
HAL Id: tel-02197615
https://theses.hal.science/tel-02197615

Submitted on 30 Jul 2019

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Multi-Lingual Dependency Parsing : Word
Representation and Joint Training for Syntactic Analysis

Mathieu Dehouck

To cite this version:
Mathieu Dehouck. Multi-Lingual Dependency Parsing : Word Representation and Joint Training for
Syntactic Analysis. Computer Science [cs]. Université de lille, 2019. English. �NNT : �. �tel-02197615�

https://theses.hal.science/tel-02197615
https://hal.archives-ouvertes.fr

Centre de Recherche en Informatique,
 Signal et Automatique de Lille

École Doctorale Sciences Pour L’Ingénieur

Thèse de Doctorat
Spécialité : Informatique et Applications

préparée au sein de l’équipe Magnet, du laboratoire Cristal
et du centre de recherche Inria Lille - Nord Europe

financée par l’Université de Lille

Mathieu Dehouck

Multi-Lingual Dependency Parsing :
Word Representation

and Joint Training
for Syntactic Analysis

Parsing en Dépendances Multilingue :
Représentation de Mots et Apprentissage Joint

pour l’Analyse Syntaxique

sous la direction de Dr. Marc TOMMASI
et l’encadrement de Dr. Pascal DENIS

Soutenue publiquement à Villeneuve d’Ascq, le 20 mai 2019 devant le jury
composé de:

Mme Sandra KÜBLER Indiana University Bloomington Rapportrice
M. Alexis NASR Université d’Aix Marseille Rapporteur
Mme Hélène TOUZET CNRS Présidente du jury
M. Philippe BLACHE CNRS Examinateur
M. Carlos GÓMEZ RODRÍGUEZ Universidade da Coruña Examinateur
M. Pascal DENIS Inria Encadrant
M. Marc TOMMASI Université de Lille Directeur

Multi-Lingual Dependency Parsing :
Word Representation and Joint Training

for Syntactic Analysis

Parsing en Dépendances Multilingue :
Représentation de Mots et Apprentissage Joint

pour l’Analyse Syntaxique

Mathieu DEHOUCK

20 Mai 2019

Contents

1 Introduction 14
1.1 Outline . 17

2 Preliminaries 20
2.1 Snippet of Graph Theory . 21
2.2 Dependency Parsing . 22

2.2.1 Dependency Parsing as a NLP Task 25
2.2.2 Graph-based Parsing . 25
2.2.3 Transition-based Parsing . 30
2.2.4 Other Approaches . 32
2.2.5 Evaluation . 33

2.3 Machine Learning and Structured Prediction 34
2.3.1 Structured Prediction . 35
2.3.2 Learning Scoring Functions 36
2.3.3 Large Margin Classifiers . 37
2.3.4 Online Learning . 38
2.3.5 Neural Parsers . 41

2.4 Conclusion . 42

3 Representing Word Information 45
3.1 Lemmas, Parts-of-speech and Morphological Attributes 45

3.1.1 Parts-of-speech . 46
3.1.2 Morphological Features . 47

3.2 Learning Word Representation . 52
3.2.1 The Different Views of a Word 52
3.2.2 Types of Word Representations 53
3.2.3 Beyond One-Hot Encoding 54
3.2.4 Distributional Hypothesis 55
3.2.5 Distributional Semantics . 56
3.2.6 Continuous Representations 58
3.2.7 Discrete Representations . 59
3.2.8 Engineering, Learning and Selection 61

3.3 Conclusion . 62

4 Related Works on Multi-Lingual Dependency Parsing 65
4.1 Multi-Lingual Dependency Parsing 65
4.2 Universal Dependencies . 67
4.3 Related Work . 72

4.3.1 Delexicalised Parsers . 76
4.3.2 Annotation Projection . 76
4.3.3 Cross-Lingual Representations 77

2

4.3.4 Direct Transfer and Surface Form Rewriting 77
4.3.5 Multi-Lingual Dependency Parsing 78

5 Delexicalised Word Representation 79
5.1 Related Work . 80
5.2 Delexicalised Words . 82
5.3 Representation Learning . 84

5.3.1 Delexicalised Contexts . 84
5.3.2 Structured Contexts . 86
5.3.3 Structured Delexicalised Contexts 87
5.3.4 Dimension Reduction . 88

5.4 Dependency Parsing with Delexicalised Word 89
5.5 Experiments . 92

5.5.1 Settings . 92
5.5.2 Results . 96

5.6 Conclusion . 98

6 Phylogenetic Learning of Multi-Lingual Parsers 99
6.1 Related Work . 100

6.1.1 Multi-Task Learning . 100
6.1.2 Multi-Lingual Dependency Parsing 101

6.2 Phylogenetic Learning of Multi-Lingual Parsers 101
6.2.1 Model Phylogeny . 102
6.2.2 Phylogenetic Datasets . 103
6.2.3 Model Training . 104
6.2.4 Sentence Sampling . 105
6.2.5 Zero-Shot Dependency Parsing 106

6.3 Tree Perceptron . 106
6.3.1 Averaging Policy . 107

6.4 Neural Model . 108
6.5 Experiments . 110

6.5.1 Setting . 110
6.5.2 Results with Training Data 114
6.5.3 Zero-Shot Dependency Parsing 119

6.6 Conclusion . 122

7 Measuring the Role of Morphology 125
7.1 Morphological Richness . 126
7.2 Measuring Morphological Richness 127

7.2.1 Related Work on Measures of Morphological Richness 127
7.2.2 Form per Lemma Ratio . 129

7.3 Morphological Richness in Dependency Parsing 130
7.4 Measuring Morphology Syntactical Information 132
7.5 Annotation Scheme Design . 134

7.5.1 Part-of-speech Tags . 135
7.5.2 Word Tokenisation . 135
7.5.3 Dependency Scheme . 136

7.6 Experiments . 137
7.6.1 Parsing Model . 138
7.6.2 Word Representation . 138
7.6.3 Experimental Setting . 139

3

7.6.4 Results . 140
7.6.5 Assessing the Impact of the Annotation Scheme 145

7.7 Conclusion . 149

8 Conclusion 152
8.1 Contribution . 152
8.2 Future Works . 153

9 Appendix 156
9.1 Model Propagation for Dependency Parsing 156

9.1.1 Experiments . 157
9.1.2 Results . 158

9.2 Measuring the Role of Morphology 164

4

5

List of Figures

2.1 A simple graph. 22
2.2 A simple directed graph. 22
2.3 A weighted graph. 22
2.4 A simple tree. 22
2.5 Example of unlabeled dependency tree. 23
2.6 Example of labeled dependency tree. 23
2.7 Example of non-projective dependency tree. 24
2.8 Example of projective dependency tree. 24
2.9 Illustration of Eisner algorithm tree merging. 30
2.10 Example of constituency tree. 32
2.11 Partial dependency tree showing structure constraints. 35

3.1 Analysis of words into morphemes. 48
3.2 Sentence with a missing word. 55
3.3 Zipfian distribution on English words. 58
3.4 Example of hierarchical clustering. 61

5.1 Example of structured contexts. 86

6.1 Phylogenetic tree of Slavic languages. 103
6.2 Character model for word embedding architecture. 109
6.3 Neural network architecture for edge scoring. The contextualised

representation of the governor (eat) and the dependent (Cats) are
concatenated and passed through a rectified linear layer and a final
plain linear layer to get a vector of label scores. 110

6.4 Phylogenetic tree for all the languages of UD 2.2. 112
6.5 Phylogenetic tree for all the Indo-European languages of UD 2.2. . 113

7.1 Parsing result differences with respect to morphological complexity. 144

9.1 Propagation weights for model propagation. 162

6

List of Tables

2.1 Edge vector feature templates. 27

3.1 French conjugation paradigm of chanter. 50
3.2 Example of one-hot representation. 54
3.3 Example of co-occurrence matrix. 56
3.4 Example of vector binarisation. 60

4.1 Sentence in CONLL-U format. 69
4.2 List of UD universal parts-of-speech. 69
4.3 List of UD universal dependency relations. 70
4.4 List of most common UD morphological attributes. 71
4.5 List of UD treebanks A-G . 73
4.6 List of UD treebanks H-R . 74
4.7 List of UD treebanks S-Z . 75

5.1 Aligned first sentence of the UDHR (Danish, Faroese, Icelandic). . . 82
5.2 Morphological analysis from the first sentence of the UDHR. 83
5.3 Aligned first sentence of the UDHR (Czech, Russian). 84
5.4 French and Spanish aligned sentences. 84
5.5 Edge vector feature templates with lemma. 91
5.6 Basic statistics about the experiment data. 94
5.7 Description of the embedding contexts. 95
5.8 Mono-lingual experiment results. 96
5.9 Description of the language clusters. 97
5.10 Cross-lingual experiment results. 97

6.1 Delexicalised linear parser results. 115
6.2 Delexicalised neural parser results. 116
6.3 Lexicalised neural parser results. 117
6.4 Phylogenetic parsing results averaged per family. 118
6.5 Zero-shot parser results. 119
6.6 Zero-shot propagated parser results. 121

7.1 Head POS Entropy computation example. 133
7.2 Basic statistics about the experiment data. 139
7.3 Gold morphology unlabeled parsing results. 140
7.4 Predicted morphology unlabeled parsing results. 142
7.5 Morphological complexity measures. 143
7.6 Parsing results for varying English tagging. 147
7.7 Statistics about contractions in UD treebanks. 147
7.8 Parsing results for varying Hebrew tokenisation. 149

9.1 Complete linear model propagation results. 159

8

9.2 Zero-shot results for languages with a training set. 161
9.3 Zero-shot results for languages with a training set. 163
9.4 Gold morphology labeled parsing results. 164
9.5 Predicted morphology labeled parsing results. 165

9

List of Algorithms

1 Chu-Liu-Edmonds algorithm. 28
2 Contract routine for Chu-Liu-Edmonds algorithm. 29
3 Eisner algorithm. 31
4 Perceptron algorithm. 39
5 Passive-Aggressive algorithm. 40
6 Generic online parser training. 43

7 Delexicalised word embedding process. 90
8 Linear parser training with delexicalised words and PA-II 93

9 Phylogenetic training procedure. 104

10

Abstract Syntactic analysis is a key step in working with natural languages. With the advances in su-
pervised machine learning, modern parsers have reached human performances. However, despite the intensive
efforts of the dependency parsing community, the number of languages for which data have been annotated is
still below the hundred, and only a handful of languages have more than ten thousands annotated sentences. In
order to alleviate the lack of training data and to make dependency parsing available for more languages, previous
research has proposed methods for sharing syntactic information across languages. By transferring models and/or
annotations or by jointly learning to parse several languages at once, one can capitalise on languages grammatical
similarities in order to improve their parsing capabilities. However, while words are a key source of information for
mono-lingual parsers, they are much harder to use in multi-lingual settings because they vary heavily even between
very close languages. Morphological features on the contrary, are much more stable across related languages than
word forms and they also directly encode syntactic information. Furthermore, it is arguably easier to annotate
data with morphological information than with complete dependency structures. With the increasing availability
of morphologically annotated data using the same annotation scheme for many languages, it becomes possible to
use morphological information to bridge the gap between languages in multi-lingual dependency parsing.

In this thesis, we propose several new approaches for sharing information across languages. These approaches
have in common that they rely on morphology as the adequate representation level for sharing information. We
therefore also introduce a new method to analyse the role of morphology in dependency parsing relying on a new
measure of morpho-syntactic complexity.

The first method uses morphological information from several languages to learn delexicalised word repre-
sentations that can then be used as feature and improve mono-lingual parser performances as a kind of distant
supervision. The second method uses morphology as a common representation space for sharing information dur-
ing the joint training of model parameters for many languages. The training process is guided by the evolutionary
tree of the various language families in order to share information between languages historically related that
might share common grammatical traits. We empirically compare this new training method to independently
trained models using data from the Universal Dependencies project and show that it greatly helps languages with
few resources but that it is also beneficial for better resourced languages when their family tree is well populated.
We eventually investigate the intrinsic worth of morphological information in dependency parsing. Indeed not all
languages use morphology as extensively and while some use morphology to mark syntactic relations (via cases
and persons) other mostly encode semantic information (such as tense or gender). To this end, we introduce
a new measure of morpho-syntactic complexity that measures the syntactic content of morphology in a given
corpus as a function of preferential head attachment. We show through experiments that this new measure can
tease morpho-syntactic languages and morpho-semantic languages apart and that it is more predictive of parsing
results than more traditional morphological complexity measures.

Résumé L’analyse syntaxique est une étape cruciale du traitement de la langue. Suite aux récentes avancées
dans le domaine de l’apprentissage automatique, les parsers (analyseurs syntaxiques) atteignent des résultats
comparables à ceux d’experts humains. Cependant, en dépit des efforts de la communauté, le nombre de langues
ayant des données annotées est encore relativement faible et seules une vingtaine de langues ont plus de 10000
phrases annotées. Afin de lutter contre le manque de données d’apprentissage et rendre l’analyse syntaxique en
dépendances accessible à plus de langues, des chercheurs ont proposé des méthodes pour partager de l’information
syntaxique entre différentes langues. En transférant modèles et/ou annotations ou en apprenant à analyser
plusieurs langues en même temps, l’on peut profiter des similarités grammaticales des différentes langues et ainsi
améliorer leurs analyses respectives. Par contre, alors que les mots sont une source d’information importante pour
l’analyse monolingue, ils sont bien moins facilement utilisables dans un contexte multilingue du fait de le grande
variabilité même entre des langues proches. Les traits grammaticaux (personne, genre, mode, cas...) sont biens
plus stables que les mots et ils encodent directement de l’information syntaxique. Il est également plus simple
d’annoter du texte juste avec les traits grammaticaux qu’avec la structure en dépendances complète. D’autant
plus qu’avec l’augmentation de nombre langues ayant des données annotées suivant les mêmes règles d’annotation,
il devient possible d’utiliser l’information morphologique comme pont entre les langues pour l’analyse syntaxique
multilingue en dépendances.

Dans cette thèse, nous présentons de nouvelles méthodes pour partager de l’information entre plusieurs
langues. Elles ont en commun le fait d’utiliser la morphologie comme espace de représentation pour partager l’in-
formation. Nous présentons également une nouvelle mesure de la complexité morphosyntaxique nous permettant
d’étudier le rôle de la morphologie dans l’analyse en dépendances.

La première méthode utilise de l’information morphologique de plusieurs langues pour induire des représenta-
tions de mots délexicalisées qui peuvent être utilisées ensuite pour améliorer les résultats de parsers monolingues.
La seconde méthode traite la morphologie comme un espace de travail commun à toutes les langues pour y
partager de l’information lors de l’apprentissage simultané de modèles d’analyse syntaxique. L’apprentissage y
est guidé par l’arbre phylogénique des différentes familles de langues, ce qui permet de partager de l’information
entre les langues historiquement liées susceptibles de partager des trait grammaticaux. Nous montrons par le biais
d’expériences avec les données du projet Universal Dependencies que cette nouvelle méthodes d’apprentissage est
bien plus efficace que l’apprentissage de modèles indépendants pour les langues ayant très peu de ressources, et
qu’elle est aussi bénéfiques pour les langues mieux dotées dès que leurs branches sont biens fournies. Nous finissons
avec une étude de la valeur intrinsèque de la morphologie pour l’analyse syntaxique. Dans les faits, alors que
certaines langues utilisent la morphologie pour encoder de l’information syntaxique (avec les cas et les personnes),
d’autres encodent surtout de l’information sémantique (comme le temps ou le mode). Ainsi nous introduisons
une nouvelle mesure de la complexité morphosyntaxique qui quantifie l’information syntaxique contenue dans la
morphologie en termes d’attachement préférentiel au gouverneur. Nous montrons par une série d’expériences que
cette nouvelle mesure est capable de discriminer les langues morphosyntaxiques des langues morphosémantiques
et qu’elle prédit mieux la qualité de l’analyse syntaxique d’une langue que les mesures plus traditionnelles de
complexité morphologique.

12

Chapter 1

Introduction

Sentences mean more than the sum of their words meanings. This is in part due to
their internal structure. Thus, computational methods to revealing the syntactic
structure of natural language sentences (also called syntactic parsers or simply
parsers) are at the core of many natural language processing systems (machine
translation, summarisation, information retrieval...).

Dependency trees are a formalism used to represent sentences internal syn-
tactic structure. In a dependency tree, each word (but one) is attached to the
word that it modifies. For example, an adjective that modifies a noun attaches
to that noun. Similarly, a subject or an object that modifies a verb, whether it is
a noun, a proper noun or a pronoun, attaches to that verb. The set of all those
directed binary relations reveals the structure of the sentence.

Because dependency trees are more flexible than phrase-structures (especially
when considering languages with free word order) while preserving most of the
relevant syntactic information, they have been the subject of many recent research
works in the field of natural language processing. While early parsers were based
on sets of rules explicitly coding dependency grammars, most modern works focus
on the data-driven approach to dependency parsing, meaning that instead of
relying on an explicit grammar to parse sentences, they make use of annotated
data (also called treebanks) in order to learn a parsing model, that can be seen as
a representation of a latent grammar (which has been used to annotate the data).

Building on recent advances in machine learning and word representation, mod-
ern state-of-the-art parsers achieve results comparable to human [SSO+14] with an
accuracy of 90% [DQM17]. However, this is only true for well resourced languages
with several thousands of annotated sentences to learn from. Furthermore, as data
annotation is a lengthy error prone task, there are still only a handful of languages
with more than 10000 annotated sentences. And most modern languages do not
have annotated data at all1. In order to remedy this problem, and capitalising on
the fact that languages share grammatical properties (similar word order and sen-
tence structure), different methods have been proposed to perform cross-lingual
or multi-lingual dependency parsing.

The idea behind cross-lingual dependency parsing, is to use annotated data
from one or more source languages to learn a parser for a target language. Pro-
posed methods include training delexicalised dependency parsers [MPH11], adapt-

1As of January 2019, the Universal Dependencies Project [NAA+18a] hosts treebanks for 76
languages, most of which are Indo-European languages. As there are treebanks for dead languages
(Latin, Old Greek, Old French, Sanskrit...), this represents less than 1% of the estimated 7000
languages currently spoken on Earth according to Ethnologue [SF18].

14

15 Chapter 1. Introduction

ing existing treebanks to better fit target languages [AWY16] and using parallel
corpora to transfer annotation [WP12]. However, those methods are asymmet-
rical and benefit only the target language. For example, one could use parallel
corpora to adapt an English model to the related Scots language, but that would
not improve the parsing capabilities of the English model regarding new English
sentences.

The idea behind multi-lingual dependency parsing is indeed to use data from
several languages in order to improve the parsing capabilities for each language.
The basic intuition is that since languages have a lot of similarities, either because
of common history, contact or chance, using data from several languages should
help learning common patterns and improve overall parsing accuracy. For example,
instead of learning an independent parsing model for each Scandinavian language
(Danish, Swedish and both Norwegians), one could realise that because of their
common ancestry, they are very similar and thus models could share information
in order to learn on up to four times as much data as any single independent
model. However, much less work has been conducted in this area compared to
cross-lingual parsing.

The biggest obstacle to both cross-lingual and multi-lingual dependency pars-
ing is lexicalisation (using word forms). Because, even very close languages with
very similar grammars may have different spelling conventions (Spanish ll and
ñ correspond to Portuguese lh and nh) or even use different writing systems al-
together (German uses the Latin alphabet while Yiddish uses a variant of the
Hebrew abjad), it is difficult to share information between languages at the word
level. Many methods thus relied solely on parts-of-speech (word classes such as
nouns, verbs, pronouns and adjectives) that are more easily identifiable across
languages [LFDT14]. However, parts-of-speech are too shallow for delexicalised
parsers to achieve state-of-the-art results. Thus more recently, following the ad-
vances in learning word representations, people have started to use cross-lingual
word embeddings and clusters [AMB+16], but a lot of work still needs to be done
for those methods to reach full usability and they tend to require a lot of data to
give good results, data that are not available for all languages.

There is yet another alternative between shallow parts-of-speech and full lex-
icalisation, namely morphological information. Morphological features are
grammatical categories that are expressed at the word level such as tense, mood,
gender, number, case or person. Those features are appealing in a multi-lingual
setting as they tend to be more stable than word form across related languages (in
an evolutionary sens). For example, despite their very different forms, French and
Spanish verbs conjugate for mostly the same tenses, persons and moods. Morpho-
logical features are also less numerous than word forms, which in turn makes it
easier for parsers to learn with less data. Furthermore, some languages use mor-
phology directly to encode syntactic information via cases or persons for example.
Overall, morphological information adds an extra layer of the top of parts-of-
speech allowing parsers to learn finer patterns, it is less sparse than word forms
thus reducing the amount of data needed to learn, it can directly encode syntactic
information, and it remains mostly stable across related languages.

Another obstacle that has slowed down research in cross-lingual and multi-
lingual dependency parsing was the lack of consistently annotated data in different
languages. In the early days of parsing, very few languages (mostly European
languages) had annotated treebanks, and even when treebanks were available, they
often followed different annotation guide lines, use different parts-of-speech sets,

16

different representation for morphological information and different dependency
formalisms. This made both multi-lingual training and results comparison hard if
not impossible.

Since 2015, the Universal Dependencies project has started to support the cre-
ation of annotated corpus with morphological information and dependency struc-
ture in a cross-lingually consistent manner for as many languages as possible. This
initiative has made studying multi-lingual parsing easier and as the treebanks are
now consistently annotated with morphological information, it becomes possible
to study the role of morphological information in a multi-lingual learning setting.

Our thesis is that it is beneficial to share information across languages for learn-
ing models of natural languages syntax, and especially (but not only) so when a
limited amount of annotated data is available. Indeed, languages share a lot of
structures amongst which syntactic ones, either because of shared history such
as common ancestry or prolonged contact, or because languages follow general
trends (sometimes called linguistic universals). As we abstract away from word
forms, similarities between syntactic structures of different languages become more
apparent and therefore easier to capture. Morphological attributes reveal shared
structures across languages at a finer level than raw parts-of-speech and also al-
ready encode syntactic information in certain languages. We will therefore focus
on the use of morphological information as a mean to share syntactic information
across languages.

Amongst several available parsing frameworks that we will present in Chapter
2, we chose to work with graph-based parsing models as they have proven to
achieve state-of-the-art performances, as re-emphasised by Dozat et al. [DQM17],
and give full power to the data representation compared to transition-based parsers
where data representation is only one parameters alongside the transitions set,
the oracle used for training and the whole possibilities offered by reinforcement
learning models. Using well established online learning techniques and mostly
linear models, allows us to investigate the impact of using morphology and sharing
information between languages on dependency parsers.

Our first contribution follows the path of previous works on learning representa-
tions for dependency parsing. We investigate the ability of morphological informa-
tion represented by delexicalised word embeddings to complement traditional
feature vectors. Delexicalised word embeddings are word vectors that only encode
morphological information and ignore lexical and semantic information in order
to be more easily shareable across languages. We then show that using multi-
lingual morphological information helps learning representation of morphological
features that will then be used by mono-lingual parsers, acting as a form of distant
supervision.

Our second contribution is to use morphological features as a common space to
share syntactic information between related languages. As languages evolve over
time, we can imagine that languages that have diverged more recently share more
common features with each other than with more distantly related languages.
Following the idea of language evolution and divergence, we tie parsing models
parameters of several languages together so that they learn from each other’s
data until they need to diverge. The moment at which models can diverge is
determined by the phylogenetic tree of the language families in order to mimic

17 Chapter 1. Introduction

model evolution. This way, closely related languages models will share a longer
training time than models of distant languages. We call this training procedure
phylogenetic training. It is interesting to note that this generic procedure can
adapt to many different learning frameworks such as large margin classifier or
neural networks. Furthermore, it also gives models that can be used to parse
languages without training data at all (also called zero-shot parsing) as soon
as we know where they sit in the tree. We empirically show that phylogenetic
training is really beneficial for languages with few training data but that it also
helps improving results for well resourced languages when their family tree is well
populated. We also compare it to another multi-lingual parsing technique inspired
by model propagation in similarity graph and we show that phylogenetic training
is a viable option for zero-shot parsing.

Our third contribution is to look at the intrinsic value of morphological in-
formation for dependency parsing. Indeed not all languages have the same use
of morphology. While some have a rather impoverished morphology, some have
a very productive one and they use it to encode semantic and/or syntactic in-
formation. We also mentioned that as morphological features are less numerous
than word forms, they reduce data sparsity. By a series of parsing experiments
using various sources of information (word forms, morphological features, learned
representations...) we show that morphology plays indeed a double role in depen-
dency parsing. For all languages, morphological information reduces data sparsity
and thus improves parsing accuracy. Furthermore, for a subset of morphologically
rich languages that we call morpho-syntactic languages as opposed to morpho-
semantic languages, morphology directly encodes syntactic information and thus
improves parsing accuracy beyond mere sparsity reduction, even when morpho-
logical features have been poorly predicted. However, traditional measures of
morphological complexity are unable to predict those parsing results. We
therefore, introduce a new measure of morpho-syntactical complexity called
Head Part-of-speech Entropy (HPE) that focuses on the head attachment
preferences of morphological features and that is able to tease morpho-syntactic
languages and morpho-semantic languages apart. We eventually use this new mea-
sure of morpho-syntactic complexity to investigate the weight of annotation choices
on parsing performances.

1.1 Outline
The remain of this thesis is organised as follow:

In Chapter 2, we introduce the problem of syntactic dependency parsing as
a natural language processing task and present different approaches to solving
it. We focus on the graph-based dependency parsing framework and thus describe
algorithms used to retrieve trees from weighted directed graphs, also called tree in-
ference. As we work with trees and graphs throughout this thesis, we also presents
quickly a few concepts from graph theory. We end this preliminary chapter with a
presentation of the machine learning tools used in this work, and most importantly
online learning algorithms for structured prediction.
The reader familiar with dependency parsing, tree inferences and discriminative
learning for structure prediction can easily skip this chapter.

In Chapter 3, we discuss the problem of representing lexical information (words)
in a machine friendly format. We first present some linguistic tools used to analyse

1.1. Outline 18

words and to encode information in natural language processing such as parts-of-
speech, morphological features and lemmas. Then we look at more recent ap-
proaches to word representation based on statistical machine learning that auto-
matically induce representations for words from raw text.
The reader familiar with linguistic and/or statistical word representations can eas-
ily skip this chapter.

In Chapter 4, we focus on the problem of cross-lingual and multi-lingual depen-
dency parsing. It presents the Universal Dependency project, which is our main
source of cross-lingual annotated data. It presents the data and discusses a few
issues that arise when using this type of cross-lingual data. In this chapter, we
also review related works on cross-lingual and multi-lingual dependency parsing.

In Chapter 5, we focus on the representation of the input data and not on the
learning process itself. Following the trend of learning word representation, we
propose a simple method to learn cross-lingual delexicalised morphological repre-
sentation. We show via a series a experiments that even in a mono-lingual parsing
setting, using cross-lingually induced morphological representation helps improv-
ing parsing results over mono-lingually induced representations. This shows that
even distant multi-lingual supervision can be useful and that morphology is a rel-
evant mean to share information between languages.

In Chapter 6, we turn to the actual problem of training multi-lingual parsers.
We present a multi-task learning framework that make use of several tasks di-
verging history to guide their simultaneous learning process. We instantiate this
framework with both a linear parser and a neural parser, leveraging on languages
evolutionary history as represented by a phylogenetic tree to share information
between them. We show that learning several parsing models side by side using
the phylogenetic tree is beneficial, especially for poorly resourced languages and
dense branches of the tree.

In Chapter 7, we venture in computational linguistics territory and investigate
the actual role played by morphological information in dependency parsing. Mor-
phological analysis can be used as a bridge between languages. It also reduces
data sparsity as there are much less morphological attributes than word forms
for example. But morphology can also encode syntactic information by itself. As
such, it should play different roles in dependency parsing. In this chapter, we
try to disentangle data sparsity reduction from syntax encoding using morpholog-
ical complexity measures and various word representations. We show that while
morphological complexity measures alone do not take syntactic information into
consideration and thus are poorly predictive of parsing results, our newly proposed
measure of morpho-syntactic complexity can tell languages that rely on morphol-
ogy to encode syntax from others.

In Chapter 8, we conclude this thesis by discussing current limitations of our
methods and opening directions for future works.

In Chapter 9, we present a few extra result tables that did not find their room
in the body of this thesis.

Chapter 2

Preliminaries

Dependency parsing as a natural language processing task takes sequences of lin-
guistic tokens as inputs (sentences) and outputs linguistic structures over those
inputs (dependency trees) that match a set of rules (a grammar) nowadays mostly
learned automatically from annotated data and represented by weight models. An
automated system addressing this task is called a dependency parser. Parsers are
made up of three key components : 1) a data representation mechanism whose
goal is to encode input sentences into a mathematical representation also called a
feature vector; 2) a scoring function encoding grammatical rules that can either
take the shape of hard-coded rules or of parameters learned from annotated data;
and 3) a tree inference that is used to retrieve the dependency structure of an
encoded input sentence scored by the scoring function.

In this work we investigate different methods to improve automatic syntactic
analysis when one has access to data from several languages. To do so, we rely
on concepts from Natural Language Processing, Machine Learning, Mathematics
and Linguistics. In this chapter, we introduce important concepts from each field
on which we build our work up.

Because dependency trees are graphs and that we also use graphs as learning
tools later in this work, we start by introducing a few concepts from graph theory
in Section 2.1. We then turn to dependency parsing proper.

Section 2.2 introduces the concept of syntactic analysis using dependency trees,
as well as the problem of automatically predicting those dependency trees. It
presents some broad classes of parsers such as transition-based parsers and graph-
based parsers. Most importantly, this section presents the Eisner’s and Chu-Liu-
Edmonds’ algorithms for retrieving trees in directed graphs that we use in sub-
sequent chapters. In this section, we also discuss the evaluation of parsers. This
section roughly corresponds to the inference part (3) of a parser.

In this work, as it the case for most modern parsers, the actual structural con-
straints are not hard-coded in the shape of grammars but are automatically learned
from annotated data. Section 2.3 introduces the necessary background in machine
learning and more specifically structure prediction and online learning. Amongst
other, we describe there the Perceptron algorithm and the Passive-Aggressive algo-
rithm used in this work. This section roughly corresponds to the scoring function
part (2) of a parser.

For most of the parsing history, inputs (sentences, edges or parser states) were
represented by shallow long sparse feature vectors typically encoding the identity
of words involved, pairs of words, parts-of-speech and so on. Only recently, fol-
lowing advances in word representation, have parsers started to use deeper more

20

21 Chapter 2. Preliminaries

contextualised representations for their inputs. As word representation is a pivotal
aspect of our work and that it has evolved independently from dependency pars-
ing, we will discuss it, from both a linguistic and a natural language processing
perspective in a following chapter.

Similarly, as the development of consistently annotated multi-lingual training
data is somewhat orthogonal to the problem of parsing itself, we keep the descrip-
tion of the training data used in this work as well as the most important related
work on multi-lingual dependency parsing for next chapter.

2.1 Snippet of Graph Theory

Graph theory deals with sets of objects structured by pairwise relations. Those
structured sets are called graphs. It is a basic framework used for representing
syntactic structures as well as language relationship.

A graph G = (V , E) is a set of vertices (or nodes) v ∈ V that may be linked to
each other by edges e ∈ E that represent relations between those vertices E ⊆ V×V .
Two vertices vi and vj are said to be adjacent if they are linked by an edge eij. If
the relation represented by E is symmetrical, we say that the graph is undirected
and we have that eij = eji for all pairs of adjacent vertices. Figure 2.1 depicts a
simple undirected graph. It has five vertices and four edges.

If however, the relation represented by E is asymmetrical, the graph is directed.
In that case, eij is the edge going from i to j and eji goes in the other direction.
In general, the existence of an edge eij does not imply the existence of an edge eji
going in the other direction. Figure 2.2 shows a directed graph.

Some definitions allow self loops (edges going from a vertex to itself), but as
this is mostly irrelevant for the structure we are considering in this thesis, we will
assume that self loops are not allowed.

A graph can also be weighted. In that case, a graph is a triplet G = (V , E ,W)
with W = {wij ∈ R,∀eij ∈ E} being the weights of the edges of G. Edges not in
E are often given a weight of 0. Figure 2.3 shows a weighted graph.

A path is a sequence p = {pt ∈ E|t ∈ N|p|} of edges of length |p|, such that if
pt = eij and pt+1 = ei′j′ then j = i′. We also assume that ∀t, t′ ∈ N2

|p|−1, such that
t < t′, pt = eij and pt′ = ei′j′ then i 6= j′. A path cannot go through an vertex
more than once, except maybe the first/last vertex of the path, in that case the
path is also called a cycle. We say that two vertices vi and vk are connected if
there exists a path p ∈ E∗ such that p goes from u to v. A connected component
is a maximal subset of V such that any two vertices in it are connected.

We say that G is a tree if it is connex (it has only one connected component)
and it has no cycle. It means that between any two vertices, there is exactly one
path, no more nor less. Figure 2.4 represents a tree.

In a tree, a single vertex can be promoted to be the root of the tree. In a
rooted tree, for a given edge eij, the vertex vi is closer to the tree root than vj. We
say that vi is the parent of vj and that vj is the child of vi. The transitive closure
of the child relation is called descendant relation. Thus the descendants of vi are
either vi’s children or are children of another descendant of vi. Conversely, all the
vertices between vj and the root of the tree are the ancestors of vj.

There are several ways to represent a graph. The adjacency matrix A of a
graph G = (V , E ,W) is a square matrix representing the edges of the graph. The

2.2. Dependency Parsing 22

A
B

C

D

E

Figure 2.1: A simple graph.

A
B

C

D

E

Figure 2.2: A simple directed graph.

A
B

C

D

E

0.8
1.3

0.22

Figure 2.3: A weighted graph.

A
B

C

D

E

Figure 2.4: A simple tree.

matrix A ∈ R|V|×|V| is defined as:

Aij =

{
Wij if eij ∈ E ,
0 otherwise.

If G is unweighted then we can set Wij to 1 in the above definition. We see
that given this definition, the adjacency matrix of an undirected graph is always
symmetrical while it needs not be the case for general directed graphs.

Linked to the adjacency matrix is the matrix of degree. The degree of a vertex
vi is the number of adjacent vertices vj in G. If G is weighted then the degree of
vi is the sum of its edges weights. The matrix of degree D ∈ R|V|×|V| is defined as:

Dii =
∑

j|eij∈E

Wij,

Dij = 0 if i 6= j.

If G is directed then we define the out-degree and the in-degree to be the sum of
the outgoing edges weights and the sum of the incoming edges weights respectively.

A =


0 1 0 1 1
1 0 0 0 0
0 0 0 0 0
1 0 0 0 1
1 0 0 1 0

 , D =


3 0 0 0 0
0 1 0 0 0
0 0 0 0 0
0 0 0 2 0
0 0 0 0 2


A and D are the adjacency matrix and the degree matrix of the graph of Figure
2.1.

2.2 Dependency Parsing
We call a sentence x = x1x2 . . . xn, a sequence of words, numbers and punctuation
symbols of length |x| = n. In the following, we will use word as a generic term for
words, numbers and punctuation symbols.

23 Chapter 2. Preliminaries

A dependency relation is a directed relation between two words xi and xj such
that one is the governor (or head or parent) and the other is the dependent (or
child). Typically, those relations encode syntactic/semantic relations, such as the
fact that a determiner or an adjective attach to a noun or that noun used as a
direct object attaches to a verb.

A dependency graph G over a sentence x is a graph whose vertices V = {xi|i ∈
Nn} are the words of x in the sequential order and whose edges E = {eij|(i, j) ∈
N2

n, i 6= j} are dependency relations between those words.

The cat sat on a mat .

Figure 2.5: Dependency structure for the sentence ”The cat sat on a mat.”

Different linguistic theories of syntactic dependency can lead to different de-
pendency graph for a single sentence x. Some are arbitrary graphs while others
are constrained. The most widely studied dependency graphs in NLP are by far
dependency trees. Meaning that each word has at most one governor and that
only one word has no governor. This word is the root of the tree. Figure 2.5 gives
an example of such a dependency tree.

Dependency relations can further be typed. In that case we say that the depen-
dency structure is labeled. Typical labels for dependency relations are syntactic
roles like Subject and Object. But again, types can vary from theory to theory.
Figure 2.6 gives the labeled version of the structure from Figure 2.5.

An annotation scheme is the translation of a dependency theory into a set of
rules used to derive trees for sentences. Whilst most rules of a scheme are directly
derived from a given theory, conventions are often necessary to keep the structures
constrained. For example, most theories have subjects and objects governed by
verbs. However, in sentences with several possible governors like in ”Peter bought
and ate apples”, where Peter could depend on both bought and ate, rules might
be necessary to break ties, especially if one wants to work with trees.

Dependency trees can be further qualified as projective or non-projective. A
tree is projective if it can be drawn above the sentence without any crossing edges.
More formally, for any dependency relation eij on x, if for all k such that i < k < j
(resp. j < k < i), xk is a descendant of xi, then eij is projective. If all the
dependencies of a tree are projective then the tree itself is projective.

The cat sat on a mat .

det nsubj
root

obl
case

det

punct

Figure 2.6: Labeled dependency structure for the sentence ”The cat sat on a mat.”

2.2. Dependency Parsing 24

I had an appointement yesterday with the doctor .

Figure 2.7: Dependency structure for the sentence ”I had an appointement yester-
day with the doctor.”

I had an appointement with the doctor yesterday .

Figure 2.8: Dependency structure for the sentence ”I had an appointement with
the doctor yesterday.”

This is an important distinction for two reasons. First, from a linguistic per-
spective, projectivity links with word order and typology. Languages that do not
rely on word order to express syntactic roles tend to be less projective than those
that have stricter word orders. For example, words can move rather freely in the
sentence in classical Latin because Latin relies on declension for marking syntac-
tic roles. In English or French, core roles (subject, direct and indirect objects)
are marked by position in the sentence. But while other phrases are more free
to move, words inside them are still fixed. There even exist languages that are
strictly projective, like Japanese for example with a very strict word order, where
phrases can only move so far as the scope of their governor allows.

Let us take the sentence: ”I had and appointment yesterday with the doctor.”
We could also write: ”I had and appointment with the doctor yesterday.” or again:
”Yesterday I had and appointment with the doctor.” but not *”I had and appoint-
ment with yesterday the doctor.” or *”I had and appointment yesterday the with
doctor.” The first sentence is non-projective (Figure 2.7) while the second one is
(Figure 2.8).

Second, from a computational perspective, we shall see that some parsing al-
gorithms have restrictions on the kind of structure they can retrieve, the most
common one being projectivity. Thus some parsers will only be able to produce
projective trees and thus will be more suited to some languages than others.

As a way of encoding syntactic information, dependency trees are a useful
tool for downstream tasks such as automated translation or information retrieval.

25 Chapter 2. Preliminaries

Given the above definition of a dependency tree, we shall now define the problem
of finding those trees in such a way addressable by computers.

2.2.1 Dependency Parsing as a NLP Task
The problem of dependency parsing is to find the best dependency structure (from
now on, we will assume that this structure is a tree) for a sentence given a set of
rules that we will define later. From a computational point of view, an algorithm
to perform dependency parsing is an algorithm A of type R → (X → Y), where
R is the set of sets of rules constraining the dependency structures, X is the set
of sentences and Y is the set of dependency structures. Let r ∈ R be a specific set
of rules, then the instance Ar is an algorithm that takes a sentence x as input and
outputs a tree y. An example of such a rule would be that an adjective appearing
at the left of a noun attaches to that noun, as it is the case in French.

The sets of rules that constraint dependency trees, can be given in very different
ways. The first dependency parsers used explicit hand crafted hard coded rules
in the shape of dependency grammars [KMN09]. However, this requires a huge
amount of error prone work and human expertise, and because human languages
evolve fast, are ambiguous and full of idiosyncrasies, such hand crafted rule sets
are not able to generalise well to the broad range of language uses. Thus moderns
parsers rely on implicit rules given in the shape of annotated example sentences
sets called treebanks. Because of the implicit nature of those rules, parsers use
machine learning techniques to learn them from annotated examples. We will
describe those annotated examples in greater details in Section 4.2.

Assuming one has access to a mechanism that would tell how good a tree y is
for a given sentence x and a rule set r, like a scoring function for example, then
we would just need to search through the space of trees and pick the best:

ŷ = argmax
y∈Yx

Scorer(x, y).

The problem here, is that the space of possible trees grows exponentially with
the size of the sentence and thus makes it impossible in practice to search through
all trees for reasonable sentence sizes. Cayley’s formula gives nn−1 rooted trees for
a sentence of length n, meaning that for a sentence of 10 words, there are already
a billion trees to search. Thus one needs to resort to more clever algorithms to
effectively find a good parse tree for a sentence.

Over the years, different approaches have been proposed to the problem of
dependency parsing. They all have in common to factor the score of a tree in some
way in order to make the search tractable. The two most successful and widely
used today are the so called graph-based dependency parsing and transition-based
dependency parsing. We review them in the next sections. Other approaches like
those based on grammar formalism are less trendy today but are worth mentioning,
so we quickly present some afterward.

2.2.2 Graph-based Parsing
In graph-based parsing, we use graph-theoretic tools to retrieve the best depen-
dency structure given a sentence.

To make the problem tractable, in practice we factor a tree score as the sum of
the scores of its sub-parts. The most common factorisation is edge factorisation,

2.2. Dependency Parsing 26

also called first order factorisation. Each possible edge receives a score and the
score of a tree is just the sum of its edges scores. Edges can be seen as sub-
trees of size 1 or sub-trees containing only one edge, thus the name of first order
factorisation. Then the problem becomes:

ŷ = argmax
y∈Yx

∑
e∈y

score(x, e).

Any function that can assign a score to an edge can be used here, but in practice,
linear functions are used most of the time. Thus, given a function φ turning an
edge e into a vector φ(e) ∈ Rd of length d. The vector φ(e) is also called the
feature vector of e. The score of e is then given by:

scoreθ(x, e) = θ · φ(e),

where θ ∈ Rd is the weight vector corresponding to the linear scoring function,
and is to be learned from some data. We will see in Section 2.3 how this weight
vector is learned, but for now we assume that it exists.

Typically, the feature vector φ(e) of an edge e encodes information about the
parts-of-speech and forms of the two ends of the edge. It also often encodes in-
formation about words surrounding the two ends and the signed1 length of the
relation. Those vectors used to be one-hot encoded, thus they were very long (sev-
eral millions of dimensions) and very sparse (less than a hundred active dimensions
at a time). Those big one-hot vectors are not very good at sharing information
between dimensions, thus they have been complemented with smaller, denser rep-
resentations. With the advances in representation learning and neural networks,
they even tend to be completely replaced by small, dense representation in very
modern models as we shall see later. Table 2.1 gives the detail of the feature vector
template used in the MSTparser of McDonald et al. [MCP05a]. Those features
have been widely used, adapted and extended in subsequent works on graph-based
dependency parsing.

Once a score has been given to each possible edge (or sub-structure), we can
use tree inferences to find the best scoring tree for a given sentence. The two most
common tree inferences used are the Chu-Liu-Edmonds’ algorithm [CL65] which
is a purely graph-based method and the Eisner’s algorithm [Eis96] originating in
grammar parsing and dynamic programming. We review those two algorithms in
the next sections.

Chu-Liu-Edmonds’ Algorithm

The problem of finding a tree covering all the vertices of a weighted graph that
maximises (or minimises) a cost function is an old problem in computer science.
An algorithm solving for that problem is called a spanning tree algorithms. Basic
spanning tree algorithms like Kruskal’s and Prim’s algorithms are fast greedy
algorithms but only apply to undirected graphs, while in dependency structures,
edge direction is semantically important.

The fact that we work with directed graphs has an important algorithmic
implication. We cannot use purely greedy approach. Chu-Liu-Edmonds’ algorithm

1Because relations are directed (a noun depending on a verb is not the same as a verb de-
pending on a noun), to distinguish between edges going to the left and to the right, their length
is signed so that an edge with a positive length goes in the direction of the text while a edge
with a negative length runs backward.

27 Chapter 2. Preliminaries

Uni-gram
H-form, H-pos
H-form
H-prefix, H-pos
H-prefix
H-pos
D-form, D-pos
D-form
D-prefix, D-pos
D-prefix
D-pos

Bi-gram
H-form, H-pos, D-form, D-pos
H-form, H-pos, D-form
H-form, H-pos, D-pos
H-form, D-form, D-pos
H-pos, D-form, D-pos
H-form, D-form
H-prefix, H-pos, D-prefix, D-pos
H-prefix, H-pos, D-prefix
H-prefix, H-pos, D-pos
H-prefix, D-prefix, D-pos
H-pos, D-prefix, D-pos
H-prefix, D-prefix
H-pos, D-pos

Tri-gram
H-1-pos, H-pos, D-pos
H-pos, H+1-pos, D-pos
H-pos, D-1-pos, D-pos
H-pos, D-pos, D+1-pos

Tetra-gram
H-1-pos, H-pos, D-1-pos, D-pos
H-pos, H+1-pos, D-1-pos, D-pos
H-1-pos, H-pos, D-pos, D+1-pos
H-pos, H+1-pos, D-pos, D+1-pos

In Between
H-pos, B-pos, D-pos

Table 2.1: Feature templates for the one-hot edge feature vector for dependency
parsing adaptated from [MCP05a]. H stands for the head of a relation, D for the
dependent, ±1 selects the word before/after the given word. B is any word in
between the Head and the Dependent of the relation. On top of forms and POS,
prefixes of length 5 are used as back-offs for unseen words. All those templates are
further conjoined with the binned signed length of the relation.

2.2. Dependency Parsing 28

(CLE for short) is a maximum spanning tree algorithm for directed graphs. CLE
algorithm alternates between two stages. In a first greedy stage, it picks the best
incoming edge for each vertex. Because the greedy stage might have created cycles,
then a second stage contracts cycles and update the scores of the edges involved
in them, leading to a new graph on which to apply the algorithm anew. This is
repeated recursively until the greedy stage does not create any more cycle, then
all the contractions are unfolded to make the final tree. We give pseudo-code for
the algorithm in Algorithm 1.

Data: a weighted directed graph G = (V , E ,W)
Result: a dependency tree GT
begin
E ′ = {eij | eij ∈ E , Wij = maxi′∈NnWi′j}
G ′ = (V , E ′,W)
if G ′ has no cycles then

return G ′
Find any EC that is a cycle in G ′
GC , ep = contract(G ′, EC)
GT = (VT , ET) = CLE(GC)
vj = ep(eic)
Find vk ∈ EC such that ekj ∈ EC
Add eij to ET
Add eil to ET where vi = ep(ecl) for each ecl ∈ ET
Add eil to ET for each eil ∈ EC except ekj
return GT

Algorithm 1: Chu-Liu-Edmonds algorithm, the contract routine is given in
Algorithm 2.

Let us explain how the algorithm works in more details. In the first stage,
for each vertex in graph G = (V , E ,W), pick the best incoming edge (the best
parent) with regard to the attachment scores. This is the greedy stage. Then
check if the resulting graph is a well formed tree. If that is the case, then it is the
maximum spanning tree, we return it and the algorithm stops. If on the contrary,
the resulting graph is not a well formed tree, then there must be at least one cycle
C in it.

The second stage, takes any cycle C and contracts it. Create a new graph
G ′ = (V ′, E ′,W ′) where V ′ = V/C ∪ {vC}. vC is a vertex that will represents the
contracted cycle C. We need to remember the vertices that were in C to be able the
reconstruct the tree for the original graph at the end. E ′ = {eij|(i, j) ∈ V ′ × V ′},
edges in C are removed and edges going from (to) C to (from) other vertices are
replaced by edges going from (to) vC. The new weights (scores) W ′ are such that
for the edges out of C the weight does not change, and for the freshly created edges,
Wic = maxj∈C(Wij −Wa(j)j +

∑
j∈CWa(j)j) and Wcj = maxi∈CWij, where α(j) is

the antecedent of j in the cycle such that eα(j)j is in the cycle. Then we recurse
on the newly defined graph G ′. The recursion stops when the greedy phase does
not create cycles any more.

Once the recursion is done, because there is no cycle in the graph, there is an
edge eic that goes toward the cycle C. This edge correspond to an incoming edge
eij of maximum score in the original graph G such that vj in in C. Restoring the
edges of C in place of vc makes that vj has now two parents, vi and vk the one in

29 Chapter 2. Preliminaries

Data: a weighted directed graph G = (V , E ,W) and a cycle C
Result: a weighted directed graph GC = (VC , EC ,WC) and a tracker ep
begin
VC = V/C
EC = E/C
for vj ∈ VC such that eij ∈ E for some vi ∈ C do

Add ecj to EC
ep(ecj) = argmaxvi∈CWij

vi = ep(ecj)
WCcj =Wij

for vi ∈ VC such that eij ∈ E for some vj ∈ C do
Add eic to EC
ep(eic) = argmaxvj∈CWij −Wa(j)j

vj = ep(eic)
WCic =Wij −Wa(j)j + score(C)
where a(j) is the predecessor of vj in C
and score(C) =

∑
ei,j∈CWij

Add vc to VC
return GC , ep

Algorithm 2: The contract routine for Chu-Liu-Edmonds algorithm.

C. By removing the edge ekj from the graph, the cycle C ceases to be a cycle. By
breaking all the cycles one by one, we end up with a tree.

The complexity of the basic algorithm is O(n3) because each recursion performs
a greedy edges selection over O(n2) edges and there need to be a recursion per cycle
with at most n − 1 such cycles in the graph. Better implementations have since
reached O(n2) for complete graphs. The proof of optimality is available in the
original papers [CL65, Edm67]

Eisner’s Algorithm

Eisner’s algorithm [Eis96] is a dynamic programming algorithm that retrieves the
best projective tree over a sentence given a set of edge scores. The idea behind the
algorithm is that assuming projectivity and horizontal independence of the scor-
ing function (meaning that the score of an edge does not depend on its potential
siblings), the score of the left part of a tree is independent from the score of the
right part of the tree and thus can be computed separately. While projectivity, is
enforced by the algorithm design, horizontal independence is a property of the tree
scoring function. For example, when the scores are computed for edges indepen-
dently of any other structure before hand, and then passed down to the algorithm,
horizontal independence is met.

More formally, given a sentence x and a tree y over it. Let xi be a word of
the sentence and an inner node of the tree and let xj and xk be two dependents
of xi with j < k (there could be more but the explanation is easier with only two
dependents). Horizontal independence means that the score of the sub-tree yielded
by xj (the left sub-tree) does not depend on the score of the sub-tree yielded by
xk (the right sub-tree).

By nature, edge factorisation meets horizontal independence because all the
edges are scored independently from each other, but it is not the only possible scor-

2.2. Dependency Parsing 30

s q t

→

s q t s q q+1 t

→

s q q+1 t

Figure 2.9: Illustration of Eisner algorithm tree merging. On the left a complete
tree and an incomplete tree are merged into a bigger complete tree. On the right
two facing complete trees and a new edge are merged into a new incomplete tree.

ing function that meet this requirement. A function that would consider strings of
ancestors from the root, also called vertical dependency would meet this require-
ment as well. However, as an example, a scoring function that would take valency
(the number of dependents) into account would not meet horizontal independence.

The algorithm pseudo-code is given in Algorithm 3. Given a sentence x of
length n, a complete weighted directed graph G = (V , E ,W) has been created
where V = {xi|i ∈ N|x|} is set of all the words in the sentence, E = {eij|(i, j) ∈
N2

|x||i 6= j} is the set of edges between different words, and Wij is the weight
(score) of edge eij. Let us define E ∈ Rn×n×2×2 the table that will store the
scores of already computed sub trees, and set all the scores to 0. The two first
indices represent the boundaries of each sub tree in the sentence. The third index
distinguishes for left trees where the root is the rightmost vertex and right trees
where the root is the leftmost vertex. The last index distinguishes for complete
and incomplete trees.

A tree is said incomplete if it is the result of the merger of two facing complete
trees with a linking edge at the top. A tree is complete when it results from the
merger of an incomplete tree and a complete tree going in the same direction.
Figure 2.9 gives a depiction of those merging process. We use l (respectively r) for
left (respectively right) and c (respectively i) for complete (respectively incomplete)
for the two last indices.

Trees (complete or incomplete) spanning a single word (s = t) have a score of
zero because they do not hold any edge. Then, for each span length from 1 to n,
left and right incomplete trees are made up of smaller facing complete trees. Only
then, complete trees are made from incomplete trees and smaller complete trees of
the same direction. Eventually, the score of the best tree is the score of the right
complete tree spanning the whole sentence stored in cell E[0][n][r][c].

Eisner’s algorithm only computes the score of the best projective tree but does
not compute the tree itself. In order to retrieve the tree, one can add an extra
table to store the indices q corresponding to the best merging point for each cell
of E. The direction of the edges thus retrieved is directly stored in E. Then one
just needs to backtrack the tree following the q table.

The complexity of Eisner’s algorithm is O(n3) because of the filling of the four
tables of size O(n2) requires for each cell at most n scores to be compared. The
backtracking takes O(n) because one just needs to check one merging q index per
edge and there are exactly n− 1 such edges.

