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Résumé : Les nouveaux composants 

à semi-conducteur de type grand gap ont 

été développés pour des applications de 

conversion de puissance en raison de 

leurs hautes fréquences de commutation 

(de centaine kHz à quelques MHz) et 

pertes faibles. Afin de bien profiter ses 

avantages, la technologie des circuits 

imprimés (PCB) est intéressante pour 

une intégration à haute densité de 

puissance grâce à sa flexibilité et son 

faible coût. Cependant,  à cause de la 

mauvaise conductivité thermique du 

matériau FR-4 utilisé pour le substrat 

PCB et la haute densité de puissance 

réalisée, il est primordial de trouver des 

solutions thermiques pour améliorer les 

performances thermique de la structure 

de PCB.  

Dans cette thèse, trois solutions 

thermiques pour les structures de PCB 

ont été proposées, y compris des 

solutions avec des vias thermiques, de 

cuivre épais sur le substrat PCB ainsi que 

des dispositifs de refroidissement 

thermoélectrique (TEC). Nos études sont 

basées sur la modélisation 

électrothermique et la méthode 

d’éléments finis en 3D. 

Tout d’abord, l’optimisation des 

paramètres des vias (diamètre, épaisseur 

de placage, surface formée par des vias, 

la distance entre des vias etc.) a été 

réalisée pour optimiser l’effet de 

refroidissement. 

 

Ensuite, on constate que les 

performances thermiques des strucutres 

de PCB peuvent être améliorées en 

utilisant cuivre épais sur le substrat de 

PCB. Cuivre épais augmente le flux 

thermique lateral dans la couche de 

cuivre. Les influnces de l’épaisseur de 

cuivre (35 à 500 µm) ont été étudiées. 

Cette solution est facile à réaliser et peut 

être combinée à d’autres solutions de 

refroidissement. 

Enfin, le dispositif thermoélectrique 

comme les modules Peltier est une 

technolgie de refroidissement local. Les 

influences des paramètres de Peltier 

(Propriétés du matériau 

thermoélectrique, nombre d’éléments 

Peltier, distance entre la source de 

chaleur et les dispositifs Peltier, etc.) ont 

été identifiées. Il est démonstré que des 

modules Peltier ont l’application 

potentielle pour le dévéloppement 

d’intégration de PCB attendu que son 

active contrôle des températures.   
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Abstract : The emerging wide 

bandgap (WBG) semiconductor devices 

have been developed for power 

conversion applications instead of silicon 

devices due to higher switching 

frequencies (from few 100 kHz to several 

MHz) and lower on-state losses resulting 

in a better efficiency. In order to take full 

advantage of the WBG components, 

PCB technology is attractive for high 

power density integration thanks to its 

flexibility and low cost. However, due to 

poor thermal conductivity of the 

commonly used material Flame 

Retardant-4 (FR4),  efficient thermal 

solutions are becoming a challenging 

issue in integrated power boards based 

on PCB substrates. So it is of the first 

importance to seek technological means 

in order to improve the thermal 

performances. 

In this thesis, three main thermal 

management solutions for PCB 

structures have been investigated 

including thermal vias, thick copper 

thickness on the PCB substrate as well as 

thermoelectric cooling (TEC) devices. 

Our studies are based on the electro-

thermal modeling and 3D finite element 

(FE) methods. 

Firstly, optimization of the thermal 

via parameters (via diameter, via plating 

thickness, via-cluster surface, via 

pattern, pitch distance between vias etc.) 

has been realized to improve their cooing 

performances. We presented and 

evaluated thermal performances of the 

PCB structures by analyzing the thermal 

resistance of the PCB substrate with 

different thermal vias.  

Secondly, it is found that thermal 

performances of the PCB structures can 

be enhanced by using thick copper 

thickness on top of the PCB substrate, 

which increases the lateral heat flux 

along the copper layer. Influences of the 

copper thickness (35 µm to 500 µm) has 

been discussed. This solution is easy to 

realize and can be combined with other 

cooling solutions. 

Thirdly, thermoelectric cooler like 

Peltier device is a solid-state cooling 

technology that can meet the local 

cooling requirements. Influences of 

Peltier parameters (Thermoelectric 

material properties, number of Peltier 

elements, distance between the heating 

source and the Peltier devices etc.) have 

been identified. All these analyses 

demonstrate the potential application of 

Peltier devices placed beside the heating 

source for PCB structures, which is a 

benefit for developing the embedding 

technology in such structures. 
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RÉSUMÉ EN FRANÇAIS 

   I- Contexte de l’étude 
Au cours des dernières années, la technologie de l’électronique de puissance a connu une 

évolution rapide grâce au concept « plus électrique ». Récemment, de nombreuses 

applications de l’électronique de puissance se sont développées dans les environnements 

industriels, commerciaux, résidentiels, de transport, utilitaires, aérospatiaux et militaires en 

raison de la réduction des coûts, de la taille et de l’amélioration des performances [1].  

Comme les caractéristiques des composants de puissance à base de Silicium ont atteint 

ou sont très proches leurs limites physiques, les composants à grand gap en Nitrure de 

Gallium (GaN) ou Carbure Silicium (SiC) ont récemment émergé. Ils permettent d’atteindre 

de plus hautes fréquences de commutation tout en offrant une plus faible résistance à l’état 

passant. La capacité de ces composants grand gap en matière de montée en fréquence est 

liée à leurs vitesse de commutation ce qui implique que des fronts d’onde dv/dt et di/dt 

extrêmement élevés sont générés. Les connexions de ces composants avec le reste du circuit 

et donc leur packaging sont donc des points cruciaux pour permettre de bénéficier 

pleinement des performances en vitesse de commutation. L’augmentation des performances 

électriques permet par ailleurs de réduire les dimensions de la partie active du composant 

grand gap pour un cahier des charges donné. Les contraintes thermiques découlant de la 

réduction de la surface de ces composants devient alors un problème important, d’autant plus 

si l’on souhaite travailler à plus haute température, ce que sont censés pouvoir permettre de 

tels composants. 

L’augmentation de la densité de puissance et les avancées des semi-conducteurs à grand 

gap nécessitent des améliorations en matière d’intégration, de technologie d’assemblage 

ainsi que des solutions de gestion thermique. En effet, la plupart des technologies 

d’assemblage commerciales sont élaborées pour les composants à base de Silicium pour 

lesquels, la température de fonctionnement est en particulier plus faible. Or, dans de 

nombreuses applications, par exemple dans les domaines de l’aérospatiale et de 

l’aéronautique, une capacité de fonctionnement fiable dans des environnements difficiles (de 

-55 ℃ à 250 ℃) est fortement souhaitée. Les composants à grand gap offrent l’avantage de 

pouvoir fonctionner à plus haute température. Cependant, les technologies d’assemblage, les 

composants passifs, les composants périphériques disponibles, les matériaux de brasure, les 

considérations de fiabilité et les coûts limitent actuellement les températures de jonction à 

environ 175 ℃, même si les semi-conducteurs à grand gap peuvent fonctionner 

principalement à températures de jonction beaucoup plus élevées [7-9]. 

Afin d’atténuer les effets induits par une plus grande rapidité de commutation et une 

densité de puissance plus importante, il est nécessaire de proposer et développer des 

solutions d’assemblage avancées avec des systèmes de refroidissement efficaces de manière 

à tirer pleinement avantage des composants à grand gap. 

Parmi les technologies matures utilisées dans le domaine de l’électronique de puissance, 

la technologie des circuits imprimés (Printed Circuit Board : PCB) répond aux contraintes 

techniques pour les petites et moyennes puissances (quelques centaines de Watts jusqu’à 

quelques kW). La technologie DBC (Direct Bonded Copper) est pour sa part utilisée dans le 

cas de densité de puissance et de puissances élevées [10]. Entre autres avantages, la 

technologie PCB permet de réaliser l’intégration 3D des composants de puissance en 

supprimant l’utilisation des fils de bonding. Toutefois le substrat de PCB en matériau de FR-
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4 a une mauvaise conductivité thermique (<1.5 W/mK), ce qui rend difficile la gestion des 

flux thermiques et la maîtrise de la température des composants. 

Cette thèse est donc consacrée au développement de solutions de refroidissement 

destinées à des assemblages à base de PCB. Trois méthodes de refroidissement ont été 

étudiées : 

- La première solution est basée sur le concept de vias thermiques créés dans le substrat 

PCB. L’objectif est pour cette partie de définir des règles de design permettant de 

choisir les paramètres des vias pour atteindre les performances thermiques souhaitées ;  

- La seconde solution consiste à augmenter l’épaisseur de la couche de cuivre sur le 

dessus de substrat de PCB. Cette solution permet d’augmenter la diffusion latérale de 

la chaleur et ainsi d’augmenter la surface de dissipation thermique ; 

- La troisième solution propose et analyse des solutions de refroidissement basées sur 

des technologies thermoélectriques (TEC).  

Le mémoire de thèse est divisé en quatre parties, hors conclusion et perspectives, 

présentant successivement : 

- Dans le premier chapitre, un bref aperçu du développement des systèmes 

électroniques de puissance et du contexte général de ce travail est présenté afin 

d’introduire les concepts de base de la gestion thermique, concepts utilisés tout au 

long de la thèse. Nous discuterons ensuite de l’état de l’art des techniques 

d’assemblage actuels utilisés en électronique de puissance et des différentes solutions 

de gestion des aspects thermiques. Ce chapitre sera également consacré à la 

comparaison des certaines méthodes de modélisation basées sur différents logiciels 

issues de la littérature ; 

- Le deuxième chapitre présentera les aspects instrumentaux utilisés dans le banc 

d’essai destiné à la mesure des flux de puissance et des températures. Le banc d’essai 

est décrit ainsi que le processus d’étalonnage de certains dispositifs tels que les 

capteurs de température à résistance (RTD). Les principes de réalisation des 

échantillons sont également présentés  ; 

- Le troisième chapitre couvre deux méthodes de refroidissement : La solution de 

refroidissement par vias thermiques et par augmentation de l’épaisseur de cuivre du 

substrat PCB. Différentes méthodes de modélisation : analyse électrothermique en 

1D et méthode d’éléments finis en 3D ont été utilisées pour analyser l’impact sur 

refroidissement des différents paramètres des vias, notamment le diamètre, le nombre 

des vias, l’épaisseur du cuivre, la distance entre deux vias, etc. ; 

- Le quatrième chapitre, décrit et analyse une solution de refroidissement basée sur des 

modules thermoélectriques (TEC) utilisant l’effet Peltier. Dans ce chapitre, des 

modèles sont proposés et utilisés pour dimensionner et optimiser cette solution en 

fonction des propriétés thermiques recherchées. 
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II- Les principaux résultats 

 Optimisation des vias thermiques 

 

Figure 1: Vue de dessus (a) et vue en coupe (b) des vias thermiques créés dans un substrat PCB 

D’après l’hypothèse de conduction thermique en 1D, les paramètres des vias thermiques 

sont exprimés sous la forme de grandeurs adimensionnelles dans (1) et (2). Ces paramètres 

sont utilisés pour définir la résistance thermique d’une structure PCB avec vias thermiques. 

𝑅𝑜𝑎 =
1

1+𝜋 ∙ 𝑅𝑜1 ∙ 𝑅𝑜2
2 ∙ (𝜎𝑟 ∙ 

𝑅𝑜3
𝑅𝑜2

− 
1

4
) 
          (1) 

  𝑅𝑜𝑎 =
𝑅𝑎_𝑁

𝑅𝑏𝑜𝑎𝑟𝑑
 , 𝑅𝑜1 =

𝑁 ∙ 𝐻𝑑
2

𝑆1
 , 𝑅𝑜2 =

𝐷

𝐻𝑑
 , 𝑅𝑜3 =

𝑃𝑙𝑎

𝐻𝑑
   (2) 

Avec  

Roa : le rapport de la résistance thermique du substrat de PCB avec et sans N vias 

thermiques ; 

Ra_N (W/mK) : la résistance thermique du substrat de PCB avec N vias thermiques ; 

Rboard (W/mK) : la résistance thermique du substrat de PCB sans vias thermiques ;  

Ro1 : le rapport de la surface formée par des vias thermiques à la surface disponible ;  

Ro2 : le rapport du diamètre du via thermique D (mm) à la distance entre deux vias Hd 

(mm) ; 

Ro3 : le rapport de l’épaisseur de cuivre dans le via Pla (mm) à la distance entre deux vias 

Hd (mm) ; 

S1 : la surface normale à la direction de transfert de chaleur L×Y (mm×mm) ; 

𝜎r : le rapport de la conductivité thermique entre les matériaux : cuivre et FR-4 ; 

On a proposé deux motifs différents formés par des vias thermiques (Voir Figure 2). La 

différence entre les deux motifs réside dans le nombre des vias qu’on peut créer pour la 

même surface disponible.  

 

Figure 2: Vue de dessus des deux motifs (Pattern_1 et Pattern_2) utilisés pour créer des vias thermiques dans un 

substrat PCB 



 

V 

 

Les effets sur la résistance thermique du substrat des différents paramètres précédents  (le 

nombre des vias N, le rapport de surface des vias Ro1, le rapport de diamètre du via Ro2, le 

rapport d’épaisseur de placage du via Ro3 et le motif formé par des vias) sont résumées dans 

Figure 3, Figure 4 et Figure 5 :  

 

   

(a). Évolution de Roa en fonction de N                                 (b). Évolution de Roa en fonction de Ro1 

Figure 3: Évolution du rapport de résistance thermique du substrat PCB avec des vias thermiques Roa (N), Roa(Ro1) 

  

(a). Évolution de Roa en fonction de N                                (b). Évolution de Roa en fonction de Ro1 

Figure 4: Évolution du rapport de résistance thermique du substrat PCB avec des vias thermiques Roa (Ro2), Roa(Ro3) 

 

Figure 5: Évolution de rapport de résistance thermique du substrat PCB avec des vias thermiques Roa (N) pour deux 

motifs différents 

Les prédéterminations du comportement thermique de cette solution sont réalisées par  

simulation sur un modèle 1D en utilisant le logiciel Matlab Simulink. Les simulations 3D 

sont réalisées avec le logiciel COMSOL Multiphysics.  
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Figure 6: Les différents échantillons avec vias thermiques créés sur un substrat PCB. L’élément chauffant est une 

résistance brasée. les vias thermiques sont placés au-dessous de la résistance. Un thermocouple est soudé sur la semelle 

de la résistance pour mesurer sa température au plus près de l’élément chauffant  

 

Figure 7: Comparaisons des résultats de simulation et des résultats d’expérimentation. Les températures au milieu de 

la surface de PCB sont obtenues par simulation thermique 3D. La température de l’élément chauffant est mesurée par 

thermocouple.    

L’étude conduite a permis de relier la valeur de la résistance thermique du substrat aux 

valeurs des différents paramètres Ro1 , Ro2, Ro3 . De façon qualitative, la résistance thermique 
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diminue lorsque la valeur de ces paramètres augmente. Il est également démontré que le 

motif Pattern_2  donne de meilleurs performances à surface de PCB occupée identique.  

Les résultats des températures obtenues par simulations et expérimentalement sont 

donnés à la Figure 6 et la Figure 7. Un bon accord entre les expérimentations et les 

simulations nous a permis de valider les modèles proposés et ainsi de valider ces modèles 

comme outil de conception de vias thermiques. 

 Refroidissement par des modules de Peltier 

L’agencement du mode de refroidissement par modules thermoélectriques d’un 

assemblage sur PCB est proposé à la Figure 8. Cet agencement permet de drainer le flux de 

chaleur généré par l’élément chauffant en face avant via la couche supérieure de cuivre du 

PCB. Les modules de Peltier jouent le rôle de pompe à chaleur et absorbent le flux de chaleur 

de côté froid Qc (W) pour l’évacuer côté chaud Qh (W).   

 

Figure 8: Agencement du refroidissement d’un assemblage PCB par modules Peltier montés en face avant du PCB 

L’un des avantages de cette solution réside dans le fait qu’elle permet de contrôler la 

température de jonction Tj (K) dynamiquement en fonction de la puissance à dissiper Pheat 

(W). L’ajustement est réalisé par l’intermédiaire du courant électrique parcourant les 

modules Peltier et donc par modulation de la puissance électrique consommée. La puissance 

électrique nécessaire pour réaliser ce pompage d’énergie thermique est un point clé de ce 

mode de refroidissement. Le design de la solution doit être optimisé pour minimiser cette 

puissance.  

En considérant que le flux thermique est 1D dans l’essentiel de la structure, un modèle 

thermique simplifié a été proposé. Ce modèle intègre un modèle analytique des modules 

Peltier [161-166]. Le schéma électrique correspondant à ce modèle est donné ci-dessous : 

 

Figure 9: Modèle électrothermique de la structure de refroidissement proposée. Ta (K) est la température ambiante ; Tj 

(K) représente la température de jonction ; Rhc (K/W) est la résistance thermique correspondant à l’effet de convection 

entre la source de chaleur et la périphérie ; Rjp (K/W) est la résistance thermique latérale entre les modules Peltier et la 

source de chaleur ; Rhs (K/W) est la résistance thermique du radiateur ; Qpc (W) représente des pertes supplémentaires 

dans la structure. Les autres composants (Qc, Sm, 𝜆m et Rm , Qh) sont des paramètres du modèle des modules de Peltier. 

Le modèle 1D proposé permet de prédire les performances thermiques de la structure de 

refroidissement de faire un bilan de puissance au niveau des modules Peltier. Ce modèle 
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léger permet de tester différentes options et d’évaluer le coefficient de performance 

(COP=Qc/Qed) de la structure étudiée.  

Le modèle 1D a été validé par des expérimentations en utilisant le banc d’essai montré à 

la Figure 10 et la Figure 11. La méthode calorimétrique mise en œuvre permet de mesurer 

le flux de chaleur total évacué par l’une des faces des modules Peltier Qh (W). Les modules 

Peltier CP39236 [188], CP30238 [189] et CP 60133 [190] testés dans ce travail expérimental 

sont distribués par CUI Inc.  

 

Figure 10: Schématique de principe du banc d’essai permettant la mesure de flux de chaleur par une méthode 

calorimétrique 

Dans notre travail expérimental, nous sommes assurés que la majorité des pertes de 

puissance générées par l’élément chauffant et par le module Peltier passe par la colonne de 

mesure. La température de l’élément chauffant est mesurée par un thermocouple et Qh est 

obtenue via la mesure de la différence de température entre deux résistances Platine (La 

résistance thermique de la colonne en duralumin est de 0.187 K/W a été calibrée au préalable). 

Différents courants (variant de 0 à 2.5A pour les produits CP39236 et CP30238, de 0 à 4A 

pour le produit CP60133) sont injectés dans les modules Peltier afin d’évaluer les 

performances de refroidissement.     

 

Figure 11: Banc d’essai permettant de mesurer le flux de chaleur par une méthode calorimétrique 
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Tout d’abord, le modèle 1D proposé a été validé par comparaisons des résultats de 

simulation avec les résultats expérimentaux (Voit Figure 12). 

 

Figure 12: Comparaisons des résultats des simulations avec les résultats expérimentations. (a). Évolution de la 

température de jonction Tj (Pin) en utilisant des modules CP39236H ; (b). Évolution du COP des modules Peltier 

CP39236H ; (c). Évolution de la température de jonction Tj (Pin) en utilisant des modules CP30238 ; (d). Évolution du 

COP des modules Peltier CP30238. La température ambiante Ta est de 25 ℃. 

Le modèle 1D est ensuite utilisé pour prédire les performances thermiques de la structure 

d’assemblage proposée. Comme montré dans Figure 13, l’effet de refroidissement des 

modules Peltier est lié à la puissance électrique Pin injectée et à la puissance thermique à 
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drainer. On peut donc montrer qu’il est possible de contrôler la température de jonction de 

l’élément chauffant et mettre en œuvre une stratégie permettant de maintenir la température 

de cet élément à une valeur fixe sur une certaine plage de puissance injectée. Il est également 

possible d’opter pour une stratégie limitant la température maximum et réduisant la 

consommation électriques des modules Peltier lorsque les flux de chaleur à dissiper sont 

faibles.  

 

Figure 13: Résultats prédits à partir du modèle 1D en utilisant les modules Peltier CP39236H. (a). Profil de la 

température de jonction Tj(Pin) ; (b). Profil du COP (Pin). La température ambiante Ta est de 25 ℃. 

L’influence du nombre d’éléments des modules Peltier N a également été étudié comme 

montré dans la figure 14. 

On constate que la puissance thermique soutirée par les modules augmente avec le 

nombre d’éléments. Pour illustrer ceci, la diminution maximale de la température ∆Tjmax (℃) 

obtenue pour différents nombres d’éléments est donnée dans le tableau ci-dessous : 

Tableau 1: La diminution maximale de la température ∆Tjmax (℃)  des trois scénarios de refroidissement  

N Pheat = 4W Pheat = 6W Pheat = 8W Pheat = 10W 

128 15.2 16.1 17.1 18.3 

192 21 22.3 23.9 25.7 

256 23.6 25.1 26.7 28.7 

De plus, le COP est amélioré lorsqu’on augmente le nombre d’éléments des modules 

Peltier pour le même effet de refroidissement. Par exemple, pour une température de 
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l’élément chauffant souhaitée Tj de 55 ℃, les valeurs des coefficients COPs sont indiquées 

dans le tableau ci-dessous : 

Tableau 2: Valeurs des coefficients COPs des trois scénarios pour maintenir Tj à 55 ℃ 

Pheat 

(W) 

COP 

N=128 N=192 N=256 

4 Infinity (Pin=0) Infinity Infinity 

6 5.5 16.21 Infinity 

8 0.26 1.27 3.84 

10 Inability Inability 0.88 

Ce résultat démontre que l’efficacité du système de refroidissement s’accroit lorsque le 

nombre d’éléments Peltier augmente pour une température de l’élément chauffé donnée.   

 

Figure 14: Résultats estimés par le modèle électrothermique pour les structures avec différents N. (a). Profil Tj (Pin) 

pour évacuer 4 W de flux de chaleur ; (b). Profil Tj (Pin) pour évacuer 6 W de flux de chaleur ; (c). Profil Tj (Pin) pour 

évacuer 8 W de flux de chaleur ; (d). Profil Tj (Pin) pour évacuer 10 W de flux de chaleur ; (e). Profil d’efficacité COP (Pin) 

pour évacuer 4 W de flux de chaleur ; (f). Profil d’efficacité COP (Pin) pour évacuer 6 W de flux de chaleur ; (g). Profil 

d’efficacité COP (Pin) pour évacuer 8 W de flux de chaleur ; (h). Profil d’efficacité COP (Pin) pour évacuer 10 W de flux 

de chaleur. La température ambient Ta est de 30 ℃.   
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GENERAL INTRODUCTION 
In last four decades, power electronics technology has gone through dynamic evolution 

due to the “more electric” concept. “Recently, its applications are fast expanding in 

industrial, commercial, residential, transportation, utility, aerospace, and military 

environments primarily due to reduction of cost, size, and improvement of performance” [1]. 

As shown in Fig.1 [2], power converters are constantly trending towards lower cost, higher 

efficiency, and higher power density.  

 

Fig.1. Power density and costs evolution [2] 

In addition, since characteristics of Si devices have reached its natural limitation, Wide 

Band Gap (WBG) components in Gallium Nitride (GaN) or Silicon Carbide (SiC) with lower 

on-state resistance (Ron (Ω)) and higher switching frequency have recently emerged. 

Accompanied with the fast switching speed benefit of WBG devices, inevitably there is 

higher dv/dt and di/dt introduced at the same time, which can hardly be observed in 

comparatively slow Si Metal Oxide Semiconductor Field Effect Transistor (MOSFET). 

Current carrying capability is ultimately a thermal issue. In a power module, the package 

itself generates conduction losses in the metal interconnections, power terminals, wire bonds, 

and solder interfaces. Power semiconductors offer conduction losses as well as switching 

losses resulting from turn-on, turn-off, and diode reverse recovery energies. A well 

optimized system will work to reduce the magnitude of the generated losses as well as to 

provide an effective method for heat removal purpose [3-5].  

Increased power density and advances in Wide Band Gap (WBG) semiconductors require 

improvements in the integration technology, packaging technology as well as thermal 

management solutions to adapt to their high temperature operation advantage. Today, in 

many applications such as aerospace and aircraft, desired reliable operating temperature is 

from -55 ℃ to 250 ℃ [6]. However, available packaging technologies, passives and 

peripheral components, solder materials, reliability considerations and cost presently limit 

the junction temperatures to ~175 ℃ even though the WBG semiconductor devices can, in 

principle, operate at much higher junction temperatures [7-9]. 

In order to mitigate these side effects and thus fully utilize the benefits of these unique 

devices, advanced module packaging and efficient cooling systems are needed. 

“Among the mature technologies used in power electronics domain, usually, the Printed 

Circuit Board (PCB) technology addresses today small and medium power (a few hundreds 

of Watts up to a few kW), and Direct Bonded Copper (DBC) based technology is used for 

medium and high power” [10]. To avoid the use of wire bondings, PCB technology is 

preferred to realize 3D integration of power components by embedding technologies. But 
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PCB substrate in material of FR4 has poor thermal conductivity (<1.5 W/mK), which brings 

us big challenges in thermal dissipation of the total structure.  

Therefore, this research work will be devoted to develop cooling solutions for embedded 

PCB structures. Three different cooling methods have been studied.  

- The first one allows to optimize the classical solution of creating thermal vias in the 

PCB substrates. The main goal here is to develop a referenced criterion of thermal via 

parameters for manufacturing.  

- The second solution is to increase the thickness of copper layer on the top of the PCB 

substrate. This solution could enhance lateral heat spreading effect along the copper 

layer, thus increase the heat dissipation surface.  

- The third one is a recent solution in use of thermoelectric cooling (TEC) devices. 

Compared to DBC structure with the same dielectric strength, this solution is 

dedicated to develop a competitive PCB structure in thermal aspects. 

This thesis is organized as follows in five parts: 

- In the first chapter, a brief overview concerning the development of power electronics 

systems and general context of this work will be presented to introduce basic concepts 

of thermal management needed throughout this thesis. Then, the state-of-art of power 

packaging, thermal measurement of the power systems as well as different thermal 

management solutions will be discussed. In particular, this chapter will be devoted to 

compare various modelling methods based on different softwares in literatures; 

- The second chapter will present all used instrumentations in the process of 

establishing the test bench for temperature and power loss measurement. Schematic 

of the test bench, calibration process of some devices such as Resistance Temperature 

Detector (RTD) sensors, as well as chip soldering process will be introduced; 

- The third chapter covers two cooling methods: the optimization of thermal vias and 

increasing the copper thickness of PCB. Different modeling methods: analytical and 

3D Finite Element (FE) methods have been used to analyze the cooling effect of 

different via parameters including via diameter, number of vias, via pattern, plating 

thickness of copper and pitch distance between two vias etc.; 

- In the fourth chapter, thermoelectric (TEC) cooling devices of Peltier modules based 

on Peltier effect will be described. Influences of different Peltier parameters will be 

discussed to optimize their thermal cooling performances. 

- The last chapter dedicated to the general conclusion gives also some perspectives. 
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CHAPTER 1. STATE OF THE ART 

1.1.  INTRODUCTION 

For completeness and better understanding of the reasons and recent advances in thermal 

management solutions, it is necessary to cover the concerned power converters’ topologies. 

Firstly, different components of power converters and well-established packaging 

technologies for power converters will be briefly introduced and referred to existing 

literatures. Then, principle of different thermal management solutions will be discussed.   

1.2.  POWER CONVERTERS 

Generally, power converters consist of the totality of the equipments between source and 

load. The main objective is to convert currents form (AC, DC), or the voltage magnitude, or 

the frequency range, or a combination of that and also to control electromagnetic energy 

flow between an electric source and load.  

Power converters are a combination of power devices which can be divided into active 

components and passive components. In a power converter, active components are made by 

association of a power transistor and its driver. By association of such elementary power 

switches many conversion functions can be achieved. This structure is a natural interface 

between digital controllers and the world of power conversion and play the role of amplifier 

to boost power. But they are mainly used in power converters to format the voltages and the 

currents by removing some unwanted frequency components. Basic passive components 

include capacitors and inductors. 

1.2.1. Semiconductor Components 

Evolutions of the power converter topologies in order to improve power ratings, 

efficiency, reliability, performance and costs are directly related to the evolution of power 

semiconductor devices, which constitute the heart of power converters. In the last decades, 

Silicon (Si) devices (diodes, Insulated Gate Bipolar Transistors (IGBTs), MOSFETs, etc.) 

dominate the market because of its mature and well-established technology. However, Si 

devices approach theoretical limitations of the Si material. For example, Si-based device 

cannot sustain temperature higher than 200 ℃ as well as very high voltage (Si IGBT are 

limited to 6.6 kV). “Generally speaking, the medium-voltage range is considered in the 

power converter industry from 2.3 kV to 6.6 kV for high power in the range of 1-50 MW” 

[11]. So, Wide Band Gap (WBG) semiconductors like Gallium Nitride (GaN) and Silicon 

Carbide (SiC) have emerged because their intrinsic performances exceed those of Silicon 

[12, 13].  

1.2.1.1. Materials 

Some of the main characteristics for WBG materials that can be compared to those of Si 

are shown in Fig.1-1 [14] and Table 1.1 [13]. These materials have superior electrical 

characteristics compared to Si. These properties lead to improve the power devices 

characteristics in several domains as they allow to lower the conduction and the switching 

losses. It is also possible to operate at a higher maximum junction temperature and, since the 

thermal properties of the WBG semiconductors are better than those of Si, the thermal 

management of the power dissipation can be facilitated.  

These advantages allow to operate at higher frequencies and theoretically to higher 

ambient temperature. The emergence of new power electronics devices based on WBG 

semiconductor materials will result in substantial improvements in the performances of 



CHAPTER 1. STATE OF THE ART 

4 

 

power systems in terms of faster switching speed, higher blocking voltages, higher efficiency, 

and higher reliability as well as higher temperature tolerance. 

 

Fig.1-1. Summary of Si, SiC and GaN relevant material properties [14] 

Table 1.1. Physical characteristics of Si and main wide band gap semiconductors [13] 

 

 

 

 

1.2.1.2. GaN Devices 

GaN devices have a lateral structure because they are based on the high electron mobility 

transistor (HEMT) structure. As we can see in Fig.1-2 [15], a GaN HEMT is built on a silicon 

substrate, with a lateral two-dimensional electron gas (2DEG) channel formed on an 

AlGaN/GaN hetero-epitaxy structure [15, 16]. Like a Si MOSFET, a GaN transistor has 

source, drain and gate terminals, and the key figures of merit are Ron and the breakdown 

voltage.  

Compared to Si devices, GaN devices have three main advantages: 

 Lower Ron: theoretically about three orders of magnitude smaller than 

conventional Si devices because of the high critical electric field which allows to 

minimize the device length and the high concentration 2DEG with high carrier 

mobility [17], thus reducing a major source of static losses and inefficiency when 

at on-state. 

 Faster on/off switching: switching hundreds of volts in nanoseconds, supporting 

the design of supplies that can switch large currents at rates of several megahertz 

(some latest-generation devices can operate in the hundreds of MHz) [15].  

 Smaller die size: this gives us the potential to develop integrated circuits with 

high power density. For example, the eGaN transistor provided by EPC (40 V-33 

A) has a very small die size of 4075 × 1602 × 685 µm [18]. 

There are two types of GaN transistors available on the market:  

 Those operating in depletion mode: such GaN transistors are normally on. To 

turn them off, a negative voltage between the drain and the source electrodes is 

needed. To work around this apparent drawback (for the most popular power 

converters) and have it in a normally off configuration, they are often packaged 

Property Si 6H-SiC 4H-SiC GaN 

Bandgap, Eg (eV) 1.12 3.03 3.26 3.45 

Dielectric constant, ɛr 11.9 9.66 10.1 9 

Electric breakdown field, Ec (kV/cm) 300 2500 2200 2000 

Electron Mobility, µn (cm2/ V.s) 1500 500 1000 1250 

Thermal conductivity, 𝜆 (W/m.K) 150 490 490 130 

Saturate Electron Drift Velocity, vsat (x 107 cm/s) 1 2 2 2.2 
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in a cascode configuration with a low-voltage Si MOSFET that reverses this 

situation [19]. 

