
HAL Id: tel-02954814
https://theses.hal.science/tel-02954814

Submitted on 1 Oct 2020

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Detection and quantification of events in stochastic
systems

Hugo Bazille

To cite this version:
Hugo Bazille. Detection and quantification of events in stochastic systems. Machine Learning [cs.LG].
Université de Rennes, 2019. English. �NNT : 2019REN1S107�. �tel-02954814�

https://theses.hal.science/tel-02954814
https://hal.archives-ouvertes.fr

THÈSE DE DOCTORAT DE

L’UNIVERSITE DE RENNES 1
COMUE UNIVERSITE BRETAGNE LOIRE

Ecole Doctorale N°601
Mathématique et Sciences et Technologies
de l’Information et de la Communication
Spécialité : Informatique

Par

« Hugo BAZILLE »
« Detection and Quantification of Events in Stochastic Systems »

Thèse présentée et soutenue à Rennes , le 2 décembre 2019

Unité de recherche : INRIA, Equipe SUMO

Composition du jury :

Président :
Rapporteurs : Christoforos HADJICOSTIS, Professor, University of Cyprus.

Stefan KIEFER, Associate professor, Oxford university.
Examinateurs : Béatrice BERARD, Professeur, Université Paris 6.

Benoit CAILLAUD, Directeur de recherche, Université Rennes 1.
Nathanael FIJALKOW, Chargé de recherche, CNRS, LABRI.

Dir. de thèse : Eric FABRE, Directeur de recherche, INRIA Rennes.
Co-dir. de thèse : Blaise GENEST, Directeur de Recherche, CNRS, IRISA.

Résumé

Notre dépendance à l’égard des processus automatisés prend de plus en plus d’importance
dans chaque aspect de notre vie: finances, transports, robotique, communication, sécurité,
systèmes médicaux... De plus, cette croissance s’accélère: chaque objet a maintenant une
version "connectée". En classe, les devoirs sont donnés et faits sur des plateformes en
ligne. Des IA spécifiques sont formées pour effectuer des diagnostics médicaux à partir
d’imageries médicales. L’argent liquide tend à disparaître des transactions financières. Les
exemples d’irruption de la technologie dans tous les domaiens sont (presque) infinis.

Que se passe-t-il quand quelque chose ne fonctionne pas comme prévu? Dans le pire
des cas, le coût est comptabilisé en vies humaines et en millions/milliards d’euros. Parmi
les évènements les plus tristement célèbres, citons le crash de la sonde spatiale Mars
Climate Orbiter, où un sous-traitant avait conçu un système de navigation utilisant le
système impérial au lieu du système métrique, le lancement échoué d’Ariane V en 1995,
ou encore en 1983 un satellite d’alerte précoce soviétique capta les reflets du soleil sur les
nuages et les interpréta à tort comme un lancement de missiles aux Etats-Unis, provoquant
presque le début de la troisième guerre mondiale. En outre, il existe une grande variété
de problèmes. [WHK18] montre comment le changement d’un pixel d’une image modifie
le résultat d’un logiciel de reconnaissance: un feu rouge était classé comme vert, un autre
feu était maintenant un four... Il est facile de voir l’importance de ces problèmes pour la
conduite automatisée.

Bien que les exemples les plus célèbres concernent des systèmes critiques, il existe des
problèmes sous-optimaux apparemment bénins qui, sans être un danger, peuvent coûter
quelques euros à chaque fois, multipliés par des milliers ou des millions d’usagers. Un ex-
emple est le système Orion développé par UPS pour leurs chauffeurs de camion [Hol+17].
Il optimise leurs déplacements en limitant les virages à gauche: traverser la route entraîne
une plus longue période d’attente, entraînant une perte de temps et d’essence. Un autre
domaine est celui des télécommunications. Pour des raisons physiques, de nombreux pro-
tocoles (codes, répétitions, etc.) essaient d’assurer qu’un message n’est pas perdu. Une
question est “quelles garanties peuvent être données sur un réseau selon différents scénar-
ios”. Ces garanties peuvent porter sur la couverture de réseau, les ressources utilisées...
De nombreux travaux récents visent à vérifier les réseaux, en particulier les réseaux de

3

capteurs (tels que [Law+03; Tob+07]...) pour des propriétés telles que la couverture et la
résistance à la défaillance d’un composant.

Lorsqu’un problème a été identifié, comment peut-on le corriger? Dans certains cas, le
changement à effectuer est facilement identifiable, comme dans le cas de la sonde Mars Cli-
mate Orbiter (“utilisez simplement le système métrique!”). Dans d’autres cas, la question
est beaucoup plus difficile. Reprenant l’exemple du logiciel de reconnaissance, il est com-
plexe de comprendre pourquoi deux images identiques à de plus de 99, 99% sont classées
de manière aussi différente. En général, nous voulons trouver des moyens de certifier que
le comportement observé d’un système est conforme au comportement prévu.

C’est là que la vérification formelle entre en jeu. La vérification formelle est définie
comme la vérification de l’exactitude d’un conception/produit à l’aide de techniques math-
ématiques. Cela peut par exemple être fait en prouvant mathématiquement la correction.
Une réponse négative peut également être apportée grâce à un contre-exemple. Une ques-
tion de vérification peut également demander une réponse plus détaillée que “oui/non”.
Récemment, plusieurs travaux ont élargi la vérification formelle aux questions quantita-
tives [HK97], en prenant en compte des quantités telles que le temps [Che+09] ou les
probabilités [Bri+13]. Ces quantités permettent d’obtenir des résultats plus précis, mais
les techniques associées ne sont pas encore matures et peuvent être améliorées. C’est une
direction que regarde cette thèse et dans laquelle nous allons pousser nos recherches.

Concernant la vérification formelle, différentes techniques apparaissent. Dans ce qui
suit, nous discutons des principales techniques, ainsi que des objets mathématiques sur
lesquels la vérification peut être effectuée.

Nous pouvons distinguer deux cadres principaux dans la vérification: soit nous travail-
lons directement sur un système, soit sur une abstraction de ce système, appelée modèle.
Une première question est “qu’est-ce qu’un bon modèle?”. C’est une question délicate:
pour modéliser le système, il faut décider ce qui est important et ce qui ne l’est pas,
et formaliser les différentes intéractions, réactions et tout ce qui peut se produire lors
de l’exécution du système. Ainsi, certaines informations seront perdues lors de la créa-
tion d’un modèle. Cependant, cette perte est nécessaire pour obtenir un modèle de taille
raisonnable. Dans certains cas, différents modèles avec différentes précisions peuvent être
conçus. Ces modèles peuvent être comparés les uns aux autres. Par exemple, si A est
un raffinement de B, on peut souhaiter que ce qui se passe dans B se produise égale-
ment dans A, éventuellement avec des détails supplémentaires. La nécessité d’obtenir un
modèle approprié est bien exprimée dans [BK08] (chapitre 1), “toute vérification utilisant
des techniques basées sur un modèle n’est pas meilleure que le modèle du système”. Cela

4

met en évidence le fait que la finalité des techniques basées sur des modèles n’est pas de
certifier la “perfection” du système mais plutôt de gagner en confiance. En effet, certains
problèmes peuvent être masqués par la modélisation. Il est donc nécessaire d’obtenir des
garanties formelles sur ces modèles pour renforcer la confiance. C’est une direction que
nous allons explorer dans cette thèse.

Sur la modélisation: Des modèles peuvent être générés à partir d’un système existant
afin de vérifier son exactitude. Pour cela, une représentation précise et non ambiguë du
système et des propriétés à vérifier doit être créée. A titre d’exemple, un sous-ensemble
des propriétés d’un protocole de communication,le protocole ISDN (Integrated Services
Digital Network), a été formalisé. Cette formalisation a montré qu’une grande partie
(55%) des spécifications était incohérente [Hol92]. Ainsi, la modélisation formelle permet
de rechercher des bugs sur les systèmes existants ou sur leurs spécifications. Un autre
exemple est le satellite Deep Space 1. La vérification basée sur un modèle a montré
plusieurs défauts de conception [Hav+00] sous la forme de problèmes de concurrence. Un
possible blocage qui n’avait pas été détecté lors des centaines d’heures de test fut créé
au cours des 24 premières heures de fonctionnement par une suite d’instructions qui était
pourtant peu probable.

D’autre part, on peut d’abord travailler sur un modèle jusqu’à obtenir quelque chose
de “satisfaisant”, puis développer un système correspondant à ce modèle. Un exemple
en est l’évaluation de la performance d’un système de train urbain [Ade+17]. Au lieu
d’effectuer des mesures sur une exécution du système (regarder les trains et mesurer
certains indicateurs tels que le retard, la ponctualité, etc.), un modèle de simulation
efficace pouvant représenter un réseau est conçu et les mesures sont effectuées sur ce
modèle de simulation. Alors que le premier doit être fait en temps réel, une simulation
des heures de mouvements de train peut être faite en quelques secondes. Cela met en
évidence un autre point des techniques basées sur un modèle, à savoir des performances
plus élevées pour de nombreux problèmes.

Que peut-on garantir? Toutes les propriétés ne peuvent pas être vérifiées sur tous les
systèmes. Par exemple, considérons la question “le programme se termine-t-il?”. Sur les
programmes C, cela mène à un problème indécidable. Cependant, limiter cette question
à des classes spécifiques de modèles peut assurer la décidabilité. Un défi consiste alors à
trouver un cadre suffisamment expressif pour coder des propriétés intéressantes tout en
conduisant à une décidabilité en un temps raisonnable. Des sous-ensembles de “questions”

5

Programme

Propriétés de correction

Enoncé mathématique Preuve

Avec intérac-
tion
humaine

Figure 1: La vérification déductive.

possibles ont été étudiés et des techniques pour ces sous-ensembles spécifiques ont été
développées, comme par exemple les logiques LTL et CTL.

Vérification déductive: Un premier moyen de s’assurer qu’un système se comporte
comme prévu est de coder l’exactitude de ce système en tant qu’énoncé mathématique,
puis de prouver cet énoncé. Parmi d’autres possibilités, ces preuves peuvent être réal-
isées à l’aide d’un assistant de preuves (tel que Coq, Isabelle, Why3 ...) ou de solveur
basé sur la satisfiability modulo theories (tels que CVC4, OpenSMT...). Cette approche a
l’avantage d’être très puissante: on doit “juste” exprimer l’exactitude en tant qu’énoncé
mathématique. Cependant, elle présente un inconvénient: elle a besoin d’un expert, non
seulement pour définir l’énoncé mathématique, mais également pour trouver une stratégie
permettant de prouver cet énoncé, par exemple sous la forme d’une suite de théorèmes.

Tests: Etant donné un système et une spécification, le test consiste à exécuter le système
avec différentes valeurs d’entrée et à vérifier si le comportement souhaité est observé (i.e.,
la spécification est validée). Les tests visent à montrer que les comportements attendus
et réels d’un système diffèrent, ou à prendre confiance qu’ils ne le font pas. Ils peuvent
être effectués sur un système (eg “essayons cette voiture sur un circuit et effectuer des
mesures”) ou sur un modèle de ce système [UPL12; GS18] (e.g., “voici un modèle de
cette voiture et un logiciel de simulation de flux d’air, étudions l’aérodynamique sur
différents réglages”). Bien que l’idée des tests soit ancienne, des travaux récents visaient
à les formaliser et à les rendre plus efficaces [Pel13; Ber07]. Un des avantages des tests est
qu’ils sont simples et peuvent être effectués en un temps souvent raisonnable. Cependant,
l’efficacité des tests dépend de leur pertinence : cette méthode manque de complétude.
Une question clé est donc la couverture des tests, c’est-à-dire déterminer si les cas vérifiés
sont suffisants pour obtenir des garanties robustes.

6

Spécification

Système

Modèle du système

Cas à tester

Simulation

Exécution

Tests

Tests sur modèle

Figure 2: Les tests.

Vérification de modèle: Comme son nom l’indique, la vérification de modèle consiste
à vérifier un modèle d’un système, c’est-à-dire vérifier si un modèle satisfaît une spécifi-
cation donnée grâce à une exploration des états et des transitions du modèle du système.
Pour pouvoir effectuer cette vérification, le modèle et la spécification doivent tous deux
être exprimés en un langage mathématique. Ensuite, le vérificateur de modèles vérifie si le
modèle satisfait la formule. Si ce n’est pas le cas, il fournit un contre-exemple, c’est-à-dire
une preuve que la spécification est violée. Ce contre-exemple peut ensuite être analysé
pour modifier la spécification si elle révèle un défaut de conception ou pour affiner le
modèle si ce contre-exemple est un "faux positif", grâce à des techniques comme le raffine-
ment de l’abstraction guidé par les contre-exemples (CEGAR) [Cla+00].La vérification des
modèles a été introduite au début des années 80 [CE80; CE81; QS82] et a été régulière-
ment développée et étudiée depuis lors, avec l’introduction de langages plus expressifs
permettant de décrire des spécifications plus complexes (telles que des logiques plus ex-
pressives [AHK02]), et de les associer à des évaluations précises des complexités (e.g.,
in [SC85]). Pour les applications pratiques, les tests et la vérification des modèles sont
en concurrence, chacun présentant des avantages et des inconvénients [BL17]. Un premier
inconvénient de la vérification des modèles est qu’en raison de l’exploration exhaustive,
les techniques de vérification des modèles peuvent ne pas bien passer à l’échelle. La sec-
onde, bien sûr, est la nécessité d’un modèle. En revanche, un avantage considérable de
la vérification basée sur un modèle est que la vérification peut être effectuée de manière
systématique et autonome et qu’elle est exhaustive.

7

Spécification Formule mathématique

Système Modèle du système

Model-checker

Oui si le modèle
satisfaît la formule
Non et contre-exemple
sinon

Automatique

Figure 3: La vérification de modèles.

Dans cette thèse, nous allons nous concentrer sur les techniques de vérification des
modèles. Comme indiqué précédemment, nous avons besoin d’un modèle pour pouvoir
appliquer ces techniques. Ainsi, nous détaillons certaines caractéristiques importantes des
modèles que nous allons considérer.

Systèmes stochastiques: Comme mentionné précédemment, les modèles ne représen-
tent qu’une vision partielle d’un système, dans le but de ne conserver que ce qui est
important. En fonction de l’application, la question de ce qui est important peut avoir
différentes réponses, ce qui entraîne à nouveau des problèmes et des techniques différents
selon le paradigme choisi pour la description du modèle et des propriétés. Dans cette
thèse, nous allons considérer des modèles avec des probabilités. Pourquoi des probabil-
ités? Ils permettent de représenter un système avec des comportements aléatoires (non
contrôlés par l’utilisateur et/ou l’environnement) ou des systèmes avec des informations
incomplètes présentant des motifs statistiques. Par exemple, si le non-déterminisme per-
met de modéliser différentes possibilités, par exemple un adversaire ayant plusieurs choix,
les probabilités permettent de représenter de nombreuses personnes qui feront toutes leur
choix et lorsque ce nombre est grand, une distribution de probabilité de ces choix peut
être déduite. Ces deux contextes différents (ici, un adversaire et une population) apportent
deux formalismes différents (non déterminisme et systèmes stochastiques) De plus, on peut
utiliser des modèles stochastiques pour effectuer une évaluation quantitative de certaines
propriétés: l’utilisation de quantités ouvre la possibilité de répondre à plus de questions
que de simples questions logiques (i.e., celles auxquelles on répond “vrai”/“faux”) . Ainsi,
les probabilités sont utilisées pour représenter divers systèmes [BS13], tels que la robo-
tique probabiliste pour des essaims de drones [Bra+12], les télécommunications [Alu+97],

8

pour le traitement du signal et des images [CNB98; CK97], les systèmes dynamiques en
général [Smy94] ... Ils apparaissent dans la conception du traitement et de la reconnais-
sance des langues [Moh97; Rab89]. Ils interviennent également dans la modélisation des
processus climatiques et biologiques [Edd04] pour la météo [ATT09], des séquences de
protéines et d’acides aminés [Dur+98; Gou+01; Kro+01]...

Afin de représenter les probabilités, de nombreux modèles formels sont utilisés tels que
les chaînes de Markov (à temps discret ou continu et espace d’états discret ou continu), les
processus de décision Markoviens, les chaînes de Markov étiquetées, les réseaux de Petri
stochastiques (...), dont certains seront détaillés et utilisés ultérieurement dans ce travail.

Information partielle: On peut également souhaiter représenter le fait que l’état exact
d’un système peut ne pas être connu à chaque moment: en règle générale, les systèmes
ne sont pas entièrement observables. En effet, nous n’avons pas un accès complet à ce
qui se passe à l’intérieur pour de nombreuses raisons: sécurité, coûts financiers, manque
de fiabilité des capteurs, sa taille, certains événements dépendent de l’environnement...
Par conséquent, dans le monde réel, bien que les utilisateurs puissent connaître parfaite-
ment un modèle d’un système, ils n’ont qu’une connaissance partielle de son état actuel
lors d’une exécution. Nous devrons donc en tenir compte lors de la modélisation et du
raisonnement sur nos modèles. Cela se reflétera par le fait que, pour une (séquence)
d’informations disponible pour l’utilisateur, plusieurs états internes du système peuvent
être simultanément possibles par rapport à ces informations. Notre tâche consistera sou-
vent à récupérer (avec une probabilité élevée) des informations cachées sur l’exécution
du système. Pour cela, le principal formalisme que nous allons utiliser est les chaînes
de Markov étiquetées, où les probabilités modélisent l’incertitude dans le système et un
alphabet modélise les informations qu’un observateur peut obtenir.

Apprentissage: S’il est intéressant de raisonner sur un système stochastique donné, un
autre problème est de savoir comment l’obtenir. Une solution consiste à apprendre (un
modèle du) le système à partir d’échantillons de ses exécutions. En général, l’apprentissage
est la capacité d’acquérir de nouvelles connaissances ou de modifier des connaissances, des
compétences, des valeurs (...) existantes en analysant des données. Ce processus peut être
supervisé (avec un enseignant) ou par un processus d’essais et erreurs... Une difficulté est
que le processus d’apprentissage n’est pas encore totalement compris, même (et surtout)
pour les humains. L’apprentissage automatique a été introduit à la fin des années 50 dans
le but de faire en sorte que les systèmes “apprennent” à répondre efficacement et avec

9

précision à des problèmes pour lequels aucun autre algorithme efficace n’existait. Pas assez
efficace pendant plusieurs décennies, l’apprentissage automatique a commencé à gagner
du terrain dans les années 1990 avec le passage à un paradigme basé sur des méthodes
empruntées aux statistiques et à la théorie des probabilités [Lan11].

Selon les sources d’information disponibles, il existe différentes sous-catégories de tech-
niques d’apprentissage: l’apprentissage supervisé [RN16] “réplique” l’idée de disposer d’un
enseignant qui donne la solution correcte aux cas que l’algorithme apprend, l’apprentissage
par renforcement [KLM96] est basé sur l’ajustement des comportements afin d’obtenir une
récompense maximale, et l’apprentissage non supervisé [HSP99], au contraire, ne dépend
pas des informations fournies par une autorité supérieure: le processus d’apprentissage
doit effectuer l’évaluation lui-même dans un processus d’essais et d’erreurs.

L’apprentissage peut être effectué sur différents modèles pour de nombreuses applica-
tions: vision par ordinateur [Lee+09], reconnaissance automatique de la parole [Wai+89],
diagnostic médical [Kon01] ...

Dans ce qui suit, nous nous intéresserons à l’apprentissage de modèles probabilistes.
Fondamentalement, cela peut être séparé en deux parties. Tout d’abord, à l’instar d’un
modèle non probabiliste, il faut obtenir la structure du modèle, c’est-à-dire les états pos-
sibles et les transitions d’un état à un autre. Ensuite, on voudrait estimer avec précision
les valeurs de ces probabilités. Cette partie est au moins aussi difficile que la première:
les probabilités dépendent de nombreux facteurs généralement insolubles. En outre, une
petite erreur dans l’évaluation peut entraîner une différence énorme quand on considère
des propriétés globales, comme nous le verrons plus tard. Ceci est mis en évidence dans
la figure 4: dans cet exemple, à chaque étape nous restons dans s0 avec probabilité 1−2ε,
allons dans le bon état © avec probabilité ε et dans le mauvais état § avec la probabilité
ε. La probabilité d’atteindre au bout d’un moment © est de 0, 5. Supposons que ε soit
petit et que nous ayons estimé les probabilités du modèle et obtenu 1 − 2ε, 3ε/2 et ε/2.
Les probabilités sont très proches puisque ε est très faible, mais maintenant, la proba-
bilité d’atteindre éventuellement © est de 0, 75, ce qui est très différent de 0, 5. Dans ce
document, nous allons nous concentrer sur l’apprentissage des chaînes de Markov, l’un
des modèles les plus simples qui contiennent des probabilités.

Plan: En résumé, dans ce document, nous allons étudier comment récupérer des in-
formations et quantifier sur des systèmes stochastiques avec des informations
partielles. Pour cela, nous donnerons d’abord quelques définitions, notations et résul-
tats généraux précédents, puis nous étudierons trois problèmes: la diagnosticabilité, la

10

s0 ©§ ε ε

1− 2ε

Figure 4: Exemple jouet où les probabilités de cahque transition sont proches mais où le
comportement global est très différent.

classification et l’apprentissage. Cette thèse est organisée comme suit:

• Dans le chapitre 2, nous introduisons des notations et des définitions utiles que
nous utiliserons tout au long de ce document. Nous présentons également quelques
résultats généraux qui seront utiles pour différentes parties de la thèse.

• Au chapitre 3, nous nous concentrons sur le diagnostic. Similairement à la médecine,
la possibilité de diagnostic est la capacité de récupérer une information (telle qu’un
événement correspondant à une erreur) d’une exécution du système. Nous irons plus
loin que la question binaire «pouvons-nous déduire cette information ou non», en la
transformant en “avec quelle probabilité pouvons-nous déduire cette information”?
Nous examinerons également la question “à quelle vitesse pouvons-nous déduire
cette information?” en poussant les questions quantitatives.

• Dans le chapitre 4, nous traitons de la classifiabilité qui est, étant donné deux
systèmes et une observation, la capacité de décider lequel de ces systèmes a produit
l’observation. La classifiabilité peut être considérée dans un certain sens comme une
généralisation de certains problèmes tels que la diagnostiabilité, c’est-à-dire décider
si l’exécution a été produite par la partie du système où l’événement d’erreur a
eu lieu ou non. Notez que cela n’est pas techniquement vrai, car le diagnostic est
intrinsèquement asymétrique et la classification est symétrique, mais le concept et
les preuves utilisées peuvent être similaires.

• Dans le chapitre 5, nous passons à un problème orthogonal, qui consiste à apprendre
un système stochastique. Ce problème soulève certaines des questions précédemment
discutées sur ce qu’est un bon modèle. Étant donné un système stochastique, on
souhaiterait connaître les probabilités de ses transitions pour obtenir un modèle
fidèle de son fonctionnement.

11

Table of Contents

Résumé 3

Table of Contents 13

1 Introduction 17

2 Preliminaries 27
2.1 Classes of models . 27

2.1.1 Transition systems and automata 27
2.1.2 Partial observation . 29
2.1.3 Quantitative systems . 31
2.1.4 Stochastic systems . 33
2.1.5 Partially observable stochastic systems 34
2.1.6 Construction of a probability measure on infinite words 38

2.2 Vocabulary and properties of Markov Chains 40
2.3 Vocabulary and properties of probability distributions 42
2.4 Questions of interest for the verification of stochastic systems 44

2.4.1 Reachability . 44
2.4.2 Expressing general properties as temporal logics 45

2.5 General algorithmic results . 48
2.5.1 PTIME algorithms for quantifying reachability in fully observable

systems . 48
2.5.2 Undecidable problems on partially observable systems 53

3 Diagnosability analysis of Labeled Markov Chains 55
3.1 State of the art . 56

3.1.1 Diagnosis and diagnosability of finite LTS 56
3.1.2 A-Diagnosability of LMCs . 60
3.1.3 AA-diagnosability of LMCs . 63
3.1.4 Towards quantitative diagnosability analysis 64

3.2 Quantifying diagnosis . 65

13

3.2.1 Diagnosability degrees . 66
3.2.2 Computation of diagnosability degrees 68
3.2.3 Reducing the number of states in the diagnoser 71

3.3 Distributions of fault detection delay . 77
3.3.1 Semirings for moments . 78
3.3.2 Approximating the distribution from its moments 82
3.3.3 Bounds on the detection delay . 85
3.3.4 Optimal bounds for a pair of moments 86

3.4 Related work on diagnosis and diagnosability 92
3.4.1 Diagnosis of infinite LTS . 92
3.4.2 Active diagnosis . 93
3.4.3 Diagnosis of distributed systems . 93

3.5 Conclusion . 94
3.5.1 Summary . 94
3.5.2 Future work . 94

4 Classification among Labeled Markov Chains 97
4.1 Introduction . 97
4.2 State of the art . 99

4.2.1 Sure and almost-sure classification 100
4.2.2 Equivalence of stochastic languages 101
4.2.3 Distance between stochastic automata 102
4.2.4 Total variation distance and the distance 1 problem 104
4.2.5 Distinguishability . 106
4.2.6 Misclassification . 108

4.3 Beliefs and stationary distributions for LMCs 110
4.4 Limit-sure Classifiability . 114

4.4.1 The Twin Automaton and the Twin Belief Automaton 115
4.4.2 Characterization of classifiability 117
4.4.3 A PTIME Algorithm . 124
4.4.4 Comparison with Distinguishability between LMCs [KS16] 124

4.5 Attack-classification . 126
4.5.1 Classification in a security context 126
4.5.2 Limit-sure attack-classifiability is PSPACE-complete 127
4.5.3 Existence of (1− ε) attack-classifiers for all ε is undecidable. 130

4.6 Related work . 132

14

4.6.1 Other distances . 132
4.6.2 Testing . 133

4.7 Conclusion . 133
4.7.1 Summary . 133
4.7.2 Perspectives . 134

5 Learning of Markov Chains 135
5.1 State of the art . 136

5.1.1 Estimators . 136
5.1.2 Probably Approximately Correct learning 139
5.1.3 Monte-Carlo estimation and algorithm of Chen 140

5.2 Learning for a time-to-failure property . 141
5.2.1 Framework . 141
5.2.2 PAC bounds for a time-to-failure property 141
5.2.3 Algorithm for the fixed time-to-failure property 146

5.3 Learning for the full CTL logic . 146
5.3.1 No PAC bound for LTL . 147
5.3.2 Conditioning and Probability Bounds 148
5.3.3 Optimality and necessity of knowing the transitions support 150
5.3.4 PAC bounds for ∑j |ÂW (i, j)− A(i, j)| ≤ η 152
5.3.5 A Matrix M̂W accurate for all CTL properties 153

5.4 Evaluation and Discussion . 154
5.5 Related work . 157
5.6 Conclusion . 158

5.6.1 Summary . 158
5.6.2 Future work . 159

6 Conclusion 161
6.1 Contributions . 161
6.2 Perspectives . 162

List of my publications 165
Articles accepted by chronological order . 165
Articles submitted . 166

Bibliography 167

15

List of figures 184

Index 186

16

Chapter 1

Introduction

Our reliance on automatized processes is growing in every aspect on our life: financial,
transportation, robotic, communication, safety, medical systems... Further, this growth is
accelerating: every object has now a “connected” version. In classes, homework is given
and done on online platforms. Specific AI are trained to perform medical diagnosis from
medical imagery. Cash is disappearing from financial transactions. The examples of the
invasion of technology are (almost) infinite.

What happens when something does not work as intended? In the worst cases, the
cost is counted in human lives and millions/billions of euros. Some of the most infamous
occurrences are the Mars Climate Orbiter Crash, where a subcontractor designed a nav-
igation system using imperial units instead of the metric system, the Ariane V failed
launch, where a 64 bits number was stored in a 16 bits space, or in 1983 a Soviet early
warning satellite picked up sunlight reflections off cloud-tops and mistakenly interpreted
them as missile launches in the United States, almost causing the start of world war III.
Besides, there is a huge variety of problems that may not be that extreme. [WHK18]
presents how the change of one pixel in an image changes the output in a recognition
software: a red traffic light was classified as green, another traffic light was now an oven...
It is easy to see the importance of these problems for automatized driving. While the
most famous examples concern critical systems, there are some seemingly benign subop-
timal issues that, while not a danger, may cost a few euros at each time, multiplied by
thousand or millions of usages. An example is the Orion system developed by UPS for
their truck drivers [Hol+17]. It optimizes paths for their travels by limiting left turns:
crossing the road leads to more idle time going through ongoing traffic, leading to a loss
of time and gas. Another field is telecommunications. Due to physical reasons, numerous
protocols (codes, repetitions...) try to ensure that a message is not lost. A question is
“what guarantees can be given on a network under different scenarios”. These guarantees
can be on the coverage, the resources used... Many recent works aim at verifying networks,
especially sensor networks (such as [Law+03; Tob+07]...) for properties such as coverage
and robustness to failure of one component.

17

Chapter 1 – Introduction

When a problem has been identified, how does one correct it? In some cases, the
change to make is easily identifiable, such as for the Mars Climate Orbiter Crash (“just
use the metric system!”). In other cases, it is a much more difficult question. Taking again
the example of recognition software, it is a complex task to understand why two images
that are more than 99.99% identical are so differently classified. In general, we want to
find ways to certify that the observed behavior of a system is conform to its intended
behavior.

That is where formal verification comes in. Formal verification is defined as checking
the correctness of a design/product using mathematical techniques. It can be done by
proving mathematically that the correctness holds. It can also answer by the negative
by providing a counter-example. A verification question can also ask for a more detailed
answer than “yes/no”. Recently, several works expanded formal verification to quantitative
questions [HK97], considering quantities such as time [Che+09] or probabilities [Bri+13].
These quantities allow one to get finer results, however techniques around them are still
young and can be improved. This is a direction this thesis considers.

When performing formal verification, different techniques can be used. In the following,
we discuss about the main techniques, as well as the mathematical objects verification
can be performed on.

We can distinguish two main frameworks in verification: either we work directly on a
real system, or on an abstraction of this system, called a model. A first question is “what is
a good model?”. This is a tricky question: in order to model the system, one has to decide
what is important and what is not, and formalize the different interactions, reactions and
basically what can occur in an execution of the system. Thus, some information will be
lost at the creation of a model. However, this loss is necessary in order to obtain a model of
a tractable size. In some cases, different models with different accuracies can be designed.
These models can be compared with one another. For example, if A is a refinement of
B, one may want that what happens in B happens also in A, possibly with additional
details. The need to obtain a suitable model is well expressed in [BK08] (chapter 1), “any
verification using model-based techniques is only as good as the model of the system”.
This highlights the fact that the finality of model-based techniques is not to certify the
“perfection” of the system but only to gain confidence. Indeed, some problems can be
masked by the modeling. Thus, obtaining formal guarantees on these models is needed to
boost the confidence. This is a direction we will explore along this thesis.

18

On modeling: Models can be generated from an existing system in order to verify
the correctness of the system. For that, a precise and unambiguous representation of
the system and of the properties to check have to be created. As an example, a subset
of the properties of a communication protocol, the Integrated Services Digital Network
(ISDN) protocol, has been formalized. This formalization showed that a huge part (55%)
of the requirement were inconsistent [Hol92]. Thus, formal modelization allows one to
find bugs on existing systems or on their specifications. Another example is the Deep
Space-1 spacecraft. Model-based verification showed some design flaws [Hav+00] in the
form of concurrency errors. A deadlock that did not occurred in the hundreds of hours of
system-testings was created by an unlikely scheduling condition during the 24 first hours
of operation.

On the other hand, one can at first work on a model until something “satisfying”
has been obtained and then develop a system with respect to this model. An example is
the performance evaluation of an urban train system [Ade+17]. Instead of performing a
measurement on an execution of the system (i.e., watching trains and measuring some
indicators such as delay, punctuality...), an efficient simulation model that can represent
a network is designed and measurements are performed on this simulation model. While
the former has to be done in real time, a simulation of hours of train movements can be
done in seconds. This highlights another point of model based techniques, that is higher
performances for several problems.

What can one ensure? Not all properties can be verified on every system. For ex-
ample, let us consider the question “does the program terminate”. On C programs, it
leads to an undecidable problem. However, restricting this question to specific classes of
models can ensure decidability. A challenge is then to find a framework expressive enough
to encode interesting properties while leading to decidability in reasonable time. Subsets
of possible “questions” have been studied and techniques for these specific subsets have
been developed e.g., LTL and CTL logics.

Deductive verification: A first way to ensure that a system does behaves as expected
is by encoding the correctness of this system as a mathematical statement and then prove
this statement. Among other possibilities, these proofs can be done with the help of a
proof assistant (such as Coq, Isabelle, Why3...) or satisfiability modulo theories solvers
(such as CVC4, OpenSMT...). This approach has the advantage to be very powerful: one
“just” needs to express the correctness as a mathematical statement. However it has a

19

Chapter 1 – Introduction

Program

Correctness property

Mathematical statement Proof

Possibly
with human
interaction

Figure 1.1: Principle of deductive verification.

related disadvantage: it needs an expert, not only to define the mathematical statement,
but also to find a strategy to prove this statement, such as in the form of a sequence of
theorems.

Testing: Given a system and a specification, testing consists in executing the system
with different input values and observing whether the intended behavior appears (i.e., the
specification holds). It aims at showing that the intended and actual behaviors of a system
differ, or at gaining confidence that they do not. Testing can be made on a system (e.g.,
“let us try this car on a circuit and perform some measurements”) or on some model of
this system [UPL12; GS18] (e.g., “here is a modelization of this car and a flow simulation
software, let us study the aerodynamics on some different settings”). Though the idea
of testing is quite ancient, recent work aimed at formalizing testing and making it more
efficient [Pel13; Ber07]. An advantage of testing is that it is straightforward and can be
done in reasonable time. However, efficiency of testing depends on the pertinence of the
tests: there is a lack of completeness in this method. A key question is test coverage i.e.,
determining if the cases verified are broad enough to obtain robust guarantees.

Model-checking: As the name suggests, model-checking consists in checking a model
of a system, that is verifying if some given specification holds on a model of the system
with an exploration of the states and transitions of the model of the system. In order to
be able to perform this verification, both the model and the specification have to be ex-
pressed in mathematical languages. Then, the model-checker verifies if the model satisfies
the formula. If it does not, it provides a counterexample, i.e., a proof that the specifica-
tion is violated. This counterexample can then be analyzed to change the specification
if it reveals a design flaw or to refine the model if this counterexample is a “false posi-
tive”, thanks to techniques such as the Counterexample-Guided Abstraction Refinement
(CEGAR) [Cla+00]. Model-checking has been introduced in the early 80s [CE80; CE81;

20

Specification

System

System model

Test-cases

Simulation

Execution

Testing

Model based testing

Figure 1.2: Principle of testing.

Specification Mathematical formula

System System model

Model-checker
Yes if the model
satisfies the formula
No + counter example else

Automatic

Figure 1.3: Principle of model-checking.

QS82] and has been continuously developed and studied since then, with the introduc-
tion of more expressive languages that allow one to describe more complex specifications
(such as extensions of logics [AHK02]), and to associate them to precise evaluations of the
complexities (e.g., in [SC85]). For practical applications, testing and model-checking are
in competition, each with advantages and drawbacks [BL17]. A first drawback of model-
checking is that due to the exhaustive exploration, model-checking techniques may not
scale up well with the size of the model. A second, of course, is the need for a model. On
the other hand, a tremendous advantage of model-based verification is that the verification
can be performed in a systematic and autonomous way, and that it is exhaustive.

In this thesis, we will focus on model-checking techniques. As said before, we need some

21

Chapter 1 – Introduction

model to be able to apply these techniques. Thus, we detail some important characteristic
of the models we will consider.

Stochastic systems: As mentioned before, models represent only a partial vision on
a system, with the aim at keeping only what is important. Depending on the applica-
tion, the question of what is important may have different answers, again leading to
different problems and techniques depending on the chosen paradigm of the description
of model and properties. In this thesis we will consider models with probabilities. Why
probabilities? They allow one to represent a system with either random behaviors (non-
controlled by the user and/or the environment) or systems with incomplete information
that exhibit statistical patterns. For example, while non-determinism allow one to model
different possibilities, such as an adversary that may have several possible choices, prob-
abilities enable to represent many people that all will do their own choice and when
this number of people is high, a probability distribution of these choices can be inferred.
These two different settings (here, an adversary and a population) bring two different
formalisms (non-determinism and stochastic systems) Further, one can use stochastic
models to perform a quantitative evaluation of some properties: the usage of quantities
opens up the possibility to answer more questions than only logical ones (i.e., those
answered by “true”/“false”). Thus, probabilities are used for representing various real
systems [BS13], such as probabilistic robotics for swarms of drones [Bra+12], telecommu-
nications [Alu+97], for signal and image processing [CNB98; CK97], dynamic systems in
a large sense [Smy94]... They appear in the design of language processing and recogni-
tion [Moh97; Rab89]. They also intervene in the modelization of climatic and biological
processes [Edd04] for weather [ATT09], sequences of proteins and amino-acids [Dur+98;
Gou+01; Kro+01]... In order to represent probabilities, numerous formal models are used
such as (discrete/continuous time/states) Markov Chains, Markov Decision Processes,
Labeled Markov Chains, Stochastic Petri nets (...), some of which we will detail and use
later in this work.

Incomplete information: One may also wish to represent the fact that the exact state
of a system may not be known at each time: usually, real life systems are not fully observ-
able. Indeed, we have no full access to what happens inside for many reasons: security,
financial costs, unreliability of sensors, its size, some events depend on the environment...
Hence, in real world, users may know perfectly a model of a system but when running it,
they only have a partial knowledge about its current state. Thus, we will have to take this

22

into account when modeling and reasoning on our models. This will be reflected by the
fact that for one (sequence of) information available to the user, several internal states of
the system may be simultaneously possible with respect to this information. Our task will
often be to recover (with high probability) some hidden information about the execution
of the system. For that, the main formalism we will use is Labeled Markov Chains, where
probabilities model the uncertainty in the system and an alphabet models the information
an observer can obtain.

Learning: While it is interesting to reason on a given stochastic system, another prob-
lem is how to obtain it. One way is by learning (a model of) the system from samples
of its executions. In general, learning is the ability to acquire new or modify existing
knowledge, skills, values (...) by analyzing data. This process can be supervised (i.e., with
a teacher), or by trial and error/evaluation... A difficulty is that the process of learning
is still not totally understood, even (and especially) for humans. Machine learning was
introduced at the end of the 1950s and aimed at making systems “learn” how to answer
efficiently and accurately to some problems that no other efficient algorithms could solve.
Not effective enough for several decades, machine learning started to gain traction in the
1990s with the shift to a paradigm based on methods borrowed from statistics and prob-
ability theory [Lan11]. Different sub-categories of learning techniques exist according to
the available sources of information: supervised learning [RN16] “replicates” the idea of
having a teacher that gives the correct solution to the cases the algorithm learns, reinforce-
ment learning [KLM96] is based on learning how to adjust behaviors in order to obtain
a maximal reward, and unsupervised learning [HSP99], on the contrary, does not depend
on information given by a higher authority: the learning process grades itself in a process
of trial and error. Learning can be performed on various models for many applications:
computer vision [Lee+09], speech recognition [Wai+89], medical diagnosis [Kon01]...

In the following, we will be interested in learning probabilistic models. Basically, this
can be separated in two parts. First, similarly to a non-probabilistic model, one has to
obtain the structure of the model, that is the possible states and the transitions from
one state to another. Then, one would like to estimate accurately the values of these
probabilities. This part is at least as difficult as the first one: probabilities depend on
many factors that are usually intractable. Further, a small error in the evaluation may
lead to a huge difference when focusing on some properties, as we will pinpoint later. This
is highlighted in figure 1.4: in this example, at each step we stay in s0 with probability
1−2ε, go in the good state© with probability ε and go in the bad state§ with probability

23

Chapter 1 – Introduction

s0 ©§ ε ε

1− 2ε

Figure 1.4: Toy example where local transitions are close enough but general properties
are very different.

ε. Then, the probability to eventually reach© is 0.5. Let us suppose that ε is small and that
we estimated the model and obtained the probabilities 1−2ε, 3ε/2 and ε/2. Probabilities
are very close since ε is very small, but now the probability to eventually reach © is 0.75,
which is very different. In this document, we will focus on the learning of Markov Chains,
one of the simplest model that contain probabilities.

Outline: To summarize, in this document we will study how to retrieve information
and quantify it on stochastic systems with partial information. For that, we will
first give some definitions, notations and previous general results and then study three
problems: diagnosability, classifiability and learning. This thesis is organized as follows:

• In Chapter 2, we introduce useful notations and definitions that we will use all along
this document. We also present some general results that will be useful for different
parts of the thesis.

• In Chapter 3, we focus on diagnosability. Similarly to medicine, diagnosability is
the ability to retrieve an information (such as an event corresponding to an error)
from an execution of the system. We will go further than the binary question “are
we able to deduce this information or not”, transforming it in “how often can we
deduce this information”. We will also investigate the question “how fast can we
deduce this information”, pushing the quantitative questions.

After a state of the art addressing qualitative diagnosability and some extensions
to probabilistic models, we introduce some definitions of quantitative diagnosability
along with algorithms to compute these quantities. Then, we present how to use
these algorithms in order to approximately closely reconstruct the distribution of
fault delay and to derive bounds on these delays with some confidence intervals. We
also show the optimality of these bounds. This chapter is based on the contributions
presented in [BFG17; BFG18b; BFG18a].

24

• In Chapter 4, we address classifiability which is, given two systems and one observa-
tion, the ability to decide which system produced the observation. Classifiability can
be seen in some sense as a generalization of some problems such as diagnosability,
i.e., decide if the execution has been produced by the part of the system where the
error event occurred or not. Notice that it is not technically true, as diagnosis is
intrinsically asymmetric and classification is symmetric, but the concept and the
proofs used can be similar.

First we present a state of the art, including some recent works that tackle notions
that are equivalent to classifiability. We then present a new proof of the complexity
of classifiability. We then investigate the notion of classifiability in a security context:
what happens if we give an attacker some ability to act on the systems? This chapter
is based on the contributions presented in [Aks+19].

• In Chapter 5, we shift to an orthogonal problem, that is learning a stochastic system.
This problem raises some of the questions discussed before about what is a good
model. Given a stochastic systems, one would like to learn its transition probabilities
to obtain a faithful model of its operation.

After presenting different techniques to estimate the transition probabilities from
the execution of a system and the framework of Probably Approximately Correct
(PAC) learning, we focus on obtaining (PAC) guarantees on the learned models
with respect to global properties. We first consider simple formulas, such as time
to failures and then we show than on some set of logical properties computing a
confidence level for all properties in this set is possible, whereas for some other
set, this is not possible. For the paradigms where this is possible, we provide an
algorithm and an evaluation of the results.

This chapter is based on the contributions we will present in [Baz+].

The details of my publications this thesis is based on are provided before the refer-
ences.

25

Chapter 2

Preliminaries

In this chapter, we present the different notations and definitions that will be useful
along this document. We also present some fundamental results. In section 2.1 we present
numerous models of interest that we will use in this thesis: we go from general models
(automata, Markov Chains) to specific ones (labeled Markov Chain, Probabilistic Finite
Automata...). In section 2.2 we recall specific vocabulary and properties of Markov Chains.
In section 2.3 we remind vocabulary and notions of convergences on random variables. In
section 2.4 we state some problems that we will be interested in and give the notations
of logic that will help us define these problems. In section 2.5 we give some general
algorithmic results on which we will base some of our results.

Given an alphabet Σ, we denote by Σ∗ (resp. Σω) the set of finite (resp. infinite) words
over Σ. N is the set of natural numbers, Q the rational numbers and R the real numbers.
For a set X, we write 2X the powerset of X.

2.1 Classes of models

In this thesis, systems are represented by formal models. A tremendous number of different
models exist. Each one has its specificity and allows one to express different kinds of
properties. First, we are going to present different models of interest that we will use
alongside this document.

2.1.1 Transition systems and automata

Dynamical systems are characterized by their current state and their trajectories. Thus,
a natural representation of a dynamical system can be made by using a set of states,
each representing the current state of the system, and an alphabet representing either
the different possible actions or observations of the execution. In the following, we will
distinguish systems with stopping time and those without. As a consequence, in the first
case, the corresponding executions will have a finite length and in the second one we will

27

Chapter 2 – Preliminaries

consider (set of) infinite executions. Both settings will be relevant later. We also remind
some usual vocabulary on these systems and set notations.

The first basic model is the labeled transition system (LTS), defined as follow:

Definition 2.1 (Labeled Transition System).
A labeled transition system A is a quadruple (S,Σ, I, T) such that:

• S is a finite set of states,
• Σ is a finite alphabet,
• I ⊆ S is the set of initial states,
• T ⊆ S × Σ× S is the set of transitions.

For a LTS A, we denote (s a−→ s′) a transition such that (s, a, s′) ∈ T . Given t = (s a−→ s′)
a transition, its observation denoted o(t) is the letter a, its initial state s−(t) = s and
its final state s+(t) = s′. In the literature, the observation is often called “label”. In
this thesis, we consider generative systems where the letters will generally be signals
given by an execution, hence the name “observation”. A finite path of A is a sequence of
transitions π = t1 . . . tn such that for all 1 ≤ i < n, s+(ti) = s−(ti+1) and its observation
is o(π) = o(t1) . . . o(tn). For two states s and s′, the set of paths from s to s′ is denoted
P(s, s′). For Sf a set of states, we denote by PSf (s, s′) the set of paths from s to s′ that
do not have a state of Sf as an intermediary state. The set of finite paths of A is denoted
P(A). A finite run ρ is a path such that its first state is an initial state and the set of
runs of A is denoted R(A). Similarly, we define infinite paths and runs as an infinite set
of transitions (ti)i∈N such that for all i, s+(ti) = s+(ti+1) and their set, Pω(A) and Rω(A).

The language L(A) is defined as the set of observations w such that there exists
ρ ∈ R(A) with w = o(ρ). Again, we define the infinite language Lω(A). Let π = t1 . . . tn be
a finite path. We denote its length |π| = n. The definition and notation of the observation,
the initial state and the final of a path is naturally extended from those of a transition:
we have s−(t1 . . . tn) = s−(t1), s+(t1 . . . tn) = s+(tn) and o(π(s a−→ s′)) = o(π)a. Given
π′ = t′1 . . . t

′
m such that s+(tn) = s−(t′1), the concatenation of π and π′ denoted ππ′ is the

path t1 . . . tnt′1 . . . t′m. A path π is a prefix (resp. suffix) of π′′ if there exists π′ such that
π′′ = ππ′ (resp. π′′ = π′π). For a finite run ρ, the cylinder of ρ, denoted Cyl(ρ) is the
set of infinite runs ρ′ such that ρ is a prefix of ρ′. By extension, for a observation w, the
cylinder of w is the set of infinite size observations having w as a prefix.