2.2.3 Transition-based Parsing
Transition-based parsing [NH05], also called shift-reduce parsing relies on a very
different factoring strategy. Instead of assigning scores to edges and then relying

31 Chapter 2. Preliminaries

Data: a weighted directed graph G = (V , E ,W)
Result: a projective dependency tree GT
begin

n = |V|
Instantiate E ∈ Rn×n×2×2

Initialise E[s][t][d][c] = 0, ∀s, t, d, c
for m ∈ [1...n] do

for s ∈ [1...n] do
t = s+m
if t > n then

Break

E[s][t][l][i] = maxs≤q<t E[s][q][r][c] + E[q + 1][t][l][c] +Wts

E[s][t][r][i] = maxs≤q<t E[s][q][r][c] + E[q + 1][t][l][c] +Wst

E[s][t][l][c] = maxs≤q<t E[s][q][l][c] + E[q][t][l][i]
E[s][t][r][c] = maxs<q≤t E[s][q][r][i] + E[q][t][r][c]

return
Algorithm 3: The Eisner algorithm for Dependency Parsing. Freely adapted
from Kubler et al. [KMN09].

on a maximum spanning tree inference to retrieve the best structure, transition-
based parsers use abstract state machines in order to build the tree. The score of
a tree is thus factored by the scores of transitions between states.

The simplest machines are composed of a buffer that holds the remaining words
and a stack that keeps trees predicted so far. At each time step, one can choose
between two possibilities, either shifting the next word in the buffer to the top of
the stack, or reducing the stack by adding an arc (a left-arc or a right-arc) between
the two trees at the top of the stack making it one. A sequence of transitions from
the state with an empty stack and a buffer containing a sentence to the state with
an empty buffer and a single tree on the stack effectively constructs a dependency
structure over the original sentence. The score of a state is the score of the sequence
of transitions that lead to that state, thus the score of a tree is the score of the
sequence of transitions that lead to it. When several sequences lead to the same
state one can either pick the max or the sum of the sequences scores.

From a machine learning perspective, the goal is to predict the best transition
at each time step given a representation of the current machine state. Because it
might be hard to predict the cost of preferring a decision against another at some
time step, the training of such systems is based on concepts from reinforcement
learning. This is in part because several sequences of action can lead to the same
tree and because the actual worthiness of an action is oftentimes only known at
the end of the parsing process.

Because of their greedy way of selecting transitions, those basic shift-reduce
parsers are fast, they run in linear time, but are also inexact (meaning that the
final tree given by the algorithm might not be the tree with the highest score given
that abstract machine) by nature and they can only build projective trees and
need heuristics to render non-projectivity. This is the traditional comparison line
with graph-based parser. Graph-based parsers are exact and can deal with non-

2.2. Dependency Parsing 32

The cat sat on a mat .

Dthe Ncat Vsat APon Da Nmat PNCT.

NPcat NPmat

PPmat

VPsat

Ssat

Figure 2.10: Constituency structure for the sentence ”The cat sat on a mat.”

projectivity but are slower and rely on very local features as parsing information2.
Shift-reduce parsers are fast and can use all the parsing history as information
source for feature representation but they are inexact and cannot handle (natively)
non-projectivity.

Modern shift-reduce parsers propose a wider range of transitions like the swap-
ping of words, thus handling non-projectivity but making the search intractable
in some cases. They also use beam search techniques to soften their greediness.
Furthermore, it is especially hard to know what are the best transitions to predict
once parsing errors have been produced and the training stack does not look like
the gold stack anymore. However, it is very important for parsers to be able to
handle parsing errors and to keep producing sensical outputs even after a mistake.
Therefore, there is a whole area of research dedicated to designing training oracles
for transition systems, whose aim is to design better training procedures to learn
to handle parsing errors.

2.2.4 Other Approaches
Dependency trees are just one amongst several formalisms used to represent syn-
tactic information. Another important formalism is constituency grammar, in
which the syntactic structure of a sentence is represented in the shape of a deriva-
tion tree. In a constituency tree, the leaves are the actual words of the sentence
and the inner nodes are non-terminal symbols from a grammar. Figure 2.10 gives
an example of constituency tree for our example sentence.

There are links between constituency grammars and dependency grammars. A
constituency grammar can be fully lexicalised or can be equipped with a set of head
selection rules. If in a constituency grammar, each derivation rule is associated
with a head selection rule, then a derivation tree can also embed dependency rela-
tions. For example in figure 2.10, rule VP→ VB PP, would be associated with the
head selection rule h(VP) = h(VB). Different heuristics have been used to produce

2Researchers have proposed extensions to edge factored graph-based parsing that allow one
to use more complex features at the cost of relaxing inference.

33 Chapter 2. Preliminaries

dependency structures from constituency structures [EB07]. However constituency
parsing has a greater time complexity than dependency parsing, therefore transi-
tion and graph-based methods are favoured. Still it is worth noting that the Penn
treebank [MMS93], one of the first annotated corpus widely used in dependency
parsing was originally annotated with constituency trees and only later turned into
a dependency parsing resource using such heuristics.

In fact, Eisner’s algorithm in also an off-shoot of those parsing techniques, as it
can be seen as a parsing algorithm for bi-lexical dependency grammars [KMN09].

Other grammar based parsing techniques not directly linked to constituency
grammar have also been proposed with different parsing algorithms. For example,
methods have been proposed that see parsing as a constraint satisfaction problem
where the grammar defines legal structures and the parser tries to break as few
constraints as possible [Fot06].

Another proposed approach is to see dependency parsing as a sequence tagging
task. Indeed, a dependency tree can be turned into a sequence of label over the
original sentence. Each word can be labeled with its governors index (or relative
offset), its dependency relation type, the POS of its governor or any other relevant
information. This method has been applied by Spoustová and Spousta [SS10] on
Czech and English as a proof of concept.

With the increasing application of the sequence-to-sequence neural learning
paradigm to more and more problems, first papers applying this method to de-
pendency parsing appeared in August 2018 [LCHZ18].

Finally, several models have been proposed to perform unsupervised depen-
dency parsing [LZ15]. In unsupervised dependency parsing the goal is to perform
dependency parsing without any annotated data. While it is interesting as it di-
rectly applies to any text in any language, results are still well below those of
supervised systems. We just mention this but we do not go any further because
this is out of the scope of this thesis.

2.2.5 Evaluation
So far, we have seen different algorithms to perform dependency parsing, but we
have not yet said how those methods are evaluated. Indeed it is an important
aspect of the development of a parser or a new parsing algorithm to be able to
assess its quality, to see how well it works and how to compare to other approaches.
We will see here some evaluation metrics used to evaluate dependency parsers given
some annotated corpora.

Maybe the simplest measure of a parser’s quality is the percentage of trees it
predicts correctly. However, this score is usually very low (hardly ever above 50%),
highly biased and does not tell much about the quality of the parser. The reason
for this is quite simple. Trees are complex structures composed of several edges,
and because of the combinatorial nature of the structure the prediction occurs at
the edge level. By considering perfectly reconstructed trees only, we completely
disregard the fact that prediction is done at the edge level and we treat equally
a tree that would have missed one edge and a tree that would be completely
off. Furthermore, the longer a sentence, the more likely it is that an edge will be
mispredicted, thus the score is biased toward parsers that focus on short sentences.

To avoid those problems, edge prediction scores are preferred. The unlabeled
accuracy score (UAS) is the percentage of well predicted edges (good governor and
dependent). It is higher than the percentage of perfect trees and it distinguishes

2.3. Machine Learning and Structured Prediction 34

trees that are slightly wrong from trees that are completely off. It also reflects
better the learning process focused on edges. It is still slightly biased toward
shorter sentences since dependency parsing is easier for shorter sentences.

The labeled accuracy score (LAS) is the labeled counter part of the UAS. An
edge is considered well predicted if it has the correct governor and dependent as
well as the correct relation label. We give greater details about those labels in
the following chapter when discussing the kind of data used in this thesis, but in
general those are labels of the kind depicted in Figure 2.6. As such, LAS is lower
than UAS because it is stricter.

More recently, the content-word labeled accuracy score (CLAS) has been pro-
posed. The idea is to consider only content words when computing the LAS.
Typically, determiners, adpositions and conjunction would be ignore. It was al-
ready common practice to ignore punctuation in the UAS. With the advances of
the Universal Dependencies project and availability of more and more corpora in
many languages, it has become important to be able to compare parsing perfor-
mances across languages, however LAS and UAS are not suited for that. For
example, French and English use lots of articles and adpositions, which are rather
easy3 to assign a governor. Finnish does not use article, and uses very few ad-
positions thanks to its extensive case system. This renders comparison of French
and Finnish unfair since an French sentence contains more ”small” words than its
Finnish equivalent. Focusing on content words only (nouns, verbs, adjectives and
adverbs) makes the cross-lingual comparison easier.

We have seen ways to automatically produce dependency trees for sentences
given a scoring function and how to evaluate their quality given some annotated
standard. We have said earlier that those scoring function can take different forms.
In this work, we are interested in functions learned from annotated data. Next
section therefore presents the problem of learning such a function from data and
some algorithms available to solve it.

2.3 Machine Learning and Structured Prediction
In terms of machine learning, dependency parsing falls under the category of struc-
tured prediction problems. This means that the different predictions done by the
models are interdependent. For example, in dependency parsing, there is the con-
straint that the final output be a tree. Therefore, if we have already predicted a
dependency relation between a governor xi and a dependent xj, we cannot predict
that xi depends on xj or any dependant of xj because that would create a cycle.
Likewise, as xj already has a governor, we cannot predict another as it would also
break the tree constraint that each vertex has at most one governor. Figure 2.11
gives an example of a partially parsed sentence. In this example, the word sat is
already governing cat which governs the in turns, thus sat cannot be governed by
cat nor the as it would break the acyclicity constraint required for the output to
be a tree.

In principle, predicted variables could be either discrete or continuous, thus
making structured prediction problems sharing with both classification and regres-
sion. Indeed, for dependency parsing output variables are discrete (head indices,
presence or absence of an edge...) and thus one could train models to perform

3A French article always attaches to the first noun to its right. When there is no such noun,
then it attaches to the substantivised adjective or participle.

35 Chapter 2. Preliminaries

The cat sat on a mat .

? ? ?

Figure 2.11: A partial dependency structure for the sentence ”The cat sat on a
mat.” The tokens sat, mat and . do not have a governor yet. However, sat cannot
depend on The nor cat and mat cannot depend on on nor a.

discrete predictions. However, we have seen in the previous section that tree in-
ferences such as Eisner’s algorithm were taking in weighted graphs, in which case
models are asked to provide continuous weights/scores to edges rather than dis-
crete classes.

The interdependence between output variables calls for specialised learning al-
gorithms. In the next subsection, we describe the problem of supervised structured
prediction for dependency parsing in more details. Then we introduce the notions
of large margin classifier and online learning and some important algorithms used
to learn dependency parsing models. Eventually, we discuss about the recent trend
of neural parsers.

2.3.1 Structured Prediction
As we saw in section 2.2, given a sentence x and a tree scoring function, we want
to find the highest scoring tree ŷ over x. The problem is that the space of possible
trees Yx grows exponentially with the length of x and thus becomes quickly too
big to be effectively traversed. This is the curse of structured prediction.

In order to make the search in the solution space tractable, the actual structures
(trees) are broken down into sub-parts (factors) in way such that the number of
potential sub-parts does not grow exponentially in the size of the input sentence
anymore but only polynomially. Then the scoring function has to score factors
instead of complete trees. The structured prediction arises from the fact that
some of those potential edges are incompatible with each other.

The graph-based dependency parsing based on edge scoring presented above is
a factorisation. It breaks the structure into parts (its edges) and the score of the
structure is simply the sum of its edges scores. The Eisner’s and Chu-Liu-Edmonds
algorithms from section 2.2 are examples of inferences used in graph-based depen-
dency parsing. Those inferences guarantee the optimality of the retrieved struc-
ture. However, running those inferences is time consuming (Eisner algorithm has a
cubic complexity [Eis96]) which might be a problem when training on large data-
sets or with limited computing power. A way to lighten the computation is to
relax part of the output structure constraints.

Let n be the length of a sentence we want to parse. In an edge factored
graph-based setting, we need to score every O(n2) possible edge. Applying Eisner
algorithm to those scores to retrieve the best tree adds an extra O(n3) to the com-
putation. From the two basic properties of a tree, acyclicity and connexity, follows
that each word but one (the root) has a unique parent word. However, acyclicity
and connexity do not follow from the unique parent property. By relaxing those
constraints and just enforcing that each word has a unique parent, the problem
becomes strictly local and faster. For each word, we just need to scan through
the other n − 1 words to find its parent, only adding an extra O(n2) to the com-

2.3. Machine Learning and Structured Prediction 36

putation, at the cost of loosing the acyclicilty and connexity guarantee. We can
even go further by seeing a tree as a back of edges. Each possible edge is either in
or out of the tree. Then deciding for each edge if it belongs in the tree does not
cost more than scoring it in the first place thus not adding extra complexity to the
computation, but at the cost of possibly having words with multiple parents and
so on.

It is worth noting that there is an hierarchy between those three problems. If a
model is able to solve the unstructured edge binary classification problem, it will
be able to solve the more constrained parent selection problem. The opposite is
not true though. Likewise, a model able to solve the parent selection problem will
be able to solve the more constrained tree retrieval problem. Again, the opposite
is not true. Because of this, modern neural parsers have been trained to solve the
head selection problem, with the tree inference only being used to ensure an actual
tree structure at test time [DQM17].

To receive scores, factors need to be mathematically represented. This is done
with feature vectors. A feature vector is a longer or shorter vector in which each
dimension encodes a specific information about the object the vector represents.
Historically, those were very long sparse vectors representing the object as the
results of many handcrafted feature functions of the type given in Table 2.1. But
nowadays, with the use of word embeddings and neural networks, feature vectors
can be much smaller and denser.

If some feature function considers the entire structure, for example by consid-
ering the maximum depth of the tree, then one would have to consider each tree
one by one to know the value of that feature and the total score of the tree. But
because it is impossible to look at all the possible trees in a reasonable amount
of time for a given (reasonably sized) sentence, we have to resort to factorisation.
There is therefore a direct link between the type of factorisation used and the
type of information available to score the factors. However, as factors become
more complex and have access to more information, their number increases and
the inference also gets more involved and might even become intractable.

Given a sentence, we have inferences that can retrieve the best possible struc-
ture given a scoring of its potential sub-parts. The mathematical representation
of those sub-parts can only encode information available inside the sub-parts it-
self and thus depends on the factorisation used. We now look at how the scoring
function is learned from annotated data given some sub-parts representation.

2.3.2 Learning Scoring Functions
Instead of scoring complete trees, we will score sub-parts independently and use
some inference mechanism to retrieve the best tree from its sub-parts scores. The
sub-parts scoring function can be any computable function mapping feature vectors
onto real numbers. The shape of the actual scoring function is also called the
parameterisation of the model. For example, if we assume a linear scoring function
fθ : Rd → R such that the score of a part e is the dot product between its feature
vector φ(e) and the weight vector θ :

Score(e, x) = fθ(φ(e)) = φ(e) · θ,

then any θ ∈ Rd defines a different linear function of that family and θ is called
the parameters of the function.

37 Chapter 2. Preliminaries

The goal is to learn the parameter vector θ that best fits the data. Similarly, if
instead of a linear function, fθ was parameterised by a neural network for example,
then the parameters θ would be the weights and bias associated with each neuron
and the goal would also be to find the parameters θ that would best fit the data.

By best fits the data, we mean that the model should do as few errors in term
labeled or unlabeled accuracy score (LAS/UAS as defined in section 2.2) as possible
on the training data. However, a model has to score factors (edges) and the model
accuracy on a data set is a very distant and weak feedback for the model to learn
from. It would be better to have actual feedback at the factor level. But since
we only care for the actual structures and not the intermediate scores, training
samples are not annotated with edge scores. Furthermore, many different scores
and thus scoring functions can lead to the same final structures. Thus we need
to learn the scoring function only relying on structure feedback and not on direct
score feedback. Hopefully, because this is a common problem in machine learning
and specially in NLP, there are a lot of algorithms to solve that kind of problem.

In fact, many of the most popular learning algorithms have received structured
extensions such as the structured-SVM [TJHA05] rendering structured prediction
possible in the support vector machine framework or the structured Perceptron
[Col02].

There also exist algorithms targeting specific types structured problems. This
is the case of the well known Hidden Markov Models (HMM) and its extension to
general graphs, the Conditional Random Fields (CRF) [Smi11]. Those algorithms
are designed for graph (especially sequence) labeling, where the graph structure
induces constraints on nodes labels.

2.3.3 Large Margin Classifiers
Large margin classifiers are a class of classification algorithms that have been
adapted to structured prediction in which the SVM belongs. For training large
ma ring classifiers, we do not have and do not need factors scores, but we require
that the actual true structure have a score higher by a given margin than the score
of any other possible structure. The margin violation is also called the loss. For a
sentence x whose true tree is y and for any structure y′ that is not y, let m > 0
be the margin, we define the loss as:

loss(x, y, y′) = max(0,m− (Score(x, y)− Score(x, y′))).

If y scores higher than y′ by more than the margin m then the loss if 0. But if y
does not scores higher than y′ by more than m, this also includes the case where
y′ actually scores higher then y, the loss becomes equal to the amount by which
the margin is violated. It is also called the hinge loss because of its shape. If the
margin constraint is respected then the true structure scores higher than any other
possible structure and the parsing accuracy will be high.

Large margin classifiers, do not learn to minimise the parsing error, they instead
learn to minimise the total loss over the training data. Because the hinge loss is
used in place of the actual objective function we wish to optimise, it is called
a surrogate function. Other surrogate losses have been proposed and different
problems use different surrogate losses to train their models.

We have just defined surrogate losses that allow to train our parsing models.
However, the problem is once more that we can not go through all the possible
structures to make sure the margin criterion is respected. Thus, approximations

2.3. Machine Learning and Structured Prediction 38

have been proposed. A basic solution, is to consider the structure that is violating
the margin constraint the most. If the best scoring structure is not the true one,
then the inference automatically finds it and it is the one that violates the margin
constraint the most. Under certain factorisations, it is also possible to find the k
best scoring structures, allowing to ensure the margin constraint even when the
true structure already scores higher than any other. There actually is an extension
of the Chu-Liu-Edmonds algorithm that find the k best scoring trees [Hal07].

While we can learn parsing model this way, there is a problem with the hinge
loss in our context of structured prediction, namely the loss is computed the same
way for any structure while not all the structures are as bad compared to the true
one. This becomes a real problem when the model is not able to score the desired
structure higher than some others, because the feature vector is not expressive
enough for example. In that case, the model and the inference in turn will favour
an erroneous structure which will decrease the parsing accuracy. In such a case,
we might prefer the model to favour structures that are only slightly wrong to
structures that are completely off. Hence the inclusion of a term depending on the
actual number of mistakes in a structure in structured losses, so that the margin
constraint becomes stronger as the number of mistakes increases. This favours
choosing structures with as few mistakes as possible when the model is unable to
pick the actual true structure.

Structured-SVM has been applied to dependency parsing [YM03]. However,
it is computation intensive as it requires to perform inference for each training
sample in order to do one update of the model. This can be highly impractical for
big treebanks containing tens of thousands of sentences. Thus people proposed to
use similar algorithms but designed for handling one sample at a time instead of
the whole data set.

2.3.4 Online Learning
Even though we have access to a complete training set of examples, because of the
tree inference that needs to be performed for each example at each model update,
batch learning is prohibitive. Instead people prefer online learning where at each
step one predicts the structure for an example and updates its model according to
the mistakes made. We now review two online learning algorithms that have been
used for structured prediction, namely the structured Perceptron [Ros58, Col02]
and the Passive Aggressive algorithm.

Let D be a training set of sentence-tree pairs (x, y) ∈ X × Y , where X is the
set of sentences and Y is the set of trees. We note Yx ⊂ Y the set of possible trees
over a sentence x. Let Ex be the set of all possible edges over sentence x.

Let φ : Ex → Rd be a function that maps an edge from a sentence to a feature
vector. We define the edge scoring function as the linear function scoreθ : Ex →R
parameterised by a model θ ∈ Rd such that:

scoreθ(x, eij) = φ(eij) · θ.

Because we work with first order factorisation, the score of a tree is the sum of the
scores of its edges, so we can extend the scoring function to work on trees as well.

scoreθ(x, y) =
∑
eij∈y

φ(eij) · θ.

39 Chapter 2. Preliminaries

Because of the linearity of the dot product, we get that the feature vector of a tree
is the sum of the feature vectors of its edges. We note it Φ:

Φ(y) =
∑
eij∈y

φ(eij).

Then the Perceptron algorithm works as follow. At each learning step, we
receive a new sentence x. Then we compute a score for each possible edge e over
x with current model θt. Those scores are passed to the inference which returns a
tree ŷ. Then we receive the actual tree y associated with x and compare it to ŷ.
If they are different, we suffer an instantaneous loss loss(x, y, ŷ) and update the
model under the Perceptron rule.

θt+1 = θt +Φ(y)−Φ(ŷ).

The pseudo code for the structured Perceptron is given in Algorithm 4.

Data: a set of sentence-tree pairs D = (x, y)
Result: a model vector θ
begin

n = |D|
Instantiate θ0 = 0
for i ∈ [0...n] do

Get x, y = Di

ŷ = predict-tree(x,θi)
if y 6= ŷ then

θi+1 = θi +Φ(y)−Φ(ŷ)
else

θi+1 = θi

return θn+1

Algorithm 4: The Perceptron algorithm for structured prediction. The func-
tion predict-tree is a function that returns a tree given a sentence and a model.

The Perceptron is guaranteed to converge to a separator in the case of linear
separability. Furthermore, it enjoys good cumulative loss bounds both in the case
of linear separability and in the case of non separability [MR13].

However, despite its qualities, the Perceptron algorithms suffers a major prob-
lem. The Perceptron update rule is not corrective. This means, that if one en-
counters the same instance twice in a row, and the first time the algorithm made
an erroneous prediction, then we have no guarantee that after the model has been
updated the next prediction will be correct. This is because the error margin (the
measure of how off a prediction is) is not taken into account in the update. Thus
if the prediction was really away from the truth, a single update might not be
sufficient to fix the model.

More formally, if the squared norm of the update is smaller than the error
margin, then the update is not corrective:

‖Φ(y)−Φ(ŷ))‖2 < θt · (Φ(ŷ)−Φ(y)),

(Φ(y)−Φ(ŷ)) · (Φ(y)−Φ(ŷ)) < θt · (Φ(ŷ)−Φ(y)),

(θt +Φ(y)−Φ(ŷ)) ·Φ(y) < (θt +Φ(y)−Φ(ŷ)) ·Φ(ŷ).

2.3. Machine Learning and Structured Prediction 40

To solve this problem Crammer et al. [CDK+06] came up with an alternative
update rule that takes the error margin into account. It is basically a Perceptron
with an adaptive scaling factor that ensures correctiveness. Their algorithm is
called the Passive-Aggressive (or PA for short), for like the Perceptron it does not
update if the model makes a correct prediction, but contrary to the Perceptron,
upon error the aggressive update rule guarantees to be corrective. The aggressive
update takes the form:

θt+1 = θt + τ(Φ(y)−Φ(ŷ)).

Where τ is the scaling factor and is equal to:

τ =
loss(x, y, ŷ)

‖Φ(y)−Φ(ŷ))‖2
,

loss(x, y, ŷ) = θt · (Φ(ŷ)−Φ(y)) +
√

∆(y, ŷ),

where ∆(y, ŷ) is a measure of how acceptable is to predict ŷ instead of y. Pseudo
code for the structured Passive-Aggressive is given in Algorithm 5.

Data: a set of sentence-tree pairs D = (x, y)
Result: a model vector θ
begin

n = |D|
Instantiate θ0 = 0
for i ∈ [0...n] do

Get x, y = Di

ŷ = predict-tree(x,θi)
if y 6= ŷ then

τ = [Φ(ŷ)−Φ(y)]·θi+∆(y,ŷ)
‖Φ(y)−Φ(ŷ)‖2

θi+1 = θi + τ(Φ(y)−Φ(ŷ))
else

θi+1 = θi

return θn+1

Algorithm 5: The Passive-Aggressive algorithm for structured prediction.

Because the Passive-Aggressive algorithm take the error loss into account, it
is more sensitive to outliers than the Perceptron. To avoid extreme corrective
updates when outliers are met that would be detrimental for the model, Crammer
et al. proposed two relaxed extensions to their Passive-Aggressive algorithms. The
PA-I algorithm sets an upper bound C to the value of τ :

τ = min(C, loss(x, y, ŷ)

‖Φ(y)−Φ(ŷ))‖2
).

The PA-II algorithm dampens the value of τ by setting a lower bound to the
denominator:

τ =
loss(x, y, ŷ)

‖Φ(y)−Φ(ŷ))‖2 + 1
2C

.

In both cases, C plays a similar role in controlling the strength of the update being
thus called the aggressiveness parameter.

41 Chapter 2. Preliminaries

In fact, the PA is corrective in the binary classification case. In the structured
case that interests us, the correctiveness is weaker. If structure ŷ is predicted
instead of y for input x at time t, we are guaranteed that at time t + 1, if we see
x again, y will score higher than ŷ. But because there are exponentially many
possible structure for x, and the update rule only considers y and ŷ, at time t+ 1
the algorithm could predict yet another structure ŷ′ as well.

Crammer et al. [MCP05a] proposed another algorithm that can take sev-
eral structures into account when updating the model called the Margin Infused
Relaxed Algorithm. Still, one could never take every possible structure into ac-
count this way because there are exponentially many of them, which is the basis of
structured prediction. Furthermore, Perceptron and Passive-Aggressive algorithms
work well in practice, so we do not need to venture away from them.

We shall also mention model voting and averaging. Perceptron and Passive
Aggressive are online learning algorithms, meaning they consider one sample at a
time and update their model when necessary. They have really been designed for
online tasks where one only has access to one sample at each training step and we
have no control over the order of presentation of the samples. However, we use
them for convenience here but we have access to the whole training data. Because
past information tends to fade away as more updates are performed and because
we could in principle play with the sample presentation order, there is no reason
to believe in the optimality of the last model. Thus people have proposed voting
schemes to use not only the last model but all the intermediary ones at prediction
time. The idea being to let each model vote on the final prediction with a weight
equal to the number of training round it did not update [FS99]. But because
it is not always practical to keep thousands of intermediary models, people have
proposed to do averaging [FS99]. The idea here is similar, but instead of having
models voting on the final prediction, they each participate in the final scoring
function, which ends up being a weighted average of all the intermediary models
but can be computed efficiently during the training process.

2.3.5 Neural Parsers
As we said earlier, the inference algorithms need to have access to substructures
(edges) scores, but they are agnostic to the form the scoring function takes. Thus,
with the advances in neural network architectures, recent years have seen the
emergence of more and more parsers using neural networks components.

Neural networks are a machine learning formalism that originated from an at-
tempt at mathematically replicating the way biological neurons work in the brain.
Early instantiation of this idea lead to Rosenblatt’s Perceptron algorithm [Ros58].
By arranging several inter-connected layers of simple learning units (so-called neu-
rons), one can in principle learn any mathematical function. This allows neural
networks to learn highly non-linear classification boundaries for example. How-
ever, discrete multi-layer Perceptrons are notoriously hard to train. So, researchers
proposed to use continuous functions in neurons instead in order for the result-
ing function to be differentiable and thus to allow the network to be trained via
back-propagation of the loss gradient [RHW86].

Regarding, graph-based dependency parsing, neural networks have been used in
three somewhat overlapping ways. In a first line of works, shallow neural networks
have been used to learn representations for words [KCC08, BGL14], edges [Ban15]
or even dependency features [CZZ14] in order to complement traditional one-hot

2.4. Conclusion 42

feature vectors in parsers using linear models. We will look at some of those
proposals in greater details in Chapter 5.

In a second line of works, feed-forward neural networks (typically multi-layer
Perceptrons) have been used to directly learn the edge scoring function. Pei et al.
[PGC15] propose a simple three layers architecture that receives an edge features
and outputs the score of the various dependency labels for that edge. The first
layer is a look-up table that retrieves the embedding of each incoming features.
Those embeddings are concatenated in the second layer and then fed to a non-
linear function in the third layer to output the various scores. They can then train
the feature embeddings and the non-linear function weights via back-propagation.

More recently, recurrent neural networks such as bidirectional long-short term
memory networks (Bi-LSTM) [HS97] have been used to encode incoming sentences.
Recurrent neural networks (RNN) have an internal state that evolves as they are
fed inputs. Contrary to multi-layer Perceptrons which, once trained, will always
output the same values for a given input, the output of a RNN does not only
depends on its current input but also on its internal state which evolves with
each input and behaves as a form of memory. This way, RNN takes into account
past history, which is valuable for encoding words in sentences. Using Bi-LSTM to
encode words as potential governor and dependant and applying a bilinear function
on the top of the induced representations, Dozat et al. [DQM17] won CONLL2017
shared-task on dependency parsing [ZPS+17] with their parser trained via back-
propagation.

2.4 Conclusion
In this preliminary chapter, we have presented some key concepts from which
this work stems. We have presented dependency parsing as a natural language
processing task that retrieves syntactic structures of sentences in the shape of
trees whose vertices are words from that sentence.We have seen how trees can
be inferred from a set of substructures whose relevance is scored based on their
vectorial representation and a scoring function (Section 2.2). We have also seen
how the scoring function can be learned from annotated data via machine learning
techniques such as online structured prediction learning (Section 2.3).

Most modern dependency parsers, and papers about dependency parsing, fol-
low the same general structure represented in Algorithm 6. The system is given
sentences, one by one. A dependency tree is inferred for the input sentence. In
the case of graph-based parsing, all substructures (edges) receive a mathematical
representation and are scored by the running scoring function, and only then the
inference mechanism is applied to those scored substructures. But the inference
and the scoring can also be intertwined as is the case in transition-based parsing
where the score of each parsing action depends on the actions that have happened
before it. Then the predicted tree is compared to the actual expected tree and
the scoring function is updated to take the parsing errors into account. Scoring
function update can happen after each sentence (online learning), every few sen-
tences (mini-batch) or when the complete data have been parsed (batch learning).
Eventually, when the learning process is over, when a stopping criterion has been
met, the model is ready to be used for parsing unseen data, for a downstream task
for example. In practice, the learned model is also used to parse a set of held-out
data in order to be evaluated.

After this general presentation of the problem of dependency parsing and of

43 Chapter 2. Preliminaries

Data: a set of examples D, a feature function φ, a loss function loss
Result: a weight vector θ
begin

d = dim(φ)
Instantiate θ0 ∈ Rd

repeat
for (x, y) ∈ D do

l = len(x)

Instantiate W ∈ R(l+1)×l

Score each possible edge,
foreach edge eij, i ∈ [0..l], j ∈ [1..l] over x do
Wij = scoreθ(φ(eij))

Predict a structure from scored edges,
ŷ = predict(W)

Compare it with true tree y for sentence x
if loss(x, y, ŷ) 6= 0 then

Update model θt,
θt+1 = update(θt, x, y, ŷ)

until Stopping criterion is met

return θt

Algorithm 6: The training process of a generic dependency parser. The main
difference between online and (mini-)batch learning process if the frequency
of model update. In the online case (as depicted here) model is updated for
every sentence (inside the for loop). In the (mini-)batch case, the update would
happen when several sentences have been parsed (outside the for loop).

2.4. Conclusion 44

the tools used to trained graph-based dependency parsers, we shall look at more
specific problems that appear when performing syntactic analysis in a multi-lingual
context.

Chapter 3

Representing Word Information

The previous chapter has presented dependency parsing as a tree prediction prob-
lem. We have presented the parsing mechanism in the shape of inferences over
sets of scored edges for example. We have also seen how edge scoring functions
can be learned with machine learning techniques. We mentioned that edges are
mathematically represented by feature vectors in order to be scored, and we gave
an example of such a feature vector showing that edges are represented by com-
bining information from their head and dependant words and their contexts. We
however remained quite elusive as to the representation of those words.

Word representation has had a long history. From a linguistic perspective,
it is useful to assign classes and attributes to words in order to study linguistic
mechanisms and extract patterns. Those classes such as parts-of-speech have also
been widely used in order to mathematically represent linguistic information for
computation purpose. However, despite their linguistic usefulness, they happen to
lack flexibility and at time are deficient in terms of lexical semantic (the actual
meaning of words) which is very important for higher level NLP tasks. There-
fore, capitalising on the wide availability of textual data online, the increasing
computational power and advances in machine learning techniques, many meth-
ods have been proposed in order to give representation to words based on their
statistical properties as displayed by text. Those methods provide representations
to words, also called word embeddings, that encode finer information than their
part-of-speech and that have proven to be really useful for NLP tasks.

In this chapter, we will first look at linguistic categories used to analyse words
such as parts-of-speech, morphological attributes and the like. Then, we will turn
to the more recent advances in word representation on which we will build up in
following chapters.

3.1 Lemmas, Parts-of-speech and Morphological
Attributes

To abstract away from words and to reveal general grammatical rules, linguists
have come up with devices to represent information about words. Parts-of-speech
(POS for short) are word classes not based on words meaning, but rather on their
syntactic behaviour. Usually parts-of-speech are statically assigned to words and
appear in the dictionary alongside their lemmas (another grouping device).

Lemmas are the basic word forms used to speak of them in isolation, they are
sometime called citation forms, and are typically used in dictionaries to sort words.

45

3.1. Lemmas, Parts-of-speech and Morphological Attributes 46

The choice of the form that will act as lemma is language specific. For example,
English verbs lemma are their base form (the lemma of began is begin), likewise
French verbs lemma are their infinitive (the lemma of commencera is commencer).
Latin verbs lemma however, are their indicative present active first person singular
form (the lemma of vidistis is video and not videre).

Morphological features (or morphological attributes) are yet another device.
Morphological features are a way to represent (mostly) dynamic or contextual in-
formation about words, especially in languages where word forms change according
to their context and usage.

For example, the English word sleep can be used in a few different ways. It can
be used to express the action someone is doing like in the sentence They sleep on a
bench, or to give an order like in Sleep! In those two examples, the word sleep is a
verb, in non-third person indicative present for the first example and in imperative
present for the second. It could also refer to the state of reduced consciousness
animals experience when resting like in I need some sleep. In this case, the word
sleep is a noun in singular. Those categories, verb and noun are parts-of-speech,
they are statically assigned to the word sleep. In the dictionary, sleep has two
entries, one for the verb and one for the noun. On the other hand, the fact that
the verb sleep is in non-third person indicative present rather than imperative
present is only given by the sentence in which is appears. Those categories are
morphological features dynamically assigned to the verb sleep. Eventually, sleep
is also a lemma. It is the lemma of the verb to sleep whose forms are sleep, sleeps,
sleeping, slept and also of the noun sleep whose forms are sleep and sleeps.

In the following sections we make a brief description of parts-of-speech and
morphological attributes and we discuss some issues that arise when using them
for natural language processing especially multi-lingual setting. As lemmas are
language specific and given in dictionaries, we do not discuss them any further.

3.1.1 Parts-of-speech
Parts-of-speech are used to categorise words according to their syntactic use. De-
pending on the grammatical tradition of a language and on the exact characteristics
of the word class system, the exact number of parts-of-speech may vary, but some
are linguistically universal.

The main characteristic of parts-of-speech is productivity. A closed class is a
class that contains a fairly small and stable inventory of words. A typical example
of this are French conjonctions de coordination (coordination conjunctions) which
are a small class of seven words: mais, ou, et, donc, or, ni, car which are used to
coordinate clauses or words together. On the other side, an open class can receive
new entries all the time and has virtually infinitely many words. Prototypical open
classes are Nouns and Verbs. In general, there are a few open classes containing
a lot of content words like Nouns (and Proper Nouns), Verbs, Adjectives and
Adverbs (some people consider Interjection an open class too), and more closed
classes containing words like Pronouns, Adpositions, Conjunctions or Determiners.

Some part-of-speech are also strictly bound to written text rather than speech.
The most famous one is Punctuation markers such as commas, colons and periods.
Because punctuation is a writing device and that not all languages use it, it is also
an example of part-of-speech that does not appear in all languages. For example,
Gothic amongst many other classical languages did not use punctuation.

Given a language, most words are well assigned to one or more part-of-speech.

47 Chapter 3. Representing Word Information

English behaviour is a Noun and French écrire is a Verb. In English, a lot of Nouns
have a Verb that share the same base form (lemma) (e.g. a start, to start, a cut, to
cut, and so on), but they are still different words each with its own POS. Similarly,
in French a lot of Adjectives can also be used as Nouns. This is also true of closed
classes, for which English that is a perfect example. It can be a determiner as in
”That dog is big,” or a pronoun as in ”Have you seen that?” or also a subordinating
conjunction as in ”I know that he will come”. A few words though might be just
on the border between two classes, typically a closed and an open one with no
clear assignment. Manning [Man11] and Maling [Mal83] gives the example of
transitive Adjectives in English such as like, near and worth. Those words that
are historically adjectives and behave both like adjectives and prepositions are
often seen as prepositions nowadays since they do not inflect anymore.

From a cross-lingual perspective, we should say that the part-of-speech given
to a word in its language’s own grammatical tradition does not always meet with
its actual syntactic use. A good example of this are French adjectifs possessifs
and adjectifs demonstratifs which, despite being often called adjectives in French
courses are in fact plain determiners and would better be analysed as such in a
cross-lingual setting.

Another point to notice is that concepts that are tightly bound to some part-
of-speech in a language may be rendered by a completely different part-of-speech
or mechanism in another language. An example for this is the use of prepositions
in English to express directions (to, from, by) where Finnish relies on extensive
case marking. Another example is expressing position where English also uses
prepositions (over, under, on, behind...) where Japanese uses nominal expressions
(literally at the top of, at the back of...).

Finally, we should mention that despite their tendency for linguistic universal-
ity, because not all languages represent similar information in the same way, not all
parts-of-speech need to exist in all the languages. For example, in Indo-European
languages, verbs are well distinguished from adjectives based on the way they in-
flect and on their need of a copula to be predicative in languages that have it, like
in English He is tall. In languages where words do not inflect and where copula
is not used with adjectives, like in Mandarin, the distinction between adjectives
and verbs can be very shallow1. On the other side, Japanese has two main classes
of Adjectives, one that do not inflect like nouns but use a specific compounding
particle (the so called na adjectives), and one that do inflect like verbs but that
use a different set of suffixes than verbs (the so called i adjectives).

take home message

3.1.2 Morphological Features
We call morphemes, the smallest meaningful items of a language. Words can be
composed of one or more such semantic items. Each morpheme carries some se-
mantic information and contributes to the meaning of the word it composes. Some
morphemes can appear as independent words while others have to be attached to
existing words as shown in Figure 3.1. Morphology has to do with the analysis of
words into morphemes, and how morphemes compose to create new words.

Generally, ones distinguishes two types of morphology. On the one hand, in-
flectional morphology deals with modifications that specify a word’s meaning but
do not change its overall sens nor its part-of-speech like declension, conjugation,

1So much so that some linguists see Chinese as having verbs only and no adjectives.

3.1. Lemmas, Parts-of-speech and Morphological Attributes 48

un faith ful ness build

Figure 3.1: Unfaithfulness is made of four morphemes, two of which are bounds
(un and ness), and two are free (faith and full). Notice however that when full is
bound, it appears as ful. Build is made of a single free morpheme.

pluralisation and the like. On the other hand, derivational morphology deals with
modifications that create new words from existing ones, possibly even changing
their part-of-speech. Furthermore, while inflectional morphology is often produc-
tive and the sense of an inflected form is directly composed from the sense of the
lemma and the sense of the morphemes involved, derivational morphology is much
less predictable both in terms of meaning and productivity. Looking at the verb
pay, an inflection of pay would be paid, both are verbs, while a derivation would
be the noun payment for example.

In this work, we are interested in inflectional morphology because it can en-
code syntactic information2 relevant to dependency parsing. Thus, from now on,
whenever we speak of morphological information we will assume inflectional mor-
phology.

The bits of information encoded via or triggering inflection are called mor-
phological features or simply features. There are many different morphological
features in the world languages, and not all languages make use of each feature.
Typical examples of features are Gender (or noun class), Number, Person, Case,
Tense and Mood. Less typical are Definiteness or Evidentiality. A feature when
marked takes a value from a possible set. For example, in French, Number can be
either Singular or Plural and Gender can be either Feminine or Masculine, while
in Czech Number can be Singular, Dual or Plural, and Gender can be Feminine,
Masculine or Neuter. Danish nouns can be Singular or Plural, Common (Mascu-
line and Feminine) or Neuter and Definite or Indefinite. French or English nouns
on the contrary, do not inflect for Definiteness, instead an analytical construction
with a determiner is used.

In a language, morphological features are typically restricted to only certain
word classes. The most common restriction being nominal, verbal and adjecti-
val morphology. Nominal morphology touches mainly nouns and pronouns, and
sometimes adjectives and participles and other verbal nouns (such as gerunds and
supines). Verbal morphology on the other hand touches mainly verbs and auxil-
iary (and modal) verbs, and rarely adjectives. Adjectival morphology, as distinct
from nominal and verbal morphology, when present, only touches adjectives and
adverbs. Not all languages that use inflection have the three kinds and even when
they do, they need not be as developed. Furthermore, there is an hierarchy in the
application of those paradigms. Pronouns are more likely to inflect than nouns
and auxiliaries more than verbs [Bla01]. English has productive paradigms for the
three kinds of morphology. Nominal morphology indicates plural in nouns and also
case in pronouns (vowel, vowels). Verbal morphology indicates third person, past
tense and continuous aspect (sing, sings, sang, singing). Adjectival morphology
indicates degrees of comparison (easy, easier, easiest). French has also a shallow
nominal morphology, a very extensive verbal morphology and only five irregular
adjectives inflecting for degrees (bon, meilleur ; bien, mieux; mauvais, pire; mal,
pis and petit, moindre).

2Derivational morphology could in principle also encode syntactic information. However,
there has been much less work on the subject and data are lacking altogether.

49 Chapter 3. Representing Word Information

Furthermore, as we have just pointed out, inflection can be either productive
(regular) or fossilised (irregular). Productive inflections are the de-facto standard
inflectional paradigms that exist in a language. They apply to any new word
susceptible of being inflected. For example, any new verb entering the English
language is susceptible to inflect for third person singular present indicative (-s),
for past tense (-ed) and for continuous aspect (-ing). Likewise, any new word
entering French can be inflected for plural (-s). Irregular inflections, on the other
hand concerns mostly a few common words3 that appeared in the language long
time ago. The English verb be has eight forms (twice as much as a regular verb)
and inflects for number4 in the indicative past whilst no other verb does.

In the following, we call morphological attributes a couple made of a morpho-
logical feature and a value available for that feature in a given language. Exam-
ples of morphological attributes are Case=Nominative, Tense=Present or Gen-
der=Common. From now on, we will use a sans serif font to represent attributes
and morphological information as annotated in a corpus rather than the linguistic
attribute itself.

Morphologically Rich Languages

Every language relies to some extent on derivational morphology to create words.
It might be completely transparent like with English many noun/verb pairs that
share lemmas (for example a cut and to cut). It can be the base form or the gerund
or any other non finite form (compare to start, a start and to begin, a beginning).
It might also be more involved, using affixation, stem modification or any other
mean (for example French couper, une coupure, une coupe).

But when it comes to encoding syntactic and semantic information through
inflectional morphology, some languages do it much more than others. For ex-
ample, a regular English verb has four forms (start, starts, starting, started), the
most irregular verb has height forms (be, being, been, am, is, are, was, were) while
some modals only have one (must). A regular French verb on the contrary has
about forty different forms. Similarly, while English and French nouns have two
forms (some irregular nouns have two plurals brother, brothers, brethren and ciel,
ciels, cieux), Finnish nouns can have thirty forms as they inflect for 15 cases and 2
numbers. French and Finnish are so called morphologically rich languages, while
English is not.

There is no exact definition of morphologically rich languages (MRL). Tsarfaty
et al. [TSG+10] define MRLs as ”languages in which substantial grammatical
information, i.e., information concerning the arrangement of words into syntactic
units or cues to syntactic relations, is expressed at word level.”

There is no clear boundary as to which language is to be considered morpho-
logically rich, but rather general trends. Usually, languages where verbs inflect
extensively for person, number and/or gender are considered morphologically rich.
Because nouns are susceptible to inflect for much less categories than verbs (they
do not inflect for tense, mood or aspect usually) then as soon as nouns inflect for
more than one feature (Number in English) the language can be considered mildly

3Irregular words that are not used often tend to regularise. Those words used to occur often
in the past but less now for some reasons. The French double plural of ciel, ciels/cieux is a good
example. Cieux has a religious connotation and is a common word in prayers and scriptures.
But as religion looses momentum in France, the irregular plural is less used.

4You is a second person plural in the beginning and replaced the original thou.

3.1. Lemmas, Parts-of-speech and Morphological Attributes 50

Person/Number Spelling Phonetic
1st Singular chante /Sãt/
2nd Singular chantes /Sãt/
3rd Singular chante /Sãt/
1st Plural chantons /SãtÕ/
2nd Plural chantez /Sãte/
3rd Plural chantent /Sãt/

Table 3.1: The indicative present paradigm of chanter. There are 5 written forms
but only 3 spoken ones.

rich, especially when determiners or adjectives inflect in agreement with the noun
they modify.

More generally, English aside, most Indo-European languages are morpho-
logically rich, so are Uralic (Finnish and Hungarian), Turkic, Mongolic, Semitic
(Amharic and Hebrew) and various North American Languages. In the morpho-
logically poorer side of the spectrum are some Sino-Tibetan languages (Chinese
and Burmese), and many south-east Asian languages families like Tai-Kadai (Thai
and Lao) and Austronesian (Vietnamese), but also some Sahel languages, English
and Creoles.

Written and Spoken Morphology

Inflectional morphology, is often thought of as a written mechanism, as we tend to
learn written paradigms. It is worth remembering though that spoken morphol-
ogy does not necessarily equate written morphology. For example looking at the
paradigmatic French first group verb chanter whose indicative present forms are
reported in Table 3.1. It does inflect for 6 person/number pairs, but has 5 written
forms, and only 3 spoken forms. Because we work here with text, we are interested
with written morphology, but it is worth keeping in mind that it might not always
match spoken morphology.

The reason behind form count discrepancies in Table 3.1 is a phenomenon
called form syncretism. Form syncretism is the fact that several forms collapse
under certain circumstances rendering them indistinguishable from each other.
Form syncretism is different from not marking for certain features. For example,
in Danish, verbs do not inflect for person nor number so that given a tense, a
mood and a voice there is only one form for all person/number combinations.
But French verbs do fully inflect for person and number, whether one considers
verbs like être and avoir or other tenses like the future, there are lots of cases
where each person/number combination has a different form. It turns out that
through language changes, sometimes two otherwise distinct forms end up being
indistinguishable from the pure spelling/pronunciation point of view, like it is the
case for the first and third persons singular of French first group verbs in indicative
present.

This is an important remark, because in some cases form syncretism can blur
some syntactic information. For example, Latin word templum can be both a
nominative or an accusative singular. Knowing what case it is might give precious
syntactic information, as accusatives tend to be direct objects while nominatives
are subjects. The form alone does not reveal this information. Using gold morpho-
logical information for parsing might look like circular, especially for those cases

51 Chapter 3. Representing Word Information

where due to form syncretism only syntactic analysis can reveal the actual morpho-
logical analysis. We give a certain syntactic analysis of the sentence because of the
given morphological analysis and in turn we give a certain morphological analysis
because we have access to the syntactic analysis whom we used the morphological
analysis to build in the first place.

However, in most cases, other clues such as word meanings and word order can
help deciding the actual morphological/syntactical analysis.

Cross-Lingual Morphology

Another problem that arises from using morphological information in a cross lin-
gual setting is cross lingual feature identification. Let us look at two examples to
illustrate this.

First, French and English are two fairly similar languages, they are Indo-
European languages, they share some basic typological traits like their SVO word
order, and because of historical language contacts, they share a fair amount of
vocabulary [FW73]. For all those reasons, it seems reasonable to train an En-
glish system and a French system together if the data are available. Assume,
we learn French and English models together using morphological information as
input features. French has a second person singular and a second person plural
realised in pronouns, possessives and verbs, while English second person singu-
lar has completely disappeared from the language and the second person plural
has taken over in all usages. If we assume a one to one correspondence between
languages, the information bared by French second person singular is useless for
English, and French information will be biased toward plural while English unique
second person has both a plural and singular role. If we want to share in the other
direction, it is not clear which weight of English unique second person should be
attributed to a French singular and which to a French Plural. While this might
seem anecdotal at first glance, it is in fact very common.

For example, setting Vocative aside, Latin has five cases (Nominative, Ac-
cusative, Genitive, Dative and Ablative), while Ancient Greek had four cases.
There is no Ablative in Ancient Greek. But the syntactic roles taken up by Ab-
lative in Latin also exist in Ancient Greek, so they have to be taken up by other
cases. Agentive complements of passive verbs in Latin are typically Ablatives,
while in Ancient Greek both Datives and Genitives are used.

This shows that there is no perfect match between morphological features in
different languages. Names of features only represent their most general cross
lingual uses, but each each feature has its on language specific realisations. Blake
[Bla01] discusses the reasons behind the names of cases in different grammars and
the role played by early descriptive linguists trying to fit their studied languages in
the frame of classical and Germanic languages such as Latin, Greek and German.
Thus, in spite of being a bridge between languages, morphology is still an unstable
bridge.

Morphological Attributes as Parts-of-speech

As we have seen in previous section, the set of parts-of-speech used by linguists de-
pends on many things, the most prominent being a language’s grammar tradition,
and others including underlying linguistic theory and downstream task specific
needs.

3.2. Learning Word Representation 52

In some cases, POS tags sets used in NLP annotations depart from traditional
sets by encoding extra information directly in the part-of-speech. A great example
of this is the POS tags set used for annotating the Penn treebank (a constituency
trees collection) [MMS93]. Because English has a rather poor inflectional mor-
phology, including morphological information directly in part-of-speech does not
increase the set size much. Examples of those new extended part-of-speech include
JJ, JJR and JJS for adjectives, comparatives and superlatives. The most interesting
case is the set of verbal part-of-speech containing base verbs VB, past verbs VBD,
gerunds and present participles VBG, past particles VBN, present non-third person
VBP and present third person VBZ. Instead of relying on morphological features,
the full English verbal morphology is accounted for with a set of 6 verbal part-
of-speech. This leads to a 36 parts-of-speech set for the original Penn treebank
annotation, only twice as much as the 17 parts-of-speech from the Universal De-
pendencies annotation scheme.

Similar representation of morphological information into POS tags has been
devised for Czech and leads to a set of 3127 tags [HVH98]. Due to its highly com-
binatorial structure, the Czech tag set is more similar to an actual morphological
analysis than to a POS tag set.

3.2 Learning Word Representation
Data representation and especially word representation is a big problem in NLP.
Depending on the task at hand, one might want word representations to encode or-
thographic information, syntactic information, semantic information or any other
relevant information. As we have seen, parts-of-speech, morphological attributes
and lemmas can to some extent provide that information. However, as computers
work with numbers, that information needs to be encoded with numerical values.
Plunging those discrete classes into numerical space in a way that would be mean-
ingful for NLP tasks is called embedding those classes and it has been at the heart
of many recent developpements in the NLP community.

3.2.1 The Different Views of a Word
A question that needs to be addressed when dealing with word representation
is that of the definition of a word. The trivial answer for speakers of European
languages is what stands between two white spaces (and punctuation). However,
there is much more to it than this simple answer: What about writing systems
that do not use spaces such as Chinese or Japanese or even medieval European
manuscripts? What about compound words and proper names like New York?
And the answer one brings to that question will indeed have an impact on the
design and the expressivity of its word representation methods. It should also be
noted that different tasks might benefit from different definition of a word.

A word can be seen as an indivisible unit with its own form and sense. This
is also called the holistic view of a word, and it leads to models where each word
form has its own representation. Each vector can be packed with information, but
those methods can hardly handle out of vocabulary words and thus usually need
a lot of data to have a good coverage and still might not be practical for highly
morphological languages.

A word can also be seen as a sequence of morphemes in which case mor-
pheme representations are composed into word representations. This deals more

53 Chapter 3. Representing Word Information

easily with out of vocabulary words, yet there might still be out of vocabulary
morphemes. Furthermore, its requires some form of morpheme analysis of words
and morpheme analysis and composition might not be straightforward with mor-
phemes that have very loose meaning and borrowed words. Consider the English
latinate words construct, destruct and destroy. While destruct can be analysed as
de and struct because English has other similar words such as construct, destroy
can hardly be analysed so, despite both words having the same etymology and
analysis in Old French/Latin.

If a word is seen as merely a sequence of letters, this leads to character level
models where recurrent neural network (RNN) compose character representations
into words. Those recent models have shown promising results on different tasks,
but much work still remain to be done especially to understand what they really
encode and how powerful they can be. While they actually solve the problem
of out of vocabulary words/morphemes for alphabetic/syllabic writing systems,
they still face the problem of out of vocabulary characters for ideographic writing
systems such as Chinese.

A word can also be seen as a lemma inflected for several morphological at-
tributes. This requires performing some form of morphological analysis and lem-
matisation, which is not trivial. But then it becomes easier to share information
between those abstract categories across words, tasks and even languages. We will
use this definition later in this work.

Modern systems, more and more rely on hybrid definitions for example taking
both the holistic view of a word and its sequence of characters into account to
compose a representation.

3.2.2 Types of Word Representations
Once a view has been chosen, there are several options for word representations.
A first option is whether the representation is continuous or discrete. Discrete
representations are those representation in which words can be assigned to discrete
categories like parts-of-speech and morphological attributes or clusters for example,
contrary to continuous representation in which words lie in a continuous vector
space. In practice, grammatical categories such as parts-of-speech tend not to be
continuous because it would be tedious to assign continuous representations to
each word in a language by hand. However, this is not a problem for computers.
Therefore, both continuous and discrete data driven representations have been
used.