 Those operating in enhancement mode: such GaN transistors are normally off 

(for example when the gate drive voltage is set to zero: left image in Fig.1-2) and 

are turned on when a positive voltage exceeding the threshold voltage is applied 

to the gate turned on by positive voltage applied to the gate (center and right 

images in Fig.1-2).  

      

Fig.1-2. Normally-on GaN device built on a silicon substrate (Source: MOUSER ELECTRONICS [15]) 

1.2.1.3. SiC Devices 

Those wide bandgap transistors are different from GaN devices. Indeed, the structure of 

SiC devices is usually vertical like Si power devices. Fast development of SiC technology 

in recent years is bringing solutions to the many barriers that Si devices have encountered. 

Besides the same advantages as GaN devices, authors in [20] have summarized following 

compelling advantages of SiC devices as following: 

 Higher critical electrical field: It’s ~8 times higher than that of Si, thus a SiC 

device is much thinner due to its high dielectric strength and is doped to a much 

higher level, leading to lower losses. 

 Higher thermal conductivity: It’s ~3 times higher than that of Si and heat 

dissipation by the losses can be conducted with a much lower temperature drop 

across the semiconductor material. 

 Higher operating temperature: SiC devices can operate well over 400 ℃ (~150 ℃ 

for standard Si devices) which allows to increase the possible power density and 

enables applications in harsh environments. 

Today, main commercial available SiC power devices are Schottky diodes, MOSFETs 

and Bipolar Junction Transistors (BJTs). Authors or manufacturers in [20-22] have 

characterized these SiC components. Advantages of these components have also been 

reviewed by authors in [20]: 

 SiC Schottky Diode: It’s the first successfully commercialized SiC power device 

and has extended the breakdown voltage of a Schottky diode above 1000 V, which 

had ever been limited below 200 V with Si technology [20]. 

 SiC MOSFET: It’s attractive since it is voltage controlled and normally off. And 

it does not require continuous driving current to maintain the conduction state . 

Today several components from different manufacturers are available on the 

market for 1.2 and 1.7 kV and devices with higher breakdown voltage (until 10 

kV) have been demonstrated. 
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 SiC BJT: It can provide the lowest specific Ron that results in the smallest chip 

size and the smallest parasitic capacitance for a given voltage and current rating, 

allowing higher switching speed than other SiC switching devices. In addition, 

SiC BJT has no oxide layer and can operate at higher temperatures than the SiC 

MOSFET. 

Compared to the best Si IGBTs, SiC devices will improve system efficiency up to 20 % 

and operate at 2-5 times the switching frequencies [2]. 

1.2.2. Multilevel Converters  

The converter topologies can be divided into two main groups: direct and indirect 

converters. Direct converters are topologies without any energy storage elements. Indirect 

converter is made of several stages with an energy storage link between them [23]. Besides,  

according to the nature of the dc link (inductive or capacitive, respectively), converters can 

be divided into Current Source Converters (CSCs) and Voltage Source Converters (VSCs). 

“In addition, VSCs can also be classified into two-level and multilevel converters depending 

on the number of voltage levels generated at the output” [23, 24]. 

Classic multilevel converter topologies (one phase) are shown in Fig.1-3 [11]. They are 

well established topologies namely the Neutral Point Clamped (NPC), the Cascaded H-

Bridge (CHB) and the Flying Capacitor (FC). Operating principles, multilevel waveform 

generation, special characteristics, modulation schemes and more details as advantages and 

disadvantages related to the NPC, FC and CHB can be found in [25-29] and will not be 

covered in this thesis devoted to the present thermal management topics. Generally, 

multilevel converters have their own potential advantages thanks to their lower output 

harmonic distortion and also the lower device voltage rating requirements, which can 

provide a lighter, more efficient and more reliable power converter. 

 

Fig.1-3. (a) Three-level NPC featuring IGCTs; (b) Three-level FC featuring MV-IGBTs; (c) Five-level CHB featuring 

LV-IGBTs [11] 

1.2.2.1. Power Losses Distribution 

Power-supply efficiency is a critical criterion for power converters. The efficiency of the 

chosen power solutions relates to system power losses and thermal performances of 

switching cells and other components. An ideal switch implies zero losses, thus offering 100 % 

efficiency. However, components are not ideal, and the topology of converters plays an 

important role in the power loss distribution as it defines the way the switches are operated 

[30]. For example, for a 2-level three-phase inverter, it is possible to apply eight different 
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switching states [31] and some of them give the same differential voltages on a star-

connected load. 

The losses in a device can be mainly classified as switching losses, conduction losses and 

reverse recovery losses (for diode). 

 Switching Losses 

Switching losses reduce the efficiency of power converters, particularly at low power 

ranges and force the designer to include large cooling devices. Typical switching losses are 

generated during the turn-on and turn-off transitions due to internal device capacitance, 

stored charges for bipolar components and stray inductances: 

 Device Capacitance: It is the internal output capacitance (Coss) that comes in parallel 

with the switch such as IGBT and MOSFET when the switch comes in turning-on 

state. The energy stored by this capacitance in the off-state is vanished during the 

turning-on transition. 

 Stray Inductances: These are inductances that appear effectively in series with the 

switch. The stored energy by these inductances during the on-state is vanished during 

the turn-off transition. 

In fact, each connection in converters is associated with a parasitic resistance, inductance, 

and capacitance. These parasitic elements created by the interconnections are also 

undesirable sources of losses. More details concerning the parasitic elements have been 

described in [2]. Besides, all these switching energies can be added together and multiplied 

by the switching frequency to give the total switching losses. The efficiency of a converter 

decreases with the increase of the switching frequency. 

A switching process of an IGBT with several commutation cycles is shown in Fig.1-4 

[30]. Both turn-on and turn-off processes dissipate energy E, which is calculated by 

integrating the power of p(t). The high reverse-recovery current generates a fast current peak 

during turn-on, while the current peak is lower but longer during turn-off. And this energy 

increases in steps at each commutation cycles (ON and OFF) [30].  

Switching loss is a part of the junction temperature rising in the power semiconductor, 

forcing the use of cooling devices. One possible approach to reduce switching losses is to 

enhance the switching process by improving the gate drive circuit [32]. 

 

Fig.1-4. Switching process of an IGBT with several commutation cycles [30] 

 Conduction Losses 

In contrast to the switching losses during transition period, the conduction losses are the 

product of the current flowing and the on-state voltage over the conducting period. In Pulse 

Width Modulation (PWM) applications, the conduction losses must be multiplied by the 

duty factor to obtain average power dissipation [33]. This means that the conduction losses 
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are dependent on the duty cycle. In addition, the conduction losses are related to the Ron of 

the semiconductor (in case of an unipolar device) and conduction losses can be reduced with 

lower Ron value. 

 Reverse Recovery Losses [33] 

A diode allows current to pass in one direction at conduction state, but blocking current 

in the reverse direction. When turning off the diode, it needs a discharge process to remove 

the stored charges. So there exists a discharge time known as the reverse recovery time. 

During this reverse recovery time, the diode current flows in reverse direction. This 

phenomenon generates an increase of switching losses called recovery losses in the diode. 

1.2.2.2. Heat Dissipation Issues 

All power sources generate heat due to inefficiency, and all components must dissipate 

some heat. Thermal cycling can shorten power components lifetime and decrease the mean 

time to failure, which makes it a long-term reliability consideration of the cooling system.  

There are two main heat dissipations issues in a power system [34]: 

 Local cooling requirement: an individual component (heating source) is 

overheating due to excess self-dissipation capability.  

 Total system cooling requirement: the entire system needs a cooling system design 

to ensure the system reliability to avoid thermal failures caused by thermal cycles. 

Thermal paths of a power system are related to the applied components, packaging 

technologies, as well as the designed cooling devices. Usually a cooling system is designed 

for the total power system, but special local cooling can help us to remove the heat more fast 

from the heating source. 

1.3.  POWER PACKAGING 

1.3.1. Introduction 

Electronic packaging is an important discipline in the field of electronic engineering and 

it contributes to assembly the power components and cooling systems in order to distribute 

signal and power, dissipate the heat power, protect the power systems from mechanical 

damage, and ensure reliable operation environment of the components. Usually, 

requirements for the power electronics packaging for harsh environment operation are 

summarized as follows [35-37]: 

 Thermal: Low thermal resistance from junction to case; high junction temperature 

operation ability; high thermo-mechanical robustness for large temperature 

excursion. 

 Electrical: Small parasitic inductance; symmetric layout; small footprint. 

 Manufacture: Simple fabrication process; precise interconnection of small pads 

on the dies. 

Generally, electronic packaging could be divided into two big categories as 2D packaging 

and 3D packaging. In the following part, discussions will be concentrated to the differences 

between these two packaging technologies, especially in the thermal aspects. 

1.3.2. 2D Packaging with Direct Bonded Circuit (DBC) Technology 

1.3.2.1. Structures 

As shown in Fig.1-5 [10], power electronics interconnection technique realized by wire 

bondings is usually based on the DBC substrate. The DBC substrate has two copper layers 
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separated by an insulated ceramic layer, which is preferred for medium to large power 

packages (from kW to MW). Its role is to provide a plane space dedicated to assembly by 

soldering process the active electronics components in a 2D package. 

 

Fig.1-5. Schematic view of a power module and example of 2D packaging inverter arm [10] 

1.3.2.2. Materials 

Available ceramic materials are listed in Table 1.2 [38]. Thermal performances of power 

systems are related to the material properties of chosen components. For high performance 

requirements, the Aluminum Nitride (AlN) is preferred for its better thermal conductivity 

than traditional alumina (Al2O3). Silicon Nitride (Si3N4) is an interesting material with a high 

flexural strength of 932 MPa. That means, it can be used without any baseplate to reduce the 

total packaging size. The last material of Beryllium oxide (BeO) is usually avoided because 

of its toxicity when its powder is inhaled [10, 38]. Besides, Coefficient of Thermal 

Expansion (CTE) is indicative of the extent to which a material expands upon heating and 

due to CTE mismatch between materials of an assembly, detrimental internal stress or shear 

stress will be generated in some parts of the structure [39]. These differences of thermal 

expansion coefficients between materials of components, solders and substrates are usually 

the reasons of delamination phenomena after certain thermal cycling.   

Table 1.2. Ceramic materials used for DBC substrate [38] 

Ceramic 

Thermal 

Conductivity 

(W/m⸳K) 

CTE 

(ppm/℃) 

Flexural 

Strength 

(MPa) 

Dielectric 

Strength 

(kV/mm) 

Relative 

Cost 

Al2O3 (96%) 24 6.0 317 12 1 

Al2O3 (99%) 33 7.2 345 12 2 

AlN 150 to 180 4.6 360 15 4 

Si3N4 70 3.0 932 12 2.5 

BeO 270 7.0 250 10 5 
 

1.3.2.3. Limiting Points 

2D Packaging with wire-bondings has many drawbacks, namely high stray inductances 

(several nH); non-negligible area; time-consuming to manufacture as all wire bonds have to 

be placed successively [10, 38]. In addition, this 2D packaging structure has limitations in 

thermal dissipation because it does not offer the possibility of double-side cooling due to the 

presence of wire-bondings, which causes such problems as increased interconnect delays, 

power consumption, and temperatures.  

1.3.3. 3D Packaging with Printed Circuit Board (PCB) Technology 

1.3.3.1. Structures 

PCB substrates are primarily used to connect components together for 3D packaging 

technologies with a variety of interconnect possibilities. Usually, this PCB technology 

makes use of flexible or rigid PCB substrates. Besides, PCBs are very favorable for use in 

power conversion products as they make the manufacturing process easier.  
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Flex PCB substrate is usually used to realize interconnections in order to reduce the 

interconnect lengths formed by wire bondings. Hence to reduce the switching losses caused 

by stray inductances.  

In addition, PCB technologies may also be used to realize 3D assemblies. Compared to 

2D packaging, 3D packaging allow to create higher power density converters by using 

vertical interconnections and PCB embedding technology with multiple layers rather than 

spread out over a large surface area. For example, as shown in Fig.1-6, authors in [40] 

proposed a converter integrating passive components into PCB substrates to form an 

“embedded Passive Integrated Circuit” (emPIC). And it is demonstrated that 82% efficiency 

can be achieved of their 3D embedding application. 

3D packaging by PCB substrates indicate the trends of power modules development in 

miniaturization and higher power density. However, one of the biggest challenges in using 

PCB technology lies in thermal problems. Since heat has further travel to reach ambient 

because of the additional integration layers, and insulating materials used during fabrication 

between layers also impedes heat dissipation.  

1.3.3.2. Materials 

Most available PCB substrates are in material of typical epoxy-based Flame Retardant 

(FR-4) for its low cost. However, FR-4 possesses significantly poor thermal conductivity 

(<1.5 W/mK) which contributes to the overall thermal resistance of the PCB structure [41]. 

Besides, the significant increase of thermal resistance and the resulting temperature gradient 

may lead to delaminate the interfacial layer material attached to the PCB. But, the dielectric 

strength of FR-4 PCB substrate is 54 kV/mm, which is more than 4 times higher than that of 

ceramic (from 10 to 15 kV/mm as shown in Table 1.2). In other words, PCB substrates may 

be thinner than DBC substrates for the same insulation rating. However, from a thermal 

point-of-view, this reduction in the thickness of PCB substrates is not sufficient to cover up 

its worse thermal performances than DBC.  

 

Fig.1-6. Thin 60-W offline converter with PCB integrated transformer and capacitors [40] 

1.3.3.3. Limiting Points 

PCB technology is attractive to realize 3D integration structures because of its available 

integration density, flexibility and comparatively low costs. However, higher temperatures 

caused by higher power densities (usually 100 W/cm2 [42]) and greater thermal resistances 

in use of the PCB substrates could decrease system performances and generate reliability 

issues.  

In [10, 18], Yu has compared the thermal performances of different GaN prototypes, GaN 

transistors are mounted on PCB (70 µm) and DBC (635 µm) substrate for the same dielectric 

strength. As shown in Fig.1-7 [10], for a dissipated power of 10 W in GaN chip, DBC 



CHAPTER 1. STATE OF THE ART 

11 

 

structures have much better thermal performances than that of PCB because of its higher 

thermal conductivity with ceramic substrate.  

 

Fig.1-7. Thermal simulation results for different GaN prototypes [10] 

1.3.4. Conclusion 

The pros and cons of 3D packaging technology and of 2D packaging technology have 

been discussed in this section based on the realized structures and used materials, especially 

from a thermal point-of-view. In a word, “power electronics packaging has been saddled 

with five key complaints with the advent of WBG components: packages have too much 

electrical resistance; they have too much stray inductance; they take up too much space and 

they have poor thermal properties” [43]. All these weak points will turn into unexpected 

power losses and finally the problems of heat dissipation. 

In order to take advantages of the benefits of 3D integration and of WBG devices, thermal 

problems of PCB substrates must be firstly overcome and suitable cooling solutions should 

be found.  

1.4.  THERMAL ANALYSIS OF POWER ELECTRONICS SYSTEMS 

1.4.1.  Introduction 

Higher voltage, higher current levels and higher operating frequencies induce higher 

thermal losses in power electronics [44] and the continued miniaturization trend leads to 

growing high power densities. In other words, this induces higher dissipation heat flux 

densities and, subsequently, higher device operating temperatures. Consequently, thermal 

modeling and management of power electronics systems are nowadays one of the most 

important research areas since a vast majority of system malfunctions or failures are due to 

thermal reasons. 

Heat transfer may take place by one or more of three modes: thermal conduction, thermal 

convection, and thermal radiation. 

 Thermal Conduction (Heat Diffusion) 
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Fig.1-8. Bounded spatial thermal region 

In a bounded spatial region Ω for multi-port dynamic thermal networks, the relation 

between the power density P(r,t) and the temperature rise T(r,t) with respect to ambient 

temperature, functions of the position vector r and of the time instant t, is ruled by the heat 

conduction equation [45, 46]: 

 𝛻 ∙ (−𝑘(𝒓)𝛻𝑇(𝒓, 𝑡)) + 𝑐(𝒓)
𝜕𝑇

𝜕𝑡
(𝒓, 𝑡) = 𝑃(𝒓, 𝑡) (1.4-1) 

Where c(r) is the volumetric heat capacity and k(r)is the thermal conductivity Eq (1.4-1) 

is completed by conditions on the boundary of Ω, ∂Ω, and by initial condition for the 

temperature rise u(r,t). The boundary conditions, assumed of Robin’s type, are: 

 −𝑘(𝒓)
𝜕𝑇

𝜕𝑣
(𝒓, 𝑡) = ℎ(𝒓)𝑢(𝒓, 𝑡)   (1.4-2) 

In which h(r) is the heat transfer coefficient and v(r)is the outward unit vector normal to 

∂Ω, Here h(r)is not assumed to be identically zero over ∂Ω, that is pure Neumann’s boundary 

conditions are excluded. The initial condition is assumed to be zero. 

 𝑇(𝒓, 0) =  0             (1.4-3) 

At steady state, heat conduction within a chip can be described by the following 

differential equation: 

 𝑘𝑥
𝜕2𝑇

𝜕𝑥2 + 𝑘𝑦
𝜕2𝑇

𝜕𝑦2 + 𝑘𝑧
𝜕2𝑇

𝜕𝑧2 + 𝑃(𝑥, 𝑦, 𝑧) = 0 (1.4-4) 

Where kx, ky, kz are the thermal conductivities, and P is the heat generated per unit volume. 

Unique solution exists when convective, isothermal, and insulating boundary conditions are 

appropriately applied, and the nature of the packaging and heat sink determines these 

boundary conditions.  

Solutions of Eqs (1.4-1)(1.4-2)(1.4-3) could be expressed as Eq (1.4-5) by the Laplace 

transform [45]: 

 T(s)=Zth(s)P(s) (1.4-5) 

In which Zth(s) is the thermal impedance matrix of the multi-port dynamic thermal 

networks. By analogy with electrical solutions, dynamic thermal networks have canonical 

representations of passive lumped RC (resistor-capacitor) networks [46, 47]. In particular, 

Foster canonical form is equivalent to the time-constant representation and the generalized 

Cauer canonical form is a passive multi-conductor RC transmission line. 
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Fig.1-9. The Foster (top) and Cauer (bottom) canonic forms of thermal networks 

Thermal component models are shown in Fig.1-9, Foster canonic form is represented by 

series connection of multiple elements of parallel resistance Rthj and capacitance Cthj. To 

represent the physical structure of the thermal system, it has been converted into Cauer 

canonic form [44]. And in the Cauer form, one pair of thermal impedance Rthj and Cthj 

represent one element of the thermal stack from chip to ambient. An example of Cauer 

canonic form is shown in Fig.1-10. In this figure, calculation of Cauer form elements are 

done with Matlab for a simple power die assembly and compared to 3D FE simulations [53]. 

 

Fig.1-10. Calculation results for Si structures by Cauer modeling [48] 

Foster and Cauer canonic forms are common representations of thermal networks by 

equivalent RC circuits. They are usually used in dynamic analysis of power systems to 

simulate their thermal behaviors. For example, two abstraction layers that are synthesized as 

PSpice netlists have been designed to represent respectively the electrical and thermal 

behaviors as shown in Fig.1-11. This approach allows reducing a multi-physic electrical-

thermal problem to a single-domain electro-thermal one [54].  
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Fig.1-11. Layered approach adopted for the electro-thermal modeling of integrated power electronics modules [49]  

 Thermal Convection 

 

Fig.1-12. Heat convection 

Physical mechanism of convection is related to the heat conduction through the thin layer 

of fluid adjacent to the heat-transfer surface. When a fluid (air or liquid) is heated and then 

moves away from the heat source, it carries the thermal energy away as shown in Fig.1-12. 

This type of heat transfer is called convection. The fluid above a hot surface expands, 

becomes less dense, and rises. The equation for convection rates is calculated as follows: 

 Qcon =  ℎ𝑐𝐴(𝑇𝑠 −  𝑇𝐴) (1.4-6) 

Where Qcon is the heat transferred per unit time; hc is the convective heat transfer 

coefficient; A is the heat transfer area of the surface; Ts is the temperature of the surface; and 

TA is the temperature of the fluid. 

 Thermal Radiation 
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Fig.1-13. Heat radiation 

“Fourier’s law is applicable for both conduction and convection, although fluid 

mechanics must be brought into play in the convection problem in order to establish the 

temperature gradient. But radiation heat transfer involves a different physical mechanism: 

electromagnetic radiation-propagation of electromagnetic energy” [50].  

“Thermodynamic considerations show that an ideal thermal radiator, or blackbody, will 

emit energy at a rate proportional to the fourth power of the absolute temperature of the 

body and directly proportional to its surface area” [50]. Heat radiation relationship called 

the Stefan-Boltzmann law is described in Eq (1.4-7). 

 Qrad =  εSσ(Ts
4 − TA

4) (1.4-7) 

 Where 𝜀  (0<𝜀<1) is emissivity, S is heat radiation area of the surface, 𝜎  is Stefan-

Boltzmann constant with the value of  5.669×10-8 W/(m2.K4). 

For example, in [51], authors investigate a new thermal technique that controls thermal 

radiation spectrum using 2-D periodic microstructure. It suggests that thermal radiation is 

effective for thermal management of electronic devices in small spaces. 

1.4.2. Thermal Measurement Methods 

Driven by recent advances toward integration, high densities, and high operating 

frequencies in power electronics systems, accurate estimates of junction temperature and 

power losses have become more important for proper thermal management and ensuring 

reliable operation. Because “Power wall” is a critical performance limitation or thermal 

limits of integrated circuit, especially for the PCB substrates with poor power thermal 

conductivity of FR4 material (<1.5 W/m2K) and excessive power dissipation of GaN chip 

will reduce its life time [52]. An overview of temperature and power losses measurement 

methods will be presented in the following part. 

1.4.2.1. Temperature Measurement 

Temperature variations in power components cause a considerable change in power loss 

dissipation. Thermal properties and temperature dependency of semiconductor parameters 

are well-known phenomena. If the temperature exceeds the materials' melting temperature, 

the package would fail or even blast. Moreover, due to the significant mismatch of 

coefficient of thermal expansion (CTE) between the bond wire, die, die attach solder and 

lead frame, the high temperature gradient would induce high thermal strain, and stress, which 

would lead to cracks and delamination, which may also lead to final failure. Therefore, it is 

important to investigate the thermal performance of high power electronic package and thus 

find an effective solution to enhance the thermal dissipation ability, thus improving its 

reliability. Temperature evolution of component could lead to a better control and utilization 

of the component. Temperature measurement methods may be discussed by divided into 

direct and indirect methods. 



CHAPTER 1. STATE OF THE ART 

16 

 

 Direct Methods 

There are mainly three direct methods for temperature measurement: 

1) Infrared camera 

The most common direct method based on Eq (1.4-7) is to measure the surface radiation 

of the component chip and calibrate it with the temperature, i.e. by using the infrared camera. 

Besides, a sophisticated acquisition and exploitation software is coupled with the infrared 

microscope to minimize measurement errors. 

There are several factors which complicate the measurement of surface temperature of 

objects from the intensity of their emitted infrared radiation. As mentioned previously, the 

intensity of emitted radiation is dependent upon the nature of the surface of the emitting 

material. And a perfect radiation emitter is known as a black body. Advantages of using 

infrared camera include that they can have very high spatial resolution, can often measure 

rapid variations in temperature, and are non-contacting. Besides, detailed surface 

temperature distribution is possible without technical difficulties. To collect similar 

information, using arrays of thermocouples or thermistors should be used.  

2) Thermocouple 

Thermocouple is a widely used type of temperature sensor. A thermocouple is consisted 

of two dissimilar electrical conductors that can measure temperatures in a wide range of 

temperatures (-250 ℃ to 2,000 ℃) [53]. In contrast to most other methods of temperature 

measurement, thermocouples are self powered and require no external form of excitation. 

The main limitation is that the measurement errors of less than 1 ℃ can be difficult to 

achieve [54]. 

3) Resistance Temperature Detectors (RTDs) 

RTDs, also called Resistance thermometers, are used to measure temperature. Most RTD 

elements have a length of fine wire wrapped around a ceramic or glass core. The RTD wire 

is usually created by a pure material such as platinum, nickel, or copper. Besides, principle 

of temperature indication is based on the accurate resistance/temperature relationship of the 

used material. Platinum is the best metal for RTDs due to its very linear and stable resistance-

temperature relationship, highly repeatable over a wide temperature range [55]. 

The important feature of the direct method is that it gives the spatial temperature 

distribution of the component chip instead of only the averaged value obtained by the 

indirect method. 

 Indirect Methods (Electrical Methods) 

Because that many electrical properties of semiconductor devices can vary with the 

temperature, principal of the indirect methods is to calibrate the variation of a temperature 

sensitive parameter of the component with temperature variations. These time-dependent 

Temperature-Sensitive Parameters (TSP) are presented as follows [56, 57]: 

1) On-state voltage drop 

2) Off-state leakage (direct or reverse) current 

3) Direct or reverse avalanche voltage 

4) Threshold voltage of their gate controlled devices. 

The first step in using these parameters as a temperature indicator is to calibrate them 

with known temperatures and derive a calibration curve for the specified component. In 



CHAPTER 1. STATE OF THE ART 

17 

 

order to measure small variation of these parameters with temperature, measurement devices 

should be very precise. 

1.4.2.2. Power Loss Measurement 

It is self-evident that we need a quantitative knowledge of power loss in any power 

electronics system. Power loss measurement with high accuracy is important to assess 

system performance and optimize the characteristics of the designed systems [58]. 

Commonly used methods to measure power losses are sophisticated modeling, electrical 

methods and calorimetric methods. Their pros and cons concerning various techniques will 

be discussed in the following part. 

 Sophisticated Modeling 

Thermal component models are parameterized in terms of structural and material 

properties so they can be readily used to develop a library of component models for any 

available power module. 

1) Numerical 3-Dimension (3-D) modeling 

Common numerical methods for thermal analysis are 3-D Finite Element Methods (FEM) 

and 3-D Finite Difference Methods (FDM) by 3D simulations in use of softwares such as 

ANSYS [59], SOLIDES-ise [60], SALOME [61], COMSOL Multiphysics [62], FloTHERM 

[63] etc. There are a lot of research work depending on FEM or FDM simulations to calculate 

the 3D thermal behaviors in power modules as in [64, 65]. 

For example, in [66], a simplified boundary-dependent thermal model for high power 

insulated-bipolar transistor IGBT modules has been developed as presented in Fig.1-14. The 

simulation conditions applied by the authors are heat sources (power losses) and the heatsink 

(cooling system). Thermal distributions are acquired in critical points and the 3D FEM 

simulation results could be used for accurate life-time estimation of the used IGBT module.  

However, 3-D FEM or FDM simulations has limitation due to computation time in 

arbitrary load cycles and computer memory for fine meshes. Moreover, it may also lead to 

divergence in case of very high dynamic operations. 

 

Fig.1-14. Schematic of high power IGBT module modeled in ANSYS Icepak for FEM analysis [66] 

2) Analytical 2-Dimension (2-D) modeling: Electro-thermal analysis 

The most widely used method for thermal behavioral modeling of power modules 

involves curve fitting RC cell networks from data sheet or from 3-D FEM solvers to provide 

thermal transient curves [67]. This kind of electro-thermal model is usually a full analytical 

Fourier series-based model as previously described in part I.4.1 for heat conduction analysis 

with Foster or Cauer canonic forms. Traditional softwares for electro-thermal modeling and 

simulations are Saber [68], PSpice [69], Matlab [70], T3Ster Master Software tool [71], etc. 

 In these cases, additional synthesis step is required from measurement or numerical 3-D 

FEM analysis. For example, the extracted thermal part of the total system is coupled with an 

electronic system part in the circuit simulator Saber as shown in Fig.1-15 [72]. Based on the 
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numerical results, the temperatures at defined positions of the 3-D FEM result are used to 

generate a set of RC components for the thermal network. This thermal network is inserted 

and implemented into the circuit simulator to analyze the electro-thermal behavior of power 

electronics systems, simultaneously. The RC circuits can quickly offer an insight into the 

physical layers of the components and provides useful information in a few minutes for 

arbitrary or periodic power waveforms. 

 

Fig.1-15. Electro-thermal model in Saber [72] 

3) Mathematical calculations: Functions to estimate power losses 

Since the insulated-bipolar transistor (IGBT) is the most widely used power transistor in 

the medium and high-voltage range [73], most models in literature focus only on the IGBT. 

But with little modifications, these models can be made suitable to other devices as well.  

Different loss-calculation models in literatures are summarized in Table 1.3, which have 

been reviewed by authors in [74]. According to these listed literatures, power losses could 

be estimated as functions of one or more of the following parameters: device currents Ic, DC-

link voltages Vdc, junction temperatures Tj, gate-resistance Rg, the gate-voltage Vg, the IGBT 

chip area SI and diode chip area SD etc . The coefficients A-K, A11-D43 are obtained by fitting 

calculated curves to measured values of Vce or P function of Ic. So, these models need step-

by-step procedure to experimentally determine the model coefficients. Usually these 

equation models are used to simulate the losses for automotive inverter applications and give 

about 15% error over a wide operating range for standard models making it unsuitable for 

efficiency calculations [74]. More accurate models need to be developed in the next future. 
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Table 1.3. Different loss-calculation models concerning IGBT devices in literatures [74] 

Literatures Voltage: Vce (V) Losses: P (W) 

1989 [75] 
𝑉𝑐𝑒 =  𝑉𝑐𝑒0 + 𝑅𝑐 ∙ 𝐼𝑐  𝑃 = 𝑃𝑛𝑜𝑚

𝐼𝑐

𝐼𝑐𝑛𝑜𝑚

𝑉𝑑𝑐

𝑉𝑑𝑐𝑛𝑜𝑚
 1991 [76] 

1994 [77] 

1995 [78] 𝑉𝑐𝑒 =  𝑉𝑐𝑒0 + 𝑅𝑐 ∙ 𝐼𝑐
𝐾  

𝑃 = 𝑃𝑛𝑜𝑚 (
𝐼𝑐

𝐼𝑐𝑛𝑜𝑚
)

𝐴

 

1996 [79] 
𝑉𝑐𝑒 = (𝑉𝑐𝑒0 + 𝐴 ∙ 𝑇𝑗) 

+(𝑅𝑐 + 𝐵 ∙ 𝑇𝑗) ∙ 𝐼𝑐
𝐾 

𝑃 = 𝑃𝑛𝑜𝑚 (
𝐼𝑐

𝐼𝑐𝑛𝑜𝑚
)

𝐴

(
𝑉𝑑𝑐

𝑉𝑑𝑐𝑛𝑜𝑚
)

𝐵

(
𝑇𝑗

𝑇𝑗𝑛𝑜𝑚
)

𝐶

 

2004 [80] 

𝑉𝑐𝑒 = 𝑉𝑐𝑒0 + 𝑅𝑐 ∙ 𝐼𝑐 

𝑃 = 𝑃𝑛𝑜𝑚

𝐼𝑐

𝐼𝑐𝑛𝑜𝑚

𝑉𝑑𝑐

𝑉𝑑𝑐𝑛𝑜𝑚
 

2005 [81] 𝑃 = 𝑃𝑛𝑜𝑚(𝐴 ∙ 𝐼𝑐
2 + 𝐵 ∙ 𝐼𝑐 + 𝐶)

𝑉𝑑𝑐

𝑉𝑑𝑐𝑛𝑜𝑚
 

2013 [82] 𝑃 = 𝑃𝑛𝑜𝑚

𝐼𝑐

𝐼𝑐𝑛𝑜𝑚
(

𝑉𝑑𝑐

𝑉𝑑𝑐𝑛𝑜𝑚
)

𝐾

 

Infineon [74] 
𝑉𝑐𝑒 = (𝑉𝑐𝑒0 + 𝐴 ∙ 𝑇𝑗 + 𝐵) 

+(𝑅𝑐 + 𝐶 ∙ 𝑇𝑗 + 𝐷) ∙ 𝐼𝑐 
𝑃 = 𝑃𝑛𝑜𝑚(

𝐼𝑐

𝐼𝑐𝑛𝑜𝑚

𝑉𝑑𝑐

𝑉𝑑𝑐𝑛𝑜𝑚
) ∙ (𝐸 ∙ 𝑇𝑗 + 𝐹)

𝐺
 

ABB [83] 𝑉𝑐𝑒 = 𝑉𝑐𝑒0 + 𝑅𝑐 ∙ 𝐼𝑐 𝑃 = 𝑃𝑛𝑜𝑚(𝐴 ∙ 𝐼𝑐
2 + 𝐵 ∙ 𝐼𝑐 + 𝐶)

𝑉𝑑𝑐

𝑉𝑑𝑐𝑛𝑜𝑚
∙ (𝐷 ∙ 𝑇𝑗 + 𝐹)

𝐺
 

Semikron [84] 
𝑉𝑐𝑒 = (𝑉𝑐𝑒0 + 𝐴 ∙ 𝑇𝑗 + 𝐵) + 

(𝑅𝑐 + 𝐶 ∙ 𝑇𝑗 + 𝐷) ∙ 𝐼𝑐 
𝑃 = 𝑃𝑛𝑜𝑚 (

𝐼𝑐

𝐼𝑐𝑛𝑜𝑚
)

𝐴

(
𝑉𝑑𝑐

𝑉𝑑𝑐𝑛𝑜𝑚
)

𝐵

(𝐶 ∙ 𝑇𝑗 + 𝐷)
𝐾

 

2016 [74] 𝑉𝑐𝑒 = 𝑉𝑐𝑒0 + 𝑅𝑐 ∙ 𝐼𝑐 
𝑃 = (𝐴11 ∙ 𝐼𝑐

2 + 𝐴12 ∙ 𝐼𝑐 + 𝐴13)(𝐵21 ∙ 𝑇𝑗
2 + 𝐵22 ∙ 𝑇𝑗 

+𝐵23)(𝐶31 ∙ 𝑉𝑑𝑐
2 + 𝐶32 ∙ 𝑉𝑑𝑐 + 𝐶33)(𝐷41 ∙ 𝑆𝐷

2 + 𝐷42 ∙ 𝑆𝐷 + 𝐷43) 

 

Generally, sophisticated numerical modeling methods are often available and efficient to 

predict power losses, but validity of the models need to be verified experimentally. 

