
HAL Id: tel-02972362
https://theses.hal.science/tel-02972362v1

Submitted on 20 Oct 2020

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Transformation binaire de niveau de fonction dynamique
axée sur les performances

Arif Ali Anapparakkal

To cite this version:
Arif Ali Anapparakkal. Transformation binaire de niveau de fonction dynamique axée sur les perfor-
mances. Other [cs.OH]. Université de Rennes, 2019. English. �NNT : 2019REN1S114�. �tel-02972362�

https://theses.hal.science/tel-02972362v1
https://hal.archives-ouvertes.fr

THÈSE DE DOCTORAT DE

L’UNIVERSITÉ DE RENNES 1
COMUE UNIVERSITÉ BRETAGNE LOIRE

ÉCOLE DOCTORALE N° 601
Mathématiques et Sciences et Technologies
de l’Information et de la Communication
Spécialité : Informatique

Par

Arif Ali ANAPPARAKKAL
Performance Centric
Dynamic Function Level Binary Transformation

Thèse présentée et soutenue à Rennes, le Dec 9, 2019
Unité de recherche : Institut National de Recherche en Informatique et Automatique (Inria)
Thèse N° :

Rapporteurs avant soutenance :
Karine HEYDEMANN, Maître de conférence, Sorbonne Université
Henri-Pierre CHARLES, Directeur de Recherche, CEA

Composition du Jury :
Attention, en cas d’absence d’un des membres du Jury le jour de la soutenance, la composition du Jury
ne comprend que les membres présents
Président : Prénom Nom Fonction et établissement d’exercice (à préciser après la soutenance)
Examinateurs : Philippe CLAUSS Professeur, Université de Strasbourg

Sandrine BLAZY Professeur, Université de Rennes 1
Sébastien FAUCOU Maître de conférence, Université de Nantes

Dir. de thèse : Erven ROHOU Directeur de recherche INRIA

Invité(s) :
Prénom Nom Fonction et établissement d’exercice

ACKNOWLEDGEMENT

I would like to express my sincere gratitude to my thesis advisor, Erven Rohou, for
giving this opportunity to work under him. I would like to thank him for his continuous
support, patience and motivation during my study.

I am extremely thankful to the esteemed members of jury for having agreed to examine
my work.

I would like to thank the members of ALF and PACAP teams for their help and support
and also for making my stay at Rennes really enjoyable.

I thank Dr. Arjun Suresh for his continuous encouragement and help during my Bachlor’s,
Master’s and Doctoral degree studies.

I would like to thank my parents for their continuous help and support through out
my life. This thesis is dedicated to them. I thank my wife, daughter and other family
members for their prayers and support.

Above all I humbly bow my head before the Almighty who blessed me with energy and
enthusiasm to complete this endeavour successfully.

3

TABLE OF CONTENTS

Résumé 7

Introduction 15

1 Background 21
1.1 Traditional Optimization Techniques . 21
1.2 Prior Works . 26

1.2.1 Static Optimizations . 27
1.2.2 Dynamic Optimizations . 30
1.2.3 Proposed work . 32

1.3 PADRONE . 33

2 FITTCHOOSER: A Dynamic Feedback-Based Fittest Optimization Chooser 35
2.1 Introduction . 35
2.2 Survival of the fittest . 37

2.2.1 Profiling . 37
2.2.2 Optimization Pass . 38
2.2.3 Cruise Control . 39

2.3 FITTCHOOSER . 39
2.3.1 Padrone . 41
2.3.2 Implementation . 42
2.3.3 FITTLAUNCHER . 45

2.4 Results . 47
2.4.1 Overhead . 47
2.4.2 Speedup . 48
2.4.3 FITTLAUNCHER . 51

2.5 Related Work . 51
2.6 Conclusion . 53

5

TABLE OF CONTENTS

3 OFSPER: Online Function Specializer 55
3.1 Introduction . 55
3.2 Function Specialization . 56
3.3 Dynamic Function Specialization . 57

3.3.1 Use case . 58
3.3.2 Our Approach . 58

3.4 Implementation Details . 62
3.4.1 Overview . 62
3.4.2 OFSPER . 63

3.5 Example . 68
3.6 Result . 70

3.6.1 Experimental set-up . 70
3.6.2 Overhead . 70
3.6.3 Speedups . 71

3.7 Related Work . 72
3.8 Conclusion . 74

4 Implementation Details 75
4.1 Monitor Function . 75
4.2 LLVM Passes . 77

5 Conclusion 81
5.1 Publications . 82
5.2 Further Extension . 82

A Monitor function for FITTCHOOSER 85

B Monitor function for OFSPER 88

Bibliography 91

List of Figures 101

List of Tables 103

6

RÉSUMÉ

De par sa nature statique, un compilateur a une visibilité limitée pour tenir compte de
l’environnement dynamique ou du comportement d’une application. Les inconnues in-
cluent les données d’entrée réelles qui ont une incidence sur les valeurs transmises
par le programme et les détails spécifiques au matériel. Les entrées d’un programme
peuvent considérablement changer l’efficacité d’un code compilé statiquement, et de
nombreux cas sont soumis à une incertitude totale. Normalement, un compilateur sta-
tique applique partiellement des techniques d’optimisation dépendantes des données
en effectuant des estimations approximatives des données d’exécution, parfois à l’aide
d’une session de profilage réalisée lors de la compilation statique. Par exemple des op-
timisations comme la restructuration de boucles, l’élimination de variables d’induction,
le déroulage ou le déplacement d’invariant sont toutes appliquées avec l’hypothèse
que la boucle s’exécute un nombre minimum de fois. Ces techniques et d’autres, telles
que la vectorisation, le tuilage de boucles, l’élimination de code inaccessible, etc., pour-
raient tirer parti d’information dynamique.

Les fonctionnalités matérielles modernes peuvent améliorer les performances d’une
application, mais les éditeurs de logiciels sont souvent limités au plus petit dénomi-
nateur commun afin de maintenir la compatibilité binaire avec tout le spectre de pro-
cesseurs utilisés par leurs clients. Avec des informations plus détaillées sur les fonc-
tionnalités matérielles, un compilateur peut générer un code plus efficace. Mais même
si le modèle de processeur exact est connu, les fabricants ne divulguent pas tous les
détails.

Une solution serait de compiler un code source après avoir obtenu toutes les infor-
mations sur le programme que les différentes optimisations requièrent. Nous savons
qu’une telle solution est impraticable. Une solution presque optimale est d’optimiser
au cours de l’exécution du programme. Le principal avantage de l’optimisation est que
l’optimiseur a une connaissance complète de l’environnement d’exécution, y compris
des détails spécifiques au matériel. L’optimiseur obtient ainsi les données d’entrée et

7

Résumé

peut ainsi, dans de nombreux cas, prédire le comportement futur du programme.

Cette thèse propose deux outils indépendants, FITTCHOOSER et OFSPER, qui ap-
pliquent des optimisations dynamiques au niveau des fonctions. L’idée de base est de
remplacer une fonction existante par une version optimisée de celle-ci. FITTCHOOSER,
un sélecteur d’optimisation basé sur le retour d’information dynamique, aide à trouver
une version optimisée d’une fonction en comparant les performances de différentes
versions de la fonction créée de manière dynamique. OFSPER, spécialiseur de fonc-
tions en ligne, spécialise dynamiquement une fonction en fonction des valeurs réelles
de ses arguments.

FITTCHOOSER: Un sélecteur d’optimisation à rétroaction

dynamique

L’introduction de fonctionnalités avancées telles que les compteurs matériels et les
unités de traitement vectoriel dans les microprocesseurs modernes peut permettre
aux programmes de s’exécuter plus rapidement sans nécessiter de modification du
code source. Les programmes peuvent même être optimisés au moment de l’exécution
en surveillant de manière dynamique les compteurs matériels. Toutefois, les éditeurs
de logiciels doivent toujours tenir compte de la compatibilité matérielle avant d’activer
ces fonctionnalités avancées dans leurs applications. De nombreux modèles de pro-
cesseurs ne prennent pas en charge les toutes dernières fonctionnalités d’optimisation
et génèrent une erreur matérielle si un programme tente de les appeler. Mais même si
le fournisseur pouvait compiler le programme directement sur chaque machine de dé-
ploiement séparément – ce qui est très peu pratique – les meilleurs compilateurs com-
merciaux et à code source ouvert manquent souvent des opportunités d’optimisation.
Cela est dû en partie au manque d’informations publiques sur les détails de bas niveau
des fonctionnalités du CPU. Sans modèle précis des caractéristiques de performance
du processeur, le compilateur a recours à des méthodes heuristiques pour sélec-
tionner des facteurs essentiels tels que le nombre de déroulements de boucles ou
l’ordonnancement des instructions de chargement.

Cette thèse propose un outil d’optimisation dynamique appelé FITTCHOOSER pour
surmonter ces limitations en générant des variations du code machine du programme

8

Résumé

et en évaluant empiriquement les variations afin de sélectionner le plus performant.
Ce processus itératif permet à FITTCHOOSER de trouver la technique d’optimisation
la mieux adaptée aux fonctions les plus gourmandes en ressources d’un programme
dans son environnement d’exécution actuel. Pour prendre en compte les changements
potentiels dans les caractéristiques de performance, pouvant par exemple être causés
par l’extension d’un tableau fréquemment traversé au-delà de la capacité du cache
L3, FITTCHOOSER surveille en permanence ses fonctions optimisées et redémarre le
processus d’évaluation lorsque des changements importants sont observés.

Les performances d’une exécution donnée d’un programme peuvent être affectées par
un large éventail de facteurs, ce qui rend difficile de déterminer à l’avance quelles tech-
niques d’optimisation sont les plus avantageuses. Bon nombre de ces facteurs peu-
vent être totalement imprévisibles. Par exemple, si le programme traite un flux d’entrée
représentant l’activité de l’utilisateur final, il peut s’avérer impossible de prédéterminer
les optimisations idéales pour une période donnée de ce flux d’entrée. Même si un
compilateur choisissait les optimisations idéales pour un scénario d’exécution donné,
le même programme compilé pourrait être exécuté dans un scénario légèrement dif-
férent, dans lequel d’autres optimisations amélioreraient les performances. Pour combler
cet écart entre l’optimisation au moment de la compilation et l’exécution concrète d’un
programme, FITTCHOOSER utilise une instrumentation dynamique pour générer et
tester diverses combinaisons d’optimisations au début de l’exécution du programme,
puis transformer le programme pour utiliser la combinaison qui s’avère empiriquement
être la le plus efficace. Ceci est mis en œuvre sous forme de progression en trois
phases:

— Profilage: Identifier les cinq fonctions les plus gourmandes en ressources pro-
cesseur de l’exécution en cours.

— Passe d’optimisation: Générer des variantes de ces fonctions gourmandes en
ressources processeur et les associer de manière dynamique au programme en
cours, puis les profiler de manière itérative pour une efficacité comparative.

— Régulateur de vitesse: Relier dynamiquement la variation qui s’est avérée la plus
adaptée à l’exécution en cours.

— Surveiller périodiquement ses performances et revenir à la passe d’optimisation
si des changements importants sont observés.

9

Résumé

	 	

double	 	 Foo	 (a	 ,	 b){	
.	 	 .	 	 .	
.	 	 .	 	 .	
.	 	 .	 	 .	

}	

int	 main(.	 .	 .){	
.	 	 .	 	 .	
.	 	 .	 	 .	

	 tmp	 =Foo(a,	 i);	
.	 	 .	 	 .	
.	 	 .	 	 .	
.	 	 .	 	 .	

}	

(a) Appel initial direct vers Foo().

double	 	 Foo	 (a	 ,	 b){	
.	 	 .	 	 .	
.	 	 .	 	 .	
.	 	 .	 	 .	

}	

int	 main(.	 .	 .){	
.	 	 .	 	 .	
.	 	 .	 	 .	

	 tmp	 =Foo(a,	 i);	
.	 	 .	 	 .	
.	 	 .	 	 .	
.	 	 .	 	 .	

}	

double	
Foo_monitor(a,	 b)
{	

.	 	 .	 	 .	

.	 	 .	 	 .	

.	 	 .	 	 .	

.	 	 .	 	 .	
}	

double	 	 FooV1(a	 ,	 b){	
.	 	 .	 	 .	
.	 	 .	 	 .	
.	 	 .	 	 .	

}	

double	 	 FooV2(a	 ,	 b){	
.	 	 .	 	 .	
.	 	 .	 	 .	
.	 	 .	 	 .	

}	

double	 	 FooVn(a	 ,	 b){	
.	 	 .	 	 .	
.	 	 .	 	 .	
.	 	 .	 	 .	

}	

	 	

(b) Appel redirigé vers la fonction moni-
teur, qui distribue les variations injectées.

double	 	 Foo	 (a	 ,	 b){	
.	 	 .	 	 .	
.	 	 .	 	 .	
.	 	 .	 	 .	

}	

int	 main(.	 .	 .){	
.	 	 .	 	 .	
.	 	 .	 	 .	

	 tmp	 =Foo(a,	 i);	
.	 	 .	 	 .	
.	 	 .	 	 .	
.	 	 .	 	 .	

}	

double	
Foo_monitor(a,	 b)
{	

.	 	 .	 	 .	

.	 	 .	 	 .	

.	 	 .	 	 .	

.	 	 .	 	 .	
}	

double	 	 FooV1(a	 ,	 b){	
.	 	 .	 	 .	
.	 	 .	 	 .	
.	 	 .	 	 .	

}	

double	 	 FooVK(a	 ,	 b){	
.	 	 .	 	 .	
.	 	 .	 	 .	
.	 	 .	 	 .	

}	

double	 	 FooVn(a	 ,	 b){	
.	 	 .	 	 .	
.	 	 .	 	 .	
.	 	 .	 	 .	

}	

	 	

(c) Appel direct de la variante la plus
adaptée.

Figure 1 – Progression de la passe d’optimisation.

La Figure 1 illustre la passe d’optimisation en décrivant l’exécution de la fonction Foo.
Le flot de contrôle original (compilé statiquement) est présenté dans la Figure 1a, et
le flot dynamiquement lié Foo_monitor. La fonction apparaît dans la Figure 1b. Après
avoir choisi la meilleure variation, FITTCHOOSER contourne le moniteur en y reliant di-
rectement les sites d’appel, comme indiqué dans la Figure 1c, puis passe au régulateur
de vitesse.

L’évaluation expérimentale de FITTCHOOSER sur d’importants benchmarks de l’industrie
montre une accélération jusqu’à 19%, même avec un répertoire limité de transforma-
tions de programmes, ce qui suggère que des gains supplémentaires pourraient être
possibles si des techniques d’optimisation plus sophistiquées sont incorporées dans
FITTCHOOSER.

10

Résumé

OFSPER: Spécialiseur de fonctions en ligne

La spécialisation de fonction (également appelée Procédure de clonage) est l’une
des techniques d’optimisation utilisées pour réduire le temps d’exécution d’une fonc-
tion. L’idée est, au lieu d’appeler une fonction générique pour tous les sites d’appels,
d’appeler différentes versions de celle-ci en fonction des valeurs prises par les paramètres.
Les sites d’appels d’une fonction sont divisés en groupes en fonction des valeurs prises
par les paramètres et une version spécialisée de la fonction est produite pour chaque
groupe. Chaque version est spécialement optimisée pour une catégorie d’arguments
particulière afin de permettre son exécution plus rapidement que celle de la version
générique d’origine.

Pour appliquer la spécialisation de fonction, connaître la valeur du ou des paramètres
est la clé. Dans la plupart des cas, les appels de fonction ne contiennent pas de con-
stantes en tant qu’arguments, ils ont plutôt des variables, comme dans Foo(a, x).
Dans de tels cas, il n’est pas simple de faire la spécialisation des fonctions car les
valeurs des variables peuvent être inconnues. Avec une optimisation guidée par pro-
filing, ayant une exécution simulée du code pendant la compilation pour connaître le
comportement du programme, la valeur ou une propriété des paramètres peut être
prédite. Toutefois, il se peut que cette solution ne soit pas toujours réalisable car le
comportement prédit peut varier au moment de l’exécution. Il est donc très difficile
d’appliquer la spécialisation de fonction pendant la phase de compilation statique, ce
qui signifie essentiellement que la spécialisation serait plus efficace lorsqu’elle est ap-
pliquée dynamiquement en connaissant les valeurs exactes des variables.

OFSPER est un outil permettant la spécialisation dynamique de fonctions lors de l’exécution
d’applications. La spécialisation dynamique de fonctions est une technique d’optimisation
de programme dans laquelle la spécialisation de fonctions est appliquée à une applica-
tion en cours d’exécution pour améliorer son temps d’exécution. Dans cette technique,
les différentes versions de la fonction sont créées dynamiquement en fonction des
valeurs réelles prises par ses paramètres. Comme il est très important de connaître
la valeur réelle des arguments pour effectuer une spécialisation de fonction, elle sera
plus efficace si elle est appliquée à un programme en cours d’exécution. En outre, une
version optimisée plus spécifique au matériel peut être produite dans cette technique
grâce à la connaissance de la plate-forme matérielle en cours d’exécution, par rapport

11

Résumé

à la technique de spécialisation de fonction statique.

Une fonction peut être appelée depuis différentes parties du programme. Les valeurs
prises par les paramètres pouvant différer d’un appel à l’autre, même du même site,
il n’est pas possible de remplacer directement l’appel de fonction d’origine par un ap-
pel à une version spécialisée spécifique. Au lieu de cela, différentes versions doivent
être maintenues en fonction des arguments. OFSPER utilise une fonction supplémen-
taire, appelée monitor function, pour gérer ces versions spécialisées et rediriger les ap-
pels de fonction vers les versions appropriées. Les monitor function, une pour chaque
fonction, sont créées dynamiquement et nous remplaçons tous les appels de fonction
d’origine par un appel à la monitor function. OFSPER est mis en œuvre sous forme de
progression en quatre phases.

— Profil : Identifier les fonctions les plus gourmandes en ressources processeur au
sein de l’exécution en cours.

— Analyser : Toutes les fonctions gourmandes en ressources ne sont pas spécialis-
ables. Cette phase analyse les fonctions ‘chaudes’ sélectionnées et choisit celles
qui conviennent à la spécialisation.

— Surveiller : Recueillir des valeurs prises par les paramètres de la fonction appro-
priée pour identifier la répétition des arguments.

— Spécialiser : Créer des versions spécialisées de la fonction pour la répétition
d’arguments et les relier dynamiquement à l’application en cours d’exécution.

La Figure 2 montre la différence d’exécution entre les fonctions avant et après ap-
plication de la spécialisation. Le flux de contrôle original (compilé statiquement) est
présenté dans la Figure 2a, et la fonction liée dynamiquement Foo_monitor. La fonction
apparaît dans la Figure 2b. Foo_monitor contrôle l’exécution des versions en fonction
de la valeur courante du paramètre.

L’évaluation expérimentale de OFSPER sur d’importants benchmarks de l’industrie
montre une accélération jusqu’à 35%.

12

Résumé

	 	

int	 main(.	 .	 .){	
.	 	 .	 	 .	
.	 	 .	 	 .	

	 	 	 	 	 tmp	 =Foo	 (a);	
.	 	 .	 	 .	
.	 	 .	 	 .	
.	 	 .	 	 .	

}	

double	 	 Foo	 (a){	
.	 	 .	 	 .	
.	 	 .	 	 .	
.	 	 .	 	 .	

}	

(a) Exécution normale.

	 	
double	 	 Foo	 (a){	

.	 	 .	 	 .	

.	 	 .	 	 .	

.	 	 .	 	 .	
}	

int	 main(.	 .	 .){	
.	 	 .	 	 .	
.	 	 .	 	 .	

	 	 	 	 	 tmp	 =Foo	 (a);	
.	 	 .	 	 .	
.	 	 .	 	 .	
.	 	 .	 	 .	

}	

double	 Foo_monitor(a){	
	 switch(a)	 {	
	 	 	 case	 	 8:	 Foo_a8	 (a);	 break;	
	 	 	 case	 16:	 Foo_a16(a);	 break;	
	 	 	 case	 32:	 Foo_a32(a);	 break;	
	 	 	 default:	 Foo	 	 	 	 (a);	
	 }	
}	

double	 	 Foo_a8(a){	
.	 	 .	 	 .	
.	 	 .	 	 .	
.	 	 .	 	 .	

}	

double	 	 Foo_a16(a){	
.	 	 .	 	 .	
.	 	 .	 	 .	
.	 	 .	 	 .	

}	

double	 	 Foo_a32(a){	
.	 	 .	 	 .	
.	 	 .	 	 .	
.	 	 .	 	 .	