Another option is whether representations are assigned to tokens or to types.
Tokens are words or punctuation symbols in context. Types on the other hand, are
abstract archetypal entities like words in isolation. For example in the sentence
”My cat and your cat appreciate each other”, the two occurrences of the word
cat are different tokens, but they are both instances of the same type, the type
of cat in which are all the cats from the above parsing trees belong. But, as for
most tasks contextual information is important, methods have been devised to
turn type representations into token representations at run time. For example,
recurrent neural networks can be used to turn a sequence of type representations
into a sequence of contextualised token representations. In the example sentence
above, the input representations of the two words cat would be the same as they
are of the same type, but their contextualised output would be different as they
are different tokens.

3.2. Learning Word Representation 54

Word Vector
The 0 0 0 0 0 1
Cat 0 1 0 0 0 0
Sat 0 0 0 0 1 0
On 0 0 0 1 0 0
A 1 0 0 0 0 0
Mat 0 0 1 0 0 0

Table 3.2: One-hot representation of the words in the sentence The cat sat on a
mat. The index of a word is given by its lexicographic order in the vocabulary.

3.2.3 Beyond One-Hot Encoding
The simplest approach for encoding categorical information such as word identity
or part-of-speech is the so-called one-hot encoding. In one-hot encoding, each
word (or any other category) is given an index in a vocabulary, like its rank in
lexicographic5 order or its frequency count rank, then each word is represented
by a vector full of zeros, with a one at the corresponding index. It is a discrete
representation.

More formally, let V = {w1, ..., wn} be a vocabulary of n words. Let there be
a bijective function from the vocabulary to the n first positive integers (V → Nn).
Thus, each word has an associated index and an index is associated to one and
only one word. Then, if we note wi ∈ {0, 1}n the vector representing word wi,
we have that wi is the vector with a 1 at the i-th position and 0s everywhere
else. Table 3.2 shows one-hot representations for a small vocabulary of six words
whose index is their lexicographic order. While the requirement for bijectivity is
not necessary and might even be detrimental as we shall see, for one-hot encoding
of words the index mapping is indeed bijective.

The feature templates shown in Table 2.1 are indeed used for one-hot repre-
sentation of edges. Given a treebank, for each template, all the instanciations of
that template are gathered into a vocabulary and a unique index is assigned to
each. Then the representation of an edge is just the concatenation of the one-hot
vectors corresponding to each template.

The problem with one-hot encoding is that it does not encode any more in-
formation than the index of a word. A direct consequence of this, is that one-hot
encoding does not carry any syntactic or semantic information at all. All the words
are equally different from each other.

Another problem arising from this index encoding is the number of parame-
ters one needs to estimate via machine learning which is further stressed by data
sparsity. If in our parsing model we represent edges as pairs of head-dependant
words and use one-hot encoding of those pairs, then for a vocabulary of v words,
we would need to estimate v2 parameters. For a 10 000 words vocabulary6. that
makes 100 000 000 parameters. That is far more than what we can hope for in any
”reasonably” sized corpus. For example, the Enciclopædia Universalis contains
”only” 60 000 000 words. Furthermore, in practice we want to incorporate context
information such as surrounding words that would increase the number of parame-
ters by several orders of magnitude. This has two consequences. Most parameters

5The lexicographic order is the index in a list of word sorted alphabetically.
610000 words is a small vocabulary. Modern dictionaries that only count lemmas not actual

forms can have much bigger vocabularies. Le petit Larousse illustré 2019 counts 63500 common
words and the 20 tomes of the Oxford dictionary count more than 150000 entries.

55 Chapter 3. Representing Word Information

The �i barked at me as I passed in front of the gate.

Figure 3.2: An English sentence with a placeholder symbol instead of a word.
Even with an unknown symbol, we understand the sens of the sentence and of the
missing word.

will never be estimated, either because they are linguistically irrelevant or due to
their mere number. Then, they might not even fit in a computer memory all at
once.

Hence it becomes clear that we need a different representation. Ideally, this
new representation should be both compact and informative. By compact we mean
that the length of a vector in this new representation should be much smaller than
the size of the vocabulary. And by informative we mean that it should provide
more information than the one-hot encoding does.

Building on the fact that language is not random and that words can be fairly
well described in terms of their coocurence patterns, a solution is to directly learn
word representations from raw text. With the wide availability of textual data on
the Internet and with the ever increasing computing power of modern computers,
it has become possible to learn word representations on billions of words.

3.2.4 Distributional Hypothesis
”You shall know a word by the company it keeps.”

— John Rupert Firth

The distributional hypothesis as given by Firth’s famous citation, states that
one can understand a word by looking at the context it appears in. This has
different implications if one is a human or a machine. For humans, this means
that when one encounters a new word, one can have already a good idea of its
meaning because of the surrounding words. Take the example sentence in Figure
3.2, the second word has been replaced by a symbol. The symbol is not an actual
English word, but we can nonetheless have a good idea of what it stands for. It
must be some sort of dog. We can infer it from the fact that it barked and that
it was standing at a gate. We propagate the knowledge of the surrounding words
and of the situation to the unknown word.

From a computational perspective this is slightly different. In the most ba-
sic approach, computers treat text as a string of characters. Once it has been
tokenised, each token (word, number, punctuation etc.) is treated as an indepen-
dent string of characters. Computers do not attach meaning to them the way we
do, nor do they link similar words together. They, unlike us, do not have a sense
for semantic nor for morphology. Each of those seemingly natural operations have
to be performed by a program.

To exemplify this, let us look at the word bark. For a human who has some
knowledge of English, bark can be essentially to different words. The noun bark
refers to the outer layer of a tree’s trunc and branches. The verb bark refers to
the action of emitting a strong quick noise for some animals, especially dogs. For
a computer, unless some preprocessing is performed so as to distinguish the two
words as bark|NN and bark|VB or something alike, there is only one string of
characters bark, and no way to distinguish them whatsoever. This shows the lack
of semantic sense of computers.

3.2. Learning Word Representation 56

an an
ot

he
r

at ba
ck

be
ca

us
e

ca
n

di
d

do
es

ev
en

fe
ed

go go
t

ha
s

m
ak

e
m

ay
m

e
n’

t
no

t
ou

t
ou

ts
id

e
pr

of
es

sio
na

l
rig

ht
ta

ke
ta

ki
ng

us
ed

w
ith

yo
un

g

horse 1 0 1 2 1 0 1 1 1 0 0 1 0 0 0 0 0 0 0 0 1 1 2 1 0 3 0
cat 0 1 0 0 1 0 0 0 0 2 0 0 3 1 1 0 0 0 0 2 0 0 0 1 0 4 1
dog 1 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 0 0 1 0 1 1 2 0 1 0 1
eat 0 0 3 0 0 7 0 1 0 0 0 0 0 0 0 0 6 7 2 1 0 0 0 0 1 0 0
buy 0 1 0 1 0 6 1 0 1 0 1 0 0 0 0 1 2 1 0 0 0 0 0 0 0 0 0

Table 3.3: A selected co-occurrence table from the Universal Dependencies EWT
English treebank train set. Context words were chosen to co-occur with only two
of the five words in order to get rid of too common words.

For the morphology problem, humans know that barking and barked are some-
how related words and can infer the meaning of barking from the one of barked. For
a computer, unless again this problem is purposely handled, barked and barking
are two different strings of characters, and there are no reason they should interact
in any specific way.

Those basic problems can even superpose. Take bark and barks. Barks can be
the third person singular present of the verb bark, but it can also be the plural
of the noun bark. Barks is two different words and relate to bark in two different
ways, depending on its part of speech. For a computer, again, there is only one
barks and it does not relate to bark in any way.

Because of those aforementioned problems, the distributional hypothesis does
not really apply for computers on a single sentence. But if one has access to a big
amount of text, a computer can count co-occurrences between words and contexts,
and draw similarities between different words. This kind of analysis is also called
distributional semantics.

3.2.5 Distributional Semantics
We have seen how a word can be defined by its context. We have also seen that
because computers do not have grounded knowledge of words meaning, a single
sentence might not be enough to fully capture the sense of a word. However,
computers can treat massive amounts of data at a much larger speed and scale
than any human could possibly do. The idea here, is that even without any
sense of semantic nor morphology, just looking at co-occurrence patterns over
large amounts of text already reveals word similarity. And if the input data are
big enough, we expect the similarities between word co-occurrence patters to be
meaningful enough so as to be usable for NLP tasks. In most languages, we expect
week days to appear in similar context for example, so will months do, colours and
many such words.

In order to use distributional semantics to draw similarity between words and
learn representations, we need to define two sets (also called vocabularies), one for
tokens and one for contexts. The vocabulary of tokens V is the set of objects for
which we want to learn a representation. Those are usually words, but they can
also be characters or morphemes or parts-of-speech for example, and it is often
given by the task we want to address. The vocabulary of contexts C is the set

57 Chapter 3. Representing Word Information

of surrounding information we will consider when looking for similarities between
words. Contrary to tokens, contexts can take very different forms depending on
the kind of phenomenon one wishes to study. For syntactic analysis, contexts tend
to be surrounding words from a small window (2 or 3 words on each side of the
current token). The idea is that the previous and next words are good indications
of the syntactic use of a token, but that a word five sentences away does not carry
any syntactic information any more. For topic analysis however, contexts can be
paragraphs, sections or even whole documents, following the idea that documents
that use the same words must be discussing similar topics and that similar topics
tend to use similar words. In between, semantic relatedness is well encoded by
sentence contexts. Table 3.3 gives a sample of co-occurrence counts where the
contexts are surrounding words.

A good rule of thumb for designing contexts is that the narrower the context,
the more syntactic information it encodes, the broader the context, the more
topical information it encodes.

Before venturing any further, it is worth mentioning a few characteristics of
vocabularies, contexts and co-occurrence counts. Even though the token/context
co-occurrence relation is not a symmetric relation, there is something reciprocal.
This means, that even though we tend to think of contexts as providing information
about the tokens co-occurring with them, tokens also provide information about
the contexts in which they appear. Thus we can also compare contexts with each
other and learn about them.

Concerning vocabularies, languages are Zipfian in nature [Zip35], meaning that
the distribution of words in a given language or a given corpus tend to follow a
power law. A few words appear most of the time and most of the content words
appear only a few times, many only once, if at all. For example, in the Brown
Corpus of American English text, the most frequent word the accounts for 7% of
all the words and the second one of for about 3.5%. Those two words already
account for more than 10% of all the corpus. At the other side of the spectrum,
many words appear only once and most English words are actually absent from
the corpus.

In the training section of French GSD corpus available in UD version 2.2, out
of 38332 forms making up 316780 words (excluding punctuation and symbols), the
most common word de appears 24040 times, the second le appears 13990 times
and the third la appears 9877 times. Altogether, the first ten words account for
97322 tokens, almost 31% of the total count. Figure 3.3 represents the first 100
words from that corpus by decreasing frequency. The last word on the plot, the
hundredth most used word in the corpus is groupe and appears 211 times.

If not accounted for carefully, this will bias the co-occurrence counts and any
subsequent analysis. If we consider whole documents as context, they will be very
similar because most of their words are stop words. If we consider narrow word
contexts, we will see different biases. For example, in English, nouns tend to be
preceded by determiners, but while there is only one form of definite determiner
(the), there are two such forms for indefinite determiners (a and an) and their
distribution is not syntactic nor semantic but phonemic. Thus we will see three
broad classes of nouns: uncountable nouns that never appear after an indefinite
determiner, countable nouns beginning with a vowel sound appearing after an
and countable nouns beginning with a consonant sound appearing after a. If we
are aware of such issues, we can either discard determiners from our contexts, or
simply replacing every instance of an by a to remove the phonemic distinction.

3.2. Learning Word Representation 58

+

+

+++
+++

0 10 20 30 40 50 60 70 80 90 100
0

5000

10000

15000

20000

25000

Figure 3.3: 100 most frequent words in the train set of the French GSD treebank
by decreasing number of occurence. They make a typical Zipfian distribution.

Now that we have defined tokens and contexts vocabularies and that we have
mentioned some of the biases that occur naturally in text and about which we
should be cautious, we will look at how representations are learned in practice.

3.2.6 Continuous Representations
While co-occurrence counts could already be used to represent tokens and/or con-
texts, in practice they are not because they are too big. Those counts are more
informative than one-hot encoding, but they are just as long if not longer, and
are therefore unpractical. Instead, researchers have proposed to use much shorter
vectors specially learned to retain as much of the original count information as
possible. There are two main classes of approaches to learn those short vectors.
The first class of approaches makes direct use of the co-occurrence counts stored
in a co-occurrence matrix. The second class of approaches on the contrary works
directly on the text data without ever counting explicitly co-occurrences.

The first class of approaches is also called dimensionality reduction. The co-
occurrence counts are stored in a high dimension matrix whose size is then reduced
using matrix factorisation methods. The idea behind factorising the co-occurrence
matrix is to reveal latent representations of the input tokens and contexts that
explain the co-occurrence counts using less variables. For example, if two vectors
are colinear and one has twice the length of the other, this will show in the original
count matrix as one having twice the co-occurrence count of the other for each
context. However, it can be expressed more simply by saying that both vectors
share a common support vector and have different norms. Matrix factorisation
basically performs this kind of analysis for several thousands of variables and
dimensions at a time. A benefit of matrix factorisation it that it allows to reduce
the dimension of the input matrix while controling the information loss which
is also a way to reduce eventual data noise. This is the kind of path we follow
and so we leave the detailed explanation to the chapter about delexicalised word
representations.

The second class of methods, also called language models, take a different
path. In those methods, vectors are assigned to words and contexts, such that
they maximise a given objective function. One of the most famous method in
this category is Word2vec by Mikolov et al. [MSC+13]. In the Skipgram model

59 Chapter 3. Representing Word Information

with negative sampling of Word2vec, word and context vectors are learned so as to
maximise the dot product of words and contexts that co-occur while as the same
time minimising the dot product of words and contexts that do not co-occur. In
the same category are Fasttext [GMJB17] and GloVe [PSM14]. Different objective
functions lead to representations with different properties. For example, Fasttext’s
objective is similar to the one of Word2vec but it decomposes the token vectors into
sums of character n-grams vectors, effectively leaning representations for character
n-grams allowing for an easy recovery of out of vocabulary words.

While their outputs may exhibit very similar properties, the difference between
the two classes of approaches is that the former makes direct use of co-occurrence
counts and tries to explain them, while the latter directly tries to explain the
text without looking explicitly at the counts. This overall leads to very different
training mechanisms.

Despite their success and popularity, those approaches suffer some inherent
problems. The first being their lack of analysability and opacity. Those methods
give word forms some dense continuous vectorial representation which are almost
impossible to analyse for a human. It is hard to give dimensions sense and thus to
make sense of values, and it is equally hard to know why a given form has received
a specific vector.

The second problem is their great need for data. To be trained, they require
a lot of data (on the order of billions of words) and thus a lot of time. This is a
problem since not all languages have huge (even unannotated) corpora available
online. Furthermore, for those approaches like Word2vec that treat each form
independently, as the number of possible forms increases in a language due to
morphology for example, the amount of data required increases.

Eventually, their density can also be a problem. When they are used indepen-
dently the few hundred dimensions of those representations are convenient, but
when it comes to learn from word interactions, it is useful to compose them via
outer products and the like, which quickly leads to long dense vectors that are
unpractical to work with. To have an idea of the dimensions involved, in their
MSTparser, McDonald et al. [MCP05b] use sparse feature vectors with less than
a hundred dimensions lit up at a time for edge representation. On the other hand,
in their parser, Dozat et al. [DQM17] use dense word representations of 400 di-
mensions for both the governor and the dependent of each relation, giving dense
edge representations of 4002 = 160000 dimensions. This is more than 1600 times
more dimensions involved per computation for a reasonable gain.

For those reasons, people have proposed ways to induce sparse representations
for words, either by directly learning discrete representation like clusters or by
discretising/sparsifying dense representations.

3.2.7 Discrete Representations
Discrete representations are different from continuous ones in that they are cate-
gorical assignments, like features described in previous chapter, rather than con-
tinuous vectors. And here again, there are several possibilities.

Researchers have proposed to discretised continuous representations by binning
or binarising previously learned continuous vectors [CZZ14]. Binning can be used
to turn continuous valued variables into discrete categorical features by clustering
values together. Binarisation is essentially the same idea, with the difference that
only one or two bins are used for the most important values and negligible values

3.2. Learning Word Representation 60

Value
0.2
0.8

-0.9
-0.1
-0.3

A1 A2 A3 A4

0 0 1 0
0 0 0 1
1 0 0 0
0 1 0 0
0 1 0 0

B− B+

0 0
0 1
1 0
0 0
0 0

Table 3.4: Example of binarisation. The first table gives continuous values. The
second table gives binned representation of those values. The four bins A1 to
A4 represent the four intervals of length 0.5 in [−1, 1]. The third table gives a
binarised representation of the values. Only the most extreme values (below -0.5
and above 0.5) are kept.

are dropped. Those two methods indeed turns dense continuous representations
into discrete feature like representation (sparser in the case of binarisation). Table
3.4 shows a example of binning and binarisation.

Even if discretised vectors do not fix the size problem as they indeed increase
the length of the original vector by a factor equal to the number of bins used per
dimension, it has other advantages. The main advantage is that it decouples the
different bins and therefore different intervals of the same dimension. It can be
useful, especially when using pretrained continuous word embeddings with linear
classifiers for examples, as in continuous representation, not only dimensions are
not easily interpretable, but they can even have several use depending on the
part of the space a word lies in, and only make sense in combination with other
dimensions.

Another possibility is to directly learn categorical assignments such as word
clusters. Indeed Brown et al. [FBVdLM+92] proposed to cluster words based on
some measure of shared information. The idea is as follow. Given a corpus, a
vocabulary V and a number of class c, they want to assign one of those c classes
to each word in V such as to maximise the mutual information of adjacent classes.
That is, they want to maximise π(c(w1)c(w2)) log(π(c(w1)c(w2))

π(c(w1))π(c(w2))
) for every sequence

of two words w1w2 in the corpus. However, this is a NP-hard problem to solve.
So instead, they propose a greedy solution based on clustering words so as to

minimise information loss. By doing it iteratively, one merges always more words
effectively ending up with a single word vocabulary. But at each intermediate
step, words are clustered with similar words in term of information content and
those clusters form an hierarchy of nested clusters. Thus a word belongs to several
clusters, and we can have clustering of different granularity. A word’s representa-
tion is then the list of clusters it belongs to. This kind of method is referred to as
hierarchical clustering. A bit like a cat is a cat, a feline (like lions), a mammal (like
us), an animal (like crocodiles) and so on, hierarchical clustering techniques group
words together in bigger and bigger groups but using information from the data
instead of world knowledge. Figure 3.4 shows an example of hierarchical clustering
for a few words.

Because we can choose many different criteria as basis for clustering words,
researchers have proposed to apply hierarchical clustering to the output of contin-
uous representation learning algorithms to benefit from both language modelling
objectives and sparse representations. In this kind of approach, the clustering
criterion is the distance between words in the continuous space for example.

Some researchers have also proposed embedding algorithms that specifically

61 Chapter 3. Representing Word Information

the
a

cat
mouse

eatsbig
runs

is

cat mouse big eats runs is the a

Figure 3.4: An example of hierarchical clustering. Each word is its own atomic
cluster. Each ellipse represents a bigger cluster. Similar words cluster together.

require their output to be sparse but not necessarily binary. Such as the sparse
over-complete representations of Faruqui et al. [FTY+15]. This is a compromise
between the two broad family of approaches presented above. The idea is to have
words belonging to as few classes as possible but in the same time, allowing them
to adhere to those classes with more or less strength.

3.2.8 Engineering, Learning and Selection
We have just seen different ways to learn representations for words, ranging from
dense vectors to nested clusters. However, as we have seen in Section 3.1 about
linguistic analysis of words, the problem of extracting information from words
is not a recent one. So, here we take a moment to look at how representation
learning methods differ from older methods such as feature engineering and feature
selection.

Approaches such as Word2vec, Fasttext or GloVe, also called language models
induce word representations so as to optimise some mathematically defined cri-
terion. For example, the objective of Word2vec is to maximise the dot product
between words that co-occur while minimising the dot product of words that do
not appear together in a corpus. By iteratively optimising the word representa-
tions in order to fit that objective on a given corpus, the algorithm indeed learns a
language model. The fact that those methods optimise objective functions directly
defined on the text give them a direct learning flavour.

For representation methods based on matrix factorisation, what the methods
learn might be less clear. The goal of matrix factorisation is to find vectors with
desired properties that can be used to reconstruct the original matrix, minimising
the reconstruction error. In that sense, those methods learn transformations of
the original input spaces that loose as little information as possible given a set of
constraints, such that the transformations are linear or have a small number of
basis vectors. Those methods are task agnostic and the informational content of
the final representation directly depends on the input rather than on the objective
function as is the case for language models.

Feature engineering corresponds to the process of hand crafting feature tem-
plates for a given task. It is often said (especially in computer vision) that as
neural networks automatically extract features they have removed the problem of
feature engineering. For languages, this is somewhat different. The use of repre-

3.3. Conclusion 62

sentations has not removed the problem of feature engineering, it has displaced
it. When in the past decades, people had to choose whether to use information
about capitalisation, prefixes and suffixes length, part-of-speech of surrounding
words and so on in their feature vectors, now they can just use a dense vector that
will bring all the relevant information along. However, the problem has become
to learn those representations, which in the case of languages is challenging be-
cause of data sparsity and of the multiple levels of linguistic structures interacting
together. The importance of the contexts used for learning representations has
replaced previous feature engineering. We can indeed see the displacement from
feature engineering for specific tasks to context engineering for representations in
the always increasing number of embedding models, amongst which are Word2vec
(SkipGram and CBOW) [MSC+13], Glove [PSM14], CoVe [MBXS17], Fasttext
[GMJB17], ElMO [PNI+18] and many more.

Feature selection, is yet another related problem. Feature engineering can
easily lead to relevant tokens for a task (in our case edges) to be represented by
sparse vectors of millions of dimensions. While a good learning algorithm should
be able to automatically tell relevant features from noisy ones, it can be hard
when dealing with orders of magnitude more features than actual data points,
with most of the feature appearing only rarely. Feature selection is a way to
keep only those features relevant to the task at hand. As such, feature selection
is a kind of dimensionality reduction. However, while feature selection works on
surface features, dimensionality reduction methods select the best latent features,
indeed learning a transformation of the original space, often in the shape of a
projection on a latent basis. Furthermore, feature selection looks for the most
relevant features for a given task, while dimensionality reduction is in general task
agnostic.

We have argued that one-hot encoding is too simple to be practical and that
we need more informed word representations. After having discussed the distri-
butional hypothesis and its computational corollary distributional semantics, we
have presented different ways to learn word representation automatically from
data. Eventually, we have seen how those methods are indeed learning word rep-
resentations and not just engineering them or selecting some salient features. We
now turn to some linguistic concepts used to describe words and as features in nat-
ural language processing tasks, namely lemmas, parts-of-speech and morphological
attributes.

3.3 Conclusion
In this chapter, we have seen how word information can be represented by linguistic
theoretic devices such as lemmas, parts-of-speech and morphological attributes.
We have also looked at how other representations such as dense embeddings or
word clusters could be learned automatically from data. Those are two faces
of the same problem which is abstracting information away from word forms.
And in practice, linguistic theories are made to account for linguistic phenomena
appearing in texts (amongst other), so data driven representations should encode
similar (but not identical) information as theoretic devices.

Furthermore, as we have already said, annotation is a time and expertise con-
suming task, thus not all data used for NLP tasks are hand annotated for every
type of linguistic information. Instead, hands annotated corpora are used to train

63 Chapter 3. Representing Word Information

models that are applied to new data, sometimes even relying on data driven rep-
resentations to perform lemmatisation, POS tagging and morphological analysis.

Some people have also worked on unsupervised part-of-speech tagging [CGS10].
The goal in unsupervised part-of-speech tagging is like plain supervised part-of-
speech tagging, to assign a POS to each word in their sentences context. Thus
categories are assigned at the token level rather than at the type level like for
Brown clustering for example. But this is still a purely data driven approach to
word clustering as no annotation is provided for training and as such it is very
similar to representation learning.

Another point we should make is that while word embeddings can encode
lexical semantics to various degree, part-of-speech and morphological attributes
tend not to. Linguists have come up with other tools for working with lexical
semantics such as ontologies. Ontologies are usually huge graphs in which words
or sets of words are linked together via a wide range of semantic relations. One
of the most famous ontologies is Wordnet [Mil95]. In Wordnet, the graph encodes
that a cat is a feline which in turn is an animal and so on for example. We do
not give further details here because while ontologies have been used jointly with
parsers for semantic parsing, they have not been used for dependency parsing.
Furthermore, they mostly focus on lemmas and still have a rather low coverage.

Finally, modern parsers amongst other NLP systems usually use a combination
of part-of-speech and word embeddings to represent their input data, so the actual
word representations fed into a system really make use of the best of both worlds.

After having described the kind of input a dependency parser receives in the
shape of sequences of word representations, parts-of-speech and morphological
analysis, we now turn to looking at the way machine learning models learn to
parse those inputs.

Chapter 4

Related Works on Multi-Lingual
Dependency Parsing

In the previous chapter, we have defined dependency parsing as the problem of
automatically analysing the syntactic structure of sentences in human languages
by linking words together with dependency relations. We have seen how modern
dependency parsers build on graph theory, machine learning and linguistics to
perform this task. However, we remained elusive regarding the kinds of data those
systems process and the actual challenges presented by automated syntactical
analysis of multiple languages.

In this chapter, we discuss the context of this thesis, namely multi-lingual
dependency parsing. In Section 4.1, we precisely define the problem of multi-
lingual dependency parsing. In Section 4.2, we present the kind of data used by
parsers with a focus on the Universal Dependencies Project [NAA+18a] which is
our main data source. In Section 4.3, we present some related works on multi-
lingual dependency parsing.

4.1 Multi-Lingual Dependency Parsing
As we have seen, dependency parsing is a task that takes natural language sen-
tences in and outputs trees over those sentences. However, human languages have
a high degree of variability. Sentences can be made up of very simple short words
or very long information packed ones and they display very different, more or less
strict word orders. Therefore some grammatical or lexical information that are of
prime importance for a language can lack from another altogether. Thus, it seems
natural to wonder if we should design language agnostic parsing algorithms or if we
should rather design algorithms targeting certain types of languages specifically.
Indeed, parsing algorithms have been designed for specific languages. For exam-
ple, because of its suffixed case markers and its strict right-headed word order,
Japanese have received a number of efficient dedicated algorithms [TM15].

This brings us to the first sense of multi-lingual dependency parsing. In its
broadest sense, it refers to the problem of devising language agnostic parsing algo-
rithms. Multi-lingual parsers should be flexible enough to be able to learn a model
and parse data from any language assuming that they are provided in a more or
less uniform format. This departs from the parsing of specific languages where the
peculiarities of the language are hard coded in parsing algorithms.

In a narrower sense, multi-lingual dependency parsing refers to the problem of
learning to parse several languages jointly in order to build on common information

65

4.1. Multi-Lingual Dependency Parsing 66

and improve parsing results [NBG12, AMB+16]. In this sense, it can be thought
of as a kind of multi-task learning problem. Parsing each language is a task on its
own, but they are very similar to each other and so we aim at building on those
similarities to improve performances.

The first sense of language agnostic parsing is the one used for the several
CONLL shared task on multi-lingual dependency parsing [BM06, NHK+07, ZPS+17,
ZHP+18]. The goal of those tasks was to compare different parsers on different
languages without requiring that the various parser share information. The only
requirement is that the various models are trained with the same code.

In this work, we stick to the narrower sense of multi-lingual dependency parsing.
We aim at learning better parsers for individual languages relying on their shared
features and commonalities.

A related problem to multi-lingual dependency parsing is the task of cross-
lingual dependency parsing. The idea behind cross-lingual dependency parsing is
to use annotated data from some languages to learn models for languages that lack
annotated data. We shall discuss annotation in the next section, but for now we
shall remind that to train a supervised parser, one needs pairs made of sentences
and their actual dependency structures.

To annotate a corpus with its dependency structure is a lengthy task that re-
quires expert knowledge both in the grammar of one’s language but also in the
annotation scheme used. Hence, annotated corpora are only available for less
than a hundred languages, which is very few compared to the estimated sev-
eral thousands of languages spoken on Earth, and languages having corpora of
more than 10000 annotated sentences are about twenty. At the same time, un-
supervised dependency parsing methods are still well below supervised techniques
[CJT17, LZ15, Mar16], thus researchers have tried to come up with solutions to
parse languages with few annotated data if at all relying on data from resource rich
languages. This problem, depending on the approach followed, has been labeled
cross-lingual dependency parsing when at least some data (not annotated with de-
pendency structure) from the target language is available or zero-shot dependency
parsing when not target data is available at all.

In general, cross-lingual dependency parsing is taken as a transfer task where
one tries to take information from one or more well resourced languages and trans-
fer it to a resource poor language. There have been several proposals to achieve
this goal. The simplest is maybe the use of delexicalised parsers [MPH11, AWY16,
LFDT14]. Delexicalised parsers do not use lexical information as encoded by word
forms, they only rely on more language independent information, typically parts-
of-speech. Assuming that the source and the target corpora are labeled with the
same set of POS tags, one can apply a parser trained on the source language
directly to the target one without caring for the actual underlying languages.

Another possibility is to transfer annotation directly [WP12, LAWY16, HRWK01],
for example via parallel text. If one has access to a parallel text in the source and
the target language, one can first apply its supervised parser trained on source
language data to the source language side of the word aligned parallel text, then
map the structure from the source side to the target side of the parallel text and
finally train a parser on the newly annotated target data. Other proposals have
made use of automated translation systems to translate an annotated data set
from a language to another language [RMv14]. However, this might not be practi-
cal as if a language already has a corpus big enough to train a reliable translation
system, then it most likely has dependency annotated data as well. The problem

67 Chapter 4. Related Works on Multi-Lingual Dependency Parsing

with annotation transfer is that on the top of the target language parser errors will
stack up errors from the noisy transfer process, whether it is due to faulty word
alignments or erroneous translations.

Eventually, with the recent success of word embeddings, people have used cross-
lingual word representations in order to transfer parsing models as well [GCY+15,
XG14].

This work primary focus is multi-lingual dependency parsing, where we use
information from several languages in order to improve over each independent
language model. Nonetheless, some of the techniques we investigated also allow
zero-shot dependency parsing at a low cost thus we also present some results of
zero-shot dependency parsing in chapter 6.

After having discussed the actual focus of this work, namely multi-lingual de-
pendency parsing, we now describe the kind of data used to perform it.

4.2 Universal Dependencies
Like most NLP tasks, supervised training of dependency parsers relies extensively
on annotated corpora. But since the early years of dependency parsing, resources
were only available for a handful of mostly Indo-European languages. And even
when resources were available, they were following different annotation schemes,
using different parts-of-speech and dependency relation sets. Furthermore, some
corpora used in dependency parsing were not even made with dependency parsing
in mind. For example, as we mentioned earlier, the Penn Treebank [MMS93] that
as been widely used to test dependency parsing techniques, was originally anno-
tated with constituency trees. Only later, were those constituency trees converted
into dependency trees using heuristics [Col97, JN07].

It was highly impractical for many reasons. Even though we wish to devise
algorithms that are as language agnostic and as annotation scheme agnostic as
possible, in practice they always tend to favour some structures. Because anno-
tation schemes can have varying parsing complexity, and some part-of-speech sets
contain more information than others, it was very hard to compare results across
languages. Even converting annotations from one scheme to another was only par-
tially effective as the conversion process is itself error prone and the scheme maps
are never fully satisfying.

It was even worse when performing cross/multi-lingual dependency parsing.
Since models needed not only to learn from different languages but also from po-
tentially divergent annotation schemes. In order to solve those issues the Universal
Dependencies project was started.

The goal of the Universal Dependencies project [NAA+18a] is indeed to address
all those issues by ”developing cross-linguistically consistent treebank annotation
for many languages, with the goal of facilitating multilingual parser development,
cross-lingual learning, and parsing research from a language typology perspective”1.

The Universal Dependencies project currently hosts more than a hundred tree-
banks in more than 70 languages. While a majority of the languages are still
Indo-European, there are more and more languages from other families as well.
All those treebanks aim at being annotated in a consistent manner so as to fa-
cilitate cross-lingual parsing study. They have therefore adopted the common
CONLL-U format.

1http://universaldependencies.org/introduction.html

4.2. Universal Dependencies 68

In the CONLL-U format, sentences are given one word per line followed by
its annotation on 10 columns as exemplified in Table 4.1. The first column is the
index of the word in the sentence starting at 1. It is useful for encoding surface
words that are contractions of several syntactical words, like French au which is
the contraction of à le. Those words receive a span index (such as 2 − 3) and
their annotation is split over as many lines as actual syntactic words they contain.
Columns 2 and 3 hold lexical information as the actual word form and its lemma
(or dictionary form). Columns 4 and 5 hold parts-of-speech (UPOS and XPOS).
The UPOS is chosen from a fixed set of 17 universal parts-of-speech. They are
reported in Table 4.2. The XPOS can be used for languages and treebanks that had
previous annotation for backward compatibility. Column 6 hosts the morphological
analysis of the word form in terms of morphological attributes. The analysis is
based on a set of cross-linguistically frequent features such as Gender, Number and
Mood, but each language is free to add specific values if necessary. There are also
a few borderline attributes that are not morphological in nature such as attributes
marking misspelled words and foreign words. Those morphological attributes will
be primary source of information in this thesis and will be used as pivot between
different languages. The cross-linguistically most frequent attributes are reported
in Table 4.4 with the number of treebanks in which they are used. As not all
the 122 treebanks are completely morphologically annotated yet, numbers and
persons, appearing in hundred treebanks are used in virtually all the treebanks.
However, even in the top 40 morphological attributes, some are only used for less
than half of the treebanks (e.g. perfective aspect, future tense). Column 7 hosts
the index of the head of the word in the dependency tree. The root of the tree has
a head index of 0. Column 8 hosts the type of the dependency relation which is
taken from a set of universal syntactic relations such as Nominal Subject (nsubj),
Case marker (case) or Determiner (det). They are reported in Table 4.3. Column
9 can be used to add extra dependencies for cases where the tree formalism is
considered too strong like for sentences with several verbs conjugated for a single
overt subject. Eventually, column 10 can be used to add extra information like to
signal that there is no space between the last word of a sentence and the following
dot despite their being distinct tokens. Table 4.1 gives an example of an annotated
sentence from the UD project.

Treebank sizes vary from a few hundreds sentence to more than fifty thousands.
Most treebanks are split into three part, a big train set used to train parsing
models, a smaller development set used for algorithm development and hyper-
parameter selection and finally a test set to evaluate models on never foreseen
data, but some treebanks still only have test data. The actual size (number of
sentences) of each set of each treebank is given in Tables 4.5, 4.6 and 4.7. Some
languages have several treebanks reflecting previous annotation efforts from several
groups. The 21 languages that have at least one treebank with more than 10000
training sentences are reported in bold. Likewise, the 11 languages that only have
test data are reported in italic.

The huge resource disparity across languages is a strong incentive for the devel-
opment of methods that share information across languages. Obviously, languages
that lack annotated data as represented by languages that only have test sets
need to be handled somehow using annotated data from other languages. But
even when training data are available, they may be highly insufficient, for exam-
ple Kazakh, Upper Sorbian and Armenian, all have less than 50 train sentences.
However, transfer methods would ignore those few sentences altogether, which is

69 Chapter 4. Related Works on Multi-Lingual Dependency Parsing

1 2 3 4 5 6 7 8 9 10
Id Form Lemma UPOS XPOS Feats Head Deprel Deps Misc
1 Deux deux NUM _ NumType=Card 3 nummod _ _
2 autres autre ADJ _ Number=Plur 3 amod _ _

3 photos photo NOUN _ Gender=Fem
Number=Plur 6 nsubj:pass _ _

4 sont être AUX _

Mood=Ind
Number=Plur
Person=3
Tense=Pres
VerbForm=Fin

6 aux:pass _ _

5 également également ADV _ _ 6 advmod _ _

6 montrées montrer VERB _

Gender=Fem
Number=Plur
Tense=Past
VerbForm=Part
Voice=Pass

0 root _ _

7-8 du _ _ _ _ _ _ _ _
7 de de ADP _ _ 9 case _ _

8 le le DET _

Definite=Def
Gender=Masc
Number=Sing
PronType=Art

9 det _ _

9 doigt doigt NOUN _ Gender=Masc
Number=Sing 6 obl:mod _ SpaceAfter=No

10 . . PUNCT _ _ 6 punct _ _

Table 4.1: An example of annotated sentence from the French Sequoia corpus of
the UD project.

UPOS Gloss English Examples
ADJ Adjective Big, pink, serious
ADP Adposition At, in, on
ADV Adverb Always, better, well
AUX Auxiliary Might, should, will
CCONJ Coordinating Conjunction And, but, or
DET Determiner A, your, the
INTJ Interjection OK, thanks, bye
NOUN Noun Fire, noun, word
NUM Numeral One, 2, III
PART Particle Not, ’s
PRON Pronoun Her, Somebody, Yours
PROPN Proper Noun Århus, Carlos, UE
PUNCT Punctuation , : ...
SCONJ Subordinating Conjunction If, since, that
SYM Symbol e, +, :(
VERB Verb Eat, sleep, rave, repeat
X Other

Table 4.2: The 17 universal parts-of-speech used for annotating the Universal
Dependencies project. For each UPOS, we give the gloss and a few examples in
English.

4.2. Universal Dependencies 70

Relation Gloss
acl clausal modifier of noun (adjectival clause)
advcl adverbial clause modifier
advmod adverbial modifier
amod adjectival modifier
appos appositional modifier
aux auxiliary
case case marking
cc coordinating conjunction
ccomp clausal complement
clf classifier
compound compound
conj conjunct
cop copula
csubj clausal subject
dep unspecified dependency
det determiner
discourse discourse element
dislocated dislocated elements
expl expletive
fixed fixed multiword expression
flat flat multiword expression
goeswith goes with
iobj indirect object
list list
mark marker
nmod nominal modifier
nsubj nominal subject
nummod numeric modifier
obj object
obl oblique nominal
orphan orphan
parataxis parataxis
punct punctuation
reparandum overridden disfluency
root root
vocative vocative
xcomp open clausal complement

Table 4.3: The 37 universal relations used for annotating the Universal Dependen-
cies project. For each relation, we give the gloss. Each relation can be specified
with language specific information if necessary.

71 Chapter 4. Related Works on Multi-Lingual Dependency Parsing

Attribute English name #Treebank
Aspect=Perf Perfective aspect 49
Case=Acc Accusative case 83
Case=Dat Dative case 60
Case=Gen Genitive case 68
Case=Nom Nominative case 85
Definite=Def Definite 56
Definite=Ind Indefinite 51
Degree=Cmp Comparative 63
Degree=Pos Positive (Basic form) 55
Degree=Sup Superlative 62
Foreign=Yes Foreign Word 47
Gender=Fem Feminine 80
Gender=Masc Masculine 83
Gender=Neut Neuter 51
Mood=Cnd Conditional mood 49
Mood=Imp Imperative mood 85
Mood=Ind Indicative mood 91
Number=Plur Plural 105
Number=Sing Singular 100
NumType=Card Cardinal Number 78
NumType=Ord Ordinal Number 58
Person=1 First Person 100
Person=2 Second Person 99
Person=3 Third Person 101
Polarity=Neg Negative 94
Poss=Yes Possessive 61
PronType=Dem Demonstrative pronoun 79
PronType=Ind Indefinite pronoun 66
PronType=Int Interrogative pronoun 67
PronType=Prs Personal pronoun 89
PronType=Rel Relative pronoun 62
Reflex=Yes Reflexive pronoun 62
Tense=Fut Future 59
Tense=Past Past 94
Tense=Pres Present 90
VerbForm=Fin Finite Verb (Conjugated) 83
VerbForm=Inf Infinitive 84
VerbForm=Part Participle 87
Voice=Act Active voice 49
Voice=Pass Passive voice 66

Table 4.4: The forty most commonly used attributes in UD 2.2 treebanks with the
number of treebanks in which they are used. There are 489 such attributes in total
in UD 2.2, most of which are language specific or used by a very small number
of languages. As in the 122 treebanks of UD 2.2, a few are not yet completely
morphologically annotated, plural and singular numbers and first, second and third
persons appearing in 100 treebanks are virtually use in all treebanks. Definiteness,
perfective aspect or future tense however, are much less common.

4.3. Related Work 72

clearly sub-optimal. This therefore calls for dedicated multi-lingual methods that
use annotated data from both the target language and from other languages in
order to build better parsing models.

It is worth mentioning that the UD project is an ongoing project. Treebanks
and the annotation scheme evolve. Since the release of the first version of the
treebanks in January 2015, there has been a new release every six months or so
with a major update in 2017. While the annotation scheme tends to be stable
between updates, new conventions can be adopted when necessary to improve
cross-lingual consistency. Each update comes with new languages and/or new
treebanks, sentences can be added to existing treebanks and train/dev/test splits
can change. Likewise, in already established treebanks, annotation errors can
be corrected. Altogether, this makes comparison of systems tested on different
releases difficult. In the following chapters, the reported results have been obtained
on either version 1.3, 2.0 or 2.2 depending on the latest available version at the
time the corresponding work was done.

It should also be kept in mind that because of the ongoing nature of the project
and because of the background some languages have, not all treebanks reach the
same level of annotation quality and commitment to the annotation scheme. Be-
cause cross-lingual consistency is subsumed to the individual treebank committing
to the annotation scheme, there remains a lot of work to increase cross treebank
consistency. Furthermore, the annotation scheme itself could be improved and
some conventions are disputable as discussed by Gerdes et al. [GK16].

Here we give two examples of this lack of consistency. In the Faroese treebank,
the copula vera is tagged VERB while the annotation scheme demands copulas to
be tagged AUX, which is the case in other treebanks such as the Danish one. Fur-
thermore the Faroese treebank assumes some basic values (VERB are in finite form
if not specified otherwise) whereas other treebanks make them explicit (French has
VerbForm=Fin for all finite verbs). The second example comes from Hebrew. In
Semitic languages (Hebrew, Arabic, Amharic...), nouns can inflect to indicate their
possessor. While this is also true of other languages such as Hungarian, Hebrew
possessors are treated as merely suffixed pronouns where Hungarian treats them
as full inflection. This is even more surprising as it is not linguistically backed up
and that to be grammatically correct, the Hebrew treebank introduces extra word
that are not present in the original text. For example sentence 148 of the develop-
ment set of the Hebrew treebank (UD version 2.2) contains the word ’avodati (my
job), which is analysed as ’avodah shel ani (job of me). This is disputable since it
adds extra words (absent from the original sentence) and trivial edges from shel
to ani and from ani to ’avodah, artificially increasing the parsing results. Those
two examples are just to show the work that still remains to be done. We come
back to those problems and their actual impact on dependency parsing in chapter
7 where we discuss the role of the annotation scheme.

Now that we have defined the two related problems of cross-lingual and multi-
lingual dependency parsing and that we have presented the data we use throughout
this work, we will look at some previous works addressing similar problems.

4.3 Related Work
A lot of methods have been proposed in order to solve cross-lingual and multi-
lingual dependency parsing. Here we try to present the main lines of research that
have been investigated.

73 Chapter 4. Related Works on Multi-Lingual Dependency Parsing

Code Language Treebank Train Dev Test
af Afrikaans AfriBooms 1315 194 425
am Amharic ATT 0 0 1074

ar Arabic
NYUAD 15789 1986 1963
PADT 6075 909 680
PUD 0 0 1000

be Belarusian HSE 260 65 68
br Breton KEB 0 0 888
bu Bulgarian BTB 8907 1115 1116
bxr Buryat BDT 19 0 908
ca Catalan AnCora 13123 1709 1846
cop Coptic Scriptorium 377 77 60

cs Czech

CAC 23478 603 628
CLTT 860 129 136
FicTree 10160 1309 1291
PDT 68495 9270 10148
PUD 0 0 1000

cu Old Church Slavonic PROIEL 4123 1073 1141
da Danish DDT 4383 564 565

de German GSD 13814 799 977
PUD 0 0 1000

el Greek GDT 1662 403 456

en English

EWT 12543 2002 2077
GUM 2914 707 769
LinES 2738 912 914
PUD 0 0 1000
ParTUT 1781 156 153

es Spanish
AnCora 14305 1654 1721
GSD 14187 1400 426
PUD 0 0 1000

et Estonian EDT 20827 2633 2737
eu Basque BDT 5396 1798 1799
fa Persian Seraji 4798 599 600

fi Finnish
FTB 14981 1875 1867
PUD 0 0 1000
TDT 12217 1364 1555

fo Faroese OFT 0 0 1208

fr French

GSD 14554 1478 416
PUD 0 0 1000
ParTUT 803 107 110
Sequoia 2231 412 456
Spoken 1153 907 726

fro Old French SRCMF 13909 1842 1927
ga Irish IDT 566 0 454

gl Galician CTG 2272 860 861
TreeGal 600 0 400

got Gothic PROIEL 3387 985 1029

gr Ancient PROIEL 15015 1019 1047
Greek Perseus 11476 1137 1306

Table 4.5: List of UD 2.2 treebanks by alphabetical order of their language code
from A to G.

4.3. Related Work 74

Code Language Treebank Train Dev Test
he Hebrew HTB 5241 484 491

hi Hindi HDTB 13304 1659 1684
PUD 0 0 1000

hr Croatian SET 6983 849 1057
hsb UpperSorbian UFAL 23 0 623
hu Hungarian Szeged 910 441 449
hy Armenian ArmTDP 50 0 514

id Indonesian GSD 4477 559 557
PUD 0 0 1000

it Italian

ISDT 13121 564 482
PUD 0 0 1000
ParTUT 1781 156 153
PoSTWITA 5368 671 674

ja Japanese

BCCWJ 40890 8453 7913
GSD 7164 511 557
Modern 0 0 822
PUD 0 0 1000

kk Kazakh KTB 31 0 1047
kmr Kurmanji MG 20 0 734

ko Korean
GSD 4400 950 989
Kaist 23010 2066 2287
PUD 0 0 1000

kpv Komi-Zyrian IKDP 0 0 75
Lattice 0 0 155

la Latin
ITTB 15808 700 750
PROIEL 15906 1234 1260
Perseus 1334 0 939

lt Lithuanian HSE 153 55 55
lv Latvian LVTB 5424 1051 1228
mr Marathi UFAL 373 46 47
nb Norwegian Bokmaal Bokmaal 15696 2410 1939

nl Dutch Alpino 12269 718 596
LassySmall 5789 676 876

nn Norwegian Nynorsk Nynorsk 14174 1890 1511
NynorskLIA 339 0 1057

pcm Naija NSC 0 0 948

pl Polish LFG 13774 1745 1727
SZ 6100 1027 1100

pt Portuguese
Bosque 8329 560 477
GSD 9664 1210 1204
PUD 0 0 1000

ro Romanian Nonstandard 5264 1052 1052
RRT 8043 752 729

ru Russian

GSD 3850 579 601
PUD 0 0 1000
SynTagRus 48814 6584 6491
Taiga 880 0 884

Table 4.6: List of UD 2.2 treebanks by alphabetical order of their language code
from H to R.

75 Chapter 4. Related Works on Multi-Lingual Dependency Parsing

Code Language Treebank Train Dev Test
sa Sanskrit UFAL 0 0 230
sk Slovak SNK 8483 1060 1061

sl Slovenian SSJ 6478 734 788
SST 2078 0 1110

sme NorthSami Giella 2257 0 865
sr Serbian SET 2935 465 491

sv Swedish
LinES 2738 912 914
PUD 0 0 1000
Talbanken 4303 504 1219

swl Swedish Sign Language SSLC 87 82 34
ta Tamil TTB 400 80 120
te Telugu MTG 1051 131 146
th Thai PUD 0 0 1000
tl Tagalog TRG 0 0 55

tr Turkish IMST 3685 975 975
PUD 0 0 1000

ug Uyghur UDT 1656 900 900
uk Ukrainian IU 4513 577 783
ur Urdu UDTB 4043 552 535
vi Vietnamese VTB 1400 800 800
wbp Warlpiri UFAL 0 0 55
yo Yoruba YTB 0 0 100
yue Cantonese HK 0 0 650

zh Chinese

CFL 0 0 451
GSD 3997 500 500
HK 0 0 908
PUD 0 0 1000

Table 4.7: List of UD 2.2 treebanks by alphabetical order of their language code
from S to Z. For each language, we report the size of the train, dev and test sets of
its different treebanks. Languages that have at least one treebank with more than
10000 training sentences are given in bold. Languages that lack train and dev sets
altogether are given in italic.

4.3. Related Work 76

4.3.1 Delexicalised Parsers

The simplest approach to cross-lingual dependency parsing is the use of delexi-
calised parsers [MPH11]. As they are not trained on language specific word forms,
they can easily be applied to any treebank that share the same POS set. And
because they do not rely on language specific information, they can be directly
trained on many languages at the same time. Lynn et al. [LFDT14] experiment
with delexicalised parsing for Irish from several languages and also train a parser
using all those languages at once. They report a substantial degradation of the
results as compared to a mono-lingual Irish baseline which is expected since they
do not use any language specific information at all and just transfer the model
blindly.

Indeed, unless source and target languages have very similar grammar, this
might only be partially effective. In order to fix that problem, Aufrant et al.
[AWY16] propose to rewrite source language data to better fit the surface statis-
tics and typology of the target language, by for example deleting determiners or
switching the word orders.

4.3.2 Annotation Projection

Because delexicalised parsers lack lexical information, people have proposed ways
to transfer annotation from resource rich languages to resource poor languages in
order to directly train lexicalised parsers for target languages. This is often done
with the help of parallel corpora where links are projected between pairs of pre-
viously automatically aligned words. However, as words might not align perfectly
between pairs of sentences from different languages, Ganchev et al. [GGT09] pro-
pose not to commit to the complete source tree and to use language specific rules
to fix the target tree instead. This was especially useful before the advent of the
UD project, when treebanks were following very different annotation schemes and
poor results were due to clashing annotations.

McDonald et al. [MPH11] propose a transfer method that iteratively learns
new parsers for the target language by using one of k best parse trees for each
sentence as training sample. The training tree is chosen to mirror the source
language tree as much as possible. They seed their parser with a multi-lingual
delexicalised model.

Wroblenska et al. [WP12] propose another transfer method based on weighted
projection. Using parallel corpora they project dependency edges from the source
language to the target language, weighting projections according to the type of
alignment they involve. For example, two one-to-one aligned words have a bigger
chance to maintain their edge than two one-to-many aligned words. Then they
make use of a spanning tree inference in order get parse tree for the target language
and eventually be able to train their parser on lexicalised target data.

Lacroix et al. [LAWY16] propose yet another simpler transfer method. By
showing that a parser can be trained on partially annotated trees, they propose to
project dependencies only between unambiguously aligned (one-to-one) word pairs.
Then, they just remove trees that are more incomplete than a given threshold.
They show that using parallel data from several languages further improve parsing
accuracy.

77 Chapter 4. Related Works on Multi-Lingual Dependency Parsing

4.3.3 Cross-Lingual Representations

More recently, lexicalised cross-lingual parsers have been trained using cross-lingual
word representations in order to alleviate the lack of lexical information in delex-
icalised parsers. Täckström et al. [TMU12] propose to use cross-lingual word
clusters instead of the actual word forms in order to allow direct transfer of de-
pendency parsing models learned from a source language to a target language.
They propose two methods to induce those word clusters. The first just uses word
alignment between source and target languages to project the clusters. The second
methods directly induces cross-lingual clusters by using both alignment constraints
and mono-lingual modeling constraints.

Xiao et al. [XG14] use the source and target parsing data to learn word repre-
sentations and they enforce both spaces to be similar by tying together translation
pairs from both languages. Then they just learn a parser on the source language
and apply it to the target language using their word representations for lexicalisa-
tion.

In the same line of work, Guo et al. [GCY+15] propose to use word alignment
from parallel corpus to align the word representation spaces of the source and
target languages. They also experiment with canonical correlation analysis to
align spaces. Then they can directly learn a parser for the source language and
apply it to the target language using the shared word representation space. They
also show that adding cross-lingual word clusters information similar to those of
Täckström et al. on the top further improves the results.

4.3.4 Direct Transfer and Surface Form Rewriting

Eventually, a niche method is to use a lexicalised parser trained on a source lan-
guage directly on a target language. This is indeed a possibility when the source
and target languages are really close. Garcia et al. [GGRAP17] investigate the
parsing of Galician, using other Romance languages as sources. They analyse pars-
ing results of delexicalised and lexicalised parsers in light of the lexical similarity
between languages. Eventually, they propose to rewrite source data not to fit the
target data typology but its spelling conventions. And they show that chang-
ing Portuguese spelling to fit Spanish spelling tradition helps improve Galician2

results.
The lines of work presented above are interesting and promising in their own

rights. Annotation transfer is getting easier and easier as more parallel corpora
become available online, either due to private initiatives or international institu-
tions (European Union, United Nations...). Likewise, as word representations get
more and more powerful and cross-lingual representation are proposed for tasks
such as machine translation, it becomes more and more practical to learn lex-
icalised parsers directly in a cross-lingual representation space. Eventually, as
more and more languages have annotated data with dependency structures, it be-
comes always easier to find a related language that have annotated data that can
be adapted to a new target language. However, those techniques are all asymmet-
rical in that they use data from one or more source languages in order to parse a
target language.

2Galician is close to Portuguese but is spelled with Spanish conventions.

