λ∥∞ + ∥B∥∞∥λ̂− ̂̂λ∥∞,
≤ (∥A∥∞ + ∥B∥∞)max

{
∥λ̃− ˜̃λ∥∞, ∥λ̂− ̂̂λ∥∞} ,

≤ (∥R∥+ ∥r̂ −R∥)max

{
∥λ̃− ˜̃λ∥∞, ∥λ̂− ̂̂λ∥∞} .
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If therefore
∥R∥+ ∥r̂ −R∥ < 1,

then the contraction condition in Theorem 2.11 is fulfilled, which concludes the
proof.

Proposition 4.5. There exists a nonnegative integer-valued function σ on N, sat-
isfying :

lim
k→∞

σ(k) = ∞, (4.13)

such that
∥λkn − λ∗n∥ ≤ ασ(k)∥λ0 − λ∗∥∞, ∀n ∈ {0, . . . , N},

with
α = ∥R∥+ ∥r̂ −R∥.

Proof. Let us define the set

Γk =
{
λ ∈ Γ | ∥λ− λ∗∥∞ ≤ ασ(k)∥λ0 − λ∗∥∞

}
, k ∈ N,

with σ(0) = 0. We obviously verify :

λ0 ∈ Γ0,

then let us assume :
∀i ∈ {0, . . . , k}, λi ∈ Γi. (4.14)

According to the asynchronous iterative scheme (4.6), we have ∥λk+1
n+1 − λ∗n+1∥ = ∥λkn+1 − λ∗n+1∥, n /∈ P k,

∥λk+1
n+1 − λ∗n+1∥ ≤ αmax

{
∥λτn(k)n − λ∗n∥, ∥λ

ρn(k)
n − λ∗n∥

}
, n ∈ P k.

Additionally, we may consider a sequence {Qk}k∈N of subsets of P k such that

τn(k) = k + 1 ⇐⇒ n ∈ Qk.
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Then, for n ∈ Qk, we verify :

∥λk+1
n+1 − λ∗n+1∥ ≤ αmax

{
∥λk+1

n − λ∗n∥, ∥λρn(k)n − λ∗n∥
}
,

≤ αmax

αmax
{
∥λτn−1(k)

n−1 − λ∗n−1∥, ∥λ
ρn−1(k)
n−1 − λ∗n−1∥

}
,

∥λρn(k)n − λ∗n∥

 ,

≤ αmax


α2max

{
∥λτn−2(k)

n−2 − λ∗n−2∥, ∥λ
ρn−2(k)
n−2 − λ∗n−2∥

}
,

α∥λρn−1(k)
n−1 − λ∗n−1∥,

∥λρn(k)n − λ∗n∥

 ,

≤ αmax



αin max
{
∥λτn−in (k)

n−in
− λ∗n−in∥, ∥λ

ρn−in (k)
n−in

− λ∗n−in∥
}
,

αin−1∥λρn−(in−1)(k)

n−(in−1) − λ∗n−(in−1)∥,
. . . ,

αin−in∥λρn−(in−in)(k)

n−(in−in)
− λ∗n−(in−in)∥


,

with in ∈ {1, . . . , n} satisfying :{
n− in ∈ P k \Qk,

n− i ∈ Qk, ∀i ∈ {0, . . . , in − 1}.

One should notice that, as
λk+1
0 = λk0 = λ

τ0(k)
0 ,

we can somehow consider
0 ∈ P k \Qk,

and therefore in necessarily exists. Further, let jn ∈ {0, . . . , in} satisfy:

αjn∥λρn−jn (k)
n−jn

− λ∗n−jn∥ = max
0≤j≤in

αin−j∥λρn−(in−j)(k)

n−(in−j) − λ∗n−(in−j)∥,

and let ln ∈ {in + 1, jn + 1} satisfy:

αln = max{αin+1, αjn+1}.

Then we can write:

∥λk+1
n+1 − λ∗n+1∥ ≤ αmax

{
αin∥λτn−in (k)

n−in
− λ∗n−in∥, α

jn∥λρn−jn (k)
n−jn

− λ∗n−jn∥
}
,

≤ αln max
{
∥λτn−in (k)

n−in
− λ∗n−in∥, ∥λ

ρn−jn (k)
n−jn

− λ∗n−jn∥
}
.
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It follows:

∥λk+1 − λ∗∥∞ ≤ max


max
n/∈Pk

∥λkn+1 − λ∗n+1∥,

max
n∈Pk\Qk

αmax
{
∥λτn(k)n − λ∗n∥, ∥λρn(k)n − λ∗n∥

}
,

max
n∈Qk

αln max
{
∥λτn−in (k)

n−in
− λ∗n−in∥, ∥λ

ρn−jn (k)
n−jn

− λ∗n−jn∥
}
 ,

and applying (4.14), we obtain

∥λk+1 − λ∗∥∞ ≤ max



ασ(k),

max
n∈Pk\Qk

max

{
ασ(τn(k))+1,

ασ(ρn(k))+1

}
,

max
n∈Qk

max

{
ασ(τn−in (k))+ln ,

ασ(ρn−jn (k))+ln

}


∥λ0 − λ∗∥∞.

We can therefore have

∥λk+1 − λ∗∥∞ ≤ ασ(k+1)∥λ0 − λ∗∥∞,

with σ(k+1) satisfying the appropriate relation by analogy with the previous inequal-
ity. The classical assumption (4.5) on P k, τ and ρ implies that σ also satisfies (4.13),
which concludes the proof.

4.4.2 Computational efficiency
Let

κn(k) := card{i ≤ k | n ∈ P i}

denote the number of iterations performed by the process n. Let then

κ(k) := max
0≤n<N

κn(k)

be the maximum number of times the propagator F is executed.

Proposition 4.6. The computational time induced by the model (4.6) for k iterations
and N processes is given by :

Ck(N) = (κ(k) +N) C1,G + κ(k)
∆T

δt
C1,F .

Proof. Without loss of generality, we assume for an iteration k that

ρn(k) ≤ τn(k).
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In a practical context, it is then reasonable to also assume that

∃k0 ≤ k :

{
n ∈ P k0

λ
ρn(k)
n = λ

τn(k0)
n ,

which, just as in classical Parareal iterations, prevents the propagator G from being
evaluated twice. The complexity of a single iteration performed by each process is
thus here also given by:

C1,G +
∆T

δt
C1,F .

We derive that after k global asynchronous iterations, and accounting initialization,
we have, for each process n,

Ck,n(1) = C1,G + κn(k)

(
C1,G +

∆T

δt
C1,F

)
.

Finally, as G is sequentially evaluated only for initialization, we obtain the overall
complexity

Ck(N) = NC1,G +max
n

κn(k)

(
C1,G +

∆T

δt
C1,F

)
,

which concludes the proof.

Corollary 4.3. Let ks and ka denote numbers of Parareal synchronous and asyn-
chronous iterations, respectively. Let also Cs and Ca denote the corresponding time
complexities. Then, assuming that

κ(ka) ≥ ks,

we have
Cks
s (N)− Cka

a (N) ≤ 1

2
(N − 1)(N − 2)C1,G.

Proof. We have

Cks
s (N)− Cka

a (N) =

((
N − ks + 1

2

)
ks − κ(ka)

)
C1,G + (ks − κ(ka))

∆T

δt
C1,F .

Under the assumption
κ(ka) ≥ ks,

the maximum gain is naturally expected for

κ(ka) = ks.

It follows that

Cks
s (N)− Cka

a (N) ≤
(
N − 1− ks + 1

2

)
ksC1,G,



74 CHAPTER 4. ASYNCHRONOUS TIME DOMAIN DECOMPOSITION

0 200 400 600 800 1000
Number of time frames

0

10

20

30

40

50
S

pe
ed

up
k = 1
k = 2
k = 10

0 200 400 600 800 1000
Number of time frames

0

10

20

30

40

50

S
pe

ed
up

κ(k) = 3
κ(k) = 5
κ(k) = 25

Figure 4.1: Theoretical speedup of Parareal synchronous (left) and asynchronous
(right) iterations, for T = 30, δt = 0.002 and C1,G = C1,F .

which reaches its maximum for

ks = N − 3

2
,

and thus for
ks = k̂s := N − 2.

Replacing ks by k̂s in the inequality leads to the upper bound result.

Figure 4.1 (right) illustrates the speedup evolution as the number of time frames
grows, for different maximum numbers of iterations.

4.4.3 Coupling parallel-in-time methods
Let us still consider the time domain decomposition (4.2), for which we assume
here two compatible parallel-in-time methods, i.e., respectively based on some given
operators

P : Γ → Γ, Q : Γ → Γ.

Consider then two asynchronous parallel-in-time methods, respectively based on
operators

P̃ : Γ× Γ → Γ, Q̂ : Γ× Γ → Γ,

defined such that

P̃(λ∗, λ∗) = P(λ∗), Q̂(λ∗, λ∗) = Q(λ∗).

Combining such two operators, we can derive an asynchronous parallel-in-time scheme
of the form 

λ̃k+1
n+1 =

{
P̃n+1(λ̃

τ(k), λ̂ρ(k)), n ∈ P k
P̃ ,

λ̃kn+1, n /∈ P k
P̃ ,

λ̂k+1
n+1 =

{
Q̂n+1(λ̃

τ(k), λ̂ρ(k)), n ∈ P k
Q̂,

λ̂kn+1, n /∈ P k
Q̂,

(4.15)



4.4. PARAREAL ASYNCHRONOUS ITERATIONS 75

with simplified notations

λ̃τ(k) :=
[
λ̃
τ0(k)
0 · · · λ̃

τN (k)
N

]T
, λ̂ρ(k) :=

[
λ̂
ρ0(k)
0 · · · λ̂

ρN (k)
N

]T
.

One notices that the Parareal-based asynchronous method corresponds to the par-
ticular case where

P̃ = Q̂ = T̃ ,

with T̃ being the Parareal-based global iterative operator.

Proposition 4.7. If there exists a vector w > 0 and reals α1, α2 ∈ [0, 1) such that,
for any λ̃, ˜̃λ, λ̂ and ̂̂λ in Γ, we have :

∥P̃(λ̃, λ̂)− P̃(
˜̃
λ,
̂̂
λ)∥w∞ ≤ α1max

{
∥λ̃− ˜̃λ∥w∞, ∥λ̂− ̂̂λ∥w∞} ,

∥Q̂(λ̃, λ̂)− Q̂(
˜̃
λ,
̂̂
λ)∥w∞ ≤ α2max

{
∥λ̃− ˜̃λ∥w∞, ∥λ̂− ̂̂λ∥w∞} , (4.16)

then the computational model (4.15) is convergent.

Proof. Let us consider the operator

H : Γ× Γ → Γ× Γ

(λ̃, λ̂) 7→ (P̃(λ̃, λ̂), Q̂(λ̃, λ̂))
.

The iterative scheme (4.15) can then be written in a more general form :

γk+1
i =

{
Hi(γ

σ0(k)
0 , . . . , γ

σ2N+1(k)
2N+1 ), i ∈ P k,

γki , i /∈ P k,

with

Hi =

{
P̃i, 0 ≤ i ≤ N,

Q̂(i−1)−N , N < i ≤ 2N + 1
, σi =

{
τi, 0 ≤ i ≤ N,

ρ(i−1)−N , N < i ≤ 2N + 1
.

We thus have, for any λ̃, ˜̃λ, λ̂ and ̂̂λ in Γ,

∥H(λ̃, λ̂)−H(
˜̃
λ,
̂̂
λ)∥z∞ = max

{
∥P̃(λ̃, λ̂)− P̃(

˜̃
λ,
̂̂
λ)∥z1∞, ∥Q̂(λ̃, λ̂)− Q̂(

˜̃
λ,
̂̂
λ)∥z2∞

}
,

with

z =

[
z1

z2

]
, z1, z2 ∈ Γ.
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Applying (4.16), and by choosing

z1 = z2 = w, β = max{α1, α2},

we obtain :

∥H(λ̃, λ̂)−H(
˜̃
λ,
̂̂
λ)∥z∞ ≤ βmax

{
∥λ̃− ˜̃λ∥z1∞, ∥λ̂− ̂̂λ∥z2∞} ,

≤ β ∥(λ̃, λ̂)− (
˜̃
λ,
̂̂
λ)∥z∞,

which is a sufficient condition for convergence according to Theorem 2.5.

4.5 Conclusion
The Parareal method can be seen as a dual approach for time domain sub-structuring,
where interface transmission conditions are defined on initial values of time inter-
vals, such that continuity is eventually ensured at convergence. We first extended,
to PDEs case, within an algebraic fixed-point framework, sufficient convergence
conditions previously established for ordinary differential equations (ODE). Then,
under a model of asynchronous iterations with memory, we obtained sufficient asyn-
chronous convergence conditions by means of the corresponding weighted maximum
norms analysis tool (see [19] or Theorem 2.11). Surprisingly, it turned out that
these sufficient synchronous and asynchronous convergence conditions asymptoti-
cally coincide as the number of time sub-domains increases. From this norm-based
contraction property, we finally derived the asynchronous convergence of a slightly
more general model allowing the coupling of two time-parallel methods. Still, the
Parareal method features a speedup limit not only related to inter-process commu-
nication but also to a sequential propagation of some computed values. Therefore,
even if a straightforward application of asynchronous iterations, as we considered
here, improved this speedup limit, further developments are needed for achieving a
completely unbounded efficiency.

Summarily, the first part of this dissertation has mainly consisted in designing
new asynchronous iterative methods within some particular domain decomposition
frameworks. We targeted a primal sub-structuring approach for space domains,
while showing similarities with the overlapping Schwarz approach. A dual approach
has just been addressed as well for the asynchronous decomposition of time domains.
In the second coming part, we are rather interested in general implementation issues
related to asynchronous iterative models, which includes

• distributed algorithms for detecting the convergence state of an ongoing asyn-
chronous computation,

• and programming patterns for efficiently handling underlying communication
middleware.
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Effective numerical experiments are thus successfully conducted, which gives a prac-
tical insight into various methods, algorithms and implementation options.



Chapter 5

Termination of asynchronous
iterations

5.1 Introduction
The problem of terminating asynchronous iterations was well discussed in, e.g., [33],
where the authors introduced a first approach which consists of altering the asyn-
chronous iterative algorithm such that it terminates in finite time and then applying
one of the classical termination detection protocols available in the distributed al-
gorithms field (see, e.g., [68, 69, 70, 71]). Indeed, these termination protocols are
designed for parallel applications that are executed in a finite number of steps, i.e.,
there is a moment during their execution from where all processes are idle. Since
this is not natively the case for asynchronous iterations, different modifications have
been proposed (see, e.g., [35, 34, 32]) for detecting their convergence by means of a
classical distributed termination protocol. Basically, any process under some local
condition (relative to local convergence) stops sending new data to its neighbors in
the communication graph, so that the termination condition may consist of having
all processes under this local condition, without any message in transit.

A kind of non-intrusive slight alteration has been discussed in [36], which con-
sists of synchronizing the processes after predicted numbers of iterations, which are
expected for reaching convergence. Here, even if the convergence test is thus block-
ing, it is expected to occur very few times, depending however on the accuracy of
the heuristics, which in turn is related to the properties of both the solver and the
execution platform.

A second approach uses a supervisory algorithm to take a partial snapshot of
the computation, in order to construct and evaluate a global solution in parallel of
the iterative process. Considering the well-known snapshot protocol due to Chandy
and Lamport [46], the main disadvantage of such a protocol is the first-in-first-out
(FIFO) property required on the communication channels. Attempts to achieve gen-
eral non-FIFO snapshots are based either on message acknowledgment and delayed

78
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delivering, or on piggybacking of control information on top of application messages
(see [72] for an introductory overview). Such approaches thus turn out to be quite
intrusive and, furthermore, not easy to implement. In [35], some snapshot-based
supervised termination protocols, more or less centralized, were designed over either
star or tree network topology, without FIFO requirements. The less centralized ap-
proach therein involves a spanning tree over the communication graph where local
convergence notifications propagate from the leaves to the root process. This one
then triggers the partial snapshot allowing each process to evaluate a globally coher-
ent local solution. The centralization is thus limited to the notifications gathering
phase for coordination purpose. Consistency, for non-FIFO channels, is guaran-
teed by inserting computation data into the snapshot messages, which introduces a
possibly non-negligible overhead costs for communication.

A third approach in [73] consists of a supervised termination method based on
a leader election protocol (see, e.g., [74, Section 4.4.3]) over tree network topology,
wherein the authors introduced cancellation messages to manage the false conver-
gence issue. The algorithm however requires to estimate an upper bound on the
communication delay between any two processes. Then in [37], these authors pro-
posed a new solution which takes off this requirement, as well as cancellation mes-
sages, by performing a verification phase after a presumed global convergence. The
leading idea is to monitor the persistence of this convergence state within a period
which must last enough to have every dependencies updated with data at least as
recent as the presumed detection time. Global convergence is confirmed if during
this period no process ever left its local convergence state. As an inconvenient for
non-FIFO environments, piggybacking techniques must be used to distinguish data
emitted within the verification phase period. While such an approach can avoid pre-
mature termination with a high probability, it does not provide a way of evaluating
a consistent global residual error. Moreover, just as in [35], it also features a first
gathering phase through the leader election, which actually acts as a dynamically
centralized coordination.

The reliability of [37] could be guaranteed by introducing the formal analysis
from [48] where the convergence tests are based on the diameter of the nested sets
from Theorem 2.6, which are built by means of identifying macro-iterations defined
as minimal sets of iterations within which all of the solution vector components have
been updated at least once. Still, such a method would also require at least intrusive
piggybacking techniques, and possible other practical issues could need to be further
discussed.

In summary, second and third approaches allow us to detect the convergence
of asynchronous iterations without altering the main computation process. But for
both, current solutions somehow require two reduction phases, one for coordination
and another one for convergence state evaluation. In very large distributed systems,
such reduction operations would constitute the most costly part of these conver-
gence detection protocols. Moreover, the only totally non-intrusive exact solution
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(from [35]), in non-FIFO environments, embeds computation data into supervisory
messages, which could also results in non-negligible communication delays. We inves-
tigate here new methods, mostly non-intrusive, to exactly evaluate the convergence
residual error of a computation during asynchronous iterations, using only one re-
duction operation. More, non-FIFO environments are successfully managed without
piggybacking techniques and overhead communication costs.

5.2 Building a distributed global vector
5.2.1 Problem formulation
Let us consider a sequence {xk}k∈N of vectors satisfying the asynchronous itera-
tions model (2.9), with arbitrary mappings (2.12). Let us define p other sequences
{y1,k}k∈N, . . . , {yp,k}k∈N such that

yi,k =
[
x
τ i1(k)
1 · · · x

τ ip(k)
p

]T
, 1 ≤ i ≤ p. (5.1)

Additionally, we assume to have

τ ii (k) = k. (5.2)

Let then x̄ be given by:

x̄ =
[
y1,k11 · · · y

p,kp
p

]T
, k1, . . . , kp ∈ N.