A state is s is reachable from s′ if there exists a path with initial state s′ and final
state s. s is reachable if there exists a path starting from an initial state and ending in
s. A strongly connected component (SCC) is a set Q ⊆ S such that for all s, s′ ∈ Q, s is

28

2.1. Classes of models

reachable from s′. Moreover, it is a bottom strongly connected component (BSCC) if for
all s ∈ Q, s′ is reachable from s implies s′ ∈ Q.

We notice that runs in a LTS correspond to process that have no defined end. The
“finite run” counterpart of the LTS is the finite state automaton, defined as follow:

Definition 2.2 (Finite State Automaton).
An automaton A is a quintuple (S,Σ, I, T, F) such that:

• S is a finite set of states,
• Σ is a finite alphabet,
• I ⊆ S is the set of initial states,
• T ⊆ S × Σ× S is the set of transitions,
• F is the set of final states.

Previous definitions on finite paths still apply. The language L(A) ⊆ Σ∗ of an automa-
ton A is the set of observations w such that there exists a final path starting in a state of I,
ending in a state of F and with observation w, i.e., L(A) = {o(ρ), s−(ρ) ∈ I, s+(ρ) ∈ F}.

Example 2.1. LTS A represented in figure 2.1 recognizes the set of infinite observations
Lω(A) = {aω} ∪ {anbω, n ∈ N∗}. Its BSCC are {s1} and {s2}.

s0start

s1

s2

s3

a

a

a b

a

b

a

Figure 2.1: Example of an LTS A.

2.1.2 Partial observation

In a perfect world, an observer would know the exact state of a system, of all its pa-
rameters... Unfortunately, this is not usually the case. There are many reasons for this: a

29

Chapter 2 – Preliminaries

system may be designed to be opaque in some way for security reasons. Moreover, gath-
ering information is costly: many sensors, captors... would be needed. Furthermore, some
data can be unreliable, such that those caused by environment perturbation. The amount
of data needed to have a complete grasp of the system could also simply be too huge.
Hence, in real world, observers may know perfectly a system but when running it, they
only have a partial view of its current state. In order to formalize this, we have to state
what information can be gathered. In this thesis, we will consider a natural paradigm:
the current state of the transition system is unknown, and two actions that give the same
information to an observer may lead to two different outcomes. Thus, two transitions
from a same state labeled by the same letter can lead to different states: we consider
non-deterministic systems.

Another way to model partial observation would be to have silent transitions: the
alphabet is partitioned in two, the observable and the unobservable ones: Σ = Σo∪Σu. In
this setting, the observation is the projection over the observable alphabet: given a path
π and t labeled by a, its observation õ(πt) is õ(π)a if a ∈ Σo, and õ(π) else. Having silent
transitions does not extend the expressivity of the model. These silent transitions can
be removed by a process of ε transition removal [Moh02a], creating a non-deterministic
system where states are not observable, i.e., the models we consider in this thesis. This
process is conducted as follows: for a sequence of transitions u1 . . . unt from s to s′ such
that for all i, ui is silent and t is observable and labeled by a, we create the transition
(s, a, s′) if it does not exist already. Notice that in this process we consider an equivalence
at the moment an observation is raised, and not during a sequence of silent transitions.
This is not a problem: in general, a judgment on the system will be raised at the moment
an observation is gathered.

Hence, we will consider in the following transition systems where the alphabet is fully
observable and the states are unobservable.

Example 2.2. In figure 2.2, the transitions labeled by u and f are unobservable. However,
the sequence fa makes the system go in state s1 with the observation a, thus we add a
transition labeled by a from s0 to s1. Similarly, after the sequence ub, the system is in
state s3. Thus, we add a transition from s0 to s3 labeled by b. This transition “forgets”
that the sequence went through state s2, highlighting that the equivalence is at the exact
moment an observation is raised.

Sometimes, silent transitions are considered slightly differently: the label is hidden at
the observation, however the user knows that a transition occurred. In this case, it is easy

30

2.1. Classes of models

s0

start

s1 s2 s3
f u

b

a a b

s0

start

s1 s2 s3
a a

b

b

a a b

Figure 2.2: An LTS A with silent transitions (above) and its equivalent A′ after ε-removal
(below).

to build an equivalent system by replacing each silent transitions by one with a special
letter whose meaning will be “a transition occurred”.

2.1.3 Quantitative systems

Weighted automata: a general model with quantities

In order to add information to executions of a system, we want to enrich the model. A
general way to do this is to add quantities to the transitions. These quantities may be
very general: weights, costs, rewards... These quantities can be modeled not only by (real)
numbers, but also by elements of more complex structures. In this section, we present
weighted automata, where the weights of the transitions are elements of semirings. We
will see what properties some semirings have and how they help us to calculate interesting
information. Overviews of this formalism can be found in [Sch61; KS85].

Definition 2.3 (Semiring).
Let K be a set, ⊕ such that (K,⊕) is a commutative monoid with identity element 0

and ⊗ such that (K,⊗) is a commutative monoid with identity element 1.
(K,⊕,⊗, 0, 1) is a semiring iff

• ⊗ distributes over ⊕
• ⊗ annihilates over 0: for all x in K, x⊗ 0 = 0× x = 0

31

Chapter 2 – Preliminaries

Furthermore, the semiring is said to be closed if

• for all x ∈ K, ⊕n x
⊗n is well defined and in K (this operator is denoted x∗),

• associativity, commutativity and distributivity hold for countable sums of elements
of K.

Example 2.3. The probability semiring (R+,+,×, 0, 1) is a first natural example of a
semiring that will be useful later. This semiring is not closed: we do not have the asso-
ciativity, commutativity and distributivity of countable sums. Furthermore, the geometric
sum does not converge for all positive number: ∑n 1n =∞.

Another classical semiring is the tropical semiring (R+,min,+,∞, 0), associated with
shortest distance problems. This one is closed: the ∗ operator is min(0, x, 2x, . . .) = 0.

We can now define automata with weights over a semiring:

Definition 2.4 (Weighted automaton).
Let (K,⊕,⊗, 0, 1) be a semiring. A weighted automaton A over K is a quintuple

(S,Σ, λ, γ,z) such that:

• S is a finite set of states,
• Σ is a finite alphabet,
• λ : S → K is the set of initial weights,
• γ : S × Σ× S → K is the function assigning weights to the transitions,
• z : S → K is the set of final weights.

The weight of a finite path π = t1 . . . tn is equal to ⊗n
i=1 γ(ti). Given an execution

ρ = t1 . . . tn with s−(ρ) = s and s+(ρ) = s′, the weight of ρ is equal to

λ(s)⊗ γ(π)⊗z(s′)

Thanks to example 2.3, we saw that the closure of a semiring is very restrictive. How-
ever, when considering weighted automata, an infinite sum will occur when we consider
the possibility to go through a cycle arbitrary many times. Then, we only need the closure
with respect to these elements.

Definition 2.5 (Closure w.r.t a weighted automaton).
Let A be a weighted automaton over K. K is said to be closed over A if for all cycles

c of A,

• γ(c)∗ is well defined and in K,

32

2.1. Classes of models

• associativity, commutativity and distributivity hold for these specific countable sums:
for all x, y, .

Example 2.4. For a weighted automaton A over the probabilistic semiring, if all cycles
have a weight lower than 1, then this semiring is closed with respect to A.

2.1.4 Stochastic systems

In the following, we consider specific quantitative models, where the quantities are prob-
abilities. First, we consider systems where there may be some non-determinism but the
information about the current state is available. The simplest stochastic system we con-
sider is Markov Chains:

Definition 2.6 (Finite state discrete time Markov chain).
Let S be a set of states.
A Markov chainM can be modeled as a triple (S,M, µ0) where:

• S is a set of states
• M ∈ [0, 1]|S|×|S| is the stochastic transition matrix.
• µ0 : S → [0, 1] with ∑s µ0(s) = 1 is the initial probability mapping.

Notions of paths and executions are naturally extended from those on transition sys-
tems.

A related definition (for statisticians) is that a discrete time Markov chain is a sequence
of random variables (Xi)i∈N that can take a finite number of values with the Markov
property, i.e., such that the probability of the next state given all the past of the run
depends only on the last state of the run, that is

Pr(Xn = s|Xn−1, . . . , X1) = Pr(Xn = s|Xn−1)

Then, the probability distribution after m steps is equal to (µ0(s0), . . . , µ0(sn))Mm.

Example 2.5. Figure 2.3 depicts a Markov chain with initial distribution µ0(s0) = 1,
and for all i > 0 µ0(si) = 0. After one step, the probability distribution is (0, 1

2 ,
1
4 ,

1
4) and

after two steps, it is (0, 1
2 ,

3
8 ,

1
8).

Another class of fully observable probabilistic systems are Markov Decision Processes
(MDPs). They provide a framework to model decision making when possibilities are partly
random. In MDPs, the alphabet is the set of choices. At each step, the user chooses

33

Chapter 2 – Preliminaries

s0start

s1

s2

s3

1
2

1
4

1
4

1
2

1

1

1
2

Figure 2.3: Example of a Markov ChainM.

an action available, and the resulting state is chosen at random among the different
possibilities.

Definition 2.7 (Markov Decision Processes).
A Markov Decision Process A is a quadruple (S,Σ, µ0, (Ma)a∈Σ) with:

• S is a set of states,
• Σ an alphabet,
• µ0 : S → [0, 1] with ∑s µ0(s) = 1 is the initial probability mapping,
• for every a ∈ Σ, Ma is a matrix such that each line is either stochastic (the state

allows a) or zero (a is not allowed).

2.1.5 Partially observable stochastic systems

In this subsection we consider partially observed stochastic systems. We explained in sec-
tion 2.1.2 that the information about the current state is hidden. In general, there are two
alphabets: the control alphabet Σc and the signal one Σs. Intuitively, the control alphabet
Σc is the set of actions a player can choose and Σs represents the set of observations that
can be raised. These two alphabets have then orthogonal meanings. When considering
stochastic systems, the meanings of the probabilities associated to the control alphabet
and the signal alphabet are again orthogonal. When a control action has been chosen, we
want the sum of the probabilities of all possible outcomes of this action in one state to
be 1. However, when considering the signal alphabet, we want the sum of the probabilities
of all possible outcoming signals in one state to be 1.

34

2.1. Classes of models

initstart

choice 1

choice 2

initstart

choice 1

choice 2

cho
ose

1

choose 2

1
2

1
2

flip a coin

thou
ghts

, 1
4

thoughts, 1
4

coin
flip,

1
4

coin flip, 1
4

Figure 2.4: A model where the user has a choice represented by an MDP (left) and a
model of an observer witnessing a possible strategy represented by an LMC (right).

Partially Observed MDPs (POMDPs) [Ast65] are a class of systems that can be rep-
resented with these two alphabets. The user chooses an available action (in Σc) and then
a signal (in Σs) is raised with respect to the transition that was effectively performed. In
POMDPs, states are usually partitioned into equivalence classes and the user receives as
observation the class of the resulting state.

In this thesis, we focus on two kinds of models: Labeled Markov Chains, where the
user has no control and only receives signals. The second is Rabin’s Probabilistic Finite
Automata, which are POMDPs with only one class of equivalence: the current state is
totally hidden.Notice than in both case, we will need only one alphabet. Thus, to simplify,
we will write Σ instead of Σc and Σs, but remember that they have different meanings.

Example 2.6. In figure 2.4, we model the same situation where someone has to make
a choice between two possibilities. One model (left) is from the choice maker. He can
either decide to choose 1 or 2, or he is undecided and will flip a coin. There are then two
deterministic choices and one non-deterministic. On the right side, an observer looks at
the choice maker. The observer will only see if a coin has been flipped or not.

Words describing observation sequences

First, we discuss about models where the words associated to executions represent a
signal given to an observer. This can be represented by a special case of weighted au-
tomata. A weighted automata is said to be stochastic if it is over the probability semiring
(R+,+,×, 0, 1) and for all state s, ∑a,s′ γ((s, a, s′)) = 1. In [Moh02b], this system is called

35

Chapter 2 – Preliminaries

“probabilistic automaton”. However, we will avoid to use this name, since it may be con-
fused with Rabin’s “probabilistic finite automaton” that will also be of interest in this
document. In [Mug96], it is referenced as a stochastic automaton. When necessary, we
will use this name.

The corresponding event system (i.e., with no notion of final state) is the Labeled
Markov Chain [CK14; DHR08]. In the literature, it appears with different names. In [BP66],
it is called Hidden Markov Model. It also appears as probabilistic-LTS in [Lef18] and Hid-
den Markov Chain in [KS16].

Definition 2.8 (Labeled Markov Chain).
A Labeled Markov ChainM is a quadruple (S,Σ, µ0, p) such that:

• S is a finite set of states,
• Σ is a finite alphabet,
• µ0 : S → [0, 1] with ∑s µ0(s) = 1 is the initial probability mapping,
• p : S×Σ×S → K with ∑a,s′ p((s, a, s′)) = 1 gives the probabilities of the transitions.

We may notice that a Markov Chain is a labeled Markov Chain with exactly one
letter. The (possibly infinite) language of a LMC is the set of words w such there exists
an execution in this LMC labeled by this word.

s0start

s1

s2

s3

a, 1
2

a, 1
4

a, 1
4 b, 1

2

a, 1

b, 1

a, 1
2

Figure 2.5: Example of an LMCM.

Example 2.7. In figure 2.5, the word ab is the label of two distinct runs, both ending in
s2. The probability of ab is then equal to 1

4 × 1 + 1
4 ×

1
2 .

36

2.1. Classes of models

Words modeling control sequences

In this document, we will also consider Rabin’s Probabilistic Finite Automaton (PFA),
introduced in [Rab63]. A PFA can be seen as a MDP where states are totally unobservable.
We also add stopping time modeled by final states.

Definition 2.9 (Probabilistic Finite Automata).
A complete Probabilistic Finite Automaton A is a quintuple (S,Σ, µ0, (Ma)a∈Σ, F) with:

• S is a set of states,
• Σ an alphabet,
• µ0 : S → [0, 1] with ∑s µ0(s) = 1 is the initial probability mapping,
• for every a ∈ Σ, Ma is a matrix such that each line is either stochastic (the state

allows a) or zero (a is not allowed),
• F ⊆ S is the set of final states.

Furthermore, if for every letter a, Ma is a stochastic matrix then A is said to be
complete. Every PFA can be completed by adding a dummy state with self-loops and
adding transitions to this state for every missing letter. Given a distribution δ and a letter
a, the distribution δ′ = δ · a is defined as δ′(t) = ∑

s δ(s)Ma(s, t). This can be naturally
extended to words with for all distribution δ, for all word w and letter a, δ ·(wa) = (δ ·w)a.
The probability of acceptation of a word w is ∑t∈F µ0 · w(t).

Example 2.8.
In figure 2.6, an execution for the word aba is accepted in A if it ends in state s1. This

has a probability of 0.7× 1× 0.5 + 0.3× 0.6× 0.5 + 0.3× 0.4× 0.7 = 0.524.

s0 s1

0.70.3
a

0.6

0.4
b b

0.5
0.5

a

Figure 2.6: Example of a PFA A.

37

Chapter 2 – Preliminaries

2.1.6 Construction of a probability measure on infinite words

On the different systems we defined, we gave the definition of the probability of a finite
execution and its cylinder. However, in some applications, we would like to discuss about
set of infinite executions. Intuitively, the probability of an infinite run π should be the
limit of the probabilities of its prefixes. However, in general, this limit is 0, we then need
do state that the set of infinite runs is measurable and give its measure. Caratheodory’s
theorem1 [AD00] allows us to correctly define this measure on these infinite runs. For that,
we recall some definitions and then state the theorem. First, we need building blocks. We
remind the definition of a cylinder, given in section 2.1.1: for a finite run ρ, the cylinder
of ρ, denoted Cyl(ρ) is the set of infinite runs ρ′ such that ρ is a prefix of ρ′, and for a
word w, the cylinder of w is the set of infinite words that have w as a prefix. We state
that the set of the union of cylinders is a topology on the set of infinite runs:

Definition 2.10 (Topology).
Given a set X, Y is said to be a topology on X if

• ∅ ∈ Y ,
• X ∈ Y ,
• Y is stable by (any) union, i.e., if for all i ∈ I, Oi ∈ Y then ⋃iOi ∈ Y ,
• Y is stable by finite intersection, i.e., if for all i ∈ J1, nK, Oi ∈ Y then ⋂iOi ∈ Y .

An element O in Y is called an open set.

Example 2.9. Let us consider the alphabet Σ = {a, b}. The set of infinite words having
at least one a can be expressed as the union of the cylinders of words ending by an a:
{w ∈ Σω, a ∈ w} = ⋃

w∈Σ∗ Cyl(wa). However, the set of words having no a is not an
open set: we need infinite intersection to define it: {w ∈ Σω, a 6∈ w} = ⋂

w∈Σ∗ Cyl(wb).

From this set of open sets, we can inductively define the Borel hierarchy generated by
the open sets Y and the complement operator:

Definition 2.11 (Borel hierarchy).
The Borel hierarchy is given by the classes Σ0

α, Π0
α, ∆0

α for every countable ordinal
α, such as:

• Σ0
1 is the set of open sets,

• ∀α ≥ 1, B ∈ Π0
α iff BC ∈ Σ0

α,

1. also called Hahn-Kolmogorov, or Caratheodory-Hahn

38

2.1. Classes of models

• ∀α ≥ 2, B ∈ Σ0
α iff there exists a family (possibly infinite) (Bi) in B ∈ Π0

α−1 and
B = ⋃

Bi,
• ∀α ≥ 1, ∆0

α = Σ0
α ∪Π0

α.

A set in some class of the Borel hierarchy is called a Borel set.

Example 2.10. Continuing example 2.9, the set of words having no a is in Π0
1, as it is

the complement of the set of words having at least one a. Then, the set of words having
only a finite number of a (i.e., {wbω, w ∈ Σ∗} is in Σ0

2, as the uncountable union over
n of words of length n followed by bω. Hence, as its complement, the set of words having
infinitely many a is in Π0

2.

We can notice that the Borel hierarchy defines a hierarchy of complexity on sets of
infinite words.

In the following, we recall that Borel sets are measurable and that for all properties
we want to measure, the set of runs that satisfy this property can be expressed as a Borel
set. For now, we introduce some additional vocabulary that will allow us to state the
Caratheodory theorem.

Definition 2.12 (Ring of sets).
Given a set X, a ring of sets R of X is a subset of 2X containing the empty set, closed

under pairwise union and relative complement, that is:

• ∅ ∈ R,
• ∀A,B ∈ R, A ∪B ∈ R,
• ∀A,B ∈ R, A \B ∈ R.

A σ-algebra is a ring of sets with additional requirements:

Definition 2.13 (σ-algebra).
Given a set X, a σ-algebra S of X is a subset of 2X containing the empty set, closed

under countable union and complement, that is:

• ∅ ∈ S
• ∀(Ai)i∈N ∈ S,

⋃
Ai ∈ S

• ∀A ∈ S, X \ A ∈ S

Notice that the set of Borel sets is the σ-algebra generated by the open sets.

Definition 2.14 (Pre-measure and measure). A pre-measure µ on a ring of sets R is a
function µ : R → R+ such that:

39

Chapter 2 – Preliminaries

• µ(∅) = 0
• for all countable family of sets of R pairwise disjoint (Ai)i∈N, µ(⋃Ai) = ∑

i µ(Ai).

If R is a σ-algebra, then µ is called a measure. µ is called σ-finite if there exists a
countable collection (Ai)i∈N ∈ R such that R = ⋃

Ai.

The probability we defined on finite executions is a pre-measure. Caratheodory’s the-
orem allows to define the corresponding measure:

Theorem 2.1 (Caratheodory’s extension theorem [AD00]).
Let X be a space and R a set of rings on X, µ a pre-measure on R that is σ-finite.

Then there exists a unique measure µ′ on the sigma algebra generated by R such that for
all A ∈ R, µ(A) = µ′(A).

In our case, we have that the probability of the empty set of words is 0, and that for
disjoint set of words (Ai), P(⋃Ai) = ∑

i P(Ai). By using this theorem and extending the
pre-measure defined on the set of rings generated by the open sets, we proved that all
Borel sets are measurable.

Example 2.11. In figure 2.11, every finite word of length n has probability 1
2n , and we

denote by µ the pre-measure associated. The set W of words having an infinite number of
a is not in the ring of sets generated by the open sets, however, by extending µ into p, we
find that p(W) = 1.

s0 a, b, 1
2

Figure 2.7: An LMC such that for all w ∈ Σn, P (w) = 1
2n .

2.2 Vocabulary and properties of Markov Chains

In this section, we remind some definitions about Markov Chains and some of their prop-
erties. First, we define irreducibility, that is the underlying graph is strongly connected
and then the periodicity.

Definition 2.15 (Irreducibility).
Let M be a Markov Chain. M is irreducible if for all pair of states s, t of M, there

is a path from s to t.

40

2.2. Vocabulary and properties of Markov Chains

Definition 2.16 (Period). LetM be a Markov Chain and s one of its states. Its period
d is the GCD of the lengths of all cycles on s.

Definition 2.17 (Aperiodicity).
LetM be a Markov Chain.M is aperiodic if for all state si ofM, its period di is 1.

If a Markov chain is both irreducible and aperiodic then it is called ergodic. Ergodic
Markov Chains have interesting properties, especially about stationary distributions:

Definition 2.18 (Stationary distribution).
LetM be a Markov Chain, M its transition matrix and δ a probability distribution on

the states ofM. δ is said to be stationary if δM = δ.

Theorem 2.2 (Fundamental Theorem of Markov Chains). LetM be an ergodic Markov
Chain and M its transition matrix. Then M admits a unique stationary distribution σ.
Further, M t

x,y →t→∞ σy for all states x, y.

s0start

s1

s2

s3

1
2

1
4

1
4

1
2

1
2

1
4

1
2

1
2

1
4

1
2

Figure 2.8: Example of a Markov ChainM.

Example 2.12. The Markov ChainM presented in 2.8 is ergodic: it is strongly connected
and there are self-loops ensuring that GCD of lengths of cycles on states is 1. Thus, M

41

Chapter 2 – Preliminaries

admits a stationary distribution δ. This distribution satisfies the following system:

(δ0, δ1, δ2, δ3)


0 1

2
1
4

1
4

1
2

1
2 0 0

1
2 0 1

4
1
4

1
2 0 0 1

2

 = (δ0, δ1, δ2, δ3) and δ0 + δ1 + δ2 + δ3 = 1

The solution of this system is (1
3 ,

1
3 ,

1
9 ,

2
9).

2.3 Vocabulary and properties of probability distri-
butions

In this section, we recall some definitions and set notations around the notion of random
variables and probability distributions. In the following, the random variables will be
implicitly defined on probabilistic space (Ω,F ,P) with Ω the outcome possibilities, F a
σ-algebra on the powerset of Ω and P the probability measure on F . We will immediately
place ourselves in the case where the values associated to outcomes are real numbers.
Furthermore, most of the definitions will be given for the case of discrete random variables.

Definition 2.19 (Expected value).
Let X be a real-valued random variable. The expected value of X is E[X] = ∑

x×P(x).

Notice that for some random variables, this sum may diverge and the expected value
is not properly defined.

Definition 2.20 (Moments).
Let X be a real-valued random variable. The n−th moment of X is given by E[Xn].

Similarly, moments are properly defined when the sum does not diverge.

Example 2.13. Let us consider the random variable X following a geometric law of
parameter 1

2 , i.e., for all n ≥ 1, P(X = n) = 1
2n . The expected value of X is equal to∑

n
n
2n = 2. Its variance is equal to E[X2]− E[X]2 = 2.

An important property we will often try to ensure is that the probability of some bad
case is low enough. Generally speaking, this bad case can be such as a long waiting time.
To ensure that this has a low probability, we use concentration inequalities. We recall two
of the most used.

42

2.3. Vocabulary and properties of probability distributions

Proposition 2.3 (Markov’s inequality).
Let X be a real-valued random variable. Then, for all α > 0, we have P(|X| ≥ α) ≤

E[|X|n]
αn

.

One particular case of Markov’s inequality is by using X = Y − E[Y] for Y a real
valued random variable. This is the Chebychev’s inequality that guarantees that no more
than a certain fraction of the distribution can be at more than a certain distance of the
mean value.

Proposition 2.4 (Chernoff’s inequality).
Let X be a real-valued random variable. Then, for all α, t > 0, we have P(|X| ≥ α) ≤

E[et·X]
et·a

.

We also remind the different notions of convergences from the weakest to the strongest:

Definition 2.21 (Convergence in law).
A sequence of random variables (Xn)n∈N converges in law to X (denoted Xn

L−→ X) iff
for all continuous bounded function ϕ,

limnE[ϕ(Xn)] = E[ϕ(X)]

Definition 2.22 (Convergence in probability).
A sequence of random variables (Xn)n∈N converges in probability to X (denoted Xn

p−→
X) iff

∀ε, lim
n

P(|Xn −X| ≥ ε) = 0

Definition 2.23 (Lp convergence). A sequence of random variables (Xn)n∈N converges
in Lp to X (denoted Xn

Lp−→ X) iff

∀ε, lim
n

E[|Xn −X|p] = 0

Definition 2.24 (Almost sure convergence).
A sequence of random variables (Xn)n∈N almost surely converges to X (denoted Xn

p.s−→
X) iff P(limnXn = X) = 1.

Proposition 2.5. Let (Xn)n∈N be a sequence of random variables, and X a random
variable. We have

Xn
p.s−→ X ⇒ Xn

p−→ X ⇒ Xn
L−→ X

43

Chapter 2 – Preliminaries

In this thesis, we want to evaluate limit behaviors of series of random variables. To do
that, the central limit theorem and the law of large numbers give answers to this question.

Theorem 2.6 ((Strong) Law of large numbers).
Let X1, . . . , Xn be a collection of independent and identically distributed (i.i.d.) random

variables drawn from a distribution of expected value given by µ and Sn =
∑n

i=1 Xi
n

.
Sn converges almost surely to µ.

Theorem 2.7 (Central limit theorem).
Let X1, . . . , Xn be a collection of independent and identically distributed (i.i.d.) random

variables drawn from a distribution of expected value given by µ, finite variance given by
σ2 and Sn =

∑n

i=1 Xi
n

.
√
n(Sn − µ) converges almost surely to the normal law of parameters (0, σ).

2.4 Questions of interest for the verification of stochas-
tic systems

Along this document, we will talk about different kinds of properties. We will go from
specific properties to more general ones. In this section, we present basic definitions and
vocabulary that will allow the reader to have a better catch on the progression we will
make. Techniques and specific state of the art will be included in corresponding sections.

2.4.1 Reachability

A first simple but necessary property that we want to tackle is the reachability, that
can be considered in different ways. First, it can be reckoned in a qualitative way: given
a target (i.e., a set of states), is there an execution that reach this set. Then, we can
investigate the quantitative version of this question: how much of the executions reach
this target? Finally, we can wonder how fast executions reach the target.

Let A be a labeled Markov chain, and s a target. The set of infinite executions that
eventually reach s is given by ⋃s+(ρ)=sCyl(ρ). This formulation as a countable union of
cylinders show us that unsurprisingly this set is measurable. This can be rewritten as the
sum of the probabilities of all paths that go from s0 to s without reaching s before:

∑
π∈Ps(s0,s)

P(π)

44

2.4. Questions of interest for the verification of stochastic systems

Notice that for all pair of paths π, π′ in Ps(s0, s), we have that π is not a prefix of π′. Since
the set of runs that reach s can be expressed as the union of the cylinders of all finite runs
that reach s, the set of runs that satisfy the reachability problem is measurable. Several
algorithms allow to compute this quantity. We present one in section 2.5.1.

2.4.2 Expressing general properties as temporal logics

After reachability, we focus on general properties that have broader expressivity. In this
work, we are interested in learning discrete time Markov Chains such that the learnt one is
close enough to the model with high probability. To describe this notion of proximity, we
use temporal logic [BPM83; Pnu77]. In this section, we introduce formalisms that allow
one to express such properties. State of the art on the subject of learning Markov Chains
will be addressed in Chapter 5.

Temporal logics

Temporal logics allow one to reason about properties related to a succession of events
in an execution. Formulas in temporal logics can express complex properties, such as
liveness (always ϕ), safety (never ϕ), fairness (if ϕ then eventually ψ)... Temporal logics
are broadly used in formal verification. There is a huge variety of temporal logics, however
in this document we will focus on two of them: Linear Temporal Logic (LTL) [Pnu77] and
Computation Tree Logic (CTL) [CE81]. First, we recall what these logics are, especially
on our models. In the following, we assumeM to be a discrete time Markov Chain.

The first temporal logic we consider, LTL, gives a way to specify properties on a single
execution.

Definition 2.25 (Linear Temporal Logic).
Let S be the set of state names ofM. LTL is built upon the following grammar:

ϕ ::= s ∈ S | ϕ ∧ ϕ | ¬ϕ | Xϕ | ϕUϕ

We define the semantic as follows: an execution ρ satisfies a formula ϕ, denoted ρ |= ϕ

according to the following rules:

• ρ |= true,
• ρ |= s iff s−(ρ) = s,
• ρ |= ϕ ∧ ψ iff ρ |= ϕ and ρ |= ψ,
• ρ |= ¬ϕ iff ρ 6|= ϕ,

45

Chapter 2 – Preliminaries

• tρ |= Xϕ iff ρ |= ϕ,
• ρ |= ϕUψ iff there exists n such that ρ = t1 . . . tnρ

′ and for all i ≤ n, ti . . . tnρ′ |= ϕ

and ρ′ |= ψ.

A Markov chain M satisfies an LTL property ϕ denoted M |= ϕ iff all traces of
executions inM satisfy ϕ.

We have defined a minimal set of operators, however, for commodity, we may use the
following operators:

• or: ϕ ∨ ψ ≡ ¬(¬ϕ ∧ ¬ψ),
• false: false ≡ ¬true,
• eventually: Fϕ ≡ true Uϕ,
• always: Gϕ ≡ ¬F¬ϕ.

By contrast with LTL, CTL does not handle single runs, but rather on execution
trees, i.e., the possible futures of a run. There are two kinds of quantifiers: those on paths
(Exists a future and All possible futures), and the path specific quantifiers.

Definition 2.26 (Computation Tree Logic).
Let S be the set of state names ofM. CTL is built upon the following grammar:

ϕ :== S | ϕ ∧ ϕ | ¬ϕ | EGϕ | EUϕ | EXϕ

Unlike in LTL, the semantics of CTL formulas is not defined on executions but rather
on states, we denote it (M, s) |= ϕ. We will allow ourselves to write it s |= ϕ when there
is no ambiguity on the system considered:

• s |= true,
• s |= s,
• s |= ϕ ∧ ψ iff s |= ϕ and s |= ψ,
• s |= ¬ϕ iff s 6|= ϕ,
• s |= EGϕ iff there exists (si)i∈N, for all i, p(si, si+1) > 0 and si |= ϕ,
• s |= E[ϕUψ] iff there exists s1 . . . sn such that s = s1, for all i < n, p(si, si+1) > 0

and si |= ϕ, and sn |= ψ,
• s |= EXϕ iff there exists s′, p(s, s′) > 0 and s′ |= ϕ.

A Markov chainM satisfies a CTL property ϕ denotedM |= ϕ iff every initial state
satisfies ϕ.

From this minimal set of operators, we may derive the following operators:

46

2.4. Questions of interest for the verification of stochastic systems

• or: ϕ ∨ ψ ≡ ¬(¬ϕ ∧ ¬ψ),
• false: false ≡ ¬true,
• exists eventually: EFϕ ≡ E[true Uϕ],
• always eventually: AFϕ ≡ ¬EG¬ϕ,
• always forever: AGϕ ≡ ¬EF¬ϕ,
• always next: AXϕ ≡ ¬EX¬ϕ,
• always until: A[ϕUψ] ≡ ¬(E[(¬ψ)U¬(ϕ ∨ ψ)] ∨ EG¬ψ).

An LTL formula ϕ and a CTL formula ψ are said to be equivalent if for allM,M |= ϕ

iffM |= ψ.
CTL and LTL are incomparable. Each one allows one to express properties that are

inexpressible in the other. As an example, the property AGEFp in CTL has no equivalent
in LTL: this property states that every execution at every point has the possibility to reach
a state where p is true. LTL does not allow to reason about this possibility: as a logic about
traces, it can only state if it does or does not reach a state where p is true. Conversely,
the LTL formula F (p ∧Xp) has no equivalent in CTL.

s0start s1

Figure 2.9: A model satisfying AGEFs1 but not GFs1.

s0

start

s1

s2

s3s4

Figure 2.10: A model satisfying F ((s0 ∨ s2 ∨ s3) ∧X(s0 ∨ s2 ∨ s3)) but not AF ((s0 ∨ s2 ∨
s3) ∧ AX(s0 ∨ s2 ∨ s3)).

In figure 2.9, at every point of every execution, there is a possibility to reach s1. Hence,
this model satisfies AGEFs1. However, it does not satisfy GFs1: the execution sω0 never

47

Chapter 2 – Preliminaries

reaches s1. In figure 2.10, every execution will eventually in two consecutive blue states,
hence the formula F ((s0 ∨ s2 ∨ s3) ∧X(s0 ∨ s2 ∨ s3)) is satisfied. However, the execution
s0s3s

ω
4 does not satisfy AF ((s0 ∨ s2 ∨ s3)∧AX(s0 ∨ s2 ∨ s3)): there is a possible successor

to s0 that is not blue. These two examples illustrate the difference between both logics.
In order to state some positive results for both CTL and LTL, we will sometimes state
them for the logic CTL∗ [Pnu77]. This temporal logic is a generalization of both CTL and
LTL. Since we will not use this logic for other purposes in this thesis, we do not recall its
formal definition.

We want a way to quantify the proportion of executions that satisfy the formula in
order to know more than if a system does or does not satisfy a formula. We have the
following result on CTL∗:

Theorem 2.8 ([BK08]). Given a systemM and a CTL* formula ϕ, the volume of exe-
cutions ofM satisfying the formula ϕ is measurable.

Therefore, we will be able to define probability measures accordingly to the systems
and the formulas.

2.5 General algorithmic results

In this section, we present some general results and algorithms that will be useful along-
side this document. Results treated in this section are not specifically related to a single
chapter. We first describe polynomial time algorithms for reachability in fully observable
systems. Perfect information is key for these algorithms to run in PTIME. In the pres-
ence of partial information, many problems become undecidable. We recall some of these
undecidability results on PFA at the end of the section.

2.5.1 PTIME algorithms for quantifying reachability in fully ob-
servable systems

Floyd-Warshall algorithm on weighted automata

The probability to reach a set of states can be computed by using a well known algo-
rithm, the Floyd-Warshall algorithm [Flo62]. Although this algorithm was first designed
to answer the shortest path problem, its uses are wider. We present the extension of this
algorithm to closed semirings. For instance, this extension has been used in [Moh02b;
Cor+08] to compute quantities in some specific semirings.

48

2.5. General algorithmic results

Let (K,⊕,⊗, 0, 1) be a closed semiring, A a weighted automaton over K with states
numbered from 0 to n−1, and let Sf be a set of states that cannot be intermediate states
in a path and Sk the set of states {sk, sk+1, . . . , sn−1. For convenience, let us assume that
Sf = {sn−1 . . . sn−m}, i.e., Sf = Sn−m. We recall that for a subset of states Q, PQ(si, sj)
is the set of paths from si to sj that do not have an intermediate state in Q. For two
states si and sj, the sets of paths (PSk(si, sj))k<n satisfy the following recursion:

• Pinit(si, sj) = {(si, a, sj), a ∈ Σ},

• ∀k ∈ J0;n−m−1K, PSk(si, sj) = PSk−1(si, sj)]PSk−1(si, sk)PSk−1(sk, sk)∗PSk−1(sk, sj).

Then, PSn−m−1(s0, sn−1) is exactly the set of paths going from s0 to sn−1 that do not
have an intermediate state in Sf . We define Wk(i, j) the total weight of the paths in
PSk(si, sj). Since for all k the sets PSk−1(si, sj) and PSk−1(si, sk)PSk−1(sk, sk)∗PSk−1(sk, sj)
are disjoint, we have by construction that Wk(i, j) = Wk−1 ⊕Wk−1(i, k)⊗Wk−1(k, k)∗ ⊗
Wk−1(k, j). This gives us the skeleton of the algorithm, with pseudo-code presented in
algorithm 1.

Algorithm 1 Floyd-Warshall algorithm for semirings
Winit is the matrix of weights of the transition
Wk are the matrix of weights at round k
for i, j ∈ J1, nK do

W0(i, j)← Winit(i, j)⊕Winit(i, k)⊗Winit(k, k)∗ ⊗Winit(k, j)
end for
for k ∈ J1, n−m− 1K do

for i, j ∈ J1, nK do
Wk(i, j)← Wk−1(i, j)⊕Wk−1(i, k)⊗Wk−1(k, k)∗ ⊗Wk−1(k, j)

end for
end for
return W (1, n)

Notice that for readability we kept one matrix per k, but we can make this with only
two matrices. In Chapter 3, we will use this algorithm with different semirings in order
to obtain a large variety of information.

Theorem 2.9.
Let A be a weighted automaton with S as state set over (K,⊕,⊗, 0, 1) and W =⊕

π∈PSf (s0,sn−1) γ(π). Then there is an algorithm that computesW with complexity O(|S|3).

49

Chapter 2 – Preliminaries

For instance, let us consider the problem “what is the probability to eventually reach
sn−1 from s0?”. By taking the probability semiring, and Sf = {sn−1}, we obtain exactly
the probability to go from s0 to sn−1. We may also notice that by taking the tropical
semiring, we obtain exactly a shortest path computation algorithm.

s0start

s1

s2

s3 s4

1
2

1
4

1
2

1
4

1
4

1
2

1
2

1
4

1

1

Figure 2.11: Markov Chain for the example of the Floyd-Warshall algorithm.

Example 2.14. We apply the algorithm to the Markov chain described in figure 2.11:
we want to calculate the probabilities to eventually reach s3 and s4 from the initial state.
Thus, we need to use only s0, s1, s2 as intermediate states. The semiring used here is
(R+,+,×, 0, 1). We initialize the weights with the probabilities of the transitions in W .
Then, we authorize s0 as an intermediate state. For example, W0(s2, s1) = W (s2, s1) +
W (s2, s0) ·W (s0, s0)∗ ·W (s0, s1). Since W (s0, s0) = 0, we have W (s0, s0)∗ = 1 and then
W0(s2, s1) = 0 + 1

4 · 1 ·
1
2 = 1

8 .

W =



0 1
2 0 1

2 0
0 1

2
1
2 0 0

1
4 0 1

4
1
4

1
4

0 0 0 1 0
0 0 0 0 1


W0 =



0 1
2 0 1

2 0
0 1

2
1
2 0 0

1
4

1
8

1
4

3
8

1
4

0 0 0 1 0
0 0 0 0 1


Then, s1 is added as possible intermediate state. There is a self-loop on s1, then

W0(s1, s1)∗ = 1
1− 1

2
= 2. Thus,W1(s1, s2) = W0(s1, s2)+W0(s1, s1)·W0(s1, s1)∗·W0(s1, s2) =

1
2 + 1

2 · 2 ·
1
2 = 1. Finally, we add s2.

50

2.5. General algorithmic results

W1 =



0 1 1
2

1
2 0

0 1 1 0 0
1
4

1
4

3
8

3
8

1
4

0 0 0 1 0
0 0 0 0 1


W2 =



1
5

6
5

4
5

4
5

1
5

2
5

7
5

8
5

3
5

2
5

2
5

2
5

3
5

3
5

2
5

0 0 0 1 0
0 0 0 0 1


Then, the probability to eventually reach s3 from s0 is 4

5 and the probability to reach s4

is 1
5 . Notice that the weights are not probabilities in general: it comes from the fact that

in intermediate calculations we add weights of paths that can be prefix from each other.
Hence, W2(s0, s0) is not the probability to eventually reach s0 from s0! (To compute this
quantity, we would need not to use s0 as an intermediate state.)

Fix point algorithm for reachability probabilities

Reachability probabilities can also be computed by a fix point problem. Given a Markov
Chain M = (S,M, µ0), the set of states S is partitioned in three sets. First is S=0, the
states that cannot reach the goal, i.e., there is no path from those states to the target.
The second is S=1 the set of states that will eventually reach the target with probability
one. Notice that these two sets S=0 and S=1 can be computed in linear time. The third
one is S? = S \ (S=0 ∪ S=1) the set of states that have a probability to reach the goal
strictly between 0 and 1.

Then, M? is the restriction of M to states in S?: M? = (M(s, t))s,t∈S? . We also define b
the vector of size |S?| such that ∀s ∈ S?, bs = ∑

t∈S=1 M(s, t). Then, we have the following
result:

Theorem 2.10 ([BK08]). The vector x = (probability to reach the goal from s)s∈S? is the
least fixed point of the operator Ψ : [0, 1]S? → [0, 1]S? given by

Ψ(y) = M?y + b

Besides, if x(0) is the zero vector, and x(n+1) = Ψ(x(n)), then:

• x(n)
s is the probability to reach the goal from state s in n steps or less,

• x = limn→∞ x
(n).

To go deeper, notice that all eigenvalues λ of M? satisfy |λ| < 1, thus by taking I the
identity matrix of the appropriate dimension I−M? is invertible. Thus, the least fix point
x is given by (I −M?)−1b. For more complex semirings, we will use the Floyd-Warshall
algorithm as elements of semirings may not have an inverse.

51

Chapter 2 – Preliminaries

Example 2.15. We continue example 2.14. The goal is state s3. Then, S=0 = {s4},
S=1 = {s3}, and M? and b are given by:

M? =


0 1

2 0
0 1

2
1
2

1
4 0 1

4

 b =


1
2
0
1
4


Then we invert matrix I −M? and obtain:

(I −M?)−1 =


6
5

6
5

4
5

2
5

12
5

8
5

2
5

2
5

8
5

 (I −M?)−1(b) =


4
5
3
5
3
5


Notice that as expected, we obtain the same results as with the Floyd-Warshall algo-

rithm.

Reachability in MDPs

In MDPs, reachability is more subtle. Indeed, the possibility to reach a state and further
its probability depend on the control strategy adopted, i.e., depends on wich letters are
played. As the probability depends on a controller C, we denote it PC. A natural question
is to find the controller that gives the maximal probability Pmax to reach the goal G.
Here, we denote by Pmax(reach G from s) the maximal probability to reach G from s and
PC(reach G from s) the probability to reach G using controller C. Finding the best con-
troller seems difficult, as there are infinitely many. However, the following result reduces
the number of controllers to investigate:

Theorem 2.11 ([BK08]). Let A be an MDP, S its state set and G the goal. There exists
a memoryless and pure controller such that for any state s,

PC(s) = Pmax(s)

The probability Pmax(s) can be computed in polynomial time.

Memoryless means that the policy only depends on the current state but not on
the previous ones. Pure means that for every state, the controller will only choose one
action and forbid the others. In order to find the maximal probability, several methods
are possible. A first is linear programming. The vector (xs)s∈S with xs = Pmax(s) is the
unique solution to the following linear program:

52

2.5. General algorithmic results

• s ∈ G⇒ xs = 1,
• G is not reachable from s ⇒ xs = 0,
• for all a ∈ Σ, xs ≥

∑
t∈SMa(s, t) · xt.

Then, this linear program can be solved in polynomial time. Other methods, such as
value iteration can be used to find the maximal probability. Similarly, minimal probability
for reachability can be calculated in polynomial time: in the linear program, ≥ becomes
≤.

2.5.2 Undecidable problems on partially observable systems

As one can expect, going from perfect to imperfect information may make some problems
much more difficult and often undecidable. In order to prove the undecidability of some
of the problems we will consider on these partially observable systems, we will need to
perform a reduction from other undecidable problems. In this section, we consider a few
undecidable problems for PFA that we will use later.

We first define the language associated to a cut-point.

Definition 2.27 (Language wrt a cut-point). Let A be a PFA. Let 0 ≤ η ≤ 1. The
language of A with respect to the cut-point η is LA(η) = {w,PA(w) ≥ η}.

A canonical problem is to determine if this set is empty:

Definition 2.28 (Emptiness problem for a PFA).
Given a PFA A and 0 ≤ η ≤ 1, the emptiness problem consists in determining if

LA(η) = ∅.

It is called strict emptiness if we use a strict equality instead of a large one. We
notice that for η = 0, the strict inequality problem trivially reduces to the emptiness
problem for a non-deterministic automaton, which is in NLOGSPACE. For η = 1, the
emptiness problem reduces to the universality problem for non-deterministic automata
which is PSPACE-complete [Koz77]. This gives us lower bounds for the complexity of the
problem. However, the general case of this problem is much more difficult:

Theorem 2.12. For 0 < η < 1, the emptiness problem for a PFA is undecidable.

The undecidability has first been proved in [Paz71]. New proofs have been presented
in [MHC03] and in [GO10]. These more recent proofs have been made more legible and
have precised a few points, such that the emptiness problem is undecidable for PFA with

53

Chapter 2 – Preliminaries

only two probabilistic transitions, i.e., there are two couples s ∈ S, a ∈ Σ such that there
exists t and 0 < Ma(s, t) < 1 [GO10]. Thus, the undecidability threshold is crossed very
quickly.

A second notion we will need is about isolated cut-points:

Definition 2.29 (Isolated cut-point).
Let A be a PFA and 0 ≤ η ≤ 1. η is said to be isolated with respect to A iff there

exists ε > 0 such that for all w ∈ Σ∗, |PA(w)− η| ≥ ε.

This definition leads us to the following decision problem:

Definition 2.30 (Isolation problem).
Given a PFA A and 0 ≤ η ≤ 1, the isolation problem consists in determining if η is

isolated.

Again, this problem has been proved undecidable.

Theorem 2.13. For 0 ≤ η ≤ 1, the isolation problem is undecidable.

The case 0 < η < 1 has been proved in [Ber75]. The special case 0 and 1 have long
stayed open, but have been showed undecidable in [GO10].

54

Chapter 3

Diagnosability analysis of Labeled
Markov Chains

In everyday language, diagnosability is the ability to decide the nature and cause of
something. This term is generally used in medicine: a doctor examines the symptoms in
order to diagnose the illness, or in any field related to find causes of a problem (diagnose a
car...). In some sense, this is what we want to do here: given a model of a system and one
of its execution, we want to know if some “error” occurred. What we call an error can be
any binary property, that is a question such that its answer is “yes” or “no”. Our challenges
are similar to those in other fields. First, we must define what we want to diagnose exactly.
A second challenge is that the answer should be accurate: false positive and false negative
may occur. Finally, an answer should be given “quickly”. Diagnosability has no interest if
it cannot be done in a reasonable time. These three notions can be summarized by verdict,
correctness and reactivity.

