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Abstract

With the wide propagation of handheld devices, more and more mobile sensors are

being used by end-users on a daily basis. Those sensors could be leveraged to gather

useful mobility data for city planners, business analysts and researches. However,

gathering and exploiting mobility data raises many privacy threats. Sensitive infor-

mation such as one’s home or workplace, hobbies, religious beliefs, political or sexual

preferences can be inferred from the gathered data.

In the last decade, Location Privacy Protection Mechanisms (LPPMs) have been

proposed to protect user data privacy. They alter data mobility to enforce formal

guarantees (e.g., k-anonymity or differential privacy), hide sensitive information

(e.g., erase points of interests) or act as countermeasures for particular attacks. In

this thesis, we focus on the threat of re-identification which aims at re-linking an

anonymous mobility trace to the know past mobility of its user.

First, we propose re-identification attacks (AP-Attack and ILL-Attack) that

find vulnerabilities and stress current state-of-the-art LPPMs to quantify their

effectiveness. We also propose a new protection mechanism HMC that uses heat

maps to guide the transformation of mobility data to change the behavior of a user,

in order to make her look similar to someone else rather than her past self, which

preserves her from re-identification attacks. This alteration of mobility trace is

constrained with the control of the utility of the data to minimize the distortion in

the quality of the analysis realized on this data.

v
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Résumé

De nos jours, avec la large propagation de differents appareils mobiles, de nombreux

capteurs accompagnent des utilisateurs. Ces capteurs peuvent servir à collecter des

données de mobilité qui sont utiles pour des urbanistes ou des chercheurs. Cependant,

l’exploitation de ces données soulèvent de nombreuses menaces quant à la préservation

de la vie privée des utilisateurs. En effet, des informations sensibles tel que le lieu

domicile, le lieu de travail ou même les croyances religieuses peuvent être inférées de

ces données.

Durant la dernière décénnie, des mécanismes de protections appellées ”Location

Privacy Protection Mechanisms (LPPM)”ont été proposé. Ils imposent des guarenties

sur les données (e.g., k-anonymity ou differential privacy), obfusquent les informations

sensibles (e.g., efface les points d’intéret) ou sont une contremesure à des attaques

particulières.

Nous portons notre attention à la ré-identification qui est un risque précis lié

à la préservation de la vie privée dans les données de mobilité. Il consitste en a

un attaquant qui des lors qu’il reçoit une trace de mobilité anonymisée, il cherche

à retrouver l’identifiant de son propriètaire en la ratachant à un passif de traces

non-anonymisées des utilisateurs du système.

Dans ce cadre, nous proposons tout d’abords des attaques de ré-identification AP-

Attack et ILL-Attack servant à mettre en exergue les vulnérabilités des machanismes

de protections de l’état de l’art et de quantifier leur efficiacité. Nous proposons aussi

un nouveau mécanisme de protection HMC qui utilise des heat maps afin de guider

la transformation du comportement d’un individu pour qu’il ne ressemble plus au

vii
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soi du passée mais à un autre utilisateur, le préservant ainsi de la ré-identification.

Cet modification de la trace de mobilité est contrainte par des mesures d’utilité des

données afin de minimiser la qualité de service ou les conclusions que l’on peut tirer

à l’aide de ces données.
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4 Chapter 1. Introduction

1.1 Context: Wide Propagation of Handheld

Devices and Location-based Services

With the unprecedented success of handheld devices, the number of available mobile

sensors is raising. According to the study of Pew Research center, 77% of the US adult

population had a smartphone in 20171 and according to Eriksson’s mobility outlook

report, there are 5.1 billion mobile subscribers in 2018 and they predict growth

to 7.2 billion in 20242. Many of the available applications on those smartphones

ask permissions to gather the data sensed by the device and location is one of the

most widely used information. As stated by Pew Research, 74% of smartphone

owners used location-based services in 20133. This industry also has an important

economic impact, according to the Boston Consulting Group, the total revenue

of location-based services represented $75 billion in 2012 in the USA4. Hence, as

stated in the ”Geoprivacy Manifesto” of Keßler and McKenzie [51], location data is

substantially different compared to other kinds of personal information. Since it is

more and more easily obtainable due to the availability of GPS or GSM ships on

handheld devices and due to the increasingly simplistic usage of available APIs to

capture location data. Also, users have a substantial incentive to share their location

with service providers since location improves significantly the quality of service

provided by online services and enables the creation of novel services. Examples

of such applications include GPS navigation and location search services such as

Google Maps [37] or Bing Maps [64]). In these applications, users get directions to

go to particular places and have access to a database of venues (restaurants, shops,

businesses. . . ) with their opening hours, reviews, attendance levels and so much

more. Other examples include location-based social networks such as Swarm of

Foursquare [25], where users can post check-ins of their movement and ask friends to

join. There are location-based games such as Niantic’s Pokemon GO [72] or Harry

Potter Wizard Unite [73], here players are continually put into an augmented reality

environment through their phone. With their movement in the real world, players can

face challenges and even put their gamer-tag in particular stops, they have vanquished.

1https://www.pewinternet.org/fact-sheet/mobile/
2https://www.ericsson.com/en/mobility-report/reports/june-2019/mobile-subscriptions-outlook
3https://www.pewinternet.org/2013/09/12/location-based-services/
4http://www.bcg.com/documents/file109372.pdf

      Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2019LYSEI089/these.pdf 
      © [M. Maouche], [2019], INSA de Lyon, tous droits réservés

https://www.pewinternet.org/fact-sheet/mobile/
https://www.ericsson.com/en/mobility-report/reports/june-2019/mobile-subscriptions-outlook
https://www.pewinternet.org/2013/09/12/location-based-services/
http://www.bcg.com/documents/file109372.pdf


1.2. Privacy Threats On Mobility Data 5

In addition to interactive services, mobility data can be gathered and stored (by

service providers throughout the online services or analyst throughout crowd-sensing

campaigns). This data represents a great resource for city planners, businesses and

researchers as it can be used for traffic information monitoring (Nericell [66]), health

monitoring (PEIR [69]), social mechanisms learning (fMRI [2]) or generic research

dataset gathering (APISENSE [43]).

1.2 Privacy Threats On Mobility Data

However, the gathering, storage and manipulation of increasing volumes of mobility

data opens several ethical and legal issues as these data are sensitive in nature

and may reveal personal information about individuals. Indeed the semantic of the

places the user visits could reveal sensitive information about the latter [47] such

as the user’s home or workplace. It could also lead to the disclosure of information

the user did not wish to share. As an example, the sexual preferences of a user

could be inferred from his/her regular visits to particular bars or clubs. This could

lead to unwanted add targeting that could disclose the user’s private life to his/her

coworkers and family without the user direct consent. Other sensitive information

such as one’s hobbies or political alignment could also be inferred. Other threats also

affect user privacy. For instance, curious adversaries could use physical interactions

between users to infer social relationships between users [98]. The threat of mobility

prediction also puts the user at risk [29]. For instance, the website ”Please rob me”

is an initiative to raise awareness about sharing our location and the disasngtrous

consequences it can have. It uses geolocated tagged tweets to inform users about

how their location sharing could inform possible robbers5.

With those increasing risks, users are more and more concerned about their

location privacy issues. In the work of Staiano et al. [95], 60 volunteers were asked

to give price to their personal data during 6 weeks (October 2013 to November

2013). Their median price for all the 6 weeks of mobility was at 22.5 euro with an

opt-out percentage of 16.67%. These values are higher than all the other considered

categories (communication logs, application usages and photo shot records with

5http://pleaserobme.com/why
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respectively 15, 20 and 5 euros with opt-out percentages of respectively 3.34%, 0%
and 8.34%). In the work of Cvrcek et al. [19], they have asked 1200 people of five

European countries how much they would sell one month of mobility data (cell tower

position every five minutes for one month), they received medians of approximately

50 euro for academic use and 100 euro for commercial use. We have to be careful with

those surveys. Since different values can be found in different surveys. Nevertheless,

they illustrate the importance that users give to their location data. In addition to

the users’ awareness, legislation is evolving to protect users’ privacy. For instance

in Europe, starting May 2018, the General Data Protection Regulation (GDPR)6

has been enforced. It compels every organization collecting or processing data from

EU residents to be responsible and accountable for the way they manage personal

data. Every organization is required to integrate privacy preserving measures by

design and by default. This regulation also gives proper means for authorities to

take action against the non-GDPR compliant organizations with fines up to 4% of

their worldwide revenue.

1.3 Problem Statement: Re-identification

To protect user privacy, the first possible solution considered is the full anonymization

of data. Meaning that the user hides her ID contained in the data (e.g., with the

usage of onion networks such as TOR). Unfortunately, this is not sufficient as mobility

data acts as a quasi-identifier by itself. In the work of De Montjoye et al. [20], they

studied the uniqueness of month of mobility traces of one and a half million users

and they showed that with only four records, they are able to distinguish 95% of the

users. This study shows that mobility data is discriminant by itself and works as a

fingerprint. This means that anonymizing data after years of freely sharing location

data put users at risk of being ”re-identified”, thus making simple anonymization

ineffective at protecting users’ privacy.

Re-identification attacks are the main focus of this thesis. These attacks aim at

linking anonymous mobility (anonymized) to their IDs using past mobility. The first

objective of this thesis is thus to study the capabilities of re-identification and to

6https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=CELEX:32016R0679
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find the possible vulnerabilities on mobility data. In Equation 1.1, we define the

re-identification problem considered in this thesis. The adversary has access to a set

of known (i.e., with ID) traces K and aims at linking an anonymous trace T (from a

set of anonymous traces A) to the correct known trace (thus its ID) from K.

A : A → K
T 7→ A(x) = U

(1.1)

In the literature, to re-identify anonymous traces, in the work of Krumm [52], they

extracted users’ homes. Golle and Partridge [33] showed that the pair home/work is

even more discriminative. Then Gambs et al. [30] went even beyond and constructed

Markov Chains between users’ points of interest (i.e., particular locations the user

spends a lot of time in) in order to discriminate users and to be able to assign

anonymous traces to the correct users. Those attacks do not fully lighten the risk of

re-identification since the characteristics these methods are built on (home, work or

points of interest in general) could be hidden (e.g., by avoiding to share co-located

points [83]). One might think that discriminative characteristics of mobility traces

could be hidden easily but we argue that this is not the case. Hence, the first

challenge of this thesis.

Challenge 1: What are the vulnerabilities of mobility data and protection mecha-

nisms facing re-identification?

Also, those methods generally need a certain amount of mobility data. If the

re-identification of anonymous traces is solely based on the recognition of the user

home or workplace, does a mobility trace that does not contain these important

locations always protected against re-identification? We argue that this not the case.

We also argue that short traces that are not able to produce profiles such as the

Mobility Markov Chain are not insensitive to re-identification.

Challenge 2: How sensitive are short mobility traces against re-identification

attacks?
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1.4 Countermeasures: Location Privacy Pro-

tection Mechanisms

In order to protect users’ privacy beyond simple anonymization, several protection

mechanisms called Location Privacy Protection Mechanisms (LPPMs), have been

proposed in the literature. The role of an LPPM is to apply data transformations

to raw mobility data in order to enforce privacy guarantees to the users. These

guarantees can be either well known theoretical properties, such as differential

privacy [22] which bounds the knowledge an attacker may acquire when having access

to the data or k-anonymity [91] which ensures that locations (or traces) are co-located

in groups of at least k users. LPPMs can also use more practical techniques that

either hide sensitive information (e.g., erasing points of interest with Promesse [83])

or represent countermeasures to particular attacks [63].

To reach these objectives LPPMs operate on raw mobility data at various levels

of granularity. They may act at the level of individual points (e.g., Geo-I adds noise

to individual geo-located coordinates [4]); they may act on a set of nearby points

(e.g., Promesse removes clusters of points that correspond to user stops [83]); and

they may act at the level of a sub-trace (e.g., W4M enforces k-anonymity by forcing

k user traces to be co-located inside the same cylinder [1]). However, most of the

existing LPPMs do not reason on the users’ mobility as a whole considering multiple

traces over a period of time (macroscopic vision). This limitation opens the door to

powerful user re-identification attacks that try to discriminate users by reasoning on

their overall mobility.

Challenge 3: How to design an effective protection mechanism that reasons on the

user mobility on a macroscopic level?

Another important aspect of privacy preserving mechanisms is the privacy/utility

trade-off [13]. Indeed, often when sharing obfuscated data to the service provider

this results in a loss in the quality of service. For instance, if a user searches for

restaurants nearby, if the location of the user is moved, the distance between her

obfuscated location and her real location would alter the list of restaurants proposed.

Also when sharing data in a crowd-sensing campaign, the precision of the conclusion

made on the data gathered is affected by alteration that the data might go through
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for privacy preservation. For instance, if the city wants to detect the most crowded

places in its city but the users do not report their location in particular places, the

conclusions made by the city might be altered. Thus, it is essential when designing

an LPPM to evaluate its effects on the utility of the data. A protection mechanism

can always scramble the data and get 100% privacy but with 0% utility. This is why

privacy gains or guarantees are always relative to the utility still offered by the data.

Challenge 4: How to protect a user against re-identification attacks while main-

taining the data utility?

1.5 Summary of Contributions

The thesis’s contributions are in two folds: (1) Stress current systems and find

vulnerabilities. (2) Design countermeasures to the vulnerabilities found while taking

into consideration the utility of the data. In this thesis, we first focus on designing

attacks that are able to prove that mobility data is putting users at risk and

that are able to show that current systems are not able to protect against re-

identification attacks. From the vulnerabilities found, we designed a method based

on the modification of the user behavior that protects mobility data for crowd-sensing

campaigns or open data initiatives. We describe in this section the contributions

of the thesis and the following chapters will go deeper into each contribution and

present experiments on real mobility data.

(C1) AP-Attack: Constructing a Re-identification Attack with Robust

Profiling of Users based on Heat Maps

We first start by focusing on constructing re-identification attacks. Considering an

obfuscated mobility dataset and a set of user profiles learned from users past mobility,

a user re-identification attack tries to re-associate a portion of the obfuscated data to

its originating user (its identity). Attacks of the literature construct profiles based

on points of interest that are easily hidden from adversaries. This is why in order to

find vulnerabilities of systems (i.e., sensitivity to re-identification attacks), we first

propose in this thesis AP-Attack (All Points Attack) a novel attack in which a user

profile is represented by a heat map, a spatial aggregation of a user mobility trace in
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square regions of the map.

We also propose a novel paradigm of re-identification attacks where the attacker

does not consider only one possible identity as an output of a re-identification attack

but rather considers multiple identities depending on a re-identification policy. The

goal of a policy is to have a selection of a small number of identities that need to

be further investigated. The attacker aims at having the smallest set of possible

identities while including the correct identity. In consequence, we propose new ways

to measure the strength of an attacker by considering the set size of possible identities

and the number of false positives.

(C2) HMC: a Utility Constrained LPPM for Crowd-Sourcing and Data

Publishing

Various LPPMs have been proposed in the literature. They either enforce some

formal privacy guarantee (e.g., k-anonymity or differential privacy) or hide sensitive

information (e.g., Promesse hides POIs) but do not explicitly protect against re-

identification attacks. We propose HMC (for Heat Map Confusion), an LPPM that

protects users against re-identification attacks by reasoning on their mobility as a

whole, captured using heat maps. Specifically, in order to protect a mobility trace,

HMC first uses background mobility traces of multiple users and aggregates their

mobility into a single heat map per user. Then, HMC alters the mobility trace’s heat

map by making it look similar to the heat map of another user. To limit the decrease

in data utility, HMC uses the heat map of the closest user as a basis for performing

the alteration. Finally, HMC transforms back the altered heat map to a mobility

traces by trying to retain as much as possible the original trace unchanged. The result

is a protected mobility trace on which an attacker that runs user re-identification

attacks fail in distinguishing between users.

(C3) ILL-Attack: Re-identification on Short Traces using Multi-Trace

Learning rather than Profiling

We argue that evaluating the risk of re-identification when sharing data is important

for the design of strong privacy preserving mechanisms. In this chapter, we propose
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ILL-Attack a new re-identification attack that detects the vulnerabilities of re-

identification for traces that are less sensitive to profile-based attacks. Indeed,

ILL-Attack apprehends differently re-identification. it does not use mobility data

to construct user profiles. Since this type of profiles demands large mobility traces

to be applied. However, for shorter mobility traces (in the order of minutes or few

hours), the attacker learns from multiple short behaviors in order to be able to

recognize them at re-identification. ILL-Attack uses Extremely Randomized Trees to

learn users’ identity based on their mobility. This attack instantiates a new model

of re-identification that divides the mobility traces into multiple shorter mobility

traces to learn different behaviors of users in order to be able to re-identify in various

scenarios. Its strength is that it can be applied to use cases of smaller length.

(C4) Hybrid-LPPM : A User-Centric Fine-Grained Multi-LPPM

After analyzing the results of re-identification attacks more thoroughly, we notice

that users are affected differently by the LPPMs and that even portions of mobility

data of the same user are not equally protected by the same LPPM. We propose

to consider the particularity of each behavior of the user and design LPPMs that

change their obfuscation depending on the sub-trace. This is why, we propose to

make use of off-the-shelf state-of-the-art LPPMs and apply the best one for each

sub-trace.

We propose Hybrid-LPPM that operates in a crowd-sensing application where

the user goes through a privacy proxy each time it needs to send a mobility trace to

the analyst. The privacy proxy is first responsible for hiding the ID of the user and

hiding the source of the data. Also, it uses background knowledge sent by different

users to choose the best LPPM to apply for this particular sub-trace. It also operates

in a data publishing scenario, the publisher should then use Hybrid-LPPM instead

of experimenting on each LPPM individually.

The best LPPM is chosen using two criteria: (1) Privacy: we choose the set of

LPPMs that protect the most against a set of re-identification attacks trained with

the gathered background knowledge. (2) Utility: from those LPPMs, we select the

one with the best utility according to a chosen metric (we evaluate how much the

data has been distorted).
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1.6 Thesis’s Results

1.6.1 Publications

International Journals

• Mohamed Maouche, Sonia Ben Mokhtar, and Sara Bouchenak. HMC: robust

privacy protection of mobility data against multiple re-identification attacks.

