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Abstract 

Thesis abstract in English 

The discovery of antibiotics to treat infectious diseases is one of the greatest 

achievements of modern medicine. Antibiotic therapy remains the prophylactic and curative 

practice most commonly used to fight against infections. However, antibiotic resistance 

acquired by numerous microorganisms is a major public health issue associated with additional 

costs for healthcare organizations. Indeed, excessive use of antibiotics causes accumulation of 

multi-resistance phenotypes in many bacterial strains. Infections caused by these resistant 

microorganisms often no longer meet the conventional treatments, lengthen the duration of 

illness related to infection and may even lead to patient death. However, for the past 25 years, 

no new classes of antibiotics have been discovered (Silver L, 2011). Moreover, the widespread 

use of antibiotics in modern medicine promotes the development and spread of antibiotic-

resistant bacteria and thus the occurrence of nosocomial infections (Bereket W et al., 2012).  

The development of new alternatives to conventional antibiotics is urgent to prevent the 

emergence of resistance phenomena. As such, the WHO even mentions a possible "post 

antibiotic era" where certain infections (such as a simple angina) could become fatal 

(http://www.who.int/fr). 

Host defense peptides (HDPs)/ Antimicrobial peptides (AMPs) constitute a major 

component of innate immunity in most multicellular organisms and more specifically the first 

line of defense against infections. They emerged as excellent candidates in the development of 

new antibiotics because, they offer many advantages over conventional antibiotics. Indeed, 

AMPs are able to rapidly kill a broad spectrum of microorganisms, significantly reducing the 

problems of resistance. Also, they are not toxic towards host cells (Hancock R. E. and Lehrer 

R, 1998; Hancock R. E. and Sahl H. G, 2006; Marr A. K et al., 2006). Moreover, some AMPs 

have a great therapeutic potential because they are able to activate the immune system (Nijnik 

A et al., 2009; Haney E. F. and Hancock R. E, 2013; Hilchie A. L et al., 2013). AMPs are 

generally amphipathic with a net positive charge. They have a broad spectrum of activity 

against many pathogens (bacteria, viruses, fungi, parasites). In mammals, the AMPs play a key 

role as they are able to directly kill pathogens but also quickly trigger a modulation of the 

immune response (Hancock H. G. and Sahl H. G, 2006; Haney E. F. and Hancock R. E, 2013). 

Among all isolated and characterized AMPs, natural peptides derived from 

chromogranins (Cgs) are of particular therapeutic interest. The chromogranin family 

predominantly consists of three members: chromogranin A (CgA), chromogranin B (CgB) and 

secretogranin II (CgC) (Helle K, 2004). These acidic proteins are stored in the secretory vesicles 
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of numerous cells from the neuroendocrine and immune systems. Cgs will undergo endogenous 

proteolysis degradation and release AMPs by exocytosis into the circulation where they can be 

detected in many body fluids where they can play their antimicrobial and immunomodulating 

roles (Metz-Boutigue M.H et al., 1993; Zhang D et al., 2009; Shooshtarizadeh P et al., 2010; 

Vandry H. and Metz-Boutigue M. H, 2010). Indeed, they are linear and very small (less than 

20 residues), and therefore easier to synthesize for a minimal cost. In addition, these peptides 

are stable at high temperature, acidic pH or in the presence of serum. 

Cgs-derived peptides are highly conserved among species, have antimicrobial activity 

against a broad spectrum of pathogens and are not toxic towards host cells. Some of them act 

as immonomodulators by activating neutrophils (Zhang D et al., 2009). Thus, regarding their 

exceptional biological and physicochemical properties, AMPs derived from Cgs are excellent 

candidates for the development of new antibiotic molecules. 

Regarding to peptides derived from chromogranins (Cgs), Cateslytin (Ctl) represents a 

new interesting antimicrobial molecule (Briolat J et al., 2005; Postma T.M.  and R.M.J. 

Liskamp, 2016). In fact, Ctl which is corresponding to bovine L-cateslytin (L-Ctl) and D-

cateslytin (D-Ctl) CgA344-358 (RSMRLSFRARGYGFR) and its molecular weight 1860 Da. 

The Ctl is a fragment of Catestatin (CAT) corresponding to CgA344-364 

(RSMRLSFRARGYGFRGPGLQL) with 2426 Da of molecular weight. In addition to its 

antibacterial properties, Ctl is also a potent antifungal agent. Moreover, many functions of 

bioactive products due to peptide cleavage such as immune systems, cardiovascular and 

endocrine (Postma T.M. and R.M.J. Liskamp, 2016). What cause the cell death is that the 

negatively charged aggregated to disrupt the membrane of cell, that because of the Ctl 

antiparallel β-sheets did not form pores (Postma T.M.  and R.M.J. Liskamp, 2016). 

The aim of my thesis is to characterize the epipeptide D-Ctl, where all L-residues 

replaced by D-residues with keeping the same sequences of L-Ctl. Thus, the efficiency of 

antimicrobial properties of L-Ctl and its stability were improved.  

Different technics were performed such as antimicrobial assays, cells viability assays, 

cytokine release evaluation, reverse phase high-performance liquid chromatography (HPLC), 

mass spectrometry, epifluorescence optical microscopy, attenuated total reflection: fourier 

transform infrared (ATR-FTIR) spectroscopy and atomic force microscope (AFM) 

measurements. 

Antimicrobial assays were performed to compare D-Ctl with L-Ctl against wide range 

of bacterial strains such as Staphylococcus aureus (MSSA), S. aureus methicillin resistance  
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(MRSA), Parvimonas micra, Prevotella intermedia, Fusobacterium nucleatum, Escherischia 

coli (wild type) and E. coli K-12 mutant E2146. The Minimal Inhibitory Concentration (MIC) 

was determined by using a mathematical model. As results of these experimental, D-Ctl MICs 

were from 2 to 15 times lower than L-Ctl with 8 to 24µg/mL in range. Then, D-Ctl was also 

compared with numerous conventional antibiotics. However, the MICs obtained for D-Ctl were 

still higher than the once of the conventional antibiotics tested, except Ampicillin and 

Kanamycin where the efficiency were similar than D-Ctl. Thus, D-Ctl could be a substitute to 

Ampicillin or Kanamycin in treatment of E. coli related infection. In order to decrease the dose 

of antibiotic prescribed for the patient, combination assays were performed to high light the 

synergistic or/and additive affects.  

Besides, cells viability and immune assays were performed using MTT [3(4,5-

dimethylthiazol-2-yl)-2,5 diphenyl tetrazolium bromide] and colorimetric assays on several cell 

lines and primary cells treated with D-Ctl and L-Ctl. D-Ctl shows no cytotoxicity to some types 

of cell lines and is unable to induce the release of inflammatory cytokines. For more interest, 

resistance assay was performed to compare the use of Ampicillin or Cefotaxim and D-Ctl to 

treat E. coli infections, where E. coli was cultured over 24 days with subMIC concentration of 

D-Ctl or Ampicillin or Cefotaxim. Thus, D-Ctl does not trigger resistance in E. coli and it was

stable over 24 days. Unlike Ampicillin or Cefotaxim were multiply three times of MIC. More

than that, the stability of D-Ctl was tested on the bacterial supernatant by using the HPLC, and

the results demonstrated that the D-Ctl was stable for all the bacterial supernatant tested.

In addition to that, with the collaboration of UMR 7564, Nancy, France. The bacterial 

model E. coli MDR used for the physicochemical analysis such as epifluorescence microscopy, 

ATR-FTIR spectroscopy and atomic force microscopy, herein, D-Ctl and its conformer L-Ctl 

were compared to characterized the biological and mechanical properties. The results showed 

that the bacterial membrane was damaged by D-Ctl while was not damaged by L-Ctl. Finally, 

D-Ctl can be considered as a potent candidate for an alternative to conventional antibiotics, safe

and stable as well as D-Ctl is not suffer of any microbial resistance.

In parallel of these data, new data obtained in our team (Pauline Dartevelle thesis in 

preparation) demonstrate that the D-Ctl has the efficiency also on the Candida albicans. And 

that it was not degraded by saliva and it is not toxic toward human gingival fibroblasts.  

Finally, D-Ctl may be used to the development of new antimicrobial material and a 

patent has been deposited EP16306539.4 “New D- configured cateslytin peptide”.  



Résumé 

Résumé de thèse en français 

La découverte des antibiotiques dans le but de traiter les maladies infectieuses est une 

des plus grandes réussites de la médecine moderne. L’antibiothérapie est une pratique curative 

et prophylactique utilisée pour combattre les infections. Cependant, une utilisation excessive 

des antibiotiques cause une augmentation des phénotypes multi-résistants d’un grand nombre 

de microorganismes. Les infections causées par ces pathogènes résistants peuvent allonger la 

durée de la maladie et parfois même causer la mort du patient. Il s’agit d’un problème de santé 

majeur, avec d’importantes conséquences au niveau social et financier.  

Durant les dernières 25 années, aucune nouvelle classe d’antibiotiques n’a été 

découverte (Silver L, 2011). De plus l’utilisation des antibiotiques à large spectre dans la 

médecine moderne, induit le développement de bactéries résistantes et ainsi l’apparition 

d’infections nosocomiales (Bereket W et al., 2012). 

Dans ce contexte, le développement de nouvelles alternatives aux antibiotiques 

conventionnels est urgent afin de combattre ce système de résistance. La « World Health 

Organization » évoque même une possible « époque post-antibiotique », dans laquelle certaines 

infections (même une simple angine) pourrait devenir fatale (http://www.who.int/fr). 

Les peptides de la défense de l’hôte (PDHs) ou peptides antimicrobiens (PAMs) sont 

une pièce majeure de l’immunité innée dans la plupart des organismes multicellulaires et plus 

spécifiquement font partie de la première ligne de défense contre les infections. Ils pourraient 

être d’excellents candidats pour le développement de nouveaux antibiotiques par leurs 

nombreux avantages comparés aux antibiotiques conventionnels.  En effet, les PAMs sont 

capables de tuer rapidement un spectre large de microorganismes. De plus, les bactéries 

trouvent difficilement la parade à leur effet antimicrobien et ces peptides ne sont pas toxiques 

pour les cellules de l’hôte (Hancock R. E. et Lehrer R. 1998 ; Hancock R. E. et Sahl H. G. 

2006 ; Marr A. K. et al., 2006). En complément de leurs effets antimicrobiens directs, certain 

PAMs activent les cellules du système immunitaire (Nijnik A. et al. 2009 ; Haney E. F. et 

Hancock R. E. 2013 ; Hilchie A. L. et al. 2013). Les PAMs sont amphipathiques et chargés 

positivement. Ils ont un spectre large d’activité contre de nombreux pathogènes (bactéries, 

virus, champignons, parasites). Chez les mammifères, les PAMs joue un rôle important car ils 

sont capables de tuer rapidement les pathogènes, mais également de provoquer rapidement une 
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modulation de la réponse immunitaire (Hancock R. E. et Sahl H. G. 2006 ; Haney E. F. et 

Hancock R. E. 2013). 

Parmi les PAMs isolés et caractérisés, les peptides antimicrobiens dérivés de la 

chromogranine A (CGA) ont un intérêt thérapeutique particulier. La famille des 

chromogranines (CGs) correspond à des glyco-phospho protéines acides, qui sont stockées dans 

les granules de sécrétion de nombreuses cellules intra-granulaires du système nerveux 

endocrinien et immunitaire. Les CGs vont subir une dégradation protéolytique et libérer des 

PAMs par exocytose dans la circulation où ils peuvent jouer un rôle antimicrobien (Metz-

Boutigue M.H. et al., 1993 ; Zhang D. et al., 2009 ; Shooshtarizadeh P. et al., 2010 ; Vaudry H. 

et Metz-Boutigue M.H, 2010). Ce sont des peptides courts et linéaires qui peuvent être 

synthétisés pour un moindre coût. De plus, ces peptides sont stables à haute température, pH 

acide et en présence de sérum. 

Les PAMs dérivés des CGs sont très bien conservés tout au long de l’évolution. Certains 

d’entre eux agissent comme immuno-modulateurs par activation des neutrophiles (Zhang D. et 

al., 2009). Ainsi, de par leurs propriétés biologiques et physicochimiques exceptionnelles, ils 

sont d’excellents candidats pour le développent de nouveaux antibiotiques, capables de 

s’opposer au développement de microorganismes résistants. 

Après analyse des PAMs dérivés des CGs, la cateslytine (Ctl) représente la molécule 

antimicrobienne la plus intéressante (Briolat J. et al., 2005 ; Postma T. M. et Liskamp R. M. J, 

2016).  

En fait, les Cateslytines utilisées sont, la L-Cateslytine (L-Ctl) et la D-Cateslytine (D-

Ctl) d’origine bovine. La Ctl correspond à CgA344-358 (RSMRLSFRARGYGFR) avec un 

poids moléculaire de 1860 KDa. Elle est un fragment de la Catestatine (CAT), qui correspond 

à CgA344-364 (RSMRLSFRARGYGFRGPGLQL) dont le poids moléculaire est 2426 KDa. 

En plus de ses propriétés antibactériennes, la Ctl est aussi un agent antifongique. Ce qui 

cause La mort cellulaire des microorganismes est due à l’agrégation du peptide à la surface de 

la membrane de la cellule (Postma T. M. et Liskamp R. M. J, 2016). 

Dans ce contexte le but de ma thèse est de caractériser l’épipeptide D-Ctl où tous les 

acides aminés en conformation L sont remplacés par des acides aminés en conformation D. 

Plusieurs techniques ont été utilisées faisant appel à la microbiologie, la biochimie et la 

biophysique. Il s’agit de tests antimicrobiens, d’analyse de la viabilité cellulaire, de tests de 

biologie cellulaire sur les cellules immunitaires, ainsi que des tests concernant la stabilité du 

peptide dans le surnageant de microorganismes et des études du mécanisme d’action.  
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J’ai personnellement pratiqué (1) les tests antimicrobiens sur différentes souches pour 

déterminer les concentrations minimales inhibitrices (CMIs) des peptides étudiés, (2) 

l’évaluation de la libération de cytokines par les cellules immunitaires et (3) la phase inverse 

en HPLC. Les techniques de spectrométrie de masse, d’épifluorescence en microscopie optique, 

de spectrométrie par infra- rouge (ATR-FTIR), ainsi que des mesures en microscopie à force 

atomique (AFM) ont été réalisées en collaboration avec des laboratoires spécialisés 

(Laboratoire de Spectrométrie de Masse Bio-Organique Département des Sciences 

Analytiques, Institut Pluridisciplinaire Hubert Curien, UMR 7178 à Strasbourg et le LCPME - 

CNRS UMR7564 à Nancy).  

Des analyses antimicrobiennes ont été effectuées pour comparer les activités de la D-

Ctl et de la L-Ctl sur une large gamme de souches bactériennes telles que Staphylococcus 

aureus (MSSA), S. aureus methicillin resistance (MRSA), Parviromonas micra, Prevotella 

intermedia, Fusobacterium nucleatum, Escherichia coli (type sauvage) et E. coli K-12 mutant 

E2146. Un modèle mathématique permettant de calculer la CMI, a été utilisé. L’activité de la 

D-Ctl a une CMI entre 2 et 15 fois plus faible que la L-Ctl (de 8 à 24µg/mL). La D-Ctl a aussi

été comparée à un certain nombre d’antibiotiques. Cependant, la concentration minimale

inhibitrice obtenue pour la D-Ctl est plus élevée que celle des antibiotiques conventionnels

testés, à l’exception de l’Ampicilline et de la Kanamycine, pour lesquelles leur effet est

similaire. La D-Ctl est aussi utilisée en combinaison avec des antibiotiques, dans le but

d’analyser un possible effet synergique et/ou additif, qui permettrait de diminuer la dose

d’antibiotiques prescrite aux patients.

En outre, la viabilité des cellules traitées avec la D-Ctl et la L-Ctl a été évaluée en 

utilisant la technique colorimétrique MTT sur plusieurs lignées cellulaires et des cellules 

primaires. La D-Ctl ne montre aucune toxicité sur plusieurs lignées de cellules et n’est pas 

capable d’induire de réactions inflammatoires par la libération de cytokines. Par la suite, des 

tests de résistance des microorganismes au traitement par les agents antimicrobiens ont été 

réalisés pour comparer l’utilisation d’Ampicilline, de Cefotaxime et de D-Ctl pour traiter les 

infections à E. coli. D-Ctl n’a pas déclenché de résistance microbienne à 3 MIC contrairement 

à l’antibiotique et était stable sur 24 jours. De plus, en utilisant l’HPLC il a été montré que D-

Ctl est stable dans tous les surnageants bactériens testés.  

Les études biophysiques du mécanisme d’action (microscopie par épifluorescence, 

spectrométrie par infra-rouge (ATR-FTIR) et microscopie à force atomique (AFM) ont été 

développées sur le modèle bactérien de E. coli. Les effets de D-Ctl et L-Ctl ont été comparées  
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pour caractériser les propriétés biologiques et mécaniques. Les résultats montrent que les 

membranes bactériennes ont été endommagées par D-Ctl alors que L-Ctl ne les a pas 

endommagées.  

Finalement, D-Ctl peut être considéré comme un candidat innovant pour une alternative 

aux antibiotiques conventionnels, car il est efficace, stable et n’induit pas de résistance 

microbienne. 

En parallèle, de nouveaux résultats ont été obtenus dans le cadre de la Thèse de Pauline 

Dartevelle, qui est en cours de préparation. Il a été démontré que D-Ctl était efficace aussi sur 

Candida albicans, qu’il n’a pas été dégradé dans la salive et qu’il n’est pas toxique pour les 

fibroblastes gingivaux humains. 

Pour conclure, la D-Ctl pourrait être utilisée pour l’élaboration de matériaux 

antimicrobiens et un brevet a été déposé en 2016 au niveau européen EP16306539.4 « Nouveau 

peptide Catestlytine en conformation D ». 
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Introduction 

1.1-Conventional antibiotics and bacterial resistance 

The patients' protection of burden and suffering from infectious diseases can be treated 

by antibiotics, which saved the human race with no doubt. Without antibiotics drugs, a lot of 

people will capitulate to infectious diseases. But, sadly after a piece of time, antibiotics were 

introduced clinically and prescribed to treat diseases, it was noted that antibiotics have become 

to lose their effectiveness due to the growing number of antibiotic-resistant pathogens. Effective 

antibiotics represent big challenges in the future of modern medicine. The urgent need for 

antibiotics is essential and vital to reduce death rates that associated with infectious diseases, 

especially childhood mortality. 

In spite of the successes investigation and production of variety of antibiotics, the search 

and discover for novel classes of antibiotics, is one of the greatest achievements and it has 

become an imperative in the modern medicine to solve the challenges related to resistance issue. 

The world health organization (WHO) expressed concerns because of the increasing of 

antibiotics resistant and we may reach to the point that it no longer has the efficiency of 

antibiotics treatments and that could be the post-antibiotic era (World Health Organization, 

2016). Therefore, the national organizations push for necessary implementation of applications 

to address antimicrobial resistant (UK Five Year Antimicrobial Resistance Strategy 2013 to 

2018; White House, 2015).  

1.1.1-General overview of antibiotic/antimicrobial 

Antibiosis is the original word of the antibiotic term, the prefix “anti” means killing or 

fighting. As for “bios” it means life, which is originally a Greek word. Therefore, the term 

literally means life killing. Previously, the antibiotics were produced by one microorganism, 

and are considered as organic compounds (Russell A, 2004; Denyer S et al., 2004) or of 

biological origin (Schlegel H, 2003) that able to inhibit the growth or kill the other 

microorganisms at low concentration (Russell A, 2004). However, in the modern era, the term 

or the definition of antibiotic has been modified to antimicrobial, which includes anti-bacterial, 

anti-fungal, anti-parasitic and anti-viral drugs.  

To struggle infections and the illness, antimicrobials are one of the medication classes, 

which are used to fight the microorganisms (Campbell S, 2007). Because of the term of 

antibiotics is technically used, thus not only antibiotics termed as antimicrobial but also 

synthetically formed compound. Therefore, the expression antimicrobial and antibiotic are used 
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interchangeably (Scott G, 2009). 

Most of the antibiotics are prescribed by a general physicians (GPs) (Rokstad K and 

Straand J, 1997) and more than 85% of these antibiotics were prescribed to treat the several 

infectious diseases outside of hospital (Molstad S et al., 1994).  

1.1.2-Historical overview 

Historically, first natural antibiotic is Penicillin, which was discovered by Alexander 

Fleming, in 1928 (Fleming A, 1929). After a few years in 1932, Prontosil was discovered by 

Klarer and Mietzsch and it became available for the patients during the world war II. Then, 

many classes of antibiotics had been discovered in the mid of 20 century. Afterward, in the 

1940s, Alexander Fleming, along with Howard Florey and Ernst Chain, brought penicillin into 

the therapeutic use. As a result, the three scientists won the Nobel Prize for medicine in 1945 

(Brown K, 2004). As being called the "Golden Age of antibiotics" began to blossom with the 

appearance of penicillin and streptomycin in 1943, it led to a swift loss of interest in the 

therapeutic potential of natural host antibiotics such as lysozyme (Fleming A, 1922). and the 

significance of this immune defense strategy (Bentley R, 2009; Zaffiri L et al., 2012) [Figure 

1].  
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Figure 1: Antibiotics discovery dates, during the period 1920-2010. 

It is important to point out the absence of new antibiotics for the period 1990-2010. Timeline taken from 

the (World Economic Forum, Global Risk Report 2013; Silver, L.L. 2011. Challenges of bacterial 

discovery. In Clinical Microbiology Reviews, 24: 71-109). 
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1.2- Classification of antibiotics 

The antibiotics can be classified according to their molecular structure, mechanism of 

action and spectrum of action (Calderon C and Sabundayo B, 2007). Some common classes of 

antibiotics based on chemical or molecular structures include Beta-lactams (Penicillins and 

Cephalosporins), Aminoglycosides, Quinolones (Fluoroquinolones), Tetracyclines, 

Macrolides, Sulfonamides, and Glycopeptides (van Hoek A et al., 2011; Frank U and Tacconelli 

E, 2012; Adzitey F, 2015) [Table I].  

Table I: Classification of Antibiotics 

Class of 

Antibiotics 

Example of generation Microorganisms 

Penicillins Methicillin, Ampicillin, 

Amoxicillin, Oxacillin, 

Nafcillin, Carbenicillin, 

Piperacillin, Ticarcillin, 

Mezlocillin 

Gram-negative bacteria 

(Treponema pallidum and Meningococci) 

Gram-positive bacteria (Streptococci) 

(Calderon C and Sabundayo B, 2007; Adzitey F, 2015; 

Jacob J, 2015; Boundless, 2016) 

Cephalosporins 1st Cefalexin 

2nd Cefoxitin 

3rd Cefotaxime 

4th Cepirome 

5th Ceftaroline 

Gram-positive bacteria (Staphylococci, Streptococci, 

Neisseria klebsiella pneumoniae, haemophilus 

influenza, Proteus mirabilis, and Enterobacter 

aerogenes)  

(Calderon C and Sabundayo B, 2007; Adzitey F, 2015; 

Jacob J, 2015) 

Macrolides Clarithromycin, 

Erythromycin, 

Azithromycin 

Mostly Gram-positive bacteria (Staphylococcus 

Pneumoniae) 

Gram-negative bacteria 

(Hamilton-Miller J, 1973; Calderon C and Sabundayo B, 

2007; Adzitey F, 2015; Jacob J, 2015) 

Aminoglycosides Strptomycin, Spectinomycin, 

Kanamycin, Neomycin, 

Gentamicin 

Mostly Gram-negative bacteria  

Some of Gram-positive bacteria  

Mycobacterium Tuberculosis 

(Calderon C and Sabundayo B, 2007; Adzitey F, 2015; 

Jacob J, 2015) 

Quinolones Nalidixic, Ciprofloxacin, 

Levofloxacin, Sitafloxacin 

Some anaerobic gram-negative bacteria 

Aerobic gram-positive bacteria (M.tuberculosis) 

(Domagala J,1994) 
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Tetracyclines 1st  

Oxytetracycline, 

Demeclocycline, 

Chlortetracycline, 

2nd  

Methacycline, Minocycline, 

Meclocycline, Doxycycline, 

Rolitetracycline, Lymecycline, 

3rd  

Tigecycline 

Gram-negative bacteria  

Gram-positive bacteria  

(Walsh C, 2003; Fuoco D, 2012) 

Sulfonamides Sulfamethizole, Trimethoprim Gram-negative bacteria 

Gram-positive bacteria (Staphylococcus, 

Streptococcus, and Salmonella) 

(Calderon C and Sabundayo B, 2007; Stawinski J et al., 

2013; Xu F et al.,2014; Adzitey F, 2015; Jacob J, 2015) 

Glycopeptides Vancomycin, Teicoplanin Gram-positive bacteria 

(Calderon C and Sabundayo B, 2007; Adzitey F, 2015; and 

Jacob J, 2015) 

(Adzitey F, 2015; Ebimieow E and Ibemologi A, 2016; Boundless, 2016) 

1.2.1- Penicillins 

As mentioned above, the penicillin was the first antibiotic discovered by Alexander 

Fleming in the year of 1928. However, until 1938 the penicillin was not used clinically (Lewis 

K, 2013), and later on the penicillin found to be one of many other antibiotic compounds which 

called penicillins (McGeer A et al., 2001). Members of penicillins include Penicillin G and V, 

Methicillin, Ampicillin, Amoxicillin, Oxacillin, Nafcillin, Carbenicillin, Piperacillin, 

Ticarcillin, and Mezlocillin (Calderon C and Sabundayo B, 2007; Adzitey F, 2015; Jacob J, 

2015; Boundless, 2016). Penicillins are beta-lactam classes and their structures include nucleus 

of 6- animopenicillanic acid (lactam plus thiazolidine) and other side chains (Zahner H and 

Maas W, 1972). These side chains allow the antibiotic to escape from specific enzymes 

produced by special bacterial strains and that could cause degradative ability. The natural 

penicillin, which is penicillin G has a narrow spectrum of activity that can work just between 

30-60 minutes. It can be effective against gram-negative bacteria (Treponema pallidum),

meningococci as well as gram-positive bacteria (streptococci) (Talaro K and Chess B, 2008).

Whereas, new classes of penicillins have a broad activity, which fights many gram-negative

bacteria such as E. coli and H. influenza as well as infections of the genitourinary tract, lower
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respiratory tract, throat, and nose (Miller E, 2002). 

1.2.2- Cephalosporins 

In 1945, Guiseppe Brotzu discovered the first generation of cephalosporins, which had 

been isolated from fungus. Cephalosporins are subdivided into 5 generations with abroad 

spectrum of activity. They include cefalexin (1
st 

generation), cefoxitin (2
nd 

generation), 

cefotaxime (3
rd 

generation), cefpirome (4
th 

generation) and ceftaroline (5
th 

generation) 

(Calderon C and Sabundayo B, 2007; Adzitey F, 2015; Jacob J, 2015). Cephalosporins are 

containing a nucleus of 7-aminocephalosporanic acid as well as other ring side chain 3,6-

dihydro-2 H-1,3- thiazine. This class of antibiotics is administered in the treatment of infections 

acquired and also to treat diseases due to penicillinase-producing, which include Streptococci 

and Staphylococci, some E. coli, Neisseria, klebsiella pneumoniae, Haemophilus influenza, 

Enterobacter aerogenes, and Proteus mirabilis (Pegler S and Healy B, 2007). 

1.2.3- Macrolides 

Erythromycin the first class of macrolides was discovered by J.M. McGuire in 1949 and 

by the year of 1951 was introduced clinically (Lewis K, 2013). Erythromycin was isolated from 

the metabolic products of Streptomyces erythraeus fungus (Moore D, 2015). The members of 

macrolides include Clarithromycin, Erythromycin, and Azithromycin (Hamilton-Miller J, 

1973; Calderon C and Sabundayo B, 2007; Adzitey F, 2015; Jacob J, 2015).  

Macrolides are effective against a wide spectrum of bacteria including gram-positive 

bacteria (Staphylococcus), as well as some gram-negative bacteria strains. In addition, they 

possess activity more than penicillins and are normally prescribed for allergic patients to 

penicillin (Moore D, 2015). 

1.2.4- Aminoglycosides 

Streptomycin was first aminoglycosides class discovered in 1943 and introduced 

clinically by the year of 1946 (Lewis K, 2013; Mahajan G and Balachandran L, 2012). 

Examples of aminoglycosides classes include Streptomycin, Spectinomycin, Kanamycin, 

Neomycin, and Gentamicin (Calderon C and Sabundayo B, 2007; Adzitey F, 2015; Jacob J,  
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2015). Aminoglycosides are positively charged and commonly they are composed of 3 amino 

sugars linked by glycosidic bonds. Furthermore, they have wide spectrum of action against 

most gram-negative strains and some gram-positive strains of bacteria.  