These notions have been extensively studied for qualitative diagnosability for labeled
transition systems and probabilistic transition systems. In this chapter, we want to extend
these notions to quantified diagnosis.

The notion of verdict stays unchanged: given a system and an execution, several in-
vestigation are possible. We may want to know if it has been erroneous for sure, or if it
has been correct for sure, or even both at the same time. In this chapter, we focus on
the detection of errors in the context of permanent faults: the system cannot recover of a
problem.

Correctness of diagnosis has been studied as determining if there is 0 error (or with
probability 0) on the diagnosis. In this chapter, we tackle the issue of determining with
precision the “amount of correctness”, that is giving a measure of the diagnosability. This
gives a hint on how close to diagnosable a system is.

Finally, reactivity has in the literature been studied in two ways. First, for diagnos-
ability of LTSs, reactivity is the existence of a bounded delay after which an answer is
given. This assessment is too strong for probabilistic systems, where no bounds can be

55

Chapter 3 – Diagnosability analysis of Labeled Markov Chains

given but the probability of non diagnosis decreases to 0 with the time. Thus, the reac-
tivity requirement must be adapted. This can be done by requiring that with probability
1 the fault will be detected in finite time. In this chapter, we investigate a quantitative
version of reactivity, based on concentration inequalities. For example, we can ask “after
how many steps am I sure to detect an error with probability at least 0.9?

This chapter is organized as follows: section 3.1 presents a state of the art on diag-
nosability. We start this state of the art in subsection 3.1.1 by presenting a definitions
and results on diagnosability of finite Labeled Transition Systems. Then, this state of the
art investigates what has been studied on diagnosability of probabilistic systems through
A-diagnosability in subsection 3.1.2, AA-diagnosability in subsection 3.1.3 and finally on
quantified diagnosis in 3.1.4. Section 3.2 presents a first contribution on quantified diag-
nosability. Definitions and semantics are given in subsection 3.2.1, related algorithms in
subsection 3.2.2 and possible optimizations in subsection 3.2.3. In section 3.3, we present
how to evaluate the distribution of diagnosis speed and its applications. Subsection 3.3.1
helps us to define the mathematical tools we need, subsection 3.3.2 states how to ap-
proximate the distribution of detection delay and subsections 3.3.3 and 3.3.4 discuss how
to derive concentration bounds from this evaluation. Finally, we conclude and give some
possibility of future work. Some related work that was not close enough to be put in the
state of the art is also mentioned.

This chapter is based on the results presented in [BFG17; BFG18b; BFG18a].

3.1 State of the art

3.1.1 Diagnosis and diagnosability of finite LTS

As stated in the introduction, diagnosability is the ability to detect a binary property on
a run of a system from the observation produced by that run. This property is usually
called the presence of a “fault” event and detecting this occurrence is called the diagnosis.
Therefore, our model must include a way to represent errors. Faults can equivalently be
represented as a subset of the alphabet or a subset of states of the system. In the literature,
the former is generally adopted. In this thesis, as we consider stochastic systems, it is
simpler to use the latter, that is state based errors: changes of states are registered as
soon as an observation is collected. Recall that we consider systems where the states are
unobservable. Thus, we can remove the unobservable alphabet by a procedure of ε-removal
about which we spoke about in Chapter 2.1.2. We will thus present some previous results

56

3.1. State of the art

in our formalism.
Let A = (S,Σ, I, T) be an LTS. The set of states S is partitioned in two: the set of

correct states SC and the set of faulty states SF . The set of faulty states is said to be
absorbing iff for all s ∈ SF , for all a ∈ Σ, (s, a, s′) ∈ T implies that s′ ∈ SF . In this case,
faults are said to be permanent.

Definition 3.1 (Faulty run).
Let A = (S,Σ, I, T) be an LTS, S = SC] SF . Wlog, assume that I ⊆ SC. A run ρ is

said to be faulty if s+(ρ) ∈ SF .

A run ρ is said to be minimal faulty if all its strict prefixes are non-faulty, i.e., correct.
We denote by F (A) (resp. C(A)) the set of faulty (resp. correct) runs of A. The set of
faulty runs ρ = ρ′ρ′′ such that ρ′ is minimal faulty and |ρ′′| = n is denoted Fn(A) and
correct runs of length n is Cn(A). For infinite runs, we denote it F∞(A) (resp. C∞(A)).
When there is no possible ambiguity, we will drop the name of the automaton (e.g. Fn
instead of Fn(A)). Given a run ρ and its observation o(ρ), our goal is to determine if ρ is
faulty (ρ ∈ F) or correct (ρ ∈ C). Given an observation o(ρ), three judgments on ρ are
possible: either it can only be produced by correct runs and then it is correct, or it can
only be produced by faulty runs and then it is faulty, or both and we cannot decide. This
last judgment is called ambiguity.

Definition 3.2 (Ambiguity).
Let A = (S,Σ, I, T) be an LTS, S = SC]SF . A run ρ of length n ∈ N∪{∞} is said to

be faulty ambiguous if ρ ∈ Fn and there exists ρ′ ∈ Cn such that o(ρ) = o(ρ′). Similarly,
we define correct ambiguous runs.

We set some notation for all these runs: the set of faulty (resp correct) ambiguous runs
is denoted Famb (resp Camb). We denote the set of faulty (resp. correct) non ambiguous
runs Fnamb (resp Cnamb). As before, for all these sets, we will denote those of a specific
length n by adding n as a subscript (ex: Fnamb,n). Given an observation, we want to
determine in which category it falls. This evaluation is performed by a diagnoser.

Definition 3.3 (Diagnoser).
Let A = (S,Σ, I, T) be an LTS, S = SC] SF . A diagnoser is a function D : Σ∗ →

{C,F,Amb} such that for an observation obs ∈ Σ∗,:

• D(obs) = C if o−1(obs) ⊆ C(A),
• D(obs) = F if o−1(obs) ⊆ F (A),

57

Chapter 3 – Diagnosability analysis of Labeled Markov Chains

• D(obs) = Amb else.

As stated in the introduction, different verdicts are possible. Some works consider
the diagnosis of faulty runs only, i.e., intuitively a system should be diagnosable if any
faulty run loses its ambiguity after a bounded extension. Others consider the diagnosis
of all runs, that is a system should be diagnosable if any run loses its ambiguity after a
bounded extension. In this chapter, we will consider the former and we present we will use
as a starting point the definition of [Sam+96], that is we restrict ourselves to permanent
faults and the study of diagnosability of faulty runs.

Definition 3.4 (k-Diagnosability of a run).
Let A = (S,Σ, I, T) be an LTS, S = SC] SF . A faulty run ρ ∈ F is said to be

k-diagnosable if for all π such that ρπ ∈ F and |π| ≥ k then D(o(ρπ)) = F .

Then, a notion of diagnosability for a system can be deduced from the notion of
diagnosability for its runs. An LTS A is said to be k-diagnosable if all its runs are k-
diagnosable. Originally, diagnosability has to be uniform: there is a bound such that all
executions are diagnosed before this bound. More formally:

Definition 3.5 ((Uniform) Diagnosability of an LTS).
An LTS A is said to be diagnosable if there exists k such that all its faulty runs are

k-diagnosable.

Later we will see that the requirement of uniformity is not restrictive for LTSs, that
is if for every faulty run ρ there is a k such that ρ is k-diagnosable, then there is a k such
that all faulty runs ρ are k-diagnosable. A natural decision problem arises:

Definition 3.6 (Diagnosability).
Given an LTS A, the diagnosability problem consists in determining whether A is

diagnosable.

This problem has been studied in [Sam+96] and the exact complexity has been stated
later [Jia+01; YL02].

An LTS A is diagnosable if there is no arbitrarily long ambiguous faulty sequence,
i.e., ∪n∈N ∩m≥n Famb,m = ∅. We define the twin plant Ã that allows one to tackle the
complexity of the problem.

Definition 3.7 (Twin plant).
Let A = (S,Σ, I, T) be an LTS, S = SC]SF and I ⊆ SC. The twin plant of A, denoted

Ã is the LTS (S̃,Σ, Ĩ , T̃) with:

58

3.1. State of the art

• S̃ = S × SC,
• Ĩ = I × I,
• T̃ ⊆ S̃ × Σ× S̃, with ((s, s′), a, (s1, s

′
1)) ∈ T̃ iff (s, a, s1) ∈ T and (s′, a, s′1) ∈ T .

Proposition 3.1. Diagnosability of LTS is decidable and is NLOGSPACE-complete.

A state (s, s′) ∈ S̃ is said to be ambiguous if s′ ∈ SC and s ∈ SF . A path in Ã

is ambiguous if the last state of the path is ambiguous. The diagnosability problem is
equivalent to the existence of an ambiguous cycle in the twin plant Ã. Then, a cycle
detection algorithm is enough to decide if an LTS is diagnosable, hence the NLOGSPACE
complexity. Notice that we only use S × SC because we do not need to keep in memory
states in SF × SF : as faults are permanent, SF × SF is absorbing and cannot have an
ambiguous future. NLOGSPACE-hardness was shown in [Bér+17].

This algorithm shows one more thing: on LTS, the notion of uniform diagnosability is
not restrictive. Given an LTS A, if a run is diagnosable then it is |S|2-diagnosable. Hence
a uniform bound for all executions.

s0start

s1

s2

s3

a

a

a b

a

b

a

s0, s0start

s1, s1

s2, s1

s3, s1

a

a

a

a

a

Figure 3.1: LTS A (left) with faulty states in red and its twin plant Ã (right) with
ambiguous states {s1, s3} and {s1, s2} in orange.

Example 3.1. We extend example 2.1. In this automaton, we define the state of faulty
states SF = {s2, s3}, in red in figure 3.1 left. From this, we build the twin plant, represented
alongside with ambiguous states in orange. The state (s3, s1) is ambiguous and then, the
transition ((s3, s1), a, (s3, s1)) constitutes an ambiguous cycle. Therefore, our LTS is not
diagnosable.

59

Chapter 3 – Diagnosability analysis of Labeled Markov Chains

3.1.2 A-Diagnosability of LMCs

The first notion of diagnosability can literally be applied to stochastic systems such as
LMCs. However, probabilistic systems enable more refined definitions. We saw that for
LTS, a notion of uniformity for diagnosability was not restrictive. This is not the case
for probabilistic systems: if an event that enables a verdict appears with probability p at
each step, for any k we have no assurance it happens in less than k steps. However, as the
number of steps goes to infinity, the probability that this event occurs goes to 1. It means
that a distinguishing (serie of) event(s) may allow one to have a verdict with probability
1 if we let ourselves have as much information as we desire.

In order to deal with this subtlety, [TT05] introduced A-diagnosability where A stands
for asymptotic:

Definition 3.8 (A-diagnosable system).
An LMC A is said to be A-diagnosable if lim supn P(FAmb,n) = 0.

This formally states the intuition above: the probability to never detect a faulty run
is 0 as the length of the observation following the fault goes to infinity. Notice that for
finite systems this condition is equivalent to P(FAmb,∞ = 0): indeed, for finite systems,
FAmb,n+1 ⊆ FAmb,n, thus the lim sup is only a limit. This notion leads to another decision
problem:

Definition 3.9 (A-diagnosability).
Given an LMC A, the A-diagnosability problem consists in determining whether A is

A-diagnosable.

[CK13] claimed that this problem could be solved in PTIME, which was later disproved
in [BHL14], clarifying the complexity of A-diagnosability.

Proposition 3.2 ([BHL14]). A-diagnosability of LMC is PSPACE-complete.

In order to prove the hardness, [BHL14] reduces a variant of language universality (i.e.,
L(A) = Σ∗?) to A-diagnosability. They create an LMC where the faulty language is Σ∗

and the safe language is L(A). Then, the LMC is A-diagnosable iff there is no word u such
that u−1L(A) = Σ∗. Notice that in [BHL14], they prove that A-diagnosability coincides
with their IF-diagnosability, i.e., the diagnosability of infinite faulty runs. This rephrases
the point we stated before: for finite LTS, lim supn P(FAmb,n) = 0⇔ P(FAmb,∞) = 0.

Now, in order to prove that A-diagnosability is in PSPACE (see Proposition 3.4), we
detail the algorithm that builds an A-diagnoser of an LMC A. For that, we need to define

60

3.1. State of the art

the observer Ȧ. The observer results from classical powerset construction on the support
of A:

Definition 3.10 (Observer). Given an LMC A = (S,Σ, µ0, p), we define its observer
Ȧ = (Q,Σ, I, T) as a deterministic finite state machine such that:

• Q ⊆ 2SC ,
• I ⊆ Q, defined by I = {{s ∈ SC , µ0(s) > 0}} = supp(µ0),
• T ⊆ 2SC × Σ × 2SC such that for all (q, a, q′) ∈ T , s ∈ q ⇒ ∀s′, p(s, a, s′) > 0 ⇒
s′ ∈ q′ and s′ ∈ q′ ⇒ ∃s ∈ Q, p(s, a, s′) > 0,

• The automaton is trimmed: only states reachable from I are kept.

Notice that the definition implies that the observer is deterministic, since the successor
of q by a has to be maximal with respect to the condition in the definition.

Definition 3.11. Given an LMC A = (S,Σ, µ0, p), its A-diagnoser A is the synchronized
product between A and its observer Ȧ: A = A||Ȧ.

Proposition 3.3. A is a well defined LMC with the same language as A. Denoting p̃ the
probability mapping in A, we have that the natural projection that associates transition
t̃ = ((s, q), a, (s′, q′)) of A to a transition t = (s, a, s′) of A satisfies p̃(t) = p(t). This
projection establishes a one-to-one correspondence between runs ρ̃ of A and runs ρ of A,
and this correspondence preserves likelihoods: p̃(ρ̃) = p(ρ). Moreover, ρ̃ is faulty (resp.
safe) in A iff ρ is faulty (resp. safe) in A.

Thus, the A-diagnoser is itself an LMC that accepts the same stochastic language as
A. A state (s, q) of the diagnoser is called correct (resp. faulty, ambiguous) if q ⊆ SC

(resp. q ⊆ SF , none of the above).

Example 3.2. We extend example 2.5 by adding probabilities to the model and obtain
the LMC pictured in figure 3.2, augmented with faulty states in red. The observer states
that as long as one observes only ak, A may be in s1, but after akb is observed, s1 is no
more possible. There is no faulty ambiguous BSCC in the A-diagnoser. We will see that
this LMC is then A-diagnosable.

Proposition 3.4 ([BHL14]). An LMC A is A-diagnosable iff its A-diagnoser has no
ambiguous (state in a) Bottom Strongly Connected Component (BSCC).

61

Chapter 3 – Diagnosability analysis of Labeled Markov Chains

s0start

s1

s2

s3

a, 1
2

a, 1
4

a, 1
4 b, 1

2

a, 1

b, 1

a, 1
2

{s0}start {s1} ∅
a b

a

s0, {s0}start

s1, Q

s2, Q

s3, Q s3, {s1, s3}

s2, {s2}

Q = {s1, s2, s3}

a, 1
2

a, 1
4

a, 1
4

b, 1
2

b, 1
2

a, 1
2

b, 1
2

a, 1

b, 1

a, 1
2

Figure 3.2: LMC A (above left), its observer Ȧ (above right), and the A-diagnoser A
(below).

First, notice that all states in a BSCC will have the same status. Indeed, for all s, s′ in
a same BSCC there is a path from s to s′ and the notions of faultiness and non-ambiguity
are absorbing. Since there is probability 1 to eventually reach a BSCC, a diagnosis will
be given with probability 1. This also states that the complexity of A-diagnosability is
PSPACE: indeed, the search for an ambiguous state in a BSCC of the diagnoser can be
made in NLOGSPACE of the size of the extended LMC A, which is exponential in the
size of A (powerset based construction). Hence, a NPSPACE complexity and thanks to
Savitch’s theorem, we obtain the PSPACE complexity. The hardness proved in [BHL14]
is proved thanks to a reduction from a variant of language universality.

62

3.1. State of the art

3.1.3 AA-diagnosability of LMCs

In addition to A-diagnosability, [TT05] introduced the concept of AA-diagnosability. In-
tuitively, the former states that “with probability 1, a faulty run will eventually have
an observation that reveals the occurrence of a fault” while the latter states that “with
probability 1, the observation of a faulty run will have an arbitrarily small likelihood to
be derive from a correct run”.

Example 3.3. This intuition is illustrated by figure 3.3. The LMC A is not A-diagnosable:
both correct and faulty infinite language are a(a+ b)ω. However, the faulty part has a far
bigger chance to produce an “a” at each step, while the correct part will produce a “b”
with larger probability. Therefore, a trace with many more “a” than “b” should be labeled
as “faulty with high probability”. Hypothesis testing based on likelihood ratio would have
an arbitrary low rate of undetection as the length of the observation goes to infinity. In
this example, a word having k1 + 1 “a” and k2 “b” would have a likelihood ratio to be in
s2 rather than s1 of (1

2 ·
4k1

5k1+k2)/(1
2 ·

4k2
5k1+k2) = 4

k1
k2 .

s0start

s1

s2
a, 1

2

a, 1
2

a, 1
5 , b,

4
5

a, 4
5 , b,

1
5

Figure 3.3: An LMC A, faulty states in red.

More formally, we denote by F ε
amb (resp. F ε

amb,n) the set of faulty runs ρ (resp. of length
n) that can be labeled as faulty with a probability of error lower than ε, that is:

P(o−1(ρ) ∩ C)
P(o−1)(ρ) ≤ ε

This leads to the definition of ε-diagnosability, that we take from [BHL16a] and allows us
to define precisely AA-diagnosability:

63

Chapter 3 – Diagnosability analysis of Labeled Markov Chains

Definition 3.12 (ε-diagnosability).
An LMC A is ε-diagnosable if for all faulty run ρ and α > 0, there exists nρ,α such

that for all n ≥ nρ,α:
P(Cyl(ρ) ∩ F ε

amb,n+|ρ|) ≤ α

Intuitively, an LMC is ε-diagnosable if all faulty runs will have a low proportion (≤ α)
of futures (i.e., in Cyl(ρ)) that have a “correctness level” bigger than ε (i.e., in F ε

amb,n+|ρ|).

Definition 3.13 (AA-diagnosability).
An LMC A is AA-diagnosable if it is ε-diagnosable for all ε > 0.

We put in relation the different notions of diagnosis we just gave. We saw that AA-
diagnosability implies ε-diagnosability for all ε. Besides, A-diagnosability can be defined
as 0-diagnosability. Indeed, it is a diagnosis with 0 error with probability 1.

Proposition 3.5. Let A be an LMC and ε > 0. We have the following:

A is A-diagnosable⇒ A is AA-diagnosable⇒ A is ε-diagnosable for some ε

Similarly to A-diagnosability, the decision problem associated with AA-diagnosability
was incorrectly analyzed in [CK13] and its complexity was established in [BHL16a].

Proposition 3.6. AA-diagnosability of an LMC can be decided in PTIME.

This was proved by reducing AA-diagnosability to the distance-1 problem for two
LMCs, a problem that has been shown to be solvable in polynomial time in [CK14]. How-
ever, interestingly, while this means that AA-diagnosability of an LMC is computationally
easy, deciding if it is ε-diagnosable for a given ε > 0 is intractable.

Proposition 3.7. For all ε > 0, ε-diagnosability is undecidable.

This result was also proved in [BHL16a].

3.1.4 Towards quantitative diagnosability analysis

The previous two sections gave a first attempt at dealing with stochastic systems. However,
it was still in a qualitative way: both A-diagnosability and AA-diagnosability are logical
properties, where the answer can only be yes or no. A more precise result is to try to
quantify the part of the system that is non-diagnosable. Are almost all faulty runs non-
diagnosable? Only a few? Few authors addressed this question, that we further develop
in section 3.2. In particular, let us present the contribution in [ND08] that defines a
quantification of the non-diagnosable part of the system.

64

3.2. Quantifying diagnosis

Definition 3.14 (MC-diagnoser).
Given an LMC A and its A-diagnoser A = (S × Q,Σ, µ0, p), the MC-diagnoser MA

is a Markov Chain (S ×Q,M, µ0) with for all si, sj ∈ S, Mi,j = ∑
a∈Σ p(si, a, sj).

Then, the degree of diagnosability of A is defined as follows: d(A) is the ratio between
the probability to reach a non-ambiguous faulty BSCC in MA and the probability to
reach a faulty BSCC in this same Markov Chain. In [ND08], this computation is made
thanks to a fix point algorithm.

Example 3.4. Let us consider the LMC A pictured in figure 3.4. This LMC is not A-
diagnosable: the infinite word aω is ambiguous and has positive probability. Those are the
runs that lead to an orange BSCC in the MC-diagnoserMA. However, some faulty runs
can be diagnosed: if a b is observed then we know the run is faulty: those are the one that
lead to a red state in MA. Runs with a b have a probability 3

8 and faulty runs have a
probability 1

2 . Thus, the proportion of diagnosable faulty runs is 3/8
1/2 = 3

4 .

The second quantified property one can expect is the time to detect a fault. We
can define a probability distribution over the infinite faulty runs with value in R+ that
associates each infinite faulty run to the time needed to detect its fault. However, this
distribution may be not fully computable. Thus, [ND08] investigates the mean time to
reach a faulty non-ambiguous BSCC inMA (conditionally to all runs that reach one).

Example 3.5. Going back to figure 3.4, we look at the mean time to reach a faulty non-
ambiguous BSCC. Runs going through s2 will be diagnosed after the second observation
and have probability 1

4 . Those going through state s3 may reach a non-ambiguous faulty
BSCC in 3 + i steps with probability 1

16 ·
1
2i . Thus, the mean time to reach this BSCC is

1
4 · 2 + 1

16 · (
∑
i≥0

3+i
2i)

1
4 + 1

16 ·
∑
i≥0

1
2i

= 8
3

3.2 Quantifying diagnosis

In this section, we investigate the problem of comparing non-diagnosable systems. In a
way, we generalize the work of Nouioua and Dague in [ND08] and expand it. We define
several diagnosability degrees with one of them corresponding to the degree d in [ND08].
These definitions will allow us to have more precise results on the time of diagnosis in
section 3.3. We also give algorithms to optimize the computation of the degrees in sub-
section 3.2.3. In the following, we use the notions of observers, diagnosers, MC-diagnosers
as defined in the state of the art.

65

Chapter 3 – Diagnosability analysis of Labeled Markov Chains

s0start

s1

s2

s3
s4

s5

a, 1
2

a, 1
4

a, 1
4

c, 1
2

a, 1
4

a, 1
4

a, 1
b, 1

2

a, 1
2

a, 1

c, 1

Q1 = {s1, s2, s3}
Q2 = {s1, s2, s3, s4}

s0, {s0}start

s1, Q1

s2, Q1

s3, Q1

s1, Q2

s2, {s2}

s4, Q2 s3, Q2

s2, Q2

s5, Q2

1
2

1
4

1
4

1
2

1

1

1
4

1
4 1

2

1
4

1
4

1

1

1
2

1

1
21

Figure 3.4: An LMC A, faulty states in red (above) and the Markov ChainMA associated
with its diagnoser with faulty ambiguous states in orange (below).

3.2.1 Diagnosability degrees

We now examine LMCs that may not be fully A-diagnosable. We recall that the set
of states is partitioned between correct states SC and faulty states SF , and that SF is
absorbing in our setting. Diagnosability is defined for (faulty) runs in the first place, and

66

3.2. Quantifying diagnosis

then extended to systems, so it is natural to measure the proportion of problematic faulty
runs, i.e., those that may not lead to fault detection. Along this line, one may imagine
countless notions of diagnosability degrees. For example, among the most natural ones

(a) the probability to make a fault (ie to enter into SF) that is (k-)diagnosable, condi-
tionally to the occurrence of a fault,

(b) or the probability that k steps after the occurrence of a fault, diagnosability holds,
again conditionally to the occurrence of a fault i.e., dectection will take place in the
future for sure,

(c) or the probability to detect a fault k (or less) steps after it appears, still conditionally
to the occurrence of a fault,

(d) or the probability to eventually detect a fault after it appears, conditionally to the
occurrence of a fault.

Example 3.6. We continue example 3.4 and use it to illustrate the different examples we
just gave. Faulty runs entering at state s2 are diagnosed in one step, but those entering
at state s3 are not diagnosable because of the loop labeled by a. So a criterion of type (a)
would result in a (1-)diagnosability of degree 1/2. However, from state s3 one could go to
state s2 and produce the correct diagnosis in 1 step, while only paths through s4 lead to
non diagnosability. So for a criterion of type (b), 1 step after the fault diagnosability holds
with degree 5/8. Similarly, for a criterion of type (c), the detection degree after 2 steps
is 5/8, and after 3 steps it reaches 11/16. For criterion (d), where the detection delay is
not bounded, one gets a diagnosability degree of 3/4.

All these notions are meaningful and lead to similar developments, so for simplicity we
focus on (c) and (d). We use the notation Fnamb,≤k = ∪n≤kFnamb,n to denote all the faulty
runs that are diagnosed in k steps or less. Then, we define the degree of k-diagnosability
as follows:

Definition 3.15 (k-diagnosability degree).
The k-diagnosability degree of an LMC A is defined as the probability to detect a fault

in at most k steps after it occurs, conditionally to the occurrence of a fault :

∆k(A) = P(Fnamb,≤k(A) |F∞(A)) = P(Fnamb,≤k(A))
P(F∞(A))

And similarly, we define the diagnosability degree of a A:

67

Chapter 3 – Diagnosability analysis of Labeled Markov Chains

Definition 3.16 (Diagnosability degree).
The diagnosability degree of an LMC A is defined as the probability to detect a fault

after it occurs, conditionally to the occurrence of a fault :

∆(A) = P(Fnamb,∞(A) |F∞(A)) = P(Fnamb,∞(A))
P(F∞(A))

Notice that the diagnosability degree is the limit of k-diagnosability when there is an
arbitrary high time limit to decide, that is ∆(A) = limk ∆k(A). We can also make a link
with classical diagnosability:

Proposition 3.8. There exists k, ∆k(A) = 1 iff A is k-diagnosable.
∆(A) = 1 iff A is A-diagnosable.

3.2.2 Computation of diagnosability degrees

In this section, we present an evaluation algorithm for diagnosability degrees of an LMC
by reducing the problem to reachability probabilities on extensions of this LMC.

The first probability we consider is the probability to produce a fault: P(F∞(A)). The
set F∞(A) corresponds to the property of reaching SF , so: P(F∞(A)) = P({ρ = t1...tn :
s−(tn) ∈ SC , s+(tn) ∈ SF})

Section 2.5.1 has detailed a polynomial time algorithm to evaluate such quantities.
For the other term P[Fnamb,≤k(A)], we show below that the probability of this set can
also be characterized as a reachability probability.

Observe that, after a fault, a faulty run ρ is first ambiguous for some time and then may
become “diagnosed” when fault detection takes place. We thus need to characterize the
ambiguous segment following a fault, which length can range from 0 to infinity. In other
words, we must characterize the time at which fault detection occurs after a fault. To this
end, the first step consists in attaching a counter to faulty states. This can be performed
by a simple state augmentation on A. Equivalently, and without loss of generality, one can
directly assume that faulty states ofA are partitioned as SF = SF,0]SF,1]...]SF,k]SF,>k ,
and that transitions from SC to SF point to SF,0, while transitions within SF go from SF,l

to SF,l+1 for some 0 ≤ l ≤ k or stay within SF,>k . If ρ ∈ F (A) satisfies s+(ρ) ∈ SF,l, then
ρ performed l steps after the fault. The second step consists in characterizing the moment
at which a faulty run becomes diagnosed (if it does). This is most conveniently performed
on the A-diagnoser A presented in section 3.1.2:

Proposition 3.9. A (finite) faulty run ρ ∈ R(A) is diagnosed in at most k steps iff it
terminates in a state (s, q) ∈ SF,k×Q with D(q) = F , or equivalently iff (s, q) ∈ SF,k×2SF .

68

3.2. Quantifying diagnosis

This is a direct consequence of the structure of A and of the definition of an A-
diagnoser A of A. Since the A-diagnoser has the same stochastic language as the original
automaton, we obtain:

P(Fnamb,≤k(A)) = P({ρ ∈ R(A) : s+(ρ) ∈ SF,k × 2SF })

Thus, this term is turned into another reaching probability, inA this time. The polyno-
mial techniques of Section 2.5.1 still apply, with the limitation thatA can be exponentially
larger than A, because of the observer Ȧ that is present in the synchronous product.

Example 3.7. Figure 3.5 pictures a classical example of an LMC that has an exponential
diagnoser. Indeed, its observer has an exponential size. After seeing an a, the current state
cannot be s2. That lack of transition allows to introduce a “shift” that is transmitted by
every b: safe runs can produce a c only n− 1 steps after producing a b.

To evaluate the diagnosability degree of A, we need to compute P(Fnamb,∞(A)), i.e.,
the probability that a fault is eventually detected. Here, the layering of SF is not necessary,
as time since the initial fault needs not to be counted. Thus, we do not need to perform
a state augmentation on A. We recall that a faulty run is diagnosed at the moment it
reaches a non-ambiguous faulty state in the A-diagnoser A. Hence, another reachability
property to compute this quantity:

P(Fnamb,∞(A)) = P({ρ ∈ R(A) : s+(ρ) ∈ SF × 2SF })

Unlike [ND08], we do not use the BSCC in this definition. However, both notions of
diagnosability degree are equivalent:

Proposition 3.10. For all A, ∆(A) = d(A).

Proof. ∆(A) = P(Fnamb,∞(A))
P(F∞(A)) and d(A) = P(reach an unambiguous faulty BSCC in MA)

P(reach an faulty BSCC in MA)
A run ρ that reaches a faulty (resp. unambiguous faulty) BSCC is in F∞(A) (resp.

Fnamb,∞(A))). Conversely, the runs in F∞(A) (resp. Fnamb,∞(A))) that do not reach a
BSCC have a probability 0. Further, the nature of the BSCC can only be faulty (resp.
unambiguous faulty).

Example 3.8. Continuing example 3.4, we compute the diagnosability degree. The proba-
bility to have a faulty run is the probability to reach s2 or s3, that is 1/2. The probability to
be faulty and diagnosed is equal to the probability to reach state (s2, {s2}) in the diagnoser,
that is 3/8. Then, the probability to having a fault detected conditionally to the occurrence
of a fault is 3

8/
1
2 = 3/4.

69

Chapter 3 – Diagnosability analysis of Labeled Markov Chains

s0start

sf

s1 s2 s3 sna

a

b a, b a, b

c
a, b

a, b, c

s0start s1, sf s1, s2, sf s1, s2, s3, sf s1, s2, s3, s4, sf

s1, s3, s4, sf

s1, s3, sf s1, s2, s4, sf

s1, s4, sf

sf

. . .

a

b, c

b b b

b

a

a

a

a, b, c

a

Figure 3.5: An LMC A, faulty states in red (top) and its power set construction that has
an exponential size (bot).

70

3.2. Quantifying diagnosis

3.2.3 Reducing the number of states in the diagnoser

We have seen that a diagnoser A may have an exponential size in the size of the LMC,
with the example 3.7. However, in some cases, we may not need the whole diagnoser to
compute the diagnosability degree.

General idea

Let A be an LMC. Our idea is the following: the purpose of building a quantified diagnoser
is to attach to each state s of A the signal indicating whether the current state estimate
q given past observations is non-faulty, faulty or ambiguous. We are mainly interested in
pairs (s, q) ∈ S × Q where s ∈ SF and q is ambiguous, and further in checking whether
this ambiguity will last forever with a positive probability. As q ⊆ S, the ambiguity of q
comes from the existence of a non-faulty state t ∈ q. Using the twin plant, one can easily
check whether the ambiguity due to pair (s, t) ∈ SF × SC can persist forever (and with
positive probability), or will vanish in the future and not prevent fault detection. If the
ambiguity due to t will for sure vanish, one needs not take it into account to compute
the diagnosability degree, and may replace (s, q) by (s, q′) where q′ = q \ {t}. In doing so,
one anticipates on the disappearing of an irrelevant ambiguity source due to t. In other
words, one may anticipate a fault detection that will take place for sure. So the diagnosis
probability does not change, but the detection delay may be shortened.

Let us now focus on the characterization of pairs of states (s, t) ∈ S × SC that can be
safely discarded without changing the diagnosability degree. Let Pω(A, s) denote infinite
paths ofA starting from state s, and similarly PωF (A, s), PωC(A, s) for faulty and non-faulty
paths.

Definition 3.17 (Negligible pair of type 1).
Given an LMC A, the pair (s, t) ∈ S × SC is a negligible pair of type 1 iff there is no

pair of infinite runs ρ ∈ PωF (A, s), ρ′ ∈ PωC(A, t) with o(ρ) = o(ρ′). We denote by NE1

the set of negligible pairs of type 1.

From such pairs, the ambiguity that may hold at state (s, t) or that may appear after
state (s, t) will vanish for sure in the future. Notice that we do not require s to be faulty.

One can also ignore pairs of states (s, t) ∈ S × SC for which any ambiguity that may
hold or appear in the future will later vanish with probability 1 in A.

71

Chapter 3 – Diagnosability analysis of Labeled Markov Chains

Definition 3.18 (Negligible pair of type 2).
Given an LMC A, the state pair (s, t) ∈ S × SC is a negligible pair of type 2 iff

P(ρ ∈ PωF (A, s) : ∃ρ′ ∈ PωC(A, t), o(ρ) = o(ρ′)) = 0. We denote by NE2 the set of
negligible pairs of type 2.

The above probability is computed over trajectories of LMC A, and the involved set
of runs can be shown to be measurable. We have trivially NE1 ⊆ NE2. Characterizing
pairs of states in NE2 algorithmically is clearly more difficult than for NE1 (which only
requires to consider the twin plant), as this is where the PSPACE complexity of checking
A-diagnosability comes into the picture. However, easily checkable sufficient conditions
can be derived that capture most of such pairs, as we will show next.

Let us define NE(s) = {t | (s, t) ∈ NE2}. Consider now the classical quantified
diagnoser Ā, and assume this machine is in state (s, q) ∈ S × 2S after some observed
sequence w ∈ Σ∗, with t ∈ q ∩ SC . Assume pair (s, t) ∈ NE2. Then t could be safely
removed from q without changing the diagnosability degree: the part of ambiguity due to
pair (s, t) in (s, q) will almost surely vanish in the future (ie with probability 1). Thus, it
cannot lead to an ambiguous cycle of positive likelihood.

“Removing” such negligible pairs (s, t) from Ā can be done in several ways. Either
abruptly, by replacing each state (s, q) of Ā by pairs (s, q\NE(s)). Or better, by recursively
synchronizing A with a constrained state estimator, which gives a smaller stochastic
automaton: let (s, q) be a state of Ā′, such that q ∩ NE(s) = ∅, if (s, a, s′) exists in A,
then add transition ((s, q), a, (s′, q′)) to Ā′ where q′ = {t : ∃(s, a, t) in A} \NE(s′). This
recursive construction starts with initial state (s0, {s0}). The machine Ā′ obtained in that
way is called the pseudo quantified diagnoser of A. Notice that Ā′ is a well defined LMC,
just like Ā, and that there is still a one to one correspondence between runs of A and
runs of Ā′, which preserves likelihood.

We want to compute P(ρ ∈ PωF (A) : @ρ′ ∈ PωC(A), o(ρ) = o(ρ′) to get the diagnos-
ability degree (by dividing by P(ρ ∈ PωF (A)) which is easy to compute), and also check
whether A is A-diagnosable (iff the degree is 1). Using the usual quantified diagnoser Ā,
we have that P(ρ ∈ PωF (A) : @ρ′ ∈ PωC(A), o(ρ) = o(ρ′)) is the probability to reach
states of Ā labeled F (aulty). We denote by B the set of Faulty states (s, q) for Ā, that
is the set of states (s, q) s.t. q ⊆ SF . We now show that the probability to reach B in Ā
can also be computed as the probability to reach a set of state B′ in Ā′. This gives us
a faster algorithm to check A-diagnosability or compute the degree of diagnosability as
Ā′ is generally smaller than Ā (sometimes up to an exponential factor as shown in the
example 3.9). We set B′ to be the set of states (s, q) ∈ SF × 2SF .

72

3.2. Quantifying diagnosis

Lemma 3.11. The probability to reach states B′ in Ā′ is P(ρ ∈ PωF (A) : @ρ′ ∈
PωC(A), o(ρ) = o(ρ′)).

Proof. Given a finite path ρ of A, it has a unique image in Ā and a unique image in Ā′.
In particular, the paths in Ā and in Ā′ have cylinders with identical probabilities, as the
probability only depends on the path of A and not on the labeling attached by Ā or Ā′.
Further, if ρ reaches s in A, then it reaches some (s, q) in Ā and some (s, q′) in Ā′ with
q′ ⊆ q, by construction of Ā′.

We show that the probabilities to reach B′ in Ā′ and to reach B in Ā are actually the
same.

For a run ρ of A, denoting by (s, q) and (s, q′) the states reached in Ā and Ā′ following
ρ, if (s, q) ∈ B, then (s, q′) ∈ B′: As s ∈ q, we also have s ∈ SF . Also q′ ⊆ q by
construction, and hence for all t ∈ q′, t ∈ SF . That is, the probability to reach B′ in Ā′ is
at least the probability to reach B in Ā. We show the converse now.

By definition, the probability to reach B in Ā is equal to:

∑
ρ∈((S×2S)\B)∗B

P(cyl(ρ))).

The same holds for reaching B′ in Ā′.
Let π = (s1, a1, s2) · · · (sk−1, ak−1, sk) be a (faulty) path of A corresponding to some

path in (S×2S\B′)∗B′ for Ā′. LetR be the set of paths ofA extending π and corresponding
to some path in (S × 2S \ B)∗B for Ā. Hence paths in R are pairwise not prefix of one
another and the probability of the union is the sum of probabilities. We show now that
P(⋃ρ∈R cyl(ρ)) = P(cyl(π))), which will show that the probability to reach B in Ā is at
least as much as to reach B′ in Ā′.

By contradiction, if it was not the case, there would exist an extension π′ of π in A
(hence PA(π′) > 0) such that all paths in cyl(π′) reach in Ā states not in B.

Let (s, q) be the state of Ā reached on π′. Now, cyl(π′) = π′ · ⋃t∈q{ρ ∈ PωF (A, s) :
∃ρ′ ∈ PωC(A, t), o(ρ) = o(ρ′)} because every run of cyl(π′) is faulty but also ambiguous (as
not reaching a state of B). As PA(π′) > 0, there exists a t ∈ q such that P[ρ ∈ PωF (A, s) :
∃ρ′ ∈ PωC(A, t), o(ρ) = o(ρ′)] > 0. Let ρ′ = (t1, a1, t2) · · · (tn−1, an−1, tn) be a non-faulty
path with o(ρ′) = o(π′), tn = t and n ≥ k. It is easy to show that for all i ≤ k, (si, ti) is
not negligible of type 2. Hence the state of Ā′ reached on π is (sk, q′k) with qk containing
tk /∈ SF . That is, (sk, q′k) is not in B′, a contradiction.

73

Chapter 3 – Diagnosability analysis of Labeled Markov Chains

Negligible pairs in the twin plant

We now explain how to compute a set NE ⊆ NE2 of negligible pairs of states. We first
compute the strongly connected components C1, . . . , Ck of the twin plant Ã using Tarjan’s
algorithm, in linear time in the number of states of the twin plant. Remember that the
number of states of the twin plant is quadratic at most in the number of states of A.

We label a strongly connected component of Ã as ambiguous if it contains some
state in SF × SC . Notice that in this case, as faulty state remains faulty and the second
component of Ã is in SC , the states reachable from a state in SF ×SC are also in SF ×SC .
We recursively remove from ambiguous SCCs any loopless BSCC, because it does not
characterize an ambiguous loop: they have no ambiguous infinite future.

We can then characterize the set NE1 of negligible states of type 1 as the set of states
of the twin plant which cannot reach any ambiguous SCCs. This can be done in time
linear in the number of states of the twin plant, by considering first bottom strongly
connected components and then inductively considering components Ci which can reach
only components Cj already considered.

Lemma 3.12. NE1 is the set of states (s, t) of the twin plant which cannot reach a loop
around some ambiguous state (x, y) with x ∈ SF , y ∈ SC.

Proof. Let (s, t) /∈ NE1. Then there exists ρ an infinite faulty path from s and ρ′ an infinite
non-faulty path from t which are observationally equivalent. Considering the sequence of
pairs of states (si, ti) from (s0, t0) = (s, t) along (ρ, ρ′). Let I be an index such that
sI ∈ SF , which exists as ρ is faulty. As the number of pairs of states is finite and the path
is infinite, there must exist two indices j > i > I such that (si, ti) = (sj, tj). Denoting
(ρ1, ρ

′
1) and (ρ2, ρ

′
2) the paths from (s0, t0) to (si, ti) and from (si, ti) to (sj, tj), we have

a path (s, t) →∗ (si, ti) →∗ (sj = si, tj = ti) with si ∈ SF as i > I and ρ is faulty and
ti ∈ SC as ρ′ is not-faulty.

The converse is trivial as if there is a path (s, t)→∗ (x, y)→∗ (x, y) with x ∈ SF , y ∈
SC in the twin plant, then there is also an infinite faulty path ρ from s and an infinite
non-faulty path ρ′ from t which are observationally equivalent.

We are now ready to define a set NE with NE1 ⊆ NE ⊆ NE2. It will contain only
pairs (s, t) ∈ S × SC such that P(ρ | s−(ρ) = (s, t) ∧ ρ = ρ1ρ2, ρ2 ∈ (SF × SC)ω) = 0.
Ps,t(ρ | s−(ρ) ∈ SF × SC) = 0 for s−(ρ) the set of pairs of states seen infinitely often
along ρ. To define NE, we define inductively a sequence P1 (. . . (P` of sets of states
of the twin plant Ã that cannot be used to give a positive probability to stay ambiguous
forever. Then, NE will be defined as the set of states that cannot reach an ambiguous

74

3.2. Quantifying diagnosis

cycle avoiding P`. This can be computed in linear time in the size of Ã by using Tarjan’s
algorithm. It suffices to remove states of P` and to look for SCCs with self loops.

We now define Pi inductively as follows:

P1 =NE1

Pi+1 =Pi ∪ {(s, t)|∃a a is fireable from s and (s, t)→a (s′, t′)⇒ (s′, t′) ∈ Pi}

When P` = P`+1, which must happen after a number of steps bounded by the number
of states in Ã, we stop the process. That is, P` is a smallest fix point of φ(Pi) = Pi+1 that
can be obtained in polynomial time. We have:

Lemma 3.13. From every state (s, t) ∈ P` with s ∈ SF , there exists a path ρ, s−(ρ) = s

such that for every ρ′ such that s−(ρ′) = t and o(ρ) = o(ρ′), one has that ρ′ is faulty.

We can now define formally NE as the set of states that cannot reach an ambiguous
cycle avoiding P`, that is NE = (S×SC)\{(s, t) | ∃ρ = ρ1ρ2, s

−(ρ) = (s, t)∧ρ2 avoids P`∧
s−(ρ2) = s+(ρ2)}. Using lemma 3.13, we obtain:

Lemma 3.14. NE1 ⊆ NE ⊆ NE2.

Proof. Let (s, t) ∈ NE1 be a pair of type 1. It cannot reach an ambiguous loop, thus in
particular it cannot reach an ambiguous loop avoiding P`.

Similarly, let (s, t) be a pair in NE, i.e., such that (s, t) cannot reach an ambiguous
cycle avoiding P`. Thanks to lemma 3.13, we know that the probability that for infinite
paths ρ, ρ′, s−(ρ) = s′, s−(ρ′) = t′ and ρ, ρ′ are ambiguous is 0 since they will always have
an occasion to have a future that disambiguates them (i.e., the probability to avoid in P`
is 0).

Thus, P[ρ ∈ PωF (A, s) : ∃ρ′ ∈ PωC(A, t), o(ρ) = o(ρ′)] = 0 and NE ⊆ NE2.

We can use this lemma to reduce the size of a pseudo-quantitative-diagnoser:

Theorem 3.15. From an LMC A, one can build in quadratic time a pseudo-quantitative-
diagnoser Ā′ such that the probability of an infinite faulty ambiguous run in A is equal to
the probability to reach an ambiguous SCC in Ā′. Further, there exists an LMC A such
that the size of Ā′ is exponentially smaller than that of the quantitative diagnoser built in
Section 3.2.

75

Chapter 3 – Diagnosability analysis of Labeled Markov Chains

Proof. The set NE is computable in quadratic time w.r.t to the number of transi-
tions of the original automaton A. We then define the pseudo-diagnoser Ā′ = (S ×
Q,Σ, (s0, {s0}), T ′) with T ′ = {((s, q), a, (s′, q′\{t | (s, t) ∈ NE}))} such that (s, a, s′) ∈ T
and q′ = {t′ | ∃t ∈ q(t, a, t′) ∈ T}. Since NE ⊆ NE2 (Lemma 3.13), we obtain that the
probability of a faulty ambiguous run in A is equal to the probability to reach an am-
biguous SCC in Ā′.

The twin plant has a number of states quadratic in the size of the original automaton.
Besides, determining the sets P` and NE can be done in a time quadratic in the size of
the twin plant, hence the biquadratic complexity.

An example with an exponential reduction

Example 3.9. Continuing example 3.5, figure 3.6 presents an example where the pseudo
diagnoser Ā′ is exponentially smaller than the natural diagnoser based on the determinized
of Ā.

Indeed, the number of states of the natural diagnoser Ā3 is O(2n), as safe runs can
produce a c only n−1 steps after producing a b. That is, the diagnoser needs to distinguish
between 2n−1 cases, depending on the last n− 1 letters in {a, b}.

Using the twin plant, the number of states of the pseudo-quantitative-diagnoser is dra-
matically smaller. First, NE1 (= P1) is the set {(si, sj)|i > 0, j > 0}. Then, P2 =
P1 ∪ {(sf , si)|i ≤ n}. Indeed, for all i < n, there is a transition (sf , c, sf) but there is no
transition starting in si labeled by c and then no successor to (sf , si) by c. Thus, for all
transition (sf , si) →c (sf , s′′), we have (sf , s′′) ∈ P1, because there is no such transition
(sf , si)→c (sf , s′′). Thus (sf , si) ∈ P2 for all i < n. Similarly, we obtain that (sf , sn) ∈ P2

since transition (sf , a, sf) can occur and there is no transition labeled by a from sn.

