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Abstract

Graph-Based Semi-Supervised Learning (G-SSL) exploits labeled data along with the
structure of unlabelled data to build better classifiers. This classification paradigm has
received considerable attention since modern applications allow to collect large amounts
of unlabelled but structured data, naturally encoded by a graph, in a relatively easy and
inexpensive manner, while tagged data is expensive to obtain. However, despite its great
success, the performance of G-SSL can still be improved, particularly in cases of graph
topologies with unclear clusters, or unbalanced data settings, that this dissertation aims
to address.

The main contribution of this dissertation is a novel algorithm for G-SSL coined as the
L7-PageRank method: a generalization of the PageRank-based G-SSL by using (non-
necessarily integers) powers of the combinatorial Laplacian matrix LY (v > 0). The theo-
retical analysis of L7-PageRank is divided in two regimes. In the regime v < 1, we show
that L7-PageRank extends the standard PageRank algorithm to adopt the dynamics of
Lévy processes: where random walkers are now allowed to perform long-distant jumps in
a single step. In the regime v > 1, we show that L7-PageRank operates on signed graphs:
where nodes belonging to one same class are more likely to share positive edges while
nodes from different classes are more likely to be connected with negative edges. Our
main theoretical contribution is to show that L7-PageRank is guaranteed to outperform
the standard PageRank method if 7y is properly chosen. By means of numerical experimen-
tations we point the existence of an optimal v value maximizing performance, for which
a method for its automatic estimation is devised and assessed. The practical evaluation
of L7-PageRank on synthetic and real-world datasets commonly used for classification
shows that (i) in the regime v < 1, L7-PageRank can leverage the Lévy flight random
walkers to enhance the detection of classes with complex local structures, such as hubs or
sub-clusters; and (ii) in regime v > 1, due to the signed graphs enhancing the separability
of the data, L7-PageRank can significantly improve classification performance and also
override the issue of unbalanced labelled data.

To increase the value of L7-PageRank, we investigate fast and efficient implementations
that avoid the costly matrix inversion step demanded by its closed form solution. To-
wards this goal, by leveraging results from the field of Graph Signal Processing, we derive
extensions of Power Iteration and Gauss-Southwell, successful algorithms for efficient com-
putation of the standard PageRank algorithm, to L7-PageRank. Moreover, the dynamic
versions of Power Iteration and Gauss-Southwell, which can update the solution of stan-
dard PageRank in sub-linear time complexity when the graph evolves or new data arrive,
are also extended to L7-PageRank.
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ABSTRACT

The main goal of G-SSL is to help solve real world problems. Towards this aim, in
the last part of this dissertation we use G-SSL to address current issues in the context of
Internet routing. Firstly, we use G-SSL to provide the first characterization of the scope
of BGP zombies: routers that maintain routes towards of IP prefixes that have already
withdrawn the Internet. By measuring the state of routers in a small set of Autonomous
Systems (AS), we show that standard PageRank can predict the state of routers in ASes
over which measurements are not available with an accuracy of 97% for zombie ASes and
99% for normal ASes. Then, we use G-SSL inferences to characterize the scope of BGP
zombies. Secondly, we use G-SSL to address the problem of identifying the AS of inter-AS
links from a network of IP addresses and AS public registers. By building a graph from
traceroute measurements collected from the Internet and by collecting various types of
expertized data with varying degrees of confidence from AS public registers, we show that
L7-PageRank can solve this inference task with no errors, even when the expert does not
provide labelled examples of all classes.

v ABSTRACT



Résumé

Les méthodes d’apprentissage semi-supervisé sur graphes (G-SSL) exploitent un nom-
bre raisonnable de données étiquetées, conjointement & des informations structurelles sur
I’ensemble de ces données, et ce afin de construire des classifieurs plus performants. Ce
paradigme de classification a fait I’objet d’une attention considérable, d’autant que les
applications actuelles génerent des quantités de données structurées de plus en plus im-
portantes, facilement accessibles et naturellement encodées par des structures de graphes,
alors que I’équitetage de ces données reste un processus souvent cotteux qui limite ’acces
a des données labelisées. En dépit des nombreux progres réalisés dans ce domaine, les
performances des G-SSL sont encore perfectibles, notamment lorsqu’il s’agit de traiter des
graphes présentant une faible séparabilité entre classes, ou dans le cas de forts déséquilibres
entre les données des différentes classes. Ce sont précisment ces situations difficiles
auxquelles nous nous intéressons dans le cadre de ce travail de these.

La principale contribution de cette theése est une extension des méthodes de G-SSL clas-
siques, qui nous a conduit a une approche originale, appelée L7-PageRank. L’idée que
nous avons développée consiste a élever la matrice combinatoire Laplacienne de graphe —
qui est au centre de la méthode PageRank — a des puissances (non nécessairement entiéres)
LY (v>0).

L’analyse théorique de notre proposition nécessite alors de considérer deux régimes con-
ceptuellement distincts. Pour le cas dit fractionnaire, ot 0 < v < 1, nous montrons que
L7-PageRank généralise le concept de marches aléatoires qui sous-tend l'algorithme de
PageRank standard a des dynamiques de marches plus riches, tels que les vols de Lévy.
Ces derniers permettent aux marcheurs aléatoires d’atteindre des noeuds du graphes, dis-
tants de leur position courante, en un seul saut, accélérant ainsi la diffusion des étiquettes
a travers les noeuds d’une méme classe.

L’autre régime que nous avons étudié correspond aux valeur de v > 1. Contrairement
au cas précédent, L7 introduit ici des poids négatifs sur les liens, rendant la méthode in-
interprétable en termes de matrices de probabilité de transition. Nous avons alors montré
que L7-PageRank effectue une classification sur un nouveau graphe signé, ot les nceuds ap-
partenant a une méme classe ont une plus grande probabilité d’étre connectés via des liens
positifs, alors que des nceuds de classes différentes sont plus susceptibles d’étre connectés
par des liens pondérés négativement. La principale contribution théorique de notre travail
est de garantir que L7-PageRank atteint des performances de classification supérieures a
celles de PageRank standard, des lors que le parametre v est correctement sélectionné.
Expérimentalement donc, nous vérifions I’existence d’une puissance v optimale qui max-
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RESUME

imise les performances de L7-PageRank. Puis, nous proposons une routine empirique
opérationnelle qui permet de déterminer a partir du graphe des données et des étiquettes
disponibles, la valeur optimale de la puissance 7.

Pour illustrer les améliorations apportées par les méthodes proposées, nous avons testé
L7-PageRank sur un grand nombre de jeux de données, couramment utilisées pour évaluer
les performances des classifieurs semi-supervisés. Les résultats obtenus montrent que: (i)
dans le rgime 0 < v < 1, les vols de Lévy permettent a L7-PageRank de mieux identifier les
classes prsentant des structures locales complexes, telles que des hubs ou des sous-groupes;
(ii) avec v > 1, les graphes signés accentuent significativement la séparabilité des classes,
ce qui permet en particulier aux L7-PageRank de répondre plus efficacement au probléeme
du déséquilibre du nombre de données étiquetées par classes.

Les contributions de ce travail de these sont également d’ordre algorithmique.

Un autre avantage des méthodes d’apprentissage semi-supervisé sur graphe est de fournir
une solution explicite au probleme de classification. Cependant, les expressions analy-
tiques de ces solutions impliquent toutes, quel que soit L7-PageRank choisi, une inversion
matricielle cotiteuse, mal adaptée aux grands jeux de données. Nous avons donc développé
des implémentations efficaces de L7-PageRank, qui s’appuient sur des résultats obtenus en
traitement du signal sur graphes. Comme cela avait déja été fait pour PageRank standard,
nous utilisons des méthodes d’approximation de type Power Iteration et Gauss-Southwell,
pour obtenir des solutions numériques de L”7-PageRank capables de passer a 1’échelle. En-
fin, nous nous intéressons au contexte de I'apprentissage évolutif sur graphes, ou, soit la
strucuture de graphe change au cours du temps, soit les données arrivent séquentiellement.
Dans les deux cas, il faut pouvoir intégrer ces évolutions a la classification, sans avoir a
re-calculer intégralement la solution & chaque pas de temps. Nous avons alors développé
des algorithmes dynamiques incrémentaux en complexité sous-linéaire, permettant de cal-
culer la solution de L7-PageRank au fil de I’eau.

Dans la derniere partie de cette these, nous traitons deux applications originales de G-SSL
dans le contexte du routage Internet. Tout d’abord, nous utilisons PageRank standard
pour fournir une caractérisation inédite de la portée de 'influence des zombies Boarder
Gate Protocol (BGP). Ces derniers sont des routeurs qui ont conservé les chemins vers
certains préfixes ayant déja disparu du réseau Internet. En mesurant I’état d’un groupe
restreint de systémes autonomes (AS), nous montrons que PageRank permet de prédire
I’état des routeurs dans d’autres AS, sur lesquels nous n’avons aucune mesure. La précision
atteinte est alors de 97% pour les AS avec routeurs zombies et 99 % pour les AS n’ayant
que des routeurs a jour. Les résultats fournis par cette classification G-SSL nous perme-
ttent ensuite de caractériser le domaine d’influence des zombies BGP. Dans une deuxime
application, nous abordons le probleme de 'identification des systémes autonomes (AS)
connectés par des liens inter-AS, et ce, uniquement a partir du réseau d’adresses IP et des
registres publics d’AS. Des expériences a partir de mesures traceroute d’Internet montrent
que seuls les L7-PageRank, avec v > 1, permettent de résoudre cette tache sans erreur,
alors méme lorsqu’on ne dispose pas d’exemples étiquetés par I’expert, pour la totalité des
AS (i.e., des classes).
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Introduction

Data have a fundamental role in society. It can be argued that one important reason for
the progress of civilization is that we have leveraged data to take better decisions. For
instance, the deep understanding of the data output by medical tests has allowed doctors
to make more precise diagnoses and to better identify optimal treatments. It is thanks
to weather records and CO2 measurements that we now better understand the impact
that our carbon footprint has on climate change. Also, evolutionary theory by natural
selection, which is one of the major breakthroughs in human history, was devised from
data collected from birds.

In today’s world, data are more important than ever. They are involved in almost any hu-
man related activity. From listening to music records, to trade in goods, passing through
medical examinations, up to sharing photos on internet. All these activities generate mas-
sive amounts of data which, due to technological progress, we can now store and effortlessly
access. If we have historically used few available data to better solve problems, then the
monumental amount of data at our disposal nowadays is a gold mine to devise a better
world.

Over the years, the machine learning and the signal processing communities have pro-
posed numerous data classification techniques to better organize and understand the large
mass of data arising from the big data trend. Classification refers to the task of grouping
data instances according to some properties they have in common. For example, given
a set of documents, classification can consist in separating them by topic. From a set of
bank transactions, classification may aim to group those who correspond to a fraud. From
a set of emails, it consists in identifying those that are spam. It can also be the categorisa-
tion of music files according to genre, instruments, or language. The list of possible data
applications is endless and classifiers constitute one of the essential tools to capitalize on
them.

Yet, one fundamental question that arises is why state-of-the-art classifiers, which have
been shown to categorize pet images with even better accuracy than humans [1], have had
negligible impact in important areas such as medicine [2], despite an estimated 1.7 billion
users of healthcare applications [3] and a market of roughly 600 million wearable medical
devices [4] generating data? The answer is that classifiers need to learn: a process that
involves discerning what are the determining features that make two points share a class
(or not) after seeing large amounts of data instances annotated with their true label. The
issue is that annotated data do not follow the big data trend, instead they remain scarce
in numerous application domains, such as medicine, in which the process of hand-labelling
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data usually requires from the intervention of human experts and the use of specialized
devices. In this context, it is certainly unfeasible that medical experts can tag an amount
of examples equivalent to the 1.28 million annotated images needed by the classifier of [1]
to attain such reliable predictions. This lack of sufficient labelled data necessary to make
supervised classifiers trustworthy has caused most of the data that we continue to collect
to remain unanalyzed.

How to draw reliable inferences when the labelled data is insufficient? This fundamen-
tal question is the fuelling force of the modern classification paradigm known as semi-
supervised learning on graphs (G-SSL). In G-SSL, classifiers not only learn from annotated
examples but also from unlabelled data. This gives them the ability to take advantage of
the big data trend and the power to deliver reliable inferences even from limited amounts
of labelled data. The idea of learning from unlabelled data is not new to G-SSL, as pre-
vious approaches under the umbrella of unsupervised learning have noticed that raw data
posses structural patterns informative of its class nature, yet unsupervised approaches
have failed to have much impact since they require extensive intervention from human
experts to judge if the patterns they find are beneficial in some manner. G-SSL revisits
those ideas and uses the structure of unlabelled data to enrich the labelled data. To attain
a synergy between these two sources of information, G-SSL represents the data by means
of a similarity graph. Graphs are a powerful tool to represent and capture the structure of
datasets because the usually high-dimensional datapoints become simple vertices and the
similarity between datapoints is encoded by edges linking those vertices. In this context,
G-SSL essentially amounts to transform the usual classification problem into one in which
a graph has some of its nodes labelled and one aims to find the label for the remainders.
Yet since the class nature of the data is implicit in the graph, this one allies with the
labelled data to deliver reliable inferences.

