Ultrafast Nanoscale 3D Coherent X-ray Imaging
Imagerie nanométrique 3D ultrarapide par rayons X cohérents
Résumé
Coherent lensless imaging techniques can break the limitations associated with conventional microscopy techniques. The configuration of coherent diffraction imaging makes it possible to image isolated non-crystalline objects with spatial resolutions limited, in principle, only by the illuminated wavelength (i.e. a few tens of nanometers to a few angstroms in the XUV and X domains, respectively). In this thesis, we develop and improve, experimentally and numerically, 2D and 3D lensless imaging techniques, for nanometric resolutions in a femtosecond single shot. Responding to the limitations of these techniques to aberrations and partial coherence, here, improvements of wavefront and spatial-coherence correction in holographic techniques are proposed. Indeed, the exploitation of the source properties makes possible to optimise the reconstruction from diffraction patterns or holograms in order to obtain the most faithful image possible in a single femtosecond flash. By exploiting machine vision concepts, this thesis also shows the possibility of accessing 3D information in single shots, extracted from two coherent X-ray diffraction patterns, taken simultaneously from two stereo angles. This opens the way towards the exploration of matter on nanometric volumes (voxels) solved at unmatched temporal resolutions.
Les techniques d'imagerie sans lentille permettent d'aller au-delà des limites inhérentes à la microscopie classique (à l'aide de lentille par exemple). La configuration d’imagerie par diffraction cohérente permet d'imager des objets noncristallins à des résolutions limitées en principe à la longueur d'onde (soit quelques dizaines de nanomètres à quelques angströms dans le domaine XUV à X, respectivement). Le travail de cette thèse a consisté à développer et améliorer, expérimentalement et numériquement, des nouvelles techniques d'imagerie 2D et 3D, de résolution nanométrique et en simple tir femtoseconde. Nous constatons cependant que les techniques d‘imagerie sans lentille peuvent être limitée par les aberrations et la cohérence partielle. Des améliorations des techniques d’holographie par correction de front d’onde et de la cohérence sont proposées. In fine, l’exploitation des propriétés de la source permet l’optimisation de la lecture des figures de diffraction ou des hologrammes afin d’obtenir une image la plus fidèle possible en un flash femtoseconde unique. En exploitant des concepts de vision machine, cette thèse a ensuite montré la possibilité d’accéder à la 3D en simple tir à partir de deux figures de diffraction X cohérente prise simultanément sur deux angles stéréo. Ceci ouvre la voie à l'exploration de la matière sur des volumes nanométriques (voxels) résolus à la femtoseconde.
Fichier principal
86191_DE_MATOS_RAIMUNDO_DUARTE_2019_archivage.pdf (91.71 Mo)
Télécharger le fichier
Origine | Version validée par le jury (STAR) |
---|