Now, state (s0, s0) only has successors in P2. Thus (s0, s0) ∈ P3. That is, P3 is made
of all the states of the twin plant and since there is no ambiguous cycle outside P3, NE
contains all the states of the twin plant. Hence, the pseudo-diagnoser is very simple: for
all s, NE(s) = S and then every state in the pseudo-diagnoser is in the form (s, ∅) with
s ∈ S. That is, the pseudo-diagnoser is isomorphic to the original LMC.Therefore, this
transformation avoids the exponential blow-up required by using an exact diagnoser.

76

3.3. Distributions of fault detection delay

s0start

sf

s1 s2 s3 sna

a

b a, b a, b

c

a, b

a, b, c

s0, s0start sf , s1

sf , s2 sf , sn

s1, s1 s1, s2

s1, s3

. . .

s2, s3

sn, sn

sn−1, sn

a

a

b

a, b

b

b

a, b

cc

c

a, b

a, b

Figure 3.6: An example of an LMC A3 (top) that has an exponential sized diagnoser, and
its twin plant (bottom)

3.3 Distributions of fault detection delay

We are now interested in the evaluation of the detection delay (conditionally to the oc-
currence of a detection). Generally, the number of observations before detection can be
arbitrarily long. However, the probability that the diagnosis occurs only after k steps goes
to 0 as k increases. Hence, we are interested in two things: approximating the probability
distribution associated with the detection delay and giving bounds on the probability of
detection after a certain number of steps. For the first objective, we will present a se-
quence of distributions that converge to the real one thanks to the computation of the
moments of this distribution. For the second objective, we will also use these moments
and concentration inequalities to obtain the desired bounds.

77

Chapter 3 – Diagnosability analysis of Labeled Markov Chains

3.3.1 Semirings for moments

In this section, we present how semirings will allow us to formally compute the moments
of the distribution thanks to the Floyd-Warshall algorithm. In order to compute moments
of response time, we first fix a state sf (symbolizing a fault has just occurred) and a set of
states FD (symbolizing a fault has just been diagnosed). We introduce a set of semirings
that will allow us to compute the n-th moment of detection delay to the fault from state
sf , for all n ∈ N. We will compute the moment inductively on a disjoint subset Π of paths
of A from sf to FD. For an integer n, we denote µn(Π) = Σ

π∈Π
P(π)|π|n.

Notice that for all π1, π2 paths in P(sf , FD) π1 is not a prefix of π2.Thus, we have
that P(sf , FD) is the moment of order n of the distribution of detection delay to the
fault associated with state sf .

We now give some properties of µ. Let Π1 be a set of paths ending in some state s
and let Π2 be a set of paths starting from s. We denote by Π1 · Π2 the set of paths ρ1ρ2

with ρ1 ∈ Π1 and ρ2 ∈ Π2.

Proposition 3.16. For all n, we have µn(Π1 · Π2) =
n∑
i=0

(
n
i

)
µi(Π1) · µn−i(Π2)

Proof.

µn(Π1.Π2) = Σ
π1∈Π1

Σ
π2∈Π2

P(π1π2)|π1π2|n

= Σ
π1∈Π1

Σ
π2∈Π2

P(π1)P(π2)
n

Σ
i=0

(
n

i

)
|π1|i|π2|n−i

=
n

Σ
i=0

(
n

i

)
Σ

π1∈Π1
P(π1)|π1|i Σ

π2∈Π2
P(π2)|π2|n−i

=
n

Σ
i=0

(
n

i

)
µi(Π1) · µn−i(Π2)

This property hints to a set of semirings (Rn+1,⊕n,⊗n, 0n, 1n) with good properties to
compute moments. For (n + 1)-uplets (x0, . . . , xn) and (y0, . . . , yn), we define operations
⊕n and ⊗n:

• (x0, . . . , xn)⊕n (y0, . . . , yn) = (x0 + y0, . . . , xn + yn)

• (x0, . . . , xn)⊗n (y0, . . . , yn) = (z0, . . . , zn) with zi =
i

Σ
j=0

(
i
j

)
xjyi−j

78

3.3. Distributions of fault detection delay

The neutral element for ⊕n is 0n = (0, . . . , 0). 0n is annihilating for ⊗n. The neutral
element for ⊗n is 1 = (1, 0, . . . , 0). In the following, we will denote the different laws and
elements by ⊕, ⊗, 0 and 1.

Proposition 3.17. For n ≥ 0, (Rn+1
+ ,⊕,⊗, 0, 1) defines a commutative semiring.

Proof. It is clear that (Rn+1
+ ,⊕, 0) is a commutative monoid. Associativity and commuta-

tivity in (Rn+1
+ ,⊗, 1) come from the symmetric role of the xi and yi in ⊗. Thus, we have

to prove that ⊗ is distributive over ⊕. Since ⊗ is commutative, we only have to prove
that for all x, y, z ∈ Rn+1

+ , x ⊗ y ⊕ x ⊗ z = x ⊗ (y ⊕ z). For i ≥ 0, we check the i-th
component:

((x⊕ y)⊗ z)i =
i

Σ
j=0

(
i

j

)
(x⊕ y)j · zj−i

=
i

Σ
j=0

(
i

j

)
(xj + yj) · zj−i

=
i

Σ
j=0

(
i

j

)
[xj · zj−i + yj · zj−i]

= (x⊗ z)⊕ (y ⊗ z)

Then, we obtain the property that will allow us to use the Floyd-Warshall algorithm
in order to compute the moments of the distribution of detection delay:

Proposition 3.18. If for all i ≤ n, we have xi = µi(Π1) and yi = µi(Π2), denoting
(z0, . . . , zn) = (x0, . . . , xn)⊗n (y0, . . . , yn), we get µi(Π1 ·Π2) = zi. Further, if both Π1,Π2

are disjoint, and if no path of Π1 (resp. Π2) is a prefix of a path of Π2 (resp. Π1), then
µi(Π1 ∪ Π2) = xi + yi.

The proof is straightforward, since we chose the operators to match exactly what
we wanted to compute the moments. Thus, we will be able to use the Floyd-Warshall
algorithm to compute the moments of the distribution. Before that, we need to define the
initial weights of the transitions.

Definition 3.19. [Weighted diagnoser]
Given an LMC A = (S,Σ, µ0, p) and its A-diagnoser A = (S ′,Σ, µ′0, p′), its weighted

diagnoser Aw is a quadruplet (S ′,Σ, γ0, γ) with:

• γ0 : S ′ → Rn+1 with γ0(s′) = (µ0(s′), 0, . . . , 0),

79

Chapter 3 – Diagnosability analysis of Labeled Markov Chains

• γ : S ′ × Σ× S ′ → Rn+1 with

γ(s′, a, s′′) =

(p′(s′, a, s′′), 0, . . . , 0) if s′ ∈ SC
(p′(s′, a, s′′), . . . , p′(s′, a, s′′)) else

Intuitively, if the initial state of the transition is in SC , then no delay is added to the
detection, hence the 0. On the contrary, if the initial state of a transition t is in SF , then
a delay is added. The transition t has a length of 1, so for any n, µn({t}) = p′(t).

Let A be an LMC and Aw its weighted diagnoser over a partition over faulty and safe
states. For every faulty state sf of the weighted diagnoser, we denote P(sf) the probability
that it is the first faulty state reached by an execution. We denote SFD the set of faulty
states where the diagnosis holds.

Theorem 3.19.
The n-th moment of the distribution of detection delay conditionally to this detection

is given by:
∑
sf P(sf)W (PSFD(sf , SFD))n∑
sf P(sf)W (PSFD(sf , SFD))0

Proof. The denominator comes from the fact we ask for the distribution conditionally
to the fact that the diagnosis holds. The proof is straightforward, since the algorithm is
proven to compute the quantity we are interested in. The probability of the set of paths is
the first component of the weight, and the n-th moment is µn divided by the probability
to be diagnosed. Notice that this quantity is equal to (assuming without loss of generality
there is only one initial state s0):

W (PSFD(s0, SFD))n
W (PSFD(s0, SFD))0

Theorem 3.20. Let A = (S,Σ, µ0, p) be an LMC and Aw its weighted diagnoser with S ′

as set of states. One can compute the n first moments of the diagnosability degree of A
in time O(n2 × |S ′|3).

Proof. Since we use the Floyd-Warshall algorithm to perform this calculation, the com-
plexity is cubic in the number of states. Notice that the number of states of the weighted
diagnoser can be exponential in the size of the original LMC. Furthermore, its complexity

80

3.3. Distributions of fault detection delay

is quadratic in the number of moments we want to know: in the semiring computation, the
calculation of the n-th moments is performed through a sum on all the previous moments,
that gives us the well known complexity T (n) = ∑

i<n T (i), hence quadratic.

Algorithms for moments had been proposed in the performance evaluation community.
Methods used there are mostly numerical [Bra+06; Tar05]. These methods are efficient
but not robust to changes: every value is set and computations do not use parameters.
On the contrary, ours may be slower, but they have the same computational complexity
and allows one to have parameters and formal calculus.

In this work, we presented to the computation of moments applied to quantified di-
agnosis, but it has many more applications. In particular, we presented these techniques
in [BFG18b] for the notion of response time, that is the delay between a query and the
moment it is answered. In the framework of diagnosis, the query is the occurrence of the
fault and the answer is obtained when the diagnosis holds. These techniques also have
an interest for computational biology. In [BBW16; Bog+15; Gon+13], complex functions
describing the evolution of molecular species are approximated using the first k moments,
for some k.

Observe that we set the time of a transition to one unit of time, but this is not a
restriction: indeed, transitions t could have arbitrary lengths, or even length as a random
variable Xt. The algorithm would still work, we just need to give the accurate initial
values: µi({Xt}) = P(t)E[X i

t]. In particular, this allows us to encompass detection delays
on systems where time is not given as units, such as labeled systems where the support
is a Continuous Time Markov Chain (CTMC):

Definition 3.20. A CTMC is a tuple (S,M, µ0, (τs)s∈S) with:

• (S,M, µ0) is a Markov Chain,

• for all s, τs is the sojourn parameter associated with state s. That is, the PDF
function of the sojourn time is Xs(t) = τse

−τs·t and the probability to stay in s at
least t units of time is e−τs·t.

In this continuous context, we need integrals instead of sums to define the i-th moment
of a variable X: µi(X) =

∫∞
0 X(t)tidt = 1. For every state s ∈ S, let Xs(t) = τse

−τs·t. For
all i, for all s, µi(Xs) is well defined and µi(Xs) = i!

τ is

We can easily extend the computation of moments for CTMCs. The inductive formulas
for probabilities and moments of the reaching time distribution remain unchanged. We
only need to change the definition of moments for every transition, which is input at the

81

Chapter 3 – Diagnosability analysis of Labeled Markov Chains

initialization phase of the Floyd-Warshall algorithm: for all s, t ∈ S, we set Wn(s, t)0 =
M(s, t) and W (s, t)i = M(s, t) i!

τ is
for all i ∈ [1, n].

Theorem 3.21. Let A = (S,M, µ0, (τs)s∈S) be a CTMC. One can compute µi(s, t) for
all i ≤ n and s, t ∈ S in time O(n2 × |S|3).

3.3.2 Approximating the distribution from its moments

It is known [TH07] that phase-type distributions of order n are determined by their first
2n− 1 moments. First passage distribution time in Labeled Markov chains with n states
are phase type distribution of order n. However, [TH07] does not help characterizing
bounds as it does not ensure that a non-phase type distribution cannot have the exact
same moments as a phase type distribution, unlike our result.

In this section, we discuss how the calculation of moments is sufficient to approximate
the distribution of detection delay. For that, we first prove that given a sequence of
moments (µn)n∈N the distribution is unique for the case of detection delay. Secondly, we
discuss how to define a sequence of distributions converging to the real one.

The first point is an instance of the moment problem.

Definition 3.21 (Moment problem). Given a sequence of numbers µn, does there exist
a random variable that has for n-th moment µn and is this random variable unique?

The special case we are investigating, that is a random variable with values in R+ is
called the Stieljes moment problem.

As a start, we pinpoint that in general, there may be several distributions that cor-
respond to a given sequence of moments (µn)n∈N. This would compromise approximating
the distribution using moments, as there would not be a unique such distribution.

Example 3.10. Let us consider a distribution δ on R+. If δ has the sequence of moments
{µn = n! | n ∈ N}, then δ is the exponential distribution with parameter 1. Similarly, the
sequence of moments {µn = (2n)! | n ∈ N} for a distribution on R+ is characteristic of
the square of the exponential distribution of parameter 1.

Now, consider the cube of the exponential distribution of parameter 1. Its sequence of
moments is {µn = (3n!) | n ∈ N}. However, there exist an infinite number of distributions
with this sequence of moments [Sto06].

We now prove answer positively to the Stieljes moment problem for the case of the
distribution of detection delay, that is its sequence of moments respects the Carleman’s

82

3.3. Distributions of fault detection delay

condition from year 1922, that guarantees the uniqueness of the distribution. The condi-
tion is that ∑n∈N µn(δ)− 1

2n =∞.

Theorem 3.22. Let A be an LMC. For all n ∈ N, let µn be the moment of order n of
the detection delay of A. Then there exists a unique distribution δ such that µn(δ) = µn

for all n ∈ N.

Proof. The existence is given by the construction of our numbers µn. The difficult part is
the unicity.

Let m be the number of states of A, p be the minimal probability to detect a fault
without taking any loop, and ` the probability of the highest-probability loop that can
be part of a path to this detection. We denote by δ the distribution of detection delay.

For i ≤ m, P (δ = i) < 1. For i > m, a successful path has to take at least i
m

loops,
then p(i) ≤ `

i
mp. Thus, we have µn(δ) ≤ ∑m

i=0 P(δ = i)in + Σ∞i=m+1`
i
mpin.

Thus, µn(δ) ≤ ∑m
i=0 i

n + Σ∞i=m+1`
i
m in.

The first part is lesser than (m+ 1)mn. We now need to bound the second part.

∞∑
i=m+1

`
i
m in ≤ Σ∞i=1`

i
m in

≤ 1
(1− ` 1

m)n+1

n∑
i=0

E(n, i)(` 1
m)n−i (1)

≤ 1
(1− ` 1

m)n+1

n∑
i=0

E(n, i) (2)

≤ n!
(1− ` 1

m)n+1
(3)

(1): E(n, i) is the eulerian number of parameter n, i. We obtain this line because
Σ∞i=1`

i
m in is the polylogarithm function Li−n(` 1

m).
(2): ∀i, (` 1

m)n−i ≤ 1
(3): ∑n

i=0E(n, i) = n!
We want to find a lower bound to the 2n-th root of µn(δ), in order to prove the

moments verify the Carleman’s condition.

83

Chapter 3 – Diagnosability analysis of Labeled Markov Chains

µn(δ) 1
2n ≤ ((m+ 1)mn + n!

(1− ` 1
m)n+1

) 1
2n

≤ ((m+ 1)mn) 1
2n + (n!

(1− ` 1
m)n+1

) 1
2n (4)

≤ (m+ 1) 1
2n ·
√
m+ n! 1

2n

(1− ` 1
m)n+1

2n

(4): 2n
√
x+ y ≤ 2n

√
x+ 2n

√
y.

Then, we have that ∑n∈N µn(δ)− 1
2n ≥ ∑n∈N

1

(m+1)
1

2n ·
√
m+ n!

1
2n

(1−`
1
m)

n+1
2n

Thanks to the Stirling equivalent for the factorial n! ≈
√

2π · n(n
e
)n, we find that an

equivalent of the denominator for large n is α · nn+1
2n with α some real number. Since the

sum of the inverses of nn+1
2n diverges, we deduce that

∑
n∈N

µn(δ)− 1
2n =∞

Due to Carleman’s condition, the distribution δ corresponding to the moments (µn(δ))n∈N
is thus unique.

Here, we presented the proof for distribution over detection delays for an LMC. This
proof also holds for response times on different models, such as CTMC. However, in this
setting it would get very technical and hard to read: in the sums, in is replaced by E[Xn

i]
where Xi is the random variable associated with i successive sojourn time. Then, an upper
bound is found for E[Xn

i] and the rest of the proof is similar.
Since we have unicity of the distribution corresponding to the sequence of moments of

the distribution of detection delay of a probabilistic automaton, we obtain the following
convergence in law:

Proposition 3.23. [PR69] Let δ be the distribution of detection delays of an LMC. Let
(δi)i∈N be a sequence of distributions on R+ such that for all n, lim

i→∞
µn(δi) = µn(δ). Then, if

Ci is the cumulative distribution function of δi and C the cumulative distribution function
of δ, then for all x lim

i→∞
Ci(x) = C(x).

Thus, C can be approximated by taking a sequence (δn)n∈N of distribution such that
for all i ≤ n, µi(δn) = µi(δ). A reasonable choice for δn is to consider the distribution
of maximal entropy corresponding to the moments µ1, . . . , µn, as presented in [CT12].

84

3.3. Distributions of fault detection delay

The distribution of maximal entropy can be understood as the distribution that assume
the least information. It can be approximated as close as desired, for instance 1

n
close to

the distribution of maximal entropy having moments (µ1(δ), . . . , µn(δ)). Applying Propo-
sition 3.23, we thus obtain that the cumulative distribution function associated with δi

converges towards the cumulative distribution function associated with δ.

3.3.3 Bounds on the detection delay

We now explain how to use moments in order to obtain optimal bounds on the detection
delay. First, notice that as soon as there exists a loop between a fault and its detection,
then there will be runs with arbitrarily long detection delay, although there might be
probability 1 to eventually answer every query. We thus turn to a more quantitative
evaluation of the detection delay.

Let 0 < p < 1. We are interested in a bound T on the delay between a fault and
the detection such that a proportion greater than 1− p of the faults is diagnosed before
this bound. For a distribution δ : R+ → R+ of detection delays, we denote by B(δ, p)
the lowest T such that the probability to have a detection delay above T is lower than
p. Equivalently, we look for the highest T such that the probability of a detection delay
above T is at least p.

Markov bounds associated with one moment

Let i ∈ N and µi > 0. We let ∆i,µi be the set of distributions of detection delay which
have µi as moment of order i. We are interested in bounding B(δ, p) for all δ ∈ ∆i,µi , that
is for all distributions with µi as moment of order i. Such a bound is provided by Markov
inequality presented in section 2.3, and it is optimal:

Proposition 3.24. Let i ∈ N and µi. Let αi(µi, p) = i

√
µi
p
. Then for all δ ∈ ∆i,µi, we have

B(δ, p) ≤ αi(µi, p). Further, ∃δ ∈ ∆i,µi such that B(δ, p) = αi(µi, p).

Proof. It suffices to remark that µi > pbi for b the bound we want to reach. Further, this
bound is trivially optimal: it suffices to consider a distribution with a Dirac of mass (1−p)
at 0 and a Dirac of mass p at αi(µi, p).

Given an LMC, let δ be its associated distribution of detection delay. We can compute
its associated moments µi as presented in section 3.3.1. We thus know that δ ∈ ∆i,µi .
Given different values of i, one can compute the different moments and apply for each of
them the Markov’s bound and use the minimal bound obtained.

85

Chapter 3 – Diagnosability analysis of Labeled Markov Chains

Understanding the relationship between the αi is thus important. For i < j, one can use
Jensen’s inequality for the convex function f : x→ x

j
i over R+, and obtain: (µi)j ≤ (µj)i.

For instance, µ2
1 < µ2.

For p = 1, this gives αi(p = 1) < αj(p = 1). On the other hand, for p sufficiently
close to 0, we have αj(p) < αi(p). That is, when p is very small, moments of high orders
will give better bounds than moments of lower order. On the other hand, if p is not that
small, moments of small order will suffice.

3.3.4 Optimal bounds for a pair of moments

We now explain how to extend Markov’s bounds to pairs of moments: we consider the set
of distributions where two moments are fixed. Let i < j be two orders of moments and
µi, µj > 0. We denote by ∆j,µj

i,µi the set of distributions with µi, µj as moments of order
i, j respectively. As ∆j,µj

i,µi is strictly included into ∆i,µi and in ∆j,µj , min(αi(p), αj(p)) is
a bound for any δ ∈ ∆j,µj

i,µi . However, it may be the case that min(αi(p), αj(p)) is not
optimal. We now provide optimal bounds αji (p) for any pair i < j of order of moments
and probability p:

Theorem 3.25. Let i < j be natural integers, p ∈ (0, 1), and let µi, µj > 0. Let αi = (µi
p

) 1
i

and αj = (µj
p

)
1
j . We define αji (p) to be:

• αi if αi ≤ αj,

• (µj−M
p

)
1
j otherwise, where 0 ≤M ≤ µj is the smallest positive real root of:

µi = (1− p)
j−i
j M

i
j + p

j−i
j (µj −M)

i
j .

For all δ ∈ ∆j,µj
i,µi , we have B(δ, p) ≤ αji , and ∃δ ∈ ∆j,µj

i,µi with B(δ, p) = αji

Let p such that 0 < p < 1 and µi, µj be positive real numbers.

case αi < αj We prove that in the case where αi < αj, αi is actually optimal in ∆j,µj
i,µi .

This is the first item in Theorem 3.25.
As it is a bound for all δ ∈ ∆j,µj

i,µi , we just need to show that it is optimal.

Proof. Let 0 < η < 1, 0 < p < 1, and z > αi a positive real that will be set later.
Let δ be the distribution with mass (1 − p) in 0, mass p1 in ηαi, mass p2 in αj and

mass p3 in z, with p1 + p2 + p3 = p.

86

3.3. Distributions of fault detection delay

We want to choose p1, p2, p3 such that µi is the moment of order i and µj is the moment
of order j, that is such that δ ∈ ∆j,µj

i,µi . We thus have the following equations:

p1 + p2 + p3 = p (1)
p1(ηαi)i + p2α

i
j + p3z

i = µi (2)
p1(ηαi)j + p2α

j
j + p3z

j = µj (3)

We denote A = αii , B = αij, C = zi, D = (ηαi)j and F = zj.
Using (1) and (3), we obtain:

p3 = (p− p2)(µj − p(ηαi)j)
p(F − (ηαi)j)

(4)

Granted p2 < p, for F > (ηαi)j (that is z > αi which we assumed), we get p3 > 0.
Now, using (2), we obtain: p3(C − ηiA) + p2(B − ηiA) = µi − pηiA. As µi = pA, we

get p2(B − ηiA) + p3(C − ηiA) = pA(1− ηi).
Using equivalents for z going to ∞, we get p3(C − ηiA) equivalent to (1− p2/p)C/F .

Notice that C/F tends to 0. We obtain p2 = (1−ηi)pA−O(C/F)
(B−ηiA)−O(C/F) . For z big enough (η being

fixed), we get p2 > 0.
Dividing terms by A, we get p2 < p (1−ηi)

(B/A−ηi)−O(C/AF) . We have B/A > 1. For z big
enough, O(C/AF) < B/A− 1, and we get p2 < p. That is p3 > 0 as well.

Also, remark that in (4), we have (µj−p(ηαi)j)
p(F−(ηαi)j) tends to 0 when z tends to infinity. Hence

for z big enough, p3 < (p− p2). That is, p1 = p− p2 − p1 > 0.
That is, for z big enough, we can chose p1, p2, p3 positive and satisfying the equations

we wanted to obtain. That is, 0 < p1, p2, p3 < p as p = p1 + p2 + p3, and µ1(δ) = µ1 and
µ2(δ) = µ2. Thus, δ ∈ ∆j,µj

i,µi . Last, we have B(δ, p) = ηαi.

Case αj < αi We now consider the case where αj < αi, that is the second item of
Theorem 3.25. We first prove that the αji defined is a bound for all δ ∈ ∆j,µj

i,µi . We take δ
any distribution with µi, µj for i-th and j-th moments. We let b = B(δ, p). We partition δ
in 2 parts: δ1 between 0 and b (and 0 elsewhere), and δ2 after b (and 0 before). We denote
µk(δ`) =

∫∞
0 δ`(t)tkdt, for ` ∈ {1, 2}.

As δ2 represents a proportion p of the distribution, and as all the mass is after b, we
have the following:

µj(δ2) = µj − µj(δ1) ≥ pbj

87

Chapter 3 – Diagnosability analysis of Labeled Markov Chains

Lemma 3.26.

µj(δ1) ≥ (µi − [µj − µj(δ1)]
i
j p

j−i
j) ji

(1− p) j−ii

Proof. We apply Jensen inequality to both δ1 and δ2.

We obtain µj(δ1) ≥ µi(δ1)
j
i

(1−p)
j−i
i

and µi(δ2) ≤ µj(δ2)
i
j p

j−i
j .

As µi(δ1) = µi − µi(δ2), we obtain µi(δ1) ≥ µi − µj(δ2)
i
j p

j−i
j = µi − [µj − µj(δ1)]

i
j p

j−i
j ,

which yields the statement.

We define the operator f with:

f(x) = (µi − [µj − x]
i
j p

j−i
j) ji

(1− p) j−ii

This operator will allow us to find the bound by a fixpoint computation.

Lemma 3.27. (fn(0))n∈N is strictly increasing and converges towards some M .

Proof. We show by induction on n that fn(0) is an increasing sequence. First, since
αj < αi, we have that f(0) ≥ 0.

Then, let n ∈ N such that fn(0) ≥ fn−1(0). We have that

µj − fn(0) ≤ µj − fn−1(0)

(µi − [µj − fn(0)]
i
j p

j−i
j)

j
i ≥ (µi − [µj − fn−1(0)]

i
j p

j−i
j)

j
i

(µi − [µj − fn(0)]
i
j p

j−i
j) ji

(1− p) j−ii
≥ (µi − [µj − fn−1(0)]

i
j (p)

j−i
j) ji

(1− p) j−ii

And so, fn+1(0) ≥ fn(0).
Then, let us show that the sequence fn(0) is bounded. By applying lemma 3.26 with

µj(δ1) ≥ 0 on the left hand side, we obtain µj(δ1) ≥ f(0). Hence we can apply lemma 3.26
with µj(δ1) ≥ f(0) on the left hand side, yielding µj(δ1) ≥ f(f(0)). By a trivial induction,
we obtain µj(δ1) ≥ fn(0) for all n.

As this sequence is increasing and bounded, it converges to some quantity M .

The M of Lemma 3.27 and Theorem 3.25 will be µj(δ1) for δ a distribution realizing
B(δ, p) = αji (p). We now prove the second part of Theorem 3.25 and Lemma 3.27.

88

3.3. Distributions of fault detection delay

Lemma 3.28. Let µi, µj and p such that αj(p, µj) < αi(p, µi). Then for all δ ∈ ∆j,µj
i,µi , we

have:
B(δ, p) ≤ (µj −M

p
)

1
j

for M ≤ µj the smallest positive real root of:

µi = (1− p)
j−i
j M

i
j + p

j−i
j (µj −M)

i
j .

For i = 1, j = 2, we can compute explicitly M and obtain:

B(δ, p) ≤ µ1 +
√

(1− p)
p

(µ2 − µ2
1)

Proof. Let δ ∈ ∆j,µj
i,µi . We denote b = B(δ, p). We decompose δ = δ1 + δ2 with δ1 on [0, b)

and δ2 from [b,∞).
We showed that the sequence (fn(0)) converges to its convergence point M . We also

have f(M) = M . Thus, M ≤ µj and it is the smallest positive real root of:

(1− p)
j−i
j M

i
j = µi − p

j−i
j (µj −M)

i
j .

Now, we know that µj(δ1) ≥M . This gives pB(δ, p)j ≤ µj −M .

We now tackle the last item of the statement, that is for i = 1, j = 2, B(δ, p) ≤
µ1 +

√
(1−p)
p

(µ2 − µ2
1).

Proof. Let i = 1, j = 2. We have B(δ, p) ≤
√

µ2−M
p

= µ1−
√

1−p
√
M

p
.

We let x =
√
M . This x satisfies the equation

√
1− px = µ1 −

√
p
√

(µ2 − x2).

That is
√
p
√

(µ2 − x2) = µ1 −
√

(1− p)x

and hence:
pµ2 − px2 = µ2

1 + (1− p)x2 − 2µ1

√
(1− p)x

89

Chapter 3 – Diagnosability analysis of Labeled Markov Chains

We have the second degree equation:

x2 − 2µ1

√
(1− p)x+ µ2

1 − pµ2 = 0

The smallest solution is x = µ1
√

1− p−
√

(1− p)µ2
1 + pµ2 − µ2

1 = µ1
√

1− p−√p
√
µ2 − µ2

1.

This gives:

B(δ, p) ≤
µ1 −

√
1− p(µ1

√
1− p−√p

√
µ2 − µ2

1)
p

= µ1 +
√

1− p
p

(µ2 − µ2
1).

We end the proof of Theorem 3.25 by showing optimality of the bound for ∆j,µj
i,µi :

Lemma 3.29. Let µi, µj and p such that αj(µj, p) < αi(µi, p). Then there exists a distri-
bution δ ∈ ∆j,µj

i,µi with B(δ, p) = j

√
1
p
(µj −M1) for M1 ≤ µj the smallest positive real root

of:
µi = (1− p)

j−i
j (M1)

i
j + p

j−i
j (µj −M1)

i
j .

Proof. Let us consider the distribution δ with:

• (1− p) of the mass at j

√
M1
1−p and

• p of the mass at j

√
(µj−M1)

p

It trivially satisfies B(δ, p) = j

√
(µj−M1)

p
. Also, we have easily µj(δ) = (1 − p) M1

1−p +
pµj−M1

p
= µj.

Now, consider µi(δ) = (1−p)
j−i
j (M1)

i
j +p

j−i
j (µj−M1)

i
j . By definition of M1 as a root

of the equation µi = (1− p)
j−i
j (M1)

i
j + p(µj −M1)

i
j , we obtain µi(δ) = µi.

To obtain a value for M , one can use for instance Newton’s method. For i = 1, j = 2,
we can compute explicitly M and obtain:

α2
1 = µ1 +

√
(1− p)
p

(µ2 − µ2
1).

90

3.3. Distributions of fault detection delay

s0start s1 s2
a, 0.5

b, 0.1

a, 0.5 a, 0.9

b

Figure 3.7: A toy example LMC A, faulty states in red.

Example 3.11. Consider the distribution associated with the system of fig 3.7. Faults
occur in state s1 and are diagnosed in s2. The distribution follows an exponential law of
parameter 0.9. The first moment is µ1 = 10 and the second is µ2 = 190.

With p = 0.1, the Markov inequality gives us the following bounds: α1(0.1) = 10
0.1 = 100,

and α2(0.1) =
√

190
0.1 ≈ 43.6.

Using the bound we proved, we obtain α2
1(0.1) = 10 +

√
0.9
0.1(190− 102) ≈ 38.5.

We can also use the following result which allows one to underapproximate the value
of M , and thus overapproximate the optimal bound, by iterating the following operator
f from x = 0:

f : x 7→ (µi − [µj − x]
i
j p

j−i
j) ji

(1− p) j−ii

Example 3.12. We continue example 3.11 and use the previous method in order to com-
pute bounds using higher moments. We obtain the following bounds αi(p), αi−1

i (p) consid-
ering different values of p and i:

i µi αi(0.1) αi−1
i (0.1) αi(0.01) αi−1

i (0.01)
1 10 100 100 1000 1000
2 190 43.6 38.5 137.8 104.9
3 5410 37.8 36.8 81.5 73.9
4 205390 37.9 37.8 67.4 63.8
5 9747010 39.6 37.9 64.2 61.43
6 555066190 42.1 39.6 62.8 61.47

For p = 0.1, it is not useful to consider moments of order higher than 3. On the other
hand, for p = 0.01, the moment of order 5 provides better bounds than moment of lower
orders.

91

Chapter 3 – Diagnosability analysis of Labeled Markov Chains

3.4 Related work on diagnosis and diagnosability

In the previous sections, we tackled existing diagnosis notions over our main domain of
interest: finite stochastic systems. Of course, these are not the only works talking about
diagnosis and diagnosability. In the following, we present different problems around the
notion of diagnosis.

3.4.1 Diagnosis of infinite LTS

Although we consider finite models in this thesis, the set of possible systems may be
infinite. To represent an LTS with infinite many states, higher order models have to
be considered. Different models correspond to this definition, such as Petri Nets and
Pushdown Automata.

The semantic of Petri Nets (introduced in [Pet66]) is a reachability graph that is infinite
iff the net is not bounded. Cabasino et al. studied diagnosability for both bounded [CGS09]
and unbounded [Cab+09] Petri Nets both refined in [Cab+12]. They construct a verifier
net that is analog to the twin-plant we describe for LTS and the coverability graph of
this verifier net, that is a finite abstraction of the reachability graph of the verifier net.
However, the coverability graph may have an Ackermannian size in the verifier net, hence a
bad complexity in practice. [Bér+17] tackled this problem and proved that diagnosability
of Petri Nets is in EXPTIME by reducing it to the model-checking of an LTL formula on
the verifier net. An overview of diagnosis on Petri Nets is available in [Bas14]. Diagnosis
with Petri Nets unfoldings is presented in [HF13].

Pushdown automata are another class of infinite systems with finite representation.
[MP09] investigates their diagnosability and proves the undecidability of this problem
by a reduction from the emptiness problem for an intersection of context-free languages.
However, it is decidable when restricted to visibly pushdown automata (VPA, introduced
in [AM04]). For that, another analog of the twin-plant is used and a Büchi condition
is defined on this twin-plant, leading to a PTIME algorithm. More recently, [BHL16b]
extended this work to Partially Observable VPA, developing the notions of diagnosability
they gave in [BHL14]. Interestingly, although their different settings of diagnosability
had all PSPACE-complete complexity on finite LMC, their characterizations are now
very different when considering POVPA, leading to different class of complexities, which
depend in particular if the system is finitely branching. Surprisingly, when it is infinitely
branching, some notions of diagnosability lead to non Borelian set of non-diagnosable
runs.

92

3.4. Related work on diagnosis and diagnosability

3.4.2 Active diagnosis

Although we present diagnosability in passive way, that is by simply observing the be-
havior of the systems, some have studied what is called active diagnosis: at each step, a
subset of the alphabet Σc ⊆ Σ is selected by a controller and the next action is chosen
at random in this subset. The controller may be all powerful (ie it can choose any subset
of the alphabet) or it can have some restrictions, such as some actions will always be
enabled. Thus, different strategies lead to different controllers. Some controllers will make
the system diagnosable while others will not. The goal of active diagnosis is then to find a
controller that makes the system diagnosable. This problem was introduced in [SLT98]. In
this works, the authors present a procedure to synthesize a sublanguage that is diagnos-
able wrt the original language thanks to an iterative procedure. However, the complexity
of this procedure is not evaluated by the authors but is presented as double exponential
by [Haa+13]. The latter proves that active diagnosis is EXPTIME-complete by using two
players games on Büchi automata and define optimal controllers, that is with minimal
memory. This notion is extended to stochastic systems in [Ber+14] where the authors
prove that the complexity for this enriched problem is still EXPTIME-complete. How-
ever, they also show that enforcing diagnosability while preserving a positive probability
to non faulty runs is an undecidable problem. To prove these claims, the authors make
a strong link between active diagnosis on probabilistic systems and Partially Observed
Markov Decision Processes.

3.4.3 Diagnosis of distributed systems

Notions of diagnosis presented before were based on the observation of only one system.
However, many real life systems are distributed, such as a sensor network: every sensor has
a partial view of what happens, and the whole network gives the full information. [FBJ02]
and [Su+02] introduce some problems on diagnosis of asynchronous systems. In those
works, there is no global time nor global state, thus the challenge is be able to efficiently
communicate. Different techniques are investigated in order to tackle this issue, such as
Petri Net unfolding [Ben+03; Fab+05]. Standard issues in distributed computations are
raised, such as the robustness of distributed diagnosers wrt to the failure of some parts,
or improve the scalability [SW04].

Numerous models of distributed diagnosis have been defined, depending on the settings
of the model: synchronization, communication delays and/or losses, order preservation of
information... Without detailing them, we can mention a few: joint diagnosability [ST02],

93

Chapter 3 – Diagnosability analysis of Labeled Markov Chains

codiagnosability [QK06], D-codiagnosability [WYL07]...
Finally, we also refer to [ZL13] for a broad overview of diagnosis on Discrete Event

Systems.

3.5 Conclusion

3.5.1 Summary

In section 3.1, a state of the art on diagnosability of stochastic systems has been provided,
giving us the tools and foundations we based ourselves on.

Section 3.2 presents results on quantified diagnosability: subsection 3.2.1 gives precise
definitions and makes links with previous results by relating our degrees to notions previ-
ously defined, especially [ND08] degree and A-diagnosability and subsection 3.2.2 provides
algorithms to compute these degrees. Subsection 3.2.3 presented methods to optimize the
calculation of a degree. Even if the worst case is unchanged due to the PSPACE-hardness
bound, we saw that in some cases the gain could up to an exponential factor.

Section 3.3 explored the time to detect a fault and gave finer results than what we
presented in the state of the art. Subsection 3.3.1 presented a mathematical analysis
that allowed us to derive appropriate mathematical objects that enabled to compute
easily the moments of the distribution of detection delay. These moments were useful in
several ways: first, we showed how to use them in order to approximate the distribution
as precisely as wanted in subsection 3.3.2. This approximation was possible because the
distribution associated to this set of moments is unique in our case. We also proved that
these moments allow one to derive better concentration bounds that the ones commonly
used in subsection 3.3.3. Moreover, when considering a subset of the moments, the bound
derived from this subset is optimal, as shown in subsection 3.3.4.

3.5.2 Future work

Section 3.2.3 provided an algorithm to accelerate the computation of the diagnosability
degree, and we saw that in some cases it is very efficient. However, no performance evalu-
ation has been made. This may be a difficult work for some reasons. First, we know that
the worst case complexity is unchanged. Maybe one could find some subclasses of LMCs
such that this algorithm is efficient on these subclasses. Another option is to evaluate this
algorithm on real systems: this is the most interesting benchmark.

94

3.5. Conclusion

Another perspective is quantified opacity. Opacity is another binary property stating if
a secret has been leaked or not and has been widely studied on transition systems [Bry+05;
Lin11]. Some attempts have been made in order to introduce a quantitative version of
opacity [BMS15]. We believe that similar techniques to the one we presented may be
useful to calculate some opacity degrees.

95

Chapter 4

Classification among Labeled
Markov Chains

4.1 Introduction

Given several stochastic systems, the problem of classification is to associate a trace of an
execution to which system produced it. This can be seen as a symmetric generalization of
more specific problems such as diagnosis or opacity. The former, presented in Chapter 3
can be seen as a classification between a faulty language and a correct one. The latter
can be seen in some sense as the problem to be able to classify between high and low
privileges part of the system [KH18], or between “secret” and “non-secret” part of the
system.

In this chapter, we study classification on Labeled Markov Chains, which has been
explored by different communities before, such as formal methods [CK14; BHL16b] and
control [KH18]. Several variants of this notion can be defined: either one wants to clas-
sify for sure, with probability 1 or with arbitrarily small error... Here, after establishing
a link between the first two notions (for sure and with probability 1) and well-known
problems, we will focus on the last notion (arbitrarily small error), that we call limit-sure
classifiability.

More formally, let (Ai)i≤k be a set of LMCs representing different behaviors of a system
under observation. We want to classify, i.e., discover which LMC/behavior the system is
following, by only looking at an observation sequence w ∈ Σω it produces. The observer
has access to an arbitrarily long prefix of this sequence. Naturally, the longer we observe
the system, the larger the size of the observation and the better the information we have
to discover the LMC. As it suffices to consider LMCs pairwise, we will consider in the
following that there is only a choice between k = 2 LMCs. We will denote them by A1,
with n states, and A2, with m states. In this chapter, we consider a setting where the
system will pick A1 (resp. A2) with probability 1/2 and then runs an execution of A1

(resp. A2).

97

Chapter 4 – Classification among Labeled Markov Chains

A classifier is a function f : Σ∗ → {⊥, 1, 2} that outputs the index of the LMC from an
observation, or possibly ⊥ if it cannot conclude (yet). Consider for example A1,A2, both
following the LMC in figure 4.1, the difference being that A1 starts in x while A2 starts
in z. If the observation w starts with b, then we know the systems follows A2, because b
is not possible from x. We can thus for all w′ let f(bw′) = 2. However, if the observation
is ab2a, then it could come from any A1 or A2. There are several notions of classifiability:

• sure classifiability: there exists a classifier f that eventually identifies the accurate
LMC that generated w. That is, for all w ∈ Σω, there exists a finite prefix v of w
and a classifier f for v such that f(v) = 1 (resp. f(v) = 2) iff there exists no path
ρ of A2 (resp. of A1) with obs(ρ) = w.

• almost-sure classifiability: there exists a classifier f that eventually identifies the
accurate LMC that generated w with probability 1. This classifier cannot make
errors when it outputs 1 or 2, but there may exist infinite observations that cannot
be classified, though the total probability is 0 (such as tossing tail forever on a fair
coin).

• limit-sure classifiability: there exists a classifier f that, for any ε > 0, eventually
discovers the correct LMC with probability greater than 1− ε.

This leads to the two main questions that we are interested in, for each of the above
notions:

• (i) how easily can one decide the existence of a classifier?
• (ii) if there exists a classifier, how easily can one build it explicitly?

x y

z

a, 1
2

a, 1
2

a, 1
2

b, 1
2b, 1

4

b, 1
4

a, 1
2

{x} {z}{x, y}

{y}

a

a

b

b

a

a

b

Figure 4.1: Example of an LMC A on alphabet Σ = {a, b} and of an NFA BA on alphabet
Σ.

98

4.2. State of the art

For the first two notions, namely sure and almost-sure classification, we recall some well-
known results in section 4.2. For limit-sure classifiability, some pioneering works are also
presented in the state of the art [CK14; KS16; KH18]. In this chapter, we reinvestigate
the problem: in order to answer limit-sure classification, we define a notion of stationary
distribution for LMCs to study the long run statistics of the observation w, extending
the standard notion of stationary distribution for Markov Chains. To do so, we focus on
beliefs, that is the set of states that can be reached with the same observation wn. We
show that a notion of stationary distribution can be defined for beliefs in Bottom Strongly
Connected Components (BSCCs), and that it also corresponds to a notion of asymptotic
distribution, describing the asymptotic statistics of beliefs.

Stationary distributions allow us to characterize limit-sure classifiability as detailed
in [KH18] for a subclass of LMCs. We show that one cannot classify between two LMCs
iff they have beliefs which can be reached by the same observation and for which the
stationary distributions can be separated by one finite word (for which the probability
is different). This gives us a polynomial algorithm to decide if two LMCs are limit-sure
classifiable. Notice that polynomial time result had been shown in [KS16] with a different
approach.

Finally, we consider the classification problem in a security context, called attack-
classification: instead of deciding if every observation can be classified, we check for the
existence of such an observation that can be classified and the existence of a strategy
to obtain it. We then show that deciding if there exists a limit-sure attack-classifier is
PSPACE-complete.

This chapter is organized as follows: section 4.2 describes the state of the art on classi-
fication. In section 4.3 we define stationary distributions for LMCs and show some of their
properties. Section 4.4 contains the main results about limit-sure classification relying on
the characterization developed in 4.4.2 and the corresponding algorithm (in 4.4.3). This
section also contains a comparison with previous contributions we presented in the state
of the art. Attack-classification is then presented in section 4.5. This chapter closes with
a discussion about related work.

4.2 State of the art

This section details some results on sure and almost-sure classification and then several
ways to compare stochastic systems, going from stronger notions (equivalence) to weak-
est ones (distances). We start by presenting well-known results on sure and almost-sure

99

Chapter 4 – Classification among Labeled Markov Chains

classification in subsection 4.2.1. Then, we state results on the equivalence of stochastic
languages in subsection 4.2.2, then we describe notions of distance for stochastic automata
in subsection 4.2.3. As we are interested in LMC and not in stochastic automata, we de-
pict an adaptation of these distances to LMCs in subsection 4.2.4. Finally, we outline
some very closely related works on distinguishability that we will use as a reference in
subsection 4.2.5.

4.2.1 Sure and almost-sure classification

Regarding the first question given in the introduction, that is deciding if there exists a
classifier, one can answer easily for the sure and the almost-sure classification, which have
been studied in different contexts, such as fault diagnosis (see Chapter 3.1.1 and 3.1.2).

Proposition 4.1. [Sam+96; BHL14] One can surely classify among 2 LMCs iff Lω(A1)∩
Lω(A2) = ∅, and this can be checked in PTIME. One can almost-surely classify among
2 LMCs iff the set Lω(A1) ∩ Lω(A2) has probability 0, and this is a PSPACE-complete
problem.

Proof. The first result is a classical result, in the context of fault-diagnosis [Sam+96],
which can be adapted trivially to the case of classification. Clearly, an observation w ∈
Lω(A1) ∩ Lω(A2) cannot be classified. Conversely, if Lω(A1) ∩ Lω(A2) = ∅, then the
product of both LMCs has no loop. It means that with n and m the number of states of
A1 and A2, after at most n ·m observation, we can classify. Checking the existence of a
loop in the twin machine is doable in polynomial time (it is an NLOGSPACE-complete
problem, see Proposition 3.1).

For the second result we use [TT05; BHL14]: if Lω(A1)∩Lω(A2) has a positive probabil-
ity, then clearly no almost-sure classifier exists for these observations. Conversely, assume
that Lω(A1) ∩ Lω(A2) has probability 0. Consider the belief automata B1, B2 associated
with A1,A2 and compute their synchronized product B1 × B2 . The hypothesis implies
that all states in BSCCs of this product are either of the form (D1, ∅) or (∅, B2): one can
thus classify when BSCCs are reached, which eventually happens with probability 1. To
get the PSPACE algorithm, it suffices to check whether a BSCC of the belief product,
with both components non-empty, can be reached. The PSPACE-lower bound follows the
one in [BHL14].

Finally, for sure and almost-sure classification, building the classifier is also easy: it
suffices to compute the set of states reached with the observation w (called belief in the

100

4.2. State of the art

next section) for both LMCs, and wait for a time when one of these beliefs becomes empty
and then return the name of the LMC with a non-empty belief state. This event must
eventually happen (almost surely with the second notion).

4.2.2 Equivalence of stochastic languages

Given two systems, a strong assessment one can verify is whether they have the same
language. In terms of qualitative languages, it means that L1 = L2 i.e., for any word
w ∈ Σ∗, w ∈ L1 ⇔ w ∈ L2. For stochastic systems, such as LMCs, the notion of
equivalence has to be extended to take into account the probabilities. Intuitively, two
stochastic languages are equivalent if all words have exactly the same probability to be
executed by both LMCs. In this section, we present the equivalence problem and LMCs,
its complexity and a sketch of proof.

More formally, the equivalence problem is given as follows.

Definition 4.1 (Equivalence of languages for LMCs).
Let A1, A2 be two LMCs. A1 and A2 are equivalent iff for all w, PA1(w) = PA2(w).

The equivalence problem for stochastic automata (i.e., LMCs with stopping probabil-
ities) is defined in the same way.