1.2.5- Quinolones 

In the early of 1960s, the quinolones were discovered as nalidixic acid and they were 

derived from quinine, which is the essential chemical structure of fluoroquinolones. 

Fluoroquinolones are subdivided into four generations: nalidixic acid, ciprofloxacin, 

levofloxacin, and sitafloxacin (Domagala J, 1994). Two rings that represent general structure 

of quinolones. However, to improve and increase their efficiency, some modifications have 

been made to the basic structure. Thus, the new generations possess an additional ring to their 

structure. These classes of antibiotics display bactericidal effect and they are fighting against 

some anaerobic gram-negative, aerobic gram-positive as well as M. tuberculosis. They are also 

capable of killing double mutants in related strains. However, they have limited uses for treat 

the infections of urinary tract (Andersson M and MacGowan A, 2003). 

1.2.6- Tetracyclines 

Tetracycline was discovered by Benjamin Duggar in 1945 and it was derived from 

Streptomyces (Sanchez A et al., 2004). The chlortetracycline (Aureomycin) was the first 

member of this class and clinically introduced in 1952. Tetracyclines include three generations: 

(1) early members Oxytetracycline, Demeclocycline, and Chlortetracycline; (2) other semi-

synthesis members include Methacycline, Minocycline, Meclocycline, Doxycycline,

Rolitetracycline, and Lymecycline (Walsh C, 2003) and (3) Tigecycline (Fuoco D, 2012). They

are lipophilic nonionized molecules containing four hydrocarbon rings.

Tetracyclines are bacteriostatic and they have a wide range of action against gram-

negative and aerobic gram-positive bacteria. Thus, the infections such as rickettsia, malaria, 

amoebic parasites, and elephantiasis can be treated by them. Taking into account, this class of 

antibiotics prescribed only for the patients who are more than 8 years old due to teeth 

discoloration side effect (Sanchez A et al., 2004). 
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1.2.7- Sulfonamides 

In 1932 the prontosil was discovered and considered as the first sulfonamide (Lewis K, 

2013). However, sulfonamides were reported and introduced clinically by the year of 1936. 

This class of antibiotics include Sulfamethizole and Trimethoprim (Calderon C and Sabundayo 

B, 2007; Adzitey F, 2015; Jacob J, 2015). Sulfonamide and Para-aminobenzoic acid have the 

similar structures. Therefore, sulfonamides have a wide range of activity to fight against 

bacteria.  

Sulfonamides are commonly referred as bacteriostatic rather than bactericidal, they also 

can treat E. coli, Streptococcus, Staphylococcus, and Salmonella. Moreover, numerous studies 

reported that cancerous cell agents can be impeded by sulfonamides (Stawinski J et al., 2013; 

Xu F et al., 2014).  

1.2.8- Glycopeptides 

In 1952 the first identified glycopeptide was Vancomycin and nevertheless, clinically it 

was reported in 1958 (Lewis K, 2013). Two other members of glycopeptides are Vancomycin 

and Teicoplanin (Calderon C and Sabundayo B, 2007; Adzitey F, 2015; Jacob J, 2015). Usually, 

7 amino acids linked to two sugars, which form the main structure of glycopeptides (Reynolds 

P, 1989; Kang H-K and Park Y, 2015). In 2014 Yim and his associates had been explained and 

described the different structural forms of glycopeptides.  

1.3- Mechanisms of action of antibiotics 

Antibiotics were found and prescribed to fight against infections; antibiotics can save 

lives by cut out the physiological mechanisms of bacterial cells. Therefore, all the antibiotics 

work in one of two ways of mechanisms; bacteriostatic agents, which inhibit bacteria from 

reproducing but doesn't otherwise kill them. Whereas, bactericidal agents actively kill bacterial 

cells (Kohanski M et al., 2010). There are three mechanisms of action used by antibiotics agent: 

inhibition of cell wall synthesis, inhibition of DNA and protein synthesis (Madigan M and 

Martinko J, 2006; Talaro K and Chess B, 2008; Wright G, 2010; Hills T, 2010) [Figure 2].  
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Figure 2: Mechanisms of action of antibiotics classes (Labnotesweek 4, 2013). 

Cell wall synthesis inhibitors include Glycopeptide`s and β-lactams (Penicillin’s, Cephalosporin’s, 

Monobactam`s and Carbapenem`s). Protein synthesis inhibitors that interact with ribosomal subunits 

the 50S and 30S include Tetracycline’s, Aminoglycosides, Macrolides, Clindamycin, and 

Chloramphenicol. DNA gyrase and topoisomerase IV inhibitors include Quinolones and Novobiocin. 

Also, Trimethoprim and Sulfonamides can inhibit the folic acid synthesis. 

1.3.1- Inhibition of cell wall synthesis 

The bacterial cells are surrounded by a rigid structure of peptidoglycan layers, unlike 

the human cells, which do not own these layers. This could be an advantage. It is due to that 

the antibiotics only will target the bacterial cell wall (Hills T, 2010). The basic structure of the 

peptidoglycan layers is p-(1-4) -N- acetyl Hexosamine (Bugg T and Walsh C, 1992; Holtje J, 

1998).  

Some classes of antibiotics such as (beta-lactam) like penicillins and cephalosporins 

(Kotra L and Mobashery S, 1998) are able to inhibit the synthesis of peptidoglycan layer of 

bacterial cell wall (Marshall W and Blair J, 1999; Butler M and Buss A, 2006). This process 

can be done by binding the peptidoglycan units to penicillin-binding proteins (PBPs) enzymes 

(Josephine H et al., 2004; Kohanski M et al., 2010) [Figure 3]. Therefore, the bacterial were 

killed as a result of weakened and damage of cell wall synthesis, which is called osmotic lysis. 
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As well as Vancomycin, which is considered as glycopeptide class, it interacts with cell wall 

and block transglycosylase and transpeptides activity (Nagarajan R, 1991; Kahne D et al., 

2005). 

Figure 3: Inhibition of Gram-positive and Gram-negative bacterial cell wall biosynthesis. 

(BioFiles 4, SIGMA-ALDRICH 2006) 

1.3.2- Inhibition of DNA synthesis 

Fluoroquinolones induce the bacterial death act by inhibiting the activity both DNA 

gyrase and topoisomerase IV enzymes (Chatterji et al., 2001) by blocking the DNA replication 

and repairing (Bearden D and Danziger L, 2001; Hooper, 2001; Walsh C, 2003). In the most 

gram-negative bacteria, the DNA gyrase (topoisomerase II) is the primary fluoroquinolones 

target e.g. Neisseria gonorrhoeae and E. coli (Drlica K and Snyder M, 1978; Kohanski M et 

al., 2010). Moreover, topoisomerase IV is targeted by fluoroquinolones in the gram-positive 

bacterial strains such as Staphylococcus. As a result, blocking the DNA to recombine at the 

stage of DNA cleavage disrupts the bacteria replication (Chen C et al.,1996). Thus, the bacteria 

cell will die due to damage of DNA (Karch A, 2008). In addition, specific antibiotics such as 

Trimethoprim and Sulfamethoxazole can also inhibit folate synthesis, RNA and DNA 

synthesis.  
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1.3.3- Inhibition of protein synthesis 

The inhibition of protein synthesis occurs during the phases of protein synthesis 

(elongation, initiation and termination) at the ribosome particularly on the 50S and 30S 

subunits. Based on the site of the target the inhibition of protein synthesis can be varied. Some 

classes of antibiotics work actively on bacterial ribosomes by inhibiting the 50S subunit: 

Clindamycin, Linezolid and highly effective class such as Chloramphenicol (Douthwaite S, 

1992; Katz L and Ashley G, 2005), whereas, tetracyclines, aminoglycosides, and macrolides 

are the inhibitors for 30S subunit (Hooper D, 2001; McKee E et al., 2006; Hills T, 2010; Hong 

W et al., 2014). By binding 50S ribosome, the macrolides which are bacteriostatic can kill the 

microorganisms by inhibiting the protein synthesis. Also, they prevent the addition of amino 

acid to polypeptide chains during protein synthesis (Mazzei T et al., 1993; Tenson T et al., 

2003).  

Aminoglycosides were able to inhibit the protein synthesis and to act against bacteria 

by targeting and binding to 30S ribosomal subunits (Peterson L, 2008). Moreover, inhibition of 

the protein synthesis can be done due to the interaction between the positive charged 

aminoglycosides and the negative charged lipopolysaccharides (LPS) on the cell wall of 

bacteria (Jana S and Deb J, 2006). Furthermore, tetracyclines target the 30S subunit ribosome 

(Sloan B and Scheinfeld N, 2008) and also cause damage to polypeptide chains by preventing 

the addition of amino acids during protein synthesis (Medical News Today, 2015).  Thus, the 

growth of bacteria can be interrupted via these classes and by blocking the access of aminoacyl-

tRNAs to the ribosomes (Chopra I and Roberts M, 2001). The action between 16S rRNA and 

aminoglycosides cause mistranslation for proteins. Due to this interaction, there are changes 

happened in the complex between aminoacyl-tRNAs and mRNA (Pape T et al., 2000). 

1.4- Problematic issue 

The uses of antibiotics are very important to control and prevent developing infection 

risks during or after all types of surgical operations. However, as a result of excessive use of 

antibiotics for human therapy, most of pathogenic strains of bacteria became resistance and led 

to a major public health issue. It has been observed that the number of cases, which are infected 

by multidrug-resistant bacteria, is globally increased. Therefore, the infections have become a  
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reality threat to the world and human health which have listed in World Economic Forum 

Global Risks reported as one of the greatest threats (Walker D and Fowler T, 2011; World 

Economic Forum. Global Risks, 2013 and 2014). 

Expanding commonness of resistance has been accounted for in numerous pathogens 

through out the years in various districts of the world (Byarugaba D, 2005). This has been 

credited to change microbial qualities, selective pressures of antimicrobial use, and societal and 

mechanical changes that improve the advancement and transmission of medication resistant 

organisms.  

Since 1940s, researchers introduced the antibiotics into medicine, the uses of antibiotics 

have been expanded from treating infections to safeguard tumor patients and with patients who 

are suffering from immune deficiency diseases, as well as it has been used in agriculture for 

animal`s food (Walsh C, 2000). For this reason, the farm animal’s species can be a concern for 

a prevalence of antibiotic resistant pathogens which has captured the attention of health 

organizations, governments, researchers as well as all stakeholders (Adzitey F, 2011). The 

period between the 1950s to the 1960s was the first period of discovering the antibiotics 

resistant phenomena among enteric bacteria such as Shigella, E. coli, and Salmonella 

(Watanabe T, 1963; Olarte J, 1983; Levy S, 2001).   

Therefore, one of the most global public health problems especially in the developing 

countries is that resistant to antibiotics, which make the therapy unstable, costly and 

unsuccessful (www.who.int/drugresistance/en/) (Levy S, 2002).  

In addition, some other diseases might be acquired by the patient who’s under the 

hospital treatment termed “Nosocomial” (Khan H, 2015) which is kind of infection which must 

be taken into account as a major risk factor threatens patients' health and may cause to death 

(Brusaferro S et al., 2015). This phenomenon can be found in the developing countries that may 

reach 75% of the patients (Obiero C. et al., 2015). When such pathogens found at a sterile body 

site like cerebrospinal fluid or blood, or in the body fluids might be deemed an infection 

(Murray P et al., 2005). These infections considered as nosocomial when acquired by visitors 

and healthcare staff at the hospital (Lolekha S et al., 1981). 
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1.4.1- Mechanisms of bacterial resistance 

Basically, how some bacteria resistant to antibiotics and how do acquire such resistant? 

There are two groups of bacteria, which are gram-positive, and gram-negative, they differ in 

cell wall composition. However, in the case of gram-positive has thick peptidoglycan layer 

forms about 50% of the cell wall material. Unlike, gram-negative, which has thin peptidoglycan 

layer, forms only 5-10% of the cell wall.  

The penicillin will be very effective against gram-positive because the penicillin will 

target the protein membrane. However, the penicillin is not very effective against gram-

negative bacteria because they possess an outer layer membrane on the way also the 

peptidoglycan layer quite thin.  

The genetic material of the bacteria includes a circle DNA and plasmid are carrying the 

resistance genes (Bennett PM, 2008). The plasmid makes these resistance things usually it has 

to corporate itself to main DNA also the plasmid is synthesis the RNA in particular mRNA. 

Thereby, the mRNA has been synthesis for the plasmid; the mRNA will be read by the ribosome 

to make polypeptide to make proteins. An existence of bacteria alive can be translated by 

frustrating the effect of the antibiotics that is the genetic basis of resistance.  

Several ways of mechanisms have evolved in bacteria to describe which can be genetic 

material or be gaining of new genetic material and these mechanisms can either chemically 

modify the antibiotics and these mechanisms as following: Target modifications, alteration of 

metabolic pathway, and reduced drug accumulation [Figure 4]. 
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Figure 4: Mechanisms of bacteria resistance.  

(Todar K, 2011; Wilcox S, 2013; Encyclopædia-Britannica, 2013) 

Several mechanisms which lead to bacterial resistance toward conventional antibiotics are reported. 

These mechanisms include: alteration of drug target, inactivation of drug by enzymes, activation of drug 

efflux pumps, and inhibition of drug uptake. 

1.4.1.1- Target modifications 

Promote resistance to several classes of antibiotics as a result of changing in the targets 

of antibiotics that may conflict with or limit the activity of antibiotics drugs. Moreover, these 

changes in the target can prevent or decrease the effectiveness of bactericidal or bacteriostatic. 

For instance, the mutations of the target site such as ribosomal can lead resistant to streptomycin 

which is one of the aminoglycosides class (Wright G et al., 1998). Quinolones inhibited the 

activities of DNA gyrase and topoisomerase IV, which are very important for viability of 

bacteria. Therefore, mutations chromosomal like genes encoding the protein targets (gyrA and 

parC) are often involved in quinolone resistance (Hooper D, 2000; Fabrega A et al., 2009). On 

the other hand, the low-production of penicillin-binding protein (PBP2a) in Staphylococcus 

aureus (MRSA) can lead to methicillin resistance and to all beta-lactams classes in particularly 

for the same reason (Hartman B and Tomasz A, 1984; Chambers H, 1997; Hakenbeck R et al., 

1999; Katayama Y et al., 2000; Fisher J et al., 2005). The bacteria can be resistant to macrolides 

also due to the modification of their target site on the ribosome, which is the most commonly  
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among the resistance mechanisms, that occur in domain V of the 23S rRNA in adenine residue 

(Leclercq R and Courvalin P, 1991a; Weisblum B, 1995; Schmitz F. et al., 2000). As a result 

of mutations in the RNA polymerase beta subunit (rpoB) gene cause resistant to rifampicin in 

Mycobacterium tuberculosis (Taniguchi H et al., 1996; Goldstein B, 2014) and E. coli (Jin D 

and Gross C, 1988). 

1.4.1.2- Antibiotics modification and degrading enzymes 

Degradation or alteration of the effectiveness of an antibiotic compound is very 

important for antibiotics to be resistant, thereby, the principal mechanism of resistance to beta-

lactams remains beta-lactamases enzymes which are capable to break and hydrolyzing the beta-

lactam ring of the molecule (Thomson K and Smith M, 2000; Livermore D, 2008; Nordmann 

P et al., 2011; Woodford N et al., 2011; Voulgari E et al., 2013). Beta-lactam rings are found 

in penicillin (Chain Epae, 1940). Also, the cephalosporins are affected by the same mechanism 

of resistance (Tortora G et al., 2010). Four beta-lactamases classes have been discovered and 

include: Class A penicillinases, Class B metallo-b-lactamases, Class C cephalosporinases and 

Class D oxacillinases (Thomson K and Smith M, 2000). Basically, three types of modifying 

enzymes that are responsible for making a chemical modification of aminoglycosides to be the 

resistance of bacteria, acetyltransferase (AAC), phosphotransferases (APH) or 

adenylyltransferases (ANT) (Wright G et al., 1998; Wright G, 1999; Ramirez M and Tolmasky 

M, 2010). Likewise, “chloramphenicol resistance is afforded by the enzyme of chloramphenicol 

acetyltransferase cat gene (Shaw W, 1966; Shaw W and Brodsky R, 1968), which is able to 

transfer an acetyl group from acetyl coenzyme A to chloramphenicol, that interrupting binding 

of chloramphenicol to the ribosomal subunit” (Murray I and Shaw W, 1997).   

1.4.1.3- Efflux pumps 

Certain bacteria can often become resistant to antibiotics through a mechanism known 

as efflux. Efflux pumps are found in the cell wall membrane, and it is essentially a channel that 

actively exports the antibiotics out of the cell. The antibiotic enters the bacterial cell through 

the channel term porin and the antibiotic pump out of the bacteria by efflux pump. Basically, 

all antibiotics classes are affected by efflux pumps. Particularly, tetracyclines, 

fluoroquinolones, and macrolides because the inhibition of protein and DNA biosynthesis can  
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be done by all these antibiotics thereby to have the effect unless they are inside the bacteria cell. 

The specificity of efflux pumps is varying as well as their mechanism (Nikaido H and 

Zgurskaya H, 1999; Webber M and Piddock L, 2003) [Figure 5]. 

Figure 5: Different types of efflux pumps in Gram-negative and Gram-positive bacteria. 

The five major families have been illustrated of efflux pumps as follows:  the major facilitator 

superfamily (MFS), ATP-binding cassette (ABC) superfamily, the small multidrug resistance (SMR) 

family, the multidrug and toxic-compound extrusion (MATE) family, and the resistance nodulation 

division (RND) family (Piddock L, 2006b; Modified by Munita JM & Arias CA, 2016). 

In early of the 1980s was the first time for describing how the E. coli efflux system 

could pump the tetracycline out of the cytoplasm (McMurry L and Levy S, 1978; McMurry L 

et al., 1980; Nelson M and Levy S, 2011). As result of extruding a toxic compound out of the 

bacterial cell due to the production of complex bacterial machinery can lead antibiotic 

resistance (McMurry L et al., 1980). Numerous of efflux pumps classes in both pathogens 

whether gram-positive bacteria or gram-negative bacteria have been described.  

Efflux pumps are currently classified into 5 major families (Pao S et al., 1998; van Veen 

H and Konings W, 1998), [Figure 5] including; (1) The major facilitator superfamily (MFS), 

(2) The resistance-nodulation-cell division family (RND), (3) The adenosine triphosphate ATP-

binding cassette family (ABC), (4) The multidrug and toxic compound extrusion family

(MATE), (5) The small multidrug resistance family (SMR). Whereas, these families vary in

terms of energy exporter, structural conformation, where they can be found in which type of

bacteria, and range of substrates they are able to fling (Piddock L, 2006a).
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The efflux pumps of tetracycline are indicated as TetA and classifies into different 

classes including TetA(A), TetA(B), TetA(C), TetA(D), etc., occasionally, pointed out to 

simply as Tet(A), Tet(B), Tet(C) and Tet(D), respectively (Mendez B. et al., 1980; Curiale M 

and Levy S, 1982; Hickman R and Levy S, 1988; Levy S, 1989; Varela M and Griffith J, 1993). 

However, such as Tet pumps have narrow substrate specificity, also for some other efflux 

pumps, However, some transports have a large range of variation structurally substrates and 

these efflux pumps are named, multidrug resistance (MDR), these efflux pumps are presented 

in all bacteria and new pumps still have been describing. In the last few years, these have 

included LmrS in S. aureus, FuaABC in Stenotrophomonas maltophilia, KexD in K. 

pneumoniae and MdeA in Streptococcus mutans (Floyd J et al., 2010; Hu R et al., 2012; Ogawa 

W et al., 2012; Kim C et al., 2013). May also, some single bacteria possess different classes of 

efflux transporters. The evidence has indicated that the primary determinant of Pseudomonas 

aeruginosa resistance to aminoglycoside is MexXY multidrug efflux system.  

A review was provided by Morita on a variety of bacteria such as MexXY pump`s P. 

aeruginosa and other efflux pumps for aminoglycoside (Morita Y et al., 2012). Moreover, 

numerous of studies made by some researchers, which clarified the intricacy of multidrug efflux 

systems regulation (Usui M et al., 2013; Deng Z et al., 2013). But, study for Baucheron et al, 

showed that may be overdone for the importance of multidrug efflux system for certain 

organism or particular antibiotics (Baucheron S et al., 2014). 

However, only a little number of efflux pumps have been observed which able to pump 

the aminoglycoside out of the cell (Poole K, 2005; Poole K, 2012). AcrAD which is the major 

aminoglycoside efflux pump in gram-negative bacteria, and this pump responsible for 

multidrug transporter and it is one of efflux pump family (RND). The term AcrAD came out to 

characterize 3 component system which extends to the envelope of the cells; “i) AcrD spans 

the innermost cellular membrane and functions as a drug-proton antiporter, ii) AcrA is a 

membrane fusion protein found in the periplasm, iii) TolC is the outer membrane component 

of the pump” (Nikaido H, 2011). Efflux pumps (AcrAD-TolC) have been found in wide species 

of gram-negative bacteria such as S. enterica (Blair J et al., 2015), E. coli (Rosenberg E et al., 

2000; Aires J and Nikaido H, 2005), P. aeruginosa (MexXY-OprM) (Morita Y et al., 2012), A. 

baumannii (AdeABC and AdeDE) (Coyne S et al., 2011) and Burkholderia pseudomallei 

(AmrAB-OprA and BpeAB-OprB) (Moore R et al., 1999).  
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1.4.2- Side effects of antibiotics 

The required of antibiotics activities are to destroy or to inhibit the growth of degrading 

pathogenic bacteria. But, some of these antibiotics may affect the host defense in a detrimental 

way. [Table II] In general, antibiotics side effects can be divided into groups as following: 1- 

the microbial population`s changes; 2- a hypersensitivity as a result of changing in drug 

tolerance; 3- changes of functions of tissues or organs because of toxicity.  

Unintended consequences of microbiological aspects and allergy are factors that 

complicate the use of the plurality of the antibiotic in present use. The higher incidence 

hypersensitivity reactions and microbial resistance may occur when the excessive use any sort 

of antibiotic. Therefore, it is very important to know how these antibiotics are working. e.g., 

gastrointestinal (G.I) distress with any oral antibacterial drug is the most side effects which are 

popularized between the majority of the antibiotics. But, several antibiotics are linked with side 

effects [Table II].  
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Table II: Side effects of antibiotics 

(Manten A, 1981 ; Alison E. Barnhill et al., 2012 ; Salma J and Rafik K, 2015 ; Adzitey F, 2015) 
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1.4.2.1-Penicillins 

Food and Drug Administration (FDA) classifies penicillins as the safest antibiotic which 

is prescribed to breastfeeding women, as well as the penicillins, could be the most secure 

antibiotic among the others. However, there are some side effects related to penicillins such as 

skin rash, which is an allergy symptom. G.I is considered to be one of the most side effects, 

which it has been associated with Ampicillin. In addition, in the case of using penicillins the 

candidiasis is prevalent. Moreover, allergy and hypersensitivity reactions related to penicillins 

therapy, which could cause anaphylaxis (Miller E, 2002).   

1.4.2.2-Cephalosporins 

Diarrhea, nausea, and vomiting are the most common side effects that are related to 

cephalosporins. Due to cephalosporins, 1 to 3% of the patients have an allergic reaction. A light 

increase in hepatic transaminases enzymes owing to cephalosporins which are temporary 

between 1 to 7% of patient ratio (Marshall W and Blair J, 1999). Also, in 1997 FDA confirmed 

that cefdinir and cefepime which are a member from cephalosporins and they are secreted by 

kidneys and their activity really short which around 1.5 to 2 hours (Guay D, 2002). Diarrhea 

can be caused by both of them. Moreover, rash and nausea are associated with cefepime 

antibiotic.   

1.4.2.3-Vancomycin 

Rapidly expansion of vancomycin resistance owing to unlimited uses. The reason for 

hypotension and pruritus related to rapid infusion of vancomycin, that could be also associated 

with red man or red neck syndrome, a non-immunological. Other antibiotics can stimulate the 

histamine release might result in red man syndrome, these antibiotics include: Ciprofloxacin, 

amphotericin B, Rifampicin, and Teicoplanin. More than that, drug fever and skin rash, which 

are hypersensitivity reactions, considered being side effects for vancomycin. As well as 

ototoxicity related to vancomycin, which is being occurred in the ear (Hermans P and Wilhelm 

M, 1987). Numerous studies have been mentioned that most of the young patients especially in 

children have a severe reaction (Korman T et al., 1997). 
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1.4.2.4-Erythromycin 

Owing to use of erythromycin therapy some of the side effects that appear on the patient 

are diarrhea, vomiting, nausea as well as abdominal cramps (Alvarez-Elcoro S and Enzler M, 

1999). And it can also increase intestinal peristalsis (Pilot M et al., 1984; Catnach S and 

Fairclough P, 1992).  

1.4.2.5-Clarithromycin 

The main side effects of clarithromycin are diarrhea, nausea, abdominal pain, and 

headache and metallic taste. However, when the dose is less than 2000 mg the clarithromycin 

could be good and well tolerated. In this antibiotic, the CYP450 enzymes were inhibited by 

drug interaction due to clarithromycin (Alvarez-Elcoro S and Enzler M, 1999). 

1.4.2.6-Azithromycin 

G.I symptom e.g. diarrhea, nausea and mild stomach pain are the most common side

effects related to azithromycin and all these side effects are not severe, they are mild to 

moderate (Drew R and Gallis H, 1992). 

1.4.2.7-Clindamycin 

Usually, nausea, anorexia, bitter taste, vomiting, abdominal distention, transient 

increase in hepatocellular enzymes and flatulence are the side effects of clindamycin (Dhawan 

V and Thadepalli H, 1982; Kasten M, 1999). 

1.4.2.8-Aminoglycosides 

Aminoglycosides cause nephrotoxicity (Rougier F et al., 2004; Pannu N and Nadim M, 

2008) due to the accumulate of aminoglycosides in the renal tubules, and might cause 

ototoxicity (Selimoglu E, 2007; Guthrie O, 2008) is either the cochlear or the vestibulum 

(Palomar G et al., 2001) that could be serious reversible or losing hear owing to cochlear hair 

cells degeneration or dysequilibrium which are very common side effects that related to amino- 
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glycosides (Begg E and Barclay M, 1995). Premature infants and children more liable to 

ototoxicity especially during the development of the inner ear (Johnson R et al., 2010). 

However, this can be happening and increase when combining this drug with another. Another 

common serious side effects such as photosensitivity (Lankerani L and Baron E, 2004) and 

anaphylactoid reaction (Johannes C et al., 2007) as well as neuromuscular blockade associated 

with aminoglycoside (Parsons T et al.,1992; Pasquale T and Tan J, 2005). 20% of the patients 

who receiving such antibiotics related to aminoglycosides including Kanamycin, Neomycin, 

Amikacin, Streptomycin, Tobramycin, and Gentamicin have ototoxic side effects (Forge A and 

Schacht J, 2000; Selimoglu E, 2007).  

1.4.2.9- Fluoroquinolones 

Some mild and reversible side effects are very common related to fluoroquinolones, 

such as nausea, diarrhea, and vomiting which are G.I diseases as well as other side effects that 

affected the central nervous system (dizziness and headache) and also skin rash and pruritus 

(Ball P and Tillotson G, 1995; Bertino J and Fish D, 2000). Moreover, retinopathy (Wiebe V 

and Hamilton P, 2002; Velissariou I, 2006), chondrotoxicity (Hayem G et al.,1994; Stahlmann 

R et al.,1998; Simonin M et al., 1999) and ruptured tendons (Seeger J et al., 2006) are associated 

with fluoroquinolones and these side effects can be noted in juvenile patients (Leibovitz E, 

2006). Due to the side effects of fluoroquinolones, they are not prescribed anymore to paediatric 

patients (Zhanel G et al., 2002). The side effects which occur in the cardiovascular due to 

sparfloxacin and grepafloxacin cause prolongation of QT interval (Time from 

electrocardiogram Q wave to the end of the T wave corresponding to electrical systole). For 

this reason, these antibiotics were withdrawn from the pharmacies (Zhanel G et al., 2002).  

1.4.2.10-Tetracyclines 

A group of side effects such as diarrhea, vomiting, candidiasis and nausea deemed as 

most common. Moreover, doxycycline, which is a class of tetracyclines can cause G.I side 

effects. One of the most side effects is very common that when the tetracycline is prescribed to 

the patients cause tooth discoloration (yellowness teeth) (Schwachman H and Schuster A, 1956; 

Sanchez A et al., 2004), this side effect can be found in children and adults too. This yellowness 

can happen during pregnancy also (Sloan B and Scheinfeld N, 2008), for this reason, the physic- 
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ians recommend prescribing this antibiotic to the patients who are more than 8 years old and 

not for pregnant women (Cunha B, 1985). Vomiting and nausea are related to tigecycline which 

is one of tetracyclines generation (Noskin G, 2005; Agwuh K and MacGowan A, 2006). 