To illustrate how G-SSL can draw reliable predictions by learning from both the structure
of data and few annotated examples, let us give a simple illustrating example in Figure 1.
Let us assume that Figure la represents a dataset with three classes where a few points
have been hand-labelled (red, blue, magenta) and the rest are raw data that we aim to
classify (grey). By themselves, the labelled points are simply too few to learn something
from them, however the grey datapoints have a structure reminiscent of the class nature of
the data. This extra information is key in G-SSL which builds a similarity graph to encode
for it, as shown in Figure 1b. This is where the G-SSL inference problem is reached: given
a graph with some labelled nodes, one aims to predict the class label for the remainder
of nodes. To solve it, the graph structure and the annotated nodes operate together by
successively propagating the labels to adjacent nodes in the graph until all nodes have
inherited a class. As it can be seen in Figure 1c, despite having few annotated examples,
G-SSL is able to enrich this information with the graph structure to deliver reliable infer-
ences.

G-SSL procedures have already set the state-of-the-art in various applications domains [5,
6, 7, 8, 9]. Moreover, the recent proliferation of non-euclidean graph-structured datasets,
such as the web-graph, social networks, protein networks, or citation networks, are tailor-
made to be addressed by G-SSL, making it a tool of utmost importance to tackle some of
the central problems today.

2 INTRODUCTION
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(a) raw data (b) inferred graph (¢) G-SSL classification

Figure 1: Hlustration of the G-SSL classification process

Nevertheless, G-SSL is still not perfect. Indeed, the state-of-the-art results indicate that
when the labelled data are limited, G-SSL gives accurate classifications only under rather
simple data conditions: such as when the structure of classes is well defined (separable) and
without complex local structures like multiple sub-classes constituting one larger class. In
this regard, if the data increases in complexity, then G-SSL may require significantly more
tagged examples to remain reliable. For example, the authors of [5] employed the state-
of-the-art G-SSL method [10] to classify 1,126,670 internet users according to the topic of
videos they downloaded. Their results show that if 500 labelled points per class are used,
G-SSL attains a classification error of 10%, which may be sufficient to draw conclusions,
but if one uses 5 labelled points per class, then the error grows to 37%, which is now
too large to be beneficial. This lack of reliability in challenging data settings has caused
G-SSL to continue to be mainly employed in applications where some miss-classifications
can be tolerated, such as text categorization [6], or handwritten digit recognition [8]. Fur-
thermore, it explains why it has not been seriously considered in other types of application
domains such as medicine [2].

In addition, recent theoretical results [10] indicate that G-SSL methods produce biased
outputs when the ratio of class size and number of annotated examples is not the same
for all classes. This certainly harms the trustability of G-SSL classifiers because the size
of classes cannot be known a priori and it is against the G-SSL philosophy that, in order
to make a classifier reliable, one would need to discard tagged data that may have been
expensive to collect. Indeed, it is unfortunate that for large datasets consisting of thou-
sands of classes, G-SSL demands to collect labelled data in a balanced way for each and
every class, or otherwise the classifier will either be biased or will missclassify an entire
class whose label was never collected.

All these results point in the direction that the G-SSL paradigm is one of the most promis-
ing approaches to get the most out of data. Yet, its output tends to only be accurate under
simple data settings with rather ideal conditions on the separability of data and the bal-
ancedness and availability of annotated data. In this context, the main question that I
would like to address in this dissertation is the following:

INTRODUCTION 3
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How can we improve G-SSL to address the limitations listed above? ‘

To address this question, the main contribution of this dissertation consists of a new
method for G-SSL referred to as the L7-PageRank G-SSL. Elaborating on [10], L7-
PageRank introduces a new degree of freedom into the G-SSL problem: ~, which, for a
chosen value, changes the topology of the data and makes L7-PageRank solve the G-SSL
problem in the new topology. The following summary of characteristics of L7-PageRank
highlights the significance that our contribution brings to G-SSL:

1. L7-PageRank is theoretically guaranteed to deliver more reliable classifications than
the state-of-the-art PageRank method [10] if v is properly chosen.

2. L7-PageRank overrides the issue of unbalanced sets of labelled points
In addition:

o [7-PageRank provides an algorithm for the automatic estimation of the optimal ~
to maximize performance

e [7-PageRank addresses better complicated data structures, such as graphs with
unclear clusters or classes with sub-clusters structures or hubs

e [7-PageRank is tailor-made to classify data via sweep-cuts [11], implying that it
does not necessarily need labelled points of all classes to operate: it can be run with
labelled points of just one class and returns the nodes belonging to such class.

e [7-PageRank can be efficiently computed and fastly updated to classify new data
or evolving graph structures

e [7-PageRank has been empirically assessed on extensive datasets commonly used for
classification, showing significant improvements over the state-of-the-art PageRank
method.

The thesis is organised as follows:

Chapter 1: In this chapter, we present fundamental background in graph theory, ran-
dom walk theory and an introduction to the emerging field of Graph Signal Processing,
fields upon which the thesis is built. The chapter also serves to introduce definitions and
notations used throughout the thesis.

Chapter 2: This chapter starts with a thorough tour of the field of G-SSL. Then, we
provide our fist contribution.

In the first part, we review the most influential and widely used G-SSL propositions
[12, 13, 14, 10] and point that the PageRank-based method [10] arises as the state-of-
the-art approach for G-SSL. We cover results showing that the classification assignment
given by the PageRank method can be explained in terms of the theory of random walks.
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Then, we point that such results imply that G-SSL methods suffer from biased outputs
when facing unbalanced labelled sets. We introduce another line of works indicating that
G-SSL is ill-posed when the data grows infinitely large. Proposed solutions are reviewed
and special emphasis is given to the approach of [15] that proposes the use iterations of
the Laplacian kernel to amend the issue.

The second part introduces G-SSL from the perspective of graph partitioning. We review
partition problems and revisit results originally developed in the context of local clustering
[11, 16, 17] showing that the PageRank algorithm, in conjunction with a technique called
the sweep-cut, can be used to partition the graph into clusters of small Cheeger ratio. We
contribute pointing that the results of [11, 16, 17], can be re-interpreted in the context
of G-SSL. Moreover, we show that the idea of taking sweeps can be directly applied to
G-SSL, embedding it with a larger degree of flexibility in which only the tagged points
of a class are needed to run G-SSL and find the nodes belonging to such class. Lastly,
we highlight that those results serve to explain better the success of the PageRank-based
G-SSL method of [10].

Chapter 3: This chapter describes the core contribution of this thesis: the L7-PageRank
method, a generalization of PageRank to (non-necessarily integers) y-th powers of the com-
binatorial Laplacian matrix LY (v > 0). For our developments, the chapter commences
revisiting the Laplacian powers, already considered in [15], as a means to improve G-SSL.
The key difference between our approach and the one in [15] is that [15] interprets the
Laplacian powers as a Sobolev regulariser, while in our approach we show that the L7
operator, for every fixed 7 value, generates a new graph. These new graphs, which we
refer to as the L7-graphs, reweight the links of the original structure and create edges
between originally far-distant nodes. Thus, our generalized L7-PageRank formulation is
an extension of PageRank to operate on the L7-graphs (for v = 1 our algorithm then re-
duces to the standard PageRank algorithm). To analyse L7-PageRank, we show that two
regimes arise: (i) 7 < 1: leading to random walk transition matrices encoding for Lévy
processes; and (ii) v > 1: leading to signed graphs where edges can be positive or negative.

Regime v < 1: we show that our L7-PageRank extends the regular PageRank algorithm to
incorporate Lévy flight random walkers instead of the regular random walkers. The Lévy
flight random walkers can jump between far-distant nodes in the graph in a single step,
contrary to the regular random walkers that can only transition to adjacent neighbours.
We show that the improved capacity of the Lévy walkers to explore the graph can improve
the classifications of graphs with trapping regions, like strong hubs, or sub-cluster struc-
tures, that tend to harm the significance of the functions learned by the regular PageRank
algorithm.

Regime ~ > 1: we show that, albeit no longer modelled by random walkers because of
the graph being signed, L7-PageRank remains a well behaved diffusion process. Then, we
extend the definition of a cluster to L7-graphs: we say that a cluster in a signed graph
is a group of nodes whose members strongly agree (positive edges) and that strongly dis-
agree with members of other clusters (negative edges). We provide a generalization of
the Cheeger ratio to assess clusters in the signed L7-graphs and show that, similar to the
regular PageRank method that can partition graphs into clusters of small Cheeger ratio,
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L7-PageRank is a tool to partition L7-graphs into clusters of small generalized Cheeger
ratio. This result implies that if a L7-graph increases the separability of the data, then it
is easier for L"-PageRank to classify the data. In other words, we theoretically show that
if the ground truth class under search has a smaller Cheeger ratio in a L”-graph than in
the initial graph (v = 1), then we can more accurately identify it with L7-PageRank using
the sweep-cut technique. By means of numerical investigations, we point the existence of
an optimal v value that maximizes performance. Therefore, we propose an algorithm that
allows to estimate the optimal ~+ directly from the initial graph and the labeled points.
Lastly, we demonstrate the classification improvements permitted by L7-PageRank on
several real world datasets commonly used in classification, as well as the relevance of the
estimation procedure for the optimal tuning. Particularly, our results demonstrate that
L7-PageRank can: (i) significantly improve classification performance; and (ii) amend the
issue of unbalanced labelled data.

Chapter 4: This chapter investigates fast and efficient implementations for our propo-
sitions in Chapter 3 and represents our third contribution. We start reviewing highly
successful algorithms for efficient PageRank computation: power iteration [18, 19, 20] and
Gauss-Southwell [11, 21], but that rely on the Markov chain structure of PageRank and
cannot be directly used in our propositions. Then, we show that our L”-PageRank method
can be framed in the context of graph filters, allowing us to use techniques from the field
of Graph Signal Processing to efficiently implement graph filters: ARMA filters [22] and
Chebyshev polynomials [23]. We then show that by using the ARMA filter structure, we
can derive extensions of the power iteration and Gauss-Southwell algorithms to compute
L7-PageRank. Part of the strong success of power iteration and the Gauss-Southwell meth-
ods for standard PageRank computation is that they possess dynamic versions [24, 25] that
can update the PageRank solution in sub-linear time when the graph evolves. Therefore,
we elaborate on the ARMA-based extensions of those algorithms derived in the first part
of the chapter to obtain dynamic extensions of the algorithms of [24, 25] that permit to
update L7-PageRank in sub-linear time.

Chapter 5: This chapter uses G-SSL to address issues in Internet routing. It repre-
sents our fourth contribution. The chapter starts using G-SSL to provide the first char-
acterization of BGP zombies under BGP protocol. Then, it employs G-SSL to address
the challenge of inferring topologies of autonomous systems from networks of IP addresses.

In the first part of the chapter, we use G-SSL to provide the first characterization of
the scope of BGP zombies. For this characterization, we perform measurements of the
Internet in a controlled environment during three periods that span across one year an a
half. Our measurements track the state of a restricted set of routers, where we occasionally
observe some of them maintaining a route towards a prefix that has withdrawn the Internet
more than 1.5 hours ago. To assess if this anomaly occurs in isolation or at a large scale,
every time it is detected in our measurements we use G-SSL to predict which autonomous
systems, other than the ones over we have measurements, also have affected routers. We
show that the standard PageRank algorithm detects affected autonomous systems with
97% accuracy and non-affected ones with 99% accuracy, according to a validation set con-
structed from tracerout measurements of the Internet. The G-SSL predictions are then
used to characterize the scope of affected autonomous systems, with our results indicating
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that, on average, 10% (IPv4) and 17% (IPv6) of the monitored autonomous systems are
affected when the issue appears in our measurements.

In the second part of the chapter, we use G-SSL to solve the issue of inferring the topol-
ogy of autonomous systems from the network of IP addresses. We perform tracerout
measurements of the Internet and build a graph of IP addresses from them. Then, from
publicly available ASNs registered for the IP addresses of the graph, we show that various
labelled datasets with varying degrees of confidence can be constructed. We study the
advantages/disadvantages of the various types of semi-supervision proposed, which offer a
trade-off between amount of annotated examples and how much we can trust them. Our
results show that, for the studied dataset, L7-PageRank with v = 2 can solve this infer-
ence task with no errors, contrary to standard PageRank which always miss-classifies data.

Chapter 6: This chapter concludes the work and discusses future directions.
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Chapter 1

Preliminaries

1.1 Graph theory

Graph theory is an important area of discrete mathematics with a long history dating back
to the 18th century [26]. It focuses on the study of graphs: mathematical objects that
represent pair-wise interactions between elements. Graphs were initially used to solve com-
binatorial problems [27], although the technological developments from the last century
have given rise to numerous modern systems that can be effectively modelled by graphs.
Examples of such systems range from the Internet [28], social networks [29], financial sys-
tems [30], healthcare [31], protein networks [32], smart grids [33], communication systems
[34], or sensor networks [35], to name a few. Indeed, the list of applications, and the
systems themselves, evolve every day, and, accordingly, the complexity of the questions
they give rise to. To address such questions, it is crucial to better understand the data
generated by these systems and graph theory provides the fundamental building block to-
wards developing better data processing tools capable of taking into account the complex
interconnected nature of these systems.

Graphs are made of two fundamental ingredients: a set of nodes (also referred to as
vertices) and a set of edges linking these nodes. From here, variants can be devised: the
edges may code for strength through a weight coefficient or may have a direction. In this
thesis, we will only consider networks that are undirected, with positively weighted edges,
and without self-loops (a link connecting a vertex with itself), unless otherwise stated.
While this restriction leaves out various networks of major interest, the tradeoff is that it
allows a much more amenable mathematical treatment while still covering the majority of
modern applications.

A graph is denoted by the triplet G(V,E,w). By V, we refer to the set of vertices, which
we assume of carnality |V| = N. By £ c V x V), we denote the set of edges, in which a
connected pair u,v € V, denoted u ~ v, implies both (u,v) € £ and (v,u) € £. A graph is
labeled as sparse if [€] = O(N). Lastly, w: € - R" is a function that assigns a real positive
weight to edges.

