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Abstract (English)
In this thesis we study random geometric graphs (RGGs) using tools from random ma-

trix theory and probability theory to tackle key problems in complex networks. An RGG
is constructed by uniformly distributing n nodes on the d-dimensional torus Td ≡ [0, 1]d

and connecting two nodes if their `p-distance, with p ∈ [1,∞] is at most rn. Three rele-
vant scaling regimes for the RGG are of special interest. One of these is the connectivity
regime, in which the average vertex degree an grows logarithmically with n or faster, i.e.,
an = Ω(log(n)). The second scaling regime is the dense regime, in which an ≡ Θ(n). The
third scaling regime is the thermodynamic regime, in which the average vertex degree is
a constant.

First, when d is fixed and n→∞, we study the spectrum of the normalized Laplacian
matrix and its regularized version for RGGs in both the connectivity and thermodynamic
regime. We propose an approximation for the RGG regularized normalized Laplacian
matrix based on the deterministic geometric graph (DGG) with nodes in a grid. Then, we
provide an upper bound for the probability that the Hilbert-Schmidt norm of the difference
between the RGG and the deterministic geometric graph (DGG) normalized Laplacian
matrices is greater than a certain threshold in both the connectivity and thermodynamic
regime. In particular, in the connectivity regime, we prove that the normalized Laplacian
matrices of the RGG and the DGG are asymptotically equivalent with high probability.
Then, when n → ∞, we show that the limiting spectral distributions (LSDs) of the
normalized Laplacian matrices of RGGs and DGGs converge in probability to the Dirac
distribution at one in the full range of the connectivity regime. In the thermodynamic
regime, we show that the LSD of the RGG regularized normalized Laplacian matrix
can be approximated by the one in the DGG and we provide an upper bound for the
approximation error which is valid with high probability. Therefore, we can use the
deterministic structure of the DGG to provide an analytical expression for the eigenvalues
of the RGG in both the connectivity and thermodynamic regime.

Next, we study the spectrum of the adjacency matrix of an RGG in the connectivity
regime. Under some conditions on the average vertex degree an, we show that the Hilbert-
Schmidt norm of the difference between two sequences of adjacency matrices of RGGs and
DGGs converges in probability to zero as n→∞. Then, using this result, we show that
the Levy distance between the eigenvalue distributions of the DGG and RGG adjacency
matrices vanishes with high probability as n→∞. Then, for n finite, we use the structure
of the DGG to approximate the eigenvalues of the adjacency matrix of the RGG.

Finally, we tackle the problem of determining the spectral dimension (SD) ds, that
characterizes the return time distribution of a random walk (RW) on RGGs. First, we
show that the SD depends on the eigenvalue density (ED) of the RGG normalized Lapla-
cian in the neighborhood of the minimum eigenvalues. We show that the smallest non
zero eigenvalue converges to zero in the large graph limit. Then, based on the analyt-
ical expression of the normalized Laplacian eigenvalues around zero, we show that the
ED in a neighborhood of the minimum value follows a power-law tail. Therefore, us-
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ing these results, we approximate the SD of RGGs by the Euclidean dimension d in the
thermodynamic regime.

Keywords: Random Geometric Graph, Spectral Graph Theory, Random Matrix The-
ory, Spectral Dimension.

Abstract (Français)
Nous étudions le graphe géométrique aléatoire (GGA) afin d’aborder des problèmes

clés dans les réseaux complexes. Un GAA est construit en distribuant uniformément n
nœuds sur un tore de dimension d et en connectant deux nœuds si leur distance ne dépasse
pas un seuil. Trois régimes pour GGA présentent un intérêt particulier. Le régime de
connectivité dans lequel le degré moyen d’un nœud an croit de manière logarithmique
avec n ou plus vite. Le régime dense dans lequel an est linéaire avec n. Le régime
thermodynamique dans lequel an est une constante.

Premièrement, on étudie le spectre du Laplacien normalisé (LN) et régularisé du GGA
dans les trois régimes. Lorsque d est fixe et n tend vers l’infini, on prouve que la distribu-
tion spectrale limite (DSL) du LN converge vers la distribution de Dirac concentrée en 1
dans le régime de connectivité. Dans le régime thermodynamique, on propose une approx-
imation pour DSL du LN régularisé et on fournit une borne d’erreur sur l’approximation.
On montre que DSL du LN régularisé d’un GGA est approximée par DSL d’un graphe
géométrique déterministe (GGD).

Ensuite, on étudie la DSL de la matrice d’adjacence d’un GGA dans le régime de
connectivité. Sous des conditions sur an, on montre que DSL de la matrice d’adjacence
du GGD est une bonne approximation du GGA pour n large.

Finalement, on détermine la dimension spectrale (DS) d’un GGA qui caractérise la
distribution du temps de retour d’une marche aléatoire sur le GGA. On montre que DS
dépend de la densité spectral de LN au voisinage des valeurs propres minimales. On
prouve que la densité spectral au voisinage de la valeur minimale suit une loi de puissance
et que DS du GGA est approximé par d dans le régime thermodynamique.

Keywords: Graphe Géométrique Aléatoire, Théorie Spectrale des Graphes, Théorie
des Matrices Aléatoires, Dimension Spectrale.
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Chapter 1

Introduction

1.1 Context

The last decade has witnessed an explosion of the amount of data that are generated and
processed on a daily basis. In this era of big data, there is a spectacular increase in the
size of networks, such as the Internet, social networks like FacebookTM and TwitterTM,
information and biological networks [1]. The analysis of such networks is very complex,
therefore they are commonly referred to as complex networks [2].