Example 4.1. Three LMCs are pictured in figure 4.2. A1 and A2 are equivalent: all
words in (a + b)n have probability 1/2n. However, A3 is not equivalent with them. As a
counterexample, PA3(ab) = 1/2 instead of PA1(ab) = 1/4.

Proposition 4.2 ([Bal93]). The problem of equivalence of two LMCs is decidable in
PTIME.

x1 y1

b, 1
2

b, 1
2

a, 1
2 a, 1

2 x2 a, 1
2 ; b, 1

2

x3 y3

a, 1
2

b, 1
2

a, 1
2 b, 1

2

Figure 4.2: Three LMCs A1 (top left), A2 (top right) and A3 (bottom).

101

Chapter 4 – Classification among Labeled Markov Chains

The problem to decide if two LMC are equivalent has been proved to be decidable in
PTIME in [Bal93]. An extension of the equivalence problem to weighted automata has
been presented in [DHR08]. We present a sketch of proof for LMCs following [CK14].

(Sketch of proof for Proposition 4.2). Given two LMCs A1,A2 with initial distributions
σ1, σ2, the equivalence problem amounts to verifying if for all w ∈ Σ∗, PA1(w) = PA2(w).
In matrix form, for an observation w = a1 . . . ak, this can be written as σ1M1(w)1 =
σ2M2(w)1 with Mi(w) = Πk

j=1M1(aj), M1(aj) the transition matrix of A1 associated to
letter aj and 1 the column vector containing only 1s (and similarly forM2(w)). This yields

∀w ∈ Σ∗, (σ1 σ2) ·
 M1(w) ∅

∅ M2(w)

 · (1, · · · , 1,−1, · · · ,−1)T = 0

We define Eq(A1,A2) = span{

 M1(w) ∅
∅ M2(w)

·(1, · · · , 1,−1, · · · ,−1)T | w ∈ Σ∗}.

Eq(A1,A2) is a vector space and its dimension is at most n+m, thus we can build a
basis v1, . . . v` for Eq(A1,A2) of size ` ≤ n+m. It suffices then to check whether (σ1 σ2)
falls in the left kernel of Eq(A1,A2) which amounts to (σ1 σ2) · vi = 0 for all i ≤ `.

Notice that this problem is very close to equivalence for languages of PFAs which has
first been shown to be in coNP in [Paz71] and then in PTIME in [Tze92]. A corollary
of [DHR08] is that equivalence for both settings (LMCs and PFAs) is inter-reducible.
Especially, the proof sketched from [CK14] uses very similar ideas to the one in [Tze92].

4.2.3 Distance between stochastic automata

When two systems define exactly the same (non-stochastic) language, one may want to
quantify the difference between them. Different notions of distance have been used to
perform this quantification. In this subsection, we illustrate some of them. The standards
distances to study are the Lp ones. However, it is unclear how to define them on LMCs
with infinite words. Thus, we start by giving definitions and results for these distances
on stochastic automata. We will later refer to work on the total variation distance which
is derived from the L1 distance and is also suited for LMCs. We recall that a stochastic
automaton is a weighted automaton over the probabilistic semiring and can be seen as
an LMC with stopping probability. In the related work section, other distances will be
mentioned.

102

4.2. State of the art

Lp distance

In mathematics, Lp spaces involve functions which p-power is measurable and summable
in the sense of Lebesgue. As probabilistic automata can be seen as functions that associate
a real number to a word in Σ∗ a Lp norm can be defined on them in a similar manner.

Definition 4.2 (Lp distance between two automata).
Let p ≥ 1 and let A1,A2 be two stochastic automata with respective probability distri-

bution p1 and p2. The Lp distance between A1 and A2 is given by:

Lp(A1,A2) = (
∑
w∈Σ∗

|p1(w)− p2(w)|p)
1
p

Notice that for all p, two stochastic automata are equivalent (notion developed in
section 4.2.2) iff their Lp distance is 0 . In particular, an Lp distance being 0 for some
p is equivalent to being 0 for all p. The usually considered decision problem is “given
A1,A2, θ ∈ R, Lp(A1,A2) = θ?”.

This problem has been tackled in various works [LP02; CMR06; CMR07; CK14; Kie18].
We recall the most important results.

Proposition 4.3 (Lp distance for even p [CMR06; CMR07]). Given two stochastic au-
tomata A1,A2 and given an even value of p, the decision problem associated to the Lp
distance is decidable with time complexity O((|A1| + |A2|)6p), which is polynomial for a
fixed p.

Further, if the stochastic automaton is unambiguous, that is for all w ∈ Σ∗ there
exists only one path that accepts w, then the complexity becomes polynomial even when
p is part of the input with time complexity O(2p|A1|3|A2|3). However, when p is odd, the
problem becomes much more complex. [LP02] showed that the complexity was at least
NP-hard for L1 and [CMR06] extended this NP-hardness to every odd value of p. Finally,
[Kie18] refined this result:

Proposition 4.4 (L1 distance [Kie18]). Given two stochastic automata A1,A2, the deci-
sion problem associated to the L1 distance is undecidable.

[Kie18] also proved that approximating the L1 distance was in PSPACE and #P-hard.

Definition 4.3 (L∞ distance). Let A1,A2 be two stochastic automata with respective
probability distribution p1 and p2. The L∞ distance between A1 and A2 is given by:

L∞(A1,A2) = max
w∈Σ∗

|p1(w)− p2(w)|

103

Chapter 4 – Classification among Labeled Markov Chains

The L∞ distance is also sometimes considered, but its complexity remains high: at
least NP-hard [LP02].

To sum up, deciding if two stochastic automata are equivalent, that is if they are at
distance 0 for some Lp distance is computationally easy. However computing the exact
distance in a general setting remains difficult.

4.2.4 Total variation distance and the distance 1 problem

While the Lp distances are not well suited for LMCs, one can define the total variation
distance [GS02] for LMCs. For stochastic automata, we can show that the total variation
distance and the L1 distances are equal up to a factor 2, hence the total variation distance
is a good replacement for the L1 distance for LMCs. In the following, for a probability
measure p on finite words in a stochastic automaton, we denote p(W) = ∑

w∈W p(w).
Analogously, for a probability measure p on infinite words in an LMC, we denote p(W) =∑
w∈W p(w). Notice that for LMCs we need the words to be infinite.

Definition 4.4 (Total variation distance on stochastic automata).
Given two stochastic automata A1,A2, with respective probability distribution p1 and

p2, the total variation distance is given by

d(A1,A2) = max
W⊆Σ∗

|p1(W)− p2(W)|

This distance is the biggest possible difference of event probabilities between A1 and
A2. We can make the following link between the total variation distance and L1:

Proposition 4.5 ([MU17]). d(A1,A2) = 1
2L1(A1,A2)

Because of Proposition 4.4, this proposition implies the impossibility to compute ex-
actly the total variation distance, and the difficulty to approximate it [Kie18]. The total
variation distance can be extended to LMCs as follows:

Definition 4.5 (Total variation distance on LMCs).
Given two LMCs A1,A2, with respective probability distribution p1 and p2, the total

variation distance is given by

d(A1,A2) = sup
W⊆Σω

measurable

|p1(W)− p2(W)|

104

4.2. State of the art

x1 y1
a

a, 1
4 ; b, 3

4 x2 y2
a

a, 3
4 ; b, 1

4

x3

y3

z3

a, 1
2

a, 1
2

a, 3
4 ; b, 1

4

a, 1
4 ; b, 3

4

x4

y4

z4

a, 1
2

c, 1
2

a, 3
4 ; b, 1

4

a, 1
4 ; b, 3

4

Figure 4.3: Four LMCs A1 (top left), A2 (top right), A3 (bottom left) and A4 (bottom
right).

Notice that we now have a supremum due to the uncountable number of possible
measurable sets W . However, one can show the existence of a measurable set of infinite
runs that maximizes this quantity which turns this supremum into a maximum. We denote
wi the prefix of length i of w and q(w) = lim p1(wi)

p2(wi) if this limit exists.

Theorem 4.6 ([CK14]). The set W> = {w ∈ Σω|q(w) > 1} maximizes |p1(W)− p2(W)|.

Even if this distance is not computable in general, some verification can nevertheless
be performed:

Definition 4.6 (Distance 1 problem).
Given two LMCs A1,A2, does d(A1,A2) = 1 hold.

Intuitively, if two LMCs are at distance 1, then there exists a set of infinite runs that
has probability 1 in one LMC and probability 0 in the other one. Coming back to our
classification problem, it would be possible to know which LMC produced an observation
w ∈ Σω.

Example 4.2. We illustrate the notion of distance 1 with the four LMCs in figure 4.3.
A1,A2 are at distance 1: by denoting |wn|a the number of a in the prefix of length n of
w, the set W1 = {w ∈ Σω | limn→∞

|wn|a
n

> 1
2} has probability 1 in A2 and probability 0 in

A1. On the contrary, A1 and A3 are not at distance 1: intuitively, the upper part of A3 is
totally different, however the lower part has exactly the same behavior as A1. Finally, A1

and A4 are at distance 1. Again, the upper part behaves in the same way as A2 and then
is “very different” from the behavior of A1. Even if the state z4 has the same behavior as
y1, as they are not reachable by the same prefix.

105

Chapter 4 – Classification among Labeled Markov Chains

The distance 1 problem is computationally easy:

Theorem 4.7 ([CK14]).
The distance 1 problem can be decided in PTIME.

We sketch the proof of this theorem since we will give an alternative one in this
chapter. Let us define some notation: for a word w ∈ Σ∗, A1(w) is the set of states
s such that there exists an execution labeled by w leading to s. For two LMCs A1 =
(S1,Σ, µ01, p1),A2 = (S2,Σ, µ02, p2), two distributions µ1, µ2 are said to be equivalent if
A′1 = (S1,Σ, µ1, p1),A′2 = (S2,Σ, µ2, p2) are equivalent in the sense of languages of LMCs.

Proposition 4.8 ([CK14]). Given two LMCs A1,A2, the following are equivalent:

1. d(A1,A2) < 1,
2. there exists w ∈ Σ∗ and probability subdistributions µ1, µ2 such that supp(µ1) ⊆
A1(w), supp(µ2) ⊆ A2(w) and µ1 and µ2 are equivalent,

3. there exists r1 ∈ S1 and equivalent subdistributions µ1, µ2 such that r1 ∈ supp(µ1)
and supp(µ2) ⊆ {r2 | (r1, r2) ∈ A1 ×A2}.

Furthermore, by arguments similar to those developed in [Tze92] and [DHR08], if
there exists such a w then there is one that has a length lower than 2 · (|S1|+ |S2|). The
existence of these subdistributions can be checked in polynomial time thanks to linear
programming, hence the polynomial time algorithm 2.

Algorithm 2 PTIME algorithm for the distance 1 problem
1: A is the twin automaton A1 ×A2.
2: for r1 ∈ S1 do
3: Let R2 = {r2 | (r1, r2) ∈ A}.
4: if there exist two distributions µ1, µ2 with r1 ∈ supp(µ1) and supp(µ2) ⊆ R2
5: with (A1, µ1) ≡ (A2, µ2) then
6: return d(A1,A2) < 1
7: end if
8: end for
9: return d(A1,A2) = 1

4.2.5 Distinguishability

Let A1,A2 be two LMCs. Distinguishability is the problem of determining the existence of
a monitor that can check with arbitrary precision from which LMC an observation comes

106

4.2. State of the art

from. It is thus similar to classification. This notion has been studied in [KS16] and is
strongly related to the distance 1 problem.

Definition 4.7 (Monitor).
A monitor is a function M : Σ∗ → {⊥, 1} such that if M(u) = 1 then for all v,

M(uv) = 1.

Given a monitor M , we denote by L(M) the set of infinite executions w such that
there exists a prefix u of w with M(u) = 1. The set L(M) is measurable as a countable
union of cylinders.

Definition 4.8 (Distinguishability).
Let A1,A2 be two LMCs inducing respective probability measure π1, π2. A1,A2 are said

to be distinguishable if for all ε > 0 there exists a monitor Mε such that

π1(L(Mε)) ≥ 1− ε and π2(L(Mε)) ≤ ε

Note that even if this definition seems not symmetric, there exists a monitor Mε such
that π1(L(Mε)) ≥ 1 − ε and π2(L(Mε)) ≤ ε iff there exists a monitor M ′

ε such that
π1(L(Mε)) ≤ ε and π2(L(Mε)) ≥ 1− ε [KS16].

As we said before, the existence of such a monitor is strongly related to the distance
1 problem:

Proposition 4.9 ([KS16]). Two LMCs A1,A2 are distinguishable iff d(A1,A2) = 1.

Proof. If d(A1,A2) = 1, then from [CK14] for every ε > 0 there exists W such that
p1(WΣω) ≥ 1−ε and p2(WΣω) ≤ ε. Then, let M be a monitor outputting 1 after reading
a string in W . We trivially have p1(L(M)) ≥ 1− ε and p1(L(M)) ≤ ε. Hence, A1 and A2

distinguishable.
If A1 and A2 are distinguishable, then for every ε > there exists a monitor Mε such

that p1(L(Mε)) ≥ 1− ε and p2(L(Mε)) < ε.Then,

d(A1,A2) ≥ sup
ε
|p1(L(Mε))− p2(L(Mε))|

≥ 1− 2ε
≥ 1

107

Chapter 4 – Classification among Labeled Markov Chains

As a corollary, deciding if two LMCs are distinguishable can be done in PTIME. We
will see in section 4.4.4 that distinguishability and limit-sure classifiability coincide on
LMCs.

4.2.6 Misclassification

In this last part of the state of the art, we present a recent work on the probability of
misclassification in the context of probabilistic opacity of LMCs [KH18]. LetA1,A2 be two
LMCs with respective probability measures p1, p2. As for classification, the system chooses
at random between two LMCs A1 and A2 (to simplify, here we consider probabilities half
half) and an observation w from this LMC is produced. One would want to decide if w
has been produced by A1 or A2.

Consider the maximum a posteriori probability (MAP) rule where the answer for an
observation w is 1 (resp. 2) if p1(w) > p2(w) (resp. p1(w) > p2(w)). Given an observation
w, the probability to misclassify w is Perr(w) = min(p1(w), p2(w)). Then, given n ∈ N,
the probability of misclassification, i.e., the probability to make an error by watching an
observation of size n is

Perr(n) =
∑
w∈Σn

Perr(w)

Definition 4.9 (Misclassification error).
We say that the probability of misclassification error among two LMCs tends to 0 iff

∀ε > 0,∃n0 ∈ N,∀n > n0, Perr(n) < ε

Actually, distinguishability (and thus limit-sure classification) are equivalent with the
probability of misclassification error tending to 0, as shown in Proposition 4.12. [KH18]
obtain the following sufficient condition:

Proposition 4.10. Let A1,A2 be two LMCs with corresponding MC M1 and M2 such
thatM1 andM2 are irreducible and aperiodic. Let σi be the stationary distribution ofMi.
Then, if A1 with initial distribution σ1 and A2 with initial distribution σ2 are equivalent
(see 4.2.2) then the probability of misclassification error tends to 0, i.e.,

∀ε > 0,∃n0 ∈ N, ∀n > n0, Perr(n) < ε

[KH18] solves this problem on a subclass of LMCs: those for which the associated
Markov Chain is strongly connected with period 1 and crucially, for all state the initial
probability is positive.

In the following, we denote α(w) = min{ p1(w)
p1(w)+p2(w) ,

p2(w)
p1(w)+p2(w)}.

108

4.2. State of the art

s0 s1

b, 1
2

b, 1
2

a, 1
2 c, 1

2

Figure 4.4: States and transitions for four LMCs A1, A2, A3, A4 with different initial
probabilities

Theorem 4.11. Let A1,A2 be two LMCs with corresponding MCM1 andM2 such that
M1 andM2 are irreductible and aperiodic and such that exry state is an initial state. Let
σi be the stationary distribution ofMi. Then

∑
w∈Σn,α(w)>α0 p1(w) + p2(w)→0 iff A1 with

initial distribution σ1 and A2 with initial distribution σ2 are equivalent.

Example 4.3. We now show that the condition on the initial distribution is crucial.
Let us consider some LMCs based on the structure given in figure 4.4. We consider

different systems with different initial distributions. A1 (resp. A2, A3, A4) has initial
distribution (1, 0) (resp. (0, 1), (0.25, 75), (0.5, 0.5)). Of course, all MC corresponding to
these LMCs have the same stationary distribution (0.5, 0.5).

By looking at an observation long enough A1 and A2 can be differentiated with prob-
ability 1: in the former an “a” will only occur after an even number of “b” whereas in
the latter it will only be after an odd number of “b”. The only word of length n that is
ambiguous is bn whose probability is 1/2n. Thus, the probability of error tends toward 0.

However, when considering A3 and A4, this reasoning is not enough. Seeing an “a”
after an even (resp. odd) number of “b” means that the initial state was s0 (resp. s1), and
a similar reasoning can be applied for “c”. This is possible for both A3 and A4. Since the
sets of states and transitions are the same for A3 and A4, once we know the initial state
we cannot gain more information. Thus, the probability of misclassification does not tend
toward 0.

Finally, we make a link between distinguishability and misclassification.

Proposition 4.12. Let A1,A2 be two LMCs.
A1 and A2 are distinguishable ⇔ the probability of misclassification between A1 and

A2 tends to 0.

Proof. Let A1,A2 be two LMCs with respective probability distributions p1 and p2.

109

Chapter 4 – Classification among Labeled Markov Chains

If A1 and A2 are distinguishable then for all ε, there exists kε and Wkε ⊆ Σkε such
that p1(WkεΣω) ≥ 1− ε and p2(WkεΣω) ≤ ε [CK14]. Then

Perr(kε) =
∑

w∈Wkε

min(p1(w), p2(w)) +
∑

w∈Σk\Wkε

min(p1(w), p2(w))

Perr(kε) ≤
∑

w∈Wkε

p2(w) +
∑

w∈Σk\Wkε

p1(w)

Perr(kε) ≤ ε+ ε

Thus, the probability of error tends to 0.
Conversely, if the probability of error between A1 and A2 tends to 0. For all ε, there

exists kε such that Perr(kε) ≤ ε.
Let W1,kε = {w ∈ Σkε | p1(w) ≤ p2(w)} and W2,kε = Σkε \ W1,kε . We obtain that∑

w∈W1,kε
p1(w) ≤ ε and ∑w∈W2,kε

p2(w) ≤ ε. Then, p1(W1,kεΣω) ≤ ε and p2(W2,kεΣω) ≥
1− ε. By [CK14], A1 and A2 are distinguishable.

4.3 Beliefs and stationary distributions for LMCs

In order to solve the classification problem, we would like to use statistics on an observation
w ∈ Σω. For this, it is important to know the proportion of time an execution spends in
each state on average as done in [KH18]. With this information, we can deduce an “average
behavior”: since we observe an infinite execution, we know that with high probability its
behavior will be close to the average. Stationary distributions, a concept used for Markov
chains (see Chapter 2.1.4 and 2.2), give information on this average behavior. However,
since we consider a more complex model, this is not enough. We will thus generalize this
concept to LMCs in the following. While it is crucial in the realm of classifiability, we
believe it is also of independent interest.

For a Markov chainM, a stationary distribution σ is a distribution over states ofM
such that σ ·M = σ. In LMCs, the observation w plays an important role and changes
our knowledge of states in which the run could be at each time. Thus, we consider the set
of states that could be reached by an LMC A with a given observation, and call this the
belief-state or simply the belief. Formally, let w ∈ Σ∗ be a finite observation. The belief
BA(w) associated with w is the set of states {s+(ρ) | obs(ρ) = w} that is states that can
be reached by a path labeled by w. For instance, with the LMC A from figure 4.5, we
have BA(aa) = {x, y}. We let BA = (2S,∆, s0) be the (deterministic) belief automaton

110

4.3. Beliefs and stationary distributions for LMCs

associated with A:

• (i) its states are the subsets of states of A,
• (ii) (B, a,B′) ∈ ∆ iff B′ = {b′|∃b ∈ B,M(a)b,b′ > 0},
• (iii) s0 = {s | σ0(s) > 0}.

This is the usual subset construction used for determinizing an automaton, as shown on
figure 4.5. Notice that BA is deterministic.

Consider a BSCC D of LMC A (as for Markov chains, this is to ensure irreducibility).
For x ∈ D, we denote by BxD the subgraph of BA reachable from {x}. (Notice that {x}
may not be reachable in BA from its initial state.) On figure 4.5, we have ByD = BA. It
has a unique BSCC (of beliefs), with 2 beliefs {x, y} and {z}. Remember that we always
exclude the trivial {∅} BSCC. We now show that this is the general form of the belief
automaton:

Lemma 4.13. There is a unique BSCC in BxD, and it does not depend upon x ∈ D.

Proof. Assume by contradiction that X1 ⊆ S and X2 ⊆ S belong to two distinct BSCCs
of BxD (wlog, we can choose x ∈ X1, x ∈ X2 as x is reachable from any state in D, and
thus x must belong to at least one member of each BSCC). Let w1, w2 be observations
reaching X1 and X2 respectively from {x}. As x ∈ X1, there is a path in BxD labeled w2

from X1 to some X ′2 with X2 (X ′2 (they cannot be equal because they are in 2 different
BSCCs).

As x ∈ X2, there is a path in BxD labeled w1 from X2 to some X ′1 with X1 (X ′1. We
can then play w2 to obtain some X ′′2 from X ′1 with X ′2 (X ′′2 . We can iterate this process
infinitely, which gives a contradiction with the bounded number of states.

x y

z

a, 1
2

a, 1
2

a, 1
2

b, 1
2b, 1

4

b, 1
4

a, 1
2

{x} {z}{x, y}

{y}

a

a

b

b

a

a

b

Figure 4.5: Example of an LMC A on alphabet Σ = {a, b} and of an NFA BA on alphabet
Σ.

111

Chapter 4 – Classification among Labeled Markov Chains

In the same way, consider BxD and ByD, and assume by contradiction that they have
different BSCCs. Let Y (resp. X) be a configuration in the unique BSCC of BxD (resp.
ByD), reachable by playing w1 (resp. w2), with x ∈ X and y ∈ Y . One can play w2 (resp.
w1w2) from Y (resp. X) and reach some X ′′, with X (X ′ (X ′′. Again, one can iterate
and reach a contradiction with the boundedness of the number of states.

Definition 4.10. Let A be an LMC. For D a BSCC of A and x ∈ D, let Bx
D the belief

automaton with starting state {x}. We denote ED the set of beliefs X in the unique BSCC
of BxD (remember it does not depend on x ∈ D). Last, we denote EA = ⋃

D ED, that is the
union of ED over all BSCCs D of A.

Notice that this definition can be also applied to non-probabilistic systems, namely
LTS. Notice also that EA may not contain all beliefs in the BSCCs of BA, because ED
is restricted to beliefs X reachable from {x} with a single state x of a BSCC of A.
This is crucial for lemma 4.13 to hold. We will see that considering singletons is not a
restriction: assume that the belief reached in a BSCC of beliefs comes from a belief {x, y}
with x 6= y. Either the stochastic languages from x and y are the same, in which case we
change nothing by considering only x as a starting point. Otherwise, they induce different
statistics on upcoming observations, and looking at the observed statistics will give away
with arbitrarily small error the state x or y which they originate from.

For Markov chains (i.e., LMCs on a one letter alphabet), the BSCC ED is exactly
X1 → X2 · · · → Xk → X1, with k the period of this BSCC. Hence, the construction above
can be seen as a generalization to LMCs of the notion of Markov chain’s period. We use
it to generalize the Fundamental theorem of Markov chains (see Chapter 2.2) to LMCs.

Let X ∈ EA. We are interested in the asymptotic distribution associated to belief X,
that is the asymptotic distribution over states of X given that the belief state is X. From
that, we will be able to deduce the statistics over observations. Let WX be the (possibly
countable infinite) set of words which bring from belief X to belief X without seeing belief
X in-between and W i

X = {w1 . . . wi | ∀k ≤ i, wk ∈ WX}, that is a concatenation of i words
in WX . For two states y, x and a finite observation w, we define M(y, w, x) = 1y ·M(w)1Tx
with 1y (resp. 1x) the vector equal to 1 in position y (resp. x) and 0 elsewhere.

Let y ∈ X and i ∈ N. Consider σy,i the distribution over X such that σy,i(x) =∑
w∈W i

X
M(y, w, x), the probability of reaching x from y after seeing i words of WX . We

want to compute the limit of σy,i. First, let us remark that this limit exists, as W i
X is

increasing with i and ∑w∈W i
X
M(y, w, x) ≤ 1 since for all w,w′ ∈ W i

X , w is not a prefix
of w′. Then, we define the stationary distribution σX : X → [0, 1] of the LMC given a
belief X. For that, we enrich the states of A with its beliefs, considering the product

112

4.3. Beliefs and stationary distributions for LMCs

x y

1
2

1
2

3
4

1
4

Figure 4.6: Markov chainMx,y associated with the belief {x, y}

A × BA (same runs with same probabilities as in A). For all y, x ∈ X, let MX(y, x) be
the probability in the LMC A×BA to reach (x,X) from (y,X) before reaching any other
(z,X) (which can be computed by the algorithm for ε-removal presented in Chapter 2.1.2).
We have that for all x ∈ X, ∑y∈XMX(x, y) = 1, that is MX is the transition matrix of a
Markov chain.

Example 4.4. Let us consider the LMC in figure 4.5 and let X = {x, y} ∈ EA. The
Markov chain MX build from this belief state is depicted in figure 4.6 has a unique sta-
tionary distribution σ(x) = 3

5 and σ(y) = 2
5 .

We obtain:

Theorem 4.14. Given an LMC A, let X be a belief in EA. Then, MX has a unique
stationary distribution denoted σX : X → [0, 1], i.e., σX · MX = σX . Further, for all
y ∈ X, σy,i −→

i→+∞
σX .

Proof. We first prove that there exists ` such that for all x, y ∈ X, we have M `
X(x, y) > 0.

Then using the Fundamental theorem of Markov chains (see Theorem 2.2), we will be
able to conclude that there is a unique stationary distribution σX of MX [KS60]. So,
to see the former statement, for all x ∈ X, by lemma 4.13, there is an observation vx

leading from {x} to X, i.e., ∆({x}, vx) = X ∈ BA = X1. Now, let X2 = ∆(X1, vx).
We know that X1 ⊆ X2 as x ∈ X1 and ∆({x}, vx ⊆ ∆(X1, vx)) by construction of
BA. If X1 (X2, then we apply vx again. As ∆({x}, vix) = Xi is increasing with i and
|∆({x}, vix)| ≤ n for all i, we will reach a fix point Xn, such that Xn = ∆(Xn, vx). In
particular, ∆({x}, vn+1

x) = ∆(X, vnx) = Xn+1 = Xn. As X is in the BSCC of BA, there is
an observation v with ∆(Xn, v) = X. Let wx = vn+1

x v. Thus, ∆({x}, wx) = ∆(X,wx) = X.
Let wx = vn+1

x v. Thus,
∆({x}, wx) = ∆(X,wx) = X (∗)

Now, by induction on the size of X, we build a uniform word w such that ∆({x}, w) =
X for all x ∈ X. Let x1, . . . , xk be the elements of X. The word w starts with wx1 . We have

113

Chapter 4 – Classification among Labeled Markov Chains

that for all i ≤ k, ∆({xi}, wx1) ⊆ X. Let y2 ∈ ∆({x2}, wx1). Hence y2 ∈ X, and we will
append to wx1 the observation wy2 , obtaining ∆({x1}, wx1wy2) = ∆({x2}, wx1wy2) = X,
and for all i ≤ k, ∆({xi}, wx1wy2) ⊆ X (by (∗)). By induction, we will obtain the desired
word w. Then, for ` the size of w, we will have M `

X(x, y) > 0 for all x, y ∈ X. That is,
MX is irreducible and aperiodic.

We denote by σX the stationary distribution of MX . Let WX the (possibly countable
infinite) set of words which brings from belief X to belief X without seeing belief X in-
between. Consider σy,i the distribution overX such that σy,i(x) = ∑

w∈W i
X
P (w)M(y, w, x),

the probability of reaching x from y after seeing i words of WX . We now apply the
Fundamental theorem of Markov chains (see Theorem 2.2) to the irreducible and aperi-
odic Markov chain MX : for σXy,i the distribution with σXy,i(x) = M i

X(y, x), we have that
limi→∞σ

X
y,i exists and is unique, it does not depend upon y ∈ X, and it is equal to σX .

Now, it suffices to notice that by definition of MX , we have σXy,i = σy,i.

4.4 Limit-sure Classifiability

We start by formally defining the problem of limit-sure classification:

Definition 4.11 (Limit-sure classifiability). Two LMCs A1,A2 are limit-sure classifiable
iff there exists a computable function f : Σ∗ → {⊥, 1, 2} such that P (ρ run of A1 of size
k | f(obs(ρ)) 6= 1)→k→∞ 0, and similarly for ρ run of A2

Unlike sure and almost-sure classifiability, limit-sure classifiability cannot be as easily
expressed in terms of languages. Indeed, it is possible to limit-surely classify amongA1,A2,
and yet L(A1) = L(A2) (i.e., in the sense the non-stochastic languages). Also, a limit-
sure classifier can use statistics over letters in w ∈ Σω in order to make its decision, which
opens a lot of possibilities.

Example 4.5. Let us illustrate this: consider again A1,A2, where both are the LMC A
from figure 4.5, where A1 starts from x and A2 starts from z. Again, if the observation
starts with b, then it is easy to conclude that the LMC is A2. If it starts with a, then
the set of states which can be reached after observation a is {x, y} in A1 and {z} in A2,
which are both in the BSCCs. Actually, after an even number of b’s (and any number of
a’s), we still have {x, y} the set of states possible in A1 and {z} in A2. In the following
section using stationary distributions on LMCs, we will show how to compute that if the
LMC is A1, after an even number of b’s, the long term average is 3

5 to be in x and 2
5 to

be in y. From this, we deduce that the long term average is 4
5 = 3

51 + 2
5

1
2 to perform an

114

4.4. Limit-sure Classifiability

a after an even number of b’s. On the other hand, if the LMC is A2, then the state is z
and we obtain the average frequency over the observation will tend towards the long term
average by law of large numbers. Thus the classifier f(w) = 1, if the average frequency of
a’s after an even number of b’s observed in w is closer to 4

5 than to 1
2 , is limit-sure. Notice

that using the standard stationary distributions on Markov chains as in [KH18] only tells
us that both A1 and A2 stay in long term average frequency 3

7 in x, 2
7 in y, and 2

7 in z ,
and thus do 5

7 = 3
7 + 2

7
1
2 + 2

7
1
2 of a’s in average, which cannot limit-surely classify between

A1,A2.

Consider the Maximum A Posteriori Probability (MAP) classifier [Ram07; KH18].
Remember it answers 1 if PA1(w) > PA2(w), and 2 otherwise. To compute these two
probabilities, it just needs to record for every state s1 of A1 (resp. every state s2 of A2)
the probability to observe w and finish in state s1 (resp. s2). It can also give its confidence
level about its decision: there is probability confidence(i, w)= PAi (w)

PA1 (w)+PA2 (w) that decision
i is correct after observing w. Notice that confidence is not necessarily non-decreasing as
|w| increases, and that the answer of a classifier can also switch from one answer to the
other answer. We will show in section 4.4.2 that if (A1,A2) is limit-sure classifiable, then
the MAP classifier will be a limit-sure classifier. The main problem is to decide when limit
sure classification holds. This problem can actually be solved in PTIME. The rest of this
section is dedicated to proving this property.

4.4.1 The Twin Automaton and the Twin Belief Automaton

Given LMCs A1,A2, we define their twin automaton A = (S = S1 × S2,∆, s0) as the
product of the automata associated with A1 ×A2 by forgetting the probabilities. Notice

y, z x, z

z, x z, y

a

a

b

a

a

b

b

b

a

a

{y}, {z} {x}, {z}

{z}, {x, y} {x, y}, {z}

a

b a
b

b

a a

Figure 4.7: Twin automaton (on the left) and twin-belief automaton (on the right), for
A1,A2 starting in states y and z

115

Chapter 4 – Classification among Labeled Markov Chains

that this notion is close to the twin plant (definition 3.7) defined for diagnosis where we
considered the product of the unprobabilized LMC and its correct states. The transition
relation is ∆ = {((s1, s2), a, (t1, t2)) | δ1(s1, a, t1) > 0, δ2(s2, a, t2) > 0}, with initial state
s0 = (s1

0, s
2
0). We call states of A twin states and we have L(A) = L(A1) ∩ L(A2) (i.e.,

non-stochastic languages). In the following, we will often consider the belief automata
BA,BA1 ,BA2 associated with A,A1,A2, obtained by the subset construction (see section
4.3). States of BA will be called twin beliefs. Notice that although twin beliefs are formally
sets of pairs of states in 2S1×S2 , we can also present them as pairs of sets of states 2S1 × 2S2

because if (s1, s2) and (s′1, s′2) are in the same twin belief, then we also have (s1, s
′
2)

and (s′1, s2) in this twin belief. We will thus write the twin belief X(u) associated with
observation u as X(u) = (X1(u), X2(u)), with X1(u), X2(u) the beliefs states of BA1 ,BA2

associated with u. Figure 4.7 presents an example with a twin automaton and the twin
belief automaton for two copies of the LMC given in figure 4.5, one starting in state y
and the other starting in state z.

Lemma 4.15 (Sufficient condition for non-classifiability: Proposition 18 in [CK14]). Let
(X ′1, X ′2) be a reachable twin belief of BA. Let X1 ⊆ X ′1, X2 ⊆ X ′2. Let σ1, σ2 two distribu-
tions over X1, X2 such that (A1, σ1) ≡ (A2, σ2). Then one cannot classify with probability
1 observations from A1 and A2.

Proof. Let u be a word with BA1(u) = X ′1 and BA2(u) = X ′2. Hence PA1(u) > 0 and
PA2(u) > 0. Let p = min(PA1(u), PA2(u)) > 0. For all x1 ∈ X1, let p1(x1) > 0 be the
probability to reach x1 conditionally to read u. In the same way, we define p2(x2) for all
x2 ∈ X2. We also denote P (w) = PA1

σ1 (w) = PA2
σ2 (w).

Let α1 = minx1∈X1
p1(x1)
σ1(x1) and similarly for α2. Let α = min(α1, α2). Now, for any

observation w, we have PA1(uw) ≥ PA1(u) ·αPA1
σ1 (w), and PA2(uw) ≥ PA2(u) ·αPA2

σ2 (w).

Assume by contradiction that there exists a limit-sure classifier f . Let k be a length
of observation such that P (w|f(w) = ⊥) < ε. Let R1 = {w ∈ Σk | f(uw) = 1} and
R2 = {w ∈ Σk | f(uw) = 2}. We have ∑w∈R1 P (w) + ∑

w∈R2 P (w) ≥ 1 − ε. Assume
for instance that ∑w∈R1 P (w) ≥ 1−ε

2 (the other case is symmetric). The probability of
misclassification for size |u|+k is thus at least∑w∈R1 P

A2(uw) ≥ αp
∑
w∈R1 P (w) ≥ 1−ε

2 αp.
This lower bound does not depend upon k, and then does not decrease to 0 when k goes
to ∞.

116

4.4. Limit-sure Classifiability

4.4.2 Characterization of classifiability

Our goal is to use Theorem 4.14 to obtain stationary distributions over beliefs of A1,A2,
and classify between them by comparing the stochastic language wrt these stationary
distributions using probabilistic equivalence (decidable in polynomial time, see Proposi-
tion 4.2). In order to do this, we first need to compare the same information in both LMCs.
The idea is to consider twin beliefs from each LMC: we will enrich A1 with the beliefs of
A2, and vice versa. Let A′1 be the LMC where the state space is S1×2S2 , and the transition
matrix is MA′1((x, Y), a, (x′, Y ′)) = MA1(x, a, x′) if Y ′ = {y′ | (y, a, y′), y ∈ Y }, and 0 oth-
erwise, for all x, Y, a, x′, Y ′. We define similarly A′2 with set of states S2×2S1 . It is easy to
see that for any observation w, the belief state BA′1(w) = {(x1,BA2(w)) | x1 ∈ BA1(w)} is
isomorphic to the twin belief (BA1(w),BA2(w)), isomorphic to BA′2(w), and we will abuse
notation and represent beliefs of A′1 and A′2 as twin belief (X1, X2), where X1 or X2 can
be empty.

We are interested in what happens after a BSCC of A = A1×A2 is reached. We thus
consider twin beliefs reachable from some (x1, x2) in the BSCCs of A. The set of twin
beliefs reachable in A′1 and in A′2 from ({x1}, {x2}) are almost the same, except for twin
beliefs of the form (X1, ∅) which cannot be reached in A′2, and of the form (∅, X2) which
cannot be reached in A′1.

Definition 4.12 (Oblivious twin belief).
We say that a twin belief (X1, X2) is oblivious if L(BX1

A1) = L(BX1
A2), i.e., the languages

of BA1 from X1 and of BA2 from X2 are the same.

Let X = (X1, X2) be oblivious such that (X1, X2) is reachable from some ({x1}, {x2})
with (x1, x2) ∈ BA in some BSCC of A. The twin beliefs reachable from (X1, X2) are
the same in A′1 and A′2. By definition, if (X1, X2) is not oblivious, there exist words
differentiating X1 and X2, i.e., that belongs only to one of the two languages. We focus
next on oblivious pairs.

Let EA be the union of states BSCCs of twin beliefs accessible from twin states in some
BSCC D of A = A1 ×A2, as in definition 4.10. Let X ∈ EA and assume X is oblivious.
In this case, we say that X is in the BSCCs of twin-beliefs. We define σ1

X : X1 → [0, 1] the
stationary distribution in A′1 around the twin belief X (formally, σ1

X is defined on (x,X2)
for all x ∈ X1, and we omit the second component X2 because it is constant). In the same
way, we define σ2

X : X2 → [0, 1] for the second component X2 around the twin belief X.
We can then look for words distinguishing from A1 and A2, i.e. with different likelihoods
from σ1

X and from σ2
X . We can now state the main characterization of classifiability:

117

Chapter 4 – Classification among Labeled Markov Chains

Theorem 4.16. The following are equivalent:

1. One cannot limit-surely classify between A1,A2,
2. There exists an oblivious X ∈ EA in a BSCC of twin beliefs such that (A1, σ

1
X) ≡

(A2, σ
2
X),

3. There exists a BSCC D of A and X1 ⊆ S1, X2 ⊆ S2, and y1 ∈ X1, y2 ∈ X2,
such that (y1, x2) ∈ D for all x2 ∈ X2 and (x1, y2) ∈ D for all x1 ∈ X1, and two
distributions σ1 over X1 and σ2 over X2 such that (A1, σ

1) ≡ (A2, σ
2).

Recall that when we say classify, in this section, we mean limit-sure classification. The
second condition is useful to show that MAP is limit-sure. However, checking it explicitly
is not algorithmically efficient, as building the belief automaton is exponential. To obtain
a PTIME algorithm to check limit-sure classifiability, we will use the third condition.

For comparison, in [CK14], a variant of (1)⇔ (3) is shown, without using the station-
ary distributions σ1

X , σ
2
X of (2) (see Proposition 4.8).

The rest of this section is devoted to the proof of this theorem. We first observe that
2 implies 3 is easy. Indeed, consider any twin-belief X = (X1, X2) ∈ EA: we have that
each pair (x1, x2) ∈ X = (X1, X2) belongs to the same BSCC D of A. Remember also
that by construction all states (x1, x2) in a belief (X1, X2) of EA is in a BSCC of A (see
definition 4.10). Thus, we can take any y1 ∈ X1, y2 ∈ X2 and σ1 = σ1

X and σ2 = σ2
X ,

which gives us the proof. In the remaining of the subsection, we prove the two remaining
implications. We start by showing 1 ⇒ 2. Then we show 3 ⇒ 1, completing the proof.

(1 =⇒ 2): MAP is a limit-sure classifier when condition 2 is false

To prove 1 implies 2, we prove that negation of 2 implies that the MAP classifier (intro-
duced in section 4.4) is limit-sure, which of course implies that 1 cannot hold. Intuitively,
(not 2) means that every pair of accessible beliefs X has a distinguishing word w. It then
suffices to consider the frequency with which w occurs from X. If this belief occurs an
arbitrarily large number of times, we can deduce with arbitrarily high probability the
originating LMC by comparing the observed frequency with the theoretical frequencies.

Let ε > 0. Intuitively, when the observation u is long enough, the MAP classifier
can claim that the observation comes from one LMC with probability at least 1 − ε.
Long enough means that we can decompose u into u = u1u2u3, with some properties
on subwords on u1, u2, u3: intuitively, segments u1, u2, u3 are such that there is a high
probability to reach a BSCC of the twin automaton with u1, then to reach a BSCC of

118

4.4. Limit-sure Classifiability

the twin belief automaton after u2, and u3 allows with high probability to eliminate one
of the two possible LMCs.

We now formalize this decomposition into u1, u2, u3. Let u be an observation from a
run of A1. We denote by p1(s, u) (resp. p2(t, u)) the probability in A1 to observe u and
reach state s (resp. A2 and state t). Let ε > 0. Then u = u1u2u3 is a good decomposition
if the following conditions hold:

• u1 is such that there exists R1, R2 sets of states of A1,A2 with:

1. (s, t) is in a BSCC of A for all (s, t) ∈ R1 ×R2,
2. ∑s/∈R1 p1(s, u1) < ε,
3. ∑t/∈R2 p2(t, u1) < ε2 mins∈R1 p1(s, u1).

• u2 is such that for all (s, t) ∈ R1 × R2, the twin-belief Xs,t = (Xs, Xt) reached by
reading u2 from (s, t) is in the BSCC of the twin-belief automaton. It is easy to see
that eventually with probability 1, one will observe such a u2.

• Last, we tackle the condition on u3. If Xs,t is oblivious, let σ1
s,t, σ

2
s,t be the station-

ary distributions built for Xs,t. By hypothesis (not 2), there exists ws,t such that
PA1
σ1
s,t

(ws,t) 6= PA2
σ2
s,t

(ws,t). Let α(s, t) = |PA1
σ1
s,t

(ws,t)−PA2
σ2
s,t

(ws,t)|. From any state of Xs,
denoting by ns,t(u3) the number of times Xs,t has been a twin-belief along u3, and
n′s,t(u3) the number of times ws,t has been observed from Xs,t, by the central limit
theorem, we have that n′s,t(u3)

ns,t(u3) tends towards P
A1
σ1
s,t

(ws,t) 6= PA2
σ2
s,t

(ws,t) with probability
1. We consider observations u3 in L(BA1 , Xs) = L(BA2 , Xt) such that:

– n′s,t(u3)
ns,t(u3) is in [PA1

σ1
s,t

(ws,t)− α(s, t)/4 , PA1
σ1
s,t

(ws,t) + α(s, t)/4].

Let Wk(ε) be the set of observations u1u2u3 of size k which are good decompositions.
Then,

Lemma 4.17. For all ε′ > 0, for k large enough, we have PA1(ρ | obs(ρ) ∈ Wk(ε)) >
1− ε′.

Proof. As runs converge towards BSCCs, eventually with probability 1, observation u1

satisfies the first two conditions. For the last one, consider some u1 satisfying the first two
conditions. Then let p1(u1) = mins∈S1 p1(s, u1). Considering extensions u1u

′
1 of u1, one

gets p1(u1u
′
1) > p1(u1)/n because states in BSCCs can only reach states in BSCCs. The

worst case is when these runs are split into several ending states, and there are at most
n states. Eventually with probability 1, one observes u1u

′
1 such that ∑t/∈R2 p2(t, u1u

′
1) <

119

Chapter 4 – Classification among Labeled Markov Chains

ε2p1(s, u1)/n, because p(s, u1) is constant when u′1 grows longer. Then u1u
′
1 satisfies all

the conditions.
LetWk be the set of observations u3 in L(BA1 , Xs) = L(BA2 , Xt) of size k satisfying the

condition of u3. We have that q1(k) = ∑
w∈Wk

p1(s, u1)PA1
s (u2u3)→ p1(s, u1)PA1

s (u2) = q1,
and that q2(k) = ∑

w∈Wk
p2(t, u1) · PA2

t (u2u3)→ 0 when k tends to ∞. Let ks,t such that
q1(ks,t) > q1 − ε and q2(ks,t) < q1ε

2.
If (Xs, Xt) is not oblivious, then there is a word ws,t ∈ L

BA1
Xs \ L

BA2
Xt , or a word ws,t ∈

L
BA2
Xt \ L

BA1
Xs . In both case we have PA1

σ1
s,t

(ws,t) 6= PA2
σ2
s,t

(ws,t), and we proceed as in the
oblivious case. Trivially, eventually, |u3| > ks,t for all (s, t) ∈ R1 ×R2.

Using Lemma 4.17, we can show that the MAP classifier is indeed limit-sure if 2 does
not hold.

Proposition 4.18. Assume point 2 of theorem 4.16 does not hold. Then for all ε′ > 0,
there exists k′ such that for all k ≥ k′, PA1(u ∈ Σk | PA2(u) > PA1(u)) ≤ ε′, and similarly
PA2(u ∈ Σk | PA2(u) < PA1(u)) ≤ ε′.