1.4.2.11-Sulfamethoxazole 

The G.I diseases such as vomiting, anorexia, nausea, and hypersensitivity skin reactions 

are the most side effects related to sulfamethoxazole antibiotic (Connor E, 1998; Masters P et 

al., 2003). Moreover, sulfamethoxazole cause leukopenia, anemia, and thrombocytopenia. 

Sulfonamide can cause dermonecrolytic Stevens-Johnson syndrome (Roujeau J et al., 1995; 

See S and Mumford J, 2001). 

1.4.2.12-Chloramphenicol 

The use of chloramphenicol only in situations of life-threatening. Therefore, with being 

present the other classes of safer antibiotics than chloramphenicol wherefore the use of 

chloramphenicol is limited due to its toxicity. All the side effects which related to 

chloramphenicol can be fatal such as aplastic anemia (Krakoff I et al., 1955; Cruchaud A et al., 

1963a; Cruchaud A et al., 1963b; Trevett A and Naraqi S, 1992) but this side effect cannot be 

visible during the first period of treatment. Thereby, it can take place either after a few weeks 

or months, another side effect can happen in newborns or infants which are gray baby 

syndrome, with vasomotor collapse, cyanosis and abdominal distention. Also, the bone marrow 

suppression is one of the severe toxicity that associated to dose (Laferriere C and Marks M, 

1982; Smilack J et al., 1991). In addition, during the therapy with chloramphenicol occasional 

leukopenia and thrombocytopenia can be observed (Yunis A and Bloomberg G, 1964; Scott J 

et al., 1965; Turton J et al., 2006). 
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2.1- Alternative to conventional antibiotics: Antimicrobial peptides 

Host defense peptides (HDPs) or antimicrobial peptides (AMPs) are one of the most 

important key components of innate immune system (Zasloff M, 2002; Hancock R et al., 2012). 

They are the first line of defense against infectious agents. They are usually from 12 to 50 

residues (Lai Y and Gallo R, 2009); they are able to kill the bacterial cell by interacting with 

the negative charge on the cell membrane (Zasloff M, 2002).  

 AMPs are present in all forms of life, including bacteria, fungi, plants, insects and 

mammals (Hancock R and Sahl H, 2006; Diamond G et al., 2009; Fjell C et al., 2012; Di 

Francesco A et al., 2013; Steckbeck J et al., 2014) with wide range of action against fungi, 

bacteria, protozoa, and some viruses (Reddy K et al., 2004; Marr A et al., 2006; Lai Y and Gallo 

R, 2009; Guani-Guerra E et al., 2010; Wilson S et al., 2013; Wilmes M and Sahl H, 2014). 

Furthermore, more than 2800 AMPs have been registered, which are occurring synthetic and 

naturally (Wang G, 2015; Wang G et al., 2016). Even though, with this huge number of AMPs 

in nature (the AMPs database lists more than 2800 unparalleled peptides from six kingdoms), 

(http://aps.unmc.edu/AP/). Until May 2017, there are 296 AMPs isolated from bacteria, 4 from 

archaea, 8 from protists, 13 from fungi, 343 from plants and 2137 from animals).  

AMPs are commonly cationic in nature and the positively charged can be from +2 to 

+9, which according to amino acids that have positive charge (Arginine and Lysine) (Hancock

R and Chapple D, 1999). Moreover, the positive charge residues carry an average of 40 to 50%

hydrophobic residues (Yeaman M and Yount N, 2003; Hancock R and Sahl H, 2006; Pasupuleti

M et al., 2012). Likewise, few of AMPs are negatively charged.

Historically, early work had been done on plants (Stec B, 2006) in 1896 showing that a 

substance lethal found in wheat flour which able to kill the bread yeasts (Jago W and Jago W, 

1926). Some authors considered that lysozyme which was discovered by Alexander Fleming at 

end of 1920s (Fleming A and Allison V, 1922) represents an instance of a peptide with 

antimicrobial activity. By the year of 1939, the antimicrobial substances were isolated from 

Bacillus brevis, and named Gramicidins (Dubos R and Cattaneo C, 1939), at that time, they 

found this antimicrobial substance have activity against wide range of Gram-positive bacteria. 

Later on, another antimicrobial substance was discovered and isolated from certain Escherichia 

coli strain that was colicin. Moreover, the colicin was described by Grander by the year of 1950 

(Gardner J, 1950). Various AMPs have been discovered and isolated since then. 
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As mentioned above AMPs exist as short, cationic amphipathic peptides that have 

diverse sequences generated via a multitude of tissues and cells that are in ever-complex life 

form (Hancock R and Diamond G, 2000). They have the import role of responding to 

inflammation (Lai Y and Gallo R, 2009; Wang S et al., 2015) and infection. Without host 

defense peptides, humans for example, would not be able to fight off infection leading to 

possible death. The eyes protection is also done by the tears which have wealthy source of 

AMPs such as lysozyme and cathelicidins (McDermott A, 2013). There are many 

immunomodulatory effects of AMPs (Hancock R and Diamond G, 2000; Zasloff M, 2002; 

Yang D et al., 2002, 2004; Fjell C et al., 2012). Some of which can create obliteration of bacteria 

through several methods and mechanisms. The diverse processes and actions of AMPs like 

wound healing and maintenance of microbiota, will be explored via close examination of 

research and literature pertaining to infection and immunomodulatory effects (Zasloff M, 2002; 

Wilmes M and Sahl H, 2014; Mangoni M et al., 2016). And many of AMPs are presently being 

examined in clinical trials (Fox J, 2013). Thus, the AMPs could be used as promising alternative 

to conventional antibiotic (Li Y et al., 2012; Xiao H et al., 2013 a, b; 2015 a, b; Yoon J et al., 

2013, 2014; Yi H et al., 2014; Wang S et al., 2016).  

2.2- Structural of antimicrobial peptides 

While AMPs exhibit a grand multiplicity of primary/secondary structures, the majority 

of them share numerous shared properties that are pertinent to their activity. Such 

physicochemical and structural parameters are charge, hydrophobicity, and amphipathicity. 

2.2.1- Charge 

Many see cationicity as an indispensable feature for antimicrobial activity. The negative 

charged surface of the bacterial membrane provides an understanding of the initial process of 

AMPs activity concerning electrostatic interaction among some amino acids’ positive charge 

present and this negative charge in the sequence. Lending from this interpretation, the existence 

of positively charged residues like lysine and arginine presents as a basic characteristic of 

AMPs’ primary structures. 

Numerous studies have demonstrated a strong correlation between cationicity and 

peptides’ host defense activity (Bessalle R et al., 1992; Matsuzaki K et al., 1996; Dathe M et  
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al., 1996) for α-helix and β-sheet (Dathe M et al., 2001; Schibli D et al., 2002). Consequently, 

it appears the quantity of positively charged residues remains a pertinent characteristic to keep 

in mind. Nevertheless, it is a non-linear association, and the absence of a direct link has been 

backed by examination into model membranes (Tossi A et al., 2000; Yeaman M and Yount N, 

2003; Toke O, 2005). The pattern/arrangement of charged amino acid residues along the density 

charge (sequence) plays also a significant role for the antimicrobial activity. 

2.2.2- Amphipathicity 

Probably the amphipathicity is a notable feature for AMPs such as bola- amphipathicity 

(Ali H, 2007), facial amphipathicity (Vandenburg Y et al., 2002) and radial amphipathicity 

(Xiong M et al., 2015). When looking amphipathicity, it is the peptide’s ability to structure all 

hydrophobic residues onto one side plus on the opposite side, all hydrophilic residues. Due to 

the membrane’s amphipathic nature, peptide amphipathicity becomes a significant parameter 

for the activity of AMPs (Fernandez-Vidal M et al., 2007). When peptides interact within 

insertion and membrane bilayer, the peptide’s hydrophobic residues interact with a polar 

membrane lipid tails. This creates a clustering action, whereas hydrophilic residues interact 

with polar head groups of the aqueous environment of the membranes. The trouble in 

computing the amphipathicity has hindered the purpose of a correlation between peptide 

amphipathicity and activity (Eisenberg D et al., 1984). Anticipated the hydrophobic moment 

otherwise known as MH, as the vectorial sum of what is termed, ‘individual amino acid 

hydrophobicities’ regulated to a perfect α-helix as a quantifiable measure for peptide 

amphipathicity. 

2.2.3- Hydrophobicity 

Hydrophobicity presents as the percentage of a peptide’s hydrophobic residues and its 

around 50% (Tossi A et al., 2000). Certainly, it works as an elemental feature indicating the 

level of peptide communication with the bilayer’s core. Research on modulation of peptide 

hydrophobicity demonstrates that when peptide hydrophobicity increased (Zelezetsky I et al., 

2005) it can increase the antimicrobial activity (Huang Y et al., 2010), so does the binding 

affinity to ever kind of cell membrane increased, minimizing the selectivity among membrane 

types (Wieprecht T et al., 1997a). Consequently, AMPs normally have a reasonable number of 
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hydrophobic residues and express higher attraction to microbial cell membranes (Wieprecht T. 

et al., 1997b; Chen Y. et al., 2007). 

2.3-Antimicrobial peptides rich in amino acids 

Most of AMPs are small molecules and they are between 12 to 50 amino acids residues 

(Lai Y and Gallo R, 2009). Numerous peptides are cationic and have +2 to +9 positive charge. 

Several AMPs are rich in specific amino acids, specially, Cysteine (Cys) (Selsted M et al., 

1985), Histidine (His) (Oppenheim F et al., 1988), Proline (Pro) (Agerberth B et al., 1991), 

Glycine (Gly) (Park C et al. 2000), Tryptophan (Trp) and Arginine (Arg) (Chan D et al., 2006) 

and/or about <30% of hydrophobic amino acids. Moreover, α and β structures are usually rich 

in these amino acids which have been mentioned (Hancock R and Lehrer R, 1998; Zhang G 

and Sunkara L, 2014).  

2.3.1-Cysteine-rich peptides 

Cysteine-rich peptides (CRPs) are a group of amino acids that related to development 

and plant physiology. These peptides showed the encouragement for the growth and defence of 

plants, reproduction of plant and plant–bacteria symbiosis (Marshall E et al., 2011; Aalen R, 

2013).  

The structure of CRPs is very forked among groups. But, all of them have three general 

characteristics: (i) with less than 160 amino acids thus they are small in size, (ii) the region of 

N-terminal is protected which release peptide signal and (iii) normally 4 to 16 cysteine residues

form up C-terminal of the CRPs domain.

Marine mollusks from salt water are risky from microorganism’s pathogens in their 

surrounding environment. Therefore, to protect their selves to fight these microbial, they 

evolved highly active mechanisms which could be part of their innate immunity (Tincu J and 

Taylor S, 2004). Hence the most important components of the innate immune system are AMPs 

in marine mollusks (Destoumieux D et al., 1997; Mercado L et al., 2005; Arenas G et al., 2009; 

De Zoysa M et al., 2009). Within this diversity of natural AMPs, cysteine residues which 

making up intramolecular disulfide bonds that are very familiar (Dimarcq J et al., 1998; Bulet 

P et al., 2004; Reddy K et al., 2004; Yount N et al., 2006). CRPs and other defences showed  
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wide spectrum of activity against fungi and bacterial (Charlet M et al., 1996; Mitta G et al., 

1999 a, b; Seo J et al., 2005; Gueguen Y et al., 2006; Gestal C et al., 2007). 

2.3.2-Histidine rich peptides 

Histatins peptides constitute a family of cathelicidins rich in residues of histidine which 

are present in human saliva (Oppenheim F et al., 1988; Van der Spek J et al., 1989; Van der 

Spek J et al., 1990; Brewer D et al., 1998; Tsai H and Bobek L, 1998; Helmerhorst E et al., 

1999; Bals R, 2000). In 1988, the first histatin was discovered and isolated from human salivary 

gland (Oppenheim F et al., 1988) and submandibular glands secretions. However, the studies 

have not been confirmed that the histatin can be found also in airway secretions. Histatins rich 

polypeptides have a wide spectrum of action, not only against bacteria but also against fungi 

(Van, T.H et al., 1997). 

According to chemical amino acids sequences, there are numerous histatins families: 

histatins 1 and 3 with the revealed lengths of 38 and 32 amino acids, histatin 5 is the most potent 

among the other family members and possess 24 amino acids (Sabatini L and Azen E, 1989; 

Raj P et al., 1990; Troxler R et al., 1990). Furthermore, histatins 1 and 3 are encoded by the 

genes which are present in humans HTN1 and HTN3 (Van, T.H et al., 1997). As a matter of 

fact, histatins are defense peptides for human being which became used in clinical trials 

especially bio-dental (Siqueira W et al., 2012; Khurshid Z et al., 2016a).  

2.3.3-Proline rich peptides 

PR-39 and protegrins, the most studied peptides among cathelicidins family (Zhao C et 

al., 1995; Linde C et al., 2001) are rich in arginine (Gennaro R et al., 2002). The cationic peptide 

PR-39 firstly isolated from pig intestine is rich in residues of arginine and proline (Agerberth 

B et al., 1991), afterwhile PR-39 isolated from the neutrophils (Storici P and Zanetti M, 1993). 

It plays important role in fighting against bacteria (Agerberth B et al., 1991). Proline-rich 

peptides were introduced to act by binding to heat shock proteins (Otvos L et al., 2000). 

Moreover, the immune response can be more effective due to the PR-39 functions. It can 

produce the synthesis of syndecans and also lead the wound healing via presence of heparin 

sulfate proteoglycans on the cell surface (Gallo R et al.,1994), likewise, for PR-39 owns 

characteristics for anti-inflammatory (Shi J et al., 1996) and chemotactic action towards neutro- 
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phils too (Huang H et al., 1997). 

The development of the myocardial infarction can be also slowed down via PR-39 

(Hoffmeyer M et al., 2000) and also, PR-39 can induce angiogenesis (Li J. et al., 2000). 

2.3.4-Arginine rich peptides 

Because of the guanidinium group position, that makes arginine the most basic amino 

acid among all, the first step of attracting the AMP to the target membranes helped by the 

arginine positive charges, which can create hydrogen bonds with negatively charged 

components. Furthermore, the CPPs can act by the head group of guanidinium, which is crucial 

for its uptake. The guanidinium ion on arginine is capable to shape bidentate H-bonds with a 

group of phosphate on a lipid head, but also H-bond can be formed with the lipid glycerol 

groups (Sun D et al. 2014). 

2.3.5-Tryptophan rich peptides 

The tryptophan (Trp) side peptide is a part of larger group related to AMPs that offer 

powerful activity against microorganisms. Tritripticin is a 13 residues Trp-rich AMP with a 

broad spectrum, due to unique biochemical properties of tryptophan to insert into biological 

membranes. It plays an important role against wide range of bacteria (Selsted ME et al., 1992), 

protozoa (Aley S et al., 1994), HIV-1 viruses (Robinson W et al., 1998; Yasin B et al., 2000) 

and fungi (Selsted ME et al., 1992; Falla T et al., 1996; Robinson W et al., 1998). Indolicidin 

was isolated from neutrophil granules of bovine and several tryptophan rich peptides can pass 

to membranes of bacteria without imperiling their integrity and act intracellularly, which refers 

to interactions with enzymes and nucleic acids. A hairpin structure can be adopted by 

indolicidin (Ladokhin A et al., 1999). 

Other several factors in addition to the presence of Trp residues are important for 

antimicrobial activity. These factors include peptides residues position, close to N-terminus or 

carboxyl terminus. The location of Trp residues with this sequence is very important because 

its function is determined by its location. The Trp presence at the carboxyl terminus can inhibit 

the antimicrobial activity, while its presence at the amino terminus will improve this activity.  

Therefore, the activity of the antimicrobial needs cationic residues at the C-terminus and strong 

hydrophobic residues at the N-terminus (Bi X et al., 2013).  
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The efficiency of the AMPs can be affected by the location of Trp residues (Walrant A 

et al., 2011; Le ́corche P et al., 2012; Rydberg H et al., 2012). 

The biochemical properties of Trp complement the cationic Arg to obtain potent 

antimicrobial activities: Lactoferricin, tritrpicin, lysozyme, indolicidin (Pellegrini A et al. 1997; 

Ibrahim H et al. 2001) and puroindolines (Phillips R et al. 2011; Alfred R et al. 2013). Some 

other peptides are designed with similar structure properties by combinatorial libraries or 

rational design like combi-1 and combi-2 (Blondelle S et al. 1995), PAF26 (Lopez-Garcıa B et 

al. 2002), Pac-525 (Wei S-Yet al. 2006), the (RW)n series (Liu Z et al. 2007; Gopal R et al. 

2012) and D5-NH2 (Saravanan R et al. 2014). 

2.3.6- Glycine rich peptides 

By the year of 1986, Condit and Meagher (Condit C and Meagher R, 1986) discovered 

the first Glycine rich peptide. Glycine has been found in the cell wall of many higher plants and 

more than 60% of Gly can be found in different tissues of eukaryotic species. Furthermore, 

three new Gly-rich peptides have been discovered and termed Ctenidin 1, 2, and 3 (Tommy 

Baumann et al., 2010) which had been isolated from spider Cupiennius salei hemocytes with 

antimicrobial activity against E. coli. In addition, Gly-rich peptides which isolated from guava 

seeds have a wide ring of activity against gram negative bacterial such E. coli, Klebsiella sp 

and Proteus sp (Pelegrini P et al., 2008). Moreover, Gly-rich peptides are capable to inhibit the 

growth of fungi and viruses (Brogden KA, 2005). Gly-rich peptides can be isolated from 

numerous taxonomic groups such amphibians (El Amri C and Nicolas P, 2008), arthropods 

(Otvos L Jr., 2000; Lorenzini D et al., 2003; Herbiniere J et al., 2005; Sperstad S et al., 2009) 

and plants (Park CJ et al., 2000; Egorov T et al., 2005).  

According to the primary structure, Gly-rich domains are arranged in (GGGX) 

repetitions (Brogden K, 2005; Mangeon A et al., 2010). Thus, the content of Gly-rich peptides 

can be classified into three different main classes, first group has a 70% or more of Glycine 

residues and include that isolated from Arabidopsis thaliana and Brassica napus (Ringli C et 

al., 2001). Second group, which possess fewer Gly residues are present in saltbush and tomato 

(Ringli C et al., 2001). Last group, correspond to Glycine-rich peptides which possess 

increasingly content of Gly but not Glycine-rich domains (Ringli C et al., 2001). 

Unlike to other studies by Sachetto-Martins and Fusaro, that mentioned Gly-rich 

peptides had been found in different eukaryotic species tissues that possess more than 60% of  
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Glycine. In addition, they classify the Gly-rich peptides in four main classes according to a 

primary structure too; Class I to class IV (Sachetto-Martins G et al., 2000; Fusaro A et al., 

2001). Class I, which is also termed as “classic class”; a single peptide in this class might be 

connected to a Glycine-rich region with GGGX repeats. Because of the cell wall localization 

for this class the structure function is attributed to proteins (Cassab GI, 1998). Class II, 

characteristic of a cysteine-rich region connected at its C-terminus, which probably or might 

not have a signal peptide. AtGRP-3 one of this class family, and Cysteine rich residue interacts 

with cell wall to receptor kinases (cell wall–associated kinases) (WAKs) (Park AR et al., 2001). 

Class III, in fact, this class possesses proteins (Oleosins) that basically show a great diversity 

of structure due to lower number of Glycine residues compared to other classes. Class IV, are 

RNA-binding GRPs which may possess numerous of motifs besides the glycine-rich region 

such as RNA-recognition motif, cold-shock domain and zinc fingers (Fusaro A et al., 2001). 

Moreover, most of Gly-rich peptides are hydrophobic and they possess tyrosine and 

phenylalanine residues (Ringli C et al., 2001).  

2.4- Classification of antimicrobial peptides 

What can be defined as AMPs, they are molecules typically made of less than 50 amino 

acid residues (Lai Y and Gallo R, 2009) frequently existing within their common ‘L’ 

configuration. They can be separated into numerous subtypes that follow various criteria. Such 

criteria are: size, structure, origin, biological action, amino acid sequences, and finally, 

mechanism of action. 

2.4.1- Secondary structure 

Experts believe numerous AMPs adopt an extended/non-structured conformation within 

a water environment (Dathe M et al.,1996). This is different to others that acquire explicit 

configurations due to existence of intermolecular hydrogen bonds. These can be β-sheet 

peptides (Oishi O et al., 1997). In any case, peptides experience major conformational 

variations when binding to target cells. Although there are various criteria, to sort them 

following meaning criterion, it would fall to only secondary structure (Epand R et al., 1999; 

Van`t Hof W et al., 2001). Therefore, experts have proposed 4 types of AMPs. These are: 

extended and loop peptides, β-sheet, and α- helical (Hancock R et al., 1998; Zasloff M, 2002;  
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Takahashi D et al., 2010 ; Nguyen L et al., 2011; Pasupuleti M et al., 2012; Steckbeck J et al., 

2014). 

Nevertheless, the majority of AMPs contain two domains: α- helical, β-sheet, for 

example (Uteng M et al., 2003). Some cannot be classified. Again, most AMPs have cationic 

peptides or a net positive charge making them rich in lysine and/or arginine (basic amino acids). 

A minor quantity of AMPs that fall into a subgroup consisting of anionic peptides not covered 

in this text, does exist (Brogden K et al., 1996; Lai R et al., 2002; Von Horsten H et al., 2004). 

The AMPs have the ability to fold into amphipathic conformations to attract negatively charged 

phospholipids and to adopt an amphiphilic structure (hydrophilic sequences present on one side 

that are aligned on the opposite side with hydrophobic sequences).  

The significance of antimicrobial activity in relation to secondary structure has been 

widely examined to extract structure-function relationships. For example, an α-helix peptide 

known as pardaxin displays lytic activity to both mammalian and microbial cells. With the 

incorporation of D-amino acids into the sequences, the α-helix conformation transformed to a 

β-structure inducing a loss of hemolytic activity. But, the maintaining of antimicrobial activity 

(Oren Z et al., 1999). Likewise, the cyclic peptide θ-defensin demonstrated 300% greater 

activity when related to open-chain analogue (Tang Y et al., 1999). These two cases indicated 

that alteration of secondary structure allows the dissociation of hemolytic and antimicrobial 

activity; the loss of a stable, rigid conformation can cause a drop-in activity of any active 

peptide. 

2.4.1.1- α-helical antimicrobial peptides 

AMPs belonging to the α-helical peptides family are considered the biggest, the most 

commonly found in nature, and the most researched within the class of cationic peptides 

(Zasloff M, 2002; Haney E et al., 2009a). Researchers and scientists have identified 

invertebrates, vertebrates and plants with these peptides. The subgroup is known to gain roughly 

250 linear peptides containing antimicrobial activity, normally made of less than 40 amino acid 

residues and not containing cysteine (Brogden K, 2005). 

Possessing a tertiary structure, α-helical peptides present a prominent amphipathic 

behavior (Mihajlovic M and Lazaridis T, 2010 a, b), being highly positively charged with a 

hinge/kink in the center (Gennaro R et al., 2000; Tossi A et al., 2000). Such peptides remain 

unstructured within an aqueous solution (Yeaman M and Yount N, 2003; Pasupuleti M et al.,  
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2012), folding into what is termed, ‘α-helical configuration’ when binding with bacterial 

membrane that either leads to insertion into its surface or absorption onto it. Researchers 

established a direct correlation between antibacterial activity and α-helical conformation (Park 

CB et al., 2000; Haney E et al., 2009b). 

Furthermore, α-helical AMPs have other delegates such as Melittin (Fennell J et 

al.,1968; Terwilliger T and Eisenberg D, 1982a and 1982b) and Cecropins (Hultmark D et al., 

1980; Steiner H et al., 1981) present in insects, (Magainins) Frogs (Zasloff M, 1987; Gesell J 

et al.,1997) [Figure 6], (Fowlicidins) Chickens (Xiao Y et al., 2006; Bommineni Y et al., 2007; 

Xiao Y et al., 2009). α-helical peptides being found just in primates and rodents (Patil A et al., 

2004) [Figure 6]. 

Figure 6: α-helical structured; Magainin-2 (PDB code 2MAG) (Gesell J et al., 1997). 

2.4.1.2- β-sheet antimicrobial peptides 

The β-sheet subgroup includes numerous peptide with β-hairpin structure which are 

structured as β-sheet peptides conformationally stabilized by the presence of disulfide bridges 

(Brogden K, 2005; Yount N et al., 2006). β-sheet peptides may also adopt a cyclic conformation 

(Tossi A and Sandri L, 2002). α-helical and β-sheet peptides are unrivaled to vertebrates’ 

animals. β-sheet peptides mostly exist in every classes of mammalian that had been inspected 

(Patil A et al., 2005) [Figure 7].     

Conformation of β-sheet peptides within an aqueous solution can be further stabilized 

as they bind the bacterial membrane (Yeaman M and Yount N, 2003). The quantity of disulfide 

bridges has an influence on the general structure and on the peptide’s activity. The cyclic 

structure may be essential for antimicrobial activity (Matsuzaki K et al., 1997; Rao A, 1999). 
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Figure 7: β-sheet structured; Polyphemusin (PDB code 1RKK) (Powers J et al., 2004). 

2.4.1.3- Extended antimicrobial peptides 

With cationic linear extended AMPs, they present what some may deem, odd amino 

composition. In terms of structure, these peptides are linear in shape, characterized by an 

overexpression an amino acid or more. This subgroup comprises of almost 90 peptides not 

presenting any secondary structure either in β-sheet or in α-helix [Figure 8]. A number of these 

peptides possess a high quantity of histidine residues, similar to histatin (Brewer D et al., 1998; 

Tsai H and Bobek L, 1998) originating in human saliva. PR-39 however, is abundant in arginine 

and proline residues (Takahashi D et al., 2010; Nguyen L et al., 2011). Prophenin is abundant 

in phenylalanine and proline. A notable trait of these peptides is their flexibility in solution. 

However, Extended peptides are neither bactericidal nor bacteriostatic in spite of being anti-

parasitic and fungicidal (Luque-Ortega J et al., 2008). Thereby, most of these peptides are not 

membrane active. 
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Figure 8: Extended structured peptide; Bos taurus indolicidin, secreted by neutrophils 

(PDB code 1G89) (Rozek A et al., 2000). 

2.4.1.4- Loop antimicrobial peptides 

In this subgroup, proline-arginine abundant peptides do not have the ability to form 

amphipathic structures due to the overexpression of proline residues. The alternative then 

becomes adoption of a polyproline helical type-II structure (Boman H et al., 1993; Cabiaux V 

et al., 1994) [Figure 9].  

Interestingly, any living organism possesses the capability of generating various classes 

of the previously mentioned AMPs (Hancock R and Diamond G, 2000). In a review stated that 

are at minimum, four likely reasons for such structural diversity existing among AMPs. The 

first important point to note about AMPs is while the activity spectrum of AMPs remains 

relatively broad, AMPs will not remain active against each pathogen encountered by the host. 

This then leads to a diverse plethora of AMPs with distinct, yet overlying activities that enable 

increase of the host’s natural defense systems versus pathogens. The second is that AMPs 

demonstrating dissimilar structure might work together to act synergistically. Thirdly, AMPs 

possess interesting non-antimicrobial features like pro-inflammatory or chemotactic activities, 

that vary between classes. Fourth and lastly, various cell types yield various kinds of AMPs, 

complementing each other. 
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Figure 9: Loop structured; Thanatin (PDB code 8TFV) (Mandard N et al., 1998). 

2.5-Biological activities of antimicrobial peptides 

AMPs are broadly connected with host defense moreover by applying direct 

antimicrobial activities otherwise by moderating the function of immune cells (Hancock R and 

Sahl H, 2006).  

2.5.1- Directly activation of antimicrobial peptides 

2.5.1.1- Anti-tumoral 

AMPs have the ability to directly target and obliterate infected cells and microbes (Ganz 

T et al., 1985; Garcia J et al., 2001b; Harder J et al., 1997, 2001; Ouellette A and Selsted M, 

1996; Zaiou M et al., 2003). This direct action encompasses weakening of microbial membrane. 