 Electrical Methods 

This method is applicable to steady state as well as transient conditions. It is common to 

determine power losses through conventional input-output procedure by taking the 

difference between the measured input and output power in use of electronic equipments: 

voltmeters for voltage measurements and ammeters for current measurements, or a 

combined measurement using a wattmeter , especially in DC and low frequency AC circuits 

[58]. For example, a test platform for the electrical input-output based method described as 

Fig.1-16 [85] is built. The inverter is connected to a 3-phase inductive load. The power 

analyzer measures the input DC power Pin and the output AC power Pout, and the difference 

is equal to the power loss Ploss, from the basic definition Ploss = Pin – Pout. 

However for high frequency systems, conventional meters are no longer suitable because 

of their limited bandwidth and dynamic frequency response [86]. So, the second common 

electrical method to estimate losses digitally is based on the high frequency sampling of 

voltage and current waveforms. For periodical power signals with a period of T, the 

instantaneous average power Pa can be calculated by Eq (1.4-8) [58]: 

 𝑃𝑎 =  
1

𝑇
∫ 𝑣(𝑡) ∙ 𝑖(𝑡)𝑑𝑡

𝑇

0
 (1.4-8) 

Where voltage 𝑣(𝑡) and current 𝑖(𝑡) waveforms are simultaneously sample at a sampling 

rate fs =1/Ts, and converted to digital values. If 𝑣(𝑡𝑖) and 𝑖(𝑡𝑖) are the instantaneous samples 



CHAPTER 1. STATE OF THE ART 

20 

 

of the voltage and current at time ti =i∙T/N, then the average power Pa can be approximated 

by Eq (1.4-9)[58]: 

 𝑃𝑎 =  
1

𝑁
∑ 𝑣(𝑡𝑖) ∙𝑁−1

𝑛=0  𝑖(𝑡𝑖) (1.4-9) 

Power losses in power switching devices are mainly the combination of the conducting 

and switching losses. As mentioned previously, conducting losses are the dissipation that 

occurs while the semiconductor is in the on-state and conducting current. Switching losses 

are the power dissipation during turn-on (Eon)and turn-off (Eoff) switching transitions. The 

conduction losses are computed by multiplying the on-state saturation voltage by the on-

state current. In case of high-frequency switching(>100 kHz) systems, switching losses are 

unneglectable [87] and the switching energy losses have to be calculated by integrating the 

instantaneous dissipated power.  

 

Fig.1-16. Schematic for measurement of power losses with the electrical method [85] 

The well-known double pulse test (DPT) method allows to determine switching losses at 

different junction temperature by controlling case temperature of the device under test 

(DUT). It could limit self heating effects by the use a “double pulse” [88] that produces very 

short test pulses (<8 µs) and does not heat up the DUT. As shown in Fig.1-17, the turn-off 

waveform can be recorded after the first pulse. And the turn-on waveform can also be 

recorded until the transistor is turned on again [87]. 

 

Fig.1-17. Double pulse waveform [87] 
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An example of DPT result is shown in Fig.1-18 [89]. Switching loss equals to the addition 

of turn-on energy Eon and turn-off energy Eoff. The total dissipated power is obtained by 

adding conducting losses and switching losses. 

 

 

Fig.1-18. SiC MOSFET switch on and switch off transient [89] 

However, the accuracy of digital measurement is affected by the delays introduced 

between probes, phase shifts between sampling channels of digitizer, sampling errors and 

non-linearity of A/D converter. Firstly, different propagation delays due to the different 

construction of voltage and current probes are noticeable for MHz signals [90]. Secondly, 

the bandwidth and rise time of oscilloscope/probe system also affects measurement accuracy 

[91]. Moreover, the radio frequency interferences (RFI) and electromagnetic interferences 

(EMI) emanating from the high di/dt and dv/dt are prevailed in hard switching power 

converters [58]. A common solution to this problem is to add a sine output filter, which 

produces additional measurement errors. When dv/dt is very high, no instrument can today 

accurately record the waveforms of the hard-switched output voltage [92]. Despite accuracy 

comprise, electrical method is still a preferred method for measuring losses in power 

electronics because of its simplicity. 

By the way, in order to further increase power densities within multichip power modules 

containing single-phase and three-phase inverter bridges, soft switching techniques are 

required along with dense packaging. Technique such as turning on a device under zero 

voltage switching (ZVS) allows the reduction or elimination of switching loss. 

 Calorimetric Methods 

Calorimetric methods allow to measure with high accuracy the power losses under normal 

operating conditions and this method is independent of voltage and current waveforms of 

the device under test (DUT). This method based on direct loss measurement is applicable to 

steady state conditions. Since the power losses are dissipated as heat, the effect caused by 
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the heat could be measured to determine the losses [85]. It has been widely used in power 

electronics to measure power losses of magnetic components [93-97], capacitors [98], 

switching semiconductors [99], power converters [100] and electrical machines [101-106].  

Adiabatic walls are needed for an ideal calorimetric measurement system to ensure that 

the total power loss from the DUT can be detected by the increase of temperature inside the 

measurement chamber [107]. “Power dissipation Ploss of the DUT is then determined as a 

function of the temperature rise ∆T between the inlet (Tin) and the outlet (Tout) fluid medium 

temperature, the mass density 𝜌 and the flow rate �̇� of the coolant as described in Eq (1.4-

10): 

 𝑃𝑙𝑜𝑠𝑠 = 𝑐𝑝 ∙ 𝜌 ∙ �̇� ∙ ∆𝑇 (1.4-10) 

where 𝑐𝑝 is the specific heat capacity of the fluid” [108]. 

There are mainly three basic calorimeters as following [85, 108, 109]: 

1) Open-type calorimeter  

2) Closed-type calorimeter: single-cased and double-cased  

3) Calorimeter based on heat flux sensor  

The common used fluid is surrounding air or water, for ‘open’ calorimeter or ‘closed’ 

calorimeter, which are sorted by authors in [108] as shown in Fig.1-19. The difference is that 

the open type exchanges heat directly with the surrounding air, whereas a heat exchanger is 

employed for the closed type. Water is usually chosen as coolant for the closed system. Heat 

leakage through the walls Pwall is the major error source of all calorimeter types. The closed-

type calorimeter has proved to be far more accurate than the open one [107]. For example, 

the double-cased closed type calorimeter can improve the measurement accuracy of the 

calorimeter system by minimizing Pwall through an active control of the air temperature in 

the Tgap. 

Comparisons between their accuracies shown in Fig.1-20 are summarized by authors in 

[108]. They indicated that “the open type calorimeters are used for high power 

measurements of several hundred watts, the closed type calorimeters are used for lower 

power measurements”. For example, power calorimeters have an accuracy better than 0.4 W 

with a measurement range lower than 50 W [110, 111]; In [112], authors designed a 

calorimeter which is capable of measuring power losses of several mW with an accuracy of 

± 1.3 mW at losses of 24 mW. According to [113], the combined (calorimeter and dc power 

measurement) standard uncertainties for the calorimeter is about ± 0.7 % with a confidence 

level of 95 % for power between 2 and 7 kW. Other calorimeters with high accuracy have 

been contributed by authors in [105, 114, 115] for power losses of 500 W. 

For example, the dielectric fluid FC-40 coolant is chosen by authors in [96] for the closed 

cooling system as presented in Fig.1-21. A delta-T thermocouple pile is used in this system 

for measuring the temperature difference, and a flowmeter is used for measuring the liquid-

flow rate. It’s important to maintain a constant flow rate through the chamber, to minimize 

the heat leakage through the walls of the chamber, and to control the temperature of the FC-

40 fluid in the reservoir [96]. 
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Fig.1-19. Schematic open, single-cased closed and double cased closed type [108] 

 

Fig.1-20. Overview of different implemented calorimeters and their reached accuracy [108] 

 

Fig.1-21. Block diagram of calorimeter [96] 
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The “dry” calorimeter based on heat flux sensors is an effective and simple construction. 

Fewer accessories are required as compared to the other calorimeters, and the testing time 

can be reduced because of small time constants. As shown in Fig.1-22 [116], a schematic of 

proposed apparatus with aluminum pedestal has been designed. Heat passing through the 

sensors Ploss will generate temperature difference ∆T between them, which could be 

measured by these two sensors. The temperature difference ∆T is proportional to the heat 

flux through the sensor and is converted to a resistance difference signal. A-class PT100 

temperature sensors (Platinum resistance thermometer) with four-wire compensation circuits 

are applied to measure the temperatures.  According to Eq (1.4-11), power losses may be 

calculated. 

 𝑃𝑙𝑜𝑠𝑠 =
∆𝑇

𝑅𝑡ℎ
, 𝑅𝑡ℎ =

𝑒

𝜆𝑡ℎ∙𝑆
 (1.4-11) 

Where 𝑅𝑡ℎ corresponds to the thermal resistance of the aluminum column between two 

sensors; e corresponds to the length between the two positions of the sensors; 𝜆th is the 

thermal conductivity of the aluminum material; S corresponds to the cross-section of the 

aluminum pedestal. 

 

Fig.1-22. Schematic of calorimetric method with heat-flux sensors PT100 [116] 

In summary, the open-type calorimeter uses air as a coolant to avoid the risk of leaking 

fluids. In other words, its cooling system is natural and simple. However, the air properties 

as density and specific heat are easily affected by ambient temperature, pressure and 

humidity. Air as coolant is also more prone to uneven temperature distributions inside the 

chamber. These problems are addressed in [104].  

The closed-type calorimeter may be used for a direct calorimetric measurement or a 

balance test with better accuracy than that of the open-type calorimeters. Since the density 

and specific heat of coolants as water or another fluid are much higher and less environment 

dependent than those of air. But the need for a liquid coolant and a heat exchanger make this 

system complex and expensive. The calorimetric method based on heat-flux sensor is easier 

to implement and operate without liquid bath or liquid flow system, and the thermal time 

constants are significantly shorter [93]. 

A calorimeter combining the advantages of double-jacked closed-type calorimeter and 

calorimeter based on heat flux sensor is presented in Fig.1-23 [111]. The DUT is placed 
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inside the internal enclosure of the double-jacked calorimeter. The temperature difference 

between two polished covers is controlled to minimize the heat escaping through the two 

covers. A heat flux sensor placed under the conductive pedestal measures the total heat 

generated in the DUT. A pair of thermoelectric (TE) modules are introduced and used to 

keep the plate II at constant temperature. The heat generated in the DUT flows down through 

a heat flux sensor. The heater, the TE modules, and the heat flux sensor together replace the 

liquid cooling system necessary in other types of calorimeter. This proposed calorimeter is 

easy to setup and operate, and less than 5 % error in 50 W loss measurements can be achieved 

[111]. 

 

Fig.1-23. Schematic of proposed apparatus.1: DUT; 2: Inner Al cover; 3: Outer Al cover; 4: Al base plate I; 5: Al 

base plate II; 6: Heat sink; 7: Heater; 8: Thermocouple; 9: Fins; 10: Insulated material; 11: Heat flux sensor; 12: TE 

module.[111] 

Thermal analysis can be regarded as a fundamental step to design the power conversion 

systems. Along with the thermal analysis, thermal management of power electronics systems 

and cooling solutions are the next requirement. 

1.4.3. Thermal Management Solutions 

As mentioned previously, with the increase of power densities and harsh operating 

environments, thermal management becomes more and more a central issue in power 

electronics. For example, “the heat flux of power electronic device for hybrid electric 

vehicles is currently at the level of 100-200 W/cm2 and is projected to increase up to 500 

W/cm2 in next generation vehicles” [117]. This kind of high heat fluxes will bring us higher 

but less uniform junction temperature of the chip, which is a critical issue of degrading the 

performance and reliability of power systems. 

So as shown in Fig.1-24 [118], the objective of thermal management is to control the 

junction temperature of power components to avoid thermal fatigue, short lifetime and 

irreversible destruction. The main efforts have to be focused on minimizing overall thermal 

resistance of the power electronics systems. Most cooling technologies rely on heat 

spreading and convection.  
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Here in this part, conventional concepts as air cooling, liquid cooling, as well as cooling 

by thermal vias are reviewed and recent concepts as thermoelectric cooling and hybrid 

cooling by Peltier modules are described. Their advantages and disadvantages will be given 

and compared.   

 

Fig.1-24. Thermal management - a continuous process during system engineering [118] 

1.4.3.1. Air Cooling 

Systems with air cooled heat sinks dissipate heat directly into the air that flows through 

the system either by natural or forced convection. They are commonly made of well-known 

standard materials like Aluminum and Copper and are made of several fins placed on a base 

plate.  

“Heat sink thermal resistance can be expressed through the following equation 

commonly used in heat exchanger design literature” [119, 120]. 

 
𝑅𝑠𝑎 =

1

�̇�𝑐𝑝(1−𝑒
−

ℎ𝐴
�̇�𝑐𝑝)

 (1.4-12) 

where 𝑅𝑠𝑎is the heat sink to air thermal resistance (W/mK), �̇� is the mass flow rate (m3/s) 

of fluid through the heat sink (e.g. forced convection rather than natural convection), 𝑐𝑝 is 

the heat capacity (J/kg) of the fluid, ℎ is the heat transfer coefficient (W/m2K) on the heat 

sink surface and 𝐴 is the effective heat transfer area (m2).  

According to Eq (1.4-12), heat sink thermal resistance can be reduced by increasing the 

mass flow rate �̇� (e.g. forced convection rather than natural convection), the heat capacity 

𝑐𝑝 (e.g. a liquid versus a gas), the heat transfer coefficient ℎ (e.g. using smaller channel 

dimensions like micro-channels) and the effective heat transfer area 𝐴 (e.g. using closely 

spaced fins) [120]. 

As shown in Fig.1-25 [120-122], authors have compared thermal performances of 

different heat sinks. It is demonstrated that a copper base would enable an ~40 % reduction 

in the spreading resistance and an ~60 % reduction in the spreading resistance could be 

achieved by using heat sink with heat pipes. They can significantly improve heat spreading 

in air cooled heat sinks. 
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(a). Aluminum press-fin forced air cooled heat sink        (b). Air cooled heat sink with copper base                 

       

(c). Air cooled heat sink with embedded heat pipes   (d). Air cooled heat sink using loop thermosiphon 

 

(e). Advanced heat sink with increasing fin density along air flow direction 

Fig.1-25. Different air cooling systems design with heat sinks [120] 

However, standard modules with air cooled aluminum heat sinks are not suitable for 

moving platforms, they are too heavy and voluminous for automotive uses. 

1.4.3.2. Liquid Cooling 

Compared to air cooling with heat sinks, liquid cooling enables greater levels of 

integration and major reductions in the volume and weight. In liquid cooling systems, heat 

is transferred to a liquid which then flows to a remote heat exchanger and dissipate the heat 

to air or to another liquid in a secondary cooling system. As we can see in Fig.1-26 [123], 

existing and emerging liquid cooling solutions were extensively reviewed by the authors 

including: 

1) Tube type and fin type Liquid Cold Plates (LCPs) 

2) Single and double sided cooling using liquid jet impingement (SCJ and DCJ) 

3) Micro-channel LCPs. 
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                      (a). Tube type LCP                                                                   (b). Fin type LCP 

 

        (c). Single Jet impingement (SCJ)                                 (d). Double side cooling with liquid jet impingement (DCJ)    

 

(e). Micro-channel LCP  

Fig.1-26. Different liquid cooling solutions [123] 

Thermal resistance of cold plates depends on materials as copper or aluminum and 

internal structures [123-125]. According to the data extracted from [125] for commercial 

available cold plates, as shown in Fig.1-27 [123], it is obvious that the minimum values can 

be achieved by using micro-channeled copper based cold plates, usually offered by 

companies as Lytron, Mikros and Curamik. 

 

Fig.1-27. Thermal resistance of commercial available cold plates as a function of water flow [125] 
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For example, authors in [126] used double-sided cooling with micro-channels and direct 

surface contact with the IGBT die to achieve 312 W/cm2 per side and 624 W/cm2 at the base. 

The junction-to-case thermal resistance was reduced from 0.312 K/W to 0.087 K/W. 

The DCJ have unique thin profile to the design which makes it an ideal choice for the 

embedded thermal management material for power electronics. Benefits of DCJ reduced 

volume requirement, reduced power requirement and increased life. Due to the design 

features of DCJ it proves to be the right choice for lower power electronics cooling in 

automotive, portable electronics etc. [127]. Besides, liquid cooling technology has better 

cooling performances than conventional fans for heat sink cooling. 

1.4.3.3. Solid Cooling 

Conventional assemblies used in industrial applications based on standard modules with 

air cooled aluminum heat sinks are too heavy and voluminous, especially for automotive 

uses. Besides, the heat conduction capability of the cooling system or the thermal path of the 

structure is always the dominant factor of its thermal performances. So many efforts such as 

developing new semiconductor materials with higher thermal conductivities or improving 

packaging technologies, have been contributed in order to reduce the thermal resistances of 

the total structure with less additional components.  

Recently, besides traditional solid-technologies of thermal vias, advanced thermoelectric 

solid-state cooling technology, based on polycrystalline miniaturized TE cooler [128], 

nanostructured superlattice TEC [129], mini-contact enhancement technology [130], and 

silicon and germanium substrate self-cooling [131] have received great attention and 

considerable progress has been made at the research level for high flux thermal management 

for microprocessors and electro-optic components. These solid-state techniques have 

compact structure, offer high reliability, can be locally applied, provide high cooling flux, 

and can be integrated with IC processing. 

 Thermal Vias 

A thermal via is a plated through hole (PTH) plated with copper and is used to transfer 

the heat from one side of the PCB to the other side. PTH is a promising way of mitigating 

thermal issues by lowering the effective-thermal resistance of the structure. With thermal 

vias, the PCB acts as a pathway for the heat energy to reach the main heatsink, rather than 

serving as the heatsink itself. For example, main heat transfer path for a 2 layer PCB with 

thermal vias is shown in the Fig.1-28 [132]. 

 

Fig.1-28. Section view of main heat transfer path for a 2 layer PCB with thermal vias [132]  

Besides, Lee et al. studied arrangements of thermal vias in the packaging of multichip 

modules and found that as the size of thermal-via islands increased, more heat removal was 

achieved but less space was available for routing [133]. Relationships between via design 

parameters and the thermal resistance of thermal-via clusters have been presented in [134]. 

For these relationships, one-dimension theory for via-cluster was assumed to neglect the 

lateral effect of heat paths on the PCB copper surface between vias as the heat transfer is 

much more efficient vertically through the thickness than laterally from heat spreading.  

Although these papers have limited application for the placement of thermal vias, the 

basic use and properties of thermal vias are demonstrated. But it is important to realize that 
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there is a tradeoff between routing and space and heat removal path, indicating that thermal 

vias should be used sparingly.  

In addition, a significant temperature difference between the two sides of the vias limits 

the number of thermal cycles before the mechanical stress causes vias to start failing. In 

order to reduce the temperature rise on the PCB, the thermal resistance of the PCB to the 

heatsink should be designed to be as low as possible. This value is highly dependent on the 

thermal via pattern design of PCB. Thus, there is a need to properly design the thermal via 

pattern for high power application. Thermal via pattern optimization will be realized in the 

Chapter III. 

 Thermoelectric Cooling (TEC) Devices 

The application of thermoelectric modules to cool electronics systems has been firstly 

discussed in 1965 by Kraus [135] in the book devoted to cooling electronic equipment. TEC 

is a thermal instrument used to transfer heat based on Peltier effect. The device transfers heat 

when there is a DC power applied, and as an application, it is widely used in different fields 

of science and technology, such as computer chips and CPU cooler [136], laser diode 

temperature stabilization [137], small refrigerator [138], semiconductor chip manufacturing 

[131], as well as the temperature management for Polymerase Chain Reaction (PCR) in 

biomedical and genetic field [139, 140]. Typically, the cold side of the TEC device is in 

contact with the chip to maintain the chip temperature below its designed temperature with 

natural or forced convection at the hot side of the TEC. The TEC module transports the heat 

from the chip to the ambient [141]. 

Although the principle of thermoelectricity dates back to the discovery of the Peltier 

effect in 1834, there was little practical application of the phenomenon until the middle 

1950s because of the poor thermoelectric properties of known materials which made them 

unsuitable for use in a practical refrigerating device [142]. Refrigeration capacity of a 

semiconductor material is dependent on a combined effect of the material’s Seebeck voltage, 

electrical resistivity, and thermal conductivity between the cold and hot side over the 

operational temperature range. Therefore, various TE materials are compared by an 

efficiency basis which is expressed in terms of a dimensionless figure of merit ZT [143, 144] 

as calculated by Eq (1.4-18). 

𝑍𝑇 =  
𝑆𝑒

2

𝜌∙𝜆𝑡ℎ
                        (1.4-13) 

This figure of merit represents the relationship between thermal conductivity 𝜆th 

(W/(m ∙ K)), electrical resistivity 𝜌  (Ω ∙ m), and Seebeck coefficient Se (V/K) of the 

thermoelectric material. The operating temperature is the most significant factor when 

choosing a TE material as shown in Fig.1-29 [145]. A larger ZT leads directly to a higher 

conversion efficiency. Maximizing ZT is the major objective in the selection and 

optimization of thermoelectric materials [143]. Today, bismuth telluride is commonly used 

as commercial TEC pellet material for refrigeration in the temperature range of -120 ℃ to 

230 ℃. 

A typical TEC device consists of multiple n-type and p-type elements soldered 

electrically in series but thermally in parallel between two dielectric plates. Thermoelectric 

refrigeration is achieved when a direct current flows through one or more pairs of n- and p-

type semiconductor materials as shown in Fig.1-30. 
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Fig.1-29. Curves of ZT versus temperature for different materials [145] 

 

Fig.1-30. Schematic of thermoelectric module operation in cooling mode 

In fact, five energy-conversion processes take place in a thermoelectric module: 

Conductive heat transfer, Joule heating, Peltier cooling/heating, Seebeck power generation 

and the Thompson phenomenon [146, 147]. All these processes account for the interrelations 

between thermal and electrical energies.  

Thermal energy may be reversibly converted to electrical energy and vice versa in 

electrically conducting materials by thermoelectric effects. The Seebeck effect is a bulk 

effect that generates an electric potential gradient in a conductor subjected to a temperature 

gradient under open circuit conditions. It arises because thermal diffusion causes a flow of 

charge carriers (electrons or holes) along or against temperature gradients in conducting 

materials thereby generating an electric potential gradient dV. In an open circuit at 

equilibrium, the flow of charge carriers due to electrostatic forces balances that due to 

thermal diffusion. The Seebeck effect is described by 𝑑𝑉 = 𝑆𝑒𝑑𝑇. Thus heat is evolved or 

absorbed when current I flows through the interface between two conductors. This is known 

as the Peltier effect: the rate of reversible heat absorption at the interface (Q) equals 2 ∙ 𝐼 ∙
𝑆𝑒 ∙ 𝑇. And the Thomson effect is usually a secondary effect that heat is also liberated or 

absorbed due to it when current flows through a conducting material in the presence of a 

temperature gradient. The irreversible effects of Joule heating and heat conduction leak must 

also be considered in the analysis of thermoelectricity [148-151]. 

The net rate of heat conducted out of a differential control volume normal to the y-

direction defined in Fig.1-30 equals the rate of ohmic heat generation inside it [152]. Hence 

the form of the heat equation governing conduction inside the pellets is: 

𝑑2𝑇

𝑑𝑦2  +  
𝐼2𝜌

𝜆𝑡ℎ𝐴𝑒
2 = 0    (1.4-14) 
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The boundary conditions on the heat equation at the two sides (cold and hot side) are T 

= Tc at y = 0 and T = Th at y = Le, respectively. Thus, the temperature distribution T in the 

pellets is: 

𝑇 = −
𝐼2𝜌

2𝜆𝑡ℎ𝐴𝑒
2 𝑦2 + (

𝐼2𝜌𝐿𝑒

2𝜆𝑡ℎ𝐴𝑒
2 +

𝑇ℎ−𝑇𝑐

𝐿𝑒
) 𝑦 + 𝑇𝑐   (1.4-15) 

Physically, the rate of heat transfer from the cold side qc (for N = 1) equals the rate of 

energy absorbed by the Peltier effect Q plus the rate of heat transfer by conduction into the 

pellets (-2𝜆𝑡ℎ ∙ 𝐴𝑒 ∙ 𝑑𝑇|𝑦=0 𝑜𝑟 𝐿𝑒
). Hence, for N=1: 

qc = 2 ∙ 𝐼 ∙ 𝑆𝑒 ∙ 𝑇𝑐 − 2 ∙ 𝜆𝑡ℎ ∙ 𝐴𝑒 ∙
𝑑𝑇

𝑑𝑦
|𝑦=0 = 2 ∙ 𝑆𝑒 ∙ 𝐼 ∙ 𝑇𝑐 −  

𝐼2𝜌

𝐺
− 2 ∙ 𝜆𝑡ℎ ∙ 𝐺 ∙ ∆𝑇   (1.4-16) 

qh = 2 ∙ 𝐼 ∙ 𝑆𝑒 ∙ 𝑇𝑐 − 2 ∙ 𝜆𝑡ℎ ∙ 𝐴𝑒 ∙
𝑑𝑇

𝑑𝑦
|𝑦=𝐿𝑒

= 2 ∙ 𝑆𝑒 ∙ 𝐼 ∙ 𝑇𝑐 +  
𝐼2𝜌

𝐺
− 2 ∙ 𝜆𝑡ℎ ∙ 𝐺 ∙ ∆𝑇 (1.4-17) 

Therefore, one-dimensional thermal balance equations of the TECs are summarized as 

Eq (1.4-18) to  (1.4-22)(1.4-19). 

𝑄𝑐 = 2𝑁(𝑆𝑒 ∙ 𝐼 ∙ 𝑇𝑐 − 
𝐼2𝜌

2𝐺
− 𝜆𝑡ℎ ∙ 𝐺 ∙ ∆𝑇)                                    (1.4-18) 

 

 

𝑄𝑒𝑑 = 2𝑁(𝑆𝑒 ∙ 𝐼 ∙ ∆𝑇 + 
𝐼2𝜌

𝐺
)                                            (1.4-19) 

 

𝑄ℎ = 𝑄𝑐  + 𝑄𝑒𝑑 = 2𝑁(𝑆𝑒 ∙ 𝐼 ∙ 𝑇ℎ  +  
𝐼2𝜌

2𝐺
 −  𝜆𝑡ℎ ∙ 𝐺 ∙ ∆𝑇)                        (1.4-20) 

∆𝑇 = 𝑇ℎ  − 𝑇𝑐   ,    𝐺 =  
𝐴𝑒

𝐿𝑒
                                   (1.4-21) 

𝑉𝑖𝑛  =  2 ∙ 𝑁 ∙ (𝑆𝑒 ∙ ∆𝑇 + 
𝐼∙𝜌

𝐺
)                                 (1.4-22) 

COP = Qc/Qed                                                    (1.4-23) 

where, Qc (W) is the power absorbed at the cold side; 

 Qed (W) is the electrically driven TEC power; 

 Qh (W) is the heat generated at the hot side; 

 Vin (V) is the TEC voltage; 

 COP is the coefficient of performance of the TEC device; 

 ∆𝑇  (K) is the temperature difference between two sides of Peltier 

modules;  N is the number of PN pellets; 

 I (A) is the input current; 

 Tc (K) is the temperature of the cold side of TEC device; 

 Th (K) is the temperature of the hot side of TEC device; 

 Ae (m
2) is the section area of Pellet leg; 

 Le (m) is the leg length of the pellet. 

 

 

 

 

As a solid-state technology, TEC devices have fast and precise temperature control as no 

moving parts and no working fluids exist, which involves simple integration, little 

maintenance, silent operation, and excellent reliability [153]. In other words, TEC provides 

an active cooling of a chip to keep its operating temperature below the designed point. Along 

with the advantages that TEC brings in, some existing issues should be considered including 
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extra power loss due to Joule heat, design optimization in terms of temperature control and 

overall efficiency etc. These limitations of TEC systems lie in their low system coefficient 

of performance (COP usually less than one), but recent studies have shown that TEC can 

operate with a COP greater than one [150, 151, 154, 155], making it an attractive candidate 

for thermal management. 

 Pyrolytic Graphite Sheets (PGS) 

Pyrolytic graphite sheets are made of synthetic graphite material with better thermal 

conductivity in x and y plane (from 700 to 1950 W/mK for density of 0.85 to 2.13 gm/cm3) 

in comparison to the standard metals, 2 to 5 times higher than copper and 3 to 8 times higher 

than aluminum, which is almost close to the naturally available diamond [156, 157].  

As shown in Fig.1-31, PGS is very thin, flexible and could be cut into customizable 

shapes. It is ideal for thermal management as a thermal interface material (TIM). Thanks to 

its thermal spreading properties, it is proposed in [127] that PGS can be used as bonding 

agent between the heat pipes and the power devices to transfer heat for multiple layers of 

PCB structures. Today, there are also many applications of PGS in smart phones, tablet PCs 

and peripherals, LED devices, etc. 

 

Fig.1-31. Pyrolytic graphite sheet from Panasonic PGS product datasheet [156] 

1.4.3.4. Hybrid Cooling 

More and more advanced technologies focus on the hybrid cooling solutions for purpose 

of uniform cooling and better cooling effect. That means, it is attractive to improve the 

external heat convection capacity and the dominant heat conduction ability at the same time 

for better thermal performances of electronics systems. 