IMWUT, 2(3):124:1–124:25, 2018. doi: 10.1145/3264934. URL https://hal.

archives-ouvertes.fr/hal-01954041/document [Presented at Ubicomp 2018]

International Conferences

• Mohamed Maouche, Sonia Ben Mokhtar, and Sara Bouchenak. Ap-attack:

A novel user re-identification attack on mobility datasets. In Proceedings of

the 14th EAI International Conference on Mobile and Ubiquitous Systems:

Computing, Networking and Services, Melbourne, Australia, November 7-10,

2017., pages 48–57, 2017. doi: 10.1145/3144457.3144494. URL https://hal.

archives-ouvertes.fr/hal-01785155/document

• Vincent Primault, Mohamed Maouche, Antoine Boutet, Sonia Ben Mokhtar,

Sara Bouchenak, and Lionel Brunie. ACCIO: how to make location privacy

experimentation open and easy. In 38th IEEE International Conference on

Distributed Computing Systems, ICDCS 2018, Vienna, Austria, July 2-6, 2018,

pages 896–906, 2018. doi: 10.1109/ICDCS.2018.00091. URL https://hal.

archives-ouvertes.fr/hal-01784557v2/document

National Conferences and Workshops

Those conferences have peer reviews but no proceedings.

• Mohamed Maouche, Sonia Ben Mokhtar, Sara Bouchenak. Attaques de ré-

identification des utilisateurs à partir de leurs traces de mobilité. Compas
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2017

• Mohamed Maouche, Sonia Ben Mokhtar, Sara Bouchenak. HMC : Préservation

de la vie privée des utilisateurs sur les données de mobilité par la protection

contre les attaques de ré-identification. Compas2018

• Jugurta Ikherbane, Mohamed Maouche, Sonia Ben Mokhtar, Sara Bouchenak.

Calcul multiparti et sécurisé basé sur un environnement d’exécution sécurisée.

Compas 2018

• Mohamed Maouche, Sonia Ben Mokhtar, Sara Bouchenak. SFERA: Assessing

Location Privacy with Re-Identification Attacks. APVP 2017

• Vincent Primault, Mohamed Maouche, Antoine Boutet, Sonia Ben Mokhtar,

Sara Bouchenak, Lionel Brunie. How to Make Privacy Experimentation Open

and Easy? APVP 2018

• Besma Khalfoun, Mohamed Maouche, Sonia Ben Mokhtar, Sara Bouchenak:

MooD: MObility Data Privacy as Orphan Disease. Compas 2019

Ongoing Submissions

• [Accepted] Besma Khalfoun, Mohamed Maouche, Sonia Ben Mokhtar, Sara

Bouchenak: MooD: MObility DataPrivacy as Orphan Disease. Middleware

2019.

• [To Submit] Mohamed Maouche, Sonia Ben Mokhtar, Sara Bouchenak: ILL-

Attack: Mobile User Re-identification Using Extremely Randomized Trees.

• [Review Pending] Mohamed Maouche, Sonia Ben Mokhtar, Sara Bouchenak:

User Re-identification Attacks On MobilityData: Towards a Multi-Policy

Approach. IEEE TDSC.

1.6.2 Developed Software

• SFERA: A toolkit to experiment on re-identification attacks on mobility traces.

https://github.com/mmaouche-insa/SFERA
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• HMC: A toolkit to test the Location Privacy Protection Mechanism HMC.

https://github.com/mmaouche-insa/HMC

• ILL-Attack: A toolkit to test ILL-Attack.

https://github.com/mmaouche-insa/ILL-Attack.

• Participation in Accio (main contributor is Vincent Primault): A scientific

workflow management tool used to study location privacy.

https://privamov.github.io/accio/

1.6.3 Communications

The list of communications is listed in Table 1.1.

Table 1.1: List of communications during the thesis

Event Data Location Title

Ubicomp’18 October 10, 2018 Singapore
HMC: Robust Privacy Protection of Mobility Data

Against Multiple Re-Identification Attacks

Compas’18 July 5, 2018 Toulouse, France

HMC: Privacy Protection of Mobility Data

Against Multiple Re-Identification Attacks

Using Macro-Mobility

IRIXYS Workshop June 25, 2018 Gargnano, Italy

HMC: Privacy Protection of Mobility Data

Against Multiple Re-Identification Attacks

Using Macro-Mobility

Workshop Security

Franco-Americain
December 11, 2017 Lyon, France

Protecting Users Against Re-identification

Attacks Using Heat Map Alteration

IRIXYS Workshop November 30, 2017 Hendaye, France
Protecting Users Against Re-identification

Attacks Using Heat Map Alteration

MobiQuitous’17 November 10, 2017 Melbourne, Australia
A novel AP-Attack Users Re-Identification

Attack on Mobility Datasets

IRIXYS Summer

School
July 21, 2017 Chiemsee, Germany

SFERA: Assessing Location Privacy

with Re-identification Attacks

Compas’17 June 28, 2017 Sophia Antipolis, France
SFERA: Assessing Location Privacy

with Re-Identification Attacks

APVP’17 June 19, 2017 Autrans, France
SFERA: Assessing Location Privacy

with Re-identification Attacks

LIRIS Security

Workshop
May 30, 2017 Lyon, France

Assessing Location Privacy

with Re-identification Attacks

GDR RSD ASF

Winter School
March 9, 2017 Pleynet, France

Quantifying Location Privacy

Using Re-identification Attacks

IRIXYS Workshop November 1, 2016 Lyon, France
Quantifying Location Privacy

Using Re-identification Attacks
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1.7 Structure of the Thesis

The thesis is structured as follows. First, in Chapter 2, we present a state of the

art on location privacy. We discuss privacy threats with more examples and we

review the literature on LPPMs. Then in Chapter 3, we present AP-Attack a novel

re-identification attack that uses heat maps to profile users and we present a general

modeling for re-identification attacks and how to measure their effectiveness. HMC

a novel LPPM designed against re-identification attacks in crowd-sensing scenarios

is presented in Chapter 4. In Chapter 5, we introduce a more effective method to

re-identify short traces with ILL-Attack based on learning short behaviors of users.

And in Chapter 6, we present a method to make use of off-the-shelf state-of-the-art

LPPMs to protect against re-identification attacks with high utility. Finally, the

thesis is concluded in Chapter 7.
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2.1 Mobility Data and Privacy Threats

2.1.1 Mobility Data in Diverse Form

With no loss of generality, we consider all the possible locations as a metric space Λ
and all the possible timestamps as a totally ordered set T. A record is an element

of Λ×T and a mobility trace is a sequence of records. Thus, the set of all possible

mobility traces is the free monöıde (Λ× T)∗. Hence, we can make use of operations

such as the concatenation of two traces and the extraction of sub-traces (similar to

the operations on strings and sub-strings). Each mobility data (record or trace) is

associated to one single user.

Mainly in this thesis, we consider Λ as the set of locations in the Mercator1

projection of the earth and the timestamps as the POSIX timestamps2. To simplify,

we consider a record as an element of (R2 × R+). We could consider different sets

of locations such as the set of cell towers or WI-FI hot-spots in a city but since the

GPS representation can contain their location and all the regions they cover, we

favor the Mercator representation.

2.1.2 Threats on Mobility Data

Various threats affect mobility data. In the work of Wernke et al. [100], the au-

thors classify attacks according to the attacker’s knowledge: (1) Whether the at-

tacker has access to one record or multiple records (time constraint). (2) Whether

the attacker has access to only the location data or other contextual information.

They also pinpoint the target of the attacks such as the attributes in the record

(identity, location, time). For instance, the attacker can search for the identity of the

user (identity attacks), find the exact location of a user from an obfuscated location

(location attacks) and the time can be used to derive information from the location

such as the speed of the user or the absence of a user from her home in certain

periods of time.

1http://mathworld.wolfram.com/MercatorProjection.html
2https://en.wikipedia.org/wiki/Unix time
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Figure 2.1: Inference of sensitive information and social relationships between users

Differently, in the work of Primault et al. [81], the authors categorize four threats

according to the objective of the attacker. We illustrate these threats in Figure 2.1-2.3

and here is a description for each one of them.

Inference of Sensitive Information

Using mobility data an adversary can infer sensitive information about users. With

the help of particular locations called Points of Interest (POIs) where the user

spends a lot of time. Those places can be extracted easily from a mobility trace

using clustering algorithms [107, 44]. Then, with those points, the attacker can use

applications such as Facebook Places [23] or Google Places [36] to have the exact

address, the opening hours and also the type of establishment the user visits. With

this information, the attacker can infer sensitive information about the user, such as

the user’s home or workplace. Also, her religion if she visits worship places, sexual

orientation if she visits particular bars or clubs. The attacker can infer the health

status of the user if she goes through hospitals or medical facilities. In Figure 2.1,

we represent the mobility of two users. From this figure, we can infer for instance

user A’s workplace and home.

In the work of [53], they managed to develop a system that labels places into

14 categories (e.g., home, work, transportation, place of worship, shopping, other’s

home. . . ) using machine learning. Also, Huguenin et al. [47] managed to label
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Figure 2.2: Threat of mobility prediction Illustrated with a Mobility Markov Chain

check-ins into 13 categories of motivation and moods of users using machine learning

(e.g., ”Inform about location”, ”Recommend it”, ”Appear cool/interesting”, ”Wish

people to join me”. . . ). In addition to the presence of a user in certain locations, the

absence of records in particular times can also put the user at risk. For instance, some

Redditors 3 managed to extract the Muslim cab drivers from a mobility dataset [26].

Inference of Social Relationship

Using the mobility traces of multiple users, an attacker could infer relationships

between users (if they visit a location at the same time). As depicted in Figure 2.1,

where a home is shared by two users, a family relationship could be inferred. For

instance in the work of Bilogrevic et al. [7], the authors managed to classify rela-

tionships between students (classmates or friends) using WI-FI access points. In the

work of Wang et al. [98], they also infer social relationships using access-points and

classify relationships into 9 categories (friends, family, neighbors, colleagues. . . ).

Mobility Prediction

In these threats, adversaries aim at predicting future mobility of users using their

past mobility. Different techniques were used, for instance, in the work of Noulas

et al. [74] where they predict future check-ins using machine learning with features

such as the venue’s popularity, the venues’ categories, the transitions between venues

3Users of a discussion website called Reddit (www.reddit.com)
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and also temporal aspects. Similarly, in the work of Gambs et al. [29], they also

considered the transition between locations and temporal aspects, they modeled

mobility traces into Mobility Markov Chains and they used them to predict user

future locations. As depicted in Figure 2.2, we have the probabilities to moving for

one POI to another. In the work of Sadilek and Krumm [89], they used principal

component analysis (PCA) and Fourier transformation to extract mobility pattern

in order to predict mobility in a far-future (month or years).

Re-identification

Re-identification is the process of finding an identity to data that has been anonymized

(identity hidden). This type of threat is the main focus of this thesis and it will be

largely studied throughout the next section and the next chapters.

2.2 Re-identification Attacks

In this section, we describe the threat of re-identification. This threat does not

only exist in the context of location privacy, on the contrary, multiple types of data

are at risk. We can find for instance equivalent attacks in Web Privacy [79, 97],

Smart Homes Privacy [11, 24], Medical data [85, 49], Social Networks [42, 45] and

even developers using their source code or binaries [99, 12]. A groundbreaking work

in the theme of re-identification is the work of Narayanan and Shmatikov [71] on

the Netflix Prize dataset, where they managed to match users from the anonymous

Netflix dataset (containing movie ratings per user) to their public profile on another

website IMDB.

The term ”Re-identification” is composed of the noun ”identification” which means

that we distinguish an entity from others (e.g., by assigning an identifier to this

entity) and the prefix ”Re” which means ”again”, in the sense that we assign again the

identifier to the entity. This means that the entity was identified but the identification

was lost and we aim at assigning again its identity. The term ”De-anonymization” can

also be used, it means that re-identification is the counteraction of anonymizing data.

Another term that is found in the literature is the term ”linkability” that describes
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Figure 2.3: Illustration of re-identification attacks

the ability of data to be linked to other data. This corresponds to the capacity of an

adversary to match anonymous data to a known version of it in order to identify it.

In Figure 2.3, we depict the real mobility of users in Beijing (user A, B and C), we

show an anonymous trace of one of the users. We notice that the anonymous trace

share a lot more features with the past trace of the user C. Then, a re-identification

attack would probably identify the anonymous trace as the trace of user C (it is in

fact a trace of user C).

It is important also to talk about the term ”Uniqueness” that is often misused in

re-identification. This characterizes the property of data to be unique and thus to be

”identifiable” among others. In other words, we can measure the uniqueness of a set

of entities if we can find characteristics that are not shared with other entities of the

dataset. While re-identification aims not only as distinguishing between entities but

also to link an anonymous entity to another previous knowledge (a set of previously

known identities). Studying the uniqueness of data is essential for the study of

re-identification because data that is not intrinsically unique cannot be re-identified.

For instance, in the famous work of De Montjoye et al. [20], they have studied months

of human mobility of one and a half million individuals and they found that four

GPS records are enough to uniquely identify 95% of the trace within the dataset. In

uniqueness, we associate the entities of the data within the dataset itself, while in
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re-identification as it is shown in this thesis, we aim at linking data from separate

datasets.

Formally in Equation 2.1, we define re-identification as a function that takes as

input an element of an anonymous set A of entities and that founds its match from

the set of known entities K such as ∀v ∈ K, the identity of v is known (noted ID(v)).

A : A → K
x 7→ A(x) = v

(2.1)

2.2.1 Re-identification Attacks on Mobility Data

The work of De Montjoye et al. [20] on the uniqueness of mobility data have shown

that mobility of users acts as a fingerprint and thus it can be used to re-identify

users. Krumm [52] looked at user de-anonymization by finding users’ home addresses,

they were able to find users’ homes by a median error of 60 meters but the white

pages system they used was not effective enough to find users’ real identity. In the

work of Mulder et al. [68], they use GSM data to profile users by constructing a

Markov Chain between cell towers. In order to re-identify an anonymous trace, they

search for the user u with the Markov Chain (i.e., the transition probability matrix

P (u)
x,y ) that models the best the successive cell tower records of the mobility trace

(ci)ni=1 with the formula
∑n
i=2 logP (u)

ci−1,ci
. In the work of Gambs et al. [30], they also

use Markov Chains but between POIs (extracted from GPS mobility data). They

match between anonymous traces and known users using the similarity between

their respective Markov Chains. In the work of Primault et al. [82], they use POIs

exclusively to re-identify users, they use a median distance between all pairs of POIs

between anonymous and known traces. In this thesis, we propose a general model

for this type of attacks that is presented in the next chapter (Section 3.1)

Other types of attacks that use a different paradigm than the train/test paradigm

exist. Ma et al. [56] studied a type of re-identification where the anonymous traces

are intercalated between the records of the known traces. Naini et al. [70] used a map

grid to compare between users on a closed system and tried using a bipartite graph

matching to associate traces to find identities. Some works such as Srivatsa and

Hicks [94] used social network data as a side-channel to re-identify users. Specifically,
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they used a contact graph identifying meetings between users extracted from a set

of traces and then used a correlation with a social network graph to match users

mobility with their social network account.

2.3 Location Privacy Protection Mechanisms

In order to mitigate location privacy threats, Location Privacy Protection Mechanisms

(LPPMs) have been introduced in the literature. LPPMs operate alterations on raw

mobility data in order to preserve user privacy. LPPMs can be applied either record

by record or on the whole mobility trace. More formally, we define a protection

mechanism L in Equation 2.2, it takes as input a mobility trace T and a set of

parameters Υ and produces an obfuscated version of the mobility trace as an output.

L : (R2 × R+)∗ → (R2 × R+)∗

T 7→ L(T,Υ) = T ′
(2.2)

If an LPPM alters mobility data record by record, we consider its alteration of the

whole mobility trace as the alteration of all the records individually. This inverse is

rarely true. An LPPM that alters a sequence of records does not correspond to its

application on each record individually.

2.3.1 LPPMs Objectives

LPPMs alter mobility data in order to preserve user ”privacy”. The notion of privacy

is quite abstract and can be applied in a broad way. From the review of the literature,

we notice that LPPMs aim at preserving privacy by using three approaches that are

not mutually exclusive.

Enforce Formal Guarantees

These approaches aim at enforcing properties on the data to increase the privacy

preservation of the user. Two main concepts are found in the literature, they are

extensions of concepts from the database privacy community.
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k-anonymity is a property that was introduced by Samarati and Sweeney [90]

and further described in Sweeney [96], a database satisfies this property if for every

every subset of quasi-identifier attributes, it exists at least k entries in the database.

Quasi-identifiers are special attributes that permit an attacker to link an entry on

different datasets. This property can be easily generalized for the protection of

location records where coordinates and time can be considered as attributes and

by constructing cloaking areas (further presented in Section 2.3.3). In the work of

Bettini et al. [6], they defined the property of Historical k-anonymity enforceable

on mobility traces. Machanavajjhala et al. [57] proposed l-diversity an extension

of k-anonymity, where in addition to ensuring the anonymity of the entries in a

database, it ensures that sensitive attributes have at least l well represented different

values for each set of quasi-identifier attributes. It was also considered in location

privacy with location diversity of Xue et al. [104] where they enforce the semantic

diversity of locations inside cloaking regions.

Differential Privacy ensures that the result of an aggregate query over a table

should not be significantly affected by the presence or absence of one single element

of this table [22]. More formally, A randomized mechanism K that answers queries

on a dataset D satisfies ε-differential privacy if for all datasets D1 and D2 differing

on at most one element and for all subsets of outputs S ⊆ Range(K) the property of

Equation 2.3 is satisfied.

P [K(D1) ∈ S] ≤ eεP [K(D2) ∈ S] (2.3)

As we can see from this formula, differential privacy ensures a bound on what the

adversary may learn about an individual in the dataset by knowing the result of the

query. This property has been extended to mobility data with Geo-Indistinguishably

(Geo-I) [4]. If we consider an obfuscation technique that upon receiving a location

x outputs a location y with probability kxy and considering a distance d between

locations, then the mechanism K associated to the probabilities kab satisfies ε-geo-

indistinguishably if for any locations x, y, z the property of Equation 2.4 is satisfied.

kxy
kzy
≤ eεd(x,z) (2.4)

From this formula, we can see that for an adversary x is not distinguishable

from any other location z within a radius d(x, z). The distinction between x and z
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increases with the increase of εd(x, z). In other words, the closer we get to the real

location x the less information we have. For instance, an attacker may know that

the user is in Lyon rather than Bruxelles and have more confidence that the user

is in the Confluence district rather than being in Croix-Rousse but the adversary

cannot know the exact location of the user. Thus making this property strong against

Location attacks. In practice, adding a two dimensional Laplacian noise to the data

is sufficient to enforce Geo-Indistinguishably on a record.