}	

(b) Spécialisation de fonction dynamique

Tous les appels à function Foo sont redirigés vers Foo_monitor et Foo_monitor décide quelle version
exécuter

Figure 2 – Séquence d’appel: Normal vs Spécialisation

13

INTRODUCTION

Problem Definition

A compiler is a software which converts human readable high level programs to ma-
chine readable low level programs. A simple compiler transforms each statement in
the source code of the program to its corresponding binary code. However, modern
compilers do transformations while converting the source code to binary such that the
resulting binary code has better performance compared to the statement-to-statement
transformed one. The whole compilation process, goes through various phases such
as lexical analysis, syntax analysis, semantic analysis, intermediate code generation,
code optimization and code generation. In this thesis we focus on code optimization
phase which is meant to improve the program execution by means of reducing its exe-
cution time, energy consumption and/or code size. This phase may remove some un-
usable/unnecessary statements of the program, rearrange the statements or replace
some statements to improve the performance. This optimizing functionality of compilers
makes programming easier because developers can focus on features and readability,
and let performance for the compiler to deal with.

Due to its nature, a static compiler has a limited visibility when it comes to taking into
account the dynamic environment or behaviour of an application. Unknowns include
actual input data that impacts the values flowing through the program and hardware-
specific details. Program inputs can drastically change the efficiency of statically com-
piled code, yet in many cases is subject to total uncertainty until the moment those in-
puts arrive during program execution. Normally a static compiler partially applies data
dependent optimization techniques by taking some rough estimates of the run time
data, sometimes with the help of a profiling session carried out during static compila-
tion. For example, loop optimization techniques like restructuring of loops, elimination
of induction variables, loop unrolling and loop invariant code motion– all are applied
with the assumption that the loop will be executing for a minimum number of times.

15

Introduction

All of these alongside other optimization techniques like vectorization, loop tiling, un-
reachable code elimination, etc., could benefit from knowing the actual run time data.
Run time data also help to minimize the dynamic instruction count along critical paths,
to optimize branches for the typical case, maximize cache locality etc. [Fis81; PH90;
HC89; EAH97; Wha99].

Modern hardware features can boost the performance of an application, but software
vendors are often limited to the lowest common denominator to maintain compatibility
with the spectrum of processors used by their clients. Given more detailed information
about the hardware features, a compiler can generate more efficient code. But even if
the exact CPU model is known, manufacturer confidentiality policies leave substantial
uncertainty about precise performance characteristics. In addition, the activity of other
programs colocated in the same runtime environment can have a dramatic effect on
application performance. For example, if a shared cache is being heavily used by other
programs, memory access latencies may be orders of magnitude longer than those
recorded during an isolated profiling session, and instruction scheduling based on such
profiles may lose its anticipated advantages.

A solution for these problems is to compile the source code after getting all the informa-
tion about the program which different optimization techniques may require. We know
that such a solution is impractical. A close to optimal solution is dynamic optimization
in which the optimization is applied during the execution of the program. The main ad-
vantage of dynamic optimization is that the optimizer has full knowledge about the run
time environment including hardware specific details. The optimizer also gets the input
data also and so in many cases it can more precisely predict the future behaviour of
the program.

One of the main challenges in doing dynamic optimization is lack of enough information
about the program. This can be overcome by either (1) including necessary information
in the binary code during static compilation or (2) using an intermediate representation
(IR) of the program. Dynamic optimization generally causes run time overhead due to
collection and management of profile data, analyzing that data and performing opti-
mization. This overhead should be compensated by the speed up gained by dynamic
optimization in order for the effort to be beneficial. Unfortunately, it is very difficult to an-
ticipate how much gain can be obtained by an optimization without actually performing
it.

16

Introduction

Motivation

Decreasing execution time of a program is always an interesting subject in the re-
search community. Plenty of work in both software and hardware level have already
been done in pursuance of achieving this goal. Computer architects have introduced
a lot of changes in the hardware field like vector operations, hardware counters, dif-
ferent levels of caches, etc. Modern compilers are very advanced in applying different
optimization techniques to the program with or without the help of these hardware fea-
tures. Knowing the run time machine characteristics is very helpful for a compiler to
produce an optimized code. The availability of a vast variety of hardware in the market
makes it difficult for a static compiler to produce machine dependent codes suitable for
all the systems. This implies that recompiling the program on the running machine can
produce better machine dependent code.

Predicting the run time behaviour of a program also helps static compiler in doing
optimizations. Normally, a profile-directed static compilation is used to do so. The pre-
diction is based on profile information collected from a number of test runs conducted
during the static compilation. The main issue in this case is the correctness of the pre-
dicted data. The inputs used in the test runs may not be a ’typical’ input. Finding the
’typical’ inputs is very difficult for some applications. So the data collected from these
test runs can go wrong during the actual execution. However a dynamic optimizer does
optimizations based on the actual input data and so the probability of getting negative
impact is very low.

Function specialization can be applied when a function argument is found to take same
value through out different calls to the function. A static compiler has limited visibility
about the actual run time values taken by an argument to a function. This makes it
more complicated for a static compiler to apply function specialization. There are some
cases where the call site itself contains the argument value, like foo(a, 8). In such
cases a static compiler can create one specialized version, say foo_8, of function foo

by substituting the value 8 to its second argument. And then the call foo(a, 8) can be
replaced with the call foo_8(a). Meanwhile, a dynamic optimizer can monitor all the
values taken by the arguments and can act accordingly during the execution.

Programs in binary are not able to automatically adjust with the changes in the hard-
ware. There exist many executable programs which all are ’old’ but still usable and have

17

Introduction

originally been compiled for now outdated processor chips. These may benefit from the
new features provided by the modern processor chips but they need to be recompiled
to use this extra features of the new hardware. This recompilation may be costly and
will be very difficult when the source code is not available anymore. However, it may be
relatively better to recompile only the critical functions and replace the original function
with more optimized one.

Proposed Solutions

Compilers can produce more optimized versions of the executable once we provide the
target machine characteristics. Nowadays, a wide variety of computers are available
in the market. They are different in their behaviour and architecture. Because of this
no compiler can produce one executable file which gives the same performance on all
machines. This means that we need to produce separate executable file for each target
machine. Compiling the whole program on each target machine is a hectic job. Instead,
we propose a light weight solution where our tools recompile only the most critical
functions. The term critical refers to the functions which take more running time.

This thesis proposes two independent tools, FITTCHOOSER and OFSPER, which apply
dynamic optimization at function level. The base idea is to replace an existing function
with an optimized version of the same. FITTCHOOSER, a dynamic feedback based
fittest optimization chooser, helps to find a better optimized version of a function by
comparing the performance of different versions of the function created dynamically.
OFSPER, an online function specializer, dynamically specializes a function according
to its live argument values. A small outline of both tools follows.

FITTCHOOSER

Most of the optimization techniques are not guaranteed to give good performance on
every run time environments. For example, the loop optimization technique ‘loop un-
rolling’ might be more effective with unroll factor 4 in one case, where as in some
other case unroll factor might need to be 2 for better performance. FITTCHOOSER tries
to figure out the most suitable optimization for the current execution environment by
considering different possible optimization techniques. For each critical function, it dy-
namically creates differently optimized versions of the function and monitors their per-

18

Introduction

formance to get the fittest one. This fittest version will be used for the subsequent calls
to the function.

This work was presented in the HPCS 2018 - 16th International Conference on High
Performance Computing & Simulation - Special Session on Compiler Architecture, De-
sign and Optimization [Ap+18] and will be explained in detail in Chapter 2.

OFSPER

Creating specialized code of whole program or part of the program is one of the op-
timization techniques used by the compilers in order to reduce the execution time of
the program. There are some cases, where the compiler knows that certain invariants
are true for a particular case or a particular running environment such that it creates a
specialized codes only for such cases/environments by considering the behaviours of
those invariants. Function specialization is such a specialization technique in which
different specialized versions of a function are created and included in the program.
Here, the specializations are based on the values of the arguments to the function.
The idea is that instead of calling the actual function from every call site, call different
versions of it according to the values taken by the parameters. Since function special-
ization requires the value of the arguments, it makes more sense if it is applied during
the execution of the program where all values are known.

This work was presented in International Conference on Embedded Computer Sys-
tems: Architectures, MOdeling and Simulation [AR17] and will be explained in detail in
Chapter 3.

Organization of Thesis

The reminder of the thesis is organized as follows: Chapter 1 provides background in-
formation needed for better understanding this thesis work. A brief overview of the lat-
est research works in function level dynamic optimization is also presented in this chap-
ter. Chapter 2 presents FITTCHOOSER, a tool for finding the fittest optimized version
suitable for the current running scenario of the functions in the application. This chap-
ter describes the idea behind FITTCHOOSER and its implementation details. Chapter 3
presents OFSPER, a tool to dynamically specialize the functions in a running applica-

19

Introduction

tion leveraging the knowledge of actual function parameters. A piece of more detailed
information about the implementations of both FITTCHOOSER and OFSPER is given in
Chapter 4. Finally, Chapter 5 concludes this thesis with possible future works.

20

CHAPTER 1

BACKGROUND

This chapter presents the required background on various code optimization tech-
niques and tools used in this thesis. Section 1.1 outlines common traditional compiler
optimizations, and Section 1.2 details some of the previous attempts to overcome the
disadvantages of traditional static compilation. And finally, Section 1.3 explains a library
called PADRONE, which helps FITTCHOOSER and OFSPER to dynamically analyze
and optimize the application processes.

1.1 Traditional Optimization Techniques

Modern optimizing compilers not only transform human-readable high-level program
to machine-readable low-level binary code but also apply optimizations to improve the
program. Such optimizations are targetted at reducing execution time, energy con-
sumption or code size. Plenty of such code transformation techniques are already
present in many compilers (Aho et al [ASU86], Bacon et al [BGS94], Muchnick [Muc97],
Cardoso et al [CCD17], etc.). Some of the most common techniques which may refer
in the following chapters of this thesis are briefly introduced in this section.

Constant Propagation: Constant propagation is one of the most common and ag-
gressively applied optimization technique. This technique propagates the constants
through the program which helps compilers to do a significant amount of precompu-
tation. Table 1.1 shows an example for constant propagation. The value of x is prop-
agated to the third statement. While it may seem that the need for this optimization is
due to sloppy programming, it is seldom so. Usage of various high level programming
constructs such as ’#define’, ‘constexpr’, ‘non-type template parameters’ can result

21

Background

in expressions where the operands are constants. In addition, previous optimization
passes may resolve the value of certain variables to be constants.

Actual Code After Constant Propagation
int x,y;
x = 10;
y = x + 15;

int x,y;
x = 10;
y = 10 + 15;

Table 1.1 – Constant Propagation

Constant Folding: Constant folding replaces the expressions with constant values
as operands with its result. This optimization goes hand-in-hand with the constant prop-
agation optimization. For example, the expression y = 10 + 15 in Table 1.1 will be re-
placed with y = 25 during constant folding. Compilers should be careful while applying
this optimization, especially when cross-compiling, as the validity of this optimization
is target-dependent. For example, the rounding mode of the machine used to compile
may not be identical to the machine used to run the program; hence the results may
not be identical [Cli90; SW90]. Hence some compilers only performs this operations for
integer expressions, while others rely on multiversioning (mentioned later).

Algebraic Simplification: This technique simplifies some arithmetic expressions in
the program by applying algebraic rules to them. For example, the expressions x ∗ 1,
x + 0 and x/1 - all can be simplified to a single x.

Strength Reduction: This technique tries to reduce the strength of the expression
by replacing an expensive operator with an equivalent but less expensive operator. For
example, in the expression x*2, the multiplication operator can be replaced with an
addition (x+x) operator or a shift operator, and the exponential operator in x2 can be
replaced with a multiplication operator (x*x).

Unreachable-Code Elimination: Unreachable-code segments are code segments
which will never be executed. These segments are often created as a result of various
optimizations such as constant propagation. They usually come in two ways, through
conditional statements and loops. In the case of conditional statements like if else, if
the predicate is statically known to be true or false, then the compiler can remove the

22

1.1. Traditional Optimization Techniques

code corresponding nonexecutable branch. Similarly, for a given loop, if the compiler
can prove that the number of loop iterations is zero, the code corresponding to the
entire loop body can be removed.

Listing 1 Example Loop
for (i = 1 ; i <= 100 ; i++){

c[i] = a[i] + b[i];
}

Loop Vectorization: Many modern CPUs have ‘vector’ or SIMD hardware unit which
simultaneously performs operations on a set of data. Vectorizing the code can help to
exploit these vector units. Listing 2 shows an example of vectorized code. Compared
to the original version, the vectorized code can perform 4 operations simultaneously.
Typical vectorization units only support stride 1 (or stride 0) memory accesses. While
modern vectorization units solve this problem using scatter/gather instructions, they
are still not efficient as stride 1 (or stride 0) access.

Listing 2 Loop Vectorization
// original code
for (i = 0; i < 100; i++)

c[i] = a[i] + b[i];

// vectorized version
__m128 rA, rB, rC;
for (int i = 0; i < 100 i+=4){

rA = _mm_load_ps(&a[i]);
rB = _mm_load_ps(&b[i]);
rC = _mm_add_ps(rA,rB);
_mm_store_ps(&C[i], rC);

}

Loop Fusion and Loop Fission: In loop fusion, loop bodies of two different loops
are combined into a single loop. Loop fission is the opposite of loop fusion; it divides
the loop body of a single loop into two loops. [KM94]. There are several advantages like
increasing level of parallelism, data locality for loop fusion and like increasing the po-
tential for loop pipelining and loop vectorization for Loop fission [CCD17]. Since these
two transformations may change the order of execution of operations, they can be ap-
plied only when the preservation of data dependencies are ensured. Listing 3 shows

23

Background

an example where the original code cannot be parallelized or vectorized due to data
dependencies and how loop fission can help in parallelizing/vectorizing this code.

Listing 3 Loop Fission
// Original code
for (i = 0; i < N - 1; i++) { //neither parallelizable nor vectorizable; RAW S1->S2

w[i+1] = x[i] + 1; S1
y[i] = 2 * w[i]; S2

}

//After loop fission
for (i = 0; i < N - 1; i++) { //parallelizable and vectorizable

w[i+1] = x[i] + 1; S1
}
for (i = 0; i < N - 1; i++) { //parallelizable and vectorizable

y[i] = 2 * w[i]; S2
}

Loop Unrolling: Loop unrolling improves the performance of a program by reducing
loop overhead, increasing instruction parallelism and improving register reuse, data
cache or TLB locality [BGS94]. The idea behind this technique is to reduce the to-
tal number of iterations of the loop by repeating the body of the loop multiple times
in a single iteration. The number of times the function body is replicated, known as
unrollingfactor, effect the performance [SA05]. Listing 4 shows the unrolling of the
for loop used in Listing 1 by a factor of 4. Compared to the original code, the number
of compare operations in the unrolled is reduced by a factor 4.

Listing 4 Loop Unrolling
// unrolled code
for (i = 1 ; i <= 100 ; i += 4) {

c[i] = a[i] + b[i];
c[i+1] = a[i+1] + b[i+1];
c[i+2] = a[i+2] + b[i+2];
c[i+3] = a[i+3] + b[i+3];

}

Unrolling can also be applied to outer loops. However, typical outer loop unrolling is
followed by the jam (fusion) operation. As an example consider Listing 5 which shows
the original, outer loop unrolled version, and the unroll + jam-ed version. The unrolled

24

1.1. Traditional Optimization Techniques

Listing 5 Loop Unroll and Jam
// original code
for(i = 0; i < 100; i++)

for(j = 0 ;j < 100; j++)
y[i] = y[i] + a[j][i] * x[i];

// 4 way unrolling of i loop
for(i = 0; i < 100; i+=4)

for(j = 0 ;j < 100; j++)
y[i] = y[i] + a[j][i] * x[i];

for(j = 0 ;j < 100; j++)
y[i+1] = y[i+1] + a[j][i+1] * x[i+1];

for(j = 0 ;j < 100; j++)
y[i+2] = y[i+2] + a[j][i+2] * x[i+2];

for(j = 0 ;j < 100; j++)
y[i+3] = y[i+3] + a[j][i+3] * x[i+3];

//unroll and jam
for(i = 0; i < 100; i+=4)

for(j = 0 ;j < 100; j++){
y[i] = y[i] + a[j][i] * x[i];
y[i+1] = y[i+1] + a[j][i+1] * x[i+1];
y[i+2] = y[i+2] + a[j][i+2] * x[i+2];
y[i+3] = y[i+3] + a[j][i+3] * x[i+3];

}

version just benefits from reduced comparison operations. However, the unroll + jam-ed
version is much more cache and vectorization friendly.

Loop Tiling: Loop tiling is a powerful technique to improve data locality and reduce
the number of cache misses when the data footprint of the loop exceeds the cache
capacity. Instead of operating on entire array, this technique divides the big array into
chunks which are small enough to fit in the cache. Since the operations are carried
out on these small blocks, the data used in the loop stays in the cache until further
reuse. Not only the size but also the shape of these small blocks have a significant
role in performance gain. They need to be decided based on the running environment
[KKO00; Pén+16; HS02; GSK01].

Loop tiling is also beneficial when the data-layout does not align with the data access
pattern. For example, when a row-major array is accessed along the columns. Matrix

25

Background

Listing 6 Matrix Multiplication
for(i = 0; i < N; i++)

for(j = 0; j < N; j++)
for(k = 0; k < N; k++)

ans[i][j] = ans[i][j] + matrixA[i][k] * matrixB[k][j];

multiplication is one of the good example for applying loop tiling. Listing 7 shows the
tiled version of the matrix multiplication code given in Listing 6. The main disadvantage
of loop tiling is the increased overhead due to extra loops. Assuming that the original
code has N loops and there are M levels of fast memory (e.g., caches, scratchpad
memory, registers), most generic tiling will result in N × M loops.

Listing 7 Loop Tiling on Matrix Multiplication
for(bigJ = 0; bigJ < N; bigJ += jBlockSize)

for(bigK = 0; bigK < N; bigK += kBlockSize)
for(i = 0; i < N; i++)

for(j = bigJ; j < min(bigJ + jBlockSize, N); j++)
for(k = bigK; k < min(bigK + kBlockSize, N); k++)

ans[i][j] = ans[i][j] + matrixA[i][k] * matrixB[k][j];

1.2 Prior Works

Traditional compiler optimizations are designed for generic codes. Hence, the compile-
time and run-time overheads of these optimizations are typically very low, and most
of these optimizations are rightfully very conservative. However, many advanced opti-
mizations, such as Multi-versioning and Profile Guided Optimizations (PGO), are much
more aggressive and may have slightly higher overheads. Such code optimization tech-
niques can be broadly divided into (i) Static optimizations and (ii) Dynamic optimiza-
tions. Static optimizations, which rely solely on the compile-time information, are ap-
plied during the compilation or link phase of a program. Traditional compilers almost
exclusively rely on static optimizations to optimize the code. Dynamic optimizations
are on-the-fly optimizations that rely on run-time information, such as memory address
accessed. It could also take advantage of static information.

26

1.2. Prior Works

1.2.1 Static Optimizations

Traditional static optimizer’s sole reliance on compile-time information along with con-
servative assumptions limits optimization opportunities and effectiveness. Since the
exact micro-architecture may only be known at runtime, typical codes, including several
heavily used libraries, are compiled for generic architectures whose Instruction Set Ar-
chitecture (ISA) is supported by all the target platforms. While this approach achieves
good generality, it may heavily hamper several optimizations, such as vectorization.
Assume that the generic architecture does not support vectorization. In the case, even
though the actual target may support vectorization, the produced binary cannot take
advantage of vector units. Several existing works described below try to alleviate these
fallbacks.

Multi-versioning

Function multi-versioning is one way of handling the difficulty in producing executable
suitable for different architectures [CDS03]. In this technique, frequently executed func-
tions are compiled to different versions for different kinds of architectures. For that the
developer tells the compiler to create different versions of a function by giving the ar-
chitecture name as attributes. For example, the attribute

__attribute__((target_clones ("avx2", "arch = atom", "default")))

tells the gcc compiler to create three versions of the function; one for AVX2, one for
Intel atom and one common version for all other architectures.

One of the main disadvantage of this technique is that it requires the help from the
developer to create different versions. The developer should be aware of the different
features, which may be useful for his/her function, provided by the architectures to de-
termine the number of versions need to be created. This technique fails to produce new
versions in the future based on the introduction of new architectures without modifying
the source code.

