Multimodal Machine Translation - TEL - Thèses en ligne
Thèse Année : 2019

Multimodal Machine Translation

Traduction Automatique Multimodale

Résumé

Machine translation aims at automatically translating documents from one language to another without human intervention. With the advent of deep neural networks (DNN), neural approaches to machine translation started to dominate the field, reaching state-ofthe-art performance in many languages. Neural machine translation (NMT) also revived the interest in interlingual machine translation due to how it naturally fits the task into an encoder-decoder framework which produces a translation by decoding a latent source representation. Combined with the architectural flexibility of DNNs, this framework paved the way for further research in multimodality with the objective of augmenting the latent representations with other modalities such as vision or speech, for example. This thesis focuses on a multimodal machine translation (MMT) framework that integrates a secondary visual modality to achieve better and visually grounded language understanding. I specifically worked with a dataset containing images and their translated descriptions, where visual context can be useful forword sense disambiguation, missing word imputation, or gender marking when translating from a language with gender-neutral nouns to one with grammatical gender system as is the case with English to French. I propose two main approaches to integrate the visual modality: (i) a multimodal attention mechanism that learns to take into account both sentence and convolutional visual representations, (ii) a method that uses global visual feature vectors to prime the sentence encoders and the decoders. Through automatic and human evaluation conducted on multiple language pairs, the proposed approaches were demonstrated to be beneficial. Finally, I further show that by systematically removing certain linguistic information from the input sentences, the true strength of both methods emerges as they successfully impute missing nouns, colors and can even translate when parts of the source sentences are completely removed.
La traduction automatique vise à traduire des documents d’une langue à une autre sans l’intervention humaine. Avec l’apparition des réseaux de neurones profonds (DNN), la traduction automatique neuronale(NMT) a commencé à dominer le domaine, atteignant l’état de l’art pour de nombreuses langues. NMT a également ravivé l’intérêt pour la traduction basée sur l’interlangue grâce à la manière dont elle place la tâche dans un cadre encodeur-décodeur en passant par des représentations latentes. Combiné avec la flexibilité architecturale des DNN, ce cadre a aussi ouvert une piste de recherche sur la multimodalité, ayant pour but d’enrichir les représentations latentes avec d’autres modalités telles que la vision ou la parole, par exemple. Cette thèse se concentre sur la traduction automatique multimodale(MMT) en intégrant la vision comme une modalité secondaire afin d’obtenir une meilleure compréhension du langage, ancrée de façon visuelle. J’ai travaillé spécifiquement avec un ensemble de données contenant des images et leurs descriptions traduites, où le contexte visuel peut être utile pour désambiguïser le sens des mots polysémiques, imputer des mots manquants ou déterminer le genre lors de la traduction vers une langue ayant du genre grammatical comme avec l’anglais vers le français. Je propose deux approches principales pour intégrer la modalité visuelle : (i) un mécanisme d’attention multimodal qui apprend à prendre en compte les représentations latentes des phrases sources ainsi que les caractéristiques visuelles convolutives, (ii) une méthode qui utilise des caractéristiques visuelles globales pour amorcer les encodeurs et les décodeurs récurrents. Grâce à une évaluation automatique et humaine réalisée sur plusieurs paires de langues, les approches proposées se sont montrées bénéfiques. Enfin,je montre qu’en supprimant certaines informations linguistiques à travers la dégradation systématique des phrases sources, la véritable force des deux méthodes émerge en imputant avec succès les noms et les couleurs manquants. Elles peuvent même traduire lorsque des morceaux de phrases sources sont entièrement supprimés.
Fichier principal
Vignette du fichier
2019LEMA1016.pdf (4.53 Mo) Télécharger le fichier
Origine Version validée par le jury (STAR)
Loading...

Dates et versions

tel-02309868 , version 1 (09-10-2019)

Identifiants

  • HAL Id : tel-02309868 , version 1

Citer

Ozan Caglayan. Multimodal Machine Translation. Computation and Language [cs.CL]. Le Mans Université, 2019. English. ⟨NNT : 2019LEMA1016⟩. ⟨tel-02309868⟩
891 Consultations
538 Téléchargements

Partager

More