Complex Networks are often inherently difficult to understand due to their large sizes,
structural complexity, their evolution over time and their connection diversity1 [3]. A
remedy to this problem is to model complex networks using graphs, which translate ob-
jects into vertices and relations into edges connecting the vertices. For example, neural
engineers represent the connectivity of neurons in the human brain using graphs, whereas,
electrical engineers use graphs to understand large and complex systems, such as the In-
ternet. Software engineers at FacebookTM use graphs to enable us to visualize social
relationships, whereas, bio-engineers study how an infectious disease, like the flu, might
spread over a social network. Understanding the mathematics behind graph theory can
help bio-medical engineers and scientists to develop better cancer treatments, and electri-
cal engineers to design faster and more reliable communication networks among electronic
devices. Additionnaly, considering the large amount of variability in the connections be-
tween vertices, complex networks can be modelled using random graphs. Random graphs
are probabilistic models where links exist between pairs of vertices according to some
probabilistic rule [4].

The theory of random graphs originated in a series of papers [5], [6], [7] published in the
period 1959-1968 by Paul Erdös and Alfred Rényi. Over the sixty years that have passed
since then, random graph theory (RGT) which is an interdisciplinary field between graph
theory and probability theory, has developed into an independent and fast growing branch
of discrete mathematics. The interest in this field has been rapidly growing in recent years

1The links between vertices could have different weights, directions and signs.
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1.1. Context

driven by many applications both in theoretical and practical aspects. A very simple yet
very useful random graph is the Erdös-Rényi (ER) random graph, developed by Erdös
and Rényi [5], [6] and Gilbert [8] that consists of all graphs that arise by taking n vertices,
and placing independently and with probability p an edge between any pair of distinct
vertices. The edge probability can be fixed, or, more generally can be a function of n.
ER graphs are the most thoroughly studied variety of random graphs along with many of
their different variants due to its numerous applications in different real-world problems.

Until the late 1990s, most of the studies concerned either completely random or com-
pletely deterministic graphs even though most real-world networks contain features cap-
tured by neither of these two models. Around this time, computing power increased and
empirical studies became possible, drawing the attention of researchers on introducing
other models that capture unique features of real-world networks. Models that are nei-
ther completly random nor regular, such as the Barabasi and Albert scale-free (SF) model
[9], [10], the small-world (SW) network by Watts and Strogatz [11] were introduced to
model real-world networks. In particular, the ER model is inadequate to describe net-
works whose interactions between vertices depends on their proximity as the ER graph
structure disregards uncountable information about the goegraphical position of the ver-
tices. In order to model these features, Gilbert in [12] introduced another random graph
called random geometric graph (RGG) whose vertices have some random positions in a
metric space and edges are determined by the pairwise distance between vertices. RGGs
are very useful to model problems in which the geographical distance is a critical factor.
For example, RGGs have been applied to wireless communication networks [13], [14], sen-
sor networks [15], and to study the dynamics of a viral spreading processes in large-scale
complex networks [16], [17].

Several different matrices can be associated with a given graph, e.g., adjacency matrix,
Laplacian matrix, normalized Laplacian matrix. Matrices associated to random graphs
are also random and their study belongs to random matrix theory (RMT) domain. In
Chapter 2, we will briefly give the definitions and some of the main properties of different
graph models and describe their associate matrices. In particular, a special attention will
be given to RGGs, the random graph under study in this thesis.

Understanding the mathematics behind graph theory and equivalently their associate
random matrices challenges our capacities of understanding. The study of eigenvalues and
eigenvectors of these random matrices, known as spectral graph analysis plays a central
role in information aggregation and our understanding of random graphs. Spectral graph
analysis is the study of the spectra, i.e., the eigenvalues and eigenvectors of graph matrices
and their relationship to important graph properties. The set of graph eigenvalues is
called the spectrum of the graph. The goal of many problems in the field of graph theory
concerns the characterization of properties or structures of a graph from its spectrum, such
as connectivity, bipartitedness2, graph diameter3. In addition, the evolution of various

2Bipartite graph is a graph whose vertices can be divided into two disjoint and independent sets U
and V such that every edge connects a vertex in U to one in V .

3Diameter γ is an index measuring the topological length or extent of a graph by counting the number
of edges in the shortest path between the most distant vertices, i.e., γ = maxij{s(i, j)}, where s(i, j) is
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1.2. Thesis Organization and Contributions

random processes defined on the graph are closely related to the eigenvalues of a suitable
graph matrix [18], [19]. Over the past thirty years, many interesting discoveries have been
made regarding the relationship between various graph properties and the spectrum of the
associate matrices. In this thesis, we investigate the spectrum of RGGs in different scaling
regimes. In Chapter 3, we introduce some fundamental results from RMT and RGT. In
particular, we review spectral properties of various random matrices. In Chapters 4 and 5,
we investigate the spectra and spectral properties of RGGs, such as the RGG normalized
Laplacian matrix eigenvalues, its spectral gap, the eigenvalue distribution of RGGs, the
RGG adjacency matrix eigenvalues.

Recently, there is a growing interest in characterizing network structures using geomet-
rical and topological tools [20], [21]. On the one hand, an increasing number of works aim
at unveiling the hidden geometry of networks using statistical mechanics [22], [23], dis-
crete geometry [24], and machine learning [25], [26]. On the other hand, topological data
analysis is tailored to capture the structure of a large variety of network data. Diffusion
on these random geometric structures has received considerable attention in recent years.
The motivation comes from a wide range of different areas of physics such as percolation
theory, where the percolation clusters provide fluctuating geometries, the physics of ran-
dom media, where the effect of impurities is often modeled by random geometry [27], and
finally quantum gravity, where space-time itself is treated as a fluctuating manifold [28].
In particular, the long time characteristics of diffusion have been studied for the purpose
of providing quantitative information on the mean large scale behavior of the geometric
object in question. The spectral dimension (SD) is one of the simplest quantities which
provides such information. In Chapter 6, we investigate the SD of RGGs.

We conclude this chapter by describing in detail the major contributions and the
structure of this thesis.

