
HAL Id: tel-02476246
https://theses.hal.science/tel-02476246

Submitted on 12 Feb 2020

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Laplacian Powers for Graph-Based Semi-Supervised
Learning

Esteban Bautista Ruiz

To cite this version:
Esteban Bautista Ruiz. Laplacian Powers for Graph-Based Semi-Supervised Learning. Artificial
Intelligence [cs.AI]. Université de Lyon, 2019. English. �NNT : 2019LYSEN081�. �tel-02476246�

https://theses.hal.science/tel-02476246
https://hal.archives-ouvertes.fr

To my parents and my sister

Acknowledgements

This dissertation is the result of three years of work carried at the Dante team of the
LIP laboratory from the ENS Lyon. During these three fruitful years, many people have
directly or indirectly contributed to the realization of this dissertation, whom I would like
to thank.

First and foremost, I would like to thank my thesis advisors: Paulo Gonçalves and Patrice
Abry. To you both, thank you for welcoming me to your group. I can not be as grateful
as with you for giving me the opportunity to live this wonderful experience. Thank you
for helping me in an endless list of things that made my PhD possible. From getting an
apartment, going through obtaining funding for me, up to supporting me in my desire of
doing an international visit to EPFL, you have been as supportive as someone can be. I
would also like to thank you for your great academic influence. Many thanks for showing
me how to become a researcher, for all those endless meetings where you would push me
to go beyond my boundaries, and for inviting me to take part in numerous important
projects and collaborations.

I would like to thank all my collaborators. A big thanks to Sarah de Nigris and Kon-
stantin Avrachenkov for all the discussions and joint work on Lévy flights. Many thanks
to Romain Fontugne for the discussions and joint work on Internet routing. I am also
grateful to Pierre Vandergheynst, Benjamin Ricaud and Andreas Loukas for hosting me
at the LTS2 group from EPFL and for all the discussions on evolving graph data and
updating methods.

I also thank all the members of my jury for the keen interest they have shown in re-
viewing this thesis work.

I thank the CONACyT and the Labex Milyon for the financial support.

I would also like to thank all the people from the Dante team. In particular, I thank
Gaëtan, Samuel, Jacob, Marija, Mohammed, Hadrien, Sébastien, and Mikhail for all the
passionate discussions and good memories.

Last but not least, I thank all my family and friends from the bottom of my heart.
Especially, I would like to thank Nadine for the emotional support.

I

Abstract

Graph-Based Semi-Supervised Learning (G-SSL) exploits labeled data along with the
structure of unlabelled data to build better classifiers. This classification paradigm has
received considerable attention since modern applications allow to collect large amounts
of unlabelled but structured data, naturally encoded by a graph, in a relatively easy and
inexpensive manner, while tagged data is expensive to obtain. However, despite its great
success, the performance of G-SSL can still be improved, particularly in cases of graph
topologies with unclear clusters, or unbalanced data settings, that this dissertation aims
to address.

The main contribution of this dissertation is a novel algorithm for G-SSL coined as the
L�-PageRank method: a generalization of the PageRank-based G-SSL by using (non-
necessarily integers) powers of the combinatorial Laplacian matrix L� (� > 0). The theo-
retical analysis of L�-PageRank is divided in two regimes. In the regime � < 1, we show
that L�-PageRank extends the standard PageRank algorithm to adopt the dynamics of
Lévy processes: where random walkers are now allowed to perform long-distant jumps in
a single step. In the regime � > 1, we show that L�-PageRank operates on signed graphs:
where nodes belonging to one same class are more likely to share positive edges while
nodes from different classes are more likely to be connected with negative edges. Our
main theoretical contribution is to show that L�-PageRank is guaranteed to outperform
the standard PageRank method if � is properly chosen. By means of numerical experimen-
tations we point the existence of an optimal � value maximizing performance, for which
a method for its automatic estimation is devised and assessed. The practical evaluation
of L�-PageRank on synthetic and real-world datasets commonly used for classification
shows that (i) in the regime � < 1, L�-PageRank can leverage the Lévy flight random
walkers to enhance the detection of classes with complex local structures, such as hubs or
sub-clusters; and (ii) in regime � > 1, due to the signed graphs enhancing the separability
of the data, L�-PageRank can significantly improve classification performance and also
override the issue of unbalanced labelled data.

To increase the value of L�-PageRank, we investigate fast and efficient implementations
that avoid the costly matrix inversion step demanded by its closed form solution. To-
wards this goal, by leveraging results from the field of Graph Signal Processing, we derive
extensions of Power Iteration and Gauss-Southwell, successful algorithms for efficient com-
putation of the standard PageRank algorithm, to L�-PageRank. Moreover, the dynamic
versions of Power Iteration and Gauss-Southwell, which can update the solution of stan-
dard PageRank in sub-linear time complexity when the graph evolves or new data arrive,
are also extended to L�-PageRank.

III

ABSTRACT

The main goal of G-SSL is to help solve real world problems. Towards this aim, in
the last part of this dissertation we use G-SSL to address current issues in the context of
Internet routing. Firstly, we use G-SSL to provide the first characterization of the scope
of BGP zombies: routers that maintain routes towards of IP prefixes that have already
withdrawn the Internet. By measuring the state of routers in a small set of Autonomous
Systems (AS), we show that standard PageRank can predict the state of routers in ASes
over which measurements are not available with an accuracy of 97% for zombie ASes and
99% for normal ASes. Then, we use G-SSL inferences to characterize the scope of BGP
zombies. Secondly, we use G-SSL to address the problem of identifying the AS of inter-AS
links from a network of IP addresses and AS public registers. By building a graph from
traceroute measurements collected from the Internet and by collecting various types of
expertized data with varying degrees of confidence from AS public registers, we show that
Lγ-PageRank can solve this inference task with no errors, even when the expert does not
provide labelled examples of all classes.

IV ABSTRACT

Résumé

Les méthodes d’apprentissage semi-supervisé sur graphes (G-SSL) exploitent un nom-
bre raisonnable de données étiquetées, conjointement à des informations structurelles sur
l’ensemble de ces données, et ce afin de construire des classifieurs plus performants. Ce
paradigme de classification a fait l’objet d’une attention considérable, d’autant que les
applications actuelles génèrent des quantités de données structurées de plus en plus im-
portantes, facilement accessibles et naturellement encodées par des structures de graphes,
alors que l’équitetage de ces données reste un processus souvent coûteux qui limite l’accès
à des données labelisées. En dépit des nombreux progrès réalisés dans ce domaine, les
performances des G-SSL sont encore perfectibles, notamment lorsqu’il s’agit de traiter des
graphes présentant une faible séparabilité entre classes, ou dans le cas de forts déséquilibres
entre les données des différentes classes. Ce sont précisment ces situations difficiles
auxquelles nous nous intéressons dans le cadre de ce travail de thèse.

La principale contribution de cette thèse est une extension des méthodes de G-SSL clas-
siques, qui nous a conduit à une approche originale, appelée L�-PageRank. L’idée que
nous avons développée consiste à élever la matrice combinatoire Laplacienne de graphe –
qui est au centre de la méthode PageRank – à des puissances (non nécessairement entières)
L� (� > 0).

L’analyse théorique de notre proposition nécessite alors de considérer deux régimes con-
ceptuellement distincts. Pour le cas dit fractionnaire, où 0 < � < 1, nous montrons que
L�-PageRank généralise le concept de marches aléatoires qui sous-tend l’algorithme de
PageRank standard à des dynamiques de marches plus riches, tels que les vols de Lévy.
Ces derniers permettent aux marcheurs aléatoires d’atteindre des nœuds du graphes, dis-
tants de leur position courante, en un seul saut, accélérant ainsi la diffusion des étiquettes
à travers les nœuds d’une même classe.

L’autre régime que nous avons étudié correspond aux valeur de � > 1. Contrairement
au cas précédent, L� introduit ici des poids négatifs sur les liens, rendant la méthode in-
interprétable en termes de matrices de probabilité de transition. Nous avons alors montré
que L�-PageRank effectue une classification sur un nouveau graphe signé, où les nœuds ap-
partenant à une même classe ont une plus grande probabilité d’être connectés via des liens
positifs, alors que des nœuds de classes différentes sont plus susceptibles d’être connectés
par des liens pondérés négativement. La principale contribution théorique de notre travail
est de garantir que L�-PageRank atteint des performances de classification supérieures à
celles de PageRank standard, dès lors que le paramètre � est correctement sélectionné.
Expérimentalement donc, nous vérifions l’existence d’une puissance � optimale qui max-

V

RÉSUMÉ

imise les performances de L�-PageRank. Puis, nous proposons une routine empirique
opérationnelle qui permet de déterminer à partir du graphe des données et des étiquettes
disponibles, la valeur optimale de la puissance �.

Pour illustrer les améliorations apportées par les méthodes proposées, nous avons testé
L�-PageRank sur un grand nombre de jeux de données, couramment utilisées pour évaluer
les performances des classifieurs semi-supervisés. Les résultats obtenus montrent que: (i)
dans le rgime 0 < � < 1, les vols de Lévy permettent à L�-PageRank de mieux identifier les
classes prsentant des structures locales complexes, telles que des hubs ou des sous-groupes;
(ii) avec � > 1, les graphes signés accentuent significativement la séparabilité des classes,
ce qui permet en particulier aux L�-PageRank de répondre plus efficacement au problème
du déséquilibre du nombre de données étiquetées par classes.

Les contributions de ce travail de thèse sont également d’ordre algorithmique.

Un autre avantage des méthodes d’apprentissage semi-supervisé sur graphe est de fournir
une solution explicite au problème de classification. Cependant, les expressions analy-
tiques de ces solutions impliquent toutes, quel que soit L�-PageRank choisi, une inversion
matricielle coûteuse, mal adaptée aux grands jeux de données. Nous avons donc développé
des implémentations efficaces de L�-PageRank, qui s’appuient sur des résultats obtenus en
traitement du signal sur graphes. Comme cela avait déjà été fait pour PageRank standard,
nous utilisons des méthodes d’approximation de type Power Iteration et Gauss-Southwell,
pour obtenir des solutions numériques de L�-PageRank capables de passer à l’échelle. En-
fin, nous nous intéressons au contexte de l’apprentissage évolutif sur graphes, où, soit la
strucuture de graphe change au cours du temps, soit les données arrivent séquentiellement.
Dans les deux cas, il faut pouvoir intégrer ces évolutions à la classification, sans avoir à
re-calculer intégralement la solution à chaque pas de temps. Nous avons alors développé
des algorithmes dynamiques incrémentaux en complexité sous-linéaire, permettant de cal-
culer la solution de L�-PageRank au fil de l’eau.

Dans la dernière partie de cette thèse, nous traitons deux applications originales de G-SSL
dans le contexte du routage Internet. Tout d’abord, nous utilisons PageRank standard
pour fournir une caractérisation inédite de la portée de l’influence des zombies Boarder
Gate Protocol (BGP). Ces derniers sont des routeurs qui ont conservé les chemins vers
certains préfixes ayant déjà disparu du réseau Internet. En mesurant l’état d’un groupe
restreint de systèmes autonomes (AS), nous montrons que PageRank permet de prédire
l’état des routeurs dans d’autres AS, sur lesquels nous n’avons aucune mesure. La précision
atteinte est alors de 97% pour les AS avec routeurs zombies et 99 % pour les AS n’ayant
que des routeurs à jour. Les résultats fournis par cette classification G-SSL nous perme-
ttent ensuite de caractériser le domaine d’influence des zombies BGP. Dans une deuxime
application, nous abordons le problème de l’identification des systèmes autonomes (AS)
connectés par des liens inter-AS, et ce, uniquement à partir du réseau d’adresses IP et des
registres publics d’AS. Des expériences à partir de mesures traceroute d’Internet montrent
que seuls les L�-PageRank, avec � > 1, permettent de résoudre cette tâche sans erreur,
alors même lorsqu’on ne dispose pas d’exemples étiquetés par l’expert, pour la totalité des
AS (i.e., des classes).

VI RÉSUMÉ

Contents

Acknowledgements I

Abstracts (English/French) III

List of Figures XI

List of Tables XII

Symbols XV

Introduction 1

1 Preliminaries 9

1.1 Graph theory . 9

1.2 Graph data . 10

1.2.1 Graph models . 10

1.2.2 Graphs constructed from raw data . 12

1.3 Random walks on graphs . 13

1.4 Graph signal processing . 15

1.4.1 Graph signals . 16

1.4.2 Spectral theory . 16

1.4.3 Graph filters . 20

1.4.4 The heat equation . 20

2 Graph-Based Semi-Supervised Learning 23

2.1 Introduction . 23

2.2 From Tikhonov regularization to G-SSL . 25

2.2.1 The unnormalized Laplacian G-SSL 26

2.2.2 The normalized Laplacian-based G-SSL 26

2.2.3 The standard Laplacian-based G-SSL 27

2.2.4 The PageRank-based G-SSL . 27

2.2.5 The generalized optimization framework for G-SSL 28

2.2.6 Fitting on the labels vs fitting on the graph 29

2.2.7 The limit of infinite unlabelled data 30

2.3 From graph partitioning to G-SSL . 34

2.3.1 Cut problems on graphs . 34

2.3.2 Partitioning via spectral clustering . 35

2.3.3 Partitioning via random walks for G-SSL 37

VII

CONTENTS

2.3.4 Partitioning via PageRank for G-SSL 38
2.3.5 Semi-supervised vs unsupervised . 40

2.4 Open problems . 41

3 L�-PageRank for Semi-Supervised Learning 43
3.1 Introduction . 43
3.2 The L�-graphs . 45

3.2.1 Regime of � < 1 . 46
3.2.2 Regime of � > 1 . 47

3.3 The L�-PageRank method . 48
3.4 Analysis of � < 1: Lévy flights for classification 48

3.4.1 Lévy flight driven PageRank . 48
3.4.2 Numerical experiments . 49

3.5 Analysis of � > 1: Signed graphs for classification 52
3.5.1 Clustering with L�-PageRank . 52
3.5.2 The selection of � . 55
3.5.3 Numerical experiments . 58

3.6 Differences with Iterated Laplacian . 62
3.6.1 Numerical comparison . 63

3.7 Extending the generalized optimization framework to L�-graphs 65
3.7.1 Numerical experiments . 66

Appendix: technical proofs 69
3.A Proof of Lemma 6 . 69
3.B Proof of Lemma 7 . 69
3.C Proof of Lemma 8 . 69
3.D Proof of Lemma 9 . 69
3.E Proof of Lemma 10 . 70
3.F Proof of Theorem 5 . 70
3.G Proof of Corollary 1 . 72
3.H Proof of Proposition 2 . 72

4 Fast and efficient implementations 73
4.1 Introduction . 73
4.2 State-of-the-art approaches for PageRank computation 75

4.2.1 PageRank on static networks . 75
4.2.2 Updating PageRank on dynamic networks 76

4.3 Fast and efficient implementations of G-SSL on static graphs 80
4.3.1 Generalized implementation via Chebyshev polynomials 81
4.3.2 Generalized implementation via Greens functions 82
4.3.3 Generalized implementation via ARMA recursions 84
4.3.4 Generalized implementation via Gauss-Southwell method 86
4.3.5 Numerical assessment . 87

4.4 Fast updating of G-SSL on evolving networks 93
4.4.1 Local G-SSL updating via the power method 93
4.4.2 Local G-SSL updating via Gauss-Southwell 95
4.4.3 Updating via neural networks . 96
4.4.4 Numerical experiments . 98

VIII CONTENTS

CONTENTS

Appendix: technical proofs 103
4.A Proof of Lemma 13 . 103
4.B Proof of Lemma 14 . 103
4.C Proof of Lemma 15 . 104
4.D Proof of Lemma 16 . 104

5 G-SSL for Internet routing 105
5.1 Introduction . 105
5.2 G-SSL to characterize the scope of BGP zombies 107

5.2.1 Experimental setup . 107
5.2.2 G-SSL to identify zombies . 108
5.2.3 Characterization of zombie outbreaks via G-SSL 110

5.3 L�-PageRank for IP to AS mapping . 112
5.3.1 Experimental Setup and goals . 112
5.3.2 Results and discussion . 115

6 Conclusions 123

CONTENTS IX

List of Figures

1 Illustration of the G-SSL classification process 3

1.1 The Swiss roll dataset. 12
1.2 Random walks as a diffusion process. 15

2.1 The need for graph-based semi-supervised learning. 24
2.2 Interpretation of fTLmf as m-th raw moment 32
2.3 Curse of flatness issue in G-SSL and proposed solutions. 33
2.4 Semi-supervised graph-partitioning using PageRank vectors 40
2.5 Comparison of the Fiedler vector and PageRank for graph partitioning . . 41

3.1 Transition probabilities arising from fractional transition matrices 46
3.2 Exemplification of topology emerging from L2 47
3.3 Lollipop graph. 49
3.4 Classification of lollipop graph with � = 1 in balanced setting 50
3.5 Classification of lollipop graph with � = 1 in skewed setting 50
3.6 Classification of lollipop graph with � = 0.1 in skewed setting 50
3.7 Classification of lollipop graph with � = 0.01 in skewed setting 51
3.8 Graphs with sub-cluster structures. 52
3.9 Improved detection of graphs with sub-cluster structures. 52
3.10 Cheeger ratio as a function of � and the emergence of an optimal � 57
3.11 Improved detection of the Planted Partition. 59
3.12 The sufficiency of the Cheeger ratio . 62
3.13 Comparison of L�-PageRank and Iterated PageRank for the curse of flatness 65
3.14 Effect of � on L�-Normalized Laplacian on the lollipop 66

4.1 Effect of adding a node on the PageRank vector 78
4.2 Effect of using warm restarts . 79
4.3 Comparison of Algorithm 3 vs Algorithm 9 90
4.4 Comparison of Algorithm 4 vs Algorithm 10 91
4.5 Comparison of Algorithm 7, Algorithm 8 and Algorithm 9 92
4.6 Sensitivity of Algorithm 10 to changes in G-SSL parameters 93
4.7 ARMA with warm restart versus Chebyshev polynomial from scratch . . . 94
4.8 Comparison of Algorithms 11, 12 and 7 as the number of basic operations

they do . 99
4.9 Comparison of neural network updating vs ARMA analytic updating . . . 100

5.1 Graph from AS paths for an outbreak occurring for beacon 84.205.71.0/24
on September 9th, 2017 between 22:00 and 00:00 109

XI

LIST OF FIGURES

5.2 Characterization of the number of zombie ASes per outbreak 110
5.3 Outbreak for beacon 84.205.70.0/24 on December 6th, 2017 111
5.4 Outbreak for beacon 2001:7fb:fe06::/48 on March 1st, 2017. 112
5.5 Graph of IP addresses from tracerout measurements. 114
5.6 Classification accuracy as a function of µ using sweep-cuts on the labels

given by the strict expert. 117
5.7 Classification accuracy as a function of µ using sweep-cuts on the labels

given by the loose expert. 119
5.8 Classification accuracy as a function of µ using sweep-cuts on the labels

given by the weighted expert. 120
5.9 Classification accuracy of all ASes as a function of µ using the multi-class

approach. 121

XII LIST OF FIGURES

List of Tables

3.1 Evaluation of Algorithm 2 on the MNIST Dataset 58
3.2 Performance of L�-PageRank real world datasets 60
3.3 Performance of L�-PageRank on unbalanced labelled data 61
3.4 Comparison of L�-PageRank and Iterated PageRank on the MNIST dataset 64
3.5 Performance of L�-Normalized Laplacian on real world datasets 67

4.1 Possible choices for reference operators in G-SSL. 81

5.1 Measurement periods and number of detected outbreaks for the 27 moni-
tored beacons. 108

5.2 Top 5 affected transit ASes in IPv4 and IPv6. 112
5.3 Best classification attained by G-SSL using labels of the strict expert for

IP to AS mapping. 115
5.4 Best classification attained by G-SSL using labels of the loose expert for IP

to AS mapping. 118
5.5 Best classification attained by G-SSL using labels of the weighted expert

for IP to AS mapping. 120

XIII

Symbols

G Weighted undirected graph
W Graph adjacency matrix
D Graph degree matrix
vol(S) Volume of set S
∆uv Geodesic distance between nodes u and v

P Transition probability matrix
�t t-th step distribution of a random walk
⇡ Stationary distribution of a random walk
L� �-th Laplacian power
f G-SSL solution
y vector of labelled points
f(S) Sum of f in the set S

f̂ Graph Fourier Transform of f
L Combinatorial Laplacian matrix
Ln Normalized Laplacian matrix
Lrw Random walk Laplacian matrix
Λ Laplacian spectrum
h(Λ) Graph filter
VL Set of labelled points
µ regularization parameter of G-SSL
↵ Restart probability
Sgt Ground truth class
hS Cheeger ratio of S
q Permutation vector
W� L�-graph adjacency matrix
D� L�-graph degree matrix
P� L�-graph transition matrix

h
(�)
S

Generalized Cheeger ratio

A
(�)
in (S) Within cluster agreements of set S in L�-graph

A
(�)
out(S) Between cluster agreements of set S in L�-graph

D
(�)
in (S) Within cluster disagreements of set S in L�-graph

D
(�)
out(S) Between cluster disagreements of set S in L�-graph

vol�(S) Volume of set S in L�-graph
⇡� Stationary distribution in L�-graph

G̃ Evolved graph
R Reference operator of G-SSL

XV

SYMBOLS

pr↵(y) Personalized Pagerank vector with parameter ↵ and
seed y

p̃r↵(y) Personalized Pagerank vector with parameter ↵ and
seed y in evolved graph

arma⇢, (y) ARMA filter with coefficients ⇢, and seed y�arma⇢, (y) ARMA filter with coefficients ⇢, and seed y in
evolved graph

XVI SYMBOLS

My Publications

Journals

1. E. Bautista, P. Abry, P. Gonçalves, “L�-PageRank for Semi-Supervised Learn-

ing”, Applied Network Science, volume 4, 2019.

Conference Proceedings

1. R. Fontugne, E. Bautista, C. Petrie, Y. Nomura, P. Abry, P. Gonçalves, K. Fakuda,
E. Aben “BGP Zombies: an Analysis of Beacons Stuck Routes”, in PAM
2019 - 20th Passive and Active Measurements Conference, 2019, (Best paper
award).

2. S. de Nigris, E. Bautista, P. Abry, K. Avrachenkov, P. Gonçalves, “Fractional

Graph-based Semi-Supervised Learning”, in Proceedings of the 25th European
Signal Processing Conference, 2017.

3. E. Bautista, S. de Nigris, P. Abry, K. Avrachenkov, P. Gonçalves, “Lévy Flights

for Graph-Based Semi-Supervised Classification”, in Proceedings of the 26th
colloquium GRETSI, 2017.

Abstracts

1. S. de Nigris, E. Bautista, P. Abry, K. Avrachenkov, P. Gonçalves, “Fractional

Graph-Based Semi-Supervised Learning”, in International Conference on Net-
work Science, NetSci 2018, Paris, France.

2. E. Bautista, S. de Nigris, P. Abry, P. Gonçalves, “L2-based PageRank for Graph-

Based Semi-Supervised Learning”, in Graph Signal Processing Workshop, GSP
2018, Lausanne, Switzerland.

XVII

Introduction

Data have a fundamental role in society. It can be argued that one important reason for
the progress of civilization is that we have leveraged data to take better decisions. For
instance, the deep understanding of the data output by medical tests has allowed doctors
to make more precise diagnoses and to better identify optimal treatments. It is thanks
to weather records and CO2 measurements that we now better understand the impact
that our carbon footprint has on climate change. Also, evolutionary theory by natural
selection, which is one of the major breakthroughs in human history, was devised from
data collected from birds.

In today’s world, data are more important than ever. They are involved in almost any hu-
man related activity. From listening to music records, to trade in goods, passing through
medical examinations, up to sharing photos on internet. All these activities generate mas-
sive amounts of data which, due to technological progress, we can now store and effortlessly
access. If we have historically used few available data to better solve problems, then the
monumental amount of data at our disposal nowadays is a gold mine to devise a better
world.

Over the years, the machine learning and the signal processing communities have pro-
posed numerous data classification techniques to better organize and understand the large
mass of data arising from the big data trend. Classification refers to the task of grouping
data instances according to some properties they have in common. For example, given
a set of documents, classification can consist in separating them by topic. From a set of
bank transactions, classification may aim to group those who correspond to a fraud. From
a set of emails, it consists in identifying those that are spam. It can also be the categorisa-
tion of music files according to genre, instruments, or language. The list of possible data
applications is endless and classifiers constitute one of the essential tools to capitalize on
them.

Yet, one fundamental question that arises is why state-of-the-art classifiers, which have
been shown to categorize pet images with even better accuracy than humans [1], have had
negligible impact in important areas such as medicine [2], despite an estimated 1.7 billion
users of healthcare applications [3] and a market of roughly 600 million wearable medical
devices [4] generating data? The answer is that classifiers need to learn: a process that
involves discerning what are the determining features that make two points share a class
(or not) after seeing large amounts of data instances annotated with their true label. The
issue is that annotated data do not follow the big data trend, instead they remain scarce
in numerous application domains, such as medicine, in which the process of hand-labelling

1

INTRODUCTION

data usually requires from the intervention of human experts and the use of specialized
devices. In this context, it is certainly unfeasible that medical experts can tag an amount
of examples equivalent to the 1.28 million annotated images needed by the classifier of [1]
to attain such reliable predictions. This lack of sufficient labelled data necessary to make
supervised classifiers trustworthy has caused most of the data that we continue to collect
to remain unanalyzed.

How to draw reliable inferences when the labelled data is insufficient? This fundamen-
tal question is the fuelling force of the modern classification paradigm known as semi-
supervised learning on graphs (G-SSL). In G-SSL, classifiers not only learn from annotated
examples but also from unlabelled data. This gives them the ability to take advantage of
the big data trend and the power to deliver reliable inferences even from limited amounts
of labelled data. The idea of learning from unlabelled data is not new to G-SSL, as pre-
vious approaches under the umbrella of unsupervised learning have noticed that raw data
posses structural patterns informative of its class nature, yet unsupervised approaches
have failed to have much impact since they require extensive intervention from human
experts to judge if the patterns they find are beneficial in some manner. G-SSL revisits
those ideas and uses the structure of unlabelled data to enrich the labelled data. To attain
a synergy between these two sources of information, G-SSL represents the data by means
of a similarity graph. Graphs are a powerful tool to represent and capture the structure of
datasets because the usually high-dimensional datapoints become simple vertices and the
similarity between datapoints is encoded by edges linking those vertices. In this context,
G-SSL essentially amounts to transform the usual classification problem into one in which
a graph has some of its nodes labelled and one aims to find the label for the remainders.
Yet since the class nature of the data is implicit in the graph, this one allies with the
labelled data to deliver reliable inferences.

To illustrate how G-SSL can draw reliable predictions by learning from both the structure
of data and few annotated examples, let us give a simple illustrating example in Figure 1.
Let us assume that Figure 1a represents a dataset with three classes where a few points
have been hand-labelled (red, blue, magenta) and the rest are raw data that we aim to
classify (grey). By themselves, the labelled points are simply too few to learn something
from them, however the grey datapoints have a structure reminiscent of the class nature of
the data. This extra information is key in G-SSL which builds a similarity graph to encode
for it, as shown in Figure 1b. This is where the G-SSL inference problem is reached: given
a graph with some labelled nodes, one aims to predict the class label for the remainder
of nodes. To solve it, the graph structure and the annotated nodes operate together by
successively propagating the labels to adjacent nodes in the graph until all nodes have
inherited a class. As it can be seen in Figure 1c, despite having few annotated examples,
G-SSL is able to enrich this information with the graph structure to deliver reliable infer-
ences.

G-SSL procedures have already set the state-of-the-art in various applications domains [5,
6, 7, 8, 9]. Moreover, the recent proliferation of non-euclidean graph-structured datasets,
such as the web-graph, social networks, protein networks, or citation networks, are tailor-
made to be addressed by G-SSL, making it a tool of utmost importance to tackle some of
the central problems today.

2 INTRODUCTION

INTRODUCTION

(a) raw data (b) inferred graph (c) G-SSL classification

Figure 1: Illustration of the G-SSL classification process

Nevertheless, G-SSL is still not perfect. Indeed, the state-of-the-art results indicate that
when the labelled data are limited, G-SSL gives accurate classifications only under rather
simple data conditions: such as when the structure of classes is well defined (separable) and
without complex local structures like multiple sub-classes constituting one larger class. In
this regard, if the data increases in complexity, then G-SSL may require significantly more
tagged examples to remain reliable. For example, the authors of [5] employed the state-
of-the-art G-SSL method [10] to classify 1,126,670 internet users according to the topic of
videos they downloaded. Their results show that if 500 labelled points per class are used,
G-SSL attains a classification error of 10%, which may be sufficient to draw conclusions,
but if one uses 5 labelled points per class, then the error grows to 37%, which is now
too large to be beneficial. This lack of reliability in challenging data settings has caused
G-SSL to continue to be mainly employed in applications where some miss-classifications
can be tolerated, such as text categorization [6], or handwritten digit recognition [8]. Fur-
thermore, it explains why it has not been seriously considered in other types of application
domains such as medicine [2].

In addition, recent theoretical results [10] indicate that G-SSL methods produce biased
outputs when the ratio of class size and number of annotated examples is not the same
for all classes. This certainly harms the trustability of G-SSL classifiers because the size
of classes cannot be known a priori and it is against the G-SSL philosophy that, in order
to make a classifier reliable, one would need to discard tagged data that may have been
expensive to collect. Indeed, it is unfortunate that for large datasets consisting of thou-
sands of classes, G-SSL demands to collect labelled data in a balanced way for each and
every class, or otherwise the classifier will either be biased or will missclassify an entire
class whose label was never collected.

All these results point in the direction that the G-SSL paradigm is one of the most promis-
ing approaches to get the most out of data. Yet, its output tends to only be accurate under
simple data settings with rather ideal conditions on the separability of data and the bal-
ancedness and availability of annotated data. In this context, the main question that I
would like to address in this dissertation is the following:

INTRODUCTION 3

INTRODUCTION

How can we improve G-SSL to address the limitations listed above?

To address this question, the main contribution of this dissertation consists of a new
method for G-SSL referred to as the L�-PageRank G-SSL. Elaborating on [10], L�-
PageRank introduces a new degree of freedom into the G-SSL problem: �, which, for a
chosen value, changes the topology of the data and makes L�-PageRank solve the G-SSL
problem in the new topology. The following summary of characteristics of L�-PageRank
highlights the significance that our contribution brings to G-SSL:

1. L�-PageRank is theoretically guaranteed to deliver more reliable classifications than
the state-of-the-art PageRank method [10] if � is properly chosen.

2. L�-PageRank overrides the issue of unbalanced sets of labelled points

In addition:

• L�-PageRank provides an algorithm for the automatic estimation of the optimal �
to maximize performance

• L�-PageRank addresses better complicated data structures, such as graphs with
unclear clusters or classes with sub-clusters structures or hubs

• L�-PageRank is tailor-made to classify data via sweep-cuts [11], implying that it
does not necessarily need labelled points of all classes to operate: it can be run with
labelled points of just one class and returns the nodes belonging to such class.

• L�-PageRank can be efficiently computed and fastly updated to classify new data
or evolving graph structures

• L�-PageRank has been empirically assessed on extensive datasets commonly used for
classification, showing significant improvements over the state-of-the-art PageRank
method.

The thesis is organised as follows:

Chapter 1: In this chapter, we present fundamental background in graph theory, ran-
dom walk theory and an introduction to the emerging field of Graph Signal Processing,
fields upon which the thesis is built. The chapter also serves to introduce definitions and
notations used throughout the thesis.

Chapter 2: This chapter starts with a thorough tour of the field of G-SSL. Then, we
provide our fist contribution.

In the first part, we review the most influential and widely used G-SSL propositions
[12, 13, 14, 10] and point that the PageRank-based method [10] arises as the state-of-
the-art approach for G-SSL. We cover results showing that the classification assignment
given by the PageRank method can be explained in terms of the theory of random walks.

4 INTRODUCTION

INTRODUCTION

Then, we point that such results imply that G-SSL methods suffer from biased outputs
when facing unbalanced labelled sets. We introduce another line of works indicating that
G-SSL is ill-posed when the data grows infinitely large. Proposed solutions are reviewed
and special emphasis is given to the approach of [15] that proposes the use iterations of
the Laplacian kernel to amend the issue.

The second part introduces G-SSL from the perspective of graph partitioning. We review
partition problems and revisit results originally developed in the context of local clustering
[11, 16, 17] showing that the PageRank algorithm, in conjunction with a technique called
the sweep-cut, can be used to partition the graph into clusters of small Cheeger ratio. We
contribute pointing that the results of [11, 16, 17], can be re-interpreted in the context
of G-SSL. Moreover, we show that the idea of taking sweeps can be directly applied to
G-SSL, embedding it with a larger degree of flexibility in which only the tagged points
of a class are needed to run G-SSL and find the nodes belonging to such class. Lastly,
we highlight that those results serve to explain better the success of the PageRank-based
G-SSL method of [10].

Chapter 3: This chapter describes the core contribution of this thesis: the L�-PageRank
method, a generalization of PageRank to (non-necessarily integers) �-th powers of the com-
binatorial Laplacian matrix L� (� > 0). For our developments, the chapter commences
revisiting the Laplacian powers, already considered in [15], as a means to improve G-SSL.
The key difference between our approach and the one in [15] is that [15] interprets the
Laplacian powers as a Sobolev regulariser, while in our approach we show that the L�

operator, for every fixed � value, generates a new graph. These new graphs, which we
refer to as the L�-graphs, reweight the links of the original structure and create edges
between originally far-distant nodes. Thus, our generalized L�-PageRank formulation is
an extension of PageRank to operate on the L�-graphs (for � = 1 our algorithm then re-
duces to the standard PageRank algorithm). To analyse L�-PageRank, we show that two
regimes arise: (i) � < 1: leading to random walk transition matrices encoding for Lévy
processes; and (ii) � > 1: leading to signed graphs where edges can be positive or negative.

Regime � < 1: we show that our L�-PageRank extends the regular PageRank algorithm to
incorporate Lévy flight random walkers instead of the regular random walkers. The Lévy
flight random walkers can jump between far-distant nodes in the graph in a single step,
contrary to the regular random walkers that can only transition to adjacent neighbours.
We show that the improved capacity of the Lévy walkers to explore the graph can improve
the classifications of graphs with trapping regions, like strong hubs, or sub-cluster struc-
tures, that tend to harm the significance of the functions learned by the regular PageRank
algorithm.

Regime � > 1: we show that, albeit no longer modelled by random walkers because of
the graph being signed, L�-PageRank remains a well behaved diffusion process. Then, we
extend the definition of a cluster to L�-graphs: we say that a cluster in a signed graph
is a group of nodes whose members strongly agree (positive edges) and that strongly dis-
agree with members of other clusters (negative edges). We provide a generalization of
the Cheeger ratio to assess clusters in the signed L�-graphs and show that, similar to the
regular PageRank method that can partition graphs into clusters of small Cheeger ratio,

INTRODUCTION 5

INTRODUCTION

L�-PageRank is a tool to partition L�-graphs into clusters of small generalized Cheeger
ratio. This result implies that if a L�-graph increases the separability of the data, then it
is easier for L�-PageRank to classify the data. In other words, we theoretically show that
if the ground truth class under search has a smaller Cheeger ratio in a L�-graph than in
the initial graph (� = 1), then we can more accurately identify it with L�-PageRank using
the sweep-cut technique. By means of numerical investigations, we point the existence of
an optimal � value that maximizes performance. Therefore, we propose an algorithm that
allows to estimate the optimal � directly from the initial graph and the labeled points.
Lastly, we demonstrate the classification improvements permitted by L�-PageRank on
several real world datasets commonly used in classification, as well as the relevance of the
estimation procedure for the optimal tuning. Particularly, our results demonstrate that
L�-PageRank can: (i) significantly improve classification performance; and (ii) amend the
issue of unbalanced labelled data.

Chapter 4: This chapter investigates fast and efficient implementations for our propo-
sitions in Chapter 3 and represents our third contribution. We start reviewing highly
successful algorithms for efficient PageRank computation: power iteration [18, 19, 20] and
Gauss-Southwell [11, 21], but that rely on the Markov chain structure of PageRank and
cannot be directly used in our propositions. Then, we show that our L�-PageRank method
can be framed in the context of graph filters, allowing us to use techniques from the field
of Graph Signal Processing to efficiently implement graph filters: ARMA filters [22] and
Chebyshev polynomials [23]. We then show that by using the ARMA filter structure, we
can derive extensions of the power iteration and Gauss-Southwell algorithms to compute
L�-PageRank. Part of the strong success of power iteration and the Gauss-Southwell meth-
ods for standard PageRank computation is that they possess dynamic versions [24, 25] that
can update the PageRank solution in sub-linear time when the graph evolves. Therefore,
we elaborate on the ARMA-based extensions of those algorithms derived in the first part
of the chapter to obtain dynamic extensions of the algorithms of [24, 25] that permit to
update L�-PageRank in sub-linear time.

Chapter 5: This chapter uses G-SSL to address issues in Internet routing. It repre-
sents our fourth contribution. The chapter starts using G-SSL to provide the first char-
acterization of BGP zombies under BGP protocol. Then, it employs G-SSL to address
the challenge of inferring topologies of autonomous systems from networks of IP addresses.

In the first part of the chapter, we use G-SSL to provide the first characterization of
the scope of BGP zombies. For this characterization, we perform measurements of the
Internet in a controlled environment during three periods that span across one year an a
half. Our measurements track the state of a restricted set of routers, where we occasionally
observe some of them maintaining a route towards a prefix that has withdrawn the Internet
more than 1.5 hours ago. To assess if this anomaly occurs in isolation or at a large scale,
every time it is detected in our measurements we use G-SSL to predict which autonomous
systems, other than the ones over we have measurements, also have affected routers. We
show that the standard PageRank algorithm detects affected autonomous systems with
97% accuracy and non-affected ones with 99% accuracy, according to a validation set con-
structed from tracerout measurements of the Internet. The G-SSL predictions are then
used to characterize the scope of affected autonomous systems, with our results indicating

6 INTRODUCTION

INTRODUCTION

that, on average, 10% (IPv4) and 17% (IPv6) of the monitored autonomous systems are
affected when the issue appears in our measurements.

In the second part of the chapter, we use G-SSL to solve the issue of inferring the topol-
ogy of autonomous systems from the network of IP addresses. We perform tracerout
measurements of the Internet and build a graph of IP addresses from them. Then, from
publicly available ASNs registered for the IP addresses of the graph, we show that various
labelled datasets with varying degrees of confidence can be constructed. We study the
advantages/disadvantages of the various types of semi-supervision proposed, which offer a
trade-off between amount of annotated examples and how much we can trust them. Our
results show that, for the studied dataset, L�-PageRank with � = 2 can solve this infer-
ence task with no errors, contrary to standard PageRank which always miss-classifies data.

Chapter 6: This chapter concludes the work and discusses future directions.

INTRODUCTION 7

Chapter 1

Preliminaries

1.1 Graph theory

Graph theory is an important area of discrete mathematics with a long history dating back
to the 18th century [26]. It focuses on the study of graphs: mathematical objects that
represent pair-wise interactions between elements. Graphs were initially used to solve com-
binatorial problems [27], although the technological developments from the last century
have given rise to numerous modern systems that can be effectively modelled by graphs.
Examples of such systems range from the Internet [28], social networks [29], financial sys-
tems [30], healthcare [31], protein networks [32], smart grids [33], communication systems
[34], or sensor networks [35], to name a few. Indeed, the list of applications, and the
systems themselves, evolve every day, and, accordingly, the complexity of the questions
they give rise to. To address such questions, it is crucial to better understand the data
generated by these systems and graph theory provides the fundamental building block to-
wards developing better data processing tools capable of taking into account the complex
interconnected nature of these systems.

Graphs are made of two fundamental ingredients: a set of nodes (also referred to as
vertices) and a set of edges linking these nodes. From here, variants can be devised: the
edges may code for strength through a weight coefficient or may have a direction. In this
thesis, we will only consider networks that are undirected, with positively weighted edges,
and without self-loops (a link connecting a vertex with itself), unless otherwise stated.
While this restriction leaves out various networks of major interest, the tradeoff is that it
allows a much more amenable mathematical treatment while still covering the majority of
modern applications.

A graph is denoted by the triplet G(V,E ,w). By V, we refer to the set of vertices, which
we assume of carnality �V � = N . By E ⊂ V × V, we denote the set of edges, in which a
connected pair u, v ∈ V, denoted u ∼ v, implies both (u, v) ∈ E and (v, u) ∈ E . A graph is
labeled as sparse if �E � = O(N). Lastly, w ∶ E → R

+ is a function that assigns a real positive
weight to edges.

The adjacency matrix of the graph is an important matrix condensing all the information
from the triplet G(V,E ,w). Without loss of generality, assume that each node in the graph
is assigned an arbitrary and unique index from 1 to N . Then, is is defined as follows:

9

1.2. GRAPH DATA

Definition 1. The graph adjacency matrix is the matrix W ∈ RN×N with elements given
by

Wuv =

�������
w(u, v) u ∼ v,

0 otherwise.
(1.1)

Note that since we assumed undirected edges the adjacency matrix is symmetric. More-
over, the no-self loops condition implies that the diagonal of W is full of zeros.