The adjacency matriz of the graph is an important matrix condensing all the information

from the triplet G(V, €, w). Without loss of generality, assume that each node in the graph
is assigned an arbitrary and unique index from 1 to N. Then, is is defined as follows:

9
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Definition 1. The graph adjacency matriz is the matriz W e RNN with elements given
by

L (1.1)
0 otherwise.

Note that since we assumed undirected edges the adjacency matrix is symmetric. More-
over, the no-self loops condition implies that the diagonal of W is full of zeros.

The degree matriz is another important matrix which encodes for the degrees of nodes.
The latter are a measure of how strong are the connections towards a node. Both are
defined as follows:

Definition 2. Let u €V be an arbitrary node. The degree of u, denoted d,,, is given as
dy=> Wi (1.2)
v

RNXN

Definition 3. The graph degree matriz is the diagonal matriz D € with elements

given by Dy, = dy

Graphs do not live in euclidean spaces, therefore we cannot compute distances between
nodes using euclidean approaches. However, graphs possess an intrinsic metric usually
referred to as the shortest path distance or the geodesic distance between nodes. Let the
sequence (v1,v2,...,0;) €V xV x--+x YV, with v; ~ v;41, v1 = v and vg = v, denote a path
of k-1 edges between u and v. The shortest path distance is defined as follows:

Definition 4. The shortest path between u,v €V, denoted by Ay, is the path between u
and v with the minimum number of edges.

In this work, we will extensively work with groups of nodes. We will refer to such groups
via the set notation S € V. Further, let 1g denote the indicator function of S, so that
(1s),=1ifue S and (1g), = 0 otherwise. As illustrated in our next definition, the indi-
cator function notation will allow us to write most operations involving sets in matrix form.

The volume of a set is a quantity that assesses how many connections reach the nodes in
the set. It is defined as follows:

Definition 5. Let S cV. The volume of S is given by
vol(S) = > d, =15D1g (1.3)
ueS
When we refer to the volume of the entire graph it will be denoted by vol(G).

1.2 Graph data

1.2.1 Graph models

As discussed above, numerous graphs can naturally arise in several real world applications.
However, one has hardly any control over these graphs. It is thus important to rely on
graph generative models that, on the one hand, allow to vary properties under investigation
by means of tunable parameters, and, on the other hand, have matrix representations
with amenable theoretical properties. This subsection introduces graph models that will
be employed throughout this work.

10 CHAPTER 1. PRELIMINARIES
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Cyclic graph

The ring graph is a 1-dimensional regular lattice with periodic boundary conditions. If we
label the graph vertices from 1 to N, then the defining property of ring graphs is that the
shortest path distance between nodes satisfies
U—v if lu-v|=0,1,...,|N/2],
N (R R T N /2] »
N-|u-v| if |u-v|=|N/2|+1,...,N,

where || is the floor function. As a result, the adjacency matrix of ring graphs has the
following circulant form: Wy, =1 if v =u+1 or v =u -1, and Wy, = 0 otherwise. It is
well known that circulant matrices have amenable mathematical properties. Two of the
most important are [36]: (i) they are diagonalized by the discrete Fourier transform; and
(ii) they can be interpreted as a convolution operator on cyclic groups of N elements.

The planted partition model

The planted partition model is an important generative model for random graphs. It is
tailored to generate graphs having a community structure. A community (also referred
to as a cluster in this work) denotes a group of nodes satisfying: (i) nodes in the group
are strongly connected between them; and (ii) nodes in the group are poorly connected
towards the rest of nodes in the graph. The planted partition model allows to control the
degree of attachment between nodes within and between communities. Thus, it widely
used for benchmarking tasks that involve communities.

To construct the planted partition, let the set of nodes be split into two disjoint sub-
sets S7 and Sy as V = S7 U Sy, with S; NSy = @. Further, let two parameters p;;, and Py
denote the probabilities of within-cluster connections and between-cluster connections.
Then, for every possible pair, v € S; and v € S;, v # v, an unweighted edge is drawn
between v and v with probability p;, if ¢ = j, or with probability pey: if @ # .

It is clear that if |S1| = |S2| and pin > pour are both satisfied, then S; and Sy should
form separate communities. Yet, due to the probabilistic approach, nodes from S; can
still end up more connected to nodes from Sy than to the rest of nodes in S; (depending
on how much bigger is p;, than py,:). Thus, the clustering task in the planted partition
is: for a given realization of the model, one must recover the true partitioning, i.e. which
nodes belonged initially to S; and which ones to Ss.

The planted partition has been subject of extensive theoretical studies [37, 38, 39]. An
important result due to Mossel et al. [40] demonstrates the existence of a detectability
transition above which any unsupervised algorithm is unable to detect communities pos-
itively correlated with the true partition. To state their result, let |Si| = |S2| = n and let
Cout = (Pout)(n) and Cjy, = (pin)(n—1) be the mean number of within cluster and without
cluster connections of a node, respectively. The mean degree of a node is thus given by
C1avg = Cm + Cout‘

Theorem 1 ([40]). Consider a planted partition model. Then, as n — oo, it is possible
to recover a cluster that is positively correlated with the true partition, in an unsupervised
manner, if (Cin = Cout)? > 2(Cin + Cous), and impossible otherwise.
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N e i
(a) raw data (b) inferred graph

Figure 1.1: The Swiss roll dataset.

Stochastic block model

The stochastic block model (SBM) is a generalization of the planted partition to an ar-
bitrary number of communities. For the K-class SBM, let the set of vertices be split in
K disjoint subsets Si,---,Sx as V = UleSk. Further, let p;; = pj; denote the probabil-
ity of connecting two vertices from sets S; and S;. Then, for every possible pair of nodes
u € .S; and v € Sj, u # v, an unweighted edge is drawn between u and v with probability p;;.

It was conjectured in [41] that the detectability transition of the planted partition ex-
tends to K-class SBM, so that a partition correlated with the true partition can be found
if (Cin = Cout)? > K(Cip + (K = 1)Cout), and impossible otherwise. However, the work of
[42] shows that for K > 4, it is possible to detect communities information-theoretically
beyond the conjectured threshold.

Lolipop graph

The two-headed lollipop graph or barbell graph is a toy graph model useful to represent
hub regions, i.e. nodes or small regions with much larger degree with respect to their
surroundings. The (m,n)-lollipop graph consists of a path of n vertices with cliques
(groups of nodes fully interconnected) of m nodes at the extremes of such path. The links
in the path are unweighted and the links in the cliques have tunable weights.

1.2.2 Graphs constructed from raw data

Thus far, we have discussed applications in which a graph implicitly arises. However,
graphs can also be effective to analyse Euclidean structured datasets. In such cases, the
graph is used as a way to encode for the structure of the data. Take for instance the case
of data living in a low dimensional manifold embedded in a high dimensional euclidean
space. One common example of this type of data is the Swiss roll dataset displayed in Fig
1.1a. The datapoints of the Swiss roll are embedded in R?, yet their natural dimension
is R%. Clearly, processing the data in R can easily lead to conclude that points having
different color can be closer than points of the same color. Now, consider a graph inferred
from the data in Fig 1.1b. Here, datapoints represent nodes in the graph and edges are
placed between a point and its closest neighbours. Observe how the graph connects, for
the most part, nodes sharing the same color, thus effectively capturing the structure of
the data. This subsection describes popular approaches for inferring graphs from data.
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Before proceeding, it is important to define a metric to assess the similarity between
datapoints. Various possibilities exist: correlations, inverse of the euclidean distance, ker-
nel functions, etc. In this work, we will employ the so-called radial basis function (RBF).
It is defined as follows: let u,v € R™ be two data points in an m-dimensional vector space
and let o be a width parameter. The similarity between v and v is thus given as

. o=l
sim(u,v) = exp = (1.5)

e-neighborhood graph construction

In the e-neighborhood graph construction approach, the adjacency matrix of the graph is
constructed employing the following rule
sim(u,v) if sim(u,v) <e,
Wiy = (u,v) ( ) (1.6)
0 otherwise,

This is the most natural approach to capture the structure of manifolds as they seem
euclidean in local regions. However, the tuning of € is critical and there are not clear
insights on how to choose this parameter in practice. Indeed, a bad choice of € can easily
lead to disconnected vertices.

K-nearest neighbor graph construction

In the K-nearest neighbor graph construction approach, the adjacency matrix is computed
as

(1.7)

W < {sim(u, v) if v is within the K most similar points of u,
uv

0 otherwise,

Note that this approach solves the problem of disconnected nodes. However, in practice,
the tuning of K is crucial and its selection remains an open question. Normally, choosing it
around K = 10 tends to give good results. Finally, observe that « may be in the K closest
neighbors of v, but the converse may not be true. Thus, each time we set W, = sim(u,v),
we must also set W, = sim(u,v).

1.3 Random walks on graphs

Now that we have seen that numerous problems can be modelled by graphs, we focus on
tools to analyse graphs. A simple, yet powerful approach to analyse graphs is to navi-
gate the graph and to compute statistics about it. This is the underlying mechanism of
a random walk on a graph. The random walk process operates as follows: a walker is
located at a node w at a specific time ¢, then it selects one node from its neighbors with
probability proportional to the strength of their connection, and moves to this node at
time step £+1. While simple, the statistics of this process, in the limit of infinite number of
realizations, yield a very useful model for diffusion on graphs, upon which several precise
statements can be made. Indeed, this modeling capacity of random walks has been used
to characterise: users surfing the web by clicking hyperlinks between sites [43]; a disease
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propagating in a population [44]; or fake news being spread and influencing political pref-
erences [45]. Further, walkers have also leveraged to solve graph problems such as graph
clustering [46], graph coloring [47], graph critical point [48], or minimum spanning tree [49].

In math terms, a discrete time random walk on a graph is a discrete time Markov chain
with state space given by the vertices of the graph. The transition probabilities of the
chain are encoded by the so-called transition probability matriz of the walk defined as
follows:

Definition 6. The transition probability matriz of a random walk is the matriz P e RN*N
with elements given by
W,
Py = ——, (1.8)
dy

where Py, denotes the probability of a walker at node u moving to a node v in the following
step.

Observe that P can be computed in matrix form as P = D™'W. Also, since the walker
always moves to a neighbor, P is right stochastic, i.e. Py, € [0,1] with ¥, Py, = 1, or,
equivalently in matrix form, the all ones vector, denoted 1, is a right eigenvector of P
with eigenvalue one: P1 = 1.

Note that, since an individual walker is not sufficient to derive statistics, one must work
with the ensemble probabilities from an infinite number of walk realizations instead. Let
Xt denote the probability vector whose u-th entry, (x¢)v, encodes the probability of finding
the walker at node u at time ¢t. Then, the probability of finding the walker at node v at
time ¢ + 1 is given by
(Xt+1)v = Z(Xt)upuv (19)
u

In matrix form, this can be computed for all nodes as XtT+1 = xI' P. Clearly, this recursive
relation can be iterated to compute the distribution of the random walks at any time
t by only knowing the distribution of its starting point. Thus, we have that the t-step
distribution of the random walk, with starting distribution yg, is given as

X! = x3 P (1.10)

It is important to highlight that Eq. (1.10) admits an interpretation as a diffusion process
on the graph. This is, consider the entries of xg to represent some amount of ‘heat’ or ‘lig-
uid’ placed on the nodes of the graph. Then, the vector y; represents the state of having
diffused this quantity, through the graph vertices, for t-steps via the random walkers. Let
us clarify on what we intend by means of the simple example in Figure 1.2. In it, a unit
mass of ‘heat’ is placed at node 1 at ¢ = 0 (green node / top plot). Then, random walk
steps are applied and, at each time step, the heat diffuses to its adjacent vertices (first
step: blue/middle; second step: red/bottom). Observe that, due to Y, (x¢)s =1 for all ¢,
the process is mass preserving, implying that there is no creation or dissipation of ‘heat’.
Thus, effectively just propagating the mass at each time step. Due to this duality, when
we refer to the probability of finding a walker at a node or to the mass diffused by walkers
to a node, both expressions will be indistinct.

In the limit of infinite time steps, irrespective of the initial condition g, if the graph
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Figure 1.2: Random walks as a diffusion process.

is connected and not bipartite (graphs that can be divided in two sets with all edges
ending in different sets), then the distribution of the random walk converges to a unique
stationary distribution. Let m denote the stationary distribution of the random walk. The
defining property of this stationary state is that m = x; = x¢+1 for some ¢, implying that
the following relationship holds

l =xTP. (1.11)

It can easily be shown that the stationary probability at a node is always proportional to
the degree of the node. This is, let 7, = d,,/vol(G) and observe that it satisfies Eq. (1.11):

1 T 1 B 1 _
P vol(G) (D1)" DW= vol(G) 1w - vol(G) (D1 = (1.12)

An important property of a random walk is its mixing time: the number of steps that the
walk needs to do in order to converge to its stationary state. The mixing time is tightly
related to the eigenvalues and eigenvectors of P. Indeed, this relationship appears from
Eq. (1.11), where it can be seen that 7 is a left eigenvector of P with eigenvalue one. To
elaborate, note that the right stochasticity of P implies the following two things: (i) P
always has an eigenvalue equal to one; and (ii) the spectral radius of P is upper bounded
by one due to Gershgoring circle theorem. Now, P has a unique eigenvalue equal to one
(in absolute value) as long as the graph is not bi-partite [50, 51]. Thus, the random walk
converges to a stationary state because when the matrix P is iterated in Eq. (1.10), all
the eigenvalues within the unit circle decay towards zero. Clearly, since the last eigenvalue
to vanish is the second largest eigenvalue (in absolute value) of P, then it controls the
mixing time, meaning that if such eigenvalue is close to zero the walk mixes in only a few
steps, while if it close to one the walk needs much more steps to mix.