As presented in Fig.1-32 [117], authors have designed a cooling system for a 10×10 mm2 

IGBT chip by combining cold plate with a TE solid-state cooling, which is a hybrid solid- 

and liquid-cooling design. It is demonstrated that thin-film superlattice TEC can successfully 

isothermalize IGBT chip and eliminate 94 % of the temperature non-uniformity for the 

100W/cm2 IGBT chip and 91 % for a 200 W/cm2 IGBT chip.  

 

Fig.1-32. Hybrid solid- and liquid-cooling designs for IGBT isothermalization [117] 
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Recently, a concept of embedded thermal management has been proposed as shown in 

Fig.1-33 [127] for PCB structures using 3D integration technologies. A heat pipe and PGS 

layer could be assembled between two PCB dielectric layers. Thermal dissipation between 

layers could be improved and also the space consumed by heat sinks can be minimized. 

Although this idea has not been realized yet due to current technology limits of the PCB 3D 

printers, authors have demonstrated the feasibility of this proposed concept by separately 

validating the cooling effects of DCJ and PGS at the first time. 

 

Fig.1-33. Embedded thermal solutions for PCB structures using PGS and heat pipe techniques [127] 

1.4.3.5. Conclusion 

Different cooling methods for power systems, especially for PCB structures have been 

reviewed and described. Pros and cons of each solution have been analyzed depending on 

their principals, cooling efficiency, applications, etc. All these reviewed research work give 

us basic heating flow possibilities based on the two main heat runways, especially the heat 

conduction and convection process. This will help us to develop our own suitable cooling 

methods for certain PCB structures. 

In a word, cooling system should be appropriate and efficient to keep the cell temperature 

low as well as uniform, but should also be simple and reliable. 

1.5.  SUMMARY 

In this chapter, some important features of the power converters and different thermal 

management solutions for PCB structures are presented. The active components, the 

converter topologies and their power losses are introduced at the first place.  

Then, DBC technology and PCB technology have been compared in terms of material 

properties and thermal performances. With DBC technology, heat dissipation can be realized 

vertically to the heatsink and ceramic substrate of DBC has much higher thermal 

conductivity than that of PCB made of FR4 (<1.5 W/mK) material. But, with PCB technology, 

3D integration can be achieved and heat can be evacuated through both the upper side and 

the bottom side of the packaging. 

The third part of this chapter focuses on the thermal measurement and management of 

PCB structures based on heat conduction. For thermal prediction purpose, different methods 

are introduced including analytical, 3D FE modelling methods. For thermal measurement 

purpose, electrical methods and calorimetric methods are described. Calorimetric methods 



CHAPTER 1. STATE OF THE ART 

35 

 

are preferred in this thesis because of its high precision without any signal distortions of 

electrical probes. 

At the end of this chapter, different thermal management solutions in literature have been 

reviewed including air cooling methods with heatsink, liquid cooling methods with heat 

pipes, solid cooling methods with thermal vias or TEC devices, as well as hybrid cooling 

methods for high cooling demanding cases. In fact, suitable cooling methods should be 

chosen depending on the cooling requirements in consideration of their pros and cons. 

Different from conventional cooling methods, TEC cooling devices are attractive for their 

silent operation and fast dynamic response. 
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CHAPTER 2. THERMAL INSTRUMENTATIONS 

2.1.  INTRODUCTION 

This chapter will be devoted to describe all used instrumentations regarding to the 

established test bench serving as experimental platform. This platform is based on the 

temperature measurement methods and calorimetric method presented in the first chapter. 

At the same time, calibration process of certain equipments such as Resistance Temperature 

Detector (RTD) sensor will be discussed. In addition, general descriptions concerning 

applied softwares for analytical calculation and 3D FE Modeling will be presented. For 

example, Solidworks, COMSOL Multiphysics, Matlab, etc. Besides, typical chip soldering 

procedure and hole plating process will be presented in respect to the PCB technology. 

2.2.  TEST BENCH 

2.2.1. Establishment  

According to previous studies of power loss measurement principles presented in part 

1.4.2.2 of chapter 1, the schematic and pictures of the proposed test bench based on the open 

type calorimetric method is shown in Fig.2-1. The power loss measurement method is based 

on the heat conduction theory given in (1.4-11) for which it is assumed that the power loss 

of the heating source under test will pass vertically through the duralumin cylinder to the 

radiator.  

 

Fig.2-1. Power loss measurement test bench 

To obtain precise measured value of power loss P (W) passing through the duralumin 

column, the temperature difference between two RTD sensors ∆𝜃RTD (℃) and the knowledge 

of the thermal resistance of duralumin column for the length between the two RTD sensors 

Rth_du (W/mK) are essential. 

2.2.2. RTD Sensor (PT 100) Calibration 

Empirically, PT 100 (Fig.2-2) has a resistance R (Ω) of 100 Ω at 0 ℃ and the fundamental 

interval between 0 ℃ and 100 ℃ is 0.385 Ω. So the temperature measured by RTD 𝜃RTD 

(℃) could be expressed as in Eq (2.2-1). 

  θRTD(℃) =
𝑅−100

0.385
     (2.2-1) 

 Two sensor probes are inserted in an aluminum cuboid in order to evaluate their 

resistance difference for the same temperature point. The cuboid is then placed into a forced-

air oven (Fig.2-3), providing temperature Toven (℃) that may vary from 20 ℃ to 60 ℃. 
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Resistances of the two sensors are measured by Kelvin (4-wire) resistance measurement 

method when the system has reached its stable state (one hour per measurement).  

 

Fig.2-2. RTD sensor PT 100 (Online source: flukecal.com) 

 

Fig.2-3. Test bench for calibrating RTD sensors 

After ten times of measurement for each fixed air-oven temperature, average resistance 

difference and the corresponding theoretical temperature difference for each point has been 

calculated as shown in Fig.2-4. Ideally, ∆𝜃RTD should be zero when the relationship in Eq 

(2.2-1) is applied for temperature calculations of the two sensors. 

For calibration purpose, the RTD sensor at the bottom of cylinder column is considered 

as reference and the relationship between 𝜃RTD and R in (2.2-1) is applied for this sensor. 

The relationship between 𝜃RTD and R for the top sensor is then modified to suppress the 

offset and gain error. The proposed relationship for the top sensor is given in (2.2-2). 

     θRTD =
𝑅−99.945

0.3856
    (2.2-2) 

With this new relationship between the top sensor temperature and the top sensor 

resistance, the temperature differences between the two sensors (∆𝜃RTD) is recalculated and 
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shown in Fig.2-5. From this figure, we can verify that average intrinsic errors between the 

two RTD sensors could be considered as null. 

 

Fig.2-4. Temperature differences between two RTDs following temperature of forced-air oven 

 

           

Fig.2-5. Temperature differences between two RTDs after calibration 

2.2.3. Thermal Conductivity of Duralumin 𝜆dura (W/mK) 

The two RTDs (with the corrected relationship) have been used to determine the precise 

thermal conductivity of duralumin 𝜆dura (W/mK). As shown in Fig.2-1, a heating resistor is 

mounted on the PCB substrate and a piece of glass wool for thermal insulation is applied to 

cover the top side of the PCB module to avoid heat convection between the heating resistor 

and the air. So, the dissipated power of the heating resistor will mainly pass through the 

duralumin column by neglecting the heat convection and heat radiation effects. Based on 

(1.4-11), the thermal resistance of the duralumin column between the two RTDs Rth_du could 

be obtained by inputting a heating power and measuring the temperature difference ∆𝜃RTD. 

Measurement has been performed 5 times to obtain the average value of Rth_du. It is 

assumed that the ambient temperature for these measurements is constant. Relationship 

between temperature difference ∆𝜃RTD and input power P has been drawn in Fig.2-6. So, the 

Δ𝜃RTD = -0.0017⸳Toven + 0.1489
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thermal resistance between two RTDs is obtained as 0.187 ℃/W. Then the thermal 

conductivity of the duralumin 𝜆dura can be calculated by using (1.4-11). It is equal to 130.45 

W/(mK). This values is postulated to be independent of temperature and kept constant to be 

applied for power loss calculations.  

The obtained value of Rth_du will be used for the power loss measurement and the deduced 

𝜆dura will be applied for 3D FE simulations in the following sections. 

 

Fig.2-6. Measured relationship between input power and temperature difference between two RTDs 

2.2.4. Temperature Measurement Equipments 

Besides the RTD senor, this part will list other temperature measurement equipments 

applied for this thesis including the infrared camera and the thermocouples. 

 

Fig.2-7. Thermography camera FLIR T450sc [158] 

 Infrared Camera (IR camera) 

Thermography camera FLIR T450sc (Fig.2-7 [158]) has a rotating optical block and 

touch screen interface. It can produce thermal images of 320x240 pixels. And it works 

seamlessly with FLIR ResearchIR Max software, allowing us to control the camera in order 

to view, acquire, analyze, as well as record the thermal data. Besides, it can capture thermal 

data directly into MathWorks® Matlab software for advanced image analysis and processing. 

For example, a thermal imaging of a PCB structure with a soldered Si diode has been 

shown in Fig.2-8. Before measuring with the IR camera, the surface of the PCB module has 

been painted in black in order to avoid the reflection effect. From the imaging interface, it 

can be identified that the maximum surface temperature is 42.4 ℃ and the ambient 

temperature is 26.4 ℃. 
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Fig.2-8. Thermal imaging of a simple PCB structure 

 Thermocouple 

As previously mentioned, a thermocouple is an electrical device consisting of two 

dissimilar electrical conductors forming electrical junctions at different temperatures. A 

thermocouple is widely used as a type of temperature sensor. It produces a temperature-

dependent voltage as a result of the thermoelectric effect, and this voltage can be interpreted 

to measure temperature [159]. 

The K&T type thermocouple and the thermometer used in this thesis is presented in Fig.2-

9. It’s easy to apply with fast response and welded exposed junction. According to the 

product datasheet, the temperature range of this kind of thermocouple is between -75 ℃ to 

+250 ℃.  

 

Fig.2-9. K&T type thermocouple (ANSI MC96.1) [160] and thermometer  

2.2.5. Applied Softwares 

The main methods used for thermal performances analysis are analytical (2D) and 3D FE 

methods. On the one hand, analytical methods are based on thermal theories as heat 

convection, heat conduction and heat radiation. Analytical models will be created with the 

help of Matlab Simulink. On the other hand, 3D FEM is a numerical method allowing to 

solve problems in some area of physics as for simulation of dielectric, magnetic, thermal, 

mechanic etc. Here in this thesis, software COMSOL Multiphysics has been used mainly for 

3D thermal simulations. 

This part is devoted to introduce the modelling process with the two softwares (Matlab, 

COMSOL) in case of a simple PCB structure shown in Fig.2-8 (a). The structure dimensions 

are shown in Fig.2-10. The purpose is to estimate the maximum chip temperature Tc (℃). 

Power of 1 W is input in the chip for all simulations. Heat convection and heat radiation 

effect have been neglected to simplify the simulations here. 
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Fig.2-10. 3D model of the PCB structure with soldered Si chip (dimensions in mm)  

 Analytical Modeling (2D) with Matlab Simulink 

Analytical model or thermo-electric model is based on the analogy of thermal elements 

to those in electrical circuit. Thermal to electrical analogy is summarized in Table 2.1. 

Table 2.1. Thermal to electrical analogy 

Thermal quantities Units Analogous electrical quantities Units 

Heat Q W Current I A 

Temperature T K Voltage V V 

Thermal resistance Rth K/W Resistance R Ω 

Heat capacity Cth J/K Capacity C F 

Absolute zero 

temperature 

0 K Ground 0 V 

The analytical model can be realized in four steps: 

 Step 1: Choosing appropriate physical model for analyzing the PCB structure to 

be modeled. 

 Step 2: Calculating equivalent thermal resistances or thermal capacitances of the 

total thermal path according to different components properties of the system. 

 Step 3: Drawing corresponding thermo-electric circuit with predefined thermal 

components in Matlab Simulink interface. 

 Step 4: Executing the 2D simulation to get desired value or evolution of certain 

parameters such as junction temperature. 

For example, as presented in Fig.2-11, model of the PCB structure (Fig.2-10) has been 

built by using lumped parameters method. Here, the heat flux flows both laterally along the 

copper layer and vertically through the PCB substrate. Rsith (W/mK) represents the thermal 

resistance of the chip, Rsth (W/mK) is the thermal resistance of the solder. Besides, Rli (Rl1, 

Rl2, Rl3...etc.) and Rvi (Rv1, Rv2, Rv3...etc.) represent the lateral and vertical thermal resistances 

of lumped elements. Ambient temperature Tambient equals to 300 K. 
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Fig.2-11. Top and section view of lumped parameter model for the PCB structure 

 
Fig.2-12. Steady-state thermal network for the PCB structure 

Then the corresponding thermal model has been created in Simulink. Rli (Rl1, Rl2, Rl3...etc.) 

and Rvi (Rv1, Rv2, Rv3...etc.) are calculated according to the module dimensions (Fig.2-10) and 

the thermal resistance equation (1.4-11). As we can see in Fig.2-12, the analytical maximum 

chip temperature is 313.25 K for an ambient temperature equal to 300 K.  

 FE Analysis (3D) with COMSOL Multiphysics 

Different from analytical models which need complex pre-calculations depending on the 

structure geometry, 3D FEM can provide us more precise and intuitive simulated results by 

applying reasonable boundary conditions. 

The 3D simulations can be realized in five steps: 

 Step 1: Creating a 3D model of the structure to be simulated. 

 Step 2: Choosing appropriate modules or ‘physics’ according to the problems 

needed to be solved. 

 Step 3: Describing the structure with boundary conditions. 

 Step 4: Creating meshes of the domain. 

 Step 5: Executing simulations and visualizing the 3D simulation results. 
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The geometry of the 3D model could not only be created by COMSOL itself, but also by 

SolidWorks, AutoCad or Matlab, etc.  

For example, 3D thermal simulation results of the PCB structure (Fig.2-10) is presented 

in Fig.2-13. 1 W is applied in the Si chip as heating source. The PCB module is attached to 

a heat sink and the bottom surface is assumed to be at ambient temperature of 300 K. Heat 

convection effect is neglected. Complete mesh consists of 63007 domain elements, 20720 

boundary elements, and 1096 edge elements. The estimated maximum chip temperature is 

313.36 K.  

 

Fig.2-13. 3D Thermal simulation of the PCB structure 

Comparing simulation results with those obtained by experimentations ones (Fig.2-8 (c)) 

shows that both methods give a correct estimated temperature despite the errors caused by 

wire bonding impact (not modeled) and heat convection ignorance in both methods. Material 

properties for thermal simulations are the same as listed in Table 3.1 (Chapter 3). 

2.3.  CHIP ATTACHMENT ON THE PCB SUBSTRATE  

This part mainly focuses on the fabrication technology of PCB structure. Based on a 

soldering procedure of Si chip on the PCB substrate, preparation process of PCB as well as 

the realization of the chip attachment will be presented in order to introduce the materials 

and equipments used for manufacturing a PCB structure. 

2.3.1. Preparation of PCB Substrate 

A full fabrication process of PCB is shown in Fig.2-14 [161]. The typical processes to 

prepare the PCB substrate as shown in Fig.2-15 are described in the following five steps: 

 Step 1: Creating the substrate by lamination technology with prepreg, which is a 

glass fabric pre-impregnated in resin. More details could be found in [161]. 

 Step 2: Substrate cleaning. Before covering the substrate by resin or 

photosensitive film, this cleaning step is important to avoid yielding a poor coating 

by the resin. That means, the particles or the residues left on the surface may create 

small holes in the deposited layer. 

 Step 3: Photolithography. Firstly, coating or marking the substrate with liquid 

photoresist which aims to protect the copper part of the circuit. Then it is exposed 

to an ultraviolet radiation so that the exposed areas become soluble for positive 

resin. Here the etch mask with ink pattern can be created by Eagle or Altium 
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softwares. Lastly, the development step is realized by dipping the PCB substrate 

in a developer. The exposed area of the photoresist will be dissolved for the 

positive resin.    

 Step 4: Etching. The copper etching is made directly in ferric chloride solution or 

with an etchant spray system. And it’s necessary to do this step repeatedly until 

the exposed copper part is fully cleaned. 

 Step 5: Stripping. This last step is to clean the substrate with chemical reagent 

before the chip soldering. 

More details of applied materials and fabrication technologies of PCB are described in 

the thesis of YU [2]. 

 

 

Fig.2-14. Fabrication process of PCB [161]  

 

 

Fig.2-15. Prepared PCB substrate for chip soldering 

2.3.2. Chip Soldering 

Once the PCB substrate has been prepared, chip can be soldered by reflow method 

summarized in Fig.2-16. Before the procedure of soldering, the PCB substrate has been put 

on a polishing machine with a grit paper in order to smooth the copper surface layer. Then, 

the selected paste (Sn62-Pb36-Ag2) has been applied on the PCB by screen printing. The 

solder thickness depends on the thickness of the applied screen printing. 

After mounting the chip on the paste, the whole substrate is put in a preheated reflow 

oven (preheated temperature: 110 ℃). The temperature used for soldering depends on the 

PCB reflow profile, which is generally determined by the melting temperature of the solder, 
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the heat resistance of the components, and the characteristics of the PCB. Here, the reflow 

profile used for the PCB (Fig.2-15) is 160 ℃ during 90s followed by 250 ℃ during 120s.  

 

Fig.2-16. Chip soldering process 

2.4.  THROUGH-HOLE ELECTROPLATING 

Electrolytic copper solution is widely used in many industrial applications like 

anticorrosion and decorative coatings, etc. Copper is electrodeposited over a surface of wafer 

such as through holes. And aqueous sulfuric acid baths are usually used for filling the 

through holes [162]. Here, the through holes are metallized with copper to behave as the 

thermal vias for heat power dissipation but without any electrical interconnection purpose.  

A typical copper plating solution contains copper sulfate, sulfuric acid, chloride ions, and 

organic additives that control the deposition process and the quality of the plated coatings.  

The via metallization process for the PCB substrate (Fig.2-17) is mainly based on the five 

following steps: 

 Step 1 : Surface preparation by chemical acid cleaning. The purpose is to remove 

the fingerprints and oxides. 

 Step 2 : Hole cleaning with 10% soda at 70 ℃ during 4 minutes and rinsing with 

water. 

 Step 3 : 7 minutes for the deposit of colloidal palladium (4 minutes for 

preparation). 

 Step 4 : Rinsing with water and drying. 

 Step 5 : 30 minutes for plating process with copper sulfate solution.  

 

Fig.2-17. Electroplated vias in the standard PCB substrate 

2.5.  SUMMARY 

In this chapter, a test bench for power loss measurement by calorimetric method has been 

firstly presented as well as the measurement equipments such as RTD sensors, 

thermocouples and IR camera, etc. Simulation softwares have been discussed in case of 
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thermal simulation of a simple PCB structure. The purpose is here to briefly illustrate the 

analysis steps for creating thermal models corresponding to the real PCB structure by using 

analytical or 3D FE methods.  

In addition, concerning the PCB technology, the chip soldering process has been 

presented to show the total fabrication procedure of a PCB structure as well as hole 

electroplating technology used to create thermal vias.  
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CHAPTER 3. OPTIMIZATION OF THERMAL VIAS 

3.1.  INTRODUCTION 

In many cases, addition of thermal vias yields an alternative thermal management 

solution that may potentially eliminate the need for separate heat sink parts [134]. Related 

modeling studies on the via network exist in literature for typical packaging applications 

[133, 163]. Optimization of the thermal vias design is an important issue in thermal 

performance management engineering due to the complexity of their structure. Questions 

about thermal via parameters such as via diameter, via plating thickness, number of vias as 

well as via pattern are often expected to be answered. Therefore, this chapter addresses a 

design guideline on thermal via parameters for the PCB structures. 

The most common material to fill the thermal vias is copper and one can imagine that 

thermal vias are located in a relatively large domain and isolated by the board material of 

FR4 with a worse thermal conductivity. Small vias in the PCB substrates close to each other 

can form a cluster with relatively large dimension. So, the heat flow will across vertically 

the substrate with negligible lateral heat spreading effect. Therefore, one-dimensional (1D) 

heat conduction can be proposed for analytical simplification by considering the thermal 

vias and the PCB substrate as parallel thermal networks [134]. This 1D heat conduction 

assumption will be applied for the following discussions. 

In this chapter, thermal performances in steady state of the PCB structures with thermal 

vias will be studied by analytical and 3D FEM analysis in order to optimize the cooling 

effects of thermal vias. Experimental validation will be executed to verify the simulation 

predictions. In addition, concerning the power loss measurement method, the conception of 

inverse thermal models will also be discussed. 

3.2.  ANALYTICAL ANALYSIS 

Firstly, to figure out the cooling mechanism of thermal vias as well as the significant via 

parameters of the thermal resistance path, thermal performances with one via, two vias as 

well as multiple vias will be discussed based on numerical analysis approaches.  

3.2.1. PCB Substrate with One Individual Thermal Via 

Fig.3-1 depicts a typical structure of a single via. To simplify the analysis process, it is 

postulated that the individual via has isothermal boundary conditions on its top and bottom 

and adiabatic condition on its surrounding surfaces. Here, ei (mm) (i = 1,2,3) represents the 

thickness of each layer, and 𝜎i (W/mK) is the corresponding thermal conductivity. D (mm) 

stands for the via diameter. Pla (mm) is the plating thickness of thermal via. The thermal 

resistance of each layer Rth_i (K/W) can be obtained by (1.4-11). 

 

Fig.3-1. Typical PCB structure with a single thermal via 
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Fig.3-2. Analytical model for one single via PCB structure 

The analytical thermal model for the one single via structure has been drawn in Fig.3-2 

by the analogy between thermal path and electrical circuit. Based on the 1D heat conduction 

assumption, the thermal via is considered in parallel with the remaining FR4 material in the 

second layer. So, the thermal resistance of each part of the structure can be obtained by 

equations (3.2-1)(3.2-2)(3.2-3).  

𝑅𝑏𝑜𝑎𝑟𝑑 =
𝑒2

𝜎2 ∙ 𝑆1
     (3.2-1) 

𝑅𝑡ℎ_𝑣𝑖𝑎 =
𝑒2

𝜎1 ∙ (𝜋 ∙ 𝐷 ∙ 𝑃𝑙𝑎)
 , 𝑅𝑡ℎ_𝐹𝑅4 =

𝑒2

𝜎2 ∙ (𝑆1 − 
𝜋 ∙ 𝐷2

4
)
   (3.2-2) 

𝑅𝑎 =  𝑅𝑡ℎ_2 =
1

1

𝑅𝑡ℎ_𝑣𝑖𝑎
 + 

1

𝑅𝑡ℎ_𝐹𝑅4

=
𝑅𝑏𝑜𝑎𝑟𝑑

1 + 
𝜋

2
 ∙ 

𝐷2

𝑆1
 ∙ (𝜎𝑟 ∙ 

2∙𝑃𝑙𝑎
𝐷

 − 
1

2
)
 , with 𝜎𝑟 =

𝜎1

𝜎2
  (3.2-3) 

where, Rboard (K/W) is the thermal resistance of the PCB substrate without any vias; Ra 

(K/W) stands for the total thermal resistance of the PCB structure with one single via; Rth_2 

(K/W) is the thermal resistance of the FR4 substrate with one single via; S1 (mm×mm) is the 

heat across area or the pad surface on the PCB substrate equaling to L×Y (mm×mm). Here, 

Ra equals to Rth_2 since that Rth_1 and Rth_3 (thermal resistances of the copper plates, see Fig.3-

1 and Fig.3-2) can be omitted because of the small thickness value of the copper layers, for 

example, 35 µm for standard PCB. And (3.2-2) can be used to calculate the approximated 

thermal resistance of the thermal vias when Pla is far less than D. 

As we can see in Fig.3-1 and Fig.3-2, for the substrate with one single thermal via, the 

significant via parameters related to its thermal resistance include via diameter D (mm), via 

plating thickness Pla (mm) and pad surface of PCB substrate S1 (mm×mm). 

3.2.2. PCB Substrate with Two Thermal Vias 

In the case of two thermal vias in PCB substrate, one more parameter is needed to be 

considered as shown in Fig.3-3: the pitch distance Hd (mm) between two thermal vias. As 

Hd is usually smaller than 1 mm. Analytical thermal model corresponding to this structure 

by analogy to electrical circuit is drawn in Fig.3-4.  

In the same way as for the one thermal via case, the two thermal vias and the remaining 

FR4 substrate are in parallel according to the 1D heat conduction assumption. It is postulated 

that the two-vias structure has isothermal boundary conditions on its top and bottom and 



CHAPTER 3. OPTIMIZATION OF THERMAL VIAS 

49 

 

adiabatic condition on its surrounding surfaces. Thus, the influence of the pitch distance Hd 

is neglected by omitting the lateral conduction effect. Then the thermal resistance of the total 

PCB substrate Ra can be obtained by (3.2-4)(3.2-5)(3.2-6). Impact of the pitch distance Hd 

will be analyzed in the case of multiple vias. 

𝑅𝑡ℎ_𝑣𝑖𝑎_2 =
𝑒2

𝜎1 ∙ 2 ∙ (𝜋 ∙ 𝐷 ∙ 𝑃𝑙𝑎)
  ,  𝑅𝑡ℎ_𝐹𝑅4_2 =

𝑒2

𝜎2 ∙ (𝑆1 − 2 ∙ 
𝜋 ∙ 𝐷2

4
)
  (3.2-4) 

𝑅𝑎_2 =  𝑅𝑡ℎ_2 =
1

1

𝑅𝑡ℎ_𝑣𝑖𝑎_2
 + 

1

𝑅𝑡ℎ_𝐹𝑅4_2

   (3.2-5) 
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𝑅𝑏𝑜𝑎𝑟𝑑
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2∙𝑃𝑙𝑎
𝐷

 − 
1

2
)
    (3.2-6) 

 

Fig.3-3. Top and Section view of the PCB substrate with two thermal vias 

 

Fig.3-4. Analytical thermal model for PCB structure with two thermal vias 

3.2.3. PCB Substrate with Multiple Vias 

After figuring out the significant via parameters according to the cases where PCB 

substrates have one and two thermal vias, it is much easier to analyze the common case with 

multiple thermal vias. As shown in Fig.3-5, via-cluster is formed by multiple vias, each 

individual via would function separately. In other words, all thermal vias are considered as 

parallel thermal resistances based on the 1D heat conduction assumption. Two typical 

sketches of multiple-via pattern are presented in Fig.3-6. The difference between these two 

patterns is related to the higher via design density allowed by pattern 2.   

To simplify the analysis procedure, it is assumed that there are N (m×n: m rows, n 

columns) thermal vias with a pitch distance Hd between each other and these vias form a via-

cluster area Lvia×Yvia (mm×mm), with via-cluster length Lvia equivalent to n×Hd and via-
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cluster width Yvia equivalent to m×Hd. It is postulated that this multiple-via structure has 

isothermal boundary conditions on its top and bottom and adiabatic condition on its 

surrounding surfaces.  

The total thermal resistance Ra_N (K/W) of the PCB substrate is then obtained by following 

equations. 

𝑅𝑡ℎ_𝑣𝑖𝑎_𝑁 =
𝑒2

𝜎1 ∙ 𝑁 ∙ (𝜋 ∙ 𝐷 ∙ 𝑃𝑙𝑎)
  ,  𝑅𝑡ℎ_𝐹𝑅4_𝑁 =

𝑒2

𝜎2 ∙ (𝑆1 − 𝑁 ∙ 
𝜋 ∙ 𝐷2

4
)
  (3.2-7) 
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    (3.2-8) 
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  (3.2-9) 

According to (3.2-9), it is complex to analyze the influences of all significant parameters 

independently. Therefore, it is proposed to normalize these via parameters in dimensionless 

form as shown in (3.2-10) and (3.2-11). 

𝑅𝑜𝑎 =
1

1+𝜋 ∙ 𝑅𝑜1 ∙ 𝑅𝑜2
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4
) 
   (3.2-10) 
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𝑅𝑏𝑜𝑎𝑟𝑑
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2

𝑆1
 , 𝑅𝑜2 =

𝐷

𝐻𝑑
 , 𝑅𝑜3 =

𝑃𝑙𝑎

𝐻𝑑
  (3.2-11) 

where Roa is the ratio of Ra_N to Rboard; Ro1 is the ratio of the via-cluster surface to the total 

available board area; Ro2 is the ratio of via diameter D to the pitch distance Hd; Ro3 is the 

ratio of the plating thickness of copper Pla to the pitch distance Hd; S1 is the total board 

surface normal to the heat transfer direction L×Y; 𝜎𝑟 is the ratio of thermal conductivity of 

copper to that of FR4; Therefore, the ratio of Roa is the objective function in via design 

optimization. 

 

Fig.3-5. Top and section view of the PCB substrates with multiple thermal vias in pattern 1 

 

Fig.3-6. Two typical via-cluster patterns 

As we can see in (3.2-10), the value of Roa is within the range from 0 to 1. And an increase 

of Roa means the augmentation in thermal resistance. Equation (3.2-10) also involves that 
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increase of ratios Ro1, Ro2, Ro3 leads to a reduction of Roa and, therefore, of the equivalent 

thermal resistance of the PCB substrate with multiple vias Ra_N.  

In addition, it can be noticed that the absolute value of via design parameters is no longer 

critical because of their dimensionless normalized form. This means that the significant issue 

of thermal vias design regarding their thermal behavior mainly depends on the vias 

arrangement in the via-cluster, which is related to their formed via pattern and via-cluster 

surface. 

Theoretical analysis of the PCB substrate with thermal vias provides us concise form of 

the relationships between its total thermal resistance and the different via design parameters. 

Evolution of the equivalent thermal resistance ratio Roa with the via parameters and the 

cooling effects of this solution with thermal vias will be discussed in next part. 

3.3.  3D FEM ANALYSIS 

In fact, 1D analytical thermal models can offer a fast estimation of the cooling effect 

tendency, but they have limitations in terms of accuracy because of the 1D hypothesis about 

the heat conduction dimensions as well as the omitted heat convection effect. In this section, 

cooling effects with thermal vias in the PCB substrates have also been analyzed in steady 

state by 3D FEM analysis. Analytical thermal resistances of different PCB substrates will be 

compared to the results obtained by 3D FEM simulations. The purpose is to identify the 

influences of different via parameters and also to figure out the model errors between the 

two methods. 

All thermal simulations are based on the PCB assembly shown in Fig.3-7. A Silicon chip 

is attached to the PCB substrate and the chip is considered as the heating source. Multiple 

thermal vias will be created in the FR4 substrate to evaluate their cooling effect. Dimension 

parameters and material properties used for thermal simulations are listed in Table 3.1. For 

all thermal simulations, the heat flux P is supposed to be 1W and the bottom of the PCB 

substrate is supposed to be attached to a heat sink, the convection heat transfer coefficient 

between the module surface and the ambient equals 15 W/(m2K), and the ambient 

temperature Ta is 20 ℃.  

 

Fig.3-7. Top and Section view of the studied PCB assembly 

Table 3.1. Dimensions of the assembly and material properties 

Layer Material 

Layer 

thickness 

(µm) 

Vertical heat 

cross area 

(𝒎𝒎 × 𝒎𝒎) 

Thermal 

conductivity 

W/(mK) 

Chip Silicon e1=245µm 𝑆𝑐 = 5.1 × 4 130 

Solder 
62Sn-36Pb-

2Ag 
e2=75µm 𝑆𝑐 50 

Top-PCB Copper e3=38µm 𝑆1 = 24 × 21 400 

PCB FR4 e4=0.7mm 𝑆2 = 28 × 25 0.3 

Bottom-

PCB 
Copper e5=38µm 𝑆2 400 
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Multiple thermal vias are created beneath the chip. Influences of normalized via 

parameters including the ratio of via-cluster surface Ro1, the ratio of via diameter Ro2, the 

ratio of via plating thickness Ro3, the number of thermal vias N as well as the via pattern will 

be discussed in following parts. In the following sections, the available pad surface is 

assumed to be Sc and the thermal vias are created right beneath the chip component. 