We address here the problem of evaluating a relation

∥f(x̄)− x̄∥ < ε, ε ∈ R,

for which we shall mainly pay attention to the computation of f(x̄). Note that in
the particular case of synchronous iterations, one can take

x̄ =
[
y1,k1 · · · yp,kp

]T
, k ∈ N,

and obtain, for all i ∈ {1, . . . , p}:

fi(x̄) = fi

(
y1,k1 , . . . , yp,kp

)
,

= fi
(
xk1, . . . , x

k
p

)
,

= fi

(
x
τ i1(k)
1 , . . . , x

τ ip(k)
p

)
,

= xk+1
i ,

which implicitly gives:

f(x̄) =
[
y1,k+1
1 · · · yp,k+1

p

]T
.
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5.2.2 The Chandy–Lamport snapshot
The basic idea within the Chandy–Lamport snapshot (CLS) protocol is to record, not
only the local state of each process, but also the state of each communication channel.
Any process (possibly several processes) can initiate the protocol by recording its
local state and sending a marker to all of its neighbors in the communication graph.
Non-initiators do the same when they receive a marker for the first time. As soon
as a process records its local state, it starts recording the state of its reception
channels. From then, and before marker reception on any channel, any message
received is appended to the state of this channel. Consequently, the recording ends
when a marker is received from all the neighboring processes. Algorithm 1 outlines
the rules which fully describe the protocol. To give an intuitive understanding of the

Algorithm 1 CLS protocol (Chandy and Lamport, 1985)
1: if initiator then
2: if state not recorded then
3: Record state
4: Send a marker to each neighbor in the communication graph
5: end if
6: end if
7: if marker received then
8: if state not recorded then
9: Record state

10: Send a marker to each neighbor in the communication graph
11: end if
12: if marker received from each neighbor then
13: Return state and state of each reception channel
14: end if
15: end if
16: if computation message received then
17: if state recorded and marker not received from the sender then
18: Add the message to the state of the corresponding reception channel
19: end if
20: end if

consistency of the global state built by this snapshot protocol, we show in Figure 5.1
a simple example involving two processes, denoted by p1 and p2. Let us consider
events consisting of sending or receiving a message. In this example, the process p1
records its local state after the event e1 and sends a marker (dotted arrow) to the
process p2. On reception of the marker, the process p2 records its local state after
the event e4, then records the state of its reception channel as an empty set, and
finally, sends the marker back to the process p1. Before receiving the marker from
the process p2, the process p1 received a computation message from p2 as event e5.
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Proc p1

Proc p2

Snapshot
start

Snapshot
end

e1 e3 e5 e8 e9

e2 e4 e6 e7 e10

Computation message

Marker

e Computation event

Recorded global state:
Proc p1:  e1

Proc p2:  e4

Channel p2->p1:  {e5}

Channel p1->p2:  { }

Figure 5.1: Example of a CLS protocol execution with two processes.

Therefore, the state of the reception channel of the process p1 corresponds to the
set {e5}. It is clear from this example that the communication channels need to
be FIFO. Otherwise, if the marker sent by the process p2 had been received by the
process p1 before the event e5 occurred, the state of the channel would have been
an empty set, which would cause an information lost about the event e5.

This example builds a global state relative to last events {e1, e4} and records
the set of pending messages relative to event e5. However according to the events
sequence, this state does not match any of the states the system actually went
through. Indeed, one can see that the event e3 should have been taken into account
as we consider the state of the system just after the event e4. Therefore, let us
highlight what is relevant about the state recorded by an execution of the CLS
protocol.

Theorem 5.1 (Chandy and Lamport, 1985). Let S(C) = {st}t∈N denote the global
states sequence generated by a computation C. Let s̄ be the global state recorded by
an execution of the CLS protocol on C. Then there exists an equivalent permutation
P(C) of C such that s̄ ∈ S(P(C)).

Proof. See [46].

Consider now again sequences {xk}k∈N and {yi,k}k∈N, with 1 ≤ i ≤ p, from (5.1).
Let us suppose an associated parallel computation involving p processes. Algorithm 2
therefore describes an application of the CLS protocol to asynchronous iterations,
where ȳii denotes the recorded state of process i, and {ȳi,1j , . . . , ȳ

i,li,j
j }, with j ̸= i and

li,j ∈ N, the recorded state of its reception channel associated to the process j.
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Algorithm 2 CLS protocol on asynchronous iterative processes
1: if initiator then
2: if ȳii undefined then
3: ȳii := yi,ki
4: for all process j ̸= i do
5: Send a marker to j
6: end for
7: end if
8: end if
9: if marker received then

10: if ȳii undefined then
11: ȳii := yi,ki
12: for all process j ̸= i do
13: Send a marker to j
14: end for
15: end if
16: if marker received from each neighbor then
17: return ȳii, {ȳ

i,1
j , . . . , ȳ

i,li,j
j }j ̸=i

18: end if
19: end if
20: if computation message yi,kj received then
21: if ȳii defined and marker not received from j then
22: ȳ

i,li,j
j := yi,kj

23: li,j := li,j + 1
24: end if
25: end if

5.2.3 Partial extension to asynchronous iterations
Instead of Algorithm 2, let each process i assemble a vector ȳi by following the asyn-
chronous iterations snapshot (AIS) rules given by either Algorithm 3 or Algorithm 4,
where the criterion

∥yi,ki − y
i,ki0
i ∥ < ε, yi,ki = y

i,ki0+1
i , i ∈ P ki0

describes a local condition often considered as indicating local convergence. As the
rules conditions may be fulfilled at different iterations, we should have

ȳi =
[
y
i,ki,1
1 · · · y

i,ki,p
p

]T
, ki,j ∈ N, j ∈ {1, . . . , p}.

Here, contrarily to the CLS protocol, there is no rule for channel record at computa-
tion message reception, and in Algorithm 4, recording the local state is not required
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Algorithm 3 AIS protocol 1

1: if ∥yi,ki − y
i,ki0
i ∥ < ε, with yi,ki = y

i,ki0+1
i , i ∈ P ki0 then

2: if ȳii undefined then
3: ȳii := yi,ki
4: for all process j ̸= i do
5: Send a marker to j
6: end for
7: end if
8: end if
9: if marker received from a process j ̸= i then

10: ȳij := yi,kj
11: if ȳii undefined then
12: ȳii := yi,ki
13: for all process j ̸= i do
14: Send a marker to j
15: end for
16: end if
17: if ȳij defined for all j then
18: return ȳi

19: end if
20: end if

Algorithm 4 AIS protocol 2

1: if ∥yi,ki − y
i,ki0
i ∥ < ε, with yi,ki = y

i,ki0+1
i , i ∈ P ki0 then

2: if ȳii undefined then
3: ȳii := yi,ki
4: for all process j ̸= i do
5: Send a marker to j
6: end for
7: end if
8: end if
9: if marker received from a process j ̸= i then

10: ȳij := yi,kj
11: end if
12: if ȳij defined for all j then
13: return ȳi

14: end if

at the first marker reception. We however still need the following preliminary as-
sumptions.
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Assumption 5.1. Each process performs at least one iteration, which means: ∀i ∈
{1, . . . , p},∃ k < ki,i : i ∈ P k.
Assumption 5.2. After computation of yi,k+1

i (i.e., i ∈ P k), yi,k+1
i is sent to each

process j ̸= i, before any other communication toward j.
Assumption 5.3. Communication channels are FIFO.

A consistent global solution vector under asynchronous iterations is then given
by the following result.
Proposition 5.1. Under Assumption 5.1 to Assumption 5.3, Algorithm 3 and Al-
gorithm 4 satisfy:

ȳ1 = ȳ2 = · · · = ȳp. (5.3)
Proof. Let i, j ∈ {1, . . . , p} be two any process identifiers. According to the local
state recording rule and Assumption 5.1,

∃ ki0 < ki,i, i ∈ P ki0 : ∀k ∈ {ki0 + 1, . . . , ki,i − 1}, i /∈ P k.

We thus have
y
i,ki,i
i = y

i,ki,i−1
i = · · · = y

i,ki0+1
i .

With Assumption 5.2 and Assumption 5.3, it follows that

∃ kj0 ≤ kj,i : y
j,kj0
i = y

i,ki0+1
i .

Assumption 5.3 implies :

∀k ∈ {kj0 + 1, . . . , kj,i}, yj,ki = y
j,kj0
i .

Then in particular, we have

y
j,kj,i
i = y

j,kj0
i = y

i,ki0+1
i = y

i,ki,i
i ,

and thus
ȳii = ȳji , ∀i, j ∈ {1, . . . , p}, (5.4)

which concludes the proof.

It follows from this result that by taking

x̄ =
[
ȳ11 · · · ȳpp

]T
,

we explicitly obtain
f(x̄) =

[
f1(ȳ

1) · · · fp(ȳ
p)
]T
.

Assumption 5.1 and Assumption 5.2 are pretty natural conditions that are easily
satisfied in an iterative loop where the AIS protocol rules are called after the main
computation and message sending part. They are necessary to be mentioned how-
ever, especially for multi-threaded processes. Assumption 5.3 thus is the sole actual
constraint in the above protocols. The next section discusses about taking off such
a requirement.
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Figure 5.2: Non-FIFO snapshot issues.

5.3 Non-FIFO asynchronous iterations snapshots
5.3.1 Arbitrary non-FIFO communication
The FIFO condition is essential to avoid the two situations depicted in Figure 5.2,
where a marker (dotted arrow) crosses a computation message. To still satisfy (5.4)
in such non-FIFO (NF) cases, one could apply either Algorithm 5 or Algorithm 6,
based on ideas from [35]. Markers therein contain computation data, so that these

Algorithm 5 NFAIS protocol 1

1: if ∥yi,ki − y
i,ki0
i ∥ < ε, with yi,ki = y

i,ki0+1
i , i ∈ P ki0 then

2: if ȳii undefined then
3: ȳii := yi,ki
4: for all process j ̸= i do
5: Send a marker ȳii to j
6: end for
7: end if
8: end if
9: if marker ȳjj received from a process j ̸= i then

10: ȳij := ȳjj
11: if ȳii undefined then
12: ȳii := yi,ki
13: for all process j ̸= i do
14: Send a marker ȳii to j
15: end for
16: end if
17: if ȳij defined for all j then
18: return ȳi

19: end if
20: end if

solutions actually even handle crossed computation messages. It obviously follows
that (5.4) is thus satisfied without any of the assumptions in Proposition 5.1.
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Algorithm 6 NFAIS protocol 2

1: if ∥yi,ki − y
i,ki0
i ∥ < ε, with yi,ki = y

i,ki0+1
i , i ∈ P ki0 then

2: if ȳii undefined then
3: ȳii := yi,ki
4: for all process j ̸= i do
5: Send a marker ȳii to j
6: end for
7: end if
8: end if
9: if marker ȳjj received from a process j ̸= i then

10: ȳij := ȳjj
11: end if
12: if ȳij defined for all j then
13: return ȳi

14: end if

The decentralized protocol from [35] additionally suggests a coordination phase
designed upon tree network topology, prior to the actual partial snapshot phase.
In the coordination phase, local convergence is notified from the leaves to the root
of the tree, as described by Algorithm 7. When local convergence happens on a
leaf process (having no children in the communication tree), a notification marker
is sent to its father in the tree. Internal processes (having children and father) do
the same if, additionally, all of their children have notified local convergence. Under
same two conditions, the root process instead triggers the partial snapshot phase by
recording its current local component yi,ki and sending it to its neighbor processes in
the initial communication graph. Rules given by Algorithm 8 are then followed to
isolate the vector ȳi in each process i. Here as well, local convergence must be once
more verified by non-root processes to make them record their local component, but
additionally, only if they had already received the recorded component of at least
one of their neighbor processes. This necessarily happens, as the root process sends
its recorded component to initiate the partial snapshot phase.

5.3.2 Inter-protocol non-FIFO communication
In the communication model considered now, FIFO channels are used at least for
computation messages. This is a highly realistic scenario, as being a minimum re-
quirement for expecting efficient parallel implementation of iterative methods. Still,
the problem of markers crossing computation messages remains unavoidable. Algo-
rithm 9 proposes a partial snapshot solution which, outright, do not need marker
exchange, and is based on only computation messages, even without piggybacking
of control information. Here, just as local solution buffers, each process i maintains
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Algorithm 7 Coordination phase of SB96 protocol (Savari and Bertsekas, 1996)

1: if ∥yi,ki − y
i,ki0
i ∥ < ε, with yi,ki = y

i,ki0+1
i , i ∈ P ki0 then

2: if leaf process then
3: Send a marker to father
4: return
5: end if
6: if internal process then
7: if marker received from all children then
8: Send a marker to father
9: return

10: end if
11: end if
12: if root process then
13: if marker received from all children then
14: ȳii := yi,ki
15: for all process j ̸= i do
16: Send a marker ȳii to j
17: end for
18: return
19: end if
20: end if
21: end if

Algorithm 8 Snapshot phase of SB96 protocol (Savari and Bertsekas, 1996)

1: if ∥yi,ki − y
i,ki0
i ∥ < ε, with yi,ki = y

i,ki0+1
i , i ∈ P ki0 then

2: if ȳii undefined and ȳij defined for any j ̸= i then
3: ȳii := yi,ki
4: for all process j ̸= i do
5: Send a marker ȳii to j
6: end for
7: end if
8: end if
9: if marker ȳjj received from a process j ̸= i then

10: ȳij := ȳjj
11: end if
12: if ȳij defined for all j then
13: return ȳi

14: end if
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Algorithm 9 NFAIS protocol 3

1: if ∥yi,ki − y
i,kii
i ∥ < ε, with yi,ki = y

i,kii+1
i , i ∈ P kii then

2: if ȳii undefined then
3: ȳii := yi,ki
4: end if
5: end if
6: if ∥yi,kj − y

i,kij
j ∥ < ε, with τ ij(k

i
j) = kjj , τ ij(k) = kjj + 1 then

7: if ȳij undefined then
8: ȳij := yi,kj
9: end if

10: end if
11: if ȳij defined for all j then
12: return ȳi

13: end if

access to the two latest received messages from neighbor processes j ≠ i. Then
process i can detect by itself local convergence of process j and immediately record
the last value received. Proposition 5.1 becomes the following:

Proposition 5.2. Algorithm 9 satisfies:

ȳ1 = ȳ2 = · · · = ȳp.

Proof. Let i, j ∈ {1, . . . , p} be two any process identifiers. Remind that

ȳij = y
i,ki,j
j , ki,j ∈ N.

Then according to (5.1) and (5.2), we have

ȳij = x
τ ij (ki,j)

j = x
τ jj (τ

i
j (ki,j))

j = y
j,τ ij (ki,j)

j .

By construction, we satisfy:

τ ij(ki,j) = kjj + 1, y
j,kj,j
j = y

j,kjj+1

j ,

and thus
ȳij = y

j,kjj+1

j = y
j,kj,j
j = ȳjj ,

which concludes the proof.
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Figure 5.3: Examples of issues handled by the non-FIFO AIS protocol 4.

5.3.3 General communication model
In case of very large problems, non-FIFO AIS protocols 1 to 3 may introduce non-
negligible overhead costs, either for communication or for memory. But on another
hand, for such large problems, deciding to compute a solution may depend on guar-
anteeing a minimum performance level from the parallel computation platform. Es-
pecially when a given maximum execution time is expected, this most likely includes
to ensure a bound on communication delays. We therefore reasonably make here a
preliminary assumption.

Assumption 5.4. A message can cross at most η other messages.

The previous case of arbitrary non-FIFO communication thus actually consists
of taking η arbitrarily large. Let us then consider Algorithm 10. Here a process i
sends its marker to a process j ̸= i only when local convergence persists on process i
for some iterations kil , with i ∈ P kil and l ∈ N. Such iterations will be referred to as
steady iterations. This way, even if the marker is received on the process j before the
latest message sent by the process i, the message recorded by the process j is still
relevant in the sense that the two latest messages from process i contain very close
data (due to the persistence of the local convergence). Then a second type of marker
(dashed arrow in Figure 5.3) is sent by the process i to transmit a binary flag after
some additional iterations. If local convergence still persists during these iterations,
the flag is armed, which confirms the relevance of the message data recorded by the
process j, even if it corresponds to the message sent by the process i after the first
marker (again, due to local convergence persistence after sending the first marker).
Otherwise, the corresponding records are discarded. The algorithm works even in
the case depicted in Figure 5.3 (right) where the flag-marker crosses the classical
one.

One may additionally assume that the crossing ability is tightly related to the
size of the messages. Indeed, if control messages (e.g., markers) are transmitted far
faster than computation messages (due to the difference in size), we may assume
that, from a process to another process, a computation message sent later than a
control message cannot be received earlier than this one. Then in such case, flag-
markers would not be necessary any more, which rather simplifies the protocol and
provides Algorithm 11.
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Algorithm 10 NFAIS protocol 4
1: if ∥yi,t+1

i − yi,ti ∥ < ε, ∀t ∈ {ki0, . . . , k − 1} : i ∈ P t then
2: if ȳii undefined then
3: ȳii := yi,ki
4: for all process j ̸= i do
5: Send a marker to j
6: end for
7: ki,i := k
8: Mark ϕi

i as undefined
9: end if

10: end if
11: if ∥yi,t+1

i − yi,ti ∥ < ε, ∀t ∈ {ki,i, . . . , k − 1} : i ∈ P t then
12: if ϕi

i undefined then
13: ϕi

i := 1
14: for all process j ̸= i do
15: Send a flagged marker ϕi

i to j
16: end for
17: end if
18: else
19: if ϕi

i undefined then
20: ϕi

i := 0
21: for all process j ̸= i do
22: Send a flagged marker ϕi

i to j
23: end for
24: Mark ȳii as undefined
25: end if
26: end if
27: if marker received from a process j ̸= i then
28: ȳij := yi,kj
29: end if
30: if flagged marker ϕj

j received from a process j ̸= i then
31: ϕi

j := ϕj
j

32: if ϕi
j = 0 then

33: Mark ȳij as undefined
34: end if
35: end if
36: if ȳij defined and ϕi

j = 1 for all j then
37: return ȳi

38: end if
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Algorithm 11 NFAIS protocol 5
1: if ∥yi,t+1

i − yi,ti ∥ < ε, ∀t ∈ {ki0, . . . , k − 1} : i ∈ P t then
2: if ȳii undefined then
3: ȳii := yi,ki
4: for all process j ̸= i do
5: Send a marker to j
6: end for
7: end if
8: end if
9: if marker received from a process j ̸= i then

10: ȳij := yi,kj
11: end if
12: if ȳij defined for all j then
13: return ȳi

14: end if

Now let us consider the mapping

g : E × · · · × E → E1 × · · · × Ep[
y1 · · · yp

]T
7→

[
f1(y

1) · · · fp(y
p)
]T ,

and the vector
ȳ =

[
ȳ1 · · · ȳp

]T
.

Let ∥.∥q, with q ∈ [1,+∞), be vector norms given by

∥x∥q =

(
p∑

i=1

(
∥xi∥(i)

)q)1/q

.