Constructed on this sort of interaction they can either be anticancerous or antimicrobial. The 

antimicrobial nature side can be credited to negatively charged membranes of parasites, viruses, 

bacteria, and fungi (Hancock R and Diamond G, 2000; Zasloff M, 2002; Bader M et al., 2003; 

Mader J and Hoskin D, 2006; Nijnik A and Hancock R, 2009; Fjell C et al., 2012; Afacan N et 

al., 2012; Hancock R et al., 2012). Like this manner of action, AMPs can distinguish between 

cancer cells and healthy cells, because of selective demonstration of negative charge on its 

surface. Selective demonstration of negative charge may arise because of demonstration of a 

few anionic molecules (phosphatidylserine) on the surface (Utsugi T et al., 1991; Dobrzynska  
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I et al., 2004). Occasionally this recognition can be potentiated via selective demonstration of 

O-glycosylated saccharide mechanisms (Yoon J et al.,1997; Burdick M et al., 1997). Along

with selective presentation, the growth of cancer compared to normal cells is greater with

unusually distorted orientation that reduces them to being more susceptible to AMPs (Chan S

et al.,1998; Hoskin D and Ramamoorthy A, 2008; Schweizer F, 2009).

2.5.1.2- Antiviral 

Interaction with heparin sulfate makes AMPs effective against RNA/DNA viruses 

because heparin sulfate is a necessary component for viral access into cells (rabbit alpha 

defensin NP-1 and lactoferricin) (Sinha S et al., 2003; Jenssen H et al., 2006). NK-18 is a type 

of peptide that can instantaneously disrupt microbial membrane as well as interact with 

microbial genome, eventually potentiating and furthering antimicrobial activity (Yan J et al., 

2013). Another interesting aspect of AMPs is how they can interact with several targets to block 

innumerable biological processes leading to an inhibition of microbial growth such as cell wall 

synthesis, RNA, DNA, and protein synthesis (Boman H et al., 1993; Zasloff M, 1992 and 2002). 

Chromogranin A (CgA) derived peptides (chromofungin and catestatin) can lead to the 

destabilization of the membrane, bind calmodulin and inhibit calmodulin enzymes dependent 

(Zhang D et al., 2009). In addition, catestatin inhibit plasmepsin in Plasmodium falciparum. 

(Akaddar A et al., 2010). 

2.5.2- Antimicrobial peptides modulate immune system 

        AMPs typically are very effective in exhibition of direct antimicrobial activity to 

modulate the innate immune system (Scott M and Hancock R, 2000; Selsted M and Ouellette 

A, 2005; McPhee J and Hancock R, 2005; Bowdish D et al., 2005; Nijnik A and Hancock R, 

2009; Afacan N et al., 2012; Hancock R et al., 2012). This is from the basis of effective 

concentration and direct contact to pathogen (Nelson A et al., 2009; LaRock C et al., 2015). 

Though, in many cases such concentration may not lead to the effective killing of overwhelming 

infectious agents. Furthermore, non-physiological state, like high saccharides and salt 

concentration can diminish the AMPs effectiveness (Bals R et al.,1998; Bowdish D and 

Hancock R, 2005; Diamond G et al., 2009). AMPs’ immunomodulatory activities may assist in 

overcoming this problem. These events include employment of cellular proliferation, endotoxin 



Introduction 

binding, activation of adaptive immune cells and innate immune cells. 

2.5.2.1- Innate immune cells recruitment 

AMPs can activate selective production of pro and anti-inflammatory cytokines and in 

the end, leukocyte chemotaxis (Choi K et al., 2012). A good example of this is LL-37 and its 

ability to attract neutrophils, mast cells, T cells, and monocytes (Chertov O et al., 1996; 

Niyonsaba F et al., 2002; Chen Q et al., 2004; Kurosaka K et al., 2005; Ciornei C et al., 2005). 

Selective degranulation of phagocytes is induced by the production of N-formyl peptide like 

receptors and G-protein coupled receptors (De Y et al., 2000; Mookherjee N and Hancock R, 

2007). The same LL-37 behaves synergistically with IL-1β, enhancing creation of 

proinflammatory cytokines (MCP-1, MCP-3, IL-6 and IL-10) (Scott M et al., 2002; Mookherjee 

N et al., 2006 a; Yu J et al., 2007; Choi K et al., 2012). In vitro, a chromogranin-A derived 

peptide (Catestatin, CgA 344-364) can attract neutrophils, penetrate into cells and induce 

exocytosis (Shooshtarizadeh P et al., 2010). Defensins possess the ability to interact with MIP-

3a receptor existing on inflammatory cells, regulating inflammatory response (Mookherjee N 

and Hancock R, 2007). IDR1002, which is an innate defense regulator, modulates inflammation 

induce by IL-1β in synovial fibroblasts (Turner-Brannen E et al., 2011).  

 2.5.2.2- Endotoxin binding 

The important component of gram negative bacterial of outer membrane is LPS, which 

also called endotoxin (Alexander C and Rietschel E, 2001; Raetz C and Whitfield C, 2002). 

When an infection occurs, a vast quantity of endotoxins is produced inducing the inflammatory 

response. Inflammation can be both beneficial and life threatening when surpassed by a defined 

limit (Mookherjee N and Hancock R, 2007). Indolicidin, LL-37 and cecropins help moderate 

inflammatory response via binding to endotoxins safeguarding from endotoxemia (Bowdish D 

and Hancock R, 2005; Mookherjee N et al., 2006 b). Additionally, these AMPs may inhibit 

expression of genes (proinflammatory) induced by endotoxin. As earlier mention, LL-37 has 

the capacity to stop tumor necrosis factor-alpha (TNF-alpha) (Feldmann M and Maini R, 2003) 

production facilitated through endotoxins (Bowdish D and Hancock R, 2005; Mookherjee N et 

al., 2006 b). 
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2.5.2.3- Cellular proliferation and differentiation induced by antimicrobial peptides 

AMPs have many talents, one of which is modulation of differentiation and proliferation 

of phagocytic cells. For example, neutrophils through inhibition of apoptosis, leading to 

activation of mast cells and wound healing. Such a process leads to the promotion of 

angiogenesis (Koczulla R et al., 2003; Chen X et al., 2006; Nagaoka I et al., 2006), LL-37 has 

the capability of improving expression of dendritic cells (DCs) via distinctive immune cells and 

help in what is called ‘antigen presentation’ (Tokumaru S et al., 2005; Mookherjee N and 

Hancock R, 2007). Neutrophil β-defensins and cathelicidin may turn on Mitogen-Activated 

Protein Kinase (MAPK-p38) as well as Extracellular Signal-Regulated Kinase (ERK-1/2) 

pathways in keratinocytes, mast cells, and monocytes (Bowdish D et al., 2004; Niyonsaba F et 

al., 2005; Chen X et al., 2006; Niyonsaba F et al., 2006; Choi K et al., 2014). Additionally, 

AMPs can control transcription via regulation of signal transducer and activator of transcription 

factor (STAT-3) (Tokumaru S et al., 2005).  

2.5.2.4- Activation of adaptive immune cells 

Other than the characteristic immune response modulation, there are other activations 

happening with AMPs in terms of adaptive immune cells (Mookherjee N and Hancock R, 

2007). Various AMPs, like human β-defensins, neutrophil defensins, and cathelicidin (LL-37 

and PR-39) express DCs receptor and can lead to T and B lymphocyte activation (Chertov O et 

al.,1996; Huang H et al., 1997). Moreover, LL-37 also moderates dendritic cells differentiation 

(Chen K et al., 2014), including dendritic cells, made T-cells polarization (Davidson D et al., 

2004; Semple F and Dorin J, 2012). In terms of proliferation, defensins also increase production 

of T cells (Brogden K et al., 2003) made by IL-6, IL-10 and IFN-g (Lillard J et al., 1999a; 

Lillard J et al., 1999b). Recently, a study has made which noted that, taking the LL-37 via oral 

can excite T-cell according to antigen-specific antibody mucosal responses primarily via a 17-

skewed pathway, that can be interacting with receptors on M cells (Kim S et al., 2015). 



Introduction 

2.6-The mechanism of action of the antimicrobial peptides 

Most AMPs have a mode of action that destroy bacteria consisting of membrane 

disruption, pore construction on the nanometer measure (Meroueh S et al., 2006; Vollmer W et 

al., 2008), followed by membrane depolarization. Researchers propose the following general 

model for mechanism of action: 1. AMP-membrane attraction, 2. attachment of the AMP onto 

the membrane and 3. insertion of the AMP into the membrane leading to disruption and then 

leakage of metabolites and ions. The most studied AMPs are α-helical peptides. β-sheet 

peptides regarding the mechanism of action (Breukink E and de Kruijff B, 1999; Mathew R 

and Nagaraj R, 2017) by which they permeabilize the membrane.  

Many studies have focused on the net charge of AMPs and the direct correlation with 

their interaction or attraction with the bacterial membrane (Hancock R and Rozek A, 2002). 

Cationic AMPs have a +2 to +9 positive net charge and bacteria present an exceedingly 

negatively charged ‘outer membrane’ because of the existence of phosphate groups in LPS 

(Ruiz N et al., 2006), concerning gram-negative bacteria (Lai Y and Gallo R, 2009; Ebenhan T 

et al., 2014). For gram-positive bacteria, the lipoteichoic acids play a similar role (Jenssen H et 

al., 2006; Malanovic N and Lohner K, 2016). AMPs attract electrostatic interactions between 

the outer membrane (of bacteria) and themselves then allowing for the bringing of the two 

moieties together (Dathe M et al., 2001).  

It has been established that, up to a defined threshold rate, the higher the positively 

charged AMP, the more improved the antibacterial selectivity and activity. In relation to 

attachment insertion, AMPs exist near the bacterial surface. The preliminary electrostatic 

interactions result in a nonspecific and actual relation of the AMP with bacterial membranes 

(Yeaman M and Yount N, 2003; Giuliani A et al., 2007; Yeung A et al., 2011; Ebenhan T et 

al., 2014). Thanks to the negative charge formed by the membrane, AMPs can distinguish 

between bacteria and host cell.  

AMPs have the ability to aggregate, generating a cluster that deposits onto the 

membrane. Research focusing on in vitro studies disclosed that contingent on some parameters 

like the nature of the AMP, the peptide/membrane concentration, AMPs bind to the surface of 

bacteria via two dissimilar states. These are an ‘I and S state’ I stands for Insertion (Huang H, 

2000), S signifies Surface. Fundamentally, at a low peptide-to-lipid ratio, peptides have the 

tendency to be adsorbed onto a surface, leading to adoption of an orientation parallel to bilayers. 
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Existing in a functionally inactive “S” state encouraging a stretching or thinning of the 

membrane.  

When the peptide-to-lipid ratio rises reaching a brink reliant generally on the lipid 

arrangement of the bilayer, the alignment of AMP fluctuates, becoming perpendicular to the 

bilayers (Brogdan K, 2005; Melo M and Castanho M, 2012). In other words, AMPs shift to the 

“I” state starting the process of inset into the membrane, ultimately concluding to pore 

formation. Subsequently the binding of the bacterial membrane, an AMPs will undergo 

conformation alterations to adopt dynamically promising secondary structures verbalized by 

hydrophobicity. Meaning, α-helical peptides will espouse directions perpendicular or to the 

membrane (Dennison S et al., 2007). Furthermore, membrane permeation exists as a rigorous 

process concerning bunches of AMPs, as it is dynamically negative for the passing of an α-

helical peptide through the membrane, behaving as a monomer. 

In relation with the peptide structure, several modes of action founded on this model 

have been suggested: toroidal pore model, barrel-stave model, and carpet model (Brogdan K, 

2005; Melo M et al., 2009) [Figure 10]. However, a little discussion on the mechanisms of 

action for AMPs which covered the dynamic processes and the detailed atomistic events (Epand 

R and Vogel H, 1999; Shai Y, 2002; Guilhelmelli F et al., 2013; Lee T et al., 2016).  The three 

models differ chiefly in the attachment-insertion phase. The in vivo mechanisms along with the 

exact description of AMP-membrane interactions remain contentious and it is vital to state 

membrane disruption is a multifaceted wonder involving a mixture of intricate mechanisms. 

Like the reporting of some peptide-related cases where it does not act on the membrane rather 

accrues inside the bacteria cell.  
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Figure 10: The mechanisms of action of antimicrobial peptides (Li J et al., 2017). 

Barrel-Stave model, the AMPs insert themselves perpendicularly into the membrane. Toroidal pore 

model which looks like Barrel-stave model, but, the phospholipid head group of the membrane 

constantly contact with AMPs.  Carpet model, in this model the hydrophobic sides of AMPs cover small 

areas of the membrane which lead pores in the membrane. 

2.6.1- The barrel-stave model 

The first mechanism that would explain the AMP ability to kill bacteria was proposed 

by Ehrenstein et al (Ehrenstein G and Lecar H, 1977). Barrel-stave model formation is derived 

by hydrophobic match. AMPs accrue as monomers on the surface of bacteria, then creating 

circle patterns. When binding, they adopt a direction that is parallel to lipid bilayer, coating 

local areas in a carpet-like fashion (Pouny Y et al., 1992). The following action entails the 

AMPs reorienting perpendicularly, inserting into the bacteria membrane’s lipid core resulting 

in a form like a barrel whose laths are the α-helical AMPs (Yang L et al., 2001). Throughout 

this development, AMPs experience conformational point shift: The AMP’s hydrophobic surf- 
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aces face outward, near the membrane’s acyl chains consequently making parallel with the 

bilayer’s lipid core, while hydrophilic regions create the pore’s interior and face each other 

(Brogden K, 2005). Increasingly, new AMPs are enlisted and via a self-aggregation process, 

the pore size rises as more AMPs assume a trans-membrane formation (Christensen B et al., 

1988; Westerhoff H et al., 1989; Duclohier H et al., 1989; Kagan B et al., 1990; Juvvadi P et 

al., 1996; Yang L et al., 2001; Porcelli F et al., 2004). The size of pore based on different factors, 

such as the composition of lipids and lipid/the peptide ratio. Different pores can be structurally 

formed by maculation which had been mentioned in AMPs previously studies (Wang Y et al., 

2016). According to the pore shape, the AMPs including pardaxin, alamethicin, and dermcidin 

motivate barrel stave pores (Laver D,1994; Porcelli F et al., 2004; Song C et al., 2013), whereas, 

the other AMPs motivating toroidal pore (Matsuzaki K, 1998; Sokolov Y et al., 1999; Yang L 

et al., 2001; Henzler Wildman K et al., 2003; Sengupta D et al., 2008; Lee M et al., 2013). 

Within this model, one can see a membrane neither bent nor deformed during insertion process. 

Undeniably, the AMP inserts within the bilayer via the action of “drilling” the membrane. 

Moreover, the importance of hydrophobic and electrostatic interaction to the AMPs molecules 

due to the interaction that occurred with both the head groups and lipid tails (Mihajlovic M and 

Lazaridis T, 2010 a, b; Bertelsen K et al., 2012) [Figure 10]. 

2.6.2- The toroidal pore model 

In 1999, another model, proposed by Hancock et al (Hancock R and Chapple D, 1999). 

helped to combine the actions of two models (carpet and barrel-stave). AMPs molecules break 

through deeper into the membrane. The AMPs amassed on the membrane in a similar fashion 

to the carpet model with a perpendicular insertion into it, causing its distortion (Matsuzaki K et 

al., 1996). Different from the barrel-stave model, lipids are interpolated in the transmembrane 

channel with the AMPs in formation. Protegrins, magainins, and melittin are AMPs’s examples 

which are forming toroidal pore (Matsuzaki K et al., 1996; Yang L et al., 2001; Henzler 

Wildman K et al., 2003; Hallock K et al., 2003; Brogdan K, 2005). The composition of the pore 

is phospholipid and peptide (Matsuzaki K et al., 1996; Ludtke S et al., 1996; Huang H, 2000; 

Yang L et al., 2001; Hallock K et al., 2003) and this model was founded according to some 

studies related to magainin peptides (Matsuzaki K et al., 1995; Ludtke S et al., 1996). 

AMPs interaction with the membrane allows them to an α-helical structure, as well as 

direct themselves parallel to the surface of the membrane allowing the binding to take place  
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amid the AMPs polar face and head group of the lipids. This then causes the bending of the 

membrane (Yamaguchi S et al., 2002). The membrane’s positive curvature bends of 

phosphorlipids and toroidal pore formation (Matsuzaki K et al., 1998; Hallock K et al., 2003) 

so that the pore is lined by the lipid head groups and the AMPs (Sengupta D et al., 2008). 

Whereas interaction of the lipid tails occurs with the AMP’s hydrophobic surface (Yang L et 

al., 2001; Mihajlovic M and Lazaridis T, 2010 a, b; Bertelsen K et al., 2012). The proposed of 

toroidal pores are to take shape of subsequent to peptide induced membrane thinning (Heller 

W et al., 2000; Huang H, 2000; Chen F et al., 2003; Lee M et al., 2004) that can lead to 

breakthrough of short peptides to form a peptide/lipid pore. Ultimately, the forming of toroidal 

pores in the membrane will lead to disruption of said membrane. The variance with the other 

models is the time of insertion, when the AMPs remain eternally bound to the membrane’s LPS 

moieties [ Figure 10]. 

2.6.3- The carpet model 

In 1992, Pouny et al., studied a cationic amphipathic α-helical peptide isolated from 

frog skin named dermaseptin S and established that the communication of this AMP with 

membranes evidently deviated from what was discovered in the barrel-stave model. They then 

proposed a new mechanism, the carpet model (Pouny Y et al., 1992) [ Figure 10]. Like the 

barrel-stave model (Ehrenstein G and Lecar H, 1977), the carpet model posits aggregation of 

AMPs onto the bilayer surface. While true to its predecessor, the main difference is how the 

AMPs keep a parallel position to the membrane surface while the action took place (Bechinger 

B, 1999).  

Sometimes, it is difficult to identify or distinguish between carpet and toroidal pore 

mechanisms. For example, the human LL-37 intercalates parallel to the membrane surface 

(Henzler Wildman K et al., 2003). Although the carpet and channel forming model are different 

in some aspects. However, they are sharing some of the same characteristics. 

Bound to the bacterial surface (hydrophobic side facing exterior) the peptides continue 

acting as clusters (Oreopoulos J et al., 2010; Polyansky A et al., 2010; Wadhwani P et al., 2012; 

Scheinpflug K et al., 2015); ultimately coating the bacterial surface just as a carpet would. As 

the concentration of peptides surges, the membrane becomes weakened from unfavorable 

energetics becoming more likely to interpolate into it as what can be termed ‘detergent-like 

fashion’ causing the breakup and dissolving of the membranes into micelles. Such a mechanism 
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does not encompass pore formation. Here is an instance where there is no insertion into the 

membrane by the AMPs. An efficient mode of action would mean, there must be a high 

concentration of AMPs to get 50% cell killing (Lohner K, 2009) as they have to cover the entire 

bacterial membrane (Rotem S and Mor A, 2009). Notably, contrast to the toroidal pore and 

barrel-stave model, it is not necessary for AMPs to adopt an explicit structure like α-helical for 

permeabilization of the membrane. 

2.6.4-Intracellular targets 

Research indicates membrane disruption is frequently not adequate to generate bacteria 

death. At times membrane disruption is not required for bacteria death. Evidence suggests the 

targeting of intracellular parts (Yeaman M and Yount N, 2003). For example, Buforin II is a 

proline α-helical AMP. This AMP does not permeabilize the outer membrane of the bacteria, it 

penetrates and accumulates within the cytoplasm, applying cytotoxic activity (Park CB et al., 

2000). A concerted action is involved in the mechanism of translocation when it comes to other 

AMPs. Those abundant in arginine can translocate across nuclear and cellular membranes, 

enabling interaction with RNA and DNA. They may also inhibit synthesis pathways (Cudic M 

and Otvos L, 2002; Nicolas P, 2009) by interacting with proteins (Futaki S et al., 2001). While 

no general scheme exists to detail such mechanisms, when the AMP is in the cytoplasm, it can 

interact in various ways: RNA and protein synthesis, inhibition of cell-wall synthesis, binding 

to DNA, inhibition of DNA (Brogden K, 2005; Straus S and Hancock R, 2006; Nicolas P, 2009; 

Hilpert K et al., 2010), inhibition of enzymatic activity (Yeaman M and Yount N, 2003; 

Brogden K, 2005; Yount N et al., 2006; Nguyen L et al., 2011), activation of autolysin, and 

changing cytoplasmic membrane. Lastly, it is important to point out that the action of AMPs 

might be different based on conditions of a test and also can be affected by outer factors such 

as osmolarity, temperature, and media PH (Yeaman M and Yount N, 2003). 

2.7- The antimicrobial peptides derived from chromogranin A (CgA) 

Several new AMPs are released by the secretory vesicles of the bovine adrenal medulla 

chromaffin cells. Highly conserved within humans, the corresponding sequences have a main 

cleavage site located in 78-79 of bCgA. The following removal of K77 and K78 (two basic 

residues) by the carboxypeptidase H (Metz-Boutigue MH et al., 1993) yields vasostatin-I (VS- 
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I; bCgA1-76) (Lugardon K et al., 2000) and prochromacin (Prochrom; bCgA79-431) (Strub J 

et al., 1996), two antimicrobial fragments. C- and N- terminal domains containing antimicrobial 

activities make up many shorter active fragments. They have been identified as: For VS-I, 

bCgA1-40 (N CgA; NCA) (Maget-Dana R et al., 2002) and bCgA47-66 (chromofungin; CHR) 

(Lugardon K et al., 2001), for ProChrom, bCgA173-194 (Chromacin; Chrom) (Strub J et al., 

1996) bCgA344-364 (Catestatin; CAT) (Briolat J et al., 2005) and bCgA344-358 (Cateslytin; 

Ctl). CgA’s unique disulfide bridge remains existent in NCA and VS-I arrangements. Two post-

translational variations are significant for antibacterial activity expression of Chrom. Chrom 

possess the O-glycosylation of S186 and phosphorylation of Y173 (Strub J et al., 1996). 

Besides, worthy of mention is dimerization motif GXXXG akin to what was reported for 

Glycophorin A (Brosig B and Langosch D, 1998) exists in the Chrom sequence (G184-G188) 

[Figure 11].  

Figure 11: Chromogranin A derived peptides. 

Bovine chromogranin A-derived peptides with the complete sequence (431 amino acids).  Black color 

represents the natural cleavage sites and the other generated peptides are in orange color. 

2.7.1-Vasostatins 

Vasostatins I and II otherwise known as CgA1–76 (Aardal S and Helle K, 1992) and 

CgA1–113 characterize CgA’s N-terminal fragments, exerting a great spectrum of 

cardiovascular homeostatic activities (Tota B et al., 2010) that include vasodilation, 

antimicrobial activities (Lugardon K et al., 2000; Aslam R et al., 2012), and inhibition of 

parathyroid hormone secretion (Russell J et al.,1994). Furthermore, neurotoxic effects in 

neuronal/microglial cell co-cultures (Ciesielski-Treska J et al., 1998), and finally, modulation 

of cell adhesion (Gasparri A et al., 1997) were also reported. In rat heart the process of conve- 
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rsion to vasostatin peptides occurs in the extracellular matrix and at the cell membrane level of 

cardiomyocytes (Glattard E et al., 2006). CgA1–76 which can be cleaved from CgA by plasmin 

(Colombo B et al., 2002) act as a vascular smooth muscle dilatating agent (Aardal S and Helle 

K, 1993) and CgA1–113 are structurally comparable inducing similar effects while acting 

through endocrine, autocrine, and paracrine, mechanisms (Helle K and Aunis D, 2000).  

So far, researchers have not identified high-affinity, classical receptors. Although 

antimicrobial action/membrane perturbation have been hypothesized in heart and endothelium 

(Cerra M et al., 2008; Fornero S et al., 2012). Vasostatins have been linked to vasculogenesis 

and remodeling (Mazza R et al., 2010).  Vasostatin I inhibits vascular endothelial growth factor 

(VEGF) induced endothelial cell proliferation and migration and the formation of capillary-like 

structures (Belloni D et al., 2007), as well as vasostatin I is capable to prevent cytoskeletal 

reorganization included by TNF-α, pertussis toxin and thrombin (Ferrero E et al., 2004; Blois 

A et al., 2006). Yet, vasostatin I display vasorelaxant attributes, exerting negative inotropic 

while also having lusitropic effects on the heart (Corti A et al., 2004; Imbrogno S et al., 2004; 

Cerra M et al., 2006), chiefly in the company of strong adrenergic stimuli. Cardiosuppressive 

effects (Imbrogno S et al., 2004) of this nature may be due to a non-competitive counter-action 

stimulated by the b-adrenergic-mediated positive inotropism (Tota B et al., 2008). All of this 

then suggests both vasoactive and cardiotropic attributes of vasostatins offer evidence that 

peptides may act as the cardiovascular system’s homeostatic stabilizers. Specifically, under 

circumstances of sympathetic overstimulation, like when under a stress response (Helle K and 

Aunis D, 2000; Tota B et al., 2010).  

Along with cardiovascular effects, there exists also a regulatory role within the immune 

system. Research shows vasostatin controls the innate immunity by encouraging calcium entry 

into the neutrophils of humans (Zhang D et al., 2009). Additionally, vasostatin directly impedes 

growth of fungi, yeast, and bacteria through penetration of into their membranes. Lastly, 

vasostatins assist in modulating pro-adhesive communication of smooth muscle cells and 

fibroblasts with extracellular matrix proteins (Ratti S et al., 2000) as well as employ parathyroid 

hormone secretion autocrine inhibition in parathyroid cells (Angeletti R et al., 2000). 

2.7.2-Chromofungin 

Human and bovine chromofungin (CgA47-66) has a similar sequence 

(RILSILRHQNLLKELQDLAL). When endoprotease Glu-C from Staphylococcus aureus was 
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 used to digest VS-I (Metz-Boutigue MH et al.,1993), (a generated peptide), CHR, (shortest 

active) was the VS-I-derived peptide corresponding to the sequence Arg47 –Leu66 (Lugardon K 

et al., 2001). It displays antifungal and yeast cells activity (Lugardon K et al., 2001; Taylor C 

et al.,2000). While such a peptide was produced post digestion of existing material in 

chromaffin secretory vesicles, it may be theorized that it may be moduled as infections occur 

by S. aureus. 

CHR’s three-dimension structure has been observed and confirmed in water– 

trifluoroethanol (50:50) (Lugardon K et al., 2001) via the use of 1H-NMR (Nuclear Magnetic 

Resonance) spectroscopy. This investigation discovered the amphipathic sequence 53–56’s 

helical character, while the segment 48–52 lends to a hydrophobic character (Lugardon K et 

al.,2001). Significance of the amphipathic sequence in relation to antifungal activity was 

established from loss of this kind of activity against Neurospora crassa with substitution of two 

proline residues for L61 and L64 respectively, allowing for the disruption of helical structure.  

2.7.3-Catestatin 

Catestatin (CAT) is a 21-amino acid peptide corresponding to bovine CgA344-364 and 

human CgA352-372, acting along nicotinic cholinergic receptors in chromaffin cells (Mahata 

S et al., 1997). CAT inhibit the release of catecholamines. The targeted ablation in a mouse 

model of CgA locus generates severe hypertension, which can only be resolved through 

administration of CAT. Interestingly, hypertensive patients show increased CgA (Chen Y et al., 

2010) along with diminished CAT plasma levels (O’Connor D et al., 2002; Meng L et al., 2011). 

This means CAT deficiency could play a part in formation of hypertension (Rao F et al., 2007; 

Mahapatra R, 2008). CAT’s pathogenesis has a major neurogenic element built on a continued 

over action of the sympathetic nervous system. Also, it can regulate blood pressure (Bassino E 

et al., 2011; Biswas N et al., 2012; Liao F et al., 2015) is sympatho-inhibitor and attenuates 

sympathetic barosensitivity (Rao F et al., 2007; Schillaci G et al., 2011; Gaede A and Pilowsky 

P, 2012). 

CAT may be influenced by individual genetic profile. Moreover, CAT’s genetic variant 

Gly364Ser appears to provide protection against hypertension development (Rao F et al., 2007), 

while the CgA dispensation to CAT seems to efficient in women versus men (Fung M et al., 

2010). The ability of CAT to encourage cardiovascular responses at both local and systemic 

levels is noteworthy (Friese R et al., 2010). Specifically, induction of both antihypertensive and 
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 vasorelaxant effects histamine release induction from mast cells (Kennedy B et al., 1998; 

Kruger P et al., 2003; Angelone T et al., 2008; Aung G et al., 2011; Biswas N et al., 2012). It 

can also exhibit marked vasculogenic and angiogenic activities, as it encourages production and 

migration of endothelial cells stimulating chemotaxis of vascular smooth muscle cells (Guo X 

et al., 2011). Moreover, CAT can mark several diseases, such as myocardial infarction, 

carcinoid tumors of intestine and heart failure (Ceconi C et al., 2002; Prommegger R et al., 

2003; Conlon J, 2010; Zhu D et al., 2011; Liu L et al., 2013; Meng L et al., 2013; Liao F et al., 

2015). Effects such as migration, proliferation and anti-apoptosis in endothelial cells 

comparable to that of VEGF were identified in vitro in tube formation assays (Kirchmair R et 

al., 2004; Theurl M et al., 2010).  