4.3. Related Work 78

4.3.5 Multi-Lingual Dependency Parsing
Naseem et al. [NBG12] propose a truly multi-lingual parsing method that learns
to parse several languages in the same time in order to improve over independent
models. They propose to learn a generative parsing model and to tie different
parts of the model between languages that share typological features. They show
the benefits of learning to parse several languages from different families at the
same time. However, because they use diversely annotated data, they have to map
each specific POS sets to a somewhat universal POS set of only 11 tags, which is
very coarse.

More recently, Ammar et at. [AMB+16] propose to directly learn a parser
on several languages at once. They use information such as cross-lingual word
clusters, word embedding, part-of-speech and morphological information (so called
fine grained part-of-speech) embedding in order to represent their parser state in
a transition based parsing setting. In order to allow the parser to learn language
specific information as well, they complement state representations with language
information in the shape of the language identity, encoding of typological features
such as word order. Furthermore, they do not enforce morphological information to
be language agnostic, so it is also a way to encode language specific information.
They show the benefits of their approach on parsing 7 Romance and Germanic
languages.

Both previous works [NBG12] and [AMB+16] have shown the interest of per-
forming multi-lingual dependency parsing. However, in the case of Naseem et al.
for annotation consistency, they used a very coarse set of 11 parts-of-speech, which
might be too coarse to fully leverage cross-lingual information. In the case of Am-
mar et al., they only experiment with 7 closely related Germanic and Romance
languages and so it is hard to see how there model would behave with more and
more diverse languages.

Chapter 5

Delexicalised Word
Representation

This chapter is based on a work presented at EACL 2017 [DD17].

As we have seen in chapter 4, to share information between languages requires
a common representation space or at least a way to align representation spaces.
We have also pointed out the problems posed by an over simple data representa-
tion method such as one-hot encoding, and how alternative word representations
can be used instead. Given those two premises, it seems legitimate to learn a
common representation space to bridge the gap between languages. Furthermore,
it would also seem natural to add expert knowledge about the downstream task
(dependency parsing) to our representations, which we can do since we have access
to annotated data.

In this chapter we are looking at a way to learn word representations infused
with syntactic information using multi-lingual information and dependency infor-
mation. This will allow us to investigate two hypotheses. (i) Using available
structure when learning representations is beneficial for dependency parsing. (ii)
Using information from multiple languages improves the quality of those learned
representations. By using the structure for learning the representation, we mean
that encoding that a noun depends on a verb rather than appears next to it in the
representation should help, and especially for those languages in which dependency
does not equate being close in the sentence, such as Classical Latin where adjec-
tives can appear far from their head noun for stylistic reasons. For using multiple
languages, we assume that using data from grammatically close1 languages should
improve the representations, at least by increasing the amount of data used, and
at best by infusing relevant information into the representation space.

This chapter is organised as follows. Section 5.1 presents some related work
on representation learning for dependency parsing. Section 5.2 introduces the
concept of delexicalised words. Section 5.3 describes the representation learning
method and explains how we use delexicalised words and dependency information
to make structured delexicalised contexts. Section 5.4 describes the dependency
parsing framework and how we represents edges from delexicalised word represen-
tations. Section 5.5 describes the experimental setting and discusses the results.
Eventually, section 5.6 concludes the chapter.

1This is a rather loose idea of grammatical proximity. Two languages can be close because
of genetic relationship, areal diffusion or just because they happen to share some grammatical
feature.

79

5.1. Related Work 80

5.1 Related Work
This section presents some related work on representation learning for dependency
parsing. Beside the first work that is seminal in using word representations for
dependency parsing, they all use dependency information in a way or another to
learn their representations. However, they all deal with monolingual representa-
tions only, while we investigate here both monolingual and cross-lingual represen-
tations.

Koo et al. [KCC08] were the first to use word embeddings in dependency pars-
ing. They relied on the Brown clustering algorithm to hierarchically cluster words
and then they used those clusters to extend their feature set by replacing words
by their clusters id. Even though, their representation were not directly tailored
for dependency parsing, they paved the way for future research on representation
learning for dependency parsing.

Since then, people have looked at the problem of learning good representations
for words, edges and features in the context of dependency parsing. They have
proposed different methods to learn representations as well as diverse ways to
incorporate those representation into their parsing algorithms. The first methods
though, were all based on the same principle. As we shall see, they train simple
graph-based parsers [MCP05a] extending the original feature space with some
extra pre-trained representations for either words, edges or features.

Bansal et al. [BGL14] propose to change the context definition of the Skipgram
model of Mikolov et al. [MCCD13] in order to tailor the learned representation
specifically for dependency parsing. The idea behind the Skipgram model is to
predict a word w given its context c. Whilst in the original paper of Mikolov
et al. the context c is a set of words surrounding w, Bansal et al. set c to
be a child of w and its label as well as the parent of w and its label. Thus
inducing representations for words in dependency context. They then use the new
representations as surrogate for the actual forms to complement the original MST
features from [MCP05a].

Bansal [Ban15] also proposes a method to embed edges directly instead of
words. It is again a modification of the Skipgram model, but this time the em-
bedded token is not a word anymore but an edge e. The context c is now defined
as the label of e and its signed length2 as well as the label of the head of e and
the signed distance to its own head. The learned continuous representations for
edges are then discretised with an approach similar to the Brown algorithm in
order to be used as features in complement to the traditional MST features from
[MCP05a].

Chen et al. [CZZ14] propose a very similar method. They also base their
model on the model of Mikolov et al. but instead of embedding words or edges,
they embed features. Given a feature template f of the kind presented in Table
5.5, an annotated sentence x and an edge eij, they set the context of f(x, eij) to be
f(x, e•i) and f(x, ej•) where e•i is the parent edge of eij and ej• is any dependent
edge of eij. Once learned, they use those feature representations in complement
to MST features, just as Bansal.

Kiperwasser and Goldberg [KG15] propose another method to edge embedding.

2Because edges are directed, a relation going from left to right is not the same a relation
going from right to left. Thus the length of an edge is the distance between its ends in number
of words in between in the sentence and the sign states if the edge goes forward or backward in
the sentences.

81 Chapter 5. Delexicalised Word Representation

But instead of learning a dense representation for their edges, they estimate an
association score between dependents and their governors. Then they learn word
embeddings that have the property that the dot product between a dependent’s
representation and its governor’s representation return their association score, thus
allowing them to compute the association score for any word pair. Then they use
those scores in conjunction with other information like the signed distance of the
relation and the parts-of-speech of its words to make new features to complement
MST features.

The four works, of Bansal et al. [BGL14], Bansal [Ban15], Chen et al. [CZZ14]
and Kiperwasser and Goldberg [KG15], all share that they use auto-parsed data in
order to have access to a bigger quantity of dependency information than just the
one from the annotated corpus. They use their respective baseline models to parse
the BLLIP corpus3 that they then use as a source of dependency information. Our
work departs from theirs as we only use the available annotated data to induce
our representations. This is indeed an important difference. By sticking to the
annotated data, we have a warranty on the quality of the information we use,
but we restrict ourselves to a small amount of data. By using auto-parsed data,
they have access to much more information (up to 3 orders of magnitude more),
but this information is only as good as the parser it has been annotated with,
thus making it intrinsically noisy. Furthermore, because they use their baseline
parsers to parse the extra data with which they induce representations, those
representations embed something of the parser already. Namely, if the parser
makes a recurrent mistake, the induced representation will be biased toward that
mistake and might not help solving it. The question of the trade-off between data
quantity and data quality and bias is still open, and we choose here few high
quality data.

Posterior to our work, following more recent trends, Dozat et al. [DQM17]
use heavy neural machinery for edge scoring in their graph-based parser entry to
CONLL 2017 dependency parsing shared task [ZPS+17]. They use a bidirectional
LSTM4 (Long Short Term Memory) network to represent each word in a sentence.
As input to their LSTM, they use several pre-trained embeddings of the word
forms (Word2vec) and of the parts-of-speech as well as character based word rep-
resentations. Even though their embeddings are not pre-trained specifically for
dependency parsing, the end-to-end training of their deep parser automatically
tune the output of the LSTM for dependency parsing. Thus effectively providing
them with contextual representation tailored for dependency parsing.

Most similar to our work, also an entry to CONLL 2017 shared task, Kanerva et
al. [KLG17] propose a method to induce word embeddings using both delexicalised
contexts and dependency based contexts. Their model is slightly different from
ours though, as they are interested in learning representations for words and not
for morphological attribute sets (delexicalised words). Furthermore, as they do
transition based parsing, they also use parsing transitions as contexts.

Our work is similar to those in using dependency information (indirectly for
Dozat et al. and directly for the other five) to learn representations suited for
dependency parsing. However, we depart from them in that we learn representa-

3The BLLIP corpus is a corpus of American English news that contains 30 millions words.
In comparison, the Penn Treebank, which is a subset of the BLLIP annotated with syntactic
structures contains about a million words.

4An LSTM is a kind of recurrent neural network. They are especially suited to representing
sequences of varying lengths such as sentences and words.

5.2. Delexicalised Words 82

Øll menniskju eru fødd fræls og jøvn til virðingar og mannarættindi.
Alle mennesker er født frie og lige i værdighed og rettigheder.
Hver maður er borinn frjáls og jafn öðrum að virðingu og réttindum.

Table 5.1: The first sentence of the first article from the Universal Declaration
of Human Rights in Faroese, Danish and Icelandic. Words are aligned with their
translations, often cognates.

tions for delexicalised words, which allows us to use multi-lingual data in a quasi
straightforward manner.

5.2 Delexicalised Words
An important question that arises when dealing with word representations is that
of the definition of a word. Depending on the answer, the word representation
might be radically different. A word can be seen as an indivisible unit with
its own form and sense which leads to representations of the kind of Word2vec
[MSC+13] where each form has its own representation. A word can also be seen as
a sequence of morphemes in which case approaches such as the one of Botha and
Blunsom [BB14] that compose morphemes representations into word representa-
tions are available. If a word is merely a sequence of letters, this leads to character
level language models such as [BGJM16] where they use recurrent neural network
(RNN) to compose character representations into words. A word can also be seen
as a lemma inflected for several morphological attributes, this is the case in the
work of Avraham and Goldberg [AG17]. Our delexicalised word embeddings fall
under the same view of words as inflected lemmas.

The main barrier for working with several languages is the differences in word
forms. This is even more true for closely related languages where the grammar is
often very similar and the lexicon is parallel, but the actual word forms can vary
a lot. This is really clear when comparing the three sentences in Table 5.1. There
are the first sentence of the first article of the Universal Declaration of Human
Rights in Faroese, Icelandic and Danish, all three north Germanic languages. The
sentences are almost completely parallel and words can be identified to each other
(most are cognates) but except for og (and) and er (are), they all have different
forms. This is indeed a strong argument against form embeddings as they are
performed nowadays as in a multi-lingual setting they would fail completely to
encode any useful information.

The idea behind delexicalised word embeddings is that assuming we have access
to the morphological analysis of word forms, we could have a language agnostic
representation of our words by removing the lemmas. Moreover, as previous works
on delexicalised dependency parsing have shown, lexical information is not crucial
in achieving good syntactic analysis [MPH11].

This might seem strong of an assumption, but with the advances in tagging
methods and with the ever growing amount of annotated data, we have access
nowadays to accurate morphological taggers for the most widely spoken languages.
For lesser spoken/studied languages however it is a different problem. But in
general, morphological analysis or at least part-of-speech tagging, is coming before5

5Sometimes some syncretic forms need dependency information to be fully disambiguated,
appealing to joint parsing and tagging. But they are rather seldom and in general tagging is still
seen as a preprocessing step to parsing.

83 Chapter 5. Delexicalised Word Representation

Form Lemma UPOS Attributes
øll allur DET Case=Nom|Definite=Ind|Gender=Neut|Number=Plur
alle al ADJ Degree=Pos|Number=Plur
menniskju menniskja NOUN Case=Nom|Definite=Ind|Gender=Neut|Number=Plur
mennesker menneske NOUN Definite=Ind|Gender=Neut|Number=Plur
eru vera VERB Mood=Ind|Number=Plur|Tense=Pres
er være AUX Mood=Ind|Tense=Pres|VerbForm=Fin|Voice=Act
fødd føða VERB Case=Nom|Definite=Ind|Gender=Neut|Number=Plur
født føde VERB Definite=Ind|Number=Plur|Tense=Past|VerbForm=Part
fræls frælsur ADJ Case=Nom|Definite=Ind|Gender=Neut|Number=Plur
frie fri ADJ Definite=Ind|Degree=Pos|Gender=Neut|Number=Plur
og og CCONJ _

Table 5.2: Lemma, parts-of-speech and morphological attributes for the five words
of the first sentence of the first article from the Universal Declaration of Human
Rights in Danish and Faroese. Most cognate words have the same UPOS and a
similar morphological analysis. The two last columns make up the delexicalised
words.

dependency parsing. Thus, if even tagging resources are not available, it may be
unwise to try to parse a language. Indeed some people have tried to do parsing
without gold POS information [SACJ11], and it should be possible given enough
data and a proper word representation. But it requires a lot of data which in
general is not available for those lesser spoken/studied languages. Thus we make
the assumption that morphological information is available at parsing time.

We call delexicalised word a part-of-speech adjoined with a (possibly empty) set
of morphological attributes. For example looking at Table 5.2, the delexicalised
words would correspond to the combination of the two last columns. Thus the
delexicalised version of øll would be:

DET, {Case=Nom, Definite=Ind, Gender=Neut, Number=Plur},

meaning that øll is a determiner. As a determiner it is indefinite and it has the
form of a nominative plural neuter. Likewise, the delexicalised version of og would
simply be CCONJ, {} as it is a coordinating conjunction and does not inflect further.

Table 5.2 shows lemmas, parts-of-speech and morphological attributes for a few
Danish and Faroese words from Table 5.1. We see that, whilst most of the lemmas
(and forms) are different, their parts-of-speech and morphological analysis are
very similar. Furthermore, beside for cases and gender that are genuinely different
between Danish and Faroese, the differences are mostly annotation artifacts, such
as the auxiliary/verb treatment of the copula, as mentioned in the section 4.2 about
the Universal Dependencies project. Incidentally, there is also a lot of overlap
between the related forms and lemmas, which might seem a good argument in
favour of character based representations as they would factor out the differences
and focus on the similarities. However, there are languages grammatically close
enough to help each other but that use different writing systems thus preventing
a direct use of character representations. Table 5.3 gives the same first sentence
of the Universal Declaration of Human Right, in Czech and Russian this time.
They are once again very similar but they are written with different alphabets.
This situation is less seldom that might seem, with many south Asian languages
being related but using their own writing system. The most striking example being
Hindi-Urdu, in which case, previous to India-Pakistan split, was a single language
with two different spelling conventions. While translitteration can seem appealing,

5.3. Representation Learning 84

Všichni lidé rodí se svobodní a sobě rovní co do důstojnosti a práv.
Все люди рождаются свободными и равными в своем достоинстве и правах.

Table 5.3: The first sentence of the first article from the Universal Declaration of
Human Rights in Czech and Russian. Even though the two versions are slightly
different, we can still see the similarities.

Je mange du fromage avec des raisins.
(Yo) como queso con uvas.

Table 5.4: The sentence I eat some cheese with grapes in French and Spanish.
Translations are aligned, but in this case are not cognates at all, except for the
pronouns which is optional in Spanish.

it is not always an option, especially when one language is using a logographic
system. There are also cases where because of borrowing or semantic shift, in very
close languages translations are not cognates and character based representations
do not help. Table 5.4 gives a more mundane example in French and Spanish
where despite the sentences being parallel, words are completely different. Those
examples are all arguments in favour of delexicalisation.

Obviously, many words will collapse to the same delexicalised version. Depend-
ing on the productivity of the inflectional system of each language, the number of
such delexicalised words will range between the low hundred to several thousands.
Table 5.6 in the experiment section below reports the number of delexicalised
words for the datasets we used. On the lower end, English has 118 delexicalised
words, while on the higher end, Finnish has 1592 delexicalised words (14 times
more).

5.3 Representation Learning
In principle, we could use one-hot encoded delexicalised words in our parsers.
Because there are much less delexicalised words than their lexicalised counterpart,
results would most likely increase thanks to sparsity reduction. But we would still
loose some important information on the way. For example, tokens only differing
in gender or number like NOUN, {Gender=Fem, Number=Sing} and NOUN,
{Gender=Neut, Number=Sing} would still be treated completely independently.
To avoid this, we will learn dense representations for those delexicalised words.
This will be done by factorising a co-occurrence matrix based on some structured
delexicalised contexts that we define just below.

5.3.1 Delexicalised Contexts
Delexicalised words can be seen as yet another vocabulary alongside plain word
forms, lemmas, part-of-speech and so on. Thus, they can be used both as token
to be embedded and as context tokens. But there are a few things on which to be
careful. First, contexts are most of the time lexicalised, thus giving matrices with
tens of thousands of dimensions while there are sometimes only a few hundreds (or
less) delexicalised words. The co-occurrence distributions over delexicalised con-
texts will thus likely be very different from the one with lexicalised contexts. One
might need to use different re-weighting schemes to treat the matrix for example.

85 Chapter 5. Delexicalised Word Representation

The second point has to do with cross-lingual delexicalised words. We want to
learn delexicalised representation in a multi-lingual setting, hoping that by sharing
information between languages, their own representations will be better. As we
have mentioned earlier, the biggest barrier to multi-lingual NLP is cross-lingual
word identification (knowing that car, voiture and bil are the same thing). Delexi-
calised representations avoid this problem by sticking to morphological attributes
that are more easily identified across languages. Even though getting rid of lemmas
is first step toward cross-lingual representations and works well for some languages
with similar grammar, sometimes it is not enough. Two very close languages might
have grammars different enough so that delexicalised words from one are highly
unlikely to appear in the other.

Looking back at Table 5.1 and 5.2, Danish and Icelandic and Faroese have very
similar grammar but Faroese and Icelandic have declensions while Danish does
not. Faroese/Icelandic nouns, pronouns and adjectives fully inflect for case and
gender in addition to number and definiteness also present in other north Germanic
languages. This means that despite being similar, Icelandic nouns and Danish ones
will hardly ever collapse to the same delexicalised word. Whilst this might not be
a problem for tokens to be embedded – we want to keep the information that a
nominative is different from an accusative – this is a problem for contexts because
for languages to share information, they need to share contexts. It is all the worse
as the contexts most likely to be shared are those least informative contexts such
as conjunctions and punctuations (og in Table 5.2).

One way to increase the number of shared contexts and thus to share more
information between languages is to truncate the delexicalised words used as con-
texts to make them less specific. For example, keeping only two attributes (on
top of the POS) instead of four would turn the delexicalised version of Faroese øll
from:

DET, {Case=Nom, Definite=Ind, Gender=Neut, Number=Plur},
that is never met in Danish, to the six shorter:
DET, {Case=Nom, Definite=Ind}, DET, {Case=Nom, Gender=Neut},
DET, {Case=Nom, Number=Plur}, DET, {Definite=Ind, Gender=Neut},
DET, {Definite=Ind, Number=Plur}, DET, {Gender=Neut, Number=Plur},

out of which three are also present in Danish. This way, information will flow more
easily between languages.

Another possibility is to use directly single POS or single attributes as contexts.
It might make sense for parts-of-speech, despite their impoverished information
content with regard to full delexicalised words. Indeed, some words do not inflect
and some languages do not rely on morphology at all, so bare POS is the best we
can have in those cases. We investigate it in the experiment section. However,
it is harder to stand for attributes as because of agreement and government, the
same attributes can be borne by different words for different reasons thus encoding
different information in different contexts. For example in many languages, the
plural number can be marked on verbs, nouns, adjectives and determiners, for very
different reasons though. In nouns, the number is a semantic feature chosen by
the speaker or sometimes enforced by the language (trousers is always a plural in
English). However, determiners and adjectives agree in number with the noun that
governs them, and verbs agree in number with the noun they govern6. Similarly,

6In most European languages, verbs do agree with their subject, but there are languages
where verbs agree with their object or both the subject and object.

5.3. Representation Learning 86

The cat sat on a mat .left right

sibling

sibling

down

up

Figure 5.1: Examples of contexts on a dependency structure. Dotted lines rep-
resent sequential contexts (right and left) context. Plain lines represent depen-
dency structured contexts (parent (up), dependent (down) and composed sibling).
Dashed lines represent the rest of the dependency structure.

in languages that mark cases on both nouns and adjectives, adjectives agree in
case with their governing noun, while noun cases are governed by the syntactic
relation they bare with their governing verb (subject, object or any other).

However, it is important to note that context truncation might unbalance co-
occurrence counts. For a word appearing in the context of øll, if we keep the full
attribute set, øll will trigger once, but if we consider subsets of two attributes
instead, it will trigger six times. Suddenly, a word with many attributes will have
a bigger weight than a word with less attributes. Similarly a language with many
attributes will have a bigger weight than a language with less attributes.

We also add special tokens such as begin and end to represent the word before
the beginning and the end of a sentence. We have a root token that stands for the
extra root node added by the graphical dependency model.

Now that we are equipped with delexicalised words that allow information to
be shared between languages, we need to provide a typology for those contexts
and we will use dependency information.

5.3.2 Structured Contexts
Truncated delexicalised words are only the vocabulary part of contexts. We also
need to choose some topology for those context. By topology we mean the relative
positions of the contexts and the tokens to be embedded. The most common con-
texts are windowed contexts centered around the tokens to be embedded. Small
windows have been shown to give syntactic flavour to the resulting representa-
tions [BGL14], and that is exactly what we need. To give it even more syntactic
knowledge, we can distinguish left context from right context, thus effectively dif-
ferentiating between words that appeared before and those that appear after.

As we want to learn representations tailored for dependency parsing, it seems
natural to include some dependency information as well in the contexts, like which
word depends on which and the like. It turns out we can extend the concept of
windowed context from sequences to arbitrary graphs. If we see a sequence of
words (a sentence) as a chain graph, traditional windowed contexts can be defined
as words appearing k edges remote from the center word of the window.

We now define some context functions. Let x be a sentence of length |x| = n
and let y be a dependency tree over x. Let rightx(i) (resp. leftx(i)) be the word
just to the right (resp. to the left) of xi in x. We pad the sentence with extra
safety words so that leftx(0) = BEG and rightx(n − 1) = END. Let upy(i) be
the governor of xi in y. We also add a special symbol here so that upy(r) = NIL,
where r is the root of y. Finally, let downy(i) be the (eventually empty) set of

87 Chapter 5. Delexicalised Word Representation

dependents of xi in y. Those functions can be composed and/or intersected to
create more complex contexts.

Traditional window contexts are only made of rightx and leftx. Using upy
and downy, one can define context such as parent (upy), child (downy), siblings
(downy ◦ upy), grand-parent (upy ◦ upy) and so on. We call the span of a context
the number of functions that are composed to define it. The parent context is a
context of span 1 because it is the result of applying once the upy function. The
grand-parent context has span 2 because it is the result of composing two upy.
Likewise, the sibling context is also of span 2 because it is the result of composing
one upy with one downy. Similarly, the second word to the right is also of span 2
because it is the result of applying two rightx.

Let f+ note the transitive closure of a function f , so that right+x (i) for example
is the set of words in x appearing to the right of xi no matter how far. Then we
can define the right siblings of word xi as rightsiby(i) = downy ◦upy(i)∩right+x (i).
Similarly we can define left siblings, right children and so on.

Figure 5.1 shows some structured context for the word mat on our running de-
pendency example. The parent context (one application of upy) of mat is sat. The
delexicalised form of mat is NOUN, {Number=Sing}. The delexicalised form of
sat is VERB, {Mood=Ind, Tense=Past, VerbForm=Fin}. If we consider morpho-
logical attribute sets of length 2 for our delexicalised context, then NOUN, {Num-
ber=Sing} would trigger VERB, {Mood=Ind, Tense=Past}, VERB, {Mood=Ind,
VerbForm=Fin} and VERB, {Tense=Past, VerbForm=Fin} for its parent context.

With truncated delexicalised words and dependency based geometry, we can
make structured delexicalised contexts that will allow to share syntactic informa-
tion between languages.

5.3.3 Structured Delexicalised Contexts

Before seeing how we actually induce representations for delexicalised words, we
shall say a few words about the interaction between the vocabulary and the topol-
ogy of the contexts (in our case, the interaction between delexicalised contexts and
structured contexts). More precisely, we shall see why it might be useful to have
different sizes of delexicalised words for different context types.

As Bansal et al. [BGL14] have shown, narrow windowed contexts give a syn-
tactic flavour to the representations the are used to learn. This is expected, espe-
cially for languages with a strict word order as most of the syntactic information
is analysable from neighbouring words. For example, in English or French or other
languages with strict word order, if in a sentence one finds a determiner (such as
the) and the second next word is a noun (say car), then one can easily deduce
that the word in between is to be an adjective (including participles) (say red) or
a (proper) noun but not a finite verb for example. On the other hand, wide win-
dowed context are less syntactically informative. In an English sentence, what can
one say of a word knowing that the fifth word to the right is a pronoun? Nothing.
The word coming just after a determiner is rather well defined, but five words from
it, we could be in a different clause, in a different sentence even.

This is just as true of dependency structures. Most syntactic information
encoded in the syntactic structure can be retrieved from the governor and the
dependents of a word. Indeed, in most languages that show some sort of mor-
phological agreement or government, it happens between a word and its direct

5.3. Representation Learning 88

governor or dependents7. For example, in Latin or German, where possession is
expressed morphologically by the genitive case, the genitive is used for possessors
irrespective of the syntactic role and case marking of the possessed word. Compare
librum fratris mei lego (I read my brother’s book) and liber fratris mei magnus est
(my brother’s book is big), the genitive fratris mei does not change whether liber
appears in nominative (subject) or in accusative (object) librum.

Those remarks argue in favour of giving more weight to the syntactic informa-
tion of directly neighbouring words and less to more remote words in the sentence
or in the dependency graph. A way to do achieve this is to allow different length
of delexicalised words for different context typologies. For example, in Figure 5.1,
the word a depends on mat which depends itself on sat. The delexicalised word
for a could trigger only the bare POS of sat instead of all the attribute subsets
that mat would trigger.

Thus to fully specify a context, one needs to give a vocabulary, some context
topology, and some composition rules that tell which vocabulary token is to appear
in which context position. In our case, the vocabulary would be delexicalised words
and their truncation, the topology is made of windows in the sequence and windows
in the dependency structure, and the rules could specify that only bare POS are
to be used for context of distance greater than 2.

5.3.4 Dimension Reduction
Given a vocabulary to embed, a vocabulary and a geometry for the context, and a
corpus annotated for dependency structure and morphological attributes, one can
gather a delexicalised words co-occurrence matrix. But as we mentioned earlier,
this matrix is far too big to be usable in practice, thus we perform some dimension
reduction to have lighter representations. Whilst there are many different dimen-
sion reduction techniques available, we have chosen principal component analysis
(PCA) for it is both simple and has been shown to give similar results as more
involved methods such as Word2vec [LG14].

Let M ∈ N|V|×|C| where V is the vocabulary of delexicalised words and C the set
of delexicalised contexts, be the co-occurrence matrix such that Mij is the number
of times token Vi appears in context Cj in a corpus T . Let M∗ ∈ N|V∗|×|C| where
V∗ is the vocabulary of part-of-speech, be another co-occurrence matrix such that
M∗

ij is the number of times POS V∗
i appears in context Cj in corpus T . Because

of the Zipfian nature of languages, many words will only appear a small number
of times. Because PCA is sensitive to those words and to have a more robust
projection, we discard delexicalised words that appear less often than a threshold
η. We do the same for contexts. By removing words and contexts repeatedly we
could end up removing more than necessary, so in practice we only remove words
and contexts that are too rare once. The matrix Mη results from removing rows
and columns from M that sums up to less than η. Columns removed from M are
also removed from M∗ giving M∗

η .
Let M ′ ∈ R|V|×|C| be the re-weighted version of Mη such that M ′

i =
Mηi

‖Mηi‖2 ,

7There exist indeed a few languages where case marking stacks up. Where the possessor of
an object is marked with both accusative and genitive while the possessor of a subject is marked
with nominative and genitive for example. But this is a rather marginal phenomenon across
languages and thus we disregard it here. For more information about stacking of case markers
and how syntactic information can propagate further than dependents, see the book by Blake
[Bla01].

89 Chapter 5. Delexicalised Word Representation

where Mηi is the i-th row of Mη. We re-weight M∗ in the same way to have M ′∗.
Then PCA is applied to M ′ as follows :

M ′>M ′ = UV 2U>,

where M ′>M ′ is the co-variance matrix of the contexts, U ∈ R|C|×|C| is the matrix
of eigenvectors of the co-variance matrix and V ∈ R|C|×|C| is the diagonal matrix of
eigenvalues of the co-variance matrix. The principle of PCA is to project M ′ onto
the subspace spanned by it principal eigenvectors, also called principal components.

R = M ′U>
d ,

where Ud is the matrix of the d first eigenvectors from U sorted by decreasing order
of their associated eigenvalue. The resulting matrix R has size |V| × d, where d is
the dimension of the induced representation.

The PCA is also interesting as it can be seen as inducing context representations
(the Ud matrix). One can then use this context matrix to induce representation
for tokens whose count vectors where kept out of the M ′ matrix used to compute
the PCA. We use this to compute a representation for the bare parts-of-speech:

R∗ = M ′∗U>
d ,

that will be used as back-offs for delexicalised words that were either unseen or
discarded previous to normalisation. The whole embedding process is summed up
in Algorithm 7.

The PCA applied to co-occurrence matrix of delexicalised words and structured
delexicalised contexts, leaves us with dense representations of delexicalised words
that contain syntactic information. This dense representation clashes with tradi-
tional sparse feature vectors. For this reason, some people like Chen et al. [CZZ14]
have tried to sparsify those representations, using either clustering algorithms or
binning techniques. However, it seems surprising to turn a sparse representation
(a co-occurrence matrix) into another sparse representation (e.g. a cluster id) via a
dense representation, thus loosing part of the information held by the intermediary
dense representation. Thus, we keep the dense representation and pay attention
not to let the memory consumption of our method overblow, as we shall see in
next section.

5.4 Dependency Parsing with Delexicalised Word
Following the same approach as Kiperwasser and Goldberg [KG15], Chen et al.[CZZ14]
and Bansal [Ban15], we use the learned morphological representation to comple-
ment the traditional sparse features from McDonald [MCP05a]. Those features
encode information about the form and part-of-speech of the two ends of the de-
pendency relation, plus the parts-of-speech of surrounding words and in between
words as well as the signed length of the relation. In the original paper, McDonald
et al. use the prefix consisting of the 5 first characters of a word as a back-off for
unseen words. Instead, we use the lemma as provided by the treebanks for our
experiments. The detailed feature templates are repeated in Table 5.5 with the
necessary corrections.

Once the structured delexicalised co-occurrence matrix M has been reduced
to a new representation matrix R for delexicalised words, we need to turn those

5.4. Dependency Parsing with Delexicalised Word 90

Data: a set of examples D, some context typology C,
three integers l, d, η
Result: embeddings E and E∗ for delexicalised words and bare POS
begin

Collect all the delexicalised words, POS and delexicalised contexts,
V = {(pos(w) : morph(w)) | w ∈ x, x ∈ D}
V∗ = {pos(w) | w ∈ x, x ∈ D}
C = {(c, p : σ) | (p, µ) ∈ V , σ ∈ subset(µ, l), c ∈ C}

Fill co-occurrence matrices for delexicalised words and POS,
Instantiate M ∈ N|V|×|C|, M∗ ∈ N|V∗|×|C|

M = 0, M∗ = 0,
for x ∈ D do

for w ∈ x do
i← V .index((pos(w) : morph(w)))
i∗ ← V∗.index(pos(w))
for j, w appears in context Cj do

Mij += 1
M∗

i∗j += 1

Discard rows and columns with to low counts and normalise rows,
Instantiate SV ∈ N|V|, SC ∈ N|C|

SVi =
∑

j Mij, ∀i
SCj =

∑
i Mij, ∀j

for j ∈ [0..|C|] do
if SCj < η then

Delete column M·j
Delete column M∗

·j

for i ∈ [0..|V|] do
if SVi < η then

Delete row Mi·
else

Mi· =
Mi·

‖Mi·‖2

for i∗ ∈ [0..|V∗|] do
M∗

i∗· =
M∗

i∗·
‖M∗

i∗·‖
2

Dimension reduction via PCA,
U, V = PCA(M), (M>M = UV 2U>)
E = MU>

d , E∗ = M∗U>
d

return E, E∗

Algorithm 7: The embedding process for delexicalised words using struc-
tured contexts. The three integers are the maximum length of a delexicalised
attribute set l, the counting threshold η and the desired number of embedding
dimensions d. pos(w) is the part-of-speech of word w and morph(w) its mor-
phological attribute set. subset(S, l) is the set of subsets of S of length l or
less.

91 Chapter 5. Delexicalised Word Representation

Uni-gram
H-form, H-pos
H-form
H-lemma, H-pos
H-lemma
H-pos
D-form, D-pos
D-form
D-lemma, D-pos
D-lemma
D-pos

Bi-gram
H-form, H-pos, D-form, D-pos
H-form, H-pos, D-form
H-form, H-pos, D-pos
H-form, D-form, D-pos
H-pos, D-form, D-pos
H-form, D-form
H-lemma, H-pos, D-lemma, D-pos
H-lemma, H-pos, D-lemma
H-lemma, H-pos, D-pos
H-lemma, D-lemma, D-pos
H-pos, D-lemma, D-pos
H-lemma, D-lemma
H-pos, D-pos

Tri-gram
H-1-pos, H-pos, D-pos
H-pos, H+1-pos, D-pos
H-pos, D-1-pos, D-pos
H-pos, D-pos, D+1-pos

Tetra-gram
H-1-pos, H-pos, D-1-pos, D-pos
H-pos, H+1-pos, D-1-pos, D-pos
H-1-pos, H-pos, D-pos, D+1-pos
H-pos, H+1-pos, D-pos, D+1-pos

In Between
H-pos, B-pos, D-pos

Table 5.5: Feature templates for the one-hot edge feature vector for dependency
parsing adaptated from [MCP05a]. H stands for the head of a relation, D for the
dependent, ±1 selects the word before/after the given word. B is any word in
between the Head and the Dependent of the relation. We use normal word forms
and parts-of-speech but contrary to McDonald et al. citemcdonald2005spanning, we
use lemmas as back-off instead instead of truncated forms. All those templates are
further completed with the binned signed length of the relation.

5.5. Experiments 92

representation into feature vectors in order to score edges. Because we are dealing
with dense vectors, we have to be careful about the size of the final edge represen-
tation. Big dense vectors take a more of memory to store and more time to process
than their sparse counterparts. In order to have both contextual information, and
governor-dependent interaction whilst keeping the size of the feature vectors rea-
sonable, we use the outer product of the governor centered trigram concatenated
vectors with the dependent centered trigram. On the one hand, if we used only
concatenation of the different words representations, the model would not learn
about their interaction but only how likely is a word to be governor and how likely
it is to be dependent. But on the other hand, using outer products to represent
the complete edge context interaction would blow the memory up.

More formally, let ⊕ note vector concatenation and ⊗ vector outer product.
Let vec(•) be the vectorisation operator that turn a matrix of size p × q into a
vector of length pq. Given a sentence x and an edge eij whose governor is xi

and whose dependent is xj. Let xi = Rxi
be the representation of word xi. The

embedding based feature vector φR is defined as:

φR(eij) = vec[(xi−1 ⊕ xi ⊕ xi+1)⊗ (xj−1 ⊕ xj ⊕ xj+1)].

Thus φR is of length 9d2 where d is the length the embedding vectors of R. If
we had used the outer product of those 6 word representations instead, we would
have a length of d6. With word representations of 50 dimensions, we would go
from 22.5× 103 to 15.625× 109, which in 32 bits precision makes 500Gb (against
720kb) and does not fit in most computers RAM.

The score of an edge is then computed as:

scoreθ(x, eij) = θ · [φ(eij)⊕ αφR(eij)] . (5.1)

Where α is a scalar parameter allowing to tune the relative importance of each
part of the compound feature vector, φ is the traditional MST feature vector and
φR is our augmentation defined in term of delexicalised word representations.

Edges are equipped with feature vectors based on both a traditional sparse
part and a dense morphological part. The model vector θ is then learned by the
PA-II algorithm [CDK+06], and the trees are retrieved by the Eisner algorithm
[Eis96]. The whole parsing process is summed up in Algorithm 8.

5.5 Experiments

5.5.1 Settings
Experiments Description

We have carried out two experiments: monolingual and cross-lingual to test our
hypotheses. To assess the usefulness of using the dependency structure for learning
the representations, in the first experiment, for each language we compare the
results of parsers using embeddings induced on the language own training set with
varying embedding typologies and sizes.

To test the relevance of cross-lingual information for learning the represen-
tations, in the second experiment, we have defined several clusters of languages
based on their phylogenetic relationship and typological similarities and used them
as source data for the embedding induction. For a given cluster, embeddings are

93 Chapter 5. Delexicalised Word Representation

Data: a set of example D, an integer k, two floats C and α,
a feature function φ(•), embeddings R and R∗

Result: a weight vector θ
begin

d = dim(φ(•)) + 9 dim(E)2

Instantiate θ0 ∈ Rd

for it ∈ [0..k] do
for (x, y) ∈ D do

l = len(x)

Instantiate W ∈ R(l+1)×l

foreach edge eij, i ∈ [0..l], j ∈ [1..l] over x do
φR(eij, x) = vec[(xi−1 ⊕ xi ⊕ xi+1)⊗ (xj−1 ⊕ xj ⊕ xj+1)]
Wij = θt · [φ(eij)⊕ αφE(eij)]

ŷ = Eisner(W)

if θt · [Φ(ŷ)−Φ(y)] + 1 > 0 then
τ = θt·[Φ(ŷ)−Φ(y)]+1

‖Φ(y)−Φ(ŷ))‖2+ 1
2C

θt+1 = θt + τ [Φ(y)−Φ(ŷ)]

return θt

Algorithm 8: Online training process of a linear dependency parser using
delexicalised words representations to complement traditional edge features.
The update rule used is the one of the Passive-Aggressive II algorithm.

5.5. Experiments 94

Train Test
sentences words sentences words delexicalised words POS

English 12 543 204 586 2 077 25 096 118 17
Basque 5 396 72 974 1 799 24 374 845 16
Finnish 12 217 162 721 648 9 140 1 592 15
French 14 557 356 216 298 7 018 195 17
Gothic 4 360 44 722 485 5 158 662 13
Hebrew 5 142 15 558 491 12 125 480 16
Hungarian 1 433 23 020 188 4 235 651 16
Romanian 4 759 108 618 794 18 375 412 17

Table 5.6: Number of sentences and words in the training and test sets, number
of delexicalised word and of POS-tags for each language. The total number or
embedded tokens is |morpho-syntactic feature set| + |POS| + 3 because of the
POS back-offs and the special begin, end and root tokens.

learned on the union of the training sets of each language in that cluster, and in
turn used to parse each language in that cluster. The exact clusters identity are
given in Table 5.9. In principle, it is possible not to use any data from the target
language when learning the embeddings, but in this study we stick to using target
language data. It is worth noting here that in this setting, the actual parsers are
trained on monolingual data, only the delexicalised representations are trained on
multi-lingual data.

For both experiments, the baseline is a simple parser that does not use any
extra representation to complement the tradition sparse feature vector.

Dataset

We have tested our parsing models based on delexicalised word embeddings on
eight languages from the Universal Dependencies project (UD) v1.3 [NdMG+16].
We have chosen to work on English (en), Basque (eu), Finnish (fi), French (fr),
Gothic (got), Hebrew (he), Hungarian (hu) and Romanian (ro). These languages
belong to four different families, which are Indo-European (en, fr, got, ro), Finno-
Ugric (fi, hu), Semitic (he), and Basque (eu) which forms a separate group. They
also display various levels of morphological complexity not correlated with the
families (English, French and Hebrew do not have case marking in nouns while
the other five do to various degrees) as well as different grammatical typologies
(Basque is an ergative8 language, while the other seven are accusative ones). When
several corpora are available for a language, we picked the canonical one. Table 5.6
provides some basic statistics on the language datasets. Our experiments follow
the train/dev/test split as provided by the treebanks.

Embedding Contexts

For the embedding contexts, we consider four parameters, namely the typology and
span of contexts, the maximum length for morphological attributes set truncation

8Ergative and accusative are two syntactic alignment types. While in accusative languages
like French and English, we treat subjects of intransitive verbs (Peter falls) the same way as
subjects of transitive verbs (Peter eats pastas), ergative languages treats them like objects of
transitive verbs (Peter eats pastas). This leads to differences in case marking and conjugation
when they are used.

95 Chapter 5. Delexicalised Word Representation

Contexts
Seq 1 left0, right0
Seq 2 left0, right0, second-left0, second-right0
Seq 3 left∗, right∗, second-left0, second-right0
Struct 1 parent0, child0

Struct 2 parent0, child0, grand-parent0, grand-child0, sibling0

Struct 3 parent∗, child∗, grand-parent0, grand-child0, sibling0

Mix 1 left0, right0, parent0, child0

Mix 2 left0, right0, parent0, child0, second-left0, second-right0, grand-parent0, grand-child0, sibling0

Mix 3 left∗, right∗, parent∗, child∗, second-left0, second-right0, grand-parent0, grand-child0, sibling0

Table 5.7: Details of the embedding contexts. The relations are defined as describre
in section 4.3.2. The subscript represents the lengths of the attribute sets in
delexicalized contexts, 0 stands for bare POS and ∗ for all the possible subsets.

used in those contexts and the dimension of the embedding space. Regarding the
typology of contexts we have experiments with three settings: (i) strictly sequential
contexts (Seq), (ii) strictly structural contexts that use governor, dependents and
siblings information (Struct) and (iii) mixed contexts using both dependency-
based and sequential contexts (Mix). Regarding the span, we have tried 1 and 2.
Siblings are only used in structural and mixed contexts of span 2 because that is
the length of the path between a vertex and its siblings in a tree (cf. Figure 5.1).
For the length of attributes subsets in delexicalised contexts, we have tried bare
POS (length of 0) and the full power set of the attributes (all possible subsets).
For the embedding space dimension we have tried 50, 150 and 500 dimensions,
or the maximum possible size9 if smaller than 500. For better readability, we use
shortcuts to refer to the different parameter settings: 1 = (span 1, max length 0),
2 = (span 2, max length 0) and 3 = (span 2, full lengths for contexts of span 1,
max length 0 for contexts of span 2). The context composition is detailed in Table
5.7.

Experimental Settings

Besides embeddings, there are three additional hyper-parameters that need to be
tuned: the C aggressiveness parameter of the PA-II algorithm, the scaling factor
α that controls the relative weight of the embedding features in the edge scores
as shown in equation 5.1, and the number i of training iterations of the PA-II
algorithm. We have tuned these hyper-parameters through a grid search on the
development sets and picked the values that gave best results on average, giving
C = 0.001, α = 0.001, i = 5.

All the scores reported below are Unlabeled Attachment Scores (UAS) mea-
sured on the test sets ignoring the punctuation marks. The result tables are already
heavy and because each embedding type can exist in 3 sizes, we only report the
best score of the three sizes on the test set. It is slightly unusual, but as we just
want to test our hypotheses and not necessarily to compare to other methods, it
is not an issue. We computed the significance of the scores using the McNemar’s
test.

9Spectral-based dimension reduction such as PCA are limited by the number of eigenvectors
of the matrix to be reduced. For example a matrix of size 200× 500 can only be reduced into a
200× n matrix where n ≤ 200 via PCA. When the number of eigenvectors is smaller than 500,
we use that value instead.

5.5. Experiments 96

Baseline Seq 1 Seq 2 Seq 3 Struct 1 Struct 2 Struct 3 Mix 1 Mix 2 Mix 3
En 85.62 86.07?

40 85.92∗
80 86.06�

121 86.01�
37 85.95∗

121 85.94∗
50 86.10?

77 86.19?
50 85.84121

Eu 76.65 76.6038 76.7076 76.73500 76.6735 76.85119 76.90150 76.6650 76.72150 76.80500

Fi 79.97 80.4436 80.4472 80.71�
150 80.58∗

33 80.35114 80.58∗
50 80.92?

69 80.4050 80.60∗
50

Fr 83.99 83.4840 83.5550 83.47150 83.4237 83.68128 83.71150 83.6177 83.89150 83.84198

Got 79.16 78.9532 79.1050 79.57500 79.2428 79.3150 80.09�
500 79.5950 79.62150 79.62500

He 84.05 83.8738 83.8650 84.2450 84.1835 84.3250 84.14150 84.3250 84.3450 84.36150

Hu 79.15 79.2338 80.13∗
76 79.83∗

500 79.6734 80.13�
118 79.69500 79.94∗

50 79.6450 79.8050

Ro 81.35 81.3440 81.2980 81.21415 81.0037 81.3850 81.29150 81.3050 81.26150 81.21415

Table 5.8: Best UAS scores for each embedding type in monolingual setting. The
best score for each language are in bold. Results below the baseline are underlined.
The statistical significance (using McNemar’s test) of an improvement over the
baseline is indicated with a superscript mark: ∗ stands for a significance with a
p-value inferior than 0.05, � stands for p ≤ 0.01 and ? for p ≤ 0.001. The length
of the embeddings is reported as a subscript.

5.5.2 Results
Monolingual Experiments

Table 5.8 displays UAS scores for the monolingual setting. Except for French
and Romanian that do not show real improvement, the six other languages show
substantial performance increases with the embeddings. These improvements are
statistically significant for all languages, except for Basque and Hebrew. One of
our hypotheses was that structure is important when learning an embedding for
dependency parsing and indeed our results support it. The largest improvements
appear with structured or mixed embeddings which rely on syntactic structures.

The results for English are significant and close to each other for all types
of embeddings, this tends to show that in English, sentence structure and word
order are very correlated and both contribute information. Indeed that is what
one expects for English which has a rigid syntax and a poor morphology.

On the other side of the picture, Basque and Gothic display the largest im-
provements with structured morphological embeddings. This is also expected as
those are both morphologically rich languages with more flexible word order. Even
though the argument is less clear for Hungarian and Finnish, they both show that
structure is important for learning informative dependency embeddings.

Cross-lingual Experiments

Table 5.10 summarises the UAS scores achieved using delexicalised embeddings
learned on several languages. Parsing accuracy improve for four languages (en,
eu, hu, ro) in the cross-lingual setting compared to the best monolingual setting.
While the multilingual embeddings do not outperform the monolingual ones for the
other four languages, they still deliver parsing performance that are better than
with the baseline MST parser for all languages (but Gothic and French). That
shows that indeed using data from other languages is beneficial for learning good
embeddings for dependency parsing, which was the second hypothesis we wanted
to evaluate. We also notice that the largest gains are achieved with structural (or
mixed) embeddings, giving more evidence of the importance of using structure for
learning embeddings for dependency parsing.

Let us now look more closely at which groups of source languages are most

97 Chapter 5. Delexicalised Word Representation

Cluster Languages
All en, eu, fi, fr, got, he, hu, ro
Noun Declension eu, fi, got, hu, ro
No Noun Declension en, fr, he
Indo-European en, fr, got, ro
Indo-European Declension got, ro
Romance Friendly en, fr, ro
Germanic en, got
East Europe hu, ro
Finno-Ugric fi, hu

Table 5.9: Clusters used for training cross-lingual delexicalised representations.

Language Baseline Best Best Best
Mono All Multilingual

English 85.62 86.19? 86.18?
seq3,50 86.32?

en,got,mix3,50

Basque 76.65 76.90 76.97∗
struct3,50 76.68decl,seq2,50

Finnish 79.97 80.92? 80.89?
struct2,50 80.81�

decl,seq2,50

French 83.99 83.89 83.87struct1,37 83.89en,fr,ro,mix1,77

Gothic 79.16 80.09� 79.80struct2,50 79.99∗
got,ro,mix3,500

Hebrew 84.05 84.36 84.32seq3,150 84.13en,fr,he,mix1,77

Hungarian 79.15 80.13∗ 80.05∗
mix2,150 80.30�

decl,struct1,37

Romanian 81.35 81.38 81.31seq3,150 81.52hu,ro,mix3,50

Table 5.10: Best UAS scores in cross-lingual setting. Under Best All are the
results using the embeddings learned on the set of all languages, while under Best
Multilingual are given the best results for each language using only a subset of
the languages for learning the embedding. The subscript represents the context
types and the number of dimensions of the embedding. The baselines and best
monolingual scores are also reported. The statistical significance (using McNemar’s
test) of an improvement over the baseline is indicated with a superscript mark:
∗ stands for a significance with a p-value inferior than 0.05, � stands for p ≤ 0.01
and ? for p ≤ 0.001.

5.6. Conclusion 98

helpful for specific target languages. First, note in general the best performing
embeddings are never those obtained by using the full set of languages (this is
only the case for Basque). This is expected since we have picked languages with
very different grammars thus the full embeddings can be very noisy with regard
to a single language. In fact, the Basque results are rather surprising since this
language differs the most from the others in terms of morphology, but also one for
which we had rather small training data.

The best parsing performance for English are achieved when using additional
data from Gothic. As both are Germanic languages, this tends to show that
data from genetically related languages can help in learning a better representa-
tion. Even though they do not achieve the best results, similar patterns occur
for French (French and Romanian are Romance languages and English has been
heavily influenced by Romance languages) and for Gothic (Gothic and Romanian
are both case marking Indo-European languages). Similarly, Hungarian and Ro-
manian reach their best scores when parsed with typologically close languages that
have case marking. And again, Basque, Finnish and Gothic display similar pat-
terns. Hebrew performs reasonably well with French and English which are two
languages with fairly restricted word orders and no case marking like Hebrew.

As to why some languages have better monolingual parsing results than mul-
tilingual results, we think this is at least partly due to the lack of flexibility of our
model. That is, morpho-syntactic attributes sets are treated independently from
one another making some of them hard to use in the cross-lingual setting. For
example, Hebrew verbs display ‘binyanim’ (internal flection classes) that do not
appear in any other language, similarly Finnish has a lot of cases that are not found
in other languages. Those are indeed two languages that do not perform well with
other languages. We thus believe that introducing compositionality in our embed-
ding model should help in solving those problems and enhance the results further.
While varying word order could also explain the poor parsing results when using
sequential contexts, structured contexts should be immune to this problem, but
they do not show much better results, therefore implying that exotic morphology
is a bigger problem than word order.

5.6 Conclusion
In this first work, we have learned representations for morphological attributes sets
that we have called delexicalised word embeddings. By using them in complement
to more traditional features in a parser, we have shown that using syntactic struc-
ture in training the representations is beneficial for dependency parsing. This is
expected and agrees with previous results from Kiperwasser et al. [KG15], Chen
et al. [CZZ14] and Bansal [Ban15, BGL14].

We have also shown that in a monolingual setting, using representations learned
from multiple languages can be beneficial if languages are well assorted. We left for
future work the task of automatically finding good languages clusters and of learn-
ing composable morphological attributes representations for unseen delexicalised
words.

Chapter 6

Phylogenetic Learning of
Multi-Lingual Parsers

This chapter is based on a work accepted for presentation at NAACL 2019 [DD19].

One way to leverage data from several languages in order to improve their
overall parsing performance is to use multi-task learning techniques. In multi-task
learning [Car97] one has access to several data sets and/or several related objective
functions and the goal is to use those related objectives to improve on learning
each model.

For example, if one wants to perform translation of English sentences into
French and summarisation of English sentences, one could of course train a sep-
arate model for each task. But one can also notice that those tasks are in fact
very similar. Both imply understanding the input sentence to some extent, in
order to rewrite it in another language in the case of translation and with fewer
words and less details in the case of summarisation. Thus, one could benefit from
sharing information between the two tasks, especially between the component that
understands the input sentence.

There have been many different proposals for learning multiple tasks simulta-
neously [RBAS17, SRIV11, SG16]. Depending on the task similarities: are they
the same task on different data sets or different tasks on the same data set, or
even different tasks on different data sets but with similarities, and the relation
between tasks: should one task be applied before another in a kind of pipeline or
can they be performed in parallel, different methods can be applied.

In our case, we learn the same task (dependency parsing) with the same out-
put space (dependency trees) on different but related inputs (different languages).
Capitalising on the cross-lingually consistent morphological annotation of the Uni-
versal Dependencies data and following our hypothesis that morphology is stable
enough across related languages to serve as a bridge for syntactic information,
we will assume that all inputs live in the same morphological space. However, in
order to faithfully represent languages specificities, we will let each language have
its own parsing model and just share information across different models.

There are several ways of doing it. Assuming we have access to some similarity
measure between languages (in the shape of a graph), the simplest approach is
to learn a model for each language and only have them interacting once they are
fully trained in a transfer learning fashion. But we would prefer to have models
interacting already at training time so that each model could use more than just
its mono-lingual information. A possibility arising from the fact that languages

99

6.1. Related Work 100

are evolving entities that share ancestries, is to have models evolving alongside
their evolutionary tree.

In this chapter, we will present a new multi-task learning framework that uses
a fixed language evolutionary tree to guide the learning process of several parsing
models for the languages of the tree. This multi-task learning framework has an
interesting property. As it learns models for intermediary stages in the evolutionary
tree, it will allow us to perform zero-shot parsing (parsing of languages for which
we have no training data). If we know where a language without training data
sits in the tree, we can use the model of its last ancestor for which we have one to
parse it.