The degree matrix is another important matrix which encodes for the degrees of nodes.
The latter are a measure of how strong are the connections towards a node. Both are
defined as follows:

Definition 2. Let u ∈ V be an arbitrary node. The degree of u, denoted du, is given as

du =�
v

Wuv (1.2)

Definition 3. The graph degree matrix is the diagonal matrix D ∈ RN×N with elements
given by Duu = du

Graphs do not live in euclidean spaces, therefore we cannot compute distances between
nodes using euclidean approaches. However, graphs possess an intrinsic metric usually
referred to as the shortest path distance or the geodesic distance between nodes. Let the
sequence (v1, v2, . . . , vk) ∈ V × V × ⋅ ⋅ ⋅ × V, with vi ∼ vi+1, v1 = u and vk = v, denote a path
of k − 1 edges between u and v. The shortest path distance is defined as follows:

Definition 4. The shortest path between u, v ∈ V, denoted by ∆uv, is the path between u

and v with the minimum number of edges.

In this work, we will extensively work with groups of nodes. We will refer to such groups
via the set notation S ⊆ V. Further, let S denote the indicator function of S, so that
(S)u = 1 if u ∈ S and (S)u = 0 otherwise. As illustrated in our next definition, the indi-
cator function notation will allow us to write most operations involving sets in matrix form.

The volume of a set is a quantity that assesses how many connections reach the nodes in
the set. It is defined as follows:

Definition 5. Let S ⊆ V. The volume of S is given by

vol(S) = �
u∈S

du =
T
SD S (1.3)

When we refer to the volume of the entire graph it will be denoted by vol(G).

1.2 Graph data

1.2.1 Graph models

As discussed above, numerous graphs can naturally arise in several real world applications.
However, one has hardly any control over these graphs. It is thus important to rely on
graph generative models that, on the one hand, allow to vary properties under investigation
by means of tunable parameters, and, on the other hand, have matrix representations
with amenable theoretical properties. This subsection introduces graph models that will
be employed throughout this work.

10 CHAPTER 1. PRELIMINARIES

1.2. GRAPH DATA

Cyclic graph

The ring graph is a 1-dimensional regular lattice with periodic boundary conditions. If we
label the graph vertices from 1 to N , then the defining property of ring graphs is that the
shortest path distance between nodes satisfies

∆uv =

�������
�u − v� if �u − v� = 0,1, . . . , �N�2�,
N − �u − v� if �u − v� = �N�2� + 1, . . . ,N,

(1.4)

where �⋅� is the floor function. As a result, the adjacency matrix of ring graphs has the
following circulant form: Wuv = 1 if v = u + 1 or v = u − 1, and Wuv = 0 otherwise. It is
well known that circulant matrices have amenable mathematical properties. Two of the
most important are [36]: (i) they are diagonalized by the discrete Fourier transform; and
(ii) they can be interpreted as a convolution operator on cyclic groups of N elements.

The planted partition model

The planted partition model is an important generative model for random graphs. It is
tailored to generate graphs having a community structure. A community (also referred
to as a cluster in this work) denotes a group of nodes satisfying: (i) nodes in the group
are strongly connected between them; and (ii) nodes in the group are poorly connected
towards the rest of nodes in the graph. The planted partition model allows to control the
degree of attachment between nodes within and between communities. Thus, it widely
used for benchmarking tasks that involve communities.

To construct the planted partition, let the set of nodes be split into two disjoint sub-
sets S1 and S2 as V = S1 ∪ S2, with S1 ∩ S2 = �. Further, let two parameters pin and pout
denote the probabilities of within-cluster connections and between-cluster connections.
Then, for every possible pair, u ∈ Si and v ∈ Sj , u ≠ v, an unweighted edge is drawn
between u and v with probability pin if i = j, or with probability pout if i ≠ j.

It is clear that if �S1� = �S2� and pin > pout are both satisfied, then S1 and S2 should
form separate communities. Yet, due to the probabilistic approach, nodes from S1 can
still end up more connected to nodes from S2 than to the rest of nodes in S1 (depending
on how much bigger is pin than pout). Thus, the clustering task in the planted partition
is: for a given realization of the model, one must recover the true partitioning, i.e. which
nodes belonged initially to S1 and which ones to S2.

The planted partition has been subject of extensive theoretical studies [37, 38, 39]. An
important result due to Mossel et al. [40] demonstrates the existence of a detectability
transition above which any unsupervised algorithm is unable to detect communities pos-
itively correlated with the true partition. To state their result, let �S1� = �S2� = n and let
Cout = (pout)(n) and Cin = (pin)(n−1) be the mean number of within cluster and without
cluster connections of a node, respectively. The mean degree of a node is thus given by
Cavg = Cin +Cout.

Theorem 1 ([40]). Consider a planted partition model. Then, as n → ∞, it is possible
to recover a cluster that is positively correlated with the true partition, in an unsupervised
manner, if (Cin −Cout)

2
> 2(Cin +Cout), and impossible otherwise.

CHAPTER 1. PRELIMINARIES 11

1.3. RANDOM WALKS ON GRAPHS

Before proceeding, it is important to define a metric to assess the similarity between
datapoints. Various possibilities exist: correlations, inverse of the euclidean distance, ker-
nel functions, etc. In this work, we will employ the so-called radial basis function (RBF).
It is defined as follows: let u, v ∈ Rm be two data points in an m-dimensional vector space
and let � be a width parameter. The similarity between u and v is thus given as

sim(u, v) = exp�−�u − v�22
�2

� (1.5)

✏-neighborhood graph construction

In the ✏-neighborhood graph construction approach, the adjacency matrix of the graph is
constructed employing the following rule

Wuv =

�������
sim(u, v) if sim(u, v) ≤ ✏,

0 otherwise,
(1.6)

This is the most natural approach to capture the structure of manifolds as they seem
euclidean in local regions. However, the tuning of ✏ is critical and there are not clear
insights on how to choose this parameter in practice. Indeed, a bad choice of ✏ can easily
lead to disconnected vertices.

K-nearest neighbor graph construction

In the K-nearest neighbor graph construction approach, the adjacency matrix is computed
as

Wuv =

�������
sim(u, v) if v is within the K most similar points of u,

0 otherwise,
(1.7)

Note that this approach solves the problem of disconnected nodes. However, in practice,
the tuning of K is crucial and its selection remains an open question. Normally, choosing it
around K = 10 tends to give good results. Finally, observe that u may be in the K closest
neighbors of v, but the converse may not be true. Thus, each time we set Wuv = sim(u, v),
we must also set Wvu = sim(u, v).

1.3 Random walks on graphs

Now that we have seen that numerous problems can be modelled by graphs, we focus on
tools to analyse graphs. A simple, yet powerful approach to analyse graphs is to navi-
gate the graph and to compute statistics about it. This is the underlying mechanism of
a random walk on a graph. The random walk process operates as follows: a walker is
located at a node u at a specific time t, then it selects one node from its neighbors with
probability proportional to the strength of their connection, and moves to this node at
time step t+1. While simple, the statistics of this process, in the limit of infinite number of
realizations, yield a very useful model for diffusion on graphs, upon which several precise
statements can be made. Indeed, this modeling capacity of random walks has been used
to characterise: users surfing the web by clicking hyperlinks between sites [43]; a disease

CHAPTER 1. PRELIMINARIES 13

1.3. RANDOM WALKS ON GRAPHS

propagating in a population [44]; or fake news being spread and influencing political pref-
erences [45]. Further, walkers have also leveraged to solve graph problems such as graph
clustering [46], graph coloring [47], graph critical point [48], or minimum spanning tree [49].

In math terms, a discrete time random walk on a graph is a discrete time Markov chain
with state space given by the vertices of the graph. The transition probabilities of the
chain are encoded by the so-called transition probability matrix of the walk defined as
follows:

Definition 6. The transition probability matrix of a random walk is the matrix P ∈ RN×N

with elements given by

Puv =
Wuv

du
, (1.8)

where Puv denotes the probability of a walker at node u moving to a node v in the following
step.

Observe that P can be computed in matrix form as P = D−1W . Also, since the walker
always moves to a neighbor, P is right stochastic, i.e. Puv ∈ [0,1] with ∑v Puv = 1, or,
equivalently in matrix form, the all ones vector, denoted , is a right eigenvector of P
with eigenvalue one: P = .

Note that, since an individual walker is not sufficient to derive statistics, one must work
with the ensemble probabilities from an infinite number of walk realizations instead. Let
�t denote the probability vector whose u-th entry, (�t)u, encodes the probability of finding
the walker at node u at time t. Then, the probability of finding the walker at node v at
time t + 1 is given by

(�t+1)v =�
u

(�t)uPuv. (1.9)

In matrix form, this can be computed for all nodes as �T
t+1 = �

T
t P . Clearly, this recursive

relation can be iterated to compute the distribution of the random walks at any time
t by only knowing the distribution of its starting point. Thus, we have that the t-step
distribution of the random walk, with starting distribution �0, is given as

�T
t = �

T
0 P

t. (1.10)

It is important to highlight that Eq. (1.10) admits an interpretation as a diffusion process
on the graph. This is, consider the entries of �0 to represent some amount of ‘heat’ or ‘liq-
uid’ placed on the nodes of the graph. Then, the vector �t represents the state of having
diffused this quantity, through the graph vertices, for t-steps via the random walkers. Let
us clarify on what we intend by means of the simple example in Figure 1.2. In it, a unit
mass of ‘heat’ is placed at node 1 at t = 0 (green node / top plot). Then, random walk
steps are applied and, at each time step, the heat diffuses to its adjacent vertices (first
step: blue/middle; second step: red/bottom). Observe that, due to ∑u(�t)u = 1 for all t,
the process is mass preserving, implying that there is no creation or dissipation of ‘heat’.
Thus, effectively just propagating the mass at each time step. Due to this duality, when
we refer to the probability of finding a walker at a node or to the mass diffused by walkers
to a node, both expressions will be indistinct.

In the limit of infinite time steps, irrespective of the initial condition �0, if the graph

14 CHAPTER 1. PRELIMINARIES

1.4. GRAPH SIGNAL PROCESSING

data, standard data processing tools must be able to incorporate the irregular nature of
the domain in which the data lives. For this reason, the field of graph signal processing
(GSP) has emerged with the objective of extending traditional data processing tools (and
to develop new approaches) to treat and analyse data supported on irregular domains.
This section gives an overview of the field of GSP.

1.4.1 Graph signals

If the data supported on the graph vertices is represented by numerical values, then the
concept of signal from classical signal processing can be generalised to arbitrary graphs.

Definition 7. A graph signal f is defined as the mapping f ∶ V → R.

Graph signals are represented by column vectors, where the u-th element of f , denoted
fu, represents the signal value at node u.

Therefore, the focal point of GSP is to process graph signals in a similar manner as we
process time series or images in classical signal processing. Towards this aim, numerous
efforts have been done to extend operations that are the cornerstone of classical signal
processing to the graph setting. These include: filtering [52, 53, 54], prediction [55, 56],
inpainting [57, 52], subsampling [58, 59], multi-resolution anaysis [60, 61], compression
[62, 63], or classification [64, 65, 5].

1.4.2 Spectral theory

In classical signal processing, one of the fundamental operations to analyse a signal is to
decompose it into its fundamental frequencies. As natural signals tend to be generated by
multiple phenomena of diverse oscillating nature, the frequency analysis of a signal allows
to isolate and enhance, extract, or suppress any source of interest. Therefore, it is of inter-
est to extend such operation to graph signals. For it, the field of GSP has shown that the
framework of spectral graph theory, which studies how the eigenvalues and eigenvectors
of the matrix representations of graphs relate to graph properties, can be leveraged to
develop a frequency analysis of graph signals.

The most fundamental decomposition of this form in classical signal processing is given by
the Fourier transform. The Fourier transform of the continuous time signal f(t) is given
by

f̂(⇠) = �
∞

−∞

f(t)e−2⇡it⇠dt. (1.13)

The inverse Fourier transform of f̂(⇠) is given by

f(t) = �
∞

−∞

f̂(⇠)e2⇡it⇠d⇠. (1.14)

Thus, the inverse Fourier transform corresponds to an expansion of a signal in terms of
complex exponentials, where the argument (2⇡⇠) determines the frequency of oscillation
of such functions. Observe how this basis also corresponds to the eigenfunctions of the
1-D Laplace operator

−
@2

@t2
e2⇡it⇠ = (2⇡⇠)2e2⇡it⇠, (1.15)

16 CHAPTER 1. PRELIMINARIES

1.4. GRAPH SIGNAL PROCESSING

in which the eigenvalues (2⇡⇠)2 are simply the square of the frequencies of their corre-
sponding eigenfunction.

Building upon this observation, a graph Fourier transform can thus also be defined as
expanding a graph signal in terms of the eigenfunctions of a Laplace operator defined
on graphs. Thus, calling for a definition of the Laplace operator on graphs. Now, since
the Laplace operator is a differential operator, various possible definitions of graph signal
differentiation and graph Laplacians arise.

Laplacian definitions on graphs

Option 1: The combinatorial graph Laplacian. In this Laplacian definition, one de-
parts from defining a differentiation operator on a graph signal f as (df)(u, v) =

√
Wuv(fu−

fu). Observe how the resulting derivative lives on the graph edges. Thus, to revert to func-
tions supported on nodes, the adjoint of d is needed. The adjoint operator of d, denoted
d∗, acts on a function H defined on the graph edges as (d∗H)u = ∑v∼u

√
Wuv(H(v, u) −

H(u, v)). In [66], these definitions of differentiation were shown to be consistent with
the continuous definitions of the derivative of a function. Thus, they can be employed to
define the Laplace operator on graphs. As the Laplacian is the adjoint of the difference
operator, we obtain the following important definition:

Definition 8. The combinatorial Laplacian operator of a graph, denoted L, acting on the
graph signal f and evaluated in a node u is given by

(Lf)u = d
∗(df(u, v)) = �

v∼u

Wuv(fu − fv). (1.16)

Observe how this Laplacian definition effectively permits to incorporate information about
the domain of f into the analysis of f . This is, if u and v share a strong link, then any
small difference between fu and fv will drastically impact (Lf)u, while if their connection
is weak, then differences are less important.

The combinatorial Laplacian operator can be expressed in matrix form as follows:

Definition 9. The combinatorial Laplacian matrix is the matrix L ∈ RN×N given by

L =D −W (1.17)

One important asset of this matrix representation is that the quadratic form of L, also
called the Dirichlet energy form, gives a measure of the global regularity, or smoothness,
of a graph signal with respect to its supporting domain. It is given by

fTLf = �
(u,v)∈E

Wuv (fu − fv)
2
. (1.18)

Thus, if f is the constant function, i.e. it is completely smooth, the Dirichlet form return
a value equal to zero, and, as f becomes more oscillating, the value of the form increases
accordingly.

Option 2: The random walk Laplacian. A second approach to define differentia-
tion of graph signals is by comparing the signal value of a node with respect the mean
value in its vicinity.

CHAPTER 1. PRELIMINARIES 17

1.4. GRAPH SIGNAL PROCESSING

Definition 10. The random walk Laplacian of a graph, denoted Lrw, acting on the graph
signal f and evaluated in a node u is given by

(Lrwf)u = fu −�
v∼u

Puvfv. (1.19)

The random walk Laplacian operator can be represented in matrix form as follows:

Definition 11. The random walk Laplacian matrix is the matrix Lrw ∈ R
N×N given by

Lrw = I − P =D
−1L (1.20)

Thus, the random walk Laplacian matrix is indeed a degree normalised version of the
combinatorial Laplacian matrix. However, this normalization makes this operator non-
symmetric, what makes it hard to derive an equivalent of Eq. (1.18) for Lrw.

Option 3: The symmetric normalized Laplacian. The last approach to define
differentiation of graph signals is by comparing the signal value of a node with respect to
a degree-normalized mean value of its vicinity.

Definition 12. The normalized Laplacian of a graph, denoted Ln, acting on the graph
signal f and evaluated in a node u is given by

(Lnf)u = fu −�
v∼u

√
du√
dv

Puvfv. (1.21)

Observe that, in matrix form, this operator is a similar transformation of Lrw and is a
symmetric normalization of L.

Definition 13. The normalized Laplacian matrix is the matrix Ln ∈ R
N×N given by

Ln = I −D
1

2PD−
1

2 =D−
1

2LD−
1

2 (1.22)

Thus, the relationship in Eq. (1.22) implies that a quadratic form with Ln leads to the
following graph signal smoothness metric

fT
Lnf = �

(u,v)∈E

Wuv � fu√
du
−

fv√
dv
�2 . (1.23)

It is important to observe that, under this metric, the constant function f is no longer
considered the smoothest function on the graph as compared to L. Thus, the choice of
the Laplacian kernel plays a key role on the way regularity of graph signals is assessed.

The graph Fourier transform

Now that the Laplacian operator on graphs has been introduced, the graph Fourier trans-
form can be defined. Let L denote any of the Laplace operators defined above. Then, L
admits an spectral decomposition of the form

L = QΛQ−1, (1.24)

where the columns of Q ∈ RN×N conform the right eigenvectors, the rows of Q−1 ∈ RN×N

are the left eigenvectors, and Λ ∈ R
N×N refers to a diagonal matrix of eigenvalues of L.

The graph Fourier transform (GFT) is defined as the projection of the graph signal onto
the eigenfunctions of the Laplacian as follows:

18 CHAPTER 1. PRELIMINARIES

1.4. GRAPH SIGNAL PROCESSING

Definition 14. The graph Fourier transform of a graph signal f , denoted f̂ , is given by

f̂ = Q−1f. (1.25)

Further, the transformation is invertible:

Definition 15. The inverse graph Fourier transform of f̂ is given by

f = Qf̂. (1.26)

It is important to stress that in the cases of L = L and L = Ln, the symmetry of the
operator implies a complete set of orthonormal vectors, thus Q−1 = QT .

We now give a discussion on how relevant it is to decompose a graph signal into the
bases given by these Laplacian operators. For it, without loss of generality, assume
that the eigenvalues of L are labeled and sorted according to their value, such that
�1 ≤ �2 ≤ ⋅ ⋅ ⋅ ≤ �N , and qk denotes the eigenvector associated to �k.

The case of L. Let the eigenvalue problem for L be stated in terms of the Rayleigh
quotient. This is, the eigenvalue �k and the eigenvector qk of L are defined as the pair
satisfying

�k = inf
qk

qTk Lqk

qT
k
qk

s.t. qk ⊥ span{q1, . . . , qk−1} (1.27)

Eq. (1.27) shows that the magnitude of the eigenvalues of L are proportional to the
smoothness of their corresponding eigenvectors when measured via the Dirichlet energy
form of L (see Eq. (1.18)). Thus, qk can be interpreted as the smoothest possible function
that lives in the orthogonal of span{q1, . . . , qk−1}. This implies that the eigenvectors of L
are in effect a sensible basis to decompose graph signals since eigenfunctions associated to
small eigenvalues will capture the non-oscillating phenomena and the ones associated to
larger eigenvalues will capture variations in the signal.

As a last note, we remark that Eq. (1.27) also shows that the eigenvalues L are al-
ways real non-negative satisfying �1 = 0, and if the graph has c disconnected components,
then the multiplicity of the zero eigenvalue is equal to c.

The cases of Ln and Lrw. These operators are similar, thus they share the same set of
eigenvalues. Further, their eigenvectors are equal up to a rotation, i.e. if qk denotes an

eigenvector of Ln, then q′k =D
−

1

2 qk and q′′k =D
1

2 qk are the right a left eigenvectors of Lrw,
respectively. As with L, the eigenvalue problem for these operators can also be expressed
via the Rayleigh quotient. Doing it highlights that the eigenfunctions of these operators
also capture oscillatory phenomena, though the basis given by Ln motivates smoothness
through the quadratic form in Eq. (1.23), while the one of Lrw does it via the Dirichlet

form of Eq. (1.18). In precise terms, let q′k =D
−

1

2 qk (we show for the right eigenvectors of

CHAPTER 1. PRELIMINARIES 19

1.4. GRAPH SIGNAL PROCESSING

Lrw), then we have

�k = inf
qk

qTk Lnqk

qT
k
qk

s.t. qk ⊥ span{q1, . . . , qk−1},

= inf
qk

qTk D
−

1

2LD−
1

2 qk

qT
k
qk

s.t. qk ⊥ span{q1, . . . , qk−1}

= inf
q′
k

q′k
T
Lq′k

q′
k
TDq′

k

s.t. q′k ⊥ span{Dq′1, . . . ,Dq′k−1}. (1.28)

Lastly, these equations imply that both Ln and Lrw, have non-negative real eigenvalues,
with �1 = 0, and if the graph has c disconnected components, then the multiplicity of the
zero eigenvalue is equal to c.

1.4.3 Graph filters

In classical signal processing, filtering is the process of suppressing the contribution of
specific frequencies in the signal expansion. The filtering process can be done either by
multiplying the transfer function of the filter with the frequency representation of the signal
or by performing a convolution between the filter and the signal in the time domain. In
the case of graphs, filters can also be defined, though only through the spectral domain as
the convolution operation on graphs is not well defined (it is not clear what it means to
shift a graph signal). In [67], the following definition of a graph filter is given:

Definition 16. A graph filter H is an operator determined by the mapping �i → h(�i).
In the spectral domain it is represented by the matrix Ĥ and acts on the GFT of a graph
signal as

�H(f) =
����������

h(�1)f̂1
h(�2)f̂2

. . .

h(�N)f̂N

����������
=

���������

h(�1) 0 0 . . . 0
0 h(�2) 0 . . . 0

. .

0 0 0 . . . h(�N)

���������

����������

f̂1

f̂2
. . .

f̂N

����������
= Ĥf̂ . (1.29)

Applying the definitions of the GFT and the inverse GFT shows that the filter can be
expressed in the vertex domain as

H(f) = Q�H(f) = Qh(�)Q−1f = h(L)f. (1.30)

Since any function of a matrix is a function on its eigenvalues, this last expression shows
that any graph filter is a function on the graph Laplacian. As it will be detailed in Chapter
4, this turns out key to derive efficient implementations of graph filters.

1.4.4 The heat equation

The combinatorial graph Laplacian offers an alternative approach to random walks for
diffusion on graphs. This is achieved by means of the heat equation with L as operator.
It reads as follows:

@f

@t
= −Lf. (1.31)

20 CHAPTER 1. PRELIMINARIES

1.4. GRAPH SIGNAL PROCESSING

Let f0 denote an initial heat distribution. Then, it is easy to see that the solution to Eq.
(1.31) is given as

f = e−tLf0 (1.32)

By means of its Taylor expansion, it can be shown that Eq. (1.32) corresponds to a mass
preserving process. This is,

T f = T f0 − t
TLf0 +

t2

2!
TL2f0 −

t3

3!
TL3f0 + . . .

=
T f0. (1.33)

Thus, Eq. (1.32) effectively determines the state of the system after having diffused the
initial mass f0 during a time t. Indeed, we clarify that the restriction to L is because it is
the only Laplacian where mass preservation can be shown for all t.

Similar to the random walk case, irrespective of the initial condition, this diffusion process
converges to a predictable stationary state at t→∞. However, while the walk converges to
the distribution of nodes’ degrees, this process converges to a constant function. This can
be seen by reverting to the spectral domain, where we have that f = Qe−tΛQT f0, where
e−tΛ is a diagonal matrix with entries [e−tΛ]uu = e

−t�u . Clearly, as t → ∞, all the eigen-
modes vanish but the one associated to �1 = 0, leading to f = q1q

T
1 f0, which is constant

on all the nodes in the graph.

Lastly, it can be shown that the rate of convergence of this diffusion process is controlled
by �2. This is because e−t�2 is the last eigenmode to vanish and it vanishes faster the
larger it is �2, thus showing again the importance of the first non-trivial eigenvalue in how
fast a diffusion process is.

CHAPTER 1. PRELIMINARIES 21

Chapter 2

Graph-Based Semi-Supervised

Learning

2.1 Introduction

In the last few years, numerous modern systems have become capable to generate mas-
sive amounts of data at a very small cost. Thus, substantially increasing the amount of
data that can be readily accessed. However, despite all these data being a rich source
of information, classical machine learning approaches can still learn little about it. On
the one hand, supervised learning approaches require extensive amounts of labeled data
to learn. This is problematic as the process of labelling data requires from both human
intervention and specialised devices, thus it is susceptible to errors and prohibitively ex-
pensive to acquire at a large scale. On the other hand, unsupervised learning procedures
are capable to leverage the structure of the data to learn. Nevertheless, when the data
increases in complexity, it becomes too penalizing for them to overlook the valuable source
of information given by the limited yet available labeled examples. As a synergy of these
two approaches, semi-supervised learning procedures have recently emerged.

The goal of semi-supervised learning is to learn from both the structure of the data
and the labelled examples. In early works, the structure of the data was incorporated
to the learning problem via probabilistic approaches [68]. However, more recent works
have shown that it is more effective to encode for the data structure using graphs [69].
As a result, the paradigm of graph-based semi-supervised learning (G-SSL) has attracted
considerable attention. Indeed, while G-SSL was motivated for classification of structured
euclidean data, the large amount of datasets found today as graphs (e.g. the Internet)
motivate G-SSL on their own. G-SSL has been applied in numerous contexts, setting the
state of the art in tasks such as classification of BitTorrent contents and users [5], text
categorization [6], medical diagnosis [70], visual tracking [7], handwritten recognition [8],
or classification of hyperspectral images [9], to name a few.

G-SSL operates under the assumption that similar points should be of the same class,
so that the network structure and the labelled points can be exploited as follows: the
category of the labelled nodes is propagated to their neighbors, then continues propagat-
ing to nodes further away until all nodes have inherited a class. Notice how, in this way,
G-SSL is able to take full advantage of even very limited amounts of labelled points. To

23

2.1. INTRODUCTION

(a) initial data (b) supervised classifier

(c) graph-based unsupervised learning (d) graph-based semi-supervised learning

Figure 2.1: The need for graph-based semi-supervised learning.

better highlight the potential of this learning philosophy, let us consider the example from
Fig. 2.1. In Fig. 2.1a, we display a realization of the two moons data set, a classic toy
example of structured data. In it, the learning task consists in detecting if a point belongs
to the upper or the lower moon. To solve the task, we only dispose of a couple of labelled
points per moon and the unlabelled data. Fig. 2.1b shows the result obtained by using a
popular supervised classifier [71]. Clearly, it can be seen that the amount of labelled data
is insufficient for it to learn. Now, as a way to capture the structure of the data, we build
a graph from it. In Fig. 2.1c, we display the result of applying an unsupervised graph
clustering method [72]. Notably, the incorporation of the graph structure can significantly
improve the learning accuracy, albeit using only the graph structure is not sufficient to
deliver a perfect result. Lastly, Fig. 2.1d shows the result of applying a G-SSL method
[12]. As it can be seen, G-SSL is able to leverage the key information contained in the
labelled and unlabelled points to deliver a reliable result.

In this Chapter, we give a thorough tour of the field of G-SSL, which will be the main
topic of this dissertation. Traditionally, G-SSL is posed as an optimization problem un-
der regularization constraint. As a result, most of the literature on GSSL, from books
[69, 73] to recent PhD works [10, 74], have focussed on leveraging the optimization prob-
lem to propose novel and more performing objective functions. In this chapter, we will
also approach G-SSL from the perspective of graph partitioning. Consequently, we devote
two sections to introduce G-SSL: one covering the classical optimization perspective and
the other deriving G-SSL from the point of view of graph partitioning. This alternative

24 CHAPTER 2. GRAPH-BASED SEMI-SUPERVISED LEARNING

2.2. FROM TIKHONOV REGULARIZATION TO G-SSL

perspective proves instrumental to: (i) embed G-SSL with a larger degree of flexibility
in which only the tagged points of a class are needed to run G-SSL and find the nodes
belonging to such class; and (ii) understand better the success of the PageRank-based
G-SSL algorithm proposed in [10]. More precisely, Section 2.2 covers G-SSL from the
perspective of Tikhonov regularization. In it, we introduce popular G-SSL approaches
[12, 10, 13, 14] and the generalized optimization framework from [75] that encompasses
most of these methods in a unified optimization framework. Special emphasis is given to
the interpretation given by [75] in terms of competing random walks driving the classifi-
cation process. Lastly, we cover recent methods [76, 15] addressing an issue highlighted
in [77] indicating that traditional G-SSL approaches fail to operate in the limit of infinite
unlabelled data. In Section 2.3, we introduce G-SSL from the point of view of graph
partitioning. We show that G-SSL can be cast as a binary clustering problem. Therefore,
we introduce cut problems on graphs tailored for clustering. Since these cut problems are
unfeasible to solve exactly, we cover results showing that efficient approximations can be
obtained, in an unsupervised manner, via spectral clustering [78], or, in a semi-supervised
manner, via random walks [79, 80] and PageRank [11, 16, 17]. Section 2.4 discusses issues
in G-SSL methods.

2.2 From Tikhonov regularization to G-SSL

Consider a weighted undirected graph G(V,E ,w) and assume that each element of V be-
longs to one of K possible classes. Further, assume that the ground truth class is known
for a fraction of vertices VL ⊂ V. Thus, the G-SSL task is to classify the points in the
complement of VL.

To solve the problem, G-SSL methods employ the so-called smoothness assumption: strongly
connected nodes in the graph should be of the same class. This assumption motivates from
the observation that, in the euclidean case, the decision boundary of classifiers usually lies
in low density regions, indicating that it is much more likely that two data points in a
dense region belong to the same class. As a result, when data points are mapped into a
graph, those large density regions translate into strongly connected groups of nodes, thus
motivating the smoothness assumption.

Algorithmically, G-SSL methods incorporate the smoothness assumption by casting the
problem as one in which one searches for smooth functions on the graph that are consis-
tent with the labelled data. In the literature, there are are deluge of G-SSL propositions
following this rationale [81, 82, 83, 84, 85, 86, 87, 88]. However, four formulations stand
out as the most performing, influential and widely used: [12, 13, 14, 10]. We detail these
four propositions next.

Before proceeding, we define two important matrices. First, let Y ∈ R
N×K denote a

matrix of labelled points. Note that VL can be written as VL = V1 ∪V2 ∪ ⋅ ⋅ ⋅ ∪VK , where Vk
denotes the set of nodes tagged in class k. Thus, given that �Vk� ≠ 0 for all k, the entries
of Y are given as

Yuk =

�������
1 u ∈ Vk,

0 otherwise.
(2.1)

CHAPTER 2. GRAPH-BASED SEMI-SUPERVISED LEARNING 25

2.2. FROM TIKHONOV REGULARIZATION TO G-SSL

And second, let F ∈ RN×K denote a classification matrix. The k-th column of F , denoted
F∗k, is referred to as the classification function of class k. The goal of G-SSL algorithms
is first to estimate the scores of the classification matrix F given the matrix of labelled
points Y , and then, interpret entry Fuk as how likely it is that node u belongs to class k,
upon which a final classification decision is made.

2.2.1 The unnormalized Laplacian G-SSL

One of the simplest G-SSL propositions was introduced in [12]. Despite its simplicity, this
method is the building block for the more involved and performing propositions, thus it
constitutes a reference method in the G-SSL literature. The method proposes to find the
classification functions by solving an optimization problem with the following objective
function:

argmin
F∗k

�F T
∗kLF∗k + µ (F∗k − Y∗k)

T (F∗k − Y∗k)� . (2.2)

The interpretation of problem (2.2) is straightforward: the left term searches for smooth
classification functions, while the right term constraints the search space by penalizing
solutions that deviate from the initial labelling, and the regularization parameter µ > 0
offers a trade-off between these two terms.

Since the objective function in (2.2) is a mixture of a positive semi-definite quadratic
form and an `2 norm, then the problem is convex. As a result, the classification functions
can be found in closed form as

F∗k = µ (L + µI)
−1

Y∗k. (2.3)

Finally, once the classification functions have been computed, node u is assigned to the
class k satisfying:

Fuk ≥ Fuk′ ∀ k′ ≠ k (2.4)

Thus, this method basically operates assigning large function values to nodes strongly
connected to the labelled points and then let the function smoothly decay toward zero as
we move farther away from the labels. Then, each node has K function values assigned
to it and inherits the class that assigns to it the larger value. It is clear that special care
must be given to the selection of µ: µ → 0 implies only considering the smoothness term
in (2.2) whose minimizer is the constant function and from whom Eq. (2.4) would not be
able to do any decision.

2.2.2 The normalized Laplacian-based G-SSL

In [13], the authors propose the normalized Laplacian-based G-SSL as a variation of the
unnormalized Laplacian G-SSL. We observe that problem (2.2) measures smoothness via
the Dirichlet form of L, thus the most natural change is to use the Dirichlet form of Ln
instead. The work of [13] adopts this change, defining the classification functions as the
solution to:

argmin
F∗k

�F T
∗kLnF∗k + µ (F∗k − Y∗k)

T (F∗k − Y∗k)� (2.5)

Following similar arguments as for the unnormalized Laplacian approach, problem (2.5)
is convex with closed form solution given by

F∗k = µ (Ln + µI)
−1

Y∗k. (2.6)

26 CHAPTER 2. GRAPH-BASED SEMI-SUPERVISED LEARNING

2.2. FROM TIKHONOV REGULARIZATION TO G-SSL

Lastly, node u is assigned to the class k according to the same rule of Eq. (2.4).

2.2.3 The standard Laplacian-based G-SSL

In [14], the so-called standard Laplacian G-SSL was proposed. This work introduces the
idea that labelled points should have different importance depending on which node they
are. More precisely, it is assumed in [14] that a labelled point in a node of large degree (e.g.
a hub) is more informative than a labelled point in a node of small degree (e.g. an outlier),
thus the objective function should be more penalizing if the classification function does
not fit well labelled points in large degree nodes. As a result, [14] proposes the following
optimization problem:

argmin
F∗k

�F T
∗kLF∗k + µ (F∗k − Y∗k)

T
D (F∗k − Y∗k)� (2.7)

As we can see, this change is implemented by simply tweaking the norm in the fidelity
term from �⋅, ⋅� to �⋅, ⋅�D. Moreover, the name of standard Laplacian comes from the fact
that this formulation reverts to the the standard smoothness metric using L.

Since �⋅, ⋅�D defines a proper inner product, problem (2.7) remains convex. Therefore,
its solution can be expressed in closed form as

F∗k = µ (Lrw + µI)
−1

Y∗k. (2.8)

Notably, by comparing the solutions of the unnormalized Laplacian approach (Eq. (2.3)),
the normalized Laplacian (Eq. (2.6)), and the standard Laplacian (Eq. (2.8)), it can be
seen that the three Laplacian propositions covered in Chapter 1 appear as the fuelling
force for each of these methods. Indeed, the their only difference is the election of the
Laplacian kernel under consideration.

Lastly, we recall that a node u is assigned to the class k that satisfies Eq. (2.4).

2.2.4 The PageRank-based G-SSL

Building upon similar ideas, [10] proposes the PageRank-based G-SSL. This work proposes
to tweak both the fitting term and the smoothness term. Concerning the fitting term,
the converse to the standard Laplacian is assumed: namely, labelled points in nodes of
small degree are more important than labelled points in nodes of large degrees. On the
other hand, the smoothness term is normalized to impose a stronger regularity constraint
between nodes having small degree. Precisely, the PageRank-based G-SSL is defined as
the solution to [10]:

argmin
F∗k

�F T
∗kD

−1LD−1F∗k + µ (F∗k − Y∗k)
T
D−1 (F∗k − Y∗k)� . (2.9)

Observe that problem (2.9) defines a new smoothness metric:

F T
∗kD

−1LD−1F∗k = �
(u,v)∈E

Wuv �Fuk

du
−
Fvk

dv
�2 . (2.10)

CHAPTER 2. GRAPH-BASED SEMI-SUPERVISED LEARNING 27

2.2. FROM TIKHONOV REGULARIZATION TO G-SSL

Clearly, this metric and data fidelity term combine to favour nodes of small degree by
both fitting better their labelled points and enforcing more regular functions on them.

Now, since D is a non-negative matrix, both terms in the objective function remain posi-
tive for all F∗k and all Y∗k. Thus, implying that problem (2.9) is convex with closed form
solution given as

F∗k = µ �LTrw + µI�−1 Y∗k. (2.11)

The name of the method stems from the fact that, by doing a change of variable, then
Eq. (2.11) can be shown to be equivalent to the personalized PageRank vector from [89].
This will be made precise below.

Lastly, [10] also proposes to assign node u to the class k satisfying to Eq. (2.4).

2.2.5 The generalized optimization framework for G-SSL

In the series of works: [75, 90, 10], a unified optimization framework for G-SSL is proposed.
In these works, the following optimization formula is given:

argmin
F∗k

�F T
∗kD

�−1LD�−1F∗k + µ (F∗k − Y∗k)
T
D2�−1 (F∗k − Y∗k)� (2.12)

As it can be seen, these works tweak the optimization problem by incorporating a new
parameter �. The remarkable feature is that, by properly choosing this parameter, then
one can recover as particular cases some of the methods introduced above. More precisely,
by setting � = 1, objective (2.12) reduces to the standard Laplacian approach; � = 1�2 re-
covers the Normalized Laplacian; and � = 0 leads to the PageRank optimization problem.

Notably, [75] shows that the solution of this optimization problem can be cast in a unique
random walk framework that helps to highlight some differences between G-SSL methods.
Precisely, since the real powers of the degree matrix remain a positive semi-definite matrix,
the objective above is convex with closed form solution given by

F∗k = µ �D−�LD�−1
+ µI�−1 Y∗k. (2.13)

Then, by making the change of variable ↵ = 1�(1 + µ), Eq. (2.13) can be rewritten as

F T
∗k = (1 − ↵)Y

T
∗k

∞

�
k=0

↵k (D�PD−�)
k

(2.14)

Eq. (2.14) allows to interpret G-SSL methods as a random walk process. This is, for
the PageRank case (� = 0), Fuk is proportional to the expected number of visits made by
random walkers to node u when they start from the labelled points of class k and, at each
step, they diffuse to a neighbor with probability ↵ or restart to the starting point with
probability 1 − ↵. On the other hand, the standard Laplacian (� = 1) implies that Fuk

is proportional to the number of visits made by walkers to the labelled points of class k

when they start at node u and, at each step, they diffuse to a neighbor with probability
↵ or restart to the starting point with probability 1 − ↵.

This interpretation of G-SSL as a random walk process was exploited in [10] to derive
the following theorem explaining the classification:

28 CHAPTER 2. GRAPH-BASED SEMI-SUPERVISED LEARNING

2.2. FROM TIKHONOV REGULARIZATION TO G-SSL

Theorem 2. [10] Let prvu denote the probability that a random walk reaches node u before
restarting to node v. Also, let unlabelled node u be assigned to the class k according to the
rule: argmaxkFuk. Then, u is assigned to the class k that satisfies the inequality

�
v∈Vk

d�vprvu ≥ �
w∈Vk′

d�wprwu, ∀k
′
≠ k (2.15)

This theorem was used in [10] to demonstrate that PageRank is the only method that
provides stable classifications when ↵ → 1 (µ → 0). This is, when ↵ → 1 we have that
pr → 1, hence the inequality is controlled by the degree of the labelled points. Thus, if the
classes have unbalanced densities, standard Laplacian and Normalized Laplacian easily
assign all points into a single class, while PageRank can still give a meaningful classifica-
tion. Moreover, the inequality implies that if the labelled points all have equal degrees,
then all classification methods perform equality.

Furthermore, in [10], all the G-SSL propositions stemming from the generalized opti-
mization framework have been extensively compared on synthetic and real datasets (les
miserables, planted partition, Wikipedia, P2P traffic), and their results indicate that the
PageRank-based method is the superior approach in terms of scalability, stability, robust-
ness to classes of different densities, and performance.

2.2.6 Fitting on the labels vs fitting on the graph

In the G-SSL literature, there are two philosophies to fit the labelled data. In the first,
which is the one we have considered thus far and considered in [13, 75, 90, 10], the fit-
ting term acts on all the vertices of the graph. In the second approach, considered in
[12, 14, 73], the fitting term only acts on the labelled vertices. In this subsection, we
discuss their differences as we have not seen a discussion in the literature (only [73] briefly
points this difference).

To simplify notations, let us denote f = F∗k and y = Y∗k. Also, for simplicity, we elabo-
rate on the unnormalized Laplacian approach (see Sec. 2.2.1), yet keep in mind that our
discussion applies to all the G-SSL methods presented above.

Penalty 1: In this case, one fits over all the nodes in the graph as follows

L1 = µ (f − y)
T (f − y) = µ�

u∈V

(fu − yu)
2 (2.16)

Penality 2: In this case, one only fits over the labelled data as follows

L2 = µ (f − y)
T
IVL (f − y) = µ �

u∈VL

(fu − yu)
2 (2.17)

Despite looking minor, this change has important implications. We list some of them:

L1 enforces a stronger regularization. Note that L1 = L2 + ∑u∈Vc
L
f2
u . Thus, L1

enforces a stronger regularization by trying to keep the norm of f as small as possible

L1 leads to a graph filter and L2 to a non-convolutive matrix. Let us cast the G-
SSL solution given by both objective functions in a unique expression as f = µ(L+µI)−1Iy,

CHAPTER 2. GRAPH-BASED SEMI-SUPERVISED LEARNING 29

2.2. FROM TIKHONOV REGULARIZATION TO G-SSL

where I = I or I = IVL depending on whether L1 or L2 is chosen, respectively. In the
former, we have that (L + µI)−1 = Q(Λ + µI)−1QT , which clearly corresponds to a graph
filter with response h(Λ) = 1�(Λ + µ). For the latter, the matrix IVL is not diagonalizable
under Q, thus (L + µIVL)

−1 is a non-convolutive filter in the sense of [91].