Maximum norms could be considered as well, as particular cases. We assume the
following property for the mapping f .

Assumption 5.5. Let x and x′ be vectors related by :

x′ =
[
x1 · · · x′j · · · xp

]T
, 1 ≤ j ≤ p,

with
∥xj − x′j∥(j) < ε, ε ∈ R.

Then
∀i ∈ {1, . . . , p}, ∃ δi,j ∈ R : ∥fi(x)− fi(x

′)∥(i) < δi,jε.
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Notation 5.1.
δ(f) := max

1≤i≤p

p∑
j=1

δi,j(f),

where δi,j(f) are the smallest δi,j satisfying Assumption 5.5.

δ(f) is thus a constant related to the variation of f upon variation of x. At last,
we also need the following assumption.

Assumption 5.6. A process sends its marker and armed flag-marker after at least
η steady iterations.

Then, we give an essential result about the accuracy of our heuristic.

Proposition 5.3. Under Assumption 5.2, and Assumption 5.4 to Assumption 5.6,
Algorithm 10 satisfies:

∥f(x̄)− x̄∥q < ∥g(ȳ)− x̄∥q + p1/q δ(f) η ε.

Proof. Consider again
ȳij = y

i,ki,j
j , ki,j ∈ N.

Then according to (5.1) and (5.2), we have

ȳji = y
j,kj,i
i = x

τ ji (kj,i)
i = x

τ ii (τ
j
i (kj,i))

i = y
i,τ ji (kj,i)
i .

Assumption 5.2, Assumption 5.4 and Assumption 5.6 ensure that

card
{
k ∈ {τ ji (kj,i), . . . , ki,i − 1} | i ∈ P k

}
≤ η. (5.5)

Let us then consider:

{ki1, . . . , kimi
} =

{
k ∈ {τ ji (kj,i), . . . , ki,i − 1} | i ∈ P k

}
,

with mi ∈ N∗. It follows:∥∥ȳii − ȳji
∥∥
(i)

=
∥∥∥yi,ki,ii − y

i,τ ji (kj,i)
i

∥∥∥
(i)
,

=
∥∥∥yi,kimi

+1

i − y
i,ki1
i

∥∥∥
(i)
,

=

∥∥∥∥yi,kimi
+1

i − y
i,kimi
i + y

i,kimi
i − y

i,kimi−1

i + · · ·+ y
i,ki2
i − y

i,ki1
i

∥∥∥∥
(i)

,

≤
∥∥∥yi,kimi

+1

i − y
i,kimi
i

∥∥∥
(i)

+

∥∥∥∥yi,kimi
i − y

i,kimi−1

i

∥∥∥∥
(i)

+ · · ·+
∥∥∥yi,ki2i − y

i,ki1
i

∥∥∥
(i)
,

< mi ε.
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Then we have, for all i ∈ {1, . . . , p},∥∥fi(x̄)− fi(ȳ
i)
∥∥
(i)

=
∥∥fi (ȳ11, . . . , ȳpp)− fi

(
ȳi1, . . . , ȳ

i
p

)∥∥
(i)
,

≤
∥∥fi (ȳ11, . . . , ȳpp)− fi

(
ȳi1, ȳ

2
2, . . . , ȳ

p
p

)∥∥
(i)

+
∥∥fi (ȳi1, ȳ22, . . . , ȳpp)− fi

(
ȳi1, ȳ

i
2, ȳ

3
3, . . . , ȳ

p
p

)∥∥
(i)

+ · · ·
+
∥∥fi (ȳi1, . . . , ȳip−1, ȳ

p
p

)
− fi

(
ȳi1, . . . , ȳ

i
p

)∥∥
(i)
.

Accounting Assumption 5.5, it follows that∥∥fi(x̄)− fi(ȳ
i)
∥∥
(i)
<

p∑
j=1
j ̸=i

δi,j(f) mj ε,

and finally,

∥f(x̄)− x̄∥q = ∥f(x̄)− g(ȳ) + g(ȳ)− x̄∥q ,

≤ ∥g(ȳ)− x̄∥q +

(
p∑

i=1

(∥∥fi(x̄)− fi(ȳ
i)
∥∥
(i)

)q)1/q

,

< ∥g(ȳ)− x̄∥q +

 p∑
i=1

 p∑
j=1
j ̸=i

δi,j(f) mj ε


q

1/q

,

< ∥g(ȳ)− x̄∥q + p1/q max
1≤i≤p

p∑
j=1
j ̸=i

δi,j(f) mj ε.

Applying (5.5), which means mj ≤ η, and using Notation 5.1, we conclusively obtain
that

∥f(x̄)− x̄∥q < ∥g(ȳ)− x̄∥q + p1/q δ(f) η ε.

Assumption 5.7. There exists a real α < 1 and a vector w > 0 such that

∀x, x′ ∈ E, ∥f(x)− f(x′)∥w∞ ≤ α∥x− x′∥w∞.

Proposition 5.4. Under Assumption 5.2, Assumption 5.4, Assumption 5.6 and
Assumption 5.7, Algorithm 10 satisfies:

∥g(ȳ)− x̄∥w∞ ≤ ε =⇒ ∥f(x̄)− x̄∥w∞ < ε′,

with
ε =

ε′

1 + η min
1≤i≤p

wi

.
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Proof. Considering the proof of Proposition 5.3, we recall that∥∥ȳii − ȳji
∥∥
(i)
< mi ε.

According to Assumption 5.7, we have∥∥f(x̄)− f(ȳi)
∥∥w
∞ ≤ α

∥∥x̄− ȳi
∥∥w
∞ ,

and then in particular,∥∥fi(x̄)− fi(ȳ
i)
∥∥
(i)

≤ wi α
∥∥x̄− ȳi

∥∥w
∞ ,

≤ wi α max
1≤j≤p

∥∥ȳjj − ȳij
∥∥
(i)

wj

,

< wi α max
1≤j≤p

mj

wj

ε.

It follows:

∥f(x̄)− x̄∥w∞ ≤ ∥g(ȳ)− x̄∥w∞ + max
1≤i≤p

∥fi(x̄)− fi(ȳ
i)∥(i)

wi

,

< ∥g(ȳ)− x̄∥w∞ + α max
1≤j≤p

mj

wj

ε.

Accounting mj ≤ η and α < 1, we deduce that

∥f(x̄)− x̄∥w∞ < ∥g(ȳ)− x̄∥w∞ + η max
1≤i≤p

1

wi

ε.

Then, by ensuring that

∥g(ȳ)− x̄∥w∞ ≤ ε, ε =
ε′

1 + η min
1≤i≤p

wi

,

we conclusively satisfy:

∥f(x̄)− x̄∥w∞ < ε+ η min
1≤i≤p

wi ε,

< ε′.

5.4 Conclusion
Building a distributed global solution vector x̄ under asynchronous iterations makes
it possible to design a termination criterion of the form

x̄ ≃ x∗ ⇐⇒ r(x̄) ≃ 0,
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where r is a residual error evaluation function, just as in classical synchronous com-
putation cases. This is therefore an efficient, decentralized and exact approach for
the asynchronous iterations termination problem, which is achieved, till now, only
through snapshot-based supervised termination, proposed in [35]. We presented
here a thorough investigation of such termination methods, based on the well-known
Chandy & Lamport snapshot algorithm [46], under various message delivering prop-
erties. We thus ended up improving [35] by minimizing overhead communication
costs from O(n) to O(1), according to a general characterization of non-FIFO mes-
sage delivering.

In synchronous iterations implementation, evaluating such a residual function is
classically achieved through a global reduction operation. Therefore, one may expect
very few implementation tasks to switch an existing solver into its asynchronous
counterpart, as long as non-blocking snapshot and reduction tools are provided. This
thus clearly depends on communication libraries, a matter which is discussed in the
next chapter, for the well-known Message Passing Interface (MPI) specification.



Chapter 6

Implementation of asynchronous
iterations

6.1 Algorithmic framework
6.1.1 Distributed iterative computing
Let us still consider arbitrary mappings (2.12), for which there exists a vector x∗ such
that f(x∗) = x∗. Algorithm 12 describes a trivial parallel procedure implementing
the classical computational model (2.10). For each iteration on each process, compu-

Algorithm 12 Trivial parallel iterative scheme
1: k := 0
2: repeat
3: xk+1

i := fi
(
xk1, . . . , x

k
p

)
4: for all j ∈ {1, . . . , i− 1, i+ 1, . . . , p} do
5: Request reception of xk+1

j from process j
6: Request sending of xk+1

i to process j
7: end for
8: Wait for communication completion
9: k := k + 1

10: until xk ≃ x∗

11: return xk

tation is performed first, then messages are sent and received. In the MPI framework,
any process willing to send data to a slower one thus needs to wait until the lat-
ter finishes its computation phase and requests the reception of the message. Such
dedicated communication phases could therefore considerably decrease the parallel
computational efficiency. A well known improvement consists of Algorithm 13 which
partially overlaps communication and computation phases. In this scheme, message

97
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Algorithm 13 Overlapping parallel iterative scheme
1: k := 0
2: repeat
3: for all j ∈ {1, . . . , i− 1, i+ 1, . . . , p} do
4: Request reception of xk+1

j from process j
5: end for
6: xk+1

i := fi
(
xk1, . . . , x

k
p

)
7: for all j ∈ {1, . . . , i− 1, i+ 1, . . . , p} do
8: Request sending of xk+1

i to process j
9: end for

10: Wait for communication completion
11: k := k + 1
12: until xk ≃ x∗

13: return xk

reception is requested from the beginning of the iteration, therefore a process can
start sending data immediately after its computation phase even when the destina-
tion process is still computing. This requires a little more memory space, since the
buffers xk+1

j and xkj are simultaneously accessed, but the overall computation time is
generally decreased compared to the trivial scheme. Indeed, there is almost no more
time dedicated to communication on slowest processes, which, on another hand, does
not provide much performance gain when the workload is perfectly balanced.

Yet, to reach a full overlapping algorithmic scheme where processes never idle
while waiting for communication completion, both the sets P k and the functions τ ij
from the general asynchronous iterations model (2.9) are left randomly defined by
every execution of Algorithm 14. Quite simply, as soon as a process terminates an
iteration, it starts a next one without waiting for the completion of communication
requests. If new data were not received, latest ones can just be used in the next
computation phase. Note that the global iteration variable k here remains abstract.

6.1.2 Asynchronous convergence detection
The loop stopping criterion in Algorithm 14 (line 11) ensures that the returned
vector surely belongs to a set S∗ of admissible solutions. It requires however to ex-
plicitly build a global vector x̄ =

(
xk11 , . . . , x

kp
p

)
which, then, will be evaluated as a

potential solution. We saw in Chapter 5 that the snapshot-based supervised termi-
nation approach is currently the sole decentralized way of handling a global vector
during distributed asynchronous iterations. Few remarks directly follow. First, the
coordination phase in the SB96 protocol [35] (Algorithm 7) is not required to be able
to build x̄, even though it is useful to avoid unnecessarily performing snapshots at a
stage where convergence is not yet likely to be reached. Similarly, partial snapshots
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Algorithm 14 Asynchronous parallel iterative scheme
1: ki := 0
2: repeat
3: for all j ∈ {1, . . . , i− 1, i+ 1, . . . , p} do
4: Request reception of xτ

i
j (k)

j from process j
5: end for
6: xki+1

i := fi

(
x
τ i1(k)
1 , . . . , xkii , . . . , x

τ ip(k)
p

)
7: for all j ∈ {1, . . . , i− 1, i+ 1, . . . , p} do
8: Request sending of xki+1

i to process j
9: end for

10: ki := ki + 1

11: until
(
xk11 , . . . , x

kp
p

)
≃ x∗

12: return
(
xk11 , . . . , x

kp
p

)

could be arbitrarily initiated, regardless local convergence conditions, just as a col-
lective operation requested by the application. This leads to Algorithm 15, which
thus introduces a general partial snapshot operation where each process records some
local data and send it (or a part of it) to its neighbor processes. Actually, such an

Algorithm 15 General partial snapshot operation
1: if x̄i undefined then
2: x̄i := xki+1

i

3: for all neighbors j ̸= i do
4: Send x̄i to j
5: end for
6: end if
7: if x̄j received from all neighbors j ̸= i and x̄i defined then
8: return x̄
9: end if

operation is really meaningful as a non-blocking global synchronization of parallel
processes, which allows one to completely overlap computation and global synchro-
nization phases, hence to run random asynchronous iterations with same stopping
criteria used in the classical synchronous context.
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6.2 Parallel programming pattern
6.2.1 MPI programming framework
Let us consider, for instance, a straightforward MPI-based implementation of Algo-
rithm 13 (line 2 to 12), as shown in Listing 6.1. Both declaration and initialization
of variables are omitted, as they can be easily deduced.

Listing 6.1: MPI-based overlapping scheme
1 while (res_vec_norm >= 1e-8) {
2 for (i = 0; i < numb_neighb; i++) {
3 MPI_Irecv(recv_buf2[i], rbuf_size[i], dtype , neighb_rank[i], tag,

comm, &(recv_request[i]));
4 }
5 Copy(sol_vec_buf , sol_vec_buf2);
6 Compute(recv_buf , sol_vec_buf);
7 Map(sol_vec_buf , send_buf);
8 for (i = 0; i < numb_neighb; i++) {
9 MPI_Isend(send_buf[i], sbuf_size[i], dtype , neighb_rank[i], tag,

comm, &(send_request[i]));
10 }
11 for (i = 0; i < sol_vec_size; i++) {
12 res_vec_buf[i] = abs(sol_vec_buf[i] - sol_vec_buf2[i]);
13 }
14 MPI_Allreduce(MPI_IN_PLACE , res_vec_buf , res_vec_size , dtype ,

MPI_MAX , comm);
15 res_vec_norm = max(res_vec_buf);
16 MPI_Waitall(numb_neighb , recv_request , MPI_STATUSES_IGNORE);
17 MPI_Waitall(numb_neighb , send_request , MPI_STATUSES_IGNORE);
18 Swap(recv_buf , recv_buf2);
19 }

A procedure Compute encloses the main computation part, which corresponds to

xk+1
i := fi

(
xk1, . . . , x

k
p

)
.

The variable sol_vec_buf (solution vector buffer) would therefore contain xki data as
input, and then xk+1

i data as output, while the variable recv_buf would contain the
set {xkj}j ̸=i. Using the procedure Copy, xki is first saved into the temporary variable
sol_vec_buf2, in view of a comparison between xki and xk+1

i . Next, a procedure
Map is called to set a message sending buffer for each neighbor process, based on
the newly computed solution. Here, for example, all of the sending buffers would
contain the same xk+1

i data. For the stopping criterion, we assume for instance an
iterative method verifying:

xk+1 ≃ x∗ ⇐⇒
∥∥xk+1 − xk

∥∥
∞ ≃ 0.

A function abs is therefore used to get the absolute value (or the module) of a real
(or a complex) number, while a function max gives the maximum entry of an array.
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The keyword MPI_IN_PLACE indicates that the variable res_vec_buf (residual
vector buffer) is used as both input and output of the collective reduction operation.
Finally, the procedure Swap exchanges two pointers, which is useful to avoid copy
of data when handling the temporary buffers recv_buf2.

Classically, MPI routines MPI_Irecv and MPI_Isend are used to request mes-
sage reception and sending, respectively, while the norm-based stopping criterion
is evaluated by means of the collective procedure MPI_Allreduce. As suggested
however in [27], it would be more efficient to take advantage of persistent requests
MPI_Recv_init and MPI_Send_init. This reduces the routines invocation over-
head, as shown by Listing 6.2, even if, on the other hand, it prevents one from
swapping pointers on reception buffers.

Listing 6.2: MPI-based overlapping scheme with persistent requests
1 for (i = 0; i < numb_neighb; i++) {
2 MPI_Recv_init(recv_buf2[i], rbuf_size[i], dtype , neighb_rank[i],

tag, comm, &(recv_request[i]));
3 MPI_Send_init(send_buf[i], sbuf_size[i], dtype , neighb_rank[i], tag,

comm, &(send_request[i]));
4 }
5 while (res_vec_norm >= 1e-8) {
6 MPI_Startall(numb_neighb , recv_request);
7 Copy(sol_vec_buf , sol_vec_buf2);
8 Compute(recv_buf , sol_vec_buf);
9 Map(sol_vec_buf , send_buf);

10 MPI_Startall(numb_neighb , send_request);
11 for (i = 0; i < sol_vec_size; i++) {
12 res_vec_buf[i] = abs(sol_vec_buf[i] - sol_vec_buf2[i]);
13 }
14 MPI_Allreduce(MPI_IN_PLACE , res_vec_buf , res_vec_size , dtype ,

MPI_MAX , comm);
15 res_vec_norm = max(res_vec_buf);
16 MPI_Waitall(numb_neighb , recv_request , MPI_STATUSES_IGNORE);
17 MPI_Waitall(numb_neighb , send_request , MPI_STATUSES_IGNORE);
18 Copy(recv_buf2 , recv_buf);
19 }

Implementing asynchronous iterative methods within the MPI framework obvi-
ously raises nontrivial questions related to the management of successive communi-
cation requests, the management of associated buffers and the evaluation of such a
stopping criterion. On performance side, for instance, it might be preferable to allow
for several message reception requests during computation phase, in order to use the
least delayed data. On another hand, one notices that overlapping (Algorithm 13)
and asynchronous schemes (Algorithm 14) nearly follow the same algorithmic pat-
tern. It could therefore be desirable to maintain a unique implementation code
where a parameter will be checked in order to produce, at runtime, either classical
or random asynchronous iterations.

Recently, Jack [52] was proposed as a C++ MPI-based communication library
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for distributed iterative computing, where the asynchronous convergence detection
issue was handled by means of the heuristic from [73]. It provides an application
programming interface (API) very close to MPI routines, including the definition
of a new type of communication request devoted to the automatic reception of any
incoming message during computation phases. The last received data are however
delivered into the computation reception buffer only when explicitly requested. Not
surprisingly, some communication objects still have to be managed outside the li-
brary, just as in classical MPI-based programming. We has therefore developed a
second version, Jack2 [51], by following a quite different design approach which pro-
vides a completely encapsulating API and allows exact convergence testing through
actual global residual computation.

6.2.2 Jack2 programming framework
In a study from [75] about the scalability of MPI-based applications, the authors
pointed out the fact that the MPI specification does not allow one to initially provide
information about communication graphs, while this could help optimizing commu-
nication resources. Such a graph should however be handled in a distributed way
to avoid memory overhead costs. Somehow though, [27] expressed a similar pro-
gramming pattern through the use of persistent requests, where message buffers
and neighbor processes are specified once for all before the iterations loop (see List-
ing 6.2). Jack2 follows same ideas to provide a complete initialization part for
repetitive communication parameters. Of course, our design remains flexible enough
to allow several ways of interacting with the library, which as well implies several
levels of encapsulation of communication objects.

Full initialization of a Jack2 communicator object therefore requires to explicitly
specify variables about communication graph, communication buffers and residual
evaluation. Listing 6.3 describes an implementation of the overlapping scheme within
the Jack2 framework.