CAT’s role in inflammation has lately been emphasized in terms of induction and 

chemotaxis of pro-inflammatory cytokines (Egger M et al., 2008; Aung G et al., 2011). Such 

evidence proposes action in the neurodegenerative disease, because CgA signifies a significant 

component of the plaques found in people with Alzheimer’s disease (Rangon C et al., 2003) 

and the resulting CAT generates a chemotactic effect on monocytes (Egger M et al., 2008) 

surrounding and invading plaques (Lechner et al., 2004). Furthermore, bovine CAT is very 

potent agent and it can directly inhibit growth of bacteria, yeast, and fungi, including Gram-

negative and positive (Briolat J et al., 2005; Radek K et al., 2008; Akaddar A et al., 2010; 

Shooshtarizadeh P et al., 2010; Metz-Boutigue MH et al., 2010), likely due to its highly cationic 

nature, a typical aspect of antibacterial compound (Aslam R et al., 2013). 

2.7.4-Cateslytin 

The short active form of CAT is Cateslytin (bCtl; bCgA344-358). It corresponds to the 

antimicrobial domain (Briolat J et al., 2005; Biswas N et al., 2009). The N-terminal sequences 

bCgA344-351 and bCgA 348-358 are active. However, the C-terminal sequences bCgA352-

358 is not active. Ctl has immune regulation properties (Zhang K et al., 2006) and it can also 

regulate smooth muscle cell proliferation (Guo X et al., 2011).  Endogenous construction of 

CAT is further processed by cysteine protease membrane cathepsin L (CTSL) by an extra 

cleavage R358-G359 of catestatin in chromaffin secretory vesicles (Lee J et al., 2003). The 

interaction of Ctl with a fungal membrane, via adoption of an accumulated antiparallel beta-

sheet structure occurs right at membrane interfaces (Jean-Francois F et al., 2009). Such a 

mechanism often leads to the separation of rigid and fluid membrane structures referring to the 
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fungal membrane, on models that contain ergosterol, ultimately leading to the membrane’s 

disruption (Jean-Francois F et al., 2009). The utilization of zwitterionic biomembranes shows 

development of beta-sheets, generating 1 nm diameter pores (Jean-Francois F et al., 2008b).  

Ctl through the use of NMR studies demonstrated conversion into anti-parallel beta-

sheets gathering at bacterial membranes’, negatively charged surface (Jean-Francois F et al., 

2007; Jean-Francois F et al., 2008a). The significance of Arginine residues in binding to 

negatively charged lipids is notable (Postma T.M. and R.M.J. Liskamp, 2016). Subsequent Ctl 

interaction lead various thicker and more rigid membrane domains (Jean-Francois F et al., 

2008a). Ctl can be regarded as an extremely potent AMP with ability to inhibit yeast, bacterial, 

and fungal growth observed at micromolar concentrations (Postma T.M. and R.M.J. Liskamp, 

2016). Additionally, with mammalian cells it is nontoxic (Briolat J et al., 2005). Heightened 

activity of Ctl comparatively to other Cgs-derivative peptides is attributed thanks in part to the 

small size (15 residues) and +5 net charges (R344, R347, R351, R353, R358) and 5 hydrophobic 

residues (M346, L348, F360, Y355, F357), offering better communication between negatively 

charged bacterial membrane. Lastly, deeper microbial membrane penetration can be attributed 

to a high arginine ratio.  
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3.1- Combination peptides and conventional antibiotics 

Innate immunity with AMPs and their mechanisms of action are well considered during 

evolution. However, the knowledge of their pharmacodynamic is still very confined in vitro 

and in vivo as well. 

A huge revolution had occurred in the medical field when different categories of 

antibiotics have been discovered (Fleming A, 1929). AMPs also have been offered and being 

accepted as a novel antibiotic, due to offering a wide spectrum of activities against various 

bacterial strains (Zasloff M, 2016), and they are a very important component of immune 

defences in multicellular organisms (Johnston P and Rolff J, 2013; Johnston P et al., 2014).  

Due to excessive use of antibiotics, the resistance phenomena have been acquired by 

numerous microorganisms (Magiorakos A et al., 2012), then impairs our capacity to treat 

infections, posing a growing challenge for global public health (Levy S and Marshall B, 2004; 

Bergstrom C and Feldgarden M, 2008; Smith R and Coast J, 2013). Therefore, to address this 

bacterial resistance, many solutions are currently under scrutiny. 

The combination strategy is one of the suggestions to take advantage of the full 

possibility of existing antibiotics. Another way to search for possibility to find natural 

antimicrobial agents such as AMPs that have antimicrobial activity against wide range of 

pathogenic microbes and they might support the present antibiotic power. Some AMPs 

available commercially which are now prescribed and used clinically as alternative to the 

conventional antibiotics or accompany with them (Giuliani A et al., 2007). Moreover, in the 

natural conditions, these AMPs are supposed to be less to produce resistance and mutagenesis, 

although, it can obtain resistance strains in the laboratory under intensive selections (Perron G 

et al., 2006; Rodriguez-Rojas A et al., 2014; Dobson A et al., 2014).  

In the last few decades, the clinical successes confirmed the combination therapy which 

is multi-advantageous and useful (Zimmermann G et al., 2007). The interaction or the 

cooperation between two or more antimicrobial agents, that can produce effects of their 

combination such as synergistic, additive and antagonist (Greco W et al., 1995; Chou T, 

2006; Cokol M et al., 2011; Imamovic L and Sommer O., 2013). During the combination of the 

agents, the results of effects could be stronger, equal and/or weaker than the antimicrobial agent 

individually (Loewe S, 1953; Chou T, 2010). One of the notable advantage through the 

combination treatment is synergistic effects that can probably retard the drug resistance 

development, minify the individual drugs dosage, elimination of resistance strains, and toxicity, 
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therefore it can reduce side effects (Hegreness M et al., 2008; Lehar J et al., 2009; Cokol M et 

al., 2011; Tamma P et al., 2012; Imamovic L and Sommer O, 2013; Worthington R and 

Melander C., 2013). Therefore, the only common strategy to develop the new antibiotics that 

are to treat and to eliminate multidrug-resistant bacterial infections is synergistic drug 

combination. 

The definition of synergy that can occur between the agents of antimicrobial is a greater 

than 2 log rises in the activity of bactericidal in vitro when compared with the activity of 

bactericidal of each agent alone (Klastersky J et al., 1977; Klastersky J and Zinner S, 1982; 

Giamarellou H et al., 1984; Giamarellou H, 1986; Den Hollander J et al., 1997). 

To increase the chance of treatment, along with antibiotics combination, natural AMPs 

have been combined with antibiotics (McCafferty D et al., 1999; Brumfitt W et al., 2002; 

Hancock R and Sahl H, 2006; Naghmouchi K et al., 2012; Bahar A and Ren D, 2013). AMPs 

has shown several mechanisms of action which can be listed into two types: membrane lysis 

and no membrane lysis (intracellular targets) (Shah P et al., 2016).  

Commonly, numerous of AMPs dependent on concentration, and dual mechanisms are 

notified for them. The membrane lysis caused by AMPs at high concentration, whereas at low 

concentration the membrane will not lysis (Cudic M and Otvos L, 2002). Therefore, AMPs as 

excellent candidates in the development of future antimicrobial agents’ due to selective target, 

wide spectrum, diverse mode of action and lower toxicity (Hancock R and Patrzykat A, 2002). 

3.1.1-  Analysis of the antimicrobial peptides of the combination (Antibiotic / AMPs) 

Combination of peptides with conventional antibiotics will be calculated taking into 

account the minimal inhibitory concentration (MIC) of the antibiotic and the MIC of the 

peptide. Then evaluated the Fractional Inhibitory Concentration (FIC). 

The microdilution concentration assays are used. (Sueke H et al., 2010) Therefore, to 

calculate the FIC index must divide the MIC of peptide/antibiotic within combination by the 

single peptide/antibiotic. Moreover, with this FIC of the antibiotic and the FIC of the peptide, 

the determination of the FIC index corresponding to the addition of both FIC. Finally, 

depending on the FIC index, it could be identified the effect of the combination. 
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The FIC index for the combination of different two antimicrobial agents 

(peptide/antibiotic) was calculated according to the following equation:  

FIC index= (MIC of Peptide X in combination) / (MIC of Peptide X alone) 

+ (MIC of antibiotic Y in combination) / (MIC of antibiotic Y alone)

FIC index was interpreted as follows:  <0.5: synergistic activity, 0.5–1: additive activity, 1–4: 

indifference, >4: antagonism (Sueke H et al., 2010).  

Finally, several studies support combinations of AMPs with antibiotics for increasing 

the activities with a fabulous synergistic effect (McCafferty D et al.,1999; Brumfitt W et al., 

2002; Naghmouchi K et al., 2012). Hence, by combining AMPs with conventional antibiotics 

a new hope for facing the battle with large spectrum of microorganisms appeared. 
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Materials and Methods 

1-Purification of synthetic antimicrobial peptides

The synthetic peptides were purchased from Proteogenix (Schiltigheim, France): Ctl 

corresponds to the L and D forms of bovine L-cateslytin (L-Ctl) and D-cateslytin (D-Ctl) 

bCgA344-358 (RSMRLSFRARGYGFR). They were obtained with >95% of purity with a 

molecular weight of 1860 Da.  

In order to verify if peptides were oxidized during storage, they were chromatographed 

by using a Dionex HPLC system (Ultimate 3000; Sunnyvale, CA USA) on a Macherey Nagel 

Nucleosil RP 300-5C18 column (10 × 250 mm; particle size 5 µm and pore size 100 nm). The 

fraction containing synthetic peptides were then detected at 214nm of absorbance. The 

identification is based on the retention time and the absorbance A214nm. The elution of material 

was obtained with a gradient which consisted of (Solvent A) 0.1% (v/v) Trifluoroacetic acid 

(TFA) in water and (Solvent B) 0.09% (v/v) TFA in 70% (v/v) acetonitrile-water. The rate of 

the elution flow was 700µL/min with the gradient of solvent B as indicated on chromatograms. 

Then the different peaks containing peptides were analysed by Matrix Assisted Laser 

Desorption Ionization-Time of Flight (MALDI-TOF) mass spectrometry (UltraflexTM 

TOF/TOF (BrukerDaltonics, USA) (Sizova D et al., 2007) and by automated Edman 

sequencing (Briolat J et al., 2005) on an Applied Sequencing System Procise (Applied 

Biosystems, Foster City, USA) (Metz-Boutigue MH et al., 1998) in order to evaluate the 

concentration of synthetic peptides. The peptides used for the different assays correspond to 

non-oxidized forms. 

2-Antimicrobial activity analysis

Numerous microorganisms of gram-positive (Staphylococcus aureus methicillin 

sensitive, S. aureus methicillin resistance and Parvimonas micra), gram-negative bacteria 

(Prevotella intermedia, Fusobacterium nucleatum, Escherichia coli wild-type and E. coli K-12 

mutant E2146), as well as candida albicans were tested to determine the antimicrobial activities 

of peptides and conventional antibiotics too. Antibacterial and antifungal activities were 

performed to evaluate the antimicrobials. 

S. aureus methicillin sensitive (ATCC 25923TM) (MSSA) was purchased from ATCC

and S. aureus methicillin resistance (MRSA) S1 strain was kindly provided by Dr Gilles Prévost 

(Institute of Bacteriology EA7290, Strasbourg). Other oral cavity pathogens such as:  



Materials and Methods 

Parvimonas micra (ATCC 33270TM), Prevotella intermedia (ATCC 49046TM), 

Fusobacterium nucleatum (ATCC 49256TM) were purchased from ATCC (Manassas, USA). 

Candida albicans (ATCC 10231TM) and Escherichia coli (ATCC 25922TM) were also 

purchased from ATCC and Enterococcus feacalis (CCM 2541) was provided by the 

Czechoslovac Collection of Microorganisms. Furthermore, E. coli K-12 mutant E2146 was 

kindly provided by the Institut Pasteur of Paris. This strain was constructed from E. coli 

MG1655 (E. coli genetic stock center CGSC#6300) and is resistant to ampicillin, 

chloramphenicol and kanamycin (Francius G et al., 2011). 

2.1- Antibacterial and antifungal assays 

E. coli and S. aureus were precultured aerobically at 37°C according to the instructions.

E. coli strains were cultured in Luria Bertani broth pH 7.0± 0.2 (Sigma, Le pont de Claix,

France), S. aureus strains were cultured in Mueller Hinton broth pH 7.3± 0.1 (Difco, USA). In

addition, P. micra, F. nucleatum and P. intermedia were cultured anaerobically in Anaerobe

Basal Broth pH 6.8± 0.2 (Oxoid, Hampshire, England).

All the strains above mentioned were firstly plated on the agar plates and cultivated for 

24h at 37°C. After incubation, one colony per isolate was transferred to 5 mL of culture medium 

and incubated with shaking for overnight at 37°C. The cultures were suspended at absorbance 

of OD600 = 0.001 in specific media according to bacteria strain or fungi. OD600 was evaluated 

with a spectrophotometer (BIO-RAD SmatspecTM plus).  

All the strains mentioned above were treated with different concentrations of synthetic 

peptides or conventional antibiotics. They were incubated in 96-wells plates for 24h at 37°C 

with shaking. As a positive control Tetracycline (10µg/mL) and Cefotaxime (0.1µg/mL) was 

used to evaluate the percentage of growth inhibition of strains. All the assays were evaluated 

by the OD620 with a Multiskan EX microplate spectrophotometer (Thermo Fisher Scientific) 

and performed in triplicate. 

2.2-Minimum inhibitory concentration (MIC) determination 

After a statistical analysis of the lowest concentration of antimicrobial agents 

(peptides/antibiotics) capable to inhibit 100% of the inoculum, the MIC value was identified 

for each molecule and its action against a specific strain. This MIC was determined from a mod- 
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ified Gompertz function as described in (Lambert R and Pearson J, 2000). 

2.3- Combination of peptides with antibiotics 

In order to decrease the concentration of the antibiotics administered, a combination of 

D-Ctl with conventional antibiotics may allow to highlight the synergistic or additive effects.

Therefore, the D-Ctl could potentiate the antimicrobial effect of numerous antibiotics, such as

Cefotaxime which prescribed to treat E. coli resistance strains infections, Vancomycin and

methicillin which were used to fight against S. aureus infections as well as Amoxicillin which

was recommended to treat infections related to oral cavity pathogenic.

After determining the antibiotics and D-Ctl MICs for all strains, antimicrobial assays 

were performed as previously described in (Section 2.1). The strains were incubated in 96-wells 

plated and treated with combination of the antibiotics with D-Ctl as following formula; ½ MIC 

of D-Ctl + ½ MIC of antibiotic, ½ MIC of D-Ctl + ¼ MIC of antibiotic and ½ MIC of D-Ctl + 

1/10 MIC of antibiotic. Then, ¼ MIC of D-Ctl + ½ MIC of antibiotic, ¼ MIC of D-Ctl + ¼ 

MIC of antibiotic and ¼ MIC of D-Ctl + 1/10 MIC of antibiotic.  

Then calculate a parameter called FIC which is: 

 FICantibiotic = MICantibiotic in combination / MICantibiotic alone 

 FICD-Ctl = MICD-Ctl in combination / MICD-Ctl alone 

With the FIC of the antibiotic and the FIC of the peptide, we determined the FIC index 

corresponding to the addition of both FICs. Finally, depending on the FIC index, it could 

identify the effect of the combination. 

 FIC Index = FICantibiotic + FICD-Ctl 

3-Peptides stability assays by using HPLC

In order to evaluate the stability of synthetic peptides in different medium, experiments 

were assessed in the supernatant of different strains of bacteria and human saliva which were 

collected from healthy volunteers by using HPLC according to the methods previously reported 

(Section 1). 
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3.1-Stability against bacterial virulence factors 

Bacterial supernatants were analyzed by using HPLC and the supernatants were 

prepared for all the bacterial strains which have been mentioned in the (Section 2). First of all, 

the bacteria were precultured in 5mL of culture medium as indicated above (Section 2.1) and 

incubated for 24h at 37°C. Secondly, the culture was centrifuged at 10000g for 1 min and the 

supernatant filtered by using a 0.22µm MillexH-GV (Millipore, Carrigtwohill, Ireland) to 

eliminate the presence of bacteria. Then 1mL of each supernatant for was incubated 48h at 37°C 

to check the absence of bacteria. Finally, the peptides D- and L-Ctl were incubated in the 

bacterial supernatant previously prepared during 24h at 37°C and the analysis of the peptides 

stability is obtained by using a Dionex HPLC system (Ultimate 3000; Sunnyvale, CA USA) on 

a Nucleosil reverse-phase 300–5C18-column (46250 mm; particle size: 5 mm; porosity, 300 Å) 

(Macherey Nagel, Hoerdt, France) according to the method previously reported (Section 1).  

3.2-Stability against saliva 

In this assay samples of saliva 100µL were collected from 4 men and 7 women healthy 

volunteers from the Odontology Faculty of the University of Strasbourg, France. These samples 

were collected according to European legislation and incubated with or without D-Ctl or L-Ctl 

(230µg/mL=123µM) in presence of water 100µL. Then, the samples were incubated for 24h at 

37°C, centrifuged for 5min at 14000g at 4°C. Afterward, these samples were diluted 3 times in 

water with 0.1% (v/v) formic acid.  

In order to evaluate the stability of each sample 2µL of treated peptide was analysed by 

using the LC-SRM (Liquid Chromatography-Selected Reaction Monitoring) technology in 

collaboration with the laboratory LSMBO (Strasbourg, France) (MacLean B et al., 2010).  

4-Evaluation cytotoxicity of peptides for mammalian cells

Basically, to determine the cytotoxicity of L- and D-Ctl peptides several experiments 

were performed on different human cell lines and primary cells as well: human gingival 

fibroblasts (HGF-1) cell line, human intestinal epithelial cell line (Caco-2) and peripheral blood 

mononuclear cells (PBMCs). The cytotoxicity was determined by MTT [3(4,5-dimethylthiazol-

2-yl)-2,5 diphenyl tetrazolium bromide] (Sigma-Aldrich, Oregon, USA) assays.
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4.1- Cytotoxicity for HGF-1 

HGF-1 cell line (ATCC® CRL-2014TM) were cultured by Pauline Dartevelle in DMEM 

medium (Sigma-Aldrich) at 37°C in a 5% CO2 humidified incubator, and supplemented with 

10% foetal bovine serum (Gibco) and 1% penicillin/streptomycin (Prepared in the laboratory). 

Then the cells were cultivated into 96-well plates at concentration 106 cellules/mL for 24h at 

37°C before being treated with serial dilution of peptide at different concentration (0-100µg/ 

mL) for 24, 48 or 72 h. 

Finally, MTT was added at final concentration of 0.25mg/mL to each well. Then for 

approximately 3h of incubation the cells at 37°C in a 5% CO2 humidified incubator, the cells 

were lysed with isopropanol/HCL (96:4, v/v). Afterward, the cells were incubated for 15min at 

room temperature with shacking and by using MultiskanTM EX microplate spectrophotometer 

(Thermo Fisher Scientific) the cells viability was assessed by optical density OD570nm. 

Experimental was performed in triplicate. 

4.2- Cytotoxicity for Caco-2 

The Caco-2 cell line (ATCC HTB-37TM) was kindly provided by Dr Benoit Frisch 

(UMR 7199 CNRS University of Strasbourg) and these cells were cultured in Eagle`s Minimum 

Essential Medium (Thermo Fisher Scientific) (MEM (1X) + GlutaMAXTM-1) (Gibco, UK) at 

37°C in a 5% CO2 humidified incubator, and supplemented with 20% bovine calf serum and 

1% penicillin/streptomycin. During the confluence of the cells or in their exponential phase 

growth that can estimate the good number of adherent cells, these cells were cultivated into 96-

well plates at cells concentration 1X106 cells/mL for 24h at 37°C before being treated with 

serial dilution of L-Ctl and D-Ctl. After 72h, MTT was added at final concentration of 

0.25mg/mL to each well. Then for approximately 2 h of incubation the cells at 37°C in a 5% 

CO2 humidified incubator, the cells were lysed with isopropanol/HCL (96:4, v/v). By using a 

MultiskanTM EX microplate spectrophotometer (Thermo Fisher Scientific), the cytotoxicity of 

the cells was assessed by optical density OD570nm. Experimental was performed in triplicate. 
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4.3- Cytotoxicity for PBMCs 

PBMCs picked up from healthy volunteers were obtained from the blood transfusion 

centre of Strasbourg (Etablissement Français du Sang, Strasbourg) and these cells were isolated 

by density gradient centrifugation using LymphoprepTM (Stemcell Technologies). PBMCs were 

then maintained in AIM V medium (Thermo Fisher Scientific) at 37°C in a 5% CO2 

humidified incubator. PBMCs were treated directly with serial dilution of L-Ctl and D-Ctl for 

72h. Then MTT was added to each well at final concentration of 0.25mg/mL. The following 

steps which performed to determine the cytotoxicity as such that performed for Caco-2 cells. 

4.4-Haemolysis assays 

The lysis of red blood cells was monitored by the release of hemoglobin to the 

extracellular environment. Whole blood from one healthy volunteer was obtained from the 

blood transfusion centre of Strasbourg (Etablissement Français du Sang, Strasbourg) and 

washed twice with PBS (800g, 10 min). Red blood cell suspensions were then incubated with 

D-Ctl or L-Ctl at different concentrations (0-100 µg/mL) for 1h at 37°C. As a positive control,

total lysis of red blood cells was obtained by incubating the cells with 0.1% SDS. After the

incubation, cells were centrifuged at 800 g for 10 min and diluted with 1 mL of PBS.

Haemoglobin released was determined by optical density OD420 using a Multiskan™ EX

microplate spectrophotometer (Thermo Fisher Scientific, USA).

5-Inflammatory effects

Human PBMCs were prepared as previously described and treated for 24h with 60 

µg/mL D-Ctl or L-Ctl. Supernatants were then filtered and assessed for cytokine dosage 

according to the manufacturer’s instructions. The following cytokines were measured using the 

Bio-Plex® Multiplex Immunoassay system (Bio-Rad): G-CSF, GM-CSF, IFN-γ, IL-1β, IL-2, 

IL-4, IL-5, IL-6, IL-7, IL-8, IL-10, IL-12, IL-13, IL-17, MCP-1, MIP-1β, TNF-α (Panezai J et 

al., 2017). This experimental was in realized collaboration with Dr. Gilles Prévost (Institute of 

Bacteriology EA 7290, Strasbourg).   
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6-Acquired resistance assays

To compare the use of conventional antibiotics such Ampicillin or Cefotaxime and D-

Ctl to treat E. coli (ATCC 25922TM), resistance assays were performed. E. coli was cultured 

over 24 days at ½ MIC. The changes in the MICs values of the peptides and antibiotics against 

the inoculum were determined each 3 to 4 days.  

One colony of E. coli was precultured in 3mL of LB medium and incubated with ½ MIC 

of antimicrobials (Ampicillin, Cefotaxime, D-Ctl) for 24h at 37°C. Then medium was changed 

every 24h with adding the same concentration (½ MIC) for each antimicrobial compound and 

30µL of culture bacteria. To determine the new MIC for each antimicrobial compound, the 

cultures were centrifuged at 13.2*1000rpm for 1 min. After getting rid of the supernatant, fresh 

medium was added with same volume at the beginning. Then the bacteria were suspended at 

absorbance of OD600=0.001and bacteria were plated in 96-well plated in the present of different 

concentration of antibacterial compound which had mentioned above. After 24h of incubation 

the bacteria were assessed by optical density OD620 using a Multiskan EX microplate 

spectrophotometer (Thermo Fisher Scientific) (Ling L et al., 2015).  

7-Analysis of interaction between D-Ctl and planktonic E. coli 2146

The bacterial model used for the physicochemical analysis (AFM, infrared spectroscopy 

and epifluorescence microscopy) is E. coli MDR. Bacteria were cultured in Luria Broth (Miller, 

Fluka) at 25 g/L (LB) or at 6.25 g/L (LB/4) in deionized water (Purelab Option, ELGA). All 

the cultures were incubated in a water bath shaker (Inova 3100, New Brunswick Scientific) at 

37 ± 1°C and under continuous agitation at 160rpm. After an overnight subculture (16h, with 

ampicillin and kanamycin), bacteria were cultured in 200 mL of LB medium (without 

antibiotics) with an initial optical density at 600 nm (OD600, measured with a cell density meter 

Biochrom AG, Fisherbrand) of 0.050 ± 0.005. 

For epifluorescence and infrared spectroscopy analyses, the antimicrobial assays against 

planktonic E. coli MDR were performed in sterile 96-well plates (Nunc) in a final volume of 

200 mL. When the optical density of the bacterial culture reached an OD600 value between 0.5 

and 0.6 (bacteria were at the end of the exponential phase), the suspension was diluted in LB 

or LB/4 to give an OD600 = 0.10 ± 0.01. The necessary volume of the stock solution of the 

peptide at 1 g/L was spotted in the bacterial suspension. Sterility and growth controls were ster- 
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ile LB and LB/4, and a bacterial suspension without peptide, respectively. The plate was 

incubated for 20h at 22°C. 

7.1-Epifluorescence optical microscopy 

To analysis planktonic bacteria by fluorescence microscopy using BacLightTM bacterial 

viability kit (L7012, Molecular Probes, Eugene, USA) was used. This kit allows to determine 

the permeability of the sessile cells in case of present and absence of the AMP. The kit used a 

mixture of SYTO-9 green-fluorescent nucleic acid stain (Excitation/emission maxima: 

480/500nm) and the red- fluorescent nucleic acid stain propidium iodide (excitation/ emission 

maxima: 490/635nm). Therefore, bacteria with intact membranes fluoresce green, while 

bacteria with damaged membranes fluoresce red. After 20 hours of incubation, 200 µL of the 

24 hours-old bacterial suspension were mixed with 300 µL of BacLightTM solution (15 µL of 

the reconstructed BacLightTM solution as described by the manufacturer in 300 µL of sterile 

water), and stained for 20 min in the dark at 22 ± 1°C. The suspension was then filtrated with 

0.2 µm black filters (Millipore, GTBP04700) and rinsed three times with sterile water to 

eliminate excess BacLightTM. The sample was mounted in BacLightTM mounting oil as 

described by the manufacturer. Both fluorescences were viewed simultaneously with the 100X 

oil immersion objective of an Olympus BX51 microscope equipped with an Olympus XC50 

camera. 

7.2-ATR-FTIR spectroscopy 

The recording for ATR-FTIR spectra was between 4000 and 800 cm-1 on a Bruker 

Vertex 70v spectrometer equipped with a KBr beam splitter and a DTGS detector and driven 

by the OPUS 7.5 software. Single beam spectra for the resolution was 4 cm-1. For getting 

spectra, A nine-reflection diamond ATR accessory was used (DurasamplIRTM, SensIR 

Technologies, incidence angle: 45°). The number of bidirectional double-sided interferogram 

scans was 200, which corresponds to a 2min accumulation. By using Blackman-Harris three-

term apodization function and Mertz phase correction mode, all interferograms were Fourier 

processed. There was no ATR correction performed. In an air-conditioned room and at 21 ± 

1°C the measurements were assessed. 50µL of the bacterial suspensions in their culture media  
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was put on the ATR crystal. To eliminate the spectral background, centrifuged a half of the 

suspension at 8000rpm during 5 min. Subtraction of water steam was performed when needful. 

7.3-AFM mechanical properties measurements 

Using a MFP3D-BIO instrument, AFM experiments were performed (Asylum Research 

Technology, Oxford Instruments Company, Mannheim, Germany).  Conical shape of silicon 

nitride cantilevers was bought from Asylum Research Technology (Olympus TR400 PSA, 

Mannheim, Germany). The spring constants of the cantilevers measured using the thermal noise 

method were found to be 0.02-0.03 nN/nm. In PBS and at room temperature these tests were 

performed in triplicate. The method that used to define Young's modulus was the 

nanoindentation that determines the force versus indentation curves. It can be obtained 

mechanical properties during the recording a grid map of 50-by-50 force curves, which can be 

done on numerous of bacterial clusters that include at least 10 bacteria electrostatically 

immobilized onto PEI coated glass substrate. The approach rate was 2 µm/s, the maximal 

loading force was 4 nN and the piezodrive was fixed to 2 µm. According to the Sneddon model, 

the analysis of the approach curves was estimated by the histograms which corresponding to 

the statistic distribution of the Young modulus (Sneddon I, 1965; Gavara N and Chadwick R, 

2012) where δ is the indentation depth, R is the curvature radius of AFM-tip apex, ν the Poisson 

coefficient and fBECC the bottom effect correction described by Gavara et Chadwick (Gavara 

N and Chadwick R, 2012). By mean of an automatic Matlab algorithm, all the FVI were 

analyzed and they are described elsewhere (Polyakov P et al., 2011). Bacteria were exposed in 

presence of different concentration of D-Ctl (8, 40 and 80 µg/mL) as well as in different 

concentration L-Ctl (8, 150 and 750 µg/mL) which are assessed in PBS buffer for 20h at 22 °C. 