Hiding Sensitive Information

Some LPPMs alter data to hide sensitive information about the user. For instance,

Promesse of Primault et al. [83] erases POIs with a time-distortion and a speed

smoothing technique. In other LPPMs, they avoid sharing particular sensitive

information such as in SRide [3] where origin and destination of ride-shares are

encrypted to hide them from the service provider and the compatibility between

clients and drivers is computed with the help of homomorphic encryption and secure

multi-party computation. In the work of Xu and Cai [103], the user specifies public

regions where she would feel comfortable to be reported in. In the work of Riboni

and Bettini [86] before publishing a dataset of check-ins, they first filter check-ins

that are in regions where the user did too many check-ins since it may be a sensitive

region for the user.

Counter-Attack

Some LPPMs protect users against particular attacks or particular categories of

attacks. For instance, with Geo-Indistinguishably the user bounds the quality of

location attacks, when enforcing k-anonymity it bounds the probability of linking

one correct to its user to a probability of k−1. If you erase POIs you ensure that

an attacker cannot find easily the place visited by the user and hence you limit the

personal sensitive knowledge an attacker can have. Cryptography can also be a

strong tool in these types of protection. For instance, in the work of Mascetti et al.

[63], they propose to use cryptography to find nearby friends without disclosing the

users’ locations.
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Table 2.1: A Comparative between different use case scenarios of LPPMs

Characteristics
Scenario

Online Semi-online Offline

Usage
Location-based

Service

Crowd-Sensing

and Data Publishing

Crowd-Sensing

and Data Publishing

Applicable on Individual

Records (Real-time)
By Definition Possible

Possible

but not useful

Applicable on a

Sequence of Records
Incompatible Possible Possible

Trust
Trust the

Service Provider

Can rely on a

Privacy Proxy

Trust the Data

Publisher

Cohesive

Users
Through P2P

Through the

Privacy Proxy

Complete Knowledge

of All Users

future records. In the offline scenario there are no constraints on the LPPM, it can

alter a whole mobility trace and even consider the interaction between users. This

is why, we introduce the semi-online scenario, an intermediate scenario where the

LPPM can consider a batch of records and may delay its alteration to receive data

of other users without knowing fully all data that would be received further from

all the users (including the user currently being protected by the LPPM). Hence, it

also modifies the usage of those LPPMs, an online scenario is adapted to a use case

where the user needs to protect her individual records one by one before sending it

to a location-based service, while, in use cases where multiple records need to be

protected as a group, the user might need more of an offline or semi-online scenario.

The LPPMs also differ on whether or how the users interact with each other. In a

offline scenario, we can consider a full user interaction while for an online scenario

if the user needs to interact outside of the location server surveillance they need to

either use a P2P network linking them or trust a third party such as a privacy proxy

(semi-online).

With regards to the design of LPPMs, it is important to notice that the constraints

are incremental with the order: offline (fewer constraints) → semi-online → online.

While with regards to the usage the order is inverted, every LPPM that is applicable

the online scenario can be applied in the semi-online and offline scenario and every
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Generalization-based

In this alteration methods, instead of sending the exact location of a record, the

LPPMs send a region surrounding the location. Which means that the location is less

precise but still correct. This region can either be represented by a well-established

sub-division of the map (e.g., street, neighborhood, city, area code . . . ) or by some

kind of ad-hoc region generated by the LPPM. The LPPM can either send the

boundaries of the zone or one coordinate that represents the zone (the center of

the zone for example). In Figure 2.5a, we show the records of three users being

obfuscated, the LPPMs would send for the users the location Rc instead of the GPS

coordinates. These methods have been successfully used to enforce k-anonymity by

creating cloaking areas (introduced by Gruteser and Grunwald [40]) in which at least

k users are present. For instance, Gedik and Liu [31] propose Clique Cloak a method

where a trusted proxy coordinates different users by delaying queries in order to

enforce k-anonymity and sends cloaking areas. Mokbel et al. [67] proposed Casper

an enhancement of this method that is scalable to arbitrary levels of k and that uses

randomization in order to prevent the reverse engineering of the cloaking areas. The

authors even proposed a P2P version [18]. An interesting work is a ”feeling-based”

method of Xu and Cai [103], the user specifies public regions where she would feel

comfortable to be reported, which is more expressive for users since they do not need

to apprehend formal privacy concepts such as k-anonymity. Most of the methods

presented until now are online or semi-online methods, they mostly reason on records

alone. Some work considers full mobility traces such as Gramaglia and Fiore [38]

with Glove, they use a similarity metric between trajectories to merge traces with

generalization zones to provide k-anonymity. Gramaglia et al. [39] also proposed

kτ,ε-anonymity an extension of k-anonymity that includes temporal information.

This privacy constraint considers an attacker that may have access to a previous

mobility of the users during a period of time of at most τ and it allows the attacker

to eavesdrop on the user for a period of time of at most ε.

These methods allow users to hide their precise location but unfortunately it is

not enough to hide the discriminative patterns of users. A user might always be

surrounded by other users but few users would actually follow her around the multiple

regions she visits and the combination of different regions visited discriminates the

user and makes her vulnerable to re-identification. Also, if those methods aim at
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enforcing k-anonymity, they need to be applied in systems and applications where a

huge amount of users is active. It cannot be applied for crowd-sensing campaigns

where users might find themselves alone. Since the cloaking areas, in this case, would

be huge and thus providing no use for the analyst.

Perturbation-based

In this alteration methods, the mobility data is perturbed in the sense that for a

given record r = (x, y, t) the record is either erased or moved. The perturbation can

be either in space or in time (i.e., r′ = (x + ∆x, y + ∆y, t + ∆t)). As depicted in

Figure 2.5b, we show a record being obfuscated by a perturbation method. This type

of alteration is useful to protect users against location attacks that aim at finding

the user exact location. The perturbed record is still useful for multiple applications

where it is not necessary to have access to the precise location of the user but a close

record is enough (for instance finding surrounding POIs). When the noise added to

a record is calibrated it can become the basis of methods that enforces some formal

guarantees such as differential privacy [22].

For instance, Andrés et al. [4] proposed an adaptation of differential privacy to

location data with Geo-Indistinguishably (Geo-I for short). By adding 2-dimensional

Laplacian noise to a mobility record x it ensures that the produced record y is ε-Geo-

indistinguishable. This means that for every possible location z, the probability of x

being the real location is bounded by the distance between z and x. As summarized

in the overview of Chatzikokolakis et al. [17], if a protection mechanism has a

probability kxy of producing y from a real location x then for any location z this

following property is verified kxy ≤ kzye
εd(x,z). They also proposed an extension called

”elastic distinguishability” [16] that manages the noise differently depending on the

area where the users have been obfuscated, they consider that a location is better

protected in an area with a high ”privacy mass”, which means that the area is rich in

venues, for their experiment they used the POI data of Open Street Map data [62]

to evaluate this privacy mass.

An important issue in the management of the noise is the management of the ε

budget, Geo-I as differential privacy is composable, meaning that applying n times ε-

Geo-I on records will result in a nε-Geo-I protection (higher the ε worse is the privacy).
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In order to mitigate this issue, Chatzikokolakis et al. [15] proposed a solution that

does not systematically add noise to each location. It rather simulates the results

of a location attack based on the previously reported location and depending on

its success outputs either the prediction in case of success or the real location with

noise which decreases the privacy budget. The solution presented previously apply

transformations to the data without considering previously reported location, Xiao

and Xiong [101] [102] proposed a mechanism that considers a convex hull of the most

probable locations at each timestamp and they use a Hidden Markov Chain to model

time correlation to enforce a temporal aware differential privacy property.

The methods presented above are mainly applied in online or semi-online scenarios.

Other methods have also been proposed to publish datasets in an offline scenario.

For instance, Mir et al. [65] proposed a method to generate synthetic CDRs (call

detail records) with differential privacy called DP-WHERE (a differentially private

extension of WHERE [48]). They start by building a model on real CDRs data by

computing several histograms and then they add noise to each of them to achieve

differential privacy. The synthetic CDR can be generated by using the obfuscated

histograms.

Perturbation methods that are applied on records independently are intrinsically

useful against location attacks. But if the alteration does not consider the correlation

between records and the patterns of the mobility then they can be ineffective against

re-identification attacks as this will be shown in the following chapters.

Dummy-based

In this category, an LPPM adds fake data alongside the correct one or in place of

the correct one to confuse the attacker. The added dummies can either have the

same IDs as the user that the LPPM protects or can be a new dummy user created

by the LPPM. In Figure 2.5c, we show a user that reports three different locations

to a navigation service without sending the correct one. The first works that used

dummy-based methods were simplistic by generating endpoints and producing fake

mobility trace between them with random speeds or rotating real trajectories such

as in You et al. [105]. In the work of Kato et al. [50], they generate fake mobility

traces that considers users’ stops and adds intersections between users to increase
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the confusion. Shankar et al. [93] proposed SybilQuery an LPPM that generates fake

trips suited for navigation applications. It creates fake trips that start and end in

different locations but those fake trips maintain properties of the real trip such as

the length and the semantics of the area of the endpoint. Bindschaedler and Shokri

[8] proposed a synthetic trace generator that uses sample traces of a real mobility

dataset as a seed for the generation of the synthetic dataset. This dataset is supposed

to resemble human mobility and have statistical features similar to the one of the

real traces without leaking significant information about any particular individual

whose data is used in the synthesis process. In Huang et al. [46], each record is

transformed into three random records in a region surrounding the correct one, it

also ensures correct responses from location searching services through trilateration.

An important aspect of dummy-based solutions is their capacity to produce

realistic data. For instance, in the work of Peddinti and Saxena [77], they managed

to construct an attack that is able to find the fake queries. With a value of k = 5 (i.e.,

4 fake queries per real query) and an attacker that has access to previous mobility

data, they built a machine learning model that is able to find 93.67% of the real

trips (true positive rate) with a false positive rate of 2.02%. If the attacker does not

have access to past mobility, they search for correlations between trips at different

iterations to erase improbable trips (using maximum speed limitations) and match

between different successive trips by matching previous destinations with new sources

by selecting the one with the closest speed compared to the previous trip average

speed. The results show that they manage to obtain a true positive rate of 40%
(twice bigger than the random 20% with k = 5). Another important issue with

the dummy-based methods is that they increase the quantity of data to process.

SybilQuery multiplies the number of requests sent to the LBS by its parameter k, in

the work of Huang et al. [46] each record is replaced by three records which increases

the load on the servers. This type of alteration is also inapplicable in some use cases,

for instance, if an analysis is based on counting the presence of users in one place

the addition of fake users makes the results incorrect.

Mix-zones

An area called mix-zone is designed by the LPPM either statically or dynamically.

In this mix-zone, no user sends data. But when leaving the mix-zone the IDs of the
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users are switched. In Figure 2.5c, we depict three users going through a mix-zone

and their IDs being switched when leaving the mix-zone. It was first introduced by

Beresford and Stajano [5] taking inspiration from the concept of mix-networks in

routing. In addition to the main mechanisms of mix-zones, some authors studied

their optimal placement [27, 55]. Different information can be used to construct the

mix-zones such as POIs for Liu et al. [55], road network and speed for Palanisamy

and Liu [76] or even social networks for Gong et al. [34].

Unfortunately, those methods are mostly applicable in online interactive use cases.

Since, if the traces are gathered to publish a dataset, one real single trace would have

multiple IDs and would be considered as coming for multiple different users, as a

consequence, the use of user-centric analysis on this dataset would be compromised.

Another issue is the number of mix-zones placed in the city. If they are too few

some attacker might still attack the segments where the user does not change the

ID and the trace could also be reassembled using re-identification attacks. On the

contrary,too many mix-zones would result in too few data gathered since data is not

shared when a user is inside a mix-zone.

Protocol-based

This category is not a type of ”alteration” since records are not altered but rather

those LPPMs are protocols specific to an application that are designed to protect the

users’ privacy. Most of the solution of this category make use of either cryptographic

tools or secure multi-party computation principles. For instance, Mascetti et al.

[63] proposed two protocols that find nearby friends by sharing cryptographic keys.

KOI was proposed by Guha et al. [41], it is a protocol that makes use of two non-

colluding servers that share parts of a request through a cryptographic scheme. The

goal is to isolate the three components of a location query (namely the user id,

the location trigger and the message of the query). This changes the paradigm of

how applications should be built moving from a location-response paradigm to an

event-centric paradigm with triggers. Aı̈vodji et al. [3] proposed SRide, a privacy

preserving protocol for ride-sharing systems, they intend to hide sensitive information

from the ride-sharing provider such as the origin and the destination of the rides.

For this purpose, they use homomorphic encryption to find compatible drivers and

they use secure multi-party comparisons to assign scores to the different compatible
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drivers.

Those types of mechanisms are generally the ones that offer the best privacy/utility

trade-off for the intended application but are unusable on other applications. They

also often do not work on legacy systems, they ask for a renewal of the service

provider’s system.

2.3.4 Assessing the Effectiveness of LPPMs (Privacy/Utility

Trade-off)

LPPMs intrinsically aim at optimizing a trade-off between the utility of the data

and the privacy of the users. The utility can be considered in diverse form, it can be

individual utility where the user evaluated the quality of service she will receive or it

can be evaluated as the quality of the conclusions we can extract from all the analysis

of the data. Two ways can be used: (1) service-centric: by evaluating the distortion in

the service (or analysis) before and after obfuscation. (2) data-centric: by evaluating

the distortion directly on the data and see the difference before and after obfuscation.

The latter is more generic since it can be used to apprehend the results of all the

services that need precise data according to the evaluated information. For instance,

if we evaluate a spatial distortion on the data, it is a good indicator for all services

that need precise locations but it does not represent a good indicator for services

where time is important. The service-centric metrics are more specific and thus more

precise for a particular service.

Examples of service-centered utility metrics include the measure of the quality

of venue recommendation in the work of Riboni and Bettini [86]. In the work of

Bindschaedler and Shokri [8], they study how a recommender system profile would

be polluted by the fake queries sent to the service provider. To do so, they compute

the number of distinct semantic classes of surrounding POIs of the user before and

after obfuscation. Examples of utility metrics that compute the distortion in the

data include the computation of spatial distortion in the work of Primault et al. [83],

the authors consider the orthogonal distance between the obfuscated record and the

trajectory of the original trace. In the work of Chatzikokolakis et al. [16], the authors

evaluate the average expected geographical distance between the record and its

obfuscated version. In the work of Gramaglia et al. [39] since they use generalization
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of records they compute the size of the generalization area as a utility measure (time

and spatial). The differences between the areas covered by the mobility traces before

and after obfuscation are measured in the work of Cerf et al. [13].

Considering the privacy evaluation. It corresponds to the evaluation of the

objectives described in Section 2.3.1. (1) If the LPPM enforces a formal guarantee,

its parameter would evaluate the LPPM privacy effectiveness (e.g., k of k-anonymity,

ε of differential privacy). (2) By evaluating what sensitive information the attacker

may gather before and after obfuscation. (3) By evaluating the effectiveness of

attacks before and after obfuscation. For instance, in the work of Cerf et al. [13],

they search for POIs retrieval of an attack from the mobility trace before and after

obfuscation. In the work of Primault et al. [83], they evaluate the effectiveness of a

re-identification attack before and after obfuscation. In the remaining of the thesis,

we define the metrics for both privacy and utility used in every evaluation in its

corresponding section.
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Objectives and Roadmap

In Chapter 1, we presented the outgrowing risk on users’ privacy. More particularly,

we focused on location data being increasingly gathered by service providers and the

threats that this phenomenon opens. We established in Chapter 2 a state of the art

of the threats affecting location privacy with a focus on user re-identification attacks,

which are the main subject of this thesis. We also established a state of the art on

the protection mechanisms (LPPMs) currently available in various forms. We argue

that the threat of user re-identification attack is significant and that we should asses

the effectiveness of LPPMs against these attacks.

In this chapter, we focus on measuring the user re-identification threat. Consid-

ering an obfuscated mobility dataset and a set of user profiles learned from users

past mobility, a user re-identification attack tries to re-associate a portion of the

obfuscated data to its originating user (its identity).

We propose AP-Attack (All Points Attack) a novel attack in which a user profile

is represented by a heat map, a spatial aggregation of a user mobility trace in

square regions of the map. We also propose a novel paradigm of re-identification

attack where the attacker does not consider only one possible identity as an output

of a re-identification attack but rather considers multiple identities depending on

a re-identification policy. The goal of a policy is to have a selection of a small

number of identities that need to be further investigated. More precisely, the attacker

aims at having the smallest set of possible identities while including the correct

identity. In consequence, we propose new ways to measure the strength of an attacker

by considering the set size of possible identities and the number of false positives

identities. In this chapter, we also analyze the effect of the number of users in the

system on the protection mechanisms. We also evaluate the proportion of mobility

an attacker needs in order to properly re-identify users.

The experiments are conducted on four real mobility datasets using three state-

of-the-art LPPMs (i.e., Geo-I [4], Promesse [83] and W4M [1]). The results show

that AP-Attack the attack based on heat map profiling outperforms POI-Attack

and PIT-Attack. The median anonymity set size between LPPMs can vary from

k = 1 to k = 78 depending on the dataset. The comparison between the different
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policies show that a non-systematic method like the threshold-based policy - which

selects a variable number of identities - is able to outperform the theoretical bound

of a systematic method such as the Top-k policy - which systematically selects k

identities - in terms of average precision and average false positive rate.

The work presented in this chapter has been published in MobiQuitous 2017 [59]

and a journal extension is currently in review in IEEE TDSC journal.

Roadmap This chapter is structured as follows. First, we present in Section 3.1, a

model for re-identification attacks. We present the re-identification attack AP-Attack

in Section 3.2. In Section 3.3, we present different user re-identification policies.