Listing 6.3: Jack2-based overlapping scheme
1 JACKSyncComm <double ,int> sync_comm;
2 sync_comm.Init(mpi_comm);
3 sync_comm.InitRecv(recv_buf , rbuf_size , neighb_rank , numb_neighb);
4 sync_comm.InitSend(send_buf , sbuf_size , neighb_rank , numb_neighb);
5 sync_comm.InitAllReduce(res_vec_buf , res_vec_buf , res_vec_size ,

MPI_MAX);
6 while (res_vec_norm >= 1e-8) {
7 Copy(sol_vec_buf , sol_vec_buf2);
8 Compute(recv_buf , sol_vec_buf);
9 Map(sol_vec_buf , send_buf);

10 sync_comm.Send();
11 for (i = 0; i < sol_vec_size; i++) {
12 res_vec_buf[i] = abs(sol_vec_buf[i] - sol_vec_buf2[i]);
13 }
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14 sync_comm.AllReduce();
15 res_vec_norm = max(res_vec_buf);
16 sync_comm.Recv();
17 }
18 sync_comm.Finalize();

As soon as the communicator object is initialized with communication graph and
buffers, incoming communication channels are opened via MPI non-blocking re-
ception requests, so that each process is ready to receive computation data from
any of its neighbors. The method Recv of the class JACKSyncComm is meant to
deliver pending messages received from all of the neighbors, then to throw new re-
ception requests. The method Finalize therefore ensures the cancellation of the last,
unfulfilled, ones. Relatively to the MPI-based implementation, the temporary re-
ception buffers recv_buf2 are now internally managed by the library, and collective
reduction is made persistent too. The application thus does not need to handle
any pure communication-related object, barring communicators themselves. One
notices, as minor drawback, the method Send which is blocking when invoked on
a Jack2 synchronous communicator. This prevents one from overlapping message
sending and residual computation. Our send/receive semantic however follows the
put/get paradigm advocated by related works, e.g., [38] (Jace) and [42] (Crac).

With such an API, it becomes quite straightforward to handle communication re-
quests during random asynchronous iterations. Considering a communicator of type
JACKAsyncComm, only lines 11–15 of Listing 6.3 would be rearranged, as shown
in Listing 6.4 (lines 6–12). The initialization part of the communicator is omitted,
since the same interface is shared by both JACKAsyncComm and JACKSyncComm.

Listing 6.4: Jack2-based asynchronous scheme without accurate termination
1 while (res_vec_norm >= 1e-8) {
2 Copy(sol_vec_buf , sol_vec_buf2);
3 Compute(recv_buf , sol_vec_buf);
4 Map(sol_vec_buf , send_buf);
5 async_comm.Send();
6 async_comm.AllReduce(&end_flag);
7 if (end_flag) {
8 res_vec_norm = max(res_vec_buf);
9 for (i = 0; i < sol_vec_size; i++) {

10 res_vec_buf[i] = abs(sol_vec_buf[i] - sol_vec_buf2[i]);
11 }
12 }
13 async_comm.Recv();
14 }

Here, the methods Recv and Send are non-blocking, and the library regulates under-
lying MPI requests itself. Of course, messages can be received many times between
two successive Recv calls. The non-blocking version of the method AllReduce returns
a flag indicating whether the reduction operation is completed or not. Its input-
output parameter res_vec_buf can be safely accessed once the flag is armed, then
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the next AllReduce call automatically starts a new collective reduction. Nonethe-
less, in order to ensure correct termination, one needs to add the partial snapshot
operation previously described by Algorithm 15. Lines 1, 2 and 8–24 of Listing 6.5
indicate a possible pattern related to the integration of such a non-blocking collective
operation.

Listing 6.5: Jack2-based asynchronous scheme
1 async_comm.InitSnapshot(ss_sol_vec_buf , ss_recv_buf , sol_vec_buf ,

sol_vec_size);
2 reduce_flag = 0;
3 while (res_vec_norm >= 1e-8) {
4 Copy(sol_vec_buf , sol_vec_buf2);
5 Compute(recv_buf , sol_vec_buf);
6 Map(sol_vec_buf , send_buf);
7 async_comm.Send();
8 if (!reduce_flag) {
9 async_comm.Snapshot(&end_flag);

10 if (end_flag) {
11 Copy(ss_sol_vec_buf , sol_vec_buf2);
12 Compute(ss_recv_buf , ss_sol_vec_buf);
13 for (i = 0; i < sol_vec_size; i++) {
14 res_vec_buf[i] = abs(ss_sol_vec_buf[i] - sol_vec_buf2[i]);
15 }
16 reduce_flag = 1;
17 }
18 } else {
19 async_comm.AllReduce(&end_flag);
20 if (end_flag) {
21 res_vec_norm = max(res_vec_buf);
22 reduce_flag = 0;
23 }
24 }
25 async_comm.Recv();
26 }

Just like the method AllReduce, an armed flag is returned to indicate the end of
the snapshot operation. When so, the variables ss_sol_vec_buf and ss_recv_buf
respectively contain x̄i and {x̄j}j ̸=i data, so that invoking the procedure Compute
allows one to perform a global iteration

zi := fi (x̄1, . . . , x̄p) , ∀i ∈ {1, . . . , p},

whereupon each local residual vector is set to |zi − x̄i|. A flag-type variable re-
duce_flag is then armed to make the process enter the reduction phase which will
evaluate the global residual norm as

max
1≤i≤p

max |zi − x̄i|.
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It thus turns out that the stopping criterion implies:

f
(
xk11 , . . . , x

kp
p

)
≃ x∗ ⇐⇒

∥∥f (xk11 , . . . , xkpp )− (xk11 , . . . , xkpp )∥∥∞ ≃ 0,

with ki ≤ k, ∀i ∈ {1, . . . , p}.
Finally, to produce a unique code for both overlapping and asynchronous schemes,

the top front-end interface of Jack2 provides two classes, JACKComm and JACK-
Conv, which manage communication requests and convergence detection, respec-
tively. On message sending and reception aspects, JACKComm obviously features
the same init/send/recv interface shared by JACKSyncComm and JACKAsync-
Comm. Methods SwitchSync and SwitchAsync allows one to choose either blocking
or non-blocking mode at any time. Contrariwise, a general convergence detection
object needs one more layer of abstraction, due to the differences introduced for han-
dling the termination of asynchronous iterations. Moreover, initiating snapshots at
an early stage of the iterative process unnecessarily holds communication resources.
The convergence detector therefore implements some asynchronous iterations ter-
mination protocols described in Chapter 5. This leads to one another collective
routine which encompasses local convergence monitoring, snapshot and reduction
phases, according to each protocol. Such a routine thus additionally requires an
input flag-type parameter indicating at any time whether the process is under local
convergence or not. We mention however that the synchronous mode directly jumps
to the reduction phase.

Still, Listing 6.5 makes two calls of the procedure Compute, the second one be-
ing for performing an iteration with the snapshot-based solution vector. Being so
intrusive makes it hard to design a standalone method which would enclose the
whole global residual evaluation. Listing 6.6 instead describes a programming pat-
tern which shows the possibility to keep the application code separated from the
convergence detection procedure.

Listing 6.6: Non-intrusive Jack2-based asynchronous scheme
1 swap_flag = 0;
2 reduce_flag = 0;
3 while (res_vec_norm >= 1e-8) {
4 Copy(sol_vec_buf , sol_vec_buf2);
5 Compute(recv_buf , sol_vec_buf);
6 Map(sol_vec_buf , send_buf);
7 async_comm.Send();
8 if (swap_flag) {
9 for (i = 0; i < sol_vec_size; i++) {

10 res_vec_buf[i] = abs(sol_vec_buf[i] - sol_vec_buf2[i]);
11 }
12 Swap(recv_buf , ss_recv_buf);
13 Swap(sol_vec_buf , ss_sol_vec_buf);
14 reduce_flag = 1;
15 swap_flag = 0;
16 }
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17 if (!reduce_flag) {
18 async_comm.Snapshot(&end_flag);
19 if (end_flag) {
20 Swap(recv_buf , ss_recv_buf);
21 Swap(sol_vec_buf , ss_sol_vec_buf);
22 swap_flag = 1;
23 }
24 } else {
25 async_comm.AllReduce(&end_flag);
26 if (end_flag) {
27 res_vec_norm = max(res_vec_buf);
28 reduce_flag = 0;
29 }
30 }
31 async_comm.Recv();
32 }

Here now, once a snapshot is completed, buffers are temporarily swapped (lines 20
and 21) such that, at the next iteration, variables sol_vec_buf and recv_buf actually
contain the output of the snapshot, and hence the residual vector buffer is rightly
filled up using globally consistent data. Once done, the variables are swapped back
(lines 12 and 13), in order to avoid disrupting the main iterative process. Snapshot
buffers and swapping procedures could thus be managed by the standalone residual
evaluation routine if we explicitly distinguish local and global residual data. More
precisely, the library can internally make a copy of the residual vector buffer at
this iteration where it contains snapshot-based data, and then use its own internal
buffer as both input and output of the reduction operation. Listing 6.7 describes the
resulting general Jack2-based programming pattern for both classical and random
asynchronous iterations.

Listing 6.7: Jack2-based overlapping/asynchronous scheme
1 JACKComm <double ,int> comm;
2 JACKConv <double ,int> conv;
3 comm.Init(mpi_comm);
4 comm.InitRecv(recv_buf , rbuf_size , neighb_rank , numb_neighb);
5 comm.InitSend(send_buf , sbuf_size , neighb_rank , numb_neighb);
6 conv.Init(mpi_comm , neighb_rank , numb_neighb , neighb_rank ,

numb_neighb);
7 conv.InitAllReduce(res_vec_buf , res_vec_buf , res_vec_size , MPI_MAX);
8 if (async_flag) {
9 conv.InitSnapshot(&sol_vec_buf , sol_vec_size , &recv_buf , rbuf_size ,

send_buf , sbuf_size , &local_conv_flag);
10 comm.SwitchAsync();
11 conv.SwitchAsync();
12 }
13 while (res_vec_norm >= 1e-8) {
14 Copy(sol_vec_buf , sol_vec_buf2);
15 Compute(recv_buf , sol_vec_buf);
16 Map(sol_vec_buf , send_buf);
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17 comm.Send();
18 for (i = 0; i < sol_vec_size; i++) {
19 res_vec_buf[i] = abs(sol_vec_buf[i] - sol_vec_buf2[i]);
20 }
21 local_conv_flag = (max(res_vec_buf) < 1e-8);
22 conv.SnapReduce(&end_flag);
23 if (end_flag) {
24 res_vec_norm = max(res_vec_buf);
25 }
26 comm.Recv();
27 }

6.3 Architecture and design of Jack2
6.3.1 Overall features
As a C++ library, Jack2 follows, as much as possible, object-oriented paradigms
thoroughly integrated by the Unified Modeling Language (UML) [76], which is one
of the top popular theoretical tools for software modeling. Figure 6.1 proposes
an implementation-level UML class diagram describing the architecture of the li-
brary. Even though the classes JACKSyncComm and JACKAsyncComm share the
same types of operations, switching between blocking (SwitchSync) and non-blocking
(SwitchAsync) communication routines is a specific behavior of JACKComm, which
therefore is not a simple interface or an abstract class. Instead, delegation is con-
sidered by means of function pointers which allows us to invoke methods of the
appropriate class instance, according to the communication mode, without using
if conditions. The same pattern applies to classes JACKConv, JACKSyncConv
and JACKAsyncConv. Both communicators and convergence detectors rely on
instances of a class JACKAllReduce. For blocking modes, this simply results in
MPI_Allreduce calls, which will be the case for non-blocking modes too, with the
routine MPI_Iallreduce in versions supporting the third MPI specification. Our own
non-blocking reduction implementation is based on a distributed, non-deterministic,
leader election protocol designed over acyclic graphs (see, e.g., [74, Section 4.4.3]).
A class JACKSpanningTree therefore builds a distributed spanning tree upon the
application communication graph, yielding, for each process, neighbors in a commu-
nication tree (tneighb). If no graph information is specified, an all-to-all connectivity
(complete graph) is assumed, as currently implied by the MPI standard. The com-
munication tree is produced by means of an echo algorithm [77], which, contrarily
to a structural minimum spanning tree, effectively minimizes traversals time by
taking into account actual communication delays. At last, the class JACKSnapshot
implements the general partial snapshot given by Algorithm 15, while classes JACK-
SnapshotXXX relate to the snapshot-based supervised termination protocols SB96
(Algorithm 7 and Algorithm 8), NFAIS2 (Algorithm 6) and NFAIS5 (Algorithm 11),
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JACKConv

+ Init() : int
+ SwitchSync() : int
+ SwitchAsync() : int
+ SnapReduce(end_flag: ref<int>) : int
+ Finalize() : int

JACKSpanningTree

- mpi_comm: MPI_Comm
- numb_sneighb: U
- numb_rneighb: U
- sneighb_rank: U [ ]
- rneighb_rank: U [ ]
- root_rank: U
- numb_child: ref<U>
- numb_tneighb: ref<U>
- tneighb_rank: ref<U [ ]>

+ Init() : int
+ Build() : int
+ Finalize() : int

JACKSyncConv

+ Init() : int
+ SnapReduce() : int
+ Finalize() : int

JACKAsyncConv

+ Init() : int
+ SnapReduce(end_flag: ref<int>) : int
+ Finalize() : int

JACKSnapshot

- mpi_comm: MPI_Comm
- numb_sneighb: U
- numb_rneighb: U
- sneighb_rank: U [ ]
- rneighb_rank: U [ ]
- lbuf_size: U
- sbuf_size: U [ ]
- rbuf_size: U [ ]
- local_buf: T [ ]
- send_buf: T [ ] [ ]
- ss_local_buf: T [ ]
- ss_recv_buf: T [ ] [ ]

+ Init() : int
+ Start() : int
+ Update(end_flag: ref<int>) : int
+ Finalize() : int

JACKSnapshotSB96

- mpi_comm: MPI_Comm
- lconv_flag: ref<int>
- numb_sneighb: U
- numb_rneighb: U
- sneighb_rank: U [ ]
- rneighb_rank: U [ ]
- lbuf_size: U
- sbuf_size: U [ ]
- rbuf_size: U [ ]
- local_buf: T [ ]
- send_buf: T [ ] [ ]
- ss_local_buf: T [ ]
- ss_recv_buf: T [ ] [ ]

+ Init() : int
+ Update(end_flag: ref<int>) : int
+ Finalize() : int

JACKAllReduce

- mpi_comm: MPI_Comm
- buf_size: U
- send_buf: T [ ]
- reduce_op: MPI_Op
- recv_buf: T [ ]

+ Init() : int
+ Start() : int
+ Update(end_flag: ref<int>) : int
+ Finalize() : int

JACKAsyncComm

- mpi_comm: MPI_Comm
- numb_sneighb: U
- numb_rneighb: U
- sneighb_rank: U [ ]
- rneighb_rank: U [ ]
- sbuf_size: U [ ]
- rbuf_size: U [ ]
- send_buf: T [ ] [ ]
- recv_buf: T [ ] [ ]

+ Init() : int
+ Send() : int
+ Recv() : int
+ AllReduce(end_flag: ref<int>) : int
+ Snapshot(end_flag: ref<int>) : int
+ Finalize() : int

JACKSyncComm

- mpi_comm: MPI_Comm
- numb_sneighb: U
- numb_rneighb: U
- sneighb_rank: U [ ]
- rneighb_rank: U [ ]
- sbuf_size: U [ ]
- rbuf_size: U [ ]
- send_buf: T [ ] [ ]
- recv_buf: T [ ] [ ]

+ Init() : int
+ Send() : int
+ Recv() : int
+ AllReduce() : int
+ Finalize() : int

JACKComm

+ Init() : int
+ SwitchSync() : int
+ SwitchAsync() : int
+ Send() : int
+ Recv() : int
+ AllReduce(end_flag: ref<int>) : int
+ Snapshot(end_flag: ref<int>) : int
+ Finalize() : int

JACKSnapshotNFAIS2

- mpi_comm: MPI_Comm
- lconv_flag: ref<int>

+ Init() : int
+ Update(end_flag: ref<int>) : int
+ Finalize() : int

JACKSnapshotNFAIS5

- mpi_comm: MPI_Comm
- lconv_flag: ref<int>
- steady_max: U
- numb_sneighb: U
- numb_rneighb: U
- sneighb_rank: U [ ]
- rneighb_rank: U [ ]
- lbuf_size: U
- rbuf_size: U [ ]
- local_buf: T [ ]
- recv_buf: T [ ] [ ]
- ss_local_buf: T [ ]
- ss_recv_buf: T [ ] [ ]

+ Init() : int
+ Update(end_flag: ref<int>) : int
+ Finalize() : int

Figure 6.1: Main classes featuring the basic interface of Jack2.
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respectively. Other non-intrusive termination protocols can be added, following the
same pattern.

Jack2 does not launch any thread for its non-blocking collective operations. In-
stead, the execution of the underlying distributed protocols progresses each time a
call is made to the corresponding routine. Considering the non-blocking MPI oper-
ations which are almost always running in background, this prevents the library for
introducing additional concurrency against the computation part of the application,
which therefore can remain the main executed steps during asynchronous iterations.
Users thus have enough flexibility to regulate themselves the execution frequency of
Jack2 objects. Next sections give further details about their specific behavior.

6.3.2 Point-to-point communication
While it is commonly admitted that, during random execution of asynchronous
iterations, processes should benefit from the least delayed data, the classical corre-
sponding put/get semantic implies to only fill up the application buffers with the last
of the messages received between two successive calls of the message reception rou-
tine. To be more precise, let us once more consider the computational model (2.9),
and take ni, with i ∈ {1, . . . , p}, and n as in (2.5). Actually, convergence could be
guaranteed for a more general model featuring:

xk+1
l = fl

(
x
ρl1(k)
1 , . . . , xρ

l
n(k)

n

)
, l ∈ Nk, (6.1)

with, as well,

ρlt(k) ≤ k, ∀l, t ∈ {1, . . . , n}, Nk ⊆ {1, . . . , n}.

Nonetheless, delivering only last received messages consists of particularly setting:{
ρl1(k) = · · · = ρln1

(k), . . . , ρln−np+1(k) = · · · = ρln(k), ∀l ∈ {1, . . . , n},
ρ1t (k) = · · · = ρn1

t (k), . . . , ρ
n−np+1
t (k) = · · · = ρnt (k), ∀t ∈ {1, . . . , n}.

To be able to effectively implement the model (6.1) while allowing the possibility
to have ρl2t (k) > ρl1t (k), with l1 < l2 and both l1 and l2 belonging to, for instance,
the set {1, . . . , n1}, Jack2 instead delivers any incoming message directly into the
corresponding message reception buffer of the application. Therefore, at a given
loop iteration, processes can possibly use more recent data for last updated local
components, instead of only benefiting from data received at the beginning of the
computation phase. Such an approach for message reception provides more flexibility
since here also, users still have the possibility to manage two reception buffers if they
rather wish to avoid including data on the fly.