Multi-versioning can also be applied with the help of Feedback-Driven program Opti-
mization (FDO). FDO tries to provide some dynamic information along with the static
information to help the compiler to make better optimization decisions by collecting the
behaviour of some training runs of the program [Che+10; Smi00]. The multi-versioning

27

Background

uses FDO to create versions of the function based on the profile collected on test runs
on representative inputs. The compiler then includes special instructions into the ex-
ecutable for selecting the appropriate version during the run time. One of the main
disadvantage of the FDO based compilation is its build time. It may require a normal
initial compilation, then test runs on different inputs and finally a final compilation to get
the executable containing different versions of the function. As an example consider
loop parallelization. Representative inputs can be used to determine the minimum loop
trip count for loop parallelization to be beneficial. The compiler can then create a par-
allel version and sequential version of the same loop, and a switching mechanism to
select the appropriate version based on the above-said loop trip count. The main chal-
lenge in this technique is finding the appropriate execution environment and input sets.
For a big transaction processing application, it may require to setup a database and
representative set of queries for the test run. Creating such an environment can be
very difficult. Even though the application executed on a number of different data sets
during profiling, there is still a chance that none of these data sets may not actually
reflect the application’s real usage.

The other side effect of multi-versioning is code size increase of the executable. When
the versioning applied on most of the functions, the code size will increase linearly. This
can be reduced by selective multi-versioning in which the versioning is applied only
on selected functions. Zhou et al [Zho+14] present a couple of solutions for applying
selective multi-versioning with the help of FDO. Ekemark [Eke16] explained how multi-
versioning can help to reduce the power consumption.

Iterative Compilation

This technique tries to find a best optimization technique for a program by compiling
the program repetitively. After each compilation, the program is executed to analyze
the effect of compilation. Figure 1.1 taken from [KKO02] depicts the Iterative Compila-
tion process. Based on the feedback from the previous run, the transformations for the
next compilation are applied. Due to this repetitive nature, the compilation time dramat-
ically increases. Even though this technique succeeds in finding a good optimization
for the given machine, we cannot rely on this to produce executables for a variety of
architectures.

Kisuki et al [Kis+00; KKO02] show the effectiveness of iterative compilation for se-

28

1.2. Prior Works

Figure 1.1 – Iterative Compilation Flow Chart given in [KKO02].

lecting best Loop Tilling size, Loop Unrolling factor and Loop padding size. In their
experiments they required around 350-400 iterations to find a satisfactory optimization.
They say this method will be very useful for embedded applications where the compute
intensive kernels themselves are small and fast. The time taken for the compilation is
the main disadvantage here. And this technique also rely on the sample inputs used
in the iteration. They may not perfectly reflect the actual run time data. The selected
optimization matrices may have negative effect on the actual data.

Memoization

Memoization is an optimization technique in which the result of a program section
is stored and reused in the future when the same execution sequence repeats. This
can be applied at instruction level, block level, region level or at function level. For
example, consider the mathematical function sin. The return value of this function
purely depends on the input argument. If the input is same across different invocations
of the function, then there is potential to improve the application execution time by
saving the result of one invocation and reusing it for the later ones there by avoiding
the requirement of repeated executions.

29

Background

Suresh et al [Sur+15] discuss about function memoization in software for dynamically
linked functions. The idea is saving the result of a function in a table indexed by XOR
hash function of its arguments and return these results when the argument repeats.
Memoization is implemented by intercepting the dynamically linked function calls us-
ing LD_PRELOAD technique. An extension of this work [SRS17] extends this function
memoization to user defined functions as well as by implementing the function memo-
ization at compile time using the LLVM framework. These works can be treated as an
extreme case of function specialization which we will discuss in Chapter 3.

Discussion

Since static optimizers are invoked during compile/link time, the application runtime
is not affected by the optimization overheads. Thus, when compared to dynamic op-
timizers, static optimizers can use expensive analysis and code generation passes to
optimize the code. However, the applicability and effectiveness of static optimizations
are restricted by the conservative assumptions made by the compiler and lack of infor-
mation such as the exact target architecture, hardware parameters (e.g., cache sizes,
the run-time behavior of the program), etc.

1.2.2 Dynamic Optimizations

Dynamic optimizations are optimizations that are applied during the application run-
time. In contrast to static optimizers, dynamic optimizers can take advantage of runtime
information such as the exact execution environment (e.g., ISA, cache size) and pro-
gram behavior (e.g., memory access pattern, value of function parameters). Thus, dy-
namic optimizers can even optimize codes to efficiently execute on architectures, which
may not even be available when the binary was generated. The ever-growing impor-
tance of cloud-computing platforms, where the precise target architecture is only known
during application deployment, highlights the importance of such optimizations. Mo-
bile apps, which should run on possibly hundreds of different architecture, represents
another important and practical use case for dynamic optimizations. In addition, tech-
niques such as Just-In-Time (JIT) compilation, can apply modern optimization passes
on legacy codes which might have been compiled with an old compiler that does not
support many optimizations or might have missed many optimizations.

30

1.2. Prior Works

Dynamic Recompilation

The main advantage of dynamic optimization is the knowledge of the underlying hard-
ware. Powerful optimizations like vectorization require hardware support. Compiling
programs specific to all available machines in the market is impractical. However, re-
compiling small sections of the programs specific to the hardware makes it more prac-
tical. This can be achieved by shipping an intermediate code of the program produced
by the compiler along with the binary. And this intermediate representation can be used
to recompile the critical functions of the program during the execution.

Nuzman et al [Nuz+13] discusses about dynamic function level optimization with re-
compilation. They use both native executable file and intermediate representation (IR)
file of the program. During execution, they recompile hot methods from IR file using a
Java JIT compiler and the recompiled versions are stored in a Code Cache. With the
help of a trampoline created at the beginning of the original function body, the function
calls are redirected to the new recompiled version.

Sukumaran-Rajam et al. [Suk+14; SC15] describe a Polyhedral model based dynamic
optimization framework called APOLLO. During the compilation phase, APOLLO cre-
ates an instrumented code version along with several optimization templates. The in-
strumented version is used to collect profiling data such as memory address accessed
and loop bounds. The optimization templates are code structures that support several
optimizations such as parallelization, loop tiling, and loop interchange, etc. However,
the exact code optimization is only determined during the application run-time. When
the actual code is executed, the program behavior is captured by using the instru-
mented version on a small number of iterations. The dependencies are then computed
using the profiling data, and the code transformations are speculatively computed by
invoking Pluto – a Polyhedral optimizer at run-time. To handle misspeculation, spe-
cial memory backup mechanisms are employed to restore the program state to a safe
state. The framework is capable of performing optimizations such as parallelization,
loop tiling, loop permutation, loop skewing, etc.

Profile Guided optimization

Modern static compilers can apply a large number of optimization techniques to the
program. Applying a typical optimization consists of mainly two tasks: uncovering the

31

Background

optimization opportunities; and applying them. The main limitation of static compiler
in applying some of the optimization effectively is the unaware of program’s run time
behavior. In profile guided optimization, the compiler collects profiling data by carry-
ing a certain number of test runs during the compilation. Using these data, compiler
predicts the common behavior of the program like the most executed sections of the
program, and tries to apply optimization techniques suitable for them. As an exam-
ple consider branch prediction and branch code placement. The compiler can use the
profiling data to predict the branch-taken probability which can be used to rearrange
the code to increase hardware branch predictor accuracy, reduce the number of taken
‘jump’ instructions or to reduce the likelihood of instruction cache misses.

Discussion

Dynamic optimizers take advantage of rich run-time information such as exact target
architecture and program behavior to optimizer codes. Unlike static optimizers, since
dynamic optimizations are applied at run-time, the optimization benefits should out-
weigh the optimization cost. In other words, dynamic optimizations should be fast and
lightweight. It should use less processing power and memory as both these resources
are shared with the application. For single-threaded applications, an extra core can be
used for dynamic optimizations. This approach will help to hide the overhead of dy-
namic optimizations. However, this option is not available for multi-threaded code as
the cores are possibly used to run the application itself. In addition, for multi-threaded
applications, all threads may have to be synchronized before modifying the code.

1.2.3 Proposed work

The proposed work operates on the binary without any special information being trans-
ferred from the static compilation phase. This work tries to propagate the possibilities
of static compilation to the execution time of the program. Rather than introducing one
new optimization technique, it mainly concentrates on introducing a different approach
in applying the existing ones. Moreover, unlike other dynamic optimizers, our tools try
to protect the program transparency[BZA12]. By touching the program as little as pos-
sible, they allow the applications to run their own. With the help of PADRONE, our tools
attach to the application process just for a small amount of time to make the required
changes and detach after that to allow the process to run its own. If any requirement

32

1.3. PADRONE

arises in the future, they can attach and detach again.

Challenges

While optimizing binary codes offers many advantages they are very challenging. Un-
like source/intermediate code optimizers, binary optimizers don’t have access to the
rich semantic application information. Most of the semantic information is lost during
the binary code generation phase. Basic code structures such as loops, Control Flow
Graph (CFG), etc. have to be rebuild from scratch. Even disassembling binary codes for
complicated ISA, such as x86, is challenging due to unaligned and variable length in-
structions. With recent emphasis on security, several hardware/software security mech-
anisms may make dynamic code generation and code patching very difficult.

1.3 PADRONE

PADRONE is a library created by Riou et al [Rio+14] which provides APIs for dynamic
binary analysis and optimization. It can attach to a running process to carry out differ-
ent activities thanks to the ptrace system call, in a way similar to gdb, the GNU Project
Debugger. PADRONE has functionality for doing profiling on the process for well un-
derstanding of the program’s behavior. The profiling can be used to recognize the hot
spots of a process in which it spends most of its CPU time. The profiling collects sam-
ples by probing the program counter in regular intervals. A user can set the duration
and frequency, number of samples per seconds, of a profiling session. Each sample
contains an instruction pointer which is used to retrieve the address of the function.
The functions with most number of samples are considered as critical functions.

One of the main functionality of PADRONE is its ability to include new functions to the
process by creating a code cache 1 in the process memory space. The new function
can be injected as normal binary or as a shared library. In normal binary case, we
can directly write the binary code of the function in the code cache by calling the func-
tion padrone_cc_insert provided by PADRONE’s API. When we insert as a shared
library, PADRONE writes a small code into the code cache which calls dlopen to insert

1. A code cache is a contiguous memory area in the application’s memory heap. PADRONE creates
it by writing a small piece of code into the application’s code segment which calls malloc to allocate the
required memory.

33

Background

our function as shared library into the application process. After successful injection,
PADRONE can redirect a function call to this newly injected function. To achieve this,
PADRONE replaces the first instruction of the original function with a trap instruc-
tion. At the next invocation of this function, the process receives a signal and stops.
PADRONE can then fetch the return address to find the address of the call site and
can replace it with a call to the new function. Future executions of the call site will
reach the function placed in the code cache. By using this functionality of PADRONE
we can replace a function with a more optimized one.

The other useful feature provided by PADRONE is its monitoring functionality. This
functionality is used to monitor a function in the process for a period of time. For any
function foo in the process we can inject a new function foo_monitor to the process
as a shared library. The foo_monitor executes on every call to the function foo during
a user-defined time period. After that the process executes normally as before. The
foo_monitor will be able to call the original function foo. PADRONE redirects all calls to
foo to foo_monitor except the ones coming from foo_monitor itself.

PADRONE has several advantages compared to other binary translators. Instead of
whole program, it allows you to concentrate only on chosen functions. It injects opti-
mized function as a contiguous block of code, whereas a binary translator will often
fragment a function, reducing code locality. Binary translators typically replace the re-
turn instruction with a push/jmp sequence which interferes with the branch predictor.
The internal implementation of PADRONE does not require intercepting any system
calls or standard library calls, although it is always able to do so on demand. More-
over PADRONE runs in a separate process, allowing it to execute its own analysis on
a different core (when available).

34

CHAPTER 2

FITTCHOOSER: A DYNAMIC

FEEDBACK-BASED FITTEST

OPTIMIZATION CHOOSER

2.1 Introduction

The introduction of advanced features like hardware counters and vector processing
units in modern microprocessors can enable programs to run faster without requiring
changes to the source code. For example, a vector processing unit can operate on an
entire array of data in a single instruction. Programs can even be optimized at runtime
by dynamically monitoring hardware counters [Leh16; Wic+14; SG06a; Wat+17]. But
software vendors must always take hardware compatibility into consideration before
enabling these advanced features in their applications. Many processor models do not
support all the latest optimization features and will raise a hardware fault if a program
attempts to invoke them. But even if the vendor could compile the program directly
on each deployment machine separately—which is highly impractical—today’s best
commercial and open-source compilers often miss optimization opportunities. This is
due in part to lack of public information about the low-level details of CPU features.
Without a precise model of the processor’s performance characteristics, the compiler
resorts to heuristics for selecting such essential factors as the number of loop unrollings
or the scheduling of load instructions [Mac+17]. Our experimental results in Section 2.4
show that these heuristical models do not always make the best choice for a given
program and hardware environment.

We have developed a dynamic optimization tool called FITTCHOOSER to overcome

35

FITTCHOOSER

these limitations by generating variations of the program’s machine code and empir-
ically evaluating the variations to select the best performer. This iterative process al-
lows FITTCHOOSER to find the most suitable optimization technique for a program’s
most processor-intensive functions in its current runtime environment. To account for
potential changes in performance characteristics, which could for example be caused
by expansion of a frequently traversed array beyond the capacity of the L3 cache,
FITTCHOOSER continuously monitors its optimized functions and restarts the evalua-
tion process when significant changes are observed.

Although our experiments show that FITTCHOOSER is efficient enough to recover its
own overhead where it discovers effective optimizations for the target program, it may
not always be practical to run the program under FITTCHOOSER. For example, SPMD
programs run in parallel on all cores of a machine, while FITTCHOOSER anticipates
that it can run on a separate core to mask the majority of its overhead. In such cases
the user can conduct a preliminary tuning phase where FITTCHOOSER discovers the
best optimizations for the machine, and then deploy those optimizations using our ex-
tension of the Linux loader called the FITTLAUNCHER. Although this approach does not
benefit from the per-execution tuning of FITTCHOOSER, it does integrate the selected
optimizations without the overhead of profiling and monitoring.

The current version of FITTCHOOSER explores a limited set of optimizations based on
ordinary features of popular compilers, often making better use of those features than
the compiler itself. Future enhancements to FITTCHOOSER could expand its repertoire
to include advanced optimizations reported only in research, along with new experi-
mental optimizations developed specifically for the tool. The remainder of this chapter
focuses on the FITTCHOOSER infrastructure and presents the currently available opti-
mizations as a proof of concept that in our experience works in practice. Section 2.2
begins with introducing the idea behind FITTCHOOSER and Section 2.3 describes the
implementation. We report the results of our experiments in Section 2.4, which include
the overhead of FITTCHOOSER along with key examples of successful optimizations.
Section 2.5 presents related work and Section 2.6 concludes.

36

2.2. Survival of the fittest

2.2 Survival of the fittest

The performance of a given execution of a program can be affected by a broad range of
factors, making it difficult to determine in advance which optimization techniques may
be the most advantageous. Many of these factors can be entirely unpredictable, for ex-
ample if the program processes an input stream representing end-user activity, it may
not be possible to predetermine the ideal optimizations for a given period of that input
stream. Even if a compiler were to choose the ideal optimizations for a given execution
scenario, the same compiled program could be executed in a slightly different scenario
where other optimizations would improve performance. To bridge this gap between
compile-time optimization and a concrete program execution, FITTCHOOSER employs
dynamic instrumentation to generate and test various combinations of optimizations at
the beginning of program execution and then transform the program to use the combi-
nation that empirically proves itself to be the most effective. This is implemented as a
progression through three phases:

— Profiling: Identify the 5 most processor-intensive functions within the current exe-
cution.

— Optimization Pass: Generate variations of those functions and dynamically link
them into the running program, then iteratively profile each one for comparative
effectiveness.

— Cruise Control : Dynamically link the variation that proved to be the most fit for the
current execution.

— Periodically monitor its performance and return to the Optimization Pass if
significant changes are observed.

2.2.1 Profiling

The key advantage of FITTCHOOSER over optimizating at compile-time is that it can
precisely discover the program’s performance characteristics, not just for a given ma-
chine, but also for a specific execution. This comes at the cost of runtime overhead to
modify the machine code while the program is performing its tasks. To avoid squan-
dering potential speedups, FITTCHOOSER profiles the application to identify the five

37

FITTCHOOSER

Listing 8 Example Function
double Foo(unsigned int a[], unsigned int b)

for i = 1 to b
c += a[i]/b;

return c;

int main (int argc, char *argv[])
- - -

for i = 1 to 10000
- - -
temp = Foo(a,i);
- - -

- - -

functions in which the processor spends the majority of its time. These few critical
functions are selected as exclusive candidates for optimization.

2.2.2 Optimization Pass

This phase begins with an analysis of each critical function to determine which program
transformations can potentially be advantageous. For example, functions containing
loops are typically candidates for loop unrolling and loop tiling. Conversely, functions
containing static variables are not eligible for these optimizations because of the dif-
ficulty in preserving the value of the variable across different variations of the function.
The optimization repertoire of FITTCHOOSER is presented in detail in Section 2.3.

For each candidate optimization, a new version of the selected function is generated
and injected into the running process. To compare the performance of the variations,
we inject a meta-function monitor that acts both as a dispatcher and a timer. The
monitor rotates between the injected variations in round robin fashion to maintain timing
fairness. Each variation is allocated a fixed (configurable) number of invocations per
round, and evaluation continues until the total number of invocations reaches a fixed
(configurable) threshold. At the end of this evaluation period, the monitor functions are
retired by patching calls directly to the best-performing variation.

The pseudocode in Listing 8 illustrates a common scenario where a single progression
through the variations would result in unfair evaluation. Since the number of iterations
of the for loop in function Foo depends on parameter b, the value of the parameter b

38

2.3. FITTCHOOSER

affects the running time of the function Foo. The first 100 calls to the function have an
average of 50 iterations, while the second 100 calls have an average of 150 iterations.
Suppose we run the first version for the first 100 calls and the second version for next
100, then comparing the average running time of them to find the fastest is unfair.
Instead, executing them in a round robin fashion with a quanta of 10 calls makes it
more comparable.

While there are other ways to maintain fairness of evaluation, the monitor function has
been implemented with a round robin strategy to avoid complications with low-level
timing measurement. An alternative approach could measure flops, but this generally
requires hardware counters that may not be available on older processor models. An-
other option would be to measure instructions per second, but this will be inaccurate
for optimizations that reduce the number of executed instructions (for example, loop
unrolling may eliminate a significant number of branch instructions).

Figure 2.1 illustrates the Optimization Pass by depicting the execution of function Foo
when the example program given in Listing 8 is executed under FITTCHOOSER. The
original (statically compiled) control flow is shown in Figure 2.1a, and the dynamically
linked Foo_monitor function appears in Figure 2.1b. After choosing the best variation,
FITTCHOOSER bypasses the monitor by linking call sites directly to it, as shown in
Figure 2.1c, and then goes on Cruise Control.

2.2.3 Cruise Control

Application behavior may change during execution such that our selected program
transformations may no longer be optimal. To maintain performance through these
changes, FITTCHOOSER remains on Cruise Control throughout the execution of the
program, periodically evaluating the optimized functions. If significant changes are ob-
served, FITTCHOOSER revisits the Optimization Pass in search of the best variations
for the present conditions.

2.3 FITTCHOOSER

The three-phase strategy for finding and linking the fittest optimizations is coordi-
nated by the FITTCHOOSER application, which runs in its own separate process. Inter-

39

FITTCHOOSER

	 	

double	 	 Foo	 (a	 ,	 b){	
.	 	 .	 	 .	
.	 	 .	 	 .	
.	 	 .	 	 .	

}	

int	 main(.	 .	 .){	
.	 	 .	 	 .	
.	 	 .	 	 .	

	 tmp	 =Foo(a,	 i);	
.	 	 .	 	 .	
.	 	 .	 	 .	
.	 	 .	 	 .	

}	

(a) Original call direct to Foo().

double	 	 Foo	 (a	 ,	 b){	
.	 	 .	 	 .	
.	 	 .	 	 .	
.	 	 .	 	 .	

}	

int	 main(.	 .	 .){	
.	 	 .	 	 .	
.	 	 .	 	 .	

	 tmp	 =Foo(a,	 i);	
.	 	 .	 	 .	
.	 	 .	 	 .	
.	 	 .	 	 .	

}	

double	
Foo_monitor(a,	 b)
{	

.	 	 .	 	 .	

.	 	 .	 	 .	

.	 	 .	 	 .	

.	 	 .	 	 .	
}	

double	 	 FooV1(a	 ,	 b){	
.	 	 .	 	 .	
.	 	 .	 	 .	
.	 	 .	 	 .	

}	

double	 	 FooV2(a	 ,	 b){	
.	 	 .	 	 .	
.	 	 .	 	 .	
.	 	 .	 	 .	

}	

double	 	 FooVn(a	 ,	 b){	
.	 	 .	 	 .	
.	 	 .	 	 .	
.	 	 .	 	 .	

}	

	 	

(b) Call redirected to the monitor func-
tion, which dispatches to the injected vari-
ations.

double	 	 Foo	 (a	 ,	 b){	
.	 	 .	 	 .	
.	 	 .	 	 .	
.	 	 .	 	 .	