3.3.1. Number of Thermal Vias N 

According to the normalized form described in (3.2-10), the thermal resistance of the 

PCB substrate should be constant when the ratios of Ro1, Ro2 and Ro3 are all kept at certain 

values. Both 1D electro-thermal and 3D FEM analysis have been carried out to verify this 

prediction with Ro1 equaling to 0.8, Ro2 equaling to 0.8 and Ro3 equaling to 0.1. In other 

words, the via-cluster surface is 80 % of the pad surface for the Si chip Sc; the via diameter 

D is 80 % of the pitch distance Hd and the via plating thickness is 10 % of the pitch distance 

Hd. Values of Hd and number of vias N used for creating different thermal models are 

summarized in Table 3.2. 

Table 3.2. Pitch distance and number of vias for different thermal models 

Hd (mm) 0.369 0.452 0.583 0.683 0.738 0.825 0.903 1.166 

N 120 80 48 35 30 24 20 12 

 

Fig.3-8. Evolution of thermal resistance ratio Roa following the number of vias 

Thermal vias are beneath the chip. Fig.3-8 depicts the impact of the number of thermal 

vias N on the 1D thermal resistance model. In all these configurations, the theoretical thermal 

resistance is constant. 3D FEM simulations have also been realized for 3D models with 

different number of vias but with the same via-cluster area to maintain the same via 

geometric ratios. For example, thermal performances of assemblies with different number 

of vias are shown in Fig.3-9. It is noted that the same cooling effect with different thermal 

vias (N=12 and N=80) can be achieved when they have fixed via geometric ratios. 

It is discovered that the difference between the 3D FE and 1D thermal simulations is 

lower than 7 % when N is more than 35. This means that, for such configuration, the 1D heat 

conduction assumption is valid and gives results similar to 3D FEM simulations. In general, 

this will be the case when the via-cluster surface is relatively large in comparison with the 

diameter of thermal vias. Besides, the main error between the 1D thermal resistance 

networks and the 3D FE models is due to the finite lateral thermal conduction of the top 

copper layer. In the 1D models, the heat spreading effect over the copper layer has been 

omitted. In 3D FEM cases, the heat source is localized in the Si chip and the heat flux 
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laterally spread over the PCB surface by the top copper layer. The finite thermal conduction 

of the top copper layer leads to a difference between the two models. 

 

Fig.3-9. 3D FEM simulations with different number of thermal vias but the same ratios of Ro1, Ro2, Ro3 

3.3.2. Via-Cluster Surface Ratio Ro1 

Then, Ro2 (0.8) and Ro3 (0.1) are fixed to observe the impact of via-cluster surface Ro1. 

Different via parameters applied to create the 3D models are listed in Table 3.3. Thermal 

vias are created beneath the chip component. 

Table 3.3. Via parameters used to create different 3D FE models 

Via Parameters Hd (mm) 

(D < Hd < L-D) 

N 

(𝐦 × 𝐧, 𝐦 ≤
𝒀

𝑯𝒅
, 𝒏 ≤

𝑳

𝑯𝒅
) 

Ro1 (%) 
D(mm), Ro2 = 0.8 Pla (mm), Ro3 = 0.1 

0.40 0.05 0.50 8×10 98.04 

0.64 0.08 0.80 5×6 94.12 

0.376 0.047 0.47 8×10 86.63 

0.464 0.058 0.58 6× 8 79.15 

0.536 0.067 0.67 5× 7 77.02 

0.688 0.086 0.86 4× 5 72.51 

0.824 0.103 1.03 3× 4 62.41 

1.072 0.134 1.34 2×3 52.81 

1.608 0.201 2.01 1× 2 39.61 

Evolution of the thermal resistance ratio Roa following Ro1 is presented in Fig.3-10. We 

can see that the thermal resistance ratio Roa decreases dramatically in the range 0 < Ro2 < 

40%, and then, the curves level off. The via-cluster surface formed by multiple vias should 

be as large as possible. This can be obtained by increasing the number of vias N for the same 

pitch distance or by increasing the pitch distance Hd while maintaining the ratios of Ro2 and 

Ro3, this means increasing the size of the vias proportionally to the pattern surface increase.  
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Fig.3-10. Evolution of thermal resistance ratio Roa following the ratio of via-cluster surface Ro1 

3.3.3. Via Diameter Ratio Ro2 

Influences of the via diameter have been simulated with fixed via-cluster surface ratio 

Ro1 (0.8) and also fixed plating thickness ratio Ro3 (0.1). Evolution of the total thermal 

resistance of the PCB substrate is presented in Fig.3-11. The curve giving the evolution of 

the Roa as a function of via diameter ratio decreases dramatically in the range 0 < Ro2 < 30%, 

then, the tendency levels off. Obviously, the thermal resistance of the PCB substrate 

becomes smaller when the ratio of the via diameter increases. 

 

Fig.3-11. Evolution of thermal resistance ratio Roa following the ratio of via diameter Ro2 

3.3.4. Via Plating Thickness Ratio Ro3 

In this part, the via-cluster surface ratio Ro1 (0.8) and the via diameter ratio Ro2 (0.8) are 

fixed, via plating thickness ratio Ro3 (0 < Ro3 < 0.5×Ro2) is changed to observe its influences 

on the thermal performances.  

As we can see in Fig.3-12, the plating thickness has also a huge influence on the thermal 

resistance, especially when the ratio Ro3 is lower than 10 %. For example, Fig.3-13 depicts 

the 3D thermal simulation results of the structure when Ro3 equals 0 and 0.31, respectively. 

Thermal vias should be filled as much as possible. 
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Fig.3-12. Evolution of thermal resistance ratio Roa following the ratio of via plating thickness Ro3 

 

 

Fig.3-13. 3D FEM simulations with different ratio of via plating thickness 

3.3.5. Via Pattern 

Fig.3-6 describes two typical via patterns formed by multiple vias. As previously 

mentioned, their difference lies in the number of vias for the same via parameters of via-

cluster surface, via diameter and via plating thickness. It has been demonstrated in part 3.3.1 

that the cooling effect while increasing the number of thermal vias N is almost the same if 

via parameters Ro1, Ro2, Ro3 remain the same. For example, Fig.3-14 depicts the 3D thermal 

simulation results for two models created with the two different patterns. We can note that 

the temperature distributions are similar. 

In fact, pattern 2 can make fill a large part of the available via-cluster surface Lvia×Yvia as 

shown in Fig.3-15. Besides, to simplify the theoretical analysis, the via-cluster surface of the 

two patterns is assumed to be Npattern1 × Hd
2. But it exists a deviation between the real via-

cluster surface formed by multiple vias and the assumed one. That means that the real via-

cluster surface of pattern 2 (
√3

2
𝑁𝑝𝑎𝑡𝑡𝑒𝑟2 × 𝐻𝑑

2 +
√3

4
× 𝑚𝑝𝑎𝑡𝑡𝑒𝑟𝑛2 × 𝐻𝑑

2) is larger than that of 

pattern 1. For example, pattern 2 in Fig.3-15 (N=42) has a real via-cluster surface ratio Ro1 

of 85.73%. By contrast, pattern 1 in Fig.3-15 (N=35) has a via-cluster surface ratio of 77%. 
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This explains the cooling effect difference between the two patterns shown in Fig.3-16. 

Therefore, pattern 2 is preferred for its slightly better cooling effect related to a higher 

number of vias for a given via-cluster surface.  

 

Fig.3-14. 3D FEM simulations with different via patterns 

 

 

Fig.3-15. Arrangement of thermal vias in two patterns with the same available via-cluster surface  

 

Fig.3-16. Evolution of the average thermal resistance ratio in two patterns 
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In a word, the creation of thermal vias in the PCB substrate should be optimized with 

larger geometric ratios of via parameters such as via-cluster surface, via diameter, via plating 

thickness. Thermal resistance from the proposed 1D model is correlated with the results 

obtained from the 3D FEM analysis. Besides, though without satisfactory accuracy of the 

1D models, the emphasis at layout design stage is to know the design direction within a short 

time.  

3.3.6. Copper Thickness on The PCB Substrate 

PCB substrate has been chosen for its better electrical properties and mechanical 

soundness compared to DBC. But DBC substrate has much better thermal performance. In 

order to be competitive with DBC, one solution is to increase the PCB copper thickness ec 

(mm) on the top layer in order to increase heat spreading. For comparison purpose, 3D 

models with a chip attached to PCB or DBC substrate are created as shown in Fig.3-17. 

 

Fig.3-17. Section view of the 3D model for DBC or PCB structure 

For DBC (Al2O3) substrate, the available ceramic thickness range is: 0.25∼1.00mm and 

the corresponding breakdown voltages are in the range: 2.5∼10kV. The available copper 

thickness on DBC substrate are in the range: 0.127∼0.4mm [164]. For the same breakdown 

voltages, PCB (FR4) substrates are thinner: 0.046∼0.185mm as FR4 has a higher breakdown 

voltage (FR4: 54kV/mm, Al2O3: 10∼15kV/mm). Usually, the standard PCB substrate has a 

copper thickness of 35µm or 38 µm.  

Using the material properties in Table 3.1, simulations have been carried out to identify 

the effects of increasing copper thickness. A heat dissipation of 1W was used for the chip, 

and an equivalent convection heat-transfer coefficient of 15 W/(m2K) from all external 

surfaces (except the bottom layer) to the ambient was applied. The bottom copper layer is 

assumed to be attached to heat sink, and the ambient temperature is supposed to be 20 ℃. 

The thermal resistance evolution versus the top layer copper thickness is presented in Fig.3-

18 for DBC and PCB substrates. As shown in this figure, the thermal resistance Rthc (K/W) 

of the PCB assembly is much higher than that of DBC. But, it can be noticed that the thermal 

resistance depends a lot on the copper thickness, especially in the range of 35 µm < ec < 300 

µm. On the other hand, increasing DBC copper thickness is not as efficient. The reason of 

such fast decrease for PCB structures can be explained from the results shown in Fig.3-19. 

Due to the huge difference of thermal conductivity between FR4 and copper, the lateral heat 

flux is reinforced in the copper layer before it crosses vertically through the FR4 layer. This 

spreading effect of a thicker top copper layer reduces a lot the thermal resistance of the 

structure. 

However, despite this improvement, PCB cannot compete with DBC technology 

regarding the thermal performances, for the same breakdown voltage. Therefore, the method 

of double-sided cooling by combining the effects of thermal vias and the use of thick copper 

layer has been proposed as shown in Fig.3-20. As previously, a heat dissipation of 1W was 

used for the chip, and an equivalent convection heat-transfer coefficient of 15 W/(m2K) from 

all external surfaces (except the bottom layer) to the ambient was applied. The bottom copper 

layer is assumed to be attached to heat sink, and the ambient temperature is supposed to be 

20 ℃. And the thermal simulation results for such design are presented in Fig.3-21. As we 

can see in Fig.3-21, the double-sided cooling method is only effective when the top copper 

layer is attached to a heat sink. However, in practical implementation, adding a heat sink to 

the top layer is difficult as this layer should be dedicated to decoupling capacitors and to 
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drivers that have both to be placed close to the power semiconductor device. This is 

especially required in case of GaN technology, for example. 

 

Fig.3-18. Thermal resistance evolution following the copper thickness 

 

 
Fig.3-19. 3D thermal simulation results for PCB structures having 10kV breakdown voltage 
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Fig.3-20. Structure of double-sides cooling solution for the PCB 

 
Fig.3-21. Thermal resistance evolution following the copper thickness for the same breakdown voltage 10kV 

3.4.  EXPERIMENTAL RESULTS AND DISCUSSIONS 

In this part, experimentations have been carried out to validate previous simulation 

predictions of the thermal via design. As shown in Fig.3-22, four models of the PCB 

structures with different thermal vias have been fabricated to demonstrate the cooling 

performances of thermal vias. A heating resistor (7.87 mm×8.51mm×0.81mm) is attached 

to the PCB substrate. Thermal vias are placed below the heating resistor. Physical 

dimensions of the PCB substrate and via parameters are presented in Fig.3-23.  

 

Fig.3-22. Four PCB structures with different via patterns 
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Fig.3-23. PCB dimensions and via parameters 

Firstly, 3D FEM models have been created according to the real PCB structures with 

different via parameters. Differences between the four models are related to the pitch 

distance Hd, the number of vias N, and the formed via-cluster surface. 3D thermal 

simulations are calculated with COMSOL Multiphysics. Material properties in Table 3.1 

have been applied for the 3D FEM simulations. Simulation results are presented in Fig.3-24. 

A heat dissipation of 10 W is applied in the heating resistor, the bottom copper layer of the 

PCB is assumed to be attached to a heat sink, and the ambient temperature is supposed to be 

constant at 20 ℃. Here, model_2 without any thermal vias is considered as the reference for 

cooling effects comparisons. 

          

Fig.3-24. 3D FEM simulations for PCB structures with different via parameters 

According to the relationship between temperature and thermal resistance described 

previously in (1.4-11), equivalent thermal resistances of PCB substrates Rthsim (℃/W) for 

each model could then be obtained: 0.164 ℃/W for model_1 (156 vias in pattern 2); 

6.422 ℃/W for model_2; 0.467 ℃/W for model_3 (144 vias in pattern 1); 2.123 ℃/W for 

model_4 (36 vias in pattern 1). Obvious thermal resistance reduction could be observed, 

which is already sufficient for many applications. Therefore, thermal vias could reduce the 

thermal resistance of the PCB structure by increasing the thermal conductivity of the PCB 

substrate. By comparing model_1 to model_3, it is found that cooling effect is better when 

more thermal vias could be created with larger via-cluster surface for the same available pad 

surface (S1=10cm ×10cm), equivalent to larger Ro1. So, for limited space on the PCB 

substrate, pattern 2 with more thermal vias should be chosen. In addition, by comparing 
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model_3 to model_4, it is demonstrated that better cooling effect can be achieved when with 

larger ratio of via diameter Ro2 and via plating thickness Ro3.   

Then, the test bench introduced in Fig.2-1 has been used for power loss measurement in 

order to experimentally estimate the thermal resistance of the PCB substrates with thermal 

vias. As we can see in Fig.3-22, a thermocouple is soldered on the heatsink mounting tab of 

each heating resistor to measure its inner temperature Tres (℃). It is postulated that the 

mounting tab is uniform and isothermal. So the measurement error between the real inner 

temperature and that of the side mounting tab has been omitted because of the small distance 

(~ 4 mm) between them. The thermal resistance of the total system from the resistor base 

plate to the PT100 sensor of the duralumin column Rthto (℃) can be obtained based on (1.4-

11). From this value, the thermal resistance of PCB substrate Rthmes (℃/W) can be calculated 

by (3.4-12). 

𝑅𝑡ℎ𝑚𝑒𝑠 = 𝑅𝑡ℎ𝑡𝑜 − 𝑅𝑡ℎ𝑟𝑒𝑠 − 𝑅𝑡ℎ𝑇𝐼𝑀 − 𝑅𝑡ℎ𝑐𝑜𝑙   (3.4-12) 

Where Rthres (℃/W) is the thermal resistance from the resistor element to the case of the 

heating resistor. This resistance equals to 5.2 ℃/W according to the product datasheet [165]; 

RthTIM (℃/W) is the thermal resistance of TIM layer, equaling to 0.02 ℃/W when PCB 

substrate has no thermal vias but equaling to 0.16∼0.21 ℃/W respect to the four different 

via-cluster surface according to the thermal spreading effect; Rthcol (℃/W) is the thermal 

resistance of the duralumin column, equaling to 0.225 ℃/W. And the thermal resistances of 

solder layer and copper layers are neglected because of their relatively small values. Details 

of each layer are summarized in Table 3.4. 

Table 3.4. Dimensions and thermal properties of each layer for the PCB structures with thermal vias 

Layer 
Thickness 

(mm) 

Heat cross section 

(mm×mm) 

Thermal conductivity 

(W/mK) 

Thermal resistance 

(℃/W) 

RthTIM 

Model_1 

(N=156) 

0.51 

25×25 

5 in Z direction 

0.16 

Model_2 

(N=0) 
80×80 0.02 

Model_3 

(N=144) 
22×22 0.21 

Model_4 

(N=36) 
22×22 0.21 

Rthcol  (Duralumin) 180 π × (
88.45

2
)

2

 130.45 0.225 

Solder 0.030 7.87×8.51 50.9 -- 

Copper 0.038 100×100 400 -- 

Rthres (Chip) -- -- -- 5.2 

From 3D simulations, the temperature profile according to the distance from the heating 

resistance on the top copper layer along the red line (see Fig.3-22) were calculated. The 

results are presented in Fig.3-25 for each model. In these figures, the position of the heating 

resistor is at 50 mm on the X-axis.  

Compared to model_2 (no via model), other models with thermal vias have highly 

reduced thermal resistance. As summarized in Table 3.5, the simulated results are in good 

agreement with experimental ones materialized by the temperature of the case of the heating 

resistor measured by the thermocouple. These results also validate previous analytical 

studies giving the thermal vias impact on the thermal equivalent resistances for the models 

with different via parameters (Ro1, Ro2, Ro3). 
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Table 3.5. Comparisons between simulation and experimentation results 

Rth of PCB 
Model_1 

(N=156) 

Model_2 

(N=0) 

Model_3 

(N=144) 

Model_4 

(N=36) 

Rthmes (°C/W) 0.154 6.342 0.423 1.923 

Rthsim (°C/W) 0.164 6.423 0.467 2.123 

Error 6.5% 1.3% 10% 10% 

For further cooling effect improvements, one can fill the vias to reduce thermal resistance 

of the PCB substrate or increase the copper thickness ec (mm) of the top PCB layer to 

improve the lateral heat flux dissipation. 

However, using classical thermal vias will lead to lose the benefit of electrical insulation 

between the board and the heatsink. Today, one available solution is to use a kind of 

insulating glued joint realized either with special double-sides adhesive tape or by using a 

glue containing a small amount of glass balls. These balls ensure a well-defined thickness of 

the glue layer and insure reproducible thermal and electrical insulation properties. Thermally 

enhanced glue, filled, for example, with ceramic powder, are also available [118].  

 

Fig.3-25. Temperature measurements of the heating source and comparisons with 3D FEM simulations 
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3.5.  CONCEPTION OF THE INVERSE THERMAL MODEL 

As previously mentioned, the calorimetric method used for power loss measurement 

takes a lot of time to stabilize the total thermal system. And the almost impossibility to 

measure the current under the penalty of adding parasitic inductances incompatible with the 

switching speeds of those WBG components. For this purpose, this part investigates the 

conception of the steady-state inverse heat conduction model (IHCM) developed from 

thermal simulations. The main objective is to derive the power dissipation in a chip, for 

example, GaN chip mounted on or embedded in a PCB from the surface temperature 

measured by infrared thermography or thermal sensors.  

In this problem, the power devices losses are the solutions of the inverse problem of the 

temperature-to-power mapping. IHCM here is based on simple observations from real PCB 

structures with GaN chip embedded in PCB substrates. The error of the resultant power map 

with thermal noises is minimized by Least-Square Optimization, which transforms the direct 

inverse problem into a constrained optimization problem. 

3.5.1. Introduction 

Inverse methods are defined as methods which allow to discover causes and unknown 

measureable variables by observing the consequences of a problem [166]. So IHCM is a 

possible approach to obtain dissipated power without actual power measurement, which is 

based on the thermal simulations of direct heat conduction model (DHCM). Compared to 

direct power measurements which are very difficult in the case of GaN transistors, 

temperature measurement by infrared cameras or thermal sensors is more achievable with 

high accuracy. So far, however, there has been very few discussions about the inverse 

thermal modelling of electronic systems [167-170]. This is the motivation behind the present 

study. 

In the first part, the principals of IHCM will be presented and formulated. Then, 

prediction accuracy of the results will be discussed and optimized by Least-Square Method 

(LSM). Besides, effects of temperature measurement points on the surface and variable 

parameters such as the dissipated power in GaN P (W) and the thermal conductivity of PCB 

substrate 𝜆FR4 (W/m2K) will be discussed and analyzed.  

3.5.2. Steady State Inverse Heat Conduction Model (IHCM) 

Inverse modelling is a method to reconstruct an unmeasurable heating source for 

embedded PCB structure from its easily observable surface temperature distributions [169]. 

It has its own advantages especially when high harmonics in digital systems or power 

converters can cause measurement devices to operate improperly. Hence temperature 

measuring can serve as a direct indicator of power losses and through inverse source 

reconstruction, losses in some inaccessible electronic parts can be determined from 

temperatures at some places. The relationship between power loss P (W) and temperature 

rise at some places of an assembly dT (℃) in steady state can be established and can be 

written as a discrete equation (3.5-13). 

[𝑑𝑇] = 𝐹(𝑎, 𝑏)[𝑃] + 𝛼     (3.5-13) 

where 𝛼 is the additive noises and F a matrix depending on some known or unknown 

system parameters (a,b). If [P] and F(a,b) are known, [𝑑𝑇] calculation is the direct problem 

(DHCM). If [𝑑𝑇] and F(a,b) are known, calculating [P] is the inverse problem (IHCM). If 
[𝑑𝑇] is known, calculating [P] and parameters (a,b) is the inverse blind problem. 
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In the following, IHCM is used to predict the power dissipated by a GaN chip embedded 

in a PCB substrate as described in Fig.3-26. The 3D FE model of the PCB structure has been 

created and is used as the real system reference in the proposed methodology. 

 

Fig.3-26. PCB structure with embedded GaN chip 

 

 

Fig.3-27. Parameters estimation step for DHCM 

 

 

Fig.3-28. Input power estimation step for IHCM 

Direct inverse of the problem is not possible for two main reasons: First the problem is 

not square, the output vector [𝑑𝑇] has a dimension higher than that of [P]; Secondly, even if 

the sizes are identical, the noise added to measurements leads to high error when using a 

direct inversion method. The best way to proceed is to use the following method.  

In a first step, as presented in Fig.3-27, F(a,b) is identified by injecting in real system and 

in the model defined by (3.5-14) a set of known input powers. 

[𝑑𝑇𝑚𝑜] = 𝐹(𝑎, 𝑏)[𝑃]     (3.5-14) 

LSM used to calculate the best function F(a,b) minimizes the sum of square of deviations 

JMco calculated from the difference between temperature variations calculated with (3.5-14) 
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and those given by the real system. The optimal solution is obtained by a Matlab least square 

solver which uses the interior-point algorithm, with the method of Lagrange multipliers for 

determining the solution convergence.  

In a second step, corresponding to the inverse problem, injected powers are calculated 

from temperature measurement on the real system. To realize such inversion, despite the 

noise on measurements, input powers are also identified by using a LSM as shown in Fig.3-

28. The main objective of the algorithm is here to find the vector [𝑃] that minimize JMco 

while the model is defined by the previous defined F(a,b). 

In this problem, additional linear constraints were imposed to the solution so that the heat 

dissipated in GaN device is only supposed to change between 1W and 10 W. Our real system 

model is perfectly known as it is a 3D numerical one. 

To evaluate the robustness accordingly to temperature measurement noises in a real 

system, temperatures obtained from the 3D FE models were corrupted with additive 

normally distributed random noise with zero mean and maximum deviation of 0.1 ℃. More 

sophisticated models are required when the deviation is larger than 0.1 ℃. 

3.5.3. Dissipated Power Prediction 

Simple linear IHCM could be used when only one parameter such as the value of the 

dissipated power of a heat source P(W) has to be estimated.  

Firstly, the 3D FE model of PCB structure is built. In this 3D model, the temperature 

measurements are located at different distances of the die on the top layer of the PCB. A first 

step as described in  Fig.3-27 gives the direct model relationship between [𝑑𝑇𝑚𝑜] and P for 

our system. A known injected power used in the direct model identification is imposed 

(namely 1.73 W in the following figures) and temperature [𝑑𝑇𝑚𝑒𝑠] on 5 or 10 points of the 

top layer are extracted from the 3D model. As previously explained, a normally distributed 

random noise with zero mean and maximum deviation of 0.1 ℃ is added to each temperature. 

The model of LSM is shown in (3.5-15). 

JMco = ∑(|[𝑑𝑇𝑚𝑜] + 𝛼 − [𝑑𝑇𝑚𝑒𝑠]|)2   (3.5-15) 

From this set of data, inverse problem methodology described in Fig.3-28 is then applied. 

This problem inversion is realized 1000 times, with new noises values for each trial. 

 

Fig.3-29. Power prediction with 5 temperature sensors (Annex A) 
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Fig.3-29 and Fig.3-30 give the power calculated by inverting the problem for 5 and 10 

measurement points on the PCB top layer, respectively. According to curve fitting tools and 

LSM in Matlab, F(a,b) = [3.917 0.014 0.008 0.004 1.604] for the chosen 5 points of interest 

and equals to [3.917 0.014 0.008 0.004 1.604 0.807 0.425 1.972 0.998 2.263] for the chosen 

10 points of interest. 

3D FEM simulation results as references are presented in Fig.3-31. Dissipated power in 

the embedded GaN chip is 1.73 W. Heat convection coefficient between the top surface of 

the structure and the air is considered as 15 W/(m2K). The bottom of this PCB structure is 

assumed to be attached to a heatsink and the ambient temperature 20 ℃. For example, five 

chosen points on the top of the PCB structure for measuring temperatures [dTmes] are 

indicated in red color.  

 

Fig.3-30. Power prediction with 10 temperature sensors (Annex B) 

 

Fig.3-31. Temperature measurements on the top surface of PCB structure by 3D FEM simulations 

Comparison between the predicted input power and the really injected one in the 3D 

simulations reveals a good agreement with an acceptable error within 5 %. It is noticed that 

the average power calculated over the 1000 trials is closer to the real one when the number 
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of measurement points is higher: 1.715 W instead of 1.68 W compared to the 1.73 W really 

injected. 

 

Fig.3-32. Power predictions in 2 embedded GaN dies with 5 temperature sensors (Annex C) 

The methodology could also be used to predict the dissipated powers of more than one 

heat source. For example, Fig.3-32 depicts the results for a PCB structure with two heating 

GaN chips embedded in the PCB substrate. In this new configuration, errors on the two 

injected power are less than 10 % for a 5 sensors temperature measurement. 

Benefit of this power prediction method is that it can provide a quick estimation of 

dissipated power even for embedded devices. The prediction accuracy could be improved 

by increasing the number of temperature measurement points or by developing more 

sophisticated DHCMs and IHCMs. For example, one can increase the number coefficient 

parameters such as structure dimensions, relative chip position and material properties of 

different components when creating the models with higher accuracy. 

3.5.4. Dissipated Power and Thermal Conductivity Prediction 

According to (1.4-11), temperature variation depends not only on the dissipated power, 

but also on the thermal conductivity of the PCB substrate fabricated by woven fiberglass or 

laminated cotton paper. But its value is not provided by manufacturers. Therefore, estimation 

of the substrate thermal conductivity could help to identify the thermal resistance of PCB 

substrate and to choose appropriate thermal management solutions. 

For this purpose, the determination of DHCM parameters algorithm described in Fig.3-

27 is used with two input parameters which are the input power and the material thermal 

conductivity. In this first step, a collection of values for P and 𝜆FR4 are applied and F is 

defined as a function of 𝜆FR4 and P. Due to the inverse proportionality of the thermal 

resistance with 𝜆FR4, the chosen fitting function over this parameter is non-linear. Developed 

relationship between P and 𝜆FR4 for LSM calculations in Matlab is described in (3.5-16). 

dTmo = a0 + a1 ∙ (logP) + b1 ∙ (logλth) + a2 ∙ (logP)2
 

+c1 ∙ (logP)(logλth) + b2(logλth)2
      (3.5-16) 

where 𝑎0 , 𝑎1 , 𝑎2 , 𝑏1 , 𝑏2 and 𝑐1  are unknown model coefficients. With the function 

resulting from the first stage, the inverse problem methodology described in Fig.3-28 is 

applied. As previously, a known injected power chosen to be different from the set of power 

used in the direct model identification is imposed (namely 5.79 W), and the thermal 
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conductivity of the PCB substrate is fixed in the 3D model to 0.62 W/mK. This problem 

inversion is done 1000 times with new noises values added to the temperature measurement 

for each trial. 

 

Fig.3-33. Power prediction for IHCM with two unknown system parameters (Annex D) 

Results are presented in Fig.3-33 and Fig.3-34. Ten points on the surface in the region of 

interest have been chosen for temperature measurements. The results demonstrate a high 

accuracy on the predicted value of the dissipated power in the GaN chip as well as on the 

thermal conductivity of the PCB. 

 

Fig.3-34. Prediction of thermal conductivity of the PCB substrate for IHCM with two unknown system parameters 

(Annex D) 

To save unnecessary cost by using less temperature sensors or less data collections by 

infrared thermography, inverse model calculation with just 6 points of interest on the top 

layer of the PCB were realized. The results are presented in Fig.3-35 and Fig.3-36. 

It is shown here that IHCMs could accurately predict system parameters even with less 

points of measurement in the region of interest. This can lead to the simplification of thermal 

measurements in a test bench. 
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Fig.3-35. Power prediction with less temperature sensors (Annex D) 

 

Fig.3-36. Thermal conductivity prediction with less temperature sensors (Annex D) 

3.6.  SUMMARY  

In this chapter, a manufacture guideline of the thermal vias has been proposed and the 

design of thermal vias has been optimized by the via parameters. This optimization is based 

on the theoretical analysis of the thermal resistance of the total PCB structure. The 

assumption of one-dimension heat conduction provides us the basis to develop the function 

of the total thermal resistance and then to normalize the via parameters into dimensionless 

form. This normalization procedure facilitates the discussions about the influences of each 

via parameter on the cooling effects.  

Then according to the 3D FEM, impact of each via parameter such as the ratio of via-

cluster surface, the ratio of via diameter, the ratio of via plating thickness as well as the via 

pattern formed by multiple vias has been analyzed to observe the reduction of the total 

thermal resistance. And the test bench has been established to validate simulation predictions. 

It is found that this cooling solution by creating thermal vias is efficient to enhance the 

thermal performances of the PCB structures by increasing the thermal conductivity of the 

PCB substrate. For limited pad surface, in order to obtain smaller thermal path, larger via-
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cluster surface ratio, via diameter ratio as well as larger ratio of via plating thickness are 

preferred. And for further thermal performance improvement, PCB copper thickness could 

be increased to enhance the lateral heat flux along the copper layer at the same time. 

In addition, in consideration of the long time cost for power loss measurement, the 

conception of inverse thermal models for power loss prediction have been proposed. The 

purpose is to give a fast power loss estimation of the heat source embedded in the PCB 

substrates so that we can choose appropriate thermal management solutions according to the 

dissipated power. 3D simulations based on a simple PCB structure have proved that this 

conception is feasible by the temperature distribution on the structure surface to realize a 

temperature-to-power mapping.
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CHAPTER 4. THERMOELECTRIC COOLING 

4.1.  INTRODUCTION 

Creating thermal vias is an effective method in cooling down the total PCB structures as 

demonstrated in previous studies. But in consideration of their drawback due to their 

electrical conducting property, as well as the decrease of available electrical routing spaces 

of the pad layer, another solution by using thermoelectric cooling devices has been proposed 

due to its operation facility. 

As shown in Fig.4-1 and Fig.4-2, the cooling solution with Peltier devices beside the 

heating source for the PCB structures has been proposed. Thermoelectric cooling (TEC) by 

Peltier modules differs from thermal vias in the way of cooling electronic components 

directly by forcing lateral heat flux along the top PCB copper layer in certain configurations, 

and the heat will be drawn by the TEC devices, and then transferred into environment.  

 

Fig.4-1. PCB structure with Peltier modules 

 

Fig.4-2. One element of a TEC device 

According to the thermoelectric theory previously described in (1.4-18) to (1.4-22), it 

exists two working possibilities for Peltier devices: heat pump mode and heat engine mode 

[171]. Their difference lies in the electric power sign. An electric power is supplied to the 

Peltier device during the heat pump mode, and an electric power is generated during the heat 

engine mode. The comparisons of the two operating modes concerning the direction of 

energy flow are drawn in Fig.4-3. Qh (W) is the heat pumped into or flowing out of the hot 

reservoir, Qc (W) is the heat pumped out of or flowing into the cold reservoir, Qed (W) 

corresponds to the work done by the Peltier or by the heat engine, depending on its working 

mode.  
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Fig.4-3. Working mode of the Peltier device 

In heat pump phase, electrical power is supplied into the Peltier device. This input power 

equals the rate at which the Peltier does work to pump heat out of the cold reservoir and into 

the hot one. By contrast, in heat engine phase, heat flows out of the hot reservoir and part of 

it is converted to electrical energy. This generated power equals to the rate at which the 

Peltier does work on the electric load. 