1.2 Thesis Organization and Contributions

1.2.1 Chapter 2

In this chapter, we introduce some basic concepts related to the representation and anal-
ysis of complex networks using graph theory. We describe different types of graphs that
can be used to represent complex networks and describe the corresponding matrices and
their properties. Finally, we state results from probability theory such as concentration
inequalities useful for the analyses in the following chapters.

the number of edges in the shortest path from vertex i to vertex j.
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1.2. Thesis Organization and Contributions

1.2.2 Chapter 3

In this chapter, we provide a survey of fundamental results on RMT, RGT and probability
theory. In particular, we review spectral properties of different random matrices such
as adjacency matrix, combinatorial and normalized Laplacian matrices corresponding to
different random graphs, in addition to Euclidean random matrices. We compare the
existing results on the spectrum of the different random matrices with the spectrum of
RGGs. In addition, we give a brief background on the SD, an important characteristic of
diffusion behavior over graphs.

1.2.3 Chapter 4

In this chapter, we study the spectrum of the normalized Laplacian and its regularized
version for RGGs in different scaling regimes. We consider n vertices distributed uniformly
and independently on the d-dimensional torus Td ≡ [0, 1]d and form an RGG by connecting
two vertices when their `p-distance, 1 ≤ p ≤ ∞, does not exceed a certain threshold rn.
Two scaling regimes for rn are of special interest. One of these is the connectivity regime,
in which the average vertex degree grows logarithmically in n or faster. The second scaling
regime is the thermodynamic regime, in which the average vertex degree is a constant.
First, we provide an upper bound for the probability that the Hilbert-Schmidt norm
of the difference between the RGG and the deterministic geometric graph (DGG) with
nodes in a grid normalized Laplacian matrices is greater than a certain threshold, in both
the connectivity and thermodynamic regime. In particular, in the connectivity regime,
when d is fixed and n → ∞, we show that the RGG and DGG normalized Laplacian
matrices are asymptotically equivalent with high probability. We show that the LSDs
of the normalized Lapalcian matrices of RGGs and DGGs converge in probability to
the same limit as n → ∞. Therefore, we use the regular structure of the DGG to
show that the limiting spectral distribution (LSD) of the normalized Laplacian matrix
of RGGs converges to the Dirac distribution at one in the full range of the connectivity
regime as n → ∞. In the thermodynamic regime, we approximate the eigenvalues of
the regularized normalized Laplacian matrix of the RGG by the eigenvalues of the DGG
regularized normalized Laplacian, with an error bound which is valid with high probability
and depends upon the average vertex degree.

Related Publications

1) M. Hamidouche, L. Cottatellucci, and K. Avrachenkov, “On the Normalized
Laplacian Spectra of Random Geometric Graphs”Submitted to Journal of theoretical
probability.

2) M. Hamidouche, L. Cottatellucci, and K. Avrachenkov, “Spectral Bounds of
the Regularized Normalized Laplacian for Random Geometric Graphs.” 4th Graph
Signal Processing Workshop, Jun. 2019, Minneapolis, USA.
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1.2. Thesis Organization and Contributions

1.2.4 Chapter 5

In this chapter, we analyze the spectrum of the adjacency matrix of random geometric
graphs in the connectivity regime. Similarly to Chapter 4, the RGG is constructed by
uniformly distributing n vertices on the d-dimensional torus Td ≡ [0, 1]d and connecting
two vertices if their `p-distance, with p ∈ [1,∞] is at most rn. In the connectivity regime
and under some conditions on the average vertex degree an, we show that the Hilbert-
Schmidt norm of the difference between two sequences of adjacency matrices of RGGs
and DGGs converges to zero in probability as n→∞. We show that the strong norms of
adjacency matrices of DGGs and RGGs are not uniformly bounded asymptotically and
then the convergence of the Hilbert-Schmidt norm is not sufficient to prove the asymptotic
equivalence of the sequences of adjacency matrices of DGGs and RGGs. However, for
adjacency matrices, we consider a weaker form of convergence in probability in terms
of the Levy distance between the eigenvalue distributions of the adjacency matrices of
DGGs and RGGs. Therefore, we show that the Levy distance between the eigenvalue
distributions of the DGG and RGG adjacency matrices vanishes with high probability as
n → ∞. Then, we use the structure of the DGG to approximate the eigenvalues of the
adjacency matrix of the RGG.

Related Publications

3) M. Hamidouche, L. Cottatellucci, and K. Avrachenkov, “Spectral Analysis of
the Adjacency Matrix of Random Geometric Graphs.” 57th Annual Allerton Con-
ference on Communication, Control, and Computing, Sep. 2019, Illinois, USA.

1.2.5 Chapter 6

In this chapter, we study the spectral dimension (SD) ds of RGGs in the thermodynamic
regime. The spectral dimension characterizes the return time distribution of a random
walk on the graph. The SD depends on the eigenvalue density (ED) of the graph nor-
malized Laplacian in the neighborhood of the minimum eigenvalues. In fact, the behavior
of the ED in such a neighborhood is what characterizes the random walk. First, we use
the analytical approximation of the eigenvalues of the regularized normalized Laplacian
matrix of RGGs in the thermodynamic regime from Chapter 4 to show that the smallest
non zero eigenvalue converges to zero in the large graph limit. Based on the analytical
expression of the RGG eigenvalues, we show that the eigenvalue distribution in a neigh-
borhood of the minimum value follows a power-law tail. Using this result, we find that
the SD of RGGs is approximated by the Euclidean dimension d in the thermodynamic
regime.