L1 defines an invertible kernel while L2 requires extra regularization. From
the graph filter interpretation above, we observe that the role of µI is to shift the spec-
trum of L, which makes the matrix (L + µI)−1 always invertible. For the case of L2, it
cannot be guaranteed that µIVL shifts the zero eigenvalue of L, thus (L + µIVL)

−1 may
not be invertible. In [15], the authors propose to solve the problem in the orthogonal to
the null space of L (thus working with the pseudo-inverse). Most other works address
the issue by adding an extra regularization term as L

′

2 = L2 + ✏∑u∈Vc
L
f2
u . Thus, they

make it resemble L1. As a result, the G-SSL kernel given as (L + µIVL + ✏I)
−1, which

is always invertible. We are not aware of a comparison between these two approaches,
though empirical experience suggest that the latter is more stable. However, such solution
introduces a new parameter and there are no insights on how to tune it.

L2 allows to assign infinite confidence to the labelled data (µ → ∞). Consider
the case of letting µ→∞. For L2, this could be interpreted as forcing first fu = yu for all
u ∈ VL and then minimize fTLf . Let f = [fl; fu], y = [yl; yu] and L = [Lll, Llu;Lul, Luu] be
a split of f , y and L into their labelled and unlabelled parts. By forcing f = [yl, fu], then
minimization of fTLf leads to fu = −L

−1
uuLulyl, which is doable upon invertibility of Luu.

On the other hand, if we set µ→∞ in L1, then we pull down towards zero the norm of f
(see item 1 above) and hence no learning occurs.

L1 allows a random walk interpretation for some methods. As shown by theorem
2 above, when using L1 the classification result can be interpreted in terms of compet-
ing random walks. These type of conclusions cannot be attained under L2 as important
properties, such as mass preservation, are not satisfied.

Due to the close connection with graph signal processing, the improved stability, and
the diffusion properties, in this work we will only consider G-SSL under penalty terms of
the type L1.

2.2.7 The limit of infinite unlabelled data

Let N data points (xu, u ∈ 1, . . . ,N) be drawn from a smooth probability distribution p(x)
on a compact manifold Ω ⊂ R

N of intrinsic dimension d. Now, assume that a similarity

graph is built by means of the Guassian kernel Wuv = exp(−
�xu−xv�

�
). Further, assume that

a constant amount of labelled data is given �VL� = c. We are interested in the behavior of
G-SSL when N →∞.

Intuition says that the more data we collect, the better our knowledge of p(x) will be, and
G-SSL methods will profit more from it. However, it was found in [77] that when d ≥ 2,
� → 0 and N →∞, G-SSL methods are plagued by the so-called curse of dimensionality.
More precisely, [77] elaborates on the unnormalized Laplacian (see Sec. 2.2.1) to show
that, independently of µ, problem (2.2) can be minimized by ‘spiky’ functions that per-

30 CHAPTER 2. GRAPH-BASED SEMI-SUPERVISED LEARNING

2.2. FROM TIKHONOV REGULARIZATION TO G-SSL

fectly fit the labelled data and are constant everywhere else in the graph. In other words,
it is possible to minimize the G-SSL objective with discontinuous functions that do not
generalize to unlabelled data. The authors coin this problem to the first order gradient not
being restrictive enough in large dimensions, causing the solution space to be too large.
Namely, the regularizer converges to fTLf → ∫Ω �∇f(x)�p2(x)dx when N → ∞. Thus,
since dx has a rather small volume in large dimensions, the integral can still be close to
zero even when �∇f(x)�→∞.

The iterated Laplacian G-SSL

As a solution to the aforementioned problem, the authors of [15] proposed a novel regu-
larization approach based on Laplacian iterations. The underlying idea of this work is to
restrict the solution space of G-SSL to just continuous functions. Towards this aim, [15]
proposes to use, as smoothness penalty, the m-th order Sobolev semi-norm of f instead of
the standard Dirichlet form. To induce such property, the authors iterate the Laplacian
operator m times in the quadratic form as follows:

argmin
f

�fTLmf + µ(f − y)T (f − y)� . (2.18)

The effectiveness of this regularizer follows from the fact that, whenN →∞, the regularizer
satisfies:

fTLmf = �
Ω

f(x)∆mf(x)dx =�
u

�mu �f̂u�2. (2.19)

Thus, pulling down fTLmf implies searching in the space of m-times continuously dif-
ferentiable functions (the Sobolev space of order m). Moreover, the authors show that
such space corresponds to a reproducing kernel Hilbert space iff 2m > d. Thus, showing
that, under such condition, problem (2.18) can provide an effective solution to the curse
of dimensionality.

It is important to stress that regularizer fTLmf is not only interesting from the per-
spective of infinite data. Indeed, in the finite case, the spectral representation of the
regularizer allows a nice interpretation in terms of the high order statistical moments
of the energy spectral density of f . More precisely, since L is a self-adjoint operator,
Riez-Markov representation theorem implies that

fTLmf =�
u

�mu �f̂u�2 = � �md⌧f (2.20)

where ⌧f(�) = ∑N
u=1 �f̂u�2�(� − �u) is a unique positive Borel measure assigned to each

frequency. Clearly, expression (2.20) corresponds to the m-th moment of the set � with
respect to the measure ⌧f . In other words, analogous to probabilities assigned to a ran-

dom variable, the coefficients ⌧f(�u) = �f̂u�2 assign a measure to each frequency �u and
hence regularizer fTLmf computes the m-th moment of the shape ⌧f with support �.
To give a concrete example, consider a band pass graph signal f whose energy spectral
density ⌧f is displayed in Figure 2.2. Then, we compute the quadratic form fTLf and
observe in Fig 2.2a that, indeed, its value corresponds to the first moment of the energy
spectral density f (vertical line). Now, we compute fTL2f and show, in Figure 2.2b, that
it effectively delivers the second raw moment of the energy spectral density f , from which

CHAPTER 2. GRAPH-BASED SEMI-SUPERVISED LEARNING 31

2.2. FROM TIKHONOV REGULARIZATION TO G-SSL

(a) Mean (b) Variance

Figure 2.2: Interpretation of fTLmf as the m-th raw moment of the energy spectral
density of f .

we extract and display the variance by the vertical lines. This observation allows to give
a new interpretation to optimization problem (2.18). Namely, while it still searches for
functions that fit the labels, for high order m values the quadratic term no longer aims for
solutions with minimum mean frequency, but also discriminates parameters such as the
spread the frequency content. This interpretation also explains why regularizer fTL2f has
empirically shown superior performance to fTLf [12, 92, 93]: minimization of the second
raw moment always implies minimization of the first, but also of the variance.

It is trivial to show that the solution to problem (2.18) can be given in closed form
as

f = µ (Lm
+ µI)−1 y (2.21)

From Eq. (2.21) one can easily see that this G-SSL method corresponds to high-order
low pass graph filter. Namely, by taking the spectral decomposition of L, we have that
f̂ = µ

�m+µ
ŷ. Thus, the effect of m is indeed to further penalize frequencies (� > 1) and to

soften the effect in frequencies (� < 1).

As all the G-SSL propositions suffer from the curse of dimensionality problem, [15] pro-
poses to replace L with any of the other Laplacian kernels, i.e Ln, Lrw, or L

T
rw, so as to

generalize this framework towards the other more performing G-SSL propositions.

Lastly, we recall that one of the main drawbacks of this approach is that there are no
insights on how to choose m in practice.

The re-centered kernel G-SSL

A related approach has been proposed in a series of works [94, 76, 74]. These works study
the more ambitious regime in which both N → ∞ and d → ∞ at the same rate. As part
of their results, the authors demonstrate that, in this regime, Wuv →  for all u and v.
Thus, the data structure gets hidden as small ‘perturbations’ in the adjacency matrix.
By relying on advanced techniques from random matrix theory, the authors show, on a
gaussian mixture model, that by taking the Taylor series around , then a re-centering
tweak of the G-SSL kernel is sufficient to amend the aforementioned problem and recover

32 CHAPTER 2. GRAPH-BASED SEMI-SUPERVISED LEARNING

2.2. FROM TIKHONOV REGULARIZATION TO G-SSL

(a) Normalized Laplacian (b) Iterated Normalized Lapla-
cian

(c) Re-centered kernel

Figure 2.3: Illustration of the curse of dimensionality issue in G-SSL and proposed solu-
tions. The horizontal axis represents the spacial dimension of the data and the vertical
axis represents the function value learned by G-SSL

the structure contained in the ‘perturbation’ of W . Precisely, the following optimization
problem is proposed:

argmin
f

�−fTKf + µ(f − y)T (f − y)� (2.22)

where K = PWP and P = I − 1

N
T . It is important to note that PWP = 0, hence this

new matrix K can be interpreted as a new adjacency matrix of a new graph, where the
degree of nodes is zero (hence the name of re-centering). Clearly, doing so implies creation
of positive and negatives entries in K which can make the problem above non-convex,
though this does not pose an issue as the fitting term implicitly constraints the norm of f .
It is also important to stress that despite K being the adjacency matrix of a new graph,
such graph codes for the same pair-wise similarities as the involved transformation only
implies a translation of the data in the feature space. [74] gives a rigorous theoretical
justification of why such translation step solves the curse of dimensionality. Those results
are beyond the scope of this work, nonetheless, an intuitive explanation can be given
as follows: since K has a null degree matrix, then its associated Dirichlet form satisfies
−fTKf = ∑(u,v)∈E Ku,v(fu − fv)

2
≤ 0, which, when minimized, the non-informative ‘flat’

function caused by the curse of dimensionality now becomes the least favoured solution as
it achieves the upper bound.

Illustrating example

To illustrate this phenomena, we replicate the experiment of [15] and show how these two
methods solve the issue. We generate datapoints from a mixture of two gaussians in R

20,
where �1 = �2 = 1, and µ1 = −1.5, µ2 = 1.5 on the first dimension, and µ1 = µ2 = 0 in
the remaining dimensions. A complete graph is constructed with similarities computed
according to the RBF (see Eq. (1.5)) with �2 = 20. One labelled point per class is chosen,
and, since we are in a binary setting, we set them to +1 and −1 in a single vector of labels
y. We draw 300 points for each gaussian and the task is to recover the two gaussians (left
is class +1, right is -1). In Fig. 2.3a, we display the results of applying the normalized
Laplacian method on this data set. The points correspond to the classification function

CHAPTER 2. GRAPH-BASED SEMI-SUPERVISED LEARNING 33

2.3. FROM GRAPH PARTITIONING TO G-SSL

of the unlabelled data projected into the first dimension (the one where we shifted the
means). As it can be seen, the normalized Laplacian method suffers from the curse of
dimensionality, retrieving a flat solution that is completely offset towards one side of the
decision boundary. In Fig. 2.3b, we display the result obtained with the Iterated Laplacian
approach. Here, we simply iterate the normalized Laplacian from the experiment of Fig.
2.3a for 32 times. Clearly, the Laplacian iterations correct the offset and learn a smooth
function f that is consistent with the two gaussians. Lastly, in Fig. 2.3c, we display the
result of applying the re-centerd kernel method. It can be seen that it is also able to
alleviate the curse of dimensionality, though it displays a higher variance with respect to
the iterated Laplacian. As a last remark, we highlight that the tuning µ in the re-centered
kernel approach is (i) critical: a bad selection leads the method to not perform at all; (ii)
narrow: the range of values where the method performs can be too restricted; and (iii)
unstable: this region could significantly vary between different realizations of the gaussians
or by increasing the amount of data.

2.3 From graph partitioning to G-SSL

In this section, we introduce G-SSL from the perspective of graph partitioning. In graphs,
a ground truth class is represented by a group of vertices in the graph. Let us denote such
group by Sgt ⊂ V. Thus, in graphs, the classification challenge corresponds to finding the
binary partition of the graph nodes as:

V = Sgt ∪ S
c
gt. (2.23)

According to the smoothness assumption (see page 25), if the data is structured, then Sgt

should form a cluster. Thus, the classification problem can be posed as a clustering one.
As a result, we can use techniques to identify clusters on graphs to find a proxy V = Ŝgt∪Ŝ

c
gt.

In the graph literature, numerous techniques have been proposed to find clusters. Since
the standard definition of a cluster, i.e. a group of nodes strongly connected internally
and weakly connected externally, is not very precise about when a group of nodes can
be considered as a cluster and when it cannot, a deluge of clustering methods have been
proposed, such as clique searching [95], minimum common neighbours [96], maximum
modularity [97], or minimum cuts [98], to name a few. In this work, we concentrate on
the minimum cut approaches, that we detail in the next section.

2.3.1 Cut problems on graphs

Min-cut

Since clusters must be poorly connected, one of the simplest approaches to find clusters
is to find two sets that have the least possible amount of connections between them. This
is the rationale of the min-cut problem [99], which retrieves as a cluster, the partition
minimizing the following objective:

argmin
S

��
u∈S

�
v∈Sc

Wuv� (2.24)

Despite this opimization problem being solvable in polynomial time [98], only under mild
conditions it leads to satisfactory partitions. Its main issue is that it is extremely prone

34 CHAPTER 2. GRAPH-BASED SEMI-SUPERVISED LEARNING

2.3. FROM GRAPH PARTITIONING TO G-SSL

to outliers: take an isolated node connected by a single edge with the rest of the graph,
then it minimizes objective (2.24).

Ratio-cut

To amend to the min-cut outlier problem, the ratio-cut was proposed in [100]. The ratio-
cut adds a constraint to penalize small partitions as follows:

argmin
S

� ∑u∈S ∑v∈Sc Wuv�S� �Sc� � (2.25)

Clearly, this objective should retrieve much consistent clusters, as these should not only be
poorly connected between them but also should have similar sizes. However, this objective
function still has some limitations. The most notorious is that it overlooks the internal
connectivity of sets. Therefore, as long as two sets have similar between-cluster connections
and are of similar sizes, it is indifferent for this objective function that one of them may be
more strongly connected internally than the other, indicating that it delineates a better
cluster.

Normalized cut

The normalized cut was proposed in [101] as an improved alternative to the ratio-cut. To
capture better whether a group of nodes is a cluster, the normalized cut proposes a new
metric which counts the ratio of external and internal connections of this group of nodes.
This metric is usually refereed to as the Cheeger ratio of a set, or the conductance of a
set. It is formally defined as follows:

Definition 17. Let S ⊆ V be an arbitrary set of nodes. The Cheeger ratio, or conductance,
of S is defined as:

hS =
∑u∈S ∑v∈Sc Wuv

min{vol(S), vol(Sc)}
. (2.26)

By definition, the Cheeger ratio satisfies hS ∈ [0,1] and we have that hS = hSc . Fur-
thermore, it is clear that the more a group of nodes forms a clear cluster, the smaller its
Cheeger ratio. Thus, if we aim to find clusters we must search for sets of small Cheeger
ratio. This is precisely the rationale of the normalized cut problem, which aims to find
the partition with smallest Cheeger ratio:

argmin
S

{hS} . (2.27)

The normalized cut problem has been shown to be NP-complete [101]. However, one can
efficiently approximate its solution, in an unsupervised manner, by leveraging the spectral
properties of graphs, or in a semi-supervised manner, by running a diffusion process on
the graph. These relaxations are the subject of our next subsections.

2.3.2 Partitioning via spectral clustering

Let us start by introducing the relaxation via spectral clustering. This approach is un-
supervised in nature as it fully relies on the spectral properties of graphs. The basis of
this relaxation is the Cheeger inequality, a mathematical result that relates the minimum

CHAPTER 2. GRAPH-BASED SEMI-SUPERVISED LEARNING 35

2.3. FROM GRAPH PARTITIONING TO G-SSL

Algorithm 1 Sweep-cut procedure for partitioning a graph from a vector

Input: a real valued vector f
Output: a binary partition V = Ŝgt ∪ Ŝ

c
gt

1) Let v1, . . . , vN be a rearrangement of the vertices in descending order, so that the
permutation vector q satisfies qvi = fvi�dvi ≥ qvi+1 = fvi+1�dvi+1
2) Let Sj = {v1, . . . , vj} be the set of vertices indexed by the first j largest elements of q
3) Let �(f) =minj hSj

4) Retrieve Ŝgt = Sj for the set Sj achieving �(f)

value attained by the normalized cut objective and the eigenvalues of the graph.

We start defining the Cheeger constant of the graph:

hG =min
S

hS =min
S

T
SL S

T
S
D S

, (2.28)

where the last term follows from hS = hSc . The hard constraint of searching on the space
of indicator functions can be relaxed to searching on the space of real-valued functions
(S ≈ g ∈ R

N). By implementing this change, we obtain that hG ≈ ming (g
TLg)�(gTDg).

Notably, this expression corresponds to eigenvalue problem of Lrw (see page 20), thus
relaxing the problem implies converting it into an eigenvalue one. However, as it is, the
relaxation is useless for clustering purposes since it assumes that hG ≈ �1 = 0, and therefore
g = q1 = . A better supposition is that

hG ≈ �2 = min
g⊥D

gTLg

gTDg
, (2.29)

whose solution is given by the second smallest eigenvector of Lrw. This eigenvector is
commonly referred to as the Fiedler vector [95, 102]. Then, the Cheeger inequality essen-
tially amounts to define a way to partition the graph from the Fiedler vector, and, if �(g)
denotes the Cheeger ratio of such partition, then the inequality bounds how far are �2, hG
and �(g). In precise terms, to retrieve a partition from the Fiedler vector, we introduce
the sweep-cut technique in Algorithm 1. Then, the Cheeger inequality reads as follows:

Theorem 3. [78] Let g′ = Dg where D refers to the degree matrix, and let �(g′) be the
Cheeger ratio of the partition obtained by applying a sweep-cut on g′. Then, hG, �2, and
�(g′) are related as follows:

2hG ≥ �2 ≥
�(g′)2

2
≥
h2G
2
. (2.30)

The Sweep-cut procedure reduces the exponential search to a linear search. Moreover,
theorem 3 implies that the partition retrieved by the sweep is granted to have a Cheeger
ratio that is within a quadratic factor of the optimum. While this bound is not very tight,
if hG is very small then the partition retrieved by the method is likely to be a good cluster
as it correponds to a small Cheeger ratio. Moreover, we recall that this lower bound
guarantee is still an open problem for most other graph partitioning methods relying on
the Fiedler vector, such as the popular approaches based on k-means [72].

36 CHAPTER 2. GRAPH-BASED SEMI-SUPERVISED LEARNING

2.3. FROM GRAPH PARTITIONING TO G-SSL

2.3.3 Partitioning via random walks for G-SSL

Diffusion processes can also be used to find, in a semi-supervised manner, partitions with
small Cheeger ratio. The rationale is the following: assume that S is a set of small Cheeger
ratio (may not necessarily be the smallest), thus if a diffusion process is started within S,
then it should be hard for such diffusion process to escape S as it is poorly connected with
the rest of the graph. As a result, by looking at the nodes in which the diffusion process
spent most of the time we should be able to identify a good approximation of S. There are
two important things to remark: (i) the methodology assumes starting a diffusion process
inside the set under search, thus semi-supervision plays a key role; and (ii) for the set S
to display a confinement of diffusion processes, it is not necessary that it possesses the
smallest Cheeger ratio in the entire graph. This highlights that diffusion-based techniques
bring more flexibility allowing to find partitions with small Cheeger ratio but not neces-
sarily the smallest (as spectral clustering does), yet we recall that if the diffusion is started
within the set of smallest Cheeger ratio, then the diffusion processes will also display the
confinement phenomenon and can be used to approximate the normalized cut.

In this subsection, we introduce results showing that random walks are one of the ba-
sic diffusion processes that can be used to implement these ideas. This is, if a random
walk is started within a set of small Cheeger ratio, then it should get trapped for a long
time within the set, meaning that if one picks the nodes with largest random walk proba-
bility as a partition, then this partition should have small Cheeger ratio.

We introduce the following result from [80], which formalizes the fact that random walks
cannot not escape clusters easily.

Proposition 1. [80] Let S ⊂ V be an arbitrary set of nodes. Let u ∈ S be a labelled
point selected with probability proportional to its degree in S, i.e. du�vol(S). Further, let

�
(in)
t (S) denote the probability that a lazy random walk starting from u stays entirely in

S after t steps. Then, for all t ≥ 0, we have

E ��(in)t (S)� ≥ 1 − thS
2

(2.31)

This proposition shows that smallest the Cheeger ratio of a set, the higher the probability
that a walker that started inside the set remains within the set. Then, if we look at the
random walk probability vector, we should identify large scores in the nodes indexing S

and small scores in the nodes of Sc.

The next result we introduce states that if such mass concentration phenomenon is present
on the t-step random walk probability vector �t, then applying the sweep-cut procedure
on all the probability vectors up to t steps is guaranteed to retrieve a partition with small
Cheeger ratio. Let us recall that the notation �t(S) = ∑u∈S(�t)u means sum of entries in
the nodes indexing S. Thus, we have [79, 103]:

Lemma 1. [79, 103] Let S ⊂ V be an arbitrary set of vol(S) ≤ vol(G)�2. Let �t denote the
t-step lazy random walk distribution vector with seed u and ⇡ be the stationary distribution
of the random walk. Let �(�t) be the Cheeger ratio of the partition obtained by applying a

CHAPTER 2. GRAPH-BASED SEMI-SUPERVISED LEARNING 37

2.3. FROM GRAPH PARTITIONING TO G-SSL

sweep-cut on �t. Then, the following inequality holds

�t(S) − ⇡(S) ≤

�
vol(S)

du
�1 − �2t

8
�t (2.32)

where �t = inft′ �(�t′) for all t′ ≤ t and u ∈ V.

This lemma says that if the probability of finding a walker in a set S after t steps is much
larger than the probability of finding the walker in the set in the stationary state, then
applying a sweep-cut on all the probability vectors �0 . . .�t up to step t implies finding a
partition with small Cheeger ratio. Clearly, Proposition 1 and Lemma 1 complement each
other to demonstrate that if a set S has small Cheeger ratio, then diffusing random walks
and applying sweeps will find a good proxy of S.

It is important to stress that the selection of t is critical and can significantly vary between
graphs. For small t, walkers may not visit enough all the members of the set under search,
which harms the sweep. Thus, it is better to let t grow so that the walk closely mixes.
However, doing so can greatly increase the complexity of the method, as it is necessary to
perform too many sweeps.

2.3.4 Partitioning via PageRank for G-SSL

PageRank is another diffusion-based algorithm that can be used to identify clusters with
small Cheeger ratio. Its numerous theoretical studies [11, 16, 17, 104, 105], applications
[106, 107, 108, 109] and implementations [110, 11, 111, 112] have made of PageRank a
state-of-the-art clustering algorithm. In Sec 2.2.4, we introduced PageRank as a solu-
tion to a Thikhonov regularization problem and briefly discussed the interpretation of
PageRank as random walk process. In this subsection, we deepen into this diffusion in-
terpretation and introduce results which show that this diffusion process can more simply
identify clusters in the graph.

Let us recall that, given a distribution, y, the PagerRank vector can be expressed as

f = µ �LTrw + µI�−1 y. Further, by doing a small change of variable ↵ = 1�(1 + µ), then
the PageRank vector can be cast as the solution to the fixed point equation: fT

=

(1 − ↵)yT + ↵fTP . Thus, PageRank can be interpreted as the equilibrium state of a
process that, at each step, with probability ↵ does a random walk step, or with probabil-
ity (1 − ↵) revisits the starting distribution y. Clearly, given proper normalization of y,
the PageRank score at a particular node is equal to the probability of finding a walker, at
equilibrium, at this node. Notably, this equilibrium state is the result of a well-behaved
diffusion process on the graph as stated by the following Lemma [105]:

Lemma 2. [105] Let f denote the personalized PageRank vector with personalization
vector y. Then f satisfies the following properties

1. mass preservation: ∑u∈V fu = ∑u∈V yu

2. stationarity: f = ⇡ if y = ⇡

3. limit behavior: f → ⇡ as µ→ 0 and f → y as µ→∞

38 CHAPTER 2. GRAPH-BASED SEMI-SUPERVISED LEARNING

2.3. FROM GRAPH PARTITIONING TO G-SSL

Lemma 2 is important as it shows that PageRank is well behaved diffusion process prop-
agating the initial mass y, through the graph, with a diffusion rate controlled by the
parameter µ.

In [16], it is shown that the behavior of this diffusion process is tightly related to the
cluster structure of graphs. This connection between PageRank and clustering is quanti-
fied in the following result.

Lemma 3. [16] Let S ⊂ V be an arbitrary set with vol(S) ≤ vol(G)�2. For a labeled
point placed at a node u ∈ S selected with probability proportional to its degree in S, i.e.
du�vol(S), the PageRank satisfies

E[f(Sc)] ≤
hS

µ
. (2.33)

This lemma implies that if we apply PageRank diffusion from the labelled points of a set
S and it has a small hS , then the probability of finding a walker outside S is small and
the nodes with largest PageRank value should index S.

The works of [16] and [17] formalize the notion that a high concentration of PageRank
mass implies a good cut. The former shows that a set with small Cheeger ratio can be
found by looking for regions of high concentration of PageRank mass. The latter improves
that result, showing that such set can be found more easily by looking for a sharp drop in
the sorted PageRank scores. More precisely, the result of [17] shows that, when doing a
sweep of the PageRank vector, if there is a sharp drop in rank at the set Sj , then the set
Sj has small Cheeger ratio.

Lemma 4. [17] Let h ∈ (0,1), j be any index in [1,N] and ↵ ∈ (0,1] denote the PageRank
restarting probability. Let C(Sj , S

c
j) = ∑u∈Sj

∑v∈Sc
j
Wuv be the numerator of the Cheeger

ratio. Then, Sj satisfies one of the following: (a) C(Sj , S
c
j) < 2hvol(Sj); or (b) there is

some index k > j such that vol(Sk) ≥ vol(Sj)(1 + h) and qk ≥ qj − ↵�hvol(Sj)

In other words, this lemma implies that either Sj has a small Cheeger ratio, or there is no
sharp drop at qj (recall that q is the permutation vector in the sweep-cut).

Illustrating example

To have a better grasp on these results, we give an illustrating example. In Fig. 2.4a,
we display a simple synthetic dataset generated from a mixture of three gaussians in R

2

and a graph build from the data. In this case Sgt corresponds to one of the gaussians
and y is given by the red nodes. We index the vertices such that Sgt consists of the first
200 nodes. In Fig. 2.4b, we display the PageRank vector with initial condition y. In
accordance to Lemma 3, we can observe that the PageRank vector concentrates a large
amount of mass in the nodes indexing Sgt, thus effectively revealing it. Now, in Fig. 2.4c,
we display the degree-normalized scores sorted in decreasing order, where we note that a
sharp drop appears. According to Lemma 4, if the sorted scores display a sharp drop in
rank, then the set associated to this rank is granted to have small Cheeger ratio. As it
can be seen in Fig 2.4d, the set with smallest Cheeger ratio from the sweep coincides with
the sharp drop. Finally, we output this set as our partition Ŝgt. Since Ŝgt has a small
Cheeger ratio, then, by definition, it is a good cluster and hence a good approximation of
Sgt as confirmed in Fig. 2.4e.

CHAPTER 2. GRAPH-BASED SEMI-SUPERVISED LEARNING 39

2.4. OPEN PROBLEMS

(a) Planted Partition Cavg = 8 (b) Planted Partition Cavg = 3

(c) MNIST 3vs8 (d) MNIST 3vs8 with noise

Figure 2.5: Comparing sweeps on the Fiedler vector (unsupervised) and the PageRank
vector (semi-supervised) on both the Planted Partition and digits 3vs8 from the MNIST
dataset.

again and show the results in Fig. 2.5d. Clearly, perturbing the data completely disrupts
the eigenvectors of the Laplacian, causing the spectral clustering approach to retrieve
poor partitions. On the other hand, the PageRank method displays robustness by still
retrieving a very accurate partition.

2.4 Open problems

In this section, we highlight some open problems in G-SSL.

The problem of extending sweeps beyond PageRank. Section 2.2 introduced G-
SSL methods that rely on comparing classification functions to classify data. One of such
methods relied on comparing PageRank vectors. In Section 2.3, we boosted G-SSL with
more flexibility by showing that, by doing a sweep, we only needed a single PageRank
vector to find a binary partition and classify a targeted class. Therefore, we can readily
extrapolate this idea to the other G-SSL propositions and boost them with extra flexibility
by doing sweeps on their classification functions. However, this is not straightforward as
the relationship between these other G-SSL proposition and the graph topology remains
an open problem. Indeed, it is not even clear if there is any.1 Thus, it cannot be given

1In turn, this lack of topological insights for most G-SSL propositions, in conjunction with the results
indicating that the PageRank vectors have the natural tendency to reveal clusters, may help understand

CHAPTER 2. GRAPH-BASED SEMI-SUPERVISED LEARNING 41

2.4. OPEN PROBLEMS

guarantees that doing a sweep on such approaches will lead to a meaningful classification.

The problem of graphs with unclear (fuzzy) clusters. By revisiting Lemma 3,
it can be seen that if Sgt has a small hSgt , then the PageRank method is bound to ac-
curately detect Sgt. In other words, if the ground truth class under search designates a
strongly disconnected cluster, then it is a set that PageRank can eventually easily detect.
Clearly, the Lemma also indicates the cases in which PageRank cannot operate. Namely,
as hSgt increases, then the Lemma implies that the random walkers escape Sgt more easily
and, as a result, the PageRank vector will not display the confinement of the information
necessary for the sweep to deliver a reliable result. Thus, not very well delineated clusters
pose a big challenge for PageRank.

The problem of unbalanced number of labelled points: Theorem 2 highlights an
important issue affecting the G-SSL methods that arise from the generalized optimization
framework. Precisely, by looking at the inequality, it can be seen that the summations
depend on the cardinality of labelled points. Thus, cases of unbalanced number of la-
beled points can potentially bias the classification, causing unlabelled nodes prone to be
assigned to the class with more labelled data. It is important to stress that preprocessing
the data to even the labelled points is not a solution. Take for instance the case of two
classes, one 10 times larger than the other and accordingly with 10 more labeled points.
Despite starting with unbalanced labels, the problem and the inequality in Theorem 2 are
balanced because, even if we have ten more units of mass to diffuse, we have ten times
more nodes to reach. Thus, normalization of labelled data is only valid if classes are as-
sumed of the same size. Notably, for the PageRank case, classifying the data using sweeps
provides a solution to this problem as the behavior of the sweep is independent of the
number of labelled points. Thus, we can do a multi-class classification by doing a sweep
on the PageRank vector for each class and combining results. However, while this solves
the unbalanced labelled data issue (and embeds topological guarantees on the multi-class
output), the price to pay is that some nodes may be assigned into more than one class or
to none.

The problem of hubs: The classification functions for various G-SSL can be interpreted
in terms of random walks exploring the graph. Thus, the effectiveness of such approaches
is based on walkers being able to visit enough the nodes under search. However, graphs
with hubs or regions more densely connected than their surroundings may cause walkers
to be trapped in such regions for a large time, harming the exploration capabilities of
walkers and degrading the qualities of the classification functions. Therefore, graphs with
a hub-like structure pose challenges to G-SSL.

better why, in general, the PageRank method performed extremely well and outperformed the other G-SSL
propositions in the comparisons done in [10].

42 CHAPTER 2. GRAPH-BASED SEMI-SUPERVISED LEARNING

Chapter 3

Lγ-PageRank for Semi-Supervised

Learning

3.1 Introduction

In Chapter 2, numerous G-SSL proposition were introduced. It was shown that in terms
of flexibility, stability and theoretical understanding, the PageRank method arises as the
state-of-the-art approach for G-SSL. However, various issues can still degrade the perfor-
mance of PageRank, that we aim to address in this chapter.

In the face of such challenging settings, it is natural to try to enhance the performance of
PageRank by embedding it with stronger regularity properties. As proposed by [15], such
effect can be attained by iterating the random walk Laplacian in the PageRank solution.
However, an issue with such approach is that it causes most of the PageRank properties
to be lost. Namely, there is no known optimization problem having such expression as
a solution and it is unclear if it can be given diffusion properties that can be related to
the graph topology, implying that one cannot derive guarantees that a sweep still leads to
a meaningful partition. Thus, due to the lack of insights on the properties and qualities
of the partitions retrieved by this approach, it is hard to build upon and to address the
issues listed in Chapter 2.

In this chapter, we revisit the Laplacian powers as a means to improve G-SSL and to
address the aforementioned problems. We propose a novel generalization of PageRank by
using (non necessarily integers) powers of the combinatorial Laplacian matrix L� (� > 0).
We coin this generalization as the L�-PageRank method and it constitutes the main con-
tribution of this dissertation. In contradistinction to an iterated PageRank [15], our L�-
PageRank: (i) enables us to have an explicit closed form expression of the underlying
optimization problem; (ii) permits a diffusion and a topological interpretation; (iii) allows
us to use the regime of fractional �; and (iv) gives us insights on how to optimally tune �
to maximize performance.

In our formulation, the key ingredient is a reinterpretation of the L� operator. Precisely,
while [15] interprets the Laplacian powers as a Sobolev norm regularizer, in our approach
we show that, for every fixed � value, a new graph is generated. These emerging graphs,
which we refer to as the L�-graphs, reweight the links of the original structure and create

43

3.1. INTRODUCTION

edges between originally far-distant nodes. Thus, our generalized L�-PageRank procedure
is an extension of PageRank to operate on the L�-graphs. To analyse our algorithm, we
show that two regimes of L�-graphs arise: (i) the regime of � < 1: in this regime, the
L�-graphs make emerge the so-called Lévy flight random walk, i.e. walkers that, with
small probability, can jump between far-distant nodes in a single step; and (ii) the regime
� > 1: here, the L�-graphs give rise to signed graphs, i.e. graphs with positive and negative
edges. Notably, both regimes carry the potential to improve G-SSL. On the one hand,
the capacity of the Lévy walkers to jump far away can be convenient in settings in which
the significance of the learned functions degrades due to normal random walkers getting
stuck for too long in undesired graph regions, like strong hubs. On the other hand, the
emergence of positive and negative edges bear the potential to enhance clustering as the
signed edges introduce what can be seen as agreements (positive edges) or disagreements
(negative edges) between nodes, allowing us to revamp clusters as groups of nodes agreeing
between them and disagreeing with the rest of the graph. Thus, throughout the chapter
we investigate the potential of these L�-graphs to better delineate targeted ground truth
class Sgt. Our results are the following:

Regime � < 1: our analysis shows that, in this regime, our L�-PageRank procedure
corresponds to an extension of the regular PageRank algorithm that is now driven by
Lévy processes. Since such extension consists in applying the regular PageRank algorithm
to a L�-topology, then, by proving that the latter is always undirected with positively
weighted edges, we guarantee that the full frame of theoretical results given in Chapter 2
directly applies to our setting. Through numerical experimentations, we demonstrate that
the non-local nature of the Lévy random walkers can be useful to overcome skewed graphs
with trapping regions and to enhance the detection of classes with sub-cluster structures.

Regime � > 1: we theoretically show that, while not necessarily modelled by random
walkers, our L�-PageRank method remains a well behaved diffusion process propagating
labelled data on the signed L�-graphs (still, preserving the PageRank properties). Thus,
we extend the Cheeger ratio definition to L�-graphs and prove that if there is a L�-graph
in which Sgt has a smaller Cheeger ratio (w.r.t the standard case of � = 1), then we can
more accurately identify it with our generalized L�-PageRank procedure using the sweep-
cut technique. By means of numerical investigations, we point the existence of an optimal
� value that maximizes performance. Thus, we propose an algorithm that allows to es-
timate the optimal � directly from the initial graph and the labeled points. Lastly, we
demonstrate the classification improvements permitted by L�-PageRank on several real
world datasets commonly used in classification, as well as the relevance of the estimation
procedure for the optimal tuning. Such results demonstrate that our L�-PageRank can
significantly increase classification performance and also amend the issue of unbalanced
labelled data.

The chapter is organized as follows. Section 3.2 introduces L�-graphs. Section 3.3 de-
fines L�-PageRank and derives its solution. Section 3.4 analyses our algorithm in the
regime � < 1: Section 3.4.1 shows that L�-PageRank is an extension of standard PageR-
ank to Lévy processes; Section 3.4.2 evaluates the classification benefits brought by the
incorporation of the Lévy processes. Section 3.5 analyses our algorithm in the regime � > 1:
Section 3.5.1 analyses its clustering capabilities; Section 3.5.2 discusses the existence of

44 CHAPTER 3. L�-PAGERANK FOR SEMI-SUPERVISED LEARNING

3.2. THE L�-GRAPHS

an optimal � and its estimation; Section 3.5.3 evaluates L�-PageRank and the algorithm
for the optimal � estimation in practice. Section 3.6 discusses differences between L�-
PageRank and iterated Laplacian [15] and compares them in practice. Section 3.7 extends
the generalized G-SSL framework of [75] to L�-graphs and numerically demonstrates that
the new topologies can also enhance the other G-SSL propositions.

3.2 The L�-graphs

In this contribution, we propose to change the graph topology in which the problem is
solved as a means to improve classification. We evoke such change by considering powers
of the Laplacian matrix, noting that the L� operator, for � > 0, generates a new graph for
every fixed � value. More precisely, by exploiting the Laplacian definition, we define the
L�-graphs as follows:

Definition 18. Given a � > 0, the L�-graph with adjacency matrix W� and degree matrix
D� is given as

L� = QΛ
�QT

=D� −W� , (3.1)

where [D�]uu = [L
�]uu, and [W�]uv = − [L

�]uv, with u ≠ v.

It can easily be shown that the L�-graphs satisfy the Laplacian property:

Lemma 5. For all � > 0, the L�-graphs satisfy the Laplacian property:

[D�]uu =�
v

[W�]uv . (3.2)

Proof. Follows trivially from the fact that, for all �, we have that L� = 0. �

We now highlight that the L�-graphs possess two operational regimes: one in which the
emanating graphs are undirected positively weighted graphs (� ≤ 1); and another in which
the emerging topologies are undirected signed graphs (� > 1). Precisely, let us expand the
L� operator in its binomial series as follows:

L� = (D −W)�

= �D1�2D1�2
−D1�2D−1�2WD−1�2D1�2��

=D��2 �I −D−1�2WD−1�2��D��2

=D��2 �I − �D−1�2WD−1�2

+

�(� − 1)

2
(−D−1�2WD−1�2)2

−
�(� − 1)(� − 2)

6
(D−1�2WD−1�2)3 +��D��2.

(3.3)

Then, we can see that: (i) for 0 < � ≤ 1, the infinite sum within the squared brackets en-
tails non-positive off-diagonal terms in L� , thus implying that W� codes for an undirected
graph with positive edges; and (ii) for � > 1, the off-diagonal terms can entail positive
entries, meaning that W� codes for an undirected signed graph. Now, while graphs with
only positive edges can be considered as particular cases of signed graphs, numerous useful

CHAPTER 3. L�-PAGERANK FOR SEMI-SUPERVISED LEARNING 45

3.2. THE L�-GRAPHS

(a) Swiss roll (b) Lollipop (c) Planted partition

Figure 3.1: Mean transition probabilities arising in the matrix P� = D
−1
� W� as a function

of the initial geodesic distance between nodes. We recall that [P1]uv = 0 if ∆uv > 1.

results developed for the former have not yet been extended to the latter, which remains
widely unexplored. Thus, it is better to treat each regime independently.

The remarkable aspect about the L�-graphs is that the topologies emerging from both
regimes carry the potential to improve classification.

3.2.1 Regime of γ < 1

As described above, in this regime, the L�-graphs make emerge positively weighted graphs.
Thus, we can compute a stochastic transition matrix from these graphs as P� = D

−1
� W� .

In [113], the following result is given concerning P� :

Theorem 4 ([113]). Consider an infinitely large 1-D regular lattice with periodic boundary
conditions. Then, as � � 0 and � � 1, we have

[P�]uv ∼∆
−(2�+1)
uv (3.4)

This theorem says that, on very large rings, the associated L�-graphs make emerge tran-
sition matrices that allow random walkers to jump between any pair of nodes in the graph
with a probability that is a power law of their distance. Thus, while in the initial ring
a walker can only transition to its adjacent neighbors, in the L�-topologies the walkers
can also jump farther away with small probability. In other words, the L�-graphs make
emerge the so-called Lévy flight random walk [114]. To the best of our understanding,
this is the only analytic result developed for the topologies emanating from fractional
Laplacian matrices, thus it remains to be theoretically proven that such result extends
to arbitrary networks. Nonetheless, extensive numerical evidence suggest that this same
behavior extends to arbitrary networks [113]. In Figure 3.1, we illustrate how the Lévy
flights arises on a K-NN graph build from the swiss-roll dataset (Figure 3.1a), the lollipop
graph (Figure 3.1b), and the planted partition (Figure 3.1c).

Clearly, the new dynamics of these more volatile random walkers entail an improved ca-
pacity to explore the graph. Particularly, their ability to jump far away can allow to more

46 CHAPTER 3. L�-PAGERANK FOR SEMI-SUPERVISED LEARNING

3.3. THE L�-PAGERANK METHOD

3.3 The L�-PageRank method

In this section, we introduce our main contribution: the L�-PageRank G-SSL, a general-
ization of PageRank that operates on the L�-graphs.

Departing from the optimization problem in Eq. (2.9) (see page 27), we revamp PageRank
to operate on the L�-topology as follows:

Definition 19. The L�-PageRank G-SSL is defined as the solution to the optimization
problem:

argmin
f

�fTD−1� L�D−1� f + µ(f − y)TD−1� (f − y)� . (3.5)

Since this proposition is designed to operate on both unsigned and signed graphs, we must
take care that it is a well-behaved object. In the following Lemma, we show that, for all
� > 0, problem (3.5) is convex and its solution can be found in closed form.