1.4 Graph signal processing

In addition to the graph topology, in numerous applications we can also have data as-
sociated to the graph vertices. Take for example the case in which the graph represents
interacting people and nodes have an age, civil status, or healthy status associated to
them. It can also be that the graph represents the Internet and the nodes are websites
with traffic associated to them. Clearly, such extra data living in the graph vertices can
be a valuable source of information to better understand the network. To process these
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data, standard data processing tools must be able to incorporate the irregular nature of
the domain in which the data lives. For this reason, the field of graph signal processing
(GSP) has emerged with the objective of extending traditional data processing tools (and
to develop new approaches) to treat and analyse data supported on irregular domains.
This section gives an overview of the field of GSP.

1.4.1 Graph signals

If the data supported on the graph vertices is represented by numerical values, then the
concept of signal from classical signal processing can be generalised to arbitrary graphs.

Definition 7. A graph signal f is defined as the mapping f:V — R.

Graph signals are represented by column vectors, where the u-th element of f, denoted
fu, represents the signal value at node u.

Therefore, the focal point of GSP is to process graph signals in a similar manner as we
process time series or images in classical signal processing. Towards this aim, numerous
efforts have been done to extend operations that are the cornerstone of classical signal
processing to the graph setting. These include: filtering [52, 53, 54], prediction [55, 56],
inpainting [57, 52], subsampling [58, 59], multi-resolution anaysis [60, 61], compression
[62, 63], or classification [64, 65, 5].

1.4.2 Spectral theory

In classical signal processing, one of the fundamental operations to analyse a signal is to
decompose it into its fundamental frequencies. As natural signals tend to be generated by
multiple phenomena of diverse oscillating nature, the frequency analysis of a signal allows
to isolate and enhance, extract, or suppress any source of interest. Therefore, it is of inter-
est to extend such operation to graph signals. For it, the field of GSP has shown that the
framework of spectral graph theory, which studies how the eigenvalues and eigenvectors
of the matrix representations of graphs relate to graph properties, can be leveraged to
develop a frequency analysis of graph signals.

The most fundamental decomposition of this form in classical signal processing is given by
the Fourier transform. The Fourier transform of the continuous time signal f(t) is given
by

F© = [ pwe . (1.13)

The inverse Fourier transform of f(£) is given by

1= [ f©ede. (1.14)

Thus, the inverse Fourier transform corresponds to an expansion of a signal in terms of
complex exponentials, where the argument (27¢) determines the frequency of oscillation
of such functions. Observe how this basis also corresponds to the eigenfunctions of the
1-D Laplace operator

5?2 . .
_ @e2ﬂ'ltf _ (271'5)2627”1&5, (115)
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in which the eigenvalues (27¢)? are simply the square of the frequencies of their corre-
sponding eigenfunction.

Building upon this observation, a graph Fourier transform can thus also be defined as
expanding a graph signal in terms of the eigenfunctions of a Laplace operator defined
on graphs. Thus, calling for a definition of the Laplace operator on graphs. Now, since
the Laplace operator is a differential operator, various possible definitions of graph signal
differentiation and graph Laplacians arise.

Laplacian definitions on graphs

Option 1: The combinatorial graph Laplacian. In this Laplacian definition, one de-
parts from defining a differentiation operator on a graph signal f as (df)(u,v) = /Wy (fu—
fu)- Observe how the resulting derivative lives on the graph edges. Thus, to revert to func-
tions supported on nodes, the adjoint of d is needed. The adjoint operator of d, denoted
d*, acts on a function H defined on the graph edges as (d*H)y = Yy vV Wao (H (v, 1) -
H(u,v)). In [66], these definitions of differentiation were shown to be consistent with
the continuous definitions of the derivative of a function. Thus, they can be employed to
define the Laplace operator on graphs. As the Laplacian is the adjoint of the difference
operator, we obtain the following important definition:

Definition 8. The combinatorial Laplacian operator of a graph, denoted L, acting on the
graph signal f and evaluated in a node u is given by

(Lf)u=d"(df (u,v)) = ZWuv(fu_fv)- (1'16)
v~U
Observe how this Laplacian definition effectively permits to incorporate information about
the domain of f into the analysis of f. This is, if u and v share a strong link, then any
small difference between f, and f, will drastically impact (Lf),, while if their connection
is weak, then differences are less important.

The combinatorial Laplacian operator can be expressed in matrix form as follows:

Definition 9. The combinatorial Laplacian matriz is the matriz L e RNV*N given by
L=D-W (1.17)

One important asset of this matrix representation is that the quadratic form of L, also
called the Dirichlet energy form, gives a measure of the global regularity, or smoothness,
of a graph signal with respect to its supporting domain. It is given by

FILf= Y Wa(fu-f0)* (1.18)

(u,v)e€

Thus, if f is the constant function, i.e. it is completely smooth, the Dirichlet form return
a value equal to zero, and, as f becomes more oscillating, the value of the form increases
accordingly.

Option 2: The random walk Laplacian. A second approach to define differentia-
tion of graph signals is by comparing the signal value of a node with respect the mean
value in its vicinity.
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Definition 10. The random walk Laplacian of a graph, denoted L., acting on the graph
signal f and evaluated in a node u is given by

(Erwf)u=fu_ Zpuva- (1.19)

v~U
The random walk Laplacian operator can be represented in matrix form as follows:

]RNXN

Definition 11. The random walk Laplacian matriz is the matric Ly, € given by

Lry=1-P=DL (1.20)

Thus, the random walk Laplacian matrix is indeed a degree normalised version of the
combinatorial Laplacian matrix. However, this normalization makes this operator non-
symmetric, what makes it hard to derive an equivalent of Eq. (1.18) for L.

Option 3: The symmetric normalized Laplacian. The last approach to define
differentiation of graph signals is by comparing the signal value of a node with respect to
a degree-normalized mean value of its vicinity.

Definition 12. The normalized Laplacian of a graph, denoted L,, acting on the graph
signal f and evaluated in a node u is given by
Vdy,
L = - —P, . 1.21
(Lnfu=fu 1;\/d_v wo f (1.21)
Observe that, in matrix form, this operator is a similar transformation of £,,, and is a
symmetric normalization of L.

Definition 13. The normalized Laplacian matriz is the matriz L, € RNV

given by
L,=1-D:PD2=D:LD2 (1.22)

Thus, the relationship in Eq. (1.22) implies that a quadratic form with £,, leads to the
following graph signal smoothness metric

T o Y
f Enf—(u%EEWuv(@ \/d_v) : (1.23)

It is important to observe that, under this metric, the constant function f is no longer
considered the smoothest function on the graph as compared to L. Thus, the choice of
the Laplacian kernel plays a key role on the way regularity of graph signals is assessed.

The graph Fourier transform

Now that the Laplacian operator on graphs has been introduced, the graph Fourier trans-
form can be defined. Let £ denote any of the Laplace operators defined above. Then, £
admits an spectral decomposition of the form

L=QAQ 1, (1.24)

RNXN € RNXN

where the columns of Q) € conform the right eigenvectors, the rows of Q~*
are the left eigenvectors, and A € RV*N refers to a diagonal matrix of eigenvalues of L.
The graph Fourier transform (GFT) is defined as the projection of the graph signal onto
the eigenfunctions of the Laplacian as follows:
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Definition 14. The graph Fourier transform of a graph signal f, denoted f, is given by
f=Q7'r. (1.25)
Further, the transformation is invertible:

Definition 15. The inverse graph Fourier transform off s given by
/=07, (1.26)

It is important to stress that in the cases of £L = L and £ = L,, the symmetry of the
operator implies a complete set of orthonormal vectors, thus Q7! = Q7.

We now give a discussion on how relevant it is to decompose a graph signal into the
bases given by these Laplacian operators. For it, without loss of generality, assume
that the eigenvalues of L are labeled and sorted according to their value, such that
A1 < A2 <--- < Ay, and ¢ denotes the eigenvector associated to A.

The case of L. Let the eigenvalue problem for L be stated in terms of the Rayleigh
quotient. This is, the eigenvalue A\, and the eigenvector gi of L are defined as the pair
satisfying

Ak = inf = s.t. qr Lspan{qi,...,qk-1} (1.27)

Eq. (1.27) shows that the magnitude of the eigenvalues of L are proportional to the
smoothness of their corresponding eigenvectors when measured via the Dirichlet energy
form of L (see Eq. (1.18)). Thus, g can be interpreted as the smoothest possible function
that lives in the orthogonal of span{q,...,qx-1}. This implies that the eigenvectors of L
are in effect a sensible basis to decompose graph signals since eigenfunctions associated to
small eigenvalues will capture the non-oscillating phenomena and the ones associated to
larger eigenvalues will capture variations in the signal.

As a last note, we remark that Eq. (1.27) also shows that the eigenvalues L are al-
ways real non-negative satisfying \; = 0, and if the graph has ¢ disconnected components,
then the multiplicity of the zero eigenvalue is equal to c.

The cases of £,, and L,,,. These operators are similar, thus they share the same set of
eigenvalues. Further, their eigenvectors are equal up to a rotation, i.e. if g5 denotes an
eigenvector of Ly, then ¢ = D_%qk and q; = D%q;.C are the right a left eigenvectors of L.,
respectively. As with L, the eigenvalue problem for these operators can also be expressed
via the Rayleigh quotient. Doing it highlights that the eigenfunctions of these operators
also capture oscillatory phenomena, though the basis given by £, motivates smoothness
through the quadratic form in Eq. (1.23), while the one of L,,, does it via the Dirichlet

form of Eq. (1.18). In precise terms, let ¢;, = D_%qk (we show for the right eigenvectors of
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L), then we have

T
o G £ndi
Ak = inf an s.t. qr Lspan{qi,...,qx-1},
9 q; qk
__¢'D2LD 2g
=inf ———— st. g Lspan{q,...,qx-1}
9k q;. 9k
1Ty
L
- inf T&_~k s.t. g Lspan{Dq},...,Dq;_,}. (1.28)

4 q." Dq}

Lastly, these equations imply that both £, and L,,, have non-negative real eigenvalues,
with A1 =0, and if the graph has ¢ disconnected components, then the multiplicity of the
zero eigenvalue is equal to c.

1.4.3 Graph filters

In classical signal processing, filtering is the process of suppressing the contribution of
specific frequencies in the signal expansion. The filtering process can be done either by
multiplying the transfer function of the filter with the frequency representation of the signal
or by performing a convolution between the filter and the signal in the time domain. In
the case of graphs, filters can also be defined, though only through the spectral domain as
the convolution operation on graphs is not well defined (it is not clear what it means to
shift a graph signal). In [67], the following definition of a graph filter is given:

Definition 16. A graph filter H is an operator determined by the mapping \; - h(\;).
In the spectral domain it is represented by the matrix H and acts on the GFT of a graph
signal as

MOWAT [hw) 0 0 ... 0 [A
,}—_Z(J?): h(%\g)fg _ 0 h(XN2) O ... 0 fo :f:ff (1.29)

sowyiv] Lo 0 0 o hOw] | fa

Applying the definitions of the GFT and the inverse GFT shows that the filter can be
expressed in the vertex domain as

H(f) = QH(f) = Qp(NQ ™ f = h(L)f. (1.30)

Since any function of a matrix is a function on its eigenvalues, this last expression shows
that any graph filter is a function on the graph Laplacian. As it will be detailed in Chapter
4, this turns out key to derive efficient implementations of graph filters.

1.4.4 The heat equation

The combinatorial graph Laplacian offers an alternative approach to random walks for
diffusion on graphs. This is achieved by means of the heat equation with L as operator.
It reads as follows:

of

S =Lf (1.31)
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Let fy denote an initial heat distribution. Then, it is easy to see that the solution to Eq.
(1.31) is given as
f=etf (1.32)

By means of its Taylor expansion, it can be shown that Eq. (1.32) corresponds to a mass
preserving process. This is,

t3
31
=17 f,. (1.33)

If2
1Tr=17f,-t1TLfy + 5]17’L2fo 1703 fg+ ...

Thus, Eq. (1.32) effectively determines the state of the system after having diffused the
initial mass fy during a time ¢t. Indeed, we clarify that the restriction to L is because it is
the only Laplacian where mass preservation can be shown for all t.

Similar to the random walk case, irrespective of the initial condition, this diffusion process
converges to a predictable stationary state at ¢ - co. However, while the walk converges to
the distribution of nodes’ degrees, this process converges to a constant function. This can
be seen by reverting to the spectral domain, where we have that f = Qe Q" fy, where
e ™M is a diagonal matrix with entries [e_tA]uu = ¢~ . Clearly, as t - oo, all the eigen-
modes vanish but the one associated to A\; = 0, leading to f = qqu fo, which is constant
on all the nodes in the graph.

Lastly, it can be shown that the rate of convergence of this diffusion process is controlled
by Aa. This is because e 2 is the last eigenmode to vanish and it vanishes faster the
larger it is Ao, thus showing again the importance of the first non-trivial eigenvalue in how
fast a diffusion process is.
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Chapter 2

Graph-Based Semi-Supervised
Learning

2.1 Introduction

In the last few years, numerous modern systems have become capable to generate mas-
sive amounts of data at a very small cost. Thus, substantially increasing the amount of
data that can be readily accessed. However, despite all these data being a rich source
of information, classical machine learning approaches can still learn little about it. On
the one hand, supervised learning approaches require extensive amounts of labeled data
to learn. This is problematic as the process of labelling data requires from both human
intervention and specialised devices, thus it is susceptible to errors and prohibitively ex-
pensive to acquire at a large scale. On the other hand, unsupervised learning procedures
are capable to leverage the structure of the data to learn. Nevertheless, when the data
increases in complexity, it becomes too penalizing for them to overlook the valuable source
of information given by the limited yet available labeled examples. As a synergy of these
two approaches, semi-supervised learning procedures have recently emerged.