}	

int	 main(.	 .	 .){	
.	 	 .	 	 .	
.	 	 .	 	 .	

	 tmp	 =Foo(a,	 i);	
.	 	 .	 	 .	
.	 	 .	 	 .	
.	 	 .	 	 .	

}	

double	
Foo_monitor(a,	 b)
{	

.	 	 .	 	 .	

.	 	 .	 	 .	

.	 	 .	 	 .	

.	 	 .	 	 .	
}	

double	 	 FooV1(a	 ,	 b){	
.	 	 .	 	 .	
.	 	 .	 	 .	
.	 	 .	 	 .	

}	

double	 	 FooVK(a	 ,	 b){	
.	 	 .	 	 .	
.	 	 .	 	 .	
.	 	 .	 	 .	

}	

double	 	 FooVn(a	 ,	 b){	
.	 	 .	 	 .	
.	 	 .	 	 .	
.	 	 .	 	 .	

}	

	 	

(c) Call direct to the fittest variation.

Figure 2.1 – Progression of the Optimization Pass.

40

2.3. FITTCHOOSER

process communication is facilitated by the binary instrumentation framework Padrone
[Rio+14], which supports selective instrumentation of a target process while minimiz-
ing interference with its native flow of execution. Section 2.3.1 presents Padrone in
more detail and makes a case for its fitness as the foundation of FITTCHOOSER. Sec-
tion 2.3.2 moves on to the implementation of FITTCHOOSER, and Section 2.3.3 de-
scribes the lightweight deployment alternative FITTLAUNCHER.

2.3.1 Padrone

Since our goal is to improve performance while monitoring and modifying the program,
it is essential for FITTCHOOSER to minimize its own overhead. While there are many
tools that can facilitate the instrumentation, Padrone proves to be the least intrusive
and therefore the most advantageous for conserving speedups. Where a typical binary
translator takes full control of a program and translates every executed instruction,
Padrone provides comparable instrumentation on a selective basis, affecting only the
specific set of functions that are modified. An alternative approach would compile the
instrumentation directly into the target application, but this can change critical perfor-
mance factors such as code layout, and introduces the challenge of integrating with
the build system of every target application. A self-contained tool like Padrone is more
practical, communicating with the target binary over the the Linux ptrace API like an
interactive debugger.

Padrone instruments the target process by injecting code changes, which involves
modifying existing program instructions and/or generating code to a dynamically al-
located code cache. It is also possible to inject a shared library via dl_open(). To link
a new function into the running program, Padrone inserts a trap at the start of the
original function to identify incoming calls (by checking the return address at the trap).
After modifying the operand of the incoming call instruction, subsequent invocations of
that call site will go directly to the new target function.

The advantages of Padrone over conventional binary translation are not limited to its
selective instrumentation API and its isolation in a parallel process:

— Binary translators have a baseline overhead of at least 12% on the SPEC CPU
2006 benchmark suite [Haw+15], increasing to 30% or more for desktop applica-
tions [SZW06], and inflating up to 17× where a JIT engine is involved [HDT16].

41

FITTCHOOSER

In contrast, the baseline overhead of Padrone is negligible, consisting of just one
interruption for ptrace attach.

— Padrone does not require global monitoring or modification of the effects of sys-
tem calls or standard library calls, even if those effects are visible to the program.

— Binary translators typically replace the ret instruction with a push/jmp that inter-
feres with hardware optimizations for call/return symmetry.

— Padrone’s selective instrumentation allows greater control over the alignment and
colocation of injected code by reducing pressure to consolidate the code cache.

— Many important hardware performance counters are local to a CPU core, allowing
for accurate measurements even while other cores are highly active. This advan-
tage is lost under in-process binary translation where the activity of the transla-
tor occurs on the same core as its target application and pollutes the counters.
Padrone, on the other hand, is able to monitor performance counters in the target
process via the PAPI function PAPI_attach() while limiting its own footprint on
the counters to the relatively lightweight ptrace calls.

While it is possible to compile FITTCHOOSER directly into the target application, this is
highly impractical for most deployed software, and impossible for legacy binaries that
were compiled before Padrone was available.

2.3.2 Implementation

We implement FITTCHOOSER in plain C using Padrone’s API for introspection and in-
strumentation of the running process. To optimize a program with FITTCHOOSER, the
user first launches the program and then passes the process ID to FITTCHOOSER

which connects via ptrace and begins the Initial Profiling phase. In its current stage
of development, our FITTCHOOSER prototype also requires the LLVM IR [LA04] of the
target program to be provided by the user. This inconvenience will be replaced by a
technique to lift the program’s machine code to LLVM IR. Previous work by Hallou et
al. [HRC16] showed that the LLVM IR produced by using McSema infrastructure [DR]
can be used for optimizations as complex as vectorization. A similar approach would
leverage the decoder of the binary translator HQEMU [Hon+12], which presents as its
fundamental contribution the transformation of the internal QEMU IR to LLVM IR such
that the LLVM compiler can be used to optimize translated code on the fly. Given this
future enhancement, FITTCHOOSER would no longer require the user to provide any

42

2.3. FITTCHOOSER

information about the target application.

Candidate Optimizations

The efficiency of FITTCHOOSER and its underlying framework Padrone are essential
for realizing performance gains from an optimization that is constructed entirely at
runtime. But the pivotal component of FITTCHOOSER is its code generator that pro-
duces the optimization candidates. Given an extensive repertoire of powerful optimiza-
tions, the potential speedup depends mainly on the selection of candidates that have a
high probability of (a) significantly increasing performance of the target function while
(b) maintaining near-native performance even in an unexpected worst-case scenario.
While our current experimental results operate on a limited optimization vocabulary
that focuses on standard loop unrolling, the integration of the LLVM compiler provides
FITTCHOOSER with easy access to a broad range of optimizations available from the
LLVM community. As more advanced techniques are incorporated into FITTCHOOSER,
its analysis of the target function will need to be increasingly effective in identifying the
most promising avenues of optimization while recognizing potential pitfalls that could
incur unacceptable overheads during evaluation.

The analysis of the target function can potentially be complemented by dynamic profil-
ing of performance counters (where available). For example, if a group of optimizations
aims to reduce the frequency of a certain hardware operation, a dynamic profile of cor-
responding hardware counters could enable FITTCHOOSER to accurately estimate the
potential of those optimizations for the current execution. Research has explored the
use of hardware counters in profile-guided optimization [Che+10], including dynamic
compilers such as JIT engines [SG06b], but these efforts report significant difficulty
in correlating hardware events with specific program code fragments. These problems
do not occur for FITTCHOOSER because, instead of speculating about the significance
of hardware event counts, it can explore a hypothesis about potential optimizations by
simply generating an exploratory variation of the target function and empirically observ-
ing the change (or lack thereof) in hardware events.

43

FITTCHOOSER

Variation Count Timings
1 2103 3210
2 2100 3021
3 2100 3310

Original 2100 3250

Table 2.1 – Example of the shared Monitoring table.

Monitor Functions

While the round robin dispatch of the monitor functions is relatively straightforward, two
interesting challenges arise where the functions are integrated into the target program.
The first is to compare the performance of the injected variations without encumbering
the target program. The monitor function could easily perform the comparison directly,
but this can involve a significant amount of computation, especially when there is anal-
ysis involved in determining what action to take next. Instead, the monitor function
records the average execution time of each round to a table that is shared between
the target program and FITTCHOOSER. An example of its contents is depicted in Table
2.1. The table is hosted in a System V shared memory segment, and shared between
the two processes as shown in Figure 2.2. In our current implementation, synchroniza-
tion is not required for table access because FITTCHOOSER waits until the end of the
Optimization Pass and reads the entire table after the monitor functions have been
removed. In the case that future enhancements involve intermediate evaluation of the
variations, for example to adjust them during the Optimization Pass, it may become
necessary to introduce a locking scheme.

The second challenge involves the pass-through of the return value from the target
function to its caller within the target program. Ideally the intervening monitor function
would simply make a tail call to the monitored function, allowing the return value to nat-
urally pass through. But this is not possible because the monitor must stop its internal
timer, and at the end of a round it must also update the shared table with the observed
average execution time. Instead, the monitor function stores the return value from the
target function, performs the necessary computations and updates, and then returns
the value. This is difficult to do in a generic manner because the return value may take
the form of a struct which requires a copy through memory. Our prototype is currently
limited to target functions that return a scalar data type (including pointer types), be-

44

2.3. FITTCHOOSER

cause it is generated from an LLVM IR template that requires an accurate declaration
of the return type. This limitations could potentially be alleviated by an assembly im-
plementation of the monitor functions, or by a wrapper function for the monitor that is
written in assembly.

Version	 count	 Avg.	 time	

1	 2103	 3210	

2	 2100	 3010	

3	 2100	 3250	

fittChooser Application

Calculate avg. time taken
for each version.

Shared Table for foo	

Include monitor functions and optimized
versions into the application

Find the fastest
version

Figure 2.2 – The shared Monitoring table is accessed by both the application and
FITTCHOOSER.

2.3.3 FITTLAUNCHER

The user may prefer to conduct an optimization discovery phase and later incorpo-
rate those optimizations without running FITTCHOOSER. For this scenario we provide
the FITTLAUNCHER, which is an extension of the Linux loader that links a set of pre-
defined function variations into the program at load time. Since this deployment model
operates in-process and only takes action at module load time, it eliminates the sepa-
rate FITTCHOOSER process along with its overhead. This brings additional advantages
such as compatibility with GDB—the Linux ptrace API only supports one connec-
tion at a time, but both GDB and FITTCHOOSER need to communicate with the target
program over ptrace. There is also potential complexity for the user associated with
FITTCHOOSER since it requires configuration of thresholds and other special knowl-
edge, and this complexity is greatly reduced with FITTLAUNCHER once the desired
optimizations have been chosen.

45

FITTCHOOSER

This two-phase approach with FITTLAUNCHER also opens a door to more aggressive
optimizations in FITTCHOOSER. For important programs that warrant a dedicated op-
timization effort, the user may conduct an exploratory phase in which FITTCHOOSER

is configured to take greater risks. The performance of these exploratory runs may be
very poor over all—since many of the attempted variations will be unsuccessful—but
FITTCHOOSER will be able to evaluate a broader range of candidates that may lead to
discovery of unexpectedly effective variations. After configuring the FITTLAUNCHER to
incorporate the best performers into the program at load time, the program can benefit
from the speedup without any further overhead from FITTCHOOSER.

The FITTLAUNCHER can either be installed in the operating system to take effect for
all programs, or it can be invoked selectively by passing the name of the program
to launch along with its arguments (the default Linux loader supports the same us-
age model). As FITTLAUNCHER loads program modules into memory, it consults a
database of installed optimizations. If any are found, it invokes mmap to request a region
of memory near the corresponding module and populates it with the optimized function
variations. Then FITTLAUNCHER links each function by inserting a 5-byte hook in the
prologue of the original. To eliminate overhead from the hook, a more advanced imple-
mentation could identify the function callers and simply change their target operand,
as in FITTCHOOSER. But our experimental results show that even with the hook, FIT-
TLAUNCHER imposes less than 0.2% overhead (geometric mean) across the SPEC
2017 benchmark suite [SPE].

To maintain compatibility with the host Linux platform, we provide a Python script to
generate the FITTLAUNCHER from the existing system default loader. The script adds
an executable section to the end of the loader and installs a callback hook in the main
executable section where internal accounting is performed for a newly loaded module.
We implement the FITTLAUNCHER functionality as a static library in plain C and splice it
into the appended executable section of the loader. To avoid dependencies on loaded
modules (which are generally not available to the loader itself!) the FITTLAUNCHER

generator script identifies useful symbols such as open (for opening files) and strcpy
in the original loader and statically links them to the FITTLAUNCHER internal functions
as necessary.

46

2.4. Results

2.4 Results

We conducted our performance experiments on a 2.7GHz Intel Core i7 Broadwell desk-
top supporting SIMD and AVX2 with an L3 cache of 4MB and 16GB RAM. The machine
runs Linux 3.19 and our benchmarks are compiled with LLVM version 3.7.0 at level -O3.
We use taskset to pin the application to a single core and the time command for mea-
surement.

Our experiments focus on a subset of benchmarks from PolyBench [POL] and SPEC
CPU 2006 [Hen06] benchmark suites. The subset is partly necessary because Padrone
only tested for programs written in C. More importantly, our main goals in this evalua-
tion are to (a) show the potential speedups that FITTCHOOSER can discover, and (b)
to demonstrate that FITTCHOOSER can apply these optimizations efficiently, without
squandering the speedup. For many benchmarks in these two suites, there is either
no function compatible with FITTCHOOSER (for example because of a complex return
type), or the benchmark contains no candidate functions for our limited repertoire of
program transformations. So we focus our experiments on benchmarks having candi-
date critical functions under the proposition that future versions of our tool will be able
to successfully optimize the excluded benchmarks using an expanded repertoire and
a few technical improvements.

We make two minor adjustments to The PolyBench suite because it calls the criti-
cal function only once, whereas FITTCHOOSER is designed to optimize iterative pro-
grams. Our changes include (1) a for loop to call the function one million times and (2)
__attribute__((noinline)) to prevent inlining of the critical function.

2.4.1 Overhead

Although there is significant computational overhead for both the Initial Profiling and
Optimizaton Pass, the majority of the overhead is masked by performing the processor-
intensive tasks in the parallel FITTCHOOSER process. Upon reaching Cruise Control
the periodic profiling has negligible overhead because it is invoked sparsely and for a
short duration. Figure 2.3 shows the overhead of (a) profiling alone and (b) profiling
and monitoring combined across four benchmarks from the PolyBench suite. The con-
figuration for profiling includes 3 sessions of 5, 10 and 20 seconds with a frequency
of 100Hz, 200Hz and 400Hz, respectively. Monitoring is configured to terminate at a

47

FITTCHOOSER

 0.98

 0.99

 1

 1.01

 1.02

correlation mvt gramschmidt seidel-2d

O
v
e
rh

e
a
d

profiling alone
profiling + monitoring

Figure 2.3 – Overhead of FITTCHOOSER.

threshold of 20,000 total invocations of the critical function, and deploys a null optimiza-
tion which simply contains a copy of the original critical function (compilation time of
the copy is included in these results). This represents a median scenario where the at-
tempted variations collectively perform roughly the same as the original. Performance
can deteriorate if more aggressive (and less reliable) optimizations are attempted. As
shown in the figure, the overhead is less than 1% throughout the course of the bench-
mark in all 4 cases.

The overhead of profiling is independent of the number of critical functions. However,
the monitoring phase overhead may vary depends on the number of critical functions
because the FITTCHOOSER injects one monitor function for each critical function. The
more the number of critical functions more will be the overhead created in the monitor-
ing stage. The number of critical functions that are suitable for the optimization in an
application may vary in each invocation of it. For example, there may be some func-
tions in the application which execute only when a specific input flag is enabled. So
it is difficult to say an upper limit for the overhead in an application. Figure 2.3 shows
overhead when the maximum number of critical function is fixed to be only one. This
figure can be used as just a reference for the possible overhead.

2.4.2 Speedup

Figure 2.4 reports the overall speedup obtained for the selected subset of the Poly-
Bench and SPEC CPU 2006 benchmark suites. This includes the Initial Profiling and

48

2.4. Results

 0.92

 1

 1.08

 1.16

 1.24

co
rre

la
tio

n

co
va

ria
nc

e
at

ax
bi
cg m

vt

ge
su

m
m

v

ch
ol
es

ky

gr
am

sc
hm

id
t

tri
so

lv

flo
yd

-w
ar

sh
al
l

de
ric

he

se
id
el
-2

d

48
2.

sp
hi
nx

3

S
p

e
e

d
 U

p

fittChooser

Figure 2.4 – Overall speedup under FITTCHOOSER.

the full Optimization Pass with all associated overheads. Both the benchmarks and the
injected variations are compiled at LLVM optimization level -O3. The configuration at-
tempts 13 variations of the top critical function in each application. The first variation
is produced by recompiling the IR with only the march=native flag. The remaining 12
variations progressively assign the -loop-unroll flag from 2 to 24 (stepping by 2). In
the Optimization Pass, each variation is invoked at least 100 times with a quanta of 10,
and timing is measured over the last 100 invocations after discarding the highest 10 re-
sults to compensate for noise. Figure 2.5 depicts the performance of these optimization
flags on four PolyBench programs.

We experienced a slight slowdown for the correlation benchmark. It showed an over-
head of 0.6 % in Figure 2.3 and slowdown of 0.4 % in Figure 2.4, indicating that the
speedup created by the optimized versions did not recover the overhead of the trials.
Table 2.2 shows the standard deviation of the results. While the majority of the bench-
marks cannot be improved beyond the -O3 optimization level, several benefit greatly
from FITTCHOOSER: floyd_warshall is 19 % faster, atax 7 % and cholesky 4 %.

Figure 2.5 shows that FITTCHOOSER selects different optimizations for different pro-
grams. For example, kernel_floyd_warshall performs best with a loop unrolling of 14

49

FITTCHOOSER

Benchmark Standard Deviation
correlation 0.49%
covariance 0.25%
atax 0.15%
bicg 0.01%
mvt 0.13%
gesummv 0.02%
cholesky 0.05%
gramschmidt 0.23%
trisolv 0.01%
floyd-warshall 0.07%
deriche 1.20%
seidel-2d 0.01%

Table 2.2 – Standard Deviation

whereas kernel_cholesky prefers 12. In cases where the performance is almost equal
for all unrolling factors, FITTCHOOSER may assign a different variation depending on
the exact performance observed during the execution. For example, among 10 execu-
tions of kernel_floyd_warshall, FITTCHOOSER assigns the 8th version six times, the
1st version three times and the 7th version once.

We also observe that some applications are drastically improved simply by recompi-
lation on the target machine using the default -O3 optimizations. This still indicates an
advantage of FITTCHOOSER over the conventional software distribution model where
compilation is performed once at the vendor’s site (similarly to [Nuz+13]). No mat-
ter how trivial or sophisticated the source of the speedup, the dynamic optimization
model finds increasing importance in today’s rapidly expanding landscape of comput-
ing resources. Applications designed for desktop computers are commonly run on
cloud servers, virtualization platforms and even mobile devices, introducing perfor-
mance characteristics that can vary dramatically from the machine where the code
was compiled. To the best of our knowledge, the only way to reliably tune application
performance in such an environment is to optimize at the point of execution, which is
where FITTCHOOSER excels.

50

2.5. Related Work

 1

 1.03

 1.06

 1.09

 1.12

 1.15

R
ec

om
pi
le
d

U
nr

ol
l=

2

U
nr

ol
l=

4

U
nr

ol
l=

6

U
nr

ol
l=

8

U
nr

ol
l=

10

U
nr

ol
l=

12

U
nr

ol
l=

14

U
nr

ol
l=

16

U
nr

ol
l=

18

U
nr

ol
l=

20

U
nr

ol
l=

22

U
nr

ol
l=

24

S
p

e
e

d
u

p

kernal_floyd_warshall
kernal_bicg

kernal_deriche
kernal_cholesky

Figure 2.5 – Performance of critical function variations.

2.4.3 FITTLAUNCHER

Since the expected usage of FITTLAUNCHER is to install optimizations for the program’s
most critical functions, we prepare our evaluation of FITTLAUNCHER by installing a null
optimization for the top critical function of each program in the SPEC 2017 benchmark
suite (as reported by Linux perf). We observe a geometric mean of 0.124% overhead,
which falls below the standard deviation of 0.178% across the native executions of the
suite.

2.5 Related Work

Dynamic Binary Rewriting Pin [Luk+05] is a dynamic binary instrumentation frame-
work with a flexible API that has enabled development of a rich set of Pintools for
architecture exploration, emulation and security. Because Pin focuses on instrumen-
tation and analysis, it always runs the target program from a copy in its code cache.
DynamoRIO [Bru04] is a similar tool that focuses on efficiency and provides a sim-
ple lightweight API to clients. It can execute the target program entirely from its code
cache, or partly native, and can consolidate cached code into traces for efficiency. Val-

51

FITTCHOOSER

grind [NS07] focuses more on its instrumentation capabilities than performance, and
the framework is designed for heavyweight tools: every instruction is instrumented,
and a high volume of information about the target program’s execution is collected.
The novelty of Valgrind is the use of shadow values [Net04] for register and memory
locations, yielding a more powerful analysis at the cost of higher overhead.

Iterative Compilation is similar to FITTCHOOSER in that it addresses the perfor-
mance issues that arise from detailed hardware characteristics and transitory factors
of the runtime environment. The key idea is to identify local minima by producing many
versions of the same program and running them on various platforms to identify the
best overall performers. Iterative compilation has been advanced by machine learning
techniques that are broadly covered in a survey by Ashouri et al. [Ash+18]. Our work
takes the same basic approach, but we apply it at runtime. By doing so, we concentrate
only on the most time consuming functions, and we can easily adjust our optimizations
for the performance characteristics that are directly affecting the current execution of
the program.