To achieve that, Jack2 is parameterized to activate several MPI reception re-
quests on each same reception buffer provided by the user application. The MPI
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specification guarantees FIFO delivering on communication links which are identi-
fied by the triplet communicator/source/tag. Therefore, the method Recv of the
class JACKAsyncComm is only meant to reactivate completed requests, as shown
for instance by Listing 6.8.

Listing 6.8: Method Recv of class JACKAsyncComm
1 for (i = 0; i < numb_rneighb; i++) {
2 for (j = 0; j < numb_req_per_rneighb; j++) {
3 MPI_Test(&(recv_req[i][j]), &flag, MPI_STATUS_IGNORE);
4 if (flag) {
5 MPI_Start(&(recv_req[i][j]));
6 }
7 }
8 }

Users are allowed to configure such a parameter (the number of reception requests
per neighbor) which defines a maximum message reception rate. This implies on
the other hand that allowing a higher message sending rate could lead to a counter
performance, as the number of pending MPI sending requests may quickly increase,
which would yield much more delayed iterations data. Jack2 therefore discards
message sending requests on busy communication links, as one can see in Listing 6.9.

Listing 6.9: Method Send of class JACKAsyncComm
1 for (i = 0; i < numb_sneighb; i++) {
2 MPI_Test(&(send_req[i]), &flag, MPI_STATUS_IGNORE);
3 if (flag) {
4 MPI_Start(&(send_req[i]));
5 }
6 }

With a sufficiently high message reception rate, all of the message sending re-
quests are theoretically able to be satisfied. We however note that, on homogeneous
computing resources anyway, it is unlikely to have a process running several itera-
tions while its neighbor is completing only one. On such platforms, very few incoming
messages are therefore expected during computation phases. In any case, discard-
ing message sending requests can be unavoidable if data transmission itself actually
covers at least two loop iterations, which somehow exhibits advantages of running
asynchronous iterations. In the put/get semantic, while a message is buffered for
being sent, it can be replaced by a new put call. This can be achieved here through
the MPI synchronous mode routine MPI_Issend, since data are not buffered by the
MPI library, if it follows the standard recommendation, and hence, the actual mes-
sage sending buffer is directly updated by the user application (procedure Map in
Listing 6.7, for instance).
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Figure 6.2: States and behavior of a JACKAllReduce instance.

6.3.3 Collective operations
We shall finally focus on non-blocking collective operations, which are not executed
within parallel threads, but instead progress at the pace of explicit requests from the
user application. These classes are designed from a state machine view, such that
each time their method Update is called, a set of apt conditions (seen as occurring
events) is checked in order to step forward in the execution of the distributed proto-
col. Each particular set of concurrently expected events therefore defines a state of
the running class instance. Here as well, in order to avoid if conditions, a function
pointer is moved throughout a set of private methods implementing each behavioral
state of the class.

Figure 6.2 presents an UML statechart diagram of the class JACKAllReduce.
Just like in the MPI specification, this operation successively consists of a reduction
and a broadcast phases. We recall that the reduction operation is performed along
with a tree-based leader election protocol described in [74, Section 4.4.3] (also see,
e.g., [52]). The broadcast messages then follow the inverse path of the reduction
messages. Upon start request, processes enter an UpdateReduce state where three
types of event are expected. Leaves in the tree potentially trigger the transition
toward an UpdateBCast state, since they have only one neighbor in the tree, and
therefore at least satisfy the condition “numb_reduce_recv = numb_tneighb - 1”.
They thus send their local input data to that neighbor. The other processes loop on
the UpdateReduce state while combining their local data with received ones, accord-
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Figure 6.3: States and behavior of a JACKSnapshot instance.

ing to the type of reduction, until they evolve toward either the UpdateBCast or the
initial Idle state. We should recall that the looping transition and the transition to
UpdateBCast are based on concurrent events, so that the former might be triggered
while the when condition of the latter is satisfied, which would results in reaching
the other condition “numb_reduce_recv = numb_tneighb”. Actually, this may hap-
pen to only one of the processes (the unique elected “leader”), which thus initiates
the broadcast phase. While being in the UpdateBCast state, processes thus expect a
broadcast message (containing the result of the reduction operation) from the neigh-
bor to which they previously sent their reduction message. The received data are
then forwarded to their other neighbors in the tree, and so on to the leaves. It may
however happen that all of the processes enter this UpdateBCast state. In this case,
two of them (the elected “co-leaders”) receive a last reduction message from each
other, upon which they both deduce the result of the reduction and broadcast it to
their other neighbors in the tree, then also return to the Idle state.

The protocols implemented as classes JACKSnapshot and JACKSnapshotXXX
have already been fully described through Algorithm 15 and Chapter 5. As summa-
rized by Figure 6.3, the general partial snapshot exhibits only one set of expected
events, which results in two quite simple states. It however clearly points out the
fact that the message sending buffer provided by the user application must always
contain consistent data, regarding the solution vector buffer (which is the local buffer
here). This implies, for instance in Listing 6.6, that the procedure Map should always
precede the call of the method Snapshot. The same remark also applies to snapshot-
based supervised termination. The SB96 protocol (Algorithm 7 and Algorithm 8)
is implemented by means of the statechart diagram in Figure 6.4. There, from an
UpdateCoordStart state, the leaves of the spanning tree instantly evolve toward an
UpdateSShotStart state, if they are under local convergence. Otherwise, they wait
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Figure 6.4: States and behavior of a JACKSnapshotSB96 instance.

in an UpdateCoordEnd state for local convergence. Except the root of the tree, the
other processes trigger the same transitions once they have received a coordination
message from all of their children. The root process instead initiates the snapshot
phase and enters an UpdateSShotEnd state. Once processes in the UdpateSShotStart
state again observes local convergence, they evolve to the UpdateSShotEnd state too,
but only if they received at least one snapshot message which triggered the looping
transition. Finally, from UpdateSshotEnd, processes switch back to UpdateCoord-
Start once all of their expected snapshot messages have been received.

Figure 6.5 to Figure 6.7 relate to the NFAIS1 (Algorithm 5), NFAIS2 (Algo-
rithm 6) and NFAIS5 (Algorithm 11) protocols, respectively, where one can see
differences about local convergence monitoring phases.
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Figure 6.5: States and behavior of a JACKSnapshotNFAIS1 instance.

Figure 6.6: States and behavior of a JACKSnapshotNFAIS2 instance.
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Figure 6.7: States and behavior of a JACKSnapshotNFAIS5 instance.



Chapter 7

Experimental results

7.1 Implementation of asynchronous iterations
7.1.1 Experimental setting
To investigate implementation options of the proposed programming framework, we
plugged Jack2 into an existing scientific application devoted to the parallel resolution
of convection-diffusion problems of the form

∂u

∂t
− ν∆u+ a.∇u = s,

where u is the unknown function defined on R+×([0, 1])3. The host software applica-
tion implements regular finite-differences and backward Euler discretization schemes,
which results in solving successive sparse linear systems of the form

Ax = b, x ∈ Rn,

over small constant time steps. The three-dimensional domain ([0, 1])3 is decomposed
in a two-dimensional coarse grid on the (x,y)-plane, as shown on Figure 7.1. Parallel
solutions are computed by following a non overlapping additive Schwarz pattern [43]
(see also, e.g., [44]) where Gauss-Seidel iterations are performed inside each sub-
domain. The main program sets up corresponding band-diagonal matrices, each
band being stored as a separate one dimensional array, then it sequentially runs
a time iterations loop wherein the linear system solver is invoked by each of the
parallel processes. Communication requests inside the solver procedure have been
reshaped from the MPI to the Jack2 framework. Each process handles exactly one
sub-domain, and the number of processes always equals the number of processor
cores used. Figure 7.2 gives an example of one linear system resolution with 16
processes, where we notice, for asynchronous iterations, the temporary discontinuity
of the solution over the interface between the sub-domains.

Experiments have been led on two mono-site computational platforms.

116
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Figure 7.1: Domain discretization and partitioning schemes for Jack2 experimenta-
tion.

Figure 7.2: Comparison example of synchronous (top) and asynchronous (down)
iterative solutions.

• An SGI ICE X supercomputer of 92 nodes on an FDR Infiniband network (56
Gb/s), provided by CentraleSupélec, Université Paris-Saclay, France. Each
node consists of two Intel Haswell Xeon CPUs with 12 cores (24 cores per
node) at 2.30 GHz, and 60 GB RAM allocated to running jobs. The MPI
library SGI-MPT has been loaded as communication middleware.

• A Bullx B510 supercomputer of 5040 nodes, on a QDR Infiniband network
(40 Gb/s), provided by the GENCI (Grand Equipement National de Calcul
Intensif), at the TGCC (Très Grand Centre de calcul du CEA), France, under
the Grant 2014-t2014069065. Each node consists of two Intel Sandy Bridge
Xeon CPUs with 8 cores (16 cores per node) at 2.70 GHz, and 64 GB RAM
allocated to running jobs. The MPI library Bullxmpi (OpenMPI) has been
loaded as communication middleware.

Subsequent results summarize a wide set of experimental measurements related to
each linear system resolution. Featured items are:

• residuals r := ∥Ax̃− b∥∞, where x̃ is the returned solution,
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• execution times in seconds, denoted as ”wt” (wall-clock time),

• numbers of iterations k := max1≤i≤p{ki}, where ki is the number of iterations
on the i-th process (we see from Table 7.2 that, for asynchronous iterations,
the maximum number did quite well correlate with the execution time),

• numbers of snapshots, denoted as ”ss”,

• and maximum numbers of discarded send requests, denoted as ”unsent”.

Experimental parameters include the problem size n, the number of MPI processes
p, the maximum admissible residual r∗ = 10−6, and the maximum number of active
MPI reception requests concurrently handled for each neighbor of a process, denoted
as ”rpn” (requests per neighbor).

7.1.2 Worse-cases scalability
Although it is well established for additive Schwarz domain decomposition meth-
ods that random asynchronous iterations run faster than their synchronous coun-
terparts, we show here, for record, interesting scalability results obtained on high
numbers of processor cores. Regardless the iterations schemes, the two-dimensional
grid partitioning (Figure 7.1) is a typical case of poorly scalable parallel configu-
ration where, despite an increasing number of sub-domains, interface sizes far less
decrease (while sub-domain size is divided by q, interface size is divided by √

q),
which yields strong impacts of communication times on the expected performance
of the algorithms. This allows us to observe asynchronous iterations behavior in
such highly communication-dependent configurations, even on homogeneous com-
putational platforms. Table 7.1 illustrates typical execution times that we measured
on the Bullx B510 cluster, while varying both the number of sub-domains and the size
of the discrete problem. Figure 7.3 provides a corresponding quick overview. We

Sync. iter. Async. iter.
p 3

√
n n/p

256 170 19191
512 175 10468
1024 180 5695
2048 185 3092
5600 185 1131

r × 107 wt k

8.32 56 70099
8.33 48 106930
8.33 66 184614
8.46 126 443067
8.88 150 479154

r × 107 wt k

7.07 37 85365
6.18 33 138214
6.85 33 245365
8.45 50 626641
8.64 28 817913

Table 7.1: Worse-cases scalability of asynchronous iterations.
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Figure 7.3: Worse-cases scalability of asynchronous iterations.

see, indeed, that, from 512 processes, despite a decreasing sub-domain size, execu-
tion time increases for both synchronous and asynchronous iterations. Nonetheless,
the latter clearly features far less sensitivity to communication delays, allowing a
speedup which increased from 1.45 (for 512 processes) to 2.52 (for 2048 processes),
over the former. More importantly, with a fixed problem size n = 1853, synchronous
iterations did not successfully scale to 5600 processes, while asynchronous iterations
still ran almost twice faster than with 2048 processes, reaching a speedup of 5.36
over the former.

7.1.3 Point-to-point communication
We now focus on items discussed about point-to-point communication management
in Jack2. Table 7.2 reports some results illustrating the general trend observed
on the SGI ICE X cluster, where corresponding synchronous iterations featured
r = 8.33 × 10−7, wt = 255 and k = 128504. With only one active reception re-
quest per neighbor, the MPI_Isend-based implementation of Jack2 made the solver
procedure exceed the limit wall-clock time set to 4 hours. While looking at the
corresponding results for the MPI_Issend-based implementation, we see that the
number of discarded message sending requests was tremendously high, revealing
that up to 48% of iterative updates remained unsent. As expected, with a non-
buffering routine though (MPI_Issend), actual sending buffers were continuously
updated even if requests were dismissed, which yielded less delays on dependencies.
It followed that the execution time did not depend at all on the MPI sending re-
quest rate. Note however that, since the computational platform is homogeneous,
processes performed their iterations approximately at the same pace, which required
no more than two concurrently active reception requests per neighbor for making
the MPI_Isend-based implementation fully effective. It even ran slightly faster than
the MPI_Issend-based one, which suggests better performance from buffering the
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MPI_Issend MPI_Isend
rpn
1
2
3
4
5
20
50

r × 107 wt k unsent
6.21 239 146440 84579
6.61 236 144723 747
6.67 236 144243 533
6.28 236 144325 543
6.46 236 144392 532
6.61 237 144256 626
6.25 241 144958 586

r × 107 wt k unsent
- >4h - -

6.38 228 140157 356
5.90 228 140327 341
6.31 228 139779 349
6.03 229 140035 362
5.91 229 140624 344
6.63 232 141332 350

Table 7.2: Performance of MPI_Issend-based and MPI_Isend-based implementa-
tions of Jack2, with p = 192, n = 1803.

communicated data.

7.1.4 Convergence detection
A third set of experiments particularly addresses convergence detection matters and
the efficiency of the corresponding collective routines. We consider here, on one
hand, the method SnapReduce from Listing 6.7, which implements snapshot-based
supervised termination protocols in Chapter 5, and on the other hand, the pro-
gramming pattern from Listing 6.6, which makes direct use of the general methods
Snapshot (Algorithm 15) and AllReduce (based on leader election [74, Section 4.4.3]).
On practical aspects, few remarks follow about the proposed AIS protocols. First,
non-FIFO AIS protocols 1 (NFAIS1) and 2 (NFAIS2) are very close to AIS proto-
cols 1 (AIS1) and 2 (AIS2), respectively, and differ only about the content of the
marker. Furthermore, AIS2 turns out to be a particular instance of the non-FIFO
AIS protocol 5 (NFAIS5), when one would consider η = 0. Secondly, the non-FIFO
AIS protocol 4 (NFAIS4) is a generalization of NFAIS5, based on a behavior not
likely to occur in most mono-site high performance computing platforms. At last,
the non-FIFO AIS protocol 3 (NFAIS3) is designed for very specific circumstances
where markers exchange is preferably to be avoided. We therefore focus here on
NFAIS1, NFAIS2 and NFAIS5, which should behave very similarly to the other AIS
protocols.

Table 7.3 highlights comparative performance of the two asynchronous scheme
programming patterns on the SGI ICE X cluster. Contrarily to the discussion about
the scalability results, the termination protocols were less sensitive here to the par-
titioning scheme, as mostly, differences in termination delay depend on local conver-
gence monitoring. On such an homogeneous platform, the supplementary reduction
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Sync. Snapshot+AllReduce (SSAR)
p

168
240
360
480
600

r × 107 wt k

8.33 701 281916
8.31 516 284118
8.33 382 287557
8.32 302 289933
8.32 278 292163

r × 107 wt k ss
5.03 536 346226 12456
6.18 378 366231 11033
5.72 250 355394 7972
5.40 202 406611 8275
5.23 168 432390 6856

SnapReduce SB96 [35] SnapReduce NFAIS1
p

168
240
360
480
600

r × 107 wt k ss
6.55 641 319703 140
6.52 462 342476 118
6.71 310 335008 94
6.43 249 380524 101
6.55 207 404544 82

r × 107 wt k ss
5.94 650 323569 2620
6.56 465 344438 2528
5.11 316 339933 2001
5.22 254 388084 2162
5.11 213 417004 2186

SnapReduce NFAIS2 SnapReduce NFAIS5
p

168
240
360
480
600

r × 107 wt k ss
5.90 644 320335 354
5.95 466 344229 305
5.33 314 339274 248
5.62 252 384967 276
5.13 210 411327 259

r × 107 wt k ss
6.54 640 319349 299
6.42 463 343295 256
5.19 314 339204 300
6.63 250 383745 219
6.06 209 410621 255

Table 7.3: Performance of convergence detection procedures, with n = 1853.

operation in the coordination phase of the SB96 protocol is fast enough to allow
approximately same execution times than simulations making use of coordination-
free AIS protocols. We therefore, as expected, only confirm here the accuracy of
the snapshot-based supervised termination approach. It is even noticeable that the
final residuals were quite stable, especially for SB96 (6× 10−7 < r < 7× 10−7) and
NFAIS2 (5 × 10−7 < r < 6 × 10−7), which strengthens the practical reliability of
such protocols.

Nonetheless, a quite unexpected efficiency result came out, as clearly depicted on
Figure 7.4. While the local convergence monitoring led to fewer numbers of snapshots
than the SSAR-based pattern, this was not relevant for the solver to execute faster.
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Figure 7.4: Performance of convergence detection procedures, with n = 1853.
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Figure 7.5: Monitored convergence of asynchronous iterations, with p = 168, n =
1853.

Instead, we notice that the monitoring-based programming pattern yielded longer
iterations, since related results feature lower numbers of iterations despite far higher
execution times. This came from the fact that, in the SSAR approach, local residual
norm is not required to be computed at every iteration. It therefore turned out
that the communication overhead costs introduced by regular and frequent snapshot
executions were negligible compared to the impact of the systematic evaluation of a
local convergence criterion. Besides that, the SSAR-based pattern made it possible
to analyze actual global convergence behavior of asynchronous iterations, just like
for synchronous ones, as shown in Figure 7.5.
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Figure 7.6: Close up view of the salt dome geometry.

7.2 Asynchronous space domain decomposition
7.2.1 Experimental setting
To illustrate our substructures-based iterative model, we consider test cases re-
lated to the study of the Chicxulub impact crater, located underneath the town
of Chicxulub, in the southwest of Mexico on the Yucatán Peninsula. One of the
techniques used to study this geological formation is the gravity method, which al-
lows to quantify differences in the Earth’s gravitational field at specific locations.
Detected anomalies of the gravitational field allow scientists to draw conclusions
about the geological structures, and to determine the depth, density and geometry
of the gravitational anomaly sources. For these numerical experiments, data acqui-
sition have been performed on a physical domain covering the Yucatán Peninsula
with an area of 250 km × 250 km and reaching 15 km in depth. From these measure-
ments, the localization and the concentration of the salt-dome for instance can be
determined with strong accuracy. The value of the density ρ (see equation (7.1)) ob-
tained with data acquisition is shown in Figure 7.6. Using the data thus collected,
one of the techniques to analyze geological formation is the method of potential,
which describes the subsurface and which consists in determining mass density dis-
tribution correlated with seismic velocities. For completeness, we described this in
more detail. The gravity force is the resultant of the gravitational attraction and
the centrifugal force. The gravitational potential of a spherical density distribution
is equal to

Φ(r) = G
m

r
,

with m being the mass of the object, r being the distance to the object and G being
the universal gravity constant given by:

G = 6.672× 10−11m3kg−1s−2.
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Figure 7.7: Measurements of the gravitational potential in the Yucatán Peninsula.