The goal of semi-supervised learning is to learn from both the structure of the data
and the labelled examples. In early works, the structure of the data was incorporated
to the learning problem via probabilistic approaches [68]. However, more recent works
have shown that it is more effective to encode for the data structure using graphs [69].
As a result, the paradigm of graph-based semi-supervised learning (G-SSL) has attracted
considerable attention. Indeed, while G-SSL was motivated for classification of structured
euclidean data, the large amount of datasets found today as graphs (e.g. the Internet)
motivate G-SSL on their own. G-SSL has been applied in numerous contexts, setting the
state of the art in tasks such as classification of BitTorrent contents and users [5], text
categorization [6], medical diagnosis [70], visual tracking [7], handwritten recognition [8],
or classification of hyperspectral images [9], to name a few.

G-SSL operates under the assumption that similar points should be of the same class,
so that the network structure and the labelled points can be exploited as follows: the
category of the labelled nodes is propagated to their neighbors, then continues propagat-
ing to nodes further away until all nodes have inherited a class. Notice how, in this way,
G-SSL is able to take full advantage of even very limited amounts of labelled points. To
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Figure 2.1: The need for graph-based semi-supervised learning.

better highlight the potential of this learning philosophy, let us consider the example from
Fig. 2.1. In Fig. 2.1a, we display a realization of the two moons data set, a classic toy
example of structured data. In it, the learning task consists in detecting if a point belongs
to the upper or the lower moon. To solve the task, we only dispose of a couple of labelled
points per moon and the unlabelled data. Fig. 2.1b shows the result obtained by using a
popular supervised classifier [71]. Clearly, it can be seen that the amount of labelled data
is insufficient for it to learn. Now, as a way to capture the structure of the data, we build
a graph from it. In Fig. 2.1c¢, we display the result of applying an unsupervised graph
clustering method [72]. Notably, the incorporation of the graph structure can significantly
improve the learning accuracy, albeit using only the graph structure is not sufficient to
deliver a perfect result. Lastly, Fig. 2.1d shows the result of applying a G-SSL method
[12]. As it can be seen, G-SSL is able to leverage the key information contained in the
labelled and unlabelled points to deliver a reliable result.

In this Chapter, we give a thorough tour of the field of G-SSL, which will be the main
topic of this dissertation. Traditionally, G-SSL is posed as an optimization problem un-
der regularization constraint. As a result, most of the literature on GSSL, from books
[69, 73] to recent PhD works [10, 74], have focussed on leveraging the optimization prob-
lem to propose novel and more performing objective functions. In this chapter, we will
also approach G-SSL from the perspective of graph partitioning. Consequently, we devote
two sections to introduce G-SSL: one covering the classical optimization perspective and
the other deriving G-SSL from the point of view of graph partitioning. This alternative
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perspective proves instrumental to: (i) embed G-SSL with a larger degree of flexibility
in which only the tagged points of a class are needed to run G-SSL and find the nodes
belonging to such class; and (ii) understand better the success of the PageRank-based
G-SSL algorithm proposed in [10]. More precisely, Section 2.2 covers G-SSL from the
perspective of Tikhonov regularization. In it, we introduce popular G-SSL approaches
[12, 10, 13, 14] and the generalized optimization framework from [75] that encompasses
most of these methods in a unified optimization framework. Special emphasis is given to
the interpretation given by [75] in terms of competing random walks driving the classifi-
cation process. Lastly, we cover recent methods [76, 15] addressing an issue highlighted
in [77] indicating that traditional G-SSL approaches fail to operate in the limit of infinite
unlabelled data. In Section 2.3, we introduce G-SSL from the point of view of graph
partitioning. We show that G-SSL can be cast as a binary clustering problem. Therefore,
we introduce cut problems on graphs tailored for clustering. Since these cut problems are
unfeasible to solve exactly, we cover results showing that efficient approximations can be
obtained, in an unsupervised manner, via spectral clustering [78], or, in a semi-supervised
manner, via random walks [79, 80] and PageRank [11, 16, 17]. Section 2.4 discusses issues
in G-SSL methods.

2.2  From Tikhonov regularization to G-SSL

Consider a weighted undirected graph G(V, €, w) and assume that each element of V be-
longs to one of K possible classes. Further, assume that the ground truth class is known
for a fraction of vertices V; ¢ V. Thus, the G-SSL task is to classify the points in the
complement of Vy.

To solve the problem, G-SSL methods employ the so-called smoothness assumption: strongly
connected nodes in the graph should be of the same class. This assumption motivates from
the observation that, in the euclidean case, the decision boundary of classifiers usually lies
in low density regions, indicating that it is much more likely that two data points in a
dense region belong to the same class. As a result, when data points are mapped into a
graph, those large density regions translate into strongly connected groups of nodes, thus
motivating the smoothness assumption.

Algorithmically, G-SSL methods incorporate the smoothness assumption by casting the
problem as one in which one searches for smooth functions on the graph that are consis-
tent with the labelled data. In the literature, there are are deluge of G-SSL propositions
following this rationale [81, 82, 83, 84, 85, 86, 87, 88]. However, four formulations stand
out as the most performing, influential and widely used: [12, 13, 14, 10]. We detail these
four propositions next.

Before proceeding, we define two important matrices. First, let Y ¢ RV*K denote a
matrix of labelled points. Note that V; can be written as Vi, = V1 uVou---U Vg, where Vy,
denotes the set of nodes tagged in class k. Thus, given that |Vi| # 0 for all k, the entries
of Y are given as

)1 ueVy,

Yo = 2.1
b {0 otherwise. (2.1)
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And second, let F' e RV*K denote a classification matrix. The k-th column of F, denoted
F,j, is referred to as the classification function of class k. The goal of G-SSL algorithms
is first to estimate the scores of the classification matrix F' given the matrix of labelled
points Y, and then, interpret entry F,; as how likely it is that node u belongs to class k,
upon which a final classification decision is made.

2.2.1 The unnormalized Laplacian G-SSL

One of the simplest G-SSL propositions was introduced in [12]. Despite its simplicity, this
method is the building block for the more involved and performing propositions, thus it
constitutes a reference method in the G-SSL literature. The method proposes to find the
classification functions by solving an optimization problem with the following objective

function:
ar%min{Fz;gLF*k p(Fa = Yor) " (Pat = Ye) | (2.2)
*k
The interpretation of problem (2.2) is straightforward: the left term searches for smooth
classification functions, while the right term constraints the search space by penalizing
solutions that deviate from the initial labelling, and the regularization parameter p > 0
offers a trade-off between these two terms.

Since the objective function in (2.2) is a mixture of a positive semi-definite quadratic
form and an £ norm, then the problem is convex. As a result, the classification functions
can be found in closed form as

Fup=p(L+pl) ™ Y. (2.3)

Finally, once the classification functions have been computed, node u is assigned to the

class k satisfying:
Fu>Fuy Y kE +k (24)

Thus, this method basically operates assigning large function values to nodes strongly
connected to the labelled points and then let the function smoothly decay toward zero as
we move farther away from the labels. Then, each node has K function values assigned
to it and inherits the class that assigns to it the larger value. It is clear that special care
must be given to the selection of u: p — 0 implies only considering the smoothness term
in (2.2) whose minimizer is the constant function and from whom Eq. (2.4) would not be
able to do any decision.

2.2.2 The normalized Laplacian-based (-SSL

In [13], the authors propose the normalized Laplacian-based G-SSL as a variation of the
unnormalized Laplacian G-SSL. We observe that problem (2.2) measures smoothness via
the Dirichlet form of L, thus the most natural change is to use the Dirichlet form of £,
instead. The work of [13] adopts this change, defining the classification functions as the
solution to:

arg min {(FhLaFa+p(Pap = Ya)" (Fag - Vo) } (2.5)

*k

Following similar arguments as for the unnormalized Laplacian approach, problem (2.5)
is convex with closed form solution given by

Fup=p (L + pD) ™ Vi, (2.6)
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Lastly, node w is assigned to the class k according to the same rule of Eq. (2.4).

2.2.3 The standard Laplacian-based G-SSL

In [14], the so-called standard Laplacian G-SSL was proposed. This work introduces the
idea that labelled points should have different importance depending on which node they
are. More precisely, it is assumed in [14] that a labelled point in a node of large degree (e.g.
a hub) is more informative than a labelled point in a node of small degree (e.g. an outlier),
thus the objective function should be more penalizing if the classification function does
not fit well labelled points in large degree nodes. As a result, [14] proposes the following
optimization problem:

argmin { FRLE. + p (Fug = Yar)' D (Fo, = Yar) | (2.7)
F*k

As we can see, this change is implemented by simply tweaking the norm in the fidelity
term from (-,-) to (-,-)p. Moreover, the name of standard Laplacian comes from the fact
that this formulation reverts to the the standard smoothness metric using L.

Since (-,-)p defines a proper inner product, problem (2.7) remains convex. Therefore,
its solution can be expressed in closed form as

Fop = p (Lo + pl) ™ Yig. (2.8)

Notably, by comparing the solutions of the unnormalized Laplacian approach (Eq. (2.3)),
the normalized Laplacian (Eq. (2.6)), and the standard Laplacian (Eq. (2.8)), it can be
seen that the three Laplacian propositions covered in Chapter 1 appear as the fuelling
force for each of these methods. Indeed, the their only difference is the election of the
Laplacian kernel under consideration.

Lastly, we recall that a node u is assigned to the class k that satisfies Eq. (2.4).

2.2.4 The PageRank-based G-SSL

Building upon similar ideas, [10] proposes the PageRank-based G-SSL. This work proposes
to tweak both the fitting term and the smoothness term. Concerning the fitting term,
the converse to the standard Laplacian is assumed: namely, labelled points in nodes of
small degree are more important than labelled points in nodes of large degrees. On the
other hand, the smoothness term is normalized to impose a stronger regularity constraint
between nodes having small degree. Precisely, the PageRank-based G-SSL is defined as
the solution to [10]:

argmin { F2, D LD Fop + 1 (Fuag = Yar) ' D™ (Fa = Yar)} (2.9)
Fx-k

Observe that problem (2.9) defines a new smoothness metric:

Fuk _ka)2

FLD'LD'Fy= Y Wuv(_
dy  dy

(u,v)e€

(2.10)

CHAPTER 2. GRAPH-BASED SEMI-SUPERVISED LEARNING 27



2.2. FROM TIKHONOV REGULARIZATION TO G-SSL

Clearly, this metric and data fidelity term combine to favour nodes of small degree by
both fitting better their labelled points and enforcing more regular functions on them.

Now, since D is a non-negative matrix, both terms in the objective function remain posi-
tive for all F, and all Y,x. Thus, implying that problem (2.9) is convex with closed form
solution given as

Fue=p (L2, +ul) ™ Vi (2.11)

The name of the method stems from the fact that, by doing a change of variable, then
Eq. (2.11) can be shown to be equivalent to the personalized PageRank vector from [89].
This will be made precise below.

Lastly, [10] also proposes to assign node u to the class k satisfying to Eq. (2.4).

2.2.5 The generalized optimization framework for G-SSL

In the series of works: [75, 90, 10], a unified optimization framework for G-SSL is proposed.
In these works, the following optimization formula is given:

argmin { F5 D LD o4 1 (P = Vo) " D*7 ! (P, - Yar) } (2.12)

Fiyp
As it can be seen, these works tweak the optimization problem by incorporating a new
parameter o. The remarkable feature is that, by properly choosing this parameter, then
one can recover as particular cases some of the methods introduced above. More precisely,
by setting o = 1, objective (2.12) reduces to the standard Laplacian approach; o = 1/2 re-
covers the Normalized Laplacian; and ¢ = 0 leads to the PageRank optimization problem.

Notably, [75] shows that the solution of this optimization problem can be cast in a unique
random walk framework that helps to highlight some differences between G-SSL methods.
Precisely, since the real powers of the degree matrix remain a positive semi-definite matrix,
the objective above is convex with closed form solution given by

Fop= (D OLD7 4+ ul) ™ Vi (2.13)

Then, by making the change of variable ao=1/(1+ p), Eq. (2.13) can be rewritten as
FL=(1-a)YL Y o*(D°PD) (2.14)
k=0

Eq. (2.14) allows to interpret G-SSL methods as a random walk process. This is, for
the PageRank case (o = 0), F, is proportional to the expected number of visits made by
random walkers to node u when they start from the labelled points of class k and, at each
step, they diffuse to a neighbor with probability a or restart to the starting point with
probability 1 —a. On the other hand, the standard Laplacian (o = 1) implies that Fyj
is proportional to the number of visits made by walkers to the labelled points of class k
when they start at node v and, at each step, they diffuse to a neighbor with probability
a or restart to the starting point with probability 1 - «.

This interpretation of G-SSL as a random walk process was exploited in [10] to derive
the following theorem explaining the classification:
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Theorem 2. [10] Let pry, denote the probability that a random walk reaches node u before
restarting to node v. Also, let unlabelled node u be assigned to the class k according to the
rule: argmaz, Fyur. Then, u is assigned to the class k that satisfies the inequality

S doprow> > dopriu, VE £k (2.15)

veVy weVyr

This theorem was used in [10] to demonstrate that PageRank is the only method that
provides stable classifications when a - 1 (u — 0). This is, when a - 1 we have that
pr — 1, hence the inequality is controlled by the degree of the labelled points. Thus, if the
classes have unbalanced densities, standard Laplacian and Normalized Laplacian easily
assign all points into a single class, while PageRank can still give a meaningful classifica-
tion. Moreover, the inequality implies that if the labelled points all have equal degrees,
then all classification methods perform equality.