Lemma 6. Let � > 0. Then, problem (3.5) is convex with closed form solution given as:

f = µ �L�D−1� + µI�−1 y. (3.6)

The proof of this Lemma is deferred to Appendix 3.A.

Now that we have shown that, for all �, our formulation is a well-posed problem, we
proceed to study its theoretical properties and clustering capabilities.

3.4 Analysis of γ < 1: Lévy flights for classification

3.4.1 Lévy flight driven PageRank

Let us note that our L�-PageRank solution in Eq. (3.6) corresponds to the regular PageR-
ank expression but in which the initial graph has been replaced by one of the L�-topologies.
Thus, since we showed in Section 3.2 that these topologies, for � ≤ 1, are positively weighted
undirected graphs, then it is clear that analysis given for regular PageRank in Chapter 2
directly applies to our setting. As a result, by using the change of variable ↵ = 1�(1 + µ),
we can recast our L�-PageRank solution as:

fT
= (1 − ↵)

∞

�
k=0

↵kyTP k
� . (3.7)

Hence, our contribution is that Eq. (3.7) corresponds to a generalization of the PageRank
algorithm to the Lévy process encoded by P� . This leads our L�-PageRank formulation
to admit the following interpretation: the L�-PageRank vector at node u is proportional
to the expected number of visits made by Lévy random walkers to node u, when, at each
step, they decide to either continue the walk with probability ↵, or revisit the starting
point with probability (1 − ↵).

Clearly, having the ability to tune the dynamics of the walkers through the � parame-
ter can be useful to enhance, in some cases, our learned functions f .

48 CHAPTER 3. L�-PAGERANK FOR SEMI-SUPERVISED LEARNING

3.4. ANALYSIS OF � < 1: LÉVY FLIGHTS FOR CLASSIFICATION

degree of freedom allows to now, for all ↵, get node (5) assigned to the correct class. How-
ever, the walkers are still not diffusive enough to get node (6) correctly classified. Thus,
we increase the diffusion capacity of the walkers even more by further reducing � = 0.01.
As it can be seen in Figure 3.7, we can now obtain, irrespective of ↵, the desired partition.
This example illustrates how the added degree of freedom allows us to override an skewed
graph setting which standard PageRank is not able to cope with.

Figure 3.4: Classification with � = 1 in balanced setting (wl = wr = 1). For all ↵, standard
PageRank correctly partitions the graph between nodes (6) and (7).

Figure 3.5: Classification with � = 1 in a skewed setting (wl = 10, wr = 1). Due to walkers
getting trapped in the hub, nodes (5) and (6) are now always incorrectly assigned.

Figure 3.6: Classification with � = 0.1 in a skewed setting (wl = 10, wr = 1). The Lévy
walkers escape the hub more often, correctly assigning node (5). Yet, node (6) is still not
enough visited, getting incorrectly assigned.

50 CHAPTER 3. L�-PAGERANK FOR SEMI-SUPERVISED LEARNING

3.4. ANALYSIS OF � < 1: LÉVY FLIGHTS FOR CLASSIFICATION

Figure 3.7: Classification with � = 0.01 in a skewed setting (wl = 10, wr = 1). By properly
tuning �, now all the nodes get correctly classified.

Enhanced detection of graphs with sub-community structures

Experimental setup and goals. In this experiment, our goal is to illustrate that our
L�-PageRank can also help to more easily indentify classes with sub-cluster structures.

Our experimental setup is as follows. We consider two graphs in which the target set
Sgt has internal sub clusters (see Figure 3.8). On the one hand, we generate data from a
SBM with three clusters (V = S1 ∪ S2 ∪ S3) and define Sgt = S1 ∪ S2, so that the partition
to find is V = Sgt ∪ S3. We set �S1� = �S2� = 0.5 × �S3� = 150. The mean degrees are set as
C33 = 7.6, C23 = C13 = 0.4, C11 = C22 = 7.3, and C12 = C21 = 0.3 (leading to p12 = p21 = 0.002
which is bigger than p13 = p23 = 0.0013). This way, the mean degree of nodes in Sgt

are equal to the mean degrees of nodes in S3. Moreover, we grant that, despite various
clusters arising, V = Sgt ∪ S3 is the optimal partition (the one with smallest Cheeger ra-
tio). An adjacency matrix drawn from this model is shown in Figure 3.8a. On the other
hand, we consider a K-NN graph drawn from a mixture of gaussians. We first generate
300 data points from a mixture of three Gaussians in R

2, where µ1 = [0,0], µ2 = [−2,2],
µ3 = [−2,−2] and �1 = �2 = �3 = 0.3. Secondly, we generate a single more spreaded gaus-
sian of 300 points with µ4 = [4,0] and �4 = [1.5]. Then, we build a graph from this data
using K = 30 and � = 2. Due to the closeness in space and the balance of the cut, we
consider the three smaller gaussians as Sgt. The resulting graph from one realization of
data is displayed in Figure 3.8b. Then, to classify the data, one labelled point is sampled
at random from Sgt and the L�-PageRank method (via sweep) is applied for different
values of the ↵ parameter lying on a discrete grid covering the range ↵ ∈ [0.01,0.99]. The
procedure is repeated for 50 data realizations on both datasets. Performance is assessed
in terms of the Matthews Correlation Coefficient (MCC), which we recall that a value of
1 implies perfect agreement with the true partition and 0 a random decision.

Results and discussion. Figure 3.9 displays the performance of L�-PageRank on the
classification of the two graphs from Figure 3.8. Observe how, in both cases, the stan-
dard PageRank algorithm is not able to accurately recover Sgt despite it having a small
Cheeger ratio. This is because, in both graphs, our diffusion starts inside another set of
small Cheeger ratio, thus, as implied by the results from Chapter 2, it is hard for the
diffusion process to escape such cluster and cover all Sgt. Now, let us note how the intro-
duction of � helps to improve the detection of Sgt. Clearly, this is because the long-jump

CHAPTER 3. L�-PAGERANK FOR SEMI-SUPERVISED LEARNING 51

3.5. ANALYSIS OF � > 1: SIGNED GRAPHS FOR CLASSIFICATION

be used to find clusters in the L�-graphs.

For our analysis, it is useful to first extend some of the graph topological definitions to the
L�-graphs. Namely, let vol�(S) = ∑u∈S [D�]uu denote the generalized volume of S. Let ⇡�
denote a generalized stationary distribution with entries given by (⇡�)u = [D�]uu �vol�(G).
It is important to stress that [D�]uu = ∑k �

�
k
Q2

uk ≥ 0. Thus, for all � > 0, the generalized
volume and the generalized stationary distribution are non-negative quantities.

Another important topological definition introduced in Chapter 2 was the Cheeger ra-
tio metric. Clearly, it cannot longer be employed to assess the presence of clusters in the
L�-graphs as it lacks the ability to account for the sign of edges. Thus, we generalize the
Cheeger ratio definition to the new graphs as follows.

Definition 20. For a set of nodes S ⊆ V , the generalized Cheeger ratio, or generalized
conductance, of S is defined as:

h
(�)
S
=

∑u∈S∑v∈Sc [W�]uv
min (vol�(S), vol�(Sc))

. (3.8)

Please note that this generalization of the Cheeger ratio is mathematically sound: (i) first,
it is a non-negative quantity since ∑u∈S∑v∈Sc [W�]uv =

T
SL

�
S ≥ 0; and (ii) the set S

attaining the minimum value coincides with a sensible clustering. To show the latter, let
us split the edges in W� according to their sign as W� =W�

+
+W�

−. Now, let us consider
the following definitions:

• Let A
(�)
in (S) = ∑u∈S∑w∈S � �W+

� �uw � be the sum of agreements within S

• Let A
(�)
out(S) = ∑u∈S∑v∈Sc � �W+

� �uv � be the agreements between S and Sc

• Let D
(�)
in (S) = ∑u∈S∑w∈S � �W−

� �uw � be the disagreements within S

• Let D
(�)
out(S) = ∑u∈S∑v∈Sc � �W−

� �uv � the disagreements between S and Sc

Then, we state the following lemma.

Lemma 7. Let S∗ = argminS h
(�)
S
∀S s.t. vol�(S) ≤ vol�(G)�2. Then, S∗ is the set that

attains the best balance of:

• Maximal D
(�)
out(S

∗) and A
(�)
in (S

∗);

• Minimal D
(�)
in (S

∗) and A
(�)
out(S

∗).

The proof of this Lemma is deferred to Appendix 3.B.

Lemma 7 shows that, for a given L�-graph, sets of small generalized Cheeger ratio are
bound to have strong between-cluster disagreements and strong within-cluster agreements
as well as small between-cluster agreements and small within-cluster disagreements, thus
coinciding with our definition of clusters in signed graphs. In other words, to find clusters
in the L�-graphs, we should look for sets of small generalized Cheeger ratio.

Now, we show that, while not necessarily modelled by random walkers, our L�-PageRank
remains a well-behaved diffusion process having ⇡� as stationary state and diffusion rate
controlled by the µ parameter.

CHAPTER 3. L�-PAGERANK FOR SEMI-SUPERVISED LEARNING 53

3.5. ANALYSIS OF � > 1: SIGNED GRAPHS FOR CLASSIFICATION

Lemma 8. Let � > 0. The L�-PageRank solution in Eq. (3.6) satisfies the following
properties:

1. mass preservation: ∑u∈V fu = ∑u∈V yu

2. stationarity: f = ⇡� if y = ⇡�

3. limit behavior: f → ⇡� as µ→ 0 and f → y as µ→∞

The proof of this Lemma is deferred to Appendix 3.C.

Our next results shows that it is hard for such diffusion process to escape clusters in
the L�-graphs.

Lemma 9. Let � > 0 and let S ⊂ V be an arbitrary set with vol�(S) ≤ vol�(G)�2. For a
labeled point placed at node u ∈ S with probability proportional to its generalized degree in

S, i.e.
[Dγ]uu
volγ(S)

, L�-PageRank satisfies:

E [f(Sc)] ≤
h
(�)
S

µ
. (3.9)

The proof of this Lemma is deferred to Appendix 3.D

Lemma 9 admits a similar interpretation as Lemma 3 (see page 39). Namely, if L�-

PageRank is applied to the labeled points of some set S with small h
(�)
S

, then diffusion is
confined to S and the score values outside of S are expected to be small. Thus, by looking
at the nodes with largest score values we should be able to retrieve a good estimation of S.

Now, let us note that if such score concentration phenomenon takes place, then a sharp
drop must appear after sorting the L�-PageRank scores in descending order. We will use
the following lemma to show that if a sharp drop is present, then the sweep cut procedure

applied on the L�-PageRank vector retrieves a partition Ŝ that has small h
(�)

Ŝ
.

Lemma 10. Let q denote the permutation vector and Sj denote the set associated to
qj obtained by applying the sweep-cut procedure on the L�-PageRank vector. Then, the
partition V = Sj ∪ S

c
j satisfies the inequality:

A
(�)
out(Sj)�2 − (qj − qj+1)

(q1 − qN)
� −D(�)out(Sj)�2(qj − qj+1)

(q1 − qN)
− 1� ≥ µ (y(Sj) − f(Sj))

(q1 − qn)

≥ A
(�)
out(Sj)�2(qj − qj+1)

(q1 − qN)
− 1� −D(�)out(Sj)�2 − (qj − qj+1)

(q1 − qN)
� . (3.10)

The proof of this Lemma is deferred to Appendix 3.E.

To show that this Lemma implies a good partition if a sharp drop is present, let us
depart noticing that

�
u∈Sj

�
v∈Sc

j

[W�]uv = A
(�)
out(Sj) −D

(�)
out(Sj) ≥ 0. (3.11)

54 CHAPTER 3. L�-PAGERANK FOR SEMI-SUPERVISED LEARNING

3.5. ANALYSIS OF � > 1: SIGNED GRAPHS FOR CLASSIFICATION

Thus, the generalized Cheeger ratio of Sj is small if A
(�)
out(Sj) is not much larger than

D
(�)
out(Sj). In the inequality (3.10), we have two cases in which (qj −qj+1)�(q1−qN) ≈ 1: (i)

q is approximately constant; and (ii) q has a drop that satisfies qj ≈ q1 and qj+1 ≈ qN . The
former can only occur if f → ⇡� and clearly no cluster can be retrieved from that vector,
as confirmed by the inequality growing unbounded. The latter case is what we coin as
having a sharp drop between qj and qj+1. In such case, the inequality is controlled by the
difference y(Sj) − f(Sj) which, due to the mass preserving property and the assumption

that qj+1 ≈ qN , should be small. Thus, granting that A
(�)
out(Sj) is not much larger than

D
(�)
out(Sj) and Sj has a small h

(�)
Sj

.

Discussion. The previous results show that L�-PageRank is a sensible tool to find clusters
in the L�-graphs, i.e. groups of nodes with small generalized Cheeger ratio. Thus, revisit-
ing the classification case in which we target group of nodes Sgt, we have that the smaller

the value of h
(�)
Sgt

, the better the L�-PageRank method can recover it. This observation,
in addition to noting that standard PageRank emerges as the particular case of � = 1,
indicate that we should be able to enhance the performance of G-SSL in the detection of

Sgt by finding the graph, i.e. the � value, in which h
(�)
Sgt
< h
(1)
Sgt

.

3.5.2 The selection of γ

Case of � = 2: analytic study

In Section 3.2.2, it was argued that the topology emerging from L2 places a negatively
weighted link between nodes at a 2-hop distance, thus carrying the potential to place a big
amount of disagreements between clusters that may enhance their separability. Our next
result formalizes this claim, demonstrating that, on assortative graphs from the Planted
Partition model, it is expected that the L2-graph improves the generalized Cheeger ratio.

Theorem 5. Consider a Planted Partition model of parameters (pin, pout) and cluster
sizes �Sgt� = �Sc

gt� = n. Then, as n→∞ we have that

E �h(2)
Sgt
� = 2E �h(1)

Sgt
�2 , (3.12)

where E �h(1)
Sgt
� = pout�(pin + pout).

The proof of this Theorem is deferred to Appendix 3.F.

Corollary 1. If pin ≥ pout, then E �h(2)
Sgt
� ≤ E �h(1)

Sgt
�, with equality occurring in the case

pin = pout.

The proof of this Corollary is deferred to the Appendix 3.G

Theorem 5 and Corollary 1 open the door to investigate, on arbitrary graphs, in which
cases the L2-graph improves the generalized Cheeger ratio of a set. In the next Propo-
sition, we provide a sufficient condition in which the L2-graph improves the generalized
Cheeger ratio a set.

CHAPTER 3. L�-PAGERANK FOR SEMI-SUPERVISED LEARNING 55

3.5. ANALYSIS OF � > 1: SIGNED GRAPHS FOR CLASSIFICATION

Proposition 2. Let �DSgt� denote the mean degree of Sgt. A sufficient condition on Sgt

so that h
(2)
Sgt
≤ h
(1)
Sgt

is that

�DSgt� ≥ max
u∈Sgt

�
v∈Sc

gt

Wuv + max
w∈Sc

gt

�
`∈Sgt

Ww`. (3.13)

The proof of this Proposition is deferred to Appendix 3.H

Proposition 2 points in the same direction as Theorem 5, saying that graphs having a
cluster structure are bound to benefit from L2. Concretely, the first term on the right
hand side of the inequality searches, among all the nodes of Sgt, the one that has the
maximum number of connections towards Sc

gt. The second term does the reverse for the
nodes of Sc

gt. Hence, asking for the nodes of Sgt to have, on average, more connections
than the maximum possible boundary implies that Sgt should have a cluster structure.

An algorithm for the optimal selection of �

Numerical experiments show that increasing � can further decrease the generalized Cheeger
ratio up to a point where it starts increasing. We show an example of this phenomenon

in Figure 3.10a, displaying the evolution of h
(�)
Sgt

as a function of � when Sgt corresponds
to a digit of the MNIST dataset. From Figure 3.10a, it is evident that an optimal value
appears:

�∗ = argmin
�

h
(�)
Sgt

. (3.14)

Hence, this raises the question of how to find such value. Clearly, since the behavior of

h
(�)
Sgt

depends on Sgt, in practice, taking the derivative or performing a greedy search to

find �∗ cannot be employed since Sgt is unknown. A second question that arises is whether
such optimal value changes drastically or smoothly with changes in Sgt. To address it, we
perform the following test: for a given Sgt (same MNIST digit), we remove some percent-
age of the nodes in Sgt and record the optimal value on subsets of Sgt. More precisely,

recall that h
(�)
Sgt
=

T
Sgt

L� Sgt� T
Sgt

D� Sgt , hence we randomly select some percentage of
the entries indexing Sgt in Sgt , set them to zero and obtain a new indicator function
indexing a subset of Sgt. Mean results are evaluated in the original curve and displayed
in Figure 3.10b. As it can be seen, the figure suggest that it is not necessary to know Sgt

to find a proxy �̂ of �∗, it suffices to know a subset of Sgt.

Based on the insights from our last experiment, we propose Algorithm 2 for the esti-
mation of �∗. The rationale of the algorithm is to exploit the labeled points and the
initial graph to find a proxy Ŝ of Sgt on which we can compute the estimate. The proce-
dure consists in letting walkers started from the label points, run for a number of steps
that is determined by the maximum geodesic distance between the labels. This allows
walkers to explore Sgt without having the chance to go far from it. Then, after running
the walk, we list the nodes in descending order according to the probability of finding a
walk at a node. We take the first element on the list (the one where it is more likely to
find a walker), add it to Ŝ and remove it from the list, so that the former second element
becomes the first in the listing. We repeat the procedure until the probability of finding
a walker in the nodes conforming Ŝ is 0.7.

56 CHAPTER 3. L�-PAGERANK FOR SEMI-SUPERVISED LEARNING

3.5. ANALYSIS OF � > 1: SIGNED GRAPHS FOR CLASSIFICATION

(a) γ∗ = argmin
γ
h
(γ)
Sgt

(b) γ∗ on subsets of Sgt (c) γ̂ by algorithm

Figure 3.10: Generalized Cheeger ratio of Sgt as a function of �. Percentages in (b)
represent a fraction of nodes randomly chosen from Sgt and removed from Sgt. For the
plot, Sgt is a digit of the MNIST dataset

Algorithm 2 Estimation of �∗

Input: G,VSgt and a grid of � values.
Output: �̂
Compute ∆uv ∀ u, v ∈ VSgt .
Set k =maxu,v {∆uv}
Set � = y��y�1
Run a k-step walk with seed �: xT = �TP k

Reorder the vertices as v1,�, vN , so that xvi ≥ xvi+1
for i = 1 ∶ N do

if ∑i
j=1 xvj < 0.7 then
Set (

Ŝ
)vi = 1

else
Set (

Ŝ
)vi = 0

end if
end for

Compute h
(�)

Ŝ
=

T

Ŝ
Lγ

Ŝ

T

Ŝ
Dγ Ŝ

∀ �

Return �̂ = argmin� h
(�)

Ŝ
.

In Table 3.1, we evaluate the performance of Algorithm 2 on the estimation of �∗ for
all the digits of the MNIST. The graph construction guidelines are given in Section 3.5.3
(Real world datasets). For the test, 500 realizations of labeled points and a grid of �
ranging from 1 to 7 with a resolution of 0.2 were used. The first row displays, as �∗, the
value of � (from the input range) attaining the minimum generalized Cheeger ratio. The
second row displays the performance of the algorithm when estimating such value. The
last three rows show the value of the generalized Cheeger ratio evaluated at �∗, �̂ and
� = 1, respectively. As it can be seen, our estimator finds values of �̂ whose Cheeger ratios
are: (i) significantly smaller than those of � = 1; and (ii) close to the optimal.

CHAPTER 3. L�-PAGERANK FOR SEMI-SUPERVISED LEARNING 57

3.5. ANALYSIS OF � > 1: SIGNED GRAPHS FOR CLASSIFICATION

Digit 1 2 3 4 5 6 7 8 9

γ
∗ 7.0 3.0 7.0 3.2 3.2 7.0 7.0 3.2 4.2

γ̂
5.45
(0.15)

3.10
(0.14)

6.41
(0.11)

4.92
(0.16)

3.20
(0.14)

6.04
(0.15)

4.98
(0.17)

4.40
(0.18)

5.08
(0.15)

h
(γ∗)
Sgt

0.065 0.166 0.035 0.141 0.131 0.011 0.052 0.116 0.135

h
(γ̂)
Sgt

0.073
(9e-4)

0.174
(8e-4)

0.041
(1e-3)

0.185
(4e-3)

0.148
(2e-3)

0.017
(1e-3)

0.074
(2e-3)

0.142
(2e-3)

0.149
(9e-4)

h
(1)
Sgt

0.175 0.248 0.216 0.258 0.233 0.107 0.203 0.215 0.285

Table 3.1: Evaluation of Algorithm 2 on the MNIST Dataset: each cell reports MCC, 95%
confidenceinterval (parenthesis)

3.5.3 Numerical experiments

Planted Partition

Experimental setup and goals. In the following experiment, we show that L�-PageRank
can increase the performance of G-SSL as the graph approaches the Planted Partition
detectability transition. In Chapter 1, we covered results indicating that the Planted Par-
tition possesses a detectability threshold above which unsupervised methods are unable
to retrieve a meaningful clustering (see Theorem 1 in page 11). As for G-SSL, the work
in [115] shows that such threshold can be overcome when a fraction of labeled points is
introduced to the task. Nonetheless, the performance of G-SSL drastically degrades when
approaching the detectability transition.

The experimental setup is the following: for a given Cout�Cin, a realization of the Planted
Partition is drawn with n = 500 and Cavg = 3. Then, 1% of labeled points are sampled
at random and the L�-PageRank method is applied for different values of µ lying on a
discrete grid. The clusters are determined via a sweep-cut procedure, and the best per-
formance is retained. The whole procedure is repeated for 10 different realizations of the
labeled points. Finally, all the preceding steps are repeated for 100 graph realizations.
Performance is assessed in terms of the Matthews Correlation Coefficient (MCC).

Results and discussion. Figure 3.11 displays the performance of L�-PageRank at re-
covering the Planted Partition as a function of the ratio Cout�Cin. As it can be seen,
standard PageRank (� = 1) performs poorly when the configuration approaches the phase

transition (referred by the vertical line) since h
(1)
S

becomes large. Then, we observe that

the introduction of � allows to decrease h
(�)
Sgt

, which, accordingly, enhances the clustering

performance. Furthermore, the figure verifies that the smaller the value of h
(�)
Sgt

(right

plot), the better the L�-PageRank recovers the true partition (left plot). It is important
to remark that, for this experiment, while � = 2 shows good improvements, larger values

of � keep improving h
(�)
S

, until it reaches a saturation plateau, designating a region of
optimal � values (� ≥ 6).

58 CHAPTER 3. L�-PAGERANK FOR SEMI-SUPERVISED LEARNING

3.5. ANALYSIS OF � > 1: SIGNED GRAPHS FOR CLASSIFICATION

(a) (b)

Figure 3.11: Improved detection of the Planted Partition.

Real world datasets

Experimental setup and goals. In our following experiment, we assesses the perfor-
mance of L�-PageRank and Algorithm 2 on real world datasets.

The experimental setup is as follows: graphs are built connecting the K-Nearest Neigh-
bors (KNN) with distances computed via the Gaussian kernel, so that the weight between
points xu and xv is given by Wuv = exp{−��xu − xv ��22��2}. For each class, 2% of labeled
points are randomly selected, L�-PageRank is applied for a grid of µ values, partitions
are retrieved via the sweep-cut, and the best performance, assessed in terms of MCC, is
retained. Such procedure is repeated for 100 realization of labeled points, except for the
MNIST on which 30 realizations only are employed. In all cases, classes are balanced in
size and the graph construction parameters are selected to provide a good distribution of
weights as follows: (a) MNIST [116]: Images of handwritten digits (1 to 9). From the
entire dataset, 200 images of each digit are selected and used to build the graph with
KNN = 10 and � = 104; (b) Gender Images [117]: Images of male and female subjects for
gender recognition. From the entire dataset, 200 images of each gender are selected and
used to build the graph with KNN = 60 and � = 104. The large value of KNN is to avoid
disconnected components; (c) BBC articles [118]: Word frequency attributes from news
media articles. From the entire dataset, 200 business and 200 entertainment articles are
used to build the graph with KNN = 5 and � = 50; and (d) Phoneme [119]: Five attributes
to discern nasal sounds from oral sounds. From the entire dataset, 200 oral and 200 nasal
sounds are used to build the graph with KNN = 10 and � = 2.

Results and discussion. Table 3.2 shows the performance of L�-PageRank on the
classification of the real world datasets. Clearly, the introduction of � can significantly
improve performance and, in general, the estimation �̂ performs close to the optimal value
�∗. It can be seen that some datasets are more sensitive to � than others. For instance,
in the BBC articles we observe that a small change in �, going from � = 1 to �∗ = 1.1,
increases performance, and going further to �̂ = 1.3 and � = 2 significantly worsens the
classification. On the other hand, the MNIST dataset is less sensitive to �, obtaining
similar performances with larger variations in �.

CHAPTER 3. L�-PAGERANK FOR SEMI-SUPERVISED LEARNING 59

3.5. ANALYSIS OF � > 1: SIGNED GRAPHS FOR CLASSIFICATION

Sgt γ = 1 γ = 2 γ = γ̂ γ = γ
∗

Digit 1 0.67 (0.075) 0.78 (0.032) 0.78 (0.034) [5.4] 0.80 (0.027) [7.0]

Digit 2 0.38 (0.042) 0.60 (0.064) 0.64 (0.059) [3.3] 0.64 (0.059) [3.0]

Digit 3 0.47 (0.040) 0.61 (0.032) 0.61 (0.028) [6.0] 0.61 (0.028) [7.0]

Digit 4 0.39 (0.022) 0.48 (0.036) 0.53 (0.044) [4.7] 0.53 (0.037) [3.2]

MNIST Digit 5 0.44 (0.036) 0.56 (0.046) 0.61 (0.036) [3.3] 0.64 (0.035) [3.2]

Digit 6 0.90 (0.039) 0.94 (0.003) 0.94 (0.002) [6.0] 0.94 (0.002) [7.0]

Digit 7 0.43 (0.027) 0.66 (0.043) 0.71 (0.042) [4.8] 0.75 (0.032) [7.0]

Digit 8 0.47 (0.062) 0.65 (0.057) 0.74 (0.038) [4.8] 0.72 (0.050) [3.2]

Digit 9 0.43 (0.020) 0.52 (0.026) 0.53 (0.023) [4.9] 0.56 (0.026) [4.2]

Gender
images

Female 0.51 (0.039) 0.57 (0.028) 0.57 (0.020) [3.0] 0.57 (0.028) [2.0]

Male 0.55 (0.028) 0.61 (0.021) 0.60 (0.022) [3.3] 0.61 (0.021) [2.4]

BBC
articles

Business 0.80 (0.020) 0.53 (0.038) 0.72 (0.040) [1.3] 0.81 (0.021) [1.1]

Entmt. 0.84 (0.027) 0.57 (0.040) 0.76 (0.047) [1.5] 0.86 (0.025) [1.3]

Phoneme
Nasal 0.37 (0.030) 0.41 (0.028) 0.43 (0.025) [2.9] 0.43 (0.025) [3.0]

Oral 0.41 (0.025) 0.44 (0.022) 0.46 (0.019) [2.8] 0.46 (0.019) [3.0]

Table 3.2: Performance on real world datasets: each cell reports MCC, 95% confidence
interval (parenthesis) and the value of � [squared brackets].

It is important to stress that, thus far, we have assumed possession of the proper tuning
of the diffusion rate (µ) that attains the best results. However, when working with real
data, clusters may have intricate local structures, e.g. sub-clusters, that play an important
role in the way information diffuses, and that can make more difficult the finding of the
optimal diffusion rate µ. As a result, two clusters may have equal Cheeger ratios but one
of them being harder to find if its local structure is complex (this will be made more clear
in our last experiment from this section). Digit 8 poses an example of this phenomenon,
where the mean performance for �̂ is slightly better than that of �∗. This anomaly can
be explained as an aftereffect of using a finite grid on µ: for some realization of labeled
points, the best performance for �∗ falls in a region not covered by the grid.

Unbalanced labelled data

Experimental setup and goals. In Chapter 2, it was shown that an implication of
Theorem 2 (see page 29) is that PageRank, in the multi-class setting (where multiple
classification functions are compared instead of doing sweeps), suffers from biased outputs
when operating on unbalanced labelled datasets. Thus, in our next experiment, we aim to
show that L�-PageRank, adapted to the multi-class setting, can improve the performance
of G-SSL in the presence of unbalanced labelled data.

The experimental setup is as follows: graphs with two balanced classes (in size) are built
using the datasets from the preceding experiments. The parameters of the graphs’ con-
struction follow the guidelines detailed in our experiment above. For the Planted Partition,
the configuration is n = 200, Cavg = 3, Cout = 0.1. Then, unbalanced labelled points are

60 CHAPTER 3. L�-PAGERANK FOR SEMI-SUPERVISED LEARNING

3.5. ANALYSIS OF � > 1: SIGNED GRAPHS FOR CLASSIFICATION

Planted
Partition

MNIST
4vs9

MNIST
3vs8

BBC
articles

Gender
images

Phoneme

γ = 1
0.81

(1.1e-2)
0.51

(1.5e-2)
0.70

(1.4e-2)
0.66

(1.8e-2)
0.63

(2.1e-2)
0.44

(2.3e-2)

γ = 2
0.87

(8.7e-3)
0.56

(1.5e-2)
0.76

(1.2e-2)
0.92

(5.0e-3)
0.73

(1.6e-2)
0.48

(1.4e-2)

γ = Best
0.90

(7.0e-3)
[6]

0.57
(1.5e-2)

[3]

0.78
(1.2e-2)

[4]

0.93
(1.5e-3)

[3]

0.75
(1.7e-2)

[3]

0.48
(1.4e-2)
[1.9]

Table 3.3: Performance on unbalanced labelled data: each cell reports MCC, 95% confi-
dence interval (parenthesis) and the value of � [squared brackets].

drawn at random: 2% from one class and 6% from the other. Lastly, L�-PageRank, in
the multi-class setting, is applied for a grid of µ values and the best performance, assessed
by MCC, is recorded. For the planted partition, the procedure is repeated over 15 real-
izations of the labeled points and for 100 graph realizations. For the other datasets, 100
realizations of labeled points are employed.

Results and discussion. Table 3.3 displays the performance L�-PageRank in the
presence of unbalanced labeled data. It is important to stress that, in this framework,
a unique value of � is used to retrieve all the clusters at the same time, precluding the
notion of an optimal � as defined in Section 3.5.2. However, one value of � seems to
perform better, we denote it as � = Best. As it can be seen, the introduction of � helps
to significantly improve the classification performance in the presence of the unbalanced
labeled data.

The generalized Cheeger ratio: necessary but not sufficient

Experimental setup and goals. Our theoretical results indicate that, for a target Sgt,

the smaller the value of h
(�)
Sgt

, then the easier it is for our L�-PageRank algorithm to detect

Sgt. In our next experiment, we show that having a small h
(�)
Sgt

is a necessary condition
but not sufficient. This is because the Cheeger ratio only counts a ratio of external and
internal connections of a group of nodes, but it does not consider how such connections
are distributed. Thus, while a set Sgt may have a small Cheeger ratio, the distribution of
its connections may not be favorable for information to properly diffuse.

The experimental setup is as follows: we create a graph from the SBM with three clusters:
V = S1 ∪ S2 ∪ S3. We set �S1� = �S2� = 100, and �S3� = 200. We fix C13 = C23 = 2, C33 = 18.
Then, we let Sgt = S1 ∪ S2 and we make vary the internal structure of Sgt. Precisely, by
keeping Cavg = 20 fixed, we make vary C12�C11 = C21�C22 from poorly connected until S1

and S2 merge into a single uniformly connected cluster (C12�C11 = C21�C22 = 1). Then, 1
labeled point is sampled at random from Sgt and the L�-PageRank method is applied for
different values of µ lying on a discrete grid. The clusters are determined via a sweep-cut
procedure, and the best performance is retained. The whole procedure is repeated for 10
different realizations of the labeled points. Finally, all the preceding steps are repeated
for 100 graph realizations.

CHAPTER 3. L�-PAGERANK FOR SEMI-SUPERVISED LEARNING 61

3.6. DIFFERENCES WITH ITERATED LAPLACIAN

Figure 3.12: Classification performance as we vary the internal structure of Sgt through
the ratio C12�C11 while keeping constant the Cheeger ratio of Sgt.

Results and discussion. Figure 3.12 displays the performance of L�-PageRank at
recovering Sgt as its internal connectivity varies through the ratio C12�C11. As it can be
seen from Figure 3.12b, despite C12�C11 varying, the Cheeger ratio of Sgt remains con-

stant. Indeed, we can observe that the L�-topologies can help to further reduce h
(�)
Sgt

.
However, as shown in Figure 3.12a, the Cheeger ratio of Sgt is not the only factor involved
in its detection since for small values of C12�C11 we cannot detect Sgt accurately while for
larger values the performance significantly improves. Clearly, this is because the internal
sub-cluster structure of Sgt, in the regime of small C12�C11, makes it hard to correctly
diffuse information. Thus, as displayed by Fig 3.12c, we need to increase the internal
connectivity fo Sgt to enhance the recovery of Sgt.

1

3.6 Differences with Iterated Laplacian

In this section, we highlight some differences between our L�-PageRank and the gener-
alization obtained by iterating the random walk Laplacian in the PageRank solution as
proposed in [15].

Let us start emphasising the differences between the closed form solutions

• L�-PageRank:

f = µ �L�D−1� + µI�−1 y. (3.15)

• Iterated PageRank:

f = µ ��LD−1�m + µI�−1 y. (3.16)

Thus, we can see that the contrast lies on the operators L�D−1� and �LD−1�m: the former
corresponds to the random walk Laplacian of a L�-graph, while latter is high order version
of the random walk Laplacian of the initial graph. By reverting to the spectral domain, we
can more clearly highlight the differences between both operators. Let L�D−1� = Q�Λ�Q

−1
� ,

1This phenomenon was pointed in our experiments from Section 3.4.2, where it was shown that the
Lévy flight can override, to some extend, such sub-cluster structures.

62 CHAPTER 3. L�-PAGERANK FOR SEMI-SUPERVISED LEARNING

3.6. DIFFERENCES WITH ITERATED LAPLACIAN

then we have that �LD−1�m = Q1Λ
m
1 Q−11 . Thus, when comparing both methods with

respect to the standard PageRank, we have that our L�-PageRank formulation changes
both the spectrum and eigenvectors, while, in the Iterated Laplacian case, the eigenvectors
are left unchanged. Clearly, relating Q� to Q1 and Λ� to Λ

�
1
is not a trivial task. Numerical

evidence suggests that Λ� ≈ Λ
�
1
only for small � but that Q� and Q1 can significantly differ.

Thus, we leave the formal link between the output of both methods as an open problem.
In practice, these spectral difference translate into the following differences between both
methods:

1. There is no known optimization problem having the Iterated PageRank as a solution.

2. It is unclear if Iterated PageRank can be related to the equilibrium state of a diffusion
process

3. It is unclear if Iterated PageRank can be related to the graph topology

4. There are not guarantees that doing a sweep on the Iterated PageRank still leads to
a meaningful clustering

5. Iterated PageRank is not defined in the regime of fractional powers.

6. There are no insights on how to optimally tune m for the Iterated PageRank

7. L�-PageRank cannot be related to a Sobolev norm regularization

3.6.1 Numerical comparison

Performance on real world data

Experimental setup and goals. In this experiment, we aim to compare the performance
between both L�-PageRank and Iterated PageRank when classifying the MNIST.

The experimental setup is as follows: a graph from the MNIST dataset is build using
the guidelines given in Section 3.5.3 (Real world datasets). Then, one labelled point per
class is sampled at random and both methods are applied, in the multi-class setting, for a
grid of µ values and Laplacian powers in the range � =m = 1, ...,5. Accuracy, assessed by
MCC, is computed for each class and then the scores of all classe are combined to obtain
a global one. The configuration that leads to the best global score is retained. Lastly, the
whole procedure is repeated for 30 different realizations of labelled points.

Results and discussion. Table 3.4 displays the performance of both L�-PageRank
and Iterated PageRank in the classification of the digits from the MNIST dataset. We
observe that, in both cases, the extra degree of freedom allows to enhance the classifica-
tion performance but that L�-PageRank achieves the best overall performance. Indeed,
for both methods the sweet spot is attained at � = m = 3, but the accuracy differences
are due to L�-PageRank being capable to double the improvements given by the iterated
Laplacian in digits 1 and 2, while the iterated Laplacian does better in digits 7 and 9 but
only by one unit. Now, for other � and m, L�-PageRank performs better for � =m = 2 and
worse for � =m = 5. The drop at � = 5 is due to the L5-graph permitting to much better
recover digit 2 but at the price of degrading the detection of the other digits, particularly
digit 6.

CHAPTER 3. L�-PAGERANK FOR SEMI-SUPERVISED LEARNING 63

3.6. DIFFERENCES WITH ITERATED LAPLACIAN

Digit 1 2 3 4 5 6 7 8 9 Total

m = 1
0.57
(0.041)

0.57
(0.072)

0.52
(0.073)

0.36
(0.078)

0.53
(0.068)

0.82
(0.042)

0.65
(0.057)

0.56
(0.104)

0.38
(0.062)

0.55
(0.106)

m = 2
0.59
(0.042)

0.58
(0.077)

0.53
(0.074)

0.36
(0.082)

0.54
(0.072)

0.84
(0.038)

0.67
(0.054)

0.59
(0.109)

0.39
(0.063)

0.56
(0.108)

It. PR m = 3
0.59
(0.044)

0.60
(0.078)

0.54
(0.074)

0.36
(0.083)

0.54
(0.072)

0.84
(0.036)

0.69
(0.054)

0.60
(0.110)

0.40
(0.062)

0.57
(0.110)

m = 4
0.58
(0.043)

0.59
(0.082)

0.55
(0.076)

0.35
(0.083)

0.54
(0.070)

0.83
(0.041)

0.69
(0.051)

0.61
(0.104)

0.39
(0.062)

0.57
(0.111)

m = 5
0.55
(0.044)

0.60
(0.079)

0.55
(0.078)

0.35
(0.072)

0.54
(0.066)

0.81
(0.045)

0.66
(0.058)

0.60
(0.103)

0.39
(0.059)

0.56
(0.105)

γ = 1
0.57
(0.041)

0.57
(0.072)

0.52
(0.073)

0.36
(0.078)

0.53
(0.068)

0.82
(0.042)

0.65
(0.057)

0.56
(0.104)

0.38
(0.062)

0.55
(0.106)

γ = 2
0.60
(0.042)

0.60
(0.077)

0.53
(0.074)

0.36
(0.079)

0.54
(0.070)

0.84
(0.039)

0.67
(0.055)

0.59
(0.108)

0.39
(0.062)

0.57
(0.110)

Lγ-PR γ = 3
0.61
(0.045)

0.63
(0.074)

0.54
(0.074)

0.36
(0.080)

0.54
(0.068)

0.84
(0.037)

0.68
(0.053)

0.61
(0.106)

0.38
(0.059)

0.58
(0.113)

γ = 4
0.60
(0.044)

0.65
(0.076)

0.54
(0.074)

0.35
(0.079)

0.54
(0.067)

0.83
(0.042)

0.68
(0.054)

0.61
(0.104)

0.37
(0.058)

0.57
(0.116)

γ = 5
0.54
(0.045)

0.66
(0.065)

0.53
(0.079)

0.35
(0.065)

0.55
(0.062)

0.72
(0.056)

0.63
(0.057)

0.58
(0.097)

0.37
(0.059)

0.55
(0.093)

Table 3.4: Performance of both L�-PageRank and Iterated PageRank on the MNIST
dataset (multi-class setting): each cell reports MCC and the 95% confidence interval
(parenthesis).

Solving the curse of flatness

Experimental setup and goals. In Chapter 2, it was pointed that, in the limit of infi-
nite unlabelled data, G-SSL methods suffer from the so-called curse of flatness (see Section
2.2.7, page 30). Indeed, it was shown there that the Iterated Laplacian G-SSL was pro-
posed to amend such issue. In our following experiment, we show that our L�-PageRank
is not suited to address the curse of flatness.

Our experimental setup is as follows: we replicate the experiment given in Section 2.2.7
(see page 33).

Results and discussion. Figure 3.13 displays the classification functions of L�-PageRank
and the Iterated PageRank when applied on data that suffers from the curse of flatness.
Since Iterated PageRank is designed to embed Sobolev regularity onto the PageRank vec-
tor, then it is able to overcome the curse of flatness and provide meaningful classification
functions as shown by Figure 3.13a. Now, in Figures 3.13b and 3.13c, we display the L�-
PageRank vector with � = 32 and � = 62, respectively. Clearly, our formulation is not able
to cope with the curse of dimensionality issue. We presume that this is because Λ� and
Λ
�
1
significantly differ for large �, meaning that the L�-PageRank vector does not carry

Sobolev regularites.