JIT Compilers apply different levels of optimizations to functions when they become
time consuming (see for example the discussion of Oracle’s HotSpot compiler [PVC01]).
Their purpose is different from ours: they want to spend time optimizing functions only
when the chances are high to recoup the time in future execution time. Optimizations
available in each level are fixed, while we explore many variants.

JIT technology with C/C++: Feedback-directed dynamic recompilation for stati-
cally compiled languages [Nuz+13] discusses about dynamic optimization by using
both native executable file and intermediate representation (IR) file of the program.
During execution, they recompile hot methods from IR file using a Java JIT compiler
and the recompiled versions are stored in a Code Cache. With the help of a trampoline
created at the beginning of the original function body, the function calls are redirected
to the new recompiled version. This work is very close to our work. We both use almost
similar recompilation technique to create optimized version. However this work creates
only one version of the function and believes that version is better than the original one
present in the binary without taking any feedback about its performance.

52

2.6. Conclusion

2.6 Conclusion

Detailed information about hardware performance characteristics can improve compiler
optimizations, but applications are typically compiled for use on many different architec-
tures having a broad range of performance characteristics. Transitory factors of the run-
time environment can also affect application performance. We propose FITTCHOOSER

to dynamically evaluate the fitness of candidate optimizations for a program’s critical
functions and then replace the original functions on the fly, all without restarting the
program. Experimental evaluation of FITTCHOOSER on important industry benchmarks
demonstrates up to 19% speedup even with a limited repertoire of program transforma-
tions, suggesting even more gains may be possible as more sophisticated optimization
techniques are incorporated into FITTCHOOSER.

53

CHAPTER 3

OFSPER: ONLINE FUNCTION

SPECIALIZER

3.1 Introduction

Function Specialization (also known as Procedure Cloning) is one of the optimization
techniques applied to the functions in a program based on its parameters [BGS94].
In this technique, different versions of a function are created according to the most
frequent values taken by its parameters. In the case of function specialization, it is
also often difficult to predict/know during the static compilation phase the argument
value/behavior.

To create specialized versions of a function at static compilation phase, the compiler
needs to assume or predict some values or some common behavior to the parame-
ters which might not be feasible in many cases. But that is not the case with dynamic
optimization where the actual values or behavior of arguments are known. We have
developed a dynamic/online optimization tool called OFSPER which can apply func-
tion specialization at run time. OFSPER creates specialized versions of the function,
according to the actual value of parameters, during the execution of the process.

A more detailed explanation of function specialization and its scopes are given in Sec-
tion 3.2. Section 3.3 gives a general idea about dynamic function specialization and a
detailed explanation of our implementation is provided in Section 3.4. Section 3.5 illus-
trates our approach with a simple example. Section 3.6 shows the experimental setups
and the impact of OFSPER on different benchmarks. And finally, Section 3.7 discusses
related work, and Section 3.8 concludes our work.

55

OFSPER

3.2 Function Specialization

Function specialization is one of the optimization techniques used to reduce the execu-
tion time of a function. The idea is that instead of calling a generic function for all the call
sites, call different versions of it according to the values taken by the parameters. The
call sites of a function are divided into groups based on the values taken by the param-
eters, and a specialized version of the function is produced for each group [BGS94].
Each version is specially optimized for one or particular category of arguments so that
they are expected to run faster as compared to the original generic version for such
arguments. For example, consider the function Foo in Listing 9. All call sites of Foo,
where value of parameter b is a power of 2, can be considered as one group and a
specialized version Foo_b2n can be produced for it. Now, Foo_b2n can execute faster
compared to Foo when b = 2n, because of the use of shift operator instead of more
expensive division operator used in Foo. So the call Foo(a,8) can then be replaced
by a call to Foo_b2n as Foo_b2n(a,3).

Listing 9 Function Specialization
Foo(a, 8);
double Foo(unsigned int a[], unsigned int b)

for i = 1 to 100
c += a[i]/b;

return c;
(a) Original code

Foo_b2n(a,3);
double Foo_b2n(unsigned int a[], int n)

for i = 1 to 100
c += a[i]>>n;

return c;
(b) Specialized code when b = pow(2,n).

For applying function specialization, knowing the value of the parameter(s) is the key.
In most of the cases, the function calls do not contain constants as arguments, instead
they have variables, like in Foo(a,x). In such cases, it is not straight forward to do
function specialization since the values of variables might be unknown. With a profile-
guided optimization, having a simulated execution of the code during compilation for
knowing the behaviour of the program, the value or property of the parameters can
be predicted. However it may not be a feasible solution all the time because the pre-

56

3.3. Dynamic Function Specialization

dicted behaviour can vary at actual run time. Therefore, applying function specialization
during static compilation phase is very difficult, which essentially means specialization
would be more effective when applied dynamically by knowing the exact values of vari-
ables.

Knowing the value of a variable provides scope for various optimizations, such as
constant propagation, constant folding, algebraic simplification, strength reduction, un-
reachable code elimination, short circuiting, loop unrolling, vectorization etc. [Muc97;
BGS94]. Optimizations like constant propagation, constant folding and algebraic sim-
plification allows an expression in the program to be precomputed, which can speed
up the execution of the program. Similarly, expensive operators could be replaced by
equivalent less expensive operators by applying strength reduction. In some cases
where the trip count of loops depends on the parameter value, the trip count can be
precalculated and so Loop unrolling and vectorization could be more effective.

Such repetition of values may be surprising at first glance. Analyzing the reasons be-
hind this behavior is beyond the scope of this paper. However, we note that it has been
observed before, and this is not the sign of poor software or compiler. Modular software
engineering and code reuse contribute to this phenomenon, as well as underlying se-
mantics of the data being processed (modeling the real world).

3.3 Dynamic Function Specialization

Dynamic function specialization is a program optimization technique in which function
specialization is applied on a running application to improve its execution time. In this
technique the different versions of the function are created dynamically according to
the live values taken by its parameters. Since knowing the actual value of arguments
is very important to perform function specialization, it will be more effective if applied
on a program in execution. Further, a more hardware specific optimized version can
be produced in this technique due to the knowledge of running hardware platform,
compared to static function specialization technique.

57

OFSPER

3.3.1 Use case

Dynamic function specialization is useful when the static compiler is unable to extrac-
t/identify the values taken by the parameters of a function to create the specialized
versions statically. A specialized version of a function is needed when there is a good
chance of calling the specialized version. That is, the probability of repeating at least
one of its parameters should be high. Some functions do repeat their arguments, but
not all the time. We monitored some of the critical functions in SPEC CPU 2006 bench-
mark suite [Hen06] and captured the values taken by their parameters. The result ob-
tained is interesting and is shown in Table 3.1. Some of the parameters are taking
the same value across multiple function calls. Moreover, the idea of memoization pre-
sented in [Sur+15] is entirely based on functions with repeating arguments and they
have listed more such functions. These all are indicating the possibilities of applying
dynamic specialization.

Benchmark Function No. of calls 1 Time (%)1 Unique Values
sphinx3 vector_gautbl_eval_logs3 2.3 M 26.83 1
hmmer FChoose 277.2 M 1.88 1
sphinx3 subvq_mgau_shortlist 492.9 M 8.17 1
mcf primal_bea_mpp 2.2 G 40.29 2

1gprof data

Table 3.1 – Repeatability of arguments

3.3.2 Our Approach

A function may be called from different parts of the program. Since the values taken by
the parameters may differ in each call even from the same call site, it is not possible
to directly replace the original function call by a call to a specific specialized version.
Instead, different versions need to be maintained according to the arguments. In our
approach, we use an extra function, called monitor function, to manage these special-
ized versions and redirect function calls to appropriate versions. The monitor functions,
one for each function, are created dynamically and we replace all the original function
calls by a call to the monitor function. Figure 3.1 shows the difference in function ex-
ecution before and after applying specialization. In normal execution of the program,
the original function, Foo, is directly executed. But in the case of dynamic specialization
the monitor function, Foo_monitor, is executed first and then the appropriate version is

58

3.3. Dynamic Function Specialization

called from it.

Since the monitor function is not part of the original application, it creates some exe-
cution overhead on the application during each call to the original function. Dynamic
function specialization can be beneficial only when the optimized versions gain enough
speedup to overcome the overhead created by monitor function. Hence, before creat-
ing the specialized versions, repeatability of the arguments must be ensured so that the
optimized versions are expected to be executed more number of times compared to the
original function. The values taken by the parameters of a function are observed initially
for ensuring repetition before creating specialized versions. Specialized versions are
created for such repeating arguments in parallel to the execution of the program.

The overall procedure is carried out in two phases, Analyzing and Monitoring phase
and Specialization phase. Analyzing and monitoring phase is the decision-making
phase in which the functions which are needed to be specialized are determined. In
specialization phase, the different versions are created and included into the process.
We now explain these two phases in detail.

Listing 10
double Sum(int a[], int b)

for i = 1 to b
c += a[i];

return c;

Analyzing and Monitoring phase

The first step in this phase is to find out the suitable ‘hot’ functions for specialization.
The hot functions in the application can be determined by monitoring the spots where
the application spends most of its CPU time. Many techniques have been proposed,
such detection can be performed with very low overhead [Rio+14]. Not all hot func-
tions may be suitable for specialization. Suitable functions for specialization are chosen
based on how the parameters are used inside the function body. If knowing the value
of the parameter creates new possibility for applying different optimization techniques,
like those discussed in section 3.2, then the function can be marked as suitable. For
example, consider the function Sum given in Listing 10. In this case the trip count of
the loop can be precomputed once the value of b is known. And by knowing the trip

59

OFSPER

	 	

int	 main(.	 .	 .){	
.	 	 .	 	 .	
.	 	 .	 	 .	

	 	 	 	 	 tmp	 =Foo	 (a);	
.	 	 .	 	 .	
.	 	 .	 	 .	
.	 	 .	 	 .	

}	

double	 	 Foo	 (a){	
.	 	 .	 	 .	
.	 	 .	 	 .	
.	 	 .	 	 .	

}	

(a) Normal Execution.

	 	
double	 	 Foo	 (a){	

.	 	 .	 	 .	

.	 	 .	 	 .	

.	 	 .	 	 .	
}	

int	 main(.	 .	 .){	
.	 	 .	 	 .	
.	 	 .	 	 .	

	 	 	 	 	 tmp	 =Foo	 (a);	
.	 	 .	 	 .	
.	 	 .	 	 .	
.	 	 .	 	 .	

}	

double	 Foo_monitor(a){	
	 switch(a)	 {	
	 	 	 case	 	 8:	 Foo_a8	 (a);	 break;	
	 	 	 case	 16:	 Foo_a16(a);	 break;	
	 	 	 case	 32:	 Foo_a32(a);	 break;	
	 	 	 default:	 Foo	 	 	 	 (a);	
	 }	
}	

double	 	 Foo_a8(a){	
.	 	 .	 	 .	
.	 	 .	 	 .	
.	 	 .	 	 .	

}	

double	 	 Foo_a16(a){	
.	 	 .	 	 .	
.	 	 .	 	 .	
.	 	 .	 	 .	

}	

double	 	 Foo_a32(a){	
.	 	 .	 	 .	
.	 	 .	 	 .	
.	 	 .	 	 .	

}	

(b) Dynamic Function Specialization

All calls to function Foo are redirected to Foo_monitor and Foo_monitor decides which version to be
executed

Figure 3.1 – Call sequence: Normal vs Specialization

60

3.3. Dynamic Function Specialization

count different optimization techniques can be applied efficiently [BGS94; DH79]. More
details on choosing suitable function are given in Section 3.4.

The next step is to collect the actual values taken by the optimizable parameters of the
functions. After a function is found suitable for specialization, a monitor function is cre-
ated for it and all calls to it are redirected to this monitor function. The monitor function
is used to collect arguments. It contains a table, as shown in Table 3.2, which can store
arguments, their repetition count and target function indicator. On every call to the func-
tion, depending on the argument, repetition count is incremented and corresponding
target function is called. Initially all the entries of the Target Function column are set to
the original function. The need of applying specialization is decided by the repetition
count of the argument. If none of the arguments is repeating for a given amount of time,
monitoring is disabled by restoring the original function calls. It can be re-enabled at a
later time to capture a change in application phases.

Argument Value Repetition Count Target Function
8 3128 Foo
13 129 Foo
16 2451 Foo

Table 3.2 – Monitoring Table

Specialization phase

The specialized versions of the function are created based on the repetition count of
the arguments. When the count of any of the arguments reaches a threshold value,
a specialized version is created. We currently rely on the availability in the program
executable file of an intermediate representation of the program generated during the
compilation. The technique is sometimes referred to as fat binaries (see for example
the recent work of Nuzman et al. [Nuz+13]). The specialized version is produced by
recompiling the intermediate representation after replacing the corresponding parame-
ters with their values. The compiler can then apply constant propagation followed by all
available optimization techniques, including hardware-specific optimizations, according
to the parameter value.

The optimized versions are included in the process by injecting their binary code into
the process memory space. The Target Function value in the corresponding table entry

61

OFSPER

is then modified so that future calls to the function with this argument will execute the
specialized version. For example, if we consider 1000 as the threshold value, then there
is a possibility of making two specialized versions of Foo based on Table 3.2 entries.
The specialized versions Foo_b8 and Foo_b16 can be created for the values 8 and 16
respectively and then the table entries are modified as in Table 3.3.

Argument Value Repetition Count Target Function
8 3128 Foo_b8

13 129 Foo
16 2451 Foo_b16

Table 3.3 – Modified Monitoring Table

Special case In the case of pure functions, such as the transcendental functions like
sin, cos, log etc, by knowing the value of the parameters, we can directly calculate and
store the result of the function as these functions are known to return the same value
across calls for the same argument(s). In such cases, it is not required to create a spe-
cialized version and instead we just need to store the result. This type of specialization
is known as function memoization [Sur+15]. We consider such functions separately
and create a special kind of monitor function with a separate table structure. In this
table, we store only arguments and results as shown in Table 3.4. For each argument,
monitor function executes the original function on first call and stores the result in the
table and returns this result for subsequent calls with the same argument.

Argument Value Result
5 32
8 256

16 65536

Table 3.4 – Monitoring table for the pure function exp2

3.4 Implementation Details

3.4.1 Overview

Our specialization approach includes four major tasks.

62

3.4. Implementation Details

Profile: Find out ‘hot’ functions of the application.

Analyze: Choose ‘hot’ functions which are suitable for specialization.

Monitor : Collect values taken by the parameters of suitable functions.

Specialize: Create specialized versions of the function for repeating arguments and
include them into the application.

The first three tasks are part of analyzing and monitoring phase and the last one is of
specialization phase.

These tasks are performed by OFSPER which runs in parallel with the target appli-
cation process. The target program remains unmodified, and does not even need to
be restarted. OFSPER operates in a manner similar to a debugger, attaching to and
detaching from its target. More details are given in Section 3.4.2.

To achieve our goal of dynamic function specialization, we need to make some changes
to the application’s memory space, like changing function call instructions and including
new binary codes of the functions. Like FITTCHOOSER, OFSPER also use Padrone for
profiling, for injecting new functions and for the redirection of function calls.

Since the available information in machine-level code is very limited, optimizing a binary
code alone is very difficult. So we use, similar to [Nuz+13], both LLVM intermediate
representation [LA04] (LLVM IR) and binary code of the program. LLVM IR is used for
creating optimized versions of the functions and the binary code is for executing the
program. The LLVM IR is produced from the source code during the compilation of the
program.

Although our current approach relies on fat binaries, we plan to drop this requirement
by lifting binary code to LLVM IR. Previous work by Hallou et al. [HRC16] using the Mc-
Sema infrastructure [DR] showed that this is a viable path, including for optimizations
as complex as vectorization.

3.4.2 OFSPER

We implement the idea of dynamic function specialization with the help of our OFSPER

tool which runs alongside the application as shown in Figure 3.2. The specialization
process is carried out in this separate process (thanks to PADRONE) to reduce the

63

OFSPER

Application
Process

OFSPER

Profile

Analyze

Specialize

Monitor

	 	

Figure 3.2 – OFSPER attached to the application process

impact on the target application (at least on a multicore, or a processor equipped with
simultaneous multithreading such as Intel’s HyperThreading).

The optimized versions of a function are created from the LLVM IR of the program
produced during the compilation of the source code. We write LLVM passes [Llv16;
LA04] for creating optimized versions and monitor function of a function and also for
finding the suitable functions for specialization among the critical ones. We use three
different passes.

isPossible pass: Used in analyzing stage to check the suitability of a function for
specialization.

monitor pass: Used in monitoring stage to create monitor function

optimize pass: Used in specialization stage to create specialized versions of a func-
tion.

OFSPER starts its execution just after the application process starts running. Then,
PADRONE is used to attach it to the application process. The detailed explanation of
each stage of its execution is given below.

64

3.4. Implementation Details

arg.	 count	 Target	 function	

8	 3128	 Foo_a8	

13	 629	 Foo	

16	 2451	 Foo_a16	

O
FS

P
E

R

A
pp

lic
at

io
n

Increment count;
Call target function.

Shared Table for Foo	

Include monitor functions and specialized
versions into the application

Monitor count & change
target function accordingly

	 	

Figure 3.3 – The shared monitoring table is accessed by both the application and OF-
SPER

Profiling Stage

Instead of specializing every function in an application blindly, we apply specialization
only on critical functions in it. OFSPER use profiling, a feature provided by PADRONE,
to find out these critical functions. PADRONE probes the performance counters of the
processor at regular interval of time with the help of Linux perf event subsystem kernel
interface. Each probe provides a sample and we use these samples to figure out the
critical functions by inspecting the instruction pointers included in each sample. One
session of profiling lasts only a few seconds and it repeats at regular intervals of time
to catch more live critical functions.

Analyzing Stage

All functions may not be suitable for specialization. Functions with no parameters may
only benefit from a hardware-specific optimization, but not from specialization. Since
our monitor function creates some overhead, the specializable parameter of the func-
tion need to be used in a critical part of the function code such that specialization should
not result in a slow down to the overall process. Our cost-model attempts to capture
all these phenomena. Since, loop optimizations heavily impact the performance of a

65

OFSPER

program, a parameter which is part of the loops can be a good candidate for special-
ization. Parameters of pure functions are also considered since the entire function call
can be reduced to a constant.

The isPossible pass is used to find out functions which are suitable for specialization.
In this pass, we analyze each uses of integer or floating point type parameters of the
function. Once we find a use in an expression calculating trip count of a loop, we
backtrace the uses of other operands in the expression. If the other operands of the
expression are derived either from integer or floating point type arguments or from
constants, then we mark the function as specializable. Currently we are looking only for
arguments of int, long int, float and double data types but this can be extended
to other data types. This pass outputs the name and data types of the parameters
which satisfy our condition and a flag indicating whether the function returns void or
not. The list of all functions which are suitable for specialization could also be made
earlier, during creation of the LLVM IR of the program, and can then be used at run
time to pick out specializable critical functions. This would minimize the overhead, but
we have not explored that direction yet.

Monitoring Stage

For each suitable function, we create a monitor function for collecting arguments and
redirecting function calls to appropriate versions. The arguments are stored in a look up
table inside monitor function, as in Table 3.2, to detect the possibility of specialization.
The monitor function performs two operations.

1. Increment repetition count corresponding to the argument

2. Call the corresponding Target function and return its result.

The table is hosted in a System V shared memory segment, and shared between
the two processes as shown in Figure 3.3. The application process, through monitor
function, updates the first two columns of the table while the third column is modified by
the optimizer process. Initially the Target Function column of all the table entries are set
to original function and they are modified accordingly on creation of each specialized
version. A hash function is used to index the table. In order to perform a quick table
look up, we use the folding XOR based indexing as used in [Sur+15]. The idea is, higher

66

3.4. Implementation Details

order and lower order bits of the argument are repeatedly XORed until we get a 16 bit
number. And we mask 4 bits of it to get a 12 bit number which can be used as index
to a table of size 212. In case of a conflict, we directly call the original function without
modifying the table entry. For functions with more than one (specializable) argument,
first we XOR all arguments to a single one and then applies the above procedure on
it.

After the LLVM IR of monitor function is created, it is compiled to a shared library which
can be dynamically linked. Then, with the help of PADRONE this shared library is in-
jected into the process and subsequent calls to the original function are trapped and
redirected to the monitor function. Now on, all the values taken by the specializable
parameters are collected in the table inside monitor function which is used in special-
ization stage.