Further in Section 3.4, we evaluate AP-Attack and two state-of-the-art attacks of the

literature POI-Attack and PIT-Attack against state-of-the-art LPPMs using four real

datasets. We use the different re-identification policies to assess the effectiveness of

the LPPMs. And we investigate two parameters that might affect the re-identification

(the number of user in the system and the proportion of mobility trace eavesdropped).

We conclude this chapter in Section 3.5.

3.1 Modeling Re-Identification Attacks

Let U = {U1, U2, . . . , UN} be the set of users in the system. The first phase of

a re-identification attack is the training phase in which the adversary builds a

knowledge base about the users in the system. In real systems, this phase may

correspond to a period of time where users were using a geo-located service without

protecting their mobility data. This phase is depicted in the left part of Figure 3.1.

Specifically, we assume that for each user Ui, the adversary has access to a set

of mobility traces corresponding to her past mobility, i.e., KDi (which stands for

Known user Data). And the set of all mobility traces known by the adversary is

noted KD = {KD1,KD2, . . . ,KDn}. From each of these traces KDi, we assume that

the adversary builds a user profile P(KDi) that characterizes the user mobility as

depicted in the left part of Figure 3.1. This profile is specific to each re-identification

attack as further discussed in Section 3.4.1.
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Figure 3.1: Re-identification attacks process from collecting phase to re-identification

phase

The second phase of a re-identification attack is depicted in the right part of

Figure 3.1. In this phase, we assume that the adversary obtains an anonymous trace T

and then builds a profile P(T ) with a similar structure as the one of the set of known

profiles P. Then, the attacker computes a similarity measure between the profile

P(T ) and each profile of Pi ∈ P, i.e., s(P(T ), Pi). Using this similarity measure,

the attacker estimates (see Equation 3.1) the probability that the anonymous trace

originates from a user Ui (i.e., P [ID(T ) = Ui |KD ]).

p̂(T, Ui) = P̂ [ID(T ) = Ui |KD ]

= s(P(T ), Pi)∑
Pk∈P

s(P(T ), Pk)
(3.1)

Finally, as defined in Equation 3.2, the re-identification attack A outputs the list

of candidates depending on its decision policy (Section 3.3)

A : UD → Ul

T 7→ A(T,KD) = (Ui1 , . . . , Uil)
(3.2)

In addition to the way user profiles are modeled, another key element for the

success of a re-identification attack is the similarity metric used to compare anonymous

data with known user profiles.
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Figure 3.2: From mobility trace to heat map

3.2 AP-Attack Design Principles

We present in this section AP-Attack (All Points Attack) a novel re-identification

attack that uses the whole user mobility data to form user profiles. Specifically,

instead of focusing on a sub-set of points (e.g., those constituting POIs), AP-Attack

aggregates all the points enclosed in a user mobility trace into a heat map structure.

More precisely, as shown in Figure 3.2, the map is subdivided into a grid with cells

of the same size. Then, in each cell, the number of records found in it is computed.

As such, each cell will reflect the intensity of user movement in the corresponding

geographical zone. This allows distinguishing between extremely, moderately, slightly

frequented cells and unfrequented cells for each user. Thereby, PAP (KDi) returns

a probability distribution where each value PAP (KDi)(k) represents the probability

that the owner of the trace Ui goes through the cell k. In order to be able to take

into consideration the whole world map, the representation of each heat map is a

mapping between unique cells that the user passed by and their probability. This

way, each user would have a different sized map adapted to how wide her mobility

was. This can also be seen as a sparse matrix.

Furthermore, we translate the distance between two profiles with the distance

between two probability distributions. To compute this distance we can rely on

classical distance metrics between probability distributions such as the ones surveyed

in [14]. With respect to the experiments we did, one of the best metric to choose

from is the Topsoe divergence defined in Equation 3.3. Where X and Y represent

the list of cells in the two heat maps we compare. So Xi is the probability of the user

represented by the heat map X going through the ith cell. This divergence is based

on Shanon’s concept of probabilistic uncertainty or entropy. It is a derived symmetric
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version of the Kullback Leibler divergence [14] which measures the information

deviation. This is adapted to our case since we measure how much a heat map can

be used to characterize the mobility of a user that is represented by another heat

map.

d(X, Y ) =
∑
i

[
Xi ln ( 2Xi

Xi + Yi
) + Yi ln ( 2Yi

Xi + Yi
)
]

(3.3)

Since the model presented in section 3.1 uses similarities rather than distances,

we normalize the result of the distance between 0 and 1 then we compute s ≡ 1− d.

This attack does not take into consideration the POIs only but also mobility as a

whole. Thus, it makes the LPPMs that are based on erasing POIs less effective.

3.3 Re-identification Policies

In the model presented in the previous section, the attack outputs a list of ordered

identities associated with their estimated probabilities of being the correct identity

of the anonymous trace. In this section, we present three policies the attacker can

choose from, to decide which identities to take into consideration. These policies

are: a simple single output policy, a top-k based policy, a threshold-based policy.

For each policy, we propose measures to quantify the strength of the attack and the

quality of its results.

Table 3.1: Example of attack policies

Single output
Top-k Threshold based

User Pr k = 3 α = 0.25

Ui1 0.5

Ui1

Ui1
Ui2
Ui3

Ui1
Ui2

Ui2 0.4
Ui3 0.07
Ui4 0.02
...

...
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3.3.1 Single-Output Policy

In this policy, the attacker outputs one identity that is the most probable one

(Equation 3.4).

A(T,KD) = Ua ∈ U
= arg max

Ui∈U
p̂(T, Ui)

(3.4)

Using this policy, we can measure the accuracy of an attack using the re-identification

rate. For this, we use a set of anonymous traces UD, the attack is re-iterated on each

element UDi. The success of an attack is then computed based on the number of

correct re-associations the attack performs between anonymous traces and known

user profiles. To do this, we employ an oracle ID that is able to disclose for each

anonymous trace UDi its owner identity ID(UDi) = u(UDi). This way, we can

compute the user re-identification rate as follows (Equation 3.5):

r(A,KD,UD)=

∑
UDi∈UD

 1 If A(UDi,KD)=ID(UDi)
0 Else

|UD|
(3.5)

In Table 3.1, we present an example of a re-identification attack. For this policy,

the attacker outputs one identity Ui1 .

3.3.2 Top-k Based Policy

In this policy, we consider the sorted set of most probable identities (Equation 3.6). the

attacker always selects the k identities with the highest probabilities (Equation 3.7).

S(T,KD) = (Ui1 , . . . , UiN )
∀p < q ≤ N : p̂(T, Uip) ≥ p̂(T, Uiq)

(3.6)

A(k)(T,KD) = (Ui1 , . . . , Uik) ∈ Uk

A(k)(T,KD) ⊆ S(T,KD)
(3.7)

Using this policy, a way to measure the effectiveness of the attack is to identify

the minimum k for which the real identity of the anonymous trace is part of the
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output set A(k)(T,KD) (minK defined in Equation 3.8). To evaluate the attack using

multiple anonymous traces, we either average each minK or study the distribution

of all the k (the higher the better is the privacy).

minK(A, T,KD)=min{k ∈ N | ID(T ) ∈ A(k)(T,KD)} (3.8)

In Table 3.1, we present an example of a re-identification attack for this policy

with k = 3. The attacker outputs three identities {Ui1 , Ui2 , Ui3}. Let us say that the

correct identity is Ui2 then mink = 2.

3.3.3 Threshold Based Policy

The disadvantage of the top-k policy is the risk of false positives. This is why we

propose a policy that chooses users only according to a certain level of confidence. In

this policy, we consider the sorted set of most probable identities (Equation 3.6). the

attacker selects all the identities that have a probability above the threshold limit

(Equation 3.9).

A(T,KD, α) = (Ui1 , . . . , Uilα )
lα = min {0 ≤ l ≤ N |∀p ≤ l : p̂(T, Uip) > α}

(3.9)

The advantage of this policy is its ability to resize the considered group of

identities. Hence, avoiding to systematically add false positives to the group. To

measure the relevance of this policy, we use two metrics: (1) The first one measures

the average precision of all the considered groups (Equation 3.101) This metric

rewards finding the correct user but penalizes a policy with a too-large set size. (2)

The second metric measures the rate of false positives (Equation 3.11). If the policy

finds exclusively wrong users than its rate will be equal to 1, if it finds the user

among lα other users then the rate will be equal to 1− 1
lα

. But if the policy considers

this set too uncertain and outputs no identity then this metric rewards the attacker

by considering a false positive rate equal to 0.

1We do not put α in the parameters of the metric since it may be used for other policies.
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p(A,KD,UD)= 1
|UD|

∑
UDi

 1 If ID(UDi) ∈ A(UDi,KD)
0 Else

|A(UDi,KD)| (3.10)

fp(A,KD,UD)=

∑
UDi


1− 1
|A(UDi,KD)| If ID(UDi) ∈ A(UDi,KD)

0 Else if |A(UDi,KD)|= 0
1 Else

|UD|

(3.11)

In the example of Table 3.1, we present an example of a re-identification attack for

this policy with α = 0.25. The attacker outputs two identities {Ui1 , Ui2}. Let us say

that the correct identity is Ui2 then p = 0.5, while it is p ' 0.33 for the top-k policy.

And for the false positive rate, fp = 0.5 for the threshold-based and fp = 0.66 for

the top-3. It is also worth mentioning that fp 6≡ 1− p since the precision considers

that outputting no response gives a precision of 0 while the false-positive rate favors

outputting no results rather than giving a set of false ones (i.e., fp = 1 for an empty

response).

3.4 Evaluation

We present in this section the evaluation of AP-Attack. We start by presenting

the attacks and LPPMs used in this evaluation and how they have been configured

(Section 3.4.1 and 3.4.2), our used datasets (Section 3.4.3) and our experimental

setup (Section 3.4.4). Then, we present the performance of our proposed AP-Attack

compared to state-of-the-art attacks (Section 3.4.5). We then demonstrate the lack

of resilience of three representative LPPMs of the literature (Section 3.4.6). Both

using the single-output policy. In Section 3.4.7, we use the top-k policy to evaluate

the anonymity set size of users protected with different LPPMs. In Section 3.4.8, we

show the advantages of the non-systematic threshold-based policy compared to a

systematic policy such as top-k in assessing the effectiveness of LPPMs. Finally in

Section 3.4.9, we analyze the effect on the re-identification of both the number of

users in the system and the proportion of mobility available for each trace.
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The evaluation answers the following questions:

• What is the most effective attack between POI-Attack, PIT-Attack and AP-

Attack? (Section 3.4.5).

• What is the most effective LPPM between Geo-I, Promesse and W4M against

the considered attacks? (Section 3.4.6).

• What it is the size of the anonymity set for each LPPM using the top-k policy?

(Section 3.4.7).

• What is the most suitable policy for an attacker between the top-k and threshold-

based policy? (Section 3.4.8).

• What is the impact of the number of users in the system and the proportion of

the users’ mobility available to the attacker? (Section 3.4.9)

3.4.1 Attack Competitors

In this section, we describe POI-Attack [82] and PIT-Attack [30] two state of the art

attacks against which we compare the performance of AP-Attack.

Points Of Interest Attack - POI-Attack

This attack uses Points of interest (POIs) to characterize users’ profiles. Therefore

Ppoi(KDi) is the set of POIs extracted from the trace KDi. Those points are extracted

using clustering algorithms such as the ones presented in [107] [44] parameterized

with the diameter of a geographical zone where a user has stopped and a minimum

duration characterizing her stop. To measure the similarity between two sets of POIs,

each POI of the first set is associated with the geographically closest POI in the

second set. The dissimilarity between the two sets will be equal to the median of all

the geographical distances, which is computed as presented in Equation 3.12. Where

X and Y are the sets of POIs for each trace and d(Xr, Yt) computes the geographical

distance between two POIs Xr and Yt.
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(3.12)dPOISets(X, Y ) = median
[
{min

t
[d(Xr, Yt)] \∀r}

⋃
{min

r
[d(Xr, Yt)] \∀t}

]

Probabilistic Inter-POI Transition Attack - PIT-Attack [30]

In addition to extracting POIs, this attack takes into consideration the transition

probability from one POI to another. Specifically, the authors rely on mobility Markov

chains [28] where the states are POIs (P = P1, P2, . . . , Pk) ordered by the number

points in each POI and the edges’ labels are transitions probabilities between POIs

(tPi,Pj ). This is done by computing the proportion of transition between each POI in

the mobility traces. In order to compute the distance between two mobility Markov

chains, two pieces of information are taken into account: the geographical distance

between POIs and the weight of each POI. The weight of a POI is computed using the

proportion of points contained inside the POI. More precisely the authors proposed

many distance metrics to compare Markov chains. The most effective one is the

stats-prox distance which is a combination of two distances: the stationary distance

and the proximity distance (Equation 3.13). The stationary distance (Equation 3.14)

sums the weighted geographical distances between each combination of two POIs if

the distance is lower than a parameter d0. And the proximity distance (Equation 3.15)

after ranking the POIs by their weight in each Markov Chains. It adds scores ri if

two POIs of the rank i are closer than a parameter ∆. The score is halved after each

rank ri = 1
2ri−1 and r0 is a parameter. The dissimilarity between the two Markov

chain is the inverse of the total score.

dstats−prox ≡ if(dstat ≤ γ and dprox ≤ 105km) dstat else dprox (3.13)

(3.14)dstats(P,Q) =
∑

Pi,Qi∈P×Q
w(Pi)×

 d(Pi, Qj) If d(Pi, Qj) < d0

0 Else

(3.15)dprox(P,Q) =
min(|P |,|Q|)∑

i=1

 ri If d(Pi, Qi) < ∆
0 Else

−1
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The above two attacks rely almost excursively on POIs, eliminating the information

contained inside the trajectories. Also, LPPMs focusing on the elimination of POIs

yield to an ineffective attack as illustrated in Section 3.4.6.

3.4.2 Attacks and LPPMs Configuration

The three attacks evaluated in this chapter AP-Attack, POI-Attack and PIT-Attack

have several configuration parameters. Specifically, AP-Attack has a cell size pa-

rameter that we have fixed at 800 meters in this evaluation. After a number of

calibration experiments, we have chosen this value because it was big enough to

include POIs and was resilient to noisy traces (for instance against GeoI or noisy

GPS coordinates). In addition, re-identification rates result for cells between 50
meters and 800 meters are approximately similar. Furthermore, POI-Attack and

PIT-Attack require parameters for the extraction of the POIs from the traces. These

parameters are the diameter of the clustering area (that we fixed at 200 meters) and

the minimum time spent inside a POI (that we fixed at 1 hour). These values have

been chosen after a series of experimentations yielding to the best results. It is worth

mentioning that in [82] POI-Attack was used in a different configuration. Indeed,

the authors re-identified the obfuscated mobility traces against the non-obfuscated

version of those traces, rather than using past mobility as a training knowledge. In

consequence, re-identification is easier.

To evaluate AP-Attack, we have chosen three representative LPPMs of the lit-

erature: (1) Geo-I, which adds Laplacian noise to mobility traces and enforces a

guarantee inspired from Differential privacy; (2) Promesse, which uses speed smooth-

ing to erase POIs and (3) W4M, which alters traces to group them in cylindrical

volumes hence enforcing k-anonymity. Each LPPM has several configuration param-

eters. These parameters have an impact on the privacy level offered to the users but

also on the quality of the resulting obfuscated data. We have decided to configure

each LPPM following a medium level of protection. This choice is motivated by

the fact that our objective is not to find the best LPPM configuration but rather

to show that with a reasonable alteration of the data, the LPPMs do not succeed

completely at protecting the user from re-identification. Other experiments with

other configurations of the used LPPMs or using other LPPMs of the literature

can be done using our available toolkit [58]. Specifically, Geo-I is configured with
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Table 3.2: Description of datasets

Name CabSpotting Geolife MDC PrivaMov

# users 536 42 144 48

Localization San Francisco Beijing Geneva Lyon

# records 11 219 955 1 574 338 904 422 973 684

a parameter ε that has an impact on the amount of noise added to the data (the

lower epsilon the higher the noise). We have fixed the value of this parameter to

0.01, which corresponds to a medium privacy level. Promesse is configured with

a parameter α that corresponds to the distance between two successive sampling

points. We have fixed this parameter to 200 meters. Finally, W4M is configured with

two parameters, k representing the minimum number of users inside the cylindrical

volume and the radius δ of the latter. We have fixed these parameters at k = 2 and

δ = 600 meters because W4M erases a lot of points making the dataset almost empty

and those parameters guarantee privacy and availability of the data.

3.4.3 Datasets

We used four real mobility datasets in our experiments. These datasets are: (1)

Cabspotting [80] that contains the mobility of 536 cab drivers in the city of San

Francisco; (2) Geolife [106] that contains the mobility of 42 users mainly in the city

of Beijing; (3) MDC [54] that contains the mobility data of 144 users in the city of

Geneva and (4) PrivaMov [9] that contains the mobility of 48 students and staff

members in the city of Lyon. To make the comparison fair between the datasets, we

selected in each dataset the 30 most active successive days. We present in Table 3.2 a

description of the datasets used in our experiments. The users are not equally active

in all the days of the period; some are more active than others. We consider as a

mobility trace, the mobility of the user during all the period. In all the experiments

described in this chapter, we split the datasets into a period of 15 days used for the

training phase and 15 days used for the re-identification phase.
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3.4.4 Experimental Setup

All of our experiments were carried out in a computer running an Ubuntu 14.04 OS

with 50GB of RAM and 16 cores of 1.2Ghz each. Our testing application [58] written

in Java & Scala and runs in the Java Virtual Machine 1.8.0.

3.4.5 Evaluation of Re-identification Attacks with Single Out-

put Policy

The first experiment we did was intended to compare the three considered re-

identification attacks by measuring their re-identification rate on non-obfuscated

data of the four considered datasets. The results are depicted in Figure 3.3. From

this figure, we observe that AP-Attack outperforms the two other attacks on all the

considered datasets. This experiment shows that sending mobility data ”anonymously”

(e.g., by using anonymous communication protocols such as TOR [21]) to application

providers is not sufficient to protect the privacy of users as an adversary using

re-identification attacks is able to recognize from 45% to 79% of the users in the four

datasets. It is thus necessary for end-users to rely on LPPMs to protect their data.