64 CHAPTER 3. L�-PAGERANK FOR SEMI-SUPERVISED LEARNING

3.7. EXTENDING THE GENERALIZED OPTIMIZATION FRAMEWORK TO
L�-GRAPHS

(a) It. PageRank (m = 32) (b) Lγ-PageRank (γ = 32) (c) Lγ-PageRank (γ = 64)

Figure 3.13: Comparison of L�-PageRank and Iterated PageRank for the curse of flat-
ness. The horizontal axis represents the spacial dimension of the data and the verticalaxis
represents the function value learned by G-SSL

3.7 Extending the generalized optimization framework to

L�-graphs

In this section, we show that the generalized optimization framework for G-SSL [75] (see
page 28) can also be readily extended to the L�-graphs and incorporate their benefits.

Let us depart from optimization problem (2.12) and extend it to the L�-graphs as fol-
lows:

argmin
f

�fTD�−1
� L�D�−1

� f + µ (f − y)T D2�−1
� (f − y)� (3.17)

Thus, we observe that by properly choosing �, we can recover the L� extension of the
three popular methods. Namely, by choosing � = 1 we obtain the L�-Standard Laplacian
method; � = 1�2 leads to the L�-Normalized Laplacian G-SSL; and � = 0 reduces to our
L�-PageRank.

Now, since the �-th power of a positive diagonal matrix remains positive, then the same
argumentation used in the proof of Lemma 6 can be applied to problem (3.17) to show
that, for all �, it is convex and its solution can be given in closed form as

f = µ �D−�� L�D�−1
� + µI�−1 y. (3.18)

Then, by making the change of variable ↵ = 1�(1 + µ), we can recast Eq. (3.18) as

fT
= (1 − ↵)yT

∞

�
k=0

↵k �D�
�P�D

−�
� �k (3.19)

Thus, in the regime � < 1, Eq. (3.19) corresponds to an extension of the generalized opti-
mization framework to the Lévy processes encoded by P� .

Now, as discussed in Chapter 2, PageRank is the only method with a known relation-
ship to the graph topology. Thus, it is unclear in which manner Eq. (3.18) benefits from

CHAPTER 3. L�-PAGERANK FOR SEMI-SUPERVISED LEARNING 65

3.7. EXTENDING THE GENERALIZED OPTIMIZATION FRAMEWORK TO
L�-GRAPHS

Planted
Partition

MNIST
4vs9

MNIST
3vs8

BBC
articles

Gender
images

Phoneme

Balanced labels

γ = 1
0.89

(8.3e-3)
0.50

(2.4e-2)
0.83

(1.0e-2)
0.85

(1.6e-2)
0.58

(3.3e-2)
0.44

(2.2e-2)

γ = Best
0.93

(5.4e-3)
[5]

0.51
(2.3e-2)
[2.5]

0.84
(1.1e-2)
[1.5]

0.90
(1.2e-2)

[4]

0.63
(2.3e-2)
[1.5]

0.45
(1.9e-2)
[2.5]

Unbalanced labels

γ = 1
0.79

(9.6e-2)
0.49

(1.6e-2)
0.71

(1.5e-2)
0.66

(2.2e-2)
0.63

(2.2e-2)
0.43

(2.5e-2)

γ = Best
0.88

(8.1e-3)
[7]

0.55
(1.5e-2)

[4]

0.79
(1.5e-2)

[4]

0.90
(1.7e-3)

[4]

0.71
(1.8e-2)
[3.5]

0.46
(1.7e-2)
[1.9]

Table 3.5: Performance of L�-Normalized Laplacian: each cell reports MCC, 95% confi-
dence interval (parenthesis) and the value of � [squared brackets].

Our experimental setup is as follows: two cases are considered (i) balanced labelled points;
and (ii) unbalanced labelled points. For the experiments, we follow the same graphs and
guidelines used for the experiments in Section 3.5.3. The only variation we use is that,
for the experiment with balanced labels, we consider 2% of labelled points in both classes.
As classification method we employ the L�-Normalized Laplacian (� = 1�2).
Results and discussion. Table 3.5 displays the classification performance of L�-Normalized
Laplacian in the classification of various real world datasets in the presence of both bal-
anced labelled points and unbalanced labelled points. As it can be seen, the introduction
of � helps to (i) get moderate increments in performance in the case of balanced labels;
and (ii) significantly improve the performance when facing unbalanced labelled datasets.

CHAPTER 3. L�-PAGERANK FOR SEMI-SUPERVISED LEARNING 67

Appendix: technical proofs

3.A Proof of Lemma 6

Proof. It suffices to show the positive semi-definiteness of the functional and to apply
the first order optimality condition. Let f̂ = QTD−1� f . Then, the left term satisfies

∑j �
�
j f̂

2
j ≥ 0. It can be shown that [D�]uu = ∑j Q

2
uj�

�
j ≥ 0 granting the right term satisfies

∑u(fu − yu)
2�[D�]uu ≥ 0. Now, computing the derivative of the functional with respect to

f and equaling to 0 leads to: L�D−1� f + µ(f − y) = 0. The lemma is proved after isolating
f . �

3.B Proof of Lemma 7

Proof. For an arbitrary and fixed � > 0, let S denote an arbitrary set of vol�(S) ≤

vol�(G)�2. Let r = (A
(�)
out(S) − D

(�)
out(S))�(A(�)in (S) − D

(�)
in (S)). It is easy to show that

h
(�)
S
= r�(r + 1), which is monotonically increasing with r. Thus, the set S that minimizes

r also minimizes h
(�)
S

. �

3.C Proof of Lemma 8

Proof. From the demonstration of Lemma (6) we have that L�D−1� f +µ(f −y) = 0. Then,
TL�D−1� +µ

T f = µ T y. Since TL� = 0 we have that T f = T y, proving (i). We prove
property (iii) using the same expression. We only develop the case µ → 0 since the case
µ→∞ follows the same steps: taking limµ→0 �L�D−1� f + µ(f − y) = 0� leads to L�D−1� f = 0,
whose solution is proportional to ⇡� = D� �vol�(G). Lastly, we prove (ii) by noting that

the operator L�D−1� has a positive real spectrum as it is similar to D
−1�2
� L�D

−1�2
� which

is positive semi-definite. Thus, we can use the inverse Laplace transform of the resolvent
(L�D−1� + µI)

−1
= ∫ ∞0 e−te−tL

γD−1
γ
�µdt, which, after using its Taylor expansion, allows to

rewrite the L�-PageRank solution as f = ∑∞k=0 (−1)
k

µk �L�D−1� �k y. If y = ⇡� , the previous

equation is only non-zero for k = 0, proving (ii). �

3.D Proof of Lemma 9

Proof. Let y =D� S�vol�(S). Using Eq. (3.6) we can see that

T
Scf = �

u∈S

[D�]uu
vol�(S)

T
Sc �µ �L�D−1� + µI�−1 �u� , (3.20)

69

3.E. PROOF OF LEMMA 10

showing that T
Scf can be interpreted as E [f(Sc)] when labels are selected with probability

proportional to their generalized degree in S. Using the fact that

�L�D−1� + µI�−1 �L�D−1� + µI� = I, (3.21)

we express

f = �I − 1

µ
L�D−1� +

1

µ
L�D−1� �L�D−1� + µI�−1L�D−1� �y. (3.22)

The upper bound is thus obtained by substituting y and summing over S.

T
Sf =

T
SD� S

vol�(S)
−

T
SL

�
S

µ vol�(S)
+

T
SL

� (L� + µD�)
−1

L� S

µ vol�(S)

≥

T
SD� S

vol�(S)
−

T
SL

�
S

µ vol�(S)

= 1 −
h
(�)
S

µ
. (3.23)

Employing property (i) from Lemma 8 finishes the proof. �

3.E Proof of Lemma 10

Proof. We only show the proof of the lower bound as the upper bound follows a similar
derivation. We recast Eq. (6) as L�D−1� f = µ (y − f). Thus, the set Sj satisfies:

µ ((y(Sj) − f(Sj)) =
T
Sj
L�D−1� f

=
T
Sj
L�q

= �
u∈Sj ,v∈S

c
j

[W�]uv (qu − qv)

= �
u∈Sj ,v∈S

c
j

� �W+

� �uv �(qu − qv) − �
u∈Sj ,v∈S

c
j

� �W−

� �uv �(qu − qv)
+ �

u∈Sj ,v∈S
c
j

� �W+

� �uv �(qj − qj+1) − �
u∈Sj ,v∈S

c
j

� �W+

� �uv �(qj − qj+1)
+ �

u∈Sj ,v∈S
c
j

� �W−

� �uv �(qj − qj+1) − �
u∈Sj ,v∈S

c
j

� �W−

� �uv �(qj − qj+1)
≥ (qj − qj+1)�2A(�)out(Sj) +D

(�)
out(Sj)�

− (q1 − qN)�2D(�)out(Sj) +A
(�)
out(Sj)� . (3.24)

Re-ordering terms finishes the proof. �

3.F Proof of Theorem 5

Proof. Let n = �S�. For u, v ∈ S and w ∈ Sc the Planted Partition satisfies ∑v Wuv ∼

B(n − 1, pin) and ∑wWuw ∼ B(n, pout). The key step in the proof is to show that, in the

70 CHAPTER 3. L�-PAGERANK FOR SEMI-SUPERVISED LEARNING

3.F. PROOF OF THEOREM 5

limit n → ∞, E �h(1)
S
� = E � T

SL S

vol(S) � = E� T
SL S�

E[vol(S)] , and the same for h
(2)
S

. By application of

the Chebyshev inequality we have that

Pr (du −E [du] ≥ E [du]) ≤
var(du)

var(du) +E [du]
2
= O(n−1). (3.25)

Thus, in the limit of n →∞ we can establish the inequality du < 2E [du] and further that

vol(S) < 2E [vol(S)]. This latter allows to express E �h(1)
S
� as follows [120]:

E �h(1)
S
� = E � T

SL S

vol(S)
�

=

E � T
SL S�

E [vol(S)]
+

∞

�
i=1

(−1)i
E[T

SL S]�ivol(S)� + � T
SL S ,

i vol(S)�
E [vol(S)]i+1

=

E � T
SL S�

E [vol(S)]
+

∞

�
i=1

(−1)i
E � T

SL S(vol(S) −E[vol(S)])
i�

E[vol(S)]i+1

=

E � T
SL S�

E [vol(S)]
+

∞

�
i=1

(−1)iE

������
T
SL S

E[vol(S)]
� vol(S)

E[vol(S)]
− 1�i������

=

E � T
SL S�

E [vol(S)]
+

∞

�
i=1

(−1)ici, (3.26)

where �a,i b� = E �(a −E[a])(b −E[b])i�. The fact that vol(S) < 2E [vol(S)] and the
monotonicity of the expected value imply that the sequence ∑i �ci� decreases monotonically.
Also, it can be shown that its dominant term: c1 = O(n

−2). Replacing the expectations
and evaluating the limit leads to:

lim
n→∞

E �h(1)
S
� = pout

pin + pout
. (3.27)

The case of E[h
(2)
S
] follows a similar derivation. Since [D2]uu = d2u + du, the Jensen

inequality implies that [D2]uu < 2E [[D2]uu] and consequently that vol2(S) < 2E [vol2(S)].
Thus, we cast:

E �h(2)
S
� = E � T

SL
2

S

vol2(S)
�

=

E � T
SL

2
S�

E [vol2(S)]
+

∞

�
i=1

(−1)iE

������
T
SL

2
S

E[vol2(S)]
� vol2(S)

E[vol2(S)]
− 1�i������

=

E � T
SL

2
S�

E [vol2(S)]
+

∞

�
i=1

(−1)ic
(2)
i . (3.28)

Let the random variable Ou = ∑w∈Sc Wuw. Then we have that T
SL

2
S = 2∑u∈S (Ou)

2.

This fact, in addition to vol2(S) = ∑u∈S d
2
u+du, allow to show that the sequence ∑i �c(2)i � is

monotonically decreasing with c
(2)
1
= O(n−1). Replacing the expectations and evaluating

the limit leads to:

lim
n→∞

E �h(2)
S
� = 2� pout

pin + pout
�2 . (3.29)

�

CHAPTER 3. L�-PAGERANK FOR SEMI-SUPERVISED LEARNING 71

3.G. PROOF OF COROLLARY 1

3.G Proof of Corollary 1

Proof. Let pin = pout+✏ and assume that h
(1)
S
≥ h
(2)
S

. Thus pout�(pin+pout) ≥ 2(pout�(pin+
pout))

2, which can be further simplified to 1 ≥ 2pout�(2pout + ✏). We observe that such
expression holds for ✏ ≥ 0 and equality occurs when ✏ = 0. �

3.H Proof of Proposition 2

Proof. We search a condition on S that permits
T
SL S

T
S
D S

≥

T
SL2

S

T
S
D2 S

, or equivalently, that

satisfies the inequality
T
SD2 S

T
S
D S

−
T
SL2

S

T
S
L S

≥ 0. We have

T
SD2 S

T
S
D S

−

T
SL

2
S

T
S
L S

≥

T
SD

2
S

T
S
D S

−

T
SL

2
S

T
S
L S

≥

T
SD

2
S

T
S
D S

− �max
u∈S

�
w∈Sc

Wuw +max
`∈Sc
�
v∈S

W`v�
≥

T
SD S

T
S S

− �max
u∈S

�
w∈Sc

Wuw +max
`∈Sc
�
v∈S

W`v�
=

vol(S)�S� − �max
u∈S

�
w∈Sc

Wuw +max
`∈Sc
�
v∈S

W`v� , (3.30)

where we have used Lehmers and Holders inequalities and that T
SL

2
S = ∑u∈S (∑w∈Sc Wuw)

2
+

∑`∈Sc (∑v∈S W`v)
2. Thus, it is sufficient that S satisfies:

vol(S)�S� − �max
u∈S

�
w∈Sc

Wuw +max
`∈Sc
�
v∈S

W`v� ≥ 0. (3.31)

�

72 CHAPTER 3. L�-PAGERANK FOR SEMI-SUPERVISED LEARNING

Chapter 4

Fast and efficient implementations

4.1 Introduction

In Chapter 3, we extended PageRank and other popular G-SSL propositions to powers of
Laplacian matrices. We showed that our extensions permit to significantly enhance the
performance and flexibility of G-SSL. Moreover, it was proven that our methods enjoy
from a well-behaved solution expressed in closed form. However, a strong limitation of
our closed form expressions is that they require to perform matrix inversion, meaning
that they can be prohibitively expensive (or even unfeasible) to calculate in large scale
contexts. Clearly, this arises as a serious drawback of G-SSL since numerous modern sys-
tems foster applications involving thousands or millions of dimensions. Let us take the
web graph as an example: it has 60 × 1012 web-sites and it evolves at a rate of 600 × 103

new pages created every second [121]. Thus, despite their remarkable performance, the
value of our G-SSL propositions remains limited if they cannot be used to address such
important applications. In order to bring us a step closer towards this goal, in this chapter
we investigate computationally efficient implementations that can better cope with such
large scale rapidly evolving scenarios.

In terms of efficient implementations, the standard PageRank algorithm constitutes the
state of the art approach. This is because, as we discussed in Chapter 2, standard PageR-
ank possesses a random walk interpretation that numerous works have exploited to derive
efficient ways to compute PageRank vectors [122, 123, 124, 111, 125]. Among these, three
highly successful algorithms, practically employed in networks involving millions of vertices
and billions of edges, arise: (a) Power iteration [18, 19, 20]; (b) Monte-Carlo simulation
[126]; and (c) Gauss-Southwell method [11, 21]. Power iteration is the fundamental ap-
proach for efficient PageRank computing. It consists on iterating the PageRank fixed point
equation until convergence. Due to its recursive nature, it allows to efficiently compute
PageRank vectors via matrix-vector products, thus allowing a distributed implementation
with a cost proportional to the number of edges in the graph. Monte-Carlo simulation
runs individual random walkers and then estimates the entries of the PageRank vector
according to the frequency of visits made to nodes by the walkers. It has the advantage
of being easily parallelizable and it has been reported to give good estimates from only
a few iterations. The Gauss-Southwell method is a fast approach to compute approxi-
mate PageRank vectors. It employs two vectors: the approximate PageRank vector and a
residual vector coding for the error in the approximation. Then, it pushes mass from the

73

4.1. INTRODUCTION

residual vector into the approximate PageRank vector iteratively until the residual vector
diminishes below certain threshold. Albeit the algorithm is centralized, it is inexpensive
to compute with a running time that is independent of the size of the graph.

The success of these algorithms also lies in that they have been effectively adapted to
more efficiently cope with evolving graph structures. Let us stress that, in real world ap-
plications, it is common that sensors constantly collect new data, users in social networks
continuously make new followers/friends or join/leave the network, or articles in citation
networks become more or less influential as time passes by. Thus, to classify all these new
data, or to adapt the class of a given node to a new state of the network, one needs to
constantly re-compute the output of G-SSL. Evidently, doing this at a fast pace can simply
be too computationally demanding to be practical. Notably, the works of [24, 127, 25]
have shown that, when the graph changes smoothly, it is wasteful to discard an existing
PageRank vector in order to compute a new one. Instead, such works show that the algo-
rithms introduced above can be adapted to update an already existing PageRank vector in
sublinear time. Their key observation is that changes in the graph tend to only affect the
entries of the PageRank vector that lie close to where the change happened. Thus, imply-
ing that one only needs to update the entries of the PageRank vector in the local vicinity
of a change. To have an idea on the practical gains given by these works, [25] is able to
update PageRank vectors in a web graph of 105 million vertices and 3.7 billion edges in
only 3 microseconds, which is more than 10000 faster than doing full re-computation via
the power method. Clearly, we aim to attain such efficient implementations to the remain-
der of G-SSL methods, particularly the ones proposed in this work. However, it is not
straightforward to apply these algorithms beyond the PageRank case as they heavily rely
on its Markov chain structure, which, we recall, our L�-based extensions do not possess.

In this chapter, we leverage results from the field of Graph Signal Processing (GSP) to
derive extensions of the aforementioned algorithms to the general family of G-SSL meth-
ods. Towards this goal, we exploit the fact that, despite not necessarily having a Markov
chain structure, the G-SSL methods considered in this work do have an interpretation
in terms of graph filters. Concerning the latter, the field of GSP has developed a solid
toolbox that allows to efficiently compute the output of graph filters. In particular, there
are two main approaches: the Chebyshev polynomials [23] and the autoregressive moving
average (ARMA) filters [22]. In the former, one approximates the graph filter response
by means of a truncated polynomial of the graph operator. In the latter, the transfer
function of the filter is implemented by means of a recursive formula that converges as
long as the filter poles lie within a stability region. Both approaches are very appealing as
they permit distributed implementations with a cost proportional to the number of edges.
The ARMA recursions are particularly relevant four us, as our main contribution from this
chapter is to show that they permit an extension of the algorithms from [19, 11, 24, 25]
to the general G-SSL setting. In principle, if one directly uses the definition of ARMA
filters to implement the G-SSL frequency response, then the ARMA filters only serve to
implement G-SSL for a narrow regime of values of the µ parameter. Thus, by mirroring
[23], we do a shifting of the operator’s domain and show that by doing this, then the
region of stability can be extended to all µ > 0, leading us to obtain a recursive formula
that extends the power method to the general G-SSL setting. By elaborating on this
ARMA recursive formula, we then extend the Gauss-Southwell method of [11] to general

74 CHAPTER 4. FAST AND EFFICIENT IMPLEMENTATIONS

4.2. STATE-OF-THE-ART APPROACHES FOR PAGERANK COMPUTATION

G-SSL procedures. Lastly, in the second part of the chapter, we use these results to ex-
tend the updating algorithms of [24, 25] to the general family of G-SSL propositions. In
addition to extending these important algorithms, in this chapter we study other efficient
approaches. Concerning the polynomial representations of G-SSL covered in the first part
of the chapter, we propose and assess the effectiveness of a novel representation based on
Greens functions that also leads to an efficient and distributed algorithm. With respect to
the update algorithms, we propose a novel promising approach based on neural networks
to more effectively solve the update problem.

4.2 State-of-the-art approaches for PageRank computation

In this section, we recall the state of the art approaches of [19, 11, 24, 25] to efficiently
compute PageRank vectors, that we aim to extend to the more general G-SSL proposi-
tions. To simplify notations, let us denote by pr↵(y) the personalized PageRank vector of
restarting probability ↵ and initial condition y.

4.2.1 PageRank on static networks

Power iteration

In Section 2.3.4 (see page 38), it was shown that PageRank can be cast as the solution to
the fixed point:

pr↵(y) = (1 − ↵)y + ↵P
Tpr↵(y) (4.1)

Note that Eq. (4.1) corresponds to an eigenvector problem. This can be seen by rewriting
it as pr↵(y) = �(1 − ↵)y T

+ ↵P T �pr↵(y). The matrix in squared brackets is normally
referred to as the Google matrix, thus it can be seen that PageRank corresponds to
the eigenvector with eigenvalue 1 of the Google matrix. If P is irreducible, then such
matrix codes for a Markov chain with a stationary state, meaning that it only posses one
eigenvalue lying in its spectral circle and hence the PageRank vector can be found via the
power method. This latter is defined through the recursive formula [18, 19, 20]:

p(t) = (1 − ↵)y + ↵P T p(t−1), (4.2)

where p(t) denotes the PageRank estimation at iteration t. This recursion is very efficient
to implement as to obtain the new iteration one simply needs to: (i) perform a (usually
sparse) matrix-vector product; (ii) re-scale the resulting vector; and (iii) add the (re-scaled)
labelled points. Thus, the cost of the algorithm is determined by the matrix-vector step
and the number of iterations until convergence. Concerning the latter, it is not hard to
show that the following relationship holds:

�pr↵(y) − p(t)�∞ ≤ ↵�pr↵(y) − p(t−1)�∞ ≤ ↵t�pr↵(y) − p(0)�∞ (4.3)

This inequality says that the power method converges in exact arithmetic and it has
an asymptotic convergence rate determined by ↵t

→ 0. As a result, if the algorithm
requires from K iterations to converge, then its running time is O(K �E �). Importantly,
this procedure allows a distributed implementation given in Algorithm 3.

CHAPTER 4. FAST AND EFFICIENT IMPLEMENTATIONS 75

4.2. STATE-OF-THE-ART APPROACHES FOR PAGERANK COMPUTATION

Algorithm 3 [18, 19, 20] Distributed computation of PageRank via the Power method

Input at node u: yu, ↵, Pvu ∀ v ∼ u, K, and p(0).
Output at node u: p(K)

for t = 1 ∶ tmax do

Transmit p
(t−1)
u to all neighbors v ∼ u

Receive p
(t−1)
v from all neighbors v ∼ u

p
(k)
u = (1 − ↵)yu + ↵∑v∼u p

(t−1)
v Pvu

end for

Return p(K)

The Gauss-Southwell method

The Gauss-Southwell algorithm [11, 21] is an iterative method that efficiently computes
approximate PageRank vectors. In this algorithm two vectors are used: (i) p: an approx-
imate PageRank vector; and (ii) r: a residual vector coding for the difference between
pr↵(y) and p. The method initiates with an initial guess p(0) and then, at iteration t, the
algorithm transfers mass from r(t−1) into p(t) such that the following invariant is preserved:

pr↵(y) = p
(t)
+

1

1 − ↵
pr↵(r

(t)) (4.4)

Hence, the goal of the algorithm is to minimize the residual as that implies that p converges
to the PageRank vector. Let us assume that, at iteration t, the largest entry of r(t)

corresponds to vertex u. Then, the state of the algorithm at iteration t + 1 is determined
by the following set of update equations:

p(t+1) = p(t) + r(t)u �u (4.5)

r(t+1) = r(t) − r(t)u �u + ↵P
T r(t)u �u (4.6)

This procedure is repeated until all entries from the residual vector diminish below some
threshold value ✏. The whole procedure is detailed in Algorithm 4.

Algorithm 4 is extremely efficient to implement as the update equations only imply addi-

tion and re-scaling of vectors. To see it, recall that ↵P T r
(t−1)
u �u corresponds to a re-scaling

the u-th column of P T by the scalar ↵r
(t−1)
u . Hence, cost of the algorithm is determined by

the number of iterations required until convergence. Naturally, such number of iterations
depends on the desired accuracy, as stated by the following result:

Lemma 11 ([11]). When Algorithm 4 terminates, its output p satisfies �pr↵(y)−p�∞ ≤ ✏
1−↵

and it does it within �r(0)�1�((1 − ↵)✏) iterations.
This Lemma implies that cost of the Gauss-Southwell algorithm is O(�r(0)�1�((1 − ↵)✏),
which is independent of the number of edges in the graph.

4.2.2 Updating PageRank on dynamic networks

In the introduction of this Chapter, we pointed that graphs arising in real world appli-
cations are not only massive but also dynamic. Intuition says that if the graph does not

76 CHAPTER 4. FAST AND EFFICIENT IMPLEMENTATIONS

4.2. STATE-OF-THE-ART APPROACHES FOR PAGERANK COMPUTATION

Algorithm 4 [11] Approximate PageRank vectors via Gauss-Southwell method

Input: P , p(0), and ✏
Output: Approximate PageRank vector p and its residual r
r(0) = (1 − ↵)y − �I − ↵P T �p(0)
t = 0
while �r(t)�∞ > ✏ do

u = argmaxu (r
(t))u

p(t+1) = p(t) + (r(t))u�u
r(t+1) = r(t) − (r(t))u�u + ↵P

T (r(t))u�u
t + +

end while
Return p = p(t) and r = r(t)

drastically change, then the G-SSL solution should be relatively stable, implying that
there may be better alternatives than re-computing from scratch the PageRank vector
every time a change occurs. In this section we present adaptations of the algorithms in-
troduced above that allow to perform efficient local updates to the PageRank vector.

To proceed, consider two graphs: G(V,E ,W) and an evolved version of such graph given
as G̃(Ṽ, Ẽ ,�W). Moreover, let P = D−1W and P̃ = D̃−1�W denote the transition matrices
of G and G̃, respectively. To have consistent sized matrices, let nodes joining/leaving the
network be modelled as isolated nodes that get connected/disconnected. By definition,
we set these isolated nodes with zero rows and columns in P and P̃ . Please note that by
adding rows full of zeros to P we do not change the convergence of the chain as this only
adds adds eigenvalues equal to zero and preserves the unique eigenvalue in the spectral
circle.

Now, we present the following result from [128], saying that if a small change in the
graph occurs, then the PageRank vector should not drastically change.

Lemma 12 ([128]). Let pr↵(y) and p̃r↵(y) denote the Pagerank vectors on G and G̃,
respectively. Then, we have that

�p̃r↵(y) − pr↵(y)�∞ ≤ ↵

1 − ↵
�P̃ − P �∞ (4.7)

In addition to this result, it is important to stress that changes only reflect locally in the
perturbation. To have a grasp on this, let us illustrate such phenomenon in Figure 4.1.
In the figure, we display the Minnesota graph (a well known toy graph) and we show the
effect that adding a new node has on the PageRank vector. More precisely, in the left
figure, we show (in red) the new node joining the graph. Then, in the right plot, we show
the difference between the PageRank vectors from the initial graph and the evolved graph.
As it can be seen, the differences only appear in the region surrounding the arriving node.
The implication of this observation is that one can keep the same scores in the PageRank
vector for nodes that are far from the perturbation, hence avoiding the need to spend
computational resources to re-estimate the score of such vertices, and then one only needs
to compute the new scores for the nodes encircling the change.

CHAPTER 4. FAST AND EFFICIENT IMPLEMENTATIONS 77

4.2. STATE-OF-THE-ART APPROACHES FOR PAGERANK COMPUTATION

Figure 4.2: Normalized approximation in the power method when doing computation
from scratch or by using the warm restarts. For the test, we use the same Minessota
graph example from Figure 4.1.

Algorithm 5 [24] Local PageRank updating via power iteration

Input: ↵, pr↵(y), P , P̃ .
Output: p̃r↵(y).

r = ↵[P̃ T
− P T]pr↵(y)

Compute p̃r↵(r) via the power method
Return p̃r↵(y) = pr↵(y) + p̃r↵(r)�(1 − ↵)

1-hop vicinity of the perturbed nodes. Hence, since p̃r↵(r) entails starting a diffusion
process from the initial condition r, then one can interpret Eq. (4.8) as r containing the
information for an update and p̃r↵(r) as a way to diffuse this update in G̃, starting from
the perturbed nodes and then propagating it to nodes farther away. Since p̃r↵(r) can be
computed by means of the power method, then one can control the scope of propagation
for an update depending on the number of iterations used in the algorithm. This is, if
one uses K iterations to estimate p̃r↵(r), then the update is propagated to nodes in a
K-hop vicinity from the perturbations. This provides significant computational benefits
as one only needs to explore the graph within this K-hop region to get the new PageRank
vector, implying that (i) the algorithm has sublinear complexity; and (ii) if, at most, there
are M edges are contained in the K-hop vicinity of a node that changed, and c changes
occur, then the cost of the update is bounded by O(cKM). If one uses large values of
K, then one gets better approximations, yet one may end up exploring most of the graph
while getting negligible practical benefits. Thus, the goal is find a good tradeoff between
accuracy and complexity. The procedure proposed in [24] is summarized in Algorithm 5.

Local updating via Gauss Southwell

In [25], the authors extended the Gauss Southwell method to perform efficient updates to
approximate PageRank vectors. The underlying idea of their approach is to also use warm
restarts for the Gauss-Southwell method. In precise terms, if the restart parameter and
initial condition do not change, and the Gauss-Southwell method, for graph G, outputs p
and r as an approximate PageRank vector and its residual, respectively, then [25] proposes

CHAPTER 4. FAST AND EFFICIENT IMPLEMENTATIONS 79

4.3. FAST AND EFFICIENT IMPLEMENTATIONS OF G-SSL ON STATIC GRAPHS

Algorithm 6 [25] Local PageRank updating via Gauss-Southwell

Input: ↵, P , P̃ , p and r.
Output: Updated PageRank vector p̃ and updated residual r̃.

p̃(0) = p

r̃(0) = r + ↵[P̃ T
− P T]p

Apply Gauss-Southwell on p̃(0) and r̃(0), store result in p̃ and r̃

Return p̃ and r̃

to use, for graph G̃, the following initialization (still, preserving Eq. (4.4)):

p̃(0) = p (4.10)

r̃(0) = r + ↵[P̃ T
− P T]p (4.11)

The method proposed in [25] is shown in Algorithm 6. By definition, �r�∞ < ✏ and, as
discussed above, the term ↵[P̃ T

− P T]p is non-zero everywhere but in the 1-hop vicinity
of the perturbed nodes. As a result, only few entries in r̃(0) can surpass the tolerance
threshold, having the implication that with only a few push operations the algorithm will
drive these entries below the threshold again. Thus, the algorithm is extremely efficient in
practice. However, since r̃(0) may now have positive or negative entries, deriving theoret-
ical bounds on the running time of Algorithm 6 significantly complexifies. The authors of
[25] give two results in this regard: one using amortized analysis and another in expected
value sense. For the former, [25] shows that Algorithm 6 is amortized by O(1�✏). With
respect to the latter, [25] shows that if m edges are randomly and sequentially inserted,
then, in expected value, it takes O(log(m)�✏) iterations for Algorithm 6 to converge.

4.3 Fast and efficient implementations of G-SSL on static

graphs

In this section, we derive extensions of the algorithms from Section 4.2.1 to the general
family of G-SSL propositions. Moreover, we explore other distributed approaches for ef-
ficient G-SSL computation. Let us commence clarifying that we cannot replace P by P�
in the algorithms above and use them to implement our L�-PageRank method. This is
because P� , for � > 1, is no longer a stochastic matrix, implying that its spectral radius is
larger than 1 and the recursive Eq. (4.1) diverges. Thus, other alternatives must be sought.

A better alternative consist in noticing that all the G-SSL methods presented in this
PhD work can be expressed in a general linear system form:

Rf + µf = µy, (4.12)

where R ∈ RN×N denotes a generalized reference operator. Thus, the choice of R deter-
mines the G-SSL method under consideration. Table 4.1 lists possible values of R.

Consider the spectral representation of R and the definition of the Graph Fourier Trans-
form (GFT) given in Chapter 1. Then, we have that the solution to the linear system
above can be expressed as

f̂u =
µ

�u + µ
ŷu. (4.13)

80 CHAPTER 4. FAST AND EFFICIENT IMPLEMENTATIONS

4.3. FAST AND EFFICIENT IMPLEMENTATIONS OF G-SSL ON STATIC GRAPHS

Method Lγ-PageRank Lγ-Norm. Lap. Lγ-Std. Lap. Iter. PageRank
Recenterd
kernel

R LγD−1γ D
−

1

2

γ LγD
−

1

2

γ
D−1γ Lγ (LD−1)m

−PWP with
P = I − 1

N

T

Table 4.1: Possible choices for reference operators in G-SSL.

This equation shows that the u-th frequency component of f corresponds to a re-scaling
of the u-th frequency component of y according to the transfer function h(Λ) = µ

µ+Λ
. In

other words, Eq. (4.13) shows that G-SSL methods correspond to a low-pass graph filter
in which the labelled points constitute the signal to be filtered and the regularization pa-
rameter µ determines the cut-off frequency of the filter.

Classical results from matrix theory say that any function on the spectrum of a matrix is
a function of the matrix itself. Therefore, implying that if h(Λ) is approximated through
a polynomial function: h(Λ) ≈ ∑K

t=0 ctΛ
t, then such approximation can be expressed in the

vertex domain as h(Λ) = h(R) ≈ ∑K
t=0 ctR

t. The assets of this rewriting is that the filter
output is then expressed as

f =
K

�
t=0

ctR
ty, (4.14)

which can be computed recursively, in a distributed manner, and with cost O(K �E �).
Thus, the question that arises is how to find the best set of coefficients for such poly-
nomial. In the GSP literature, there are two state-of-the-art approaches to approximate
filter functions via polynomials: (i) the Chebyshev polynomials; and (ii) the ARMA recur-
sions. In this section, we leverage them to efficiently implement G-SSL. In particular, we
show that the ARMA recursions imply a direct extension of the algorithms from Section
4.2. In addition, we derive a novel polynomial representation based on the Greens function
and explore its feasibility.

4.3.1 Generalized implementation via Chebyshev polynomials

In [23], the Chebyshev polynomials for graph filter approximation were proposed. Such
work proposes to approximate the filter function h(Λ) by the following truncated series,
which has been shown to be optimal in the ∞-norm sense [23, 129]:

h(Λ) ≈
1

2
c0 +

K

�
t=1

ctT̄t(Λ), for Λ ∈ [0,�max] , (4.15)

where

T̄t(Λ) =

�������������
1, t = 0
Λ−�
�

, t = 1

2�Λ−�
�
� T̄t−1 − T̄t−2, t ≥ 2

. (4.16)

and � = �max�2, ct = 2

⇡ ∫ ⇡0 cos(t✓)h(�(cos(✓) + 1))d✓.

CHAPTER 4. FAST AND EFFICIENT IMPLEMENTATIONS 81

4.3. FAST AND EFFICIENT IMPLEMENTATIONS OF G-SSL ON STATIC GRAPHS

Algorithm 7 [23] Distributed computation of G-SSL via Chebyshev polynomials

Input at node u: �max, yu, µ, Ruv ∀ v ∼ u, K, and {ct ∶ t = 0, . . . ,K}.

Output at node u: f
(K)
u

(T̄0(R)y)u = yu
Transmit yu to all neighbours v ∼ u
Transmit yv from all neighbours v ∼ u
(T̄1(R)y)u = ∑v={v∼u}∪u

1

�
Ruvyv − yu

for t = 2 ∶K do

Transmit (T̄t−1(R)y)u to all neighbours v ∼ u

Receive (T̄t−1(R)y)v from all neighbors v ∼ u

(T̄t(R)y)u = ∑v={v∼u}∪u
2

�
(T̄t−1(R)y)v − 2(T̄t−1(R)y)u − (T̄t−2(R)y)v

end for

Return f
(K)
u =

1

2
c0yu +∑K

t=1 ct(T̄t(R)y)u

Then, in the vertex domain, we obtain the following K-term approximation of G-SSL

f (K) =
1

2
c0y +

K

�
t=1

ctT̄t(R)y (4.17)

It can be seen from Eqs. (4.16) and (4.17) that to implement this approximation one
needs to know �max and K. We recall �max can be efficiently estimated, for instance via
the Lanczos method [130]. With respect to the choice of K there are not clear insights
on how to choose it to attain a target approximation error. This is because it is hard to
derive the asymptotic convergence rate of the series from its coefficient formula. Thus,
in practice, the selection of K remains a design problem. We summarize the distributed
implementation of G-SSL via Chebyshev polynomials in Algorithm 7.

4.3.2 Generalized implementation via Greens functions

In this subsection, we contribute with a novel polynomial expansion of G-SSL based on
the Greens function that leads to an efficient and distributed algorithm.

Let us commence by identifying Eq. (4.12) as a discrete Helmholtz equation in which
µ acts as the diffusion rate and the labels, y, take the role of an external forcing as an
inhomogeneous term. Then, we retrieve this PDE Green’s function by means of the inverse
Laplace transform of the resolvent (R+µI)−1. Doing so allows us to express G-SSL in an
integral form as

f = �
∞

0

µe−µ⌧e−⌧R y d⌧. (4.18)

For the family of G-SSL methods under consideration the spectrum of R is positive real
granting convergence of the transformation. The only exception is the Re-centered Kernel
method which may present negative eigenvalues and µ > −�0 must be considered for con-
vergence. Eq. (4.18) represents a novel approach to represent the G-SSL label propagation
process: the integrand tracks the state of the system after the initial mass distribution y

82 CHAPTER 4. FAST AND EFFICIENT IMPLEMENTATIONS

4.3. FAST AND EFFICIENT IMPLEMENTATIONS OF G-SSL ON STATIC GRAPHS

has diffused during a (continuous) time ⌧ via an exponentially distributed weighted heat
kernel. Then, we can use this expression to obtain a polynomial representation of G-SSL
by using the Taylor expansion as follows:

f = �
∞

0

e−⌧ �∞�
t=0

(−1)t⌧ tRt

µtt!
�y d⌧ (4.19)

=

∞

�
t=0

(−1)t

µtt!
�� ∞

0

⌧ te−⌧ d⌧�Rty (4.20)

=

∞

�
t=0

(−1)t

µtt!
Γ(t + 1)Rty (4.21)

=

∞

�
t=0

(−1)t

µt
R

ty (4.22)

We recognize in Eq. (4.19) an alternating sequence that monotonically converges to zero
in the case of µ > �max. Hence, if f

(K) denotes the approximation obtained by truncating
the series to K terms, we have that, for µ > �max, this representation is guaranteed to
satisfy

�f − f (K)� ≤ 1

µK+1
�RK+1��y�. (4.23)

In the case of µ ≤ �max, a truncation via Eq. (4.19) is not longer practical as it corresponds
to a divergent sequence. However, we can still obtain a polynomial representation in such
regime, although the procedure is more intricate. To clarify, let us give a step back to Eq.
(4.18). In it, when ⌧ →∞, we have that e−⌧R�µ → 0. Thus, when we try to use a truncated
Taylor expansion as an approximating function, the error grows unbounded as ⌧ → ∞
since any alternating and non-monotonically convergent polynomial of fixed degree never
goes to 0 at t → ∞, instead they go to either +∞ or −∞. Nonetheless, Taylor’s theorem
does guarantee that a polynomial of K-terms will be able to approximate a function e−z

as long as this is restricted to disc of radius zf centred at z = 0. Thus, this observation
says that, on the regime µ < �max, with a finite number of terms we can still approximate
our label propagation process as long as it is up to a maximal time ⌧f . Then, for this
regime, we consider the following approximation of G-SSL

f (K) = �
⌧f

0

e−⌧ �K�
t=0

(−1)t⌧ tRt

µt!
�y d⌧ (4.24)

=

K

�
t=0

(−1)t

µtt!
�� ⌧f

0

⌧ te−⌧ d⌧�Rty (4.25)

=

K

�
t=0

(−1)t

µtt!
�(t + 1, ⌧f)R

ty, (4.26)

where �(⋅, ⋅) refers to the incomplete gamma function. Clearly, the more time we run
our diffusion process, the better the accuracy of our approximation, but at the cost of
more terms needed in the polynomial. To address the question of given a number of
terms K, what is maximum disc radius zf so that we can approximate e−zf with an error
at most ✏, let TK(z) = ∑K

t=0(−1)
kzk�k! and RK(z) = e−z − TK(z). The approximation

error is bounded by �RK(z)� ≤ zK+1�(K + 1)!, thus we can estimate zf by considering the
equation, zK+1�(K + 1)! = ✏, and solving it for z. The solution can be derived as follows:

CHAPTER 4. FAST AND EFFICIENT IMPLEMENTATIONS 83

4.3. FAST AND EFFICIENT IMPLEMENTATIONS OF G-SSL ON STATIC GRAPHS

Algorithm 8 Distributed computation of G-SSL via Greens functions

Input at node u: yu, µ,�max,K, ✏, and Ruv ∀ {v ∼ u} ∪ u.

Output node u: f
(K)
u

x
(0)
u = yu

if µ > �max then

f
(0)
u = x

(0)
u

for t = 1 ∶K do
transmit x

(t−1)
u to all neighbors v ∼ u

receive x
(t−1)
v from all neighbors v ∼ u

x
(t)
u = −

1

µ ∑v∈{v∼u}∪uRuvx
(t−1)
v

f
(t)
u = f

(t−1)
u + x

(t)
u

end for
else

compute ⌧f via Eq. (4.27)

f
(0)
u = �(1, ⌧f)x

(0)
u

for t = 1 ∶K do
transmit x

(t−1)
u to all neighbors v ∼ u

receive x
(t−1)
v from all neighbors v ∼ u

x
(t)
u = −

1

µt ∑v∈{v∼u}∪uRuvx
(t−1)
v

f
(t)
u = f

(t−1)
u + �(t + 1, ⌧f)x

(t)
u

end for
end if
Return f

(t)
u

log(✏) = (K + 1) log(K) − log((K + 1)!) ≈ (K + 1) log(z) − (K + 1) (log(K + 1) − 1) using
Stirling’s approximation. To estimate ⌧f from zf , we note that zf = ⌧f�max�µ, hence
leading to the result that for K terms we can run our diffusion process until

⌧f =
µ

�max

exp�(K + 1)(log(K + 1) − 1) + log(✏)
K + 1

� . (4.27)

The distributed implementation of this algorithm is summarized in Algorithm 8.