The gravitational potential at a given position x initiated by an arbitrary density
distribution ρ is given by:

Φ(x) = G

∫
(ρ(x′)/||x− x′||) dx′, (7.1)

where x′ represents one point position within the density distribution. Here, we
consider only the regional scale of the gravimetry equations, therefore we do not take
into account the effects of the centrifugal force. As a consequence, the gravitational
potential Φ of a density anomaly distribution δρ is given as the solution of the
Poisson equation

∆Φ = −4πGδρ,

where δρ was obtained from field measurements. Measurements of the gravitational
potential in Yucatán Peninsula are shown in Figure 7.7 and they illustrate the strong
variation of the potential in the center of this area.

The numerical solution of the gravitational potential equation required for this
study was done on a parallelepiped geometric domain of dimensions 750 km × 750 km
× 45 km. At the center of this geometry, the volume of dimensions 250 km × 250 km
× 15 km is meshed with small regular-size finite elements, and outside this volume,
the mesh is composed of larger finite elements. One example of the meshes used for
the simulation is shown in Figure 7.8, along with a partitioning into 64 sub-domains.
The finite element solution on a plane at 1.5 km below the surface of the domain is
shown in Figure 7.9, illustrating that, indeed, there is a variation of the gravity in
the region which is consistent with the impact of a large object.

For the parallel methods performance, we considered two meshing consisting of,
respectively, 71407 and 525213 degrees of freedom (DOF), along with 60000 and
480000 finite elements. Experiments were led on an heterogeneous cluster of 3 sets
of 4 nodes (12 nodes) on a star-shaped 10Mb/s Ethernet network. Each node of a
first set consists of an Intel Xeon E5410 CPU with 8 cores, at 2.33 GHz, and 8 GB
RAM. A second set consists of Intel Core i7 CPUs (8 cores), at 2.80 GHz, and 8 GB
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Figure 7.8: Finite element mesh (first) and partitioning (second).

Figure 7.9: Finite element solution in the center of the Yucatán Peninsula, 1.5 km
below the surface.

RAMs. The nodes of the third set consist of Intel Xeon E5-2609 CPU with 24 cores,
at 2.10 GHz, and 16 GB RAM. This provides a total of 160 CPU cores. The MPI
library OpenMPI has been used as communication middleware. Parameters include
the problem size n (number of DOF), the number of sub-structures p (which equals
the number of MPI processes) and the maximum admissible residual set to10−6.
Subsequent results feature:

• execution times in seconds, denoted as ”wt” (wall-clock time),

• and efficiencies (in percentage) over sequential execution, denoted as ”eff”.

7.2.2 Performance results
We first give an overview of the computational cost in Table 7.4 which shows results
from sequential execution of a classical Jacobi iterative method. For parallel execu-
tion, we considered a row-band decomposition of the Jacobi iterative mapping, and
the sparsity of the matrix was taken into account so that communication is avoided



126 CHAPTER 7. EXPERIMENTAL RESULTS

n k wt
71407 6234 159.5
525213 13791 2713.0

Table 7.4: Reference sequential results for space domain sub-structuring test cases.

between processes which do not share any non-zero coefficient. Such a scheme is
compared to the substructures-based Jacobi splitting where communication is more
strictly related to interface nodes only. We see the clear performance gain in both
Table 7.5 and Table 7.6, which was exacerbated by the flattened shape of the do-
main geometry. Still, on scalability aspects of these two methods, increasing the
number of processor cores hardly improved the execution time, especially for the
small problem (Table 7.5). On the bigger case (Table 7.6), where the workload per
process becomes quite more important than the interface size (which however in-
creases too), the performance of the row-band Jacobi got outright decreasing, while
the sub-structuring method kept slightly scaling. Finally, as expected, introducing
asynchronous iterations into the sub-structuring method led us to even better scal-
ability, and it is rather noticeable to have the efficiency possibly increase (from 48
to 64 processes, 38.16% to 42.01%).

Row-band Jacobi Sub-struct. Jacobi Sub-struct. Async.
p

16
48
64

wt eff
133.1 7.49
151.7 2.19
149.2 1.67

wt eff
22.9 43.58
22.9 14.48
22.6 11.02

wt eff
32.7 30.52
21.9 15.19
16.8 14.80

Table 7.5: Performance of asynchronous sub-structuring, with n = 71407.

Row-band Jacobi Sub-struct. Jacobi Sub-struct. Async.
p

16
48
64

wt eff
7399.3 2.29
10769.9 0.52
11921.9 0.36

wt eff
273.7 61.95
191.9 29.46
164.6 25.76

wt eff
243.8 69.55
148.1 38.16
100.9 42.01

Table 7.6: Performance of asynchronous sub-structuring, with n = 525213.



7.3. ASYNCHRONOUS TIME DOMAIN DECOMPOSITION 127

7.3 Asynchronous time domain decomposition
7.3.1 Experimental setting
For experiments about asynchronous time domain decomposition, we consider a
decentralized implementation of the Parareal, where the coarse propagator is dis-
tributed upon the N processes, as shown by Algorithm 16 (also see, e.g., [78]).
The main advantage is that this avoids any risk of bottleneck when the number of

Algorithm 16 Decentralized Parareal
1: n := process rank
2: N := number of processes
3: λ00 := u0
4: for all i ∈ {1, . . . , n+ 1} do
5: w0

i := G(λ0i−1)
6: λ0i := w0

i

7: end for
8: k := 0
9: repeat

10: if n ≤ k then
11: λk+1

n := λkn
12: else
13: Request reception of λk+1

n from process n− 1
14: end if
15: vkn+1 := F (λkn)
16: if n > k then
17: Wait for reception of λk+1

n

18: end if
19: wk+1

n+1 := G(λk+1
n )

20: λk+1
n+1 := wk+1

n+1 + vkn+1 − wk
n+1

21: if k ≤ n < N − 1 then
22: Request sending of λk+1

n+1 to process n+ 1
23: end if
24: k := k + 1
25: until ∥λkn+1 − λk−1

n+1∥ ≃ 0, ∀n ∈ {0, . . . , N − 1}

time sub-domains increases. For performance comparison, the asynchronous ver-
sion follows the same decentralized scheme, which also provides a better rate of
communication and then accelerates its convergence.

The experimental case consists in simulating an apartment gradually cooled by an
air conditioner. The apartment is 10 meters length, 6.4 meters width and 3.4 meters
height. It is composed of an American kitchen (a bar, two stools) and a living room
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Figure 7.10: Finite element mesh for the Parareal test case.

Figure 7.11: Simulation of heat distribution: times t = 1, t = 10, t = 20 and t = 30.

(one sofa, two chairs, one television and one air conditioner). The Computer Aided
Design (CAD) model was performed with the CATIA V5 proprietary software from
© Dassault Systèmes, then the air volume inside the apartment was discretized with
finite elements. Figure 7.10 shows the corresponding finite element mesh composed
of 171478 tetrahedra and 33796 nodes. The initial temperature is set to 86.0 degrees
Fahrenheit (30 degrees Celsius), and the air cooling system continuously diffuses a
gentle breeze at 73.4 degrees Fahrenheit (23 degrees Celsius). Boundary conditions
are in Robin form on the floor and walls, in Neumann form on objects inside the
room, and in Dirichlet form on the air conditioner. We consider trapezoidal rule and
backward Euler discretization, respectively for the fine and the coarse propagators,
and with respective time steps δt = 0.002 and ∆T = 0.2 (∆T/δt = 100). Figure 7.11
shows the evolution of the temperature over time.
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Experiments have been led on an SGI Altix ICE supercomputer of 68 nodes on a
QDR Infiniband network (40 Gb/s), provided by CentraleSupélec, Université Paris-
Saclay, France. Each node consists of two Intel Xeon X5650 CPUs with 6 cores
(12 cores per node) at 2.66 GHz, and 21 GB RAM allocated to running jobs. The
MPI library SGI-MPT has been loaded as communication middleware. Parameters
include the number of time sub-domains N (which equals the number of MPI pro-
cesses), the total simulated physical time T , and the maximum admissible residual
r∗ = 10−6 > max1≤n≤N ∥λkn+1

n − λknn ∥. Subsequent results feature:

• residuals r := max1≤n≤N ∥λ̃n − λ∗n∥, where λ̃ is the returned solution, and λ∗,
the solution from the fine sequential integration,

• execution times in seconds, denoted as ”wt” (wall-clock time),

• and numbers of iterations k := max1≤n≤N{kn}, where kn is the number of
iterations on the n-th process.

7.3.2 Performance results
With a constant workload per time sub-domain (100 fine time steps), several ex-
ecutions were conducted for various number of processes. We therefore observed
performance evolution while the simulated physical time was increasing. Table 7.7
reports average results. In spite of always approximately twice more iterations

Parareal sync. iter. Parareal async. iter.
N T

16 3.2
24 4.8
32 6.4
48 9.6
64 12.8
90 18.0

r wt k

1.49E-07 280 10
1.86E-07 420 14
3.75E-08 691 20
4.95E-11 1169 32
3.75E-08 1488 44
4.75E-11 2676 64

r wt k

5.01E-08 342 24
1.06E-07 502 34
1.71E-08 644 44
3.33E-11 922 66
2.79E-10 1255 92
4.78E-11 1938 149

Table 7.7: Performance of Parareal asynchronous iterations, with δt = 0.002, ∆T =
0.2.

performed (see Figure 7.12, right), the asynchronous iterative scheme successfully
converged faster than the classical Parareal for 32 and more processes. We was then
able, for instance, to save around 12 minutes over 44, at 90 time sub-domains.
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Figure 7.12: Performance of Parareal asynchronous iterations, with δt = 0.002,
∆T = 0.2.



Chapter 8

Conclusion

8.1 Theoretical aspects
There is undoubtedly an interest in HPC about the ability to run parallel iterations
with highly flexible synchronization requirements. So far, very few general compu-
tational models successfully design asynchronous iterations, however an extensive
literature is available for their convergence analysis. When therefore it comes out
to apply or extend such models to some specific parallel framework, an accurate
overview of applicable convergence results would constitute a non-negligible asset.
We thus firstly provide in this report a quite complete theoretical tool as a quick ref-
erence guide for establishing the convergence of new asynchronous iterative methods,
based on existing general results.

While studying the application of asynchronous iterations to the space domain
decomposition framework, we saw for instance that analyzing the convergence of a
primary basic asynchronous iterations model could be done through the analysis of
a secondary corresponding model of asynchronous iterations with memory. More
precisely, given a linear problem

Ax = b,

and a splitting
A =M −N,

an induced asynchronous iterative domain decomposition mapping f(x) (overlap-
ping or not) could be equivalently analyzed through another asynchronous iterative
mapping g(y1, . . . , ym) defined on an interface-based Schur complement in A. Such
relations therefore provide much more flexibility in the design and the convergence
analysis of new parallel computational models based on the various domain de-
composition methods. This came out from our theoretical investigation of both a
partitioning-based additive Schwarz parallel scheme and a domain sub-structuring
approach where a sub-part of the interface, containing off-diagonal coefficients of
the corresponding sub-matrix, is disassembled. Using then the framework of asyn-
chronous iterations with memory g(y1, . . . , ym) on the Schur complement inversion
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problem, we successfully developed a new asynchronous iterative sub-structuring
method which is convergent under the same conditions than the asynchronous sub-
structuring approach recently proposed in [47], but is however far more efficient for
parallel computation.

While asynchronous iterations are usually applied in parallel computing on space
domain decomposition, we addressed in a part of this thesis their application to time
domain decomposition for the discretization of time-dependent PDEs

f(u(t), t) = 0,

focusing precisely on the Parareal iterative scheme. By considering a totally dis-
tributed iteration model, our proposition was to introduce asynchronism at the
coarse propagator level, which is the sequential part of the algorithm. Expect-
edly, it resulted that for this asynchronous parallel-in-time method derived from
the Parareal scheme, convergence is guaranteed under conditions slightly more re-
strictive, but still applicable. Further, and quite surprisingly, these conditions for
asynchronous convergence asymptotically coincide with their synchronous counter-
part as the number of time sub-domains grows. It follows from our convergence
analysis that different iterative schemes could be intertwined to design an asyn-
chronous parallel-in-time method based on multiple operators. Theoretical perfor-
mance analysis confirmed a possible performance gain from asynchronous iterations,
however the Parareal scheme features an inherent speedup limit due to an unavoid-
able sequential propagation of some computed values, regardless the inter-process
synchronization time.

8.2 Implementation aspects
On implementation aspects, the problem of detecting the convergence of asyn-
chronous iterations has been tackled in many various ways. Nonetheless, very few
existing termination methods are based on the computation of a global residual
error. Furthermore, mostly, more or less intrusive approaches were investigated,
turning out to be quite complicated, without necessarily providing a minimal termi-
nation delay. For instance, most prominent asynchronous convergence tests feature
at least two reduction operations, while we managed here to achieve effective detec-
tion with only one, and at lower communication costs. We proposed in this thesis
several asynchronous iterations termination methods based on global residual error,
under various communication models. First-in-first-out (FIFO) environments allow
us to rely on simple protocols using control messages devised from the well-known
Chandy–Lamport distributed snapshot. Considering computational performance,
FIFO communication is essential at least for computation messages. We there-
fore managed to exhibit another method which avoids control messages in a context
where the FIFO delivering is not guaranteed for messages of different types. This so-
lution can however be slightly intrusive at implementation, and should be considered
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only when other non-FIFO methods are not applicable. To therefore characterize
a general non-FIFO model, we assume on every channel (in one direction) a maxi-
mum number of messages that can be crossed by any given other message. Arbitrary
non-FIFO delivering actually corresponds to the asymptotic case where this max-
imum number exceeds the total amount of messages emitted on the channel. We
showed here how approximations could be used to avoid including computation data
into control messages, which constitutes an improvement of existing residual-based
termination methods, in terms of communication overhead costs. The reliability of
these approximations have been formally established, providing a practical way of
accurately setting the convergence residual threshold.

Taking full advantage of asynchronous iterations is still a challenging computa-
tional matter which possibly requires more suitable parallel programming patterns.
By designing specialized libraries, researchers therefore aim to provide efficient asyn-
chronous iterations environments requiring lowest possible implementation costs for
users. We addressed during this thesis the development of Jack2, an MPI-based
communication library for distributed iterative computing. It features an API quite
close to the MPI specification, which makes it easy to upgrade existing MPI-based
applications toward the Jack2 programming framework, wherein a handful set of
tools is already available for the experimental study of asynchronous iterations. Key
results from our investigation are twofold. First, regarding the convergence detection
issue arising from random execution of asynchronous iterations, existing distributed
approaches involve some local convergence criterion, as researchers rightly argued so
far that it is ineffective to check global convergence at early stages of the computa-
tion where local convergence is not even somehow persistent on any of the processes.
This perfectly matches the classical parallel programming pattern where a local con-
vergence residual is evaluated at each iteration. By considering here an exact general
snapshot-based approach to directly evaluate consistent global residuals, we showed
that systematic irrelevant local residual computation could be, on the contrary, far
more time consuming than a distributed protocol uselessly executed concurrently
with the main computation phase. Such an important practical aspect seems to
have been missed till now. While focusing, on another hand, on delays minimization
in the iterative process, it came out from obtained experimental execution times
that best performances could be reached by suitably combining outgoing message
buffering with the MPI synchronous communication mode. This is currently under
consideration for further experiments.

8.3 Prospects and future work
The innovative nature of this research piece of work is undoubtedly widening, a little
more, the application field of asynchronous iterations. Besides possible further the-
oretical analysis, fast and cheap experimental studies on much more scientific prob-
lems are now feasible with our non-intrusive MPI-based C++ programming library,
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which could thus be accordingly improved at the same time for more applicability
and efficiency. Further investigation about non-blocking global synchronization for
distributed convergence detection is needed as well, and could even be an interesting
approach for synchronous iterations.

Domain decomposition methods constitute a top prominent research field in par-
allel numerical simulation. While overlapping decomposition was successfully inves-
tigated for the application of asynchronous iterations, we have highlighted here an
analysis framework for primal and dual sub-structuring methods, respectively on
space and time domains. In the case of space domains, for instance, we have pro-
posed two practical primal approaches, while we fully investigated only one of them.
A direct extension of our results can thus be obtained by applying same analysis prin-
ciples to the second approach. More generally, this would lead us to consider various
other primal sub-structuring frameworks, as well as dual and mixed approaches.

Still, preconditioning techniques are one important missing aspect in this dis-
sertation, nonetheless, we are currently achieving some preliminary steps toward
asynchronous application of coarse space correction, and more generally, multigrid
methods. For now, being able to experiment the performance of our asynchronous
space domain decomposition methods against current fastest synchronous solutions,
on more than five thousand distributed processor cores, is a very next step to be
taken, as we believe that this could reveal new surprising results.



Appendix A

Résumé

A.1 Contexte et motivation
La loi d’Amdahl [1] établit une limite sur l’accélération que l’on peut espérer de
la parallélisation d’une tâche, indépendamment du nombre d’unités de traitement
(processeur) utilisés. Cela est dû à une portion non-parallélisable, liée à la gestion des
données, inévitable pour garantir l’équivalence entre des exécutions monoprocesseur
et multiprocesseur. Cette accélération maximale possible est donnée par:

s(p, α) =
1

α + 1−α
p

<
1

α
,

avec p ≥ 1 étant le nombre de processeurs et, α < 1, la proportion non-parallélisable.
Par ailleurs, atteindre en pratique cette accélération maximale requiert un mécan-
isme d’équilibrage de charge effectif afin d’obtenir la division exacte

1− α

p

de la partie strictement parallèle. Enfin, dans l’éventualité alors où un très haut degré
de parallélisation est atteint, se pose également la problématique de la tolérance aux
pannes, ce qui introduit potentiellement une couche supplémentaire d’utilisation des
ressources de traitement.

Nous nous intéressons, dans cette étude, à la simulation numérique parallèle de
phénomènes modélisés à l’aide d’équations aux dérivées partielles

δ(u(s, t), s, t) = 0, t ∈ [0, T ], T ∈ R, s ∈ Ω ⊂ R3,

où u est une fonction dans R ou C, décrivant l’état du phénomène dans le do-
maine spatial Ω et le domaine temporel [0, T ]. Les méthodes de décomposition
de domaine [2] permettent de traiter séparément, en parallèle, différentes parties
d’un même domaine, tout en assurant une cohérence globale qui se traduit par une
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(a) Domaine (b) Partition (c) Sous-domaines (d) Interface

Figure A.1: Décomposition de domaine.

cohérence de part et d’autre des interfaces de jointure entre ces sous-domaines. Fig-
ure A.1 en donne une illustration empirique. Ces méthodes maximisent alors la
parallélisation des solveurs numériques, en ce sens qu’elles rendent parallélisables
les éventuelles opérations d’entrée-sortie et de pré ou post traitement. Elles ont par
ailleurs l’intérêt d’être naturellement adaptées à une conception de système complexe
par assemblage de composants. Néanmoins, les approches de décomposition les plus
efficaces à ce jour font intervenir des méthodes itératives pour résoudre un prob-
lème dérivé posé aux interfaces, ce qui introduit une séquence d’étapes parallèles, et
donc une portion strictement séquentielle de gestion de données correspondant aux
synchronisations bloquantes inter-processeurs. Ce séquencement déterministe rend
également toute défaillance d’un processeur fatale au calcul en cours d’exécution.