From this experiment, we also notice that Cabspotting is the dataset where the users

are the most intrinsically protected. This comes from the fact that cab drivers have

similar mobility patterns (e.g., they regularly go to the airport, famous hotels, malls

and taxi parking places). Instead, MDC, GeoLife and PrivaMov are related to users

having different mobility habits, which makes them easier to re-identify.

3.4.6 LPPMs Effectiveness Against Re-identification Attacks

with Single output Policy

In this experiment, we compare the performance of the three considered LPPMs,

i.e., Geo-I, Promesse and W4M. Specifically, we evaluate the re-identification rate

obtained by the three former attacks on data obfuscated using these three LPPMs.

Figure 3.4 shows the results of this experiment. Besides the three LPPMs, we report

the results obtained for non-obfuscated data, which we use as a baseline. At first

glance, we observe the high level of privacy enforced by W4M in the PrivaMov dataset
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Figure 3.3: Performance of re-identification attacks on single output policy

(11%) and by Promesse in the Cabspotting dataset (6%) against AP-Attack, which is

the most successful attack. Nevertheless, these two LPPMs seem not to be sufficient

to protect users in the GeoLife and MDC datasets where the re-identification rate

reaches 48% and 36% for W4M and 68% and 46% for Promesse. We notice that the

LPPMs that erase POIs as Promesse and W4M nullify the attack POI-Attack and

PIT-Attack. For instance, in the Geolife dataset, PIT-Attack goes from 47% for the

non-obfuscated data to 0% with Promesse, while AP-Attack goes from 79% to 68%.

Finally, we observe that Geo-I is the least efficient LPPM against re-identification

attacks in the four datasets. We also notice that Geo-I affects less AP-Attack

compared to POI-Attack. Indeed, AP-Attack goes down on average with −3% while

POI-Attack goes down by −15%. The noise added to the points by Geo-I rarely gets

them out of a cell, while the clustering algorithms used to form POIs suffer more from

the noise. Summarizing, this experiment allows us to draw the following conclusions:

(1) there is no one-size-fits-all LPPM, as the resilience of an LPPM to re-identification

attacks depends on the underlying data; (2) users of a given dataset are not all equal

in front of re-identification attacks, as on the four datasets there exist users that are

never re-identified even in the absence of protection mechanisms (e.g., 54% for the
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best case with Cabspotting and 21% for the worst case with Geolife).

3.4.7 Evaluation of Re-identification attacks with Top-K Pol-

icy

In this section, we present the result evaluation of Top-k policy in Figure 3.5. Instead

of only measuring the user re-identification rate for this policy, we search for each

user, which level of k needs to be set in order to find him. The higher a k is, the

higher is the user’s protection. We used for this evaluation AP-Attack only, since

according to the previous results it greatly outperforms the other attacks. From the

results, we first notice the singularity of the Cabspotting dataset. With a median

ranging from k = 3 for the non-obfuscated data to a median of k = 78 for W4M.

Even when the data is not obfuscated, the users are fairly safe with a third quartile

of k = 47. For the other datasets, the values are different. In GeoLife, the third

quintile with Geo-I is at k = 1. For Promesse only k = 2 and a little higher with

k = 14.75 for W4M. This shows a real threat to users. Further investigation on the

singularity of Cabspotting is conducted in Section 3.4.9 to see if the difference in the

number of users is the reason why the users are protected or not.

3.4.8 Evaluation of Re-identification Attacks with Threshold-

based Policy

In this section, we show the result of the threshold-based policy in both average

precision and average false-positive rate. We compare it to the theoretical bounds

of the top-k policy. Indeed, since the top-k policy is systematic at taking k users,

which limits its results on both the considered metrics. Hence, for a given k, the

average precision cannot go beyond
1
k

(upper bound) and the average false-positive

rate cannot go below 1− 1
k

(lower bound). These bounds are obtained in the best

case where the correct identity is always part of the k users outputted by the policy.

The threshold-based policy is different since it does not systematically take a certain

number of users (it can even output no identity if the confidence is not high enough).

As a consequence, it can manage a low false-positive rate and even a better average
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Figure 3.4: Performance of LPPMs against re-identification attacks (single output policy)
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precision.

In Figure 3.6 the results for the GeoLife and Cabspotting dataset are depicted.

We notice that for some values of α and some LPPMs, the threshold-based policy

outperforms the theoretical bounds of the top-k policy in both the average precision

and the average false-positive rate. This shows that taking a systematic number of

users can lower the performance of the attack. We also notice that the best value of

α is similar for each dataset.

It is worth mentioning that for the MDC dataset we have similar results except

for k = 2 which has better performances. And for the Cabspotting dataset, the

values of α need to be way lower (as a result of the close similarity between users)

and the top-k method performs better in precision but lower in false-positive rate.

About the different LPPMs, it is interesting to notice that even after applying

them the best results are obtained using the same α for one dataset. We also notice

that W4M performs the best.

3.4.9 Analysis of the Parameters Affecting Re-identification

In this section, we analyze two parameters that can affect the results of the re-

identification.

Number of Users Considered in the System

We present in Figure 3.7 the result of the user re-identification rate with respect

to the number of users considered in the system. For this experience, we chose the

dataset with the biggest number of users (536). We randomly picked a certain number

of users. Then, we applied AP-Attack and computed the user re-identification rate

(each result is the average of 5 random user picks). We notice that the number of

users has an impact on the performance of the attack but not as high as expected.

Indeed, starting from 200 users the rate stays steady. This comes from the fact that

the addition of any new user can benefit - with regards to the protection against

re-identification - only the users with similar behavior. This is why it is important

for large scale systems to not only consider the total number of users but also the
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Figure 3.6: Performance of the Threshold-Based Policy on Average Precision and Average

False-Positive Rate Compared to the Theoretical Bound of the Top-k Policy
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trace its probability to originate from a set of different identities. Then secondly,

the attacker applies a policy in order to select a subset of identities to consider as

probable identities. We also presented a re-identification attack based on a heat

map representation of user profiles. We showed that this attack – which aggregates

user mobility into a probability distribution acting as a fingerprint of user mobility –

outperforms existing attacks on four real mobility datasets. Moreover, we studied

the ability of three state-of-the-art LPPMs to protect users against re-identification

attacks. The results showed that there is no one-size-fits-all LPPM. Instead, the

degree of protection offered by LPPMs heavily depends on the underlying data. The

use of the top-k policy showed that depending on the dataset and the protection

method, the size of the anonymity set of the user can vary. Some users are more

hidden thanks to their similar behavior with other users. The use of the threshold-

based policy showed that a non-systematic method - that varies the number of

identities taken into consideration - can be more beneficial to an attacker rather than

systematically taking the same number of users.

In addition, in the chapter, we studied the effect of the number of users in the

system. The results showed that after some increase in the number of users the

re-identification rate stays steady. Mainly because the re-identification is not affected

only by the number of users but also by the behavior of the added users taken into

consideration. As a consequence, we would advice to not expect users to be protected

only because they are part of a system with a big number of other users but rather

to investigate the cluster of users and how the user hide themselves in groups (the

top-k policy could be used for this). We also investigated the proportion of mobility

an attacker needs to obtain in order to re-identify a user. The results show that with

AP-Attack, a small portion of the user’s mobility is enough for the attacker to reach

its maximum potential of re-identification rate. Hence, this attack is able to build a

proper user profile with few mobility data available (20% of randomly eavesdropped

records for 80% of the attacks maximum potential).

In the next chapter, we propose a protection mechanism that is able to alter

the profiles generated by the attacker and confuse the attacker on the owner of this

profile. Since the experiments show that AP-Attack is the most effective attack, we

are considering that heat maps better describe the users’ behaviors and thus we use

heat maps to guide our protection mechanism in order to transform (hence confuse)

the attacker.
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4.1 Objectives and Roadmap

As discussed in Chapter 2, various LPPMs have been proposed in the literature. They

either enforce formal privacy guarantees (e.g., k-anonymity or differential privacy)

or hide sensitive user information (e.g., Promesse hides POIs). In this chapter, we

propose HMC (for Heat Map Confusion), a Location Privacy Protection Mechanism

that protects users against re-identification attacks by reasoning on their mobility as

a whole, captured using heat maps. Specifically, in order to protect a dataset of user

mobility traces, HMC first extracts user profiles by aggregating the mobility of each

user into a single heat map. Then, HMC alters each user heat map by making it

look similar to the heat map of another user. To limit the decrease in data utility,

HMC uses the heat map of the closest user as a basis for performing the alteration.

Finally, HMC transforms back each altered heat map to a set of mobility traces by

trying to retain as much as possible the users’ original traces unchanged. The result

is a protected mobility dataset on which an attacker that runs user re-identification

attacks (e.g., AP-Attack, POI-Attack, PIT-Attack) fails in distinguishing between

users.

In this chapter, the protection against re-identification attacks is evaluated with

the single output policy and the anonymity set size of the top-k policy. Not only

with one re-identification attack as in previous works, but with the results of multiple

attacks. This allows us to demonstrate that HMC does not only protect the users

against the attack that also uses heat maps to reason on user mobility but also

against attacks that use other models (e.g., points of interest [82] or Mobility Markov

chains [28]). Furthermore, we also evaluate data utility using multiple metrics that

evaluate data distortion or the accuracy of applications.

To evaluate HMC we relied on four real mobility datasets (Cabspotting, Geolife,

MDC, Privamov) and compared HMC with three representative adversaries (AP-

Attack, POI-Attack, PIT-Attack). We also made HMC as an open-source prototype to

reproduce our experiments (available at https://github.com/mmaouche-insa/HMC).

The results show that HMC successfully decreases the user re-identification rate of

all the attacks. Specifically, across all the datasets using HMC, 87% of mobile users

are successfully protected against re-identification attacks, while others LPPMs only

achieve a protection ranging from 43% to 79%. By considering only users protected
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with a high utility, the proportion of users stays high for HMC with 75%, while for

other LPPMs it goes down to proportions between 4% and 43%.

Roadmap In the remaining of this chapter, we start by giving a recall on the

adversary model in Section 4.2 We present an overview of HMC in Section 4.3. Its

two components heat map alteration and mobility trace reconstruction are described

in Section 4.4 and Section 4.5 respectively. We discuss alternatives of HMC in

Section 4.6. Experimental evaluation results are presented in Section 4.7. And finally,

we draw our conclusions in Section 4.8.

4.2 Recall on the Adversary Model

We consider an attacker similar to the one presented in chapter 3. Let U =
{U1, U2, . . . , Un} be the set of users in the system and KD = {T1, T2, . . . , Tn} the set

of background knowledge mobility traces previously gathered (Ti is the mobility trace

of Ui). From each of these traces Ti, the adversary builds a user profile Pi = P(Ti)
that characterizes the user mobility and acts as a fingerprint. Thus, the attacker has

access to the set of profiles of the users in the system P = {P1, P2, ..., Pn}.

A Re-identification attack A defined in Equation 5.3 run by the adversary using

a single output policy tries to re-associate an anonymous trace T ′ from the Unknown

user data UD to a known user profile.

A : UD → U
T ′ 7→ A(T ′,KD) = Ua

(4.1)

Upon receiving an anonymous mobility trace T ′j, the adversary builds its profile

P(T ′j) then researches in the background knowledge of profiles P the most similar

profiles with regard to a distance measure d and assigns its identity to the anonymous

trace (See Equation 4.2).

ID(T ′j )← arg min
Uk

d(P(T ′j ), Pk) (4.2)
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HMC Objective: Confuse the attacker so as arg minUk d(P(T ′j ), Pk) is not the

correct identity of T
′
j .

4.3 HMC Overview

The process of obfuscating a mobility trace T whose identity ID(T ) = a using HMC

is depicted in Figure 4.1. This process is composed of three phases:

1. Heat Map Creation (H): The objective is to construct the heat map of

the mobility trace T waiting to be obfuscated. The method is based on the

heat map representation of the mobility trace. In consequence, we start by

computing H = H(T ) using the heat map Construction module as done by

AP-Attack.

2. Heat Map Alteration (HMA): The objective of this phase is to transform

H into H ′, an obfuscated heat map that is more similar to a user profile different

than the one of user ID(T ). There is actually more than one heat map that

satisfies this property (See Equation 4.3), finding only one is sufficient.

HMA(H,P) = {H ′ | ∃K : ID(K) 6= ID(H) ∧ arg min
Pi∈P

d(H ′, Pi) = K} (4.3)

3. Mobility Trace Reconstruction (MTR): We construct an obfuscated mo-

bility trace T ′ whose heat map is H ′ the obfuscated heat map of H (Equa-

tion 4.4). We also use T to construct T ′ in order to keep the trace as similar

as possible from the one before obfuscation with privacy guarantees as added

value.

MTR(H ′) = {T ′ | H(T ′) = H ′} (4.4)

We describe in more details the two last phases (phase 1 is similar to the one of

AP-Attack and described in Figure 3.2 of Section 3.2).
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Figure 4.1: Overview of HMC

4.4 Heat Map Alteration

We need to construct H ′ a heat map that satisfies the property of the set HMA(H,P)
defined in Equation 4.3. We chose to design a method based on iterative modifications.

As depicted in Figure 4.2, we first search for U the most similar profile in P and V

the profile with the best utility (area coverage described in 4.7.2) in P \ {U}.

U = arg min
Pi∈P

d(H,Pi) (4.5)

V = arg max
Pi∈P\{U}

UT (H,Pi) (4.6)

if ID(U) 6= ID(H) then H already satisfies the property. This means that the

user has a behavior (in the sense of the patterns of movements and the important

locations) that is significantly different from her past mobility and does not need

Figure 4.2: Heat Map alteration iterative process
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Algorithm 1 Algorithm of HMA.

1: function HMA(H,a,P,n,ITmax)

2: U ← arg minPi∈P d(H,Pi) The most similar profile

3: if ID(H) 6= ID(U) then return H Does not need obfuscation

4: V ← arg maxPi∈P\{U}AC(H, Pi) Profile with the best utility

5: c← 0
6: while d(H, V ) > d(H, U) ∧ c ≤ ITmax do

7: R n · T
8: W ← H � V � (1− U) � represents the pairwise product

9: O R +
(

a∑
W
·W

)
10: H ′

1
n
·O

11: The counter c rewinds if H ′ gets closer to V compared to U

12: c← update(c, H, H ′, U, V )
13: H H ′

14: end while

15: if c = ITmax then return V If no H ′ candidate is found, use V

16: return H

17: end function

obfuscation (Line 3 of Algorithm 1). On the other hand, if the user is at risk of

re-identification, the iterative process starts by searching H ′.

We first transform the heat map back to a version with the number of records per

cell rather than a frequency (Line 7). At each iteration a number of records are added

to each cell, depending on the weigh computed using the formula in Equation 4.7.

In order to affect as little as possible the UT , we alter only cells that are already

present in H. Furthermore, we want to reinforce points that are present in both

H and V but that are not present in U . More specifically, in Algorithm 1 all the

process of HMA is presented. This algorithm stops after a number of iterations

without improvement. In this case, V is used as H ′ since it satisfies the property of

Equation 4.3 at the cost of utility loss.

∀(i, j) : Wij = HijVij(1− Uij) (4.7)
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Figure 4.3: Cell Number of Records Modification

4.5 Mobility Trace Reconstruction

This module generates T ′ a mobility trace whose aggregation is the heat map H ′

as expressed by Equation 4.4. The non-obfuscated mobility trace T is used in

order to take into consideration utility metrics such as the spatial distortion SD
(Section 4.7.2). Even though, the abstraction using the heat maps loses the temporal

aspects of the mobility traces, the original mobility trace is used to construct the

protected one, in order to keep the temporal aspects as close as possible from the

original trace.

We distinguish two types of cells in H ′: (1) the cells that are present in T (ie.,

H(i, j) 6= 0) and (2) the cells that are not present in T . For the first case, Figure 4.3

illustrate how the traces contained inside a cell are altered in order to have the

same intensity as the one in the obfuscated heat map H ′. To reach this objective,

we use a method inspired by the LPPM Promesse [83]. Specifically, as expressed

in Algorithm 2, we use the interpolation between each pair of records in order to

create new positions (the timestamp of a new position is equal to the center of the

timestamps of the preceding and following record). We do this iteratively until we

have enough positions as the number in H ′ (loop of line 3 to 11 of Algorithm 2).

Lastly, we select randomly H ′(i, j) records and we keep the timestamps generated

during the creation of the positions (line 12 of Algorithm 2). In the cases, where

H ′(i, j) < H(i, j), we randomly select a set of records.

In addition to modifying the intensity of cells, HMC makes sure to not leave
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small discriminating POIs. That’s why, after transforming the number of records in

a cell, we make sure to erase small size POIs.

Algorithm 2 Algorithm to adapt the number of records of R to n records

1: function modifyNumberOfrecords(R,n)

2: P R
3: while |P|< n do Create new positions in the set P until its size reaches n

4: P′ ← () Empty sequence

5: for i← 1 to |P|−1 do

6: Computing the latitude, longitude and timestamp of the middle point

7: p′ ← (p[i− 1] + p[i])/2
8: P′ ← appendToSequence(P′, (p[i− 1], p′))
9: end for

10: P← appendToSequence(P′, (p[|P|−1]))
11: end while

12: return selectRandomly(P, n)
13: end function

The second case happens only when no H ′ is found iteratively and V has to be

used as a substitute. In this case, we need mobility data in those empty cells in order

to apply the interpolation method described above. So, we use a set of records from

the background knowledge in order to copy real mobility data. To be able to put new

data, we use time gaps available in the trace (when the GPS is off for instance) to

give temporal values to the records. Furthermore, we put a constraint on the portion

of trace copied and the temporal gaps using a max speed limit vmax as illustrated in

Figure 4.4. Where we have a trace with a time gap from the record a to the record b.

As our objective is to generate realistic traces, we ensure that the selected interval is

sufficient for a human to move (e.g., at least in walking speed and at most by car)

from point a to the cell (i, j) then to b.

In Algorithm 3, we describe how an empty cell is filled with data. It uses as

input: G a list of all available time gaps in the trace, KD a set of mobility traces to

copy mobility from, (i, j) the coordinates of the cell to fill, vmax the maximum speed

constraining the gaps as explained above, ∆tmax that limits the time gaps inside a

set of records (a set of records from one mobility trace is split into multiple sets of

events that respect the limit ∆tmax), θlimits is the limit of the duration of the set of
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Figure 4.4: Time Gaps constraining method

records to copy (to avoid copying a full day of mobility just to fill one cell).