The remaining of this chapter is organised as follow. Section 6.1 reviews some
related works on multi-task learning and on multi-lingual dependency parsing.
Section 6.2 presents the phylogenetic learning framework that uses evolutionary
tree to guide learning multi-lingual parsing models. Section 6.3 introduces the
tree Perceptron which instantiate the phylogenetic learning framework with the
Perceptron algorithm and discusses some issues that arise when using averaged
Perceptron in this setting. Section 6.4 presents the neural architecture used for
the neural phylogenetic multi-lingual parser. Section 6.5 gives some experimental
results on multi-task methods for dependency parsing. Finally Section 6.6 closes
the chapter.

6.1 Related Work

6.1.1 Multi-Task Learning
In multi-task learning literature, task relationships are often given in the shape
of a graph that guides the learning process. In Cavallanti et al. [CCBG10] linear
models are learned for related tasks that live in the same space. Those tasks share
their Perceptron based parameter updates through a fixed similarity graph.

Bellet et al. [VBT17] extend the model propagation framework where pre-
trained models are propagated through a similarity graph to share information
between related tasks. They propose to add information about model confidence
in order to account for unbalance in data distribution and/or quality across tasks
for example.

Kumar et al. [KDI12] propose to learn the similarity structure of the tasks at
the same time as the task models themselves. They assume that the surface tasks
for which they want to learn a model are in fact linear combinations of a set latent
tasks that is shared for all surface tasks. They then propose an algorithm to learn
the parameters of the latent tasks as well as the weight of those latent tasks in the
surface ones.

More recently, with the advances in neural network architectures, it has been
proposed to supervise different parts of the networks with different tasks. For
example, in Søgaard et al. [SG16], task hierarchy is directly encoded in the neural
model allowing tasks with different output space to share parts of their parameters.
Low layer neurons receive feedback from both POS tagging and CCG parsing, while
higher layer neurons only receive feedback from CCG parsing.

However, all those works have in common that they assume fix task relation-
ships. Even in Kumar et al., the relationship structure of the tasks changes be-
cause it is learned, but it converges to an optimum which is supposedly fix. In
the present work, we assume the relationship between tasks can evolve over time.

101 Chapter 6. Phylogenetic Learning of Multi-Lingual Parsers

Changing level in the tree can be seen as splitting the similarity graph into dis-
joint sub graphs. This encodes information about task evolution that lacks in
other multi-task methods.

6.1.2 Multi-Lingual Dependency Parsing
In multi-lingual parsing, Ammar et al. [AMB+16] propose to train a single model
to parse many languages using both typological information, cross-lingual word
representations and language specific information. While their model gives good
results, they only apply it to 7 Germanic and Romance languages. It would be
worth doing the experiment with 50+ languages and see how the results would
change. However, because of language specific information their model would
probably become too big to fit in memory.

Naseem et al. [NBG12] propose to learn generative models for several languages
and to tie some parameters of those models according to typological similarity
between languages.

Aufrant et al. [AWY16] propose to tackle zero-shot parsing by rewriting source
treebanks to better fit target language typology. Assuming that typology is homo-
geneous in a language family, the phylogeny should drive models to be typologically
aware. However, that assumption might not always hold.

Eventually, the closest work from our in spirit is the one of Berg-Kirkpatrick
et al. [BK10]. They use a phylogenetic tree to guide the training of unsupervised
dependency parsing models of several languages, using ancestor models to bias
descendent ones. The main difference here beside supervision, is that we do not
use ancestor models as biases but rather as initialisation of descendent models.

Contrary to Waleed et al., Naseem et al. and Aufrant et al., we do not make
explicit use of typological information in our model, rather we use the phyloge-
netic tree as a surrogate assuming that typology of related languages should be
similar. Therefore, contrary to Naseem et al. that tie part of the parameters of
the generative models for different languages according to typological similarity,
we tie the whole discriminative models for different languages for an amount of
time that reflects their shared history. Also, while Waleed et al. use language
specific information alongside language agnostic one, we never explicitly use lan-
guage specific information, we just let independent parsing models evolve for each
language therefore capturing language specific information.

6.2 Phylogenetic Learning of Multi-Lingual Parsers
Languages change and evolve over time. A community that spoke once a single
language can be split geographically or politically, and if the separation is long
enough their language will diverge in direction different enough so that at some
point they might not be intelligible to each other. The most striking differences
between related languages are often of lexical and phonological order but grammars
also change over time.

Those divergent histories are often depicted in the shape of a tree in which
related languages whose common history stopped earlier branch off higher than
languages that have shared a longer common path [Jäg15, Cam13]. We hypoth-
esise that building on this shared history is beneficial when learning dependency
parsing models. We thus propose to use the phylogenetic structure to guide the

6.2. Phylogenetic Learning of Multi-Lingual Parsers 102

learning process of multi-lingual dependency parsers that will tie parameters be-
tween languages according to their common history.

In order to do so, we introduce a new multi-task learning framework that shares
information between tasks using a tree structure. The tree structure allows us to
share both model parameters and training samples between related tasks. We call
this new learning framework Phylogenetic Learning.

As our phylogenetic learning method can be used with any tree encoding tasks
relationships and any learning algorithm supporting fine-tuning, we will apply it to
multi-lingual dependency parsing, using a language evolutionary tree to guide the
learning process and we will explore it with the Perceptron algorithm as described
in Section 6.3 and with a neural parser described in Section 6.4. The Perceptron
is interesting because it is both a simple linear model and a very well studied
algorithm. However, linear models have limitations, amongst which not working
well with dense word representations which would actually be the easiest way to
lexicalise a multi-lingual parser. Thus we stick to a delexicalised model for the
Perceptron. Neural networks are much easier to lexicalise in multi-lingual setting,
notably by using character models, thus we also train a Multi-Lingual neural parser
in lexicalised and delexicalised regimes for comparison.

As our phylogenetic learning method induces parsing models for every inner
node in the phylogenetic tree, it can also perform zero-shot dependency parsing
of unseen languages. Indeed, one can use the model of the lowest ancestor (in
the tree) of a new language as an approximation of that language’s grammar. We
will also explore this possibility through experiment on data from the Universal
Dependency project.

6.2.1 Model Phylogeny
Languages evolve from earlier stages and sometimes a language will change differ-
ently in different places leading to different languages with a common ancestor.
This evolution process is often depicted in the shape of a tree in which leaves are
actual languages and inner nodes can be either attested ancestral languages or
their idealised reconstruction. Figure 6.1 gives an example of such a tree for a
subset of the Slavic family of Indo-European languages [SF18].

Just as languages evolve and diverge, so do their grammars. Assuming a pars-
ing model is a parameterised representation of a grammar, then we can expect
parsing models to evolve in a similar way as their languages. Likewise parsing
problems can be thought of as evolving problems. What was once a single prob-
lem (parsing sentences in Proto-West-Slavic) became a set of distinct but related
problems (parsing sentences in Czech, Polish, Slovak and Upper Sorbian) as Proto-
West-Slavic was evolving into its modern descendants. We thus take a multi-task
approach to solving those related problems.

We assume that the grammar of the last common ancestor is a good approxi-
mation of those languages grammars. Thus it should be easier to learn a language
grammar starting from its ancestor grammar than from scratch. There are how-
ever some issues with this assumption. First, a language grammar can be very
different from its ancestor one from two millennia earlier. Consider the difference
between modern French and early Classical Latin for example, in two millennia
Latin has witnessed the loss of its case system and a complete refoundation of its
verbal system. Second, a lot of languages have only started to be recorded very
recently thus lacking historical data all together. And when historical records are

103 Chapter 6. Phylogenetic Learning of Multi-Lingual Parsers

Slavic
East-Slavic

Belarusian (be)
Russian (ru)
Ukranian (uk)

South-Slavic
Slovenian (sl)
Serbocroatian

Croatian (hr)
Serbian (sr)

Southeastern-Slavic
Bulgarian (bg)
Old Church Slavonic (cu)

West-Slavic
Czechoslovak

Czech (cs)
Slovak (sk)

Polish (pl)
Upper Sorbian (hsb)

Figure 6.1: A possible phylogenetic tree for languages in the Slavic family.

available, much work still needs to be done to render those data usable by parsers.
For example the Universal Dependencies Project [NAA+18b] only has annotated
corpora for Latin, old Greek, old Church Slavonic and Sanskrit. And even for
those classical languages, it is not clear to which extent their modern counterparts
really descend from them. Thus we need to find another way to access the ancestor
language grammar than using historical data.

We propose to use all the data from descendent languages to represent an
ancestor language. In principle, one could give more weight to older languages or
to languages that are known to be more conservative, but this knowledge is not
available for all languages families. Thus we resort to using all the available data
from descendent languages without distinction.

Another problem is that the tree view is too simple to represent the complete
range of phenomena involved in language evolution, such as language contacts.
Furthermore, languages do not evolve completely randomly, but follow some lin-
guistic universals and have to keep a balance between speakability, learnability
and understandability. Thus, languages can share grammatical features without
necessarily being genetically related, either by contact or by mere chance. Also,
phylogenetic trees are mostly based on lexical comparisons [Cam13] and not neces-
sarily on grammatical ones. However, the tree model is still a good starting point
in practice and language families align well with grammatical similarity as recent
works on typological analysis of UD treebanks have shown [CG17, SA17]. We thus
make the simplifying assumption that a language grammar evolves only from an
older stage and can be approximated by that previous stage.

6.2.2 Phylogenetic Datasets
Let L = {l1, l2, ..., lnl

} be a set of nl languages and let P = {p1, p2, ..., pnp} be a
set of np proto-languages (hypothesized ancestors of languages in L). Let T be
a tree over L∗ = L ∪ P such that languages of L are leaves and proto-languages
of P are inner nodes. This means that we assume no two languages in L share

6.2. Phylogenetic Learning of Multi-Lingual Parsers 104

a direct parenthood relation, but they at best descend both from a hypothesised
parent. Tree T has a single root, a proto-language from P from which all languages
descend. This ancestor of all languages should capture linguistic universals1 and
ensures we work with a well formed tree. We use the notation p > l for the fact
that language/node l descends from language/node p.

For each language l ∈ L, we assume access to a set of nl annotated examples
Dl. For each proto-language p ∈ P , we create an annotated set Dp =

⋃
p>lDl as

the union of its descendent sets. We could in principle have data appearing only
in inner nodes. For example, if we had training data for a classical language such
as Latin but no test data, then we would not need to train a specific Latin model
(therefore no Latin leaf), but could still use the data inside the tree. However, we
consider here that all actual languages, past or present are leaves in the tree.

For each language l ∈ L∗, we will learn a parsing model θl.

6.2.3 Model Training
The main idea behind phylogenetic training is to initialise a new model with the
best model of its parent, thus effectively sharing information between languages
and letting models diverge and specialise over time. The training procedure de-
scribed hereafter and is summed up in Algorithm 9.

Data: a training set Dl and dev set D′
l per language, a tree T , two

sampling sizes k, k′ and a maximum number of reboot r
Result: a model θ per node in T
begin

Instantiate empty queue Q
Q.push(T .root)
while Qis not empty do

l = Q.pop()

θ0
l = θl.parent (θ0

root initialised randomly)
reboot = 0, i = 1, s0 = 0

while reboot < r do
θi
l = train(θi−1

l ,Dl, k)

si = test(θi
l,D′

l, k
′)

if si ≤ si−1 then
reboot = reboot+ 1

else
reboot = 0, i = i+ 1

θl = θi
l

for c in l.children do
Q.push(c)

return θT

Algorithm 9: Phylogenetic training procedure.

At the beginning, we initialize a new blank/random model that will be the
basic parsing model for all the world languages. Then, we sample sentences (we

1It does not mean anything about our actual belief or not in the past existence of an ancestor
to all the modern natural human languages (so called monoglotto genesis hypothesis).

105 Chapter 6. Phylogenetic Learning of Multi-Lingual Parsers

will discuss sampling issues in the next section) randomly from all the available
languages, parse them, compute the loss and update the model accordingly. Since
the training sentences are sampled from all the available languages, the model will
learn to be as good as possible for all the languages at the same time.

When the model θp has reached an optimum (that we define hereafter), we
pass a copy of it to each of its children. Thus, for each child c of p, we initialize
θ0
c = θp to its parent (p) final state. Each model θc is then refined on its own data

set Dc which is a subset of Dp, until it reaches its own optimum state and is passed
down to its own children. This process is repeated until the model reaches a leaf
language, where the model θc is eventually refined over its mono-lingual data set
Dc.

By passing down optimal models from older/larger languages sets to newer/smaller
ones, models get the chance to learn relevant information from many different lan-
guages while specialising as time goes by.

The question now is to determine when to pass down a model to its children. In
other words, at which stage has a model learned enough from its data and should
start to diverge to improve again?

Following the principle of cross-validation, we propose to let held-out data
decide when is the right time to pass the model down. Let D′

p be a set of held-
out sentences from the same languages as Dp. Then, every k training examples,
we freeze the model θi

p at iteration i, and test it on k′ sentences from D′
p. This

gives a score (UAS/LAS) to the current model. If the current score is higher than
the score of the previous model θi−1

p then training goes on from θi
p, otherwise

we discard it and retrain from θi−1
p for another k sentences before re-evaluating

it. If after having discarded r models we have not yet found a better one, then
we assume we had reached an optimal previous model θi−1

p and pass it on to its
children (unless its a leaf, in which case training is over for that language). This
correspond to the innermost while loop in Algorithm 9.

For the few languages that do not have a separate dev set, we use the same
sentences for training and validating the model quality, which can be problematic,
therefore in the experiment section, we score those languages aside.

6.2.4 Sentence Sampling
There are a few things we should consider when drawing examples from a proto-
language distribution. Beside the question of whether some languages are more
conservative than others with respect to their ancestor, which we have decided to
simplify saying that all languages are as representative of their ancestors, there is
the problem of data imbalance and tree imbalance.

Sampling sentences uniformly is not a viable option for the size of datasets
varies a lot across languages and that they do not correlate with how close a lan-
guage is to its ancestor. For example, there are 260 Belarusian training sentences
against 48814 Russian ones. The basic question is thus whether one should draw
examples from languages or branches. Basic linguistic intuition tells us that draw-
ing should be performed on branches. Modern languages distribution has no reason
to reflect their proximity to their ancestor language. Amongst Indo-European lan-
guages, there are one or two Armenian languages as well as one or two Albanian
languages (depending on the criteria for being a language), while there are tens of
Slavic languages and Romance languages. However, there is no reason to believe
that Slavic or Romance languages are better witnesses of proto-Indo-European

6.3. Tree Perceptron 106

than Armenian or Albanian.
Drawing examples from languages would bias the intermediate models toward

families that have more languages (or more treebanks). It might be a good bias
depending on the way one compute the overall accuracy of the system. If one uses
the macro-average of the individual language parsers, then biasing models toward
families with many members should improve the accuracy overall.

In this work, at a given inner node, we decided to sample uniformly at random
over branches spanning from this node, then uniformly at random over languages
and then uniformly at random over sentences. It boils down to flattening the sub-
tree below an inner node to have a maximum depth of 2. For example, at the root
(World) we pick a branch at random (Indo-European), then a language at random
(Slovak) then a sentence at random. Likewise, at the Germanic node, we pick a
branch at random (West-Germanic), then a language at random (Afrikaans) then
a sentence at random. Given that we have picked the Indo-European branch, all
Indo-European languages are then as likely to be chosen which biases the proba-
bilities toward big families. There are 12 Slavic languages but only 2 Greek ones,
therefore Slavic languages will have 6 times more influence on the final model than
Greek.

We could otherwise sample over branches, then over sub-branches again and
again until we reach a leaf and only then pick a sentence. In this case, the Balto-
Slavic branch and Greek branch would have the same probability to be picked, and
then it would be as likely to pick a Slavic languages or Greek. This would give much
more weight to languages high in the tree than languages low in the tree and an
equal weight to all branches, however it could be detrimental to the average score.
It would of course be possible to try any variation between those two, picking sub-
branches according to a probability that would depend on the number of languages
in that family for example, therefore mitigating the unbalance problem.

The actual phylogenetic tree used to guide the training process and to sample
sentences is depicted in Figure 6.4.

6.2.5 Zero-Shot Dependency Parsing
An interesting property of the phylogenetic training procedure is that it provides
a model for each inner node of the tree and thus each intermediary grammar. If
one were to bring a new language with its position in the tree, then we can use
the pre-trained model of its direct ancestor as an initialisation instead of learning
a new model from scratch. Similarly, one can use this ancestor model directly to
parse the new language, effectively performing zero-shot dependency parsing. We
investigate this possibility in the experiment section.

6.3 Tree Perceptron
The Tree Perceptron algorithm is the instantiation of the phylogenetic multi-task
learning framework described above with the structured Perceptron algorithm
[Col02, MCP05a, MCP05b, MPH11].

As we work with edge factored graph-based dependency parsing models, each
edge e is represented by a feature vector φ(e). Given a sentence x = x1x2 · · · xn,
let xi ∈ {0, 1}d be the vector representing word xi. Here, xi is a one-hot vector
encoding the part-of-speech and morphological attributes of word xi with ones at
the actual attributes indices and at the POS index, thus the vector length d is the

107 Chapter 6. Phylogenetic Learning of Multi-Lingual Parsers

number of parts-of-speech and morphological attributes. Then, let bij ∈ {0, 1}d
′

where d′ = |pos|3 be a vector encoding in between parts-of-speech. Each dimension
represents a different triplet made of a begin POS, an end POS and an in between
POS, and we put a 1 at each relevant position. Eventually, let lij ∈ {0, 1}d

′′ be
a binned signed distance vector representing the signed length of the edge. Here,
we use the thirteen bins {all,≤ −10,≤ −5,−4,−3,−2,−1, 1, 2, 3, 4, 5 ≤, 10 ≤}.
Then, the feature vector of an edge e whose governor is xi and dependent is xj is
computed as:

φ(e) = lij ⊗ [(xi−1 ⊕ xi ⊕ xi+1)⊗ (xj−1 ⊕ xj ⊕ xj+1)⊕ bij] .

Thus, the feature representation encodes information about the part-of-speech
and attributes of the governor and dependent and their surrounding words, plus
in between parts-of-speech and the length and direction (sign) of the relation.

Those features are reminiscent of the ones used by McDonald et al. [MCP05b]
with the presence of in between parts-of-speech and signed length of the edge.
However, the outer product only considers pairs of parts-of-speech or attributes,
more like the biaffine model of Dozat et al. [DQM17] but with a much simpler
representation as input. In wide multi-lingual setting, lexicalisation is a challenging
issue and cross-lingual word representation is still a vivid area of research, therefore
in the wait of a better solution, we resorted to training delexicalised models.

Based on this feature representation, the standard structured Perceptron algo-
rithm is performed for each task until convergence and then the learned model is
passed down to its descendants. More formally, let y and ŷ be the true tree and a
predicted tree over sentence x, and let Φ be the tree feature function defined as:

Φ(y) =
∑
e∈y

φ(e).

Then the update rule at sentence level is:

θt+1 = θt +Φ(y)−Φ(ŷ).

At the task level, let l be a language and p its direct ancestor in the phylogeny,
then the model learned for p is used to initialise the model of l:

θ0
l = θp.

6.3.1 Averaging Policy
As we have seen in section 2.3, the Perceptron algorithm is an online learning
algorithm that is used in dependency parsing for computational practicality more
than for its actual learning properties. In order to make the models learned with
the Perceptron more generalisable in the batch learning setting, methods such
as voting and averaging have been proposed [FS99]. Averaging especially, while
having a very limited time and memory overhead, has proven a very effective mean
to boost parsing results.

The basic basic idea behind averaging, is that in a batch setting, each step of
the online model holds relevant information (that can fade over time) and that
combining all those steps should be better than just relying on the final online
step. While this is sensical with the classical Perceptron algorithm, it becomes
much more dubious in the multi-task and tree cases.

6.4. Neural Model 108

The idea behind the tree Perceptron is to let the model specialise more and
more with the time. As earlier models are more general than later ones, they hold
potentially less relevant information. In that sense, it is not clear how to perform
averaging, if averaging should be performed on a model basis or a language basis
and if averaging will still be beneficial altogether.

The most basic averaging policy is to average over all online steps, thus for a
leaf language l, the final model would be the average of all the online models that
appeared on the learning path from the tree root to l. From our own experiments,
it does not improve the results when languages in the tree are very diverse. This
is because we also include potentially detrimental information from higher levels.

Thus another possibility, is to average only online models that resulted from
seeing an example from language l at any point in the tree. This ensure to only
include at least partially relevant models. This is the policy with which we ex-
periment in the experiment section. We should note that in that case, averaged
models are not available for zero-shot languages as they do not have training data
to average on.

Yet another possibility is to average on the leaf updates only. It is then similar
to the traditional averaged structured Perceptron but using the tree model to
initialise it instead of an empty vector. Again, in this case, zero-shot languages do
not have averaged models.

In fact, instead of only averaging models resulting from updates from the single
language l of interest, it should be possible to perform weighted averages, with the
weights depending either on the level (higher levels having a smaller weight than
lower levels) or on the similarity between l and the language of the current example
or even on the number of updates since the last example from l. We have kept
those policies for future work as there are a lot of possibilities to investigate.

6.4 Neural Model
Our scoring model is an edge factored graph-based neural model in the vein of
recent works by Dozat et al. [DQM17]. There are two major differences here
compared to the parser of Dozat et al. The first difference is in individual word
representation, for which we use only the UPOS2 tag, morphological information as
provided in column 6 (cf. Section 4.2) of UD treebanks and character based word
embedding, whilst Dozat et al. use also the XPOS3 tag, holistic word vectors
(from Word2Vec [MSC+13] and their own) and they do not use morphological
information beside what might already be given by the XPOS. The main reason
for those differences in word representation is that Dozat et al. do work in a
mono-lingual setting, rather than a multi-lingual setting like us. XPOS are not
available for all languages, and when they are they differ greatly from languages
to languages in term of granularity. Likewise, cross-lingual word embeddings are
not yet easily available for all the languages of the UD project. Despite, the fact
that we use gold morphological information, our setting is closer to what is readily
available. However, with the current research on cross-lingual word representation,
we can expect to use holistic word vectors soon as well.

The second difference is the scoring function proper. While they use biaffine

2Universal part-of-speech for a set of 17 tags. Does not encode morphology.
3Language specific part-of-speech. Might include morphological information, but is not avail-

able for all languages.

109 Chapter 6. Phylogenetic Learning of Multi-Lingual Parsers

• • • ⊕ • • •

• • • • • • • • • • • •

• • • • • • • • • • • •

• • • • • • • • • • • •
w o r d

Embed

LSTM

LSTM

Concat

Figure 6.2: Bi-LSTM architecture for character based word representation. The
final representation is the concatenation of the final cells of each layer.

scoring functions and decouple edge scoring from label scoring, we use a simple
multi-layer perceptron to compute label scores and pick the max over the label as
the edge score.

Let x = (x1x2...xl) be a sentence of length l. Each word xi is represented as the
concatenation of 3 sub-vectors, one for its part-of-speech, one for its morphological
attributes and one for its form:

xi = posi ⊕morphi ⊕ chari.

The part-of-speech vector (posi) is from a look up table. The morphological
vector (morphi) is the sum of the representation of each morphological attribute
m of the word given by the treebanks:

morphi =
∑

m∈morphi

m.

We add a special dummy attribute representing the absence of morphological at-
tributes.

The form vector (chari) is computed by a character BiLSTM [HS97]. Char-
acters are fed one by one to the recurrent neural network in each direction. The
actual form vector is then the concatenation of the outputs of the forward character
LSTM and of the backward character LSTM as depicted in Figure 6.2.

Once, each word has been given a representation in isolation, those represen-
tations are passed to two other BiLSTMs. Each word is then represented as the
concatenation of its contextualised vector from the forward and backward layers:

ci = forward(x1, ...,xi)⊕ backward(xi, ...,xl).

We actually train two different BiLSTMs, one representing words as dependents
(c) and one words as governors (ĉ). An edge score is then computed as follows.
Its governor word vector ĉi and its dependent word vector cj are concatenated
and fed to a two layers perceptron (whose weights are L1 and L2) with a rectifier
(noted [...]+) after the first layer in order to compute the score sijl of the edge for
every possible relation label l:

sij = max
l

sijl = max
l

(L2 · [L1 · (ĉi ⊕ cj)]
+)l.

The neural model is trained end to end via back propagation of the follow-
ing loss function one sentence at a time via standard stochastic gradient descent
routine. Given a sentence x, we note j the index of the governor of wi and l the

6.5. Experiments 110

• • • •

• • • •

• • • ⊕ • • •

• • • • • • • • • • • •

• • • • • • • • • • • •

• • • • • • • • • • • •
<ROOT> Cats eat mice

Repr

Deps

Govs

Concat

Rectified

Linear

Figure 6.3: Neural network architecture for edge scoring. The contextualised
representation of the governor (eat) and the dependent (Cats) are concatenated
and passed through a rectified linear layer and a final plain linear layer to get a
vector of label scores.

relation label of wi, the loss function is:

loss(x) =
∑
wi

[∑
j
′ 6=j

j
′ 6=i

max(0, sij′ − sij + 1)2 +
∑
l′ 6=l

max(0, sijl′ − sijl + 1)2
]

For each word, there are two terms. The first term enforces that for all potential
governors that are neither the word itself or its rightful governor, their highest
score (irrespective of the relation label) should be smaller than the score of the
actual governor and actual label by a margin of 1. The second term is similar
and enforces that for the rightful governor, any label that is not the rightful label
should have a score smaller than the score of the actual label again by a margin
of 1.

6.5 Experiments
To assess the potential phylogenetic training both in terms of multi-task learning
and zero-shot parsing capabilities, we experimented with data from the Universal
Dependencies project version 2.2 [NAA+18b]. When several corpora are avail-
able for a language, we chose one to keep a good balance between morphological
annotation and number of sentences.

6.5.1 Setting
As some languages have no training data and unique writing systems rendering the
character model inefficient, we resorted to use gold parts-of-speech and morpholog-
ical attributes. For example, Thai has no training data, no language relative and
a unique script, which altogether make it really hard to parse (from a phylogenetic
perspective).

The phylogenetic tree used for the experiment is adapted from the Ethnologue
[SF18]. It is reported in Figure 6.4 and 6.5. We tried to have a tree as consensual as
possible, but there are still a few disputable choices, mostly about granularity and
consistency. Sanskrit could have its own branch in the Indic family just as Latin
in the Romance family, but because Sanskrit has no training data, that would not

111 Chapter 6. Phylogenetic Learning of Multi-Lingual Parsers

actually change the results. Czechoslovak and Dutch-Afrikaans have their own
branches, then what about Scandinavian languages? Then, there is the problem
of Naija. As an English based Creole it could as well be put in the Germanic
family, but we kept it as a separate (Creole) family.

Figure 6.4 represents the phylogenetic tree used for guiding the training process.
As we only use data from the UD project 2.2, we collapse unique child so that
Vietnamese is not an Austro-Asiatic language, it is just Vietnamese. We also only
use well attested families, thus Buryat, a Mongolic language, is alone and not
linked to Turkic languages. Maybe, the most disputable choice is to put Naija in
its own Creole family instead of the Germanic family.

Regarding model training proper, for the phylogenetic models we used k =
500 training sentences per iteration, k′ = 500 dev sentences to compute running
accuracy and a maximum number of reboot r = 5. Following Dozat et al [DQM17],
we use Eisner algorithm [Eis96] at test time to ensure outputs are well formed trees.

We trained both lexicalised and delexicalised neural models as cross-lingual lex-
icalisation is transparent with character embedding and optimised them for LAS.
Linear models are only trained delexicalised and optimised for UAS. Independent
models are trained in the same manner as their phylogenetic counterparts but with
mono-lingual data only.

The neural model is implemented in Dynet [NDG+17] and we use Adadelta
with default parameters as our trainer. We averaged the results over 5 random
initialisations.

We report percentages of unlabeled and labeled edge prediction accuracy (UAS/LAS).

Model Propagation

As a mean of comparison, we experimented with the model propagation frame-
work of Zhu et al. [ZGL03] and Bellet et al. [VBT17]. In the simplest form of
model propagation, pre-trained models are propagated through a similarity graph
to neighbouring tasks. In the end, each task as represented by a node in the
similarity graph receives a model which is a weighted average of all the original
pre-trained models and whose weights reflect directly the similarity structure of
the tasks.

This is an appealing framework as it is relatively simple to implement, it works
with already trained models therefore saving the whole training process when
testing graph variations and so on, and it is also an easy way to compute models
for tasks that do not have training data (they just average models of similar tasks
that have data). However, there are a number of hyper-parameters that need to
be fine tuned for the method to work well such as the weight of the original pre-
trained model in the final average. Furthermore, in our setting, we do not have
directly a similarity graph but a phylogenetic tree, which we need to turn into
a graph, and there are plethora of possibilities here too, which makes the tuning
process quite long. Also, the model averaging policy works well for linear models,
but not neural networks in which case we can only average their output or have
them voting. But that means we have to run every pre-trained neural model per
instance instead of a single averaged model and this is also really time consuming.

Because of those issues, model propagation did not stand the comparison with
phylogenetic training for languages with training data. However, it proved a viable
alternative for zero-shot dependency parsing. Therefore, we decided to put the
description of the methods and the parsing results for languages with training data

6.5. Experiments 112

World
Afro-Asiatic

Coptic (cop)
Semitic

Amharic (am)
Central-Semitic

Hebrew (he)
Arabic (ar nyuad)

Austronesian
Indonesian (id gsd)
Tagalog (tl)

Basque (eu)
Buryat (bxr)
Dravidian

Tamil (ta)
Telugu (te)

Indo-European → Figure 6.5
Japanese (ja gsd)
Korean (ko kaist)
Naija (pcm)
Sino-Tibetan

Cantonese (yue)
Mandarin (zh gsd)

Thai (th)
Turkic

Kazakh (kk)
Turkish (tr imst)
Uighur (ug)

Uralic
Finno-Permiac

Komi (kpv lattice)
Finno-Samic

North Sami (sme)
Fennic

Estonian (et)
Finnish (fi ftb)

Hungarian (hu)
Vietnamese (vi)
Warlpiri (wbp)
Yoruba (yo)

Figure 6.4: Phylogenetic tree used to guide the training process of the multi-lingual
parser. Underlined languages are those that do not have a training set. The code
of the language and if necessary the name of the treebank are given in parentheses.
The Indo-European sub-tree is depicted in Figure 6.5.

113 Chapter 6. Phylogenetic Learning of Multi-Lingual Parsers

Indo-European
Armenian (hy)
Balto-Slavic →
Celtic

Breton (br)
Irish (ga)

Germanic
Gothic (got)
North-Germanic

Bokmal (nb)
Danish (da)
Faroese (fo)
Nynorsk (nn nynorsk)
Swedish (sv talbanken)

West-Gremanic
English (en ewt)
Frankish

Afrikaans (af)
Dutch (nl alpino)

German (de gsd)
Greek

Old Greek (grc proiel)
Greek (el)

Indo-Iranian
Indic

Hindi (hi hdtb)
Marathi (mr)
Urdu (ur)
Sanskrit (sa)

Iranian
Farsi (fa)
Kurmanji (kmr)

Romance
Italo-Romance

Italian (it isdt)
West-Romance

Catalan (ca)
French

Old French (fro)
French (fr gsd)

Galician-Portuguese
Galician (gl treegal)
Portuguese (pt bosque)

Spanish (es ancora)
Latin (la proiel)
Romanian (ro rrt)

Balto-Slavic
Baltic

Latvian (lv)
Lithuanian (lt)

Slavic
East-Slavic

Belarusian (be)
Russian (ru syntagrus)
Ukranian (uk)

South-Slavic
Slovenian (sl ssj)
Serbocroatian

Croatian (hr)
Serbian (sr)

Southeastern-Slavic
Bulgarian (bg)
Old Church Slavonic (cu)

West-Slavic
Czechoslovak

Czech (cs pdt)
Slovak (sk)

Polish (pl lfg)
Upper Sorbian (hsb)

Figure 6.5: Indo-European branch of the phylogenetic tree used to guide the train-
ing process of the multi-lingual parser. Underlined languages are those that do
not have a training set. The code of the language and if necessary the name of the
treebank are given in parentheses.

6.5. Experiments 114

and their analysis in the appendix (Section 9.1) at the end of this dissertation, and
only keep the results of model propagation for zero-shot parsing in this section.

6.5.2 Results with Training Data
Tables 6.1, 6.2, 6.3 and 6.4 report parsing results for languages that have a training
set. Table 6.1 gives unlabeled accuracy scores for phylogenetic and independent
linear parsers trained with the Perceptron algorithm. Scores are computed for the
last online training model (Last) and for the average of all the online models result-
ing from an example of the language of interest (Avg) as described in section 6.3.
Tables 6.2 and 6.3 give both labeled and unlabeled accuracy scores for phylogenetic
and independent delexicalised (lexicalised respectively) neural parsers. In order to
make the analysis easier, Table 6.4 reports aggregated parsing results per language
family from those three big tables. For each language, the best UAS/LAS is in
bold, in bold italic are scores that beat their phylogenetique/independent counter-
part by more than 1 point. For example, in Table 6.1, the UAS score of the last
phylogenetic model for Arabic is 2.04 points higher than its independently trained
counterpart, therefore it is reported in bold.

Note that a few languages do not have a separate development set. Those
languages also tend to have a very small training set, therefore we used the training
set as both training set and ”held-out data” without splitting it. The training set
size is reported in square brackets for those languages. This has low to no impact
on other languages results but it could be problematic for the language itself as it
could over-fit its training data especially when they are very few as is the case for
Buryat (bxr) for example. To be fair, we report two different averages. Avg Dev
is the average over languages that have a separate development set, and Avg No
Dev the average over languages that do not have a separate development set.

On average, phylogenetic training improves parsing accuracy over independent
models in every case: averaged and plain linear models and neural models, delexi-
calised and lexicalised and for both labeled and unlabeled scores. This is especially
true for languages that have very small training sets (50 sentences or less). Those
languages that also lack development set show more than 5 points improvements,
up to 15 points (hsb, kmr). This shows that the ancestor’s model is both a good
initialisation and acts as a form of regularisation, slowing down over-fitting when
very few data are available.

Phylogenetic training is clearly beneficial as one gains information from related
languages as averages show in Table 6.4. Indo-European, Turkic and Uralic lan-
guages really gain from sharing information. This is especially true for Balto-Slavic
(sk +5.82, lt +5.07 UAS lexicalised neural) and Indo-Iranian languages (mr +2.05
UAS lexicalised neural). While it is less true for Romance and Germanic lan-
guages in the lexicalised neural model, the improvements are more homogeneous
in the delexicalised case and even more so in the linear delexicalised case. This
might be due to two different factors. First, the tree might not represent well the
typology for those families. Typically, English tends to group syntactically with
Scandinavian languages more than with West-Germanic4.

Then, lexicalisation might be to blame too. While lexicalisation is beneficial
on a per language basis, with on average more than 1.50 points improvements

4So much so that Faarlund et al. [ETF14] amongst others have argued in favour of the
classification of modern English as a North Germanic language rather than as a West Germanic
language alongside Dutch and German.

115 Chapter 6. Phylogenetic Learning of Multi-Lingual Parsers
Phylogenetic Independent

Avg Last Avg Last
ar 78,86 73,58 77,32 71,54
cop 84,06 80,25 83,25 80,21
he 81,42 77,99 80,97 76,05
bxr [19] 37,96 33,18 31,00 29,54
eu 73,78 67,69 74,64 66,72
af 81,43 77,04 81,13 75,43
da 77,86 72,27 77,52 71,43
de 78,91 72,66 79,11 73,54
en 78,01 74,90 78,26 71,42
got 77,08 72,77 75,83 69,95
nb 83,61 79,78 83,82 78,41
nl 76,91 69,31 76,23 68,12
nn 81,09 76,68 80,78 74,59
sv 79,92 73,11 79,59 73,58
be 78,14 74,53 74,88 71,45
bg 85,05 81,24 84,38 79,79
cs 78,83 74,13 77,16 69,07
cu 79,87 76,07 78,38 72,91
hr 80,95 75,81 80,35 74,41
hsb [23] 64,49 55,10 48,37 44,64
lt 59,38 53,70 55,62 50,95
lv 76,22 72,31 76,51 68,46
pl 91,00 89,03 89,40 86,49
ru 77,48 72,47 76,98 70,69
sk 82,73 79,60 78,76 74,73
sl 84,70 81,09 83,18 78,32
sr 83,67 79,83 83,34 78,15
uk 79,75 76,91 78,37 73,47
ca 84,27 78,96 83,47 78,10
es 83,86 79,06 83,31 77,43
fr 84,07 79,47 83,31 78,21
fro 79,25 75,45 79,19 71,96
gl [600] 84,42 80,37 83,12 77,67
it 86,50 83,11 85,69 80,58
la 63,58 58,88 62,84 55,06
pt 84,81 79,67 83,75 78,91
ro 80,54 74,20 79,48 71,85
fa 77,27 68,51 77,47 68,43
hi 88,39 83,75 87,52 81,92
kmr [20] 47,57 40,91 40,96 38,35
mr 75,00 73,08 75,51 74,49
ur 85,20 78,91 84,08 76,03
el 85,76 82,47 84,90 79,91
grc 70,00 64,58 69,42 59,50
ga [566] 76,02 73,18 76,46 72,78
hy [50] 60,18 54,22 57,78 52,72
id 81,52 74,69 81,03 72,91
ja 86,09 81,00 86,72 81,04
ko 61,95 52,11 62,09 52,36
kk [31] 64,15 58,03 56,91 53,49
tr 59,01 50,32 58,29 47,49
ug 64,07 59,51 65,16 58,61
et 75,83 70,26 75,24 68,96
fi 77,67 72,61 75,95 69,21
hu 77,54 71,41 76,66 70,54
sme [2257] 76,25 71,94 74,05 66,78
ta 74,13 69,34 73,70 66,23
te 86,65 84,86 86,37 82,77
vi 59,67 50,46 60,41 51,67
zh 70,93 60,94 69,99 56,68
Avg Dev 78,35 73,31 77,64 71,36
Avg No Dev 63,88 58,37 58,58 54,50

Table 6.1: Unlabeled parsing results for languages with a train set for phylogenetic
and independent linear models.

6.5. Experiments 116
Phylogenetic Independent

UAS LAS UAS LAS
ar 73.76 69.03 74,60 70,17
cop 83,06 73,27 83,28 73,77
he 81,12 73,57 80,84 74,30
bxr [19] 50,66 32,41 39,67 20,06
eu 74,85 66,96 75,83 68,77
af 82,20 77,76 81,99 77,71
da 77,55 71,40 77,42 71,52
de 79,23 71,95 78,33 70,94
en 78,23 73,29 78,29 73,61
got 78,51 71,46 77,19 70,29
nb 83,54 76,86 83,83 77,41
nl 76,53 66,32 75,09 65,58
nn 81,38 75,02 81,98 76,05
sv 79,68 73,23 77,77 71,13
be 77,79 71,84 76,00 70,14
bg 86,31 79,54 83,62 76,23
cs 78,95 70,60 76,16 68,43
cu 82,47 75,97 80,68 74,36
hr 81,48 74,44 79,59 72,21
hsb [23] 73,32 64,88 59,24 51,16
lt 61,02 50,50 56,78 45,62
lv 76,93 68,22 75,27 66,97
pl 92,45 87,97 91,40 86,91
ru 77,41 71,94 76,46 71,56
sk 83,68 77,56 78,71 72,76
sl 86,58 82,42 86,89 83,26
sr 84,23 77,55 82,84 76,05
uk 76,67 71,82 74,08 70,00
ca 83,93 77,96 83,29 77,52
es 82,95 76,78 83,36 77,17
fr 84,55 76,70 83,69 76,01
fro 79,91 68,62 77,38 66,32
gl [600] 84,12 78,14 83,74 77,36
it 85,73 79,78 85,47 79,31
la 65,66 57,77 64,37 56,85
pt 84,60 79,18 84,71 79,57
ro 79,18 69,19 77,96 67,93
fa 76,43 69,81 77,53 71,03
hi 87,95 78,70 88,43 79,73
kmr [20] 69,02 59,49 53,25 44,49
mr 76,86 65,45 77,69 64,94
ur 83,56 73,88 84,16 74,79
el 85,67 81,51 86,15 81,69
grc 72,89 66,38 71,39 64,85
ga [566] 75,80 67,04 75,38 66,69
hy [50] 64,91 51,61 59,49 46,73
id 79,26 73,07 77,78 71,61
ja 85,78 73,60 86,24 73,97
ko 59,45 38,79 59,88 39,24
kk [31] 72,41 58,32 63,53 44,93
tr 57,20 48,12 55,15 46,45
ug 63,75 42,75 62,15 41,53
et 75,56 68,34 73,55 66,20
fi 78,35 72,21 75,15 69,06
hu 78,04 70,84 78,45 71,52
sme [2257] 79,28 75,17 78,10 73,94
ta 74,03 65,66 73,95 65,29
te 86,26 64,14 85,50 63,17
vi 59,36 55,40 59,28 55,14
zh 70,83 63,03 70,31 61,77
Avg Dev 78,33 70,35 77,46 69,58
Avg No Dev 71,19 60,88 64,05 53,17

Table 6.2: Parsing results for languages with a train set for phylogenetic and
independent delexicalised neural models.

117 Chapter 6. Phylogenetic Learning of Multi-Lingual Parsers
Phylogenetic Independent

UAS LAS UAS LAS
ar 74.81 70.32 75.07 71.08
cop 85.51 79.28 86.03 80.15
he bg81.89 75.36 81.59 75.57
bxr [19] 48.72 30.68 37.88 18.09
eu 76.81 69.51 78.61 72.76
af 85.15 80.94 85.44 81.66
da 78.50 72.50 79.16 74.13
de 80.37 73.54 79.48 72.37
en 79.25 74.34 79.27 74.66
got 77.83 71.54 79.91 74.33
nb 84.62 78.78 83.82 78.09
nl 77.19 68.55 76.52 68.40
nn 82.39 76.44 82.58 77.32
sv 80.46 74.62 81.17 75.47
be 80.18 74.11 78.09 72.76
bg 86.01 79.16 86.40 79.79
cs 79.78 71.71 77.45 69.88
cu 82.98 77.19 83.31 78.32
hr 81.70 74.73 81.05 73.95
hsb [23] 74.24 66.01 58.59 50.37
lt 61.42 50.88 56.35 46.14
lv 78.39 70.14 76.69 68.89
pl 92.88 88.53 91.07 86.49
ru 77.91 72.72 77.33 72.85
sk 84.91 79.17 79.09 73.20
sl 87.15 83.43 88.39 85.21
sr 85.85 79.86 86.17 80.47
uk 78.16 73.50 74.96 70.91
ca 84.67 78.81 85.69 80.11
es 85.11 79.52 85.61 80.18
fr 84.35 77.59 84.21 77.94
fro 82.32 74.24 78.91 69.95
gl [600] 83.80 78.06 83.60 77.63
it 87.03 81.67 87.10 82.27
la 66.25 58.88 65.07 57.80
pt 84.93 79.37 84.90 79.83
ro 79.83 70.46 79.93 70.88
fa 78.76 72.95 79.93 74.07
hi 89.32 82.89 88.75 82.60
kmr [20] 69.08 59.64 54.77 45.07
mr 78.65 68.97 76.60 64.04
ur 84.32 77.02 84.82 78.19
el 86.44 83.30 86.88 83.96
grc 73.82 67.88 71.68 66.05
ga [566] 75.91 67.54 76.20 67.72
hy [50] 65.03 51.76 59.27 46.67
id 81.08 74.97 80.83 74.69
ja 91.22 87.31 91.40 87.37
ko 73.38 68.35 74.23 69.81
kk [31] 70.82 55.42 62.81 44.59
tr 59.64 50.66 59.00 50.54
ug 66.33 48.20 63.66 46.07
et 75.32 68.13 73.91 66.96
fi 78.05 72.20 74.66 68.22
hu 79.51 72.88 80.15 74.31
sme [2257] 80.13 76.40 78.34 74.25
ta 75.05 66.94 76.19 67.93
te 88.88 74.24 87.01 72.05
vi 65.59 61.15 66.02 61.74
zh 80.36 74.79 80.14 74.52
Avg Dev 80.05 73.35 79.47 73.02
Avg No Dev 70.97 60.69 63.93 53.05

Table 6.3: Labeled and unlabeled parsing results for languages with a train set for
phylogenetic and independent lexicalised neural models.

6.5. Experiments 118

Afro
-A

sia
tic

In
do

-E
ur

op
ea

n
Germ

an
ic

Sla
vic

Rom
an

ce
In

do
-Ir

an
ian

Gree
k

Tu
rk

ic

Ural
ic

Drav
idi

an
Av

g Dev
Av

g No Dev

Li
ne

ar Phylo Avg 81.45 78.38 79.43 78.73 81.26 74.68 77.88 62.41 76.82 80.39 78.35 63.88
Last 77.27 73.64 74.28 74.42 76.57 69.03 73.53 55.95 71.55 77.10 73.31 58.37

Inde Avg 80.51 76.98 79.14 76.12 80.46 73.11 77.16 60.12 75.47 80.03 77.64 58.58
Last 75.93 71.31 72.94 70.97 74.42 67.84 69.70 53.20 68.87 74.50 71.36 54.50

D
el

ex Phylo UAS 79.32 79.51 79.65 79.95 81.18 78.77 79.28 64.45 77.81 80.14 78.33 71.19
LAS 71.96 72.21 73.03 73.23 73.79 69.47 73.95 49.73 71.64 64.90 70.35 60.88

Inde UAS 79.58 77.73 79.10 76.98 80.44 76.21 78.77 60.28 76.31 79.73 77.46 64.05
LAS 72.75 70.56 72.69 70.40 73.12 67.00 73.27 44.31 70.18 64.23 69.58 53.17

Le
x Phylo UAS 80.73 80.41 80.64 80.83 82.03 80.03 80.13 65.60 78.25 81.97 80.05 70.97

LAS 74.99 73.73 74.58 74.37 75.40 72.29 75.59 51.43 72.40 70.59 73.35 60.69

Inde UAS 80.90 78.93 80.82 78.21 81.67 76.97 79.28 61.82 76.76 81.60 79.47 63.93
LAS 75.60 72.45 75.16 72.09 75.18 68.79 75.01 47.07 70.93 69.99 73.02 53.05

Table 6.4: Parsing results for phylogenetic and independent models averaged by
language family. This table compiles the results of Tables 6.1 (lines 1-4), 6.2 (lines
5-8) and 6.3 (lines 9-12) for families that have at least two languages in those
tables. Families are sorted in the same order as they appear in those tables. The
Indo-European results are averaged over all Indo-European languages, even if they
do not have any relatives in there subfamily such as Armenian (hy) and Irish (ga).
Global averages are repeated for completeness.

and more than 10 UAS points for Korean (ko) or Mandarin (zh), in a multi-
lingual setting with various writing systems and spelling conventions for any given
writing system, it might just get too complicated for the model to learn meaningful
character representations. It is really disputable to represent alphabetic characters
(Latin, Arabic, Hebrew, Armenian...) in the same space as syllabic ones (Japanese,
Korean...) and ideographic ones (Chinese, Japanese...). In fact, while Turkic and
Uralic languages show the same benefits overall (ug +2.67, fi +3.39 UAS lexicalised
neural), Kazakh (kk) scores are worse for the lexicalised neural parser than for the
delexicalised one. This might be because Kazakh is written in Cyrillic while the
only other languages written in Cyrillic in the tree are Slavic languages (Russian,
Belarusian and Ukrainian).

Results for Dravidian and Afro-Asiatic languages are not as consistent. While
Telugu seems to always gain from Tamil data, the reverse is not true in the lex-
icalised neural model case. Result variation for Arabic, Hebrew and Coptic are
marginal in the case of neural models. This is likely due to the fact that we only
have three quite different languages from that family and that they all have their
own script. However, they all show improvements in the delexicalised linear case.

Phylogenetic training is not consistently useful for languages that do not have
relatives. While Buryat (bxr) that has a very small training set benefits from uni-
versal linguistic information and gain almost 11 points UAS, Basque (eu) that has
a very different grammatical structure than other languages and enough training
data (5396 sentences) looses 3.25 LAS in the lexicalised neural model case. Gains
and losses are more marginal for the other five ”isolated” languages (id, ja, ko,
vi, zh). However, despite being rather small, they are consistent for Indonesian
(id), Japanese (ja), Korean (ko) and Mandarin Chinese (zh). Phylogenetic train-
ing is either always beneficial (id, zh) or detrimental (ja, ko) irrespective of the
underlying learning algorithm.

Comparing the different models together, we note that neural models handle
languages with very few data better than the linear one. Upper Sorbian (hsb)
shows a 9 UAS points improvement, Buryat (bxr) 12 UAS points, Kazakh (kk) 18

119 Chapter 6. Phylogenetic Learning of Multi-Lingual Parsers

Linear Delex Lex
Model UAS UAS LAS UAS LAS

am Semitic 46,98 57,95 27,22 57,27 26,25
br Celtic∗ 60,19 60,91 42,46 61,36 43,89
fo North-Germanic 50,05 53,58 47,55 52,40 46,52
sa Indic 64,11 64,93 51,41 56,18 40,46
kpv Finno-Permiac∗ 47,32 57,62 41,15 65,14 52,11
pcm World 51,49 55,59 40,67 60,43 43,80
th World 30,65 33,59 21,90 29,14 17,61
tl Austronesian∗ 68,09 75,15 52,51 70,89 50,38
wbp World 65,12 82,02 62,56 87,67 65,66
yo World 38,25 51,83 35,24 56,16 37,51
yue Sino-Tibetan∗ 40,87 41,78 25,46 41,68 25,02
Avg 51,19 57,72 40,74 58,04 40,83

Table 6.5: Parsing accuracies for languages without a training set. For each lan-
guage, the first column report the identity of the model used for parsing. The
following columns report unlabeled and labeled parsing accuracies for the linear
model, the delexicalised neural model and the lexicalised neural model respectively.

UAS points and Kurmanji (kmr) 22 UAS points improvement. It might be thanks
to the learned dense representation of morphological attributes that is used in the
neural networks and that is absent from the linear model. As we will see in Chapter
7, dense representations are not really necessary for morphological attributes when
enough data are available. As they are much fewer and more frequent than word
forms for example, a few hundreds sentences are already enough for a linear model
to learn to work with one-hot encoded morphological attributes. However, some
languages have less than 50 sentences, which is very few, and it might be that
in those extreme conditions, dense representation of morphological attributes is
necessary for good performance.

Regarding better resourced languages, the two delexicalised models (linear and
neural) have comparable results overall. The linear model is better for Afro-Asiatic
languages (ar, he, cop), Indonesian (id) and Korean (ko) for example while the
neural model better fits other languages such as Slovenian (sl).

The lexicalised neural model is on average better than both delexicalised ones.
However, is has a slightly lower UAS score on languages with few training data
that the delexicalised neural model and is overall much less consistent in terms of
benefits from using phylogenetic training. This is one more argument showing the
problem of lexicalisation in a multi-lingual setting.

Overall results are a bit below the state of the art, but again the model is
very simple and does not include a pre-trained language model that could help
especially for languages with limited resources. Furthermore, we rely extensively
on gold morphology which is not exactly comparable with other works.

6.5.3 Zero-Shot Dependency Parsing
Table 6.5 reports parsing results for languages that do not have a training set.
Because of phylogenetic training and the tree structure that guides it, it can happen
that a language ancestor’s model is in fact trained on data only accounting for a
narrow range of later stages. For example, while Faroese uses the North-Germanic

6.5. Experiments 120

model refined on both Norwegians, Swedish and Danish data, Breton uses the
Celtic model only refined on Irish data thus making it more an Irish model than
an actual Celtic model. Those cases are marked by an asterisk in the table. Komi
model is refined on Finno-Samic data, Tagalog model on Indonesian data and
Cantonese model on Mandarin data.

Looking at Table 6.5, we make the following observations. As expected scores
are on average lower than for languages with training data, however the UAS/LAS
gap is substantially bigger from 6.71 to 17.08 points for the lexicalised neural
model. It is hard to compare to other works on zero-shot parsing since they use
different data and scores span a big range, but our results are comparable to those
of Aufrant et al. [AWY16] and Naseem et al. [NBG12], while our zero-shot models
are given for free by the phylogenetic training method.

On a language per language basis, we see that there are a few important factors,
the most striking being genre. Tagalog (tl) and more surprisingly Warlpiri (wbp)
have relatively high parsing accuracy despite being either completely isolated or
having only one relative (Indonesian). This is likely because their data are well
annotated stereotypical sentences extracted from grammars, thus making them
easy to parse.

Then we see that Naija (pcm) and Yoruba (yo) are about 20 points higher than
Thai (th) despite them three having very simple morphology (in the treebanks) and
no relatives. As they have different genres (spoken, bible, news and wiki), without
a deeper look at the trees themselves, our best guess is that this is caused by Thai
having a different script. Naija and Yoruba both use the Latin alphabet, and as
such they can rely to some extent on the character model to share information
with other languages, to at least organise the character space.

This analysis also carries over to Cantonese (yue). It is a morphologically sim-
ple language, and despite the presence of a relative (Mandarin), its score is rather
low. The genre alone (spoken) would not explain everything as Naija has also a
spoken treebank and a higher score. The writing system might be at blame once
again. Indeed, Chinese characters are very different from alphabetic characters
and are much harder to use in character models because of sparsity. Comparing
Mandarin and Cantonese test sets with Mandarin train set, the amount of out-of-
vocabulary words is 32.47% of types (11.90% of tokens) for Mandarin and 54.88%
of types (56.50% of tokens) for Cantonese. The results for out-of-vocabulary char-
acters are even more striking with 3.73% of types (0.49% of tokens) for Mandarin
and 12.97% of types (34.29% of tokens) for Cantonese. This shows that not only
there are a lot of OOV in Cantonese test set, but that those words/characters are
common ones as 12.97% of character types missing make up for more than a third
of all character tokens missing, where on the contrary Mandarin OOV are seldom
and account for less tokens percentage than types.

