Ordonnancement par similarité pour la biométrie : théorie et pratique - TEL - Thèses en ligne
Thèse Année : 2020

Ordonnancement par similarité pour la biométrie : théorie et pratique

Similarity ranking for biometrics : theory and practice

Résumé

The rapid growth in population, combined with the increased mobility of people has created a need for sophisticated identity management systems.For this purpose, biometrics refers to the identification of individuals using behavioral or biological characteristics. The most popular approaches, i.e. fingerprint, iris or face recognition, are all based on computer vision methods. The adoption of deep convolutional networks, enabled by general purpose computing on graphics processing units, made the recent advances incomputer vision possible. These advances have led to drastic improvements for conventional biometric methods, which boosted their adoption in practical settings, and stirred up public debate about these technologies. In this respect, biometric systems providers face many challenges when learning those networks.In this thesis, we consider those challenges from the angle of statistical learning theory, which leads us to propose or sketch practical solutions. First, we answer to the proliferation of papers on similarity learningfor deep neural networks that optimize objective functions that are disconnected with the natural ranking aim sought out in biometrics. Precisely, we introduce the notion of similarity ranking, by highlighting the relationship between bipartite ranking and the requirements for similarities that are well suited to biometric identification. We then extend the theory of bipartite ranking to this new problem, by adapting it to the specificities of pairwise learning, particularly those regarding its computational cost. Usual objective functions optimize for predictive performance, but recentwork has underlined the necessity to consider other aspects when training a biometric system, such as dataset bias, prediction robustness or notions of fairness. The thesis tackles all of those three examplesby proposing their careful statistical analysis, as well as practical methods that provide the necessary tools to biometric systems manufacturers to address those issues, without jeopardizing the performance of their algorithms.
L’augmentation rapide de la population combinée à la mobilité croissante des individus a engendré le besoin de systèmes de gestion d’identités sophistiqués. À cet effet, le terme biométrie se réfère généralement aux méthodes permettant d’identifier les individus en utilisant des caractéristiques biologiques ou comportementales. Les méthodes les plus populaires, c’est-à-dire la reconnaissance d’empreintes digitales, d’iris ou de visages, se basent toutes sur des méthodes de vision par ordinateur. L’adoption de réseaux convolutifs profonds, rendue possible par le calcul générique sur processeur graphique, ont porté les récentes avancées en vision par ordinateur. Ces avancées ont permis une amélioration drastique des performances des méthodes conventionnelles en biométrie, ce qui a accéléré leur adoption pour des usages concrets, et a provoqué un débat public sur l’utilisation de ces techniques. Dans ce contexte, les concepteurs de systèmes biométriques sont confrontés à un grand nombre de challenges dans l’apprentissage de ces réseaux. Dans cette thèse, nous considérons ces challenges du point de vue de l’apprentissage statistique théorique, ce qui nous amène à proposer ou esquisser des solutions concrètes. Premièrement, nous répondons à une prolifération de travaux sur l’apprentissage de similarité pour les réseaux profonds, qui optimisent des fonctions objectif détachées du but naturel d’ordonnancement recherché en biométrie. Précisément, nous introduisons la notion d’ordonnancement par similarité, en mettant en évidence la relation entre l’ordonnancement bipartite et la recherche d’une similarité adaptée à l’identification biométrique. Nous étendons ensuite la théorie sur l’ordonnancement bipartite à ce nouveau problème, tout en l’adaptant aux spécificités de l’apprentissage sur paires, notamment concernant son coût computationnel. Les fonctions objectif usuelles permettent d’optimiser la performance prédictive, mais de récents travaux ont mis en évidence la nécessité de prendre en compte d’autres facteurs lors de l’entraı̂nement d’un système biométrique, comme les biais présents dans les données, la robustesse des prédictions ou encore des questions d’équité. La thèse aborde ces trois exemples, en propose une étude statistique minutieuse, ainsi que des méthodes pratiques qui donnent les outils nécessaires aux concepteurs de systèmes biométriques pour adresser ces problématiques, sans compromettre la performance de leurs algorithmes.
Fichier principal
Vignette du fichier
87982_VOGEL_2020_archivage.pdf (7.75 Mo) Télécharger le fichier
Origine Version validée par le jury (STAR)

Dates et versions

tel-03098756 , version 1 (05-01-2021)

Identifiants

  • HAL Id : tel-03098756 , version 1

Citer

Robin Vogel. Ordonnancement par similarité pour la biométrie : théorie et pratique. Machine Learning [stat.ML]. Institut Polytechnique de Paris, 2020. English. ⟨NNT : 2020IPPAT031⟩. ⟨tel-03098756⟩
297 Consultations
271 Téléchargements

Partager

More