To fill a cell, we first filter the time gaps according to vmax and (i, j) (Line 2)

as depicted in Figure 4.4. Then, we assemble all the data available in the cell (i, j)
from KD after splitting it into multiple sets of records with respect to the constraint

∆tmax. Next, from all the possible sets of records and all the possible gaps, we select

the pair with least distance to connect one another, since a gap has a starting point

and an ending point, the distance is the sum of the distances from the start of the

gap to the set of records and from the set of records to the ending point of the gap.
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Algorithm 3 Algorithm to fill an empty cell (i, j) with real mobility data from KD
1: function fillMobilityOfCell(G,KD,(i, j),vmax,∆tmax,θlimit)
2: (G′, pindex)← filterGaps(G, vmax, (i, j))
3: We keep only the gaps that verify the constrain of speed with respect to vmax and

(i, j) (see Figure 4.4)

4: possibleSetsOfEvents = ∅
5: for T in KD with getEventsOfCell(T, (i, j)) do

6: splittedSetsOfEvents← splitEvents(getEventsOfCell(T, (i, j)),∆tmax)
7: Split the events into multiple sets of events when the time gap between two

records exceeds ∆tmax

8: possibleSetsOfEvents = possibleSetsOfEvents ∪
splittedSetsOfEvents

9: end for

10: (setOfEvents, gap)← bestMatch(possibleSetsOfEvents,G, θlimit)
11: updateGaps(G, gap) Either split the gap or erase it

12: out← translateT ime(setOfEvents, gap)
13: return out

14: end function
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4.6 Discussion on Alternatives for HMC

It has to be noted that both the method presented in Section 4.4 and Section 4.5 are

pluggable with other methods. The only true conditions for HMC is to find both H ′

then T ′ that satisfies Equation 4.3 and Equation 4.4 respectively. In our instantiation

of HMC, we use an iterative method to construct H ′ and in order to construct T ′,

we use a Time Distortion method [83] and a set of stored mobility traces to avoid

using any outsourced library for synthetic mobility trace generation.

Fake user profiles can be used to transform the user behavior to distance her from

the behavior of her past self. In this case, the fake profile generated needs to be close

enough to the user to protect in order to maintain the data utility, but far enough

to protect the user identity. With such a method, we gain security by avoiding the

storage of real user profiles, but we lose the certainty that a user hides from its past

self to look like a user that the attacker might re-identify.

4.7 Experimental Evaluation of HMC

In the following, we define the privacy metrics (Section 4.7.1) and utility metrics

(Section 4.7.2) used in our experiments. In addition, we describe the experimental

environment and configuration settings used in the experiments (Section 4.7.3).

Finally, in our experiments, we compare the resilience of HMC to re-identification

attacks with respect to state-of-the-art solutions in Section 4.7.4 and we further

evaluate the utility of the data produced in Section 4.7.5. Our results show that

across all the datasets, HMC outperforms its competitors in most cases. And for

similar privacy results, HMC has better utility.

4.7.1 Privacy Metrics

We propose to evaluate the privacy levels offered by the LPPM, first with the

evaluation of the effectiveness of the attacks using the re-identification rate of a single

output policy, we also evaluate the anonymity size set of the attacks. In addition we
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propose a multi-attack based privacy evaluation.

User Re-identification rate

We consider a single attack A, a single set of background knowledge KD and a set

of testing mobility traces UD. Aa a reminder, the user re-identification rate is a

precision score of all the identities singly outputted by the attacker (see section 3.3.1)

when re-identifying the traces of the set UD. As described in Equation 4.8

r(A,KD,UD)=

∑
UDi

 1 If A(UDi,KD)=ID(UDi)
0 Else

|UD|
(4.8)

k-Anonymity Set Metric:

In the adversary model, the attack outputs a single identity. For a user, Even though,

not being designated as the most similar profile of her anonymized trace is a good

news. Being the second or third most probable identity is still problematic. That is

why we propose this k-anonymity metric. In order to measure for a certain tolerance

level k, the proportion of users still at risk. This k represents the number of most

probable identities for the anonymous trace being re-identified. More formally, the

output of a k-attack A(k) on an anonymous mobility trace T ′ is a set of k identities

with the k most similar profiles. This privacy metric can be seen as a way to measure

the k-anonymity set size of an obfuscated mobility trace.

Number of Successful Attacks:

This metric computes the number of successful attacks (ie., user correctly re-identified)

on a user. It is defined in Equation 4.9 as a user-centric metric with A = {A1,A2, . . .}
being the set of all attacks considered.

n(UD,KD,A)=
∑
Ak∈A

 1 If Ak(UD,KD)=ID(UD)
0 Else

(4.9)
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Different methods of combining the attacks’ results could be used (i.e., A′ =
f(A1,A2, . . .)). For instance, we could leverage the rank results of all the attacks to

choose as a result the profile with the best average ranking or use a voting system.

Various tests were conducted but the results are inconclusive. Mainly, because AP-

Attack is more efficient than the other two attacks and the cases where POI-Attack

or PIT-Attack succeeds at re-identifying the correct user while AP-Attack fails are

rare. In the end, this mix-up of attacks weakens AP-Attack. In consequence, we keep

the multi-attack notion by counting the number of successful attacks but we mainly

focus on finding the cases where no attack succeeds. This includes the strongest

attack (in our case AP-Attack) but also the cases where POI-Attack or PIT-Attack

are the only successful attacks.

4.7.2 Utility Metrics

The goal of an LPPM is to protect the users’ privacy. Unfortunately, the alterations

made by the LPPM to the mobility data cause a decrease in the data’s utility.

Moreover, studies such as [13] make the observation that there is a trade-off between

privacy and utility. In consequence, when designing an LPPM, it is important to

evaluate the utility of the data produced. Indeed, designing a powerful LPPM that

ensures users’ privacy without considering the usefulness of the resulting data for

later analysis is fruitless.

Two approaches arise when evaluating the utility of the altered data. The first

is data-centric, which is generic and agnostic of the application. In this case,

we consider that every application that is affected by the precision of the data is

concerned and could profit from this metric. The second one is application-centric.

In this case, we consider a particular application and the conclusion can only be

generalized to applications with the same purpose.

In the remaining of this section, we describe the utility metrics used accompanied

with examples of applications.
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Area Coverage:

This metric computes how much the alteration affected the regions visited by a

user [83]. In other words, while removing records makes places less significant for

a user mobility (e.g., Erasing POIs), keeping the information on which regions the

user goes through can be important. On the contrary, adding/moving records to new

regions adds a piece of fake information that can lead to false deductions from the

data analysis. For instance, we could conclude wrongly that a minor place has a large

number of users going through it, which may push for ill-advised public investment

in transport.

To compute the Area Coverage AC, the map is devised into equal square regions.

For T a mobility trace, C(T ) (Eq. 4.10) returns the set of regions the user goes

through, C represents the set of all possible regions of the dataset and e� c means

that the record e is inside the cell c

C(T ) = {c ∈ C | ∃e ∈ T : e� c} (4.10)

To measure AC of the obfuscation of T to T ′, we compute the F-Score value of

the precision-recall pair. The precision evaluates the proportion of cells the user goes

through in the obfuscated trace that are present in the non-obfuscated trace. While

the recall evaluates the proportion of cells of the non-obfuscated trace that are still

found in the obfuscated trace.

An example of a use case could be the public health department searching for

the areas in the city where noise disturbance is the most problematic by running a

crowd-sensing campaign of noise levels in the city. Precise locations are not critical

but covering the correct regions of the city is important.

ACPrecision(T, T ′) = |C(T ) ∩ C(T ′)|
|C(T ′)| (4.11)

ACRecall(T, T ′) = |C(T ) ∩ C(T ′)|
|C(T )| (4.12)

AC(T, T ′) = ACF−Score(T, T ′) = 2 · ACPrecision(T, T ′) · ACRecall(T, T ′)
ACPrecision(T, T ′) +ACRecall(T, T ′)

(4.13)
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Spatial Distortion:

This parameterless metric computes the spatial error. It considers the traces as

polylines T = (r1, r2, . . .) and T ′ = (r′1, r′2, . . .). For each record x in T ′ we search

for the minimal projection on T . SD(T , T ′) is the average of the minimal projection

of all the records in T ′.

SD(T, T ′) = 1
|T ′|

∑
x∈T ′

min
0<i<|T |

dprojection(x, riri+1) (4.14)

An example of use case could be a city planner wanting to analyze the roads that

need the most care by counting the number of users going through them. In this

case, a precise spatial location to recognize the correct routes is essential.

Spatio-Temporal Distortion:

This metric computes a spatial error constrained by the timestamps of the records. As

defined in Equation 4.16, the spatio-temporal distortion ST D is the average distance

between each record of T ′ and its temporal projection into T . With, the temporal

projection of the record x = (xlat, xlon, xt) in T ′ being its expected position re in T

at time xt. Specifically, we search for ri = (rlati , rloni , rti) and ri+1 = (rlati+1, r
lon
i+1, r

t
i+1)

in T such as rti ≤ xt ≤ rti+1, then compute re the interpolation with the ratio

(xt − rti)/(rti+1 − rti) (see Equation 4.15).

An example of use case could be, analyzing users’ habits during the day. Such as,

which places are mostly visited during the night and need more care in road lights.

temporal projection(x, T )=


r1 If xt < rt1

ri + xt − rti
rti+1 − rti

(ri+1 − ri) If ∃i : rti ≤ xt ≤ rti+1

r|T | If xt > rt|T |
(4.15)

ST D(T, T ′) = 1
|T ′|

∑
x∈T ′

dtemporal projection(x, T ) (4.16)
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Distortion in Surrounding POIs:

This metric simulates an application that analyses the POIs surrounding the user

location during her mobility. Open Street Map [62] is used for this metric. Their open

data is uploaded to a MangoDB server and for each record x of the mobility trace in

the obfuscated trace T ′ we query for the surrounding POIs in a rectangular area of

size β (with POI(x, T, β)). Then, we compare it to the result of the same query for

the temporal projection of x in T (see Equation 4.15) using the harmonic mean of

recall/precision (see Equation 4.17 & 4.18). The overall distortion in surrounding

POIs is the average of all the F-scores of the records of T ′ (see Equation 4.19).

POIPrecision(x, T, β) = |POI(temporal projection(x, T ), β) ∩ POI(x, β)|
|POI(x, β))| (4.17)

POIRecall(x, T, β) = |POI(temporal projection(x, T ), β) ∩ POI(x, β)|
|POI(temporal projection(x, T ), β)| (4.18)

DSP(T, T ′, β) = 1
|T ′|

∑
x∈T ′

2 · POIPrecision(x, T, β) · POIRecall(x, T, β)
POIPrecision(x, T, β) + POIRecall(x, T, β) (4.19)

This metric only evaluates if similar POIs are found. It can be extended further to

a semantic metric by choosing only certain types of POIs while querying Open Street

Map, using the ”amenity” [61] categorization of the data that references the type of

POI. For instance, one can search for sustenance POIs (i.e., bar, fast food, restaurant,

cafe. . . ) or for healthcare POIs (i.e., clinic, dentist, hospital, pharmacy. . . ).

Number of Visits Distortion:

This metric simulates a data analysis where the number of visits to a place x is

computed for a user. A visit is a record ri that is within a radius α of x while ri−1 is

not (See Eq.4.20). We compute the distortion between the number of visits in the

obfuscated trace compared to the non-obfuscated trace (Eq.4.21).

NV(T, x, α) = |{ri ∈ T | d(ri, x) ≤ α ∧ d(ri−1, x) > α ∧ 1 < i ≤ |T |}| (4.20)
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NVD(T, T ′, x, α) = |NV(T, x, α)−NV(T ′, x, α)|
NV(T, x, α) (4.21)

4.7.3 Experimental Setup and Configurations

The following experiments were conducted in a computer running an Ubuntu 14.04 OS

with 50GB of RAM and 16 cores of 1.2Ghz each. The HMC prototype is developed in

Java & Scala and runs in the Java Virtual Machine 1.8.0. It is available for download

at: https://github.com/mmaouche-insa/HMC

In our experiments, we compare HMC with three state-of-the-art LPPMs: Geo-I,

Promesse and W4M. The LPPMs come with their own configuration parameters,

that are set as follows. Geo-I’s ε configuration parameter is set to 0.01; this adds a

medium amount of noise to the obfuscated data (the lower ε the higher the noise).

Promesse’s α configuration parameter is set to 200 meters, it represents the distance

between two successive sampling points. W4M has two configuration parameters,

i.e., k that is the minimum number of users inside the cylindrical volume, and δ the

radius of the cylindrical volume. Here, k and δ were respectively set to medium

values 2 and 600 meters. Finally, HMC’s cell size is set to 800 meters (similar to the

good configuration of a heat map based attack)

Furthermore, to stress the robustness of the LPPMs and thus evaluating the pri-

vacy level they provide, we consider three re-identification attacks in our experiments,

namely PIT-Attack, POI-Attack and AP-Attack. The implementations of these

attacks have their own configuration parameters. PIT-Attack and POI-Attack have

two parameters for the extraction of the POIs from the traces. These parameters are

the diameter of the clustering area, and the minimum time spent inside a POI. They

were respectively set to 200 meters and 1 hour. And AP-Attack has a configuration

parameter that corresponds to the cell size, and that was set to 800 meters. Finally,

to evaluate the data utility level provided by the LPPMs, we consider the three

utility metrics (described in Section 4.7.2) that are configured as follows. The Area

Coverage utility metric has a configuration parameter that represents the size of a

square region, it is set to 800 meters. For the metric evaluating the F-score of the

surrounding POIs. Its square bounding-box is of distance 200 meters from the record
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Figure 4.8: Detailed comparison of HMC with competitors - Robustness against AP-Attack

Detailed Resilience against Each Individual Attack:

Figures 4.8, 4.9 and 4.10 present the detailed results of user re-identification rate

per type of attack, for respectively, AP-Attack, POI-Attack and PIT-Attack. We

first notice that against the strongest attack AP-Attack, HMC behaves the best.

In 3 out 4 of the datasets the rate ranges from 2% to 8% while W4M’s rates range

from 23% to 48%. In the other dataset PrivaMov, W4M performs better with 11%
over the 19% of HMC. On average HMC has −20% of user re-identification rate (ie.,

rW4M − rHMC). For POI-Attack and PIT-Attack, HMC performs worse then W4M

but still has low re-identification rates < 20%.

In conclusion, HMC outperforms the other LPPMs vastly on AP-Attack which

was expected since HMC is based on the heat map representation of the users’
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Figure 4.9: Detailed comparison of HMC with competitors - Robustness against POI-

Attack
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Figure 4.10: Detailed comparison of HMC with competitors - Robustness against PIT-

Attack
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Table 4.1: Utility Measure Levels Description

AC SD

Low ≤ 0.8 > 200meters
High > 0.8 ≤ 200meters

mobility. While having good performing results on attacks based on POIs.

4.7.5 Utility Evaluation

In this section, we present the utility results of HMC in area coverage, spatial

distortion, spatio-temporal distortion, the distortion in surrounding POIs and the

distortion in the number of visits.

Data-Centric Utility:

To present clearly the results, all the metrics have a threshold value in which the

utility becomes too low for the user. The Table 4.1 presents those thresholds and

the results are depicted in Figure 4.11, only the results for the users fully protected

by the LPPM are presented (ie., 0 successful attacks) because measuring the utility

of a non-protected user is not meaningful for an LPPM.

We notice that HMC has a big portion of users with High AC and High SD
ranging from 27% to 89%, while these metrics for ange from 2% to 5% and Promesse

4% to 35%. If we consider all the users across all the datasets, 75% of the users that

use HMC are fully protected against re-identification attacks and have a high Area

Coverage and Spatial Distortion. While it is only 43% for GeoI, 27% for Promesse

and as few as 4% for W4M. Overall the only datasets where HMC is challenged in

terms of privacy is by over-altering the data and thus lowering the utility. This is the

case for PrivaMov where W4M has better privacy but few users have a high utility

(only 2%). In Geolife also, Promesse has comparable privacy results but overall half

of the users are protected at the cost of lower utility while HMC protects most of

them with high utility.

      Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2019LYSEI089/these.pdf 
      © [M. Maouche], [2019], INSA de Lyon, tous droits réservés





86 Chapter 4. HMC: A Novel Location Privacy Protection Mechanism

A more detailed analysis for Area Coverage is depicted in Figure 4.12. We notice

that HMC outperforms all the other LPPMs in terms of Area Coverage. HMC’s

F-score average ranges from 0.63 to 0.98 while W4M’s average ranges from 0.15 to

0.68, for Promesse it is from 0.53 to 0.75 comparable to HMC but still lower in each

dataset.

In term of Spatial Distortion, we present the separate result in Figure 4.13.

HMC’s distortions are very low, each median is in centimeters in the four datasets.

For W4M, the medians of its distortions range between 0m to 3.6Km. HMC has

lower values (excluding extreme cases) thanks to the Promesse-like interpolation

technique that creates low spatial distortion because it puts new records only of the

trajectory of the original trace. This is why Promesse has medians ranging from 4
meters to 13 meters.

In terms of spatio-temporal distortion, the results are presented in Figure 4.14.

We first notice the results are worse than the spatial distortion. Indeed, the spatio-

temporal distortion is the constrained version of the later. Promesse is the LPPM that

suffers the most from the temporal constraint, as this method uses time distortion

in a large portion of trace with speed smoothing in order to erase POIs. Across all

the datasets, There are 76% of the users protected with a spatio-temporal distortion

greater than 200 meters for Promesse. In contrast, there is only 27% of users for

HMC. Also, the proportion of users protected with a spatio-temporal distortion lower

than 10 meters is of 50%. W4M already had bad results for the spatial distortion,

with a more constraining metric, there is 71% of users across all the datasets that

are protected but with a spatio-temporal distortion greater than 200 meters. For

Geo-I, even though only 50% are fully protected, there is a systematic noise added

to the records, so there is always a distortion around 200 meters.