Furthermore, in [10], all the G-SSL propositions stemming from the generalized opti-
mization framework have been extensively compared on synthetic and real datasets (les
miserables, planted partition, Wikipedia, P2P traffic), and their results indicate that the
PageRank-based method is the superior approach in terms of scalability, stability, robust-
ness to classes of different densities, and performance.

2.2.6 Fitting on the labels vs fitting on the graph

In the G-SSL literature, there are two philosophies to fit the labelled data. In the first,
which is the one we have considered thus far and considered in [13, 75, 90, 10], the fit-
ting term acts on all the vertices of the graph. In the second approach, considered in
[12, 14, 73], the fitting term only acts on the labelled vertices. In this subsection, we
discuss their differences as we have not seen a discussion in the literature (only [73] briefly
points this difference).

To simplify notations, let us denote f = Fy; and y = Y,;. Also, for simplicity, we elabo-
rate on the unnormalized Laplacian approach (see Sec. 2.2.1), yet keep in mind that our
discussion applies to all the G-SSL methods presented above.

Penalty 1: In this case, one fits over all the nodes in the graph as follows

A=n(f-9)" - =0 (fu-w) (2.16)

uey

Penality 2: In this case, one only fits over the labelled data as follows

Lo=p(f-y) Iy, (fF-9) =1 Y (fu—yu)’ (2.17)

ueVr,

Despite looking minor, this change has important implications. We list some of them:

% enforces a stronger regularization. Note that £ = % + Zuevg f2. Thus, .4
enforces a stronger regularization by trying to keep the norm of f as small as possible

£ leads to a graph filter and % to a non-convolutive matrix. Let us cast the G-
SSL solution given by both objective functions in a unique expression as f = u(L+uZ) 2y,
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where 7 = or Z = I, depending on whether .2} or % is chosen, respectively. In the
former, we have that (L + ul)™! = Q(A + uI)'QT, which clearly corresponds to a graph
filter with response h(A) = 1/(A + p). For the latter, the matrix Iy, is not diagonalizable
under @, thus (L + uly, )™ is a non-convolutive filter in the sense of [91].

2 defines an invertible kernel while % requires extra regularization. From
the graph filter interpretation above, we observe that the role of ul is to shift the spec-
trum of L, which makes the matrix (L + ul)~! always invertible. For the case of %5, it
cannot be guaranteed that ply, shifts the zero eigenvalue of L, thus (L + MHVL)‘I may
not be invertible. In [15], the authors propose to solve the problem in the orthogonal to
the null space of L (thus working with the pseudo-inverse). Most other works address
the issue by adding an extra regularization term as %, = % + ezugvz ff . Thus, they
make it resemble 7. As a result, the G-SSL kernel given as (L + uly, + €l)™!, which
is always invertible. We are not aware of a comparison between these two approaches,
though empirical experience suggest that the latter is more stable. However, such solution
introduces a new parameter and there are no insights on how to tune it.

% allows to assign infinite confidence to the labelled data (u — o0). Consider
the case of letting . — oo. For %, this could be interpreted as forcing first f, =y, for all
u € Vr, and then minimize fTLf. Let f = [f1; ful, ¥ = [y1; 9] and L = [ Ly, Lyy; Lug, L] be
a split of f, y and L into their labelled and unlabelled parts. By forcing f = [y, f.], then
minimization of fTLf leads to f, = —L,. Ly, which is doable upon invertibility of Lis,.
On the other hand, if we set u — oo in %, then we pull down towards zero the norm of f
(see item 1 above) and hence no learning occurs.

% allows a random walk interpretation for some methods. As shown by theorem
2 above, when using .7 the classification result can be interpreted in terms of compet-
ing random walks. These type of conclusions cannot be attained under % as important
properties, such as mass preservation, are not satisfied.

Due to the close connection with graph signal processing, the improved stability, and
the diffusion properties, in this work we will only consider G-SSL under penalty terms of
the type 2.

2.2.7 The limit of infinite unlabelled data

Let N data points (x,, u € 1,...,N) be drawn from a smooth probability distribution p(x)
on a compact manifold Q ¢ R of intrinsic dimension d. Now, assume that a similarity
graph is built by means of the Guassian kernel W,,,, = ea:p(—@). Further, assume that

a constant amount of labelled data is given [V| = c. We are interested in the behavior of
G-SSL when N — oo.

Intuition says that the more data we collect, the better our knowledge of p(z) will be, and
G-SSL methods will profit more from it. However, it was found in [77] that when d > 2,
o - 0 and N - oo, G-SSL methods are plagued by the so-called curse of dimensionality.
More precisely, [77] elaborates on the unnormalized Laplacian (see Sec. 2.2.1) to show
that, independently of u, problem (2.2) can be minimized by ‘spiky’ functions that per-
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fectly fit the labelled data and are constant everywhere else in the graph. In other words,
it is possible to minimize the G-SSL objective with discontinuous functions that do not
generalize to unlabelled data. The authors coin this problem to the first order gradient not
being restrictive enough in large dimensions, causing the solution space to be too large.
Namely, the regularizer converges to fZLf — [, |Vf(2)|p*(z)dz when N — oo. Thus,
since dx has a rather small volume in large dimensions, the integral can still be close to
zero even when |V f(z)| — oo.

The iterated Laplacian G-SSL

As a solution to the aforementioned problem, the authors of [15] proposed a novel regu-
larization approach based on Laplacian iterations. The underlying idea of this work is to
restrict the solution space of G-SSL to just continuous functions. Towards this aim, [15]
proposes to use, as smoothness penalty, the m-th order Sobolev semi-norm of f instead of
the standard Dirichlet form. To induce such property, the authors iterate the Laplacian
operator m times in the quadratic form as follows:

arg;nin{fTmew(f—y)T(f—y)}- (2.18)

The effectiveness of this regularizer follows from the fact that, when N — oo, the regularizer
satisfies:

TLnf = [ F@AT f@)de = DAL (2.19)

Thus, pulling down fTL™f implies searching in the space of m-times continuously dif-
ferentiable functions (the Sobolev space of order m). Moreover, the authors show that
such space corresponds to a reproducing kernel Hilbert space iff 2m > d. Thus, showing
that, under such condition, problem (2.18) can provide an effective solution to the curse
of dimensionality.

It is important to stress that regularizer f7L™f is not only interesting from the per-
spective of infinite data. Indeed, in the finite case, the spectral representation of the
regularizer allows a nice interpretation in terms of the high order statistical moments
of the energy spectral density of f. More precisely, since L is a self-adjoint operator,
Riez-Markov representation theorem implies that

FILmf = A f ) = f A" dr, (2.20)

where 7p()\) = 20, | Ful?6(X = Ay) is a unique positive Borel measure assigned to each
frequency. Clearly, expression (2.20) corresponds to the m-th moment of the set A\ with
respect to the measure 7¢. In other words, analogous to probabilities assigned to a ran-
dom variable, the coefficients 7¢(\,) = | fu|2 assign a measure to each frequency A\, and
hence regularizer f7L™f computes the m-th moment of the shape 77 with support A.
To give a concrete example, consider a band pass graph signal f whose energy spectral
density 7y is displayed in Figure 2.2. Then, we compute the quadratic form fTLf and
observe in Fig 2.2a that, indeed, its value corresponds to the first moment of the energy
spectral density f (vertical line). Now, we compute f? L?f and show, in Figure 2.2b, that
it effectively delivers the second raw moment of the energy spectral density f, from which
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g5 x10° B\ = fTLf =9.752 g5 x10%  Varl = fTL2f — (fTL{)* =4.5603
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Figure 2.2: Interpretation of fTL™f as the m-th raw moment of the energy spectral
density of f.

we extract and display the variance by the vertical lines. This observation allows to give
a new interpretation to optimization problem (2.18). Namely, while it still searches for
functions that fit the labels, for high order m values the quadratic term no longer aims for
solutions with minimum mean frequency, but also discriminates parameters such as the
spread the frequency content. This interpretation also explains why regularizer f7 L?f has
empirically shown superior performance to f7 Lf [12, 92, 93]: minimization of the second
raw moment always implies minimization of the first, but also of the variance.

It is trivial to show that the solution to problem (2.18) can be given in closed form
as

fpLm+uD) "y (2.21)

From Eq. (2.21) one can easily see that this G-SSL method corresponds to high-order
low pass graph filter. Namely, by taking the spectral decomposition of L, we have that
f = ﬁg} Thus, the effect of m is indeed to further penalize frequencies (A > 1) and to
soften the effect in frequencies (A < 1).

As all the G-SSL propositions suffer from the curse of dimensionality problem, [15] pro-
poses to replace L with any of the other Laplacian kernels, i.e £, Ly, or [,,:.Fw,

generalize this framework towards the other more performing G-SSL propositions.

so as to

Lastly, we recall that one of the main drawbacks of this approach is that there are no
insights on how to choose m in practice.

The re-centered kernel G-SSL

A related approach has been proposed in a series of works [94, 76, 74]. These works study
the more ambitious regime in which both N — oo and d — oo at the same rate. As part
of their results, the authors demonstrate that, in this regime, W, — x for all v and v.
Thus, the data structure gets hidden as small ‘perturbations’ in the adjacency matrix.
By relying on advanced techniques from random matrix theory, the authors show, on a
gaussian mixture model, that by taking the Taylor series around k, then a re-centering
tweak of the G-SSL kernel is sufficient to amend the aforementioned problem and recover
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Figure 2.3: Illustration of the curse of dimensionality issue in G-SSL and proposed solu-
tions. The horizontal axis represents the spacial dimension of the data and the vertical
axis represents the function value learned by G-SSL

the structure contained in the ‘perturbation’ of W. Precisely, the following optimization
problem is proposed:

arg]fnin{—fTKf +u(f-9)" (f-v)} (2.22)

where K = PWP and P=1- %]l]lT. It is important to note that PW P1 = 0, hence this
new matrix K can be interpreted as a new adjacency matrix of a new graph, where the
degree of nodes is zero (hence the name of re-centering). Clearly, doing so implies creation
of positive and negatives entries in K which can make the problem above non-convex,
though this does not pose an issue as the fitting term implicitly constraints the norm of f.
It is also important to stress that despite K being the adjacency matrix of a new graph,
such graph codes for the same pair-wise similarities as the involved transformation only
implies a translation of the data in the feature space. [74] gives a rigorous theoretical
justification of why such translation step solves the curse of dimensionality. Those results
are beyond the scope of this work, nonetheless, an intuitive explanation can be given
as follows: since K has a null degree matrix, then its associated Dirichlet form satisfies
-fTKf = Y (uwyeg Kuw(fu = f»)? <0, which, when minimized, the non-informative ‘flat’
function caused by the curse of dimensionality now becomes the least favoured solution as
it achieves the upper bound.

Illustrating example

To illustrate this phenomena, we replicate the experiment of [15] and show how these two
methods solve the issue. We generate datapoints from a mixture of two gaussians in R?",
where 01 = 09 = 1, and p; = —1.5, pg = 1.5 on the first dimension, and p; = po = 0 in
the remaining dimensions. A complete graph is constructed with similarities computed
according to the RBF (see Eq. (1.5)) with o = 20. One labelled point per class is chosen,
and, since we are in a binary setting, we set them to +1 and —1 in a single vector of labels
y. We draw 300 points for each gaussian and the task is to recover the two gaussians (left
is class +1, right is -1). In Fig. 2.3a, we display the results of applying the normalized
Laplacian method on this data set. The points correspond to the classification function
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of the unlabelled data projected into the first dimension (the one where we shifted the
means). As it can be seen, the normalized Laplacian method suffers from the curse of
dimensionality, retrieving a flat solution that is completely offset towards one side of the
decision boundary. In Fig. 2.3b, we display the result obtained with the Iterated Laplacian
approach. Here, we simply iterate the normalized Laplacian from the experiment of Fig.
2.3a for 32 times. Clearly, the Laplacian iterations correct the offset and learn a smooth
function f that is consistent with the two gaussians. Lastly, in Fig. 2.3c, we display the
result of applying the re-centerd kernel method. It can be seen that it is also able to
alleviate the curse of dimensionality, though it displays a higher variance with respect to
the iterated Laplacian. As a last remark, we highlight that the tuning u in the re-centered
kernel approach is (i) critical: a bad selection leads the method to not perform at all; (ii)
narrow: the range of values where the method performs can be too restricted; and (iii)
unstable: this region could significantly vary between different realizations of the gaussians
or by increasing the amount of data.

2.3 From graph partitioning to G-SSL

In this section, we introduce G-SSL from the perspective of graph partitioning. In graphs,
a ground truth class is represented by a group of vertices in the graph. Let us denote such
group by Sy ¢ V. Thus, in graphs, the classification challenge corresponds to finding the
binary partition of the graph nodes as:

V= 840U S5, (2.23)

According to the smoothness assumption (see page 25), if the data is structured, then Sy
should form a cluster. Thus, the classification problem can be posed as a clustering one.
As aresult, we can use techniques to identify clusters on graphs to find a proxy V = S;;USj,.

In the graph literature, numerous techniques have been proposed to find clusters. Since
the standard definition of a cluster, i.e. a group of nodes strongly connected internally
and weakly connected externally, is not very precise about when a group of nodes can
be considered as a cluster and when it cannot, a deluge of clustering methods have been
proposed, such as clique searching [95], minimum common neighbours [96], maximum
modularity [97], or minimum cuts [98], to name a few. In this work, we concentrate on
the minimum cut approaches, that we detail in the next section.