Indeed, while neural models consistently beats the linear model, half of the
languages behave better delexicalised, amongst which Thai and Amharic have
their own writing systems, Sanskrit shares its writing system with Hindi only, and
Faroese which while using the Latin alphabet also uses some unique characters such
as ð. The improvement seen with the delexicalised model for Tagalog is however
surprising as it also uses a fairly standard Latin alphabet and would require a
deeper analysis.

Overall, this shows both the importance of lexicalisation for dependency pars-
ing and the complexity of performing it in a multi-lingual setting where many
different scripts are involved.

121 Chapter 6. Phylogenetic Learning of Multi-Lingual Parsers

Propagated Phylogenetic
Unweighted Weighted Linear Delex Lex

am 58.13 58.38 46,98 57,95 57,27
br 54.27 54.95 60,19 60,91 61,36
fo 46.65 44.65 50,05 53,58 52,40
sa 48.14 45.97 64,11 64,93 56,18
kpv 60.49 56.26 47,32 57,62 65,14
pcm 60.15 54.95 51,49 55,59 60,43
th 41.99 38.32 30,65 33,59 29,14
tl 89.56 88.78 68,09 75,15 70,89
wbp 85.12 75.67 65,12 82,02 87,67
yo 51.34 42.06 38,25 51,83 56,16
yue 58.60 55.91 40,87 41,78 41,68
Avg 59.49 55.99 51,19 57,72 58,04

Table 6.6: Unlabeled parsing accuracies for languages without a training set. The
first two columns report the scores of the propagated models corresponding to
the setting described in previous section. The following columns report unlabeled
parsing accuracies for the phylogenetic linear model, delexicalised neural model
and lexicalised neural model respectively for comparison.

Other important factors are typology and morphology. Amharic (am) despite
its unique script has a higher score than Cantonese that actually shares its scripts
(to some extent as we have seen) with Mandarin. The key point for Amharic score,
is that all its relatives (Hebrew, Arabic and Coptic) have their own scripts and are
morphologically rich, thus the model learns to use morphological information. The
analysis is similar for Komi which on top of sharing morphology with its relatives
also share the writing system which provides it an extra gain. However, this might
work in the opposite direction as well, as we can see with Faroese, Breton and
Sanskrit. Faroese (fo) is morphologically rich and that should help, however its
North-Germanic relatives are morphologically much simpler. Thus the model does
not learn to rely on morphological attributes nor on word endings for the character
model as much. The same is true for Sanskrit (sa), which is morphologically richer
than its modern Indic relatives, with an extra layer of specific writing systems.
Eventually, Breton model (br) is refined over Irish data only and while Irish is a
typological outlier amongst Indo-European languages because of its Verb-Subject-
Object word order, Breton has the standard Subject-Verb-Object, thus using Irish
data might actually be detrimental.

These arguments show the respective importance of the writing system, the
genre of the data, the morphological analysis and the typology in phylogenetic
zero-shot dependency parsing. Those factors can either work together positively
(Komi) or negatively (Cantonese) or cancel each other out (Amharic, Faroese).

Model Propagation for Zero-Shot Dependency Parsing

Table 6.6 reports the results of the propagated models of the previous section for
languages that do not have a training set. Their phylogenetic scores are repeated
for comparison. Contrary to phylogenetically learned models, it is straightforward
to have zero-shot parsing models even for languages that have a training set in
the model propagation case. Because we can not compare them to other results

6.6. Conclusion 122

and they are much lower than supervised results as expect, we report them in the
appendix.

It is interesting to see that some languages really benefit from model propaga-
tion with up to 17 points improvements for Cantonese (yue). Those are languages
that are high in the tree. In fact, other languages high in the tree (pcm, wpb,
yo) have results on par with their phylogenetic counterparts. This shows that the
early models high in the phylogenetic tree are too generic and too shallow for a
thorough syntactic analysis. Using a mixture of more mature models is preferable
in that situation.

Baring in mind that we did not have the time to explore all the hyper-parameter
possibilities for propagation, it is encouraging to see that it is a viable option for
zero-shot dependency parsing of isolated languages, and surely with more work
those scores would increase.

6.6 Conclusion
In this chapter, we have discussed methods to learn parsing models for several
languages in a true multi-lingual manner, meaning that the model learned for
a given language benefits from information learned from other languages as well
and uses all the available data. A way to do it is to learn parsing models for
several languages at the same time and to share update information between those
different models according to the similarity of their respective languages.

We have presented a multi-task learning framework that allows one to train
models for several tasks that have diverged over time. Leveraging their common
evolutionary history through a phylogenetic tree, models share parameters and
training samples until they need to diverge. As a by product of this phylogenetic
training, we are provided with intermediary models that can be used to zero-shot
a new related task, given its position in the evolutionary history.

We have applied this framework to dependency parsing using either a linear
Perceptron parser or a graph-based neural parser and the phylogenetic tree of the
languages from UD 2.2 to guide the training process. Our results show that phy-
logenetic training is beneficial for well populated families such as Indo-European
and Uralic. It also helps generalisation and prevents over-fitting when very few
data are available.

Comparing results from delexicalised models with results from models lexi-
calised via character models, we have shown that lexicalisation is important for
parsing but that it becomes challenging to have good lexicalisation in a truly
multi-lingual setting with several writing systems where alphabets mix with syl-
labaries and ideographic systems. Furthermore, for zero-shot parsing, genre and
morphology are other crucial factors to have good results.

We also compared those models with models propagated in a graph derived
from the tree structure (cf. Appendix 9.1). While model propagation takes time
to tune its hyper-parameters, it has proven a viable alternative to phylogenetic
training for languages with very few to no data and data isolates (languages with-
out training relative).

Some works have been done on automatically learning task relationship in
multi-task setting [KGS11, KDI12]. It would be interesting to see how the al-
gorithm could figure out when and how to cluster languages automatically as
phylogenetic trees do not directly depict grammar evolution. Likewise, our model
does not know that Latin came before Old French and before modern French, or

123 Chapter 6. Phylogenetic Learning of Multi-Lingual Parsers

that despite being Germanic, English underwent a heavy Romance influence. It
would be worth investigating softening the tree constraints and instigating more
evolutionary information in the structure.

Another direction for future research is lexicalisation. As we have seen, direct
lexicalisation with character level representation is complicated in a heavily multi-
lingual setting with various writing systems. A possible way to go would be to
start lexicalising models only lower in the tree. While this would solve part of
the problems, it would also loose the benefits of phylogenetic training at least
regarding lexical information. Other possibilities could come from cross-lingual
word representation, but there is still a lot of work to be done there before to
have good results, or plain transliteration, turning Thai or Amharic characters
into Latin ones would solve part of the problems as well.

Concerning model propagation, the first direction to go would be sparsifying
the graph to make hyper-parameters tuning faster. Then, follow Naseem et al.
and Aufrant et al. [NBG12, AWY16], it would be interesting to have different
propagation graphs for different part of the models. Maybe language li has a
similar verb system as language lj, but its noun phrases look more like those of
language lk.

Finally, in principle, nothing prevents us from propagating models that have
been trained via the phylogenetic procedure. This should further improve the
parsing results of languages with few data and languages that are too high in the
tree.

In chapter 5, we looked at ways to improve representation of morphological
information in a multi-lingual context. In this chapter, we have seen that delex-
icalised parsers using only morphological information are able to learn to parse
several languages jointly. In the following chapter, we will investigate the actual
role of the morphological information used in this chapter and the previous for
dependency parsing.

Chapter 7

Measuring the Role of
Morphology

This chapter is based on a work presented at EMNLP 2018 [DD18].

Throughout our work we have relied heavily on morphology. We have used mor-
phology as means to reduce data sparsity (morphological attributes are fewer and
denser than forms) both in morphologically rich languages and in morphologically
poorer languages. We have used morphology to bridge the gap between languages
seeing it as a common representation space. We have also used morphology as our
primary source of features for learning parsing models.

One question that we have not addressed yet, and that has not received much
attention from researchers, is that of the intrinsic worthiness of morphology for
dependency parsing (though some work has been done on the line of morphological
attributes selection for syntactic parsing [DTvG11]). Indeed morphological infor-
mation is an efficient tool to reduce data sparsity but it also encodes some syntactic
information of prime relevance for dependency parsing. Thus, we hypothesise that
using morphological information is beneficial for dependency parsing, especially
for morphologically rich languages.

However, not all morphological attributes necessarily encode syntax. Syn-
tax encoding attributes such as cases like nominative and accusative or num-
ber and gender following agreement are called morpho-syntactic. Attributes that
encodes more semantic information such as tenses or moods are called morpho-
semantic1. Amongst morphologically rich languages, some languages make more
use of morpho-syntactic attributes while some use rather morpho-semantic ones.
Thus, we also hypothesise that as not all morphologically rich languages encode as
much syntactic information in their morphology, not all will benefit as much from
using morphological information for parsing.

A third hypothesis is that we can indeed tell the two benefits of using mor-
phological information (sparsity reduction and syntactic encoding) apart and that
we can use some measures independent of the parsing algorithms to distinguish
languages that use morphology to encode syntax from languages that do not.

In order to test those hypothesis, we will compare results of parsing models
that make use of different word representations to reduce sparsity and/or encode

1Tense can be triggered in the case of sequence of tenses, but as changing the principal clause
tense would change the subordinated clauses tense without affecting the syntactic structure of
the whole sentence, it is still considered morpho-semantic. For a more detailed explanation of
the difference between morpho-syntax and morpho-semantics see Kibort [Kib10].

125

7.1. Morphological Richness 126

morphological information with measures of morphological complexity.
In the following, we first discuss morphological richness (Section 7.1) and

present some ways of measuring it (Section 7.2). Then we turn to morphological
richness in dependency parsing proper and morpho-syntactic richness (Section 7.3)
and we introduce a new measure based on head preferential attachment that tries
to capture morpho-syntactic complexity (Section 7.4). We also discuss the weight
of the annotation scheme when considering dependency parsing and morphology
(Section 7.5). Eventually, we present some empirical results showing the relevance
of the investigated distinction between morphological and morpho-syntactical in-
formation (Section 7.6), as well as the relevance of the newly proposed measure of
morpho-syntactic complexity in studying annotation schemes.

7.1 Morphological Richness
As we have seen in section 3.1, there is no clear boundary between morpholog-
ical richness and morphological simplicity, and thus no simple criterion of mor-
phological richness. But it refers to the productivity of a language’s inflectional
morphology.

Despite its fuzzy definition, morphological richness is of prime importance for
two different reasons when it comes to natural language processing problems and
especially dependency parsing. So much so that workshops focusing on syntac-
tic analysis of morphologically rich languages specifically have been organised
[TSG+10].

The first reason, which is rather pragmatic has to do with machine learning
proper. As we have seen, words are entities that need to be mathematically repre-
sented in some way in order to be worked with. Whether we use one-hot vectors
or denser representations for the words, the more words the more parameters need
to be estimated and the more data are needed for a good estimation of those pa-
rameters. With one-hot vectors, the actual model will tend to be huge and require
a lot of data to be trained, while with embeddings the model can be much smaller
and need less data, because a lot of parameters are pre-trained and hidden in the
embedding itself which requires a lot of data to be trained.

The second reason is more linguistic in nature. If in a language a word can take
on different forms, those differences must be meaningful otherwise they disappear
(this is also called the principle of economy [Vic03] by which languages avoid
unnecessary redundancies). The meaning of those different forms however can be
of many different kinds. Words can change form for phonological reasons (English
a becomes an before a word starting with a vowel sound), syntactic reasons (Latin
rosa becomes rosam when it is used as direct object), semantic reasons (Spanish
como becomes comeré when the action happens in the future) and pragmatic
reasons (Japanese tabenai becomes tabemasen when speaking to an older person
for example.). Being able to extract this information, and especially the syntactic
information from those forms should improve the results of parsers. For example,
in a language like Latin that inflects verbs for their subject number and nouns for
cases, it is highly unlikely that a noun in accusative plural be subject of a verb in
singular, but it could well be its object.

Another point to be made before we start digging into morphological complex-
ity measurement proper, is the inherent difference between theoretical complexity
and measured complexity. As we also mentioned in section 7.1, because of syn-
cretism and irregularities, there might not be a different written/spoken form for

127 Chapter 7. Measuring the Role of Morphology

every realisable set of morphological features. Furthermore, in languages with
heavy inflectional paradigms, not all forms are as likely to appear and most will
never appear even in a huge corpus. This is typical of French verbs. A regular
French verb from the first group can have up to 40 different forms, but in practice
only a handful of those are ever used and their use highly depends on the genre of
the corpus.

Now that we have seen how important inflectional morphology is in encoding
syntactic and semantic information, we shall see how one can measure its richness.

7.2 Measuring Morphological Richness
As we have just seen, morphological richness has direct implications on NLP tasks
and on how models and representations used to solved them are learned. Quan-
tifying morphological richness is thus of prime importance as well. And while
the definition of morphological richness is fuzzy, it is nonetheless measurable to
compare the relative complexity of different languages. Then, measures of mor-
phological richness can be used to inform the choice of a certain model or certain
representations in order to solve a problem for specific languages.

Before presenting some of those measures, we shall note that while they are used
as measures of a language’s morphological richness, they are often based on data
and as such only measure the morphological richness of the data. Because those
measures are used to draw conclusions about languages, this has three important
implications. First, when using those measures to compare languages, one should
try to have corpora as similar as possible in those different languages, otherwise
the differences might not be due to actual language differences but to domain
difference. Wall Street Journal English is only so close to Social Media English.
Then, one should use a corpus as large and diverse as possible if he were to draw
conclusion about the language in general. Eventually, even with a huge corpus,
spoken languages are only so close to their written forms. This means that those
measures would at best inform us about the morphological richness of written
languages and not so much of spoken languages.

7.2.1 Related Work on Measures of Morphological Rich-
ness

Several measures have been proposed to account for morphological richness. They
can be either derived from theoretical considerations like the number of cases a
noun can inflect for in a language, or derived from data instead like the number
of words are necessary to express a certain idea. They are based on different
intuitions about morphological richness, but have been shown to be correlated
and to converge to the same conclusions [BRKS16] as to which language is more
or less morphologically rich. We review some of them in this section.

A very intuitive measure of the morphological richness of a language is the
type/token ratio (TTR). In simple words, if a language has a rich morphology,
then it will have more forms and each form will appear less often than in a poorer
language. For example the English word are corresponds at least to the four French
forms es, sommes, êtes and sont2. Thus we expect to see it more often than any

2The English form are can also replace other French words, most notably a (has) in the
multiple word expression il y a (there is/are) that literally translates as he there has.

7.2. Measuring Morphological Richness 128

of the four forms it can stand for.
Given a text T drawn from a vocabulary V , let freqT (Vi) be the number of

occurrences of Vi in T . The token/type ratio is:

TTR(T) =
|V|∑|V|

i=0 freqT (Vi)
=
|V|
|T |

.

It is equal to the number of words in the vocabulary divided by the total length
of the text.

Another possible measure is the word entropy as defined by Shannon [Sha48].
The word entropy is a measure of how much information is needed to disambiguate
a word. The intuition here being that the more forms a language has, the more
information is needed to tell forms apart. Given a text T draw from a vocabulary
V , let π(Vi) be the probability of seeing words Vi. Then the total entropy of the
text is:

H(T) =

|V|∑
i=1

π(Vi) log2(π(Vi)).

On top of those two common measures, Bentz et al. [BRKS16] also investigate
less common measures. A word alignment based measure uses two parallel
corpora aligned for words in different languages to estimate a relative complexity
measure. The idea here being that what is expressed via morphology in a language
might be expressed via syntax in another and thus use more words, thus the
language with more morphology should use less words than the other. Compare
French and English futures mangera and will eat, and comparative adjectives plus
grand and taller. Assuming we go from French to English, the former is a so
called one-to-many alignment and the latter a many-to-one. By comparing the
number of one-to-many with the number of many-to-one, one can measure the
relative complexity of two languages. This measure is relative and asymmetric by
nature because of its use of bilingual alignments, but if one has access to parallel
corpora in several languages, by selecting some pivot languages then one can use
it to effectively compare languages.

The relative entropy of word structure measures the information content
of words inner structure. Given a text T and an alphabet A, it is measured as the
difference of the character entropy of the original text T and a scrambled version
T ′. The scrambled text T ′ is made by replacing every token by a sequence of
random characters of equal probability of the same length as the original token.
This measures the information stored in words via morphological regularities.

They also consider a measure based on theoretical typological information.
The idea being that one can estimate the complexity of a language morphology
by looking at high level features like the complexity of the case system or the
number tenses exhibited by verbs. For example, regarding noun inflection, Finnish
has some 15 cases, Latin has 6, German and Icelandic have 4 and French has
none. This right-away shows that Finnish will have a richer morphology than
say French. By aggregating this kind of information we can have a feeling of
how complex is a language morphology. They use data from the World Atlas
of Language Structure (WALS) [DH13] to estimate a morphological complexity
measure. Different features are associated to morphological complexity scores.
Ordered features are directly assigned increasing scores (binned number of cases
directly maps to integers, for example having no case has a score of 0 whilst having
2 has a score of 1 and having more than 10 a score of 7) while unordered features

129 Chapter 7. Measuring the Role of Morphology

receive a hand crafted score reflecting their inherent contribution to morphological
complexity.

Bentz et al. show that with enough data, those different measures tend to
converge to the same conclusion regarding languages morphological complexity
at a large scale. However, they do not measure the same phenomena. TTR
and word entropy by focusing on word types, are directly impacted by irregular
paradigms and spelling variations. However, they miss both form syncretism and
homographs3. Relative entropy of word structure is impacted in different
directions by irregularities and by derivational morphology because of its being
based on character level information. On the one hand, irregularities increase
character entropy with structures that are otherwise seldom in a language. On the
other hand, derivational morphology creates new words that are as (ir)regular as
their stem word thus reducing entropy. Compare English know and recognise with
French connaître and reconnaître. The alignment based measure is interested
in the relative analytic construction frequency between languages. And while less
morphology often correlates with more analytic construction, this measure does
not look at morphology at all. Finally, the typological measure (WALS) does
not consider actual forms neither but takes a higher level stand point. Indeed, all
those measures consider different aspect of human languages which are indeed all
linked to some degree.

7.2.2 Form per Lemma Ratio
Another measure of morphological complexity very related to the type/token ratio
not discussed by Bentz et al. is the form/lemma ratio4. The form per lemma
ratio (hereafter noted F/L) measures the averaged number of form a lemma can
take in a corpus. Let T be a text, V the vocabulary of forms, L the vocabulary of
lemma used in T and formT : L → V∗ the function that returns the set of forms
a lemma appears in text T .

F/L(T) =

∑
l∈L |formT (l)|
|L|

.

This measure requires corpora annotated with lemma or the use of a reliable
lemmatiser. However, there are more and more such corpora available for an
increasing number languages.

The type/token ratio is the inverse of the average number of time a type (a
form) appears in a text. The form/lemma ratio measures the average number
of forms a lemma takes in a text. Those are slightly different because, as we
have seen, inflectional morphology creates new forms, thus a language with a high
number of form per lemma is likely to have a high number of forms (types) in the
first place and thus high TTR. However, a very analytic language with very poor
morphology if at all, could use lots of different words (types) like adpositions and
adverbs in its syntactic constructions, thus giving a high TTR with a low F/L. In
fact, this is a difference we expect to see between a long lived analytic language

3Homographs are different words that happen to have the same spelling like French son (noise)
and son (his). Syncretisms are different forms of the same word that happen to have converged
over time and to have lost part of their information such as French je chante (I sing) and il
chante (he sings).

4This measure is not very popular amongst computational linguists, maybe because it needs
lemmatisation of the data, but is used in corpus linguistic [GP09]. However, it has been used in
linguistic analysis of Russian [SUW13] or Yiddish [AR13] amongst other.

7.3. Morphological Richness in Dependency Parsing 130

like Mandarin Chinese and new languages like creoles and pidgins. Creoles tend
to be morphologically poorer than the languages they take their vocabulary from
and in the same time have a smaller vocabulary than long lived languages [Pat04].
Thus with both a low form per lemma ratio, Chinese should have a higher TTR
than Tok Pisin for example.

We have also mentioned earlier that a language need not use the complete spec-
trum of morphological inflection at one. An example of this is the lack of dedicated
comparative/superlative forms for adjectives and adverbs in Romance languages
whilst English (and the other Germanic languages) have them. Which contrasts
with the rather impoverished verbal morphology of modern English (and other
Germanic languages) as compared to the Verbal systems of Romance languages.
This is important since a language could in principle have inflection for only one
class of word but a very productive for that class indeed. We propose thus an ex-
tension to the form/lemma ratio in the form per inflected/inflectable lemma
ratio, which indeed measures the average number of form a lemma takes in a text,
only for those lemmas that appear in at least 2 forms. With the same notation as
above, let L̄ = {l ∈ L | |formT (l)| > 1} be the vocabulary of lemmas that appear
in more than one form in T .

F/iL(T) =

∑
l∈L̄ |formT (l)|
|L̄|

.

This is an approximation since an inflectable lemma could still appear in only one
form and thus be ignored but with a large enough text the bias should be smoothed
out. Furthermore, this might even be a good bias as a lot of words that appear
rarely (the long tail of the Zipfian distribution) are indeed inflectable in theory
(for plural say) but never are in practice.

Those measures (F/L and F/iL) are interesting in accounting for the morpho-
logical complexity of languages. However, they only consider morphology per se
and not its interaction with other linguistic phenomena and they are blind to syn-
cretism. Thus, they do not tell much about the role of morphology in encoding
syntax or semantics for example. We will show through experimental results that
indeed those measures are of no help when discussing parsing performance.

Because we use morphological information as input to our parsing models,
it would be useful to know exactly what is the role of morphology in encoding
syntactic information, especially for those languages that rely a lot on morphology
in general. The following section will discuss the possible implications of using
morphology in dependency parsing and see how we can measure its role in different
languages.

7.3 Morphological Richness in Dependency Pars-
ing

As we have seen earlier, inflectional morphology encodes linguistic information in
word forms. Thus languages with richer morphology will have more word forms
than languages with poorer morphology, and more forms means more parameters
to estimate and less occurrences on average of each form.

The UD project has released a set of parallel corpora available in different
languages. The same text in English contains 5165 word types5 out of which 3276

5In section 3.2, we defined a type as a word in isolation, while a token is a word in context.

131 Chapter 7. Measuring the Role of Morphology

(63.4%) appear only once, in French has 5767 types with 3790 (65.7%) appearing
only once and in Finnish has 7399 types out of which 5988 (80.9%) appear only
once.

In the same time, more information in words correlates with freer word order.
Those two factors have shown to be detrimental to parsing results in earlier multi-
lingual parsing campaigns, such as CONLL shared tasks on dependency parsing
[BM06, NHK+07]. And those were also the main concerns and what researchers
addressed in early works on syntactic analysis of morphologically rich languages
[TSG+10], by proposing methods for encoding morphological information, reducing
the impact of data sparsity and unseen words and coping with free word order.

Morphological analysis can be used as a mean to reduce data sparsity. And we
expect it to show real improvements for those languages that have a lot of forms
with few occurrences like Finnish. Most parsers (as most NLP systems) already use
part-of-speech information to reduce sparsity in an attempt to generalise beyond
word forms. Using morphological attributes is a way to extend beyond sole POS
by providing more and finer information.

In the same time, if morphology is just a matter of increasing data sparsity
and nothing more, maybe one can find other ways to reduce sparsity without re-
lying on morphology at all like by using lemmas instead of forms for example. We
investigate this in the experiment later on. This would mean one of two things.
Either, lexical semantics as encoded by the lemma and morphological information
are redundant (which is unlikely as we said earlier), or morphology encodes infor-
mation that is not relevant to syntactic analysis, such as phonological information
or semantic information. And indeed, morphology encodes information in forms
and that information might as well be useful for syntactic analysis. If that is the
case, then using morphological information as input for our parsers should im-
prove their performance, beyond what merely reducing sparsity (with lemma for
example) would do.

However, while we can expect to improve parsing results by reducing sparsity
for languages with rich morphology, there is no guarantee that their morphology
encodes syntactic information to the same degree if at all. For example, in the
two Latin sentences Petrus equum vidit and Petrii equum vidit, the difference in
form from Petrus to Petrii not only changes the meaning of the sentences from
Peter saw a horse to He saw Peter’s horse but also changes the syntactic analysis
in that in the first sentences Petrus is subject and depends on the verb vidit,
whilst in the second, it is a genitive depending on equum. However, in Petrus
equum videt the change from vidit to videt only changes the time reference of the
verb (Peter is seeing a horse) but not the syntactic structure of the sentence,
Petrus is still subject of videt. In fact, while in the second example we have a pure
semantic change, in the first example the change is primarily of syntactic order, the
semantic change is merely a consequence of the change in the syntactic structure.
This shows that not all forms or rather form changes encode useful information
for dependency parsing.

Before going further, we should also note something important about morpho-
syntax and grammatical cases. Grammatical cases might seem the most if not
the only morpho-syntactic grammatical feature. While this is mostly true for our
well known dependent-marking Indo-European languages, this is not true for all
languages of the world. First of all, number, gender are also morpho-syntactic

In the previous sentence, there are two tokens word (in context) both of which share the same
type word (in isolation).

7.4. Measuring Morphology Syntactical Information 132

when adjectives and determiners agree with their governing nouns. However, they
are less morpho-syntactic than cases as they are usually not enough to trigger
dislocation [Bre98]. For example, we do not say in French ”j’ai mangé des hier
fraises délicieuses” (I ate some yesterday strawberries delicious), even though the
determiner des is agreeing (in number) with its noun fraises. Likewise, ”j’ai mangé
des fraises hier délicieuses” (I ate some strawberries yesterday delicious) has only
the interpretation that the strawberries were delicious yesterday whenever I might
have happened to eat them, with hier attaching to délicieuses and thus not being
an actual dislocation. The interpretation where hier attaches to mangé is ungram-
matical. In fact, we can even add a conflicting adverbials or change the tense of
the main clause without touching the object and have a perfectly grammatical sen-
tence, showing that hier really attaches to délicieuses. For example, ”j’ai mangé
ce matin des fraises hier délicieuses” (I ate this morning some strawberries yes-
terday delicious) is perfectly acceptable. In the contrary, it would be completely
grammatical in Latin which turns out to use cases to move word around while still
keeping the several interpretations.

Furthermore, there are a lot of non Indo-European head-marking languages
where a verb conjugates not only for its subject but also for its direct object and
sometimes its indirect object as well. In languages that practice what is called
polypersonal agreement, the verb can agree in gender, number and person with its
various complements, the role of which being usually given by the position of each
marker. For example, in Amharic (a Semitic language), alläñ can be translated
as I have him, the ä denoting something masculine singular, while alluñ would be
I have them where u denotes a plural irrespective of the gender. I have her with
the possessed being feminine singular would be alläččïñ, where in the three cases
all is the root and ñ denote a first person possessor [App13]. It is also the case in
Basque, in Georgian as well as in some Bantu languages of Africa and some North
American languages. In those languages, gender, number and person are much
more morpho-syntactic than in Indo-European languages.

While the various morphological complexity measures presented above take
good account of the morphological richness of languages, they do not measure the
syntactic content of that morphology. Thus they can at best tell us what to expect
from reducing data sparsity and not from using morphology for its informational
content.

We then present a new measure of morpho-syntactic complexity that indeed
focuses on the syntactic content of morphology rather than the morphology itself.

7.4 Measuring Morphology Syntactical Informa-
tion

We propose a measure of morpho-syntactic complexity that aims at accounting for
the syntactic role of a language morphology rather than its mere sparsity increasing
property. Looking back, at the Latin example from previous section, we want that
the distinction between Petrus and Petrii be taken into account by the measure
while that between videt and vidit be ignored. The measure is based on preferential
head attachment.

The Head Part-of-speech Entropy (HPE for short) is a measure of how
much information a token has about the part-of-speech of its governor. Let T be
a text annotated for dependency relations. Let Vdw be the vocabulary of delexi-

133 Chapter 7. Measuring the Role of Morphology

Head ADJ NOUN VERB Total
of occurrence 1 7 6 14
Probability πw 0.071 0.500 0.429 1
− log2(πw) 3.807 1.000 1.222 -
Entropy 0.272 0.500 0.524 1.296
of occurrence 5 400 3 408
Probability πw 0.012 0.980 0.007 1
− log2(πw) 6.350 0.0286 7.087 -
Entropy 0.078 0.0280 0.052 0.158

Table 7.1: Computation of the HPE for the delexicalised words
PRON:Case=Acc|Gender=Neut|Number=Sing|Person=3|PronType=Prs
|Reflex=Yes corresponding to itself (top) and PRON:Number=Plur|Per-
son=3|Poss=Yes|PronType=Prs corresponding to theirs (bottom) on data from
the English EWT treebank.

calised words6 and Vpos the vocabulary of parts-of-speech. In our case, we compute
the average HPE for delexicalised words as we are interested in how much inflec-
tional morphology encodes syntactic information. Let POSh : Vdw → 2Vpos be
the function that maps a delexicalised word to the set of POS that its governor
can take. Finally, let πw(pos) be the probability that the governor of delexicalised
word w be pos in text T . Then, the Head Part-of-speech Entropy (HPE) of a
delexicalised word w is defined as follow :

HPEw = −
∑

p∈POSh(w)

πw(p) log2(πw(p)).

The HPE of a text is just the average of its attributes sets HPE :

HPE(T) =

∑
w∈Vdw

HPEw

|Vdw|
.

To illustrate the computation of the HPE, let us look at two examples from
the English EWT treebank from UD 2.2. Let us consider the delexicalised word
PRON:Case=Acc|Gender=Neut|Number=Sing|Person=3|PronType=Prs|Re-
flex=Yes. It is a pronoun, more precisely the reflexive personal pronoun of the
third person singular in the accusative case, thus itself. It appears 14 times in
the train set, out of which it depends 6 times on a VERB, 7 times on a NOUN
and once on an ADJective. The computation of its HPE is broken down in Table
7.1 alongside the HPE of the delexicalised word for theirs. We can see that while
both can depend on the same three POS, the distribution of theirs is much more
skewed toward nouns resulting in a much smaller entropy.

The intuition behind only looking at the part-of-speech of the governor is that it
is both a salient and stable word feature for syntactic analysis. In most languages,
except those that allow case stacking, a word’s syntactic properties depend mostly
on its direct governor. English is a good example, despite its poor morphology,
pronouns mark cases. In the three sentences She knows him, She has known him
and She was scared of knowing him, him is always in the accusative case and always
the direct object of the verb know, irrespective of its appearing as the finite form

6A delexicalised word is a set of morphological attributes with a part-of-speech as defined in
section 5.2.

7.5. Annotation Scheme Design 134

knows, the past participle known or the gerund knowing. And this is the primary
use of the accusative/dative in English to show attachment of a pronoun to a verb
as its object (whether direct or indirect) and this irrespective of the verb form7.

As a measure of how much syntactic information is encoded in the morphology,
HPE should allow us to distinguish languages that will benefit from using mor-
phological clues for parsing from those that just benefit from sparsity reduction.

It is worth mentioning that as a measure of preferential head attachment,
HPE misses some syntactic information that can be encoded by head marking
phenomena. Declension is a typical example of dependent marking phenomenon.
The word Petrus changed form depending on its relation to its governor and the
relation are marked on the dependent. Conjugation however, is a head marking
phenomenon. The governor changes form according to the relation its dependents
(not necessarily all of them) have with it. Compare, you eat and he eats. The verb
carries the mark of its subject. Similarly, in French and Italian, there are cases
where a direct object appearing before a verb also changes its form. Compare, Le
mail (m.) que je lui ai écrit and La lettre (f.) qu’il m’a écrite. The auxiliary
carries the mark of its subject and the participle the mark of its direct object.

In European languages, head marking is reduced to verbs and often also asso-
ciated with either dependent marking (cases) or word order, thus it does not carry
a lot of information. However, there are languages mostly in the Americas and in
Papua-New Guinea and Australia where it plays a more important role. In Tzutu-
jil, a Mayan language, verbs carry marks of both the subject and the object whilst
neither the subject nor the object has any specific marker of its status [DH13].

The main difference between head marking and dependent marking from de-
pendency parsing point of view and morpho-syntactic complexity is that dependent
marking is simpler to analyse than head marking as words have only one governor
but can have several dependents. It is not straightforward to extend HPE to take
head marking into account.

An interesting feature of HPE is that it does not rely on any parsing algorithm
or architecture, thus making it possible to estimate the morpho-syntactic richness
of a language independently of any parsing framework8. However, despite its being
independent of any parsing algorithm, HPE is still based on some annotated data
and is thus dependent on the annotation scheme. Thus it seems normal to wonder
how much of an impact the annotation scheme has on the measure. We investigate
this further in the next section.

7.5 Annotation Scheme Design
When crafting an annotation scheme for dependency parsing there are a number
of factors to consider like the type of information that should be included beside
of plain word forms (lemmas, parts-of-speech...) or ways to treat ties (what is

7The subject is treated a bit differently though. In main clauses and in subordinate with
finite verbs, it is expressed with the nominative case as in I am here and You know (that) I were
there. However, for non finite forms, both the accusative case and the genitive case can be used,
with arguable a slight difference in emphasis. I am tired of him being silly, I am tired of his being
silly.

8If one had access to two parallel corpora consistently annotated in two different languages,
then the score of a parser using only morphological information would be a measure of their
relative morpho-syntactic complexity. However, it would depend highly on the parsing framework
(projectivity/non projectivity, edge representation, parsing algorithm...) and a different setting
could give different results on the same data.

135 Chapter 7. Measuring the Role of Morphology

the head of a conjunction). Here we will discuss three orthogonal choices (some
of which are not specific to dependency parsing) that impact parsers as well as
measures of morpho-syntactic richness that depend on the annotation scheme. In
the experiment section, we will quantify their impact with empirical measurements.

7.5.1 Part-of-speech Tags
An important design choice is the type of side information available on top of the
forms and the dependency structure. And how this information will be encoded.
Usually, words in treebanks are annotated with their part-of-speech (which set
to use is also a design choice) and to some extent with morphological analysis.
In the UD project, words are also annotated with lemmas. Those questions are
not restricted to dependency parsing but are of prime importance for it. For
example in the Penn Treebank, words were morphologically analysed just as in
the UD treebanks, however the analysis was conflated into the POS tags set.
The equivalent of UD Verb,{Mood=Ind, Number=Sing, Person=3, Tense=Pres,
VerbForm=Fin} is VBZ in the Penn treebank. Of course, some researchers have
proposed methods that share information between various related POS (like adding
coarse-grained POS such as VB for all verbs), but those strong choices suggest to
treat different verb forms independently from each other.

This first choice is important since parsers will need to learn not the use of
verbs, but the use of verbs in third person, the use of gerunds, of participles and
so on, for as many extra POS added to represent some morphological variation.
Regarding morpho-syntactic richness measure, this would also be misleading, for as
we have mentioned earlier, accusative (direct objects) attach to verbs irrespective
of their morphological analysis. If we were to split verbs into several classes like
in the Penn Treebank, we would artificially increase the HPE. Likewise, if we were
to merge lexical verbs with auxiliaries and modal verbs, we could also miss some
important distinctions.

In order to test this, we will look at the parsability of different parts-of-speech
sets and compare it to their respective HPE on the same corpus.

7.5.2 Word Tokenisation
An orthogonal design choice to the previous one is what is to be considered a
word. Again, this is not a problem specific to dependency parsing, but important
in NLP and in linguistic in general. This actually encompasses several related
problems. We are used to consider a word a sequence of characters separated by
spaces before and after. To that we add a few exceptions for the treatment of
punctuation tokens. However, this only works for scripts that use white space to
mark word boundaries. This sounds like a circular argument, but let us consider
Asian scripts. On the one hand, in Chinese, words are not separated by spaces
whatsoever. On the other hand, in Tibetan and Vietnamese, the separation is at
the level of syllables (with spaces in Vietnamese and dots in Tibetan).

Usually, tokenisation (word separation) is considered solved before applying
dependency parsing. However, this does not address the problem of contractions
that are also common in European languages. Shall the English don’t and cannot
be treated a individual words or shall they be analysed as do not and can not? The
fact that the merger is only optional in English points toward the second solution.
In French, au and du result from the compulsory merger of a preposition and the

7.5. Annotation Scheme Design 136

masculine definite article (à le and de le), but their feminine counterparts à la and
de la are not merged. This also points toward treating them as separate words.
That is indeed the convention taken in the UD project. In those cases, there are
some formal reasons to choose one design over another.

A certain number of languages use affixes to mark possession on nouns amongst
them are Hungarian, Burusashki and the Semitic languages. Despite the frequency
of this phenomenon, the UD project has not yet chosen a unified treatment of those
markers. In Hungarian those endings are treated as morphological markers and are
thus expressed under the feature category as Number[psor] and Person[psor].
However, in Hebrew those endings are treated as merged words. As we men-
tioned earlier, the form ’avodati is treated as ’avodah shel ani (job of me). This
is disputable for at least three reasons. From a synchronic point of view, Hebrew
has another way of expressing possession indeed using the (inflected) preposition
shel after a definite noun, while in the inflected nouns there is no clue of neither
shel not the definite article ha. From a diachronic point of view, possession in-
flection is an old feature of Semitic languages that is also found in Arabic and
Amharic for example, thus one would expect the original suffixed pronouns to be
fully grammaticalised as bound morphemes by modern times. Eventually, from a
multi-lingual parsing point of view, treating those suffixes as separate words both
artificially increases the number of edge in a structure with and conflicts with the
idea of treating similar features in different languages as similarly as possible in
the annotation scheme.

By artificially merging and splitting words, one changes the number of vertices
and edges in the dependency structure which can impact parsing results. Fur-
thermore, one redistributes syntactic information in a way that may both impact
morpho-syntacticity measures and parsing algorithms.

To test this, we will look at the parsability of a corpus with varying tokenisa-
tions and compare it to their respective HPE.

7.5.3 Dependency Scheme
Eventually, the last design choice orthogonal to the two precedent is the syntac-
tic/semantic nature of dependency relations and what words are considered im-
portant in the structure. For example, in a compound verb phrase that contains
an auxiliary and a participle, which word shall be the governor? Let us take the
sentence He has eaten a hamburger. The syntactic view is to choose the syntactic
head of the phrase, thus has, as it is the word that carries the inflection and the
syntactic information. The semantic view on the contrary is to choose the semantic
head, eaten, as it is the word that carries the meaning of the phrase. Similar ques-
tions arise for noun phrases, where some have argued in favor of the determiner
being the syntactic head. For example, the first version of the Turin University
Treebank was annotated with determiners governing noun phrases [BLVL00].

The dependency version of the Penn treebank was annotated with syntactic
dependency rules. The UD project has chosen semantic rules for it is more relevant
when dealing with several languages at once. For example, where a language
uses a compound tense, another may only have a simple tense (where semantic
and syntactic heads are the same), likewise where a language uses an adposition,
another can use a declension thus only retaining the semantic head. Semantic
dependencies tend to make much more stable structures across languages (as well
as through paraphrasing and summary). However as their name suggests, semantic

137 Chapter 7. Measuring the Role of Morphology

dependencies tell less about syntax and morpho-syntactic properties of a language.
For example, because some languages lack of an overt copula (to be) in predicative
use, adjectives are semantic heads, their syntactic status depending on the presence
of the copula. In the English sentence Peter is tall, tall is the semantic head while
is is the syntactic head. Thus, in English, despite sentences always having overt
finite verbs, a subject is not consistently governed by one. It can as well depend on
an adjective as we have just seen, a noun (also in predicative use), a participle or
even an adposition amongst other. In syntactic dependency style, a subject would
always depend on a finite verb, making for a more coherent syntactic analysis
inside the language.

Different dependency schemes are likely to have an impact on both parsing
accuracy and morpho-syntactic measurements. However, whilst some treebanks
already have annotation with different tag sets and we can thus use them right
away, and whilst some treebanks are also annotated with merged syntactic words
making their analysis quite easy, it is not straightforward to change of dependency
scheme.

For example, considering the change from semantic head to syntactic head in
verb phrases, one needs to find the appropriate auxiliary to become head of the
verb phrase (there might be several candidates), then one needs to change the
head of some but not all from semantic to syntactic head. Typically, subject,
adverbials and other verbs will attach to the syntactic head, however, object like
complement might still attach to their semantic head. Take the sentence I have
eaten strawberries, assuming syntactic head parsing, I and eaten would both be
governed by have, however, strawberries could still depend on eaten or on have.
Furthermore, to keep the annotation coherent, a whole lot of other changes need
be applied to the treebank. For example, copulas (the be verb) should also become
head of attributive noun phrases and adjectives. In You are tall, are would become
head, no longer tall.

For all these reasons, we keep this investigation for future work.
We shall instead points toward some previous works discussing theoretical mo-

tivations and practical parsability of different dependency scheme choices. Bosco
et al. [BMM+10] compare different dependency formalisms (one that considers
noun as head and one that considers determiner as head for noun phrases) used to
annotate Italian treebanks using different parsing algorithms. Gerdes and Kahane
[GK16] discuss more specific choices in Universal Dependencies such as the choice
of head in verb phrases where the object is the actual predicate (to give a slap).

We have discussed three annotation choices that must be considered when
annotating a new treebank. By changing the structure of the trees, the parts-of-
speech and label distributions and the mere word count, it will have an impact
on both dependency parsing results and morpho-syntactic measurements. In the
next section, we will quantify this impact via experiments on dependency parsing
with varying tag sets and tokenisation rules.

7.6 Experiments
We ran a series of experiments using data from the UD project in order to test
the hypothesis that using morphological information plays a double role for pars-
ing in both reducing sparsity and encoding syntactic information. We also tested
the idea that not all languages are equal with regard to their encoding of syntax
with morphology. To further qualify the impact of the annotation scheme on the

7.6. Experiments 138

morpho-syntactic complexity measure and its relation to dependency parsing re-
sults, we conducted parsing experiments with modified annotations and compared
the results to their morpho-syntactic complexity measures.

In this section, we first describe the parsing model we use and then the exper-
iments proper and discuss their results.

7.6.1 Parsing Model
We work with a graph-based dependency parsing architecture very similar to those
of the previous chapters. The main difference is that we use a very simple feature
vector to represent edges so that we can investigate the actual importance of the
information encoded by different word representations.

For a given sentence x = (x1, x2, ..., xn), the vector representation of an edge
eij whose governor is the xi and dependent is xj, is defined by the outer product
of their respective representations in context. Let ⊕ note vector concatenation, ⊗
the outer product and xk±1 be the word just before/after xk, then:

φ(eij) = vec[(xi−1 ⊕ xi ⊕ xi+1)⊗ (xj−1 ⊕ xj ⊕ xj+1)] ∈ R9d2 .

The vector wi is a dense representation of length d � V , its learning is detailed
in next section.

We use the averaged Passive-Aggressive online algorithm for structured pre-
diction [CDK+06] for learning the model θ. Given a score for each edge, we use
Eisner algorithm [Eis96] to retrieve the best projective spanning tree. Even though
some languages display a fair amount of non-projective edges, on average Eisner
algorithm scores higher than Chu-Liu-Edmonds algorithm [CL65] in our setting.

7.6.2 Word Representation
We construct separate vectorial representations for lemmas, forms and morpho-
logical attributes, either learned via dimensionality reduction of their own co-
occurrence count matrices or represented as raw one-hot vectors. We also create
two extra types by concatenating a word’s POS tag and its form (pform) or lemma
(plemma). This is a simple way to disambiguate homographs, which in turn should
make the dimension reduction more robust.

Let V be a vocabulary (it can be lemmas or forms or morphological attributes
(incl. values for POS, number, case, tense, mood...)) for a given language. Cor-
respondingly, let C be the set of contexts defined over elements of V . That is,
lemmas appear in the context of other lemmas, forms in the context of forms,
and attributes in the context of attributes. Then, given a corpus annotated with
lemmas and morphological information, we can gather the co-occurrence counts in
the matrix M ∈ N|V|×|C|, such that M ij is the frequency of lemma (form or mor-
phological attributes) Vi appearing in context Cj in the corpus. Here, we consider
plain sequential contexts (i.e. surrounding bag of “words”) of length 1, although
we could extend them to more structured contexts [BGL14]. Those co-occurrence
matrices are then reweighted by unshifted Positive Point-wise Mutual Informa-
tion (PPMI) and reduced via PCA such as explained in section 5.3.4. For more
information on word embedding via matrix factorisation, please refer to [LGD15].

Despite its apparent simplicity, this model is as expressive as more popu-
lar state of the art embedding techniques. Indeed, Goldberg and Levy [LG14]
have shown that the SkipGram objective with negative sampling of Mikolov’s

139 Chapter 7. Measuring the Role of Morphology

da en et eu fi fr got he hu ro sv
Train 4383 12543 2263 5396 12217 14553 3387 5241 910 8043 4303
POS 17 17 16 16 15 17 14 16 16 17 16
Feats 44 35 58 69 88 36 40 48 73 59 39

Table 7.2: Basic datasets statistics. The first line gives the number of train sen-
tences for each language. The second and third give the number of part-of-speech
tags and of morphological attributes for each language.

Word2vec [MSC+13] can be framed as the factorisation of a shifted PMI weighted
co-occurrence matrix.

This matrix reduction procedure gives us vectors for lemmas, forms and mor-
phological attributes, noted R. Note that while a word has only one lemma and
one form, it will often realise several morphological attributes. We tackle this issue
by simply summing over all the attributes of a word (noted Morph(w)). If we note
rw the vectorial representation of word w we have:

rw =
∑

a∈Morph(w)

Ra.

Simple additive models have been shown to be very efficient for compositionally
derived embeddings [ALM17].

7.6.3 Experimental Setting
In the first experiment we train dependency parsers for 11 languages from the UD
project, using either words forms, lemmas or morphological attributes as input.
Those input can be either used raw, or embedded in a low dimension space before
hand (we explain the embedding process below). Basic statistics about those
languages are given in Table 7.2.

For each language, ten parsers are trained (two for each type in lemma, plemma,
form, pform and gold morphological attributes, one using one-hot input and one
using embedded input). Each parser is trained for 10 iterations of the whole
training set via the Passive-Aggressive algorithm and the best iteration is kept
based on its accuracy on the development set.

We then trained another four parsers per languages using predicted morpho-
logical attributes instead of the provided gold. This is to test the viability of
morphological parsers when only forms are given and measure the impact of pre-
diction noise.

Each word is represented as a vector encoding prefix and suffix information
for the word itself and its left and right neighbours, information about the word
length and its capitalisation are also included. Then a multi-class SVM model
is trained for each morphological feature (gender, case, mood, tense...) and for
parts-of-speech. For each morphological feature, an empty value is added meaning
the irrelevance of that feature for that word. We used the SVM implementation
of Scikit-learn [PVG+11] with out-of-the-box parameters.

We experimented with two prediction regimes, either using the argmax value for
each feature, or a softmax over its possible values. Those two outputs can be used
as such (we call it the one-hot regime) or passed down to an embedding matrix.
This gives us four parsers: two prediction regimes (argmax or softmax) times two
representation regimes (one-hot or embedding). Attributes prediction results are

7.6. Experiments 140

Lem pLem Form pForm Morph
da one-hot 58.47 62.36 56.92 60.48 73.76

embed 68.33 72.00 70.64 70.30 73.27
en one-hot 67.05 68.87 65.83 67.49 76.27

embed 75.21 74.04 75.13 75.36 76.17
et one-hot 44.96 48.80 41.36 43.42 71.21

embed 59.23 57.10 57.36 56.09 70.20
eu one-hot 60.27 62.32 57.67 60.45 73.81

embed 69.59 70.10 65.64 67.09 73.21
fi one-hot 56.06 57.04 51.50 52.69 75.58

embed 66.90 68.27 60.38 63.87 73.33
fr one-hot 70.93 72.02 70.35 71.67 78.67

embed 71.90 72.90 76.05 77.68 78.79
got one-hot 60.63 61.09 58.68 59.31 76.88

embed 71.14 71.18 68.72 68.63 76.37
he one-hot 65.70 67.17 67.08 67.50 77.65

embed 72.52 74.44 72.68 72.51 76.95
hu one-hot 47.32 48.47 44.35 46.04 69.67

embed 51.04 54.01 55.06 50.63 69.38
ro one-hot 68.69 69.47 67.20 68.04 76.57

embed 72.83 74.17 73.21 73.05 76.32
sv one-hot 61.30 64.37 58.54 61.86 76.42

embed 73.27 74.13 72.72 71.60 76.02

Table 7.3: UAS scores for parsers using lemmas (Lem), word forms (Form) or mor-
phosyntactic attributes (Morph) representations as features. Lemmas and forms
are also disambiguated with their POS giving pLem and pForm. For each lan-
guage, the top line holds results using one-hot representation and the bottom line
holds results using embeddings instead.

given in Table 7.4. It should be noted that the low results in POS tagging are due
to the model being very local and not using any sentencial structure. Likewise,
for morphological attributes, the empty feature is taken into account in measuring
the accuracy and each feature predictor is independent from the other thus in
theory allowing nouns to have moods or punctuation to have tenses. Despite its
weaknesses, this model is very simple to implement and train.

7.6.4 Results
Assessing the Role of Sparsity Reduction and Morphology

Word forms are the simplest input one can use as they are directly available from
raw text. The one-hot encoding of word forms is the simplest representation
available as it requires no further processing than indexing words but suffers the
issues we mentioned in section 3.2. It will be our baseline (Form and pForm).

In order to assess the role sparsity reduction, we trained parsers using form
embeddings (Form and pForm). Embeddings are a good way to reduce data spar-
sity since as they represent words in dense low dimensional spaces, information
can flow between words directly.

Because form encode morphological information, to test the sparsity reduction

141 Chapter 7. Measuring the Role of Morphology

effect without the interaction of forms syntactic information, we trained parsers
using lemmas (Lem and pLem) instead of forms as another sparsity reduction
device. We used the lemmas as provided in the UD data.

Then, to assess the role of morphology as a syntax encoding device, we trained
parsers using morphological attributes alone (Morph). There again, we have a
parser using one-hot representation and one using embedded morphological at-
tributes.

Sparsity Reduction Unlabeled parsing results are reported in Table 7.3. For
completeness but because the analysis carries on to labeled parsing results, they
are reported in the appendix. There are a few things to notice here. For lemmas
and forms (the first four columns), parsers working on embedded input (bottom
row) score consistently higher than those working with one-hot encoding (top row).
Similarly, one-hot parsers (top row) using lemmas (first two columns) score con-
sistently higher than their forms using counterparts (next two columns) except for
Hebrew (we analyse this result later). Those two facts show that indeed reducing
data sparsity in a way (embedding) or another (using lemma rather than forms)
is beneficial for parsing for all languages.

Then, we see that except for French where the difference is not significant,
parsers using one-hot morphological attributes outperform parsers using embedded
morphological attributes. This is likely explained by two factors. First, the number
of morphological attributes is very small (a few tens) compared to the number of
forms and lemmas. In that sense, one-hot encoding of morphological attributes
does suffer from data sparsity, and thus embedding them does not bring the gain
seen for very sparse tokens such as lemmas and forms. Second, it might be because
of our too simple embedding scheme. Again, for very sparse input, it already does
the job of reducing data sparsity, but for already somewhat dense inputs such as
morphological attributes we may need a smarter embedding technique to further
gain from information sharing.

However, both parsers using morphological attributes consistently outperform
the other eight parsers using lexical input (forms or lemmas). Nonetheless, those
gains are hardly consistent between languages. Because forms are the easiest
tokens to work with as they are given directly by the text, we will focus on them
for rest of the analysis. We see that while French and English have gains of
about 2% between embedded form parsers and morphological attribute parsers,
Hungarian and Estonian have 14% gains and Finnish has up to 15% improvement.

This is important for two reasons. From a typological perspective, French
is recognised as a morphologically rich language for its rich verbal morphology.
However, it behaves more like English which is a morphologically poor language.
Likewise, Romanian and Danish only witness gains of about 3%. Hungarian and
Finnish (amongst other) are also morphologically rich languages, but have much
bigger benefits from using morphological attributes. This calls for a better expla-
nation than the typical morphologically rich versus morphologically poor language
classification.

Then, from an application perspective, those 2-3% improvements of French or
Romanian are obtained with gold morphological attributes. In practice, predicted
attributes will contain errors that might wipe those 2-3% out, thus rendering
morphological parsers less useful than parsers using plain forms. In order to answer
this issue, Table 7.4 gives the scores of four parsers using morphological attributes
predicted with a simple SVM instead of the provided gold ones.

7.6. Experiments 142

Form Morph Morph Pos Morph
Emb One-hot Emb

da argmax 70.64 64.69 64.19 87.37 98.02
softmax 65.43 65.33

en argmax 75.13 69.32 69.51 87.24 97.74
softmax 71.36 70.75

et argmax 57.36 57.16 55.53 84.49 96.20
softmax 58.76 57.24

eu argmax 65.64 64.51 64.10 86.09 97.56
softmax 67.02 66.18

fi argmax 60.38 64.33 62.58 86.14 97.09
softmax 66.84 65.04

fr argmax 76.05 72.82 72.28 90.60 97.60
softmax 73.29 73.18

got argmax 68.72 69.94 69.29 90.44 96.00
softmax 70.86 70.46

he argmax 72.68 71.60 71.51 90.93 97.84
softmax 72.75 71.85

hu argmax 55.06 61.80 59.62 88.43 92.76
softmax 61.91 60.64

ro argmax 73.21 71.36 70.86 90.64 97.76
softmax 72.03 71.34

sv argmax 72.72 67.99 67.82 89.23 96.88
softmax 69.48 68.60

Table 7.4: UAS scores for parsers using predicted morphosyntactic attributes and
morphological attributes prediction accuracy. For each language, the top line holds
results corresponding to argmax prediction of attributes, while the bottom line
holds results using probability distributions. The second column shows results
using one-hot representation (or probability distributions), and the third shows
results when the embeddings are used. The scores of parsers using embedded
forms is given for comparison. The last two columns report the part-of-speech and
attributes prediction accuracy.