Specialization Stage

The need of specialization is decided by looking the values taken by the parameters of
the function so far. The values and their repetition counts are stored in shared tables.
These tables are analyzed by optimizer process at regular intervals. A specialized ver-
sion of a function is created for a particular argument, when the repetition count of that
argument crosses a threshold value. We set the threshold value for a function to 10%
of its total number of calls so far or to 500, whichever is greater.

The optimize pass is used to create the LLVM IR of the specialized version from the
LLVM IR of the program. This pass makes a copy of the original function with the name
of specialized version. Then all the uses of specializable arguments are replaced with
their exact value. The resulting LLVM IR is then compiled to get the executable file of
the specialized version. The compilers apply all the suitable optimization techniques
based on the argument value. It is also possible to create more hardware specific
versions from the LLVM IR [Hal+15]. The specialized version is then injected to the
process using PADRONE and the value of Target Function in the corresponding table
entry is changed to the specialized one as shown in Table 3.3.

If none of the arguments are found repeating more than the threshold value even after
the function is executed more than 50k times, then the function is removed from the
suitable functions list and it will not be considered for monitoring anymore.

67

OFSPER

Listing 11 A specializable function
long int foo(int a[], int b[], int p, int q)

long int i, j, k=0;
for j = 0 to (p+q)*2

for i= 1 to q*2
k+= ((a[i]/b[i])) % 2000;
k = k/(p*q-9998*q-2047);

return k;

We repeat these four stages until the application finishes its execution. In some cases
where the function has more than one suitable argument, it is also possible to have only
a subset of them to be repeating. In such cases, we may need to create the monitor
function once more by considering only the repeating arguments.

Additional benefit

As mentioned earlier, a compiler can apply more optimizations to a program, once
it knows the hardware details of the running machine. Our specialized versions are
optimized based on the hardware. However, before creating specialized versions, we
execute the original function. So it is beneficial to produce also a hardware-specific
version of the original, non-specialized, function.

Handling pure functions

The library functions, like cos, sin, exp etc, are considered separately. In such cases,
we make only monitor function and it can store the result in the table. So, we do not
need to create specialized versions. To redirect the original function calls, PADRONE
updates the GOT table entry with the address of monitor functions. We need to execute
the original function for the first call of each argument value to get the result. Since the
GOT table entry is modified, we cannot directly call the function by its name from the
monitor function. Therefore we use dlsym to fetch the address of the function and we
call the function by its address.

3.5 Example

68

3.5. Example

This section illustrates how our optimizer process may impact the execution time of a
function with the help of a simple example. We used the function given in Listing 11.
We call it from an infinite loop, and we measured its execution time on each call. Figure
3.4 reports our observation. The x-axis represents the time elapsed and the y-axis
represents the execution time (average of five consecutive calls) of the function. Before
specialization, it takes around 2.13 seconds to complete the execution with the values
9999 and 2018 to the arguments p and q respectively. At the 180th second, we started
a fairly aggressive profiling period for 100 seconds with a frequency of 1000 samples
per second. This is visible as a small bump on the graph. During this profiling session,
the optimizer process identifies foo function as a hot function and starts monitoring its
parameters. The monitoring continued until the repetition count reaches the threshold.
At around the 730th second the count crosses the threshold and a specialized version
of foo is created. The execution time drops to around 2.04 seconds only to complete
its execution. Figure 3.4 shows a slight increase in the execution time during profiling
and monitoring stages, but on the long run, specialization is clearly able to recoup this
overhead.

2	

2.05	

2.1	

2.15	

2.2	

0	 400	 800	 1200	 1600	 2000	 2400	 2800	

Ex
eu

%o
n	
%m

e	
(s
ec
.)	

Time	 (sec.)	

Figure 3.4 – Impact of specialization on execution time of a function (lower is better)

69

OFSPER

3.6 Result

3.6.1 Experimental set-up

We implemented our idea of dynamic function specialization on an Intel Broadwell
core i7 architecture with 4 MB L3 cache and 16 GB RAM. We set the clock speed to
2.7 GHz. The LLVM version used is 3.7.0 with O3 optimization on a Linux version 3.19
operating system.

Benchmarks Since PADRONE is tested only for C language programs, currently we
implemented dynamic function specialization only for programs written in C language.
We choose benchmarks, written in C, which contain functions satisfying our specializa-
tion criteria which are discussed in Section 3.4.2. The first one is the function should
be critical and it should contains at least one integer or floating point type argument.
The second one is this argument should be used in trip count calculation and the argu-
ment should repeat. We report only on qualifying benchmarks, since others practically
show neither speedup nor slowdown: hmmer and sphinx3 benchmarks from SPEC
CPU 2006 benchmark suite, equake benchmark from SPEC OMP 2001 benchmark
suite [Asl+01] and ATMI [Mic+07].

Prerequisites Our optimizer process runs in parallel with the application process. We
need both binary executable and LLVM IR of the application. Since all our decisions re-
garding the specialization are taken at run time, we do not require any prior information
about the application.

3.6.2 Overhead

Among the four stages of our implementation, profiling, monitoring and specialization
stages directly affect the execution of the application program. For analyzing the slow-
down caused by our implementation, we run it in two different situations. In first, both
monitoring and specialization stages are disabled and in second, only specialization is
disabled. We use h264ref, hmmer, sphinx3 and gobmk benchmarks from SPEC CPU
2006 for analyzing the overhead. The result is shown in Figure 3.5. All other bench-
marks may also perform similarly if there is no specializable functions found. The pro-
filing stage is repeated 3 times. The profiling sessions are carried out for 5 seconds with

70

3.6. Result

100 samples per second, for 10 seconds with 200 samples/second and for 20 seconds
with 400 samples/second respectively. And the overhead created by profiling is very
less (less than one second). The overhead created by monitor stage depends on the
number of times the functions are called. On each function call, we have a table look
up and an extra function call to monitor function. So the overhead created by monitor
stage is different for different benchmarks. Considering the two extremes in Figure 3.5,

0	

2	

4	

6	

8	

10	

gobmk(172.44s)	 hmmer(254.8s)	 sphinx3(553.4s)	 h264ref(399.81s)	

O
ve
rh
ea
d	
in
	 se

co
nd

s	 profiling	 alone	 profiling	 +	 monitoring	

0.05%	

1.63%	

0.13%	
0.45%	

0.12%	

0.48%	

0.25%	

1.80%	

Figure 3.5 – Overhead by profiling and monitoring
Normal execution time of the benchmark (in seconds) is given in brackets and the percentage of

overhead is given on top of each bar.

the average number of calls of monitor function in h264ref is around 116 million while
for hmmer, it is only 458 thousand. The overhead can be reduced by calling a machine
dependent optimized version of the original function instead of the actual one in the
case of non repeating arguments. For analyzing the overhead, we used the actual
version included in the binary of the program itself.

3.6.3 Speedups

Figure 3.6 reports the speedups we obtained. We are including only the benchmarks in
which we can specialize at least one function. All other benchmarks may result similarly
in Figure 3.5. The functions subvq_mgau_shortlist from sphinx3 and primal_bea_mpp
from mcf given in Table 3.1 are not specialized because the former one contains a
static variable and in the later one the repeating argument is not part of the loop.
Currently our implementation is not handling functions with static variables.

71

OFSPER

Speedups

1

The image cannot be displayed. Your computer may not have enough memory to open the image, or the image may have been corrupted. Restart your computer, and then open the file again. If the red x still appears, you may have
to delete the image and then insert it again.

0.9

1

1.1

1.2

1.3

1.4

1.5

1.6

hmmer sphinx3 ATMI.migration ATMI.Goh equake

Sp
e

e
d

 U
p

SAMOS XVII

Figure 3.6 – Speedups

The total time taken for the application is measured using time command and the
speedup shown in Figure 3.6 are measured based on the total time taken by the appli-
cation. In hmmer benchmark, functions P7Viterbi and FChoose are monitored. But the
monitored argument in P7Viterbi function is not repeating. In FChoose function, one
integer argument is repeating and it takes 20 as its value all the time. The compiler ap-
plies loop unrolling technique on a loop inside this function to get the optimized version.
Since FChoose is taking only 2 % (see Table 3.1) of total execution time of the applica-
tion, the improvement in this benchmark is minimum. In sphinx3 benchmark, function
vector_gautbl_eval_logs3 is monitored and specialized and we obtain around 5 %
improvement at runtime. In this function, two integer arguments are repeating with the
values 0 and 4096 on every call to the function. Here, compiler applies vectorization
technique to improve the run time of the specialized version.

We also obtain good improvements in ATMI application: 35 % and 24 % for examples
ATMI.migration and ATMI.Goh respectively. In both cases, we specialized the Bessel
functions j0 and j1. And in equake, we obtain an improvement of 5 % thanks to the sin

and cos functions.

3.7 Related Work

This section discuss about a number of works in dynamic function optimization.

72

3.7. Related Work

Intercepting Functions for Memoization: A Case Study Using Transcendental
Functions [Sur+15] discusses about implementing memoization, saving the result
of execution of a section of program for future use, in software for pure functions. The
idea is saving the result of a function in a table according to its arguments and re-
turn these results, instead of executing the function again, in future calls. The paper
shows that a good amount of application have argument repetition in functions even
after applying state of the art compiler optimization. But that paper is not studying if
any particular value or class of values are being repeated and if we could do optimiza-
tion based on them. Our work is an extension of this work. We used both memoization
in case of mathematical functions and specialization for other functions. Memoization
works when the function can be entirely reduced to a constant but specialization can
consider intermediate steps: not constant, but some computations are eliminated/sim-
plified.

Just-in-Time Value Specialization [San+13] discusses about creating more opti-
mized version of a function, based on runtime argument value, for JavaScript programs.
JavaScript programs are usually distributed in source code format and compiled at the
client-side. A just-in-time compiler is used to compile JavaScript function just before it
is invoked or while it is being interpreted. In just-in-Time value specialization, they ob-
served that most of the JavaScript functions are called with the same argument set. So
they replaced the parameters of the function with the values while compiling at client
side to get native code. But, if the function is called with a different argument, the spe-
cialized native code is discarded and actual source code is compiled. Then the function
is marked so that it won’t be considered for the specialization in future. The main differ-
ence with our work is that, they are not handling multiple versions of a function. Instead,
at a time there is only one version of a function, either the specialized version or the
original one. And that version is created directly from the source code.

Tempo [CLM04] Tempo is a specializer tool developer specific to the C language. It
provides a declarative language for the developer using which he can provide special-
ization options for the tool. It has both compile time as well as run-time specialization
options. The major difference of this work and ours is that we do not require any help
from the programmer and hence our technique can be applied to any existing program.
Though due to implementation limits we could only use C programs for our results our

73

OFSPER

technique is more general and is extendable to any other language.

3.8 Conclusion

Compilers can do better optimization with the knowledge of run-time behaviour of the
program. We propose a runtime optimization technique called dynamic function spe-
cialization. We analyze the values of arguments of a function and create different ver-
sions for all candidate functions in parallel with the execution of the program. Then we
inject these specialized versions into the running process with the help of PADRONE
library. The function calls are redirected to the appropriate versions with the help of an
extra function. Our approach does not require restarting the application. Our speedups
range from 1 % to 35 % for a mix of SPEC and scientific applications.

Our current implementation relies on fat binaries which store the compiler intermediate
representation of function in the program executable. Future work will consist in lifting
binary code to LLVM IR, opening the door to optimization of any program, including
legacy or closed-source.

74

CHAPTER 4

IMPLEMENTATION DETAILS

This chapter is intended to familiarize the working of the tools with the help of some
implementation details. As we mentioned earlier, the tools are using the PADRONE li-
braries for their operations with the executing program. They include the attaching of
the tool with the running application, inserting the binary codes to the application, etc.
The other two interesting parts, (a) the format and implementation of monitor functions
and (b) the LLVM Passes, are discussed in this chapter.

4.1 Monitor Function

The monitor functions are used to monitor and control different versions of the original
function. The monitor function is created especially for each functions. The function
arguments and return type of the monitor function should be same as of the original
function. For that, we use help of LLVM IR files. Initially, the tools will create a template
code of monitor function using the information of the original function acquired from the
LLVM IR of the application program. This template code is written in C language and it
also contains function declarations of the original function and its optimized versions.
This template file is then compiled to get the LLVM IR. After that with the help of a
LLVM pass called monitor pass, which we mentioned in section 3.4.2, the return type
and argument list of the original function from the program’s LLVM IR is copied to the
monitor function’s LLVM IR. The working of this LLVM pass will be discussed in section
4.2.

The above mentioned template file contains code for accessing the system V shared
memory segment, calculating the version of the function needed to be executed next,
calling the appropriate function, recording the result in the shared table and finally

75

Implementation

return back to the caller function. Sample codes for the monitor functions used in OF-
SPER and FITTCHOOSER are given in Appendix B and A respectively.

As we mentioned earlier, the monitor function uses a shared table to communicate with
OFSPER and FITTCHOOSER. During the first call to it, it need to map the shared table
to the process. For that, it uses a static variable whose value will be changed in the
first call so that the subsequent call will not try to map the shared table again. The C
preprocessor directives are used to handle the function specific information such as
function name, the arguments need to be monitored, return type, the statements for
checking the arguments etc. By using these directives, we do not need to write the
whole code for each function. Instead, we just need to insert the statements defining
these directives in the appropriate place.

Comparison

Both OFSPER and FITTCHOOSER need the help of monitor functions for their opera-
tions. However, there is a slight difference between the operations of monitor functions
created by these two tools. The monitor function used in the OFSPER is always ex-
ecuted for every function call where as in FITTCHOOSER it need to be executed until
finding out the fastest version. The monitor functions created by FITTCHOOSER need
to store the return value so that it can calculate the time taken for executing the specific
version before returning back to the caller function. However, storing the returned value
is not so straight forward if the type of the value is not a basic data type. For example, if
it is a struct value, the complexity becomes higher. In OFSPER, the monitor function
do not need to store the returning value. It can directly return whatever the executed
function version is returned to the caller function.

Both OFSPER and FITTCHOOSER use shared tables to communicate with the applica-
tion. In OFSPER, table entries are stored based on the argument value. Since value of
the argument decides the version that needs to be called in the corresponding execu-
tion, a hash function on the argument value is used to index the table. It indicates that
the size of the table needs to be big in order to reduce the collision. In FITTCHOOSER,
the table entries are limited. FITTCHOOSER can decide the number of optimized ver-
sions that need to be tested, and these versions are executed in a round robin fashion.
This means, there is no need for any hash functions or searching algorithms to find

76

4.2. LLVM Passes

which version needs to be executed next. The details of the versions are stored in
the adjacent table entries. So, the size of the table is exactly equal to the number of
optimized versions.

No Need for Locks

The monitor functions should execute as fast as possible to reduce the overhead in
execution time of the application process. Since there are shared data between two
process, implementing locks seems to be advisable. However, it may increase the ex-
ecution time in terms of waiting time for the locks. So it will be beneficial if it is possible
to avoid the locks.

Even though the shared tables are accessed by both the application process and the
tools, there is no need to implement locks to protect the data. In case of FITTCHOOSER,
the monitor function updates the average execution time of each version after every
execution of the version. FITTCHOOSER need to read this average time after count
reached a threshold value. Since the calculation of average time is carried out by the
monitor function, it does not really matter whether the value read by FITTCHOOSER is
from latest execution or from the previous execution. Even if it is from previous execu-
tion, then also it is an average time calculated from enough executions.

In OFSPER, the monitor function updates the count and reads the value stored in
function. OFSPER reads count and updates function when the count is more than
the threshold value. Initially all the table entries have the same value for function which
tells to call the original function. This value is changed by OFSPER only when the new
specialized version is injected to the process. If the monitor function fails to read the
updated function value, there is no problem for the application process. It executes
the default function as per the initial value.

4.2 LLVM Passes

Both OFSPER and FITTCHOOSER use LLVM IR of the application program for doing op-
timizations. The IR files are analyzed and modified using different LLVM passes. The fol-
lowing are some major passes specially written for OFSPER and FITTCHOOSER.

77

Implementation

monitor pass: by both OFSPER and FITTCHOOSER to create monitor function

isPossible pass: Used by both OFSPER and FITTCHOOSER to confirm the suitability
of a function for specialization.

optimize pass: Used by OFSPER in its specialization stage to create specialized ver-
sions of a function.

monitor Pass

This LLVM pass is used to create monitor functions. As we discussed in Section 4.1,
this pass is used to make the required changes in the LLVM IR of the monitor function
created using the template file. As we discussed earlier, the monitor function wants
to call the optimized versions and the original copy of the optimizing function. So, the
template file contains not only the body of monitor function but also the function decla-
rations of the original function and its optimized versions. The original function and its
optimized versions are called for execution from the monitor function. For the proper
working, these function declarations and call statements in the template file should be
having the same return type and argument list as of original function in the program.
Initially, the template file does not match the arguments and return type. This pass is
used to make the required changes.

In OFSPER, only the arguments on which the function is going to be specialized are
present in the template file as arguments of the monitor function. The presence of
these arguments are necessary because of their use in the body of monitor function
for calculating the table index and storing the value in the shared table. However, in
FITTCHOOSER, none of the arguments are used in the function body. So whole argu-
ments need to be copied.

In OFSPER, if the return type of the original function is of basic data types, the monitor
function in the template file will also have the same return type. If it is of a struct data
type, the monitor function in the template file use one of the basic data types in the
template file. And, this pass will change it later.

The LLVM IR of the application program is used to get the missing arguments and
return type of the functions contained in the template file. This monitor pass will do the
following on the LLVM IR file.

78

4.2. LLVM Passes

— Changing return type and argument list of monitor function

1. Makes a copy of the original function.

2. Replace the body of the copied function with the body of monitor function.

3. Traverse through the arguments to find the arguments which are already
present in the template file, and replace all its uses with the copied argument.

4. Find the return statement inside the function body and change the data type,
if necessary.

— Changing the argument list and return type of other function declarations.

1. Create a copy of the original function for each declaration.

2. Replace the body of the copied function with the body of declaration.

3. Find each use of the above declaration.

4. Create a new call instruction with the exact arguments and return type.

5. Replace the use with the new instruction.

isPossible Pass

This pass is used to check the suitability of a function for applying the optimization.
Even though this pass is required for both FITTCHOOSER and OFSPER, there is a
slight difference in the suitability criteria for the two. So, there are two versions of this
pass, one for FITTCHOOSER and another for OFSPER.

In OFSPER, the suitability of function is mainly depends on the arguments and their
uses inside the function body. The current version of OFSPER is looking for the func-
tions with at least one of the basic data type arguments is part of a loop. So, this pass
will traverse through the argument list for finding such an argument. If it found one, it
will output the details of the argument so that the tool can create the monitor function
using this argument as one of the suitable candidate for specialization. Otherwise, the
function is not considered for specialization.

In FITTCHOOSER, the suitability mainly depends on the return type. Since the monitor
function is required to save the return value of the optimized versions, the monitor
function should declare a variable with the exact data type. To reduce the complexity,
the current version of FITTCHOOSER is looking for functions which are returning a value
of basic data type.

79

Implementation

optimize Pass

This pass is used by OFSPER for developing the specialized versions of a function.
The working of this pass is very simple. The arguments on which the function is per-
forming specialization and their values are provided to the pass as input. This pass
will then traverse through the argument list to find the given argument for replacement.
After finding the arguments, it will replace all their uses with the corresponding given
value.

80

CHAPTER 5

CONCLUSION

Reducing the execution time of an application is one of the most discussed topic in the
compiler community. Different optimization techniques, both static and dynamic, are
presented in order to reduce the execution time of the application. Due to its nature,
a static compiler has a limited visibility for optimization when it comes to taking into
account the dynamic environment or behaviour of an application. Modern hardware
features can boost the performance of an application, but software vendors are often
limited to the lowest common denominator to maintain compatibility with the spectrum
of processors used by their clients. In other hand, a dynamic optimizer have a better
knowledge about run time environment and data. However, they do not have enough
knowledge about the program in the binary code compared to the one present in the
source code. To overcome this difficulty, some of the previous works relied on an inter-
mediate representation of the program for applying optimization. In this thesis, we used
intermediate representation produced by the LLVM compiler for gaining the information
in the source code and performing optimizations on the process at run time.

This thesis presents two dynamic optimization techniques, FITTCHOOSER and OF-
SPER, both aim to improve the code performance during execution. They concentrate
on the most used functions in the application to improve the execution time of the pro-
cess. With the help of an extra function, known as monitor function, injected to the pro-
cess at run time, they analyze and monitor the critical functions in the program. They
produce different variants of the critical function based on the run time environment
and inject and execute them instead of the original function in the process.

FITTCHOOSER replaces the critical functions in an application with another improved
version of it. The main advantage of FITTCHOOSER is that it can compare the perfor-
mance of multiple variations of the function dynamically to choose the best version. The

81

variants are produced by recompiling the intermediate representation of the function
with different optimization flags. Since the recompilation is carried out on the running
machine, the variants can benefit from the different hardware features provided by the
machine, which are unknown during static compilation most of the time.