4.3.3 Generalized implementation via ARMA recursions

In this subsection, we contribute with an extension of the Algorithms from Section 4.2)
by using the ARMA filters. The ARMA graph filters, introduced in [22], are a type of
filter characterized for being able to implement filter functions with rational frequency
response. They are defined by the following recursive formula:

p(t) = ⇢y + Rp(t−1). (4.28)

In [22], it is shown that when this recursive formula converges, then it defines a filter in
the spectral domain of R with input y:

Theorem 6 ([22]). Let R be a symmetric operator and �max denote its spectral radius
bound. Further, let r = − ⇢

be a residue and p = 1

denote a pole of a rational transfer

84 CHAPTER 4. FAST AND EFFICIENT IMPLEMENTATIONS

4.3. FAST AND EFFICIENT IMPLEMENTATIONS OF G-SSL ON STATIC GRAPHS

function. Then, the ARMA recursion in Eq. (4.28) converges linearly to the following
frequency response on the spectrum of R:

h(Λ) =
r

Λ − p
; subject to �p� > �max (4.29)

Let us start clarifying that the symmetry assumption on R used in Theorem 6 is to ensure
that R has real spectrum. Thus, Theorem 6 still holds for our non-symmetric operators
R as long as they possess real spectrum. Having made this clarification, we now observe
that, by direct analogy with Eq. (4.13), Theorem 6 can be readily used to implement the
frequency response of G-SSL by choosing r = µ and p = −µ and, accordingly, = − 1

µ
and

⇢ = 1. Hence, leading to a recursive implementation of G-SSL given as

p(t) = y +
1

µ
Rp(t−1). (4.30)

However, an issue with Eq. (4.30) is that its stability region, determined by the condition�p� > �max, implies that the recursion only converges if �µ� > �max, which is too penalizing
for G-SSL. For this reason, we now revert to a shifting of the domain of R (as done by the
Chebyshev method) and show that by doing this transformation, then the stability region
of G-SSL can be extended to all µ > 0.

More precisely, let us consider the mapping Λ →
�max

2
(s + 1), where s ∈ [−1,1], that

shifts the spectrum of the operator R. Then, we shift the filter to this new domain by
applying this transformation to the G-SSL transfer function:

h(Λ) =
µ

Λ + µ
=

µ

(�max�2)(s + 1) + µ =
2µ��max

s + 1 + (2µ��max)
=

r

s − p
= h(s) (4.31)

where r = 2µ��max is the new residue, p = −[(2µ��max) + 1] is a new pole, and s refers
to the spectrum of the shifted operator S = (2��max)R − I. Now, for these values of
p and r we obtain the following ARMA coefficients: = −(�max)�(2µ + �max) and ⇢ =

(2µ)�(2µ + �max). Thus, leading to the following ARMA implementation of G-SSL:

p(t) = � 2µ

2µ + �max

�y − � �max

2µ + �max

�Sp(t−1). (4.32)

To see that this recursion now converges for all µ > 0, we have that the spectrum of S is
bounded between [-1,1], leading to the stability constraint: ��max�(2µ + �max)� < 1, which
holds for all µ > 0. As a result, Eq. (4.32) corresponds to an extension of the power method
to the general family of G-SSL algorithms. We detail its distributed implementation in
Algorithm 9.

Let us now determine the asymptotic convergence rate of Algorithm 9 and show that,
remarkably, using it to compute the standard PageRank algorithm implies faster conver-
gence than the classical power method (see Algorithm 3 from Section 4.2).

Lemma 13. Let arma⇢, (y) denote the steady state of Eq. (4.32). Then, the output of
Algorithm 9 satisfies

�arma⇢, (y) − p
(K)� ≤ � �max

2µ + �max

�K �SK��arma⇢, (y) − p
(0)� (4.33)

CHAPTER 4. FAST AND EFFICIENT IMPLEMENTATIONS 85

4.3. FAST AND EFFICIENT IMPLEMENTATIONS OF G-SSL ON STATIC GRAPHS

Algorithm 9 Distributed computation of G-SSL via the Power method

Input at node u: yu, µ, Ruv ∀ {v ∼ u} ∪ u, K, p(0) and �max.

Output at node u: p
(K)
u

⇢ = (2µ)�(2µ + �max)
 = −(�max)�(2µ + �max)
� = 2��max

for t = 1 ∶K do

Transmit p
(t−1)
u to all neighbors v ∼ u

Receive p
(t−1)
v from all neighbors v ∼ u

p
(t)
u = ⇢yu − p

(t−1)
u + �∑v={v∼u}∪uRuvp

(t−1)
v

end for

Return p(K)

The proof of this Lemma is deferred to Appendix 4.A

We have that the spectrum of S lies within the unit circle, implying that when K grows,
SK converges to a rank one matrix. As a result, �SK� converges to a constant value that
has a negligible role on the asymptotic convergence rate, making this determined by (i)

� �max

2µ+�max
�K → 0; and (ii) how accurate is the initial guess. Now, we compare Algorithm 9

with Algorithm 3 for computation of standard PageRank. We have that the latter has a

convergence rate determined by ↵K
= � 1

µ+1
�K → 0, while the one of the former can be recast

as � �max�2
µ+�max�2�K → 0. This implies that Algorithm 9 converges faster if �max�2 < 1, which

is always true as standard PageRank is driven by the random walk Laplacian R = LD−1,
which, as mentioned in Chapter 1, it always has a �max smaller than 2 (unless the graph
is bipartite).

4.3.4 Generalized implementation via Gauss-Southwell method

In this subsection, we leverage the ARMA recursion from Eq. (4.32) to contribute with
an extension of the Gauss-Southwell algorithm to the general family of G-SSL methods.
In precise terms, by analogy with standard Gauss-Southwell method (see Algorithm 4
in Section 4.2), we propose to have two vectors: an approximate G-SSL vector p and its
residual vector r, so that, at each iteration t, the algorithm satisfies the following invariant:

arma⇢, (y) = p
(t)
+

1

⇢
arma⇢, (r

(t)) (4.34)

Hence, the main goal of our proposition remains to drive r towards zero as that implies that
p converges to the G-SSL solution. In the following, we extrapolate the update equations
from the standard Gauss-Southwell to the ARMA case and show that they preserve the
invariant (4.34).

Lemma 14. Assume that, at iteration t, the largest entry of �r(t)� corresponds to vertex u.

86 CHAPTER 4. FAST AND EFFICIENT IMPLEMENTATIONS

4.3. FAST AND EFFICIENT IMPLEMENTATIONS OF G-SSL ON STATIC GRAPHS

Algorithm 10 Approximate G-SSL computation via Gauss-Southwell method

Input: µ, R, p(0), ✏, and �max

Output: Approximate G-SSL solution p and its residual r
⇢ = (2µ)�(2µ + �max)
 = −(�max)�(2µ + �max)
� = 2��max

r(0) = ⇢y − (I − S)p(0)

t = 0
while �r(t)�∞ > ✏ do

u = argmaxu �(r(t))u�
p(t+1) = p(t) + (r(t))u�u
r(t+1) = r(t) − (1 +)(r(t))u�u + �R(r

(t))u�u
t + +

end while
Return p = p(t) and r = r(t)

Then, the following set of update equations satisfy, for all t, the invariant of Eq. (4.34):

p(t+1) = p(t) + r(t)u �u (4.35)

r(t+1) = r(t) − r(t)u �u + Sr
(t)
u �u (4.36)

where r(0) = ⇢y − (I − S)p(0)

The proof of this Lemma is deferred to Appendix 4.B.

Algorithm 10 summarizes our extension of the Gauss-Southwell algorithm to general fam-
ily of G-SSL methods. Now, we stress that the general nature of R and arma⇢, (y), which
can code for a signed graph and a vector of negative entries, respectively, make notori-
ously hard to theoretically bound the running time of Algorithm 10. Indeed, it is not even

straightforward to guarantee that �r(t+1)�∞ ≤ �r(t)�∞ as, in theory, r
(t)
u may be negative

and the vector Rr
(t)
u �u may have positive and negative entries. We stress that despite

this theoretical challenge, in practice, we have experienced that the update equations sat-
isfy �r(t+1)�∞ ≤ �r(t)�∞ for all t, implying that the algorithm always terminates. We leave
the formal analysis on the time complexity of Algorithm 10 as an open problem.

4.3.5 Numerical assessment

In this subsection, we assess the approximation algorithms presented above. We present
two experiments: in the first, we compare our ARMA-based methods (Algorithm 9 and
10) versus their random walk-based counterparts (Algorithms 3 and 4) by noting that
standard PageRank arises as a particular case of our generalized approaches; in our second
experiment, by using our L�-PageRank as base method, we compare the approximation
quality of Algorithms 7 - 10 and assess the sensitivity of these algorithms to variations
in µ and �. To assess the quality of the approximations, we employ the following error
metrics:

• `2-norm error: standard metric to compute the relative distance between two
vectors.

CHAPTER 4. FAST AND EFFICIENT IMPLEMENTATIONS 87

4.3. FAST AND EFFICIENT IMPLEMENTATIONS OF G-SSL ON STATIC GRAPHS

• Ranking error: metric that counts the fraction of nodes that do not rank in the
same spot in the true G-SSL solution and in the approximation vector. The metric
is computed by first sorting the entries from both the true G-SSL solution and the
approximation vector, so as to obtain the relative ranking of nodes in the graph,
and then by counting the fraction of nodes that rank differently in both vectors.
This metric motivates from the observation that G-SSL essentially amounts to com-
pare how one node ranks with respect to the rest, meaning that the output of an
approximation algorithm may be far from the ground truth in the `2-norm sense,
while still preserving the same relative ranking of nodes, thus constituting a reliable
approximation.

• Sweep error: metric that assesses to what extend a partition obtained by doing a
sweep on the ground truth G-SSL solution differs from the one obtained by doing a
sweep on the approximation vector. For the metric, the similarity between partitions
is assessed by MCC.

• Multi-class error: metric that assesses to what extend a classification obtained
on a set of ground truth G-SSL solutions (multi-class approach) differs from the
classification obtained deciding on approximation vectors output by the algorithms
above. For the metric, the similarity between classifications is assessed by MCC.

• Number of iterations (Gauss-Southwell only): strictly speaking, this is not an
error metric but it complements the error metrics when the Gauss-Southwell method
is employed. This is because, for the Gauss-Southwell, a parameter ✏ is set so that
the algorithm stops when �r�∞ ≤ ✏. Therefore, it is important to: (i) assess the
influence that µ, ✏ and � have on the number of iterations taken by the algorithm to
finish; and (ii) verify, to what extend, Algorithm 4 and Algorithm 10 vary in their
running times as they involve different update equations.

ARMA vs random walks for standard PageRank computation

Experimental setup and goals. In this experiment, we assess the benefits the ARMA-
based extensions of the Power iteration and Gauss Southwell (Algorithms 9 and 10, respec-
tively) over their random walk-based counterparts (Algorithm 3 and 4, respectively). As
implied by our Lemma 13, for standard PageRank computation, the ARMA-based version
of the power method should imply an improvement in convergence rate over the random
walk-based approach. Therefore, we aim to quantify if such improvements are significant.

The experimental setup is as follows: we generate data from the planted partition model
with parameters Cavg = 20, Cin = 18, Cout = 2, N = 1000. Then, 1% of labelled points is ran-
domly sampled. The ground truth classification function is computed through MATLAB
backslash operator and it consists of the PageRank with parameter µ = 0.1 (↵ ≈ 0.9). Then,
we apply Algorithm 9 (ARMA-based power iteration) and Algorithm 3 (Walk-based power
iteration) under the same complexity (K) and report the error in their approximations
using the metrics defined above. The whole procedure is repeated for 20 data realizations.
In addition, this same procedure is employed to compare Algorithm 10 (ARMA-based
Gauss-Southwell) and Algorithm 4 (Walk-based Gauss-Southwell). For these algorithms,
the approximation errors are compared under a common input error tolerance ✏.

88 CHAPTER 4. FAST AND EFFICIENT IMPLEMENTATIONS

4.3. FAST AND EFFICIENT IMPLEMENTATIONS OF G-SSL ON STATIC GRAPHS

Results and discussion.
Figure 4.3: comparison of Algorithm 3 and Algorithm 9. As implied by Lemma 13, this
figure displays that Algorithm 9 has a faster convergence rate than Algorithm 3. After
K = 100 iterations, Algorithm 9 shows improvements of roughly 2 orders of magnitude over
Algorithm 3, which translates into an improved ranking of nodes (second plot from left to
right). Surprisingly, this faster convergence rate and improved node ranking do not reflect
as improvements in the sweep error or the multi-class error. Indeed, the last two figures
on the right show that, for small K, a sweep on the random walk-based approximation
implies a slightly smaller error over doing a sweep on the ARMA-based approximation.
Despite these minor differences, it is important to stress the G-SSL decision rules display
robustness to inaccuracies on the classification function as, already from small K values,
the sweep error and the multi-class error are small.

Figure 4.4: comparison of Algorithm 4 and Algorithm 10. In this figure, we observe
that the ARMA-based Gauss-Southwell method also displays an improvement over the
random walk-based version of the algorithm. In this case, the benefits are more evident
after ✏ < 10−3, as, for this regime, Algorithm 10 terminates in less iterations than Algo-
rithm 4 while attaining less `2-norm error and more accurate rankings. Remarkably, the
sweep error is already very small from rather large values of ✏. This may be due to the
simple graph model that we are considering, where there is only one clear partition of
small Cheeger ratio, hence it is should be doable for the sweep to find this true partition
despite the inaccurate functions. However, the multi-class error displays high values for
large values of ✏ and only after ✏ < 10−3 the true partition is always obtained.

Comparison of methods for L�-PageRank and influence of parameters

Experimental setup and goals. In our next experiment, by using L�-PageRank as the
base method, our goal is to compare the approximation accuracy of Algorithms 7 - 10 and
to assess the impact that changes in µ and � have on these algorithms, so as to determine
the best approach to implement our L�-PageRank.

The experimental setup is as follows: we replicate the setup of the previous experiment.
To define our ground truth classification functions, we consider L�-PageRank for the fol-
lowing parameter combinations: (i) � = 1, µ = 5; (ii) � = 1, µ = 0.1; (iii) � = 5, µ = 5; (iv)
� = 5, µ = 0.1. We stress that these values have been carefully chosen: for setting (i) we
have that µ = 5 > �max, thus implying that the Greens function method (Algorithm 8)
operates in the region where it is guaranteed to converge; setting (ii) allows us to compare
with the previous experiment; setting (iii) allows us to see the impact of increasing � (w.r.t.
(i)), moreover, � = 5 is a common value where the planted partition starts to display a
saturation plateau on its Cheeger ratio, hence it is related to the optimal �. Lastly, setting
(iv) allows to see the impact of either decreasing µ (w.r.t (iii)), or to increase � (w.r.t (ii)).

Results and discussion.
Figure 4.5: comparison of distributed algorithms: (i) Chebyshev (Algorithm 7); (ii) Greens
function (Algorithm 8); and (iii) ARMA-recursions (Algorithm 9). In the figure array,
rows correspond to error metrics and columns correspond to a combination of (�, µ). It
is clear from the figure that the Chebyshev approach outperforms the other methods by
several orders of magnitude. Indeed, in every test, the Chebyshev approach is able min-

CHAPTER 4. FAST AND EFFICIENT IMPLEMENTATIONS 89

4.3. FAST AND EFFICIENT IMPLEMENTATIONS OF G-SSL ON STATIC GRAPHS

Figure 4.3: Comparison of Algorithm 3 (Random walk-based power iteration) vs Algorithm
9 (ARMA-based power iteration).

imize the ranking error, sweep error and multi-class error in a maximum of roughly 30
iterations. This remarkable performance seems to be a consequence of its much lower
sensitivity to changes in � and µ than the other approximation methods. Precisely, let
us consider � = 1, µ = 5 as a baseline setting, since all methods tend to converge to the
true G-SSL solution in only a few iterations for this setting. Then, by increasing � (third
column), we see that the Greens function method severely decreases performance. Even
though the ARMA recursion remains relatively insensitive to changes in �, when the µ

parameter decreases it drastically worsens performance (second column). On the contrary,
the Chebyshev approach cases remains performing remarkably well despite the parameter
variations.

Figure 4.6: sensitivity of Algorithm 10 to µ and �. In this figure, we observe that the
Gauss-Southwell, as its based on the ARMA recursion, is also sensitive to variations in
�, µ. Namely, as we increase �, we increase the number of iterations and the `2 error.
Then, if µ is further decreased these quantities increase even more. Interestingly, the fig-
ures from the sweep error and multi-class error suggest that the introduction of � implies
to more quickly converge towards the true partitions.

90 CHAPTER 4. FAST AND EFFICIENT IMPLEMENTATIONS

4.3. FAST AND EFFICIENT IMPLEMENTATIONS OF G-SSL ON STATIC GRAPHS

Figure 4.4: Comparison of Algorithm 4 (Random walk-based Gauss-Southwell) vs Algo-
rithm 10 (ARMA-based Gauss-Southwell)

CHAPTER 4. FAST AND EFFICIENT IMPLEMENTATIONS 91

4.3. FAST AND EFFICIENT IMPLEMENTATIONS OF G-SSL ON STATIC GRAPHS

(a) γ = 1, µ = 5 (b) γ = 1, µ = 0.1 (c) γ = 5, µ = 5 (d) γ = 5, µ = 0.1

(e) γ = 1, µ = 5 (f) γ = 1, µ = 0.1 (g) γ = 5, µ = 5 (h) γ = 5, µ = 0.1

(i) γ = 1, µ = 5 (j) γ = 1, µ = 0.1 (k) γ = 5, µ = 5 (l) γ = 5, µ = 0.1

(m) γ = 1, µ = 5 (n) γ = 1, µ = 0.1 (o) γ = 5, µ = 5 (p) γ = 5, µ = 0.1

Figure 4.5: Comparison of distributed algorithms: (i) Chebyshev (Algorithm 7); (ii)
Greens function (Algorithm 8); and (iii) ARMA-recursions (Algorithm 9). In the fig-
ure array, rows correspond to error metrics and columns correspond to a combination of
(�, µ).

92 CHAPTER 4. FAST AND EFFICIENT IMPLEMENTATIONS

4.4. FAST UPDATING OF G-SSL ON EVOLVING NETWORKS

Figure 4.6: Sensitivity of the ARMA-based Gauss-Southwell method (Algorithm 10) to µ

and �

4.4 Fast updating of G-SSL on evolving networks

In this section, we address the updating problem for the general G-SSL case. From the
experiments of the last section, it may seem that the value of our ARMA-based extensions
is limited when they are compared to the Chebyshev approach. However, one critical
feature that the ARMA-based algorithms possess that is missing on the Chebyshev method
is the possibility to employ warm restarts. Let us show in Figure 4.7 the effect of using a
warm restart on the ARMA recursion versus using the Chebyshev method (from scratch)
when one node joins the graph. For the plot, we employ one of the planted partition graphs
from the experiments in Section 4.3.5 and use L2-PageRank with µ = 0.01 as the base G-
SSL method. As it can be seen, due to the very accurate initial guess, the ARMA recursion
now outperforms the Chebyshev method by several orders of magnitude. Moreover, as we
will show in this section, the ARMA-based methods allows to cast the update problem
in a local manner, thus permitting sub-linear time algorithms, contrary to the Chebyshev
method which, even though it converges extremely fast, remains a global method that
needs to see all the graph to operate.

4.4.1 Local G-SSL updating via the power method

In this subsection, we use the ARMA recursion from Eq. (4.32) to extend the local update
method of Algorithm 5 to the general family of G-SSL methods. To proceed, let us denote
the steady state of Eq. (4.32) for the initial graph G by arma⇢, (y) and for the evolved
graph G̃ by �arma⇢, (y). We assume that the initial condition y and the set of ARMA
coefficients ⇢, are the same for both G and G̃. Thus, we leverage the warm restarts
p̃(0) = arma⇢, (y) to show the following:

Lemma 15. If G and G̃ share the same set of ARMA coefficients (⇢,) and initial

CHAPTER 4. FAST AND EFFICIENT IMPLEMENTATIONS 93

4.4. FAST UPDATING OF G-SSL ON EVOLVING NETWORKS

Figure 4.7: Effect of using a warm restart on the ARMA recursion versus computing from
scratch via the Chebyshev approach when one node joins the graph.

condition y, then we have that

�arma⇢, (y) = arma⇢, (y) +
1

⇢
�arma⇢, (r) (4.37)

where

r = �S̃ − S�arma⇢, (y) (4.38)

The proof of this Lemma is deferred to Appendix 4.C.

This Lemma generalizes the local update rule of Eq. (4.8) to the general G-SSL set-
ting. Namely, it says that to update the G-SSL solution, then one needs to solve another
G-SSL problem, but that this new one is much more efficient to compute since the initial
distribution r is local in the perturbation. Hence, by computing �arma⇢, (r) via the power
method, we can control the scope of the update according to the number of terms used
in the approximation. Namely, if one uses K-terms, then one propagates the update in
a K-hop vicinity, leading to a method with cost bounded by O(cKM) if, at most, there
are M edges are contained in the K-hop vicinity of a node that changed, and c changes
occur. We detail our proposed local update procedure in Algorithm 11.

We now show that the convergence rate of Algorithm 11 is the same of Algorithm 9
and that the cost of the algorithm is proportional to the update needed.

Lemma 16. Let K-terms be used in the estimation of �arma⇢, (r) in Algorithm 11 and
p̃(K) denote the output of Algorithm 11 under such truncation. Then, the output of Algo-
rithm 11 satisfies

��arma⇢, (y) − p̃
(K)� ≤ � K+1��S̃K+1��1

⇢
�arma⇢, (r)� (4.39)

The proof of this Lemma is deferred to Appendix 4.D.

The implications of this lemma are twofold. On the one hand, it points in the same
direction as Lemma 12, saying that the norm of the update is bounded by the norm of
the perturbation (encoded by �1

⇢
�arma⇢, (r)�). On the other hand, since �1

⇢
�arma⇢, (r)�

94 CHAPTER 4. FAST AND EFFICIENT IMPLEMENTATIONS

4.4. FAST UPDATING OF G-SSL ON EVOLVING NETWORKS

Algorithm 11 Local G-SSL updating via power iteration

Input: µ, arma⇢, (y), R, R̃ and the same ⇢, , � used to compute arma⇢, (y).
Output: p̃r↵(y).

r = �[R̃ −R]arma⇢, (y)
Compute �arma⇢, (r) via Algorithm 9
Return �arma⇢, (y) = arma⇢, (y) +�arma⇢, (r)�⇢

Algorithm 12 Local G-SSL updating via Gauss-Southwell

Input: p, r, R, R̃ and the same ⇢, , � used to compute arma⇢, (y).
Output: Updated G-SSL solution p̃ and updated residual r̃.

p̃(0) = p

r̃(0) = r + [S̃ − S]p
Apply Gauss-Southwell on p̃(0) and r̃(0), store result in p̃ and r̃

Return p̃ and r̃

denotes the update, the Lemma implies that the convergence rate of the algorithm is de-
termined by (i) the size of the update; and (ii) the rate at which K+1

= � �max

2µ+�max
�K+1 → 0,

which is the same of Algorithm 11.

4.4.2 Local G-SSL updating via Gauss-Southwell

We now finalize our extension of algorithms by revamping the Gauss-Southwell method
to perform local updates to the G-SSL solution. In analogy with Algorithm 6, we embed
the local update property by means of the warm restarts. Namely, let p and r denote
the approximate G-SSL solution and residual vector, respectively, output by the Gauss-
Southwell algorithm for graph G. Then, under the assumption that the initial condition
y and the set of ARMA coefficients ⇢, do not change, we use p as the initial guess p̃(0)

when running the Gauss-Southwell for G̃. In math terms, we use the following initial state
of the algorithm

p̃(0) = p (4.40)

and

r̃(0) = ⇢y − (I − S̃)p̃(0) (4.41)

= ⇢y − (I − S̃)p (4.42)

= (I − S)p + r − (I − S̃)p (4.43)

= r + (S̃ − S)p. (4.44)

We identify this residual to be local on the perturbations, thus implying that only a few
entries of r can be triggered beyond the threshold. As a result, with only a few iterations
the Gauss-Southwell will drive these entries below the threshold again. We summarize the
procedure for local G-SSL updating via the Gauss-Southwell method in Algorithm 12.

CHAPTER 4. FAST AND EFFICIENT IMPLEMENTATIONS 95

4.4. FAST UPDATING OF G-SSL ON EVOLVING NETWORKS

4.4.3 Updating via neural networks

In this subsection, we present a novel and promising approach to solve the update prob-
lem which consists on using neural networks. The idea we propose to investigate is the
following: if we pay the price of computing the true G-SSL solution for some sequence of
graphs, can we feed into a neural network the previous G-SSL solution, the perturbation,
and the evolved G-SSL solution (from our training set), so that the network can learn
the necessary mapping to update the G-SSL solution for future graphs not seen during
training?

The Multi-Layer Perceptron

Neural networks are computational models that draw inspiration from biological brain
networks. In a neural network, individual processing units, called neurons, receive infor-
mation from other neurons, process that information, and output information that is used
by other neurons to repeat this task. There are several variants of neural networks, but
one of the most popular is the multilayer perceptron (MLP). In this model, neurons are
organized in layers, and there are always, at least, three of them. The input layer, the
hidden layer(s), and the output layer. Neurons from the input layer send information to
the ones in the hidden layer, these to the successive hidden layers, until the information
reaches the output layer. Each neuron from a layer is connected to each neuron in the
next layer and each connection possess a real-valued coefficient reflecting the importance
if this connection. Under certain assumptions, this type of models are known to be univer-
sal approximators, meaning that they are bound to realize any mapping between vector
spaces. Thus, if a mapping from R

l to R
m is desired, then the input layer must have l

neurons and the output layer m neurons. The hidden layers can have distinct number of
neurons and their number is a design choice.

If we let the information output from each of the neurons in layer k be encoded by the
vector h(k), the value of the MLP at layer k is described by the equation

h(k) = �(W (k)h(k−1) + ✓(k)), (4.45)

where �(⋅) is a non-linear activation function, W (k)
∈ R

jk−1,jk , with jk being the number
of neurons in layer k, is a weight matrix encoding the strength of connections between
layers k−1 and k, and ✓(k) is an offset parameter. Popular choices of �(⋅) are: (i) sigmoid,
(ii) softmax, (iii) tanh, or (iv) ReLU. Each one of them has strengths and drawbacks and
their selection is a design choice. For a more thorough discussion on activation functions
we refer the reader to [131].

Neural networks are trained to learn. In math terms, training means adjusting the values
of the weight matrices within layers so that we fit the transformation for a subset of data-
points for which we know their value in R

l and corresponding image in R
m. Thus, for the

pair (x ∈ Rl, z ∈ Rm), x is fed into the network which outputs hout (the output layer) as
an estimate of z. Then, a loss function is employed to assess how much the network fits
the training data and consequently adjust the weights of the network. The most common
approach to adjust the weights is by means of the back-propagation algorithm. In it, the

96 CHAPTER 4. FAST AND EFFICIENT IMPLEMENTATIONS

4.4. FAST UPDATING OF G-SSL ON EVOLVING NETWORKS

weight between neurons i and j is updated according to the rule

w
(new)
ij = w

(old)
ij − ⇣ �@Loss

@wij

� , (4.46)

where ⇣ is the learning rate. By using the chain rule, Eq. (4.46) can be expressed in terms
of the layers between the output layer and wij and the update ‘back-propagated’, hence
the name.

As mentioned above, MLPs are used to learn mapping between euclidean vector spaces.
However, numerous research efforts have been recently made to leverage the power of neu-
ral networks to solve graph problems [132, 133, 134, 135]. Yet, due to its irregular nature,
graph data poses a challenge for neural networks. The traditional approach to adapt neu-
ral networks to graph data consists on creating a latent space for the vertices by assigning
them a feature vector, thus ‘embedding’ the graph vertices into an euclidean representa-
tion. Moreover, a popular approach consists on using graph convolutional layers, which
basically consist on using graph filters in between regular layers of the MLP (see [132] for
details) so as to use the graph structure as a guide to perform linear combinations of the
euclidean representation of the data.

The MLP for the updating problem

In this work, we consider MLP’s for the following problem: let {Gt ∶ t = 1,2, . . . , tmax} de-
note a sequence of graphs. Let ft = h(Gt, yt) be a transformation applied on the graph
signal y = y1 = y2 = ⋅ ⋅ ⋅ = ytmax in graph Gt. The transformation is the same for all the
graphs in the sequence. Now, if the changes between Gt and Gt+1 are small, then the
functions ft and ft+1 should be similar. Thus, the question we address is the following:
by training the network with the mapping (updates) ft → ft+1 for all t up to ttrain, then,
if the changes in the graph follow a pattern, can the network learn the distribution of
this pattern so that it can perform the updates for future graph changes ft → ft+1 with
t > ttrain?

In contradistinction with the Graph Convolutional Network (GCN) architecture from
[132], or its simplification [133], which rely on the use of convolutional layers to incor-
porate graph information, in this work we propose to use the pure and simpler MLP (no
convolutional layers) to solve this task. The reasons for this choice are: (i) the GCN is
more challenging to train than the simpler MLP; (ii) in the GCN, one needs to see the
entire graph in between its layers (thus constantly having to load it into memory); and
(iii) it appears to be more intricate to encode the information about graph changes in
a GCN that in our simpler, yet motivated by our theoretical results from this chapter,
model. More precisely, in this chapter, we have seen that when one uses the warm restarts,
the ARMA recursions allow to encode the necessary update to be performed by means
of projecting a previous G-SSL solution onto the matrix [R̃ −R], which is then diffused.
Based on this observation, we claim that if we diffuse ft in both Gt+1 and Gt for up to
a given number of steps k, then the resulting diffusion vector in Gt+1 will differ from the
diffusion vector on Gt proportional to the change between Gt+1 and Gt in a k-hop vicinity
from where the diffusion starts. Hence, is a means to encode for the perturbation and the
G-SSL solution. In precise terms, we propose to use the following embedding of the graph

CHAPTER 4. FAST AND EFFICIENT IMPLEMENTATIONS 97

4.4. FAST UPDATING OF G-SSL ON EVOLVING NETWORKS

vertices into a latent euclidean space (feature vector of 2k + 1 entries):

features of node u =

������
(ft)u, (Rft)u, (R

2ft)u,�, (R
kft)u���

Diffusion on Gt

, (R̃ft)u, (R̃
2ft)u,�, (R̃

kft)u���
Diffusion on Gt+1

������
Then, we propose to feed this vector into a multi-layer perceptron with 2k + 1 neurons
in the input layer (feature vector), 1 neuron in the output layer (updated G-SSL value)
and 50 neurons in a hidden layer with ReLU activations. As it can be seen, the feature
vector is straightforward to compute in a recursive manner. Moreover, once the features
are computed, our model acts individually on nodes, thus it can easily scale to massive
graphs as it is highly paralellizable and bound to be trained on any graphic card. Indeed,
our model calls for a local (sublinear) extension in which one only computes the feature
entries for nodes surrounding the perturbations and then the training is performed on
this much smaller subset of data. How to extend the feature vector to effectively code for
changes in the graph locally is one of our immediate future research directions.

4.4.4 Numerical experiments

A Python toolbox for evolutionary stochastic block model

To alleviate the challenge of collecting graph evolving data, we contribute with a Python
3 class that allows to easily generate a temporal sequence of graphs from the Stochastic
Block Model (SBM). The toolbox can be found in the Github repository: [136]

For this toolbox, we developed a class that initially generates a standard SBM realization
and then creates the temporal sequence by recursively perturbing this initial graph ac-
cording to the following user tunable parameters: (a) expected number of nodes joining;
(b) expected number of nodes leaving; (c) probability of a link appearing inside classes;
(d) probability of a link appearing between classes; (e) probability of a link disappearing
inside classes; (f) probability of a link disappearing between classes.

In addition, our class facilitates G-SSL as any object drawn from the class possess the
following attributes: (i) the sequence of graphs; (ii) what is the time index for each graph
in the sequence; (i) the corresponding graph matrices (adjacency matrix, degree matrix,
transition matrix, shifted operator, etc) for each graph in the sequence; (iii) the exact
Pagerank or L�-PageRank vector for each graph in the sequence (for an initial user de-
fined distribution y and parameter µ); and (iv) quick access to the cluster membership of
each node.

The expected number of nodes joining and leaving are drawn according to a Poisson
trial. Moreover, to allow to treat G-SSL in the dynamic setting (which assumes common
initial distribution), labelled points cannot leave the graph. Further, when a node adheres
to the graph it links to members of its cluster following the SBM class membership prob-
abilities. Concerning the arising edges, these can appear between any pair of nodes just
respecting the probability of within class or between class. In addition, new edges can
superpose with existing ones, just increasing their weight by one. With respect to G-SSL
operators, to satisfy equal ARMA coefficients for the entire graph sequence, we assume
an upper bound on �max of 10 for the generalized operator R of L�-PageRank. Yet, these

98 CHAPTER 4. FAST AND EFFICIENT IMPLEMENTATIONS

4.4. FAST UPDATING OF G-SSL ON EVOLVING NETWORKS

Figure 4.8: Approximation accuracy of the local algorithms (Algorithm 11 and Algorithm
12) and the Chebyshev method (Algorithm 7) as the number of fundamental operations
they have performed in the task of updating an L2-PageRank vector

parameters are easy to adapt for specific settings. Lastly, we stress that our toolbox only
uses standard Python libraries (networkx and numpy) so that it can easily be combined
with other libraries.

Impact of local updating algorithms

Experimental setup and goals. In this experiment, we aim to assess the benefits given
by the local updating algorithms derived in this section.

The experimental setup is as follows: we take the same graph model from the experi-
ments of Section 4.3.5, i.e., we use Cavg = 20, Cin = 18, Cout = 2, N = 1000. Then, 1%
of labelled points is sampled at random and our dynamic SBM Python 3 class is used to
make evolve the graph for 20 time steps. We use the following evolutionary parameters:
(a) expected number of nodes joining: 1; (b) expected number of nodes leaving: 1; (c)
probability of a link appearing inside classes: Cin�(25N); (d) probability of a link ap-
pearing between classes: Cout�(25N); (e) probability of a link disappearing inside classes:
Cin�(25N); (f) probability of a link disappearing between classes: Cout�(25N). Despite
these low rates, almost 40% of the nodes in the graph are affected between snapshots due
to the small-world nature of the planted partition. Moreover, we stress that by making
this selection of parameters, the class structure of the SBM is respected. We consider the
L2-PageRank vector with µ = 0.01 as the base G-SSL method. We highlight that since
we have a closed form expression for the elements of degree matrix D2 of the L2-graph,
then taking matrix vector products with the L2-PageRank operator R = L2D−12 can be
done by re-scaling the input vector by [D2]uu = [L

2]uu = D
2
uu +∑v W

2
uv, and then apply

the Laplacian matrix twice to such vector. Thus, we compute the exact L2-PageRank
for each graph realization and use the update algorithms introduced above (Algorithm
11 and Algorithm 12) as a means to update such vectors and predict the L2-PageRank
vector for the following graph realization. In addition, we apply the Chebyshev approach
from scratch in each graph. To assess the benefits of the local update algorithms, we
track the approximation accuracy given by these algorithms as a function of the number
of basic operations that they have performed and report the mean value over the 20 graph

CHAPTER 4. FAST AND EFFICIENT IMPLEMENTATIONS 99

4.4. FAST UPDATING OF G-SSL ON EVOLVING NETWORKS

(a) Std. PageRank (b) L2-PageRank

Figure 4.9: Updating via neural network (proposed) versus the analytic updates via the
power method with warm restart (analytic)

realizations.

Results and discussion. Figure 4.8 displays the approximation accuracy of the local
update algorithms (Algorithm 11 and Algorithm 12) and the Chebyshev method (Algo-
rithm 7) as a function of the number of basic operations they have performed in the task
of updating an L2-PageRank vector. As it can be seen, when addressing changes in the
graph, the local updating approaches developed in this chapter offer a much better solu-
tion than the Chebyshev approach. Indeed, due to the small world nature of the SBM,
for this graph model the local property is less influential as compared to other graphs.
Nonetheless, since the changes are small and the local methods are just a rewriting of the
warm restarts, we can still clearly see that these approaches provide significant savings in
computational power. For instance, in our experiment, it takes around 10 million opera-
tions for the Chebyshev approach to attain a similar amount of error as not performing
any update, while the local power method after 10 million operations is close to two orders
of magnitude below the no-update error. Moreover, if the graph increases in size, then
these differences between the local and the Chebyshev method become more dramatic as
the latter remains global and always starts from scratch. Lastly, we note that the Power
method tends to perform better than the Gauss-Southwell. This observation is consistent
with the observations made in [25], where the power method also leads to better accu-
racy, although, in such work it was not acknowledge that the power method could also be
recasted locally.

Updating a sequence of graphs

Experimental setup and goals In this experiment, we aim to assess the feasibility of
using the neural network to update a sequence of graphs.

The experimental setup is as follows: we generate a sequence of 170 graphs with our
dynamic SBM python class. From these, the first 20 graphs are used as our training set
and the remainder 150 snapshots are used for the test set. The graphs follow simple pa-
rameters: pin = 0.5, pout = 0.05, N = 200, the expected number of nodes joining/leaving
is 1, the probabilities of edges appearing/disappearing within a class is pin�20 and the
probability of nodes appearing/disappearing between classes is pout�20. Then, we train

100 CHAPTER 4. FAST AND EFFICIENT IMPLEMENTATIONS

4.4. FAST UPDATING OF G-SSL ON EVOLVING NETWORKS

the network to learn both standard PageRank updates and L2-PageRank updates with
µ = 0.1. Then, we train the network to learn both PageRank updates and L2-PageRank
updates. For standard PageRank we use R = P as the operator used to compute the
features. For L2-PageRank the natural choice is R = L2D−12 . Yet, interestingly, we have
experienced that, although not being Markovian, using R = P2 = D−12 W2 tends to give
better results in practice, thus we use this choice for our experiment. In both cases we
use features up to k = 3 hops. To train the network, we use the Pytorch model of the
MLP via the ADAM optimizer with learning rate equal to 1e-6 for PageRank and 5e-5 for
L2-PageRank. Since our goal is to overfit the distribution of the updates, then we let the
network overfit its training set until an early stop condition of 10 consecutive loss evalua-
tions increasing is met. To stabilize the training, we use a weight decay of 5e-9. For the
evaluation set, we split the scores from the 20 graphs constituting the training set into 20
epochs and each epoch is randomly splitted for training and evaluating. Then, as baseline,
we compare with the power iteration with warm restarts under the same complexity: i.e.,
if to compute the features we use k-hops, leading to a vector of 2k-matrix-vector products,
then we use power iteration with 2k steps. Lastly, we stress that in both algorithms we
use their predictions at time t as the new input for the predictions at time t + 1, meaning
that we aim for the the method that accumulates less error.

Results and discussion. Figure 4.9 shows the approximation error attained by the neu-
ral network (proposed) versus using analytic updates via the power method with warm
restart (analytic) in the problem of updating the G-SSL solution for a sequence of 150
graphs when both approaches are employed under the same complexity. As it can be seen,
the network is able to cope better with changes by keeping a smaller error for both PageR-
ank and L�-based PageRank as the sequence of graphs progresses. While this example
is simple, these results are encouraging and point in the direction that our proposition
for feature vector is pertinent. Moreover, they open the door to further investigate our
model with more challenging data and network architectures and also cast it in sub-linear
complexity.