Proof. With high probability, obs(ρ) ∈ Wk(ε) for k large enough. Let us consider runs of
A1 with observation inWk(ε) depending on the state s reached after observation u1. With
probability at most ε, s is not in R1. Hence with high probability, s is in R1. We want
to show that for almost all observations of A1, PA2(u1u2u3) < p1(s, u1) · PA1

s (u2u3) ≤
PA1(u1u2u3), that is MAP (u1u2u3) = 1. We decompose PA2(u1u2u3) = ∑

t∈S2 p2(t, u1) ·
PA2
t (u2u3).
Fix a u1 such that there exists u2, u3 with u1u2u3 ∈ Wk(ε). First, we show that with

high probability, ∑t/∈R2 p2(t, u1) · PA2
t (u2u3) is negligible wrt p1(s, u1) · PA1

s (u2u3). For
that, consider the set of observation such that it is not the case: WS2\R2 = {u1u2u3 ∈
Wk(ε) |

∑
t/∈R2 p2(t, u1) · PA2

t (u2u3) > εp1(s, u1) · PA1
s (u2u3)}. We prove that this hap-

pens with arbitrarily small probability: PA1(WS2\R2) ≤ ε. Else, by contradiction, we
would have PA1(WS2\R2) > ε, which by definition of WS2\R2 implies that PA2(u1u2u3 ∈
WS2\R2 | u1 reaches t /∈ R2) > εPA1(u1u2u3 ∈ WS2\R2 | u1 reaches s) > ε2p1(s, u1). Thus,∑
t/∈R2 p2(t, u1) ≥ PA2(u1u2u3 ∈ WS2\R2 | u1 reaches t /∈ R2) > ε2p1(s, u1), a contradiction

with the definition of Wk(ε).
We can now focus on t ∈ R2: fix a u2 such that there is a u3 with u1u2u3 ∈

Wk. For all t ∈ R2, consider the word ws,t. We now show that with high probabil-
ity, p2(t, u1) · PA2

t (u2u3) is negligible wrt p1(s, u1) · PA1
s (u2u3). For that, we consider

the set of observations such that it is not the case: W ′
k = {u1u2u3 ∈ Wk | p2(t, u1) ·

PA2
t (u2u3) > ε · p1(s, u1) · PA1

s (u2u3)}. Let q′1 = ∑
u1u2u3∈W ′k

p1(s, u1) · PA1
s (u2u3) and

120

4.4. Limit-sure Classifiability

q′2 = ∑
u1u2u3∈W ′k

p2(t, u1) ·PA2
t (u2u3). We have q′1 ≤ p1(s, u1) ·PA1

s (u2) · ε. Indeed, by con-
tradiction, if q′1 > p1(s, u1)·PA1

s (u2)·ε, then q′2 > p1(s, u1)·PA1
s (u2)·ε2, a contradiction with

q′2 ≤ q2(k) ≤ p1(s, u1) ·PA1
s (u2) ·ε2. Hence, with probability at least p1(s, u1)PA1

s (u2)−2ε,
observation u1u2u3 is in Wk \W ′

k, and it satisfies PA2
t (u2u3) ≤ ε · PA1

s (u2u3). With prob-
ability at least p1(s, u1)PA1

s (u2)(1 − 2mε), this is true for all t. It remains to sum over
all u1, u2 and states s to obtain probability at least 1 − 2mε to have PA2(u1u2u3) ≤
ε + ∑

t∈R2 p2(t, u1) · PA2
t (u2u3) ≤ ε + mεPA1(u1u2u3) ≤ PA1(u1u2u3) for ε small enough.

This implies that MAP(u1u2u3) = 2 with probability at most 2ε+ 2ε ·m ≤ ε′ for ε small
enough.

(3 =⇒ 1): Language equivalence implies non-classifiability

Let D a BSCC of A, X1, X2, σ
1, σ2 as in the hypothesis of 3. We write X1 = {i1, . . . in}

and X2 = {j1, . . . jm}. We let i1 = y1 and j1 = y2. If there exists an observation w such
that X1 ⊆ BA1(w) and X2 ⊆ BA2(w) then lemma 4.15 implies that one cannot classify
between A1,A2. However, there are cases where such an observation w does not exist.
Recall that lemma 4.15 is only a sufficient condition. Instead, we will show that one has
probabilistic equivalence of languages from y1, y2 after reading some observation u. As
(y1, y2) can be reached in A, we can conclude on the non-classifiability using lemma 4.15.
We first show that every twin belief in the BSCC ED is oblivious.

Proposition 4.19. Let (H1, H2) be a twin belief in the BSCC ED. Then (H1, H2) is
oblivious.

Proof. Let u be an observation. Let Bk(u) be the belief of A1 reached by u from {ik},
and Ck(u) be the belief of A2 reached by u from {jk}. We define Z1(u) the set of beliefs
Bl(u), l ≤ n and Z2(u) the set of beliefs Cl(u), l ≤ m. Notice that the sizes |Z1(u)| and
|Z2(u)| (the number of non empty beliefs) are non increasing with u.

First, assume that there is a word u possible from H1 in BA1 but not possible from H2

in BA2 . Consider j1. As (y1, j1) ∈ D, by lemma 4.13, there is some u1 with B1(u1) = H1 and
C1(u1) = H2. And hence, B1(u1u) 6= ∅ and C1(u1u) = ∅. Hence, |Z2(u1)| ≤ m−1. Consider
j2 and Z2(u1u). Assume that C2(u1u) 6= ∅. Thus, there exists u2 with B1(u1uu2) = H1

and C2(u1uu2) = H2. Thus B1(u1uu2u) 6= ∅ and C2(u1uu2u) = ∅. Otherwise, we already
have B1(u1u) 6= ∅, and C2(u1u) = ∅. Either way, |Z2| ≤ m − 2. By induction, we can
find an observation w with Z2(w) = ∅ and B1(w) ∈ Z1(w) 6= ∅, a contradiction, as
0 < Pσ1(w) = Pσ2(w) = 0.

121

Chapter 4 – Classification among Labeled Markov Chains

The case w possible from X2 but not from X1 is symmetric, using y1 and C1 as the
non-empty set.

It is not necessarily the case that we can reach the BSCC ED of twin beliefs in a
uniform way over all (x1, x2) ∈ D. Let (H1, H2) ∈ ED. In the following, we will consider
observations that reach the BSCC of ED from u. Let u1 such that B1(u1) = H1 and
C1(u1) = H2. Such u1 exists by lemma 4.13. Let V be the language from H1, which is
equal to the language from H2. Now, consider what happens from i2 reading observations
in V . There are several cases. First, assume that there is an observation v2 in V such
that a belief state in the BSCC of beliefs is reached from {i2} reading u1v2. That is,
(B2(u1v2), C1(u1v2)) ∈ ED. Now, compare the language from (B2(uv) in A1 and from
C1(u1v2)) in A2. If it is the same language, we say that i2 is of type 1. Otherwise, or
if there is no observation v2 ∈ V such that the BSCC of beliefs can be reached reading
u1v2, then we say that i2 is of type 2. Intuitively, a state of type 2 will be negligible when
following y1, y2, whereas a state of type 1 needs to be tracked because it is not negligible.
We then consider the state i3 and the belief B3(u1v2), and classify each state i3 . . . then
j2 . . . inductively into type 1 and type 2. We have an observation w leading all the type
1 state to their BSCC, and all the type 1 states have the same language.

We reorder X1 = {i1, . . . in} and X2 = {j1, . . . jm} such that i1, . . . ik and j1, . . . , j` are
of type 1 and the rest is of type 2. We now follow every type 1 belief in parallel. Consider
a (k + `)-belief H = (H1, . . . , Hk, K1, . . . , K`) in the BSCC of belief states of Ak1 × A`2.
Let u an observation such that Br(u) = Hr for all r ≤ k and Cr(u) = Kr for all r ≤ `.
Because the language for the type 1 states are the same from their belief state, we can
compute σr : Hr → [0, 1] the stationary distribution for ir to be around belief H for all
r ≤ k and τr : Kr → [0, 1] be the stationary distribution over H for all r ≤ `. Let WH be
the set of observations from the (k + `)-belief H to H without seeing H in-between.

For all w′, we have by definition of the equivalence: ∑w∈Wκ
H

∑
r≤n σ(ir)PA1

ir (uww′) =∑
w∈Wκ

H

∑
r≤` τ(jr)PA2

jr (uww′). Considering the limit when κ tends to infinity, we have for
all r > k, limκ→∞

∑
w∈Wκ

H
αrP

A1
ir (uw) = 0. Indeed, consider ir, r > k. For paths reaching

a state such that the BSCC of beliefs cannot be reached, the probability to stay out of
the BSCC tends to 0 with the size of the run. Otherwise, the path reaching the BSCC of
beliefs, e.g., in belief Xr. By definition of type 2 state, the language is not the same as
the language of H1, which is W ∗

H . Hence either there is a word in W ∗
H which cannot be

done from Xr and can be done from H1, in which case avoiding this word forever have
probability 0, or there is a word which can be done from Xr but not from H1: this word
is not in W ∗

H , and at each WH iteration, there is some missing probability from Xr, e.g.,

122

4.4. Limit-sure Classifiability

1− ε, and eventually the probability is 0. We thus obtain:

∀w′,
∑
r≤k

σ(ir)PA1
σr (w′) =

∑
r≤`

τ(jr)PA2
τr (w′)

Let α = σ(i1), and αr = σ(ir)/(1 − α) for all r ≤ k. Let τ = ∑
r≤` τ(jr)τr, and

σ = ∑
2≤r≤k αrσr. We have (A1, ασ1 + (1− α)σ) ≡ (A2, τ). We show:

Proposition 4.20. (A1, σ1) ≡ (A1, σ) ≡ (A2, τ).

Proof. Assume by contradiction that it is not the case: That is, there is a w such that
PA1
σ1 (w) > PA1

σ (w). Let us write x = PA1
σ1 (w) = γPA1

σ (w) = γx, with γ < 1. We have the
following:

PA2
τ (w) = αPA1

σ1 (w) + (1− α)PA1
σ (w) = αx+ (1− α)γx

We let W ′ be the set of minimal observation u sending to X from (B1(w), . . . , Bk(w),
C1(w), . . . , C`(w)). We have that ∑w′∈W ′Wκ

H
PA1
σ (ww′) tends towards PA1

σ (w) ·PA1
σ (w′) as

κ tends to infinity, and similarly for σ1, τ . Hence,
∑
w′∈W ′Wκ

H
PA2
τ (ww′w) converges towards

PA2
τX

(w)2 as κ tends to infinity. Also, for all κ, this is equal with ∑w′∈W ′Wκ
H
αPA1

σ1 (ww′w)+
(1 − α)PA1

σ (ww′w). Again, this converges towards αx2 + (1 − α)γ2x2. That is, we have
after simplifying by x2:

(α + (1− α)γ)2 = α + (1− α)γ2

Now, the function x 7→ x2 is strictly convex (its second derivative is strictly positive).
Applying the definition to (1, γ) (this is also Jensen’s inequality), we obtain a contradic-
tion:

(α + (1− α)γ)2 < α + (1− α)γ2

Once this result is established, we can apply it symmetrically to the second component
and obtain (A1, σ1) ≡ (A2, τ1). As (i1, j1) = (y1, y2)) ∈ D, we can conclude about non-
classifiability using lemma 4.13.

123

Chapter 4 – Classification among Labeled Markov Chains

4.4.3 A PTIME Algorithm

Theorem 4.16 gives us a characterization for the existence of a limit-sure classifier. The
third condition is particularly interesting, because it does not require computing beliefs.
The third condition actually implies an efficient algorithm, similar to [CK14], to test in
PTIME whether there exists a limit-sure classifier between A1,A2.

Our algorithm, presented in 3, uses linear programming. We let v1, . . . , v` be the basis
of Eq(A1,A2). There exist two distributions σ1, σ2 over X1, X2 with (A1, σ1) ≡ (A2, σ2)
iff the linear system of equations (for all j ≤ `, (σ1 σ2) · vj = 0) has a solution (with
σ1, σ2 as variables), which can be solved in Polynomial time.

Algorithm 3 Limit-sure Classifiability
1: Compute D1, . . . , Dk the BSCCs of the twin automaton A.
2: for i=1..k do
3: for (y1, y2) ∈ Di do
4: Let X1 = {x1 | (x1, y2) ∈ Di}, X2 = {x2 | (y1, x2) ∈ Di}.
5: if there exist two distributions σ1, σ2 over X1, X2 with σ1(y1) > 0 and σ2(y2) >

0
6: with (A1, σ1) ≡ (A2, σ2) then
7: return not classifiable
8: end if
9: end for
10: end for
11: return classifiable

The correctness of the algorithm is immediate from Theorem 4.16, as it checks explic-
itly for the third condition to hold, in which case it returns not classifiable. If the third
condition is false for every BSCC D, then it returns classifiable.

4.4.4 Comparison with Distinguishability between LMCs [KS16]

We complete this section, by comparing our results with a related result on LMCs. In
[KS16], the problem of distinguishability between labeled Markov Chains has been con-
sidered. First, labeled Markov Chains are just another name for LMCs. The idea behind
distinguishability is similar to the idea behind classifiability. Still, there are some technical
differences: distinguishability asks that for all ε > 0, there exists a (1− ε)-classifier, that
is a classifier f : Σ∗ → {⊥, 1, 2}, such that if the classifier answers f(u) = 1, then there is
probability at least (1− ε) that the observation comes from a run from A1, and similarly

124

4.4. Limit-sure Classifiability

for f(u) = 2. To compare, limit-sure classifiers need to be uniform over ε (see the next
section).

It is not to hard to show that limit-sure classification coincide with the notions of
distinguishability and distance 1 as well for LMCs:

Theorem 4.21. The following are equivalent:

1. There exists a limit-sure classifier for A1,A2,
2. For all ε > 0, there exists a (1− ε)-classifier for A1,A2,
3. d(A1,A2) = 1.

Proof. (1) implies (2) is obvious (the classifier we built provides an (1 − ε)-classifier for
all ε. (2) implies (3) is done in [KS16].

It remains to show that 3 implies 1: Assume that d(A1,A2) = 1. We will show that
the MAP classifier is a limit-sure classifier. Let mis(A1,A2, w) be its probability of mis-
classification. Thus, for all ε > 0, there exists k andWk ⊂ Σk such that P1(WkΣω) ≥ 1−ε
and P2(WkΣω) ≤ ε and we obtain:

∑
|w|=k

mis(A1,A2, w)P (w) =
∑
w∈Wk

mis(A1,A2, w)P (w) +
∑

w∈Σk\Wk

mis(A1,A2, w)P (w)

≤ P2(Wk) + P1(Σk \Wk) ≤ 2ε

That is, when k →∞, the probability of misclassification tends towards 0.

The proofs to obtain the PTIME algorithms are quite different though: we use station-
ary distributions in LMCs while [CK14] focuses on separating events. Some intermediate
results are however related: our Proposition 4.20 is to be compared with Proposition 19 b)
of [CK14]. Our statement is stronger as the equivalence is true from all pairs of states with
the same (non-stochastic) language - and in particular from (i1, j1) = (y1, y2) (cf Proposi-
tion 4.19). Also, the proof of Proposition 4.20 is simple, using strict convexity focusing on
one finite separating word, while in [CK14], the existence of a maximal separating events
(sets of infinite words) is used crucially in the proof of Proposition 19 b).

Surprisingly, our resulting algorithm is very similar to the one in [CK14], whereas we
use very different methods. Still, we can restrict the search to distributions in a BSCC
of twin states, while [CK14] considers subdistributions on the whole state space of twin
states. This allows us to optimize the number of variables in the Linear Program.

125

Chapter 4 – Classification among Labeled Markov Chains

x

y

b, 1
10

a, 9
10

b

x′

y′

b, 9
10

a, 1
10

b

Figure 4.8: Two LMCs A1 and A2 with no limit-sure classifier

4.5 Attack-classification

4.5.1 Classification in a security context

While limit-sure classification allows for some misclassification, i.e., , error in classification,
it requires that every single pair of executions of the LMCs are classifiable. From a security
perspective, if one wants to make sure that two systems cannot be distinguished from each
other, then the question changes slightly: from the point of view of an attacker who could
exploit the knowledge of which model the system is following, it need not classify every
single execution. It only needs to find one execution for which it can decide. This gives
rise to what we call attack-classification, which amounts to providing the attacker with
a reset action she can play when she believes the execution cannot be classified. Then, a
new (possibly the same) LMC is taken at random and an execution of this new LMC is
observed by the attacker.

We start by considering limit-sure attack-classifiers, namely, we require that there
exists a reset-strategy, which with probability 1, resets only finitely many times, and a
limit-sure classifier for the observation after the last reset. We also consider what happens
if instead of limit-sure classifier, we ask for the existence of a family of (1− ε)-classifiers
after the last reset, one for each ε. The difference is that the reset action can take into
account the ε in the latter, but not in the former. While both notions coincide for the
classifiers defined in the previous section, we show now that they do not coincide for
attack-classification.

Example 4.6. Figure 4.8 illustrates the difference between these two notions. First, for
all ε > 0, there exists an (1 − ε)-attack-classifier: given an ε, the reset strategy resets if
the first letter b happens within the first kε = log(1

9ε) steps. Otherwise, the observation is
akεw, and the classifier claims that the LMC is A1, which is true with probability at least
(1 − ε). However, this reset strategy is not compatible with limit-sure classifier (and, in
fact, no reset strategy is), because it is not uniform wrt all ε: once a b has been produced,
no more information can be gathered.

126

4.5. Attack-classification

Note that anything that can be limit-sure attack-classified can also be classified with
(1− ε)-attack-classifiers for all ε. Thus the former notion of limit-sure attack-classifier is
strictly contained in the latter. We now compare the complexities: decide the former is
PSPACE-complete, while the latter turns out to be undecidable.

4.5.2 Limit-sure attack-classifiability is PSPACE-complete

Let us first formalize our definition of attack-classification.

Definition 4.13. We say two LMCs A1,A2 are limit-sure attack-classifiable if there
exists:

1. reset strategy τ : Σ∗ → {⊥, reset} telling when to reset, and which eventually stops
resetting, with probability 1 on the reset runs, and

2. limit-sure classifier for u, where u ∈ Σ∗ denotes the suffix of observations since last
reset.

We say that an observation with reset w1 reset w2 · · · reset wk follows τ , with wk ∈ Σω,
if for all vi strict prefix of wi, τ(vi) = ⊥ for all i, and τ(wi) = reset for all i < k.

In the following, we show an algorithmic characterization for this concept. Intuitively,
there needs to exist one execution of one LMC (say A1), such that no matter the execution
of the other LMC with the same observation, we can eventually classify between these
two executions. We will thus consider A′1 and A′2, the LMCs A1 and A2 enriched with
the beliefs of the other LMC.

First, we define classifiable twin states in the BSCC of twin states: (x1, x2) ∈ A is
classifiable iff for (X1, X2) in the unique BSCC of twin beliefs, either (X1, X2) is non-
oblivious or (X1, X2) is oblivious and (A1, σ

1
X1,X2) 6≡ (A2, σ

2
X1,X2), for (σ1

X1,X2 , σ
2
X1,X2) the

stationary distributions around (X1, X2). Notice that it does not depends upon the choice
of (X1, X2). For a belief state X2 of A2, we say that (x1, X2) ∈ A′1 is classifiable if (x1, x2)
is classifiable for all x2 ∈ X2 (in particular, every (x1, x2) is in a BSCC of twin states). In
particular, (x1, ∅) is classifiable. We define (x2, X1) ∈ A′2 similarly.

Proposition 4.22. (A1,A2) is limit-sure attack-classifiable iff there exists a classifiable
(x1, X2) ∈ A′1, or a classifiable (x2, X1) ∈ A′2.

Proof. First, if there exists a classifiable (x1, X2) ∈ A′1, then let ρ1 be a path in A′1 ending
in (x1, X2). Now, for all x2 ∈ X2, consider (x1, x2), and let (Y1, Y2) be a twin belief in the

127

Chapter 4 – Classification among Labeled Markov Chains

BSCC of twin beliefs reachable from (x1, x2) by path ρ2. As (x1, x2) is classifiable, there
are several cases:

• either there is a word wx2 ∈ L
BA1
Y1 \ LBA2

Y2 , and we consider path ρ3 labeled by wx2

after ρ1ρ2 in A1. It proves that the state cannot be x2.
• or there is a word wx2 ∈ L

BA2
Y2 \ L

BA1
Y1 , and we set ρ3 = ε,

• otherwise, (Y1, Y2) is oblivious, and we also le ρ3 = ε.

From ρ1ρ2ρ3, we define ρ4ρ5 associated with another x2, until we took into account
every x2 ∈ X2. The path ρ = ρ1ρ2ρ3ρ4 · · · ρ` has strictly positive probability to happen in
A′1, and thus strictly positive probability to happen in the union of LMCs (remember the
run are picked with uniform probability among the LMCs).

Given this path ρ and the associated observation w, the reset strategy is to play
τ(u) = reset if:

1. The observation u of the system since the last reset is of length |u| < |w|, and u is
not a prefix of w, or

2. otherwise, if there is no extension ρ′ of ρ in A1 such that ρρ′ is labeled by u,
3. otherwise, if the statistical counts for the proportion of times wx2 is done from

(Y1, Y2) is closer to the average value avY2,Y1 given by σ2
Y1,Y2 than to the average

value avY1,Y2 given by σ1
Y1,Y2 .

The set of infinite paths in the system such that τ resets infinitely often is of probability
0, because to not reset, it suffices to draw A1, then perform ρ, which happens with strictly
positive probability, in which case the first 2 items. The third item can still kicks in, by
drawing many biased runs from (Y1, Y2), such that the statistic for wx2 goes close to
avY2,Y1 . Let ` the number of times (Y1, Y2) is seen. We suppose that avY2,Y1 > avY1,Y2

(the other case is symmetric). We use a special case of the Cramer’s theorem [Cra38].
At every time (Y1, Y2) is seen and we are in the automaton A1, the probability to see
wx2 at step i follows a Bernoulli law Xi of parameter avY1,Y2 . By denoting S` = 1

`

∑n
i Xi

and I(z) the Fenchel-Legendre transform of log(E[etX1]), we have by Chernoff’s inequality
that for x > avY1,Y2 , P (S` > x) < e−`I(x) [SW95]. In particular, this is true for the value
x = avY1,Y2 + avY1,Y2−avY2,Y1

2 . We notice that for all `, we have that P (S` < x|S`−1 < x) ≥
P (S` < x) (intuitively, the chance to be lower than the bound after the `-th step is greater
if we were already lower at the ` − 1-th step. Then, for all L the probability that for all
` ≥ L, S` ≤ x is greater than Π∞`=L(1− e−`I(x), that is a positive quantity. Hence, there is
a positive probability to always stay closer from avY1,Y2 and the set of runs that will not

128

4.5. Attack-classification

trigger a reset have a strictly positive probability. Thus, one of these run will be classified
as being in A1, e.g. by using the classifier from section 3.5.

The converse is simpler: if there does not exist a classifiable (x1, X2) ∈ A′1, it means
that for every x1, there exists a x2 such that (x1, x2) is not classifiable. In particular, we
can get a positive probability px2 to perform the exact same observation from (x1, x2),
and taking the minx2 px2 = p > 0, taking by contradiction a reset strategy and a wk, then
there is probability at least p to misclassify wk, no matter its size, a contradiction.

In case there are more than two LMCs, we follow the state s of one LMC and the belief
of every other LMCs along the observation, and we need to check classifiability between
(s, t) for every t in the belief of any of the other LMCs. Using this characterization, we
obtain:

Theorem 4.23. Let A1, A2 be two LMCs. It is PSPACE-complete to check whether
(A1,A2) are limit-sure attack-classifiable.

Proof. First, it is easy to see that the problem is in PSPACE: For each (x1, x2) ∈ A, we
test in PTIME whether (x1, x2) is classifiable, by using lines 3 − 7 algorithm 3. Then,
(A1,A2) are limit-sure attack-classifiable iff one can reach a (x1, X2) classifiable in A′1 or
a (x2, X1) classifiable in A′2, which is PSPACE as A′1,A′2 have an exponential number of
states compared with A1,A2 and reachability is in NLOGSPACE.

To prove hardness, we reduce from the language inclusion for finite automaton. Let
B1, B2 be two finite automata over alphabet Σ, with Bi = (Si, si0,∆i, Fi), where Fi is a set
of accepting states. We assume wlog that every state of Si is reachable and Fi is reachable
from any state s of Si. We associate with Bi, i ∈ {1, 2} the LMC Ai = (Si∪{siF}, σi0,Mi,)
over alphabet Σ ∪ {f} with:

• σi0(s) = 1 for s = si0, and σi0(s) = 0 otherwise,
• Mi(s, a, s′) > 0 iff (s, a, s′) ∈ ∆i, for all s, s′ ∈ Si, a ∈ Σ,
• Mi(s, f, sF) > 0 iff s ∈ Fi, for all s ∈ Si,
• Mi(sF , f, sF) = 1.

Notice that the exact positive probability values will have no impact in the following
(for instance, we can take these probabilities uniform). Now, it is easy to see that for any
word w ∈ Σ∗, w ∈ L(Bi) iff PAi(wf) > 0. Now, we prove that (A1,A2) are limit-sure
attack-classifiable iff L(B1) 6⊂ L(B2):

Assume that L(B1) ⊂ L(B2). Hence, for all (x1, X2) ∈ A′1, we have X2 6= ∅. Also, if
x1 ∈ F1, then X2 ∩ F2 6= ∅. As from every state, F1 can be reached in B1, we have that

129

Chapter 4 – Classification among Labeled Markov Chains

there is a unique BSCC of twin states {(s1
f , s

2
f)}. Clearly, (s1

f , s
2
f) is not classifiable and

thus (A1,A2) is not limit-sure attack-classifiable.
Conversely, assume that L(B1) 6⊂ L(B2). Thus, there exists ρ with label w ∈ L(B1) \

L(B2), and if we consider the associated path in A′1, it reaches (x1, X2), with x1 ∈ F1 and
X2 ∩ F2 = ∅. Doing action f from there, we reach state (s1

f , ∅), which is classifiable.

4.5.3 Existence of (1−ε) attack-classifiers for all ε is undecidable.

We now turn to the other notion. Let ε > 0. An (1 − ε) attack-classifier for two LMCs
A1,A2 is given by:

1. A reset strategy τ : Σ∗ → {⊥, reset} telling when to reset and which eventually
stops resetting, with probability 1 on the reset runs, and

2. a (1 − ε)-classifier for u, where u ∈ Σ∗ denotes the suffix of the observations since
the last reset.

We next show that this notion, which we showed to be weaker than limit-sure attack-
classifiability on Fig 4.8, is also computationally much harder. In fact, it is undecidable.

Theorem 4.24. It is undecidable to know whether for all ε, there exists an (1−ε) attack-
classifier between 2 LMCs.

s0 s1

0.70.3
a

0.6

0.4
b b

0.5
0.5

a

s0 s1

sf sz

a, 0.7
3 , b, 0.6

3

a, 0.5
3

a, 0.3
3 , b, 0.4

3 a, 0.5
3 , b, 1

3

f, 1
3 z, 1

3

f z

Figure 4.9: Example of the PFA (above) to LMC (below) reduction

130

4.5. Attack-classification

Proof. It is undecidable [GO10] to know whether a PFA B, that accepts all words with
probability in (0, 1), is 0 and 1 isolated, that is, there is no sequence of words (wi)i∈N such
that limn→∞P

B(wi) = 0 or = 1.
Let B1 be such a PFA. Wlog, we can assume that it is complete, that is from each state

s and each letter a ∈ Σ, there is a transition from s labeled by a (it suffices to add a sink
state if it is not the case). Further, let B2 be a PFA with a single state that accepts every
word of Σ∗ with probability 1. Let B2 be the complete PFA with 2 states (one accepting
and one non accepting, with transition with probability 1/2 to stay in the same state and
1/2 to switch state) that accepts every word with probability 1/2.

From B1 and B2, we define A1, A2 two LMCs in the following manner:
Let B = (S, s0, (Ma)a∈Σ, F) be a PFA over Σ. We denoteA the LMC (S∪{sf , sz}, s0,M)

over Σ ∪ {f, z} with:

1. M(s, a, s′) = Ma[s,s′]
|Σ|+1 for all s, s′ ∈ S, a ∈ Σ,

2. If s ∈ F , then M(s, f, sf) = 1
|Σ|+1 .

3. If s 6∈ F , then M(s, z, sz) = 1
|Σ|+1 .

4. M(sf , f, sf) = 1 and M(sz, z, sz) = 1.

An example of this construction is provided in figure 4.9. For all observation w ∈ Σ∗,
we have:

• PA1(w) = PA2(w) = 1
(|Σ|+1)|w|+1 ,

• PA1(wfk) = PB1 (w)
(|Σ|+1)|w|+1 and PA1(wzk) = 1−PB1 (w)

(|Σ|+1)|w|+1 ,
• PA2(wfk) = PA2(wzk) = 1

2(|Σ|+1)|w|+1 .

If B1 is 0 and 1 isolated, then there exists a ε such that ε < PB1(w) < 1 − ε for all
w ∈ Σ∗. That is, for all words w ∈ (Σ∪{z, f})∗, we have 2εPA2(w) ≤ PA1(w) ≤ 2PA2(w).
Assume by contradiction that there exists a reset strategy and an (1− ε) classifier f . The
probability to see w is P (w) = 1/2PA1(w)+1/2PA2(w). The probability of misclassification
knowing that the observation is w is thus either PA1(w)/P (w) or PA2(w)/P (w). The first
one is at least 2ε/3 and the second one is at least 1/3. That is, the limit when the size
of the observation tends to infinity is also at least 2ε/3, and there does not exists any
1− ε/2 attack-classifier.

Conversely, if B1 is not 0 isolated, then for all ε, there exists wε such that PB1(wε) < ε.
The reset strategy waits to see wεf : that is, it resets if the observation u is not a prefix
of wεf . When the observation u = wε, which happens eventually with probability 1, the
classifier claims that the LMC is A2. This is true with probability > 1− 2ε.

131

Chapter 4 – Classification among Labeled Markov Chains

The last case is B1 is not 1 isolated, and for all ε, there exists wε such that PB1(wε) < ε.
The result is symmetrical: the reset strategy waits for wεz, in which case the classifier
claims that the LMC is A2. This is true with probability > 1− 2ε.

4.6 Related work

4.6.1 Other distances

In this chapter, we mostly considered distances closely related to the Lp ones. In other
domains such as machine learning, various distances have been used in order to measure
the discrepancy between models. Some are not distances in the mathematical sense, since
they may lack some property, such as symmetry or triangular inequality. However, they
all express a notion of proximity, and for all these “distances” d we have d(A1,A2) = 0 iff
they have the same stochastic language.

The Kullback-Leibler divergence, also called relative entropy is given by

D(A1,A2) =
∑
w∈Σ∗

p1(w) · log p1(w)
p2(w)

Notice that this divergence is not symmetrical: thus, it is not a distance. The divergence
is infinite iff there exists a word w such that p1(w) > 0 and p2(w) = 0. It is used when
the notion of inclusion of the language is strongly needed [Cor+08].

The Hellinger distance is given by

Hellinger(A1,A2) = (
∑
w∈Σ∗

(
√
p1(x)−

√
p2(x))2) 1

2

[TC13] uses it as a way to measure some information loss in the context of data protection.
The Jensen-Shannon divergence is given by

JS(A1,A2) =
∑
w∈Σ∗

p1(w) · log 2 · p1(w)
p1(w) + p2(w) + p2(w) · log 2 · p2(w)

p1(w) + p2(w)

This divergence is similar to the Kullback-Leibler one but with the notable difference
that it is symmetric and always finite. It has been used in machine learning alongside to
Kullback-Leibler divergence in the context of adversarial machine learning [Goo+14].

132

4.7. Conclusion

4.6.2 Testing

Before the different work on distinguishability and classification, one way to differentiate
systems was by performing hypothesis testing. Intuitively, two statistical data sets are
compared: one given by the experience and one synthetic data set given by an idealized
model. This comparison is used to determine if some underlying assumption is true.
For example, an assumption could be “does the rate of growth of this process follow
an exponential law”? Hypothesis testing has been studied in a long time for various
problems[Wal45; Wet66; SS83].

Later, [ACY95] used another kind of testing to investigate the problem of determining
the initial state of a finite state transition systems (possibly probabilistic) among several
choices. The authors establish a link between the existence of a strategy to find the initial
state and winning strategies in Markov Decision Processes with incomplete information.

4.7 Conclusion

4.7.1 Summary

This chapter presented a study on limit-sure classification with three main contributions.
The first is the definition of stationary distributions for LMCs. We believe that this notion
can find applications in contexts other than classification.

The second contribution was a characterization of limit-sure classifiability thanks to
these stationary distributions. Two LMCs are not classifiable iff they have beliefs which
can be reached by the same observation and for which the stationary distributions can be
separated by one finite word. This characterization led to a PTIME algorithm surprisingly
close to the one of [CK14], even if the methods to obtain the algorithms were very different.

The final contribution was the study of limit-sure classifiability in a security context:
the attacker has a power to launch a new execution if he is not “satisfied” with the current
one. We showed that deciding the existence of a limit-sure attack-classifier is PSPACE-
complete. Further, the existence of a (1− ε)-attack-classifier is undecidable.

limit-sure
classifiability

limit-sure
attack-classifiability

∀ε, (1− ε)
attack-classifiability

Complexity PTIME PSPACE-complete Undecidable

133

Chapter 4 – Classification among Labeled Markov Chains

4.7.2 Perspectives

On this particular work, an interesting task would be to express an algorithm that does
not use linear programming: although both algorithms ([CK14] and ours) are correct, the
“how” is not intuitive. This was one of the goal we considered on this subject. However,
our final solution still had to rely on linear programming.

On a broader view, the notion of stationary distribution for LMCs looks promising
and we believe it could be applied in different contexts. It could be either on language
problems (such as diagnosis or opacity) or even be extended to more powerful systems
such as Markov Decision Processes, leading to opportunities in very different domains.

134

Chapter 5

Learning of Markov Chains

In the previous chapter, we saw how to differentiate two LMCs. However, one question
is “how does one obtain these systems?”. This question is crucial especially when the
systems are estimated from real life machines. One way to perform this estimation is
through automatized learning.

The last decades have seen the rise of automatized learning in order to tackle problems
which are at first sight intractable. This process has shown huge success and is trending for
many applications. Among them, many are critical and need extra safety: automatic cars,
facial recognition, automatic translation... However, although automatic learning does
work, with significant progress achieved every year, they suffer from some flaws. A first
flaw is that because of the structure of the mathematical representation of the learning
process, it is hard for a human to understand how and why it works. A second flaw is that
until recently no real guarantee was possible on the learning process. A consequence of
this flaw is that many systems were easily attacked: a small deviation in an entry may lead
to significant change in the output. Further, there is often limited budget in observing
and learning from the system, and the validity of the learned model is in question.

To counter that, a recent trend is to develop certifications: formal properties stating
some notion of safety. These certifications are being developed for a wide diversity of
learning processes, such as Deep Neural Networks [Hua+17; WHK18]. In this chapter, we
focus on learning stochastic systems, especially Markov Chains. Comparing two Markov
processes (in our case, the original model and the learned one) is a common problem that
relies on a notion of divergence. Most existing approaches focus on deviation between the
probabilities of local transitions (e.g., [CT04; SGB95; CG08]). However, a single deviation
in a transition probability between the original system and the learned model may lead to
large differences in their global behaviors. For instance, the probability of reaching certain
state may be magnified by paths which go through the same deviated transition many
times. It is thus important to use a measure that quantifies the differences over global
behaviors, rather than simply checking whether the differences between the individual
transition probabilities are low enough.

135

Chapter 5 – Learning of Markov Chains

A major change with respect to previous works on this topic is that we consider global
behaviors instead of local deviations. We consider Temporal Logic (LTL and CTL) to
model these global behaviors. Agreeing on all formulas of LTL means that the first order
behaviors of the system and the model are the same, while agreeing on CTL means that
the system and the model are bisimilar [BK08]. Our goal is to provide stopping rules in
the learning process of Markov Chains that provides Probably Approximately Correct
(PAC) bounds on the error in probabilities of every properties in the logic between the
model and the system.

This chapter is organized as follows: section 5.1 presents a state of the art on sev-
eral subjects of interest in this chapter. Subsection 5.1.1 describes different estimations
techniques that are used in the literature. Subsection 5.1.2 presents what Probably Ap-
proximately Correct learning is, with standard algorithm and bounds introduced in sub-
section 5.1.3. Finally, we show a result from Daca et al. [Dac+16] that will be closely
related to our results. In section 5.2 we present a special case of our problem: learning
time to failures properties. A certification is provided in subsection 5.2.2 with an algo-
rithm in subsection 5.2.3. Then, a more general framework is adopted in section 5.3. We
start by providing a negative result for LTL in subsection 5.3.1. Then, in order to tackle
CTL, we define mathematical tools in subsection 5.3.2 and prove their necessity in sub-
section 5.3.3. Then, PAC bounds are provided in subsection 5.3.4 with an algorithm in
subsection 5.3.5. Some evaluation of the algorithm is provided in section 5.4.

5.1 State of the art

In the following,M = (S, µ0,M) will be a discrete time Markov Chain that has m states.
A trace is a sequence of observations of states produced by the execution of a Markov
Chain.

5.1.1 Estimators

In order to learn a Markov chain, we have to estimate the probabilities of each transition.
For that, diverse methods called estimators have been studied. We present some here that
we use in this thesis and others used in the literature.

136

5.1. State of the art

Frequency estimation of a Markov Chain

Given a set W of n traces, we denote nWij the number of times transition from state i to
state j occurred and nWi the number of times a transition has been taken from state i.

The frequency estimator of M is the Markov Chain M̂W = (âij)1≤i,j≤m given by
âij = nWij

nWi
for all i, j, with ∑m

i=1 n
W
i = ∑m

i=1
∑m
j=1 n

W
ij = |W |. In other words, to learn M̂W ,

it suffices to count the number of times a transition from i to j occurred, and divide by
the number of times state i has been observed. The matrix M̂W is trivially a Markov
Chain, except for states i which have not been visited. In this case, one can set âij = 1

m

for all state j and obtain a Markov Chain.

Example 5.1. Let us suppose we have a Markov chain with 5 states denoted si for 1 ≤
i ≤ 5 and a sample W is constituted of the following observations:

• 3 times s1 s2 s3 s5 s5

• 2 times s1 s3 s1 s2 s4 s4

Then, the Markov Chain estimated by the frequency estimator is depicted in figure 5.1.
For example, the state s1 is followed five times by s2 and two times by s3, hence the
probabilities 5

7 and 2
7 .

Learning Markov Chains with Laplace smoothing

A second estimator is based on the frequency estimator with an additional property: as-
suming one knows the structure of the system, one can add a bias to all possible transition.

Let α > 0. For any state s, let ks be the number of successors of s, that we know
by hypothesis, and T = ∑

s∈S ks be the number of non-zero transitions. Let W be a set
of traces, nWij the number of transitions from state i to state j, and nWi = ∑

j n
W
ij . The

s1

s2

s3

s4

s5

5/7

2/7

2/5 3/5

3/5

2/5
1

1

Figure 5.1: Example of a MC M learnt from a sample of executions by a frequency
estimator

137

Chapter 5 – Learning of Markov Chains

estimator for W with Laplace smoothing α is the Markov Chain M̂α
W = (âij)1≤i,j≤m given

for all i, j by:

âij =
nWij + α

nWi + kiα
if aij 6= 0 and âij = 0 otherwise

In comparison with the frequency estimator, the Laplace smoothing adds for each
state s a term α to the numerator and ks times α to the denominator. This preserves the
fact that M̂α

W is a Markov chain, and it ensures that âij 6= 0 iff aij 6= 0. In particular,
compared with the frequency estimator, it avoids creating zeros in the probability tables.
One difficulty of this estimator is that picking a good α may not be easy. In the following,
we will give ground for defining defining a reasonable α.

Example 5.2. We continue example 5.1. Let us suppose that there was an additional
transition that was not seen from s2 to s1. By knowing the support, we add a bias with
α = 1 and we calculate the new probabilities. For example, the probability for the transition
from s1 to s2 is now equal to 5+1

7+2×1 = 2
3 . The transition from s2 to s1 has now the value

1
8 and then the structure is preserved.

Good-Turing frequency estimator

Other estimators have been used in the literature. One example is the Good-Turing one
introduced in [Goo53], that has been used in learning of models associated with speech
processing [GS95]. Let si be a state of the Markov chain and nr the number of transitions
leaving state si that have been seen r times. The total number of transitions seen is
N = ∑

r r · Nr. Then, the probability to see a transition that has been seen r times is

s1

s2

s3

s4

s5

s1

s2

s3

s4

s5

2/3

1/3

3/7

1/8 1/2

4/7

3/8
1

1

Figure 5.2: Example of a MCM whose support is known (left) learnt from a sample of
executions with Laplace smoothing of parameter α = 1 (right).

138

5.1. State of the art

estimated to:
pr = (r + 1)Nr+1

N

Finally, the probability to be from a specific transition that has been seen r times is pr
Nr

.
Some variants have been used, such as in [CG91; HYH13].

Other estimators

Different estimators exist and have been utilized in order to take into account more
complex information. For example, the Kneser-Ney estimator [CG99] is an estimator that
considers some kind of memory, that is the frequency of some transition will depend on
the previous ones. Katz’s back off model [Kat87] uses two different laws for the prediction,
depending on if a transition has been seen more than some threshold.

5.1.2 Probably Approximately Correct learning

In learning theory, Probably Approximately Correct (PAC) learning introduced in [Val84]
is a framework allowing one to reason about machine learning and especially about su-
pervised learning. The general idea behind PAC is that the answer to exact qualitative
guarantees about a learning process such as “is the system I learnt from observations
exactly the same as the original one?” will generally be “no”. Thus, the questions about
conformity must contain a quantitative component. The general formulation of a PAC
learning property is “does with high probability the distance between a model and the
learned one is low?”.

To analyze the behavior of a system, properties are specified in temporal logic (e.g.,
LTL or CTL, defined in Chapter 2.4.2). Given a logic L and ϕ a property of L, decidable
in finite time, we denote ω |= ϕ if a path ω satisfies ϕ. Let z : Ω × L → {0, 1} be the
function that assigns 1 to a path ω if ω |= ϕ and 0 otherwise. In what follows, we assume
that we have a procedure that draws path ω with respect to PM and outputs z(ω, ϕ).
Further, we denote γ(M, ϕ) the probability that a path drawn with respect to PM satisfies
ϕ. We omit the property or the Markov Chain in the notation when it is clear from the
context. Finally, note that the behavior of z(., ϕ) can be modeled as a Bernoulli random
variable Zϕ parameterized by the mean value γ(M, ϕ).

Given ε > 0 and 0 < δ < 1, we say that a property ϕ of L is PAC-learnable if there is
an algorithm A such that, given a sample of n paths drawn according to the procedure,
with probability of at least 1 − δ, A outputs in polynomial time (in 1/ε and 1/δ) an
approximation of the average value for Zϕ close to its exact value, up to an error less than

139

Chapter 5 – Learning of Markov Chains

or equal to ε. Formally, ϕ is PAC-learnable if and only if A outputs an approximation γ̂
such that:

P (|γ − γ̂| > ε) ≤ δ (5.1)

Moreover, if the above statement for algorithm A is true for every property in L, we say
that A is a PAC learning algorithm for L.

5.1.3 Monte-Carlo estimation and algorithm of Chen

Let ϕ be a formula such that with probability 1 ϕ is eventually satisfied or violated. Given
a sample W of n paths drawn according to PM until ϕ is satisfied or violated, the crude
Monte-Carlo estimator, denoted γ̂W (M, ϕ), of the mean value for the random variable Zϕ
is given by the empirical frequency: γ̂W (M, ϕ) = 1

n

∑n
i=1 z(ωi) ≈ γ(A,ϕ).

The Okamoto inequality [Oka58] (also called the Chernoff bound in the literature) is
often used to guarantee that the deviation between a Monte-Carlo estimator γ̂W and the
exact value γ by more than ε > 0 is bounded by a predefined confidence parameter δ.

Theorem 5.1 (Okamoto bound). Let ε > 0, δ such that 0 < δ < 1 and γ̂W be the crude
Monte-Carlo estimator of probability γ. If n ≥ 1

2ε2 log
(

2
δ

)
,

P(|γ − γ̂W | > ε) ≤ δ.

However, several sequential algorithms have been recently proposed to guarantee the
same confidence and accuracy with fewer samples. In what follows, we use the algorithm
of Chen [Che13].

Theorem 5.2 (Chen bound). Let ε > 0, δ such that 0 < δ < 1 and γ̂W be the crude
Monte-Carlo estimator, based on n samples, of probability γ.

If n ≥ 2
ε2 log

(
2
δ

) [
1
4 − (|12 − γ̂W | −

2
3ε)

2
]
,

P(|γ − γ̂W | > ε) ≤ δ.

To ease the readability, we write nsucc = ∑n
i=1 z(ωi) and

H(n, nsucc, ε, δ) = 2
ε2 log

(2
δ

) [1
4 − (|12 − γ̂W | −

2
3ε)

2
]

140

5.2. Learning for a time-to-failure property

When it is clear from the context, we only write H(n). Then, the algorithm A that stops
sampling as soon as n ≥ H(n) and outputs a crude Monte-Carlo estimator for γ(M, ϕ)
is a PAC-learning algorithm for ϕ. The condition over n is called the stopping criteria
of the algorithm. This algorithm requires fewer samples than other sequential algorithms
(such as in [JSS17]). Note that the estimation of a probability close to 1/2 likely requires
more samples since H(n) is maximized in γ̂W = 1/2.

5.2 Learning for a time-to-failure property

In this section, we focus on property ϕ of reaching a failure state sF from an initial state
s0 without re-passing by the initial state, which is often used for assessing the failure
rate of a system and the mean time between failures (see e.g., [Rid05]). Without loss of
generality, we assume that there is a unique failure state sF in A. We also assume that,
with probability 1, the runs eventually re-pass by s0 or reach sF . We denote γ(M, ϕ) the
probability, given Markov Chain M, of satisfying property ϕ, i.e., the probability of a
failure between two visits of s0.

5.2.1 Framework

Assume that the stochastic systemM is observed from state s0. Between two visits of s0,
property ϕ can be monitored. If sF is observed between two instances of s0, we say that
the path ω = s0 · ρ · sF satisfies ϕ, with s0, sF /∈ ρ. Otherwise, if s0 is visited again from
s0, then we say that the path ω = s0 · ρ · s0 violates ϕ, with s0, sF /∈ ρ. We call traces
paths of the form ω = s0 · ρ · (s0 ∨ sF) with s0, sF /∈ ρ.

In the following, we show that it is sufficient to use a frequency estimator to learn a
Markov Chain which provides a good approximate for such a property. Let M̂W be the
matrix learned using the frequency estimator from the set W of traces, and let M be the
real probabilistic matrix of the original systemM.

We show that, in the case of time-to-failure properties, γ(M̂W , ϕ) is equal to the crude
Monte Carlo estimator γ̂W (A,ϕ) induced by W .

5.2.2 PAC bounds for a time-to-failure property

In this section, we present how we can obtain PAC bounds given a set of samples and a
system. That is we bound the error between γ(M, ϕ) and γ(M̂W , ϕ):

141

Chapter 5 – Learning of Markov Chains

Theorem 5.3. Given a set W of n traces such that n = dH(n)e, we have:

P
(
|γ(M, ϕ)− γ(M̂W , ϕ)| > ε

)
≤ δ (5.2)

where M̂W is the frequency estimator ofM.

To prove Theorem (5.3), we first use the algorithm of Chen (Theorem 5.2) to establish:

P (|γ(M, ϕ)− γ̂W (M, ϕ)| > ε) ≤ δ (5.3)

It remains to show that γ̂W (M, ϕ) = γ(M̂W , ϕ):

Proposition 5.4. Given a set W of traces, γ(M̂W , ϕ) = γ̂W (M, ϕ).

It might be appealing to think that this result can be proved by induction on the size
of the traces, mimicking the proof of computation of reachability probabilities by linear
programming. This is actually not the case. The remaining of this section is devoted to
proving Proposition (5.4).