OFSPER tries to improve the critical functions by redirecting the function calls to better
versions based on the values taken by arguments. It applies function specialization dy-
namically. Initially it monitors the values taken by the arguments of the critical functions
for the repetition. If the values are repeating among different function calls, OFSPER

creates a new version of the function exclusively for the repeating value. And it redi-
rects the function calls to this new version whenever the function is called with the same
value for the arguments.

5.1 Publications

1. HPCS
Arif Ali Ap et al. « fittChooser: A Dynamic Feedback-Based Fittest Optimiza-
tion Chooser ». In: HPCS 2018 - 16th International Conference on High
Performance Computing & Simulation - Special Session on Compiler Archi-
tecture, Design and Optimization. Orléans, France, July 2018. URL: https:
//hal.inria.fr/hal-01808658

2. SAMOS
Arif Ali Ap and Erven Rohou. « Dynamic Function Specialization ». In: In-
ternational Conference on Embedded Computer Systems: Architectures,
MOdeling and Simulation. Pythagorion, Samos, Greece, July 2017. URL:
https://hal.inria.fr/hal-01597880

5.2 Further Extension

FITTCHOOSER shows a way to choose a set of parameters for an optimization tech-
nique which is fittest to the given run time environment. The value of such parameters
may depend on both the machine hardware and the input data set of the application.
However, OFSPER applied specialization without trying to find the above mentioned
fittest parameter set. So it will be interesting to launch two levels of monitoring. First

82

https://hal.inria.fr/hal-01808658
https://hal.inria.fr/hal-01808658
https://hal.inria.fr/hal-01597880

one to find the value of the argument on which the specialization need to be applied
as in OFSPER, and the second one to find the fittest optimization set for the special-
ized version as in FITTCHOOSER. Instead of creating one specialized version for one
argument value, create different variations of it while applying specialization.

Currently both tools are trying to improve the performance of an application in terms of
execution time. It will be interesting to focus on improvement not only in execution time
but also in power conception.

Auto parallelization remains an open challenge. The main culprit here is the limited
amount of static information which constrains tradition and research compilers. As an
example, complex conditional statements and pointer aliasing which prevents paral-
lelization. Runtime information can be used to resolve many of these conditionals and
aliasing information which can help auto parallelization. Along with parallelization ad-
vanced optimization frameworks like the Polyhedral Model can be used to further opti-
mize code

The current work focuses on improving binary performance, by function specialization,
on similar architectures. However, the fundamental ideas behind current work can be
used to improve application portability. For example consider a binary designed for x64
Xeon processors. Converting such an application for Intel KNL architecture is not just
a matter of tuning parameters like vector length; it involves high level changes such
as taking advantage of MCDRAM, generating codes aware of Numa architecture, etc.
A more ambitious target would be to generate code for entirely different architectures
such as GPUs. Existing frameworks can be leveraged to implement this objective. Even
though current frameworks require source code, typical frameworks, such as MLIR,
maintains an internal representation, which is used to automatically generate code for
different architecture. A future extension of this work could convert binary such a high
level representation and leverage existing frameworks for domain specific operations
and code generation along with function specifications.

83

APPENDIX A

MONITOR FUNCTION FOR FITTCHOOSER

typedef struct {
uint64_t count;
int function;
uint64_t avg_time_taken;

}shared_table;
/* *

* The following 8 preprocessing directives are used to pass the

* function specific information to the program. Only these 8 lines

* are needed to rewrite for creating monitor function for another

* function. This part will be different for different functions.

* */

define FUNCTION_NAME foo

define SHARED_MEM_NAME "foo_padrone_shared_table"

define RetTYPE void

define RETURN_DECLARATION

define RETURN_ASSIGNMENT

define RETURN_STATEMENT return ;

define TABLE_SIZE 30

define FUNCTION_NAME_NEW(x) foo ##_## x

/* */

define SHM_SIZE TABLE_SIZE*sizeof(shared_table)

RetTYPE FUNCTION_NAME_NEW(original) (ARGUMENTS);

RetTYPE FUNCTION_NAME_NEW(0) (ARGUMENTS);

85

RetTYPE FUNCTION_NAME_NEW(1) (ARGUMENTS);
• • •

RetTYPE FUNCTION_NAME_NEW(20) (ARGUMENTS);
define QUANTA 20

RetTYPE FUNCTION_NAME_NEW(monitor) (ARGUMENTS){

static int number_of_versions = 4;
static long int flag_count_call = 0;
unsigned int table_index = TABLE_SIZE-1;
unsigned int tmp_index, tmp_argument;
int shmid;
char shared_mem_name[] = SHARED_MEM_NAME ;
static shared_table *table;

uint64_t start, end, difference;
RETURN_DECLARATION

if(flag_count_call ==0){
if((shmid = shm_open(shared_mem_name, O_RDWR,S_IRUSR | S_IWUSR))< 0){

perror("shm_open");
exit(1);

}
if((table = mmap(NULL ,SHM_SIZE,PROT_READ | PROT_WRITE,MAP_SHARED ,

shmid, 0))== NULL){
perror("mmap");
exit(1);

}
}

flag_count_call ++;
table_index = (flag_count_call/QUANTA)% number_of_versions ;
start = rdtsc();
switch(table_index) {

86

case 0:
RETURN_ASSIGNMENT FUNCTION_NAME_NEW(0) (CALL_ARGUMENTS);
break;

case 1:
RETURN_ASSIGNMENT FUNCTION_NAME_NEW(1) (CALL_ARGUMENTS);
break;

• • •
case 20:

RETURN_ASSIGNMENT FUNCTION_NAME_NEW(20) (CALL_ARGUMENTS);
break;

default:
RETURN_ASSIGNMENT FUNCTION_NAME_NEW(original) (CALL_ARGUMENTS);
break;

}

end = rdtsc();
table[table_index].count++;
table[table_index].avg_time_taken =

((table[table_index].avg_time_taken *
(table[table_index].count - 1)) +
(end - start))

/ table[table_index].count ;

RETURN_STATEMENT
}

87

APPENDIX B

MONITOR FUNCTION FOR OFSPER

typedef struct {
int count;
int function;
union {

int int_argument;
float float_argument;
double double_argument;
long int long_int_argument;
short int short_int_argument;

}args[6];
}shared_table;

/* *

* The following 11 preprocessor directives are used for passing information

* about the original function to the program. Only these 11 lines are

* needed to rewrite for creating monitor function for another function.

* */

define FUNCTION_NAME SetupFastFullPelSearch

define SHARED_MEM_NAME "SetupFastFullPelSearch_padrone_shared_table"

define RetTYPE void

define TABLE_SIZE 5000

define ORIGINAL_FUNCTION 20

define ARGUMENTS int ref, int list

define CALL_ARGUMENTS ref, list

define INDEX_CALCULATING_ARGUMENT ref<<(0*5) ^ list<<(1*5)

88

define ARGUMENT_CHECK table[table_index].args[0].int_argument == ref && \

table[table_index].args[1].int_argument == list

define ARGUMENT_SET table[table_index].args[0].int_argument = ref; \

table[table_index].args[1].int_argument = list;

define FUNCTION_NAME_NEW(x) SetupFastFullPelSearch ##_## x

/* */

define SHM_SIZE TABLE_SIZE*sizeof(shared_table)

RetTYPE FUNCTION_NAME_NEW(original) (ARGUMENTS);

RetTYPE FUNCTION_NAME_NEW(1) (ARGUMENTS);
RetTYPE FUNCTION_NAME_NEW(2) (ARGUMENTS);

• • •
RetTYPE FUNCTION_NAME_NEW(20) (ARGUMENTS);

RetTYPE FUNCTION_NAME_NEW(monitor) (ARGUMENTS){
static int flag_first_call = 0;
unsigned int table_index = TABLE_SIZE-1;
unsigned int tmp_index, tmp_argument;
int shmid;
char shared_mem_name[] = SHARED_MEM_NAME ;
static shared_table *table;
if(flag_first_call ==0){

if((shmid = shm_open(shared_mem_name, O_RDWR,S_IRUSR | S_IWUSR))< 0){
perror("shm_open");
exit(1);

}
if((table = mmap(NULL,SHM_SIZE,PROT_READ | PROT_WRITE,MAP_SHARED ,

shmid, 0))== NULL){
perror("mmap");
exit(1);

}

89

flag_first_call = 1;
}
table_index = (unsigned int) INDEX_CALCULATING_ARGUMENT;
table_index = table_index ^ (table_index>>16);
table_index = table_index & 0x00FFF;

if(ARGUMENT_CHECK){
table[table_index].count++;

}
else if(table[table_index].count == 0){

ARGUMENT_SET;
table[table_index].count++;

}
else{

table_index = TABLE_SIZE -1;
table[table_index].count++;

}

switch(table[table_index].function){
case 1:

return FUNCTION_NAME_NEW(1) (CALL_ARGUMENTS);

case 2:
return FUNCTION_NAME_NEW(2) (CALL_ARGUMENTS);

• • •
case 20:

return FUNCTION_NAME_NEW(20) (CALL_ARGUMENTS);

default:
return FUNCTION_NAME_NEW(original) (CALL_ARGUMENTS);

}
}

90

BIBLIOGRAPHY

[Ap+18] Arif Ali Ap et al. « fittChooser: A Dynamic Feedback-Based Fittest Opti-
mization Chooser ». In: HPCS 2018 - 16th International Conference on
High Performance Computing & Simulation - Special Session on Compiler
Architecture, Design and Optimization. Orléans, France, July 2018. URL:
https://hal.inria.fr/hal-01808658.

[AR17] Arif Ali Ap and Erven Rohou. « Dynamic Function Specialization ». In: In-
ternational Conference on Embedded Computer Systems: Architectures,
MOdeling and Simulation. Pythagorion, Samos, Greece, July 2017. URL:
https://hal.inria.fr/hal-01597880.

[Ash+18] Amir H Ashouri et al. « A survey on compiler autotuning using machine
learning ». In: arXiv preprint arXiv:1801.04405 (2018).

[Asl+01] Vishal Aslot et al. « SPEComp: A New Benchmark Suite for Measuring
Parallel Computer Performance ». In: OpenMP Shared Memory Parallel
Programming: International Workshop on OpenMP Applications and Tools,
WOMPAT 2001 West Lafayette, IN, USA, July 30–31, 2001 Proceedings.
Ed. by Rudolf Eigenmann and Michael J. Voss. Berlin, Heidelberg: Springer
Berlin Heidelberg, 2001, pp. 1–10. ISBN: 978-3-540-44587-6. DOI: 10 .
1007/3- 540- 44587- 0_1. URL: http://dx.doi.org/10.1007/3- 540-
44587-0_1.

[ASU86] Alfred V. Aho, Ravi Sethi, and Jeffrey D. Ullman. Compilers: Principles,
Techniques, and Tools. Addison-Wesley series in computer science / World
student series edition. Addison-Wesley, 1986. ISBN: 0-201-10088-6. URL:
http://www.worldcat.org/oclc/12285707.

[BGS94] David F. Bacon, Susan L. Graham, and Oliver J. Sharp. « Compiler Trans-
formations for High-performance Computing ». In: ACM Comput. Surv. 26.4
(Dec. 1994), pp. 345–420. ISSN: 0360-0300. DOI: 10.1145/197405.197406.
URL: http://doi.acm.org/10.1145/197405.197406.

91

https://hal.inria.fr/hal-01808658
https://hal.inria.fr/hal-01597880
https://doi.org/10.1007/3-540-44587-0_1
https://doi.org/10.1007/3-540-44587-0_1
http://dx.doi.org/10.1007/3-540-44587-0_1
http://dx.doi.org/10.1007/3-540-44587-0_1
http://www.worldcat.org/oclc/12285707
https://doi.org/10.1145/197405.197406
http://doi.acm.org/10.1145/197405.197406

[Bru04] Derek Bruening. « Efficient, Transparent, and Comprehensive Runtime Code
Manipulation ». PhD thesis. MIT, Sept. 2004.

[BZA12] Derek Bruening, Qin Zhao, and Saman Amarasinghe. « Transparent Dy-
namic Instrumentation ». In: SIGPLAN Not. 47.7 (Mar. 2012), pp. 133–144.
ISSN: 0362-1340. DOI: 10.1145/2365864.2151043. URL: http://doi.acm.
org/10.1145/2365864.2151043.

[CCD17] João M.P. Cardoso, José Gabriel F. Coutinho, and Pedro C. Diniz. « Chap-
ter 5 - Source code transformations and optimizations ». In: Embedded
Computing for High Performance. Ed. by João M.P. Cardoso, José Gabriel
F. Coutinho, and Pedro C. Diniz. Boston: Morgan Kaufmann, 2017, pp. 137–
183. ISBN: 978-0-12-804189-5. DOI: https://doi.org/10.1016/B978-0-
12-804189-5.00005-3. URL: http://www.sciencedirect.com/science/
article/pii/B9780128041895000053.

[CDS03] B. Childers, J. W. Davidson, and M. L. Soffa. « Continuous compilation:
a new approach to aggressive and adaptive code transformation ». In:
Proceedings International Parallel and Distributed Processing Symposium.
Apr. 2003, 10 pp.-. DOI: 10.1109/IPDPS.2003.1213375.

[Che+10] Dehao Chen et al. « Taming Hardware Event Samples for FDO Compila-
tion ». In: Proceedings of the 8th Annual IEEE/ACM International Sympo-
sium on Code Generation and Optimization. CGO ’10. Toronto, Ontario,
Canada: ACM, 2010, pp. 42–52. ISBN: 978-1-60558-635-9. DOI: 10.1145/
1772954.1772963. URL: http://doi.acm.org/10.1145/1772954.1772963.

[Cli90] William D. Clinger. « How to Read Floating Point Numbers Accurately ».
In: Proceedings of the ACM SIGPLAN 1990 Conference on Programming
Language Design and Implementation. PLDI ’90. White Plains, New York,
USA: ACM, 1990, pp. 92–101. ISBN: 0-89791-364-7. DOI: 10.1145/93542.
93557. URL: http://doi.acm.org/10.1145/93542.93557.

[CLM04] Charles Consel, Julia L. Lawall, and Anne-Françoise Le Meur. « A tour of
Tempo: a program specializer for the C language ». In: Science of Com-
puter Programming 52.1–3 (2004). Special Issue on Program Transforma-
tion. ISSN: 0167-6423. DOI: http://dx.doi.org/10.1016/j.scico.2004.
03.011. URL: http://www.sciencedirect.com/science/article/pii/
S0167642304000553.

92

https://doi.org/10.1145/2365864.2151043
http://doi.acm.org/10.1145/2365864.2151043
http://doi.acm.org/10.1145/2365864.2151043
https://doi.org/https://doi.org/10.1016/B978-0-12-804189-5.00005-3
https://doi.org/https://doi.org/10.1016/B978-0-12-804189-5.00005-3
http://www.sciencedirect.com/science/article/pii/B9780128041895000053
http://www.sciencedirect.com/science/article/pii/B9780128041895000053
https://doi.org/10.1109/IPDPS.2003.1213375
https://doi.org/10.1145/1772954.1772963
https://doi.org/10.1145/1772954.1772963
http://doi.acm.org/10.1145/1772954.1772963
https://doi.org/10.1145/93542.93557
https://doi.org/10.1145/93542.93557
http://doi.acm.org/10.1145/93542.93557
https://doi.org/http://dx.doi.org/10.1016/j.scico.2004.03.011
https://doi.org/http://dx.doi.org/10.1016/j.scico.2004.03.011
http://www.sciencedirect.com/science/article/pii/S0167642304000553
http://www.sciencedirect.com/science/article/pii/S0167642304000553

[DH79] J. J. Dongarra and A. R. Hinds. « Unrolling loops in fortran ». In: Software:
Practice and Experience 9.3 (1979), pp. 219–226. ISSN: 1097-024X. DOI:
10.1002/spe.4380090307. URL: http://dx.doi.org/10.1002/spe.
4380090307.

[DR] Artem Dinaburg and Andrew Ruef. McSema: Static translation of x86 in-
structions to LLVM. https://blog.trailofbits.com/2014/06/23/a-
preview-of-mcsema/. Accessed: 2016-11-02.

[EAH97] Kemal Ebcioglu, Erik Altman, and Erdem Hokenek. « A JAVA ILP ma-
chine based on fast dynamic compilation ». In: IN IEEE MASCOTS INTER-
NATIONAL WORKSHOP ON SECURITY AND E CIENCY ASPECTS OF
JAVA. 1997.

[Eke16] Per Ekemark. Static Multi-Versioning for Efficient Prefetching. 2016.

[Fis81] J. A. Fisher. « Trace Scheduling: A Technique for Global Microcode Com-
paction ». In: IEEE Trans. Comput. 30.7 (July 1981), pp. 478–490. ISSN:
0018-9340. DOI: 10.1109/TC.1981.1675827. URL: http://dx.doi.org/
10.1109/TC.1981.1675827.

[GSK01] G. Goumas, A. Sotiropoulos, and N. Koziris. « Minimizing completion time
for loop tiling with computation and communication overlapping ». In: Pro-
ceedings 15th International Parallel and Distributed Processing Sympo-
sium. IPDPS 2001. Apr. 2001, 10 pp.-. DOI: 10.1109/IPDPS.2001.924976.

[Hal+15] Nabil Hallou et al. « Dynamic Re-Vectorization of Binary Code ». In: In-
ternational Conference on Embedded Computer Systems: Architectures,
Modeling and Simulation - SAMOS XV. Agios Konstantinos, Greece, July
2015. URL: https://hal.inria.fr/hal-01155207.

[Haw+15] Byron Hawkins et al. « Optimizing Binary Translation of Dynamically Gen-
erated Code ». In: Proceedings of the 13th Annual IEEE/ACM International
Symposium on Code Generation and Optimization. CGO ’15. San Fran-
cisco, California: IEEE Computer Society, 2015, pp. 68–78. ISBN: 978-1-
4799-8161-8. URL: http://dl.acm.org/citation.cfm?id=2738600.
2738610.

93

https://doi.org/10.1002/spe.4380090307
http://dx.doi.org/10.1002/spe.4380090307
http://dx.doi.org/10.1002/spe.4380090307
https://blog.trailofbits.com/2014/06/23/a-preview-of-mcsema/
https://blog.trailofbits.com/2014/06/23/a-preview-of-mcsema/
https://doi.org/10.1109/TC.1981.1675827
http://dx.doi.org/10.1109/TC.1981.1675827
http://dx.doi.org/10.1109/TC.1981.1675827
https://doi.org/10.1109/IPDPS.2001.924976
https://hal.inria.fr/hal-01155207
http://dl.acm.org/citation.cfm?id=2738600.2738610
http://dl.acm.org/citation.cfm?id=2738600.2738610

[HC89] W. W. Hwu and P. P. Chang. « Achieving High Instruction Cache Perfor-
mance with an Optimizing Compiler ». In: SIGARCH Comput. Archit. News
17.3 (Apr. 1989), pp. 242–251. ISSN: 0163-5964. DOI: 10.1145/74926.
74953. URL: http://doi.acm.org/10.1145/74926.74953.

[HDT16] Byron Hawkins, Brian Demsky, and Michael B. Taylor. « BlackBox: Lightweight
Security Monitoring for COTS Binaries ». In: Proceedings of the 2016 In-
ternational Symposium on Code Generation and Optimization. CGO ’16.
Barcelona, Spain: ACM, 2016, pp. 261–272. ISBN: 978-1-4503-3778-6. DOI:
10.1145/2854038.2854062. URL: http://doi.acm.org/10.1145/2854038.
2854062.

[Hen06] John L. Henning. « SPEC CPU2006 Benchmark Descriptions ». In: SIGARCH
Comput. Archit. News 34.4 (Sept. 2006), pp. 1–17. ISSN: 0163-5964. DOI:
10.1145/1186736.1186737. URL: http://doi.acm.org/10.1145/1186736.
1186737.

[Hon+12] Ding-Yong Hong et al. « HQEMU: A Multi-threaded and Retargetable Dy-
namic Binary Translator on Multicores ». In: Proceedings of the Tenth Inter-
national Symposium on Code Generation and Optimization. CGO ’12. San
Jose, California: ACM, 2012, pp. 104–113. ISBN: 978-1-4503-1206-6. DOI:
10.1145/2259016.2259030. URL: http://doi.acm.org/10.1145/2259016.
2259030.

[HRC16] Nabil Hallou, Erven Rohou, and Philippe Clauss. « Runtime Vectorization
Transformations of Binary Code ». In: International Journal of Parallel Pro-
gramming (2016), pp. 1–30. ISSN: 1573-7640. DOI: 10.1007/s10766-016-
0480-z. URL: http://dx.doi.org/10.1007/s10766-016-0480-z.