CHAPTER 4. FAST AND EFFICIENT IMPLEMENTATIONS 101

Appendix: technical proofs

4.A Proof of Lemma 13

Proof. From (4.32), we have that

p(K) = � 2µ

2µ + �max

�y − � �max

2µ + �max

�Sp(K−1) (4.47)

= arma⇢, (y) + � �max

2µ + �max

�S �arma⇢, (y) − p
(K−1)� . (4.48)

Thus, by re-arranging terms

arma⇢, (y) − p
(K)
= −� �max

2µ + �max

�S �arma⇢, (y) − p
(K−1)� (4.49)

= (−1)K � �max

2µ + �max

�K SK �arma⇢, (y) − p
(0)� (4.50)

Taking the norm finishes the proof. �

4.B Proof of Lemma 14

Proof. By induction, for t = 0 we have:

r(0) = ⇢y − (I − S)p(0) = (I − S)�arma⇢, (y) − p
(0)� (4.51)

Then, by isolating arma⇢, (y), we obtain:

arma⇢, (y) = p
(0)
+ (I − S)−1r(0) = p(0) +

1

⇢
arma⇢, (r

(0)) (4.52)

Now, suppose that arma⇢, (y) = p
(t)
+

1

⇢
arma⇢, (r

(t)) holds for some t. Then, for t + 1 we
have:

r(t+1) = r(t) − (I − S) r(t)u �u = r
(t)
− (I − S)�p(t+1) − p(t)� (4.53)

The proof finishes by re-arranging terms

1

⇢
arma⇢, (r

(t+1)) + p(t+1) =
1

⇢
arma⇢, (r

(t)) + p(t) = arma⇢, (y). (4.54)

�

103

4.C. PROOF OF LEMMA 15

4.C Proof of Lemma 15

Proof. Let us depart with a warm restart on the ARMA recursion as follows:

p̃(1) = ⇢y + S̃ p̃(0) (4.55)

= ⇢y + S̃arma⇢, (y) (4.56)

= arma⇢, (y) − Sarma⇢, (y) + S̃arma⇢, (y) (4.57)

= arma⇢, (y) + �S̃ − S�arma⇢, (y) (4.58)

= arma⇢, (y) + r (4.59)

Then, for the second iteration we have:

p̃(2) = ⇢y + S̃ p̃(1) (4.60)

= ⇢y + S̃ �arma⇢, (y) + r� (4.61)

= arma⇢, (y) − Sarma⇢, (y) + S̃ �arma⇢, (y) + r� (4.62)

= arma⇢, (y) + �S̃ − S�arma⇢, (y) + S̃r (4.63)

= ⇢y + S̃arma⇢, (y) + S̃r (4.64)

= arma⇢, (y) + r + S̃r (4.65)

By successive applications of this procedure, we have that

p̃(∞) = arma⇢, (y) +
∞

�
t=0

 t
S̃
tr (4.66)

= arma⇢, (y) +
1

⇢
�arma⇢, (r) (4.67)

�

4.D Proof of Lemma 16

Proof. From Eq. 4, by truncating computation of �arma⇢, (r) to K terms, we have that

�p̃(∞) − p̃(K)� = � ∞�
t=0

 t
S̃
tr −

K

�
t=0

 t
S̃
tr� (4.68)

= � ∞

�
t=K+1

 t
S̃
tr� (4.69)

= � ∞�
i=0

 i+K+1
S̃
i+K+1r� (4.70)

= � K+1
S̃
K+1

∞

�
i=0

 i
S̃
ir� (4.71)

= � K+1
S̃
K+1 1

⇢
�arma⇢, (r)� (4.72)

≤ � K+1��S̃K+1��1
⇢
�arma⇢, (r)� (4.73)

�

104 CHAPTER 4. FAST AND EFFICIENT IMPLEMENTATIONS

Chapter 5

G-SSL for Internet routing

5.1 Introduction

The main goal of G-SSL is to help solve real world problems. Towards this aim, this
Chapter uses G-SSL to address current issues in the context of Internet routing under
Border Gateway Protocol (BGP).

BGP is the routing protocol that drives the Internet. It makes the exchange of infor-
mation between entities connected to the Internet to be as efficiently as possible. For
example, when a user introduces the address of a site in a web browser, a domain name
system (DNS) server retrieves the IP address of the website, and then BGP determines
what is the optimal route that the data packets need to go through in order to fetch the
website’s information from the host IP.

In more precise terms, the Internet is a network of autonomous systems (ASes), where
an AS refers to a collection of IP prefixes (groups of IP addresses) that is administrated
by a single organization (usually an Internet service provider). In this context, the main
goal of BGP is to exchange information between ASes so that they become aware of what
sequence of ASes needs to be traversed to reach a target IP prefix. To achieve this, when
an AS has a new prefix, the AS advertises the new prefix to its adjacent ASes by means
of an update message that is communicated through BGP speakers. This update message
is received by the adjacent ASes which append to it their Autonomous System Number
(ASN) before retransmitting the message to further adjacent ASes. This process is suc-
cessively repeated until all ASes have received the message, giving them the information
about the sequence of ASes that needs to be followed to reach the aforementioned prefix.
Since there may be various paths to reach the prefix, the key feature of BGP is that it
discards routes containing loops and only preserves the most efficient path according to
some policies agreed between ASes [137].

BGP has established as a protocol of utmost importance, bringing order to the way in
which information travels in the Internet. However, despite its great success, issues af-
fecting it and the Internet traffic controlled by it arise in practice, which, due to the large
scale and rapidly evolving nature of the web, are difficult to measure and characterize.
Next, we detail two of such issues:

105

5.1. INTRODUCTION

Issue of BGP zombies: when a prefix withdraws from the Internet, the origin AS
stops announcing it, expecting that the remainder of ASes become aware that the prefix
is unreachable anymore so that they remove it from the their routers’ tables. Normally,
a large sequence of exchanges between BGP speakers needs to occur before an IP prefix
is fully removed. Such long process is because an AS ignores if a route has ceased from
being announced due to some malfunction occurring in the path towards the prefix, or
because the prefix has been withdrawn at the origin AS. Therefore, in an attempt to main-
tain connections alive, an AS searches in its routing tables for the best alternative path
towards the prefix and communicates this new path to the other ASes. At a next round,
the AS realizes that such path is also invalid and searches for another alternative. Only
when the AS runs out of alternative paths is when it removes the prefix and transmits the
withdrawal of it. Theoretically, this withdrawal process always ends with the prefix being
removed from the routing tables of all BGP routers. Yet, in practice, network operators
occasionally report issues where routers get stuck in the withdrawal process and maintain
routes towards IP prefixes that have been withdrawn by their origin network. This fail-
ure, normally refereed to as stuck routes or zombie routes, is relatively unknown outside
network operator circles and is not well understood despite it being a source of confusion
and a burden to troubleshoot and clean by network operators.

Issue of IP to AS mapping: internet traffic may display, in practice, congestion due
to a mismatch between installed capacity and demand [138], vulnerable nodes to DDoS
attacks [139], or abnormal traffic changes due to facilities outages [140]. These issues
are normally visible, and characterizable, from traceroute measurements of the Internet:
paths of IP addresses accompanied by transit delay measurements made on data packets
that try to reach a host IP. Yet, a limitation for the understanding of these problems and,
consequently, for taking action on them, is that such issues normally affect routers lying
at the boundaries between ASes (in inter-AS links), implying that the tracerout measure-
ments, which lack information about ASes, do not provide the entire picture to address
these issues. Therefore, the design of techniques that allow to infer the AS topology from
traceroute measurements is of prime interest. The main difficulty is that, while one can
map an IP address to its corresponding IP prefix and then retrieve the publicly registered
ASN for that prefix, such procedure fails for inter-AS links. The reason is that a link from
the internet always needs to have two IP addresses from the same prefix, which enforces
ASes to agree on which IP they will use for their inter-AS links, resulting in one of the
ASes having to use an IP from the other AS. Therefore, if we blindly map IP prefixes
to ASNs, then routers at the ASes boundaries, which are the ones of interest, can get
incorrectly mapped. In the literature, two main techniques exist to address the IP to ASN
mapping challenge: [141] and [142]. The recent proposition of [143] merges both tech-
niques to enhance accuracy. However, we stress that [143] is notoriously difficult to use in
practice: first, it requires Alias resolution and AS relationships, which are extremely hard
to compute and error-prone; second, it assumes that the user has control over multiple
remote vantage points spread-out over the Internet. To put into context the cost of such
method, the Center for Applied Internet Data Analysis (CAIDA), which currently main-
tains such project, is restrained to retrieve results from it only every six months due to its
high cost. As a result, better solutions must be sought.

In this chapter, we propose to use G-SSL to address the problems listed above. The

106 CHAPTER 5. G-SSL FOR INTERNET ROUTING

5.2. G-SSL TO CHARACTERIZE THE SCOPE OF BGP ZOMBIES

chapter is divided in two parts: first, Section 5.2 characterizes the scope of zombie out-
breaks in BGP using G-SSL, then Section 5.3 shows that G-SSL is an effective tool to
identify the AS topology from the network of IP addresses. More precisely, Section 5.2
provides the first characterization of BGP zombies. Our study employs a controlled set-
ting using RIS routing beacons and RIS peers, which permit to track routing tables at
numerous ASes for prefixes announced and withdrawn at predetermined intervals. From
the RIS measurements, we construct an expertized dataset that we fed into G-SSL to
infer the state of ASes not measured by RIS peers. By constructing a validation set from
tracerout measurements, we show that the standard PageRank algorithm possesses the
sufficient predictive power to solve this inference task in almost exact accuracy, therefore
there is no need to revert to L�-PageRank. Lastly, we use the inferences given by G-SSL to
characterize the scope of zombie outbreaks, with our results showing that these are likely
to be of considerable size if they appear in transit networks with large AS hegemony.
Section 5.3 shows that L�-PageRank is an effective tool to solve the IP to AS mapping
challenge. To show it, we perform tracerout measurements and build a graph from them.
Then, from publicly available ASNs, we construct labelled datasets with varying degrees
of confidence: strict, loose, weighted. We study the advantages/disadvantages of these
three types of semi-supervision, which offer a trade-off between amount of annotated ex-
amples and how much we can trust them. Our results show that, for the studied dataset,
L�-PageRank with � = 2 can solve this inference task with no errors, contrary to standard
PageRank which always miss-classifies data.

5.2 G-SSL to characterize the scope of BGP zombies

5.2.1 Experimental setup

Our goal is to characterize the scope of zombie propagation in a controlled setting. To
setup terminology, we refer to a BGP zombie as an active Routing Information Base (RIB)
entry for a prefix that has been withdrawn by its origin network, meaning that it is not
reachable anymore. By zombie ASes and zombie peers we refer to ASes and BGP peers,
respectively, whose routers have BGP zombies. We refer to all zombies that correspond
to a same prefix and appear during the same two-hour time window as a zombie outbreak.
The outbreak size is the number of zombie ASes in an outbreak.

To observe BGP zombies one must withdraw an IP prefix from its origin AS and as-
sess whether or not it has been withdrawn from the routing tables of other ASes. To
characterize zombie emergence, we use a controlled environment via RIPE’s Routing In-
formation Service (RIS) BGP beacons [144] and BGP data repository [145]. RIS BGP
beacons are specifically designed to study Internet inter-domain routing. They consist of
a set of IP prefixes (IPv4 and IPv6) that are announced and withdrawn at predetermined
time intervals. More precisely, they are announced every day at 00:00, 04:00, 08:00, 12:00,
16:00, and 20:00 UTC and withdrawn two-hours after their announcement at 02:00, 06:00,
10:00, 14:00, 18:00, and 22:00 UTC, respectively. For this study, we employ 27 beacon pre-
fixes (13 IPv4 and 14 IPv6) announced from Europe, U.S.A, Russia, Japan, and Brazil.
In addition to beacons, RIS provides data collectors which archive the RIBs and BGP
update messages from numerous ASes peering with Internet eXchange Points (IXP). By
using the archives from the RIS collectors, the appearance of BGP zombies can be tracked

CHAPTER 5. G-SSL FOR INTERNET ROUTING 107

5.2. G-SSL TO CHARACTERIZE THE SCOPE OF BGP ZOMBIES

by simply identifying, from all RIS peers, RIBs that retain the beacon prefix after this has
been withdrawn more than 1.5 hours ago. Such 1.5 hour threshold is set empirically to
avoid late withdrawals due to BGP convergence [144], route flap damping [146], or stale
routes [147]. We also monitor the beacon’s visibility by means of a RIPEstat looking glass
[148], so that every time a zombie outbreak is seen, we launch traceroute measurements
towards beacon prefixes from Atlas probes located in zombie ASes. We conducted mea-
surements during the three periods listed in the following table:

Start End #IPv4 outbreaks #IPv6 outbreaks

2017-03-01 2017-04-28 1732 591
2017-10-01 2018-12-28 384 1202
2018-07-19 2018-08-31 520 686

Table 5.1: Measurement periods and number of detected outbreaks for the 27 monitored
beacons.

5.2.2 G-SSL to identify zombies

From the RIS collectors, one can only detect zombies appearing in ASes peering with the
RIS. In this subsection, we show that G-SSL can accurately infer zombies for the remain-
der of ASes.

Towards this goal, we retrieve, for each outbreak, the AS path of zombie entries and
the last valid path for peers that have correctly withdrawn the beacon. Then, we con-
struct a graph in which the ASes represent nodes and consecutive ASes in the AS paths
get connected by an edge. Figure 5.1 illustrates the resulting graph for an outbreak oc-
curring for beacon 84.205.71.0/24 on September 9th 2017 between 22:00 and 00:00. The
green nodes represent RIS peers that have correctly withdrawn the prefix at 22:00. The
red nodes represent zombie peers observed from 22:00 to 00:00. The grey nodes represent
ASes that are not peering with RIS collectors, hence no observations are available for these
ASes, albeit they appear in the collected AS paths.

As it can be seen from Figure 5.1, the RIS measurements do not reveal if the grey nodes
are part of the zombie outbreak or not. Therefore, G-SSL arises as a tool that is tailor-
made to infer the state of such ASes. For this reason, we propose to employ G-SSL with
the result from the RIS collectors as the expertized data: i.e., ASes that correctly with-
draw the beacon (green nodes) constitute the annotated examples of one class, and the
observed zombies (red nodes) constitute the annotated examples of a second class. To per-
form the inferences, we use as G-SSL method the standard PageRank algorithm (� = 1)
in the multi-class setting (as it will be shown in our evaluation below, there is no need
to increase the complexity of the task by including the extra degree of freedom �, since
standard PageRank solves this inference task with almost exact precision). In addition,
to systematically detect the scope of each zombie outbreak, we automatically tune the
regularization parameter of G-SSL, µ, by means of a leave-one-out cross validation proce-
dure: from the set of documented vertices, one element, per class, is selected as a labeled

108 CHAPTER 5. G-SSL FOR INTERNET ROUTING

5.3. L�-PAGERANK FOR IP TO AS MAPPING

multiple paths of IP addresses collected from the traceroutes.

As mentioned in the Introduction, the main challenge in inferring ASes from the net-
work if IP addresses is that, albeit one can recover the publicly available ASN for the
prefixes conforming the network, such IP to ASN mapping is misleading for routers at
the boundaries of ASes. Yet, such mapping remains correct for intra-AS routers and for
some of the routers at the boundaries. Therefore, we propose to use this information as
the expertized data for G-SSL, which we then employ to estimate the true AS for all the
nodes in the graph. The possibility to retrieve the public ASN for IP prefixes gives us the
flexibility to construct labelled datasets with the following varying degrees of confidence:

• Strict expert: a node is labelled to belong to AS X if all of its neighbors are
mapped to AS X via the IP prefix to ASN mapping. As a result, only intra-AS
nodes get labelled, but we can be confident that the AS assigned to the annotated
examples is the correct one.

• Loose expert: all nodes are labelled via the IP prefix to ASN mapping. This
implies that some of our labelled examples are incorrect (for some nodes at the
boundaries of ASes).

• Weighted expert: a node is labelled with the ASes obtained for its own IP and
the ASes for the IPs of its neighboring nodes. Therefore, a node may have multiple
labels if its own IP prefix to ASN mapping is different from the IP prefix to ASN
mapping of its neighbors. If a labelled point normally has a unit weight in G-SSL,
then the weighted expert divides the unit weight into the multiple labels it assigns
to a node.

In this work, we assess the advantages/drawbacks that each of type of semi-supervision
brings when solving the task. Figure 5.5 displays the graph arising from our traceroute
measurements and the annotations given by the experts to vertices. To easy identification
and reference to the graph, we refer to nodes in the graph by means of an ID written in
blue. Green, magenta and brown colored text encode annotations by experts and the true
AS of nodes. Green and magenta, together, coincide with the true AS of nodes. Green
alone constitutes the annotations given the strict expert and magenta stands for the nodes
not annotated by the strict expert. The loose expert tags all nodes, albeit some are in-
correct. In this context, green and brown, together, constitute the annotations given by
loose expert. Notice that brown tags are sometimes incorrect (this can be seen by com-
paring them with magenta). The annotations given by the weighted expert are difficult
to represent in the figure, they will be made precise below.

For the experiments, we compare the standard PageRank algorithm and L�-PageRank
with � = 2. Let us highlight that this task is tailor-made to be addressed with the topol-
ogy arising from L2. The nodes that we aim to accurately classify lie at the boundaries of
ASes. These nodes always have the same class of their 1-hop intra-AS neighbours (nodes
for which we know their true AS label) and always have a different class of nodes that lie
at 2-hop distance from them, which correspond to the intra-AS nodes of the other ASes
(nodes for which we also know their true AS label). Therefore, if we use the L2-graph,
which places a negative edge between 2-hop distant nodes while preserving the positive

CHAPTER 5. G-SSL FOR INTERNET ROUTING 113

5.3. L�-PAGERANK FOR IP TO AS MAPPING

ID IP True AS Labels Sweep-cut Multi-class

AS1 AS2 AS3 AS4 γ = 1 γ = 2 γ = 1 γ = 2

(1) 10.6.66.1 AS2 0 0 0 0 AS2 AS2 AS2 AS2
(2) 62.214.63.145 AS2 0 0 0 0 AS2 AS2 AS2 AS2
(3) 62.214.36.177 AS2 0 1 0 0 AS2 AS2 AS2 AS2
(4) 62.214.37.130 AS2 0 0 0 0 AS2 AS2 AS2 AS2
(5) 213.155.129.188 AS3 0 0 0 0 AS2, AS3 AS3 AS3 AS3
(6) 62.115.141.236 AS3 0 0 1 0 AS2, AS3 AS3 AS3 AS3
(7) 62.115.120.0 AS3 0 0 1 0 AS2, AS3 AS3 AS3 AS3
(8) 213.248.68.71 AS4 0 0 0 0 AS1 n.a AS3 AS3
(9) 63.223.34.74 AS4 0 0 0 0 AS1 n.a AS3 AS1
(10) 63.217.25.146 AS1 0 0 0 0 AS1 AS1 AS1 AS1
(11) 139.162.0.10 AS1 0 0 0 0 AS1 AS1 AS1 AS1
(12) 139.162.27.28 AS1 1 0 0 0 AS1 AS1 AS1 AS1
(13) 62.214.37.134 AS2 0 0 0 0 AS2 AS2 AS2 AS2
(14) 62.115.137.168 AS3 0 0 1 0 AS2, AS3 AS3 AS3 AS3
(15) 62.115.120.6 AS3 0 0 1 0 AS2, AS3 AS3 AS3 AS3
(16) 139.162.0.2 AS1 0 0 0 0 AS1 AS1 AS1 AS1
(17) 62.115.137.166 AS3 0 0 1 0 AS2, AS3 AS3 AS3 AS3
(18) 62.115.121.2 AS3 0 0 1 0 AS2, AS3 AS3 AS3 AS3
(19) 62.115.137.164 AS3 0 0 1 0 AS2, AS3 AS3 AS3 AS3
(20) 62.115.141.238 AS3 0 0 1 0 AS2, AS3 AS3 AS3 AS3
(21) 62.115.141.240 AS3 0 0 1 0 AS2, AS3 AS3 AS3 AS3
(22) 63.223.34.138 AS4 0 0 0 0 AS1 n.a AS3 AS1
(23) 62.115.121.8 AS3 0 0 1 0 AS2, AS3 AS3 AS3 AS3
(24) 62.115.121.4 AS3 0 0 1 0 AS2, AS3 AS3 AS3 AS3
(25) 62.115.141.234 AS3 0 0 1 0 AS2, AS3 AS3 AS3 AS3
(26) 62.115.121.10 AS3 0 0 1 0 AS2, AS3 AS3 AS3 AS3
(27) 62.115.116.159 AS3 0 0 1 0 AS2, AS3 AS3 AS3 AS3
(28) 62.115.116.163 AS3 0 0 1 0 AS2, AS3 AS3 AS3 AS3
(29) 62.115.121.6 AS3 0 0 1 0 AS2, AS3 AS3 AS3 AS3

Table 5.3: Best classification attained by G-SSL using the strict expert labelled data. No
labelled data is available for AS4. Green cells refer to correct inferences and red cells to
incorrect inferences. Cells having n.a. indicate that the node is not assigned to any class
by G-SSL. Cells with more than one tag indicate that G-SSL assigns the node to more
than one class.

5.3.2 Results and discussion

Classification using strict experts

In Table 5.3, we report the classification given by PageRank and L�-PageRank (� = 2) in
the estimation of the ASes from the IP network displayed in Figure 5.5 when the labelled
data is given by the strict expert. The table reports the best classification attained by
each method for a grid of µ values. Green cells refer to correct inferences and red cells to
incorrect inferences. Cells having n.a. indicate that the node is not assigned to any class
by G-SSL. Cells having more than one AS tag indicate the node was assigned to more
than one class by G-SSL.

Table 5.3 indicates that, for the strict expert, L�-PageRank (� = 2) with sweep-cuts
delivers the best possible prediction permitted by the labelled data. Notice that we lack

CHAPTER 5. G-SSL FOR INTERNET ROUTING 115

5.3. L�-PAGERANK FOR IP TO AS MAPPING

annotated examples for AS4, therefore G-SSL does not know about the existence of such
class and can be prone to assign nodes of AS4 (IDs: 8,9,22) to one of the other classes.
Notably, L�-PageRank with � = 2 and the sweep-cuts (designed to identify classes indi-
vidually), classify the data in a way that all the nodes belonging to either AS1, AS2, or
AS3 are assigned into their correct class, and nodes belonging to AS4 (IDs: 8,9,22) are left
unclassified, leaving open the possibility that another class whose label was not collected
exists. On the contrary, doing sweeps on the standard PageRank method (� = 1) leads
to various errors. First, it retrieves some classes with numerous incorrect ASes, leading
to 58% of nodes to be assigned into more than one class. One of such multiple classes is
always the correct one, yet, in practice, there is no way to remove the ambiguity arising
from two classes being assigned to a node, thus counting as a miss-classification. In addi-
tion, standard PageRank is not able to realize that nodes with IDs: 8,9,22 all belong to a
missing class (AS4), incorrectly assigning them to class AS1.

To have a better grasp on why standard PageRank is prone to miss-classify the data
and why L�-PageRank delivers such reliable inferences, let us show next the sorting of
nodes attained by the classification functions (degree-normalized PageRank vectors) of
both methods when they are computed using the labelled points of AS1:

Sorting by standard PageRank (� = 1):

q = [12,11,16,10,���
AS1

9,22,8,���������������������
AS4

7,15,6,14,17,23,26,27,28,29,25,18,20,19,21,24,5,���
AS3

13,4,3,2,1���
AS2

]

Sorting by L�-PageRank (� = 2):

q = [12,16,11,10,���
AS1

5,6,14,19,20,21,26,17,18,23,24,25,27,28,29,7,15,���
AS3

1,2,3,13,4,��
AS2

8,9,22����������������
AS4

]

Please recall that this sorting step is key in the sweep-cut partitioning procedure (see
Algorithm 1 in Section 2.3, page 36): the first element in the listing defines a set, the
first and second elements define a second set, this is done successively until N sets are
collected, and upon which Cheeger ratios are computed and the set one with smallest is
returned as the G-SSL classification. Thus, we can see that standard PageRank retrieves a
classification function that accurately places the nodes belonging to AS1 at the begining,
but just right next to them it places the nodes of AS4. If we observe in detail the graph
from Figure 5.5, we can see that, while nodes of AS1 (IDs: 12,11,16,10) define a cluster
with small Cheeger ratio, the nodes of AS1 together with those of AS4 (IDs:8,9,22) define
an even better cluster that is more balanced and has a smaller Cheeger ratio. Hence, the
sweep retrieves AS1 ∪ AS4 as a partition, which results in the the miss-classification of
the nodes of AS4. On the other hand, if we look at the sorting given by L�-Pagerank
with � = 2, we note the nodes of AS1 are placed correctly at the beginning, then, next
to AS1, we see the nodes of AS3, and the nodes of AS4 have now been deferred to the
tail of the sorting. Therefore, the partition AS1 ∪ AS4 is no longer among the possible
partitions. Indeed, when we consider any mixture of AS1 with the nodes of AS3, such sets
never define a cluster of small Cheeger ratio. The only possible set of small Cheeger ratio
in the search space is AS4, hence it is accurately retrieved. Clearly, the effect of placing
AS4 at the tail of the sorting is due to the emergence of negative edges between the nodes

116 CHAPTER 5. G-SSL FOR INTERNET ROUTING

5.3. L�-PAGERANK FOR IP TO AS MAPPING

(a) AS 1 (b) AS 2 (c) AS 3

Figure 5.6: Classification accuracy of each AS as a function of µ using sweep-cuts on the
annotated examples of the strict expert. No annotated examples are available for AS4.

of AS1 and AS4, which indicate that they should constitute opposite classes.

Now, let us focus on the performance obtained by classifying the data using the multi-class
approach. Table 5.3 shows that both standard PageRank and L�-PageRank accurately
classify all nodes of AS1, AS2 and AS3, but they miss-classify the nodes of AS4. As dis-
cussed above, one of the drawbacks of the multi-class approach is that it always assigns a
class to nodes, forcing us to collect annotated examples of all classes to avoid entire classes
from being miss-classified, which, in this example, is what happens with the nodes of AS4.

For a more fair and complete comparison, we display in Figure 5.6 the performance accu-
racy of classifications given by the sweep-cuts (individually, for each class) as a function
of the G-SSL regularization parameter µ. Figure 5.9a, does the same for the multi-class
classification. From these figures, we observe that the standard PageRank algorithm is,
in general, not very sensitive to changes in µ. On the other hand, � = 2 displays more
sensitivity to variations in µ, implying that efforts must be employed for its optimal selec-
tion. Despite the need for its tuning, the figure indicates that L�-PageRank has a superior
performance for a not so narrow regime of µ values.

Classification using loose experts

Table 5.4 reports the classification obtained by standard PageRank and L�-PageRank
(� = 2) in the estimation of the ASes from the IP network displayed in Figure 5.5 when
the labelled data is given by the loose expert. The table reports the best classification
attained by each method for a grid of µ values. Green cells refer to correct inferences and
red cells to incorrect inferences. Cells having more than one AS tag indicate that the node
was assigned to more than one class by G-SSL.

The table indicates that the introduction of the additional (non-necessarily reliable) la-
belled points, which make expertized data for AS4 available, allows L�-PageRank, in the
multi-class setting, to achieve a perfect a classification result, and, in the sweep-cut set-
ting, to only fail in the assignment of one single node. Indeed, it can be seen that the
sole node for which the sweep-cut fails (ID: 10) is due to it being incorrectly annotated by
the loose expert. Nevertheless, it is remarkable that the multi-class approach profits from
the loose experts and is able to relabel all the nodes incorrectly labelled into their correct

CHAPTER 5. G-SSL FOR INTERNET ROUTING 117

5.3. L�-PAGERANK FOR IP TO AS MAPPING

ID IP True AS Labels Sweep-cut Multi-class

AS1 AS2 AS3 AS4 γ = 1 γ = 2 γ = 1 γ = 2

(1) 10.6.66.1 AS2 0 0 0 0 AS2 AS2 AS2 AS2
(2) 62.214.63.145 AS2 0 1 0 0 AS2 AS2 AS2 AS2
(3) 62.214.36.177 AS2 0 1 0 0 AS2 AS2 AS2 AS2
(4) 62.214.37.130 AS2 0 1 0 0 AS2 AS2 AS2 AS2
(5) 213.155.129.188 AS3 0 0 1 0 AS2, AS3 AS3 AS3 AS3
(6) 62.115.141.236 AS3 0 0 1 0 AS2, AS3 AS3 AS3 AS3
(7) 62.115.120.0 AS3 0 0 1 0 AS2, AS3 AS3 AS3 AS3
(8) 213.248.68.71 AS4 0 0 1 0 AS1, AS4 AS4 AS3 AS4
(9) 63.223.34.74 AS4 0 0 0 1 AS1, AS4 AS4 AS4 AS4
(10) 63.217.25.146 AS1 0 0 0 1 AS1, AS4 AS1, AS4 AS4 AS1
(11) 139.162.0.10 AS1 1 0 0 0 AS1, AS4 AS1 AS1 AS1
(12) 139.162.27.28 AS1 1 0 0 0 AS1, AS4 AS1 AS1 AS1
(13) 62.214.37.134 AS2 0 1 0 0 AS2 AS2 AS2 AS2
(14) 62.115.137.168 AS3 0 0 1 0 AS2, AS3 AS3 AS3 AS3
(15) 62.115.120.6 AS3 0 0 1 0 AS2, AS3 AS3 AS3 AS3
(16) 139.162.0.2 AS1 1 0 0 0 AS1, AS4 AS1 AS1 AS1
(17) 62.115.137.166 AS3 0 0 1 0 AS2, AS3 AS3 AS3 AS3
(18) 62.115.121.2 AS3 0 0 1 0 AS2, AS3 AS3 AS3 AS3
(19) 62.115.137.164 AS3 0 0 1 0 AS2, AS3 AS3 AS3 AS3
(20) 62.115.141.238 AS3 0 0 1 0 AS2, AS3 AS3 AS3 AS3
(21) 62.115.141.240 AS3 0 0 1 0 AS2, AS3 AS3 AS3 AS3
(22) 63.223.34.138 AS4 0 0 0 1 AS1, AS4 AS4 AS4 AS4
(23) 62.115.121.8 AS3 0 0 1 0 AS2, AS3 AS3 AS3 AS3
(24) 62.115.121.4 AS3 0 0 1 0 AS2, AS3 AS3 AS3 AS3
(25) 62.115.141.234 AS3 0 0 1 0 AS2, AS3 AS3 AS3 AS3
(26) 62.115.121.10 AS3 0 0 1 0 AS2, AS3 AS3 AS3 AS3
(27) 62.115.116.159 AS3 0 0 1 0 AS2, AS3 AS3 AS3 AS3
(28) 62.115.116.163 AS3 0 0 1 0 AS2, AS3 AS3 AS3 AS3
(29) 62.115.121.6 AS3 0 0 1 0 AS2, AS3 AS3 AS3 AS3

Table 5.4: Best classification attained by G-SSL using the loose expert labelled data.
Green cells refer to correct inferences and red cells to incorrect inferences. Cells with more
than one tag indicate that G-SSL assigns the node to more than one class.

class. Concerning the standard PageRank algorithm, we can see that it does not really
takes advantage from the loose experts. On the one hand side, the two nodes incorrectly
labelled by the expert (ID: 8,10) are the ones where PageRank fails (multi-class approach),
hence lacks the ability that L�-PageRank has of to relabeling data into their correct class.
On the other hand, we see that the loose expert worsens, with respect to the strict expert,
the classification via sweep-cuts as we see an increment of nodes assigned into more than
one class from 58% to 82%.

Lastly, we display in Figure 5.7 the accuracy of classifications given by the sweep-cuts
(individually, for each class) as a function of the G-SSL regularization parameter µ. In
Figure 5.9b, we display the same for the multi-class classification approach. These figures
still verify that the standard PageRank algorithm tends to not display changes in its per-
formance with changes in µ. In the case of � = 2, it can be seen that for the sweep on the
labels of AS4, more care needs to be taken in the tuning of µ with respect to other ASes.
On the multi-class setting, � = 2 attains perfect accuracy but the regime of µ values that

118 CHAPTER 5. G-SSL FOR INTERNET ROUTING

5.3. L�-PAGERANK FOR IP TO AS MAPPING

(a) AS 1 (b) AS 2 (c) AS 3 (d) AS 4

Figure 5.7: Classification accuracy of each AS as a function of µ using sweep-cuts on the
annotated examples of the loose expert.

permits for it is narrow. In general, other values of µ do not attain perfect accuracy, but
for most values � = 2 still displays a superior performance over � = 1.

Classification using weighted experts

Table 5.5 reports the classification obtained by standard PageRank and L�-PageRank
(� = 2) in the estimation of the ASes from the IP network displayed in Figure 5.5 when
the labelled data is given by the weighted expert. The table reports the annotations given
by the weighted expert and the weight assigned to each labelled example. The table re-
ports the best classification attained by each method for a grid of µ values. Green cells
refer to correct inferences and red cells to incorrect inferences. Cells having more than
one AS tag indicate that the node was assigned to more than one class by G-SSL.

The table indicates that L�-PageRank (� = 2) still outperforms standard PageRank, yet
the weighted expert does not permit L�-PageRank to attain predictions without errors.
Indeed, the weighted expert worsens the performance of L�-PageRank with respect to the
loose expert. For instance, the classification via sweep-cuts now increases the number of
nodes assigned to more than one class. We note that such miss-classifications arise from
the sweep for AS4, which detects all the nodes from AS1 as being of class AS4. The error
is due to unreliable annotated examples of AS4, in which the weighted expert incorrectly
says that 3 out of the 4 nodes belonging to AS1 are of class AS4. This illustrates the
limits of G-SSL to errors in annotated data. It is remarkable that L�-PageRank, in the
multi-class approach, is able to override most of the incorrectly labelled points by just
failing to accurately detect the AS of one node (ID: 10). Standard PageRank displays
no difference between the loose expert and the weighted expert. The number of nodes
assigned to more than one class via sweeps-cuts remains in 58%, and the multi-class ap-
proach still miss-classifies the same two vertices (IDs: 8,10).

The accuracy of classifications given by the sweep-cuts (individually, for each class) as
a function of the G-SSL regularization parameter µ is shown in Figure 5.8. Figure 5.9c
reports the same for the multi-class approach. The figures indicate that, for the weighted
expert, standard PageRank remains not very sensitive to µ and L�-PageRank is more
sensitive, but displays a superior performance for a wide range of µ values.

CHAPTER 5. G-SSL FOR INTERNET ROUTING 119

5.3. L�-PAGERANK FOR IP TO AS MAPPING

ID IP True AS Labels Sweep-cut Multi-class

AS1 AS2 AS3 AS4 γ = 1 γ = 2 γ = 1 γ = 2

(1) 10.6.66.1 AS2 0 0 0 0 AS2 AS2 AS2 AS2
(2) 62.214.63.145 AS2 0 0.5 0 0 AS2 AS2 AS2 AS2
(3) 62.214.36.177 AS2 0 1 0 0 AS2 AS2 AS2 AS2
(4) 62.214.37.130 AS2 0 0.5 0.5 0 AS2 AS2 AS2 AS2
(5) 213.155.129.188 AS3 0 0.5 0.5 0 AS2, AS3 AS3 AS3 AS3
(6) 62.115.141.236 AS3 0 0 1 0 AS2, AS3 AS3 AS3 AS3
(7) 62.115.120.0 AS3 0 0 1 0 AS2, AS3 AS3 AS3 AS3
(8) 213.248.68.71 AS4 0 0 0.5 0.5 AS1, AS4 AS4 AS3 AS4
(9) 63.223.34.74 AS4 0 0 0.5 0.5 AS1, AS4 AS4 AS4 AS4
(10) 63.217.25.146 AS1 0.5 0 0 0.5 AS1, AS4 AS1, AS4 AS4 AS4
(11) 139.162.0.10 AS1 0.5 0 0 0.5 AS1, AS4 AS1, AS4 AS1 AS1
(12) 139.162.27.28 AS1 1 0 0 0 AS1, AS4 AS1, AS4 AS1 AS1
(13) 62.214.37.134 AS2 0 0.5 0.5 0 AS2 AS2 AS2 AS1
(14) 62.115.137.168 AS3 0 0 1 0 AS2, AS3 AS3 AS3 AS3
(15) 62.115.120.6 AS3 0 0 1 0 AS2, AS3 AS3 AS3 AS3
(16) 139.162.0.2 AS1 0.5 0 0 0.5 AS1, AS4 AS1, AS4 AS1 AS1
(17) 62.115.137.166 AS3 0 0 1 0 AS2, AS3 AS3 AS3 AS3
(18) 62.115.121.2 AS3 0 0 1 0 AS2, AS3 AS3 AS3 AS3
(19) 62.115.137.164 AS3 0 0 1 0 AS2, AS3 AS3 AS3 AS3
(20) 62.115.141.238 AS3 0 0 1 0 AS2, AS3 AS3 AS3 AS3
(21) 62.115.141.240 AS3 0 0 1 0 AS2, AS3 AS3 AS3 AS3
(22) 63.223.34.138 AS4 0 0 0.5 0.5 AS1, AS4 AS4 AS4 AS4
(23) 62.115.121.8 AS3 0 0 1 0 AS2, AS3 AS3 AS3 AS3
(24) 62.115.121.4 AS3 0 0 1 0 AS2, AS3 AS3 AS3 AS3
(25) 62.115.141.234 AS3 0 0 1 0 AS2, AS3 AS3 AS3 AS3
(26) 62.115.121.10 AS3 0 0 1 0 AS2, AS3 AS3 AS3 AS3
(27) 62.115.116.159 AS3 0 0 1 0 AS2, AS3 AS3 AS3 AS3
(28) 62.115.116.163 AS3 0 0 1 0 AS2, AS3 AS3 AS3 AS3
(29) 62.115.121.6 AS3 0 0 1 0 AS2, AS3 AS3 AS3 AS3

Table 5.5: Best classification attained by G-SSL using the weighted expert labelled data.
The table reports the annotations given by the expert and their weights. Green cells refer
to correct inferences and red cells to incorrect inferences. Cells with more than one tag
indicate that G-SSL assigns the node to more than one class.

(a) AS 1 (b) AS 2 (c) AS 3 (d) AS 4

Figure 5.8: Classification accuracy of each AS as a function of µ using sweep-cuts on the
annotated examples of the weighted expert.

120 CHAPTER 5. G-SSL FOR INTERNET ROUTING

5.3. L�-PAGERANK FOR IP TO AS MAPPING

(a) Strict expert (b) Loose expert (c) Weighted expert

Figure 5.9: Classification accuracy of all ASes as a function of µ using the multi-class
approach.

CHAPTER 5. G-SSL FOR INTERNET ROUTING 121

Chapter 6

Conclusions

Summary

In this thesis we started with the aim of addressing some of the limitations of G-SSL,
which tends to only be reliable under simple data settings. Towards this aim, in Chapter
1, we recalled essential results from graph theory, random walk theory and graph signal
processing. Special emphasis was given to the diffusion aspect of random walkers and the
heat equation. Moreover, graph signals were introduced and motivations for the different
definitions of Laplacian matrices were given along with their implications on the defini-
tion and impact on the graph Fourier transform. It was also highlighted that these results
permit to extend the concept of filter from signal processing to graph signals.

In chapter 2, we gave a thorough review of the field of G-SSL that we believe was missing.
In the first part, we covered the traditional approach to G-SSL as a Tikhonov regulariza-
tion problem. We reviewed the different structural forcing proposed in the literature and
discussed their motivations and relationships. From the reviewed methods, it was argued
that the PageRank algorithm is the most performing proposition, yet it suffers from biased
outputs when the labelled data is unbalanced. We covered works showing that G-SSL suf-
fers from the curse of dimensionality issue when the unlabelled data grows infinitely large.
We introduced results indicating that the source of the issue is the Laplacian kernel and
we gave special emphasis to the solution based on Laplacian iterations as it was a source
of motivation for this work. In the second part of Chapter 2, we pointed that G-SSL can
also be addressed from the perspective of graph partitioning. We introduced graph-cut
problems and stressed that they are unfeasible to solve exactly, but that can be relaxed by
G-SSL. Then, we revisited and re-interpreted results originally developed in the context of
local graph clustering to show that the PageRank method, in the G-SSL framework, can
also be used to confine diffusion processes and reveal clusters in the graph. Then, it was
stressed that the so-called sweep-cut technique complements those results and impacts
G-SSL overriding the need to collect balanced labelled points for all classes by allowing to
find them individually.

Chapter 3 proposed our main contribution: the L�-PageRank G-SSL method, an ex-
tension of PageRank based on (non-necessarily integers) powers of the (combinatorial)
Laplacian matrix. The analysis given in the Chapter shows that the added degree of free-
dom offers more versatility than standard PageRank, providing the potential to address
some of the limitations of G-SSL. Precisely, we showed that when clusters are obtained via

123

the sweep-cut procedure, L�-PageRank can significantly outperform standard PageRank.
Furthermore, we showed that the multi-class approach also benefits from our proposi-
tion, as our method significantly overrides the issue of unbalanced labelled data. These
improvements were possible due to a novel interpretation we did of the L� operator, in
which we showed that for each value of �, it gives rise to new graphs with the potential
to improve G-SSL. We showed that two regimes of new graphs appear: (i) � < 1 in which
graphs of positive edges are created and (ii) � > 1 that leads to signed graphs. Concerning
the regime � < 1, we showed that our L�-PageRank corresponds to an extension of the
regular PageRank algorithm to Lévy processes, in which random walkers are given the
ability to perform long-distant jumps in a single step. We showed by means of numerical
experimentation that the Lévy flights can improve the classification functions when the
data presents complex local structures. Concerning the regime of � > 1, we showed that
the richness of such graphs comes from the sign of edges, allowing to code for similarities
but also to emphasize dissemblance between nodes in the graph. Thus, while 2 nodes can
only be disconnected on the initial graph, they can ‘repulse’ themselves in these topologies.
Notably, we have shown that there is an optimal graph (related to an optimal �) on which
the classification will lead to a maximal performance. We proposed a simple yet efficient
algorithm to estimate the optimal � and hence determine the best topology for analyzing
a given dataset.