5



1.2. Thesis Organization and Contributions

Related Publications

4) K. Avrachenkov, L. Cottatellucci and M. Hamidouche, “Eigenvalues and Spec-
tral Dimension of Random Geometric Graphs” 8th International Conference on
Complex Networks and their Applications, Dec. 2019, Lisbon, Portugal.
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Chapter 2

Mathematical Background

2.1 Introduction

In this chapter, we introduce theoretical concepts necessary to derive the results in the
subsequent chapters. As stated in Chapter 1, numerous scientific fields deal with data
that can be represented by graphs, and due to the random structure observed in real-world
networks, random graphs result to be a very useful technique to model complex networks.
Then, random graphs can be represented by random matrices in which rows and columns
are indexed by the vertices.

In Section 2.2, we briefly describe some relevant random graph models and introduce
different matrix representations for them. In 2.3, we present fundamental concepts from
RMT and discuss some introductory results. Finally, in 2.3.3 and 2.3.4, we introduce
relevant results from probability theory. In particular, we state fundamental concentration
inequalities and the asymptotic behavior of matrices.

2.2 Random Graph Theory (RGT)

In the 1950s, Erdös and Rényi laid the foundations for the creation of the RGT. Since then,
random graphs have become fundamental for the analysis of many complex networks. In
graph theory, a graph consists of a set of points along with a certain linking structure.
These points are called vertices or nodes. Two vertices are adjacent or neighbours if they
are connected by a link. The connections are described as pairs of vertices and are called
edges. Any edge connecting a vertex to itself is a loop. A graph with no loops is called a
simple graph.

We use the notation Xn to denote the set of n vertices of a graph. The collection of all
edges is denoted by the set E. The pair consisting of vertex set Xn and the edge set E forms
a graph G = (Xn, E). A graph is undirected if its edges do not have an orientation. It is a
directed graph if the edges have an associated direction. Mathematically, a graph is defined

7



2.2. Random Graph Theory (RGT)

by an ordered pair G = (Xn, E), consisting of a countable vertex set Xn = {x1, ...xn},
where n = |Xn| denotes the number of vertices in the graph. The edge set is then the
list of pairs E = {(xi, xj);xi, xj ∈ Xn} where m = |E| is the total number of edges in
the graph. The size of a graph is defined by the number of its edges. The number of
vertices in Xn is called the order of the graph G = (Xn, E). In the following, graphs are
undirected and finite and the connections between vertices are represented in the form of
an n × n matrix. Rows and columns of the matrices correspond to vertices in Xn. The
element in the matrix reveals the corresponding relation between xi ∈ Xn and xj ∈ Xn.
Subsequently, xi is referred to as vertex i.

In this thesis, we focus on simple undirected graphs and we assume that there is
always at most one edge between each pair of vertices. In the following, we define some
fundamental properties related to graphs.

Definition 1 (Connected Graph). An undirected graph is connected in the sense of a
topological space when there is a path from any vertex to any other vertex in the graph. A
graph that is not connected is said to be disconnected.

Definition 2 (Subgraph). A subgraph of a graph G is another graph formed from a subset
of the vertices and edges of G. The vertex subset must include all endpoints of the edge
subset, but may also include additional vertices.

Definition 3 (Supergraph). A supergraph is a graph formed by adding vertices, edges, or
both to a given graph. If H is a subgraph of G, then G is a supergraph of H.

Definition 4 (Connected Component). Connected component of an undirected graph is
a subgraph in which any two vertices are connected to each other by paths, and which is
connected to no additional vertices in the supergraph.

Definition 5 (Giant Component). A giant component is a connected component of a
given graph G that contains a finite fraction of the entire graph’s vertices.

Definition 6 (Vertex Degree). The degree of a vertex in a graph is the number of edges
incident to it. The degree of a vertex xi is denoted by di. In a regular graph, every vertex
has the same degree.

Definition 7 (Chromatic Number). The chromatic number of a graph is the smallest
number of colours with which one can colour the vertices in such a way that no two
adjacent vertices have the same colour.

Definition 8 (Clique and Clique Number). A clique of a graph is a subset of its vertices
such that every two vertices of the subset are connected by an edge. A maximum clique is
a clique with the maximum number of vertices in a given graph G. The clique number of
a graph G is the number of vertices in a maximum clique of this graph.

Definition 9 (Walk). A walk on a graph refers to a finite or infinite sequence of edges
which joins a sequence of vertices.

8
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Definition 10 (Random Walk). A simple random walk (RW) process on a graph is a
discrete time stochastic process that has as initial value an initial vertex i0 from the set of
vertices Xn under some distribution at time t = 0. At t = 1, the process unfolds taking as
value one of the neighbors of this initial vertex i0 chosen uniformly at random, i.e., with
probability d−1i0 . At t = 2, the process unfolds taking as value a random neighbor of this
new vertex, and so on.

RW is a fundamental topic in discussions of Markov processes1. Their mathemati-
cal study has been extensive. Several properties, including dispersal distributions, first-
passage or hitting times2, encounter rates, recurrence or transience, have been introduced
to quantify their behavior.

Definition 11 (Recurrence and Transience). We say that a random walk is recurrent if
it visits its starting position infinitely often with probability one and transient if it visits
its starting position finitely often with probability one.

Let the variable Sn mark the position of the walk at time n and Z be the number of
visits of Sn to its starting point S0, i.e.,

Z =
∑
n≥0

1{Sn=S0}.

Thus, recurrence means P(Z =∞) = 1 while transience means P(Z <∞) = 1.

Convergence of Random Variables

The convergence of sequences of random variables to some limit random variable is an
important concept in probability theory, and its applications to statistics and stochastic
processes. In probability theory, there exist several different notions of convergence of
random variables. In the following, we recall some of them.

Definition 12 (Almost Sure Convergence ). Let {xn} be a sequence of random variables
defined on a sample space Ω. We say that {xn} converges to x almost surely, if there is
a measurable set A ⊆ Ω such that

• limn→∞{xn(w)} = x(w), for all w ∈ A,

• P(A) = 1.

1A Markov chain is a stochastic model describing a sequence of possible events in which the probability
of each event depends only on the state attained in the previous event. In continuous-time, it is known
as a Markov process.