We first define qW (u) the number of occurrences of sequence u in the traces ofW . Note
that u can be a state, an individual transition or even a path. We also use the following
definitions in the proof.

Definition 5.1 (Equivalence).
Two sets of traces W and W ′ are equivalent if for all s, t ∈ S, qW (s·t)

qW (s) = qW ′ (s·t)
qW ′ (s)

.

Generally speaking, two set of traces are equivalent if they induce the same Markov
Chain.

Example 5.3. Let W = {s0s1s2s2s3s3, s0s2s1s3s3}, W ′ = {s0s1s2s2s1s3s3, s0s2s3s3} and
W ′′ = {s0s1s2s2s2s1s3s3, s0s2s3s3}. W and W ′ are equivalent and as a consequence they
induce the same Markov Chain depicted in figure 5.3. W ′′ is not equivalent to them: the
proportion of s2 following s2 is different. The Markov Chain corresponding to W ′′ is then
different.

Definition 5.2 (s-factor).
Given a trace r and a state s, F is an s-factor of r if F is a factor of r and F starts

by s. Moreover, F is elementary if it does not contain any other s.

We define a set of traces W ′ equivalent with W , implying that M̂W = M̂W ′ . This set
W ′ of traces satisfies the following:

142

5.2. Learning for a time-to-failure property

Lemma 5.5. For any set of traces W , there exists a set of traces W ′ such that:

1. W and W ′ are equivalent,
2. for all r, s, t ∈ S, qW ′(r · s · t) = qW ′(r · s)× qW ′(s · t)

qW ′(s)
.

A trace can then be seen as a set of factors BF1 . . . FkE where B is the special factor
beginning, Fi are some s-factors for all i and E is the special ending s-factor. We can notice
that for all trace r and r′ obtained by permutation of the Fi, {r} and {r′} are equivalent.
Without loss of generality, we suppose that states sj such that there exists a transition
(sj, s) are states s1, . . . , sQ. In W , we denote ni the number of transitions (s, si), mj the
number of transitions (sj, s) and qi,j = qW (sj ·s)×qW (s·si)

qW (s) . qi,j represents then the number of
times a transition (sj, s) should be followed by a transition (s, si). By definition, we have
that ∑i ni = ∑

jmj = qW (s) and ∀i, j, qi,j > 0. We denote k = qW (s). Finally, for a factor
F , we denote by qF,i,j the number of occurrences of (sj, s, si) in F .

Proof. (of Lemma 5.5) Let us suppose that W is made of only one trace r = BF1 . . . FfE.
We prove the lemma by induction on s ∈ V , then induction on the number of prede-

cessors of s.
Let suppose that every factor in {B,F1, . . . , Ff} ends with s1, that f = m1 − 1 and

that the sequence s1s never appears neither in B nor in Fl for all l nor in E. We also
suppose that ∀i,∀j > 1, qB,i,j + ∑f

l=1 qFl,i,j + qE,i,j = qi,j. It means that for all j > 1 for
all i, we have qW ′(sj · s · si) = qW ′ (sj ·s)×qW ′ (s·si)

qW ′ (s)
and we just have to consider s1.

Let r′ be BF1 . . . FfE. r′ is equivalent to r. We also obtain that for all i, qr,i,1 = qi,1

since there are exactly qi,1 factors starting by si. Furthermore, ∀i,∀j > 1, qr,i,j = qB,i,j +

s0

s1 s2

s3

1/2 1/21/3

1/2 1/31/2

1/3

1

s0

s1 s2

s3

1/2 1/21/4

1/2 1/41/2

1/2

1

Figure 5.3: MC induced by W and W ′ (left) and by W ′′ (right)

143

Chapter 5 – Learning of Markov Chains

∑f
l=1 qFl,i,j + qE,i,j = qi,j. Indeed, none was added and we did not break those already

existing. Then, ∀i,∀j, qW ′(sj · s · si) = qW ′ (sj ·s)×qW ′ (s·si)
qW ′ (s)

.
Now, let us consider when there are J states to deal with, J > 1, and the factors

{B,F1 · · ·Ff , E} such that f = ∑J
j=1mj − 1. Besides, for all j ≤ J , exactly mj factors

in {B,F1 · · ·Ff} end with sj and for all i, exactly ∑J
j=1 qi,j factors in {F1 · · ·Ff , E} start

with ssi. Furthermore, for all j ≤ J , the sequence sjs never appears neither in B nor in
Fl for all l and for all i, for all j > J , qB,i,j +∑f

l=1 qFl,i,j + qE,i,j = qi,j.
We create new factors in order to deal with sJ by merging the existing one. We apply

the following algorithm:

Algorithm 4 Merge(Factors, J)
for i from 1 to Q do

for l from 1 to qi,J do
Choose F1 ending by sJ , a factor F2 6= F1 beginning by si, we denote F ′ = F1F2
Factors = Factors \ {F1, F2} ∪ {F ′}

end for
end for
return Factors

Since ∑i qi,j = mj, there is always one factor ending by SJ that can be chosen. Let us
suppose that there is no candidate for F2. It means that no factor other than F1 starts by
ssi, and then ∑J

j=1 qi,j ≤ qi,J (number available at start smaller than number used). We
deduce that for all j < J , qi,j = 0 and that is absurd.

We obtain the set of factors{B′, F ′1, · · · , F ′f ′ , E ′}. We have merged mJ factors, then
f ′ = f −mJ = ∑j−1

j=1mj − 1. For all j < J , the number of factors ending with sj has not
changed. For all i, there are ∑J

j=1 qi,j − qi,J = ∑J−1
j=1 qi,j factors in {F ′1 · · ·F ′f ′ , E ′} starting

with ssi. Furthermore, for all j < J , the sequence sjs still never appears neither in B nor
in Fl for all l and for all i, for all j ≥ J , qB,i,j +∑f

l=1 qFl,i,j + qE,i,j = qi,j.
At start, when considering all elementary factors {B,F1, · · · , Ff , E}, we have f =

k − 1 = ∑Q
j=1mj − 1 and for all j, exactly mj factors in {B,F1 · · ·Ff} ends with sj and

for all i, exactly ∑Q
j=1 qi,j = ni factors in {F1 · · ·Ff , E} start with ssi. Besides, since all

factors are elementary, no sequence sjs appears in any of them and trivially, for all j > Q,
qB,i,j +∑f

l=1 qFl,i,j + qE,i,j = 0. Thus, the requirements are met.

Example 5.4. Let us consider again the set W = {s0s1s2s2s1s3s3, s0s2s3s3} and s = s1.
The decomposition in s1 factors of W gives the beginning blocks s0 and s0s2s3s3, the
factor s1s2s2 and the ending factor s1s3s3. The predecessors of s1 are s0 and s2, and its
successors are s2 and s3 in an equal proportion. We need an equal number of s0s1s2 and

144

5.2. Learning for a time-to-failure property

s0s1s3 and similarly an equal number of s2s1s2 and s2s1s3. We thus need four occurrences
of s1.

W is equivalent to W ′ = {s0s1s2s2s1s3s3, s0s2s3s3, s0s1s2s2s1s3s3, s0s2s3s3} (every
run has been duplicated) and every block we gave is duplicated. Then applying the merging
algorithm, we obtain W ′′ = {s0s1s3s3, s0s1s2s2s1s2s2s1s3s3, s0s2s3s3, s0s2s3s3}.

In Lemma 5.5, (1) ensures that M̂W ′ = M̂W and (2) ensures the equality between the
proportion of runs of W ′ passing by s and satisfying γ, denoted γ̂sW ′ , and the probability
of reaching sF before s0 starting from s with respect to M̂W ′ .

Lemma 5.6. For all s ∈ S, PM̂W ′
s (reach sf before s0) = γ̂sW ′.

Proof. Let S0 be the set of states s with no path in M̂W ′ from s to sf without passing
through s0. For all s ∈ S0, let ps = 0. Also, let psf = 1. Let S1 = S \ (S0∪{sf}). Consider
the system of equations (5.4) with variables (ps)s∈S1 ∈ [0, 1]|S1|:

∀ s ∈ S1, ps =
m∑
t=1
M̂W ′(s, t)pt (5.4)

The system of equations (5.4) admits a unique solution [BK08] (theorem 10.19). Then,
(PM̂W ′

s (reach sf before s0))s∈S1 is trivially a solution of (5.4). But, since W ′ satisfies the
conditions of Lemma 5.5, we also have that (γ̂sW ′)s∈S1 is a solution of (5.4), and thus we
have the desired equality.

Notice that Lemma 5.6 does not hold in general with the set W . We have:

γ̂W (A,ϕ) = γ̂s0
W (by definition)

= γ̂s0
W ′ (by Lemma 5.5)

= PM̂W ′
s0 (reach sf before s0) (by Lemma 5.6)

= PM̂W
s0 (reach sf before s0) (by Lemma 5.5)

= γ(M̂W , ϕ) (by definition).

That concludes the proof of Proposition 5.4.
It shows that learning can be as efficient as statistical model-checking on comparable

properties.

145

Chapter 5 – Learning of Markov Chains

Algorithm 5 Learning a matrix accurate for time-to-failure property
Learning(M, s0, sF , δ, ε)
nsucc = 0
n = 1 (number of times s0 has been visited)
s = s0 (current state)
while n < H(n, nsucc,ε,δ) do

ωn = s0 and W = ω1 · · ·ωn
while s 6= s0 or s 6= sF do

Observe the next state s′ (sampled with respect to A)
Update ωn and ÂW
if s′ = s0 or s′ = sF then

Output z(ωn, ϕ), nsucc ← nsucc + z(ωn, ϕ) and n← n+ 1
end if

end while
end while
return ÂW

5.2.3 Algorithm for the fixed time-to-failure property

A run ω is observed from s0 and every time s0 or sF are observed, the reset operation is
performed and a new path is being generated.W is the set of all those paths. Remember we
assume that the probability of reaching s0 or sF is 1 in order to guarantee the termination
of the algorithm.

5.3 Learning for the full CTL logic

In this section, we learn a Markov Chain M̂W such that M̂W andM have similar behav-
iors over all CTL formulas. This provides a much stronger result than on time-to-failure
property, e.g., , properties can involve liveness and fairness, and more importantly they
are not known before the learning process. Notice that PCTL [HJ94] (that is an extension
of CTL with probabilities) cannot be used, since an infinitesimal error on one > 0 proba-
bility can change the probability of a PCTL formula from 0 to 1. We recall that CTL has
been defined in section 2.4.2.

As we want to compute the probability of paths satisfying a CTL formula, we consider
formulas such that the highest operator is not quantified over paths (without E or A).
That is, Ψ is the set of formulas ϕ of the form ϕ = Xϕ1, ϕ = ϕ1Uϕ2, ϕ = Fϕ1 or
ϕ = Gϕ1, with ϕ1, ϕ2 CTL formulas. Notice that the property considered in the previous
section is (¬s0)UsF .

146

5.3. Learning for the full CTL logic

In this section, for the sake of simplicity, the finite set W of traces is obtained by
observing paths till a state is seen twice on the path. Then, the reset action is used and
another trace is obtained from another path. That is, a trace ω from W is of the form
ω = ρ · s · ρ′ · s, with ρ · s · ρ′ a loop-free path.

We need an additional hypothesis. We assume that the support of transition proba-
bilities is known, ie for any state i, we know the set of states j such that aij 6= 0. This
assumption is needed both for Theorem 5.9 and to apply Laplace smoothing. We will
show that this property is necessary in section 5.3.3.

5.3.1 No PAC bound for LTL

Inspired by the result given in [Dac+16] we prove that there is no learning algorithm that
will give a Markov Chain that is accurate for all LTL formulas.

Theorem 5.7 ([Dac+16]). Given ε > 0, 0 < δ < 1, and a finite set W of paths, there is
no learning strategy such that, for all LTL formula ϕ,

P(|γ(M, ϕ)− γ(M̂W , ϕ)| > ε) ≤ δ (5.5)

Proof. We prove it by defining a sequence of LTL properties that violates the specification
above. As we show, it only relies on a single deviation in one transition. This is thus
independent of the learning strategy.

Let su ∈ S be a state that can be visited arbitrarily often from s0 and let sv ∈ S

be a non-unique successor of su. Assume that M̂W = (m̂ij)1≤i,j≤m is an estimate of
M = (mij)1≤i,j≤m and note τ > 0 the deviation between m̂uv and muv. For simplicity, we
assume m̂uv = muv + τ but a similar proof can be done with m̂uv = muv − τ .

Let ϕn be the property “Transition susv occurs at most (muv + τ/2)n times during
the n first visits of si”. This property is a LTL property since it can be written as a finite
composition of X, ∧ and ∨. Let (Xk)1≤k≤n be n independent Bernoulli random variables
from the set of transitions possible in su to {0, 1} assigning 1 when susv is taken after the
k-th visit of su and 0 if another transition is taken after the k-th visit of su. Then, we can
rewrite:

P (ϕn) = P
(

1
n

n∑
k=1

Xk ≤ muv + τ/2
)

(5.6)

By the law of large numbers, 1
n

∑n
k=1Xk tends toward muv with respect toM when n

147

Chapter 5 – Learning of Markov Chains

goes to infinity. Then,

γ(M, ϕn) = PA
(

1
n

n∑
k=1

Xk ≤ muv + τ/2
)
−→
n→∞

1.

But, with respect to M̂W , 1
n

∑n
k=1Xk tends toward muv + τ . So,

γ(M̂W , ϕn) = PM̂W

(
1
n

n∑
k=1

Xk ≤ muv + τ/2
)
−→
n→∞

0

Thus, γ(M, ϕn) − γ(M̂W , ϕn) −→
n→∞

1 almost surely. More precisely, given ε > 0, δ, 0 <
δ < 1 and a finite run W , there exists a rank N such that specification 5.5 can not be
fulfilled for properties ϕn, n ≥ N .

5.3.2 Conditioning and Probability Bounds

Using Laplace smoothing slightly changes the probability of each transition by say an ad-
ditive offset η. We now explain how this small error η impacts the error on the probability
of a CTL property.

Let M be a Markov Chain, and Mη be a Markov Chain such that Mη(i, j) 6= 0 iff
M(i, j) 6= 0 for all states si, sj, and such that ∑j |Mη(i, j)−M(i, j)| ≤ η for all state si.
For all state s ∈ S, let R(s) be the set of states si such that there exists a path from si

to s. Let R∗(s) = R(s) \ {s}. Since both Markov Chains have the same support, R (and
also R∗) is equal for A and Aη. Given m the number of states, we define the conditioning
ofM for s ∈ S and ` ≤ m as follows:

Definition 5.3 (Conditioning).

Cond`s(M) = min
i∈R∗(s)

PMi (F≤`¬R∗(s)) (5.7)

i.e., the minimal probability from state i ∈ R∗(s) to move away from R∗(s) in at most `
steps. Let `s minimal such that Cond`ss (M) > 0. This minimal `s exists as Condms (M) > 0
since, for all s ∈ S and i ∈ R∗(s), there is at least one path reaching s from i (this path
leaves R∗(s)), and taking a cycle-free path, we obtain a path of length at most m. Thus,
the probability PMi (F≤m¬R∗(s)) is at least the positive probability of the cylinder defined
by this finite path.

148

5.3. Learning for the full CTL logic

Theorem 5.8. Denoting ϕ the property of reaching state s in Markov ChainM, we have:

|γ(M, ϕ)− γ(Mη, ϕ)| < `s · η
Cond`ss (M)

Proof. Let vs be the stochastic vector with vs(s) = 1. We denote v0 = vs0 . Let s ∈ S. We
assume that s0 ∈ R∗(s) (else γ(M, ϕ) = γ(Mη, ϕ) and the result is trivial). Without loss
of generality, we can also assume that M(s, s) = Mη(s, s) = 1 (as we are interested in
reaching s at any step). With this assumption:

|γ(A,ϕ)− γ(Aη, ϕ)| = lim
t→∞

v0 · (At − Atη) · vs

We bound this error, through bounding by induction on t:

E(t) = max
i∈R∗(s)

vi · (M t −M t
η) · vs

We then have trivially:

|γ(M, ϕ)− γ(Mη, ϕ)| ≤ lim
t→∞

E(t)

Note that for i = s, limt→∞ vi · (M t) · vs = 1 = limt→∞ vi ·M t
η · vs, and thus their

difference is null.
Let t ∈ N. We let j ∈ R∗(s) such that E(t) = vj · (M t −M t

η) · vs.
By the triangular inequality, introducing the term vj ·M `sM t−k

η ·vs−vj ·M `sM t−k
η ·vs = 0,

we have:

E(t) ≤ |vj · (M t
η −M `sM t−`s

η) · vs|+ |(vj ·M `s) · (M t−`s
η −M t−`s) · vs|

We separate vector (vj ·Mm) = w1 +w2 +w3 in three sub-stochastic vectors w1, w2, w3:
vector w1 is over {s}, and thus we have w1 ·M t−m

η = w1 = w1 ·M t−`s , and the term cancels
out. Vector w2 is over states of R∗(s), with

∑
i∈R∗ w2[i] ≤ (1−Cond`ss (A)), and we obtain

an inductive term ≤ (1−Cond`ss (M))E(t− `s). Last, vector w3 is over states not in R(s),
and we have w3 ·M t−`s

η · vs = 0 = w3 ·M t−`s · vs, and the term cancels out.
We also obtain that |vj · (M t

η −M `sM t−`s
η) · vs| ≤ `s · η. Thus, we have the inductive

formula E(t) ≤ (1− Cond`ss (M))E(t− `s) + `s · η. It yields for all t ∈ N:

E(t) ≤ (`s · η)
∞∑
i=1

(1− Cond`ss ((M)))i

149

Chapter 5 – Learning of Markov Chains

E(t) ≤ `s · η
Cond`ss (M)

We can extend this result from reachability to formulas of the form S0USF , where
S0, SF are subsets of states. This formula means that we reach the set of states SF through
only states in S0 on the way.

We define R(S0, SF) to be the set of states which can reach SF using only states of
S0, and R∗(S0, SF) = R(S0, SF) \ SF . For ` ∈ N, we let:

Cond`S0,SF
(M) = min

i∈R∗(S0,SF)
PMi (F≤`¬R∗(S0, SF) ∨ ¬S0).

Now, one can remark that CondS0,SF (M) ≥ CondS,SF (M) > 0. Let Cond`SF (M) =
Cond`S,SF (M). We have Cond`S0,SF

(M) ≥ Cond`SF (M). As before, we let `SF ≤ m be the
minimal ` such that Cond`SF (M) > 0, and obtain:

Theorem 5.9. Denoting ϕ the property S0USF , we have, given Markov ChainM:

|γ(M, ϕ)− γ(Mη, ϕ)| < `SF · η
Cond`SFSF (M)

We defined the conditioning as the probability to reach SF or S \ R(S, SF). At the
price of a more technical proof, we can obtain a better bound by replacing SF by the set
of states R1(SF) that have probability 1 to reach SF . We let R∗(SF) = R(S, SF) \R1(SF)
the set of states that can reach SF with < 1 probability, and

Cond`SF (M) = min
i∈R∗(SF)

PMi (F≤`¬R∗(SF))

5.3.3 Optimality and necessity of knowing the transitions sup-
port

We show now that the bound we provide in Theorems 5.8 and 5.9 are close to optimal,
and that the hypothesis on M(i, j) 6= 0 iff Mη(i, j) 6= 0 is necessary.

Let us consider Markov Chains M,M̂,M̂′ in Fig. 5.4 and formula F s2 stating that
s2 is eventually reached. The probabilities to satisfy this formula inM,M̂,M̂ are respec-
tively PM(F s2) = 1

2 , P
M̂(F s2) = 2τ+η

4τ and PM̂′(F s2) = 0.

150

5.3. Learning for the full CTL logic

Assume thatM is the real system and that M̂ and M̂′ are Markov Chains we learned
fromM.

As we do not know precisely the transition probabilities in M, we can only com-
pute the conditioning on M̂ and not on M. We have R(s2) = {s1, s2} and R∗(s2) =
R∗(s2) = {s1}. The probability to stay in R∗(s2) after `s2 = 1 step is (1 − 2τ), and thus
Cond1

{s2}(M̂) = Cond1
{s2}(M̂) = 1−(1−2τ) = 2τ . TakingMη = M̂, Theorem 5.9 tells us

that |PM(F s2)− PM̂(F s2)| ≤ η
2τ . Notice that on that example, even using `s2 = m = 3,

we obtain Cond3
{s2}(M̂) = 1− (1− 2τ)3 ≈ 6τ , and we find a similar bound ≈ 3η

6τ = η
2τ .

Compare our bound with the exact difference |PM(F s2)−PM̂(F s2)| = 2τ+η
4τ −

1
2 = η

4τ .
Our upper bound only has an overhead factor of 2, considering this example is a case
where the conditioning is particularly bad.

Without knowing that there are transitions from s1 to s2 and from s1 to s3, the chance
to only witness the transition from s1 to s1 (and consequently to learn MC M̂′) is high if
the inverse of τ is large enough compared to the number of observations. For M̂′, we have
Cond`S,s2(M̂′) = 1 for all ` > 0. Let η = 2τ andMη = M̂. Now, there is no function of η
and Cond`S,s2(M̂′) (without creating a moot bound of value at least 1

2 for all η,Cond(M̂′)
which could bound the difference |PM(F s2) − PM̂′(F s2)| = 1

2 . Hence, the hypothesis
on M(i, j) 6= 0 iff Mη(i, j) 6= 0 is necessary, which requires to know the support of the
transitions of the real systemM.

s1 s2s3
ττ

1− 2τ

s1 s2s3

τ + 1
2ητ − 1

2η

1− 2τ

s1

1

Figure 5.4: Three MCsM,M̂,M̂′ (from top to bottom), with 0 < η < 2τ < 1

151

Chapter 5 – Learning of Markov Chains

5.3.4 PAC bounds for ∑
j |ÂW (i, j)− A(i, j)| ≤ η

As in Section 5.2, we use the algorithm of Chen in order to obtain PAC bounds. However,
we do not use it to estimate a property, but rather the individual transition probabilities.

Let W be a set of traces drawn with respect to M such that every ω ∈ W is of the
form ω = ρ · s · ρ′ · s. For recall, for each state si, sj of S, nWi is the number of transitions
originating from si in W and nWij is the number of transition sisj in W . Let δ′ = δ

mstoch
,

where mstoch is the number of stochastic states, i.e., with at least two outgoing transitions.
We want to sample traces until the empirical transition probabilities nWij

nWi
are relatively

close to the exact transition probabilities mij, for all i, j ∈ S. For that, we need to
determine a stopping criteria over the number of state occurrences (ni)1≤i≤m such that:

P

∃i ∈ S, ∑
j

∣∣∣∣∣mij −
nWij
nWi

∣∣∣∣∣ > ε

 ≤ δ

First, note that for any observed state si ∈ S, if mij = 0 (or aij = 1), then with
probability 1, nWij

nWi
= 0 (respectively nWij

nWi
= 1). Thus, for all ε > 0, |mij −

nWij
nWi
| < ε with

probability 1. Second, for two distinct states si and si′ , the transition probabilities nWij
nWi

and
nW
i′j′

nW
i′

are independent for all j 6= j′.
Let si ∈ S be a stochastic state. If we observe nWi transitions from si such that

nWi ≥ 2
ε2 log

(
2
δ′

) [
1
4 −

(
maxj |12 −

nWij
nWi
| − 2

3ε
)2
]
, then, according to Theorem 5.2,

P

 m∨
j=1
|mij −

nWij
nWi
| > ε

 ≤ δ′

In particular, P
(

maxj∈S |mij −
nWij
nWi
| > ε

)
≤ δ′. Moreover, we have:

P
(
m∨
i=1

max
j∈S
|mij −

nWij
nWi
| > ε

)
≤

m∑
i=1

P
(

max
j∈S
|aij −

nWij
nWi
| > ε

)

≤ mstochδ
′

≤ δ

In other words, the probability that “there exists a state si ∈ S such that the deviation
between the exact and empirical outgoing transitions from si exceeds ε” is bounded by δ

152

5.3. Learning for the full CTL logic

as soon as for each state si ∈ S, nWi satisfies the stopping rule of the algorithm of Chen
using ε and the corresponding δ′. This gives the hypothesis ∑j |Mη(i, j)−M(i, j)| ≤ ε for
all state si.

5.3.5 A Matrix M̂W accurate for all CTL properties

We now use Laplace smoothing in order to ensure the other hypothesis Mη(i, j) 6= 0 iff
M(i, j) 6= 0 for all states si, sj. For all si ∈ S, we define the Laplace offset depending on
the state si as αi = (nWi)2ε

10·k2
i maxj nWij

, where ki is the number of transitions from state si. This
ensures that the error from Laplace smoothing is at most one tenth of the statistical error.
Let α = (αi)1≤i≤m. From the sample set W , we output the matrix M̂α

W = (m̂ij)1≤i,j≤m

with Laplace smoothing αi for state si, i.e., :

m̂ij =
nWij + αi

nWi + kiαi
if mij 6= 0 and m̂ij = 0 otherwise

It is easy to check that we have for all si, sj ∈ S:∣∣∣∣∣m̂ij −
nWij
nWi

∣∣∣∣∣ ≤ ε

10 · ki

That is, for all state si,
∑
j

∣∣∣∣m̂ij −
nWij
nWi

∣∣∣∣ ≤ ε
10 . Using the triangular inequality:

P

∃i ∈ S,∑
j

|aij − m̂ij| >
11
10ε

 ≤ δ

For all si ∈ S, let H∗(nWi , ε, δ′) = maxsj∈S H(nWi , nWij , ε, δ′) be the maximal Chen
bound over all the transitions from state si. Let B(M̂α

W) = maxSF
`SF

Cond
`SF
SF

(M̂α
W)

. Applying

Theorem 5.9, we obtain that:

Theorem 5.10. Given a set W of traces, for 0 < ε < 1 and 0 < δ < 1, if for all si ∈ S,
nWi ≥

(
11
10B(M̂α

W)
)2
H∗(nWi , ε, δ′), we have for any CTL property ϕ:

P(|γ(M, ϕ)− γ(M̂α
W , ϕ)|) > ε) ≤ δ (5.8)

Proof. First, m̂ij 6= 0 iff mij 6= 0, by definition of M̂α
W . Second, P(∃i,∑j |mij − m̂ij| >

11
10ε) ≤ δ. We can thus apply Theorem 5.9 on M̂α

W ,M and obtain (5.8) for ϕ any formula
of the form S1US2. For recall, we only need to prove the result for properties without E

153

Chapter 5 – Learning of Markov Chains

or A. It remains to show that for any formula ϕ ∈ Ψ, we can define S1, S2 ⊆ S such that
ϕ can be expressed as S1US2.

Consider the different cases: If ϕ is of the form ϕ = ϕ1Uϕ2 (it subsumes the case ϕ =
Fϕ1 = >Uϕ1) with ϕ1, ϕ2 CTL formulas, we define S1, S2 as the sets of states satisfying
ϕ1 and ϕ2, and we have the equivalence (see [BK08] for more details). If ϕ = Xϕ2, define
S1 = ∅ and S2 as the set of states satisfying ϕ2.

The last case is ϕ = Gϕ1, with ϕ1 a CTL formula. Again, we define S1 the set of states
satisfying ϕ1, and S2 the set of states satisfying the CTL formula AGϕ1. The probability
of the set of paths satisfying ϕ = Gϕ1 is exactly the same as the probability of the set of
paths satisfying S1US2.

5.4 Evaluation and Discussion

In this section, we evaluate Algorithm 6 on 5 crafted systems and discuss its practical
use. The objective of the evaluation is to provide some idea on how many samples would
be sufficient for learning accurate MC estimations. We now describe the 5 systems:

Systems 1 and 2 are three-state models described in Fig. 5.5 and Fig. 5.6. Systems

Algorithm 6 Learning a matrix accurate for CTL
Data: S, s0, δ, ε
W := ∅
m = |S|
for all s ∈ S do

nWs := 0
end for
Compute M̂ := M̂α

W

Compute B := B(M̂)
while ∃s ∈ S, nWs <

(
11
10B(M̂)

)2
H∗(nWs , ε, δm) do

Generate a new trace ω := s0 ρ s1 ρ
′ s1, and reset S

for all s ∈ S do
nWs := nWs + n{ω}s

end for
add ω to W
Compute M̂ := M̂α

W

Compute B := B(M̂)
end while
return M̂α

W

154

5.4. Evaluation and Discussion

3 (resp. 5) is a 30-state (resp. 200-states) clique in which every individual transition
probability is 1/30 (resp. 1/200). System 4 is a 64-state system modeling failure and
repair of 3 types of components (3 components each, 9 components in total). System
4 can be modeled with probabilistic model checker Prism1 as a continuous time Markov
chain (CTMC) that comprises three types (1, 2, 3) of three components each that may fail
independently. Note however that we do not simulate the times between two changes of
states but only the transitions between states, that lead to learn the induced MC instead.
The components fail with rate λ = 0.2 and are repaired with rate µ = 1. In addition,
components are repaired with priority according to their type (type i has highest priority
than type j if i < j). Components of type 1 and 2 are repaired simultaneously if at least
two of their own type have failed. Type 3 components are repaired one by one as soon
as one has failed. The probability transitions from state si to state sj is given by the
rate of the transition from the CTMC between state si and state sj divided by the sum
of all the rates of the enabled transitions from state si. The initial state is the state in
which all the components are operational and the failure state is the state in which all the
components are broken. We provide below the Prism code of the model for the readers

1. http://www.prismmodelchecker.org/

System 1 System 2 System 3 System 4 System 5
states 3 3 30 64 200

transitions 4 7 900 204 40000
events for
time-to-failure 191 (16%) 991 (10%) 2753 (7.4%) 1386 (17.9%) 18335 (7.2%)

events
for full CTL 1463 (12.9%) 4159 (11.7%) 8404 (3.8%) 1872863 79823 (1.7%)

Table 5.1: Average number of observed events N (and relative standard deviation) given
ε = 0.1 and δ = 0.05 for a time-to-failure property and for the full CTL logic using the
refined conditioning Cond.

s1 s2 s3

1 0.1

0.9

1

Figure 5.5: An example of MCM1

s1 s2 s3

0.45 0.1

0.9
0.05

0.5 0.9 0.1

Figure 5.6: MCM2

155

Chapter 5 – Learning of Markov Chains

who are interested to investigate this model in details:

ctmc

const int n=3;
const double lambda = 0.2;
const double mu = 1.0;

module type1
state1 : [0..n] init 0;
[] state1 < n -> (n-state1)*lambda : (state1’=state1+1);
[] state1 >=2 -> mu : (state1’=0);
endmodule

module type2
state2 : [0..n] init 0;
[] state2 < n -> (n-state2)*lambda : (state2’=state2+1);
[] state2 >=2 & state1 < 2 -> mu : (state2’=0);
endmodule

module type3
state3 : [0..n] init 0;
[] state3 < n -> (n-state3)*lambda : (state3’=state3+1);
[] state3 > 0 & state2 < 2 & state1 < 2 -> mu : (state3’=state3-1);
endmodule

label "failure" = state1 = n & state2 = n & state3 = n;

We tested time-to-failure properties by choosing as failure states s3 for Systems 1, 2,
3, 5, and the state where all 9 components fail for System 4. We also tested Algorithm
1 (for full CTL logic) using the refined conditioning Cond. We performed our algorithms
100 times for each model, except for full CTL on System 4, for which we only tested
once since it is very time-consuming. We report our results in Table 5.1 for ε = 0.1 and
δ = 0.05. In particular, we output for each model its number of states and transitions.
For each (set of) property, we provide the average number of observations and the relative
standard deviation.

156

5.5. Related work

The results show that for systems of average size, we can learn MCs which are accurate
for all CTL formulas, although for some systems such as System 4, it can take a lot
of events to be observed before Algorithm 6 terminates. The reason is that there are
rare states, such as the state where all 9 components fail, which are observed with an
extremely small probability. In order to evaluate the probabilities of CTL properties of
the form: “if all 9 components fail, then CTL property ϕ is satisfied”, this state needs to be
explored many times, explaining the high number of events observed before the algorithm
terminates. On the other hand, for properties that do not involve the 9 components
failing as prior, such as time-to-failure, one does not need to observe this state even once
to conclude that it has an extremely small probability to happen. This suggests that
efficient algorithms could be developed for subsets of CTL formulas, e.g., , in defining
a subset of important events to consider. We believe that Theorem 4 and 5 could be
extended to handle such cases.

Comparing results for time-to-failure and for the full CTL logic is interesting. Exclud-
ing System 4 which involves rare states, the number of events that needs to be observed
varies between 4.3 to 7 times more, even for the model with 200 states. Surprisingly, the
highest difference is with the smallest System 1. It is because every run of System 1 simu-
lated for time-to-failure has size 3 (s1s2 and either s1 or s3). However, in Systems 2, 3 and
5, samples for time-to-failure can be much longer (i.e., s1 or s3 are seen). In comparison,
every event observed in Algorithm 6 is used to estimate ÂαW .

Notice that for the system we tested, Cond was particularly large (more than 20)
because for many states s, there was probability 0 to leave R(s), and hence `(s) was quite
large. These are the cases where Cond is much more efficient, as then we can choose `(s) =
1 as the probability to reach s from states in R(s) is 1 (R1(s) = R(s) and R∗(s) = ∅). We
used Cond in our algorithm.

5.5 Related work

This work lies at the crossroads of machine learning and Statistical Model Checking
(SMC) [YS02]. However, the context and the outputs are different. SMC is a simulation-
based approach that aims to infer conclusions about properties using probability esti-
mation or hypothesis testing [Che+52; Wal45], within acceptable margins of error and
confidence [Hér+04; JSS17; ZPC13]. A challenge in SMC is posed by unbounded proper-
ties (e.g., , fairness) since the sampled executions are finite. Some algorithms have been
proposed to handle unbounded properties but they require at least the knowledge of the

157

Chapter 5 – Learning of Markov Chains

minimal probability transition of the system [Dac+17].
Another concern is the analysis of unknown or real-world systems. SMC algorithms

have been proposed for black-box systems [SVA04] but providing statistical evidence re-
mained questionable. The alternative to learn MC models from the system in order to
reuse it for PMC has been posed in [Che+12; BS13; Brá+14; Wan+17; CPS18] but these
approaches remain empirical and, contrary to this work, no analysis of the learning process
is done there. In [Gho+17], the authors propose to analyze the learned model a posteriori
to test whether it has some good properties. If not, then they tweak the model in order
to enforce these properties.

Finally, in [Dac+16] that we already cited for the LTL result, the authors investigate
several distances for the estimation of the difference between MCs, but they do not propose
algorithms for learning. Also, several PAC-learning algorithms have been proposed for the
estimation of stochastic systems [CG08; CT04] but these works focus on local transitions
instead of global properties.

5.6 Conclusion

5.6.1 Summary

In this chapter, we have provided some foundations for certification of the learning of
Markov Chains. Section 5.1 has provided a state of the art on the different kind of esti-
mators for this learning and the mathematical notions around PAC learning.

In section 5.2 we investigated a first subproblem, that is the time to failure properties.
We provided an algorithm with a certification on the likeliness to have a precise answer.
Then, section 5.3 tackled a more general problem: providing bounds for all formula in
some temporal logic. We saw that it was impossible to it for LTL, but we obtained a
positive result for CTL. This is accompanied by an algorithm and a proof for the bounds.
Moreover, we proved that our bounds are asymptotically tight: the use of conditioning is
needed, up to a constant factor.

Finally, some proof of concept is shown through evaluations on different systems in
section 5.4. We saw that the number of observations needed to have a good approximation
stays reasonable in most cases. However, the problem of rare events can still require many
observations in order to gather enough information on it (as one could have expected).

158

5.6. Conclusion

5.6.2 Future work

The field of certification of learning is quite recent and a lot of work remains to be done.
In this chapter, we presented a special case, where we have strong assumptions. However,
we believe that these studies should be extended to more complex models. In particular,
one can think about Deep Neural Networks. Recent studies tackled the issue of their
certification using various techniques such as abstract interpretation [Gop+18], numerical
analysis [PT11; Dut+18], approximation with polyedras [Geh+18]... However, the size
of DNN that can be certified is still some orders of magnitude smaller than the one
industrially used (thousands of nodes vs millions of nodes). For these reasons, bringing
more formal methods in the field of artificial intelligence may be beneficial.

159

Chapter 6

Conclusion

6.1 Contributions

This thesis aimed at better assessing stochastic systems. We developed algorithms fo-
cused on the quantification of various problems while reasoning on partial information in
different contexts.

The first context was by defining diagnosability degrees of stochastic systems in Chap-
ter 3. There were two quantities we evaluated: one is the probability that diagnosability
holds after some time or eventually. The second is the detection delay distribution. By en-
riching the algorithm provided for computing the probability of diagnosis, we obtained a
way to compute an arbitrary high number of moments of the distribution of detection de-
lays. These moments allow us either to approximate or to provide accurate concentration
bounds on this distribution.

A second context was by exploring how to distinguish between several stochastic sys-
tems based on a sequence of observations (Chapter 4). To take into account the partial
information, we extended stationary distributions from Markov Chains to Labeled Markov
Chains, by considering the Markov Chain induced by the restriction to a belief state. This
extension was the first contribution, with proofs of its soundness. We believe it can have
other applications. Then, a new proof based on this new notion of stationary distributions
was presented for solving limit-sure classifiability in PTIME. Finally, we also established
a link between contributions from different communities on equivalent/related notions:
distinguishability, misclassification and limit-sure classifiability.

Third and finally, we focused on a problem that is “upstream”: before reasoning on
a stochastic model, how do we obtain these probabilities? We focused on the guarantees
we could obtain given some estimation method for transition probabilities (Chapter 5). A
huge difference with existing works on this subject is that we specifically aimed at global
guarantees instead of only looking at local deviations on the transition probabilities. We
first looked at a time to failure setting in a restrictive framework, and then we studied if
and how we could guarantee that an estimated model behaves as the original system on

161

all formulas of a temporal logic. On that subject, we obtained a negative result with LTL
and a positive one for CTL, and showed that it can be used in practice on average size
stochastic systems.

6.2 Perspectives

Despite numerous works concerning the topics of this thesis that have been done in the
last decade, many questions remain open. We start by presenting some short term per-
spectives, directly extending the thesis work before concluding with medium and long
term perspectives.

Complexity and scalability: When considering different problems, especially diag-
nosability and learning, we gave worst-cases complexities/guarantees. However, we saw
that the worst case is far from being the norm. A practical direction to investigate would
be to determine how well these techniques scale up. Some classes of models/scenarios
could be defined and different benchmarks and evaluations could be performed. For ex-
ample, we gave in Chapter 3 some heuristics to help with the size of the diagnoser, but
we did not give any practical evaluation. While an example showed that these heuristics
could be very useful, we do not quantify “how much” or “how often”.

Opacity: Opacity is a framework for stating properties about the potential leakage of
some secret. It can be seen in two ways. The first one is asymmetrical opacity where one
wants to be detect when a predicate holds, and the second one is symmetrical opacity
where one wants to be certain whether a predicate holds or does not hold. For stochastic
systems, the notion of asymmetric opacity is similar to diagnosability, as we want to decide
if an event representing a leakage has been detected, and symmetric opacity is related to
classifiability, where we want to decide if we are in the language where the predicate is true
or in the language where the predicate is false. Similarly to the developments in Chapter 3,
the quantification of “how often and how fast can one decide” can be considered. This is
close to the liberal direction in [BMS15] and our techniques could be directly applied there.
Another quantification one could imagine is related to security: while we may never be
100% sure that the secret is leaked, having a high level of confidence about a leakage can
be critical in a security context. This direction is called restrictive in [BMS15]. However
one has to be careful: many decision problems about almost certain diagnosability are
undecidable (as described in [BHL16a]). For example, it could be hard to automatically

162

quantify the frequency we are 95% sure there was a leakage.

Extending the uncertainty: Regarding partial information systems, we have consid-
ered Labeled Markov Chains and Probabilistic Finite Automata, where the uncertainty
was on the transitions: the underlying structure was non-deterministic. However, we con-
sidered that the probabilities were perfectly known, which is a strong assumption, as seen
in Chapter 5. An interesting perspective could be to consider classes of models allowing
imprecise probabilities. Several classes of models exist, especially the Interval Markov
Chains [KU02] (IMCs) where probabilities may not be well known and lie in an inter-
val. Similarly to LMCs, there exist labeled IMCs named Interval Labeled Markov Chains
(ILMCs) [SVA06]. Several semantics exist for ILMCs, such as Interval Markov Decision
Processes, where the actions are bound to choose the transition probabilities and Uncer-
tain Markov Chains where the probabilities are unknown but lie in some interval and
will not change during the execution. It could be interesting to extend the questions of
quantification to these models and explore their decidability and complexity.

Security and confidentiality: In Chapter 4.5, we considered an attacker that had
some (simple) power on the system. This notion of security with respect to an attacker has
been used in several fields, such as opacity [DDM08]. We believe this could be extended
for our work. We considered an attacker that was mostly passive with one action (the
reset). What could be interesting is to explore different classes of attacks.

Now, we turn to longer term perspectives: what are the challenges that await us?

Trade-off between performances and guarantees: Different applications bring dif-
ferent needs. Critical applications leave no flexibility, while non-crucial problems may be
handled differently. For this last category, it may be more important to have an answer
quickly than 100% accurate. For example, one may imagine that a protocol supervising
possible failures/faults answers “no” meaning that either there is no fault now or no in-
coming problem soon: the constraint has been relaxed, allowing the protocol to answer
more quickly. This is an interesting field: while one may trade accuracy for efficiency, one
may still wish for guarantees on this trade-off, either in terms of loss of precision or in
terms of saved time/resources, e.g., under the form of bounds on the amount of saved
time.

163

Convergence between Formal Methods and AI: For many years, communities in
Formal Methods and Artificial Intelligence have been disjoint and worked on related sub-
jects with very different techniques. Drawbacks of both paradigms have been mentioned
before, such as a lack of scalability for formal methods and the difficulties to obtain
guarantees and confidence for AI. However, these last years have seen both communities
work together. The contribution in Chapter 5 is an example of a work concerning both
communities. The goals of these collaborations are diverse:

• A first goal is the evaluation of strengths and weaknesses of both communities.
For each (category of) problem, which approach gives the best results with sev-
eral criteria: efficiency, accuracy, robustness... For example, when considering image
classification, AI-based techniques are the most efficient, even with the issues we
raised (e.g., in the introduction). However, they offer no guarantees whereas formal
methods, especially verification are based on having formal guarantees.

• A second goal is to develop formal methods to address classical problems in AI.
This is the point of our contribution in Chapter 5. The strength of Formal Methods
is the guarantees it gives. Then, as we said before, one would like to apply these
techniques to obtain guarantees on the tools that are used in AI. As an example,
there are a lot of recent works whose goal is to certify Deep Neural Networks such
as [Hua+17; WHK18].

• A third goal is how to use the tools in AI to help Formal Methods. For example,
one can think about how to find a good heuristic in a theorem prover. This is a
computationally difficult problem where the answer does not need to be optimal, as
long as it is “good”.

For these reasons, this convergence has a lot of applications, both academic and industrial.
One can expect that this convergence will be beneficial to both fields.

164

List of my publications

Articles accepted by chronological order

[BFG17] Diagnosability degree of stochastic discrete event systems,
Hugo Bazille, Eric Fabre and Blaise Genest,
CDC, IEEE 56th Annual Conference on Decision and Control, 2017.

[BFG18b] Symbolically quantifying response time in stochastic models using
moments and semirings,
Hugo Bazille, Eric Fabre and Blaise Genest,
FoSSaCS, International Conference on Foundations of Software Science and Computation
Structures, 2018.

[BFG18a]Complexity reduction techniques for quantified diagnosability of stochas-
tic systems,
Hugo Bazille, Eric Fabre and Blaise Genest,
WODES, 14th Workshop on Discrete Event Systems, 2018.

[BFG19] Certification formelle des réseaux neuronaux profonds : un état de
l’art en 2019,
Hugo Bazille, Eric Fabre and Blaise Genest,
AI & Défense, 2019.

[Aks+] Classification among Hidden Markov Models,
Akshay, Hugo Bazille, Eric Fabre and Blaise Genest,
FSTTCS, 39th IARCS Annual Conference on Foundations of Software Technology and
Theoretical Computer Science, 2019.

165

Articles submitted

[Baz+] Global PAC Bounds for Learning Discrete Time Markov Chains,
Hugo Bazille, Blaise Genest, Cyrille Jegourel and Jun Sun.
TACAS, 26th International Conference on Tools and Algorithms for the Construction and
Analysis of Systems, 2020.

[Baz+b] Opacity Degree in Interval Labelled Markov Chains,
Hugo Bazille, Eric Fabre, Kritin Garg, and Blaise Genest.
LATIN, 14th Latin American Theoretical Informatics Symposium, 2020.

166

References

[ACY95] Rajeev Alur, Costas Courcoubetis, and Mihalis Yannakakis, “Distinguishing
tests for nondeterministic and probabilistic machines”, in: STOC, vol. 95,
Citeseer, 1995, pp. 363–372.

[AD00] Robert B. Ash and Catherine A. Doleans-Dade, Probability and measure the-
ory, Academic Press, 2000.

[Ade+17] Bruno Adeline et al., “An efficient evaluation scheme for KPIs in regulated
urban train systems”, in: International Conference on Reliability, Safety and
Security of Railway Systems, Springer, 2017, pp. 195–211.

[AH08] Eleftheria Athanasopoulou and Christoforos N Hadjicostis, “Probability of
error bounds for failure diagnosis and classification in hidden Markov mod-
els”, in: 2008 47th IEEE Conference on Decision and Control, IEEE, 2008,
pp. 1477–1482.

[AHK02] Rajeev Alur, Thomas A Henzinger, and Orna Kupferman, “Alternating-time
temporal logic”, in: Journal of the ACM (JACM) 49.5 (2002), pp. 672–713.

[Aks+19] Akshay et al., “Classification among Hidden Markov Models”, in: Foundations
of Software Technology and Theoretical Computer Science (FSTTCS), 2019.

[Alu+97] Rajeev Alur et al., “Model-checking of real-time systems: a telecommunica-
tions application”, in: Proceedings of the International Conference on Soft-
ware Engineering, 1997.

[Alu03] Rajeev Alur, “Formal analysis of hierarchical state machines”, in: Verifica-
tion: Theory and Practice, Springer, 2003, pp. 42–66.

[AM04] Rajeev Alur and Parthasarathy Madhusudan, “Visibly pushdown languages”,
in: Proceedings of the thirty-sixth annual ACM symposium on Theory of com-
puting, ACM, 2004, pp. 202–211.

[Ast65] Karl J Astrom, “Optimal control of Markov processes with incomplete state
information”, in: Journal of mathematical analysis and applications 10.1 (1965),
pp. 174–205.

