High-throughput, genome-wide, single-molecule mapping of DNA replication
Cartographie pangénomique à haut débit et en molécule unique de la réplication de l'ADN
Résumé
DNA replication is a vital process ensuring accurate conveyance of the genetic information to the daughter cells. In eukaryotic organisms, genome replication is carried out by using multiple start sites, also known as replication origins. In metazoans, the mapping of replication remains challenging. Genome wide mapping of human replication origins performed using sequencing techniques only modestly agree. These existing genome wide approaches use large cell populations that smooth out variability between chromosomal copies that could explain this inconsistency. Thus, to get a better understanding of DNA replication and to uncover the cell-to-cell variability, the development of single molecule techniques is fundamental. DNA combing, a widespread technique used to map DNA replication at a single molecule level, is refractory to automation, forestalling genome-wide analysis. To overcome these impediments, we repurposed an optical DNA mapping device based on microfluidics, the Bionano Genomics Irys system, for High-throughput Optical MApping of Replicating DNA (HOMARD). We typically collect, for a single run, over 34 000 images and more than 63 000 Mbp of DNA. Our new open source tools, that required the adaptation of the provided proprietary software, empower us to simultaneously visualize the intensity profiles of all mapped DNA molecules, check the optical mapping performed and, in particular, see where the replication tracks are located genome-wide at a single molecule level. We demonstrate the robustness of our approach by providing an ultra-high coverage (23,311 x) replication map of bacteriophage DNA in Xenopus egg extracts and the potential of the Irys system for DNA replication and other functional genomic studies apart from its standard use.
La réplication de l'ADN est un processus vital qui assure la transmission l'information génétique aux cellules filles. Chez les eucaryotes, la réplication du génome s'effectue en utilisant de multiples origines de réplication. Chez les métazoaires, la cartographie de la réplication demeure difficile. Les cartographies pangénomiques des origines de réplication chez l’Homme réalisées à l'aide de techniques de séquençage, ne s’accordent que modérément. Une explication possible de ces incohérences est que ces approches utilisent de grandes populations cellulaires qui ne nous donne qu’une image moyenne de la réplication. Ainsi, pour mieux comprendre la réplication de l'ADN et accéder à cette variabilité inter-cellulaire, il est fondamental de développer des techniques en molécule unique telle que le peignage moléculaire. Cependant, cette dernière est réfractaire à l'automatisation et empêche l'analyse pangénomique de la réplication. Pour surmonter ces obstacles, nous avons ré-employé un dispositif de cartographie optique basé sur de la microfluidique, le système Bionano Genomics Irys, pour le High Throughput Optical MApping of Replicating DNA (HOMARD). Typiquement, pour un “run”, nous recueillons plus de 34 000 images et plus de 63 000 Mpb d'ADN. Nos nouveaux outils open source, qui ont nécessité l'adaptation du logiciel propriétaire fourni, nous permettent de visualiser simultanément les profils d'intensité de l’ensemble des molécules d'ADN cartographiées, de vérifier la qualité de la cartographie réalisée et, en particulier, de voir où sont situés les segments répliqués au niveau du génome en molécule unique. Nous démontrons la robustesse de notre approche en fournissant, avec une couverture sans précédent (23 311 x), une carte de la réplication de l'ADN bactériophage dupliqué dans des extraits d'œufs Xenopus et mettons en évidence le potentiel du système Irys pour l’étude de la réplication de l'ADN et autres études de génomiques fonctionnelles, en plus de son utilisation standard.
Origine | Version validée par le jury (STAR) |
---|
Loading...