Application-centric Utility:

We present the result of the comparison of HMC to the other LPPMs with the utility

metric that measures the F-score of the query of surrounding POIs (section 4.7.2)

in Figure 4.15. We first notice that with the configuration of 200 meters for the

rectangular area size, the average F-score is quite low. W4M performs better in

Cabspotting for [0.75, 1] interval but on average since HMC has 64% of users in the
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[0.5, 0.75[ interval its average F-score is better (0.37 compared to the average F-score

of 0.30 of W4M). Except for Promesse whose average F-scores by dataset ranges

from 0.1 to 0.12 the other LPPMs have similar results with a small lead for HMC.

Since, HMC F-scores ranges from 0.13 to 0.39, for W4M it is from 0.13 to 0.30 and

Geo-I from 0.11 to 0.42.

For the last utility experiment, we present the result of the visits of ”Union

Square” in San Francisco (CabSpotting Dataset). We first notice the good results

of Promesse by construction with 90% out of the 92% fully protected users have a

distortion lower than 0.25. HMC has similar good results with 81% out of the 94%
fully protected user with a distortion lower than 0.25. W4M has a diversity of users

with two 30% groups of users with respectively 0.25 to 0.5 distortion and 0.5 to 0.75
distortion, this another low utility level for W4M.

4.7.6 Discussion

HMC has good results in utility because it aims at altering the data as few as possible.

The cases where new cells of the map are filled are rare and those are the cases where

the utility is deteriorated.

We notice that Promesse has lower utility results, not because of its perturbation

method (which is utility-preserving) but rather because it does not manage well big

time gaps where the user movement was not recorded. In those cases, Promesse

fills those gaps with mobility data that adds distortion to the data. Also, Promesse

and Geo-I apply a systematic perturbation method, even if the user does not need

much altering in order to be protected, the utility is always lowered (but still the

best to erase POIs). Most importantly, while utility-wise, it has good performances,

Promesse’s poor privacy-results (particularly against AP-Attack) makes it a bad

candidate to protect against the user re-identification threat.

On the other hand, W4M performs poorly utility-wise even in the Cabspotting

dataset where numerous users and records are available. Its results on POI-based

attacks are good. but far from convincing against AP-Attack. This actually as

stated before, the motivation behind the design of the heat map based protection

mechanism HMC.
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Figure 4.16: Comparison of HMC with competitors - Utility metric in terms of users’

number of visits distortion – Cabspotting dataset

For the case of Geo-I, adding noise deteriorates the utility more than Promesse

but it is inept to protect against re-identification attacks, having results similar to

non-obfuscated traces. This is due to the dependency between successive records.

Indeed, this makes the ε−GeoI guarantee loses its power to a nε−GeoI (n being the

number of records). In addition, practically Geo-I guarantee is on location attacks

but it still permits to locate users in blocks (depending on ε), which is enough for

AP-Attack. In order to affect the heat map representation of the user profile, Geo-I

would need to add significant noise.

4.8 Conclusion

In this chapter, we presented HMC a novel LPPM that protects users against re-

identification attacks. It uses a heat map alteration process in order to confuse

the attacker and to make the re-identification fall to the wrong user. The solution

proposed to implement HMC is based on an iterative modification to transform

the heat map and an interpolation technique to alter the number of records in the
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mobility trace. The heat map is a good abstraction of the mobility as it takes into

consideration higher level features that can discriminate between users.

HMC was evaluated on four real mobility datasets against three representative

re-identification attacks and compared to three competitive LPPMs. The evaluation

was done using a multi-privacy metric which computes the number of successful

re-identification attacks and a multi-utility metric with a threshold-based Low/High

utility categorization simple to interpret. The results show that HMC outperforms

the other LPPMs in terms of both privacy and utility.

HMC is effective to alter mobility profiles constructed from 15 days of mobility.

In the next chapter, we search for the vulnerabilities of smaller behaviors (from 1
day down to 30 minutes) and see how current LPPMs including HMC react to them.

Towards this purpose, we introduce a novel type of re-identification attacks.
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5.1 Objectives and Roadmap

We argue that evaluating the risk of re-identification when sharing data is important

for the design of strong privacy preserving mechanisms. In this chapter, we propose

ILL-Attack a new re-identification attack that detects the vulnerabilities of re-

identification even further than the ones of the state of the art. Indeed, ILL-Attack

apprehends differently re-identification. For instance, in the paradigm used in Gambs

et al. [30], Primault et al. [82] and Maouche et al. [59] (Chapter 3), mobility data

is used to construct user profiles and later on, upon receiving an anonymous trace,

the attacker constructs a profile and searches for the most similar one in the past

mobility knowledge as a k-NN classifier would do. This type of profiles demand large

mobility traces to be applied (i.e., in the order of hours or more), their most common

use can be for re-identification in crowd-sensing (traces are in the order of hours or

days) or data publishing (traces are in the order of days or weeks). However, for

shorter mobility traces (in the order of minutes or few hours), the attacker would

try to re-construct the whole profile based on the occurrence of one small behavior.

In ILL-Attack, the paradigm is different, the attacker learns from multiple short

behaviors in order to be able to recognize them at re-identification. When we talk

about ”short” or ”long” traces, we talk about the time period during which the

attacker eavesdropped on the users’ mobility or during which the data has been

collected by the service provider, we do not talk about the number of records sent

by the user or a change in the sampling of the data. As it has been experienced in

Section 3.4.9, a profile structure such as the heat map is quite robust to the variations

of the proportion of the mobility trace eavesdropped (80% of the maximum user

re-identification rate obtained with only eavesdropping randomly 20% records) but

for short traces if the heat map does not record a particular behavior, it cannot be

used to recognize the behavior later on.

ILL-Attack uses Extremely Randomized Trees to learn users’ identity based on

their mobility. This attack instantiates a new model of re-identification that divides

the mobility traces into multiple shorter mobility traces to learn different behaviors of

users in order to be able to re-identify in various scenarios. Its strength is that it can

be applied to use cases of a smaller size such as a session-based service (i.e., a user’s

mobility is collected during the use of a service for a short session), in addition to the
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crowd-sensing use case previously studied in the state of the art. In our experiments,

we compare ILL-Attack to AP-Attack [59] and POI-Attack [82] in those different

use cases on four real mobility datasets. We also study the effectiveness of various

LPPMs on ILL-Attack to asses whether current LPPMs can mitigate the threat for

user re-identification in the different scenarios.

On average, across all the four datasets, the session-based services (resp. crowd-

sensing data) successfully re-identified using mobility data is at 49% (resp. 57%) for

ILL-Attack, 34% (resp. 43%) for AP-Attack and 10% (resp. 21%) for POI-Attack.

As for the LPPM effects, despite their use, across all the dataset, in the session-based

service scenario (resp. crowd-sensing scenario), the rate decrease ranges only from

−4% to −14% (resp. from −3% to −18%) for ILL-Attack. And in our experiments,

for all the LPPMs, ILL-Attack outperforms AP-Attack and POI-Attack.

Roadmap In the remaining of this chapter, In Section 5.2, we illustrate our

motivation, we present the model of re-identification attacks that learn short behaviors

and we present the design principles of ILL-Attack. Experimental evaluation results

are presented in Section 5.5. And finally, we draw our conclusions in Section 5.6.

5.2 Problem Illustration

In this section, we want to showcase the limitations of classical re-identification attacks

that uses profiles to re-identify mobility traces in scenarios with short mobility traces

(online/semi-online). To do this, we performed an experiment where two state-of-the-

art attacks are launched on four mobility datasets in different scenarios depending

on the size of the mobility traces. We have a data publishing scenario with full long

traces that go up to 5 days (full because for each user in the testing part of the

dataset, her whole mobility trace is re-identified as one), a crowd-sensing scenario

with medium size traces that go up to 24 hours and a session-based service scenario

with short traces smaller than 30min.

The results are shown in Figure 5.1. First, we notice the high results of a data

publishing scenario where long mobility traces are available to the attacker (from
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67% up to 74%). The results decrease for a scenario with smaller traces, already

with a crowd-sensing scenario where the user sends her data daily (it goes down by

−22% on average) and even further with a scenario of short traces (it goes down by

an average of −34%).

This could be used as reasoning to claim that smaller mobility traces are not

sensitive to re-identification. We argue that this is false and we want to show in this

chapter that by changing the way we re-identify mobility traces, an attacker can

also break the anonymity of mobility traces in scenarios with short traces. Because,

current profile-based attacks aim at reconstructing similar profiles using the mobility

traces, while long mobility traces are compatible with this objective, smaller traces

have less capacity to reconstruct the profile of the user. To reach this, we use

machine learning techniques that learn individual behaviors of users instead of trying

to construct a one all-mighty profile to discriminate between users.

5.3 Model of User Re-identification based on

Small Traces

Consider an attacker that has at his disposal the know user data KD = {T1, T2, . . . , Tn}.
Each Ti is the record of the past mobility of the user Ui. His aim is to use KD to

train a classifier I that is able upon receiving as input an anonymous mobility trace

T to predict the identity of the owner of the mobility trace.

In consequence, the user identities of the system represent the target labels

Y ∈ U = {U1, U2, . . . , Un} and the observation data is X ∈ KD. X has the form of a

time series where each record ri = (lati, lngi, ti) is composed of the GPS coordinates

with their timestamp. As depicted in Figure 5.2. we first split traces into multiple

sub-traces because we need multiple examples for each label (the attacker could

receive them split or split them himself to ensure a multitude of examples). This

resulting data cannot be fed directly to a classifier learning algorithm. It needs

to have the form of a feature vector X = {feature1 : v1, feature2 : v2, . . .} with

vk ∈ R. To train the classifier on KD, we need to use a preparation function

T that transforms X = {(lat1, lng1, t1), (lat2, lng2, t2), . . .} to T (X) = {feature1 :
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v1, feature2 : v2, . . .}. This model is generic and different techniques can be applied

to achieve such an attack, an instantiation of this model with ILL-Attack is presented

in the next section. To summarize in order to design a re-identification attack as a

multi-label classifier, we need :

• A splitting algorithm that turns a mobility trace into multiple sub-traces.

S : (R2 × R+)∗ → ((R2 × R+)∗)∗

T = {r1, r2, . . .} 7→ S(T ) = {{r1, . . . , rk1}, {rk1+1, . . . , rk2}, . . .}
(5.1)

• A transformation function that turns a mobility sub-trace into a feature vector

of dimension d.

T : (R2 × R+)∗ → Rd

T = {r1, r2, . . .} 7→ T (T ) = {v1, v2, . . . , vd}
(5.2)

• A multi-label classifier.

I : (Rd × U)∗ × Rd → U
(T (KD), ID(KD), T (T )) 7→ I(T (KD), ID(KD), T (T )) = Ua

(5.3)

5.4 ILL-Attack Design Principles

We use the previous model to design ILL-Attack (Identity Learning with Location

Attack) an attack based on fixed slices of sub-traces and Extremely Randomized

Trees (ERT) [32].

5.4.1 Splitting Algorithm:

this algorithm takes fixed time slices of length ∆ (in seconds) from the mobility trace.

As described in Algorithm 4, each time interval [t0 + k∆, t0 + (k + 1)∆[ corresponds

to one sub-trace. The value of ∆ should be chosen to ensure multiple examples for

the training phase. It should also correspond to the size of the mobility trace to

re-identify.
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Algorithm 4 Splitting Algorithm of Long Mobility Traces in ILL-Attack

1: function Sf (T ,∆)

2: slices ∅ Set of slices to output

3: currentSlice← ∅
4: st← T [0](t) Current slice starting time

5: for r in T do Consider each record in the trace

6: if r(t) < (st+ ∆) then Current slice cannot exceed ∆
7: Continue to gather records for this slice

8: currentSlice currentSlice ∪ {r}
9: else

10: slices slices ∪ currentSlice Save the slice

11: currentSlice← {r} Start a new slice

12: st ← st+ δ Update the starting time of the new current slice

13: end if

14: end for

15: slices slices ∪ currentSlice
16: return slices

17: end function
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Feature Description Value Range

hourOfDay Average hour of the day of recording [0, 23]
nbRecords The number of records in this sub-trace R+

centerLat The latitude of the centroid of the trace [−90, 90]
centerLng The longitude of the centroid of the trace [−180, 180]
IDofCelli The Proportion of records in cell i [0, 1]

for all non-empty cells in the dataset

Table 5.1: List of features used by ILL-Attack

5.4.2 Data Formatting:

ILL-Attack mainly uses the heat map as a way of representing the whole mobility

trace with a fixed dimension space. The map is divided into regions of the same size.

In each cell, we compute the proportion of records in it.

In addition to the heat map, other features are added to each observation as

described in Table 5.1. Specifically, we use hourOfDay, which adds temporal

information on the trace to differentiate similar moving patterns between day-night

shifts, e.g., a user living near the working place of another user. They may have

similar heat map prints but at different times of the day (this feature is limited to

sub-traces that are smaller than a day). We also use the nbRecords feature, which

gives information about the sub-trace used for the construction of the heat map.

Finally, we use the centroid of the sub-trace, which gives the average position of the

user on the map.

5.4.3 ILL-Attack’s Classifier: The Extremely Randomized

Tree (ERT)

ILL-Attack uses to train its model an Extremely Randomized Tree classifier [32]. It

constructs a set of M decision trees where the splitting feature chosen is the best

one among K randomly selected attributes and the selected cutting point for each

feature is random. The main advantage of this type of classifier compared to other

famous decision tree classifiers such as Random Forest is the fact that it eliminates
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the burden of searching for the optimal cut-point without deteriorating the accuracy

of the classifier. ERT was the best method found using an evolutionary algorithm

searching for the most suitable classifier for our task (with cross-validation to avoid

over-fitting) [75].

5.5 Experimental Evaluation of ILL-Attack

In the following, we first present the real-life mobility datasets used in our experiments

(Section 5.5.1). Then, we describe the experimental environment and configuration

settings we used (Section 5.5.2). We compare ILL-Attack to state-of-the-art attacks

in two use cases: (1) Re-identifying a short session of a service using mobility data in

Section 5.5.3. (2) A crowd-sensing campaign where the users send their data daily in

Section 5.5.4. The attacks are evaluated in both a non-obfuscated (NOBF for short)

setup and an obfuscated setup using state-of-the-art Location Privacy Protection

Mechanisms (LPPMs).

5.5.1 Datasets

We used four real mobility datasets in our experiments. These datasets are: (1)

Cabspotting [80] that contains the mobility of 536 cab drivers in the city of San

Francisco; (2) Geolife [106] that contains the mobility of 42 users mainly in the

city of Beijing; (3) MDC [54] that contains the mobility data of 144 users in the

city of Geneva and (4) PrivaMov [9] that contains the mobility of 48 students and

staff members in the city of Lyon. A mobility trace is constituted of a sequence of

spatio-temporal records r = (lat, lng, t) associated to a given user, where lat and lng

correspond to the latitude and longitude of GPS coordinates while t is a timestamp.

To make the comparison fair between the various datasets, we selected in each

dataset the 30 most active successive days. We also took a subset of the 50 most

active users of cabspotting to lower the memory usage. We present in Table 5.2 a

description of the datasets used in our experiments. The users are not active in all

the days of the period, some are more active than others. We consider as a mobility

trace, the mobility of the user during all the period.
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Table 5.2: Description of the datasets used for the experiments on ILL-Attack

Dataset CabSpotting Geolife MDC PrivaMov

#users 536 (50) 42 144 48

Location San Francisco Beijing Geneva Lyon

#records 11 219 955 (1 409 687) 1 574 338 904 422 973 684

5.5.2 Experimental Setup and Configurations

The following experiments were conducted in a computer running an Ubuntu 14.04 OS

with 50GB of RAM and 16 cores of 1.2Ghz each. ILL-Attack’s prototype is developed

in Python and is available for download at: https://github.com/mmaouche-insa/ILL-

Attack. It uses scikit-learn [78] for the Extremely Randomized Tree implementation

and S2-Geometry library [88] for the decomposition of the map into areas of equal

size.

ILL-Attack parameter is the size of the cell in the S2-Geometry library, which is

set at level 13 meaning that an area covers approximately a block of a city. For the

Extremely randomized tree, the number of decision trees is set to 100, the criteria

to measure the quality of a split is the Gini criteria [10]. The minimum number of

samples required to be at a leaf node is set to 2, the minimum number of samples

required to split an internal node is set to 8. Finally, the number of features to

consider when looking for the best split is 60%. This configuration was searched

using an automated tool Tpot [75] that uses evolutionary algorithms to search the

parameters’ space. It has been launched only once on the GeoLife dataset and not

reconfigured on each dataset or use case. POI-Attack has two parameters for the

extraction of POIs from mobility traces. These parameters are the diameter of the

clustering area, and the minimum time spent inside a POI. These parameters are

respectively set to 500 meters and 15 minutes to accommodate small traces (for the

first use case for example). AP-Attack has a configuration parameter that corresponds

to the square cell size, which was set to 800 meters [59]. The LPPMs come with

their own configuration parameters, that are set as follows. Geo-I’s ε configuration

parameter is set to 0.01; this adds a medium amount of noise to the obfuscated data
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(the lower ε the higher the noise). Promesse’s α configuration parameter is set to 200
meters, it represents the distance between two successive sampling points (default

value). HMC’s main parameter is the square cell sizes of the heat map and it was set

to 800 meters (default value). Finally, TriLateration’s parameter is the radius of the

circular region where random points are generated, which was set to 1km (default

value).

5.5.3 Evaluation of ILL-Attack in a Session-Based Service

In this section, we present a description of the session-based service, followed by the

evaluation of ILL-Attack compared to two state-of-the-art re-identification attacks

then we show the resilience of four LPPMs against ILL-Attack.

Description:

In this use case, we consider a session re-identification of a location service. Let us

assume a user that uses an application for a short period of time (e.g., short navigation

in the city, successive location check-ins, multiple searches for restaurants. . . ). During

this usage, the user sends her location multiple times during a single session but

between two sessions the user changes her ID in the system (e.g., using a privacy

proxy or an anonymity network such as TOR). As a consequence, the attacker can

know that this sequence of records came from the same user but the attacker cannot

reassemble all the small traces of the user as one big trace since each of them has a

different id.