Ainsi, la possibilité de séquences aléatoires sur chaque sous-domaine, qui con-
vergeraient néanmoins toujours vers une même solution globale (très sensiblement),
serait la clé pour aboutir à des solveurs à la fois naturellement résilients aux dé-
faillances (temporaires) et potentiellement parallélisables à l’infini. Les méthodes
itératives asynchrones [16], introduites contemporainement à la loi d’Amdahl, mod-
élisent cette classe d’algorithmes itératifs sans portion non parallélisable. L’objectif
de cette thèse est d’étudier l’application de la théorie des itérations asynchrones aux
méthodes de décomposition de domaine, incluant l’analyse des conditions de conver-
gence, la détection de l’état de convergence d’un calcul en cours, et l’implémentation
rapide et efficace, voire non-intrusive, d’itérations asynchrones.

A.2 Itérations asynchrones
A.2.1 Modèle calculatoire
Soit, à résoudre, une équation

Ax = b, x ∈ Cn,

x étant un vecteur de n inconnues complexes. Soit M , une matrice inversible, et f ,
une fonction donnée par

f(x) = (I −M−1A)x+M−1b.
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En remarquant que
A =M − (M − A),

l’on formule ainsi un problème de recherche de point fixe de f , étant donné que

Ax = b ⇐⇒ f(x) = x.

Une approche itérative classique pour trouver ce point fixe x∗ consiste à générer une
suite {xk}k∈N telle que

xk+1 = f(xk), (A.1)
et telle que, pour n’importe quel vecteur initial x0 donné, elle converge vers une
solution unique, i.e,

lim
k→+∞

xk = x∗.

Dans un contexte parallèle avec p processeurs, p ≤ n, l’on considère une décom-
position de vecteur de la forme

x =


x1
...
xp

 , f(x) =


f1(x)

...
fp(x)

 ,
ce qui conduit aux itérations parallèles données par:

xk+1
i = fi(x

k
1, . . . , x

k
p), ∀i ∈ {1, . . . , p}.

L’exemple d’exécution suivant, correspondant à Figure A.2, illustre les portions
séquentielles marquées par des temps d’attente dus aux délais de communication:

x11 := f1(x
0
1, x

0
2) x12 := f2(x

0
1, x

0
2)

attente attente
x21 := f1(x

1
1, x

1
2) x22 := f2(x

1
1, x

1
2)

x31 := f1(x
2
1, x

2
2) attente

attente x32 := f2(x
2
1, x

2
2)

attente x42 := f2(x
3
1, x

3
2)

Un mode d’exécution parallèle désynchronisée, illustré par Figure A.3, correspondrait
donc à la séquence itérative suivante, où les temps de communication sont entière-
ment recouverts par le calcul:

x11 := f1(x
0
1, x

0
2) x12 := f2(x

0
1, x

0
2)

x21 := f1(x
1
1, x

0
2) x22 := f2(x

0
1, x

1
2)

x31 := x21 x32 := f2(x
1
1, x

2
2)

x41 := f1(x
3
1, x

2
2) x42 := f2(x

2
1, x

3
2)

x51 := f1(x
4
1, x

3
2) x52 := f2(x

2
1, x

4
2)
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Figure A.2: Exécution parallèle synchrone, avec temps d’attente (en rouge).

Figure A.3: Exécution parallèle asynchrone, avec recouvrement des retards (en or-
ange).

Ainsi, les méthodes itératives asynchrones génèrent des suites {xk}k∈N telles que

xk+1
i =

 fi

(
x
τ i1(k)
1 , . . . , x

τ ip(k)
p

)
, ∀i ∈ Pk,

xki , ∀i /∈ Pk,
(A.2)

avec
τ ij(k) ≤ k, Pk ⊆ {1, . . . , p}.

Ce modèle est complété par deux hypothèses de non interruption définitive, concer-
nant, respectivement, la mise à jour et la transmission de composante i:

∀i ∈ {1, . . . , p}, card{k ∈ N | i ∈ Pk} = +∞,

∀i, j ∈ {1, . . . , p}, lim
k→+∞

τ ij(k) = +∞.

De façon plus générale, l’on peut considérer une fonction quelconque, non néces-
sairement linéaire,

f : Em → E, m ∈ N∗,

avec Em étant le produit cartésien de m ensembles E, et un problème de recherche
de point fixe x tel que

f(x, x, . . . , x) = x.

Le modèle itératif asynchrone correspondant est donné par

xk+1
i =

 fi

(
x
τ i1,1(k)

1 , . . . , x
τ ip,1(k)
p , . . . , x

τ i1,m(k)

1 , . . . , x
τ ip,m(k)
p

)
, ∀i ∈ Pk,

xki , ∀i /∈ Pk.
(A.3)
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A.2.2 Conditions de convergence
Théorème A.1 (voir, par exemple, Theorem 2.1 dans [53]). Le modèle itératif
synchrone (A.1) est convergent si, et seulement si,

ρ(I −M−1A) < 1,

ρ(.) désignant le rayon spectral.
Théorème A.2 (Chazan & Miranker, 1969 [21]). Le modèle itératif asynchrone (A.2)
est convergent si, et seulement si,

ρ(|I −M−1A|) < 1,

|.| désignant la valeur absolue.
Théorème A.3 (Miellou, 1975 [17]). Le modèle itératif asynchrone (A.3), avec
m = 1, est convergent s’il existe une matrice T ≥ O (non-négative), de rayon
spectral ρ(T ) < 1, telle que

∀x, y ∈ E, |f(x)− f(y)| ≤ T |x− y|.

Théorème A.4 (El Tarazi, 1982 [19]). Le modèle itératif asynchrone (A.3), avec
m = 1, est convergent s’il existe un vecteur w > 0 (positif) et un réel positif α < 1
tels que

∀x, y ∈ E, ∥f(x)− f(y)∥w∞ ≤ α∥x− y∥w∞,
∥.∥w∞ désignant la norme infinie pondérée.
Théorème A.5 (Bertsekas, 1983 [20, 16]). Le modèle itératif asynchrone (A.3),
avec m = 1, est convergent s’il existe une suite d’ensembles {S(t)}t∈N, avec

S(t) = S
(t)
1 × · · · × S(t)

p , S(t+1) ⊂ S(t), lim
t→+∞

S(t) = {x∗},

et telle que
∀x ∈ S(t), f(x) ∈ S(t+1), x0 ∈ S(0).

Théorème A.6 (Baudet, 1978 [18]). Le modèle itératif asynchrone (A.3) est con-
vergent s’il existe une matrice T ≥ O, de rayon spectral ρ(T ) < 1, telle que

∀X,Y ∈ Em, |f(X)− f(Y )| ≤ T max(|x(1) − y(1)|, . . . , |x(m) − y(m)|),

avec
X = (x(1), . . . , x(m)), Y = (y(1), . . . , y(m)).

Théorème A.7 (El Tarazi, 1982 [19]). Le modèle itératif asynchrone (A.3) est
convergent s’il existe un vecteur w > 0 et un réel positif α < 1 tels que

∀X,Y ∈ Em, ∥f(X)− f(Y )∥w∞ ≤ αmax{∥x(1) − y(1)∥w∞, . . . , ∥x(m) − y(m)∥w∞},

avec
X = (x(1), . . . , x(m)), Y = (y(1), . . . , y(m)).
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A.3 Décomposition asynchrone spatiale
A.3.1 Modèle calculatoire
Soit, à résoudre, une équation

A1,1 O A1,Γ

O A2,2 A2,Γ

AΓ,1 AΓ,2 A
(1)
Γ,Γ + A

(2)
Γ,Γ



x1

x2

xΓ

 =


b1

b2

b
(1)
Γ + b

(2)
Γ

 ,
où xi, avec i ∈ {1, 2}, est un vecteur d’inconnues défini sur un domaine Ωi, et xΓ, un
vecteur d’inconnues défini sur un domaine interface joignant Ω1 et Ω2. En procédant
par substitution de soit x1, soit x2, un tel système devient, soit[

A1,1 A1,Γ

AΓ,1 A
(1)
Γ,Γ + A

(2)
Γ,Γ − AΓ,2A

−1
2,2A2,Γ

][
x1

xΓ

]
=

[
b1

b
(1)
Γ + b

(2)
Γ − AΓ,2A

−1
2,2b2

]
,

soit [
A2,2 A2,Γ

AΓ,2 A
(1)
Γ,Γ + A

(2)
Γ,Γ − AΓ,1A

−1
1,1A1,Γ

][
x2

xΓ

]
=

[
b2

b
(1)
Γ + b

(2)
Γ − AΓ,1A

−1
1,1b1

]
.

L’on suppose alors un contexte de résolution où, de chacun de ces points de vue
i ∈ {1, 2}, les données liées au domaine Ωj, avec j ∈ {1, 2} et j ̸= i, sont inconnues,
ce qui conduit à deux différentes nouvelles équations,[

A1,1 A1,Γ

AΓ,1 A
(1)
Γ,Γ + Λ

(1)
Γ,Γ

][
x1

x
(1)
Γ

]
=

[
b1

b
(1)
Γ + λ

(1)
Γ

]

et [
A2,2 A2,Γ

AΓ,2 A
(2)
Γ,Γ + Λ

(2)
Γ,Γ

][
x2

x
(2)
Γ

]
=

[
b2

b
(2)
Γ + λ

(2)
Γ

]
,

dont les solutions, quelles que soient Λ
(1)
Γ,Γ et Λ

(2)
Γ,Γ choisies, sont celles de l’équation

globale si, et seulement si, x
(1)
Γ = x

(2)
Γ ,

λ
(1)
Γ − Λ

(1)
Γ,Γx

(1)
Γ = −

(
λ
(2)
Γ − Λ

(2)
Γ,Γx

(2)
Γ

)
,

conditions par lesquelles elles sont rendues cohérentes sur l’interface de jointure entre
Ω1 et Ω2. En substituant de nouveau x1 et x2, nous aboutissons à un problème défini
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uniquement sur cette interface, donné par:

(
A

(1)
Γ,Γ − AΓ,1A

−1
1,1A1,Γ + Λ

(1)
Γ,Γ

)
x
(1)
Γ = b

(1)
Γ + λ

(1)
Γ − AΓ,1A

−1
1,1b1,(

A
(2)
Γ,Γ − AΓ,2A

−1
2,2A2,Γ + Λ

(2)
Γ,Γ

)
x
(2)
Γ = b

(2)
Γ + λ

(2)
Γ − AΓ,2A

−1
2,2b2,

x
(1)
Γ = x

(2)
Γ ,

λ
(1)
Γ − Λ

(1)
Γ,Γx

(1)
Γ = −

(
λ
(2)
Γ − Λ

(2)
Γ,Γx

(2)
Γ

)
.

Identifions les compléments de Schur,

S
(i)
Γ,Γ := A

(i)
Γ,Γ − AΓ,iA

−1
i,i Ai,Γ, i ∈ {1, 2},

et désignons:
d
(i)
Γ := b

(i)
Γ − AΓ,iA

−1
i,i bi, i ∈ {1, 2}.

L’approche dite duale de résolution de ce problème d’interface consiste à éliminer
par substitution les inconnues

x
(i)
Γ =

(
S
(i)
Γ,Γ + Λ

(i)
Γ,Γ

)−1 (
d
(i)
Γ + λ

(i)
Γ

)
, i ∈ {1, 2}.

Nous considérerons à l’inverse, pour cette toute première étude de l’application des
itérations asynchrones dans un tel cadre de décomposition de domaine, l’approche
dite primale où sont plutôt éliminées les inconnues

λ
(i)
Γ =

(
S
(i)
Γ,Γ + Λ

(i)
Γ,Γ

)
x
(i)
Γ − d

(i)
Γ , i ∈ {1, 2}.

Ceci conduit à: {
x
(1)
Γ = x

(2)
Γ ,

S
(1)
Γ,Γx

(1)
Γ + S

(2)
Γ,Γx

(2)
Γ = d

(1)
Γ + d

(2)
Γ ,

d’où le problème primal d’interface(
S
(1)
Γ,Γ + S

(2)
Γ,Γ

)
xΓ = d

(1)
Γ + d

(2)
Γ ,

avec
xΓ = x

(1)
Γ = x

(2)
Γ .

Soit donc, pour p domaines joints, un problème primal d’interface
p∑

i=1

S
(i)
Γ,ΓxΓ =

p∑
i=1

d
(i)
Γ .

Une résolution itérative asynchrone requiert la formulation d’un problème de point
fixe à partir d’une matrice M , en considérant une scission (splitting) de la forme

p∑
i=1

S
(i)
Γ,Γ =M −

(
M −

p∑
i=1

S
(i)
Γ,Γ

)
.
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Cependant, les formes classiques de scission (Jacobi, Gauss-Seidel, SOR, ...) im-
pliquent au minimum la connaissance de

diag

p∑
i=1

S
(i)
Γ,Γ,

ce qui n’est pas réalisable en pratique dans un tel contexte de décomposition de
domaine où le problème d’interface n’est qu’implicitement posé. Nous proposons
donc dans cette thèse une forme de scission avec

M =MΓ,Γ :=

p∑
i=1

M
(i)
Γ,Γ,

déduite implicitement de scissions

A
(i)
Γ,Γ =M

(i)
Γ,Γ −

(
M

(i)
Γ,Γ − A

(i)
Γ,Γ

)
, i ∈ {1, . . . , p}.

Néanmoins, une résolution par le modèle itératif asynchrone (A.2), avec

f(xΓ) =

I −( p∑
i=1

M
(i)
Γ,Γ

)−1 p∑
i=1

S
(i)
Γ,Γ

xΓ +

(
p∑

i=1

M
(i)
Γ,Γ

)−1 p∑
i=1

d
(i)
Γ , (A.4)

induirait une décomposition de vecteur, telle qu’on aurait

xΓ =


(xΓ)1

...
(xΓ)p

 .
Nous proposons donc également, à partir de cette nouvelle forme de scission, un tout
autre modèle itératif permettant de conserver l’approche initiale de décomposition
de domaine, où l’on a

xΓ = x
(1)
Γ = · · · = x

(p)
Γ .

Ce nouveau modèle est obtenu en considérant sur chaque processeur i ∈ {1, . . . , p},
les relaxations successives du problème interface entier, données par:

p∑
j=1

M
(j)
Γ,Γx

(i),k+1
Γ =

(
p∑

j=1

M
(j)
Γ,Γ −

p∑
j=1

S
(j)
Γ,Γ

)
x
(i),k
Γ +

p∑
j=1

d
(j)
Γ

=

p∑
j=1

(
M

(j)
Γ,Γ − S

(j)
Γ,Γ

)
x
(i),k
Γ + d

(j)
Γ ,
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puis en les entrelaçant en
p∑

j=1

M
(j)
Γ,Γx

(i),k+1
Γ =

p∑
j=1

(
M

(j)
Γ,Γ − S

(j)
Γ,Γ

)
x
(j),k
Γ + d

(j)
Γ ,

ce qui permet de conserver le calcul de chaque terme j de la somme à droite de
l’égalité sur le processeur j associé. De là, on déduit le modèle itératif asynchrone
défini par:

y
(i),k
Γ =

(
M

(i)
Γ,Γ − S

(i)
Γ,Γ

)
x
(i),k
Γ + d

(i)
Γ , ∀i ∈ {1, . . . , p},

p∑
j=1

M
(j)
Γ,Γx

(i),k+1
Γ =



p∑
j=1

y
(j),τ ij (k)

Γ , ∀i ∈ Pk,

p∑
j=1

M
(j)
Γ,Γx

(i),k
Γ , ∀i /∈ Pk.

(A.5)

A.3.2 Conditions de convergence
Notons:

A :=



A1,1 O · · · O A1,Γ

O A2,2
. . . ... ...

... . . . . . . O Ap−1,Γ

O · · · O Ap,p Ap,Γ

AΓ,1 · · · AΓ,p−1 AΓ,p

p∑
i=1

A
(i)
Γ,Γ


.

Proposition A.1. Le modèle itératif asynchrone (A.2), avec f définie par (A.4),
est convergent si A et

∑p
i=1M

(i)
Γ,Γ sont des M-matrices, et si

p∑
i=1

M
(i)
Γ,Γ − A

(i)
Γ,Γ ≥ O.

Une M-matrice est une matrice dont les coefficients hors-diagonaux sont non-
positifs, et dont l’inverse est non-négative. L’on peut donc voir, par exemple,
dans [55, Corollary 3.24], qu’une matrice de Stieltjes est une M-matrice. Une ma-
trice de Stieltjes est une matrice symétrique définie positive dont les coefficients
hors-diagonaux sont non-positifs.

Corollaire A.1. Le modèle itératif asynchrone (A.2), avec f définie par (A.4), est
convergent si A est une M-matrice, et si

M
(i)
Γ,Γ = blockdiagA

(i)
Γ,Γ, ∀i ∈ {1, . . . , p}.
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Proposition A.2. Le modèle itératif asynchrone (A.2), avec f définie par (A.4),
est convergent si

∑p
i=1 S

(i)
Γ,Γ est une M-matrice, et si

p∑
i=1

M
(i)
Γ,Γ = γI, γ ≥ maxdiag

p∑
i=1

S
(i)
Γ,Γ.

Lemme A.1 (Crabtree & Haynsworth, 1969 [66]). Un complément de Schur d’une
M-matrice est une M-matrice.

Corollaire A.2. Le modèle itératif asynchrone (A.2), avec f définie par (A.4), est
convergent si A est une M-matrice, et si

p∑
i=1

M
(i)
Γ,Γ = γI, γ ≥ maxdiag

p∑
i=1

A
(i)
Γ,Γ.

Remarque A.1. Le modèle itératif asynchrone (A.5), avec

Pk = {1, . . . , p}, τ ij(k) = k, ∀i, j ∈ {1, . . . , p}, ∀k ∈ N,

est convergent si le modèle itératif asynchrone (A.2), avec f définie par (A.4), est
convergent.

Notons:

M̃ :=



A1,1 O · · · O O

O A2,2
. . . ... ...

... . . . . . . O O

O · · · O Ap,p O

O · · · O O

p∑
i=1

M
(i)
Γ,Γ


.