Here, in cases of cooling the PCB substrates, heat pumping mode will be applied. In fact, 

the input power Qed gives the heat pump rate. The cold reservoir absorbs heat energy of the 

structure and releases it by flowing into the hot side, then into the environment. Therefore, 

an important criterion called Coefficient of Performance (COP) can be derived as in (4.1-1). 

This coefficient enables to choose a suitable Peltier device and to assess its cooling 

efficiency. Maximum power dissipation of TEC devices is limited to several tens of watts, 

and the COP is usually less than one in applications.  

𝐶𝑂𝑃 =
𝑄𝑐

𝑄𝑒𝑑
     (4.1-1) 

This chapter is dedicated to evaluate the cooling performances of Peltier devices applied 

for PCB structures. Firstly, the influences of different Peltier parameters will be studied 

based on the 3D FEM analysis. Then, a 1D electro-thermal resistance network of the cooling 

structure according to the heat conduction assumption will be developed in order to give a 

fast estimation of the junction temperature and also of the cooling efficiency. Thirdly, the 

experimentations have been carried out to validate the 3D and 1D thermal models. Finally, 

the cooling performances of the TEC devices will be discussed to optimize their usage so 

that we can maximize the COP values for designed junction temperature.     

4.2.  3D FEM ANALYSIS 

The cooling performances of the TEC devices are related to their input current, number 

of Peltier element in series Np and their placement on the PCB surface. The optimum applied 

current, Np, and the size of the TEC device are usually fixed by manufacturers and can be 

found in the datasheet of the product.  
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In this part, influences of different Peltier parameters such as the number of Peltier 

elements Np, their position beside the chip dgp (mm) as well as the copper thickness ec (mm) 

on the PCB substrate will be discussed at first based on the 3D FE models of the cooling 

structure (Fig.4-1).  

3D FEM simulations are performed with COMSOL Multiphysics which allow to build 

models coupling thermal and electrical domains based on the thermoelectric effects. This 

3D FEM is used to solve the system of thermoelectric equations providing values for 

temperature distribution, thermal flux, temperature gradient, and voltage distribution. For 

the following simulations, Peltier element parameters (Fig.4-2(a)) are defined in Table 4.1. 

For the PCB substrate, material properties are the same as in previous sections (see Table 

3.1). A heat dissipation of 1 W in the chip and an equivalent convection heat-transfer 

coefficient of 15 W/(m2K) from all external surfaces (except the bottom layer and the top 

TEC plate) to the ambient are applied. The ambient temperature is supposed to be 25 ℃. 

The bottom copper layer and the TEC top plate are assumed to be attached to heatsinks and 

are considered as isothermal. 

Table 4.1. Peltier element parameters 

Part Material Height (mm) Width (mm) Depth (mm) 

Hot or Cold Side Alumina 0.2 3 2.5 

PN Junction Bi2Te3 1.5 1 1 

Copper-Hot side Copper 0.1 1 1 

Copper-Cold side Copper 0.1 2.5 1 

It is known that large temperature rise produces thermomechanical stresses in 

components due to the differences in the Coefficient of Thermal Expansion (CTE) of the 

different used materials [172], which may lead to cracks at interfaces of materials with 

different CTE. Two TEC devices are applied beside the GaN chip to guarantee a temperature 

uniformity over the chip attachment surface.  

4.2.1. Placement of The Peltier Device dgp and Number of Peltier Elements Np 

It is a common sense that the cooling device should be as close as possible to the heating 

component. But the sensitivity of the thermal performances to TEC modules position is 

unknown. So, it is important to identify the influence of the distance between GaN transistor 

and TEC device to see whether it is a critical design parameter or not. Thermal simulation 

results for a 3D model with 3 pairs of Peltier elements per module are presented in Fig.4-4. 

It is obvious that the temperature distribution on the PCB substrate around the heating source 

is more uniform with lower temperature when dgp is smaller. Fig.4-5 depicts the evolution 

of the average thermal resistance of the PCB substrate Rthc (K/W), which is calculated as the 

ratio of the temperature difference between the GaN bottom surface and the ambient 

temperature divided by the GaN dissipated power. 

It is seen that the distance dgp between GaN and Peltier modules greatly affects the 

equivalent thermal resistance. This can be explained because the heat flux drawn by the TEC 

modules flows laterally in the top copper layer. As the distance dgp increases, the lateral 

thermal resistance of this path increases as well. This means that for dissipating the same 

heat flux from the heat source, without consideration of the heat spreading effect, the 

temperature difference between the GaN bottom surface and the TEC bottom plates will be 

increased with larger distance dgp. 
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Fig.4-4. Examples of 3D FEM simulations for PCB structures with different distance between the chip and the Peltier 

devices. A heat dissipation of 1 W in the chip, an equivalent convection heat-transfer coefficient of 15 W/(m2K) from all 

external surfaces (except the bottom layer and the top TEC plate) to the ambient, a copper thickness ec of 500µm on the 

top of the PCB substrate and an optimum input electric power of 0.4 V in the Peltier modules are applied. The ambient 

temperature is at 25 ℃. 



CHAPTER 4. THERMOELECTRIC COOLING 

75 

 

 

Fig.4-5. Thermal resistance evolution following the distance dgp. A heat dissipation of 1 W in the chip, an equivalent 

convection heat-transfer coefficient of 15 W/(m2K) from all external surfaces (except the bottom layer and the top TEC 

plate) to the ambient and a copper thickness ec of 500µm on the top of the PCB substrate are applied. The ambient 

temperature is at 25 ℃. 

In addition, it can be noticed that the number of Peltier elements is a critical parameter 

regarding the equivalent thermal resistance value as it defines the maximum heat flux that 

can be drawn by the TEC module. But more electrical power is consumed when the optimum 

cooling effect is achieved with more Peltier elements.  

4.2.2. Copper Thickness on The PCB Substrate 

Then, effect of top copper layer thickness for the PCB assembly with TEC modules (6 

Peltier elements per side, dgp equals 7 mm) is analyzed. As we can see in Fig.4-6, the 

equivalent thermal resistance varies significantly with the copper thickness. But we can also 

notice that the variation is less for higher copper thickness. 

Besides, it has been proven in chapter 3 that the well-known via technology could not 

compete with DBC substrate in thermal performances even if the lateral thermal diffusion is 

increased in PCB by using thicker copper layers (Fig.3-21). Here, TEC devices provide a 

way to reach the DBC thermal performances by combining their cooling effect with that of 

the high top layer copper thickness. This is shown in Fig.4-6, where a PCB and DBC 

structures with the same breakdown voltages are compared. In this example, it is found that 

an enhanced PCB substrate with 6 Peltier elements demonstrates higher thermal 

performances than DBC when its copper thickness is beyond 300 µm. 

In a word, the design of PCB substrate with thermoelectric cooling is therefore an 

optimization between the TEC number of elements Np, the placement of these modules dgp 

and the top layer copper thickness ec. Indeed, optimization of TEC modules is difficult to 

achieve as the dimensions and the number of Peltier elements are fixed by the manufacturers. 

The optimization is therefore largely constrained.  
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Fig.4-6. Thermal performance comparison between PCB and DBC structures. A heat dissipation of 1 W in the chip, an 

equivalent convection heat-transfer coefficient of 15 W/(m2K) from all external surfaces (except the bottom layer and the 

top TEC plate) and an ambient temperature of 25 ℃ are applied. 

4.2.3. Modeling of The Peltier Device CP39236H 

Previous concise analysis of the Peltier parameters gives us a general conscience of the 

influences of each part on the total cooling structure. The Peltier device CP39236H provided 

by CUI Inc. has been applied in the PCB cooling. Device dimensions and Peltier parameters 

to create the 3D FE models are presented in Fig.4-7 and Table 4.2.  

 
Fig.4-7. 3D model of Peltier device CP39236H 

Table 4.2. Peltier element parameters and ceramic substrate dimensions of each side 

Part Material Height (mm) Width (mm) Depth (mm) 

PN Pellet Bi2Te3 1.6 1 1 

Hot side Copper 0.4 1 1 

Cold side Copper 0.4 2.5 1 

Substrates Al2O3 0.6 20 20 

3D FEM simulations have been executed as shown in Fig.4-8. It depicts an example of 

simulated result for the 3D model of the product CP39236H. 
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Fig.4-8. A simulated example for the 3D FEM model of product CP39236H  built in COMSOL with the input current I 

equaling 1.56 A, the temperature of the cold side Tc equaling 20 ℃, the temperature of the hot side Th equaling 50 ℃.    

For designed cooling structures, absorbed heat Qc (W) of the Peltier modules depends on 

the input electrical power Qed (W), and also on the temperature difference dT (℃) between 

hot and cold reservoirs. For example, the relationship between input power, dT and absorbed 

heat Qc is presented in Fig.4-9 and Fig.4-10. Fig.4-11 depicts the relationship between the 

COP and the input current for fixed temperature Th of the hot side. And these 3D FEM 

simulation results correspond to the datasheet (see in Fig.4-12) given by the manufacturer 

[173]. For certain input power, the heat absorption Qc could be calculated or found according 

to the function diagrams in Fig.4-9 and Fig.4-10 by measuring the temperature Th and Tc. 

The good agreement between the datasheet characteristics (Fig.4-12) and the 3D FE 

models of the product CP39236H (Fig.4-9 and Fig.4-10) have been considered sufficiently 

to be used in the following cooling structure 3D FE model. The cooling effect of Peltier 

modules for the same previous PCB structure (Fig.3-23) is shown in Fig.4-13. Here, heat 

source in the bare die is 10 W. The ambient temperature is 25 ℃. Compared to the cooling 

effect shown in Fig.3-24, Peltier modules are more efficient with the appropriate electrical 

current Iin (A). With TEC devices, the equivalent thermal resistance of the total PCB structure 

is controllable and changeable depending on Iin according to the desired cooling effect. For 

higher heat dissipation, one solution is to apply more powerful Peltier modules with more 

Peltier elements. Another solution is to increase the top PCB copper thickness ec when using 

Peltier devices. 

However, Peltier modules consume a lot of electrical power to reach the required power 

dissipation. Such high power flow corresponds to low values of COP of such devices. COP 

performances of the studied device according to Iin and dT are shown in Fig.4-11. For 

example, when Th is 50 ℃ and dT equals 50 ℃, an electrical power of 18.33 W is required 

to get 4 W of heat power pumped from the cold side corresponding to a performance factor 

COP of 0.22. Besides, it is found that there is an optimum value of COP and the COP is 

maximum at the lowest temperature difference dT. Therefore, from the point-of-view of an 

optimum performance of the cooling system, temperature difference between the object and 

the heat sink should be kept as low as possible.  
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In addition, the 3D FEM simulations are time consuming due to the coupling effects 

between the thermal and electrical domain. For each simulation, it takes at least half an hour 

even though with a coarse mesh of the structure. Therefore, it is proposed to develop a 1D 

thermal resistance network of the designed cooling structure in steady state so that we can 

quickly assess the TEC cooling efficiency in order to provide a guideline for active junction 

temperature control with optimum COP value. 

 

(a). Th = 50 ℃                                                                                               (b). Th = 27 ℃ 

Fig.4-9. Simulation results of the input voltage versus temperature difference        

 

(a). Th = 50 ℃                                                                                               (b). Th = 27 ℃ 

Fig.4-10. Simulation results of the heat absorbed versus temperature difference     

 

(a). Th = 50 ℃                                                                                               (b). Th = 27 ℃ 

Fig.4-11. Simulation results of the relationship between COP and input current 
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Fig.4-12. CP39236H performances from datasheet [173] 
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Fig.4-13. Cooling performances of Peltier modules for PCB structures 

4.3.  1D ELECTRO-THERMAL MODELING 

The schematic of the proposed cooling configuration is shown in Fig.4-14. Peltier devices 

are put beside the heating source with a distance ljp (mm). Based on the cooling mechanism 

of the Peltier effect, heat flux will be firstly forced along the copper layer on the PCB 

substrate, then passing through the Peltier devices, finally into the ambient. So almost all the 

heat flux will be evacuated upward due to the poor thermal conductivity of the material FR4. 

To facilitate the thermal analysis, a heating resistor (7.9mm×8.5mm×2.8mm) and only the 

copper layer (100mm×100mm×300µm) on the top of the PCB substrate will be applied. 

Power supply for the heating resistor will represent the total power loss of certain power 

modules needed to be dissipated. In this case with thick copper layer, the PCB substrate layer 

in FR4 is omitted here because of its worse thermal conductivity compared to copper, as 

well as the upward thermal path for the designed cooling structure.  

 

Fig.4-14. Schematic of proposed cooling structure with Peltier devices beside the heating source 

Three different Peltier device products provided by CUI Inc. have been applied with 

Peltier element array of 12×12 for CP39236H and CP30238 [173, 174], 8×8 for CP60133 

[175], respectively. As previously mentioned, the commonly used material for Peltier 

elements is Bismuth Telluride (Bi2Te3) and the material thermoelectric properties vary with 

carrier concentration depending on manufacture process [176]. However, the detailed 
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thermoelectric properties of Seebeck coefficient Se (V/K), electrical resistivity 𝜌 (Ω⸳m), 

thermal conductivity 𝜆th (W/mK) and geometric factor G are difficult to obtain directly from 

the datasheet. Fortunately, device parameters of equivalent Seebeck coefficient Sm (V/K), 

equivalent electrical resistance Rm (Ω) and equivalent thermal conductance 𝜆m (W/K) are 

obtainable with product specifications on the datasheet such as ∆Tmax, Imax, Vmax, Qmax and Th 

[147, 176]. According to the datasheet, ∆Tmax (K) is the largest temperature between Tc and 

Th; Imax (A) is the maximum input current at ∆Tmax; Vmax (V) is the voltage at ∆Tmax and Imax; 

Qmax (W) is the maximum amount of the heat absorbed by the cold side at Imax and ∆T = 0 ℃. 

Equations (4.3-2) to (4.3-7) give us the correlations of equivalent device parameters. 

𝑅𝑚 =
2 ∙ 𝑁 ∙ 𝜌

𝐺
       (4.3-2) 

𝜆𝑚 = 2 ∙ 𝑁 ∙ 𝜆𝑡ℎ ∙ 𝐺     (4.3-3) 

𝑆𝑚 = 2 ∙ 𝑁 ∙ 𝑆𝑒      (4.3-4) 

𝑅𝑚 =
(𝑇ℎ−∆𝑇𝑚𝑎𝑥) ∙ 𝑉𝑚𝑎𝑥

𝑇ℎ ∙ 𝐼𝑚𝑎𝑥
     (4.3-5) 

𝜆𝑚 =
(𝑇ℎ−∆𝑇𝑚𝑎𝑥) ∙ 𝑉𝑚𝑎𝑥 ∙ 𝐼𝑚𝑎𝑥

2 ∙ 𝑇ℎ ∙ ∆𝑇𝑚𝑎𝑥
    (4.3-6) 

𝑆𝑚 =
𝑉𝑚𝑎𝑥

𝑇ℎ
      (4.3-7) 

Details of the applied Peltier devices in this work are listed in Table 4.3. Thermoelectric 

material properties of Bi2Te3 such as thermal conductivity 𝜆𝑡ℎ, Seebeck coefficient Se and 

electrical conductivity 𝜎 (S/m) are then obtainable with geometric parameters (Table 4.2). 

The material properties are presented in Table 4.4. These device parameters and material 

properties will be applied into the 1D and 3D thermal simulations in the following sections. 

Table 4.3. Dimensions and calculated parameters of Peltier devices 

Parameters CP39236H CP30238 CP60133 

Dimensions 

(mm) 
20×20×3.6 20×20×3.8 15×15×3.3 

Peltier 

elements N 

144 144 64 

∆Tmax (K) 70 72 72 

Imax (A) 3.9 3 6 

Vmax (V) 8.8 8.6 3.8 

Qmax (W) 18.7 16.7 13.6 

Th (K) 300.15 323.15 323.15 

Sm (V/K) 0.0293 0.0266 0.0118 

Rm (Ω) 1.73 2.23 0.49 

𝜆m (W/K) 0.188 0.139 0.123 

 

Table 4.4. Thermoelectric material properties 

Material 

Thermal 

conductivity 

(W/mK) 

Electrical 

conductivity 

(S/m) 

Seebeck 

coefficient 

(V/K) 

Copper 400 -- -- 

Al2O3 238 -- -- 

Bi2Te3 2.1 1.33e5 2.1e-4 

 

4.3.1. 1D Modeling of The Cooling Structure 

Based on (4.3-2)(4.3-3)(4.3-4), previous Peltier equations (1.4-18) to (1.4-22) can be 

recast into the following form as (4.3-8)(4.3-9)(4.3-10)(4.3-11). Here, Qpc (W) represents 
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unexpected Joule loss of the designed structure in wire bondings, solder, etc. In fact, Qpc is 

a coefficient to compensate the thermal model.  

𝑄𝑐 = 𝑆𝑚 ∙ 𝐼 ∙ 𝑇𝑐 −
1

2
∙ 𝐼2 ∙ 𝑅𝑚 − 𝜆𝑚 ∙ ∆𝑇 − 𝑄𝑝𝑐   (4.3-8) 

𝑄𝑒𝑑 = 𝑆𝑚 ∙ 𝐼 ∙ ∆𝑇 + 𝐼2 ∙ 𝑅𝑚     (4.3-9) 

  𝑄ℎ = 𝑆𝑚 ∙ 𝐼 ∙ 𝑇ℎ +
1

2
∙ 𝐼2 ∙ 𝑅𝑚 − 𝜆𝑚 ∙ ∆𝑇 + 𝑄𝑝𝑐  (4.3-10) 

   𝑉𝑚 = 𝑆𝑚 ∙ ∆𝑇 + 𝐼 ∙ 𝑅𝑚      (4.3-11) 

By thermal to electrical analogy shown in Table 4.5, a representative thermal resistance 

network in steady state for the total structure with Peltier devices (Fig.4-14) has been created 

with Matlab Simulink as shown in Fig.4-15. 

Table 4.5. Thermal to electrical analogy 

Thermal quantities Units Electrical quantities Units 

Heat Q W Current I A 

Temperature T K Voltage V 

Thermal resistance Rth K/W Resistance R Ω 

 

 

Fig.4-15. Thermal resistance network of the studied structure 

where, Ta (K) is the ambient temperature; Tj (K) is the junction temperature; Rhc (K/W) is 

the thermal resistance representing the heat leakage due to heat convection effect; Rjp (K/W) 

is the lateral thermal resistance between the Peltier devices and the heating source; Rhs (K/W) 

is the thermal resistance of the heat sink and the cylinder duralumin column for power loss 

measurement.  

As previously mentioned, thermal resistance for heat conduction can be derived by (4.3-

12)(4.3-11). 

𝑅𝑡ℎ =
∆𝑇

𝑄
=

𝑒

𝜆𝑡ℎ∙𝐴
    (4.3-12) 

where, ∆𝑇 is the temperature difference between the studied object or layer; e (m) is the 

thickness or length of material as heat flow path; A (m2) is the cross-section area, 

perpendicular to the heat flow path. 

Based on (4.3-12), Rhs equals to 0.21 ± 0.05 K/W. The lateral thermal resistance Rjp 

depends on the distance between the Peltier devices and the heating source ljp. As shown in 

Fig.4-16, ljp has been separated into lumped elements e1 (mm), e2 (mm) and e3 (mm) in 

consideration of the heat spreading effect. Empirically, the constant spreading angle is 

assumed to be 45° [177]. By calculation based on (4.3-12), Rjp varies approximately from 4 

K/W to 8 K/W respect to the distance from 18 mm to 25 mm.    
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Fig.4-16. Top view for heating resistor and Peltier devices 

 

 

Fig.4-17. An example of 3D FEM simulation for the designed cooling structure and its section view. The PCB structure 

is put on a duralumin column for power loss measurement. The bottom side of the column is set at 25 ℃. Heat power in 

the heat source Pheat = 7.6W and the input current in each Peltier device is 1.5 A. 

Then, in order to define the thermal network components Rhc and Qpc, comparisons of the 

simulation results between 1D and 3D have been carried out for the same cooling structure. 

3D FE models of the proposed cooling structure have been built with COMSOL as shown 

in Fig.4-17. Same geometric Peltier parameters in Table 4.2 and material properties in Table 

4.4 have been applied.  

4.3.2. 1D and 3D Simulation Results and Discussions 

Sophisticated 3D models are precise but time-consuming for 3D FEM simulations due to 

the relative small meshes for the Peltier elements and the coupling effects between thermal 

and electrical domains. In contrast, simplified 1D thermal resistance network is fast and 

concise. However, there exists a trade-off between the fast 1D calculations and its simulation 

accuracy. Therefore, by comparing simulation results in use of the two methods, this section 

is dedicated to find out the undefined values of the thermal components Rhc and Qpc in order 

to complete the previous built analytical model (Fig.4-15). The purpose is to develop a 1D 

thermal resistance network so that we can carry out a fast estimation of the thermal 

performances as well as the cooling efficiency in steady state. Fig.4-18 represents the 1D 

thermal model of the total cooling structure (Fig.4-15) built with Simulink.   



CHAPTER 4. THERMOELECTRIC COOLING 

84 

 

 

Fig.4-18. 1D electro-thermal model of the cooling structure built by Matlab Simulink 

Thermoelectric material properties listed in Table 4.4 are firstly considered as constant 

for thermal simulations. With the same boundary condition of the ambient temperature Ta 

equaling to 25 ℃, simulation results of estimated junction temperatures for different 

dissipated power are shown in Fig.4-19. 

Firstly, as we can see in Fig.4-19.(a) and Fig.4-19.(c), junction temperature Tj of the 

heating resistor can be reduced by 20 ℃ when feeding the Peltier modules with a proper 

input current. These figures show that junction temperature is controllable with quick and 

silent operation of Peltier devices. In other words, from the point view of cooling power 

modules, the Peltier devices provide the possibility to control the thermal resistance of the 

total structure, especially for PCB structures. 

Secondly, modeling errors for junction temperature predictions between 1D and 3D are 

less than 10 % (±4 ℃) when heat leakage due to the thermal resistance Rhc is equal to 5 times 

Rjp and unexpected Joule loss Qpc equals to 0.65 times the Joule heating of Peltier devices 

I2Rm (W). Meanwhile, errors for cooling efficiency estimations of COP between two models 

are smaller than 0.2 as shown in Fig.4-19.(b) and Fig.4-19.(d). From these results, the 1D 

thermal network of the total cooling structure as shown in Fig.4-15 can be completed with 

pre-calculations (Rjp, Rm, 𝜆𝑚, Sm) and approximate components values (Rhc, Qpc) according 

to the 3D thermal simulations. 

Thirdly, the cooling efficiency of Peltier device is represented by its COP value, defined 

as the ratio of the absorbed heat power Qc to the input electrical power Pin. It decreases as 

the applied DC current increases. And COP value depends on the desired junction 

temperature as well as the heat power loss to be dissipated. For example, for dissipating 5 W 

from the heating source and keeping Tj at 30.4 ℃, COP is about 1.45, consuming 3 W of 

electrical power. But for keeping Tj at 21 ℃ when dissipating the same 5 W heat power from 

the heating source, COP equals 0.27, consuming 18 W of electrical power, which is more 

than 3 times the dissipated power. This is the main drawback of Peltier devices with low 

COP. 



CHAPTER 4. THERMOELECTRIC COOLING 

85 

 

 

Fig.4-19. Thermal simulations for 1D analytical and 3D FE models. (a). Junction temperature profile Tj (I) when 

dissipating 5 W from the heating source; (b). Cooling efficiency profile COP (I) when dissipating 5 W from the heating 

source; (c). Junction temperature profile Tj (I) when dissipating 7.6 W from the heating source; (d). Cooling efficiency 

profile COP (I) when dissipating 7.6 W from the heating source. The ambient temperature is 25 ℃. 

In addition, for each input current I (A), 3D FE model needs at least 25 minutes for 

calculation. By contrast, the 1D thermal resistance network requires at most 5 minutes for 

all values of input current I varying from 0 A to 3 A. Despite the limited accuracy of the 1D 

thermal model, its simplicity is useful to provide fast estimations.  

Here, as the same material Bi2Te3 is used for fabricating all different Peltier devices, only 

3D simulation results for CP39236H have been compared to validate the 1D thermal 

resistance network in order to avoid repeating long time-consuming simulations. Therefore, 

for the following sections, the approximated relations between Rhc and Rjp, as well as the 

relationship between Qpc and I2Rm will be applied in the 1D models for the different Peltier 

devices. More studies in the next sections will be devoted to optimize the application of 

Peltier devices to obtain a desired junction temperature for different dissipated heat power. 

4.4.  EXPERIMENTAL VALIDATION 

4.4.1. Test Bench 

Based on the schematic of the total cooling structure (Fig.4-1), a test bench has been 

established as shown in Fig.4-20 to validate previous thermal models, especially the 1D 

thermal models. The heat is firstly forced along the copper layer from the heating resistor to 

the Peltier devices and then dissipated to the duralumin column by thermal conduction and 

finally to the ambient by natural convection. The top side of this cooling structure is covered 

with a glass wool to avoid the heat convection with the air. Junction temperature Tj is 

measured by using a thermocouple and column temperatures with two PT100 platinum 

resistance (RTD). In order to obtain the cooling efficiency COP of the Peltier device by (1.4-

17), its pumped power Qed, equivalent to its consumed electrical power Pin, and also the total 

evacuated heat power Qh are needed. Pin is measured by voltmeter and amp meter and Qh is 

measured based on the calorimetric method.  



CHAPTER 4. THERMOELECTRIC COOLING 

86 

 

It is assumed that all power loss will pass through the column by heat conduction. Fig.4-

21 depicts the calorimetric method used for power loss measurement in this case. So Qh is 

obtained by measuring temperature difference between the two RTDs ∆TRTD. The thermal 

resistance between the two RTDs Rth_du has been previously determined and is equal to 0.187 

K/W. 

Different current I varying from 0 A to 2.5 A has been input into the Peltier devices 

CP39236H to obtain the variation tendency of the junction temperature and to assess their 

cooling performances. It is noted that each measurement should be carried out when the 

thermal system achieves its steady state. Note that it takes one hour to stabilize each 

measurement. 

 

Fig.4-20. Test bench for validating the thermal models of the PCB structure with Peltier devices 

 

Fig.4-21. Power loss measurement based on calorimetric method with duralumin column 
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4.4.2. Results and Discussions 

In fact, thermoelectric properties such as Seebeck coefficient Se, thermal conductivity 𝜆th 

and electrical resistivity 𝜌 are temperature interdependent. Besides, the three properties have 

also been proved to be tightly coupled with each other [143, 144]. Therefore, previous 

constant values calculated from the product datasheet are no longer reasonable to be applied 

for comparing the estimated responses with the experimental ones. Due to the lack of real 

values of the three properties from the product datasheet, here in our cases for thermal 

estimations, the Peltier figure-of-merit ZT value is fitted by a second degree polynomial 

using Matlab, from 0.5 to 2 for a temperature interval from 300 K to 400 K.  

Variations of junction temperature Tj and COP profile for CP39236H, CP30238 modules 

are shown in Fig.4-22 and Fig.4-23, respectively. For 1D and 3D model, ambient 

temperature is assumed to be constant equal to 25 ℃. The plotted curve corresponding to 

the measured values are calculated by averaging five measurements. It is noted that 3D FEM 

simulation gives predictions of the junction temperature with an error less than 1 % (± 1℃). 

By contrast, the 1D thermal resistance model gives a higher prediction error which is less 

than 10 % (± 4 ℃) on the whole current interval. This difference is mainly attributed to the 

errors between 3D and 1D models as observed from Fig.4-19. Besides, the errors of COP 

values between the 1D model and experimentations are also less than 10 % (± 0.1). Therefore, 

with an accuracy tolerance of 10 % for the predictions of the junction temperature as well as 

the COP values, 1D thermal models can be validated and applied. 

 

Fig.4-22. Experimental and estimated results with Peltier devices CP39236H. (a). Junction temperature profile Tj (I) 

when dissipating 5 W from the heating source; (b). Cooling efficiency profile COP (I) when dissipating 5 W from the 

heating source; (c). Junction temperature profile Tj (I) when dissipating 7.6 W from the heating source; (d) Cooling 

efficiency profile COP (I) when dissipating 7.6 W from the heating source. The ambient temperature is 25 ℃. 
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As we can see in Fig.4-23.(a), for the Peltier device CP39236H with 72 pairs of Peltier 

elements (N = 288), the optimum cooling effect is achieved when Pin is about 15 W (±1 W). 

The junction temperature Tj decreases from 66.6 ℃ to 46.6 ℃ when dissipating 8 W from 

the heating source, from 55.5 ℃ to 35.8 ℃ when dissipating 6 W and from 40.5 ℃ to 23 ℃ 

when dissipating 3.3 W, respectively. The junction temperature can be reduced by 20 ℃ at 

the optimum point. 

 

Fig.4-23. Experimental and estimated results with Peltier devices CP39236H and CP30238. (a). Junction temperature 

profile Tj (Pin) with CP39236H; (b). Cooling efficiency profile COP (Pin) with CP39236H; (c). Junction temperature 

profile Tj (Pin) with CP30238; (d) Cooling efficiency profile COP (Pin) with CP30238. The ambient temperature is 25 ℃. 

By contrast, for CP30238 also having 72 couples of Peltier elements (N = 288), the 

optimum cooling effect is achieved when Pin is approximately 13 W (±1 W). At this optimum 

point, Fig.4-23.(c) depicts that the junction temperature Tj is decreased from 75.2 ℃ to 55.4 ℃ 

when dissipating 9.24 W from the heating source, from 60.8 ℃ to 42.8 ℃ when dissipating 

6.44 W, and from 42.4 ℃ to 27.5 ℃ when dissipating 3 W, respectively.  

The two products CP39236H and CP30238 have almost the same cooling effects because 

they are fabricated with the same material and they have the same number of Peltier elements. 

The small difference between them is attributed to their internal electrical resistance. 

Fig.4-24 depicts the temperature profile Tj (Pin) calculated for different heat power 

dissipated by the heating resistor with CP39236H. First of all, the 1D thermal model can 



CHAPTER 4. THERMOELECTRIC COOLING 

89 

 

provide fast estimations of the junction temperatures regarding different dissipated heat 

power. Secondly, the junction temperature is controllable with Peltier devices. For example, 

if Tj is required to be kept less than or equal to 71 ℃, an electric power of 1.75 W needs to 

be applied for dissipating a heating power of 11 W; 3.6 W is needed to dissipate 12 W; 7.5 

W is needed for 13 W and 15 W for 14 W. Obviously, more electrical power is demanded to 

maintain the junction temperature as the heat power loss increases. The ratio between 

electrical power and drawn power deteriorates as the power increases due to the deterioration 

of the COP values with the level of electrical power injected.  

 

Fig.4-24. Estimated results with Peltier device CP39236H. (a). Junction temperature profile Tj (Pin). (b). Cooling 

efficiency profile COP (Pin). The ambient temperature is 25 ℃. 

In addition, no electrical power is needed when the heat power is equal or less than 10 W. 

In this case, the Peltier devices can be shut down to economize electrical energy. It means 

that the electrical feeding power of Peltier devices could be controlled a depend on the 

designed junction temperature and the heat power loss to be dissipated. This is the second 

big benefit of using Peltier devices in PCB structures. However, when the dissipated power 

is more than 14 W, the applied Peltier devices are no more able to control the junction 

temperature at less than 71 ℃. In this case, it is suggested that more powerful Peltier devices 

should be applied. Otherwise, extra cooling methods to enhance the cooling effects are 

required. In [117], WANG has proposed a package design of a hybrid cooling solution which 

combines a thin-film superlattice TEC device with a cold plate liquid cooling to reduce the 

temperature of the high-power IGBT chip with a maximum power dissipation of 200 W/cm2. 