In this use case, the attacker has access to all the 80% past mobility of the users

(i.e., KD). AP-Attack and POI-Attack use this mobility traces to construct the

profiles, while ILL-Attack uses the splitting algorithm with ∆ = 30mn to train its

classifier. In this use case, for all the attacks, the attacker receives a mobility trace

of one session usage, which is simulated in our experiment by slices of sub-traces

smaller than 30 minutes (hence the ∆ for ILL-Attack).
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LPPMs Effectiveness Against Re-identification Attacks in Session-based

Services:

In this experiment, we consider that each session the attacker wants to re-identify

has been previously obfuscated by an LPPM. If the LPPM is an online LPPM the

records are obfuscated one by one and if the LPPM is semi-online or offline the whole

mobility trace of the session is obfuscated before being received by the attacker (the

training dataset is never obfuscated by any LPPM).

In Figure 5.4, we compare the LPPM effectiveness against re-identification attacks.

We first notice that the LPPM have low effectiveness on these short sub-traces

(< 30min). Promesse and Trilateration seem to be the LPPMs with the most effect

even though they do not protect the sessions that much. Since, on ILL-Attack, even

the most effective LPPM decreases the user re-identification rate by only −14%.

If we compare ILL-Attack, AP-Attack and POI-Attack after the usage of LPPM,

ILL-Attack outperforms the other attack in all the datasets and against all the

LPPMs. If we consider all the users of all the datasets, ILL-Attack’s re-identification

rates are still between 35% and 46%, while AP-Attack’s rates are between 26% and

33% and POI-Attack’s rates are between 0% and 8%.

5.5.4 Evaluation of ILL-Attack in a Crowd-Sensing Applica-

tion

In this section, we present a description of this use case, followed by the evaluation

of ILL-Attack compared to AP-Attack and POI-Attack then we show the resilience

of ILL-Attack against GeoI, TriLateration, HMC and Promesse.

Description:

In this use case, we consider a crowd-sensing scenario. The user gathers data during

the day, then at night when her mobile phone is connected to a WIFI connection

and put to charge, she sends all the data gathered during the day to either the

crowd-sensing platform or a privacy proxy if need be. In this use case, the attacker

has access to at most a mobility trace of a whole day but cannot reassemble all the
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first use case. This is especially the case for HMC that goes up from a decreasing

effect of −3% in the first use case to −13% for ILL-Attack across all the sub-traces of

all the datasets. Against ILL-Attack, Promesse has the higher effect with a decrease

of −18% of all the sub-traces across the dataset re-identified. Trilateration and HMC

have −13%. All in all, ILL-Attack outperforms AP-Attack and POI-Attack even

after the protection of the LPPMs.

5.6 Conclusion

In this chapter, we presented ILL-Attack a novel re-identification attack that uses

machine learning to learn the short behaviors of users. This attack uses the heat

map representation of a mobility trace and the timestamp of the mobility trace to

differentiate user patterns. ILL-Attack was evaluated on four real mobility datasets

against three representative LPPMs and compared to two classical state-of-the-art

re-identification attacks that construct user profiles. The evaluation was conducted

on two use cases, one where an attacker aims at re-identifying session-based services

usage through mobility data and the other where an attacker re-identifies crowd-

sensing data sent by a user on a daily basis. The results show that ILL-Attack

outperforms the other two attacks in all the use cases and against all the LPPMs

proposed.

As future work, we consider using machine learning techniques to protect users

against re-identification attacks. Either by filtering discriminative behavior or gener-

ating traces that preserve utility while hiding sensitive and discriminative moving

patterns. A good perspective to investigate is the utilization of Generative Adversarial

Networks that might be able to respond to the threat of re-identification.
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6.1 Objectives and Roadmap

According to the previous results of Chapter 3 and Chapter 5, we notice that the

current LPPMs applied to user mobility data (whether in the form of session-based

services, in the form of longer crowd-sensing data portions or even in a data publishing

scenario) are not sufficient to protect users in front of user re-identification attacks.

Indeed, after analyzing the previous results more thoroughly, we noticed that

users are affected differently by the LPPMs and that even portions of mobility data

of the same user are not equally protected by the same LPPM. This shows the need

to develop new LPPMs that are able to face the threat previously illustrated in all

the evaluations (ILL-Attack and AP-Attack more particularly). As a first attempt,

we propose to consider the particularity of each behavior of the user and design

LPPMs that change their obfuscation depending on the sub-trace. This is why we

propose to make use of off-the-shelf state-of-the-art LPPMs and apply the best one

for each sub-trace.

We propose Hybrid-LPPM that operates in a crowd-sensing application where

the user goes through a privacy proxy each time it needs to send a mobility trace

to the analyst. The privacy proxy is first responsible for hiding the ID of the user

and hiding the source of the data. Also, it uses background knowledge sent by

different users to choose the best LPPM to apply for this particular sub-trace. To

avoid information leakage, the proxy could rely on secure hardware such as trusted

execution environments. This technology is being increasingly available on commodity

hardware (e.g., the sky lake generation of intel processors with SGX [92]). It also

operates in a data publishing scenario, the publisher should then use Hybrid-LPPM

instead of experimenting on each LPPM individually.

The best LPPM is chosen using two criteria: (1) Privacy: we choose the set of

LPPMs that protect the most against a set of re-identification attacks trained with

the gathered background knowledge. (2) Utility: from those LPPMs, we select the

one with the best utility according to a chosen metric (we evaluate how much the

data has been distorted).
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Roadmap During the remaining of this chapter, we start by illustrating the

problem in Section 6.2. We describe our method in Section 6.3. We present the

evaluation in Section 6.4. We conclude in Section 6.5.

6.2 Problem statement

A user mobility trace can be obfuscated using different LPPMs available in the

state-of-the-art. Each one has different results on different users according to the

attack. For example, in Table 6.1, we show the re-identification results of a sample

of 24 hours long sub-traces of the dataset PrivaMov obfuscated with four different

LPPMs. We notice that there are sub-traces where only a specific LPPM is able to

protect the user against all the attacks (HMC for trace 42-23 and Promesse for 42-24

and 27-13). Moreover, this specific LPPM varies between users and even between

sub-traces of the same user (user 42 needs HMC for her sub-trace 23, while she

needs Promesse for her sub-trace 24). In other cases, multiple LPPMs can be chosen

(the sub-trace 75-25 can use GeoI, Promesse or HMC and 50-28 can use any of the

four LPPMs). But since each LPPM has different utility values, it would be wise to

choose the one that deteriorates the utility the less.

These are only examples, we notice this phenomenon across all datasets as shown

in Figure 6.1. We describe for each dataset the protection results when the sub-traces

are obfuscated with the trio Promesse, TriLateration and HMC. We consider only the

sub-traces protected against the three re-identification ILL-Attack, AP-Attack and

POI-Attack simultaneously. We separate those protected sub-traces first according

to the number of LPPMs that protected them, then according to the set (e.g., from

the trio three different pairs could be the one protecting the sub-trace). The results

show that there is no one-size-fits-all LPPM and that depending on the sub-trace a

different set of LPPM should be considered. To make those choices we use a privacy

proxy and we describe how it operates in the next section.
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Figure 6.1: Illustration of how sub-traces have different subsets of LPPMs that protects

them
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of Equation 6.1. Higher the value, higher the risk of a user being re-identified by an

attacker.

PL(T ) =

∑
Ai

 wAi If Ai(L(T ),KD)=ID(T )
0 Else ∑

Aj
wAj

(6.1)

The priority is given to privacy. So, from the set of available LPPMs L a sub-set

Lmin(T ) with minimum privacy risk for T is chosen (See Eq.6.2)

Lmin(T ) =
{
L ∈ L | PL(T ) = min

Li
PLi(T )

}
(6.2)

To choose the most suitable LPPM to apply, we use a utility metric UT . The

most suitable LPPM L∗ is the LPPM from Lmin(T ) with the best utility (as described

in Equation 6.3). The utility evaluation can be defined using multiple metrics similar

to how P was defined in Eq.6.1.

L∗ = arg max
L∈Lmin(T )

UT (T,L(T )) (6.3)

6.4 Experimental Evaluation of Hybrid-LPPM

6.4.1 Experimental Setup, Configurations and Datasets

The following experiments were conducted in a computer running an Ubuntu 14.04 OS

with 50GB of RAM and 16 cores of 1.2Ghz each. The re-identification attacks and the

LPPMs are configured in the same way as the one of the experiments of Chapter 5 (see

Section 5.5.2 for more details) To summarize, we use three re-identification attacks

for the adversary. ILL-Attack with regions of level 13, AP-Attack with square cells

of size 800 meters and POI-Attack with a clustering algorithm parameterized with

500 meters for the maximal clustering area and 15 minutes for the minimal duration.

For Hybrid-LPPM, we give to each attack a weight of 1, which makes the privacy

evaluation of the proxy similar to the number of successful attacks metric used for
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the experiments of HMC in Chapter 4. We use one utility metric, the Area Coverage

with square cells of size 800 meters. We use four LPPMs, Geo-I with ε = 0.01,

Promesse with α = 200 meters, TriLateration with a radius of 1km and HMC with

square cells of size 800 meters. We used the same four real mobility datasets in our

experiments as the one for the evaluation of ILL-Attack (Section 5.5.1).

6.4.2 Privacy and Utility Evaluation

We evaluate the hybrid scenario in a crowd-sensing setting similar to the one of

the evaluation of ILL-Attack in the previous chapter. We consider a crowd-sensing

application where users send their data daily (every 24 hours). Each data is sent to

the privacy proxy that redirects them to the crowd-sensing platform. The privacy

proxy applies the hybrid method using a background knowledge shared by all the

users in a secure privacy proxy. We consider a strong attacker that has access to the

totality of the background knowledge of the privacy proxy rather than small leakages

from the previous mobility of users. We can assume that the attacker or too curious

analyst used to receive mobility data of the users.

The results are depicted in Figure 6.3. As expected Hybrid-LPPM strictly

ameliorates all the results of the individual LPPMs. If we consider all the 799
sub-traces across all the datasets, 68% of the sub-traces are fully protected, while

for the single LPPMs it ranges from 35% to 54%. Also, Hybrid-LPPM increases the

proportion of sub-traces fully protected with an Area Coverage above 0.75 to 48%,

while the proportion ranges from 1% to 35% for the other LPPMs.
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6.5 Conclusion

In this chapter, we propose a solution to make use of off-the-shelf LPPMs to mitigate

the risk of re-identification in the context of a crowd-sensing application or a data

publishing scenario. Our method Hybrid-LPPM first gives priority to privacy by

minimizing the number of successful re-identification attacks than chooses the LPPM

with the best utility among the most protective ones. We experimented Hybrid-LPPM

on four real mobility datasets against three re-identification attacks and compared

it to the protection of four individual LPPMs. Across all the 799 sub-traces in the

testing set, 68% of them are fully protected against all the three re-identification

attacks (bigger than its competitors with 35% up to 54%).
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Conclusion & Perspectives

7.1 Concluding Remarks

With the wide usage of location-based services, a great amount of mobility data

has been received by different service providers. Even though awareness on privacy

preservation is raising, anonymizing mobility data from now on is ineffective since

mobility data is unique and thus discriminative. An adversary that has access to

past mobility of users can re-associate anonymous mobility traces to known mobility

using re-identification attacks.

In this thesis, we tackled the threat of re-identification attacks on mobility data.

Our goal was to discover vulnerabilities of current systems and to design privacy

mechanisms able to counter this threat. We took particular care of differentiating

long traces with multiple occurrences of discriminative patterns and short traces that

may seem hard to re-identify that are actually also at risk. When protecting mobility

traces, we consider traces as macro-mobility and we aim at modifying the intrinsic

behavior of users, rather than focusing on particular discriminative aspects such as

POIs. In the contributions of this thesis, the utility was put on a pedestal. Our

protection mechanisms were guided by various utility metrics for various applications.

In this thesis, we started by constructing a re-identification attack named
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AP-Attack with robust profiling of users based on heat maps, a spatial

aggregation of a user mobility trace in square regions of the map. We also propose a

novel paradigm of re-identification attack where the attacker does not consider only

one possible identity as an output of a re-identification attack but rather considers

multiple identities depending on a re-identification policy. The goal of a policy is

to have a selection of a small number of identities that need to be further investigated.

The attacker aims at having the smallest set of possible identities while including

the correct identity. In consequence, we propose new ways to measure the strength

of an attacker by considering the set size of possible identities and the number of

false positives.

In order to propose a countermeasure against profile-based re-identification attacks,

HMC a utility constrained LPPM for crowd-sourcing and data publishing

was proposed. This LPPM reasons on user mobility as a whole, captured using heat

maps. HMC extracts user profiles by constructing heat maps and alters it by making

it look similar to the heat map of another user. To limit the decrease in data utility,

HMC uses the heat map of the closest user as a basis for performing the alteration.

and it transforms back each altered heat map to a mobility trace by trying to retain

as much as possible the users’ original traces unchanged.

We also tackle the re-identification of short traces that may seem protected since

an attacker would build profiles using them with difficulty. But we show the risk

of re-identification of short traces using multi-trace learning rather than

profiling with ILL-Attack. It learns from multiple short behaviors in order to be

able to recognize them at re-identification. ILL-Attack uses Extremely Randomized

Trees to learn users’ identity based on their mobility. This attack instantiates a

new model of re-identification that divides the mobility traces into multiple shorter

mobility traces to learn different behaviors of users in order to be able to re-identify

in various scenarios. Its strength is that it can be applied to use cases of smaller size.

In this thesis, we propose a method to make use of off-the-shelf LPPMs with

Hybrid-LPPM a user-centric fine-grained multi-LPPM. Because users are

affected differently by the LPPMs and that even portions of mobility data of the

same user are not equally protected by the same LPPM. Hybrid-LPPM operates

in a crowd-sensing application where the user goes through a privacy proxy each

time it needs to send a mobility trace. The privacy proxy is first responsible for
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hiding the ID of the user and hiding the source of the data. Also, it uses background

knowledge sent by different users to choose the best LPPM to apply for this particular

sub-trace. The best LPPM is first chosen as the one that protects the most against a

set of re-identification attacks trained with the gathered background knowledge and

secondly it is selected as the one with the best utility according to a chosen metric

(i.e., privacy then utility).

7.2 Future Work

Enforcing Formal Guarantees with HMC

HMC protects users against re-identification attacks by transforming heat maps

(i.e., a probability distribution) to make them look similar to the one of other users.

Two approaches are possible extensions:

k-anonymity: currently HMC obfuscates data of one user using the past mobility

of another user. As a direct extension, it could use current data of one user and

provide 2-anonymity. It could also consider the heat map of multiple users and build

a cluster of k users to enforce k-anonymity. We would construct a centroid profile

of the k users inside the cluster and transform each profile to look similar to the

average profile of the cluster.

Differential Privacy: heat maps are used for re-identification since they permit

to enclose POIs, paths and absences of POIs in one data structure. With a diver-

gence such as the Topsoe diverge to measure the dissimilarity between them. A

possible improvement for the protection of HMC is to make the obfuscated heat map

differentially private so as to not disclose too much information to an attacker. Using

an extension of Geo-Indistinguishably, rather than using it on geo-located records, we

would use on our high dimensional heat map. To bound the information an attacker

might get for the heat map especially the closeness to the user past mobility heat

map.
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Generative Adversarial Networks (GANs) to protect users against re-

identification attacks

GANs [35] are frameworks in which two neural networks compete, the first network

called Generator (G) generates data that captures the training data distribution

and another network called Discriminator (D) that estimates the probability that a

sample came from the training data rather than G. In the ongoing work of Romanelli

et al. [87], they took inspiration of GANs to propose a method to generate noise

for location data using two networks a Generator that generates the noise and a

Classifier that aims at distinguishing between the different users (they do not consider

re-identification with past mobility as in this thesis). A possible future work for this

thesis would be to also take inspiration with GANs in order to protect mobility data

against re-identification attacks (with past mobility).

Creating Fake Profiles

Currently, HMC needs to gather user past data. As future work, the extension of

using fake profiles as the target users for the confusion would be interesting. First,

since user may not accept that their data is used for the protection of other users.

Secondly, in order to make HMC independent of the mobility of other users and

independent of a privacy proxy. We could leverage synthetic traces of fake users to

be the target for the confusion. With such a technique, it would be important that

the fake profiles are representative of real users, in order to ensure that the confusion

falls on other users rather than the correct one.
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Killijian. Sride: A privacy-preserving ridesharing system. In Proceedings of the

11th ACM Conference on Security & Privacy in Wireless and Mobile Networks,

WiSec 2018, Stockholm, Sweden, June 18-20, 2018, pages 40–50, 2018. doi: 10.

1145/3212480.3212483. URL https://doi.org/10.1145/3212480.3212483.

26, 34

[4] Miguel E. Andrés, Nicolás Emilio Bordenabe, Konstantinos Chatzikokolakis,

and Catuscia Palamidessi. Geo-indistinguishability: differential privacy for

location-based systems. In 2013 ACM SIGSAC Conference on Computer and

Communications Security, CCS’13, Berlin, Germany, November 4-8, 2013,

pages 901–914, 2013. doi: 10.1145/2508859.2516735. URL https://doi.org/

10.1145/2508859.2516735. 8, 25, 31, 38

[5] Alastair R. Beresford and Frank Stajano. Location privacy in pervasive com-

puting. IEEE Pervasive Computing, 2(1):46–55, 2003. doi: 10.1109/MPRV.

2003.1186725. URL https://doi.org/10.1109/MPRV.2003.1186725. 34

133

      Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2019LYSEI089/these.pdf 
      © [M. Maouche], [2019], INSA de Lyon, tous droits réservés

http://dx.doi.org/10.1016/j.is.2010.05.003
http://dx.doi.org/10.1016/j.is.2010.05.003
https://doi.org/10.1145/3212480.3212483
https://doi.org/10.1145/2508859.2516735
https://doi.org/10.1145/2508859.2516735
https://doi.org/10.1109/MPRV.2003.1186725


134 Bibliography

[6] Claudio Bettini, X Sean Wang, and Sushil Jajodia. Protecting Privacy Against

Location-based Personal Identification. In Proceedings of the Second VDLB

International Conference on Secure Data Management, SDM’05, pages 185–

199, Berlin, Heidelberg, 2005. Springer-Verlag. ISBN 3-540-28798-1, 978-3-

540-28798-8. doi: 10.1007/11552338 13. URL http://dx.doi.org/10.1007/

11552338{_}13. 25
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