2A hitting time is the first time at which a given process ”hits” a given subset of the state space.
Return time is also example of hitting times.

9
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Definition 13 (Convergence in Distribution ). Let x and xn, n ∈ N, be random vari-
ables with cumulative distribution functions F and Fn, respectively. The sequence {xn}
converges to x in distribution if

lim
n→∞

Fn(y) = F (y),

for every y ∈ R at which F is continuous.

Definition 14 (Convergence in Probability ). Let x and xn, n ∈ N be random variables.
The sequence {xn} converges to x in probability if for all ε > 0

lim
n→∞

P(|xn − x| ≥ ε) = 0.

Asymptotics

In the following, we introduce standard notations to describe the asymptotic behavior of
the relative order of magnitude of two sequences of numbers an and bn, depending on a
parameter n→∞. For simplicity, we assume bn > 0 for all sufficiently large n.

• an = O(bn) as n → ∞ if there exists a constant C and n0 such that |an| ≤ Cbn
for n ≥ n0, i.e., if the sequence |an|/bn is bounded, except possibly for some small
values of n for which the ratio may be undefined.

• an = Ω(bn) as n→∞ if there exists a constant c > 0 and n0 such that an ≥ cbn for
n ≥ n0. If an ≥ 0, this notation is equivalent to bn = O(an).

• an = Θ(bn) as n→∞ if there exists constants C, c > 0 and n0 such that cbn ≤ an ≤
Cbn for n ≥ n0, i.e., if an = O(bn) and an = Ω(bn). This asymptotic behavior is
sometimes expressed by saying that an and bn are of the same order of magnitude.

• an = o(bn) as n → ∞ if an/bn → 0, i.e., ∀ε > 0, ∃ n0 such that |an| ≤ ε|bn| for
n ≥ n0.

• an = w(bn) as n → ∞ if an/bn → ∞, i.e., ∀k > 0, ∃ n0 such that |an| ≥ k|bn| for
n > n0.

• an � bn or bn � an if an ≥ 0 and an = o(bn).

Normed Vector Spaces

In order to define the distance between two vectors or two matrices and the convergence
of sequences of vectors or matrices to asymptotic values, we can use the notion of a norm.

Definition 15 (Norm). Let E be a vector space over a field K. The filed K is either
the field R of reals, or the field of complex numbers C. A norm on E is a function
‖.‖ : E→ R+ with the following properties: for all λ ∈ K and all x,y ∈ E, we have

10



2.2. Random Graph Theory (RGT)

• Positivity: ‖x‖ ≥ 0, and ‖x‖ = 0 if and only if x = 0.

• Scaling: For λ ≥ 0, ‖λx‖ = |λ|‖x‖.

• Triangle inequality: ‖x + y‖ ≤ ‖x‖+ ‖y‖.

Let E = Rd (or E = Cd). Let p ≥ 1 be a real number. For any x ∈ E, we have the
standard p-norm defined as

‖x‖p =


(∑d

k=1 |xk|p
)1/p

for p ∈ [1,∞),

max{|xk|, 1 ≤ k ≤ d} for p =∞.

The case p = 2 corresponds to the standard Euclidean norm.

A vector space E together with a norm ‖.‖ is called normed vector space. To study
the asymptotic equivalence of matrices, a metric on the space of linear space of matrices
is required. A matrix norm is a norm on the vector space E of all matrices of size n×m.
Let Rn×m be a vector space. Thus, the matrix norm is a function ‖.‖ : Rn×m → R+ that
must satisfy the properties described above.

Two matrix norms are of particular interest called the strong or operator norm and
the Hilbert-Schmidt or weak norm. Let V and W be two normed vector spaces. The
operator norm of a linear operator T : V → W is the largest value by which T stretches
an element of V, i.e.,

‖T‖ = sup
‖v‖=1

‖T (v)‖.

Let λk ≥ 0 be the eigenvalues of the Hermitian nonnegative definite matrix ATA.
When T is given by a matrix, i.e., T (v) = Av. Then, ‖T‖ is the square root of the largest
eigenvalue of the symmetric matrix ATA, i.e.,

‖A‖2 = max
k
λk.

The Hilbert-Schmidt norm of the n× n matrix A is defined by

‖A‖HS =

(
1

n

n−1∑
k=0

n−1∑
j=0

|Ak,j|2
)1/2

=

[
1

n
Trace(ATA)

]1/2
=

(
1

n

n−1∑
k=0

λk

)1/2

.
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The Hilbert-Schmidt norm is the weaker of the two norms since

‖A‖2 = max
k
λk ≥

1

n

n−1∑
k=0

λk = ‖A‖2HS.

Various graphs are often used to model complex topologies found in real-world net-
works. In the following subsection, we briefly overview relevant random graphs used to
model complex networks and present some of their properties.

2.2.1 Types of Graphs

Several graph models have been proposed for analytical studies such as ER random graph
[5], Barabasi-Albert SF network model [9], Watts-Strogatz SW network model [11] and
RGG [12], [29]. In the following, we describe different properties of these random graphs.

Erdös-Rényi Random Graph

The study of random graphs began in its own right with the seminal paper of Erdös
and Rényi random graph and dates back to 1947 [5]. In the mathematical field of graph
theory, Erdös-Rényi model refers to either of two closely related models for generating
random graphs, namely uniform model and binomial model. They are named after the
mathematicians Paul Erdös and Alfréd Rényi, who first introduced the model in 1959
called uniform model [5]. It is considered by some as the first conscious application of the
probabilistic method for complex networks. While Edgar Gilbert introduced the binomial
model [8] contemporaneously and independently of Erdös and Rényi.

Definition 16 (Uniform Random Graph). Given an integer m, 0 ≤ m ≤
(
n
k

)
, the uniform

random graph, denoted by Gu(n,m) is defined on the space of events Ω, consisting of all
graphs on vertex set Xn = {x1, ..., xn} and exactly m edges, with uniform probability on
Ω, i.e.,

P(Gu) =

((n
2

)
m

)−1
, Gu ∈ Ω.