4.4.3. Influences of Number of Peltier Elements N 

As previously, a 1D thermal model to predict the thermal performances of a cooling 

structure using two Peltier devices CP60133 beside the heating resistor has been validated. 
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As shown in Fig.4-25, the optimum cooling effect for this module is achieved when Pin is 

13 W (±1W). As we can see in Fig.4-25.(c), the junction temperature Tj can be decreased 

from 58 ℃ to 41 ℃ when dissipating 5.12 W from the heating resistor, from 62 ℃ to 46 ℃ 

when dissipating 6 W, and from 70 ℃ to 55.5 ℃ when dissipating 8W, respectively. Tj can 

be reduced by 17 ℃ at the optimum point. The cooling performance is not as good as that 

of CP3926H or CP30238 when dissipating the same heat power. In other words, less heat 

power can be pumped when there are less Peltier elements (128 instead of 288).  

 

Fig.4-25. Experimental and estimated results with Peltier devices CP60133. (a). Junction temperature profile Tj (I); 

(b). Cooling efficiency profile COP (I); (c). Junction temperature profile Tj (Pin); (d) Cooling efficiency profile COP (Pin). 

The ambient temperature is 30 ℃. 

To further study the impact of N, the cooling scenarios with two (N = 128), three (N = 

192) and four (N = 256) CP60133 Peltier devices have been simulated to compare their 

thermal performances when dissipating the same heat power from the heating source. Based 

on the 1D thermal model (Fig.4-15) and the heat spreading effect (Fig.4-16), it is assumed 

that the thermal resistance Rjp decreases but the thermal resistance Rhc increases when using 

more Peltier devices. For example, compared to the structure with 2 CP60133 Peltier devices, 

Rjp is halved and Rhc is doubled in the cases of using 4 Peltier devices. The estimated junction 

temperature Tj and also the corresponding cooling efficiency COP are presented in Fig.4-26 

and Fig.4-27. COP is calculated by (4.1-1) and absorbed heat power at the cold sides of 

Peltier modules Qc is the difference between the measured heat power passing through the 

duralumin column Qh and the input electric power Pin (Qed).   

Firstly, as we can see in Fig.4-26.(a) to Fig.4-26.(d), the junction temperature can be 

reduced when the input current is in the range 0 to 2.5 A. Then it rises again when the input 

current exceeds 2.5 A. We also find that the COP value don’t change a lot with the number 

of Peltier elements N as observed in Fig.4-26.(e) to Fig.4-26.(h) as it is mainly an intrinsic 

characteristic of each Peltier device. The Joule losses increase for a given current 
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proportionally to the number of elements of the structure but the power with drawn from the 

cold plate also increases proportionally. The maximum decrease of junction temperature 

∆Tjmax achieved by the three cooling scenarios is summarized in Table 4.6. From these results 

we can conclude that cooling performance can be enhanced by more N with the same product 

CP60133. 

 

Fig.4-26. Estimated results with Peltier devices CP60133. (a). Junction temperature profile Tj (I) for dissipating 4 W; 

(b). Junction temperature profile Tj (I) for dissipating 6 W; (c). Junction temperature profile Tj (I) for dissipating 8 W; (d). 

Junction temperature profile Tj (I) for dissipating 10 W; (e). Cooling efficiency profile COP (I) for dissipating 4 W; (f). 

Cooling efficiency profile COP (I) for dissipating 6 W; (g) Cooling efficiency profile COP (I) for dissipating 8 W; (h). 

Cooling efficiency profile COP (I) for dissipating 10 W.  The ambient temperature is 30 ℃. 

 

Table 4.6. Maximum decrease of the junction temperature ∆Tjmax (℃) 

N Pheat = 4W Pheat = 6W Pheat = 8W Pheat = 10W 

128 15.2 16.1 17.1 18.3 

192 21 22.3 23.9 25.7 

256 23.6 25.1 26.7 28.7 
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Fig.4-27. Estimated results with Peltier devices CP60133. (a). Junction temperature profile Tj (Pin) for dissipating 4 

W; (b). Junction temperature profile Tj (Pin) for dissipating 6 W; (c). Junction temperature profile Tj (Pin) for dissipating 

8 W; (d). Junction temperature profile Tj (Pin) for dissipating 10 W; (e). Cooling efficiency profile COP (Pin) for 

dissipating 4 W; (f). Cooling efficiency profile COP (Pin) for dissipating 6 W; (g) Cooling efficiency profile COP (Pin) for 

dissipating 8 W; (h). Cooling efficiency profile COP (Pin) for dissipating 10 W.  The ambient temperature is 30 ℃. 

 

Table 4.7. COP values of the three cooling scenarios when keeping Tj at 55 ℃ 

Pheat 

(W) 

COP 

N=128 N=192 N=256 

4 Infinity (Pin=0) Infinity Infinity 

6 5.5 16.21 Infinity 

8 0.26 1.27 3.84 

10 Inability Inability 0.88 

In addition, the cooling efficiency COP is enhanced for the same cooling performance of 

the three different cooling scenarios. For designed junction temperature Tj of 55 ℃, 

according to the junction temperature evolutions in Fig.4-27.(a) to Fig.4-27.(d), COP values 

and consumed electrical power of the three cooling scenarios are summarized in Table 4.7. 

For example, in the case of dissipating 8 W heating power, COP equals 3.84 when N is 256 

but 0.26 when N is 128. In other words, less electrical power is consumed when using more 



CHAPTER 4. THERMOELECTRIC COOLING 

93 

 

Peltier devices for the same cooling performance. The cooling structure with more Peltier 

devices is more efficient for a given heat power while keeping the junction temperature at 

an identical temperature.  

Ideally, as described in (4.3-8), Sm can be increased with more N leading to enhance the 

capability of absorbing the heat power. However, the Joule heating and heat conduction 

leakage due to Rm and 𝜆m have also been increased at the same time because of the 

interdependent thermoelectric properties between Peltier parameters Se, 𝜆th, and 𝜌 . For 

example, for the two Peltier devices of CP60133 beside the heating resistor, Sm equals 0.0236 

V/K, Rm equals 0.98 Ω, 𝜆m equals 0.246 W/K. By contrast, when four devices of CP60133 

are applied, Sm, Rm and 𝜆m are doubled to 0.0472 V/K, 1.96 Ω and 0.492 W/K, respectively. 

This explains the phenomenon of the cooling performances when increasing N as shown in 

Fig.4-26 and Table 4.6. The increased Joule heating and heat conduction leakage due to Rm 

and 𝜆m will militate against further enlargement of the heat pump ability influenced by Peltier 

effect Sm. This explains also the small difference of the cooling performances between 

CP60133 (Fig.4-25) and CP30238 (Fig.4-23) because their Peltier elements have almost the 

same ZT value. A higher ZT leads directly to a higher conversion efficiency. But the main 

challenge lies in the decoupling of the interdependent thermoelectric parameters [143]. 

There are also people working to optimize the geometrical factor G to increase the 

conversion efficiency. Authors in [178] found that the optimum Peltier module length is 

between 0.612 mm and 1.76 mm and the maximum heat dissipation density should be 3.70 

to 5.52 W/cm2 with a ZT of 0.8 to 3.0. 

Here, for cooling the PCB structures, it is proposed to apply the devices according to the 

desired junction temperature with minimum consumed electrical power.  

4.5.  SUMMARY 

In this chapter, thermal management solution with Peltier devices beside the heating 

source for PCB structures has been proposed. A 1D thermal resistance network has been 

developed to represent the total cooling system and predict its cooling performances. 

Compared to the 3D FE Model, this electro-thermal model is a good compromise between 

calculation time and estimation accuracy.  

Benefit of using Peltier devices lies in that they provide a local cooling capability with 

the ability to control the junction temperature control. But it exists a trade off between the 

junction temperature control and the cooling efficiency. Design of such solutions requires 

an optimization stage in order to obtain the maximum cooling effect and the maximum 

cooling efficiency according to the designed junction temperature and dissipated heat power. 

The results of the study demonstrate that the thermal performance of the system is heavily 

dependent on the Peltier parameters and on the rated temperature and dissipated power. Both 

input current and ZT of the chosen Peltier device should be carefully considered to arise an 

optimum cooling effect.  

How such devices could be used for cooling integrated power boards? The main questions 

concern the cost of such solid state solutions and its low energetic efficiency. In fact, the 

initial cost of such solutions can be balanced by many new possibilities offered to Power 

Electronics and Thermal designers. Indeed, Peltier modules offer the possibility of 

dynamically controlling the temperature on a semiconductor die or a part of an assembly. In 

a long-term point of view, using such technological solution may decrease the thermal 

constraints due to thermal cycling in power converters and the cost of using Peltier devices 

could be covered by saving system maintenance cost. If a dynamic thermal control is applied 

to the thermal assembly using PCB and Peltier devices, such base plate can be seen as an 
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active substrate with a controlled thermal resistance that can reach the thermal performances 

of DBC substrates. 
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CONCLUSIONS AND PERSPECTIVES 

PCB technology is attractive for high power density integration thanks to its flexibility 

and low cost. 3D integration by PCB technology without wire bondings can improve the 

electrical interconnections as well as reduce the parasitic loop inductances because of its 

multilayer and its ability of embedding devices. In this 3D integration context, it indicates 

the tendency in power integration technologies toward use of PCB technology.  However, 

the poor thermal conductivity of PCB substrate (< 1 W/mK), which is usually in glass-

reinforced epoxy laminate material of Flame Retardant-4 (FR4), brings big challenges for 

the thermal management of the total power system. Besides, the emerging of high switching 

speed wide bandgap (WBG) devices brings out more severe operating environment. So 

thermal management is an important design to ensure the system reliability as well as its 

final performance efficiency.  

The current researches focus on the development of thermal management solutions for 

PCB structures adapted to new wide-bandgap power devices and more severe operating 

environment. Three types of assemblies based on PCB technology have been proposed and 

discussed regarding cooling performances as shown in the following figure. In the first 

configuration (Prototype I), the thermal vias are created in the PCB substrate to increase the 

thermal conductivity of the complete structure. In the second configuration (Prototype II), 

influence of the PCB copper thickness (35 µm to 500 µm) has been discussed. Moreover, a 

double-sided cooling configuration has been introduced by combining the effects of thermal 

vias and the use of thick copper. In the third configuration (Prototype III), Peltier devices 

have been applied for local cooling of the heating source. The studies of the thermal 

performances are mainly based on 1D analytical and 3D FEM analysis to identify the 

influences of different significant parameters of each structure such as via parameters (via 

diameter, via plating thickness, via-cluster surface formed by multiple vias, via pattern, pitch 

distance between vias etc.), Peltier parameters (Thermoelectric material properties, number 

of Peltier elements, distance between the heating source and the Peltier devices etc.). 

 

The solution by creating thermal vias in the PCB substrate has been optimized to improve 

their cooling performances. It has been demonstrated according to the normalized 

relationships between the thermal resistance of the total structure and the via parameters that 

thermal vias are more efficient when the number of vias are more than 35 with larger via-

cluster surface ratio, plating thickness ratio, as well as via diameter ratio in pattern 2. This 

optimization gives us a guideline for fabricating the thermal vias.   

The second solution has enhanced the thermal performances of the PCB structures by 

increasing the lateral heat flux along the thick copper layer on the PCB substrate instead of 

the standard thickness of 35 µm or 38 µm. It is efficient for PCB substrate because of the 
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much better thermal conductivity of the copper material than that of FR4. In addition, this 

solution is easy to realize and can be combined with other cooling solutions. 

The third solution by using the thermoelectric cooler (TEC) like Peltier devices is a solid-

state cooling technology that can meet the local cooling requirements. Two previous cooling 

solutions focus on dissipating heat towards the gravity direction for the total structure. By 

the upward thermal path, TEC device addresses the thermal challenge that exists near the 

junction of the power module. They have advantages of simple integration, little 

maintenance, silent operation and excellent reliability. Besides, TEC devices have fast and 

accurate temperature control without neither moving parts nor working fluids. Moreover, for 

the same dielectric strength, the PCB substrate with TEC devices and thick copper layer can 

be competitive with the DBC substrate. Along with the advantages that TEC brings in, there 

are existing issues that should be considered including design optimization and overall 

efficiency of the system due to extra electrical consummation by the device itself. This is 

related to its low efficiency COP, usually less than one. Here, it is demonstrated that we can 

apply the Peltier devices according to the designed junction temperature as well as the 

dissipated heat power from the heat source in order to lower the consumed electrical power. 

In addition, it has been proven that TEC can quickly decrease the junction temperature even 

below the designed temperature with more input power. In other words, by controlling the 

temperature distribution on the surface of PCB substrate, TEC cooling technology provides 

also a method to control the thermal resistance of the total PCB substrate. All these analyses 

demonstrate the potential application of Peltier devices placed beside the heating source for 

PCB structures, which is a benefit for developing the embedding technology in such 

structures. 

In the long term, Peltier device has fast thermal dissipation and active operation which 

makes it possible to set up an active control of the temperature thus making it possible to 

limit the negative impacts of thermal cycling on an assemblies.  

This thesis focuses mainly on the thermal management of PCB structures. In experiments, 

a heating resistor instead of the WBG device has been applied to simplify the thermal 

analysis. The next step should be the application of these cooling solutions to an integrated 

PCB structures with WBG components and even with some passive components. In addition, 

mechanical stress analysis caused by different Coefficient of Thermal Expansion (CTE) of 

the materials should be realized to avoid the crack of each laminated layer. Moreover, 

concerning the reasons of thermal problems of the PCB structures such as switching losses, 

parasitic losses and interconnection losses etc., electrical and magnetic problems 

accompanied with the packaging technologies should be analyzed and designed to improve 

the reliability and robustness of the total structure. 
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ANNEX A 
%%Inverting the problem for 5 measurement points on the PCB top layer 

A=[]; 

b=[]; 

Aeq=[]; 

beq=[]; 

lb=0; 

ub=[]; 

x1=lsqlin(P,dT1,A,b,Aeq,beq,lb,ub); 

x2=lsqlin(P,dT2,A,b,Aeq,beq,lb,ub); 

x3=lsqlin(P,dT3,A,b,Aeq,beq,lb,ub); 

x4=lsqlin(P,dT4,A,b,Aeq,beq,lb,ub); 

x5=lsqlin(P,dT5,A,b,Aeq,beq,lb,ub); 

a1=x1;%dT1=a1*P 

a2=x2;%dT1=a2*P 

a3=x3;%dT1=a3*P 

a4=x4;%dT1=a4*P 

a5=x5;%dT1=a5*P 

%Fitting coefficent for determined physic model Ymp=P/kmp*Cmp 

Cmp1=lsqlin(P/kmp,dT1);  

Cmp2=lsqlin(P/kmp,dT2); 

Cmp3=lsqlin(P/kmp,dT3); 

Cmp4=lsqlin(P/kmp,dT4); 

Cmp5=lsqlin(P/kmp,dT5); 

%Function of inverse model %Inverse model for calculating the input power P=1.73W 

global dTme1 

dTme1=[3.917 0.014 0.008 0.004 1.604];%Measurement temperatures for 5 surface points 

Pin=fmincon('myLsq_MM',[1],[],[],[],[],0,10) 

%One thousand loop times with random noises 

n=1000; 

options = optimset('TolFun',1e-3); 

Mat=zeros(1,n); %empty matrix 

for i=1:n  

[Pin,FVAL,EXITFLAG]=fminsearch('myLsq_MM',[1]);%,options); 

    Mat(i)=Pin; %save loop results in matrix Mat 

    EXIT(i)=EXITFLAG; 

end 

 Re_IM=mean(Mat)%Average value of inverse model with noises 

figure (1) 

plot([1:1000],Mat,'b.',[1,1000],[Re_IM,Re_IM],'-k') %tracer courbe de proximité 

hold on 

plot([1,1000],[1.73,1.73],'-r') 

ylim([1.5 2]); 

xlabel('Loop times');ylabel('P(W)'); 

legend('Loop random value','Mean value of loop','Real input value') 

title('Simulation loop with noises') 

Er_I_E=(1.73-Re_IM)/1.73*100 

errmax=(max(Mat)-1.73)/1.73*100 

errmin=(min(Mat)-1.73)/1.73*100 

%%Inverting the problem for 5 measurement points on the PCB top layer 

%Calling function 'myLsq_MM' 

 

function [Er]=myLsq_MM(Pin) %Least square for calculating the error between measurement and 

modelling 
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%global dTme1 %dTme2 dTme3 dTme4 dTme5 

Bruit=0.05*randn(1,5);%(rand(1,5)-0.5)*0.05;%distributed noise with mean 0 and standard 

deviation 1 

dTme1=[3.917 0.014 0.008 0.004 1.604]+Bruit;%Measurement temperatures for 5 surface points 

Amo=[2.2642 0.0081 0.0044 0.0025 0.9272];%Precious obtained fitting coefficients 

dTmo1=Pin.*Amo; 

Er=sum((dTmo1-dTme1).^2); 

end 
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ANNEX B 
%%Inverting the problem for 10 measurement points on the PCB top layer 

% Dix points de measure 

%% 

%%Estimation des paramètres d'un modèle par la méthode moindre carre 

P=[0; 1; 2; 3; 4; 5; 6; 7; 8; 9; 10;]; %Puissance dissipée par puce GaN 

P1=[0 1 2 3 4 5 6 7 8 9 10]; 

Ta=20;%Temperature ambient 

dT1=[0 2.264 4.528 6.793 9.057 11.321 13.585 15.849 18.114 20.378 22.642];%Température d'un 

point (0,0,0.86)mm sur la surface du système  

dT2=[0 0.008 0.016 0.024 0.032 0.040 0.049 0.057 0.065 0.073 0.081];%Température d'un point 

(0,0,0.86)mm sur la surface du système  

dT3=[0 0.004 0.009 0.013 0.018 0.022 0.027 0.031 0.035 0.040 0.044];%Température d'un point 

(0,0,0.86)mm sur la surface du système  

dT4=[0 0.003 0.005 0.008 0.010 0.013 0.015 0.018 0.020 0.023 0.025];%Température d'un point 

(0,0,0.86)mm sur la surface du système  

dT5=[0 0.927 1.854 2.781 3.709 4.636 5.563 6.490 7.417 8.344 9.272];%Température d'un point 

(0,0,0.86)mm sur la surface du système 

dT6=[0 0.467 0.933 1.400 1.866 2.333 2.799 3.266 3.733 4.199 4.666]; 

dT7=[0 0.246 0.491 0.737 0.982 1.228 1.473 1.719 1.964 2.210 2.455]; 

dT8=[0 1.140 2.280 3.420 4.560 5.700 6.840 7.980 9.120 10.260 11.400]; 

dT9=[0 0.577 1.154 1.731 2.308 2.885 3.462 4.039 4.616 5.193 5.770]; 

dT10=[0 1.308 2.616 3.925 5.233 6.541 7.849 9.157 10.465 11.774 13.082]; 

%% 

%Least Squares with Linear Inequality Constraints 

A=[]; 

b=[]; 

Aeq=[]; 

beq=[]; 

lb=0; 

ub=[]; 

  

x1=lsqlin(P,dT1,A,b,Aeq,beq,lb,ub); 

x2=lsqlin(P,dT2,A,b,Aeq,beq,lb,ub); 

x3=lsqlin(P,dT3,A,b,Aeq,beq,lb,ub); 

x4=lsqlin(P,dT4,A,b,Aeq,beq,lb,ub); 

x5=lsqlin(P,dT5,A,b,Aeq,beq,lb,ub); 

x6=lsqlin(P,dT6,A,b,Aeq,beq,lb,ub); 

x7=lsqlin(P,dT7,A,b,Aeq,beq,lb,ub); 

x8=lsqlin(P,dT8,A,b,Aeq,beq,lb,ub); 

x9=lsqlin(P,dT9,A,b,Aeq,beq,lb,ub); 

x10=lsqlin(P,dT10,A,b,Aeq,beq,lb,ub); 

  

a1=x1;%dT1=a1*P 

a2=x2;%dT1=a2*P 

a3=x3;%dT1=a3*P 

a4=x4;%dT1=a4*P 

a5=x5;%dT1=a5*P 

a6=x6;%dT1=a1*P 

a7=x7;%dT1=a2*P 

a8=x8;%dT1=a3*P 

a9=x9;%dT1=a4*P 

a10=x10;%dT1=a5*P 
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Acf=[a1 a2 a3 a4 a5 a6 a7 a8 a9 a10]; 

%% 

%Function of inverse model %Inverse model for calculating the input power P=1.73W 

global dTme1 

dTme1=[3.917 0.014 0.008 0.004 1.604 0.807 0.425 1.972 0.998 2.263];%Measurement 

temperatures for 5 surface points 

n=1000; 

options = optimset('TolFun',0.5e-2, 'MaxFunEvals',100000,'MaxIter',10000); 

Mat=zeros(1,n); %empty matrix 

for i=1:n  

  [Pin,FVAL,EXITFLAG]=fminsearch('myLsq_MM_10p',[1],options);%,options) 

  Mat(i)=Pin; %save loop results in matrix Mat 

end 

Re_IM=mean(Mat)%Average value of inverse model with noises 

Bande=max(Mat)-min(Mat) 

Re_re=1.73; 

plot([1:1000],Mat,'b.',[1,1000],[Re_IM,Re_IM],'-k',[1,1000],[Re_re,Re_re],'-r')%tracer courbe de 

proximité 

ylim([1.5 2]); 

xlabel('Loop times');ylabel('P(W)'); 

legend('Loop random value','Mean value of loop','Real input value') 

title('Simulation loop with noises') 

Er_I_E=(1.73-Re_IM)/1.73*100 

Errmax_min=max(Mat)-min(Mat) 
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%%Inverting the problem for 10 measurement points on the PCB top layer 

% Calling function 'myLsq_MM_10p' 

 

function [Er]=myLsq_MM_10p(Pin) %Least square for calculating the error between measurement 

and modelling 

global dTme1  

Bruit=0.05*randn(1,10);%(rand(1,5)-0.5)*0.01;%distributed noise with mean 0 and standard 

deviation 1 

dTme1=[3.917 0.014 0.008 0.004 1.604 0.807 0.425 1.972 0.998 2.263]+Bruit;%Measurement 

temperatures for 10 surface points 

Amo=[2.2642 0.0081 0.0044 0.0025 0.9272 0.4666 0.2455 1.14 0.577 1.3082];%Precious obtained 

fitting coefficients 

dTmo1=Pin.*Amo; 

Er=sum((dTmo1-dTme1).^2); 

end 
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ANNEX C 
%%Power predictions in 2 embedded GaN dies with 5 temperature sensors 

clear all; 

%%Estimation des paramètres d'un modele par la méthode moindre carre 

P=[0; 1; 2; 3; 4; 5; 6; 7; 8; 9; 10;]; %Puissance dissipée par puce GaN 

P1=[0 1 2 3 4 5 6 7 8 9 10]; 

Ta=20;%Temperature ambiante 

kmp=0.3;%thermal conductivity of the FR4 substrate 

dT1=[0 2.264 4.528 6.793 9.057 11.321 13.585 15.849 18.114 20.378 22.642];%Temperature d'un 

point (0,0,0.86)mm sur la surface du systeme  

dT2=[0 0.008 0.016 0.024 0.032 0.040 0.049 0.057 0.065 0.073 0.081];%Temperature d'un point 

(0,0,0.86)mm sur la surface du systeme  

dT3=[0 0.004 0.009 0.013 0.018 0.022 0.027 0.031 0.035 0.040 0.044];%Temperature d'un point 

(0,0,0.86)mm sur la surface du systeme  

dT4=[0 0.003 0.005 0.008 0.010 0.013 0.015 0.018 0.020 0.023 0.025];%Temperature d'un point 

(0,0,0.86)mm sur la surface du systeme  

dT5=[0 0.927 1.854 2.781 3.709 4.636 5.563 6.490 7.417 8.344 9.272];%Temperature d'un point 

(0,0,0.86)mm sur la surface du systeme 

  

%% 

n=1;%one degree for each fitting curve 

f1=polyfit(P1,dT1,n); 

f2=polyfit(P1,dT2,n); 

f3=polyfit(P1,dT3,n); 

f4=polyfit(P1,dT4,n); 

f5=polyfit(P1,dT5,n); 

%Least Squares with Linear Inequality Constraints 

A=[]; 

b=[]; 

Aeq=[]; 

beq=[]; 

lb=0; 

ub=[]; 

  

x1=lsqlin(P,dT1,A,b,Aeq,beq,lb,ub); 

x2=lsqlin(P,dT2,A,b,Aeq,beq,lb,ub); 

x3=lsqlin(P,dT3,A,b,Aeq,beq,lb,ub); 

x4=lsqlin(P,dT4,A,b,Aeq,beq,lb,ub); 

x5=lsqlin(P,dT5,A,b,Aeq,beq,lb,ub); 

  

a1=x1;%dT1=a1*P 

a2=x2;%dT1=a2*P 

a3=x3;%dT1=a3*P 

a4=x4;%dT1=a4*P 

a5=x5;%dT1=a5*P 

  

%% 

%Fitting coefficent for determined physic model Ymp=P/kmp*Cmp 

Cmp1=lsqlin(P/kmp,dT1);  

Cmp2=lsqlin(P/kmp,dT2); 

Cmp3=lsqlin(P/kmp,dT3); 

Cmp4=lsqlin(P/kmp,dT4); 

Cmp5=lsqlin(P/kmp,dT5); 
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%TwoGaN chips attached to PCB substrate 

Pin1=[1 2 3 4 5 6 7 8 9 10]; 

Pin2=[1 2 3 4 5 6 7 8 9 10]; 

%Five points' temperatures on model surface 

dTme1_2GaN=[0.214   0.321 0.428 0.534 0.641 0.748 0.854 0.961 1.068 1.174;0.322 0.429 0.535 

0.642 0.749 0.855 0.962 1.069 1.175 1.282;0.430 0.536 0.643 0.750 0.856 0.963 1.070 1.176 1.283 

1.390;0.537 0.644 0.751 0.857 0.964 1.071 1.177 1.284 1.391 1.497;0.645 0.752 0.858 0.965 1.072 

1.178 1.285 1.392 1.498 1.605;0.753 0.859 0.966 1.073 1.179 1.286 1.393 1.499 1.606 1.713;0.860 

0.967 1.074 1.180 1.287 1.394 1.500 1.607 1.714 1.820;0.968 1.075 1.181 1.288 1.395 1.501 1.608 

1.715 1.821 1.928;1.076 1.183 1.289 1.396 1.502 1.609 1.716 1.822 1.929 2.036;1.184 1.290 1.397 

1.504 1.610 1.717 1.824 1.930 2.037 2.143]; 

dTme2_2GaN=[0.007   0.011 0.014 0.018 0.021 0.025 0.029 0.032 0.036 0.039;0.011 0.014 0.018 

0.021 0.025 0.029 0.032 0.036 0.039 0.043;0.014 0.018 0.021 0.025 0.029 0.032 0.036 0.039 0.043 

0.047;0.018 0.021 0.025 0.029 0.032 0.036 0.039 0.043 0.047 0.050;0.021 0.025 0.029 0.032 0.036 

0.039 0.043 0.047 0.050 0.054;0.025 0.029 0.032 0.036 0.039 0.043 0.047 0.050 0.054 0.057;0.029 

0.032 0.036 0.039 0.043 0.047 0.050 0.054 0.057 0.061;0.032 0.036 0.039 0.043 0.047 0.050 0.054 

0.057 0.061 0.064;0.036 0.039 0.043 0.047 0.050 0.054 0.057 0.061 0.064 0.068;0.039 0.043 0.047 

0.050 0.054 0.057 0.061 0.064 0.068 0.072]; 

dTme3_2GaN=[0.249   0.498 0.747 0.995 1.244 1.493 1.742 1.990 2.239 2.488;0.249 0.498 0.747 

0.996 1.244 1.493 1.742 1.991 2.239 2.488;0.250 0.498 0.747 0.996 1.245 1.493 1.742 1.991 2.240 

2.488;0.250 0.499 0.748 0.996 1.245 1.494 1.742 1.991 2.240 2.489;0.250 0.499 0.748 0.997 1.245 

1.494 1.743 1.992 2.240 2.489;0.251 0.499 0.748 0.997 1.246 1.494 1.743 1.992 2.241 2.489;0.251 

0.500 0.748 0.997 1.246 1.495 1.743 1.992 2.241 2.490;0.251 0.500 0.749 0.998 1.246 1.495 1.744 

1.993 2.241 2.490;0.252 0.500 0.749 0.998 1.247 1.495 1.744 1.993 2.242 2.490;0.252 0.501 0.749 

0.998 1.247 1.496 1.744 1.993 2.242 2.491]; 

dTme4_2GaN=[0.249   0.249 0.250 0.250 0.250 0.250 0.251 0.251 0.251 0.252;0.497 0.498 0.498 

0.498 0.499 0.499 0.499 0.500 0.500 0.500;0.746 0.746 0.747 0.747 0.747 0.748 0.748 0.748 0.749 

0.749;0.995 0.995 0.995 0.996 0.996 0.996 0.997 0.997 0.997 0.997;1.243 1.243 1.244 1.244 1.244 

1.245 1.245 1.245 1.246 1.246;1.492 1.492 1.492 1.493 1.493 1.493 1.494 1.494 1.494 1.495;1.740 

1.741 1.741 1.741 1.742 1.742 1.742 1.743 1.743 1.743;1.989 1.989 1.990 1.990 1.990 1.990 1.991 

1.991 1.991 1.992;2.237 2.238 2.238 2.238 2.239 2.239 2.239 2.240 2.240 2.240;2.486 2.486 2.487 

2.487 2.487 2.488 2.488 2.488 2.489 2.489]; 

dTme5_2GaN=[0.007   0.011 0.014 0.018 0.021 0.025 0.029 0.032 0.036 0.039;0.011 0.014 0.018 

0.021 0.025 0.029 0.032 0.036 0.039 0.043;0.014 0.018 0.021 0.025 0.029 0.032 0.036 0.039 0.043 

0.047;0.018 0.021 0.025 0.029 0.032 0.036 0.039 0.043 0.047 0.050;0.021 0.025 0.029 0.032 0.036 

0.039 0.043 0.047 0.050 0.054;0.025 0.029 0.032 0.036 0.039 0.043 0.047 0.050 0.054 0.057;0.029 

0.032 0.036 0.039 0.043 0.047 0.050 0.054 0.057 0.061;0.032 0.036 0.039 0.043 0.047 0.050 0.054 

0.057 0.061 0.064;0.036 0.039 0.043 0.047 0.050 0.054 0.057 0.061 0.064 0.068;0.039 0.043 0.047 

0.050 0.054 0.057 0.061 0.064 0.068 0.072]; 

  

   p00=[-3e-5 -9e-5 -1.333e-5 -4e-5 -9e-5]; 

   p11=[0.1067 0.003587 0.2487 0.0003212 0.003587]; 

   p22=[0.1077 0.003587 0.00032 0.2486 0.003587]; 

  

% %One thousand loop times with random noises 

n=1000; 

options = optimset('TolFun',0.5e-3,'MaxFunEvals',10000000,'MaxIter',10000); 

alpha=1:n; 

Mat2=zeros(2,n) ; %empty matrix 

for ii=1:n 

  

PP0=[5.5;8.5]; 

Pin=fminsearch(@myLsq_Two,PP0); 

Mat2(:,ii)=Pin; %save loop results in matrix Mat 
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  %EXIT(ii)=EXITFLAG; 

end 

  