2.3.1 Cut problems on graphs
Min-cut

Since clusters must be poorly connected, one of the simplest approaches to find clusters
is to find two sets that have the least possible amount of connections between them. This
is the rationale of the min-cut problem [99], which retrieves as a cluster, the partition
minimizing the following objective:

arg min { > Ww} (2.24)
S ueS veS¢

Despite this opimization problem being solvable in polynomial time [98], only under mild
conditions it leads to satisfactory partitions. Its main issue is that it is extremely prone
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to outliers: take an isolated node connected by a single edge with the rest of the graph,
then it minimizes objective (2.24).
Ratio-cut

To amend to the min-cut outlier problem, the ratio-cut was proposed in [100]. The ratio-
cut adds a constraint to penalize small partitions as follows:

{ Zues ZUESC Wuv}
|S] 15

argmin (2.25)

S
Clearly, this objective should retrieve much consistent clusters, as these should not only be
poorly connected between them but also should have similar sizes. However, this objective
function still has some limitations. The most notorious is that it overlooks the internal
connectivity of sets. Therefore, as long as two sets have similar between-cluster connections
and are of similar sizes, it is indifferent for this objective function that one of them may be
more strongly connected internally than the other, indicating that it delineates a better
cluster.

Normalized cut

The normalized cut was proposed in [101] as an improved alternative to the ratio-cut. To
capture better whether a group of nodes is a cluster, the normalized cut proposes a new
metric which counts the ratio of external and internal connections of this group of nodes.
This metric is usually refereed to as the Cheeger ratio of a set, or the conductance of a
set. It is formally defined as follows:

Definition 17. Let S ¢V be an arbitrary set of nodes. The Cheeger ratio, or conductance,
of S is defined as:

hS _ ZueS ZveSC W )

min{vol(.S), vol(S¢)}

(2.26)

By definition, the Cheeger ratio satisfies hg € [0,1] and we have that hg = hge. Fur-
thermore, it is clear that the more a group of nodes forms a clear cluster, the smaller its
Cheeger ratio. Thus, if we aim to find clusters we must search for sets of small Cheeger
ratio. This is precisely the rationale of the normalized cut problem, which aims to find
the partition with smallest Cheeger ratio:

argmin {hg} . (2.27)
S

The normalized cut problem has been shown to be NP-complete [101]. However, one can
efficiently approximate its solution, in an unsupervised manner, by leveraging the spectral
properties of graphs, or in a semi-supervised manner, by running a diffusion process on
the graph. These relaxations are the subject of our next subsections.

2.3.2 Partitioning via spectral clustering

Let us start by introducing the relaxation via spectral clustering. This approach is un-
supervised in nature as it fully relies on the spectral properties of graphs. The basis of
this relaxation is the Cheeger inequality, a mathematical result that relates the minimum
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Algorithm 1 Sweep-cut procedure for partitioning a graph from a vector

Input: a real valued vector f

Output: a binary partition V = Sgt u S;t

1) Let vy,...,vny be a rearrangement of the vertices in descending order, so that the
permutation vector g satisfies gy, = fu,/dv, > Qo = foier [Qvis

2) Let Sj = {v1,...,v;} be the set of vertices indexed by the first j largest elements of ¢
3) Let ¢(f) = min; hg;

4) Retrieve S”gt = 8 for the set S; achieving ¢(f)

value attained by the normalized cut objective and the eigenvalues of the graph.

We start defining the Cheeger constant of the graph:

111
he =minhs = min s~ 5 (2.28)

S ﬂgD]lS,

where the last term follows from hg = hge. The hard constraint of searching on the space
of indicator functions can be relaxed to searching on the space of real-valued functions
(1s ~ g € RY). By implementing this change, we obtain that hg ~ min, (g7 Lg)/(g” Dg).
Notably, this expression corresponds to eigenvalue problem of L,,, (see page 20), thus
relaxing the problem implies converting it into an eigenvalue one. However, as it is, the
relaxation is useless for clustering purposes since it assumes that Ag ~# A1 = 0, and therefore
g =q1 =1. A better supposition is that

L
hg = Ao = min gT g’
g1D1 g' Dg

(2.29)
whose solution is given by the second smallest eigenvector of L,,,. This eigenvector is
commonly referred to as the Fiedler vector [95, 102]. Then, the Cheeger inequality essen-
tially amounts to define a way to partition the graph from the Fiedler vector, and, if ¢(g)
denotes the Cheeger ratio of such partition, then the inequality bounds how far are s, hg
and ¢(g). In precise terms, to retrieve a partition from the Fiedler vector, we introduce
the sweep-cut technique in Algorithm 1. Then, the Cheeger inequality reads as follows:

Theorem 3. [78] Let ¢' = Dg where D refers to the degree matriz, and let ¢(g') be the
Cheeger ratio of the partition obtained by applying a sweep-cut on g'. Then, hg, X2, and
o(g") are related as follows:
N2 2
2hg > A2 > ACON > h—G. (2.30)
2 2
The Sweep-cut procedure reduces the exponential search to a linear search. Moreover,
theorem 3 implies that the partition retrieved by the sweep is granted to have a Cheeger
ratio that is within a quadratic factor of the optimum. While this bound is not very tight,
if h¢ is very small then the partition retrieved by the method is likely to be a good cluster
as it correponds to a small Cheeger ratio. Moreover, we recall that this lower bound
guarantee is still an open problem for most other graph partitioning methods relying on
the Fiedler vector, such as the popular approaches based on k-means [72].
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2.3.3 Partitioning via random walks for G-SSL

Diffusion processes can also be used to find, in a semi-supervised manner, partitions with
small Cheeger ratio. The rationale is the following: assume that S is a set of small Cheeger
ratio (may not necessarily be the smallest), thus if a diffusion process is started within S,
then it should be hard for such diffusion process to escape S as it is poorly connected with
the rest of the graph. As a result, by looking at the nodes in which the diffusion process
spent most of the time we should be able to identify a good approximation of S. There are
two important things to remark: (i) the methodology assumes starting a diffusion process
inside the set under search, thus semi-supervision plays a key role; and (ii) for the set S
to display a confinement of diffusion processes, it is not necessary that it possesses the
smallest Cheeger ratio in the entire graph. This highlights that diffusion-based techniques
bring more flexibility allowing to find partitions with small Cheeger ratio but not neces-
sarily the smallest (as spectral clustering does), yet we recall that if the diffusion is started
within the set of smallest Cheeger ratio, then the diffusion processes will also display the
confinement phenomenon and can be used to approximate the normalized cut.

In this subsection, we introduce results showing that random walks are one of the ba-
sic diffusion processes that can be used to implement these ideas. This is, if a random
walk is started within a set of small Cheeger ratio, then it should get trapped for a long
time within the set, meaning that if one picks the nodes with largest random walk proba-
bility as a partition, then this partition should have small Cheeger ratio.

We introduce the following result from [80], which formalizes the fact that random walks
cannot not escape clusters easily.

Proposition 1. [80] Let S c V be an arbitrary set of nodes. Let u € S be a labelled
point selected with probability proportional to its degree in S, i.e. dy[vol(S). Further, let

Xgm)(S) denote the probability that o lazy random walk starting from u stays entirely in
S after t steps. Then, for all t >0, we have

E[x{"™($)] >1- th2—5 (2.31)

This proposition shows that smallest the Cheeger ratio of a set, the higher the probability
that a walker that started inside the set remains within the set. Then, if we look at the
random walk probability vector, we should identify large scores in the nodes indexing S
and small scores in the nodes of S°.

The next result we introduce states that if such mass concentration phenomenon is present
on the t-step random walk probability vector x;, then applying the sweep-cut procedure
on all the probability vectors up to t steps is guaranteed to retrieve a partition with small
Cheeger ratio. Let us recall that the notation x;(S) = ¥ ,c5(xt)n means sum of entries in
the nodes indexing S. Thus, we have [79, 103]:

Lemma 1. [79, 103] Let S ¢V be an arbitrary set of vol(S) < vol(G)[2. Let x; denote the
t-step lazy random walk distribution vector with seed u and 7 be the stationary distribution
of the random walk. Let ¢p(x:) be the Cheeger ratio of the partition obtained by applying a
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sweep-cut on x¢. Then, the following inequality holds

vol(.S)

2\t
NORCRYE (1 . g) (2:32)

where By = infy ¢(xyp) for allt' <t and ue V.

This lemma says that if the probability of finding a walker in a set S after ¢ steps is much
larger than the probability of finding the walker in the set in the stationary state, then
applying a sweep-cut on all the probability vectors xg...xt up to step ¢t implies finding a
partition with small Cheeger ratio. Clearly, Proposition 1 and Lemma 1 complement each
other to demonstrate that if a set .S has small Cheeger ratio, then diffusing random walks
and applying sweeps will find a good proxy of S.

It is important to stress that the selection of ¢ is critical and can significantly vary between
graphs. For small ¢, walkers may not visit enough all the members of the set under search,
which harms the sweep. Thus, it is better to let ¢ grow so that the walk closely mixes.
However, doing so can greatly increase the complexity of the method, as it is necessary to
perform too many sweeps.

2.3.4 Partitioning via PageRank for G-SSL

PageRank is another diffusion-based algorithm that can be used to identify clusters with
small Cheeger ratio. Its numerous theoretical studies [11, 16, 17, 104, 105], applications
[106, 107, 108, 109] and implementations [110, 11, 111, 112] have made of PageRank a
state-of-the-art clustering algorithm. In Sec 2.2.4, we introduced PageRank as a solu-
tion to a Thikhonov regularization problem and briefly discussed the interpretation of
PageRank as random walk process. In this subsection, we deepen into this diffusion in-
terpretation and introduce results which show that this diffusion process can more simply
identify clusters in the graph.

Let us recall that, given a distribution, y, the PagerRank vector can be expressed as
f= M(E;:Fw +,u]I)_1 y. Further, by doing a small change of variable o = 1/(1 + p), then
the PageRank vector can be cast as the solution to the fixed point equation: f7 =
(1 - a)y” + affP. Thus, PageRank can be interpreted as the equilibrium state of a
process that, at each step, with probability « does a random walk step, or with probabil-
ity (1 — «) revisits the starting distribution y. Clearly, given proper normalization of y,
the PageRank score at a particular node is equal to the probability of finding a walker, at
equilibrium, at this node. Notably, this equilibrium state is the result of a well-behaved
diffusion process on the graph as stated by the following Lemma [105]:

Lemma 2. [105] Let f denote the personalized PageRank vector with personalization
vector y. Then f satisfies the following properties

1. mass preservation: Y,y fu = Y.y Yu
2. stationarity: f=7mify=m7

3. limit behavior: f—->m asp—>0 and f >y as p— o0
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Lemma 2 is important as it shows that PageRank is well behaved diffusion process prop-
agating the initial mass y, through the graph, with a diffusion rate controlled by the
parameter p.

In [16], it is shown that the behavior of this diffusion process is tightly related to the
cluster structure of graphs. This connection between PageRank and clustering is quanti-
fied in the following result.

Lemma 3. [16] Let S c V be an arbitrary set with vol(S) < vol(G)/2. For a labeled
point placed at a node w € S selected with probability proportional to its degree in S, i.e.
dy[vol(S), the PageRank satisfies

E[£(S)] < %S (2.33)

This lemma implies that if we apply PageRank diffusion from the labelled points of a set
S and it has a small hg, then the probability of finding a walker outside .S is small and
the nodes with largest PageRank value should index S.

The works of [16] and [17] formalize the notion that a high concentration of PageRank
mass implies a good cut. The former shows that a set with small Cheeger ratio can be
found by looking for regions of high concentration of PageRank mass. The latter improves
that result, showing that such set can be found more easily by looking for a sharp drop in
the sorted PageRank scores. More precisely, the result of [17] shows that, when doing a
sweep of the PageRank vector, if there is a sharp drop in rank at the set S;, then the set
S; has small Cheeger ratio.

Lemma 4. [17] Let h € (0,1), j be any index in [1,N] and « € (0,1] denote the PageRank
restarting probability. Let C(Sj,Sjc-) = Yues; Zyesjc_ Wy be the numerator of the Cheeger
ratio. Then, S; satisfies one of the following: (a) C(S;,S5) < 2hvol(Sj); or (b) there is
some index k > j such that vol(Sy) > vol(S;)(1+h) and g, > q; — a/hvol(Sj)

In other words, this lemma implies that either S; has a small Cheeger ratio, or there is no
sharp drop at g; (recall that ¢ is the permutation vector in the sweep-cut).

Illustrating example

To have a better grasp on these results, we give an illustrating example. In Fig. 2.4a,
we display a simple synthetic dataset generated from a mixture of three gaussians in R?
and a graph build from the data. In this case Sy corresponds to one of the gaussians
and y is given by the red nodes. We index the vertices such that Sy consists of the first
200 nodes. In Fig. 2.4b, we display the PageRank vector with initial condition y. In
accordance to Lemma 3, we can observe that the PageRank vector concentrates a large
amount of mass in the nodes indexing Sg, thus effectively revealing it. Now, in Fig. 2.4c,
we display the degree-normalized scores sorted in decreasing order, where we note that a
sharp drop appears. According to Lemma 4, if the sorted scores display a sharp drop in
rank, then the set associated to this rank is granted to have small Cheeger ratio. As it
can be seen in Fig 2.4d, the set with smallest Cheeger ratio from the sweep coincides with
the sharp drop. Finally, we output this set as our partition Sgt. Since S’gt has a small
Cheeger ratio, then, by definition, it is a good cluster and hence a good approximation of
Syt as confirmed in Fig. 2.4e.
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Figure 2.4: Illustration of semi-supervised graph partitioning using PageRank vectors

2.3.5 Semi-supervised vs unsupervised

We now compare the performance of PageRank and spectral clustering as relaxations to
the normalized cut. We do not include the random walk-based method as PageRank is
clearly easier to tune and it is much less computational demanding. Clearly, PageRank
should do better than spectral clustering as it adds more information to the learning task,
however this is not clear from the theoretical results as both methods have good guaran-
tees. Thus, we present two simple numerical experiments illustrating how both methods
can perform remarkably well in simple scenarios, yet, in more difficult situations, semi-
supervision becomes critical.