167

[ATT09] Pierre Ailliot, Craig Thompson, and Peter Thomson, “Space-time modelling
of precipitation by using a hidden Markov model and censored Gaussian dis-
tributions”, in: Journal of the Royal Statistical Society: Series C (Applied
Statistics) 58.3 (2009), pp. 405–426.

[Bal93] Vijay Balasubramanian, Equivalence and reduction of hidden markov mod-
els, tech. rep., Massachussets Institute of Technology, Cambridge Artificial
Intelligence Lab, 1993.

[Bar+01] Boaz Barak et al., “On the (im) possibility of obfuscating programs”, in:
Annual International Cryptology Conference, Springer, 2001, pp. 1–18.

[Bas14] Francesco Basile, “Overview of fault diagnosis methods based on Petri net
models”, in: 2014 European Control Conference (ECC), IEEE, 2014, pp. 2636–
2642.

[Baz+] Hugo Bazille et al., “Global PAC Bounds for Learning Discrete Time Markov
Chains”, in: Upcoming submission in TACAS.

[BBW16] Michael Backenköhler, Luca Bortolussi, and VerenaWolf, “Generalized method
of moments for stochastic reaction networks in equilibrium”, in: International
Conference on Computational Methods in Systems Biology, Springer, 2016,
pp. 15–29.

[BD95] Andrea Bianco and Luca De Alfaro, “Model checking of probabilistic and non-
deterministic systems”, in: International Conference on Foundations of Soft-
ware Technology and Theoretical Computer Science, Springer, 1995, pp. 499–
513.

[Bei03] Boris Beizer, Software testing techniques, Dreamtech Press, 2003.

[Bel57] Richard Bellman, “A Markovian decision process”, in: Journal of Mathemat-
ics and Mechanics 6.5 (1957), pp. 679–684.

[Ben+03] Albert Benveniste et al., “Diagnosis of asynchronous discrete-event systems:
a net unfolding approach”, in: IEEE Transactions on Automatic Control 48.5
(2003), pp. 714–727.

[Ber+14] Nathalie Bertrand et al., “Active diagnosis for probabilistic systems”, in: In-
ternational Conference on Foundations of Software Science and Computation
Structures, Springer, 2014, pp. 29–42.

168

[Bér+17] Béatrice Bérard et al., “The complexity of diagnosability and opacity verifica-
tion for Petri nets”, in: International Conference on Application and Theory
of Petri Nets and Concurrency, Springer, 2017, pp. 200–220.

[Ber07] Antonia Bertolino, “Software testing research: Achievements, challenges, dreams”,
in: 2007 Future of Software Engineering, IEEE Computer Society, 2007, pp. 85–
103.

[Ber75] Alberto Bertoni, “The solution of problems relative to probabilistic automata
in the frame of the formal languages theory”, in: (1975), pp. 107–112.

[BFG17] Hugo Bazille, Eric Fabre, and Blaise Genest, “Diagnosability degree of stochas-
tic discrete event systems”, in: 2017 IEEE 56th Annual Conference on Deci-
sion and Control (CDC), IEEE, 2017, pp. 5726–5731.

[BFG18a] Hugo Bazille, Eric Fabre, and Blaise Genest, “Complexity reduction tech-
niques for quantified diagnosability of stochastic systems”, in: 14th Workshop
on Discrete Event Systems (WODES) 51.7 (2018), pp. 82–87.

[BFG18b] Hugo Bazille, Eric Fabre, and Blaise Genest, “Symbolically quantifying re-
sponse time in stochastic models using moments and semirings”, in: Inter-
national Conference on Foundations of Software Science and Computation
Structures, Springer, 2018, pp. 403–419.

[BGG17] Nathalie Bertrand, Blaise Genest, and Hugo Gimbert, “Qualitative determi-
nacy and decidability of stochastic games with signals”, in: Journal of the
ACM (JACM) 64.5 (2017), p. 33.

[BHL14] Nathalie Bertrand, Serge Haddad, and Engel Lefaucheux, “Foundation of di-
agnosis and predictability in probabilistic systems”, in: IARCS Annual Con-
ference on Foundations of Software Technology and Theoretical Computer
Science (FSTTCS’14), 2014.

[BHL16a] Nathalie Bertrand, Serge Haddad, and Engel Lefaucheux, “Accurate approxi-
mate diagnosability of stochastic systems”, in: Language and Automata The-
ory and Applications, Springer, 2016, pp. 549–561.

[BHL16b] Nathalie Bertrand, Serge Haddad, and Engel Lefaucheux, “Diagnosis in infinite-
state probabilistic systems”, in: 27th International Conference on Concur-
rency Theory (CONCUR 2016), Schloss Dagstuhl-Leibniz-Zentrum fuer In-
formatik, 2016.

169

[BK08] Christel Baier and Joost-Pieter Katoen, Principles of model checking, MIT
Press, 2008.

[BL17] Dirk Beyer and Thomas Lemberger, “Software verification: Testing vs. model
checking”, in: Haifa Verification Conference, Springer, 2017, pp. 99–114.

[BMS15] Béatrice Bérard, John Mullins, and Mathieu Sassolas, “Quantifying opacity”,
in: Mathematical Structures in Computer Science 25.2 (2015), pp. 361–403.

[Bog+15] Sergiy Bogomolov et al., “Adaptive moment closure for parameter inference
of biochemical reaction networks”, in: International Conference on Compu-
tational Methods in Systems Biology, Springer, 2015, pp. 77–89.

[BP66] Leonard E Baum and Ted Petrie, “Statistical inference for probabilistic func-
tions of finite state Markov chains”, in: The annals of mathematical statistics
37.6 (1966), pp. 1554–1563.

[BPM83] Mordechai Ben-Ari, Amir Pnueli, and Zohar Manna, “The temporal logic of
branching time”, in: Acta informatica 20.3 (1983), pp. 207–226.

[Bra+06] J Bradley et al., “Response time densities and quantiles in large Markov and
semi-Markov Models”, in: (2006).

[Bra+12] Manuele Brambilla et al., “Property-driven design for swarm robotics”, in:
International Conference on Autonomous Agents and Multiagent Systems,
AAMAS, Valencia, Spain, 2012, pp. 139–146.

[Brá+14] Tomás Brázdil et al., “Verification of Markov Decision Processes Using Learn-
ing Algorithms”, in: Automated Technology for Verification and Analysis -
12th International Symposium, ATVA, Sydney, NSW, Australia, 2014, pp. 98–
114.

[Bri+13] Luboš Brim et al., “Exploring parameter space of stochastic biochemical sys-
tems using quantitative model checking”, in: International Conference on
Computer Aided Verification, Springer, 2013, pp. 107–123.

[Bry+05] Jeremy W Bryans et al., “Opacity generalised to transition systems”, in:
International Workshop on Formal Aspects in Security and Trust, Springer,
2005, pp. 81–95.

[BS13] Luca Bortolussi and Guido Sanguinetti, “Learning and Designing Stochastic
Processes from Logical Constraints”, in: Quantitative Evaluation of Systems -
10th International Conference, QEST, Buenos Aires, Argentina, 2013, pp. 89–
105.

170

[Cab+09] Maria Paola Cabasino et al., “Diagnosability analysis of unbounded Petri
nets”, in: Proceedings of the 48h IEEE Conference on Decision and Control
(CDC) held jointly with 2009 28th Chinese Control Conference, IEEE, 2009,
pp. 1267–1272.

[Cab+12] Maria Paola Cabasino et al., “A new approach for diagnosability analysis of
Petri nets using verifier nets”, in: IEEE Transactions on Automatic Control
57.12 (2012), pp. 3104–3117.

[CE80] Edmund M Clarke and E Allen Emerson, “Characterizing correctness prop-
erties of parallel programs using fixpoints”, in: International Colloquium on
Automata, Languages, and Programming, Springer, 1980, pp. 169–181.

[CE81] Edmund M Clarke and E Allen Emerson, “Design and synthesis of synchro-
nization skeletons using branching time temporal logic”, in: Workshop on
Logic of Programs, Springer, 1981, pp. 52–71.

[CG08] Jorge Castro and Ricard Gavaldà, “Towards Feasible PAC-Learning of Prob-
abilistic Deterministic Finite Automata”, in: Grammatical Inference: Algo-
rithms and Applications, 9th International Colloquium, ICGI, Saint-Malo,
France, 2008, pp. 163–174.

[CG91] Kenneth W Church and William A Gale, “A comparison of the enhanced
Good-Turing and deleted estimation methods for estimating probabilities of
English bigrams”, in: Computer Speech & Language 5.1 (1991), pp. 19–54.

[CG99] Stanley F. Chen and Joshua Goodman, “An Empirical Study of Smoothing
Techniques for Language Modeling”, in: Computer Speech and Language 13.4
(1999), pp. 359–394.

[CGS09] Maria Paola Cabasino, Alessandro Giua, and Carla Seatzu, “Diagnosability of
bounded Petri nets”, in: Proceedings of the 48h IEEE Conference on Decision
and Control (CDC) held jointly with 2009 28th Chinese Control Conference,
IEEE, 2009, pp. 1254–1260.

[Che+09] Taolue Chen et al., “Quantitative model checking of continuous-time Markov
chains against timed automata specifications”, in: 2009 24th Annual IEEE
Symposium on Logic In Computer Science, IEEE, 2009, pp. 309–318.

[Che+12] Yingke Chen et al., “Learning Markov models for stationary system behav-
iors”, in: NASA formal methods symposium, Springer, 2012, pp. 216–230.

171

[Che+52] Herman Chernoff et al., “A measure of asymptotic efficiency for tests of a
hypothesis based on the sum of observations”, in: The Annals of Mathematical
Statistics 23.4 (1952), pp. 493–507.

[Che13] Jianhua Chen, “Properties of a New Adaptive Sampling Method with Appli-
cations to Scalable Learning”, in: WI, Atlanta, 2013, pp. 9–15.

[CHH11] Krishnendu Chatterjee, Thomas A Henzinger, and Florian Horn, “The com-
plexity of request-response games”, in: International Conference on Language
and Automata Theory and Applications, Springer, 2011, pp. 227–237.

[CK13] Jun Chen and Ratnesh Kumar, “Polynomial test for stochastic diagnosability
of discrete-event systems”, in: IEEE Transactions on Automation Science and
Engineering 10.4 (2013), pp. 969–979.

[CK14] Taolue Chen and Stefan Kiefer, “On the Total Variation Distance of La-
belled Markov Chains”, in: Joint Meeting of the Twenty-Third EACSL An-
nual Conference on Computer Science Logic (CSL) and the Twenty-Ninth
Annual ACM/IEEE Symposium on Logic in Computer Science (LICS), CSL-
LICS ’14, Vienna, Austria, July 14 - 18, 2014, 2014, 33:1–33:10.

[CK97] Karel Culik and Jarkko Kari, “Digital images and formal languages”, in:
(1997), pp. 599–616.

[CL09] Christos G Cassandras and Stephane Lafortune, Introduction to discrete event
systems, Springer Science & Business Media, 2009.

[Cla+00] Edmund Clarke et al., “Counterexample-guided abstraction refinement”, in:
International Conference on Computer Aided Verification, Springer, 2000,
pp. 154–169.

[CMR06] Corinna Cortes, Mehryar Mohri, and Ashish Rastogi, “On the computation of
some standard distances between probabilistic automata”, in: International
Conference on Implementation and Application of Automata, Springer, 2006,
pp. 137–149.

[CMR07] Corinna Cortes, Mehryar Mohri, and Ashish Rastogi, “Lp distance and equiv-
alence of probabilistic automata”, in: International Journal of Foundations
of Computer Science 18.04 (2007), pp. 761–779.

[CNB98] Matthew Crouse, Robert David Nowak, and Richard G Baraniuk, “Wavelet-
based statistical signal processing using hidden Markov models”, in: IEEE
Transactions on signal processing 46.4 (1998), pp. 886–902.

172

[Coc78] William G. Cochran, “Contributions to Survey Sampling and Applied Statis-
tics”, in: ed. by H.A. David, Academic Press, New York, 1978, chap. Laplace’s
ratio estimator, pp. 3–10.

[Cor+08] Corinna Cortes et al., “On the computation of the relative entropy of prob-
abilistic automata”, in: International Journal of Foundations of Computer
Science 19.01 (2008), pp. 219–242.

[CP09] Elodie Chanthery and Yannick Pencolé, “Monitoring and active diagnosis for
discrete-event systems”, in: IFAC Proceedings Volumes 42.8 (2009), pp. 1545–
1550.

[CPS18] Yuqi Chen, Christopher M. Poskitt, and Jun Sun, “Learning from Mutants:
Using Code Mutation to Learn and Monitor Invariants of a Cyber-Physical
System”, in: 2018 IEEE Symposium on Security and Privacy, SP 2018, Pro-
ceedings, 21-23 May 2018, San Francisco, California, USA, 2018, pp. 648–
660.

[Cra38] Harald Cramér, “Sur un nouveau théoreme-limite de la théorie des probabil-
ités”, in: Actual. Sci. Ind. 736 (1938), pp. 5–23.

[CT04] Alexander Clark and Franck Thollard, “PAC-learnability of Probabilistic De-
terministic Finite State Automata”, in: Journal of Machine Learning Re-
search 5 (2004), pp. 473–497.

[CT12] Thomas M Cover and Joy A Thomas, Elements of information theory, John
Wiley & Sons, 2012.

[DA05] Tugrul Dayar and Nail Akar, “Computing moments of first passage times to
a subset of states in Markov chains”, in: SIAM Journal on Matrix Analysis
and Applications 27.2 (2005), pp. 396–412.

[Dac+16] Przemyslaw Daca et al., “Linear Distances between Markov Chains”, in: 27th
International Conference on Concurrency Theory, CONCUR 2016, August
23-26, 2016, Québec City, Canada, 2016, 20:1–20:15.

[Dac+17] Przemysław Daca et al., “Faster statistical model checking for unbounded
temporal properties”, in: ACM Transactions on Computational Logic (TOCL)
18.2 (2017), p. 12.

[DDM08] Jérémy Dubreil, Philippe Darondeau, and Hervé Marchand, “Opacity enforc-
ing control synthesis”, in: 2008 9th International Workshop on Discrete Event
Systems, IEEE, 2008, pp. 28–35.

173

[Des+04] Josée Desharnais et al., “Metrics for labeled Markov processes”, in: Theoret-
ical computer science 318.3 (2004), pp. 323–354.

[DHR08] Laurent Doyen, Thomas A Henzinger, and Jean-François Raskin, “Equiva-
lence of labeled Markov chains”, in: International journal of foundations of
computer science 19.03 (2008), pp. 549–563.

[Dur+98] Richard Durbin et al., Biological sequence analysis: probabilistic models of
proteins and nucleic acids, Cambridge university press, 1998.

[Dut+18] Souradeep Dutta et al., “Output range analysis for deep feedforward neural
networks”, in: NASA Formal Methods Symposium, Springer, 2018, pp. 121–
138.

[Edd04] Sean R Eddy, “What is a hidden Markov model?”, in: Nature biotechnology
22.10 (2004), p. 1315.

[Fab+05] Eric Fabre et al., “Distributed monitoring of concurrent and asynchronous
systems”, in: Discrete Event Dynamic Systems 15.1 (2005), pp. 33–84.

[Fab13] Eric Fabre, Control of Discrete-Event Systems - Automata and Petri Net
Perspectives, Springer, 2013, pp. 85–106.

[FBJ02] Eric Fabre, Albert Benveniste, and Claude Jard, “Distributed diagnosis for
large discrete event dynamic systems”, in: IFAC Proceedings Volumes 35.1
(2002), pp. 1–6.

[FJ10] Eric Fabre and Loïg Jezequel, “On the construction of probabilistic diag-
nosers”, in: IFAC Proceedings Volumes 43.12 (2010), pp. 229–234.

[Flo62] Robert W Floyd, “Algorithm 97: shortest path”, in: Communications of the
ACM 5.6 (1962), p. 345.

[Geh+18] Timon Gehr et al., “Ai2: Safety and robustness certification of neural networks
with abstract interpretation”, in: 2018 IEEE Symposium on Security and
Privacy (SP), IEEE, 2018, pp. 3–18.

[Gho+17] Shalini Ghosh et al., “Trusted Machine Learning: Model Repair and Data Re-
pair for Probabilistic Models”, in: AAAI-17 Workshop on Symbolic Inference
and Optimization, 2017.

[GO10] Hugo Gimbert and Youssouf Oualhadj, “Probabilistic automata on finite
words: Decidable and undecidable problems”, in: International Colloquium
on Automata, Languages, and Programming, Springer, 2010, pp. 527–538.

174

[Gon+13] Andres M Gonzalez et al., “Identification of biological models from single-cell
data: a comparison between mixed-effects and moment-based inference”, in:
2013 European Control Conference (ECC), IEEE, 2013, pp. 3652–3657.

[Goo+14] Ian Goodfellow et al., “Generative adversarial nets”, in: Advances in neural
information processing systems, 2014, pp. 2672–2680.

[Goo53] Irving John Good, “The population frequencies of species and the estimation
of population parameters”, in: Biometrika 40.3-4 (Dec. 1953), pp. 237–264,
issn: 0006-3444.

[Gop+18] Divya Gopinath et al., “Deepsafe: A data-driven approach for assessing ro-
bustness of neural networks”, in: International Symposium on Automated
Technology for Verification and Analysis, Springer, 2018, pp. 3–19.

[Gou+01] Julian Gough et al., “Assignment of homology to genome sequences using a
library of hidden Markov models that represent all proteins of known struc-
ture”, in: Journal of molecular biology 313.4 (2001), pp. 903–919.

[GS02] Alison L Gibbs and Francis Edward Su, “On choosing and bounding proba-
bility metrics”, in: International statistical review 70.3 (2002), pp. 419–435.

[GS18] Marcus Gerhold and Mariëlle Stoelinga, “Model-based testing of probabilistic
systems”, in: Formal aspects of computing 30.1 (2018), pp. 77–106.

[GS95] William A. Gale and Geoffrey Sampson, “Good-Turing Frequency Estimation
Without Tears”, in: Journal of Quantitative Linguistics (1995), pp. 217–37.

[Haa+13] Stefan Haar et al., “Optimal constructions for active diagnosis”, in: IARCS
Annual Conference on Foundations of Software Technology and Theoretical
Computer Science (FSTTCS 2013), Schloss Dagstuhl-Leibniz-Zentrum fuer
Informatik, 2013.

[Hav+00] Klaus Havelund et al., “Formal analysis of the remote agent before and after
flight”, in: Proceedings of the 5th NASA Langley Formal Methods Workshop,
vol. 134, 2000.

[Hér+04] Thomas Hérault et al., “Approximate Probabilistic Model Checking”, in: VM-
CAI, vol. 2937, LNCS, 2004, pp. 307–329.

[HF13] Stefan Haar and Éric Fabre, “Diagnosis with petri net unfoldings”, in: Control
of Discrete-Event Systems, Springer, 2013, pp. 301–317.

[HJ94] Hans Hansson and Bengt Jonsson, “A logic for reasoning about time and
reliability”, in: Formal aspects of computing 6.5 (1994), pp. 512–535.

175

[HK97] Michael Huth and Marta Kwiatkowska, “Quantitative analysis and model
checking”, in: Proceedings of Twelfth Annual IEEE Symposium on Logic in
Computer Science, IEEE, 1997, pp. 111–122.

[Hol+17] Chuck Holland et al., “UPS optimizes delivery routes”, in: Interfaces 47.1
(2017), pp. 8–23.

[Hol92] Gerard J Holzmann, “Practical methods for the formal validation of SDL
specifications”, in: Computer Communications 15.2 (1992), pp. 129–134.

[Hor+15] Florian Horn et al., “Optimal strategy synthesis for request-response games”,
in: RAIRO-Theoretical Informatics and Applications 49.3 (2015), pp. 179–
203.

[HSP99] Geoffrey E Hinton, Terrence Joseph Sejnowski, and Tomaso A Poggio, Unsu-
pervised learning: foundations of neural computation, MIT press, 1999.

[Hua+17] Xiaowei Huang et al., “Safety verification of deep neural networks”, in: Inter-
national Conference on Computer Aided Verification, Springer, 2017, pp. 3–
29.

[HYH13] Feng-Long Huang, Ming-Shing Yu, and Chien-Yo Hwang, “An empirical study
of good-turing smoothing for language models on different size corpora of
chinese”, in: Journal of Computer and Communications 1.05 (2013), p. 14.

[Jia+01] Shengbing Jiang et al., “A polynomial algorithm for testing diagnosability of
discrete-event systems”, in: IEEE Transactions on Automatic Control 46.8
(2001), pp. 1318–1321.

[JSS17] Cyrille Jégourel, Jun Sun, and Jin Song Dong, “Sequential Schemes for Fre-
quentist Estimation of Properties in Statistical Model Checking”, in: Quanti-
tative Evaluation of Systems - 14th International Conference, QEST, Berlin,
Germany, 2017, pp. 333–350.

[Kat87] Slava Katz, “Estimation of probabilities from sparse data for the language
model component of a speech recognizer”, in: IEEE transactions on acoustics,
speech, and signal processing 35.3 (1987), pp. 400–401.

[Kel76] Robert M Keller, “Formal verification of parallel programs”, in: Communi-
cations of the ACM 19.7 (1976), pp. 371–384.

[KH18] Christoforos Keroglou and Christoforos N Hadjicostis, “Probabilistic system
opacity in discrete event systems”, in: Discrete Event Dynamic Systems 28.2
(2018), pp. 289–314.

176

[Kie+11] Stefan Kiefer et al., “Language equivalence for probabilistic automata”, in:
International Conference on Computer Aided Verification, Springer, 2011,
pp. 526–540.

[Kie18] Stefan Kiefer, “On Computing the Total Variation Distance of Hidden Markov
Models”, in: 45th International Colloquium on Automata, Languages, and
Programming (ICALP 2018), Schloss Dagstuhl-Leibniz-Zentrum fuer Infor-
matik, 2018.

[KL51] Solomon Kullback and Richard A. Leibler, “On Information and Sufficiency”,
in: Annals of Mathematical Statistics 22.1 (1951), pp. 79–86.

[KLC98] Leslie Pack Kaelbling, Michael L Littman, and Anthony R Cassandra, “Plan-
ning and acting in partially observable stochastic domains”, in: Artificial
intelligence 101.1-2 (1998), pp. 99–134.

[KLM96] Leslie Pack Kaelbling, Michael L Littman, and Andrew W Moore, “Rein-
forcement learning: A survey”, in: Journal of artificial intelligence research 4
(1996), pp. 237–285.

[KNP11] Marta Kwiatkowska, Gethin Norman, and David PRISM Parker, “4.0: Ver-
ification of probabilistic real-time systems”, in: International Conference on
Computer Aided Verification, 2011, p. 585591.

[Kon01] Igor Kononenko, “Machine learning for medical diagnosis: history, state of
the art and perspective”, in: Artificial Intelligence in medicine 23.1 (2001),
pp. 89–109.

[Koz77] Dexter Kozen, “Lower bounds for natural proof systems”, in: 18th Annual
Symposium on Foundations of Computer Science (sfcs 1977) (1977), pp. 254–
266.

[Kro+01] Anders Krogh et al., “Predicting transmembrane protein topology with a hid-
den Markov model: application to complete genomes”, in: Journal of molec-
ular biology 305.3 (2001), pp. 567–580.

[KS16] Stefan Kiefer and A Prasad Sistla, “Distinguishing hidden Markov chains”,
in: 2016 31st Annual ACM/IEEE Symposium on Logic in Computer Science
(LICS), IEEE, 2016, pp. 1–10.

[KS60] John G Kemeny and J Laurie Snell, “Finite Markov Chains. D Van Nostad
Co”, in: Inc., Princeton, NJ (1960).

[KS85] Werner Kuich and Arto Salomaa, “Semirings, automata, languages”, in: (1985).

177

[KU02] Igor O Kozine and Lev V Utkin, “Interval-valued finite Markov chains”, in:
Reliable computing 8.2 (2002), pp. 97–113.

[Lan11] Pat Langley, “The changing science of machine learning”, in: Machine Learn-
ing 82.3 (2011), pp. 275–279.

[Law+03] Yee Wei Law et al., “A formally verified decentralized key management archi-
tecture for wireless sensor networks”, in: IFIP International Conference on
Personal Wireless Communications, Springer, 2003, pp. 27–39.

[Lee+09] Honglak Lee et al., “Convolutional deep belief networks for scalable unsu-
pervised learning of hierarchical representations”, in: Proceedings of the 26th
annual international conference on machine learning, ACM, 2009, pp. 609–
616.

[Lef18] Engel Lefaucheux, “Controlling information in probalistic systems”, PhD
thesis, Université Rennes 1, 2018.

[Leh77] Daniel J Lehmann, “Algebraic structures for transitive closure”, in: Theoret-
ical Computer Science 4.1 (1977), pp. 59–76.

[Lin11] Feng Lin, “Opacity of discrete event systems and its applications”, in: Auto-
matica 47.3 (2011), pp. 496–503.

[LP02] Rune B Lyngsø and Christian NS Pedersen, “The consensus string problem
and the complexity of comparing hidden Markov models”, in: Journal of
Computer and System Sciences 65.3 (2002), pp. 545–569.

[LST16] Axel Legay, Sean Sedwards, and Louis-Marie Traonouez, “Rare Events for
Statistical Model Checking an Overview”, in: Reachability Problems - 10th
International Workshop, RP, Aalborg, Denmark, 2016, pp. 23–35.

[Mao+11] Hua Mao et al., “Learning probabilistic automata for model checking”, in:
2011 Eighth International Conference on Quantitative Evaluation of Systems,
IEEE, 2011, pp. 111–120.

[Mao+12] Hua Mao et al., “Learning Markov decision processes for model checking”,
in: 103 (2012), pp. 49–63.

[MHC03] Omid Madani, Steve Hanks, and Anne Condon, “On the undecidability of
probabilistic planning and related stochastic optimization problems”, in: Ar-
tificial Intelligence 147.1-2 (2003), pp. 5–34.

178

[Moh02a] Mehryar Mohri, “Generic e-Removal and Input e-Normalization Algorithms
for Weighted Transducers”, in: Int. J. Found. Comput. Sci. 13.1 (2002),
pp. 129–143.

[Moh02b] Mehryar Mohri, “Semiring frameworks and algorithms for shortest-distance
problems”, in: Journal of Automata, Languages and Combinatorics 7.3 (2002),
pp. 321–350.

[Moh97] Mehryar Mohri, “Finite-state transducers in language and speech processing”,
in: Computational linguistics 23.2 (1997), pp. 269–311.

[Mos82] Yiannis Nicholas Moschovakis, Descriptive Set Theory, 1982.

[MP09] Christophe Morvan and Sophie Pinchinat, “Diagnosability of pushdown sys-
tems”, in: Haifa Verification Conference, Springer, 2009, pp. 21–33.

[MU17] Michael Mitzenmacher and Eli Upfal, Probability and computing: Randomiza-
tion and probabilistic techniques in algorithms and data analysis, Cambridge
university press, 2017.

[Mug96] Stephen Muggleton, “Stochastic logic programs”, in: Advances in inductive
logic programming 32 (1996), pp. 254–264.

[ND08] Farid Nouioua and Philippe Dague, “A probabilistic analysis of diagnosability
in discrete event systems.”, in: ECAI, 2008, pp. 224–228.

[Oka58] Masashi Okamoto, “Some Inequalities Relating to the Partial Sum of Bino-
mial Probabilities”, in: Annals of the Institute of Statistical Mathematics 10
(1958), pp. 29–35.

[Paz71] Azaria Paz, “Introduction to probabilistic automata (Computer science and
applied mathematics)”, in: (1971).

[Pel13] Jan Peleska, “Industrial-strength model-based testing-state of the art and
current challenges”, in: arXiv preprint arXiv:1303.1006 (2013).

[Pet66] Carl Adam Petri, “Communication with automata”, in: (1966).

[Pnu77] Amir Pnueli, “The temporal logic of programs”, in: 18th Annual Symposium
on Foundations of Computer Science (sfcs 1977), IEEE, 1977, pp. 46–57.

[PR69] Yu. V. Prohorov and Yu. A. Rozanov, “Probability Theory. Basic Concepts.
Limit Theorems. Random Processes.”, in: Metrika 17 (1969), pp. 261–262.

179

[PT11] Luca Pulina and Armando Tacchella, “NeVer: a tool for artificial neural net-
works verification”, in: Annals of Mathematics and Artificial Intelligence 62.3-
4 (2011), pp. 403–425.

[QK06] Wenbin Qiu and Ratnesh Kumar, “Decentralized failure diagnosis of discrete
event systems”, in: IEEE Transactions on Systems, Man, and Cybernetics-
Part A: Systems and Humans 36.2 (2006), pp. 384–395.

[QS82] Jean-Pierre Queille and Joseph Sifakis, “Specification and verification of con-
current systems in CESAR”, in: International Symposium on programming,
Springer, 1982, pp. 337–351.

[Rab63] Michael O Rabin, “Probabilistic automata”, in: Information and control 6.3
(1963), pp. 230–245.

[Rab89] Lawrence R Rabiner, “A tutorial on hidden Markov models and selected
applications in speech recognition”, in: Proceedings of the IEEE 77.2 (1989),
pp. 257–286.

[Ram07] Daniel Ramage, “Hidden Markov models fundamentals”, in: CS229 Section
Notes 1 (2007).

[Rid05] Ad Ridder, “Importance Sampling Simulations of Markovian Reliability Sys-
tems Using Cross-Entropy”, in: Annals OR 134.1 (2005), pp. 119–136.

[RN16] Stuart J Russell and Peter Norvig, Artificial intelligence: a modern approach,
Malaysia; Pearson Education Limited, 2016.

[Sad+14] Dorsa Sadigh et al., “Data-driven probabilistic modeling and verification of
human driver behavior”, in: 2014 AAAI Spring Symposium Series, 2014.

[Sam+96] Meera Sampath et al., “Failure diagnosis using discrete-event models”, in:
IEEE transactions on control systems technology 4.2 (1996), pp. 105–124.

[SC85] A Prasad Sistla and Edmund M Clarke, “The complexity of propositional
linear temporal logics”, in: Journal of the ACM (JACM) 32.3 (1985), pp. 733–
749.

[Sch61] Marcel Paul Schützenberger, “On the definition of a family of automata”, in:
Information and control 4.2-3 (1961), pp. 245–270.

[SGB95] Chris Sherlaw-Johnson, Steve Gallivan, and Jim Burridge, “Estimating a
Markov Transition Matrix from Observational Data”, in: The Journal of the
Operational Research Society 46.3 (1995), pp. 405–410.

180

[Sin91] Kasim Sinnamohideen, “Discrete-event based diagnostic supervisory control
system”, in: Proceedings of the AIChE Annual Meeting, 1991.

[SLT98] Meera Sampath, Stéphane Lafortune, and Demosthenis Teneketzis, “Active
diagnosis of discrete-event systems”, in: IEEE Transactions on Automatic
Control 43.7 (1998), pp. 908–929.

[Smy94] Padhraic Smyth, “Hidden Markov models for fault detection in dynamic sys-
tems”, in: Pattern recognition 27.1 (1994), pp. 149–164.

[SS83] Norbert Schmitz and Benno Süselbeck, “Sequential probability ratio tests for
homogeneous Markov chains”, in: Mathematical Learning Models—Theory
and Algorithms, Springer, 1983, pp. 191–202.

[ST02] Raja Sengupta and Stavros Tripakis, “Decentralized diagnosability of regular
languages is undecidable”, in: Proceedings of the 41st IEEE Conference on
Decision and Control, 2002. Vol. 1, IEEE, 2002, pp. 423–428.

[Sto06] Jordan Stoyanov, “Determinacy of distributions by their moments”, in: Pro-
ceedings for International Conference on Mathematics and Statistical Model-
ing, 2006.

[Su+02] Rong Su et al., “Distributed diagnosis for qualitative systems”, in: Sixth In-
ternational Workshop on Discrete Event Systems, 2002. Proceedings. IEEE,
2002, pp. 169–174.

[SVA04] Koushik Sen, Mahesh Viswanathan, and Gul Agha, “Statistical model check-
ing of black-box probabilistic systems”, in: International Conference on Com-
puter Aided Verification, Springer, 2004, pp. 202–215.

[SVA06] Koushik Sen, Mahesh Viswanathan, and Gul Agha, “Model-checking Markov
chains in the presence of uncertainties”, in: International Conference on Tools
and Algorithms for the Construction and Analysis of Systems, Springer, 2006,
pp. 394–410.

[SW04] Rong Su and W. Murray Wonham, “A model of component consistency in
distributed diagnosis”, in: IFAC Proceedings Volumes 37.18 (2004), pp. 417–
422.

[SW95] Adam Shwartz and Alan Weiss, Large deviations for performance analysis:
queues, communication and computing, vol. 5, CRC Press, 1995.

[Tar05] Árpád Tari, “Moments based bounds in stochastic models”, in: (2005).

181

[TC13] Vicenç Torra and Michael Carlson, “On the Hellinger distance for measuring
information loss in microdata”, in: Joint UNECE/Eurostat work session on
statistical data confidentiality (2013).

[TH07] Miklós Telek and Gábor Horváth, “A minimal representation of Markov ar-
rival processes and a moments matching method”, in: Performance Evalua-
tion 64.9-12 (2007), pp. 1153–1168.

[Tob+07] Llanos Tobarra et al., “Model checking wireless sensor network security pro-
tocols: Tinysec+ leap”, in: IFIP Conference on Wireless Sensor and Actor
Networks, Springer, 2007, pp. 95–106.

[TT05] David Thorsley and Demosthenis Teneketzis, “Diagnosability of stochastic
discrete-event systems”, in: IEEE Transactions on Automatic Control 50.4
(2005), pp. 476–492.

[TYG08] David Thorsley, Tae-Sic Yoo, and Humberto E Garcia, “Diagnosability of
stochastic discrete-event systems under unreliable observations”, in: 2008
American Control Conference, IEEE, 2008, pp. 1158–1165.

[Tze92] Wen-Guey Tzeng, “A polynomial-time algorithm for the equivalence of prob-
abilistic automata”, in: SIAM Journal on Computing 21.2 (1992), pp. 216–
227.

[UPL12] Mark Utting, Alexander Pretschner, and Bruno Legeard, “A taxonomy of
model-based testing approaches”, in: Software Testing, Verification and Re-
liability 22.5 (2012), pp. 297–312.

[Val84] Leslie G. Valiant, “A Theory of the Learnable”, in: Commun. ACM 27.11
(1984), pp. 1134–1142.

[Wai+89] Alex Waibel et al., “Phoneme recognition using time-delay neural networks”,
in: IEEE transactions on acoustics, speech, and signal processing 37.3 (1989),
pp. 328–339.

[Wal45] Abraham Wald, “Sequential tests of statistical hypotheses”, in: The Annals
of Mathematical Statistics 16.2 (1945), pp. 117–186.

[Wan+17] Jingyi Wang et al., “Should We Learn Probabilistic Models for Model Check-
ing? A New Approach and An Empirical Study”, in: Fundamental Approaches
to Software Engineering - 20th International Conference, FASE, Uppsala,
Sweden, 2017, pp. 3–21.

[Wet66] G Barrie Wetherill, “Sequential methods in statistics”, in: (1966).

182

[WHK18] Matthew Wicker, Xiaowei Huang, and Marta Kwiatkowska, “Feature-guided
black-box safety testing of deep neural networks”, in: International Confer-
ence on Tools and Algorithms for the Construction and Analysis of Systems,
Springer, 2018, pp. 408–426.

[WYL07] Yin Wang, Tae-Sic Yoo, and Stéphane Lafortune, “Diagnosis of discrete event
systems using decentralized architectures”, in: Discrete Event Dynamic Sys-
tems 17.2 (2007), pp. 233–263.

[YL02] Tae-Sic Yoo and Stéphane Lafortune, “Polynomial-time verification of diag-
nosability of partially observed discrete-event systems”, in: IEEE Transac-
tions on automatic control 47.9 (2002), pp. 1491–1495.

[YS02] Håkan L. S. Younes and Reid G. Simmons, “Probabilistic Verification of Dis-
crete Event Systems Using Acceptance Sampling”, in: Computer Aided Ver-
ification, 14th International Conference, CAV ,Copenhagen, Denmark, 2002,
pp. 223–235.

[ZL13] Janan Zaytoon and Stéphane Lafortune, “Overview of fault diagnosis meth-
ods for discrete event systems”, in: Annual Reviews in Control 37.2 (2013),
pp. 308–320.

[ZPC13] Paolo Zuliani, André Platzer, and Edmund M Clarke, “Bayesian statistical
model checking with application to Stateflow/Simulink verification”, in: For-
mal Methods in System Design 43.2 (2013), pp. 338–367.

183

List of Figures

1 La vérification déductive. 6
2 Les tests. 7
3 La vérification de modèles. 8
4 Exemple jouet où les probabilités de cahque transition sont proches mais

où le comportement global est très différent. 11

1.1 Principle of deductive verification. 20
1.2 Principle of testing. 21
1.3 Principle of model-checking. 21
1.4 Toy example where local transitions are close enough but general properties

are very different. 24

2.1 Example of an LTS A. 29
2.2 An LTS A with silent transitions (above) and its equivalent A′ after ε-

removal (below). 31
2.3 Example of a Markov ChainM. 34
2.4 A model where the user has a choice represented by an MDP (left) and a

model of an observer witnessing a possible strategy represented by an LMC
(right). 35

2.5 Example of an LMCM. 36
2.6 Example of a PFA A. 37
2.7 An LMC such that for all w ∈ Σn, P (w) = 1

2n 40
2.8 Example of a Markov ChainM. 41
2.9 A model satisfying AGEFs1 but not GFs1. 47
2.10 A model satisfying F ((s0∨ s2∨ s3)∧X(s0∨ s2∨ s3)) but not AF ((s0∨ s2∨

s3) ∧ AX(s0 ∨ s2 ∨ s3)). 47
2.11 Markov Chain for the example of the Floyd-Warshall algorithm. 50

3.1 LTS A (left) with faulty states in red and its twin plant Ã (right) with
ambiguous states {s1, s3} and {s1, s2} in orange. 59

3.2 LMC A (above left), its observer Ȧ (above right), and the A-diagnoser A
(below). 62

184

3.3 An LMC A, faulty states in red. 63
3.4 An LMC A, faulty states in red (above) and the Markov ChainMA asso-

ciated with its diagnoser with faulty ambiguous states in orange (below). . 66
3.5 An LMC A, faulty states in red (top) and its power set construction that

has an exponential size (bot). 70
3.6 An example of an LMC A3 (top) that has an exponential sized diagnoser,

and its twin plant (bottom) . 77
3.7 A toy example LMC A, faulty states in red. 91

4.1 Example of an LMC A on alphabet Σ = {a, b} and of an NFA BA on
alphabet Σ. 98

4.2 Three LMCs A1 (top left), A2 (top right) and A3 (bottom). 101
4.3 Four LMCs A1 (top left), A2 (top right), A3 (bottom left) and A4 (bottom

right). 105
4.4 States and transitions for four LMCs A1, A2, A3, A4 with different initial

probabilities . 109
4.5 Example of an LMC A on alphabet Σ = {a, b} and of an NFA BA on

alphabet Σ. 111
4.6 Markov chainMx,y associated with the belief {x, y} 113
4.7 Twin automaton (on the left) and twin-belief automaton (on the right), for

A1,A2 starting in states y and z . 115
4.8 Two LMCs A1 and A2 with no limit-sure classifier 126
4.9 Example of the PFA (above) to LMC (below) reduction 130

5.1 Example of a MC M learnt from a sample of executions by a frequency
estimator . 137

5.2 Example of a MCM whose support is known (left) learnt from a sample
of executions with Laplace smoothing of parameter α = 1 (right). 138

5.3 MC induced by W and W ′ (left) and by W ′′ (right) 143
5.4 Three MCsM,M̂,M̂′ (from top to bottom), with 0 < η < 2τ < 1 151
5.5 An example of MCM1 . 155
5.6 MCM2 . 155

185

Index

σ-algebra . 39

Ambiguity . 57
Aperiodicity . 41
Attack-classification 127

(1− ε) . 130
Limit-sure . 127

Belief . 110
Belief automaton . 110
Borel hierarchy . 38
Bound

Chen . 140
Okamoto . 140

Central limit theorem 44
Chernoff’s inequality 43
Classifiability

Almost-sure . 98
Limit-sure 98, 114
Sure . 98

Conditioning . 148
Continous Time Markov Chain, CTMC . .

81
Convergence

Lp . 43
Almost-sure . 43
In law . 43
In probability . 43

Cut-point . 53
Isolated . 54

Cylinder . 28

Diagnosability

ε-diagnosability 64
k-diagnosability 58
k-diagnosability degree 67
A-diagnosability 60
AA-diagnosability 64
Diagnosability degree 68
Uniform diagnosability 58

Diagnoser . 57
A-diagnoser . 61
MC-diagnoser . 65
Weighted diagnoser 79

Distance
Lp . 103
Total variation distance 104

Distance 1 problem 105
Distinguishability 107

Emptiness problem 53
Equivalence of probabilistic languages

101
Equivalence of traces 142
Estimator . 136

Frequency . 137
Good-Turing . 138
Katz . 139
Kneser-Ney . 139
Laplace smoothing 138

Expected value . 42

Faulty run . 57
Finite State Automaton 29
Floyd-Warshall algorithm 48

186

Fundamental Theorem of Markov Chains
41

Irreducibility . 40
Isolation problem . 54

Labeled Markov Chain, LMC 36
Labeled Transition System, LTS 28
Law of large numbers 44

Markov Chain, MC 33
Markov Decision Process 33
Markov’s inequality 43
Maximum A Posteriori (MAP) 108
Measure . 39

Pre-measure . 39
Misclassification error 108
Moment problem . 82
Moments . 42
Monitor . 107

Negligible pair
Type 1 . 71
Type 2 . 72

Oblivious . 117
Observer . 61
Open set . 38

Partially Observed Markov Decision Process,
POMDP . 35

Period . 41
Probabilistic Finite Automaton, PFA 37

Complete . 37
Probably Approximately Correct (PAC) .

139

Reachability . 44
Ring of sets . 39

s-factor . 142
Semiring . 31
Stationary distribution 41
Strongly Connected Component, SCC 28

BSCC . 29

Temporal logic . 45
Computation Tree Logic 46
CTL∗ . 48
Linear Temporal Logic 45

Topology . 38
Twin automaton . 115
Twin belief . 116
Twin plant . 58
Twin states . 116

Weighted automaton 32

187

Titre: Détection et Quantification d’Evenements dans
les Systèmes Stochastiques

Mot clés : Systèmes stochastiques, Information partielle, Diagnosticabilité, Classifica-
tion, Apprentissage, Vérification de modèles

Resumé : Les systèmes stochastiques
à information partielle permettent de
représenter de nombreux systèmes dont les
paramètres sont inconnus et dont le fonc-
tionnement dépend de facteurs en dehors
de notre contrôle. Dans cette thèse, nous
étudions plusieurs problèmes liés à ces sys-
tèmes. Le premier est la diagnosticabilité,

c’est-à-dire la capacité de décider si un
évènement particulier s’est produit. Le sec-
ond est la classification qui est la capacité
de décider à partir d’une trace d’une exécu-
tion quel système l’a produite. Enfin, nous
nous intéressons aux garanties que l’on peut
avoir quand on apprend les probabilités de
transition d’un système stochastique.

Title: Detection and Quantification of Events in
Stochastic Systems

Keywords : Stochastic systems, Partial information, Diagnosability, Classification,
Learning, Model-checking

Abstract : Stochastic systems with partial
information allow one to represent numer-
ous systems whose parameters are unknown
and whose operation may depend on out-of-
control factors. In this thesis, we study sev-
eral problems linked to these systems. First
one is diagnosability, that is the capacity to

decide if a particular event occurred. Sec-
ond one is classification which is the capac-
ity to decide from a trace of an execution
which system produced it. Finally, we are
interested in the guarantees one can obtain
by learning the probability transitions of a
stochastic system.

	Résumé
	Table of Contents
	Introduction
	Preliminaries
	Classes of models
	Transition systems and automata
	Partial observation
	Quantitative systems
	Stochastic systems
	Partially observable stochastic systems
	Construction of a probability measure on infinite words

	Vocabulary and properties of Markov Chains
	 Vocabulary and properties of probability distributions
	Questions of interest for the verification of stochastic systems
	Reachability
	Expressing general properties as temporal logics

	General algorithmic results
	PTIME algorithms for quantifying reachability in fully observable systems
	Undecidable problems on partially observable systems

	Diagnosability analysis of Labeled Markov Chains
	State of the art
	Diagnosis and diagnosability of finite LTS
	A-Diagnosability of LMCs
	AA-diagnosability of LMCs
	Towards quantitative diagnosability analysis

	Quantifying diagnosis
	Diagnosability degrees
	Computation of diagnosability degrees
	Reducing the number of states in the diagnoser

	Distributions of fault detection delay
	Semirings for moments
	Approximating the distribution from its moments
	Bounds on the detection delay
	Optimal bounds for a pair of moments

	Related work on diagnosis and diagnosability
	Diagnosis of infinite LTS
	Active diagnosis
	Diagnosis of distributed systems

	Conclusion
	Summary
	Future work

	Classification among Labeled Markov Chains
	Introduction
	State of the art
	Sure and almost-sure classification
	Equivalence of stochastic languages
	Distance between stochastic automata
	Total variation distance and the distance 1 problem
	Distinguishability
	Misclassification

	Beliefs and stationary distributions for LMCs
	Limit-sure Classifiability
	The Twin Automaton and the Twin Belief Automaton
	Characterization of classifiability
	A PTIME Algorithm
	Comparison with Distinguishability between LMCs

	Attack-classification
	Classification in a security context
	Limit-sure attack-classifiability is PSPACE-complete
	Existence of (1-) attack-classifiers for all is undecidable.

	Related work
	Other distances
	Testing

	Conclusion
	Summary
	Perspectives

	Learning of Markov Chains
	State of the art
	Estimators
	Probably Approximately Correct learning
	Monte-Carlo estimation and algorithm of Chen

	Learning for a time-to-failure property
	Framework
	PAC bounds for a time-to-failure property
	Algorithm for the fixed time-to-failure property

	Learning for the full CTL logic
	No PAC bound for LTL
	Conditioning and Probability Bounds
	Optimality and necessity of knowing the transitions support
	PAC bounds for test
	A Matrix accurate for all CTL properties

	Evaluation and Discussion
	Related work
	Conclusion
	Summary
	Future work

	Conclusion
	Contributions
	Perspectives

	List of my publications
	Articles accepted by chronological order
	Articles submitted

	Bibliography
	List of figures
	Index