Equivalently, uniform random graphs are obtained from an empty graph on the vertex

set Xn by inserting m edges, in such a way that all possible
((n2)
m

)−1
are equally likely. In

the following, we describe the binomial random graph.

Definition 17 (Binomial Random Graph). Fix 0 ≤ p ≤ 1. The binomial random graph
denoted by Gb(n, p) is defined on the space of event Ω consisting of the set of all graphs
on the vertex set Xn and 0 ≤ m ≤

(
n
2

)
edges and follows the probability given by

P(Gb) = pm(1− p)(
n
2)−m, Gb ∈ Ω.

12
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Equivalently, a binomial random graph Gb(n, p) is obtained from an empty graph with
vertex set Xn by performing

(
n
2

)
Bernoulli experiments to generate edges independently

with probability p.

Lemma 1 (Relationship between Gu(n,m) and Gb(n, p), [30]). A binomial random graph

Gb(n, p) with m edges, is equally likely to be one of the
((n2)
m

)
graph realizations with m

edges of a uniform random graph Gu(n,m).

The main difference between the uniform and binomial model is that in the uniform
model Gu(n,m) we choose its number of edges, while in the case of the binomial model
Gb(n, p), the number of edges is the Binomial random variable with parameters

(
n
2

)
and

p.

The expected number of edges in Gb(n, p) is
(
n
2

)
p. For large n, the random graphs

Gb(n, p) and Gu(n,m) should behave in a similar way when the number of edges m in a
uniform random graph Gu(n,m) equals or is approximately close to the expected number
of edges in a binomial random graph Gb(n, p) [30], i.e., when

m =

(
n

2

)
p ≈ n2p

2
,

or equivalently, when the edge probability in a binomial random graph Gb(n, p) is

p ≈ 2m

n2
.

Many results are available in random graph literature describing the behavior of bi-
nomial random graphs Gb(n, p) for different values of p when n grows [6]. An important
studied aspect for Gb(n, p) is the presence of connected components and the evolution of
their sizes with respect to the increasing number of vertices n in the graph. In particular,
results on the connectivity threshold and the appearance of the giant component in ER
random graph are mentioned in the following theorems.

Theorem 2 (Connectivity Threshold of ER Graph, [6]). Let Gb(n, p) be a binomial ran-
dom graph. For all ε > 0, the probability that the graph is connected for n→∞ is given
by

P(Gb is connected)→

 1, if p > (1−ε) log(n)
n

,

0, if p < (1−ε) log(n)
n

.

In the following, we provide general results on the existence of a giant component in
ER random graphs.

Theorem 3 (Existence of a Giant Component in ER Graphs, [6]). Let Gb(n, p) be a
binomial random ER graph and fix np = c, where c > 0 is a constant

13
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• If c < 1, then almost surely the largest connected component of Gb(n, p) has at most
3 log(n)
(1−c)2 vertices.

• If c > 1, then Gb(n, p) contains a giant component of Θ(n) vertices. Furthermore,

almost surely the size of the second largest component of Gb(n, p) is at most 16c log(n)
(1−c)2 .

• If c=1, then Gb(n, p) almost surely has the largest component of size of order n2/3.

Theorem 2 states that p = log(n)
n

is a sharp threshold for the connectivity ofGb(n, p) and
Theorem 3 shows that p = 1

n
is a sharp threshold for the existence of a giant component

in Gb(n, p).

Models based on ER random graphs are often not capable to capture properties that
appear in real-world complex networks as pointed out in [3] and [9]. First, as shown
by Watts and Strogatz in [11], in some real-world networks, nodes are prone to group in
clusters, i.e., vertices having a common neighbor have a higher probability to be connected.
Whereas, in Erdös and Rényi’s graphs, all pairs of vertices have equal probability to be
connected and cannot model this particularity often referred to as clustering. Watts and
Strogatz measured clustering by defining a clustering coefficient, which is the average
probability that two neighbors of a given vertex are also neighbors of one another. In
many real-world networks the clustering coefficient is found to have a high value. In
contrast, the clustering coefficient in Erdös-Rényi graphs is equal to p. A second aspect
in which random graphs differ from real-world networks is in their degree distributions.
The probability pk that a vertex in Erdös-Rényi random graph has exactly degree k is
given by the binomial distribution

pk =

(
n− 1

k

)
pk(1− p)n−1−k.

In the limit where n � kz, the probability pk is given by Poisson distribution with
parameter z > 0

pk =
zke−z

k!
.

Comparisons between the degree distribution of Erdös-Rényi graphs and examples
from real-world networks in [31] show that in most cases the degree distribution of the real-
world network is very diferent from the Poisson distribution. Many real-world complex
networks, including Internet and World-Wide Web graphs, appear to have power-law
degree distributions [32], which implies that a small but non-negligible fraction of their
vertices have a very large degree.
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Small-World (SW) Graph

Most of real-world networks, especially social networks, do not have an homogeneous
distribution of degrees in contrast to regular or random networks. To overcome this limi-
tation, Watts and Strogatz [11] propose a model where the connections between vertices in
a regular graph are rewired with a certain probability. The resulting graphs have a vertex
degree distribution between regular and random graphs and are referred to as SW graphs.
SW graphs model very well many social networks in terms of clustering coefficient since
they have a higher clustering coefficient and almost the same average path as the actual
social networks with the same number of vertices and edges. SW graphs usually have a
high modularity. A topologically modular network can be broken down into component
modules, each of which comprises a number of nodes that are densely intra-connected to
each other but sparsely inter-connected to nodes in other modules.