 Pin_one=mean(Mat2(1,:))%Average value of first line of matrix 

 Pin_two=mean(Mat2(2,:))%Average value of second line of matrix 

 Ermaxmin1=max((Mat2(1,:)))-min((Mat2(1,:)))%Error between Pin1max and Pin1min 

 Ermaxmin2=max((Mat2(2,:)))-min((Mat2(2,:)))%Error between Pin2max and Pin2min 

 figure(1) 

 plot([1:1000],Mat2(1,:),'b.',[1,1000],[Pin_one,Pin_one],'-k',[1,1000],[5.94,5.94],'-

r',[1:1000],Mat2(2,:),'b.',[1,1000],[Pin_two,Pin_two],'-k') 

 hold on 

 plot([1,1000],[9.16,9.16],'-r') 

 xlabel('Loop times'); 

 ylabel('P(W)'); 

 legend('Loop random value','Mean value of loop','Real input value') 

title('Simulation loop with noises') 
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%%Power predictions in 2 embedded GaN dies with 5 temperature sensors 

% Calling function @myLsq_Two 

 

function [Err]=myLsq_Two(Pin) %Least square for calculating the error between measurement and 

modelling 

global dTme1_Two dTme2_Two  

Bruit=0.1*randn(1,5);%(rand(1,5)-0.5)*0.01;%distributed noise with mean 0 and standard deviation 

1 

dTme1_Two=[1.162 0.039 2.113 0.594 0.039]+Bruit;%Measurement temperatures for 5 surface 

points 

dTme2_Two=[1.617 0.054 2.280 1.479 0.054]+Bruit; 

   p00=[-3e-5 -9e-5 -1.333e-5 -4e-5 -9e-5];%fitting coefficients 

   p11=[0.1067 0.003587 0.2487 0.0003212 0.003587];%fitting coefficients 

   p22=[0.1077 0.003587 0.00032 0.2486 0.003587];%fitting coefficients 

dTmo1_Two=p00+p11*Pin(2)+p22*Pin(1); %fitting curves 

dTmo2_Two=p00+p11*Pin(2)+p22*Pin(1); 

Err=sum((dTmo2_Two-dTme2_Two).^2); 

end 
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ANNEX D 
%%Power and thermal conductivity predictions with 10 temperature measurement sensors 

 

%Inverse model with input power and variable thermal conductivity of PCB 

clear all; 

%e=220e-6;%thickness from top surface of total structure to top surface of GaN chip 

%A=1e-8;%section surface of the structure 

P=[1 2 3 4 5 6 7 8 9 10];%Input power 

lambda=[0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1];%Thermal conductivity of FR4 

ln_P=log(P); 

ln_lambda=log(lambda); 

  

%Temperature measurements for five points on the surface of the structure: 

dT1=[2.27 4.541 6.811 9.082 11.352 13.623 15.893 18.164 20.434 22.704;2.302 4.604 6.906 9.209 

11.511 13.813 16.115 18.417 20.719 23.021;2.264 4.528 6.793 9.057 11.321 13.585 15.849 18.114 

20.378 22.642;2.209 4.419 6.628 8.838 11.047 13.257 15.466 17.676 19.885 22.094;2.151 4.302 

6.453 8.604 10.755 12.906 15.057 17.208 19.359 21.510;2.093 4.186 6.280 8.373 10.466 12.559 

14.652 16.745 18.839 20.932;2.038 4.075 6.113 8.151 10.188 12.226 14.263 16.301 18.339 

20.376;1.985 3.970 5.955 7.940 9.925 11.910 13.894 15.879 17.864 19.849;1.935 3.870 5.805 7.740 

9.676 11.611 13.546 15.481 17.416 19.351;1.888 3.776 5.664 7.553 9.441 11.329 13.217 15.105 

16.993 18.882]; 

dT2=[0.089 0.178 0.266 0.355 0.444 0.533 0.622 0.711 0.799 0.888;0.023 0.046 0.068 0.091 0.114 

0.137 0.159 0.182 0.205 0.228;0.008 0.016 0.024 0.032 0.040 0.049 0.057 0.065 0.073 0.081;0.003 

0.007 0.010 0.014 0.017 0.020 0.024 0.027 0.031 0.034;0.002 0.003 0.005 0.006 0.008 0.010 0.011 

0.013 0.014 0.016;0.001 0.002 0.002 0.003 0.004 0.005 0.006 0.007 0.007 0.008;0 0.001 0.001 0.002 

0.002 0.003 0.003 0.004 0.004 0.004;0 0 0.001 0.001 0.001 0.001 0.002 0.002 0.002 0.002;0 0 0 

0.001 0.001 0.001 0.001 0.001 0.001 0.001;0 0 0 0 0 0.001 0.001 0.001 0.001 0.001]; 

dT3=[0.063 0.126 0.188 0.251 0.314 0.377 0.439 0.502 0.565 0.628;0.014 0.028 0.041 0.055 0.069 

0.083 0.097 0.111 0.124 0.138;0.004 0.009 0.013 0.018 0.022 0.027 0.031 0.035 0.040 0.044;0.002 

0.003 0.005 0.007 0.009 0.010 0.012 0.014 0.015 0.017;0.001 0.001 0.002 0.003 0.004 0.004 0.005 

0.006 0.007 0.007;0 0.001 0.001 0.001 0.002 0.002 0.002 0.003 0.003 0.004;0 0 0.001 0.001 0.001 

0.001 0.001 0.001 0.002 0.002;0 0 0 0 0 0.001 0.001 0.001 0.001 0.001;0 0 0 0 0 0 0 0 0 0.001;0 0 0 

0 0 0 0 0 0 0]; 

dT4=[0.046 0.092 0.138 0.184 0.230 0.276 0.322 0.368 0.414 0.460;0.009 0.018 0.026 0.035 0.044 

0.053 0.061 0.070 0.079 0.088;0.003 0.005 0.008 0.010 0.013 0.015 0.018 0.020 0.023 0.025;0.001 

0.002 0.003 0.004 0.004 0.005 0.006 0.007 0.008 0.009;0 0.001 0.001 0.001 0.002 0.002 0.003 0.003 

0.003 0.004;0 0 0 0.001 0.001 0.001 0.001 0.001 0.001 0.002;0 0 0 0 0 0 0.001 0.001 0.001 0.001;0 

0 0 0 0 0 0 0 0 0;0 0 0 0 0 0 0 0 0 0;0 0 0 0 0 0 0 0 0 0]; 

dT5=[1.365 2.729 4.094 5.459 6.823 8.188 9.553 10.917 12.282 13.647;1.111 2.221 3.332 4.442 

5.553 6.663 7.774 8.884 9.995 11.106;0.927 1.854 2.781 3.709 4.636 5.563 6.490 7.417 8.344 

9.272;0.790 1.581 2.371 3.162 3.952 4.743 5.533 6.324 7.114 7.904;0.685 1.369 2.054 2.739 3.423 

4.108 4.793 5.477 6.162 6.847;0.600 1.201 1.801 2.402 3.002 3.602 4.203 4.803 5.404 6.004;0.532 

1.064 1.595 2.127 2.659 3.191 3.722 4.254 4.786 5.318;0.475 0.950 1.425 1.899 2.374 2.849 3.324 

3.799 4.274 4.749;0.427 0.854 1.281 1.708 2.135 2.562 2.989 3.416 3.843 4.270;0.386 0.772 1.158 

1.545 1.931 2.317 2.703 3.089 3.475 3.862]; 

dT6=[1.758 3.515 5.273 7.030 8.788 10.545 12.303 14.06 15.818 17.575;1.605 3.209 4.814 6.418 

8.023 9.627 11.232 12.836 14.441 16.045;1.462 2.924 4.386 5.849 7.311 8.773 10.235 11.697 

13.159 14.622;1.341 2.683 4.024 5.365 6.707 8.048 9.389 10.731 12.072 13.414;1.239 2.478 3.717 

4.956 6.194 7.433 8.672 9.911 11.150 12.389;1.51 2.302 3.453 4.604 5.755 6.906 8.057 9.208 10.359 

11.510;1.075 2.150 3.224 4.299 5.374 6.449 7.524 8.598 9.673 10.748;1.008 2.016 3.024 4.032 

5.040 6.048 7.056 8.064 9.072 10.080;0.949 1.898 2.847 3.796 4.745 5.694 6.642 7.591 8.540 

9.489;0.896 1.792 2.689 3.585 4.481 5.377 6.274 7.170 8.066 8.962]; 
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dT7=[0.125 0.251 0.376 0.502 0.627 0.752 0.878 1.003 1.129 1.254;0.037 0.073 0.110 0.147 0.184 

0.220 0.257 0.294 0.331 0.367;0.014 0.029 0.043 0.057 0.071 0.086 0.100 0.114 0.129 0.143;0.006 

0.013 0.019 0.026 0.032 0.039 0.045 0.052 0.058 0.064;0.003 0.006 0.010 0.013 0.016 0.019 0.022 

0.026 0.029 0.032;0.002 0.003 0.005 0.007 0.008 0.010 0.012 0.014 0.015 0.017;0.001 0.002 0.003 

0.004 0.005 0.006 0.007 0.008 0.009 0.009;0.001 0.001 0.002 0.002 0.003 0.003 0.004 0.004 0.005 

0.005;0 0.001 0.001 0.001 0.002 0.002 0.002 0.003 0.003 0.003;0 0 0.001 0.001 0.001 0.001 0.001 

0.002 0.002 0.002]; 

dT8=[0.686 1.372 2.057 2.743 3.429 4.115 4.801 5.486 6.172 6.858;0.411 0.822 1.233 1.644 2.056 

2.467 2.878 3.289 3.700 4.111;0.272 0.545 0.817 1.090 1.362 1.634 1.907 2.179 2.451 2.724;0.192 

0.383 0.575 0.766 0.958 1.149 1.341 1.533 1.724 1.916;0.140 0.281 0.421 0.561 0.702 0.842 0.982 

1.123 1.263 1.403;0.106 0.212 0.318 0.424 0.530 0.635 0.741 0.847 0.953 1.059;0.082 0.164 0.245 

0.327 0.409 0.491 0.573 0.655 0.736 0.818;0.064 0.129 0.193 0.258 0.322 0.386 0.451 0.515 0.580 

0.644;0.051 0.103 0.154 0.206 0.257 0.309 0.360 0.412 0.463 0.515;0.042 0.083 0.125 0.167 0.208 

0.250 0.292 0.333 0.375 0.417]; 

dT9=[0.268 0.535 0.803 1.071 1.338 1.606 1.873 2.141 2.409 2.676;0.108 0.217 0.325 0.433 0.542 

0.650 0.758 0.867 0.975 1.083;0.054 0.107 0.161 0.215 0.268 0.322 0.376 0.429 0.483 0.537;0.030 

0.059 0.089 0.119 0.148 0.178 0.208 0.238 0.267 0.297;0.018 0.035 0.053 0.071 0.088 0.106 0.124 

0.141 0.159 0.177;0.011 0.022 0.033 0.044 0.055 0.066 0.078 0.089 0.100 0.111;0.007 0.014 0.022 

0.029 0.036 0.043 0.051 0.058 0.065 0.072;0.005 0.010 0.015 0.020 0.024 0.029 0.034 0.039 0.044 

0.049;0.003 0.007 0.010 0.014 0.017 0.020 0.024 0.027 0.030 0.034;0.002 0.005 0.007 0.010 0.012 

0.014 0.017 0.019 0.022 0.024]; 

dT10=[0.168 0.336 0.504 0.672 0.839 1.007 1.175 1.343 1.511 1.679;0.056 0.112 0.168 0.224 0.281 

0.337 0.393 0.449 0.505 0.561;0.024 0.048 0.072 0.097 0.121 0.145 0.169 0.193 0.217 0.214;0.012 

0.024 0.036 0.048 0.059 0.071 0.083 0.095 0.107 0.119;0.006 0.013 0.019 0.026 0.032 0.038 0.045 

0.051 0.058 0.064;0.004 0.007 0.011 0.015 0.018 0.022 0.026 0.029 0.033 0.037;0.002 0.004 0.007 

0.009 0.011 0.013 0.015 0.018 0.020 0.022;0.001 0.003 0.004 0.005 0.007 0.008 0.010 0.011 0.012 

0.014;0.001 0.002 0.003 0.004 0.004 0.005 0.006 0.007 0.008 0.009;0.001 0.001 0.002 0.002 0.003 

0.004 0.004 0.005 0.005 0.006]; 

ln_dT1=log(dT1); 

ln_dT2=log(dT2); 

ln_dT3=log(dT3); 

ln_dT4=log(dT4); 

ln_dT5=log(dT5); 

ln_dT6=log(dT6); 

ln_dT7=log(dT7); 

ln_dT8=log(dT8); 

ln_dT9=log(dT9); 

ln_dT10=log(dT10); 

%% 

%custom equation for curve fitting: z=f(x,y)= f(x,y) = p00 + p10*x + p01*y + p20*x^2 + p11*x*y 

+ p02*y^2 

p00=[0.6374 -8.953 -9.779 -10.55 -0.9444 -0.1066 -8.181 -3.164 -5.985 -7.309]; 

p10=[1 0.8977 0.8007 0.7836 1 1 0.8289 1.001 0.9884 0.9707]; 

p01=[-0.2286 -4.166 -4.319 -4.57 -0.9242 -0.5319 -4.099 -1.937 -3.139 -3.658]; 

p20=[-1.943e-005 -0.009812 0.03921 0.02953 2.466e-005 -0.0001232 0.02139 -0.0002026 

0.001184 -0.003295]; 

p11=[-2.227e-005 -0.07716 -0.05874 -0.06763 1.591e-005 7.902e-005 -0.08164 0.0003083 -

0.005951 -0.02435]; 

p02=[-0.06509 -0.5925 -0.552 -0.5712 -0.1654 -0.1049 -0.6481 -0.3171 -0.4863 -0.5547]; 

  

%% 

%Inverse model for input power P=5.79W, lambda=0.62W/(m.K) 

%One thousand loop times with random noises 

n=1000; 

options = optimset('TolFun',0.4e-2, 'MaxFunEvals',1000000000,'MaxIter',100000); 
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alpha=[1:n]; 

Mat2=zeros(2,n) ; %empty matrix 

for ii=1:n 

  

 PP0=[1.5;-0.5]; 

Qin=fminsearch(@myLsq_Pin_loglamta_10points_polynomial,PP0,options); 

Mat2(:,ii)=Qin; %save loop results in matrix Mat 

end 

  

 Pin_logP=Mat2(1,:);%Average value of first line of matrix 

 Pin_loglambda=Mat2(2,:);%Average value of second line of matrix 

 Pin_P=exp(Pin_logP); 

 Pin_lambda=exp(Pin_loglambda); 

 Pmean_P=mean(Pin_P) 

 Pmean_lambda=mean(Pin_lambda) 

 Ermaxmin1=max(Pin_P)-min(Pin_P)%Error between Pin1max and Pin1min 

 Ermaxmin2=max(Pin_lambda)-min(Pin_lambda)%Error between Pin2max and Pin2min 

 Pin_real=5.79; 

 lamta_real=0.62; 

  

figure(1) 

 plot(alpha,Pin_P,'b.',[1,1000],[Pmean_P,Pmean_P],'-k',[1,1000],[Pin_real,Pin_real],'-r')%tracer 

courbe de proximité 

ylim([5.7 5.85]); 

xlabel('Loop times');ylabel('P(W)'); 

legend('-Loop random value','-Mean value of loop','-Real input value') 

title('Simulation loop with thermal noises') 

  

figure(2) 

 plot(alpha,Pin_lambda,'b.',[1,1000],[Pmean_lambda,Pmean_lambda],'-

k',[1,1000],[lamta_real,lamta_real],'-r')%tracer courbe de proximité 

ylim([0.6 0.65]); 

xlabel('Loop times');ylabel('\lambda_t_h(W/mK)'); 

legend('-Loop random value','-Mean value of loop','-Real input value') 

title('Simulation loop with thermal noises') 
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%%Power and thermal conductivity predictions with 10 temperature measurement sensors 

% Calling function @myLsq_Pin_loglamta_10points_polynomial 

 

function [Err]=myLsq_Pin_loglamta_10points_polynomial(Qin) %Least square for calculating the 

error between measurement and modelling 

global dTmea_Pin_lamta  

Bruit=0.1*randn(1,10);%(rand(1,5)-0.5)*0.01;%distributed noise with mean 0 and standard 

deviation 1 

dTmea_Pin_lamta=[12.054 0.004 0.002 0.001 3.390 6.571 0.009 0.581 0.059 

0.019]+Bruit;%Measurement temperatures for 5 surface points 

p00=[0.6374 -8.953 -9.779 -10.55 -0.9444 -0.1066 -8.181 -3.164 -5.985 -7.309]; 

p10=[1 0.8977 0.8007 0.7836 1 1 0.8289 1.001 0.9884 0.9707]; 

p01=[-0.2286 -4.166 -4.319 -4.57 -0.9242 -0.5319 -4.099 -1.937 -3.139 -3.658]; 

p20=[-1.943e-005 -0.009812 0.03921 0.02953 2.466e-005 -0.0001232 0.02139 -0.0002026 

0.001184 -0.003295]; 

p11=[-2.227e-005 -0.07716 -0.05874 -0.06763 1.591e-005 7.902e-005 -0.08164 0.0003083 -

0.005951 -0.02435]; 

p02=[-0.06509 -0.5925 -0.552 -0.5712 -0.1654 -0.1049 -0.6481 -0.3171 -0.4863 -0.5547];                   

ln_dTmo_Pin_lamta=p00+p10*Qin(1)+p01*Qin(2)+p20*Qin(1)*Qin(1)+p11*Qin(1)*Qin(2)+p02

*Qin(2)*Qin(2); 

dTmo_Pin_lamta=exp(ln_dTmo_Pin_lamta); 

Err=sum((dTmea_Pin_lamta-dTmo_Pin_lamta).^2); 

end                
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%%Power and thermal conductivity predictions with 6 temperature measurement sensors 

 

 

%Inverse model with input power and variable thermal conductivity of PCB 

clear all; 

%e=220e-6;%thickness from top surface of total structure to top surface of GaN chip 

%A=1e-8;%section surface of the structure 

P=[1 2 3 4 5 6 7 8 9 10];%Input power 

lambda=[0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1];%Thermal conductivity of FR4 

ln_P=log(P); 

ln_lambda=log(lambda); 

  

%Temperature measurements for five points on the surface of the structure: 

dT1=[2.27 4.541 6.811 9.082 11.352 13.623 15.893 18.164 20.434 22.704;2.302 4.604 6.906 9.209 

11.511 13.813 16.115 18.417 20.719 23.021;2.264 4.528 6.793 9.057 11.321 13.585 15.849 18.114 

20.378 22.642;2.209 4.419 6.628 8.838 11.047 13.257 15.466 17.676 19.885 22.094;2.151 4.302 

6.453 8.604 10.755 12.906 15.057 17.208 19.359 21.510;2.093 4.186 6.280 8.373 10.466 12.559 

14.652 16.745 18.839 20.932;2.038 4.075 6.113 8.151 10.188 12.226 14.263 16.301 18.339 

20.376;1.985 3.970 5.955 7.940 9.925 11.910 13.894 15.879 17.864 19.849;1.935 3.870 5.805 7.740 

9.676 11.611 13.546 15.481 17.416 19.351;1.888 3.776 5.664 7.553 9.441 11.329 13.217 15.105 

16.993 18.882]; 

%dT2=[0.089 0.178 0.266 0.355 0.444 0.533 0.622 0.711 0.799 0.888;0.023 0.046 0.068 0.091 0.114 

0.137 0.159 0.182 0.205 0.228;0.008 0.016 0.024 0.032 0.040 0.049 0.057 0.065 0.073 0.081;0.003 

0.007 0.010 0.014 0.017 0.020 0.024 0.027 0.031 0.034;0.002 0.003 0.005 0.006 0.008 0.010 0.011 

0.013 0.014 0.016;0.001 0.002 0.002 0.003 0.004 0.005 0.006 0.007 0.007 0.008;0 0.001 0.001 0.002 

0.002 0.003 0.003 0.004 0.004 0.004;0 0 0.001 0.001 0.001 0.001 0.002 0.002 0.002 0.002;0 0 0 

0.001 0.001 0.001 0.001 0.001 0.001 0.001;0 0 0 0 0 0.001 0.001 0.001 0.001 0.001]; 

%dT3=[0.063 0.126 0.188 0.251 0.314 0.377 0.439 0.502 0.565 0.628;0.014 0.028 0.041 0.055 0.069 

0.083 0.097 0.111 0.124 0.138;0.004 0.009 0.013 0.018 0.022 0.027 0.031 0.035 0.040 0.044;0.002 

0.003 0.005 0.007 0.009 0.010 0.012 0.014 0.015 0.017;0.001 0.001 0.002 0.003 0.004 0.004 0.005 

0.006 0.007 0.007;0 0.001 0.001 0.001 0.002 0.002 0.002 0.003 0.003 0.004;0 0 0.001 0.001 0.001 

0.001 0.001 0.001 0.002 0.002;0 0 0 0 0 0.001 0.001 0.001 0.001 0.001;0 0 0 0 0 0 0 0 0 0.001;0 0 0 

0 0 0 0 0 0 0]; 

%dT4=[0.046 0.092 0.138 0.184 0.230 0.276 0.322 0.368 0.414 0.460;0.009 0.018 0.026 0.035 0.044 

0.053 0.061 0.070 0.079 0.088;0.003 0.005 0.008 0.010 0.013 0.015 0.018 0.020 0.023 0.025;0.001 

0.002 0.003 0.004 0.004 0.005 0.006 0.007 0.008 0.009;0 0.001 0.001 0.001 0.002 0.002 0.003 0.003 

0.003 0.004;0 0 0 0.001 0.001 0.001 0.001 0.001 0.001 0.002;0 0 0 0 0 0 0.001 0.001 0.001 0.001;0 

0 0 0 0 0 0 0 0 0;0 0 0 0 0 0 0 0 0 0;0 0 0 0 0 0 0 0 0 0]; 

dT5=[1.365 2.729 4.094 5.459 6.823 8.188 9.553 10.917 12.282 13.647;1.111 2.221 3.332 4.442 

5.553 6.663 7.774 8.884 9.995 11.106;0.927 1.854 2.781 3.709 4.636 5.563 6.490 7.417 8.344 

9.272;0.790 1.581 2.371 3.162 3.952 4.743 5.533 6.324 7.114 7.904;0.685 1.369 2.054 2.739 3.423 

4.108 4.793 5.477 6.162 6.847;0.600 1.201 1.801 2.402 3.002 3.602 4.203 4.803 5.404 6.004;0.532 

1.064 1.595 2.127 2.659 3.191 3.722 4.254 4.786 5.318;0.475 0.950 1.425 1.899 2.374 2.849 3.324 

3.799 4.274 4.749;0.427 0.854 1.281 1.708 2.135 2.562 2.989 3.416 3.843 4.270;0.386 0.772 1.158 

1.545 1.931 2.317 2.703 3.089 3.475 3.862]; 

dT6=[1.758 3.515 5.273 7.030 8.788 10.545 12.303 14.06 15.818 17.575;1.605 3.209 4.814 6.418 

8.023 9.627 11.232 12.836 14.441 16.045;1.462 2.924 4.386 5.849 7.311 8.773 10.235 11.697 

13.159 14.622;1.341 2.683 4.024 5.365 6.707 8.048 9.389 10.731 12.072 13.414;1.239 2.478 3.717 

4.956 6.194 7.433 8.672 9.911 11.150 12.389;1.51 2.302 3.453 4.604 5.755 6.906 8.057 9.208 10.359 

11.510;1.075 2.150 3.224 4.299 5.374 6.449 7.524 8.598 9.673 10.748;1.008 2.016 3.024 4.032 

5.040 6.048 7.056 8.064 9.072 10.080;0.949 1.898 2.847 3.796 4.745 5.694 6.642 7.591 8.540 

9.489;0.896 1.792 2.689 3.585 4.481 5.377 6.274 7.170 8.066 8.962]; 

%dT7=[0.125 0.251 0.376 0.502 0.627 0.752 0.878 1.003 1.129 1.254;0.037 0.073 0.110 0.147 0.184 

0.220 0.257 0.294 0.331 0.367;0.014 0.029 0.043 0.057 0.071 0.086 0.100 0.114 0.129 0.143;0.006 

0.013 0.019 0.026 0.032 0.039 0.045 0.052 0.058 0.064;0.003 0.006 0.010 0.013 0.016 0.019 0.022 
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0.026 0.029 0.032;0.002 0.003 0.005 0.007 0.008 0.010 0.012 0.014 0.015 0.017;0.001 0.002 0.003 

0.004 0.005 0.006 0.007 0.008 0.009 0.009;0.001 0.001 0.002 0.002 0.003 0.003 0.004 0.004 0.005 

0.005;0 0.001 0.001 0.001 0.002 0.002 0.002 0.003 0.003 0.003;0 0 0.001 0.001 0.001 0.001 0.001 

0.002 0.002 0.002]; 

dT8=[0.686 1.372 2.057 2.743 3.429 4.115 4.801 5.486 6.172 6.858;0.411 0.822 1.233 1.644 2.056 

2.467 2.878 3.289 3.700 4.111;0.272 0.545 0.817 1.090 1.362 1.634 1.907 2.179 2.451 2.724;0.192 

0.383 0.575 0.766 0.958 1.149 1.341 1.533 1.724 1.916;0.140 0.281 0.421 0.561 0.702 0.842 0.982 

1.123 1.263 1.403;0.106 0.212 0.318 0.424 0.530 0.635 0.741 0.847 0.953 1.059;0.082 0.164 0.245 

0.327 0.409 0.491 0.573 0.655 0.736 0.818;0.064 0.129 0.193 0.258 0.322 0.386 0.451 0.515 0.580 

0.644;0.051 0.103 0.154 0.206 0.257 0.309 0.360 0.412 0.463 0.515;0.042 0.083 0.125 0.167 0.208 

0.250 0.292 0.333 0.375 0.417]; 

dT9=[0.268 0.535 0.803 1.071 1.338 1.606 1.873 2.141 2.409 2.676;0.108 0.217 0.325 0.433 0.542 

0.650 0.758 0.867 0.975 1.083;0.054 0.107 0.161 0.215 0.268 0.322 0.376 0.429 0.483 0.537;0.030 

0.059 0.089 0.119 0.148 0.178 0.208 0.238 0.267 0.297;0.018 0.035 0.053 0.071 0.088 0.106 0.124 

0.141 0.159 0.177;0.011 0.022 0.033 0.044 0.055 0.066 0.078 0.089 0.100 0.111;0.007 0.014 0.022 

0.029 0.036 0.043 0.051 0.058 0.065 0.072;0.005 0.010 0.015 0.020 0.024 0.029 0.034 0.039 0.044 

0.049;0.003 0.007 0.010 0.014 0.017 0.020 0.024 0.027 0.030 0.034;0.002 0.005 0.007 0.010 0.012 

0.014 0.017 0.019 0.022 0.024]; 

dT10=[0.168 0.336 0.504 0.672 0.839 1.007 1.175 1.343 1.511 1.679;0.056 0.112 0.168 0.224 0.281 

0.337 0.393 0.449 0.505 0.561;0.024 0.048 0.072 0.097 0.121 0.145 0.169 0.193 0.217 0.214;0.012 

0.024 0.036 0.048 0.059 0.071 0.083 0.095 0.107 0.119;0.006 0.013 0.019 0.026 0.032 0.038 0.045 

0.051 0.058 0.064;0.004 0.007 0.011 0.015 0.018 0.022 0.026 0.029 0.033 0.037;0.002 0.004 0.007 

0.009 0.011 0.013 0.015 0.018 0.020 0.022;0.001 0.003 0.004 0.005 0.007 0.008 0.010 0.011 0.012 

0.014;0.001 0.002 0.003 0.004 0.004 0.005 0.006 0.007 0.008 0.009;0.001 0.001 0.002 0.002 0.003 

0.004 0.004 0.005 0.005 0.006]; 

ln_dT1=log(dT1); 

%ln_dT2=log(dT2); 

%ln_dT3=log(dT3); 

%ln_dT4=log(dT4); 

ln_dT5=log(dT5); 

ln_dT6=log(dT6); 

%ln_dT7=log(dT7); 

ln_dT8=log(dT8); 

ln_dT9=log(dT9); 

ln_dT10=log(dT10); 

%% 

%custom equation for curve fitting: z=f(x,y)= f(x,y) = p00 + p10*x + p01*y + p20*x^2 + p11*x*y 

+ p02*y^2 

p00=[0.6374 -0.9444 -0.1066 -3.164 -5.985 -7.309]; 

p10=[1 1 1 1.001 0.9884 0.9707]; 

p01=[-0.2286 -0.9242 -0.5319 -1.937 -3.139 -3.658]; 

p20=[-1.943e-005 2.466e-005 -0.0001232 -0.0002026 0.001184 -0.003295]; 

p11=[-2.227e-005 1.591e-005 7.902e-005 0.0003083 -0.005951 -0.02435]; 

p02=[-0.06509 -0.1654 -0.1049 -0.3171 -0.4863 -0.5547]; 

  

%% 

%Inverse model for input power P=5.79W, lambda=0.62W/(m.K) 

%One thousand loop times with random noises 

n=1000; 

options = optimset('TolFun',0.4e-2, 'MaxFunEvals',100000,'MaxIter',100000); 

alpha=[1:n]; 

Mat2=zeros(2,n) ; %empty matrix 

for ii=1:n 

  

 PP0=[1.5;-0.5]; 
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Qin=fminsearch(@myLsq_Pin_loglamta_6points_polynomial,PP0,options); 

Mat2(:,ii)=Qin; %save loop results in matrix Mat 

  %EXIT(ii)=EXITFLAG; 

end 

  

 Pin_logP=Mat2(1,:);%Average value of first line of matrix 

 Pin_loglambda=Mat2(2,:);%Average value of second line of matrix 

 Pin_P=exp(Pin_logP); 

 Pin_lambda=exp(Pin_loglambda); 

 Pmean_P=mean(Pin_P) 

 Pmean_lambda=mean(Pin_lambda) 

 Ermaxmin1=max(Pin_P)-min(Pin_P)%Error between Pin1max and Pin1min 

 Ermaxmin2=max(Pin_lambda)-min(Pin_lambda)%Error between Pin2max and Pin2min 

 Pin_real=5.79; 

 lamta_real=0.62; 

  

 figure(1) 

 plot(alpha,Pin_P,'b.',[1,1000],[Pmean_P,Pmean_P],'-k',[1,1000],[Pin_real,Pin_real],'-r') 

 ylim([5.7 5.85]); 

xlabel('Loop times');ylabel('P(W)'); 

legend('-Loop random value','-Mean value of loop','-Real input value') 

title('Simulation loop with thermal noises') 

  

figure(2) 

plot(alpha,Pin_lambda,'b.',[1,1000],[Pmean_lambda,Pmean_lambda],'-

k',[1,1000],[lamta_real,lamta_real],'-r')%tracer courbe d'approximite 

ylim([0.6 0.65]); 

xlabel('Loop times');ylabel('\lambda(W/mK)'); 

legend('-Loop random value','-Mean value of loop','-Real input value') 

title('Simulation loop with thermal noises') 
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%%Power and thermal conductivity predictions with 10 temperature measurement sensors 

% Calling function @myLsq_Pin_loglamta_6points_polynomial 

 

function [Err]=myLsq_Pin_loglamta_6points(Qin) %Least square for calculating the error between 

measurement and modelling 

global dTmea_Pin_lamta  

Bruit=0.1*randn(1,6);%(rand(1,5)-0.5)*0.01;%distributed noise with mean 0 and standard deviation 

1 

dTmea_Pin_lamta=[12.054 3.390 6.571 0.581 0.059 0.019];%+Bruit;%Measurement temperatures 

for 5 surface points 

Coe_a=[0.6782 -0.8407 -0.02357 -2.964 -5.717 -7.02]; 

Coe_b=[1 1 0.9915 1 1.008 0.9893]; 

Coe_c=[-0.08569 -0.561 -0.2998 -1.24 -2.087 -2.49];                           

ln_dTmo_Pin_lamta=Coe_a+Coe_b*Qin(1)+Coe_c*Qin(2); 

dTmo_Pin_lamta=exp(ln_dTmo_Pin_lamta); 

Err=sum((dTmea_Pin_lamta-dTmo_Pin_lamta).^2); 

end          

 