Mechanical properties were measured by AFM in force mapping mode at indentation rate of 2 

µm/s and the average values correspond to at least 500 force curves taken from at least 10 

bacteria. After exposure to the peptide, bars labelled with * and ** the corresponding values 

were obtained after only 3 and 0.8 hours, respectively. In fact, all bacteria were extremely 

damaged after these periods of exposure and not enough for relevant measurements. 

8- Time-lapse videomicroscopy of interaction peptide and Candida albicans

To investigate the interaction between Candida albicans and D-Ctl, time-lapse video 

microscopy has been used. This study analyzed by Pauline Dartevelle.  
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II- Matériels et méthodes en français

1-Purification de peptides antimicrobiens synthétiques

Les peptides synthétiques ont été achetés auprès de Proteogenix (Schiltigheim, France): 

Ctl correspond aux formes L et D de la L-cateslytine bovine (L-Ctl) et de la D-cateslytine (D-

Ctl) bCgA344-358 (RSMRLSFRARGYGFR). Ils ont été synthétisés avec une pureté > 95% et 

leur poids moléculaire est de 1860k Da. Afin de vérifier si les peptides ont été oxydés pendant 

le stockage, ils ont été chromatographiés en utilisant un système HPLC Dionex. 

Ensuite, les différents pics contenant des peptides ont été analysés par spectrométrie de 

masse MALDI-TOF (UltraflexTM TOF / TOF (BrukerDaltonics, USA) (Sizova D et al., 2007) 

et par séquençage Edman automatique (Briolat J et al., 2005) sur le système de séquençage 

Procise (Applied Biosystems, Foster City, USA) (Metz-Boutigue MH et al., 1998) afin 

d'évaluer la concentration en peptides synthétiques. Les peptides utilisés pour les différents 

dosages correspondent à des formes non oxydées. 

2-Analyse d'activité antimicrobienne

De nombreux micro-organismes à Gram positif (Staphylococcus aureus sensible à la 

méthicilline, S. aureus résistant à la méthicilline et Parvimonas micra) et à Gram négatif 

(Prevotella intermedia, Fusobacterium nucleatum, Escherichia coli sauvage et E2146 mutant 

E. coli K12), ainsi que Candida albicans ont été testés pour déterminer les activités

antimicrobiennes des peptides et des antibiotiques conventionnels. Les activités

antibactériennes et antifongiques ont été réalisées pour évaluer les caractériser peptides

antimicrobiens.

Toutes les souches mentionnées ci-dessus ont été traitées avec différentes 

concentrations de peptides synthétiques ou d'antibiotiques conventionnels. Ils ont été incubés 

dans des plaques à 96 puits pendant 24 heures à 37°C sous agitation. La tétracycline (10 µg/mL) 

et la céfotaxime (0,1 µg/mL) ont été utilisées en tant que témoin positif pour évaluer le 

pourcentage d'inhibition de croissance des souches. Tous les dosages ont été évalués et réalisés 

en triple exemplaire avec un spectrophotomètre de microplaques Multiskan EX (Thermo Fisher 

Scientific). La lecture s'est faite à la Densité optique de 620 nm (DO 620 nm). 
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2.1-Détermination de la concentration minimale inhibitrice (CMI) 

Après une analyse statistique de la plus faible concentration d'agents antimicrobiens 

(peptides / antibiotiques) capable d'inhiber 100% de l'inoculum, la valeur de la CMI a été 

identifiée pour chaque molécule et son action contre une souche spécifique. Cette CMI a été 

déterminée à partir d'une fonction modifiée de Gompertz, comme décrit dans (Lambert R et 

Pearson J, 2000). 

2.2-Combinaison de peptides avec des antibiotiques 

Afin de diminuer la concentration des antibiotiques administrés, une combinaison de D-

Ctl avec des antibiotiques conventionnels permet de mettre en évidence les effets synergiques 

ou additifs. Pour calculer un indice appelé FIC la formule suivante a été appliquée : 

 FICantibiotic = MICantibiotic en combinaison / MICantibiotic seul 

 FICD-Ctl = MICD-Ctl en combinaison / MICD-Ctl seul 

 Indice FIC = FICantibiotic + FICD-Ctl

3-Stabilité contre les facteurs de virulence bactérienne

Les différents surnageants bactériens (Section 2) ont été analysés en utilisant l'HPLC. 

Tout d'abord, les bactéries ont été pré-cultivées dans 5 ml de milieu de culture comme indiqué 

ci-dessus (Section 2.1) et incubées pendant 24 h à 37°C. Deuxièmement, la culture a été

centrifugée à 10000 g pendant 1 min et le surnageant a été filtré en utilisant un MillexH-GV de

0.22µm (Millipore, Carrigtwohill, Irlande) pour éliminer la présence de bactéries. Ensuite, 1mL

de chaque surnageant a été incubé 48 h à 37°C pour vérifier l'absence de bactéries. Enfin, les

peptides D- et L-Ctl ont été incubés dans le surnageant bactérien préalablement préparé pendant

24 h à 37°C.

3.1-Stabilité contre la salive 

Dans cette étude, des échantillons de salive de 100µL ont été prélevés chez 4 hommes 

et 7 femmes volontaires sains de la Faculté d'Odontologie de l'Université de Strasbourg, France. 
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4-Cytotoxicité d'évaluation des peptides pour les cellules de mammifères

Pour déterminer la cytotoxicité des peptides L- et D-Ctl, plusieurs expériences ont été 

réalisées sur différentes lignées cellulaires humaines des et cellules primaires : fibroblastes 

gingivaux humains (HGF-1), cellule épithéliale humain de l`intestin (Caco-2) et cellules 

mononuclées du sang périphérique (PBMC). La cytotoxicité a été déterminée par dosages de 

MTT [3 (4,5-diméthylthiazol-2-yl) -2,5 diphényltétrazolium bromure] (Sigma-Aldrich, 

Oregon, USA). 

4.1-Tests d'hémolyse 

La lyse des globules rouges a été contrôlée par la libération d'hémoglobine dans 

l'environnement extracellulaire. 

5-Effets inflammatoires

Des PBMC humaines ont été préparées comme décrit précédemment et traitées pendant 

24 h avec 60 µg/mL de D-Ctl ou de L-Ctl. En utilisant Bio-Plex Multiplex Immunoassay 

system (Bio-Red). Cette expérimentation a été réalisée en collaboration avec le Dr Gilles 

Prévost (Institut de Bactériologie EA 7290, Strasbourg) (Panezai J et al., 2017). 

6-Essais de résistance acquis

Pour comparer l'utilisation d'antibiotiques conventionnels, tels que l'ampicilline ou la 

céfotaxime et le D-Ctl pour traiter E. coli (ATCC® 25922TM), des dosages de résistance ont été 

réalisés. E. coli a été cultivé pendant 24 jours à ½ MIC. Les changements dans les valeurs de 

CMI des peptides et des antibiotiques contre l'inoculum ont été déterminés tous les 3 à 4 jours 

(Ling L et al., 2015). 
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7-Analyse de l'interaction entre D-Ctl et E. coli planctonique 2146

Le modèle bactérien utilisé pour l'analyse physico-chimique (AFM, spectroscopie 

infrarouge et microscopie à épifluorescence) est E. coli MDR. Pour les analyses 

d'épifluorescence et de spectroscopie infrarouge, les tests antimicrobiens contre la MDR 

planctonique de E. coli ont été réalisés dans des plaques stériles de 96 puits (Nunc) dans un 

volume final de 200 mL. 

7.1-Microscopie optique à épifluorescence 

L'analyse des bactéries planctoniques par microscopie à fluorescence, a été réalisée en 

utilisant un kit de viabilité bactérienne BacLightTM (L7012, Molecular Probes, Eugene, USA). 

Ce kit permet de déterminer la perméabilité des cellules sessiles en présence et en absence de 

l'AMP. Le kit utilise un mélange d'acide nucléique fluorescent vert SYTO-9 (maximum 

d'excitation / émission : 480 / 500nm) avec l'iodure de propidium fluorescent rouge-acide de 

propidium (maximum d'excitation / émission : 490 / 635nm). 

7.2-Spectroscopie ATR-FTIR 

L'enregistrement pour les spectres ATR-FTIR était compris entre 4000 et 800 cm-1 sur 

un spectromètre Bruker Vertex 70v équipé d'un séparateur de faisceau KBr et d'un détecteur 

DTGS et piloté par le logiciel OPUS 7.5. Les spectres à faisceau unique pour la résolution 

étaient de 4 cm-1. Pour obtenir les spectres, un accessoire ATR diamant à neuf reflets a été 

utilisé (DurasamplIRTM, SensIR Technologies, angle d’incidence: 45°). Le nombre de 

balayages d'interférogrammes bidirectionnels recto-verso était de 200, ce qui correspond à une 

accumulation de 2 minutes. En utilisant la fonction d'apodisation à trois termes de Blackman-

Harris et le mode de correction de phase de Mertz, tous les interférogrammes ont été traités par 

les séries de Fourier. 

7.3-AFM mesures des propriétés mécaniques 

Des expériences d`AFM (Asylum Research Technology, Oxford Instruments Company, 

Mannheim, Allemagne) ont été réalisées en utilisant un instrument MFP3D-BIO. La forme  
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cônique des cantilevers en nitrure de silicium a été achetée chez Asylum Research Technology 

(Olympus TR400 PSA, Mannheim, Allemagne). Les constantes de ressort des porte-à-faux 

mesurées à l'aide de la méthode du bruit thermique se sont révélées être 0,02-0,03 nN / nm. 

Dans du PBS et à température ambiante, ces tests ont été réalisés en triple exemplaire. La 

méthode utilisée pour définir le module de Young était la nano-indentation qui détermine la 

force par rapport aux courbes d'indentation. 

8-Videomicroscopie Time-lapse de l`interaction peptide -Candida albicans

La vidéo-microscopie accélérée a été utilisée pour étudier l'interaction entre Candida 

albicans et D-Ctl. Cette étude a été réalisée par Pauline Dartevelle. 
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Thesis objectives 

The general aims of this study are to find an alternative to the conventional antibiotics 

(antimicrobial agents) in order to prevent microbial resistance. Therefore, this study focuses on 

new antimicrobial peptides (AMPs) to develop new antimicrobial agent. AMPs are involved to 

treat pathogenesis of bacterial infections. They are important parts of innate immunity system 

in most multicellular organisms. Moreover, they can represent a deposit of new families of anti-

infectious agents or compete in combination with conventional antibiotics.  

The present thesis concerns a new potent antimicrobial peptide derived of bovine 

chromogranin A sequence (344-358) corresponding to the D-isomer of Cateslytin (Ctl). This 

study includes two parts relative to the antimicrobial activities of D-Ctl and its combination 

with calcium hydroxide Ca(OH2). 

The first part concerns the characterization of D-Ctl compared to L-Ctl, in which all L 

amino acids have been replaced by D amino acids with the same sequence, but in dextrogyre 

conformation. Moreover, some of the conventional antibiotics were also compared with the two 

peptides tested. In this point of view, several technics approaches were used including 

microbiology (broth microdilution assays), cell biology (cells viability and inflammatory 

effects assays) and microscopy (ATR-FTIR spectroscopy, epiflorescence microscopy, atomic 

force microscopy). The results are as follow: D-Ctl acts on Gram-negative and Gram-positive 

bacteria and compared to L-Ctl (measurement of MICs). Moreover, D-Ctl can potentiate some 

antibiotics within the combination. More than that, the efficiency of D-Ctl as same as 

Ampicillin and it is more efficient than Kanamycin. D-Ctl does not generate cytokine release 

and is not haemolytic too. It is not toxic towards cell line and primary cells. Furthermore, D-

Ctl is not degraded by the pathogen’s virulence factors as well as D-Ctl does not trigger 

resistance on E. coli. Moreover, D-Ctl acts against E. coli MDR (atomic force microscopy and 

ATR-FTIR microscopy) after high damage of the cell wall of bacteria and the elasticity of 

bacterial cell wall was also decreased. 

The second part focused on the role of D-Ctl in combination with calcium hydroxide 

Ca(OH)2 therapeutics in the root canal pathogens. A description of antimicrobial activity was 

conducted on E. faecalis which suggesting increased stability and antibacterial effect superior 

to calcium hydroxide alone. This combination also presented a low level of toxicity toward 

human gingival fibroblasts compared to Ca(OH)2 alone. 
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Céline Marban 
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Peptides are needful for human health. They have been vastly used for development 

new therapeutic agents to treat infections in general, cancers, cardiovascular, metabolic disease 

and immune system. Up to date, in the universal market pharmaceutical, there are more than 70 

of these peptides used as commercial drugs. Nevertheless, 30% of these peptides or less are 

natural peptides. However, the proteases degrade the natural peptides easily because inducing 

losing of bioactivity. (Liu M et al., 2016). Therefore, the thing which is interesting for 

researchers newly, that improve the biological stability, binding activity of natural bioactive 

peptides and specificity of peptides which can be done by using the transformations of chemical 

structural. There are some main strategies used for chemical structural transformation of 

peptides: 1-Replace with an unnatural amino acid such as D-amino acids, b-amino acids and 

N-methyl-a-amino acids, 2-modification of C- or N- terminal regions, 3-retro-inverso or mirror-

image phage- display peptides, 4-the sequence of peptide cyclization, 5-isosteric, or not, amide

bond replacement between two amino acids (Vlieghe P et al., 2010).

Among these strategies replacement with D-amino acid is uncommonly potent. 

Therefore, in this study, we aimed to develop new antimicrobial peptides with therapeutic 

potential which is D-Ctl. D-Ctl is a derivative of L-Ctl, D-Ctl was modified to improve its 

efficiency to fight against bacterial infections. This D-Ctl and L-Ctl were tested in parallel on 

the large panel of microorganism and the results showed that D-Ctl displays a rapid direct 

killing of bacteria even in low concentration, compared to L-Ctl which was less efficient than 

D-Ctl with different in ranging of MICs starting from 1.7 (MSSA) to 17.9 folds (E. coli MDR).

D-Ctl and L-Ctl showed also the ability to be stable in the supernatant of bacteria, except, L-

Ctl was degraded by (E. coli wild type and E. coli MDR). Moreover, the data observed that D-

Ctl and L-Ctl have not any toxicity to immune cells and other types of a human cell line.

Interestingly, the results showed that D-Ctl does not trigger resistance to E. coli even some oth- 
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er conventional antibiotics such as Ampicillin and Cefotaxime were 3-fold MIC increased for 

24 days. One more data for D-Ctl which was stable also in the human saliva. Moreover, the 

results show also the D-Ctl could potentiate the antibacterial effect of several antibiotics when 

they are combined together. Lastly with more interest, in collaboration with the group of UMR 

7564 Nancy, France and their results demonstrated that after using infrared analysis E. coli 

metabolism were poorly impacted when was treated by D-Ctl and the bacterial cell wall is 

highly destroyed.   
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D-Cateslytin, a new antimicrobial
peptide with therapeutic potential
Abdurraouf Zaet , Pauline Dartevelle , Fadoua Daouad , Claire Ehlinger , Fabienne 

Quilès  , Grégory Francius , Christian Boehler , Camille Bergthold , Benoît Frisch , 

Gilles Prévost , Philippe Lavalle , Francis Schneider  , Youssef Haïkel , Marie-Hélène 

Metz-Boutigue  & Céline Marban

The rise of antimicrobial resistant microorganisms constitutes an increasingly serious threat to global 

threatening the ability of healthcare professionals to cure common infections. Over the last two 

present study, we characterized the antibacterial and mechanistic properties of D-Cateslytin (D-Ctl), a 

new epipeptide derived from L-Cateslytin, where all L-amino acids were replaced by D-amino acids. We 

demonstrated that D-Ctl emerges as a potent, safe and robust peptide antimicrobial with undetectable 

susceptibility to resistance. Using Escherichia coli as a model, we reveal that D-Ctl targets the bacterial 

cell wall leading to the permeabilization of the membrane and the death of the bacteria. Overall, D-Ctl 

antimicrobials either as a single therapy or as a combination therapy as D-Ctl also has the remarkable 

property to potentiate several antimicrobials of reference such as cefotaxime, amoxicillin and 

methicillin.

The discovery of antimicrobials to treat infectious diseases is one of the greatest achievements of modern 
medicine. However, excessive and inappropriate use of antimicrobials fosters the emergence and spread of 
antimicrobial-resistant microorganisms. Indeed, infections caused by antimicrobial-resistant microorganisms 
also known as “superbugs” o en no longer respond to conventional treatments, thereby extending the dura-
tion of the disease related to infection and even lead to patient death1,2. Antimicrobial-resistant microorganisms, 
including multidrug-resistant types, are o en responsible for healthcare-associated infections and constitute a 
serious threat to public health worldwide, specifically among vulnerable populations such as critically ill patients3. 
Infections caused by Gram-negative bacteria are a particular concern for public health because these micro-
organisms are so versatile that they can exchange genetic material and rapidly deploy an arsenal of resistance 
mechanisms, particularly under selective pressure4. Especially, this phenomenon resulted in a drastic increase in 
the prevalence of Escherichia coli multidrug-resistant (E. coli MDR) strains and the onset of healthcare-associated 
urinary tract or bloodstream infections5–8.

Novel classes of antimicrobials were rare in the past thirty years and of sharp administration. Specifically, 
the discovery of fluoroquinolones in the 1970s brought to an end the portfolio of antimicrobials against 
Gram-negative bacteria9. Nevertheless, antimicrobial therapy remains the prophylactic and curative practice 
most commonly used to fight against infections in the city and the hospital. However, due to the emergence of 
selected antimicrobial-resistant microorganisms and the lack of new antimicrobials on the market, we are now 
facing the possibility of a future without effective antimicrobials for treating bacterial infections. As a conse-
quence, there is a persisting and urgent medical need to develop new antibacterial compounds.
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Over the last two decades, host defence peptides (HDPs) have emerged as new attractive candidates in the 
development of novel anti-bacterial treatments, specifically for antimicrobial-resistant infections10. #e benefits 
of using HDPs are that they act by disrupting the bacterial membranes, a mechanism that is fast and non-specific. 
#erefore bacteria are not prone to develop high-level resistance towards these compounds in the same extent as 
towards conventional antimicrobials11. Moreover they display a broad-spectrum of pathogens, including multid-
rug resistant Gram-positive and negative bacteria12. HDPs are usually rather short (12–50 amino acids), cationic 
and amphiphilic with a broad diversity in their secondary structure and well preserved during evolution. HDPs 
are naturally present in tissues frequently exposed to pathogens, such as the skin, lungs, and gastrointestinal 
tract. Besides their broad spectrum of antimicrobial properties, they also exhibit significant immunomodulatory 
effects13.

Among all isolated and characterized HDPs, Cateslytin (Ctl) constitutes an excellent candidate for the devel-
opment of a new class of antimicrobials. Indeed, Ctl is short and linear (15 amino acids) and therefore very easy 
to synthesize for a minimal cost. Moreover, it is stable at high temperature and low pH. Ctl results from the pro-
teolysis of chromogranin A, an acidic protein stored in the secretory vesicles of numerous neuroendocrine and 
immune cells and is released upon stress in most of the body fluids14–17. In addition to its antibacterial properties, 
Ctl is also a potent antifungal agent18,19.

In the present study, we report the biological characterization of D-Ctl, a new epipeptide derived from L-Ctl, 
where all L-amino acids were replaced by D-amino acids (patent application: EP16 306539.4). Using various 
approaches including microbiology (broth microdilution assays), cell biology (viability and cytokine release 
assays) and microscopy (atomic force microscopy, epiflorescence microscopy, ATR-FTIR spectroscopy), we char-
acterized the biological and mechanical properties of D-Ctl compared to its conformer L-Ctl. Overall, D-Ctl 
emerges as a potent, safe and stable antimicrobial that damages bacterial cell walls and still not suffer of any 
microbial resistance.

Results
One of the downfalls

of the use of therapeutic peptides relies on their lack of proteolytic stability towards proteases. One way of con-
trolling the stability of a therapeutic peptide is to synthesize its epimer, which has the same sequence as the
parent peptide with all levogyre (L) amino acids replaced by dextrogyre (D) amino acids. Such peptides are
more resistant to proteolysis, hence increasing their half-lives and bioavailability. #erefore, we synthesized
D-Ctl and compared its respective antibacterial efficiency with L-Ctl. To this aim, we used a panel of Gram-
negative strains: Escherichia coli wild type, Escherichia coli multidrug resistant (E. coli MDR), Prevotella interme-
dia, Fusobacterium nucleatum and Gram-positive strains: Staphylococcus aureus Methicillin Sensitive (MSSA),
Staphylococcus aureus Methicillin Resistant (MRSA), Parvimonas micra. #is panel includes facultative and strict
anaerobes (Table 1). #e antibacterial activity of D-Ctl versus L-Ctl was assessed by the measurement of their
MIC (Minimal Inhibitory Concentration) defined as the lowest concentration of peptide able to inhibit 100% of
the inoculum. Depending on the bacterial species, the MIC of D-Ctl ranged between 8 and 24 µg/mL (Table 1 and
Supplementary Figure S1). D-Ctl was specifically efficient against P. intermedia with a MIC of 10 µg/mL and E.
coli with a MIC of 8.0 µg/mL for E. coli wild type and 8.4 µg/mL for E. coli MDR. Overall, the MIC of D-Ctl was 2
to 18 times lower than the one of L-Ctl (Table 1 and Supplementary Figure S1).

We then compared the MIC of D-Ctl with the MIC of antimicrobials of reference. Interestingly, the antimicro-
bial activity of D-Ctl on E. coli was comparable to that of ampicillin and kanamycin and could therefore constitute 
an alternative treatment for E. coli infections (Table 1 and Supplementary Figure S2). Regarding the others species 
tested, the antimicrobials of reference were still more efficient than D-Ctl (Table 1 and Supplementary Figure S2).

D-Ctl is a potentiator for numerous antimicrobials of reference. We then investigated whether
D-Ctl could potentiate the antibacterial effect of several antimicrobials of reference, specifically methicillin
and vancomycin extensively prescribed to treat S. aureus infections, amoxicillin recommended in numerous

Pathogen Gram Respiratory type

MIC (peptide) Antibiotic of reference

L-Ctl (µg/mL) D-Ctl (µg/mL) Name (µg/mL)

Escherichia coli (ATCC 25922) − Facultative anaerobe 75 8.0
Ampicillin 7.0

Kanamycin 21

Escherichia coli (MDR) (K-12) − Facultative anaerobe 150 8.4 Cefotaxime 0.1

Fusobacterium nucleatum (ATCC 49256) − Obligate anaerobe 125 22 Amoxicillin 0.6

Prevotella intermedia (ATCC 49046) − Obligate anaerobe 149 10 Amoxicillin 0.5

Parvimonas micra (ATCC 33270) + Obligate anaerobe 120 23 Amoxicillin 0.5

Staphylococcus aureus (MSSA) (ATCC 25923) + Facultative anaerobe 40* 24 Methicillin 1.2

Staphylococcus aureus (MRSA) (S1) + Facultative anaerobe 37* 18 Vancomycin 0.8

Table 1. Antibacterial activity of D-Ctl compared to L-Ctl. #e percentage of growth inhibition of the indicated 
pathogens in the presence of different concentrations of D-Ctl or L-Ctl was determined by broth microdilution 
assays. Each MIC, defined as the lowest concentration of a drug able to inhibit 100% of a bacterial inoculum, 
was determined using a modified Gompertz function. Experiments were performed with biological replicates. 
*Values obtained from Aslam et al.18.
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infections including periodontal infections and cefotaxime o en used as second intention treatment against E. 
coli resistant strains. According to the European Committee on Antimicrobial Susceptibility Testing20, the effect 
of a combination between two antibacterial compounds can be evaluated by their FICI (Fractional Inhibitory 
Concentration Index). #e FICI consists of the sum of the FICs of both antibacterial agents: FIC index = FICant

imicrobial + FICD-Ctl. For each compound, the FIC was determined as the ratio between the MIC of the compound 
in combination (MICcombination) and the MIC of the compound acting alone (MICalone). On the basis of their FIC 
index, each combination was categorized as synergistic (≤0.5), additive (>0.5 to 1), indifferent (>1 to <4) or 
antagonistic (≥4).

For each strain, the MICs of D-Ctl and the antimicrobial of reference were evaluated (MICalone) (Table 2 and 
Supplementary Figures S1 and S2). #en, different combinations of D-Ctl and the antimicrobial of reference were 
tested in order to determine the MICcombination. #e FICI was then calculated as described above. We observed a 
synergistic effect between D-Ctl and amoxicillin for P. micra and P. intermedia and an additive effect for D-Ctl 
and cefotaxime, methicillin and amoxicillin on E. coli MDR, MSSA and F. nucleatum, respectively (Table 2 and 
Supplementary Figure S3). Regarding MRSA, no potentiator effect was highlighted between D-Ctl and methicil-
lin (Table 2 and Supplementary Figure S3). Altogether, D-Ctl also emerges as an effective potentiator for several 
antimicrobials currently prescribed in clinic to fight severe bacterial infections.

Unlike ampicillin and cefotaxime, D-Ctl does not trigger resistance in E. coli. To assess whether E. 
coli would develop resistance under a selective pressure, we cultured E. coli wild type in the presence of sub-MIC 
concentrations of D-Ctl (½ MIC), ampicillin or cefotaxime for 24 days. Interestingly, E. coli failed to generate 
mutants of resistance as its MIC remained stable for the whole duration of the culture (Fig. 1). In contrast, the 
MICs of ampicillin and cefotaxime, two antimicrobials of reference used to treat E. coli infections, rapidly increase 
over the course of the culture to reach 3x MIC at day 24 (Fig. 1).

D-Ctl is not cytotoxic and does not elicit cytokine release. In order to investigate whether D-Ctl
would be a good lead compound for the development of a new antimicrobial, we assessed several safety issues
such as its haemolytic activity, cytotoxicity and immunogenicity through cytokine release.

One of the major side effects of conventional antimicrobials, but also several HDPs, is to alter the intestinal 
homeostasis by damaging the intestinal epithelial barrier21. To verify whether D-Ctl affects the integrity of the 
intestine epithelium, we assessed the cytotoxicity of D-Ctl towards Caco-2 cells, a human intestinal epithelial cell 
line. As shown in Fig. 2A, no cytotoxicity was measured a er 72 hours of incubation with neither D-Ctl nor L-Ctl 
at concentrations up to 100 µg/mL.

In order to be administered as a systemic therapy, antimicrobials should not interfere with blood cells homeo-
stasis. Subsequently, we assessed whether D-Ctl was toxic towards human erythrocytes but also human peripheral 
blood mononuclear cells (PBMCs). For haemolytic assays, D-Ctl or L-Ctl was incubated with human erythro-
cytes at concentrations ranging from 0 to 100 µg/mL. No cell lysis was observed at all, demonstrating that neither 
D-Ctl nor L-Ctl is haemolytic, even at concentrations higher than its MICs (Fig. 2B). Similarly, no cytotoxicity
was detected in PBMCs following an exposure of 72 hours with D-Ctl or L-Ctl at concentrations up to 100 µg/mL
(Fig. 2C and D).