[HS02] Edin Hodzic and Weijia Shang. « On Time Optimal Supernode Shape ». In:
IEEE Trans. Parallel Distrib. Syst. 13.12 (Dec. 2002), pp. 1220–1233. ISSN:
1045-9219. DOI: 10.1109/TPDS.2002.1158261. URL: https://doi.org/
10.1109/TPDS.2002.1158261.

[Kis+00] T. Kisuki et al. Iterative Compilation in Program Optimization. 2000.

[KKO00] T. Kisuki, P. M. W. Knijnenburg, and M. F. P. O’Boyle. « Combined selection
of tile sizes and unroll factors using iterative compilation ». In: Proceedings
2000 International Conference on Parallel Architectures and Compilation

94

https://doi.org/10.1145/74926.74953
https://doi.org/10.1145/74926.74953
http://doi.acm.org/10.1145/74926.74953
https://doi.org/10.1145/2854038.2854062
http://doi.acm.org/10.1145/2854038.2854062
http://doi.acm.org/10.1145/2854038.2854062
https://doi.org/10.1145/1186736.1186737
http://doi.acm.org/10.1145/1186736.1186737
http://doi.acm.org/10.1145/1186736.1186737
https://doi.org/10.1145/2259016.2259030
http://doi.acm.org/10.1145/2259016.2259030
http://doi.acm.org/10.1145/2259016.2259030
https://doi.org/10.1007/s10766-016-0480-z
https://doi.org/10.1007/s10766-016-0480-z
http://dx.doi.org/10.1007/s10766-016-0480-z
https://doi.org/10.1109/TPDS.2002.1158261
https://doi.org/10.1109/TPDS.2002.1158261
https://doi.org/10.1109/TPDS.2002.1158261

Techniques (Cat. No.PR00622). Oct. 2000, pp. 237–246. DOI: 10.1109/
PACT.2000.888348.

[KKO02] P. M. W. Knijnenburg, T. Kisuki, and M. F. P. O’Boyle. « Iterative Com-
pilation ». In: Embedded Processor Design Challenges: Systems, Archi-
tectures, Modeling, and Simulation — SAMOS. Ed. by Ed F. Deprettere,
Jürgen Teich, and Stamatis Vassiliadis. Berlin, Heidelberg: Springer Berlin
Heidelberg, 2002, pp. 171–187. ISBN: 978-3-540-45874-6. DOI: 10.1007/
3-540-45874-3_10. URL: https://doi.org/10.1007/3-540-45874-3_10.

[KM94] Ken Kennedy and Kathryn S. McKinley. « Maximizing loop parallelism and
improving data locality via loop fusion and distribution ». In: Languages
and Compilers for Parallel Computing. Ed. by Utpal Banerjee et al. Berlin,
Heidelberg: Springer Berlin Heidelberg, 1994, pp. 301–320. ISBN: 978-3-
540-48308-3.

[LA04] Chris Lattner and Vikram Adve. « LLVM: A Compilation Framework for Life-
long Program Analysis & Transformation ». In: International Symposium on
Code Generation and Optimization (CGO’04). 2004.

[Leh16] Jan-Patrick Lehr. « Counting performance: hardware performance counter
and compiler instrumentation ». In: Informatik 2016, 46. Jahrestagung der
Gesellschaft für Informatik, 26.-30. September 2016, Klagenfurt, Österre-
ich. Ed. by Heinrich C. Mayr and Martin Pinzger. Vol. P-259. LNI. GI, 2016,
pp. 2187–2198. ISBN: 978-3-88579-653-4. URL: http://subs.emis.de/
LNI/Proceedings/Proceedings259/article126.html.

[Llv16] Writing an LLVM Pass. URL: http://llvm.org/docs/WritingAnLLVMPass.
html (visited on 09/26/2016).

[Luk+05] Chi-Keung Luk et al. « Pin: building customized program analysis tools with
dynamic instrumentation ». In: pldi. Chicago, IL, USA, 2005.

[Mac+17] R. S. Machado et al. « Comparing Performance of C Compilers Optimiza-
tions on Different Multicore Architectures ». In: 2017 International Sympo-
sium on Computer Architecture and High Performance Computing Work-
shops (SBAC-PADW). Oct. 2017, pp. 25–30. DOI: 10.1109/SBAC- PADW.
2017.13.

95

https://doi.org/10.1109/PACT.2000.888348
https://doi.org/10.1109/PACT.2000.888348
https://doi.org/10.1007/3-540-45874-3_10
https://doi.org/10.1007/3-540-45874-3_10
https://doi.org/10.1007/3-540-45874-3_10
http://subs.emis.de/LNI/Proceedings/Proceedings259/article126.html
http://subs.emis.de/LNI/Proceedings/Proceedings259/article126.html
http://llvm.org/docs/WritingAnLLVMPass.html
http://llvm.org/docs/WritingAnLLVMPass.html
https://doi.org/10.1109/SBAC-PADW.2017.13
https://doi.org/10.1109/SBAC-PADW.2017.13

[Mic+07] Pierre Michaud et al. « A study of thread migration in temperature-constrained
multicores ». In: j-TACO 4.2 (June 2007). ISSN: 1544-3566 (print), 1544-
3973 (electronic). DOI: http://doi.acm.org/10.1145/1250727.1250729.

[Muc97] Steven S. Muchnick. Advanced Compiler Design and Implementation. San
Francisco, CA, USA: Morgan Kaufmann Publishers Inc., 1997. ISBN: 1-
55860-320-4.

[Net04] Nicholas Nethercote. Dynamic binary analysis and instrumentation. Tech.
rep. UCAM-CL-TR-606. University of Cambridge, Computer Laboratory,
Nov. 2004. URL: http://www.cl.cam.ac.uk/techreports/UCAM- CL-
TR-606.pdf.

[NS07] Nicholas Nethercote and Julian Seward. « Valgrind: a framework for heavy-
weight dynamic binary instrumentation ». In: PLDI. San Diego, California,
USA, 2007, pp. 89–100. ISBN: 978-1-59593-633-2. DOI: 10.1145/1250734.
1250746. URL: http://doi.acm.org/10.1145/1250734.1250746.

[Nuz+13] Dorit Nuzman et al. « JIT Technology with C/C++: Feedback-directed Dy-
namic Recompilation for Statically Compiled Languages ». In: ACM Trans.
Archit. Code Optim. 10.4 (Dec. 2013), 59:1–59:25. ISSN: 1544-3566. DOI:
10.1145/2541228.2555315. URL: http://doi.acm.org/10.1145/2541228.
2555315.

[Pén+16] Pierre-Yves Péneau et al. « Loop Optimization in Presence of STT-MRAM
Caches: a Study of Performance-Energy Tradeoffs ». In: PATMOS: Power
and Timing Modeling, Optimization and Simulation. Proceedings of the
26th International Workshop on Power and Timing Modeling, Optimiza-
tion and Simulation. Bremen, Germany, Sept. 2016, pp. 162–169. DOI:
10 . 1109 / PATMOS . 2016 . 7833682. URL: https : / / hal . inria . fr / hal -
01347354.

[PH90] Karl Pettis and Robert C. Hansen. « Profile Guided Code Positioning ». In:
SIGPLAN Not. 25.6 (June 1990), pp. 16–27. ISSN: 0362-1340. DOI: 10.
1145/93548.93550. URL: http://doi.acm.org/10.1145/93548.93550.

[POL] PolyBench/C v4.1: the Polyhedral Benchmark suite. URL: http://web.cse.
ohio-state.edu/~pouchet.2/software/polybench/.

96

https://doi.org/http://doi.acm.org/10.1145/1250727.1250729
http://www.cl.cam.ac.uk/techreports/UCAM-CL-TR-606.pdf
http://www.cl.cam.ac.uk/techreports/UCAM-CL-TR-606.pdf
https://doi.org/10.1145/1250734.1250746
https://doi.org/10.1145/1250734.1250746
http://doi.acm.org/10.1145/1250734.1250746
https://doi.org/10.1145/2541228.2555315
http://doi.acm.org/10.1145/2541228.2555315
http://doi.acm.org/10.1145/2541228.2555315
https://doi.org/10.1109/PATMOS.2016.7833682
https://hal.inria.fr/hal-01347354
https://hal.inria.fr/hal-01347354
https://doi.org/10.1145/93548.93550
https://doi.org/10.1145/93548.93550
http://doi.acm.org/10.1145/93548.93550
http://web.cse.ohio-state.edu/~pouchet.2/software/polybench/
http://web.cse.ohio-state.edu/~pouchet.2/software/polybench/

[PVC01] Michael Paleczny, Christopher Vick, and Cliff Click. « The Java HotSpot™
Server Compiler ». In: Proc. of the Java Virtual Machine Research and
Technology Symposium. Monterey, CA, USA, Apr. 2001.

[Rio+14] Emmanuel Riou et al. « PADRONE: a Platform for Online Profiling, Anal-
ysis, and Optimization ». In: DCE 2014 - International workshop on Dy-
namic Compilation Everywhere. Vienne, Austria, Jan. 2014. URL: https:
//hal.inria.fr/hal-00917950.

[SA05] Mark Stephenson and Saman Amarasinghe. « Predicting Unroll Factors
Using Supervised Classification ». In: Proceedings of the International Sym-
posium on Code Generation and Optimization. CGO ’05. Washington, DC,
USA: IEEE Computer Society, 2005, pp. 123–134. ISBN: 0-7695-2298-X.
DOI: 10.1109/CGO.2005.29. URL: http://dx.doi.org/10.1109/CGO.2005.
29.

[San+13] Henrique Nazare Santos et al. « Just-in-time Value Specialization ». In:
International Symposium on Code Generation and Optimization (CGO).
CGO ’13. USA: IEEE Computer Society, 2013, pp. 1–11. ISBN: 978-1-4673-
5524-7. DOI: 10.1109/CGO.2013.6495006. URL: http://dx.doi.org/10.
1109/CGO.2013.6495006.

[SC15] Aravind Sukumaran-Rajam and Philippe Clauss. « The Polyhedral Model of
Nonlinear Loops ». In: ACM Trans. Archit. Code Optim. 12.4 (Dec. 2015),
48:1–48:27. ISSN: 1544-3566. DOI: 10.1145/2838734. URL: http://doi.
acm.org/10.1145/2838734.

[SG06a] Florian Schneider and Thomas R. Gross. « Using Platform-Specific Per-
formance Counters for Dynamic Compilation ». In: Languages and Com-
pilers for Parallel Computing: 18th International Workshop, LCPC 2005,
Hawthorne, NY, USA, October 20-22, 2005, Revised Selected Papers. Ed.
by Eduard Ayguadé et al. Berlin, Heidelberg: Springer Berlin Heidelberg,
2006, pp. 334–346. ISBN: 978-3-540-69330-7. DOI: 10.1007/978-3-540-
69330-7_23. URL: https://doi.org/10.1007/978-3-540-69330-7_23.

[SG06b] Florian Schneider and Thomas R. Gross. « Using Platform-Specific Perfor-
mance Counters for Dynamic Compilation ». In: Languages and Compilers
for Parallel Computing. Ed. by Eduard Ayguadé et al. Berlin, Heidelberg:
Springer Berlin Heidelberg, 2006, pp. 334–346.

97

https://hal.inria.fr/hal-00917950
https://hal.inria.fr/hal-00917950
https://doi.org/10.1109/CGO.2005.29
http://dx.doi.org/10.1109/CGO.2005.29
http://dx.doi.org/10.1109/CGO.2005.29
https://doi.org/10.1109/CGO.2013.6495006
http://dx.doi.org/10.1109/CGO.2013.6495006
http://dx.doi.org/10.1109/CGO.2013.6495006
https://doi.org/10.1145/2838734
http://doi.acm.org/10.1145/2838734
http://doi.acm.org/10.1145/2838734
https://doi.org/10.1007/978-3-540-69330-7_23
https://doi.org/10.1007/978-3-540-69330-7_23
https://doi.org/10.1007/978-3-540-69330-7_23

[Smi00] Michael D. Smith. « Overcoming the Challenges to Feedback-directed Op-
timization (Keynote Talk) ». In: SIGPLAN Not. 35.7 (Jan. 2000), pp. 1–11.
ISSN: 0362-1340. DOI: 10.1145/351403.351408. URL: http://doi.acm.
org/10.1145/351403.351408.

[SPE] SPEC.org. SPEC CPU2017. https://www.spec.org/cpu2017.

[SRS17] Arjun Suresh, Erven Rohou, and André Seznec. « Compile-time Function
Memoization ». In: Proceedings of the 26th International Conference on
Compiler Construction. CC 2017. Austin, TX, USA: ACM, 2017, pp. 45–54.
ISBN: 978-1-4503-5233-8. DOI: 10.1145/3033019.3033024. URL: http:
//doi.acm.org/10.1145/3033019.3033024.

[Suk+14] Aravind Sukumaran-Rajam et al. « Speculative Program Parallelization with
Scalable and Decentralized Runtime Verification ». In: Runtime Verification.
Ed. by Borzoo Bonakdarpour and Scott A. Smolka. Cham: Springer Inter-
national Publishing, 2014, pp. 124–139. ISBN: 978-3-319-11164-3.

[Sur+15] Arjun Suresh et al. « Intercepting Functions for Memoization: A Case Study
Using Transcendental Functions ». In: ACM Transactions on Architecture
and Code Optimization (TACO) 12.2 (July 2015), p. 23. DOI: 10 . 1145 /
2751559. URL: https://hal.inria.fr/hal-01178085.

[SW90] Guy L. Steele and Jon L. White. « How to Print Floating-Point Numbers
Accurately ». In: PLDI. 1990.

[SZW06] Saravanan Sinnadurai, Qin Zhao, and Weng-Fai Wong. Transparent Run-
time Shadow Stack: Protection against malicious return address modifica-
tions. http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.
120.5702&rep=rep1&type=pdf. 2006.

[Wat+17] Neftali Watkinson et al. « Using Hardware Counters to Predict Vectoriza-
tion ». In: (2017). URL: https : / / pdfs . semanticscholar . org / e42b /
f4c20e8236093b24ebca701d1c38d7bd5591.pdf.

[Wha99] John Whaley. Dynamic Optimization through the use of Automatic Runtime
Specialization. 1999.

[Wic+14] Baptiste Wicht et al. « Hardware Counted Profile-Guided Optimization ».
In: CoRR abs/1411.6361 (2014). arXiv: 1411.6361. URL: http://arxiv.
org/abs/1411.6361.

98

https://doi.org/10.1145/351403.351408
http://doi.acm.org/10.1145/351403.351408
http://doi.acm.org/10.1145/351403.351408
https://www.spec.org/cpu2017
https://doi.org/10.1145/3033019.3033024
http://doi.acm.org/10.1145/3033019.3033024
http://doi.acm.org/10.1145/3033019.3033024
https://doi.org/10.1145/2751559
https://doi.org/10.1145/2751559
https://hal.inria.fr/hal-01178085
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.120.5702&rep=rep1&type=pdf
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.120.5702&rep=rep1&type=pdf
https://pdfs.semanticscholar.org/e42b/f4c20e8236093b24ebca701d1c38d7bd5591.pdf
https://pdfs.semanticscholar.org/e42b/f4c20e8236093b24ebca701d1c38d7bd5591.pdf
https://arxiv.org/abs/1411.6361
http://arxiv.org/abs/1411.6361
http://arxiv.org/abs/1411.6361

[Zho+14] Mingzhou Zhou et al. « Space-efficient Multi-versioning for Input-adaptive
Feedback-driven Program Optimizations ». In: Proceedings of the 2014
ACM International Conference on Object Oriented Programming Systems
Languages & Applications. OOPSLA ’14. Portland, Oregon, USA: ACM,
2014, pp. 763–776. ISBN: 978-1-4503-2585-1. DOI: 10 . 1145 / 2660193 .
2660229. URL: http://doi.acm.org/10.1145/2660193.2660229.

99

https://doi.org/10.1145/2660193.2660229
https://doi.org/10.1145/2660193.2660229
http://doi.acm.org/10.1145/2660193.2660229

LIST OF FIGURES

1 Progression de la passe d’optimisation. 10
2 Séquence d’appel: Normal vs Spécialisation 13

1.1 Iterative Compilation Flow Chart given in [KKO02]. 29

2.1 Progression of the Optimization Pass. 40
2.2 The shared Monitoring table is accessed by both the application and

FITTCHOOSER. 45
2.3 Overhead of FITTCHOOSER. 48
2.4 Overall speedup under FITTCHOOSER. 49
2.5 Performance of critical function variations. 51

3.1 Call sequence: Normal vs Specialization 60
3.2 OFSPER attached to the application process 64
3.3 The shared monitoring table is accessed by both the application and

OFSPER . 65
3.4 Impact of specialization on execution time of a function (lower is better) 69
3.5 Overhead by profiling and monitoring . 71
3.6 Speedups . 72

101

LIST OF TABLES

1.1 Constant Propagation . 22

2.1 Example of the shared Monitoring table. 44
2.2 Standard Deviation . 50

3.1 Repeatability of arguments . 58
3.2 Monitoring Table . 61
3.3 Modified Monitoring Table . 62
3.4 Monitoring table for the pure function exp2 62

103

Titre : Transformation binaire de niveau de fonction dynamique axée sur les performances

Mot clés : Compilateurs, optimisation dynamique, remplacement de fonctions en ligne

Résumé : Les évolutions de l’architecture
des processeurs visent à améliorer les perfor-
mances des applications, mais les éditeurs de
logiciels sont souvent limités au plus petit dé-
nominateur commun afin de maintenir la com-
patibilité avec la diversité du matériel de leurs
clients. Avec des informations plus détaillées,
un compilateur peut générer un code plus effi-
cace. Même si le modèle de processeur est
connu, les fabricants ne divulguent pas de
nombreux détails pour des raisons de confi-
dentialité. En outre, l’efficacité de nombreuses
techniques d’optimisation peut varier en fonc-
tion des entrées du programme.Cette thèse in-
troduit deux outils, FITTCHOOSER et OFSPER,
qui effectuent des optimisations au niveau des

fonctions les mieux adaptées à l’environne-
ment d’exécution et aux données en cours.
FITTCHOOSER explore de manière dynamique
les spécialisations des fonctions les plus gour-
mandes en ressources d’un programme pour
choisir la version la plus adaptée – non seule-
ment à l’environnement d’exécution en cours,
mais également à l’exécution en cours du pro-
gramme. OFSPER applique une spécialisa-
tion de fonction dynamique, c’est-à-dire la spé-
cialisation de fonctions dans une application
sur un processus en cours d’exécution. Cette
technique capture les valeurs réelles des ar-
guments lors de l’exécution du programme et,
si rentables, crée des versions spécialisées et
les inclut au moment de l’exécution.

Title: Performance Centric Dynamic Function Level Binary Transformation

Keywords: Compilers, Dynamic Optimization, Online Function Replacement

Abstract: Modern hardware features can
boost the performance of an application, but
software vendors are often limited to the low-
est common denominator to maintain compat-
ibility with the spectrum of processors used
by their clients. Given more detailed informa-
tion about the hardware features, a compiler
can generate more efficient code, but even
if the exact CPU model is known, manufac-
turer confidentiality policies leave substantial
uncertainty about precise performance char-
acteristics. In addition, the effectiveness of
many optimization techniques can vary de-
pending on the inputs to the program. This the-
sis introduces two tools, FITTCHOOSER and

OFSPER, to do function-level optimizations
most suitable for the current runtime envi-
ronment and data. FITTCHOOSER dynamically
explores specializations of a program’s most
processor-intensive functions to choose the
fittest version—not just specific to the current
runtime environment, but also specific to the
current execution of the program. OFSPER ap-
plies dynamic function specialization, applying
function specialization on a running process,
to an application. This technique captures the
actual values of arguments during execution
of the program and, when profitable, creates
specialized versions and include them at run-
time.

	Résumé
	Introduction
	Background
	Traditional Optimization Techniques
	Prior Works
	Static Optimizations
	Dynamic Optimizations
	Proposed work

	PADRONE

	FittChooser: A Dynamic Feedback-Based Fittest Optimization Chooser
	Introduction
	Survival of the fittest
	Profiling
	Optimization Pass
	Cruise Control

	FittChooser
	Padrone
	Implementation
	FittLauncher

	Results
	Overhead
	Speedup
	FittLauncher

	Related Work
	Conclusion

	OFSper: Online Function Specializer
	Introduction
	Function Specialization
	Dynamic Function Specialization
	Use case
	Our Approach

	Implementation Details
	Overview
	OFSper

	Example
	Result
	Experimental set-up
	Overhead
	Speedups

	Related Work
	Conclusion

	Implementation Details
	Monitor Function
	LLVM Passes

	Conclusion
	Publications
	Further Extension

	Monitor function for FittChooser
	Monitor function for OFSper
	Bibliography
	List of Figures
	List of Tables