Théorème A.8. Le modèle itératif asynchrone (A.5) est convergent si

ρ(|I − M̃−1A|) < 1,

et si ∣∣∣∣∣∣
p∑

i=1

(
p∑

j=1

M
(j)
Γ,Γ

)−1 (
M

(i)
Γ,Γ − A

(i)
Γ,Γ

)∣∣∣∣∣∣ =
p∑

i=1

∣∣∣∣∣∣
(

p∑
j=1

M
(j)
Γ,Γ

)−1 (
M

(i)
Γ,Γ − A

(i)
Γ,Γ

)∣∣∣∣∣∣ .
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A.4 Décomposition asynchrone temporelle
A.4.1 Modèle calculatoire
Soit, à résoudre, une équation aux dérivées partielles (EDP)

δ(u(s, t), s, t) = 0, t ∈ [0, T ], s ∈ Ω,

avec une condition initiale, u(Ω, 0), donnée. Considérons, comme précédemment,
deux domaines temporels, [0, T1] et [T1, T ], de telle sorte qu’en équivalence, l’on
pourrait écrire: 

δ(u0(s, t), s, t) = 0, t ∈ [0, T1], s ∈ Ω,

u0(Ω, 0) = u(Ω, 0),

δ(u1(s, t), s, t) = 0, t ∈ [T1, T ], s ∈ Ω,

u1(Ω, T1) = u0(Ω, T1).

Ainsi, en supposant, sur chaque domaine, des conditions initiales inconnues, l’on
peut formuler deux équations indépendantes,{

δ(u0(s, t), s, t) = 0, t ∈ [0, T1], s ∈ Ω,

u0(Ω, 0) = λ0(Ω),

et {
δ(u1(s, t), s, t) = 0, t ∈ [T1, T ], s ∈ Ω,

u1(Ω, T1) = λ1(Ω),

dont les solutions sont celles de l’équation globale si, et seulement si,{
λ0(Ω) = u(Ω, 0),

λ1(Ω) = u0(Ω, T1).

Soit maintenant F , une fonction dite de propagation fine, qui, à une condition initiale
donnée sur un domaine temporel, fait correspondre la fonction solution de l’EDP à
l’instant final. Précisément, l’on a:

F (λ0) = u0(Ω, T1), F (λ1) = u1(Ω, T ).

Soit également G, une fonction dite de propagation grossière, qui, à une condi-
tion initiale donnée sur un domaine temporel, fait correspondre une approximation
grossière, peu coûteuse à évaluer, de la fonction solution de l’EDP à l’instant final.
Précisément, l’on a:

G(λ0) = ũ0(Ω, T1), G(λ1) = ũ1(Ω, T ).
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L’approche dite du Parareal [14] consiste à déterminer, de façon itérative, u0(Ω, T1)
et u1(Ω, T ), sans nécessairement effectuer une propagation fine séquentielle sur le
domaine global. Il s’agit donc de tendre vers une évaluation temps-réel de l’état d’un
phénomène à un instant T quelconque à venir. Pour cela, les solutions ũ0(Ω, T1) et
ũ1(Ω, T ) sont ”prédites” à l’aide du propagateur G, puis, tenant compte de l’écart
avec les solutions u0(Ω, T1) et u1(Ω, T ) issues du propagateur F appliqué aux mêmes
conditions initiales que G, les prédictions à l’itération suivante sont réajustées. Cela
donne, par exemple, l’exécution parallèle suivante, que l’on voit résulter néanmoins
en une propagation fine séquentielle, du fait des deux derniers pas sur [T1, T ], ce qui
traduit une non convergence des prédictions itératives:

λ00 := u(Ω, 0)

λ01 := G(λ00) attente [0, T1]

λ02 := G(λ01) [T1, T ]

F (λ00) F (λ01) [0, T1], [T1, T ]

λ10 := λ00

λ11 := G(λ10) + F (λ00)−G(λ00) attente [0, T1]

λ12 := G(λ11) + F (λ01)−G(λ01) [T1, T ]

λ20 := λ10; λ
2
1 := λ11 F (λ11) [T1, T ]

λ22 := G(λ21) + F (λ11)−G(λ11) [T1, T ]

Soit donc, pour p domaines temporels joints, le modèle itératif défini par:
λ00 = u(Ω, 0),

λ0i = G(λ0i−1), ∀i ∈ {1, . . . , p},
λk+1
0 = λk0,

λk+1
i = G(λk+1

i−1 ) + F (λki−1)−G(λki−1), ∀i ∈ {1, . . . , p}.

(A.6)

Nous étudions ici sa généralisation en:

λ00 = u(Ω, 0),

λ0i = G(λ0i−1), ∀i ∈ {1, . . . , p},
λk+1
0 = λk0,

λk+1
i =

{
G(λ

τi−1,1(k)
i−1 ) + F (λ

τi−1,2(k)
i−1 )−G(λ

τi−1,2(k)
i−1 ), ∀i ∈ Pk,

λki , ∀i /∈ Pk.

(A.7)

A.4.2 Conditions de convergence
Considérons une discrétisation temporelle et spatiale telle que

G(λi) = Gλi + c, F (λi) = Fλi + d, i ∈ {0, 1, . . . , p− 1},
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où G et F sont des opérateurs linéaires, et posons:

λ =


λ0

λ1
...
λp

 , λ∗ =


u(Ω, 0)

u(Ω, T1)
...

u(Ω, T )

 .

Nous étendons explicitement aux PDE les résultats de [45] sur les équations différen-
tielles ordinaires, pour le modèle itératif synchrone (A.6):

Proposition A.3. Le modèle itératif synchrone (A.6) génère une suite {λk}k∈N telle
que

∥λk − λ∗∥∞ ≤ αk∥λ0 − λ∗∥∞,

avec
α =

1− θp

1− θ
∥F − G∥, θ ̸= 1, θ ≥ ∥G∥.

Remarque A.2.

lim
p→+∞

1− θp

1− θ
∥F − G∥ =


+∞, θ > 1,

1

1− θ
∥F − G∥, θ < 1.

Le modèle itératif synchrone (A.6) est donc stable, quelque soit p, si

θ < 1,

ce qui implique également que
∥G∥ < 1.

Corollaire A.3. Dans sa région de stabilité, le modèle itératif synchrone (A.6) est
convergent si

∥G∥+ ∥F − G∥ < 1 + ∥G∥p∥F − G∥.

Remarque A.3.

∥G∥ < 1 =⇒ lim
p→+∞

∥G∥p∥F − G∥ = 0.

Ainsi, dans sa région de stabilité, le modèle itératif synchrone (A.6) est asympto-
tiquement convergent si

∥G∥+ ∥F − G∥ < 1.

Nous montrons alors que:
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Proposition A.4. Le modèle itératif asynchrone (A.7) génère une suite {λk}k∈N
telle que

∥λk − λ∗∥∞ ≤ α̃τ(k)∥λ0 − λ∗∥∞,

avec
α̃ = ∥G∥+ ∥F − G∥, lim

k→+∞
τ(k) = +∞.

Corollaire A.4. Le modèle itératif asynchrone (A.7) est convergent si

∥G∥+ ∥F − G∥ < 1.

A.5 Terminaison d’itérations asynchrones
A.5.1 Détection de convergence asynchrone
Soit, en cours de résolution itérative sur p processeurs, un problème de point fixe

f(x)− x = 0,

où x est un vecteur d’inconnues complexes. Soit r une fonction de x telle que

r(x) ≃ 0 =⇒ x ≃ x∗.

La détection de convergence asynchrone consiste donc à évaluer (de façon non-
bloquante) une assertion

r(x̄) ≃ 0, x̄ =


xk11
...
x
kp
p

 ,
à partir d’une suite {xk}k∈N en cours de génération suivant le modèle itératif asyn-
chrone (A.2). Les principales approches (distribuées) dans l’état de l’art sont basées
sur

• une modification du processus itératif afin d’en assurer une terminaison en
temps fini (Bertsekas et Tsitsiklis, 1989 [33]; El Baz, 1996 [34]; Savari et Bert-
sekas, 1996 [35]),

• une évaluation exacte du résidu r(x̄) à partir d’une capture d’état global x̄
(Savari et Bertsekas, 1996 [35]),

• une prédiction approximative du nombre d’itérations nécessaire à la conver-
gence (Evans et Chikohora, 1998 [36]),
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• une supervision de la concordance et de la persistance des convergences locales
(Bahi et al., 2005 [73], 2008 [37]),

• une évaluation de diamètre d’ensembles emboîtés à partir de ”macro-itérations”
(Miellou et al., 2008 [48]).

L’approche par modification a l’inconvénient majeur d’être intrusive et de requérir
la prise en compte, au niveau du modèle itératif, d’hypothèses supplémentaires.
L’approche par ensembles emboîtés, abordée sur un plan essentiellement mathéma-
tique, laisse entrevoir, sur le plan d’une implémentation distribuée, des techniques
intrusives d’encapsulation de messages de contrôle (piggybacking). Les approches
par supervision des convergences locales et par prédiction de nombre d’itérations ne
garantissent pas l’exactitude d’une convergence détectée. Enfin, bien que l’approche
par capture d’état global permette une évaluation exacte du résidu global, sa mise
en œuvre proposée par [35] requiert des messages de contrôle de même taille que les
messages de calcul.

Nous proposons donc, dans cette thèse, l’évaluation exacte, non-intrusive, du
résidu global avec des messages de contrôle de taille unitaire constante. Table A.1
donne un aperçu des caractéristiques de ces principales méthodes, NFAIS (Non-FIFO
Asynchronous Iterations Snapshot) étant celle que nous proposons et détaillons dans
la section suivante.

A.5.2 Approche exacte par résidu global
L’évaluation exacte d’un résidu global r(x̄) passe par la capture d’un état global x̄,
suivie d’une opération classique de réduction pour y appliquer la fonction r, le tout
de façon distribuée et non-bloquante, en parallèle du processus itératif. La capture
distribuée de l’état global d’un système distribué a été introduite par [46], où le
protocole suivant fut proposé afin d’assurer un état global cohérent:

• initiateur(s) ou sur première réception d’un marqueur:

1. enregistrer l’état local,
2. envoyer un marqueur aux voisins,
3. débuter l’enregistrement des messages de calcul reçus;

• sur réception d’un marqueur:

1. cesser l’enregistrement des messages de calcul, pour le voisin correspon-
dant;

• sur réception d’un message de calcul:

1. enregistrer le message comme faisant partie de l’état du canal de commu-
nication correspondant.
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Intrusion Centralisation
Bertsekas & Tsitsiklis, 1989 itérations modifiées –

El Baz, 1996 itérations modifiées –
Savari & Bertsekas, 1996 itérations modifiées –
Savari & Bertsekas, 1996 non-intrusif 2 réductions
Evans & Chikohora, 1998 non-intrusif aucune centralisation

Bahi et al., 2005 non-intrusif 1 réduction
Bahi et al., 2008 encapsulation 2 réductions

Miellou et al., 2008 – –
NFAIS non-intrusif 1 réduction

Robustesse Taille des messages
Bertsekas & Tsitsiklis, 1989 fiable –

El Baz, 1996 fiable –
Savari & Bertsekas, 1996 fiable –
Savari & Bertsekas, 1996 résidu exact O(n)

Evans & Chikohora, 1998 heuristique 0
Bahi et al., 2005 heuristique O(1)

Bahi et al., 2008 heuristique O(1)

Miellou et al., 2008 fiable –
NFAIS fiable O(1)

Table A.1: Méthodes de terminaison d’itérations asynchrones.
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Conçu dans un modèle calculatoire où chaque réception de message induit un change-
ment explicite d’état, ce protocole ne peut s’appliquer tel quel dans un contexte
d’exécution aléatoire d’itérations asynchrones, comme le montre l’exemple suivant
correspondant à Figure A.4, où l’on a, à la fin de la capture, des données manquantes
sur le processeur 1, rendant impossible sa part d’évaluation distribuée d’un résidu
r(xk11 , x

k2
2 ):

x11 := f1(x
0
1, x

0
2) x12 x12 := f2(x

0
1, x

0
2)

x21 := f1(x
1
1, x

0
2) x22 := f2(x

0
1, x

1
2)

x21 x31 := x21 x32 := f2(x
1
1, x

2
2) x11

x41 := f1(x
3
1, x

2
2) x42 := f2(x

2
1, x

3
2) x21

x51 := f1(x
4
1, x

3
2) x52 := f2(x

2
1, x

4
2)

x̄(1) := (x21, ?) x̄(2) := (x21, x
1
2)

Figure A.4: Exécution parallèle asynchrone, avec marqueurs d’état global (en bleu).

Nous proposons donc l’application suivante du protocole, avec réadaptation, au con-
texte particulier de la capture d’un vecteur itératif global asynchrone (AIS: Asyn-
chronous Iterations Snapshot):

• sur convergence locale ou première réception d’un marqueur:

1. enregistrer l’état local,
2. envoyer un marqueur aux voisins;

• sur réception d’un marqueur:

1. enregistrer le dernier message reçu du voisin correspondant.
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Ceci conduit, cette fois, à:

x11 := f1(x
0
1, x

0
2) x12 x12 := f2(x

0
1, x

0
2)

x21 := f1(x
1
1, x

0
2) x22 := f2(x

0
1, x

1
2)

x21 x31 := x21 x12 x32 := f2(x
1
1, x

2
2)

x41 := f1(x
3
1, x

2
2) x42 := f2(x

2
1, x

3
2) x21

x51 := f1(x
4
1, x

3
2) x52 := f2(x

2
1, x

4
2)

x̄(1) := (x21, x
1
2) x̄(2) := (x21, x

1
2)

et nous obtenons ainsi:
x̄ = x̄(1) = x̄(2).

L’inconvénient majeur de ce protocole réside dans la nécessité d’assurer, sur
chaque canal de communication (unidirectionnel), qu’un marqueur envoyé après un
message de calcul ne puisse en aucun cas être délivré avant ce message, et vice-versa.
Pour lever cette hypothèse de communication FIFO (first in, first out), la solution
proposée dans [35] consiste à introduire, dans les marqueurs, les données d’interface
correspondant au vecteur solution local enregistré. Afin donc d’éviter ce surcoût de
communication en O(n), nous caractérisons les environnements non-FIFO comme
suit:

Hypothèse A.1. Un message peut croiser au plus m autre messages sur chaque
canal de communication unidirectionnel.

De là, nous proposons un protocole AIS non-FIFO (NFAIS) où:

1. un marqueur n’est envoyé qu’après m itérations sous convergence locale,

2. et un second marqueur, booléen, est envoyé après m itérations suivantes, inval-
idant le premier marqueur en cas de non-persistance continue de la convergence
locale.

Remarque A.4. En pratique, un marqueur est toujours transmis beaucoup plus vite
que des données d’interface, et dans ce cas, le second marqueur s’avérerait inutile.

Bien qu’un tel protocole NFAIS rende impossible l’évaluation exacte directe d’un
résidu global, du fait qu’il génère en sortie

x̄(1) ̸= · · · ≠ x̄(p),

prenons toutefois

x̄ =


x̄
(1)
1
...
x̄
(p)
p

 ,
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et considérons une fonction résidu r(.) distribuée comme suit:

r(x) = σ(r1(x), . . . , rp(x)),

où σ(.) est une fonction de réduction. Le résidu global approximatif directement
évalué sur la base de ce protocole NFAIS correspond donc à

r̃(x̄(1), . . . , x̄(p)) := σ(r1(x̄
(1)), . . . , rp(x̄

(p))).

Soit, enfin, un critère de convergence locale défini par:

ri

(
x
τ i1(k)
1 , . . . , x

τ ip(k)
p

)
< ε, i ∈ {1, . . . , p}, ε ∈ R.

Nous montrons que:

Proposition A.5.
r(x̄) < r̃(x̄(1), . . . , x̄(p)) + cr(p,m)ε,

où cr(p,m) désigne une fonction constante de p et m, dont l’expression dépend de
celle de r(.).

L’on peut alors, de façon fiable, évaluer un critère de convergence global sur le
résidu approximatif, de telle sorte à impliquer une convergence globale vis-à-vis du
résidu exact. Nous montrons de surcroît que l’utilisation d’un unique seuil de résidu
comme critère de convergence, aussi bien locale que globale, reste tout à fait possible
en pratique:

Corollaire A.5. Si r(.) est la norme infinie pondérée ∥.∥w∞, avec

w =


w1

...
wp

 ,
alors

r̃(x̄(1), . . . , x̄(p)) < ε =⇒ r(x̄) < ε̃,

avec
ε = c̃(m,w)ε̃,

où c̃(m,w) désigne une fonction constante de m et w.
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Résumé : Une large classe de méth-
odes numériques possède une propriété
d’échelonnabilité connue comme étant la loi
d’Amdahl. Elle constitue l’inconvénient majeur
limitatif du calcul parallèle, en ce sens qu’elle
établit une borne supérieure sur le nombre d’unités
de traitement parallèles qui peuvent être utilisées
pour accélérer un calcul. Des activités de recherche
sont donc largement conduites à la fois sur les plans
mathématiques et informatiques, pour repousser
cette limite afin d’être en mesure de tirer le maxi-
mum des machines parallèles. Les méthodes de dé-
composition de domaine introduisent une approche
naturelle et optimale pour résoudre de larges prob-
lèmes numériques de façon distribuée. Elles con-
sistent en la division du domaine géométrique sur

lequel une équation est définie, puis le traitement
itératif de chaque sous-domaine, séparément, tout
en assurant la continuité de la solution et de sa
dérivée sur leur interface de jointure. Dans le
présent travail, nous étudions la suppression de la
limite d’accélération en appliquant des itérations
asynchrones dans différents cadres de décomposi-
tion, à la fois de domaines spatiaux et temporels.
Nous couvrons plusieurs aspects du développement
d’algorithmes asynchrones, de l’analyse théorique
de convergence à la mise en oeuvre effective. Nous
aboutissons ainsi à des méthodes asynchrones ef-
ficaces pour la décomposition de domaine, ainsi
qu’à une nouvelle bibliothèque de communica-
tion pour l’expérimentation asynchrone rapide
d’applications scientifiques existantes.
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Abstract : An important class of numerical meth-
ods features a scalability property well known as
the Amdahl’s law, which constitutes the main lim-
iting drawback of parallel computing, as it estab-
lishes an upper bound on the number of paral-
lel processing units that can be used to speed a
computation up. Extensive research activities are
therefore conducted on both mathematical and
computer science aspects to increase this bound,
in order to be able to squeeze the most out of
parallel machines. Domain decomposition meth-
ods introduce a natural and optimal approach to
solve large numerical problems in a distributed
way. They consist in dividing the geometrical do-
main on which an equation is defined, then it-

eratively processing each sub-domain separately,
while ensuring the continuity of the solution and of
its derivative across the junction interface between
them. In the present work, we investigate the re-
moval of the scalability bound by the application of
the asynchronous iterations theory in various de-
composition frameworks, both for space and time
domains. We cover various aspects of the devel-
opment of asynchronous iterative algorithms, from
theoretical convergence analysis to effective paral-
lel implementation. Efficient asynchronous domain
decomposition methods are thus successfully de-
signed, as well as a new communication library for
the quick asynchronous experimentation of exist-
ing scientific applications.
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