Experimental characterization of helium plasma jets - TEL - Thèses en ligne Accéder directement au contenu
Thèse Année : 2020

Experimental characterization of helium plasma jets

Caractérisation expérimentale de jets de plasma d'hélium

Résumé

This thesis studies an atmospheric pressure helium plasma jet that is powered by positive, unipolar pulses at a kHz frequency. Experiments are performed that focus on the propagation dynamics, flow structure and temperature in a freely expanding jet, as well as the influence of a metallic target on the plasma.Stark polarization spectroscopy yields an axial electric field of around 10 kV/cm in the capillary of the jet and an increase up to 20 kV/cm in the plume, which is constant for different amplitudes and durations of the applied voltage pulse. Thomson and rotational Raman scattering are used to determine the electron density and electron temperature, at different axial and radial positions, as well as the gas temperature and the density of N2 and O2 that are mixed into the helium from the surrounding air.Quantitative comparison of these experimental results with results from a 2D fluid model show a good agreement and allow for a better understanding of the obtained results, namely that the electric field in the ionization front depends linearly on the flow composition at that location. Schlieren imaging shows the onset of turbulent structures at high applied flow rates and at the application of the voltage pulses. The gas temperature, as measured by a temperature probe, is found to increase by around 12 C when the plasma is ignited and by around 25 C when a metallic target is placed in front of the jet.
Cette thèse porte sur l’étude d’un jet de plasma d'hélium à pression atmosphérique alimenté par des impulsions positives unipolaires à une fréquence de l’ordre du kHz. Des expériences sont effectuées pour caractériser la dynamique de propagation, la structure de l'écoulement et la température dans un jet en expansion libre, ainsi que l'influence d'une cible métallique sur le plasma.La spectroscopie à polarisation Stark indique un champ électrique axial d'environ 10 kV/cm dans le capillaire du jet et une augmentation jusqu'à 20 kV/cm dans le panache, qui est constante pour différentes amplitudes et durées de l'impulsion de tension appliquée. La diffusion Thomson et la diffusion Raman rotationnelle sont utilisées pour déterminer la densité électronique et la température électronique, à différentes positions axiales et radiales, ainsi que la température du gaz et la densité de N2 et O2 de l'air environnant qui sont mélangés dans le flux d’hélium.La comparaison quantitative de ces résultats expérimentaux avec les résultats d'un modèle fluide 2D montre une bonne concordance et permet une meilleure compréhension des résultats obtenus, à savoir que le champ électrique dans le front d'ionisation augmente avec la quantité d’air intégré au flux d’hélium au lond de la propagation. L'imagerie Schlieren révèle l'apparition de structures turbulentes à des débits élevés et lors de l'application des impulsions de tension. On constate que la température du gaz, mesurée par une sonde de température, augmente d'environ 12 C quand le plasma est allumé et d'environ 25 C lorsqu'une cible métallique est placée devant le jet.
Fichier principal
Vignette du fichier
96196_HOFMANS_2020_archivage.pdf (9.05 Mo) Télécharger le fichier
Origine : Version validée par le jury (STAR)

Dates et versions

tel-03080479 , version 1 (17-12-2020)

Identifiants

  • HAL Id : tel-03080479 , version 1

Citer

Marlous Hofmans. Experimental characterization of helium plasma jets. Plasma Physics [physics.plasm-ph]. Institut Polytechnique de Paris; Technische hogeschool (Eindhoven, Pays-Bas), 2020. English. ⟨NNT : 2020IPPAX062⟩. ⟨tel-03080479⟩
196 Consultations
231 Téléchargements

Partager

Gmail Facebook X LinkedIn More