143 Chapter 7. Measuring the Role of Morphology

da en et eu fi fr got he hu ro sv
F/L 1.44 1.39 1.60 2.32 2.19 1.38 2.44 1.83 1.46 2.03 1.59
F/iL 2.80 2.76 3.35 4.29 4.68 3.15 4.20 3.39 3.03 3.76 2.91
HPE 1.07 1.12 0.55 0.51 0.57 0.87 0.60 1.01 0.60 0.71 0.84

Table 7.5: Morphological complexity measures (F/L, F/iL) and morpho-
syntactical complexity measure (HPE) for each language as computed on their
respective train sets.

Morphological Information Just looking at the last two columns of Table 7.49,
we see that one-hot morphological attributes consistently outperforms embedded
morphological attributes, which is in agreement with results from Table 7.3. We
also remark that soft decisions (bottom row) beats hard decisions (top row) which
is in agreement with previous work on multitask learning [SB17].

Now looking at the whole table, we see that as expected, using poorly predicted
morphological attributes decreases the parsing scores to the point that for half of
the languages, it is no more beneficial to use morphological attributes over plain
forms. However for the other half that had already high gains with gold attributes,
using predicted morphology is still better than resorting to plain forms. But again,
French and Romanian, despite their being morphologically rich, stick with English
which is morphologically poor, thus the typical morphological richness dichotomy
does not solve the matter.

We also notice that there is not clear link between the part-of-speech and
morphological attributes prediction scores and the parsing accuracy. There are a
few reasons for this. The most trivial and less interesting one is that there are
plethora of other conflicting factors such as the size of the training set that we
do not take into account. The other reasons are more interesting. Our prediction
model is both very simple and local. As the predictors for each feature (and the
part-of-speech) are independent, the model has no reason and no way to enforce
consistency amongst predicted attributes. Nouns can have moods and pronouns
tenses, nothing in the model prevents it beside of the training data. And in fact,
this might not even be a problem. As will become clearer in next paragraph, not
all morphological attributes are as useful in encoding syntactic information, and
as such, they could be very badly predicted and still not impact the actual parsing
results as the parser would learn to ignore them in the first place. Finally, there
are no constraints about surrounding words attributes. As words attributes are
predicted in isolation from other words attributes, the model is unable to capture
syntactic information such as agreement between nearby words and so predicting
attributes is just about predicting classes and not about learning syntax.

Parsing Accuracy and Morphological Complexity Our hypothesis was
that morphology plays a double role in dependency parsing in both reducing data
sparsity and encoding syntactic information. We have already assessed the spar-
sity reduction role. In Figure 7.1, we plot the accuracy differences between parsers
using either predicted or gold morphological attributes and parsers using embed-
ded forms with respect to their respective language form per inflected lemma ratio
(F/iL) and head POS entropy (HPE). The corresponding morphological complex-
ity measures are reported in Table 7.5.

9For this experiment too, labeled parsing results are reported in the appendix.

7.6. Experiments 144

3 3.5 4 4.5

−5

−2.5

0

2.5

5

7.5

10

12.5

15

da

en

et

eu

fi

fr

got

he

hu

rosv

(a) F/iL

0.5 0.75 1

−5

−2.5

0

2.5

5

7.5

10

12.5

15

da

en

eu

fi

fr

he

hu

ro sv

et
got

(b) HPE

Figure 7.1: Accuracy differences (y-axis) between parsers using form embeddings
and parsers using one-hot attributes, with respect to morphological complexity
(x-axis). Dots represent the gold attributes scores and triangles the predicted
attributes scores.

145 Chapter 7. Measuring the Role of Morphology

Looking at Figure 7.1a, whilst there is a clear trend in the direction for increas-
ing gains with higher F/iL, Estonian, Hungarian and Romanian are somewhat off.
Romanian is clearly a morphologically rich languages with regard to its F/iL, but
it has surprisingly low gains. On the contrary, Hungarian and Estonian are in the
low end of F/iL with morphologically poorer languages and still have surprisingly
high gains.

Figure 7.1b on the other hand, shows two clear clusters of languages. Below
0.65 HPE, we have languages displaying rich morphology and that consistently
benefit from encoding their morphology (predicted or gold) over using plain forms.
Those are the languages that encode a lot of syntax in their morphology and that
we could call morpho-syntactic languages, borrowing on the terminology of Kibort
[Kib10]. Above 0.65 HPE, we have languages that do benefits from morphology
mostly as a data sparsity reducing device, and their benefits are nullified as soon as
we had noise to their morphological analysis, and this irrespective of their being
morphologically rich or poor. Those languages tend to encode mostly semantic
information in their morphology thus we call them morpho-semantic languages.
Hebrew might seem an outlier here, as was in Table 7.3, but this is likely due to
annotation choices specific to its data that we will discuss in Section 7.6.5.

So far, we have shown that indeed morphology plays a double role in depen-
dency parsing. For all the languages, it behaves as a data sparsity reduction device.
Then, for a subset of morphologically rich languages that we call morpho-syntactic
languages, it also provides syntactic information directly used by parsers. Fur-
thermore, whilst traditional morphological complexity measures do only consider
morphological productivity and not its actual uses and thus do not explain parsing
results well, a measure of morpho-syntactic information such as the HPE predicts
better parsing performances. Moreover, the HPE is independent of the parsing
algorithm one might use and only depends on the annotation scheme underlying
the data, which is also an interesting bias in the sense that not all annotation
schemes are equally easy to parse.

The fact that our results are quite low compared to that of state-of-the-art
parsers is due to the model over simplicity. To let us investigate the role of differ-
ent word representations, we have ripped most of the information away from the
edge representation. Good models encode at least the length and direction of the
relation and maybe information about words appearing in between the ends of the
relation. Here, we just use information about the triplets of words at each end.
Indeed, what we are interested in here is the relative differences between different
parsers scores.

7.6.5 Assessing the Impact of the Annotation Scheme
In this section, we consider targeted experiments trying to uncover the role of the
annotation scheme in dependency parsing. We investigate the role of the POS-tag
set, the impact of treating bound morphemes as syntactic words, and the weight
of choosing syntactic heads versus semantic heads in the structure.

Choice of POS-Tags Set

To measure the role of the POS-tag set, we used the same model as above to parse
the English treebank of the UD project using different tag sets. The CONLL-U
format provides a slot for corpus specific parts-of-speech to keep backward com-
patibility for corpora that have been adapted to Universal Dependencies guidelines

7.6. Experiments 146

from an earlier format. The English treebank uses that slot to keep its original
Penn Treebank style part-of-speech that include extra morphological information
directly into the tag set. We can use it to compare the accuracy of a parser using
those more specific parts-of-speech to a parser using less specific more universal
parts-of-speech and compare their respective HPE as well.

Several parsers were trained, one using the Universal part-of-speech (UPOS),
one using the PTB part-of-speech (PPOS), one using morphological attributes
as a part-of-speech (MPOS) and one using one-hot encoding of morphological
attributes (Morph). The difference between MPOS and Morph is that while in
Morph each single feature/value pair is encoded in a one-hot vector, in MPOS the
whole attributes set is encoded as one value. Results are reported in Table 7.610.
We also report the respective HPE of each type considering that its head is of
each other type. For example the HPE (PPOS) of UPOS is the average entropy
of a universal part-of-speech assuming its head were tagged with PTB parts-of-
speech. This might not make sense for all combinations, but it gives a sense of the
information content of each tags set.

The actual entropy of the one-hot encoding of morphological attributes is ac-
tually hard to estimate as it can select only the relevant information in the one-hot
vector. However, we can say that it is smaller than its MPOS counterpart where
morphological attributes are seen as a single entity, because of the more flexible
information.

In Table 7.6, numbers in bold are the HPE relevant to the results in the first
row. We see that as HPE decreases, accuracy increases, which is expected as the
more information a token has about its governor on average, the easier it is to
do parsing. Also as expected, we see that UPOS being more coherent (only one
POS for verbs) than PTB POS (several POS for tenses, persons and participles),
it leads to lower entropy and is easier to parse.

The only quirk here is the HPE (MPOS) of morphological attributes used as
part-of-speech. It corresponds to a higher accuracy than that of the UPOS parser
and does not fit the trend drawn by the three other values. In fact, this shows a
limitation of the HPE measure as a tool to compare tag sets. HPE is measured
for types at the level of corpora, while dependency parsing is done one tokens
at sentence level. As the number of possible head types increases, so does the
HPE as dependent types have more and more potential heads at the corpora level.
However, it gets less and less likely that two types will co-occur in a sentence and
thus a dependent token might have enough information at sentence level to get
its head right. This is even truer here, given that morphological attributes are
actually sentence level token information while parts-of-speech are high level type
information.

This shows that HPE is a good tool to compare corpora and languages that
use similar high level tag sets. It can both tell something about languages relative
complexity and tagging relative ”parsability”. However, as it is a measure of corpus
level type information, it breaks down when considering token level information
in the head.

10Results discrepancies with Tables 7.2 and 7.3 are due to slight deviations in model imple-
mentation, code running on a different machine and annotation corrections between UD 2.0 and
UD 2.2.

147 Chapter 7. Measuring the Role of Morphology

PPOS UPOS MPOS Morph
UAS 65.31 68.99 70.86 72.55
HPE (PPOS) 2.74 2.98 1.81 >1.81
HPE (UPOS) 1.69 1.87 1.04 >1.04
HPE (MPOS) 2.93 3.22 1.96 >1.96

Table 7.6: UAS for parsers using Universal POS, PTB POS, morphological POS
and one-hot morphological attributes (Morph) on the English (EWT) corpus of
UD 2.2. Below are reported head entropies when using different dependent and
head representations.

Language #tokens #contracted #surface % of tokens
words forms

Basque 72974 0 0 0.00
Danish 80378 0 0 0.00
English 204607 0 0 0.00
Estonian 85567 0 0 0.00
Finnish 127845 486 243 0.19
French 366371 19516 9758 2.66
Gothic 35024 0 0 0.00
Hebrew 169360 71012 31680 23.22
Hungarian 20166 0 0 0.00
Romanian 185113 0 0 0.00
Swedish 66645 0 0 0.00

Table 7.7: Contracted words statistics for 11 languages from the UD project. First
column gives the number of syntactic tokens in the train set. Second column gives
the number of syntactic words that are merged (annotated as such) in the train set.
Third column gives the number of surface forms corresponding to those merged
words. Eventually, fourth column gives the fraction of syntactic tokens that are
hidden in the surface forms computed as #merged−#surface

#tokens
× 100.

Syntactic Words: The Case of Hebrew

Now that we have considered the impact of the tag set on the measure of morpho-
syntactic complexity in relation with parsing accuracy, we turn to the second
consideration namely the choice of what is to be considered a word and what a
morpheme.

As we have seen earlier, the Hebrew treebank from the Universal Dependencies
project makes some strong choices about what is to be considered a syntactic word.
Some of those choices are conflicting with cross-lingual consistency aimed at by the
UD project like the treatment of possessive inflections and some are linguistically
disputable like the treatment of the prefix ha as an actual determiner. However,
even disregarding linguistic soundness of such choices, raw numbers already give
us some insights. Table 7.7 reports some statistics on word merges for the train
sets used in Section 7.6.

The number of merged words is the span sum of spanning indices as given in the
UD train sets. For example French au is annotated as spanning over indices i-i+1
because it actually represents syntactic words à at index i and le at index i + 1,
and thus counts for 2 words. The number of surface forms is the number of such
spanning indices. Here, au counts for 1. The number of tokens is simply the raw

7.6. Experiments 148

count of syntactic tokens in the train set. Because unmerged words also make up for
syntactic tokens and edges, we measure the percentage of edges/words that appear
in the process of splitting merged words. Thus each surface form that results from
merging n words actually adds n − 1 edges/words to the original surface token
counts. The percentage of thus created edges/words is then #merged−#surface

#tokens
×100.

We see that whilst in French, unmerging words makes up for 2.66% of the
total syntactic tokens, due to preposition merging with determiners for euphonic
reasons. German, which we did not use in our experiment is similar to French with
1.72% of syntactic words coming from unmerging preposition/determiner pairs.

Languages can have 0 merged words because they genuinely do not merge words
or because merged words are not annotated as such yet. We made a simple script
to measure this, assuming two syntactic words were actually merged if there were
no space between them in the original surface sentence, none of them is a number,
a symbol or a punctuation and if their boundary is not marked with an hyphen or
an apostrophe. Thus English don’t or cannot are considered merges of do n’t and
can not but not I’m. With this method, we see that English has actually 0.57%
of merged words, which is still quite low and mostly accounts for negations.

In Hebrew, unmerged words account for almost a quarter of all the syntactic
tokens. Which is about 9 time as much as in French. Furthermore, it turns out
upon further investigation that merged words have only two dependency patterns.
Either they all attach to the same head, as is the case for French du (de le) and au
(à le) or they but one attach to syntactic words inside the surface token such as
in the second sentence of the Hebrew dev set veharevakha where ve and ha both
attach to revakha. This thus makes for somewhat easier dependencies than usual.

That might explain the odd results we witness for Hebrew in the previous
experiments as what is considered a morpheme and thus need to be learned by the
morphological tagger in other languages is treated as a word and provided as such
in Hebrew thus making those words/morphemes less noisy in Hebrew than in other
languages. Furthermore, because those words/morphemes attach in a very simple
and regular pattern to their head, it artificially increases the parsing accuracy by
adding many easy dependencies.

In order to test this hypothesis, we made an experiment on a modified version of
the Hebrew treebank. The Hebrew definite article (ha) is always prefixed to every
noun and adjective in a noun phrase, so instead of considering ha as an independent
syntactic word as is done in the original Hebrew treebank, we considered it a
marker of definiteness. We remove each ha from the treebank and added the
attribute Article=ha to its following word morphological attributes. This makes
for 13925 ha in the train set, so 10.11% of the total token count.

Likewise, most adpositions are also prefixed to their head noun, so we also
treated them as cases markers instead of independent words. Out of the 14316
prefixed preposition in the train set, 227 are head of at least one other token thus
we did not change them. The remaining 14089 preposition (10.23% of the tokens)
were removed and added as an attribute Case=adp to their head Morphological
attributes with adp being the form of the adposition. Then we corrected sen-
tences and trees indices to account for the deleted words. We applied the same
transformation to the dev and test sets.

We then parsed the newly created Hebrew treebank and also measured its HPE
and compared it to the original treebank. Results are given in Table 7.8. We also
report the accuracy on the original treebank, ignoring articles and adpositions.

Table 7.8 shows that the UAS on original treebank ignoring adpositions and

149 Chapter 7. Measuring the Role of Morphology

UPOS Morph
UAS 68.20 73.56
UAS -ADP -DET 59.70 66.19
UAS Modified 62.11 70.88
HPE 1.67 >1.01
HPE -ADP -DET 1.72 >1.01
HPE Modified 1.71 >0.75

Table 7.8: UAS for parsers using Universal POS and one-hot morphological at-
tributes (Morph) on the Hebrew corpus of UD 2.2 and a modified version for
merged adpositions and determiners. Below are reported head entropies.

articles are much lower than the complete UAS. This validates the idea that articles
and adpositions are easy to parse in Hebrew and artificially increase the parsing
score. We also notice that including those as attributes rather than as independent
syntactic words is indeed beneficial as the accuracy increases back when doing so.
This is consistent with the evolution of the treebank HPE that decreases as the
score increases. A lower HPE meaning that dependents have more information
about their governor and thus being easier to parse.

Those results indeed give some indication as to why Hebrew results are off in
Figure 7.1, especially with predicted morphological attributes as articles and ad-
positions are small words with no further morphological analysis and are straight-
forward to parse. Furthermore, they also assess the usability of HPE as a measure
of morpho-syntactical annotation consistency and parsability.

7.7 Conclusion
In this section, we have addressed the question of the intrinsic worthiness of mor-
phology from a syntactic parsing perspective. Through experiments on parsing
using various inputs (forms, lemmas, morphological attributes, one-hot and em-
bedded) and with the help of a new measure of morpho-syntactic complexity, we
have shown that morphological analysis plays a double role in syntactic parsing.
For all languages, morphologically rich or not, it acts as a sparsity reduction de-
vice and improves results over plain forms when high quality (gold) analysis is
available. Then, for a subset of morphologically rich languages, that we called
morpho-syntactic languages, morphology also encodes syntactic information cru-
cial for parsing. For those languages, even poorly predicted morphological analysis
still helps over plain forms.

We have also shown that the newly proposed HPE (Head Part-of-speech En-
tropy), a measure of morpho-syntactical information, is indeed predictive of those
behaviours and as such succeeds where more traditional measures of morphological
complexity such as the forms per lemma ratio fail, in telling apart morpho-syntactic
(Finnish, Gothic, Basque) languages from morpho-semantic (French, Hebrew) and
morphologically poor (English) ones. This is interesting from both a computa-
tional point of view, as it can be used to inform representation choices, as well as
from a linguistic point of view, as it is a new tool to be used in typological studies.

As the HPE does not depend on any parsing algorithm but only on annotated
data, we have finally investigated the impact of the annotation scheme (choice of
POS tag set and choice of syntactic words) on the measure in relation to pars-

7.7. Conclusion 150

ing results. We have shown that not only was the HPE able to tell languages
apart from a typological point of view, it is also predictive of the relative consis-
tency/parsability of similar tag sets and of annotation choices in general. With
the general trend that assuming reasonable annotation, parsability increases as
HPE decreases. By reasonable, we mean that the annotation should provide some
reliable information, as if a corpus was annotated with only one part-of-speech, its
HPE would be 0 but it would in the same time be unparsable.

Chapter 8

Conclusion

8.1 Contribution
This thesis has investigated multi-lingual dependency parsing with a special focus
on using morphological information as a bridge between languages. The main hy-
pothesis was that when automatically learning models of natural languages syntax,
using data from multiple languages at the same time should be beneficial. The
basic underlying intuition is twofold: First, languages are not isolated and they
share a lot of structure amongst which syntactic structures, whether its due to
their common history or to areal convergence or by mere chance. Second, even
without sharing a common ancestor (this is yet to be shown), languages display
many commonalities and general trends making it interesting to learn from several
languages at the same time.

In Chapter 5, following similar works on graph-based dependency parsing
[BGL14, Ban15, CZZ14] we added morphological information to the original one-
hot feature vector in the shape of delexicalised word embeddings. We showed
that it indeed helps improving parsing results when delexicalised word embed-
dings are trained on mono-lingual data. We then used multi-lingual data to train
these delexicalised word representations and showed that it can also slightly im-
prove parsing accuracy of mono-lingual parsers. This showed that even indirect
multi-lingual supervision can be beneficial.

In Chapter 6, we turned to more direct multi-lingual supervision, by directly
sharing information between parsing models based on their respective languages
similarities. We proposed the phylogenetic multi-lingual training method that
makes use of a language similarity tree to guide the training of several parsing
models at the same time. We showed that phylogenetic training is really beneficial
and especially for languages with very few training data, but that lexicalisation
is complicated in a multi-lingual setting with different spelling conventions and
writing systems. We also looked at the more conventional model propagation
method. Despite its being hard to tune because of the many hyper-parameters
and the time complexity, it is actually quite useful for languages that have few to
no training data, especially when they are high in the tree as there the phylogenetic
models are still very generic and shallow.

After using morphology as a bridge between languages and as intermediary
information between parts-of-speech and words, in Chapter 7, we investigated the
actual roles played by morphology in dependency parsing. Via a series of experi-
ments, we have shown that beside of its being a language bridge for multi-lingual
dependency parsing, morphology has two main roles in dependency parsing. First

152

153 Chapter 8. Conclusion

of all, it is a way to reduce data sparsity. It is both finer-grained than raw parts-
of-speech and much more dense than actual words, and it fills the gap left by
words in delexicalised parsers. Then, it also directly encodes syntactic informa-
tion relevant to dependency parsing, typically via cases in European languages,
but not only. However, not all languages make the same use of morphology when
it comes to encoding syntax. While traditional morphological complexity mea-
sures can not predict which languages use morphology in a syntactic way, we
proposed a new morpho-syntactic complexity measure called Head POS Entropy,
that measures head preferential attachment of morphological items and is able to
distinguish morpho-syntactic languages that use morphology for encoding syntax
from morpho-semantic ones that do not. Eventually, we discussed the impact of
annotation scheme on both parsing results and morpho-syntactic measurements
and their correlation.

8.2 Future Works
Multi-lingual natural language processing is still a restricted research field, with
most effort going to annotation transfer and learning cross-lingual word represen-
tations. While this was mostly due to a lack of consistently annotated data, things
are changing, but there remain a certain number of challenges. We review some
here.

A lot of work have been done in the field of multi-task learning to automatically
learn task relationships, but they are often considered frozen in time. In computa-
tional historical linguistic and computational biology, a lot of research is targeting
the automatic retrieval of evolutionary history of languages/organisms. It would
be interesting to see to which extent those works can be applied and extended to
our phylogenetic learning problem in order to automatically learn the similarity
structure of languages. In the same time, the phylogenetic tree might not be the
best at encoding languages grammatical evolution, but languages and grammars
take clearly place in an evolutionary history and considering them frozen in time
might be detrimental, especially when we have access to those different time peri-
ods (in UD, we now have data in Latin, Old French and Modern French). This is
also true in the case of model propagation, where as models are pre-trained, they
do not benefit from encoding history but would possibly gain from a sparser and
better encoding of language similarity.

Another real problem that we mentioned in the preliminary chapter and that
we did not address, is that of cross-lingual morphological feature alignment. In-
deed, we used morphology as a bridge between languages, and this requires that
languages be annotated consistently with the same morphological features. How-
ever, not all morphological features/values need be present in two different lan-
guages and even when they are, they need not cover the exact same role and use.
Thus, our methods are only as good as the cross-lingual morphological information
that underlies them. It would thus be worth investigating means to better align
morphological features cross-lingually. Linguists have looked at that problem, re-
garding notably the definition of grammatical cases [Bla01]. We can imagine using
computational methods to attack this problem as well.

Eventually, our analysis of the morpho-syntactic/morpho-semantic dichotomy
in chapter 7, was mainly based on dependent marking that use cases. As such,
our morpho-syntactic complexity measure is based on head selection. However,
not all morpho-syntactic languages rely exclusively on head selection. Actually,

8.2. Future Works 154

even French verb phrases can be seen as head marked as they agree in number
and person with their subject and to some extent in number and gender with their
object. But some Caucasian and American languages do it much more widely
and consistently. It will be interesting to attack that problem too, once data are
available.

Chapter 9

Appendix

9.1 Model Propagation for Dependency Parsing
Model propagation is a simple way to leverage model from several related tasks.
Assume we have access to several similar tasks, by similar we mean that their
inputs and outputs lives in the same spaces respectively. For example we might
need to perform part-of-speech tagging for two or more related languages. Those
tasks share both input space (words or character sequences) and output space
(POS tag sequences). However, as they use data from different languages, their
models will eventually be different. Nonetheless, if languages are close enough,
parts of their respective models can be shared to some extent. The extent to
which their are close and can share information is encoded in a similarity graph
whose vertices are tasks and weighted edges correspond to task similarity.

In the context of federated learning, Bellet et al. [VBT17] propose to let each
task (in their case, each user) train its own independent model and then to share
those models with similar tasks as encoded by a similarity graph. The final model
of each task is then a weighted average of its neighbours models and its own one
such that models evolve smoothly along the graph. This means that models of
neighbouring tasks should not diverge to much. This shows particularly useful
when tasks have only access to a limited amount of data.

More formally, let L be a set of languages and let S ∈ L × L → R+ be a
measure of similarity between languages, such that Sij > Sik if and only if li and lj
are closer than li and lk for li, lj, lk ∈ L. Assume we already have learned a model
θ̂i ∈ Rd for each language li. Then, we want to enforce that similar languages
have similar models. This is in fact the basic idea behind Zhu et al. [ZG02] label
propagation, where we would see languages models as a form of labeling. However,
Bellet et al. propose to add an extra confidence constraint. Whilst, in the original
work of Zhu et al. individual model θi departing from its original value θ̂i is only
determined by its neighbours similarities

∑
j∈n(i) Sij and an hyper-parameter µ,

Bellet et al. add an extra self confidence parameter that take into account the
intrinsic quality of the model, which the propose to estimate using the number of
training samples.

The objective function that they minimise is:

1

2
(
∑
i 6=j

Sij‖θi − θj‖2 + µ
n∑

i=1

Diici‖θi − θ̂i‖2),

where Dii =
∑

j Sij is the matrix of degree as defined in section 2.1, µ is the same
hyper-parameter as in the original label propagation and ci is the confidence value

156

157 Chapter 9. Appendix

of model θ̂i. If we note Θ = [θ1,θ2, ...,θl], then solving the above function gives
the closed form solution:

Θ = ᾱ(I − ᾱ(I − C)− αP)−1CΘ̂,

where C is the diagonal matrix where Cii = ci, α = 1
µ+1

, ᾱ = 1 − α, P = D−1S
and I is the identity matrix.

Voting

Instead of using linear combinations of the original models, one can also apply
ensemble techniques such as voting to those models. The idea behind voting is
that when one has access to several models, instead of merging them into a single
model, one can also apply all the models and have them voting for the best possible
output. This can be very useful especially when there is no easy way to merge the
various models, either because they use different architectures or because they do
not combine linearly (like neural networks). Imagine you have a number of graph-
based parsers and transition based parsers using different feature functions. Then
given a new sentence, each model can predict a structure and all the structures
can then be used for voting for the final structure.

9.1.1 Experiments
Setting

There are a lot of hyper-parameters that can be tuned for model propagation.
First of all, the graph underlying the propagation is a parameter in itself. We
decided to turn the phylogenetic tree into a similarity graph. To try to counter
the huge tree imbalance, instead of the more classical path length between two
leaves in the tree, we used the depth of their last common ancestor. The effect
of this measure is that even languages that are very close in terms of path length
will be considered far from each other as soon as their path goes through nodes
high up in the tree. For example, with the tree from Figure 6.4, Thai is only 2
edges away from Naija but 6 edges away from Bulgarian, still because both path
go through the node World, they will have the same distance. Then we turned
that distance into a similarity with a Gaussian kernel of variance 2 and keep the
complete graph (those are also hyper-parameters on their own).

We have used the complete graph with a similarity derived from the phyloge-
netic tree. For two languages li and lj, we note δij the maximum depth of the tree
rooted at their last common ancestor. Then their similarity is computed as:

Sij = exp (−
δ2ij
2σ2

),

with σ = 2. We also tried a version where all the languages pairs have the same
similarity, thus discarding any family information.

Other hyper-parameters include the µ parameter controlling for the strength
of the original model, the way the confidence is computed for each individual
language and the actual averaging/voting mechanism. We set µ = 2. For the
model confidence, we tried a simple confidence based on the number of training
sentences. Languages with more than 4000 training samples have a confidence of
1. Others have a confidence equal to their number of train samples divided by

9.1. Model Propagation for Dependency Parsing 158

4000. Finally, for languages without training samples, we set their confidence to
a small value of 0.0001 to avoid having a non invertible propagation matrix. We
also tried the plain propagation without confidence of Zhu et al [ZG02].

The main problem we faced was the huge amount of hyper-parameters to con-
sider and the time it takes to evaluate them. Indeed, while linear models can be
summed up and thus once their sum as been computed as a new model, only this
model needs to score the edges at parsing time, neural models can not be summed
up in the same way because of their being highly non linear. Thus, only the final
scores can be averaged over a set of models, which in turn imply running all those
models. In our case, we have 60 languages with a training set, thus 60 models and
as we use a complete similarity graph, each 60 neural models have to be evaluated
for each edge, which is very slow.

Then there are a lot more options to investigate such as whether to average
the models or have them voting for the final structure. In the case of voting, we
can either decide to use the actual tree inference or the surrogate used to train the
models. Voting is slow because it requires that each model is evaluated for each
edge, but as it is already the case for neural networks it can be another option.

Because of all of those possible options, it is long and difficult to tune the model
propagation system. Thus, we have chosen simple sensical parameters rather than
looking for optimal ones for the linear models alone and we did not use the neural
models.

Eventually, we compared using the last or the averaged independent model of
each language.

9.1.2 Results
Table 9.1 reports unlabeled parsing results for the propagated linear models using
either the unweighted averaged model or the one weighted with and without con-
fidence parameters with the tree derived similarity using either last or averaged
mono-lingual models for propagation. Independent model results are also reported
for comparison. The typography is a bit different from other tables here. For inde-
pendent models (last two columns), bolding takes the whole row into account. The
score is in bold if it is higher than all the other UAS scores for that language (and
italic if by more than 1 point). For propagated models (six first columns), we only
consider the propagated scores ignoring the last two columns. Therefore, Polish
(pl) unweighted averaged model using averaged mono-lingual models (79.89) is in
bold italic because it is more than 1 point higher than the other propagated scores,
but it is still far lower than the independent model score (89.40) also in bold italic.

While the results of the propagated models are quite low, there are a few
interesting patterns to notice. First of all, as expected the tree based propagation
is slightly better on average than the plain averaged model (without confidence
parameters though). However, this in not true for all languages, most notably
languages with very few training samples and most Romance and Slavic languages.
For Romance and Slavic languages, this might be because of the huge language
family imbalance. As most languages in the data are Indo-European, the average
model is a good Indo-European model. In fact, Germanic, Slavic, Romance, Greek
and Irish and non Indo-European Uralic languages have scores in the 50-70 range,
while Indic, Turkic and other Asian languages have scores in the 30-50 range
and achieve their best propagated results with phylogenetic information. This
is somewhat reminiscent of the Standard Average European hypothesis of Whorf

159 Chapter 9. Appendix

Unweighted Weighted Weighted Independent
Without Confidence With Confidence

Avg Last Avg Last Avg Last Avg Last
ar 44.6 38.09 50.07 46.32 49.8 46.56 77.32 71.54
cop 66.43 60.5 74.61 72.68 69.06 68.39 83.25 80.21
he 51.23 44.23 62.74 60.46 61.67 60.16 80.97 76.05
bxr [19] 45.55 42.91 35.23 33.01 41.62 42.44 31 29.54
eu 47.69 44.61 60.27 56.53 59.93 56.66 74.64 66.72
af 57.64 51.77 67.1 67.99 62.07 63.8 81.13 75.43
da 64.55 59 58.04 59.2 58.13 59.53 77.52 71.43
de 65.91 59.58 67.15 64.93 67 65.15 79.11 73.54
en 58.6 53.37 61.83 60.58 61.25 60.37 78.26 71.42
got 54.32 50.66 54.67 51.66 54.68 52.3 75.83 69.95
nb 67.19 61.02 63.95 64.41 63.92 64.51 83.82 78.41
nl 60.56 54.23 61.25 59 61.04 59.07 76.23 68.12
nn 63.76 58.36 62.85 62.29 62.73 62.5 80.78 74.59
sv 65.67 60.04 53.75 57.09 54.2 57.48 79.59 73.58
be 61.29 57.11 56.04 55.97 56.86 57.29 74.88 71.45
bg 69.08 62.92 63.2 62.34 63.26 62.35 84.38 79.79
cs 61.48 54.96 47.08 46.28 47.42 46.6 77.16 69.07
cu 53.62 50.78 55.40 54.02 55.3 54.06 78.38 72.91
hr 60.64 53.89 55.39 54.98 55.38 55.04 80.35 74.41
hsb [23] 59.85 53.52 46.04 40.38 52.47 52.57 48.37 44.64
lt 44.91 39.45 41.59 40.38 40.86 40.96 55.62 50.95
lv 55.36 49.33 51.11 51.5 51.01 51.45 76.51 68.46
pl 79.89 75.87 74.91 73.73 75.05 74.04 89.40 86.49
ru 59.60 52.99 54.74 52.8 54.67 52.83 76.98 70.69
sk 65.97 60.34 57.13 55.08 57.25 55.44 78.76 74.73
sl 69.00 61.98 58.38 55.24 58.61 55.5 83.18 78.32
sr 60.93 53.77 56.67 54.94 56.4 55.31 83.34 78.15
uk 60.54 52.61 51.69 48.65 51.68 48.79 78.37 73.47
ca 63.54 56.71 53.37 50.06 53.6 50.56 83.47 78.1
es 63.63 56.83 50.12 43.81 50.08 44.08 83.31 77.43
fr 64.65 58.42 66.39 65.41 66.40 65.49 83.31 78.21
fro 63 59.71 66.49 66.69 66.4 66.72 79.19 71.96
gl [600] 63.50 56.35 59.71 56.42 62.61 63.27 83.12 77.67
it 68.68 62.74 70.06 67.64 69.92 67.76 85.69 80.58
la 45.49 42.56 46.38 44.73 46.3 44.82 62.84 55.06
pt 65.14 58.56 64.24 64.02 63.95 63.92 83.75 78.91
ro 57.67 51.62 52.84 51.55 52.88 51.85 79.48 71.85
fa 41.16 32.63 50.61 45.93 48.77 45.87 77.47 68.43
hi 37.61 38.74 41.55 43.55 42.04 44.31 87.52 81.92
kmr [20] 50.09 46.25 38.13 35.07 41.61 41.1 40.96 38.35
mr 54.34 52.97 64.44 63.94 58.78 60.14 75.51 74.49
ur 35.98 35.8 50.16 49.55 49.66 49.23 84.08 76.03
el 64.96 59.38 62.87 59.22 62.05 60.62 84.90 79.91
grc 50.62 47.53 50.6 49.37 50.6 49.48 69.42 59.5
ga [566] 53.77 48.53 58.49 56.85 54.3 53.45 76.46 72.78
hy [50] 48.26 42.35 38.93 36.99 41.89 43.28 57.78 52.72
id 55.68 48.53 70.31 64.58 68.85 65.09 81.03 72.91
ja 28.65 29.54 69.50 68.15 66.45 66.73 86.72 81.04
ko 31.94 30.86 37.86 38.82 36.86 37.96 62.09 52.36
kk [31] 49.62 48.45 54.98 53.15 54.31 56.79 56.91 53.49
tr 33.96 32.35 40.86 42.13 40.81 42.41 58.29 47.49
ug 37.71 36.05 47.58 45.76 45.22 45.92 65.16 58.61
et 54.22 47.92 42.6 43.76 42.83 44.11 75.24 68.96
fi 54.07 50.71 55.13 54.72 55.09 54.8 75.95 69.21
hu 59.69 53.78 49.88 49.64 50.7 51.63 76.66 70.54
sme [2257] 49 47.68 52.11 50.1 51.34 50.22 74.05 66.78
ta 39.52 38.64 59.14 60.25 47.42 50.39 73.70 66.23
te 66.1 69.66 81.22 80.78 74.39 75.07 86.37 82.77
vi 44.14 38.13 51.51 48.09 45.78 46.39 60.41 51.67
zh 33.28 30.35 49.69 43.32 46 42.3 69.99 56.68
Dev 55.5 50.57 57.06 55.66 55.98 55.26 77.64 71.36
No Dev 52.45 52.35 47.95 45.25 50.02 50.39 58.58 54.5

Table 9.1: Comparison of parsing results for several model propagation settings.
The two first columns correspond to an complete unweighted graph. The two
second columns correspond to the model of Zhu et al. without task confidence
parameters. The two third columns correspond to the model of Bellet et al. with
task confidence parameters. The two last columns correspond to the independently
trained mono-lingual models. For each setting, we report the UAS results using
either last model of averaged model as original model for each language.

9.1. Model Propagation for Dependency Parsing 160

[LW41] stating that languages of Europe share some common characteristics that
are absent from most languages around the world making European languages
peculiar rather than typical.

Regarding low resourced languages, it is interesting to remark that the plain
averaged model has a higher score than both the weighted model and the inde-
pendent ones. This shows that with very few resources, it is crucial not to rely
too much on the over-fitted mono-lingual model. This is in agreement with results
from the phylogenetic model.

The poor results of the models with confidence shows us that our confidence
measure is clearly too weak and/or arbitrary. Maybe a better option would be to
use held out data to estimate the parsing score and use that as a confidence score.

The available results are quite low, but it should be borne in mind that there
are a lot of hyper-parameters to be tuned in this method and with no doubt, we
could have better results with more time. At this stage stage the only certainty,
is that model propagation is not an easy out-of-the-box solution for multi-lingual
natural language processing, but that it has some promising results for languages
with few to no data as we will see again in the following section.

Tables 9.2 and 9.3 report zero-shot parsing results for the same propagation setting
as above for languages with and without a training set respectively. For languages
that have a training set, zero-shot results correspond to using the same averaging
over the mono-lingual models as for Table 9.1 except that we now set the influence
of the original model on its own language to 0, thus effectively only using models
from all the other languages.

In Table 9.2, results are slightly lower than in the supervised case (Table 9.1)
as expected, and they are even more skewed toward the unweighted model without
confidence. This is again because of the huge data imbalance. It is really striking
to notice that whilst there are really score drops for Semitic and many Asian
languages, for Indo-European (mostly Slavic) and Uralic languages, scores barely
decrease at all.

Table 9.3 is just a more complete table for zero-shot parsing results of languages
without a training set. The analysis of previous tables carries on to this one as
well.

Figure 9.1 represents the weight matrix resulting from propagating on the simi-
larity graph described above without confidence parameters. Without confidence,
the objective function to minimise is:

1

2
(
∑
i 6=j

Sij‖θi − θj‖2 + µ
n∑

i=1

Dii‖θi − θ̂i‖2).

It has the closed form solution:

Θ = W Θ̂ = ᾱ(I − αP)−1Θ̂,

where α = 1
µ+1

, ᾱ = 1 − α, P = D−1S, I is the identity matrix and Θ̂ is the
matrix resulting from stacking all the original models. With our setting µ = 2,
this gives : W = 2

3
(I− 1

3
P)−1. The similarity matrix S and thus the degree matrix

D are defined in terms of maximum depth under the last common ancestor in the
phylogeny passed through a Gaussian.

161 Chapter 9. Appendix

Unweighted Weighted Weighted
Without Confidence With Confidence

Avg Last Avg Last Avg Last
ar 43.67 37.44 45.54 45.79 44.92 45.67
cop 65.86 59.94 64.92 64.09 65.01 64.46
he 50.70 43.58 50.00 49.69 48.58 48.78
bxr [19] 45.62 43.17 42.02 42.90 41.73 42.57
eu 47.07 44.19 44.17 44.14 44.59 45.09
af 57.30 51.24 55.88 56.54 55.82 56.65
da 64.29 58.65 61.66 62.64 61.45 62.55
de 65.44 58.94 63.35 64.57 62.64 64.31
en 58.36 53.14 55.58 56.79 55.33 56.58
got 54.11 50.30 50.21 50.65 49.70 50.65
nb 66.92 60.76 63.23 64.62 63.08 64.56
nl 60.35 53.92 59.11 60.20 58.46 59.97
nn 63.46 58.11 60.17 61.35 60.02 61.21
sv 65.54 59.92 62.18 63.56 61.94 63.47
be 61.42 57.07 56.60 56.86 56.62 56.88
bg 68.86 62.89 62.65 62.56 62.65 62.94
cs 61.51 55.00 54.38 53.80 54.65 54.72
cu 53.30 50.46 49.89 49.39 49.94 49.93
hr 60.33 53.62 52.68 52.34 52.60 52.47
hsb [23] 59.82 53.60 52.18 52.24 52.44 52.56
lt 44.71 39.12 40.33 40.48 40.40 40.13
lv 55.23 49.10 48.93 48.91 49.15 49.68
pl 79.85 75.80 75.46 75.36 75.69 76.17
ru 59.45 52.85 52.34 52.43 52.13 52.41
sk 65.93 60.35 60.65 60.18 60.73 60.81
sl 68.90 62.04 61.47 61.73 61.59 62.28
sr 60.58 53.51 52.70 52.35 52.60 52.53
uk 60.51 52.59 52.95 53.06 52.80 53.03
ca 63.15 56.28 62.34 62.77 62.03 62.86
es 63.28 56.41 63.00 63.57 62.53 63.61
fr 64.18 57.93 63.37 64.61 63.02 64.69
fro 62.82 59.47 59.06 59.09 58.94 59.30
gl [600] 62.99 55.90 62.15 63.85 61.81 63.89
it 68.33 62.51 66.15 67.01 65.80 67.32
la 45.21 42.24 42.39 42.66 42.27 42.96
pt 64.73 58.22 64.18 64.55 63.75 64.90
ro 57.40 51.39 55.03 55.32 54.68 55.57
fa 40.53 32.21 25.33 23.20 26.69 25.90
hi 36.73 38.24 43.27 43.81 42.57 44.16
kmr [20] 49.89 46.35 41.30 40.41 41.55 41.11
mr 53.91 52.90 57.56 55.91 58.35 57.28
ur 35.33 35.32 36.11 36.21 36.38 37.55
el 64.66 59.11 59.47 59.03 59.13 59.28
grc 50.21 46.90 46.53 46.14 46.27 46.52
ga [566] 53.09 48.08 49.02 49.03 49.01 49.59
hy [50] 48.20 42.41 41.55 42.48 41.80 43.37
id 55.22 47.99 49.01 48.34 49.32 50.49
ja 28.13 29.14 28.02 28.98 28.06 29.41
ko 31.74 30.72 30.12 30.68 30.14 30.74
kk [31] 49.17 47.80 56.19 57.95 54.13 56.64
tr 33.77 31.94 37.50 36.47 34.34 35.64
ug 37.42 35.81 39.95 40.53 38.84 40.68
et 54.20 47.91 45.00 45.14 45.89 46.71
fi 53.92 50.56 49.69 50.09 49.49 50.37
hu 59.59 53.73 47.88 49.38 48.99 51.78
sme [2257] 48.86 47.63 47.43 48.36 47.24 48.40
ta 38.93 38.00 41.13 42.69 38.49 39.82
te 66.10 69.37 75.85 77.61 69.41 70.20
vi 43.91 37.85 39.47 38.17 39.86 39.78
zh 33.03 30.13 29.63 30.15 29.55 30.61
dev 55.19 50.29 52.19 52.43 51.88 52.62
no dev 52.20 52.10 48.98 49.65 48.71 49.77

Table 9.2: Comparison of zero-shot parsing results for several model propagation
settings for languages that have a training set. The two first columns correspond
to an complete unweighted graph. The two second columns correspond to the
model of Zhu et al. without task confidence parameters. The two last correspond
to the model of Bellet et al. with task confidence parameters. For each setting,
we report the UAS results using either last model of averaged model as original
model for each language.

9.1. Model Propagation for Dependency Parsing 162

am
am

ar

ar

cop

cop

he

he

bxr

bxr

eu

eu

af

af

da

da

de

de

en

en

fo

fo

got

got

no

no

nl

nl

nn

nn

sv

sv

be

be

bg

bg

cs

cs

cu

cu

hr

hr

hsb

hsb

lt

lt

lv

lv

pl

pl

ru

ru

sk

sk

sl

sl

sr

sr

uk

uk

ca

ca

es

es

fr

fr

fro

fro

gl

gl

it

it

la

la

pt

pt

ro

ro

fa

fa

hi

hi

kmr

kmr

mr

mr

sa

sa

ur

ur

el

el

grc

grc

br

br

ga

ga

hy

hy

id

id

tl

tl

ja

ja

ko

ko

kk

kk

tr

tr

ug

ug

et

et

fi

fi

kpv

kpv

hu

hu

sme

sme

ta

ta

te

te

pcm

pcm

th

th

vi

vi

wbp

wbp

yo

yo

yue

yue

zh

zh

Figure 9.1: Propagation weights W used for model propagation derived from the
phylogenetic tree. Language without training data have no impact on final models
thus we set their weights to zero. Rows have been normalised so that full black
cells correspond to the maximum weight.

163 Chapter 9. Appendix

Unweighted Weighted Weighted
Without Confidence With Confidence

Avg Last Avg Last Avg Last
am 58.13 59.04 58.38 57.21 59.06 57.75
br 54.27 51.77 54.95 54.45 53.39 53.77
fo 46.65 43.54 44.65 45.63 44.39 45.33
sa 48.14 48.67 45.97 44.98 45.99 46.05
kpv 60.49 57.28 56.26 56.17 56.89 57.43
pcm 60.15 54.07 54.95 54.31 55.21 55.68
th 41.99 37.16 38.32 37.38 38.17 38.22
tl 89.56 90.67 88.78 85.67 90.89 89.22
wbp 85.12 75.07 75.67 75.17 76.45 79.51
yo 51.34 40.30 42.06 40.60 42.03 42.38
yue 58.60 54.74 55.91 54.61 56.41 55.50
zero shot 59.49 55.66 55.99 55.11 56.26 56.44

Table 9.3: Comparison of zero-shot parsing results for several model propagation
settings. The two first columns correspond to an complete unweighted graph. The
two second columns correspond to the model of Zhu et al. without task confidence
parameters. The two last correspond to the model of Bellet et al. with task
confidence parameters. For each setting, we report the UAS results using either
last model of averaged model as original model for each language.

On the plot of W , we have normalised rows so that full black cells represent
the models of maximum influence and white cells have less than a hundredth time
the maximum influence.

We see faint blocks standing in the place of language sub/families. The two
languages in the middle of the Slavic languages (be to uk) are Baltic languages (lt
and lv). Then we see that for languages without training data, if it belongs to a
family (am, fo, sa, br, tl, kpv, yue), then its family bares most of the influence, but
if it is isolated (pcm, th, wbp, yo), then all models are used more or less equally.

9.2. Measuring the Role of Morphology 164

Lem pLem Form pForm Morph
da one-hot 48.09 50.85 45.12 47.66 69.19

embed 62.47 66.03 65.09 64.81 68.71
en one-hot 57.09 59.23 54.97 56.96 72.32

embed 70.95 69.16 71.20 71.19 72.22
et one-hot 25.30 27.43 21.29 22.61 64.06

embed 48.17 46.63 45.79 43.77 62.81
eu one-hot 45.96 47.66 40.53 42.50 68.19

embed 62.52 62.44 57.42 58.56 67.30
fi one-hot 40.78 41.45 34.59 35.60 71.00

embed 59.34 60.89 52.67 55.78 68.70
fr one-hot 64.88 65.88 61.95 63.60 73.92

embed 65.62 67.56 70.81 72.35 73.96
got one-hot 46.85 47.71 45.19 46.53 71.04

embed 61.37 62.01 59.35 59.34 70.41
he one-hot 54.91 57.55 55.82 58.02 72.66

embed 64.41 68.61 66.92 66.68 71.77
hu one-hot 27.80 29.35 25.60 26.30 64.31

embed 41.59 43.56 44.3 39.42 63.45
ro one-hot 56.89 57.5 53.83 54.96 68.94

embed 64.76 65.78 65.13 64.9 68.76
sv one-hot 48.61 52.06 45.0 47.82 69.97

embed 65.70 66.53 64.93 63.73 69.69

Table 9.4: LAS scores for parsers using lemmas (Lem, pLem), forms (Form, pForm)
or morphosyntactic attributes (Morph) representations as features. For each lan-
guage, the top line holds results using one-hot representation and the bottom line
holds results using embeddings instead.

9.2 Measuring the Role of Morphology
Tables 9.4 and 9.5 report the labeled accuracy scores corresponding to the unla-
beled accuracy scores reported in Tables 7.3 and 7.4 respectively.

The labeled scores are much lower than their unlabeled counterparts, but for
such a simple model, this is completely expected. Otherwise, the analysis carries on
to these tables as well. For sparse tokens (forms and lemmas), embedding clearly
helps improving results. For morphological attributes, on the contrary, whilst one-
hot is beats all other representations, embedding is slightly detrimental. Same
goes for results of parsers using predicted attributes. The only noticeable point
is that the Hebrew score using predicted morphology is lower than the one using
form representation, which puts back Hebrew where it belongs amongst morpho-
semantic languages.

165 Chapter 9. Appendix

Form Morph Morph
Emb One-hot Emb

da argmax 65.09 58.33 57.72
softmax 59.68 59.13

en argmax 71.20 62.64 62.73
softmax 65.59 64.97

et argmax 45.79 43.80 42.22
softmax 47.05 45.64

eu argmax 57.42 55.81 55.06
softmax 59.43 58.25

fi argmax 52.67 54.42 52.79
softmax 58.74 56.51

fr argmax 70.81 66.66 66.25
softmax 67.39 67.0

got argmax 59.35 59.73 59.14
softmax 62.36 62.02

he argmax 66.92 63.74 63.57
softmax 66.25 65.33

hu argmax 44.30 52.41 49.99
softmax 53.63 52.61

ro argmax 64.13 62.10 61.67
softmax 63.26 62.65

sv argmax 65.93 60.29 60.03
softmax 62.44 61.47

Table 9.5: LAS scores for parsers using predicted morphosyntactic attributes. For
each language, the top line holds results corresponding to argmax prediction of at-
tributes, while the bottom line holds results using probability distributions. The
second column shows results using one-hot representation (or probability distribu-
tions), and the third shows results when the embeddings are used. The scores of
parsers using embedded forms is given for comparison.

Acknowledgement

It is now the place to thank people that have helped me doing this Ph.D. in a way
or another, some who were supportive, some who made life easier or even enjoyable
at time and some without whom I would not have done what I have done. I hope
it will not get too autobiographical, but those people deserve that I take time to
write those words for them. The reader who is not interested in these words or
think my writing style has eventually become to informal can always ignore this
chapter.

I shall first and foremost thank Dr. Pascal Denis and Pr. Marc Tommasi for
having supervised my work (one officially, the other almost daily) for the last four
years (it all started with an internship).

Since our second encounter during the my second year of Master, Pascal Denis
has proven an important part of my life. After a Master project and an internship,
he has provided me with scientific guidance, support, feedback and interesting
discussions during those four years, at the occasion our quasi weekly meetings.
Surely enough, some deep personal research work could be acknowledged by the
obtention of the title of Doctor, but I believe that a Ph.D. is more than just some
research work and it is not a lonely task either. A Ph.D. is an occasion to learn to
be a researcher, to learn rigour and at time to challenge its lack, to learn scientific
communication, to learn to organise one’s thoughts and ideas. And whilst this
could be learned alone, supervision is an important part of the Ph.D. and the
supervisor has a great role in the becoming of its Ph.D. student. I therefore want
to thank Pascal Denis for the amount of time and energy he invested in me. I
hope it is/will be paid back tenfold in pride, joy or any other kind of fulfilment.

I also want to thank Marc Tommasi for having been a more distantiated super-
visor of mine, both in terms of scientific area of expertise and of number of offices
between ours. He has been of great help all along these years, always caring for the
people around him, organising just the right amount of socialisation events and
distilling kindness around. Also, he was the first to prepare gluten free pastries
for me (others quickly followed). Just as sentences are more than the mere sum of
their words, Magnet is much more than the mere sum of its members and Marc
Tommasi does a lot for it.

Speaking of Magnet, I want to thank all of its past and present members
(officially or at heart). Rémi Gilleron is a great person, a smiling light in the
mist. He was a great teaching colleague at Lille University and is a great research
colleague at Inria. His advice are invaluable and I am honoured to have had the
opportunity to work next to him.

Mikaela Keller is also an amazing, kind and interesting person. She always
have interesting ideas and discussions. She is a really entertaining person, in the
noblest sense of the word.

I want to thank Nathalie Vauquier. I am not quite sure of where is the border

166

167 Chapter 9. Appendix

of colleague-hood, but I can clearly say she is far beyond. During those years of
shared work and car pooling, she has been a great teammate and more. She had
allowed me not to pollute alone in my car. And while other Magnet members
listen to me more or less politely at lunch, she also listened to me in the car and
in the jams. Thank you very much.

I want to thank my office-mates that have changed through time : David,
Pauline, Carlos, Mahsa, Thanh, William, Igor (if you don’t know why, mango
does), Juhi, Pierre and Quentin. I also want to thank all my other teammates :
Fabio, Geraud, François, Arijus, Thibault, Onkhar, Brij, Marianna, Cesar, Bo and
Julie. Then, again, I am not quite sure of the definition of friendship and I am
not sure to which extent keeping in touch weights in and if it matters at all, but
those people are more than just colleagues to me.

Inria is a very modern institute in terms of communication. Project teams
are tagged with keywords and clustered into interest groups. Magnet is often
associated with machine learning in graphs, privacy preserving machine learning,
distributed learning and natural language processing. Maybe it is not professional
enough or it is out of scope or maybe poetry and humanistic values got lost along
the way. But I would add one keyword to that list and that is Kindness.

Some might have noticed that someone is missing and for sure he is, but with
this thesis I learned to write better transitions and to structure my ideas, and he is
a perfect transition. I want to thank Aurelien Bellet, if not for his central accent,
his legendary positivity and his knowledge about decentralised learning, for he was
the bridge between Magnet and Fei Sha’s team at Los Angeles and without him I
would never have had the chance to go there.

I want to thank Pr. Fei Sha from the University of Southern California in
Los Angeles who have hosted me in his team twice. I learned a lot from him and
his team about research in other countries and about different approaches to team
work. I also want to thank members of his team that are great (future) researchers
and were genuinely kind to me : Weilun, Ke, Zhiyun, Chao-Kai, Yury, Melissa,
Jeremy, Jiyun and the others I sadly can not remember the actual name.