Chapter 4 investigated fast and efficient implementations that avoid the costly matrix
inversion demanded by G-SSL methods. We contributed with an extension of the success-
ful algorithms of power iteration and Gauss-Southwel, state-of-the-art methods for fast
PageRank computation, to L�-PageRank. Moreover, we extended the dynamic versions
of such algorithms to L�-PageRank, allowing us to update the solution of L�-PageRank
when facing evolving graph structures at a much smaller cost than re-computing the solu-
tion from scratch every time the graph changes. These extensions were possible because
L�-PageRank was shown to be a low pass graph signal filter, for which the field of Graph
Sinal Processing had proposed efficient implementations via ARMA recursions and Cheby-
shev polynomials. We elaborated on the ARMA recursions to extend the aforementioned
algorithms. Our assessment showed that, while the Chebyshev polynomials remain the
most effective approach to compute the solution of L�-PageRank from scratch, they do not
have the key feature of the ARMA-based algorithms: the warm restart, which proves in-
strumental to accelerate the computation of L�-PageRank by several orders of magnitude
when the graph evolves. In addition, we explored the feasibility of using neural networks to
solve the update problem. We addressed the question that if we show a sequence of graphs
with their exact G-SSL solutions to a neural network, then can this learn the mapping to
update the G-SSL solution when the graph evolves? We proposed a procedure to encode
for graph changes as features living on the graph vertices that are later used to train a
Multi-Layer Perception. Our preliminary results indicate that the neural network bears
the potential to effectively update the solution of G-SSL as it was able to outperform the
analytic ARMA expression for an equal computational complexity.

Chapter 5 used G-SSL to address current issues in Internet routing. We used G-SSL
to provide the first characterization of BGP zombies. Then, we used G-SSL to solve the
IP to AS mapping challenge. For our characterization of zombies, our study spans for
over a year and a half of data collected in a controlled setting via RIS beacons and RIS

124 CHAPTER 6. CONCLUSIONS

collectors. From RIS collectors we tracked zombie outbreaks and constructed a set of an-
notated examples that were fed into G-SSL to predict the scope of outbreaks beyond RIS
peers. G-SSL (std. PageRank) inferred zombie ASes with 97% accuracy and normal ASes
with 99% accuracy according to a validation dataset build from tracerout measurements.
G-SSL inferences were used to then characterize the scope of zombie outbreaks. Results
indicate that oubreaks affect, on average, 10% (IPv4) and 17% (IPv6) of the total ASes in
our dataset. Moreover, we found that the scope of outbreaks is related to the importance
of transit networks affected. Then, we used L�-PageRank to solve the IP to AS map-
ping challenge. We built a graph from tracerout measruements and constructed labelled
datasets using the publicly available ASNs with varying degrees of reliability. We showed
that standard PageRank always miss-classified data, while L�-PageRank (� = 2) can solve
the task without errors. We showed that a strict expert may be very reliable but may
not collect annotated examples from all classes. In such cases, we showed that sweep-cuts
offer the best solution to classify data, allowing to leave unclassified nodes whose label
was not collected. Then, we showed that when the expert is unreliable, classifying data in
the multi-class setting can override incorrect labelled points, while sweep-cuts are likely
to assign nodes to more than one class.

Future research

The procedures proposed in this work open various research directions. The first of them
would be the extension of other standard clustering tools, such as Unsupervised Learning
via Spectral Clustering, to exploit the richer L� topologies proposed in this work. Indeed,
the potential attained by the L�-graphs to be applied in other contexts calls for a more
in-depth study on what determines their optimal topology. We gave initial results indi-
cating why � = 2, which creates negative edges between two-hop distant nodes, normally
constitutes a reliable topology, yet larger � values minimize the Cheeger ratio even more
before it starts increasing. This lack of insights on what topological properties determine
the optimal � opens a research direction. In the same line of the optimal topology, im-
provements over our algorithm for the optimal estimation of � should also be sought. For
instance, our algorithm has to find a set via random walks with an empirically chosen
threshold of 0.7, which is far from being optimal. In addition, we recall that the notion
of optimal � remains valid only for the sweep-cut partition technique and that insights on
what determines the optimal � for the multi-class approach are missing. Another calling
research direction is the interplay between � and � in the generalized optimization frame-
work. It may be interesting to see if such framework can lead to novel partition algorithms
that find clusters with other metrics more significant than the Cheeger ratio. Still, on the
parameter side, we stress that G-SSL also depends on the selection of the µ parameter
for which we lack insights on how to optimally tune. It may be interesting to see if one
can address the optimal µ tuning from the results on the sweep-cut, suggesting that one
may chose the best µ as the one that leads to the sharpest drop in the sorted scores. In a
different direction, we showed that G-SSL as a diffusion process is driven by a Helmholtz
PDE equation. Therefore, it is calling to explore if other diffusion processes driven by
other master equations can be more meaningful for certain applications. Indeed, still on
the diffusion side, it is an open problem to see if the L�-PageRank, for the regime � > 1,
can be given an interpretation as random walkers operating on signed graphs. Lastly, we
recall that a fundamental open problem in G-SSL is the relationship between the other
G-SSL propositions covered in this thesis with the graph topology and if the sweeps can

CHAPTER 6. CONCLUSIONS 125

be reliably extended to them.

From the algorithmic side, we have left various open problems that call for immediate
further research. The principal is the efficient computation of the L�-graphs. The fact
that L�-PageRank requires to re normalize by the generalized degree matrix D� implies
that one needs to estimate the latter via recursive matrix-matrix products. We showed
that � = 2 overrides this issue because it has a closed form expression consisting on in-
formation only from the one-hop vicinity of nodes, however, for larger powers one needs
information from far-distant nodes. One possible way to amend the issue can be to find
closed form expressions for D� (� ∈ Z) and then design distributed techniques so that each
node collects the necessary information to compute D� . Indeed, another concern is that we
are not aware of any way to estimate the L�-graphs for fractional powers without relying
on eigendecompositions. This challenges pave the way to explore other approaches beyond
the closed form solutions to compute G-SSL. At the end, G-SSL is just a function on the
graph vertices that is estimated from the labelled points according to some optimization
problem, thus it may be worth exploring other approaches to reach such function, such as
neural networks. Concerning neural networks, we have proposed one to solve the update
problem and, while the idea is delivering promising results, it still operates at the entire
graph level. Thus, it calls for a local extension that allows to obtain sublinear complexity
in order to be competitive with the ARMA-based updating algorithms. Indeed, it would
be of utmost importance to find a way to recast the Chebyshev method in a way that it
can use warm restarts due to its high efficiency.

Concerning our characerization of BGP zombies, the immediate work to perform is to
verify how much our results are reminiscent of what occurs in wild. It is important to
assess if detection of zombies in the wild demands to go beyond the standard PageRank
algorithm. In such case, L�-PageRank arises as a natural method to consider. With re-
spect to the IP to AS mapping problem, the immediate research direction is to extrapolate
our experiments to a larger dataset as we only provided a proof of concept in a small of
graph of 29 IP addresses. Larger datasets may better reveal differences/advantages of
the various experts and may better expose the limits of using � = 2 (which we stuck to
it due to its easy interpretation and excellent results in our dataset). In such case, we
must consider other � values and also assess the relevance our algorithm for the automatic
estimation of the optimal � in such real world scenario.

126 CHAPTER 6. CONCLUSIONS

Bibliography

[1] K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for image recognition,”
in Proceedings of the IEEE conference on computer vision and pattern recognition,
pp. 770–778, 2016.

[2] R. C. Deo, “Machine learning in medicine,” Circulation, vol. 132, no. 20, pp. 1920–
1930, 2015.

[3] B. C. Bonoto, V. E. de Araújo, I. P. Godói, L. L. P. de Lemos, B. Godman, M. Ben-
nie, L. M. Diniz, and A. A. G. Junior, “Efficacy of mobile apps to support the
care of patients with diabetes mellitus: a systematic review and meta-analysis of
randomized controlled trials,” JMIR mHealth and uHealth, vol. 5, no. 3, p. e4, 2017.

[4] J. E. Mück, B. Ünal, H. Butt, and A. K. Yetisen, “Market and patent analyses of
wearables in medicine,” Trends in biotechnology, vol. 37, no. 6, pp. 563–566, 2019.

[5] K. Avrachenkov, P. Gonçalves, A. Legout, and M. Sokol, “Classification of content
and users in bittorrent by semi-supervised learning methods,” in International Wire-
less Communications and Mobile Computing Conference (3rd International Work-
shop on Traffic Analysis and Classification), (Cyprus), August 2012. Best paper
award.

[6] A. Subramanya and J. Bilmes, “Soft-supervised learning for text classification,” in
Proceedings of the Conference on Empirical Methods in Natural Language Process-
ing, EMNLP ’08, (Stroudsburg, PA, USA), pp. 1090–1099, Association for Compu-
tational Linguistics, 2008.

[7] W. Hu, J. Gao, J. Xing, C. Zhang, and S. Maybank, “Semi-supervised tensor-based
graph embedding learning and its application to visual discriminant tracking,” IEEE
transactions on pattern analysis and machine intelligence, vol. 39, no. 1, pp. 172–188,
2016.

[8] H. Cecotti, “Active graph based semi-supervised learning using image matching:
application to handwritten digit recognition,” Pattern Recognition Letters, vol. 73,
pp. 76–82, 2016.

[9] F. De Morsier, M. Borgeaud, V. Gass, J.-P. Thiran, and D. Tuia, “Kernel low-rank
and sparse graph for unsupervised and semi-supervised classification of hyperspectral
images,” IEEE Transactions on Geoscience and Remote Sensing, vol. 54, no. 6,
pp. 3410–3420, 2016.

127

BIBLIOGRAPHY

[10] M. Sokol, Graph-based semi-supervised learning methods and quick detection of cen-
tral nodes. Theses, Université Nice Sophia Antipolis, Apr. 2014.

[11] R. Andersen, F. Chung, and K. Lang, “Local graph partitioning using pagerank vec-
tors,” in 2006 47th Annual IEEE Symposium on Foundations of Computer Science
(FOCS’06), pp. 475–486, IEEE, 2006.

[12] M. Belkin, I. Matveeva, and P. Niyogi, “Regularization and semi-supervised learning
on large graphs,” in International Conference on Computational Learning Theory,
pp. 624–638, Springer, 2004.

[13] D. Zhou, O. Bousquet, T. N. Lal, J. Weston, and B. Schölkopf, “Learning with
local and global consistency,” in Advances in neural information processing systems,
pp. 321–328, 2004.

[14] D. Zhou and C. J. Burges, “Spectral clustering and transductive learning with multi-
ple views,” in Proceedings of the 24th international conference on Machine learning,
pp. 1159–1166, ACM, 2007.

[15] X. Zhou and M. Belkin, “Semi-supervised learning by higher order regularization,”
in Proceedings of the Fourteenth International Conference on Artificial Intelligence
and Statistics (G. Gordon, D. Dunson, and M. Dudk, eds.), vol. 15 of Proceedings
of Machine Learning Research, (Fort Lauderdale, FL, USA), pp. 892–900, PMLR,
11–13 Apr 2011.

[16] R. Andersen, F. R. K. Chung, and K. J. Lang, “Using pagerank to locally partition
a graph,” Internet Mathematics, vol. 4, pp. 35–64, 01 2007.

[17] R. Andersen and F. Chung, “Detecting sharp drops in pagerank and a simplified
local partitioning algorithm,” in Theory and Applications of Models of Computation
(J.-Y. Cai, S. B. Cooper, and H. Zhu, eds.), (Berlin, Heidelberg), pp. 1–12, Springer
Berlin Heidelberg, 2007.

[18] G. Jeh and J. Widom, “Scaling personalized web search,” in Proceedings of the 12th
international conference on World Wide Web, pp. 271–279, Acm, 2003.

[19] T. Maehara, T. Akiba, Y. Iwata, and K.-i. Kawarabayashi, “Computing person-
alized pagerank quickly by exploiting graph structures,” Proceedings of the VLDB
Endowment, vol. 7, no. 12, pp. 1023–1034, 2014.

[20] L. Page, S. Brin, R. Motwani, and T. Winograd, “The pagerank citation ranking:
Bringing order to the web.,” tech. rep., Stanford InfoLab, 1999.

[21] P. Berkhin, “Bookmark-coloring algorithm for personalized pagerank computing,”
Internet Mathematics, vol. 3, no. 1, pp. 41–62, 2006.

[22] E. Isufi, A. Loukas, A. Simonetto, and G. Leus, “Autoregressive moving average
graph filtering,” IEEE Transactions on Signal Processing, vol. 65, no. 2, pp. 274–
288, 2016.

128 BIBLIOGRAPHY

BIBLIOGRAPHY

[23] D. I. Shuman, P. Vandergheynst, and P. Frossard, “Chebyshev polynomial approxi-
mation for distributed signal processing,” in 2011 International Conference on Dis-
tributed Computing in Sensor Systems and Workshops (DCOSS), pp. 1–8, IEEE,
2011.

[24] M. Yoon, W. Jin, and U. Kang, “Fast and accurate random walk with restart on dy-
namic graphs with guarantees,” in Proceedings of the 2018 World Wide Web Confer-
ence, pp. 409–418, International World Wide Web Conferences Steering Committee,
2018.

[25] N. Ohsaka, T. Maehara, and K.-i. Kawarabayashi, “Efficient pagerank tracking in
evolving networks,” in Proceedings of the 21th ACM SIGKDD International Con-
ference on Knowledge Discovery and Data Mining, pp. 875–884, ACM, 2015.

[26] B. Hayes, “Computing science: Graph theory in practice: Part i,” American Scien-
tist, vol. 88, no. 1, pp. 9–13, 2000.

[27] J. M. Harris, J. L. Hirst, and M. J. Mossinghoff, Combinatorics and graph theory,
vol. 2. Springer, 2008.

[28] R. Albert, H. Jeong, and A.-L. Barabási, “Internet: Diameter of the world-wide
web,” nature, vol. 401, no. 6749, p. 130, 1999.

[29] J. Scott, “Social network analysis,” Sociology, vol. 22, no. 1, pp. 109–127, 1988.

[30] P. Gai and S. Kapadia, “Contagion in financial networks,” Proceedings of the Royal
Society A: Mathematical, Physical and Engineering Sciences, vol. 466, no. 2120,
pp. 2401–2423, 2010.

[31] F. Wang, U. Srinivasan, S. Uddin, and S. Chawla, “Application of network analysis
on healthcare,” in Proceedings of the 2014 IEEE/ACM International Conference on
Advances in Social Networks Analysis and Mining, pp. 596–603, IEEE Press, 2014.

[32] J.-F. Rual, K. Venkatesan, T. Hao, T. Hirozane-Kishikawa, A. Dricot, N. Li,
G. F. Berriz, F. D. Gibbons, M. Dreze, N. Ayivi-Guedehoussou, et al., “Towards
a proteome-scale map of the human protein–protein interaction network,” Nature,
vol. 437, no. 7062, p. 1173, 2005.

[33] Z. Zhang and M.-Y. Chow, “Convergence analysis of the incremental cost consensus
algorithm under different communication network topologies in a smart grid,” IEEE
Transactions on Power Systems, vol. 27, no. 4, pp. 1761–1768, 2012.

[34] J. Costantine, S. Al-Saffar, C. G. Christodoulou, K. Y. Kabalan, and A. El-Hajj,
“The analysis of a reconfigurable antenna with a rotating feed using graph models,”
IEEE Antennas and Wireless Propagation Letters, vol. 8, pp. 943–946, 2009.

[35] B. Krishnamachari, D. Estrin, S. B. Wicker, et al., “The impact of data aggregation
in wireless sensor networks.,” in ICDCS workshops, vol. 578, 2002.

[36] R. M. Gray et al., “Toeplitz and circulant matrices: A review,” Foundations and
Trends® in Communications and Information Theory, vol. 2, no. 3, pp. 155–239,
2006.

BIBLIOGRAPHY 129

BIBLIOGRAPHY

[37] A. Condon and R. M. Karp, “Algorithms for graph partitioning on the planted
partition model,” Random Structures & Algorithms, vol. 18, no. 2, pp. 116–140,
2001.

[38] D. Ghoshdastidar and A. Dukkipati, “Consistency of spectral partitioning of uniform
hypergraphs under planted partition model,” in Advances in Neural Information
Processing Systems, pp. 397–405, 2014.

[39] C. Tsourakakis, “Streaming graph partitioning in the planted partition model,” in
Proceedings of the 2015 ACM on Conference on Online Social Networks, pp. 27–35,
ACM, 2015.

[40] E. Mossel, J. Neeman, and A. Sly, “Reconstruction and estimation in the planted
partition model,” Probability Theory and Related Fields, vol. 162, pp. 431–461, Aug
2015.

[41] A. Decelle, F. Krzakala, C. Moore, and L. Zdeborová, “Asymptotic analysis of the
stochastic block model for modular networks and its algorithmic applications,” Phys-
ical Review E, vol. 84, no. 6, p. 066106, 2011.

[42] E. Abbe, “Community detection and stochastic block models: Recent develop-
ments,” Journal of Machine Learning Research, vol. 18, no. 177, pp. 1–86, 2018.

[43] A. N. Langville and C. D. Meyer, Google’s PageRank and beyond: The science of
search engine rankings. Princeton University Press, 2011.

[44] M. E. Newman, “A measure of betweenness centrality based on random walks,”
Social networks, vol. 27, no. 1, pp. 39–54, 2005.

[45] M. H. Ribeiro, P. H. Calais, V. A. Almeida, and W. Meira Jr, “” everything i
disagree with is# fakenews”: Correlating political polarization and spread of misin-
formation,” arXiv preprint arXiv:1706.05924, 2017.

[46] P. Pons and M. Latapy, “Computing communities in large networks using random
walks,” in International symposium on computer and information sciences, pp. 284–
293, Springer, 2005.

[47] W. Wei and B. Selman, “Accelerating random walks,” in International Conference
on Principles and Practice of Constraint Programming, pp. 216–232, Springer, 2002.

[48] M. Molloy and B. Reed, “A critical point for random graphs with a given degree
sequence,” Random structures & algorithms, vol. 6, no. 2-3, pp. 161–180, 1995.

[49] F. Neumann and C. Witt, “Ant colony optimization and the minimum spanning tree
problem,” Theoretical Computer Science, vol. 411, no. 25, pp. 2406–2413, 2010.

[50] D. Aldous and J. A. Fill, “Reversible markov chains and random walks on graphs,
2002. unfinished monograph, recompiled 2014,” 2002.

[51] L. Lovász et al., “Random walks on graphs: A survey,” Combinatorics, Paul erdos
is eighty, vol. 2, no. 1, pp. 1–46, 1993.

130 BIBLIOGRAPHY

BIBLIOGRAPHY

[52] S. Chen, A. Sandryhaila, G. Lederman, Z. Wang, J. M. Moura, P. Rizzo, J. Bielak,
J. H. Garrett, and J. Kovačević, “Signal inpainting on graphs via total variation
minimization,” in 2014 IEEE International Conference on Acoustics, Speech and
Signal Processing (ICASSP), pp. 8267–8271, IEEE, 2014.

[53] G. Arvanitis, A. S. Lalos, K. Moustakas, and N. Fakotakis, “Feature preserving mesh
denoising based on graph spectral processing,” IEEE transactions on visualization
and computer graphics, vol. 25, no. 3, pp. 1513–1527, 2019.

[54] M. Onuki, S. Ono, M. Yamagishi, and Y. Tanaka, “Graph signal denoising via trilat-
eral filter on graph spectral domain,” IEEE Transactions on Signal and Information
Processing over Networks, vol. 2, no. 2, pp. 137–148, 2016.

[55] E. Isufi, A. Loukas, A. Simonetto, and G. Leus, “Autoregressive moving average
graph filtering,” IEEE Transactions on Signal Processing, vol. 65, no. 2, pp. 274–
288, 2017.

[56] A. G. Marques, S. Segarra, G. Leus, and A. Ribeiro, “Stationary graph processes
and spectral estimation,” IEEE Transactions on Signal Processing, vol. 65, no. 22,
pp. 5911–5926, 2017.

[57] S. Chen, A. Sandryhaila, and J. Kovačević, “Distributed algorithm for graph signal
inpainting,” in 2015 IEEE International Conference on Acoustics, Speech and Signal
Processing (ICASSP), pp. 3731–3735, IEEE, 2015.

[58] S. K. Narang, A. Gadde, and A. Ortega, “Signal processing techniques for interpola-
tion in graph structured data,” in 2013 IEEE International Conference on Acoustics,
Speech and Signal Processing, pp. 5445–5449, IEEE, 2013.

[59] M. Tsitsvero, S. Barbarossa, and P. Di Lorenzo, “Signals on graphs: Uncertainty
principle and sampling,” IEEE Transactions on Signal Processing, vol. 64, no. 18,
pp. 4845–4860, 2016.

[60] N. Perraudin and P. Vandergheynst, “Stationary signal processing on graphs,” IEEE
Transactions on Signal Processing, vol. 65, no. 13, pp. 3462–3477, 2017.

[61] N. Tremblay and P. Borgnat, “Graph wavelets for multiscale community mining,”
IEEE Transactions on Signal Processing, vol. 62, no. 20, pp. 5227–5239, 2014.

[62] M. Rizkallah, X. Su, T. Maugey, and C. Guillemot, “Graph-based transforms for
predictive light field compression based on super-pixels,” in 2018 IEEE International
Conference on Acoustics, Speech and Signal Processing (ICASSP), pp. 1718–1722,
IEEE, 2018.

[63] C. Zhang, D. Florencio, and C. Loop, “Point cloud attribute compression with graph
transform,” in 2014 IEEE International Conference on Image Processing (ICIP),
pp. 2066–2070, IEEE, 2014.

[64] M. Defferrard, X. Bresson, and P. Vandergheynst, “Convolutional neural networks
on graphs with fast localized spectral filtering,” in Advances in neural information
processing systems, pp. 3844–3852, 2016.

BIBLIOGRAPHY 131

BIBLIOGRAPHY

[65] M. Zhang, Z. Cui, M. Neumann, and Y. Chen, “An end-to-end deep learning ar-
chitecture for graph classification,” in Thirty-Second AAAI Conference on Artificial
Intelligence, 2018.

[66] A. Elmoataz, O. Lezoray, and S. Bougleux, “Nonlocal Discrete Regularization on
Weighted Graphs: A Framework for Image and Manifold Processing,” IEEE Trans-
actions on Image Processing, vol. 17, pp. 1047–1060, July 2008.

[67] D. I. Shuman, S. K. Narang, P. Frossard, A. Ortega, and P. Vandergheynst, “The
emerging field of signal processing on graphs: Extending high-dimensional data anal-
ysis to networks and other irregular domains,” arXiv preprint arXiv:1211.0053, 2012.

[68] X. Zhu and A. B. Goldberg, “Introduction to semi-supervised learning,” Synthesis
lectures on artificial intelligence and machine learning, vol. 3, no. 1, pp. 1–130, 2009.

[69] A. Subramanya and P. P. Talukdar, “Graph-based semi-supervised learning,” Syn-
thesis Lectures on Artificial Intelligence and Machine Learning, vol. 8, no. 4, pp. 1–
125, 2014.

[70] M. Zhao, R. H. M. Chan, T. W. S. Chow, and P. Tang, “Compact graph based
semi-supervised learning for medical diagnosis in alzheimers disease,” IEEE Signal
Processing Letters, vol. 21, pp. 1192–1196, Oct 2014.

[71] J. A. Suykens and J. Vandewalle, “Least squares support vector machine classifiers,”
Neural processing letters, vol. 9, no. 3, pp. 293–300, 1999.

[72] U. Von Luxburg, “A tutorial on spectral clustering,” Statistics and computing,
vol. 17, no. 4, pp. 395–416, 2007.

[73] Y. Bengio, O. Delalleau, and N. Le Roux, Label Propagation and Quadratic Crite-
rion, pp. 193–216. MIT Press, semi-supervised learning ed., January 2006.

[74] X. Mai, Methods of random matrix for large dimensional statistical learning. PhD
thesis, Université Paris-Saclay, oct 2019.

[75] K. Avrachenkov, A. Mishenin, P. Gonçalves, and M. Sokol, “Generalized optimiza-
tion framework for graph-based semi-supervised learning,” in Proceedings of the 2012
SIAM International Conference on Data Mining, pp. 966–974, 2012.

[76] X. Mai and R. Couillet, “Revisiting and improving semi-supervised learning: A large
dimensional approach,” in ICASSP 2019 - 2019 IEEE International Conference on
Acoustics, Speech and Signal Processing (ICASSP), pp. 3547–3551, May 2019.

[77] B. Nadler, N. Srebro, and X. Zhou, “Statistical analysis of semi-supervised learning:
The limit of infinite unlabelled data,” in Advances in Neural Information Processing
Systems, pp. 1330–1338, 2009.

[78] F. R. Chung and F. C. Graham, Spectral graph theory. No. 92, American Mathe-
matical Soc., 1997.

[79] L. Lovász and M. Simonovits, “The mixing rate of markov chains, an isoperimetric
inequality, and computing the volume,” in Proceedings [1990] 31st annual symposium
on foundations of computer science, pp. 346–354, IEEE, 1990.

132 BIBLIOGRAPHY

BIBLIOGRAPHY

[80] D. A. Spielman and S.-H. Teng, “Nearly-linear time algorithms for graph partition-
ing, graph sparsification, and solving linear systems,” in Proceedings of the STOC,
vol. 4, 2004.

[81] Z. Xiaojin and G. Zoubin, “Learning from labeled and unlabeled data with label
propagation,” Tech. Rep., Technical Report CMU-CALD-02–107, Carnegie Mellon
University, 2002.

[82] X. Zhu, Z. Ghahramani, and J. D. Lafferty, “Semi-supervised learning using gaussian
fields and harmonic functions,” in Proceedings of the 20th International conference
on Machine learning (ICML-03), pp. 912–919, 2003.

[83] M. Szummer and T. Jaakkola, “Partially labeled classification with markov random
walks,” in Advances in neural information processing systems, pp. 945–952, 2002.

[84] M. Belkin and P. Niyogi, “Using manifold stucture for partially labeled classifica-
tion,” in Advances in neural information processing systems, pp. 953–960, 2003.

[85] S. Baluja, R. Seth, D. Sivakumar, Y. Jing, J. Yagnik, S. Kumar, D. Ravichandran,
and M. Aly, “Video suggestion and discovery for youtube: taking random walks
through the view graph,” in Proceedings of the 17th international conference on
World Wide Web, pp. 895–904, ACM, 2008.

[86] P. P. Talukdar and K. Crammer, “New regularized algorithms for transductive learn-
ing,” in Joint European Conference on Machine Learning and Knowledge Discovery
in Databases, pp. 442–457, Springer, 2009.

[87] M. Orbach and K. Crammer, “Graph-based transduction with confidence,” in Joint
European Conference on Machine Learning and Knowledge Discovery in Databases,
pp. 323–338, Springer, 2012.

[88] A. Subramanya and J. Bilmes, “Semi-supervised learning with measure propaga-
tion,” Journal of Machine Learning Research, vol. 12, no. Nov, pp. 3311–3370, 2011.

[89] T. H. Haveliwala, “Topic-sensitive pagerank,” in Proceedings of the 11th interna-
tional conference on World Wide Web, pp. 517–526, ACM, 2002.

[90] K. Avrachenkov, P. Gonçalves, and M. Sokol, “On the choice of kernel and la-
belled data in semi-supervised learning methods,” in International Workshop on
Algorithms and Models for the Web-Graph, pp. 56–67, Springer, 2013.

[91] B. Girault, Signal Processing on Graphs-Contributions to an Emerging Field. PhD
thesis, Lyon, École normale supérieure, 2015.

[92] C. Hu, L. Cheng, J. Sepulcre, G. El Fakhri, Y. M. Lu, and Q. Li, “A graph theoretical
regression model for brain connectivity learning of alzheimer’s disease,” in 2013
IEEE 10th International Symposium on Biomedical Imaging, pp. 616–619, IEEE,
2013.

[93] S. T. Roweis and L. K. Saul, “Nonlinear dimensionality reduction by locally linear
embedding,” science, vol. 290, no. 5500, pp. 2323–2326, 2000.

BIBLIOGRAPHY 133

BIBLIOGRAPHY

[94] X. Mai and R. Couillet, “The counterintuitive mechanism of graph-based semi-
supervised learning in the big data regime,” in 2017 IEEE International Conference
on Acoustics, Speech and Signal Processing (ICASSP), (New Orleans, France), 2017.

[95] S. Fortunato, “Community detection in graphs,” Physics reports, vol. 486, no. 3-5,
pp. 75–174, 2010.

[96] S. B. Seidman, “Network structure and minimum degree,” Social networks, vol. 5,
no. 3, pp. 269–287, 1983.

[97] M. E. Newman and M. Girvan, “Finding and evaluating community structure in
networks,” Physical review E, vol. 69, no. 2, p. 026113, 2004.

[98] M. Stoer and F. Wagner, “A simple min-cut algorithm,” Journal of the ACM
(JACM), vol. 44, no. 4, pp. 585–591, 1997.

[99] P. Elias, A. Feinstein, and C. Shannon, “A note on the maximum flow through a
network,” IRE Transactions on Information Theory, vol. 2, no. 4, pp. 117–119, 1956.

[100] Y.-C. Wei and C.-K. Cheng, “Towards efficient hierarchical designs by ratio cut
partitioning,” in 1989 IEEE International Conference on Computer-Aided Design.
Digest of Technical Papers, pp. 298–301, IEEE, 1989.

[101] J. Shi and J. Malik, “Normalized cuts and image segmentation,” Departmental Pa-
pers (CIS), p. 107, 2000.

[102] M. Fiedler, “Algebraic connectivity of graphs,” Czechoslovak mathematical journal,
vol. 23, no. 2, pp. 298–305, 1973.

[103] F. Chung, “Four proofs for the Cheeger inequality and graph partition algorithms,”
in Proceedings of ICCM, (Hiroshima, Japan), Citeseer, 2007.

[104] F. Chung, “Pagerank as a discrete green?s function,” Geometry and Analysis I ALM,
vol. 17, pp. 285–302, 2010.

[105] A. Tsiatas, Diffusion and Clustering on Large Graphs. PhD thesis, La Jolla, CA,
USA, 2012. AAI3513269.

[106] K. Avrachenkov, V. Dobrynin, D. Nemirovsky, S. K. Pham, and E. Smirnova,
“Pagerank based clustering of hypertext document collections,” in Proceedings of
the 31st annual international ACM SIGIR conference on Research and development
in information retrieval, pp. 873–874, ACM, 2008.

[107] F. Chung, P. Horn, and A. Tsiatas, “Distributing antidote using pagerank vectors,”
Internet Mathematics, vol. 6, no. 2, pp. 237–254, 2009.

[108] F. C. Graham and A. Tsiatas, “Finding and visualizing graph clusters using pagerank
optimization,” in International Workshop on Algorithms and Models for the Web-
Graph, pp. 86–97, Springer, 2010.

[109] F. Chung, P. Horn, and J. Hughes, “Multi-commodity allocation for dynamic de-
mands using pagerank vectors,” in International Workshop on Algorithms and Mod-
els for the Web-Graph, pp. 138–152, Springer, 2012.

134 BIBLIOGRAPHY

BIBLIOGRAPHY

[110] F. Chung, A. Tsiatas, and W. Xu, “Dirichlet pagerank and trust-based ranking
algorithms,” in International Workshop on Algorithms and Models for the Web-
Graph, pp. 103–114, Springer, 2011.

[111] A. Z. Broder, R. Lempel, F. Maghoul, and J. Pedersen, “Efficient pagerank approx-
imation via graph aggregation,” Information Retrieval, vol. 9, no. 2, pp. 123–138,
2006.

[112] F. Chung and W. Zhao, “A sharp pagerank algorithm with applications to edge
ranking and graph sparsification,” in International Workshop on Algorithms and
Models for the Web-Graph, pp. 2–14, Springer, 2010.

[113] A. P. Riascos and J. L. Mateos, “Fractional dynamics on networks: Emergence of
anomalous diffusion and lévy flights,” Phys. Rev. E, vol. 90, p. 032809, Sep 2014.

[114] A. P. Riascos and J. L. Mateos, “Long-range navigation on complex networks using
lévy random walks,” Physical Review E, vol. 86, no. 5, p. 056110, 2012.

[115] P. Zhang, C. Moore, and L. Zdeborova, “Phase transitions in semisupervised clus-
tering of sparse networks,” Physical review. E, Statistical, nonlinear, and soft matter
physics, vol. 90, 04 2014.

[116] Y. Lecun, L. Bottou, Y. Bengio, and P. Haffner, “Gradient-based learning applied to
document recognition,” Proceedings of the IEEE, vol. 86, pp. 2278–2324, Nov 1998.

[117] D. Hond and L. Spacek, “Distinctive descriptions for face processing.,” in BMVC
(A. F. Clark, ed.), 1997.

[118] D. Greene and P. Cunningham, “Practical solutions to the problem of diagonal
dominance in kernel document clustering,” in Proceedings of the 23rd International
Conference on Machine Learning, ICML ’06, (New York, NY, USA), pp. 377–384,
ACM, 2006.

[119] “The phoneme database: https://www.openml.org/d/1489, accessed 1 feb 2019.,”

[120] S. H. Rice, “A stochastic version of the price equation reveals the interplay of de-
terministic and stochastic processes in evolution,” BMC evolutionary biology, vol. 8,
no. 1, p. 262, 2008.

[121] Z. Zhan, R. Hu, X. Gao, and N. Huai, “Fast incremental pagerank on dynamic
networks,” in International Conference on Web Engineering, pp. 154–168, Springer,
2019.

[122] T. Haveliwala, “Efficient computation of pagerank,” tech. rep., Stanford, 1999.

[123] Y. Fujiwara, M. Nakatsuji, T. Yamamuro, H. Shiokawa, and M. Onizuka, “Efficient
personalized pagerank with accuracy assurance,” in Proceedings of the 18th ACM
SIGKDD international conference on Knowledge discovery and data mining, pp. 15–
23, ACM, 2012.

[124] B. Bahmani, K. Chakrabarti, and D. Xin, “Fast personalized pagerank on mapre-
duce,” in Proceedings of the 2011 ACM SIGMOD International Conference on Man-
agement of data, pp. 973–984, ACM, 2011.

BIBLIOGRAPHY 135

BIBLIOGRAPHY

[125] D. Fogaras, B. Rácz, K. Csalogány, and T. Sarlós, “Towards scaling fully personal-
ized pagerank: Algorithms, lower bounds, and experiments,” Internet Mathematics,
vol. 2, no. 3, pp. 333–358, 2005.

[126] K. Avrachenkov, N. Litvak, D. Nemirovsky, and N. Osipova, “Monte carlo meth-
ods in pagerank computation: When one iteration is sufficient,” SIAM Journal on
Numerical Analysis, vol. 45, no. 2, pp. 890–904, 2007.

[127] B. Bahmani, A. Chowdhury, and A. Goel, “Fast incremental and personalized pager-
ank,” Proceedings of the VLDB Endowment, vol. 4, no. 3, pp. 173–184, 2010.

[128] I. C. Ipsen and R. S. Wills, “Mathematical properties and analysis of google?s pager-
ank,” Bol. Soc. Esp. Mat. Apl, vol. 34, pp. 191–196, 2006.

[129] N. Tremblay, P. Gonçalves, and P. Borgnat, “Design of graph filters and filterbanks,”
in Cooperative and Graph Signal Processing, pp. 299–324, Elsevier, 2018.

[130] B. N. Parlett, H. Simon, and L. Stringer, “On estimating the largest eigenvalue with
the lanczos algorithm,” Mathematics of computation, vol. 38, no. 157, pp. 153–165,
1982.

[131] A. K. Jain, J. Mao, and K. M. Mohiuddin, “Artificial neural networks: A tutorial,”
Computer, vol. 29, no. 3, pp. 31–44, 1996.

[132] T. N. Kipf and M. Welling, “Semi-supervised classification with graph convolutional
networks,” arXiv preprint arXiv:1609.02907, 2016.

[133] F. Wu, T. Zhang, A. H. d. Souza Jr, C. Fifty, T. Yu, and K. Q. Weinberger, “Sim-
plifying graph convolutional networks,” arXiv preprint arXiv:1902.07153, 2019.

[134] M. Niepert, M. Ahmed, and K. Kutzkov, “Learning convolutional neural networks
for graphs,” in International conference on machine learning, pp. 2014–2023, 2016.

[135] Y. Li, D. Tarlow, M. Brockschmidt, and R. Zemel, “Gated graph sequence neural
networks,” arXiv preprint arXiv:1511.05493, 2015.

[136] “Dynamic sbm python class.” https://github.com/estbautista/DynSBM.

[137] J. W. Stewart III, BGP4: inter-domain routing in the Internet. Addison-Wesley
Longman Publishing Co., Inc., 1998.

[138] A. Dhamdhere, D. D. Clark, A. Gamero-Garrido, M. Luckie, R. K. Mok, G. Akiwate,
K. Gogia, V. Bajpai, A. C. Snoeren, and K. Claffy, “Inferring persistent interdomain
congestion,” in Proceedings of the 2018 Conference of the ACM Special Interest
Group on Data Communication, pp. 1–15, ACM, 2018.

[139] M. S. Kang and V. D. Gligor, “Routing bottlenecks in the internet: Causes, exploits,
and countermeasures,” in Proceedings of the 2014 ACM SIGSAC Conference on
Computer and Communications Security, pp. 321–333, ACM, 2014.

[140] A. Milolidakis, R. Fontugne, and X. Dimitropoulos, “Detecting network disruptions
at colocation facilities,” in IEEE INFOCOM 2019-IEEE Conference on Computer
Communications, pp. 2161–2169, IEEE, 2019.

136 BIBLIOGRAPHY

BIBLIOGRAPHY

[141] A. Marder and J. M. Smith, “Map-it: Multipass accurate passive inferences from
traceroute,” in Proceedings of the 2016 Internet Measurement Conference, pp. 397–
411, ACM, 2016.

[142] M. Luckie, A. Dhamdhere, B. Huffaker, D. Clark, et al., “Bdrmap: Inference of
borders between ip networks,” in Proceedings of the 2016 Internet Measurement
Conference, pp. 381–396, ACM, 2016.

[143] A. Marder, M. Luckie, A. Dhamdhere, B. Huffaker, J. M. Smith, et al., “Pushing
the boundaries with bdrmapit: Mapping router ownership at internet scale,” in
Proceedings of the Internet Measurement Conference 2018, pp. 56–69, ACM, 2018.

[144] Z. M. Mao, R. Bush, T. G. Griffin, and M. Roughan, “Bgp beacons,” in Proceedings
of the 3rd ACM SIGCOMM conference on Internet measurement, pp. 1–14, ACM,
2003.

[145] “Ripe ncc, ris raw data.” https://www.ripe.net/analyse/

internet-measurements/routing-information-service-ris/ris-raw-data.

[146] C. Villamizar, R. Govindan, and R. Chandra, “Bgp route flap damping,” tech. rep.,
(No. RFC 2439), 1998.

[147] S. Sangli, Y. Rekhter, R. Fernando, J. Scudder, and E. Chen, “Graceful restart
mechanism for bgp,” tech. rep., (No. RFC 4724), 2007.

[148] “Ripe ncc, ripestat: Bgp looking glass.” https://stat.ripe.net/widget/

looking-glass.

[149] “Ripe ncc, atlas.” https://atlas.ripe.net.

BIBLIOGRAPHY 137

	Acknowledgements
	Abstracts (English/French)
	List of Figures
	List of Tables
	Symbols
	Introduction
	Preliminaries
	Graph theory
	Graph data
	Graph models
	Graphs constructed from raw data

	Random walks on graphs
	Graph signal processing
	Graph signals
	Spectral theory
	Graph filters
	The heat equation

	Graph-Based Semi-Supervised Learning
	Introduction
	From Tikhonov regularization to G-SSL
	The unnormalized Laplacian G-SSL
	The normalized Laplacian-based G-SSL
	The standard Laplacian-based G-SSL
	The PageRank-based G-SSL
	The generalized optimization framework for G-SSL
	Fitting on the labels vs fitting on the graph
	The limit of infinite unlabelled data

	From graph partitioning to G-SSL
	Cut problems on graphs
	Partitioning via spectral clustering
	Partitioning via random walks for G-SSL
	Partitioning via PageRank for G-SSL
	Semi-supervised vs unsupervised

	Open problems

	L-PageRank for Semi-Supervised Learning
	Introduction
	The L-graphs
	Regime of < 1
	Regime of > 1

	The L-PageRank method
	Analysis of < 1: Lévy flights for classification
	Lévy flight driven PageRank
	Numerical experiments

	Analysis of > 1: Signed graphs for classification
	Clustering with L-PageRank
	The selection of
	Numerical experiments

	Differences with Iterated Laplacian
	Numerical comparison

	Extending the generalized optimization framework to L-graphs
	Numerical experiments

	Appendix: technical proofs
	Proof of Lemma 6
	Proof of Lemma 7
	Proof of Lemma 8
	Proof of Lemma 9
	Proof of Lemma 10
	Proof of Theorem 5
	Proof of Corollary 1
	Proof of Proposition 2

	Fast and efficient implementations
	Introduction
	State-of-the-art approaches for PageRank computation
	PageRank on static networks
	Updating PageRank on dynamic networks

	Fast and efficient implementations of G-SSL on static graphs
	Generalized implementation via Chebyshev polynomials
	Generalized implementation via Greens functions
	Generalized implementation via ARMA recursions
	Generalized implementation via Gauss-Southwell method
	Numerical assessment

	Fast updating of G-SSL on evolving networks
	Local G-SSL updating via the power method
	Local G-SSL updating via Gauss-Southwell
	Updating via neural networks
	Numerical experiments

	Appendix: technical proofs
	Proof of Lemma 13
	Proof of Lemma 14
	Proof of Lemma 15
	Proof of Lemma 16

	G-SSL for Internet routing
	Introduction
	G-SSL to characterize the scope of BGP zombies
	Experimental setup
	G-SSL to identify zombies
	Characterization of zombie outbreaks via G-SSL

	L-PageRank for IP to AS mapping
	Experimental Setup and goals
	Results and discussion

	Conclusions