Let us starting by considering the planted partition model. We draw 20 realizations
of the model with Coyu/Cin = 0.01, Caug = 8, n = 500 and 1% of randomly labelled points
(we remove disconnected nodes). Therefore, these graphs are far from the detectability
transition (see theorem 1) and define clusters that, on average, have hg = 0.009. Then,
we apply both methods and display in Fig. 2.5a the mean shape of their sweeps and
the mean accuracy of the partitions they found. Accuracy is assessed in terms of the
Matthews correlation coefficient, so that a value of 1 corresponds to perfect agreement
with the true partition, and a value of 0 indicates a random decision. As it can be seen,
both methods perform remarkably well and, on average, retrieve partitions with Cheeger
ratios close to the optimal. Now, we set Cy,y = 3 while fixing the other parameters and
we draw another 20 realizations of the model (we remove disconnected nodes). Here we
have two important things to remark: (i) since we keep Cfy1/Ciy fixed, the mean Cheeger
ratio of these realisations remains hg = 0.009; and (ii) this simple change in the mean
degree drives the model much closer towards the detectability threshold, thus it is now
more challenging to detect. Then, we apply both methods and display the sweep and
the accuracy in Fig. 2.5b. Notably, the spectral clustering approach is no longer able to
retrieve a good partition, while the PageRank method barely decreases its performance.

Our second experiment considers a point cloud formed by the images of digits 3 and
8 of the MNIST dataset. We build a graph with 500 images per digit and choose 1% of
randomly labelled points. Then, we apply both methods display the sweep and the cluster
accuracies in Fig. 2.5c. As it can be seen, both methods perform similarly, retrieving
partitions with very high accuracies. Now, we add gaussian noise with © =0 and o = 10
to the point cloud and build a graph, keeping the same conditions, from this noisy point
cloud. The noise causes the structure of the data to be less clear. We apply the methods
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Figure 2.5: Comparing sweeps on the Fiedler vector (unsupervised) and the PageRank
vector (semi-supervised) on both the Planted Partition and digits 3vs8 from the MNIST
dataset.

again and show the results in Fig. 2.5d. Clearly, perturbing the data completely disrupts
the eigenvectors of the Laplacian, causing the spectral clustering approach to retrieve
poor partitions. On the other hand, the PageRank method displays robustness by still
retrieving a very accurate partition.

2.4 Open problems

In this section, we highlight some open problems in G-SSL.

The problem of extending sweeps beyond PageRank. Section 2.2 introduced G-
SSL methods that rely on comparing classification functions to classify data. One of such
methods relied on comparing PageRank vectors. In Section 2.3, we boosted G-SSL with
more flexibility by showing that, by doing a sweep, we only needed a single PageRank
vector to find a binary partition and classify a targeted class. Therefore, we can readily
extrapolate this idea to the other G-SSL propositions and boost them with extra flexibility
by doing sweeps on their classification functions. However, this is not straightforward as
the relationship between these other G-SSL proposition and the graph topology remains
an open problem. Indeed, it is not even clear if there is any.! Thus, it cannot be given

'In turn, this lack of topological insights for most G-SSL propositions, in conjunction with the results
indicating that the PageRank vectors have the natural tendency to reveal clusters, may help understand
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guarantees that doing a sweep on such approaches will lead to a meaningful classification.

The problem of graphs with unclear (fuzzy) clusters. By revisiting Lemma 3,
it can be seen that if Sy has a small hg,,, then the PageRank method is bound to ac-
curately detect Sg;. In other words, if the ground truth class under search designates a
strongly disconnected cluster, then it is a set that PageRank can eventually easily detect.
Clearly, the Lemma also indicates the cases in which PageRank cannot operate. Namely,
as hg,, increases, then the Lemma implies that the random walkers escape Sy; more easily
and, as a result, the PageRank vector will not display the confinement of the information
necessary for the sweep to deliver a reliable result. Thus, not very well delineated clusters
pose a big challenge for PageRank.

The problem of unbalanced number of labelled points: Theorem 2 highlights an
important issue affecting the G-SSL methods that arise from the generalized optimization
framework. Precisely, by looking at the inequality, it can be seen that the summations
depend on the cardinality of labelled points. Thus, cases of unbalanced number of la-
beled points can potentially bias the classification, causing unlabelled nodes prone to be
assigned to the class with more labelled data. It is important to stress that preprocessing
the data to even the labelled points is not a solution. Take for instance the case of two
classes, one 10 times larger than the other and accordingly with 10 more labeled points.
Despite starting with unbalanced labels, the problem and the inequality in Theorem 2 are
balanced because, even if we have ten more units of mass to diffuse, we have ten times
more nodes to reach. Thus, normalization of labelled data is only valid if classes are as-
sumed of the same size. Notably, for the PageRank case, classifying the data using sweeps
provides a solution to this problem as the behavior of the sweep is independent of the
number of labelled points. Thus, we can do a multi-class classification by doing a sweep
on the PageRank vector for each class and combining results. However, while this solves
the unbalanced labelled data issue (and embeds topological guarantees on the multi-class
output), the price to pay is that some nodes may be assigned into more than one class or
to none.

The problem of hubs: The classification functions for various G-SSL can be interpreted
in terms of random walks exploring the graph. Thus, the effectiveness of such approaches
is based on walkers being able to visit enough the nodes under search. However, graphs
with hubs or regions more densely connected than their surroundings may cause walkers
to be trapped in such regions for a large time, harming the exploration capabilities of
walkers and degrading the qualities of the classification functions. Therefore, graphs with
a hub-like structure pose challenges to G-SSL.

better why, in general, the PageRank method performed extremely well and outperformed the other G-SSL
propositions in the comparisons done in [10].
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Chapter 3

L7-PageRank for Semi-Supervised
Learning

3.1 Introduction

In Chapter 2, numerous G-SSL proposition were introduced. It was shown that in terms
of flexibility, stability and theoretical understanding, the PageRank method arises as the
state-of-the-art approach for G-SSL. However, various issues can still degrade the perfor-
mance of PageRank, that we aim to address in this chapter.

In the face of such challenging settings, it is natural to try to enhance the performance of
PageRank by embedding it with stronger regularity properties. As proposed by [15], such
effect can be attained by iterating the random walk Laplacian in the PageRank solution.
However, an issue with such approach is that it causes most of the PageRank properties
to be lost. Namely, there is no known optimization problem having such expression as
a solution and it is unclear if it can be given diffusion properties that can be related to
the graph topology, implying that one cannot derive guarantees that a sweep still leads to
a meaningful partition. Thus, due to the lack of insights on the properties and qualities
of the partitions retrieved by this approach, it is hard to build upon and to address the
issues listed in Chapter 2.

In this chapter, we revisit the Laplacian powers as a means to improve G-SSL and to
address the aforementioned problems. We propose a novel generalization of PageRank by
using (non necessarily integers) powers of the combinatorial Laplacian matrix LY (v > 0).
We coin this generalization as the L7-PageRank method and it constitutes the main con-
tribution of this dissertation. In contradistinction to an iterated PageRank [15], our L7-
PageRank: (i) enables us to have an explicit closed form expression of the underlying
optimization problem; (ii) permits a diffusion and a topological interpretation; (iii) allows
us to use the regime of fractional ~; and (iv) gives us insights on how to optimally tune ~y
to maximize performance.

In our formulation, the key ingredient is a reinterpretation of the L7 operator. Precisely,
while [15] interprets the Laplacian powers as a Sobolev norm regularizer, in our approach
we show that, for every fixed v value, a new graph is generated. These emerging graphs,
which we refer to as the L7-graphs, reweight the links of the original structure and create
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edges between originally far-distant nodes. Thus, our generalized L7-PageRank procedure
is an extension of PageRank to operate on the L7-graphs. To analyse our algorithm, we
show that two regimes of L7-graphs arise: (i) the regime of v < 1: in this regime, the
L7-graphs make emerge the so-called Lévy flight random walk, i.e. walkers that, with
small probability, can jump between far-distant nodes in a single step; and (ii) the regime
~ > 1: here, the L7-graphs give rise to signed graphs, i.e. graphs with positive and negative
edges. Notably, both regimes carry the potential to improve G-SSL. On the one hand,
the capacity of the Lévy walkers to jump far away can be convenient in settings in which
the significance of the learned functions degrades due to normal random walkers getting
stuck for too long in undesired graph regions, like strong hubs. On the other hand, the
emergence of positive and negative edges bear the potential to enhance clustering as the
signed edges introduce what can be seen as agreements (positive edges) or disagreements
(negative edges) between nodes, allowing us to revamp clusters as groups of nodes agreeing
between them and disagreeing with the rest of the graph. Thus, throughout the chapter
we investigate the potential of these L7-graphs to better delineate targeted ground truth
class Sy Our results are the following:

Regime ~ < 1: our analysis shows that, in this regime, our L7-PageRank procedure
corresponds to an extension of the regular PageRank algorithm that is now driven by
Lévy processes. Since such extension consists in applying the regular PageRank algorithm
to a L7-topology, then, by proving that the latter is always undirected with positively
weighted edges, we guarantee that the full frame of theoretical results given in Chapter 2
directly applies to our setting. Through numerical experimentations, we demonstrate that
the non-local nature of the Lévy random walkers can be useful to overcome skewed graphs
with trapping regions and to enhance the detection of classes with sub-cluster structures.

Regime v > 1: we theoretically show that, while not necessarily modelled by random
walkers, our L7-PageRank method remains a well behaved diffusion process propagating
labelled data on the signed L7-graphs (still, preserving the PageRank properties). Thus,
we extend the Cheeger ratio definition to L7-graphs and prove that if there is a L7-graph
in which Sy has a smaller Cheeger ratio (w.r.t the standard case of v = 1), then we can
more accurately identify it with our generalized L7-PageRank procedure using the sweep-
cut technique. By means of numerical investigations, we point the existence of an optimal
~ value that maximizes performance. Thus, we propose an algorithm that allows to es-
timate the optimal ~ directly from the initial graph and the labeled points. Lastly, we
demonstrate the classification improvements permitted by L7-PageRank on several real
world datasets commonly used in classification, as well as the relevance of the estimation
procedure for the optimal tuning. Such results demonstrate that our L7-PageRank can

significantly increase classification performance and also amend the issue of unbalanced
labelled data.

The chapter is organized as follows. Section 3.2 introduces L7-graphs. Section 3.3 de-
fines L7-PageRank and derives its solution. Section 3.4 analyses our algorithm in the
regime 7y < 1: Section 3.4.1 shows that L7-PageRank is an extension of standard PageR-
ank to Lévy processes; Section 3.4.2 evaluates the classification benefits brought by the
incorporation of the Lévy processes. Section 3.5 analyses our algorithm in the regime v > 1:
Section 3.5.1 analyses its clustering capabilities; Section 3.5.2 discusses the existence of
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an optimal v and its estimation; Section 3.5.3 evaluates L7-PageRank and the algorithm
for the optimal v estimation in practice. Section 3.6 discusses differences between L7-
PageRank and iterated Laplacian [15] and compares them in practice. Section 3.7 extends
the generalized G-SSL framework of [75] to L7-graphs and numerically demonstrates that
the new topologies can also enhance the other G-SSL propositions.

3.2 The L7-graphs

In this contribution, we propose to change the graph topology in which the problem is
solved as a means to improve classification. We evoke such change by considering powers
of the Laplacian matrix, noting that the L7 operator, for v > 0, generates a new graph for
every fixed ~ value. More precisely, by exploiting the Laplacian definition, we define the
L7-graphs as follows:

Definition 18. Given a vy >0, the L7 -graph with adjacency matriz W, and degree matrix
D, is given as

L"=Q\N Q" =D, - W, (3.1)
= [L7 ]y and [W4],, = = [L7]

uv

where [ D] with u # v.

uu uv’

It can easily be shown that the L”-graphs satisfy the Laplacian property:

Lemma 5. For all v >0, the L7 -graphs satisfy the Laplacian property:

[D’Y]uu = Z [W'Y]uv ’ (32)

v

Proof. Follows trivially from the fact that, for all v, we have that L71 = 0. [ ]

We now highlight that the L7-graphs possess two operational regimes: one in which the
emanating graphs are undirected positively weighted graphs (v < 1); and another in which
the emerging topologies are undirected signed graphs (v > 1). Precisely, let us expand the
L7 operator in its binomial series as follows:

L"=(D-W)7
_ (D1/2D1/2 _ Dl/zD’l/ZWD’l/QDl/z)V
=D (1- 2w p2) il
- p/? [I _ ’yD’l/QWD’l/Q

. 7(’72— 1)(_D_1/2WD-1/2)2 53
(- 1()5(7 -2) (D-V2WD1/2)3 4 ] D2

Then, we can see that: (i) for 0 <y < 1, the infinite sum within the squared brackets en-
tails non-positive off-diagonal terms in L7, thus implying that W, codes for an undirected
graph with positive edges; and (ii) for v > <ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>