In addition, an antimicrobial drug candidate should not trigger immunogenicity. To verify whether D-Ctl 
influences the immune system, we performed a cytokine release assay. To this aim, human PBMCs were treated 
with D-Ctl for 24 hours and cytokines were quantified a er 24 hours in the cell supernatant using the Bio-Plex®
technology (Bio-Rad). As indicated in Fig. 3A and B, no significant cytokine release was observed following D-Ctl 
or L-Ctl treatment. As a control, PBMCs were treated with LPS in the same conditions, resulting in the release of 
a broad spectrum of pro-inflammatory cytokines such as TNFα, G-CSF and IFNγ but also the anti-inflammatory 

Pathogens Combination MIC alone (µg/mL) MIC combination (µg/mL) FIC FICI Effect

Escherichia coli MDR
D-Ctl 8.4 4.2 0.5

1.0 Additive
Cefotaxime 0.1 0.05 0.5

Fusobacterium nucleatum
D-Ctl 22 11 0.5

1.0 Additive
Amoxicillin 0.6 0.3 0.5

Prevotella intermedia
D-Ctl 10 2.5 0.25

0.5 Synergistic
Amoxicillin 0.5 0.125 0.25

Parvimonas micra
D-Ctl 23 5.8 0.25

0.5 Synergistic
Amoxicillin 0.5 0.125 0.25

Staphylococcus aureus (MSSA)
D-Ctl 24 12 0.5

0.75 Additive
Methicillin 1.2 0.3 0.25

Staphylococcus aureus (MRSA)
D-Ctl 18 18 1

2 Indifferent
Vancomycin 0.8 0.8 1

Table 2. Antibacterial activity of D-Ctl in combination with conventional antimicrobials. #e percentage of 
growth inhibition of the indicated pathogens in the presence of different concentrations of antimicrobials was 
determined by broth microdilution assays. #e MICs of each drug were used to calculate the FIC index of each 
combination. Each experiment was performed at least in duplicate.
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cytokine IL-10 (Fig. 3C). #is result indicates that neither D-Ctl nor L-Ctl is associated with major cytokine 
release.

D-Ctl is more resistant to degradation by secreted bacterial proteases than L-Ctl. Linear
L-peptides with α-helical structures are usually susceptible to proteolysis. As an example, V8 and aureolysin, two
proteases secreted by S. aureus are responsible for the cleavage of the host defence peptide LL-37 and therefore
contribute to bacterial survival22. #e specific spatial configurations of the cleavage sites for these enzymes are
not present in D-peptides although these peptides might be cleaved by non-specific hydrolysis during enzymatic
digestion. Subsequently, we assessed the sensitivity of D-Ctl to secreted bacterial proteases by HPLC. To this
aim, different bacterial supernatants were incubated with D-Ctl (or L-Ctl as a control) for 24 hours at 37 °C. As
depicted in Fig. 4, D-Ctl was not degraded in none of the bacterial supernatants tested (Fig. 4B,D,F,H,J,K and L).
In contrast, L-Ctl was degraded in the presence of secreted proteases from E. coli wild type (Fig. 4A) and MDR
(Fig. 4C) but not F. nucleatum (Fig. 4E), P. intermedia (Fig. 4G) and P. micra (Fig. 4I). Of interest, in a previous
study, we demonstrated that L-Ctl was also stable in the supernatant of MSSA and MRSA18. Consequently, the
change in conformation between L-Ctl and D-Ctl does not affect their sensitivity towards secreted bacterial pro-
teases, except for E. coli wild type and MDR.

D-Ctl dramatically damaged the cell wall of E. coli MDR. To have a first insight on the mechanism of
action of both peptides, suspensions of E. coli MDR (DO600 = 0.1, ~6 × 106 bacteria/mL) were subjected or not
(as a control experiment) to the action of L-Ctl and D-Ctl during 20 hours at several initial concentrations (0.05x
MIC, 1x MIC, 5x MIC, and 10x MIC). Figure 5(a and g) shows the infrared spectra of the bacteria cultivated in LB
and LB/4 media without peptide. #e spectral fingerprints are characteristic of live bacteria23. In LB/4, the addi-
tional biosynthesis of glycogen can be observed (red arrows, Fig. 5g) probably due to a lack of some nutrients with
respect to carbon24. #e corresponding epifluorescence images (next to the infrared spectra) a er BacLightTM

staining show a green fluorescence suggesting intact cell membranes. #e average elasticity assessed by AFM
force measurements was 310 ± 71 kPa (Fig. 6) that was in line with previous data obtained on the same strain25.

At 8 µg/mL for both enantiomers, the infrared spectral features were very similar to those recorded for the 
untreated bacteria (Fig. 5a,b and c), suggesting that the metabolic activity of the bacteria was not or poorly mod-
ified. However, some differences in the corresponding epifluorescence images were observed. Whereas bacteria 
treated by L-Ctl showed only a green fluorescence, those treated with D-Ctl at the same concentration showed 
some green bacteria but also a lot of orange/red bacteria. #is result suggested that the membranes of the bac-
teria were not damaged by L-Ctl but were damaged by D-Ctl for a lot of bacteria. #e mechanical properties of 
the bacteria reported in Fig. 6 showed that L-Ctl did not significantly impact the cell wall elasticity (320 ± 46 
kPa). Consequently, the integrity of the bacterial membrane was preserved in spite of the presence of L-Ctl, in 
accordance with the epifluorescence results. Conversely, the treatment with D-Ctl at the same concentration 
dramatically reduced by a factor of 3.7 the average elasticity of the bacterial cell wall (83 ± 48 kPa). #is loss of 
elasticity suggested that D-Ctl strongly damaged the bacterial membrane as it was already reported in the litera-
ture for other antimicrobial peptides26–28. #ese results emphasized that the action of the two enantiomers were 
very different at the same concentration. Whereas D-Ctl showed a very strong activity against E. coli MDR, this 
was not the case for L-Ctl. Indeed, for the latter the concentration was only 0.05x MIC instead of MIC for D-Ctl.

When the bacteria were treated at the MIC of L-Ctl (150 µg/mL), the infrared spectrum of the bacteria le  
a er the treatment was very similar to the one of the non-treated bacteria (Fig. 5a and d). #is result suggested 
that as for D-Ctl at the MIC, the treatment with L-Ctl at the MIC did not or slightly modify the bacterial metabo-
lism. #e epifluorescence images a er BacLightTM staining show a mixture of green and orange/red bacteria. It 
suggested that the bacterial membranes were damaged for some bacteria as it was previously observed for D-Ctl 
at its MIC. #e calculated average elasticity was reduced by a factor of 3 with respect to the untreated bacteria 
(105 ± 69 kPa, see Fig. 6). #e action of both enantiomers was almost the same on the membrane elasticity at 
their MICs.

For higher concentrations of L-Ctl and D-Ctl (at 750 µg/mL and above 40 µg/mL, respectively) no infrared 
spectra could be recorded (Fig. 5e,f and h). #is result was in accordance with epifluorescence images. Only very 
few bacteria were observed on the filters. #e bacteria were almost completely lysed. In the case of L-Ctl, AFM 

Figure 1. Resistance acquisition assay of E. coli in the presence of D-Ctl compared to ampicillin and 
cefotaxime. #e E. coli wild-type strain was cultured in the presence of ½ MIC of the antibacterial agent for 24 
days. #e fold change in MIC was evaluated at the indicated days.
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measurements show no significant difference between the treatments performed at the MIC and at 5x MIC in 
terms of elasticity (112 ± 56 kPa for the latter concentration). For D-Ctl at 40 and 80 µg/mL, the bacterial elas-
ticity could be measured only as soon as at 3 hours and 0.8 hours, respectively, because no bacteria were le  a er 
20 hours of treatment. #e average elasticity was already reduced by a factor 7 to 8 (44 ± 37 kPa and 28 ± 21 kPa, 
respectively, Fig. 6). Conversely to the action of L-Ctl above the MIC, the damages that occurred on the bacteria 
were reached earlier with D-Ctl, and they were dramatic for the cell integrity.

Figure 2. Cytotoxicity assays of D-Ctl and L-Ctl. #e cytotoxicity of D-Ctl and L-Ctl on Caco-2, a human 
intestinal epithelial cell line (A) and PMBCs (C and D) was assessed at the indicated concentrations for 
72 hours. Red blood cells haemolysis was evaluated a er a one-hour treatment with the indicated concentrations 
of D-Ctl or L-Ctl (B). Each figure corresponds to a mean of at least two independent experiments.
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Discussion
#e rise of antimicrobial resistant microorganisms constitutes an increasingly serious threat to global public 
health. As a consequence, the efficacy of conventional antimicrobials is rapidly declining, threatening the ability 
of healthcare professionals to cure common infections1,2. Hence, the development of new antibacterial com-
pounds with less potential to trigger resistance constitutes a public health challenge.

In the last two decades, host defence peptides have been proposed as a potential source of novel antimicrobi-
als12. Although more efficient antimicrobials are currently on the market29, host defence peptides display numer-
ous advantages over conventional antimicrobials, such as an incomparably broad spectrum of action, a fast mode 
of action and most importantly, a very low potential to induce resistance. In this study, we report the antibacterial 
properties of D-Ctl on a large panel of bacteria including Gram-positive and Gram-negative pathogens but also 
obligate and facultative anaerobes. D-Ctl is a derivative of L-Cateslytin (L-Ctl), already known for its antimicro-
bial properties, specifically against S. aureus. D-Ctl consists of the same sequence as L-Ctl with all levogyre (L) 
amino acids replaced by dextrogyre (D) amino acids. By introducing these modifications, we intended to increase 
the stability of the peptide towards bacterial proteases, as liability is the Achilles’ heel of peptide therapeutics. 
Indeed, in contrast to L-Ctl, D-Ctl cannot be degraded by cellular proteases. In accordance, our results demon-
strated that D-Ctl is stable in all bacterial supernatant tested (MSSA and MRSA, E. coli wild type and MDR, P. 
micra, P. intermedia and F. nucleatum). Remarkably, L-Ctl was already a robust compound, resistant to the deg-
radation by secreted proteases from S. aureus MSSA and MRSA18, P. micra, P. intermedia and F. nucleatum but 
degraded in the supernatant of E. coli wild type and MDR.

As expected, D-Ctl was much more efficient than L-Ctl with a difference in the MIC ranging from 1.7 (MSSA) 
to 17.9 folds (E. coli MDR). Active against both Gram-positive and Gram-negative bacteria, D-Ctl could be con-
sidered as a broad-spectrum antimicrobial. However, a larger panel of pathogens remain to be screened to vali-
date such an assumption. Nevertheless, D-Ctl was specifically efficient on E. coli wild type and MDR with a MIC 
of 8.0 µg/mL and 8.4 µg/mL, respectively. Overall, the MICs of D-Ctl were comparable with the ones of LL-37 and 
its truncated mimetics KE-18 and KR-12 (8.4 to 19.3 µg/mL for S. aureus and 2.1 to 9.8 µg/mL for E. coli)30 but 
also of human β-defensins 2 and 3, which ranged between 1.4 µg/mL and >250 µg/mL depending on the bacte-
rial strain31. When compared to the antimicrobial of reference for each pathogen, antimicrobials were still more 
efficient than D-Ctl except for E. coli wild type where the efficiency of D-Ctl (MIC = 8.0 µg/mL) was comparable 

Figure 3. Cytokine release assay following treatment of PBMCs with D-Ctl or L-Ctl. Cells from healthy 
volunteers were treated with D-Ctl (A), L-Ctl (B) or LPS (C) for 24 hours and the indicated cytokines levels were 
evaluated in the cell supernatant using the Bio-Plex® technology.
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with ampicillin (MIC = 7.0 µg/mL) and much higher than kanamycin (MIC = 21.6 µg/mL). However and of high 
interest, the potential for E. coli to develop resistance to D-Ctl under selective pressure was not detectable for 
D-Ctl, unlike ampicillin and cefotaxime (three fold MIC increase for both antimicrobial over 24 days).

Figure 4. Stability of D-Ctl and L-Ctl towards proteases secreted by different bacterial strains. Supernatants 
from E. coli wild type (A and B), E. coli MDR (C and D), F. nucleatum (E and F), P. intermedia (G and H), 
P. micra (I and J), S. aureus methicillin sensitive (MSSA) (K), S. aureus methicillin resistant (MRSA) (L)
were incubated with D-Ctl or L-Ctl, as indicated, for 24 hours. Peptide stability was then assessed by HPLC.
Chromatograms 1 correspond to supernatant only, chromatograms 2 correspond to supernatant and peptide
and chromatograms 3 corresponds to peptide only.
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Combination antibacterial therapy is frequently used to prevent or delay the emergence of resistance32. 
Interestingly, D-Ctl is not only a strong antimicrobial candidate against E. coli, but it can also be used in con-
junction with conventional antimicrobials to enhance their antibacterial activity against other pathogens. As a 

Figure 5. Spectral fingerprints of E. coli MDR. Le  panel: IR-ATR spectra of planktonic E. coli MDR incubated 
with or without L and D conformers of Ctl during 20 hours. #e spectra are normalized to one with respect 
to the Amide II band. Offsets of spectra are used for clarity. Right panel: Corresponding representative 
epifluorescence images of E. coli MDR a er incubation with or without L and D conformers of Ctl during 
20 hours. Bar: 20 µm.

Figure 6. Elasticity of E. coli MDR treated with D-Ctl or L-Ctl for 20 hours. *And **refer to data obtained 
a er only 3 hours and 0.8 hours of treatment, respectively. Bars for L-Ctl correspond to the average elasticity of 
bacteria subjected to antimicrobial peptide treatments performed at concentrations of 8, 150 and 750 µg/mL,  
respectively. For D-Ctl, the bars correspond to the average elasticity of bacteria subjected to the peptide at 
concentrations of 8, 40 and 150 µg/mL, respectively.
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matter of fact, here we report the synergistic effect of D-Ctl and amoxicillin against P. micra and P. intermedia. 
Furthermore, D-Ctl in combination with cefotaxime, methicillin or amoxicillin displayed an additive antibacte-
rial effect against E. coli MDR, S. aureus and F. nucleatum, respectively. As a result of these associations, the con-
centration of conventional antimicrobials could be remarkably decreased from a factor two to four with potential 
implications on bacterial resistance.

Remarkably, the antibacterial activity of D-Ctl was not associated with cellular toxicity and does not interfere 
with the production of cytokines from LPS-stimulated PBMCs. #ese toxicology outcomes constitute a valuable 
point towards the use of D-Ctl as a new antimicrobial against E. coli infections. Indeed, the powerful antibacterial 
activity of most antimicrobials currently on the market is balanced by detrimental side effects. Specifically, fluo-
roquinolones, the antimicrobials of reference against E. coli infections are associated with immunomodulation, 
severe nephrotoxicity and tendinopathies33,34. Besides, D-Ctl was insensitive to proteases secreted by targeted 
pathogens. #is property of D-Ctl was expected, as there is no L-amino acid within its structure.

Mechanism by which D-Ctl exerts its antibacterial activity was deciphered by physico-chemical methods. 
From the infrared data, it is suggested that the bacterial metabolism was not or poorly impacted. However the 
bacterial membrane was permeabilized as it was shown by the epifluorescence images a er BacLightTM stain-
ing. From the drastic decrease of the cell wall elasticity, it can be also suggested that the bacterial cell wall is 
highly damaged, and action of D-Ctl leads to loss of cytosol until the bacterial lysis and the death of the bacteria. 
Here we showed that the rate of the antimicrobial action and the minimum amount of peptide molecules nec-
essary to reach the cell lysis are strongly dependent on the conformation of the peptide. Surprisingly, our results 
demonstrated that the D-conformer had the most efficient action for the lowest MIC (by a factor of around 20), 
contrary to previous studies that did not show such a significant difference in antimicrobial activity of L- and 
D-conformers35,36.

In the last decade, there have been a few HDPs entering clinical trials, specifically cathelicidins and defensins
natural peptides or derivatives such as LL-37, MBI-226 (studies NCT00211523, NCT00211497 and NCT00027248 
for the prevention of central venous catheter-related bloodstream infections and acne) and PMX-30063 (study 
NCT01211470 for acute bacterial skin and skin-structure infection). However, the clinical and commercial devel-
opment of these peptide-based drugs has some limitations such as high cost of production, susceptibility to pro-
teases and cytotoxicity. For example, the human cathelicidin LL-37 enhances apoptosis of epithelial cells, smooth 
muscle cells and T cells at levels above 10 µM37. Besides being cytotoxic, LL-37 is also sensitive to protease cleav-
age, leading to the abolishment of its antimicrobial properties38. Defensins have also been extensively considered 
as an alternative to classical antimicrobials. However, the main limitation to their use as therapeutics is the lack 
of efficient production methods due to their complex secondary and tertiary structures39,40. In this context, D-Ctl 
presents many assets compared to other peptide-based drugs. Indeed, D-Ctl is short (15 amino acids) and linear, 
which makes it really easy to produce. Moreover, the use of a D-peptide emerges as a fruitful strategy to avoid 
degradation by secreted bacterial proteases. To put it in a nutshell, D-Ctl emerges as a potent, safe and robust 
antimicrobial with undetectable susceptibility to resistance, which makes it an attractive candidate for biophar-
maceutical development. However, for an eventual entry into humans, a full assessment of safety pharmacology 
and drug toxicology will have to be conducted.

Methods
Peptide synthesis. The chemically synthesized peptides corresponding to L-Cateslytin (L-Ctl) and 
D-Cateslytin (D-Ctl) (RSMRLSFRARGYGFR, purity >95%) were purchased from Proteogenix.

Microorganisms and mammalian cell cultivation. Escherischia coli (ATCC® 25922™), Staphylococcus
aureus (ATCC® 25923™), Fusobacterium nucleatum (ATCC® 49256™), Prevotella intermedia (ATCC® 49046™)
and Parvimonas micra (ATCC® 33270™) were purchased from ATCC. E. coli K-12 mutant multidrug resistant
(MDR) was kindly provided by the Institut Pasteur of Paris. #is strain was constructed from E. coli MG1655 (E. 
coli genetic stock center CGSC#6300). It is resistant to specific antimicrobials such as ampicillin, chloramphen-
icol, and kanamycin25. #e S. aureus Methicillin Resistant (MRSA) S1 strain was kindly provided by Dr Gilles 
Prévost (University of Strasbourg)18. Microorganisms were cultured according to the manufacturer’s or the own-
er’s instructions in their respective media: Luria Bertani broth (Sigma) was used for E. coli strains, Mueller Hinton 
broth (Difco) for S. aureus strains and Anaerobe Basal broth (Oxoid) for F. nucleatum, P. intermedia and P. micra.

The Caco-2 cell line (ATCC® HTB-37™) was kindly provided by Dr Benoît Frisch (UMR 7199 CNRS
University of Strasbourg) and cultured at 37 °C in a 5% CO2 humidified incubator in Eagle’s Minimum Essential 
Medium (#ermo Fisher Scientific) supplemented with 20% bovine calf serum and 1% penicillin/streptomycin. 
Human Peripheral Blood Mononuclear Cells (PBMC) from healthy volunteers were obtained from the blood 
transfusion centre of Strasbourg (Etablissement Français du Sang, Strasbourg) and isolated by density gradient
centrifugation using Lymphoprep™ (Stemcell Technologies). PMBC were then maintained in AIM V® medium
(#ermo Fisher Scientific) at 37 °C in a 5% CO2 humidified incubator.

The MIC was determined by broth 
microdilution. An overnight culture of each bacterial strain was diluted (approximately to OD600 = 0,001) and 
microorganisms were plated in 96-well plates in the presence of different concentrations of antimicrobials, D-Ctl 
or L-Ctl alone or in combination. #ree technical replicates were performed for each condition. A er 24 hours of
incubation, the microorganism growth was assessed by optical density OD600 using a Multiskan™ EX microplate
spectrophotometer (#ermo Fisher Scientific). #e MIC, defined as the lowest concentration of a drug alone 
or in combination able to inhibit 100% of the inoculum, was determined from a modified Gompertz model as 
described in Lambert et al.41. Each experiment was performed with at least three biological replicates.
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Haemolytic assays. #e lysis of red blood cells was monitored by the release of haemoglobin to the extra-
cellular environment. Whole blood from one healthy volunteer was obtained from the blood transfusion centre of 
Strasbourg (Etablissement Français du Sang, Strasbourg). Cells were then washed twice with PBS (800 g, 10 min), 
resuspended in 1 mL of PBS and incubated with D-Ctl or L-Ctl at different concentrations (0–100 µg/mL) for 
1 hour at 37 °C. As a positive control, total lysis of red blood cells was obtained by incubating the cells with 0.1% 
SDS. For each condition, three technical replicates were performed. A er the incubation, cells were centrifuged 
at 800 g for 10 min and the level of haemoglobin released in the supernatant was determined by optical density 
OD420 using a Multiskan™ EX microplate spectrophotometer (#ermo Fisher Scientific).

Cell viability assays. #e MTT [3-(4,5-dimethylthiazol-2-yl)-2,5 diphenyl tetrazolium bromide] assay was 
used to assess the cytotoxicity of D-Ctl and L-Ctl. Cells in their exponential phase of growth were seeded into a 
96-well plate at 1 × 106 cells/mL prior being treated with a tenfold serial dilution of D-Ctl or L-Ctl. #ree technical
replicates were performed for each condition. A er 72 hours incubation, MTT (Sigma-Aldrich) was added to
each well at a final concentration of 0.25 mg/mL. Cells were then incubated for an additional 2 hours at 37 °C in
a 5% CO2 humidified incubator and lysed with isopropanol/HCl (96:4, v/v). Cell cytotoxicity was then assessed
by optical density OD570 using a Multiskan™ EX microplate spectrophotometer (#ermo Fisher Scientific). Each
experiment was performed with at least three biological replicates.

Cytokine release assays. #e following cytokines: G-CSF, GM-CSF, IFN-γ, IL-1β, IL-2, IL-4, IL-5, IL-6, 
IL-7, IL-8, IL-10, IL-12, IL-13, IL-17, MCP-1, MIP-1β, TNF-α were measured using the Bio-Plex® Multiplex
Immunoassay system (Bio-Rad). In brief, human PBMCs were prepared as previously described and treated for 
24 hours with D-Ctl (60 µg/mL), L-Ctl (60 µg/mL) or LPS (5 µg/mL). #ree technical replicates were performed 
for each condition. Supernatants were then filtered and assessed for cytokine dosage according to the manufac-
turer’s instructions.

Resistance acquisition assays. An E. coli (ATCC® 25922™) culture was sequentially diluted every day in
the presence of the different antibacterial compounds: D-Ctl, ampicillin or cefotaxime at ½ MIC during 24 days. 
#e changes in the MICs values were determined as previously described by broth microdilution at the indicated 
times. #e experiment was performed with three technical replicates.

Peptide stability assays towards secreted bacterial proteases. Bacterial supernatant was prepared 
as follows: a single colony of each strain was resuspended in 5 mL of culture medium as indicated above and incu-
bated at 37 °C overnight. #e culture was then centrifuged at 10000 g for 1 min and the supernatant was filtered 
using a 0.22 mM MillexH-GV (Millipore, Carrigtwohill, Ireland). An aliquot of each supernatant was incubated at 
37 °C for 48 hours. Absence of growth was interpreted as lack of viable microorganism. 400 µL of supernatant was 
then incubated with or without each peptide of interest at 37 °C for 24 hours. As a control, each peptide was incu-
bated in water at 37 °C for 24 hours. Samples were then separated using a Dionex HPLC system (Ultimate 3000; 
Sunnyvale, CA USA) on a Nucleosil reverse-phase 300–5C18-column (46250 mm; particle size: 5 mm; porosity, 
300 Å) (Macherey Nagel, Hoerdt, France). Absorbance was monitored at 214 nm and the solvent system consisted 
of 0.1% (v/v) TFA in water (solvent A) and 0.09% (v/v) TFA in 70% (v/v) acetonitrile-water (solvent B). Elution 
was performed at a flow rate of 700 mL/min with a gradient of solvent B as indicated on the chromatograms.

Planktonic E. coli suspensions for physicochemical analysis. #e bacterial model used for the phys-
icochemical analysis (AFM, infrared spectroscopy and epifluorescence microscopy) is E. coli MDR. Bacteria 
were cultured in Luria Broth (Miller, Fluka) at 25 g/L (LB) or at 6.25 g/L (LB/4) in deionized water (Purelab 
Option, ELGA). All the cultures were incubated in a water bath shaker (Inova 3100, New Brunswick Scientific) 
at 37 ± 1 °C and under continuous agitation at 160 rpm. A er an overnight subculture (16 hours, with ampicillin 
and kanamycin), bacteria were cultured in 200 mL of LB medium (without antimicrobials) with an initial optical 
density at 600 nm (OD600, measured with a cell density meter Biochrom AG, Fisherbrand) of 0.050 ± 0.005.

For epifluorescence and infrared spectroscopy analyses, the antimicrobial assays against planktonic E. coli 
MDR were performed in duplicate in sterile 96-well plates (Nunc) in a final volume of 200 mL. When the optical 
density of the bacterial culture reached an OD600 value between 0.5 and 0.6 (bacteria were at the end of the expo-
nential phase), the suspension was diluted in LB or LB/4 to give an OD600 = 0.10 ± 0.01. #e necessary volume 
of the stock solution of the peptide at 1 g/L was spotted in the bacterial suspension. Sterility and growth controls 
were sterile LB and LB/4, and a bacterial suspension without peptide, respectively. #e plate was incubated for 
20 hours at 22 °C.

Planktonic bacteria were analysed by fluorescence microscopy 
using the BacLightTM stain kit (L7012, Molecular Probes, Eugene, USA) in order to determine the permeability of 
the cells in the absence and presence of the peptide. #is kit contains two nucleic acids dyes: SYTO 9 (excitation/
emission maxima: 480/500 nm) that penetrates all the cells, and propidium iodide that penetrates only cells with 
damaged membranes (excitation/emission maxima: 490/635 nm). #erefore, bacteria with intact membranes flu-
oresce green, while bacteria with damaged membranes fluoresce red. A er 20 hours of incubation, 200 µL of the 
24 hours-old bacterial suspension were mixed with 300 µL of BacLightTM solution (15 µL of the reconstructed 
BacLightTM solution as described by the manufacturer in 300 µL of sterile water), and stained for 20 min in the 
dark at 22 ± 1 °C. #e suspension was then filtrated with 0.2 µm black filters (Millipore, GTBP04700) and rinsed 
three times with sterile water to eliminate excess BacLightTM. #e sample was mounted in BacLightTM mounting 
oil as described by the manufacturer. Both fluorescences were viewed simultaneously with the 100x oil immersion 
objective of an Olympus BX51 microscope equipped with an Olympus XC50 camera.
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ATR-FTIR spectra were recorded between 4000 and 800 cm−1 on a Bruker Vertex 
70 v spectrometer equipped with a KBr beam splitter and a DTGS detector, and driven by the OPUS 7.5 so ware.
#e resolution of the single beam spectra was 4 cm−1. A nine-reflection diamond ATR accessory (DurasamplIR™,
SensIR Technologies, incidence angle: 45°) was used for acquiring spectra. The number of bidirectional 
double-sided interferogram scans was 200, which corresponds to a 2 min accumulation. All interferograms were 
Fourier processed using the Mertz phase correction mode and a Blackman-Harris three-term apodization func-
tion. No ATR correction was performed. Measurements were performed at 21 ± 1 °C in an air-conditioned room. 
50 µL of the bacterial suspensions in their culture media was put on the ATR crystal. Half of the suspension was 
centrifuged at 8000 rpm during 5 min and the supernatant was used to remove the spectral background. Water 
vapour subtraction was performed when necessary.

AFM mechanical properties measurements. AFM experiments were carried out using a MFP3D-BIO 
instrument (Asylum Research Technology, Oxford Instruments Company, Mannheim, Germany). Silicon 
nitride cantilevers of conical shape were purchased from Asylum Research Technology (Olympus TR400 PSA, 
Mannheim, Germany). #e spring constants of the cantilevers measured using the thermal noise method were 
found to be 0.02–0.03 nN/nm. Experiments were performed in triplicate in PBS at room temperature. The 
nanoindentation method was used to determine the Young’s modulus from the force vs. indentation curves. 
Mechanical properties were obtained by recording a grid map of 50-by-50 force curves on several bacterial clus-
ters containing at least 10 bacteria electrostatically immobilized onto PEI coated glass substrate. #e maximal 
loading force was 4 nN, the piezodrive was fixed to 2 µm and the approach rate was 2 µm/s. #e histograms cor-
responding to the statistic distribution of the Young modulus were estimated from the analysis of the approach 
curves according to the Sneddon model42,43 where δ is the indentation depth, ν the Poisson coefficient, R is the 
curvature radius of AFM-tip apex and fBECC the bottom effect correction described by Gavara et Chadwick42. 
All the FVI were analysed by mean of an automatic Matlab algorithm described elsewhere44. Bacteria were then 
exposed to various L-Ctl concentrations (8, 150 and 750 µg/mL) and also to various D-Ctl concentrations (8, 
40 and 80 µg/mL) in PBS buffer at 22 °C for 20 hours. Mechanical properties were measured by AFM in force 
mapping mode at indentation rate of 2 µm/s and the average values correspond to at least 500 force curves taken 
from at least 10 bacteria. For bars labelled with * and ** the corresponding values were obtained a er only 3 and 
0.8 hours of peptide exposure, respectively. Of notice, beyond these exposure periods all bacteria were too dam-
aged and not enough for relevant measurements.
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I had contributed with our group for another study concerning the use of combination 

of D-Ctl with calcium hydroxide Ca(OH)2 for trying to inhibit the growth of Enterococcus 

faecalis which cause the most infections in the root canal. The aim of this combination was to 

improve the antimicrobial activity of Ca(OH)2 and to prevent its secondary effects.  