I want to deeply and warmly thank Dr. Soravit Beer Changpinyo, one of Pr.
Sha’s former Ph.D. student and the one with whom I worked the most. He is
an incredible person, really kind and super hard working (so much so that I have
a complex of inferiority). He took great care of me and helped me many times
while I was in the United States. He had me discovering Thai cuisine, Californian
fast-food, Ethiopian cuisine, Chipotle, cold brew, Thai tea and so much more. I
was and still is very critical toward the United States of America. Without him,
I would not have enjoyed Los Angeles as much as I did. Thank you.

I shall also thank my teaching colleagues Rémi Gilleron and Thibault Lietard
(already mentioned) and Louis Bigo. I really enjoyed teaching those two years by
their side. And, if my students have not learned much with me, I did learned a
lot from teaching and from them.

I also want to thank linguists from the STL with whom we shared a reading
group on distributed semantics, with whom I worked and who invited me to speak
at their seminar : Bert, Ilse, Giuditta, Christopher, Rafael and Fayssal.

I also want to thank Liva Ravailona for his ideas and his enthusiasm. We had
a few but very interesting working sessions with him and Pascal.

To close the academic section of these acknowledgement, I shall thank a teacher
of mine. Surely, several of them if not all have shape me to some extent and have
brought me where I am, but one amongst them has done a lot for me. Celine

9.2. Measuring the Role of Morphology 168

Kuttler was my first true encounter with natural language processing and compu-
tational linguistics. At the end of the Bachelor, and at a time I was wondering
about my future, she was the one who saw potential in me. She was the one who
told me about summer school like ESSLLI to which I went twice and where I met
a lot of great people. She was also the one that sent me to Århus for one year
Erasmus and that has been one of the best experience in my short life so far.
Thank you.

Speaking of Denmark, I will thank my friends from Århus in Danish. If you
want, give it a try, it is not hard nor long.

Jeg skal give mange tak til mine danske vener. Mine kære Anita (fra Tjekkiet),
Flavio (fra Italien), Luise og Til (fra Tyskland) og Thomas (fra Danmark). Jeg har
elsket at lave mad og spise og snake med jer. Det var rigtlig hyggelig tide. Jeg skal
også giv tak til min kære Egå folket : Charlotte, Nathan, Corentin, Emeline and
Adrien (fra Frankrig), Rui (fra Kina), Junna (fra Japan) og Dima (fra Russland).
Uden jer, Danmark har ikke været Danmark.

Amongst the many great people I met at conferences and summer schools, I
shall thank Laura who I first met in Düsseldorf at ESSLLI and then at Tübingen
at ESSLLI again, and then again at EMNLP in Brussel. She understand me and
the world and that is very precious. I also want to thank Anne-Lau, Hector, Valera
and Emanuela who are great people and researchers. May we work together one
day.

Then, I want to thank Maxime and Erwan, my only two true friends from
university. I do not exactly know why but those two guys are important to me.

Amongst the people have met in preparatory school and with whom I spent
some nice time, I shall thank Eve, Florian and Thibault (the same as above). Life
goes on, we change, but they are still there. Likewise, I shall thank Florence and
Romain, the only people that I still see regularly from middle and high school.
They are great friends.

Then, amongst the people I met along the way, here and there, I want to thank
Wassila, Kaoutar and Monica. For the music, for the conversations, for the tea,
for being part of this thing people call life, thank you.

Eventually, we reach family time. I obviously could not do without thanking
my parents Bénédicte and Fréderic. They have invested much more than the
expected blood, sweat and tears in me. Without their education, dedication and
constant care I would not be where I am. I also want to thank my sister Margot
and my brother Victor. We are very different and at times I wish we shared more
but I nonetheless really love them and would not trade them for something else.
As Margot is already doctor, even though we mock her (she is dentist), it now on
me to pass the baton to Victor to hopefully give a full doctor batch to our parents.

I shall also thank my many aunts and uncles who are supportive at diverse
degrees and who understand what I do at diverse degrees but are nonetheless great
people and make for an amazing family. I want to thanks especially Bénédicte and
Dominique who have been chosen by my parents one day of 1992 for some reasons
to be special for me and it has worked well so far. I also want to thank my grand-
parents Marguerite and Jacques. Finally, I want to thanks my cousins. They also
make up for great family meetings. Amongst them, I want to give a shout out to
la Cousinade : Romain, Margot (my sister), Thibault, Victor (my brother) and
Nathan. They are of great company when it comes to go to concert, festivals and
Flemish restaurant.

I should also thank a few youtubers, a few dozens of bands and musicians, a

169 Chapter 9. Appendix

GP, a neurologist and a psycologist. Clearly, I would not have done it through this
thesis without their support. But it was getting too autobiographical as I feared
and too far from the scope of this thesis so I will wrap up.

If you are one of the persons I mentioned above, Thank you very much. If
you are a person I forgot, but know me enough to forgive me, Sorry and Thank
you very much. If you are a person I did not forget but know that you have
counted/count and that I could not be exhaustive, Thank you very much. If you
are nothing of the above but have read those words, from the bottom of my heart,
Thank you very much.

I will finish with a pop culture quote as this is a twenty first century computer
science and language thesis after all.

“I don’t know half of you half as well as I should like;
and I like less than half of you half as well as you deserve.”

Bilbo Baggins

Bibliography

[AG17] Oded Avraham and Yoav Goldberg. The interplay of semantics
and morphology in word embeddings. In Proceedings of the 15th
Conference of the European Chapter of the Association for Com-
putational Linguistics: Volume 2, Short Papers, pages 422–426.
Association for Computational Linguistics, 2017.

[ALM17] Sanjeev Arora, Yingyu Liang, and Tengyu Ma. A Simple but
Tough-to-Beat Baseline for Sentence Embeddings. In International
Conference on Learning Representations 2017, April 2017.

[AMB+16] Waleed Ammar, George Mulcaire, Miguel Ballesteros, Chris Dyer,
and Noah Smith. Many languages, one parser. Transactions of the
Association for Computational Linguistics, 4:431–444, 2016.

[App13] David Appleyard. Colloquial Amharic, The Complete Course for
Beginners. Routledge, 2013.

[AR13] Netta Abugov and Dorit Ravid. Assessing yiddish plurals in acqui-
sition: Impacts of bilingualism, pages 90–110. 12 2013.

[AWY16] Lauriane Aufrant, Guillaume Wisniewski, and François Yvon.
Zero-resource Dependency Parsing: Boosting Delexicalized Cross-
lingual Transfer with Linguistic Knowledge. In COLING 2016,
the 26th International Conference on Computational Linguistics,
pages 119–130, Osaka, Japan, 2016. The COLING 2016 Organizing
Committee.

[Ban15] Mohit Bansal. Proceedings of the 1st workshop on vector space
modeling for natural language processing. pages 102–108. Associ-
ation for Computational Linguistics, 2015.

[BB14] Jan A. Botha and Phil Blunsom. Compositional morphol-
ogy for word representations and language modelling. CoRR,
abs/1405.4273, 2014.

[BGJM16] Piotr Bojanowski, Edouard Grave, Armand Joulin, and Tomas
Mikolov. Enriching word vectors with subword information. CoRR,
abs/1607.04606, 2016.

[BGL14] Mohit Bansal, Kevin Gimpel, and Karen Livescu. Tailoring contin-
uous word representations for dependency parsing. In Proceedings
of the 52nd Annual Meeting of the Association for Computational
Linguistics (Volume 2: Short Papers), pages 809–815. Association
for Computational Linguistics, 2014.

170

171 Bibliography

[BK10] Taylor Berg-Kirkpatrick and Dan Klein. Phylogenetic grammar
induction. In ACL 2010, Proceedings of the 48th Annual Meeting
of the Association for Computational Linguistics, July 11-16, 2010,
Uppsala, Sweden, pages 1288–1297, 2010.

[Bla01] Barry J. Blake. Case. Cambridge Textbooks in Linguistics. Cam-
bridge University Press, 2 edition, 2001.

[BLVL00] Cristina Bosco, Vincenzo Lombardo, Daniela Vassallo, and
Leonardo Lesmo. Building a treebank for italian: a data-driven
annotation schema. In In Proceedings of the Second International
Conference on Language Resources and Evaluation LREC-2000
(pp. 99, pages 99–105, 2000.

[BM06] Sabine Buchholz and Erwin Marsi. Proceedings of the tenth confer-
ence on computational natural language learning (conll-x). pages
149–164. Association for Computational Linguistics, 2006.

[BMM+10] Cristina Bosco, Simonetta Montemagni, Alessandro Mazzei, Vin-
cenzo Lombardo, Felice Dell’Orletta, Alessandro Lenci, Leonardo
Lesmo, Giuseppe Attardi, Maria Simi, Alberto Lavelli, Johan Hall,
Jens Nilsson, and Joakim Nivre. Comparing the influence of differ-
ent treebank annotations on dependency parsing. In Proceedings
of the International Conference on Language Resources and Eval-
uation, LREC 2010, 17-23 May 2010, Valletta, Malta, 2010.

[Bre98] Joan Bresnan. Morphology competes with syntax: Explaining
typological variation in weak crossover effects. Is the best good
enough, pages 59–92, 1998.

[BRKS16] Christian Bentz, Tatyana Ruzsics, Alexander Koplenig, and Tanja
Samardzic. A comparison between morphological complexity mea-
sures: typological data vs. language corpora. In Proceedings of
the workshop on computational linguistics for linguistic complexity
(cl4lc), pages 142–153, 2016.

[Cam13] Lyle Campbell. Historical linguistics: An introduction: Third edi-
tion. 01 2013.

[Car97] Rich Caruana. Multitask learning. Machine Learning, 28(1):41–75,
Jul 1997.

[CCBG10] Giovanni Cavallanti, Nicolò Cesa-Bianchi, and Claudio Gentile.
Linear algorithms for online multitask classification. J. Mach.
Learn. Res., 11:2901–2934, December 2010.

[CDK+06] Koby Crammer, Ofer Dekel, Joseph Keshet, Shai Shalev-Shwartz,
and Yoram Singer. Online passive-aggressive algorithms. J. Mach.
Learn. Res., 7:551–585, December 2006.

[CG17] Xinying Chen and Kim Gerdes. Classifying languages by depen-
dency structure. typologies of delexicalized universal dependency
treebanks. In Proceedings of the Fourth International Conference
on Dependency Linguistics (Depling 2017), September 18-20, 2017,

Bibliography 172

Università di Pisa, Italy, number 139, pages 54–63. Linköping Uni-
versity Electronic Press, Linköpings universitet, 2017.

[CGS10] Christos Christodoulopoulos, Sharon Goldwater, and Mark Steed-
man. Two decades of unsupervised pos induction: How far have
we come? In Proceedings of the 2010 Conference on Empirical
Methods in Natural Language Processing, EMNLP ’10, pages 575–
584, Stroudsburg, PA, USA, 2010. Association for Computational
Linguistics.

[CJT17] Jiong Cai, Yong Jiang, and Kewei Tu. Crf autoencoder for un-
supervised dependency parsing. arXiv preprint arXiv:1708.01018,
2017.

[CL65] Y. J. Chu and T. H. Liu. On the shortest arborescence of a directed
graph. Science Sinica, 14, 1965.

[Col97] Michael Collins. Three generative, lexicalised models for statistical
parsing. In Proceedings of the Eighth Conference on European
Chapter of the Association for Computational Linguistics, EACL
’97, pages 16–23, Stroudsburg, PA, USA, 1997. Association for
Computational Linguistics.

[Col02] Michael Collins. Discriminative training methods for hidden
markov models: Theory and experiments with perceptron algo-
rithms. In Proceedings of the ACL-02 Conference on Empirical
Methods in Natural Language Processing - Volume 10, EMNLP
’02, pages 1–8, Stroudsburg, PA, USA, 2002. Association for Com-
putational Linguistics.

[CZZ14] Wenliang Chen, Yue Zhang, and Min Zhang. Feature embedding
for dependency parsing. In Proceedings of COLING 2014, the 25th
International Conference on Computational Linguistics: Technical
Papers, pages 816–826. Dublin City University and Association for
Computational Linguistics, 2014.

[DD17] Mathieu Dehouck and Pascal Denis. Delexicalized Word Embed-
dings for Cross-lingual Dependency Parsing. In EACL, volume 1
of EACL 2017, pages 241 – 250, Valencia, Spain, April 2017.

[DD18] Mathieu Dehouck and Pascal Denis. A Framework for Understand-
ing the Role of Morphology in Universal Dependency Parsing. In
EMNLP 2018 - Conference on Empirical Methods in Natural Lan-
guage Processing, Proceedings of EMNLP 2018, Brussels, Belgium,
October 2018.

[DD19] Mathieu Dehouck and Pascal Denis. Phylogenetic Multi-Lingual
Dependency Parsing. In NAACL 2019 - North American Chapter
of the Association for Computational Linguistics, Proceedings of
NAACL 2019, Minneapolis, USA, 2019.

[DH13] Matthew S. Dryer and Martin Haspelmath, editors. WALS On-
line. Max Planck Institute for Evolutionary Anthropology, Leipzig,
2013.

173 Bibliography

[DQM17] Timothy Dozat, Peng Qi, and Christopher D. Manning. Stanford’s
graph-based neural dependency parser at the conll 2017 shared
task. In Proceedings of the CoNLL 2017 Shared Task: Multilingual
Parsing from Raw Text to Universal Dependencies, pages 20–30,
Vancouver, Canada, August 2017. Association for Computational
Linguistics.

[DTvG11] Jon Dehdari, Lamia Tounsi, and Josef van Genabith. Morpholog-
ical features for parsing morphologically-rich languages: A case of
arabic. In SPMRL@IWPT, 2011.

[EB07] Jason Eisner and John Blatz. Program transformations for op-
timization of parsing algorithms and other weighted logic pro-
grams. In Shuly Wintner, editor, Proceedings of FG 2006: The
11th Conference on Formal Grammar, pages 45–85. CSLI Publica-
tions, 2007.

[Edm67] Jack Edmonds. Optimum branchings. Journal Research of the
National Bureau of Standards, 1967.

[Eis96] Jason M. Eisner. Three new probabilistic models for dependency
parsing: An exploration. In Proceedings of the 16th Conference on
Computational Linguistics - Volume 1, COLING ’96, pages 340–
345, Stroudsburg, PA, USA, 1996. Association for Computational
Linguistics.

[ETF14] Joseph Emonds and Jan Terje Faarlund. English: The Language
of the Vikings. 12 2014.

[FBVdLM+92] Peter F. Brown, Peter V. deSouza, Robert L. Mercer, T. J. Watson,
Vincent J. Della Pietra, and Jenifer C. Lai. Class-based n-gram
models of natural language. Computational Linguistics, Volume
18, Number 4, December 1992, 1992.

[Fot06] Kilian Foth. Hybrid methods of natural language analysis. PhD
thesis, 01 2006.

[FS99] Yoav Freund and Robert E. Schapire. Large margin classification
using the perceptron algorithm. Mach. Learn., 37(3):277–296, De-
cember 1999.

[FTY+15] Manaal Faruqui, Yulia Tsvetkov, Dani Yogatama, Chris Dyer, and
A. Noah Smith. Sparse overcomplete word vector representations.
In Proceedings of the 53rd Annual Meeting of the Association for
Computational Linguistics and the 7th International Joint Con-
ference on Natural Language Processing (Volume 1: Long Papers),
pages 1491–1500. Association for Computational Linguistics, 2015.

[FW73] T. Finkenstaedt and D. Wolff. Ordered profusion; studies in dic-
tionaries and the English lexicon. Number vol. 13 à 15 in Annales
Universitatis Saraviensis: Reihe Philosophische Fakultät. C. Win-
ter, 1973.

Bibliography 174

[GCY+15] Jiang Guo, Wanxiang Che, David Yarowsky, Haifeng Wang, and
Ting Liu. Cross-lingual dependency parsing based on distributed
representations. In Proceedings of the 53rd Annual Meeting of the
Association for Computational Linguistics and the 7th Interna-
tional Joint Conference on Natural Language Processing (Volume
1: Long Papers), pages 1234–1244. Association for Computational
Linguistics, 2015.

[GGRAP17] Marcos Garcia, Carlos Gómez-Rodríguez, and Miguel
Alonso Pardo. New treebank or repurposed? on the feasi-
bility of cross-lingual parsing of romance languages with universal
dependencies. Natural Language Engineering, 24:1–32, 10 2017.

[GGT09] Kuzman Ganchev, Jennifer Gillenwater, and Ben Taskar. Depen-
dency grammar induction via bitext projection constraints. In Pro-
ceedings of the Joint Conference of the 47th Annual Meeting of the
ACL and the 4th International Joint Conference on Natural Lan-
guage Processing of the AFNLP, pages 369–377. Association for
Computational Linguistics, 2009.

[GK16] Kim Gerdes and Sylvain Kahane. Dependency annotation choices:
Assessing theoretical and practical issues of universal dependencies.
In LAW@ACL. The Association for Computer Linguistics, 2016.

[GMJB17] Edouard Grave, Tomas Mikolov, Armand Joulin, and Piotr Bo-
janowski. Bag of tricks for efficient text classification. In Pro-
ceedings of the 15th Conference of the European Chapter of the
Association for Computational Linguistics, EACL 2017, Valencia,
Spain, April 3-7, 2017, Volume 2: Short Papers, pages 427–431,
2017.

[GP09] Sylviane Granger and Magali Paquot. Lexical verbs in academic
discourse: A corpus-driven study of learner use, pages 193–214. 01
2009.

[Hal07] Keith Hall. K-best spanning tree parsing. In Proceedings of the 45th
Annual Meeting of the Association of Computational Linguistics,
pages 392–399, Prague, Czech Republic, June 2007. Association
for Computational Linguistics.

[HRWK01] Rebecca Hwa, Philip Resnik, Amy Weinberg, and Okan Kolak.
Evaluating translational correspondence using annotation projec-
tion. In ACL ’02: Proceedings of the 40th Annual Meeting on
Association for Computational Linguistics, pages 392–399, Morris-
town, NJ, USA, 2001. Association for Computational Linguistics.

[HS97] Sepp Hochreiter and Jürgen Schmidhuber. Long short-term mem-
ory. Neural Comput., 9(8):1735–1780, November 1997.

[HVH98] Jan Hajič and Barbora Vidová-Hladká. Tagging Inflective Lan-
guages: Prediction of Morphological Categories for a Rich, Struc-
tured Tagset. In Proceedings of the COLING - ACL Conference,
pages 483–490, Montreal, Canada, 1998.

175 Bibliography

[Jäg15] Gerhard Jäger. Support for linguistic macrofamilies from weighted
sequence alignment. Proceedings of the National Academy of Sci-
ences, 112(41):12752–12757, 2015.

[JN07] Richard Johansson and Pierre Nugues. Extended constituent-to-
dependency conversion for english. In NODALIDA, 2007.

[KCC08] Terry Koo, Xavier Carreras, and Michael Collins. Simple semi-
supervised dependency parsing. In Proceedings of ACL-08: HLT,
pages 595–603. Association for Computational Linguistics, 2008.

[KDI12] Abhishek Kumar and Hal Daume III. Learning task grouping and
overlap in multi-task learning. arXiv preprint arXiv:1206.6417,
2012.

[KG15] Eliyahu Kiperwasser and Yoav Goldberg. Semi-supervised depen-
dency parsing using bilexical contextual features from auto-parsed
data. In Proceedings of the 2015 Conference on Empirical Methods
in Natural Language Processing, pages 1348–1353. Association for
Computational Linguistics, 2015.

[KGS11] Zhuoliang Kang, Kristen Grauman, and Fei Sha. Learning with
whom to share in multi-task feature learning. In Proceedings of the
28th International Conference on Machine Learning (ICML-11),
pages 521–528, 2011.

[Kib10] Anna Kibort. A typology of grammatical features., 2010.

[KLG17] Jenna Kanerva, Juhani Luotolahti, and Filip Ginter. Turkunlp:
Delexicalized pre-training of word embeddings for dependency
parsing, 01 2017.

[KMN09] Sandra Kübler, Ryan McDonald, and Joakim Nivre. Dependency
parsing. Synthesis Lectures on Human Language Technologies,
1(1):1–127, 2009.

[LAWY16] Ophélie Lacroix, Lauriane Aufrant, Guillaume Wisniewski, and
François Yvon. Frustratingly easy cross-lingual transfer for
transition-based dependency parsing. In HLT-NAACL, 2016.

[LCHZ18] Zuchao Li, Jiaxun Cai, Shexia He, and Hai Zhao. Seq2seq depen-
dency parsing. In Proceedings of the 27th International Conference
on Computational Linguistics, pages 3203–3214. Association for
Computational Linguistics, 2018.

[LFDT14] Teresa Lynn, Jennifer Foster, Mark Dras, and Lamia Tounsi.
Cross-lingual transfer parsing for lowresourced languages: An irish
case study. In In Proceedings of Celtic Language Technology Work-
shop 2014, 2014.

[LG14] Omer Levy and Yoav Goldberg. Neural word embedding as implicit
matrix factorization. In Z. Ghahramani, M. Welling, C. Cortes,
N. D. Lawrence, and K. Q. Weinberger, editors, Advances in Neu-
ral Information Processing Systems 27, pages 2177–2185. Curran
Associates, Inc., 2014.

Bibliography 176

[LGD15] Omer Levy, Yoav Goldberg, and Ido Dagan. Improving distri-
butional similarity with lessons learned from word embeddings.
TACL, 3:211–225, 2015.

[LW41] Benjamin Lee Whorf. The Relation of Habitual Thought and Be-
havior to Language, volume 1, pages 75–93. 01 1941.

[LZ15] Phong Le and Willem H. Zuidema. Unsupervised dependency pars-
ing: Let’s use supervised parsers. CoRR, abs/1504.04666, 2015.

[Mal83] Joan Maling. Transitive Adjectives: A Case of Categorial Reanal-
ysis, pages 253–289. Springer Netherlands, Dordrecht, 1983.

[Man11] Christopher D Manning. Part-of-speech tagging from 97% to 100%:
is it time for some linguistics? In International conference on
intelligent text processing and computational linguistics, pages 171–
189. Springer, 2011.

[Mar16] David Marecek. Twelve years of unsupervised dependency parsing.
In ITAT, pages 56–62, 2016.

[MBXS17] Bryan McCann, James Bradbury, Caiming Xiong, and Richard
Socher. Learned in translation: Contextualized word vectors.
CoRR, abs/1708.00107, 2017.

[MCCD13] Tomas Mikolov, Kai Chen, Greg Corrado, and Jeffrey Dean. Effi-
cient estimation of word representations in vector space. CoRR,
abs/1301.3781, 2013.

[MCP05a] Ryan McDonald, Koby Crammer, and Fernando Pereira. Online
large-margin training of dependency parsers. In Proceedings of
the 43rd Annual Meeting of the Association for Computational
Linguistics (ACL’05), pages 91–98. Association for Computational
Linguistics, 2005.

[MCP05b] Ryan McDonald, Koby Crammer, and Fernando Pereira. Spanning
Tree Methods for Discriminative Training of Dependency Parsers,
2005.

[Mil95] George A. Miller. Wordnet: A lexical database for english. Com-
mun. ACM, 38(11):39–41, November 1995.

[MMS93] Mitchell P. Marcus, Mary Ann Marcinkiewicz, and Beatrice San-
torini. Building a large annotated corpus of english: The penn
treebank. Comput. Linguist., 19(2):313–330, June 1993.

[MPH11] Ryan McDonald, Slav Petrov, and Keith Hall. Multi-source trans-
fer of delexicalized dependency parsers. In Proceedings of the 2011
Conference on Empirical Methods in Natural Language Processing,
pages 62–72. Association for Computational Linguistics, 2011.

[MR13] Mehryar Mohri and Afshin Rostamizadeh. Perceptron mistake
bounds. CoRR, abs/1305.0208, 2013.

177 Bibliography

[MSC+13] Tomas Mikolov, Ilya Sutskever, Kai Chen, Gregory S. Corrado, and
Jeffrey Dean. Distributed representations of words and phrases and
their compositionality. In Advances in Neural Information Process-
ing Systems 26: 27th Annual Conference on Neural Information
Processing Systems 2013. Proceedings of a meeting held December
5-8, 2013, Lake Tahoe, Nevada, United States., pages 3111–3119,
2013.

[NAA+18a] Joakim Nivre, Mitchell Abrams, Željko Agić, Lars Ahrenberg, Lene
Antonsen, Katya Aplonova, Maria Jesus Aranzabe, Gashaw Aru-
tie, Masayuki Asahara, Luma Ateyah, Mohammed Attia, Aitz-
iber Atutxa, Liesbeth Augustinus, Elena Badmaeva, Miguel Balles-
teros, Esha Banerjee, Sebastian Bank, Verginica Barbu Mititelu,
Victoria Basmov, John Bauer, Sandra Bellato, Kepa Bengoetxea,
Yevgeni Berzak, Irshad Ahmad Bhat, Riyaz Ahmad Bhat, Er-
ica Biagetti, Eckhard Bick, Rogier Blokland, Victoria Bobicev,
Carl Börstell, Cristina Bosco, Gosse Bouma, Sam Bowman, Adri-
ane Boyd, Aljoscha Burchardt, Marie Candito, Bernard Caron,
Gauthier Caron, Gülşen Cebiroğlu Eryiğit, Flavio Massimiliano
Cecchini, Giuseppe G. A. Celano, Slavomír Čéplö, Savas Cetin,
Fabricio Chalub, Jinho Choi, Yongseok Cho, Jayeol Chun, Silvie
Cinková, Aurélie Collomb, Çağrı Çöltekin, Miriam Connor, Ma-
rine Courtin, Elizabeth Davidson, Marie-Catherine de Marneffe,
Valeria de Paiva, Arantza Diaz de Ilarraza, Carly Dickerson, Peter
Dirix, Kaja Dobrovoljc, Timothy Dozat, Kira Droganova, Puneet
Dwivedi, Marhaba Eli, Ali Elkahky, Binyam Ephrem, Tomaž Er-
javec, Aline Etienne, Richárd Farkas, Hector Fernandez Alcalde,
Jennifer Foster, Cláudia Freitas, Katarína Gajdošová, Daniel Gal-
braith, Marcos Garcia, Moa Gärdenfors, Sebastian Garza, Kim
Gerdes, Filip Ginter, Iakes Goenaga, Koldo Gojenola, Mem-
duh Gökırmak, Yoav Goldberg, Xavier Gómez Guinovart, Berta
Gonzáles Saavedra, Matias Grioni, Normunds Grūzītis, Bruno
Guillaume, Céline Guillot-Barbance, Nizar Habash, Jan Hajič, Jan
Hajič jr., Linh Hà Mỹ, Na-Rae Han, Kim Harris, Dag Haug,
Barbora Hladká, Jaroslava Hlaváčová, Florinel Hociung, Petter
Hohle, Jena Hwang, Radu Ion, Elena Irimia, Ọlájídé Ishola, Tomáš
Jelínek, Anders Johannsen, Fredrik Jørgensen, Hüner Kaşıkara,
Sylvain Kahane, Hiroshi Kanayama, Jenna Kanerva, Boris Katz,
Tolga Kayadelen, Jessica Kenney, Václava Kettnerová, Jesse Kirch-
ner, Kamil Kopacewicz, Natalia Kotsyba, Simon Krek, Sooky-
oung Kwak, Veronika Laippala, Lorenzo Lambertino, Lucia Lam,
Tatiana Lando, Septina Dian Larasati, Alexei Lavrentiev, John
Lee, Phương Lê Hồng, Alessandro Lenci, Saran Lertpradit, Her-
man Leung, Cheuk Ying Li, Josie Li, Keying Li, KyungTae
Lim, Nikola Ljubešić, Olga Loginova, Olga Lyashevskaya, Teresa
Lynn, Vivien Macketanz, Aibek Makazhanov, Michael Mandl,
Christopher Manning, Ruli Manurung, Cătălina Mărănduc, David
Mareček, Katrin Marheinecke, Héctor Martínez Alonso, André
Martins, Jan Mašek, Yuji Matsumoto, Ryan McDonald, Gus-
tavo Mendonça, Niko Miekka, Margarita Misirpashayeva, Anna
Missilä, Cătălin Mititelu, Yusuke Miyao, Simonetta Montemagni,

Bibliography 178

Amir More, Laura Moreno Romero, Keiko Sophie Mori, Shin-
suke Mori, Bjartur Mortensen, Bohdan Moskalevskyi, Kadri Muis-
chnek, Yugo Murawaki, Kaili Müürisep, Pinkey Nainwani, Juan Ig-
nacio Navarro Horñiacek, Anna Nedoluzhko, Gunta Nešpore-
Bērzkalne, Lương Nguyễn Thị, Huyền Nguyễn Thị Minh, Vitaly
Nikolaev, Rattima Nitisaroj, Hanna Nurmi, Stina Ojala, Adé-
dayọ̀ Olúòkun, Mai Omura, Petya Osenova, Robert Östling, Lilja
Øvrelid, Niko Partanen, Elena Pascual, Marco Passarotti, Ag-
nieszka Patejuk, Guilherme Paulino-Passos, Siyao Peng, Cenel-
Augusto Perez, Guy Perrier, Slav Petrov, Jussi Piitulainen,
Emily Pitler, Barbara Plank, Thierry Poibeau, Martin Popel,
Lauma Pretkalniņa, Sophie Prévost, Prokopis Prokopidis, Adam
Przepiórkowski, Tiina Puolakainen, Sampo Pyysalo, Andriela
Rääbis, Alexandre Rademaker, Loganathan Ramasamy, Taraka
Rama, Carlos Ramisch, Vinit Ravishankar, Livy Real, Siva Reddy,
Georg Rehm, Michael Rießler, Larissa Rinaldi, Laura Rituma,
Luisa Rocha, Mykhailo Romanenko, Rudolf Rosa, Davide Rovati,
Valentin Roșca, Olga Rudina, Jack Rueter, Shoval Sadde, Benoît
Sagot, Shadi Saleh, Tanja Samardžić, Stephanie Samson, Manuela
Sanguinetti, Baiba Saulīte, Yanin Sawanakunanon, Nathan Schnei-
der, Sebastian Schuster, Djamé Seddah, Wolfgang Seeker, Moj-
gan Seraji, Mo Shen, Atsuko Shimada, Muh Shohibussirri, Dmitry
Sichinava, Natalia Silveira, Maria Simi, Radu Simionescu, Katalin
Simkó, Mária Šimková, Kiril Simov, Aaron Smith, Isabela Soares-
Bastos, Carolyn Spadine, Antonio Stella, Milan Straka, Jana
Strnadová, Alane Suhr, Umut Sulubacak, Zsolt Szántó, Dima
Taji, Yuta Takahashi, Takaaki Tanaka, Isabelle Tellier, Trond
Trosterud, Anna Trukhina, Reut Tsarfaty, Francis Tyers, Sumire
Uematsu, Zdeňka Urešová, Larraitz Uria, Hans Uszkoreit, Sowmya
Vajjala, Daniel van Niekerk, Gertjan van Noord, Viktor Varga, Eric
Villemonte de la Clergerie, Veronika Vincze, Lars Wallin, Jing Xian
Wang, Jonathan North Washington, Seyi Williams, Mats Wirén,
Tsegay Woldemariam, Tak-sum Wong, Chunxiao Yan, Marat M.
Yavrumyan, Zhuoran Yu, Zdeněk Žabokrtský, Amir Zeldes, Daniel
Zeman, Manying Zhang, and Hanzhi Zhu. Universal dependencies
2.3, 2018. LINDAT/CLARIN digital library at the Institute of
Formal and Applied Linguistics (ÚFAL), Faculty of Mathematics
and Physics, Charles University.

[NAA+18b] Joakim Nivre, Mitchell Abrams, Željko Agić, Lars Ahrenberg, Lene
Antonsen, Maria Jesus Aranzabe, Gashaw Arutie, Masayuki Asa-
hara, Luma Ateyah, Mohammed Attia, Aitziber Atutxa, Liesbeth
Augustinus, Elena Badmaeva, Miguel Ballesteros, Esha Baner-
jee, Sebastian Bank, Verginica Barbu Mititelu, John Bauer, San-
dra Bellato, Kepa Bengoetxea, Riyaz Ahmad Bhat, Erica Bi-
agetti, Eckhard Bick, Rogier Blokland, Victoria Bobicev, Carl
Börstell, Cristina Bosco, Gosse Bouma, Sam Bowman, Adriane
Boyd, Aljoscha Burchardt, Marie Candito, Bernard Caron, Gau-
thier Caron, Gülşen Cebiroğlu Eryiğit, Giuseppe G. A. Celano,
Savas Cetin, Fabricio Chalub, Jinho Choi, Yongseok Cho, Jayeol
Chun, Silvie Cinková, Aurélie Collomb, Çağrı Çöltekin, Miriam

179 Bibliography

Connor, Marine Courtin, Elizabeth Davidson, Marie-Catherine
de Marneffe, Valeria de Paiva, Arantza Diaz de Ilarraza, Carly
Dickerson, Peter Dirix, Kaja Dobrovoljc, Timothy Dozat, Kira
Droganova, Puneet Dwivedi, Marhaba Eli, Ali Elkahky, Binyam
Ephrem, Tomaž Erjavec, Aline Etienne, Richárd Farkas, Hec-
tor Fernandez Alcalde, Jennifer Foster, Cláudia Freitas, Katarína
Gajdošová, Daniel Galbraith, Marcos Garcia, Moa Gärdenfors,
Kim Gerdes, Filip Ginter, Iakes Goenaga, Koldo Gojenola, Mem-
duh Gökırmak, Yoav Goldberg, Xavier Gómez Guinovart, Berta
Gonzáles Saavedra, Matias Grioni, Normunds Grūzītis, Bruno
Guillaume, Céline Guillot-Barbance, Nizar Habash, Jan Hajič, Jan
Hajič jr., Linh Hà Mỹ, Na-Rae Han, Kim Harris, Dag Haug,
Barbora Hladká, Jaroslava Hlaváčová, Florinel Hociung, Petter
Hohle, Jena Hwang, Radu Ion, Elena Irimia, Tomáš Jelínek, An-
ders Johannsen, Fredrik Jørgensen, Hüner Kaşıkara, Sylvain Ka-
hane, Hiroshi Kanayama, Jenna Kanerva, Tolga Kayadelen, Vá-
clava Kettnerová, Jesse Kirchner, Natalia Kotsyba, Simon Krek,
Sookyoung Kwak, Veronika Laippala, Lorenzo Lambertino, Ta-
tiana Lando, Septina Dian Larasati, Alexei Lavrentiev, John Lee,
Phương Lê Hồng, Alessandro Lenci, Saran Lertpradit, Herman Le-
ung, Cheuk Ying Li, Josie Li, Keying Li, KyungTae Lim, Nikola
Ljubešić, Olga Loginova, Olga Lyashevskaya, Teresa Lynn, Vivien
Macketanz, Aibek Makazhanov, Michael Mandl, Christopher Man-
ning, Ruli Manurung, Cătălina Mărănduc, David Mareček, Katrin
Marheinecke, Héctor Martínez Alonso, André Martins, Jan Mašek,
Yuji Matsumoto, Ryan McDonald, Gustavo Mendonça, Niko
Miekka, Anna Missilä, Cătălin Mititelu, Yusuke Miyao, Simon-
etta Montemagni, Amir More, Laura Moreno Romero, Shinsuke
Mori, Bjartur Mortensen, Bohdan Moskalevskyi, Kadri Muischnek,
Yugo Murawaki, Kaili Müürisep, Pinkey Nainwani, Juan Ignacio
Navarro Horñiacek, Anna Nedoluzhko, Gunta Nešpore-Bērzkalne,
Lương Nguyễn Thị, Huyền Nguyễn Thị Minh, Vitaly Nikolaev,
Rattima Nitisaroj, Hanna Nurmi, Stina Ojala, Adédayọ̀ Olúòkun,
Mai Omura, Petya Osenova, Robert Östling, Lilja Øvrelid, Niko
Partanen, Elena Pascual, Marco Passarotti, Agnieszka Patejuk,
Siyao Peng, Cenel-Augusto Perez, Guy Perrier, Slav Petrov, Jussi
Piitulainen, Emily Pitler, Barbara Plank, Thierry Poibeau, Mar-
tin Popel, Lauma Pretkalniņa, Sophie Prévost, Prokopis Proko-
pidis, Adam Przepiórkowski, Tiina Puolakainen, Sampo Pyysalo,
Andriela Rääbis, Alexandre Rademaker, Loganathan Ramasamy,
Taraka Rama, Carlos Ramisch, Vinit Ravishankar, Livy Real,
Siva Reddy, Georg Rehm, Michael Rießler, Larissa Rinaldi, Laura
Rituma, Luisa Rocha, Mykhailo Romanenko, Rudolf Rosa, Da-
vide Rovati, Valentin Roșca, Olga Rudina, Shoval Sadde, Shadi
Saleh, Tanja Samardžić, Stephanie Samson, Manuela Sanguinetti,
Baiba Saulīte, Yanin Sawanakunanon, Nathan Schneider, Sebas-
tian Schuster, Djamé Seddah, Wolfgang Seeker, Mojgan Seraji,
Mo Shen, Atsuko Shimada, Muh Shohibussirri, Dmitry Sichinava,
Natalia Silveira, Maria Simi, Radu Simionescu, Katalin Simkó,
Mária Šimková, Kiril Simov, Aaron Smith, Isabela Soares-Bastos,

Bibliography 180

Antonio Stella, Milan Straka, Jana Strnadová, Alane Suhr, Umut
Sulubacak, Zsolt Szántó, Dima Taji, Yuta Takahashi, Takaaki
Tanaka, Isabelle Tellier, Trond Trosterud, Anna Trukhina, Reut
Tsarfaty, Francis Tyers, Sumire Uematsu, Zdeňka Urešová, Lar-
raitz Uria, Hans Uszkoreit, Sowmya Vajjala, Daniel van Niek-
erk, Gertjan van Noord, Viktor Varga, Veronika Vincze, Lars
Wallin, Jonathan North Washington, Seyi Williams, Mats Wirén,
Tsegay Woldemariam, Tak-sum Wong, Chunxiao Yan, Marat M.
Yavrumyan, Zhuoran Yu, Zdeněk Žabokrtský, Amir Zeldes, Daniel
Zeman, Manying Zhang, and Hanzhi Zhu. Universal dependencies
2.2, 2018. LINDAT/CLARIN digital library at the Institute of
Formal and Applied Linguistics (ÚFAL), Faculty of Mathematics
and Physics, Charles University.

[NBG12] Tahira Naseem, Regina Barzilay, and Amir Globerson. Selective
sharing for multilingual dependency parsing. In Proceedings of the
50th Annual Meeting of the Association for Computational Linguis-
tics: Long Papers - Volume 1, ACL ’12, pages 629–637, Strouds-
burg, PA, USA, 2012. Association for Computational Linguistics.

[NDG+17] Graham Neubig, Chris Dyer, Yoav Goldberg, Austin Matthews,
Waleed Ammar, Antonios Anastasopoulos, Miguel Ballesteros,
David Chiang, Daniel Clothiaux, Trevor Cohn, Kevin Duh, Man-
aal Faruqui, Cynthia Gan, Dan Garrette, Yangfeng Ji, Lingpeng
Kong, Adhiguna Kuncoro, Gaurav Kumar, Chaitanya Malaviya,
Paul Michel, Yusuke Oda, Matthew Richardson, Naomi Saphra,
Swabha Swayamdipta, and Pengcheng Yin. Dynet: The dynamic
neural network toolkit. arXiv preprint arXiv:1701.03980, 2017.

[NdMG+16] Joakim Nivre, Marie-Catherine de Marneffe, Filip Ginter, Yoav
Goldberg, Jan Hajic, Christopher D. Manning, Ryan McDonald,
Slav Petrov, Sampo Pyysalo, Natalia Silveira, Reut Tsarfaty, and
Daniel Zeman. Universal dependencies v1: A multilingual tree-
bank collection. In Nicoletta Calzolari (Conference Chair), Khalid
Choukri, Thierry Declerck, Sara Goggi, Marko Grobelnik, Bente
Maegaard, Joseph Mariani, Helene Mazo, Asuncion Moreno, Jan
Odijk, and Stelios Piperidis, editors, Proceedings of the Tenth
International Conference on Language Resources and Evaluation
(LREC 2016), Paris, France, may 2016. European Language Re-
sources Association (ELRA).

[NH05] Joakim Nivre and Johan Hall. Maltparser: A language-
independent system for data-driven dependency parsing. In In
Proc. of the Fourth Workshop on Treebanks and Linguistic Theo-
ries, pages 13–95, 2005.

[NHK+07] Joakim Nivre, Johan Hall, Sandra Kübler, Ryan McDonald, Jens
Nilsson, Sebastian Riedel, and Deniz Yuret. The conll 2007 shared
task on dependency parsing. In Proceedings of the 2007 Joint
Conference on Empirical Methods in Natural Language Processing
and Computational Natural Language Learning (EMNLP-CoNLL),
2007.

181 Bibliography

[Pat04] Peter L Patrick. Jamaican creole: morphology and syntax. 2004.

[PGC15] Wenzhe Pei, Tao Ge, and Baobao Chang. An effective neural net-
work model for graph-based dependency parsing. In Proceedings
of the 53rd Annual Meeting of the Association for Computational
Linguistics and the 7th International Joint Conference on Natu-
ral Language Processing (Volume 1: Long Papers), pages 313–322.
Association for Computational Linguistics, 2015.

[PNI+18] Matthew E. Peters, Mark Neumann, Mohit Iyyer, Matt Gardner,
Christopher Clark, Kenton Lee, and Luke Zettlemoyer. Deep con-
textualized word representations, 2018. cite arxiv:1802.05365Com-
ment: NAACL 2018. Originally posted to openreview 27 Oct 2017.
v2 updated for NAACL camera ready.

[PSM14] Jeffrey Pennington, Richard Socher, and Christopher D. Manning.
Glove: Global vectors for word representation. In Empirical Meth-
ods in Natural Language Processing (EMNLP), pages 1532–1543,
2014.

[PVG+11] F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion,
O. Grisel, M. Blondel, P. Prettenhofer, R. Weiss, V. Dubourg,
J. Vanderplas, A. Passos, D. Cournapeau, M. Brucher, M. Per-
rot, and E. Duchesnay. Scikit-learn: Machine learning in Python.
Journal of Machine Learning Research, 12:2825–2830, 2011.

[RBAS17] S. Ruder, J. Bingel, I. Augenstein, and A. Søgaard. Sluice networks:
Learning what to share between loosely related tasks. ArXiv e-
prints, May 2017.

[RHW86] D. E. Rumelhart, G. E. Hinton, and R. J. Williams. Learning
representations by back-propagating errors. Nature, 323:533–536,
October 1986.

[RMv14] Loganathan Ramasamy, David Mareček, and Zdeněk Žabokrtský.
Multilingual dependency parsing: Using machine translated texts
instead of parallel corpora. The Prague Bulletin of Mathematical
Linguistics, 102:93–104, 2014.

[Ros58] F. Rosenblatt. The perceptron: A probabilistic model for informa-
tion storage and organization in the brain. Psychological Review,
pages 65–386, 1958.

[SA17] Natalie Schluter and Željko Agić. Empirically sampling universal
dependencies. In Proceedings of the NoDaLiDa 2017 Workshop on
Universal Dependencies (UDW 2017), pages 117–122, 2017.

[SACJ11] Valentin I Spitkovsky, Hiyan Alshawi, Angel X Chang, and Daniel
Jurafsky. Unsupervised dependency parsing without gold part-of-
speech tags. In Proceedings of the conference on empirical methods
in natural language processing, pages 1281–1290. Association for
Computational Linguistics, 2011.

Bibliography 182

[SB17] Anders Søgaard and Joachim Bingel. Identifying beneficial task
relations for multi-task learning in deep neural networks. In Pro-
ceedings of the 15th Conference of the European Chapter of the
Association for Computational Linguistics, EACL 2017, Valencia,
Spain, April 3-7, 2017, Volume 2: Short Papers, pages 164–169,
2017.

[SF18] Gary F. Simons and Charles D. Fennig, editors. Ethnologue: Lan-
guages of the World, Twenty-first edition. SIL International, Dal-
las, TX, USA, 2018.

[SG16] Anders Søgaard and Yoav Goldberg. Deep multi-task learning with
low level tasks supervised at lower layers. In Proceedings of the 54th
Annual Meeting of the Association for Computational Linguistics,
ACL 2016, August 7-12, 2016, Berlin, Germany, Volume 2: Short
Papers, 2016.

[Sha48] C. E. Shannon. A mathematical theory of communication. Bell
system technical journal, 27, 1948.

[Smi11] Noah A. Smith. Linguistic Structure Prediction. Morgan & Clay-
pool Publishers, 1st edition, 2011.

[SRIV11] Avishek Saha, Piyush Rai, Hal DaumÃ© III, and Suresh Venkata-
subramanian. Online learning of multiple tasks and their relation-
ships. In Geoffrey Gordon, David Dunson, and Miroslav Dudík,
editors, Proceedings of the Fourteenth International Conference on
Artificial Intelligence and Statistics, volume 15 of Proceedings of
Machine Learning Research, pages 643–651, Fort Lauderdale, FL,
USA, 11–13 Apr 2011. PMLR.

[SS10] Drahomíra Spoustová and Miroslav Spousta. Dependency parsing
as a sequence labeling task. The Prague Bulletin of Mathematical
Linguistics, 94(1):7 – 14, 2010.

[SSO+14] Per Erik Solberg, Arne Skjærholt, Lilja Ovrelid, Kristin Hagen,
and Janne Bondi Johannessen. The norwegian dependency tree-
bank. 05 2014.

[SUW13] S. Sharoff, E. Umanskaya, and J. Wilson. A Frequency Dictionary
of Russian. Routledge, 2013.

[TJHA05] Ioannis Tsochantaridis, Thorsten Joachims, Thomas Hofmann, and
Yasemin Altun. Large margin methods for structured and inter-
dependent output variables. J. Mach. Learn. Res., 6:1453–1484,
December 2005.

[TM15] Takaaki Tanaka and N Masaaki. Word-based japanese typed de-
pendency parsing with grammatical function analysis. 2:237–242,
01 2015.

[TMU12] Oscar Täckström, Ryan T. McDonald, and Jakob Uszkoreit. Cross-
lingual word clusters for direct transfer of linguistic structure. In
HLT-NAACL, 2012.

183 Bibliography

[TSG+10] Reut Tsarfaty, Djamé Seddah, Yoav Goldberg, Sandra Kubler,
Yannick Versley, Marie Candito, Jennifer Foster, Ines Rehbein,
and Lamia Tounsi. Statistical Parsing of Morphologically Rich
Languages (SPMRL) What, How and Whither. In Proceedings of
the NAACL HLT 2010 First Workshop on Statistical Parsing of
Morphologically-Rich Languages, pages 1–12, Los Angeles, United
States, 2010. Association for Computational Linguistics.

[VBT17] Paul Vanhaesebrouck, Aurélien Bellet, and Marc Tommasi. De-
centralized collaborative learning of personalized models over net-
works. In Aarti Singh and Xiaojin (Jerry) Zhu, editors, Proceed-
ings of the 20th International Conference on Artificial Intelligence
and Statistics, AISTATS 2017, 20-22 April 2017, Fort Lauderdale,
FL, USA, volume 54 of Proceedings of Machine Learning Research,
pages 509–517. PMLR, 2017.

[Vic03] A Vicentini. The economy principle in language. Mots, Palabras,
Words, 3:37–57, 01 2003.

[WP12] Alina Wróblewska and Adam Przepiórkowski. Induction of depen-
dency structures based on weighted projection. In Ngoc-Thanh
Nguyen, Kiem Hoang, and Piotr Jdrzejowicz, editors, Computa-
tional Collective Intelligence. Technologies and Applications, pages
364–374, Berlin, Heidelberg, 2012. Springer Berlin Heidelberg.

[XG14] Min Xiao and Yuhong Guo. Proceedings of the eighteenth confer-
ence on computational natural language learning. pages 119–129.
Association for Computational Linguistics, 2014.

[YM03] H. Yamada and Y. Matsumoto. Statistical Dependency Analysis
with Support Vector machines. In The 8th International Workshop
of Parsing Technologies (IWPT2003), 2003.

[ZG02] Xiaojin Zhu and Zoubin Ghahramani. Learning from labeled and
unlabeled data with label propagation. Technical report, 2002.

[ZGL03] Xiaojin Zhu, Zoubin Ghahramani, and John Lafferty. Semi-
supervised learning using gaussian fields and harmonic functions.
In IN ICML, pages 912–919, 2003.

[ZHP+18] Daniel Zeman, Jan Hajič, Martin Popel, Martin Potthast, Milan
Straka, Filip Ginter, Joakim Nivre, and Slav Petrov. CoNLL 2018
shared task: Multilingual parsing from raw text to universal de-
pendencies. In Proceedings of the CoNLL 2018 Shared Task: Mul-
tilingual Parsing from Raw Text to Universal Dependencies, pages
1–21, Brussels, Belgium, October 2018. Association for Computa-
tional Linguistics.

[Zip35] George Kingsley Zipf. The Psychobiology of Language. Houghton-
Mifflin, New York, NY, USA, 1935.

[ZPS+17] Daniel Zeman, Martin Popel, Milan Straka, Jan Hajic, Joakim
Nivre, Filip Ginter, Juhani Luotolahti, Sampo Pyysalo, Slav

Bibliography 184

Petrov, Martin Potthast, Francis Tyers, Elena Badmaeva, Mem-
duh Gokirmak, Anna Nedoluzhko, Silvie Cinkova, Jan Hajic jr.,
Jaroslava Hlavacova, Václava Kettnerová, Zdenka Uresova, Jenna
Kanerva, Stina Ojala, Anna Missilä, Christopher D. Manning, Se-
bastian Schuster, Siva Reddy, Dima Taji, Nizar Habash, Herman
Leung, Marie-Catherine de Marneffe, Manuela Sanguinetti, Maria
Simi, Hiroshi Kanayama, Valeria dePaiva, Kira Droganova, Héctor
Martínez Alonso, Çağrı Çöltekin, Umut Sulubacak, Hans Uszko-
reit, Vivien Macketanz, Aljoscha Burchardt, Kim Harris, Katrin
Marheinecke, Georg Rehm, Tolga Kayadelen, Mohammed Attia,
Ali Elkahky, Zhuoran Yu, Emily Pitler, Saran Lertpradit, Michael
Mandl, Jesse Kirchner, Hector Fernandez Alcalde, Jana Strnadová,
Esha Banerjee, Ruli Manurung, Antonio Stella, Atsuko Shimada,
Sookyoung Kwak, Gustavo Mendonca, Tatiana Lando, Rattima
Nitisaroj, and Josie Li. Conll 2017 shared task: Multilingual pars-
ing from raw text to universal dependencies. In Proceedings of the
CoNLL 2017 Shared Task: Multilingual Parsing from Raw Text to
Universal Dependencies, pages 1–19, Vancouver, Canada, August
2017. Association for Computational Linguistics.

	Introduction
	Outline

	Preliminaries
	Snippet of Graph Theory
	Dependency Parsing
	Dependency Parsing as a NLP Task
	Graph-based Parsing
	Transition-based Parsing
	Other Approaches
	Evaluation

	Machine Learning and Structured Prediction
	Structured Prediction
	Learning Scoring Functions
	Large Margin Classifiers
	Online Learning
	Neural Parsers

	Conclusion

	Representing Word Information
	Lemmas, Parts-of-speech and Morphological Attributes
	Parts-of-speech
	Morphological Features

	Learning Word Representation
	The Different Views of a Word
	Types of Word Representations
	Beyond One-Hot Encoding
	Distributional Hypothesis
	Distributional Semantics
	Continuous Representations
	Discrete Representations
	Engineering, Learning and Selection

	Conclusion

	Related Works on Multi-Lingual Dependency Parsing
	Multi-Lingual Dependency Parsing
	Universal Dependencies
	Related Work
	Delexicalised Parsers
	Annotation Projection
	Cross-Lingual Representations
	Direct Transfer and Surface Form Rewriting
	Multi-Lingual Dependency Parsing

	Delexicalised Word Representation
	Related Work
	Delexicalised Words
	Representation Learning
	Delexicalised Contexts
	Structured Contexts
	Structured Delexicalised Contexts
	Dimension Reduction

	Dependency Parsing with Delexicalised Word
	Experiments
	Settings
	Results

	Conclusion

	Phylogenetic Learning of Multi-Lingual Parsers
	Related Work
	Multi-Task Learning
	Multi-Lingual Dependency Parsing

	Phylogenetic Learning of Multi-Lingual Parsers
	Model Phylogeny
	Phylogenetic Datasets
	Model Training
	Sentence Sampling
	Zero-Shot Dependency Parsing

	Tree Perceptron
	Averaging Policy

	Neural Model
	Experiments
	Setting
	Results with Training Data
	Zero-Shot Dependency Parsing

	Conclusion

	Measuring the Role of Morphology
	Morphological Richness
	Measuring Morphological Richness
	Related Work on Measures of Morphological Richness
	Form per Lemma Ratio

	Morphological Richness in Dependency Parsing
	Measuring Morphology Syntactical Information
	Annotation Scheme Design
	Part-of-speech Tags
	Word Tokenisation
	Dependency Scheme

	Experiments
	Parsing Model
	Word Representation
	Experimental Setting
	Results
	Assessing the Impact of the Annotation Scheme

	Conclusion

	Conclusion
	Contribution
	Future Works

	Appendix
	Model Propagation for Dependency Parsing
	Experiments
	Results

	Measuring the Role of Morphology