Scale-Free (SF) Network

SF networks are a type of network characterized by the presence of few vertices that are
highly connected to other vertices in the network, called hubs. The presence of hubs will
determine a long tail in the vertex degree distribution because of the presence of vertices
with a much higher degree than most other vertices. A scale-free network is characterized
as a power-law vertex degree distribution. For an undirected network, the vertex degree
distribution is given by

Pdeg(k) ∝ k−γ,

where γ is an exponent. The parameter γ typically takes values in the range 2 < γ < 2,
although occasionally it may lie outside these bounds. This form of Pdeg(k) decays slowly
as the vertex degree k increases, increasing the likelihood of finding a vertex with a very
large degree.

Random Geometric Graph (RGG)

An RGG consists of a set of vertices distributed randomly over some metric space, with
two vertices joined by an edge if the distance between pairs of vertices does not exceed
a certain threshold. This construction presents a natural alternative to the classical ER
random graph model, in which the presence of each edge is an independent event.

RGGs were first proposed by Gilbert in [12] to model communications among radio
stations. Since then, RGGs have been a very relevant and well studied model for large
communication networks. Prominent examples in telecommunications are sensor networks
[15], where sensors are represented by the vertices of the RGG and the wireless connectivity
between sensors is represented by the RGG edges, and wireless ad-hoc network [33].
The model has been also applied to analyze spreading processes in large-scale complex
networks [16], [17]. An additional very important motivation for the study of RGGs is
their applications to statistics and learning. Clustering techniques such as the nearest-
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neighbor technique in statistics and machine learning are based on the spatial structure
of RGGs [34].

RGGs have also been extensively studied from a mathematical point of view. Various
interesting properties of RGGs have been discovered since their introduction, and the
monograph [29] by Penrose is a fundamental reference. Very relevant results exist in
[29] regarding their connectivity, chromatic number, clique number and other structural
properties. They are well studied theoretically, although not at the same extent of ER
graphs. A mathematical definition for an RGG is given as follows.

Definition 18. Let ‖.‖p be the `p-metric on Rd and r be a positive parameter. Let f
be a specified probability density function on Rd and let Xn = {x1, ...,xn} be a set of
independent and identically distributed d-dimensional random variables with density f .
The RGG is the undirected graph denoted by G(Xn, r) with vertex set Xn and undirected
edge connecting xi and xj, for any i, j ∈ {1, ..., n}, if ‖xi − xj‖p ≤ r.

The `p−metric on Rd is defined as

‖x− y‖p =


(∑d

k=1 |xk − yk|p
)1/p

for p ∈ [1,∞),

maxk{|xk − yk|, 1 ≤ k ≤ d} for p =∞,

where the case p = 2 gives the standard Euclidean metric on Rd. When p = ∞, the
maximum distance between two vertices is called the Chebyshev distance.

The above definition of an RGG is very general. In this thesis, we use a more specific
definition. In Chapter 4, we assume that the vertices of the RGG denoted by G(Xn, rn)
are independently and uniformly distributed in a unit torus and the radius threshold r is
given as a function of n, i.e., rn. We will give the detailed definition in Chapter 4.

Let θ(d) denote the volume of the d-dimensional unit hypersphere in Rd. When the
vertices are uniformly distributed, the average vertex degree an in G(Xn, rn) is given by

an = θ(d)nrdn.

Similiraly as with ER graphs, RGGs exhibit thresholds for some properties in terms
of the radius rn or, equivalently, the average vertex degree an, such as the connectivity
threshold. The connectivity threshold of RGGs has a long history. In the late 1990s,
Penrose [35], [36], Gupta and Kumar [37], Appel and Russo [38] investigated connectivity
properties of RGGs in which vertices are independently and uniformly distributed in a
2-dimensional cube, i.e., [0, 1]2 and edges are determined by the Euclidean distance. An
accurate estimation for the smaller value of rn at which the RGG becomes connected with
high probability is derived.

In the following, we recall the fundamental results about connectivity of RGGs. The
detailed proofs of the following two results on the connectivity of RGGs can be found
in [29], [36], [37], [38]. A necessary condition for connectivity in RGGs is the absence
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Figure 2.1: From left to right: independent realizations of three RGGs with n = 50 and
radius 0.1, 0.2, 0.3, respectively.

of isolated vertices in the graph. This condition is also sufficient with high probability
when n→∞. Therefore, the following lemma provides a result on the number of isolated
vertices in RGGs.

Lemma 4 (Number of Isolated Vertices in RGGs). Consider an RGG G(Xn, rn) based on
the Euclidean distance, with n vertices independently and uniformly distributed in [0, 1]2.
Let K be a random variable counting the number of isolated vertices in G(Xn, rn). Then,
by multiplying the probability that one vertex is isolated by the total number of vertices,
we obtain

E[K] = n(1− πr2n)n−1 = ne−πr
2
nn −O(r4nn).

Notice that E[K] depends on µ = ne−πr
2
nn. Then, the asymptotic behavior of µ

characterizes the connectivity of G(Xn, rn).

Theorem 5 (Connectivity of RGGs, [37], [36]). Let µ = ne−πr
2
nn.

• If µ→ 0 then almost surely G(Xn, rn) is connected.

• If µ = Θ(1) then almost surely G(Xn, rn) has a component of size Θ(n) and K
follows a Poisson distribution with parameter µ.

• If µ→∞ then G(Xn, rn) is almost surely disconnected.

From the definition of µ we deduce that when µ = Θ(1) then rn =
√

log(n)−log(µ)
πn

holds.

Therefore, we conclude that the property of connectivity of G(Xn, rn) exhibits a sharp
threshold at

rn =

√
log(n)− log(µ)

πn
. (2.1)
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This result has been generalized to RGGs in which vertices are uniformly and indepen-
dently distributed in the hypercube [0, 1]d, with d ≥ 2 under any `p-distance, 1 ≤ p ≤ ∞
[29],[35], [39]. The connectivity threshold in this case is given by

rc =

(
log(n)

nαp

)1/d

,

for constant αp > 0.