Our results show that the combination completely inhibit the growth of Enterococcus 

faecalis when we combined 0.85mg/mL of Ca(OH)2 and ½ MIC of D-Ctl. By comparison, 

Ca(OH)2 alone can only inhibit 58%( ± 5%) of this bacteria. Moreover, this combination was 

tested also on several oral cavity pathogenic strains such as P. micra, P. intermedia, F. 

nucleatum and Candida albicans too. The results demonstrated that this combination was active 

against all these microorganisms at the concentration range of 0.85mg/mL of Ca(OH)2 and ½ 

MIC of D-Ctl. Furthermore, the peptide D-Ctl remains stable in this combination and not 

degraded by the Enterococcus faecalis supernatant. It is important to point out that this 

combination has a low level of toxicity toward human gingival fibroblasts compared to 

Ca(OH)2 alone.  

To conclude, my contribution to this study is focused on the numerous antimicrobial 

assays and I brought my knowledge to D-Ctl for discussion of the data.   
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Discussion and Perspectives 

The resistance of bacterial strains to the antibiotics considered as one of the eventual 

fears which affect the humans being healthy as well as the animals in all region of the world. 

Thereby, excessive use of these antibiotics leads to the emergence and spread of bacterial 

resistance, which cause well-known infections such urinary tract, blood-stream, and pneumonia 

therefore these infections could become fatal. Besides, misuse of antibiotics will lead the 

situation worse. Hence, continue of keeping the efficiency of these antibiotics and operate them 

for human health interest is something extremely important (Chang Q et al., 2015). 

Intriguingly, the development of new molecules that could be alternative to 

conventional antibiotics is critical need to curb the emergence of resistance phenomena. 

Correspondingly, all the drugs which are used as an antimicrobial agent are containing natural 

peptides that can limit or prevent resistance phenomena against microorganisms including 

parasites, fungi, bacteria as well as viruses. 

As a matter of fact, the major component of innate immunity system is AMPs which 

have been offered as a novel source for antibiotics (Zasloff, 2002). They display a rapid direct 

antimicrobial action and they modulate the response of immune cells (Zhang L and Gallo R, 

2016).  

Within my thesis I reported the design and characterization of a new antimicrobial agent 

to be alternative to conventional antibiotics. In fact, the basic study corresponds to the analysis 

of new molecules of AMPs which supposed to have connections in the dynamic of host-

pathogen interactions. Several antimicrobial assays were performed to compare the efficiency 

between D-Ctl and conventional antibiotics on wide broad of obligate and facultative anaerobes 

bacterial strains such as S. aureus MSSA and MRSA, E. coli wild type and MDR, as well as 

some oral cavity pathogenic such as F. nucleatum, P. intermedia and P. micra. These bacterial 

strains are responsible for several serious diseases that can release many of virulence factors.  

D-Ctl is derivative of L-Cateslytin (L-Ctl) and it was modified and with keeping the

same sequences of L-Ctl but in dextrogyre configuration of (D) amino acids. The interest in D-

peptides have increased over recent years. Comparable with L-peptide, D-peptide is able to 

extend the plasma half-life, increase the stability of enzymes, improve binding activity and 

specificity with the receptor or target proteins and improve oral bioavailability (Liu M et al., 

2016). Therefore, D-peptides are stable more than L-peptides toward proteolysis, and they used 
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synthetic vaccines and as immunomodulators in T-cell responses due to its great potential (Van 

Regenmortel MH and Muller S, 1998). 

We deliberated in this study to examine the antimicrobial activity of D-Ctl and L-Ctl as 

a control in parallel, as well as the different conventional antibiotics had been tested. 

Remarkably, our results manifested in that the efficiency of D-Ctl is still higher more than L-

Ctl, and the range of MIC was varied between 1.7 in MSSA to 17.9 folds in E. coli MDR. D-

Ctl is active against wide range in both grams of bacteria. Thereby, D-Ctl deemed to be an 

antimicrobial agent. In turn, when the efficiency of D-Ctl was compared with the antibiotics 

which prescribed for each pathogen, the results demonstrated that the efficiency of antibiotics 

agents were still higher than the D-Ctl. Except, the efficiency of Ampicillin which is for E. coli 

wild type (MIC=7.0 µg/mL) that could be the same of D-Ctl efficiency (MIC= 8.0 µg/mL) and 

also much higher than Kanamycin (MIC= 21.6 µg/mL). All together these data are protected 

by a patent EP16306539.4 “New D- configured cateslytin peptide”. Furthermore, to verify such 

a hypothesis a large panel of bacterial strains [Table III] were screened in collaboration with a 

company (Atlangram, Atlantic Group for Research on Anti-Microbials, Nantes, France). To 

continue this study, we have received a financial support from the SATT Conectus for a 

“preincubation project”. And the data will be integrated in a new paper [Table IV].  
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  Table III: List of strains tested by Atlangram 

Strains WT ESBL AmpC (high level) Carbapenemase 

OXA 48 KPC VIM 

Escherichia coli 3 3 3 3 

Klebsiella pneumoniae 3 3 3 

Enterobacter cloacae 3 3 3 3 

Enterobacter aerogenes 3 3 3 

Serratia marcescens 3 3 

Morganella morganii 3 3 

Citrobacter freundii 3 3 

Methicillin-susceptible 

Staphylococcus aureus (MSSA) 

3 

Methicillin-resistant  

Staphylococcus aureus (MRSA) 

3 

Pseudomonas aeruginosa 3 3 3 

Candida albicans 3 

Total (78 isolats) 33 12 21 6 3 3 
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Table IV: The MICs (µg / mL) of the 4 molecules are obtained by Atlangram 

Strains Type Isoform D Control D Isoform L Control L 

Esherichia coli Wild type - ATCC 6 (25 
922) 

32 >128 128 >128

- Ec 4 16 128 

- Ec 204 32 128 

BLSE CTXM Ec 46 (C11) 16 128 >128 >128

CTXM Ec 47 (C12) 16 >128

CTXM Ec 70 64 >128

Amp C - Ec 73 128 >128 >128 >128

- Ec 74 16 128 

- Ec 195 8 64 

OXA 48 BLSE Ec 71 16 128 

- Ec 197 16 64 

- Ec 198 16 128 

Klebsiella 

pneumoniae 

Wild type - B-24 32 >128 >128 >128

- B-73 (C3) 32 128 

- B-75 (C4) 32 128 

BLSE CTXM B-49 (C2) 32 128 128 >128

- B-50 32 >128

CTXM B-68 (C1) 32 >128

KPC - B-97 >128 >128

BLSE B-101 32 >128

- B-102 128 >128

Enterobacter 

cloacae 

Wild type - B-141 128 >128 >128 >128

- B-142 32 128 

- B-144 64 >128

BLSE - B-43 32 >128 >128 >128

- B-57 32 128 

- B-167 32 >128

Amp C - B-38 32 >128

- B-44 32 >128

- B-96 32 128 

OXA 48 BLSE B-112 64 128 

BLSE B-113 32 128 

BLSE B-118 32 128 

Enterobacter 

aerogenes 

Wild type - B-145 32 128 128 >128

- B-146 32 128 

- B-147 32 128 

BLSE - B-168 32 >128 >128 >128

- B-169 64 128 

- B-170 32 128 

Amp C - B-148 32 128 

- B-149 32 128 

- B-150 32 128 
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 Serratia 

marcescens 

Wild type - B-151 >128 >128 >128 >128

- B-152 >128 >128

- B-153 128 >128

Amp C - B-154 >128 >128 >128 >128

- B-155 128 >128

- B-156 128 >128

Morganella 

morganii 

Wild type - B-157 >128 >128 >128 >128

- B-158 >128 >128

- B-159 >128 >128

Amp C - B-59 >128 >128 >128 >128

- B-160 >128 >128

- B-161 >128 >128

Citrobacter 

freundii 

Wild type - B-162 32 128 128 >128

- B-163 32 128 

- B-164 32 128 

Amp C - B-65 64 128 >128 >128

- B-165 32 128 

- B-166 64 128 

MSSA Wild type - ATCC 1 
(29213) 

64 >64 >128 >128

- SA 100 64 >128

- SA 112 32 >128

MRSA Wild type - ATCC 21 64 >128 >128 >128

- SA 111 64 >128 >128 >128

- SA 166 64 >128

Pseudomonas 

aeruginosa 
Wild type - P122 >128 >128 >128 >128

- P129 128 >128

- P131 128 >128

Amp C - P124 128 >128 >128 >128

- P125 128 >128

- P85 128 >128

VIM - P144 128 >128

- P-149 64 >128

- P-150 128 >128

Candida 

albicans 

Wild type - L1 256 512 512 512 

- L2 256 512 

- L3 256 512 
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Importantly, in order to decrease the concentration of the antibiotics used to fight 

infection, antimicrobial combinations are administered to prevent or delay the emergence of 

resistance.  

Notably, our results showed that in a combination of D-Ctl and Amoxicillin there is a 

synergistic effect against P. micra and P. intermedia. In addition, D-Ctl offered additive effect 

in combination with Methicillin, Amoxicillin and Cefotaxime fighting against F. nucleatum, E. 

coli MDR and S. aureus, respectively.  

More added to the list of interest which is the stability of L-Ctl and D-Ctl towards 

bacterial proteases. Interestingly, the results demonstrate that D-Ctl is stable in all bacterial 

supernatant examined. Previous data of our group show that L-Ctl also was stable and resistance 

to degradation by virulence factors of S. aureus MSSA and MRSA (Aslam et al., 2013). Our 

present data show that L-Ctl was not degraded by P. micra, P. intermedia and F. nucleatum 

virulence factors. In contrast, L-Ctl was degraded by E. coli wild type and MDR virulence 

factors.  

For more benefit with more interest, resistance assays of E. coli were performed to 

highlight the bacterial resistance toward the D-Ctl, Ampicillin and Cefotaxime to treat E. coli 

infections. The results showed that D-Ctl does not trigger resistance on E. coli, unlike to 

Ampicillin and Cefotaxime from which MICs were multiplied by 3-fold over 24 days. As 

known, the main compound of the gram-negative bacteria membrane is that LPS which also 

termed as an endotoxin, the releasing of LPS occurs during cell death, bacteria cell division as 

well as during the treatment of gram-negative bacterial infections via antibiotics.  

Moreover, LPS is a strong inducer of the human`s innate immune system. Large 

amounts of cytokines pro-inflammatory can be produced by phagocytic and monocytic cells 

which caused by LPS when is released into the blood system. Due to these cytokines can 

damage multiple organs, for example, septic shock syndrome (Evans M and Pollack M, 1993; 

Papo N and Shai Y, 2005; Rosenfeld Y et al., 2006; Trent M et al., 2006). D-Ctl and L-Ctl do 

not trigger cytokine release. Also, PBMCs were treated with LPS as a control with the same 

conditions. Data show that LPS induce the release of wide range of anti-inflammatory cytokines 

such as IL-10, even more, it released pro-inflammatory cytokines such as TNFα, IFNγ and G-

CSF.  [Figure 3 in manuscript 1]. Furthermore, the results of our experiments concluded that 

D-Ctl and L-Ctl are not haemolytic and no lysis of cells were observed at all.  Also, there are

no cytotoxic towards PBMCs after 72h of treatment even the peptides concentration up to
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100µg/mL [Figure 2 in manuscript 1]. With these results of toxicology can be emphasized to 

employ D-Ctl as a new antimicrobial against E. coli infections.  

By physico-chemical methods, the mechanism for antimicrobial activity against E. coli 

was deciphered. By using infrared analysis, we show that after treatment by D-Ctl the 

metabolism of E. coli is poorly impacted [Figure 5 in manuscript 1]. Nevertheless, the 

permeabilized for the membrane of bacterial were exhibited by the images of epifluorescence 

after stained by Baclight TM [Figure 6 in manuscript 1]. Losing cytosol causes lysis and death 

bacteria due to action of D-Ctl, and when the elasticity of bacterial cell wall decreases 

drastically, it can be suggested that the bacterial cell wall is highly destroyed [Figure 6 in 

manuscript 1]. Herein, the results presented the tiniest quantity of peptide molecules also the 

proportion of the antimicrobial action needed to arrive at the point of lysis of cell which is 

robustly based on the conformation of the peptide. Amazingly, even though of the lowest 

concentration of D-conformer is still most efficient action (by a factor of around 20) that is 

confirmed by our results. which dissimilar to other lately studies which have not presented such 

a remarkable variance in antimicrobial activity of L-and D-conformers (Chen Y et al., 2006; 

Wang C et al., 2016). 

Lately a few years ago, some natural peptides such as cathelicidins or other derivatives 

peptides like MBI-226 and LL-37 have been introduced to clinical trials. (studies 

NCT00211523, NCT00211497 and NCT00027248 for the prevention of central venous 

catheter-related bloodstream infections and acne) and PMX-30063 (study NCT01211470 for 

acute bacterial skin and skin-structure infection). Because of the rising price of peptides 

production, a capability to cytotoxicity and proteases the development of these peptides in 

clinical and trading are limited. For instance, over 10 µM of LL-37 (human cathelicidin) can 

promote smooth muscle cells, T cells and apoptosis of epithelial cells (Oudhoff M et al., 2010). 

On top of that, LL-37 is sensitive to protease cleavage that induce abolishment of its 

antimicrobial properties (Koneru L et al., 2016). Widely believed defensins have observed as 

another choice to classical antimicrobials. Nevertheless, due to the complicated secondary and 

tertiary structures, there are no qualified methods of production of large amount, thus it is the 

main barrier to use them as therapeutics (Marr A et al., 2006; Corrales-Garcia L et al., 2011).  

The accumulated evidence provides convincing support for D-Ctl which shows plentiful 

of properties compared to other peptide-based drugs. As a matter of fact, D-Ctl is linear, short 

(15 amino acids) and stable at high temperature with a wide range of pH, which makes its 

products really accessible. Furthermore, using D-peptide appears as a prolific approach to elim- 
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inate degradation by secreted bacterial proteases. Succinctly, what makes D-Ctl works as an 

appealing factor for biopharmaceutical development is its potential and safety aspects; in 

addition to that, it has remarkable efficiency with undetectable susceptibility to resistance. 

Furthermore, in order to achieve accessibility for mankind, there should be a safe and secure 

pharmacology and drug toxicology. Now this study needs to be extended in vivo such as animals 

(rats) and the challenge is to set up pharmacology studies because are very important prior to 

clinical trials. 
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Discussion et perspectives en français 

La résistance des souches bactériennes aux antibiotiques est considérée comme 

un risque majeur pour les humains en bonne santé, ainsi que les animaux dans toutes les régions 

du monde. En effet, l'utilisation excessive des antibiotiques conduit à l'émergence et à la 

propagation de la résistance bactérienne, ce qui provoque des infections sévères pouvant 

devenir fatales. Par conséquent, il faut veiller à maintenir l'efficacité de ces antibiotiques en les 

utilisant dans l'intérêt de la santé humaine (Chang Q et al., 2015). Une autre alternative concerne 

le développement de nouvelles molécules antibiotiques pour freiner l'émergence des 

phénomènes de résistance. Ainsi, les PAMs peuvent limiter les phénomènes de résistance 

contre les microorganismes (les parasites, les champignons, les bactéries ainsi que les virus). 

(Zasloff, 2002). Ils présentent une action antimicrobienne directe rapide et modulent la réponse 

des cellules immunitaires (Zhang L et Gallo R, 2016). 

Dans ma thèse, j'ai exposé la conception et la caractérisation d'un nouveau PAM comme 

alternative aux antibiotiques conventionnels. Plusieurs essais été réalisés pour comparer 

l'efficacité de D-Ctl et des antibiotiques conventionnels, sur une large gamme de souches 

bactériennes anaérobies, telles que S. aureus MSSA et MRSA, E. coli wild type et MDR, ainsi 

que certains pathogènes de la cavité buccale tels que F. nucleatum, P. intermedia et P. micra. 

Ces souches bactériennes sont responsables de plusieurs maladies graves, et peuvent libérer 

beaucoup de facteurs de virulence. 

D-Ctl est un dérivé de la L-Cateslytine (L-Ctl) qui a été modifié en conservant la même

séquence que L-Ctl, mais avec des acides aminés en configuration dextrogyre (D). L'intérêt 

pour les peptides D a augmenté au cours de ces dernières années. Par comparaison avec le L-

peptide, le D-peptide est capable d'allonger la demi-vie plasmatique, d'augmenter la stabilité du 

peptide face aux enzymes, d'améliorer l'activité de liaison et la spécificité des protéines cibles 

et d'améliorer la biodisponibilité orale (Liu M et al., 2016). Par conséquent, les D-peptides sont 

plus stables que les L-peptides vis-à-vis de la protéolyse.  En effet, ils sont utilisés depuis 

longtemps en tant que vaccins synthétiques et immunomodulateurs dans la réponse des 

lymphocytes T en raison de leur grand potentiel (Van Regenmortel MH et Muller S, 1998). 

Nos résultats se sont avérés remarquables en ce qui concerne l'efficacité de D-Ctl qui 

est supérieure à celle de L-Ctl. La CMI est précisément 1,7 fois plus élevée pour L-Ctl que pour 

D-Ctl sur E. coli MSSA, et 17,9 fois plus sur E. coli MDR. Toutefois, lorsque l'efficacité de D-

Ctl a été comparée aux antibiotiques prescrits pour chaque agent pathogène, les résultats ont



Discussion and Perspectives 

démontré que la majorité des agents antibiotiques était plus efficaces. Seuls l’ampicilline sur E. 

coli wild type possède une efficacité proche (CMI = 7,0 µg/mL, vs 8,0 µg/mL pour D-Ctl), et 

la kanamycine une efficacité moins élevée (CMI = 21,6 µg/mL). Toutes ces données sont 

protégées par un brevet EP16306539.4 "Nouveau peptide de cateslytine en configuration D". 

De plus, pour vérifier une telle hypothèse, un large panel de souches bactériennes [Tableau III] 

a été testé en collaboration avec une société (Atlangram, Groupe Atlantique de Recherche sur 

les Anti-Microbiens, Nantes, France).  

Pour poursuivre cette étude, nous avons reçu un soutien financier de la SATT Conectus 

pour un « projet de préincubation». Et les données sont intégrées dans un autre document 

[Tableau IV]. 

Afin de réduire la concentration des antibiotiques utilisés pour combattre l'infection, des 

combinaisons antimicrobiennes sont évaluées pour prévenir ou retarder l'émergence de 

résistance. Nos résultats ont montré que dans une combinaison de D-Ctl et d'amoxicilline, il 

existe un effet synergique contre P. micra et P. intermedia. En outre, D-Ctl présente un effet 

additif, respectivement en le combinant avec la méthicilline, l'amoxicilline et la céfotaxime 

pour lutter contre F. nucleatum, E. coli MDR et S. aureus.  

La stabilité L-Ctl et D-Ctl vis-à-vis des protéases bactériennes représente un intérêt 

majeur que nous avons étudié. De manière intéressante, nos résultats démontrent que D-Ctl est 

stable dans tous les surnageants bactériens examinés. Les données antérieures de notre 

laboratoire ont montré que L-Ctl était également stable et résistait à la dégradation par les 

facteurs de virulence de S. aureus MSSA et MRSA (Aslam et al., 2013). Nos données actuelles 

montrent que L-Ctl n'a pas été dégradé par les facteurs de virulence de P. micra, P. intermedia 

et F. nucleatum. En revanche, L-Ctl a été dégradée par des facteurs de virulence de E. coli wild 

type and MDR. 

Des tests de résistance de E. coli ont été effectués pour mettre en évidence la résistance 

bactérienne envers le D-Ctl, l'ampicilline et le céfotaxime. Les résultats ont montré que D-Ctl 

ne provoque pas de résistance à E. coli, contrairement à l'ampicilline et à la céfotaxime dont les 

CMI ont été multipliées par trois en 24 jours.  

Le composé principal de la membrane des bactéries Gram-négatives est une endotoxine, 

le LPS. Sa libération se produit pendant la mort cellulaire, la division cellulaire bactérienne, 

ainsi que pendant le traitement des infections bactériennes Gram négatif via des antibiotiques. 

De plus, le LPS est un puissant activâtes de l`immunité innée chez l'humain. De grandes 

quantités de cytokines pro-inflammatoires peuvent être produites par des cellules phagocytaires 
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et monocytaires, activées par le LPS lorsqu'il est libéré dans la circulation. Ces cytokines 

peuvent endommager plusieurs organes et provoquer par exemple, le syndrome de choc 

septique (Evans M et Pollack M, 1993, Papo N et Shai Y, 2005, Rosenfeld Y et al., 2006, Trent 

M et al., 2006). D-Ctl et L-Ctl ne déclenchent pas la libération de cytokines. De plus, les PBMCs 

ont été traitées avec du LPS comme témoin dans les mêmes conditions. Les données montrent 

que le LPS induit la libération d'une large gamme de cytokines anti-inflammatoires comme l'IL-

10, et même de cytokines pro-inflammatoires telles que le TNFα, l'IFNγ et le G-CSF. [Figure 

3 dans le manuscrit 1]. Les résultats de nos expériences démontrent que D-Ctl et L-Ctl ne sont 

pas hémolytiques, aucune lyse de cellules n'ayant été observée. En outre, il n'y a pas de 

cytotoxicité envers les PBMCs après 72 h de traitement, même avec une concentration de 

peptides élevée à 100 µg/mL [Figure 2 dans le manuscrit 1]. Avec ces résultats de toxicologie, 

D-Ctl pourrait être employé comme un nouvel antimicrobien contre les infections à E. coli.

Par des méthodes physico-chimiques, le mécanisme de l'activité antimicrobienne contre 

E. coli a été déchiffré. En utilisant l'analyse infrarouge, nous montrons qu'après traitement par

D-Ctl, le métabolisme d'E. coli est impacté [Figure 5 dans le manuscrit 1]. La perméabilité de

la membrane bactérienne est mise en évidence par les images d'épifluorescence après coloration

par Baclight TM [Figure 6 dans le manuscrit 1]. La perte du cytosol provoque la lyse et la mort

des bactéries par l'action de D-Ctl, et lorsque l'élasticité de la paroi cellulaire bactérienne

diminue considérablement, on peut penser que la paroi bactérienne est majoritairement détruite

[Figure 6 dans le manuscrit 1]. Étonnamment, nos résultats montrent que la CMI de D-Ctl est

20 fois place faible que celle de L-Ctl. Ce n'est pas le cas d'autres études récentes qui n'ont pas

mis en évidence de différences aussi importantes dans l'activité antimicrobienne des

conformères L et D (Chen Y et al., 2006, Wang C et al., 2016).

Il y a quelques années, certains peptides naturels tels que les cathélicidines MBI-226 et 

LL-37 ont été introduits dans des essais cliniques (études NCT00211523, NCT00211497 et

NCT00027248 pour la prévention des infections de la veine centrale liées au cathéter veineux

central et de l'acné) et PMX-30063 (étude NCT01211470 pour l’infection aigue de la peau). En

raison du coût élevé de la production de peptides, de leur capacité de cytotoxicité et de leur

diminution d’efficacité à cause du clivage par des protéases la commercialisation de ces

peptides en clinique est encore limitée. Par exemple, à une concentration supérieure à10 µM

LL-37 favoriser l`apoptose des cellules épithéliales, des cellules musculaires lisses, des

lymphocytes T (Oudhoff M et al., 2010). De plus, LL-37 est sensible au clivage des protéases

qui induisent l'abolition de ses propriétés antimicrobiennes (Koneru L et al., 2016).
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Les défensines sont largement considérées comme un autre choix d’antimicrobiens classiques. 

Néanmoins, en raison de leurs structures secondaires et tertiaires complexes, il n’existe pas 

encore de bonnes méthodes de production en grande quantité. C'est donc le principal obstacle 

à leur utilisation comme agent thérapeutique (Marr A et al., 2006 ; Corrales-Garcia L et al., 

2011). 

L’ensemble des qualités de D-Ctl qui ont été montrées dans ma thèse prouve sa 

supériorité par rapport à d'autres PAMs. En effet, D-Ctl est linéaire, court (15 acides aminés), 

stable à haute température sur une large gamme de pH et dans de nombreux surnageants 

bactériens.   

Pour résumer, le potentiel et la non toxicité in vitro de D-Ctl en font un facteur attrayant 

pour son développement biopharmaceutique. Afin d'assurer son utilisation l'accessibilité chez 

l’homme, il est nécessaire que ses propriétés pharmacologiques soient démontrées in vivo 

sur un modèle animal (rat) avant la mise en place des essais cliniques. 
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Une alternative pour les antibiotiques conventionnels : 

un nouveau peptide antimicrobien dérivé de la 

chromogranine A)
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Les peptides antimicrobiens (PAMs) représentent des composants importants de l`immunité innée. Ils sont 

présents dans la plupart des organismes multicellulaires et constituent la première ligne de défense contre les infections. 

Ils possèdent un large éventail d`activités, une non-toxicité contre les cellules de l`hôte et des effets synergiques avec les 

antibiotiques conventionnels. Par conséquent, ils peuvent être d`excellents candidats dans le développement de nouveaux 

antibiotiques pour lutter contre la résistance de microorganismes. 

Concernant les PAMs dérivés de la chromogranine A (CgA), la cateslytine (Ctl) présente des activités 

antimicrobiennes directes et des propriétés immunomodulatrices. Dans ma thèse, j`ai cherché à caractériser l`épipeptide 

D-Ctl, où tous les résidus en conformation-L ont été remplacés par des résidus en conformation-D. Tout d`abord, la 

stabilité dans les surnageants bactériens et des dosages de l`activité antimicrobienne ont été réalisés, ainsi que l`analyse 

de viabilité des cellules et des dosages des cytokines libérées par les cellules immunitaires. L`efficacité de D-Ctl a été 

comparée à celle de L-Ctl contre des souches bactériennes, puis les CMIs ont été déterminées et comparées dans le cas de 

combinaisons avec des antibiotiques conventionnels, afin de montrer un effet synergique et/ou additif. De plus, D-Ctl ne 

déclenche pas de résistance chez E. coli. Des tests de cytotoxicité ont été effectués sur plusieurs types de lignées 

cellulaires et de PBMCs. Les effets inflammatoires aussi ont été testés. Ensuite, le modèle bactérien E. coli MDR a été 

utilisé pour des analyses physico-chimiques, telles que la microscopie à épifluorescence, la spectroscopie ATR-FTIR et 

la microscopie à force atomique. Enfin, le brevet D-Ctl a été déposé en 2016 sous le numéro EP 16306539.4 « Nouveau 

peptide de cateslytine en conformation D ». 

En conclusion, D-Ctl est capable de tuer rapidement un large spectre de micro-organismes, et il pourrait 

potentialiser l`effet antimicrobien de plusieurs antibiotiques.  

Mots-clés : Peptides antimicrobiens, Antibiotiques, Chromogranine A, Cateslytine, D-Ctl et L-Ctl. 
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Abstract  

Antimicrobial peptides (AMPs) represent important components of innate immunity. They are present in most 

multicellular organisms and constitute the first line of defense against infections. They exhibit a large spectrum of 

activities, a non-toxicity against host cells and synergistic effects with conventional antibiotics. Therefore, they can be as 

excellent candidates in the development of new antibiotics to fight pathogens resistance.  

Concerning to AMPs derived from chromogranin A (CgA), Cateslytin (Ctl) represents a new antibiotic, which 

displays direct antimicrobial activities and immunomodulatory properties. In my thesis, I aimed to characterize the 

epipeptide D-Ctl, where all (L-conformation) residues were replaced by (D-conformation) residues. Firstly, antimicrobial 

assays were performed, cells viability, immune assays, and the stability in bacterial supernatant was tested. The 

efficiency of D-Ctl was compared with L-Ctl against bacterial strains, then MICs were determined and compared with 

combinations in presence of classical antibiotics in order to show synergistic or/and additive effect. Moreover, D-Ctl 

does not trigger resistance in E. coli. Also, cytotoxicity assays were performed on several types of cell line and PBMCs. 

Inflammatory effects were tested too. Then, bacterial model E. coli MDR was used for physicochemical analysis such as 

epifluorescence microscopy, ATR-FTIR spectroscopy and atomic force microscopy. Finally, D-Ctl patent has been 

deposited in 2016 under the number EP 16306539.4 “New D-configured cateslytin peptide”.  

To conclude: D-Ctl is able to rapidly kill a broad spectrum of microorganisms, and it could potentiate the 

antimicrobial effect of several antibiotics.  
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