Denote by C and D the events that G(Xn, rn) is connected and disconnected, respec-
tively. The probability that G(Xn, rn) is connected or disconnected is provided by the
following corollary.

Corollary 1. Assume that µ = Θ(1). Then

P[C] ∼ P[K = 0] ∼ e−µ.

P[D] ∼ P[K > 0] ∼ 1− e−µ.

Hence, we can distinguish different scaling regimes for rn or equivalently for an in
RGGs. The first one is the connectivity regime, in which the average vertex degree an
grows logarithmically in n or faster, i.e., Ω(log(n)). The second scaling regime is the dense
regime, in which an ≡ Θ(n). An additional relevant scaling regime is the thermodynamic
regime, in which the average vertex degree is a constant γ, i.e., an ≡ γ. In this case the
graph is disconnected. As we shall see, if the constant γ in the thermodynamic regime is
above a certain critical value, likely there is a giant component of G(Xn, rn) containing a
strictly positive fraction of the vertices. This phenomenon is known as percolation. Exact
values for γ at which the giant component appears in G(Xn, rn) are not known. For d = 2,
with the Euclidean distance, simulation studies in [29] indicate that the giant component
occurs at γ = 1.44, while rigorous bounds 0.696 < γ < 3.372 are given in [40].

The above characterization of the structure of RGGs provides insights on the spectra
observed in the different regimes that are analyzed in the next chapters. Realizations of
three RGGs with n = 50 vertices uniformly distributed in a unit cube [0, 1]2 with three
different radius values is shown in Figure 2.1.

2.2.2 Preliminary Notation and Matrix Graph Representation

Graphs can be described by a number of matrices. The most intuitive matrix representa-
tion of a graph summarizes the adjacencies of the vertices. For a graph with n vertices, the
adjacency matrix A ∈ Rn×n has n rows and n columns corresponding to the vertices. The
elements Aij of the adjacency matrix A takes unit value when there is an edge between
vertices i and j and zero otherwise, i.e.,
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Aij =

 1, if i ∼ j and i 6= j,

0, otherwise.

Here i ∼ j denotes the existence of an edge between vertex i and j. From the definition
of adjacency matrix, if a graph is directed, then, in general, the graph is asymmetric and
the adjacency matrix does not have a special structure. In particular, it is not symmetric,
i.e., A 6= AT . For undirected graphs, the adjacency matrix A is symmetric. If all the
vertices in a graph G = (Xn, E) are isolated, i.e., Aij = 0 for all i, j ∈ Xn, the graph is
called a null graph.

A second important matrix associated to graphs is the Laplacian matrix which plays
a major role on dynamical processes. Recall that the degree di of a vertex i is the number
of edges attached to it. It is given by the cardinality of the set {j : j ∼ i} or, equivalently,
in terms of the adjacency matrix elements expressed as follows

di =
∑
j

Aij.

The Laplacian matrix of a graph is a real symmetric n × n matrix defined by the
following difference matrix

L = D−A.

Here, D ∈ Rn×n is the diagonal n × n matrix of vertex degrees such that Dij = diδij,
where δij denotes the Kronecker’s delta. Let us consider a simple graph. Since the diagonal
elements of the adjacency matrix are zero for a simple graph, the elements of the graph
Laplacian matrix are given by

Lij =


di, if i = j,

−1, if i ∼ j ,

0, otherwise.

The matrix L is called combinatorial Laplacian in order to distinguish it from
slightly different matrices called symmetric normalized Laplacian L and the transi-
tion matrix of a RW P. Let In be the n× n identity matrix. The normalized Laplacian
matrix L is defined as

L = D−1/2LD−1/2

= In −D−1/2AD−1/2,
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and has elements

Lij =


1, if i = j,

− 1√
didj

, if i ∼ j ,

0, otherwise.

The RW normalized Laplacian matrix is defined as

LRW = D−1L = In −D−1A

= D−1/2(In −D−1/2AD−1/2)D1/2

= D−1/2LD1/2,

(2.2)

and has elements

LRW
ij =


1, if i = j,

− 1

di
, if i ∼ j ,

0, otherwise.

The name of the RW normalized Laplacian comes from the fact that this matrix is
LRW = In −P, where P = D−1A is simply the transition matrix of a random walker on
the graph.

The transition matrix of the RW P defined by P = D−1A has elements

Pij =


1

di
, if i ∼ j and i 6= j,

0, otherwise.

For undirected graphs G, the transition matrix P is a column-stochastic matrix in
which the sum across each column is 1. The transition matrix P plays a key role in the
analysis of RWs on graphs.

The incidence matrix B for a directed graph describing a network’s structure is defined
as

Bij =


−1, if edge j starts at vertex i ,

+1, if edge j ends at vertex i ,

0, otherwise.
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In the case of undirected graphs, the incidence matrix is obtained by assigning an
arbitrary direction to each edge. The incidence matrix provides an alternative way to
define the graph Laplacian matrix

L = BBT .

Let G = (Xn, E) be a simple undirected graph with a vertex set Xn = {x1, x2, ...xn}
and edge set E and A be an n × n matrix representation of the graph G. For a square
matrix A ∈ Rn×n, the eigenvalues λi(A) are defined as values such that there exist vectors
vi ∈ Rn×1, vi 6= 0 with

Avi = λivi. (2.3)

The pair (λi,vi) is known as the eigenvalue-vector pair. In general the number λi can
be complex, but if A is symmetric, then A has real eigenvalues λ1, ..., λn, and Rn has an
orthonormal basis v1, ...,vn, where each vector vi is an eigenvector of A with eigenvalue
λi. Then,

A = HDH−1, (2.4)

where H is the matrix whose columns are v1, ...,vn, and D is the diagonal matrix whose
diagonal entries are λ1, ..., λn. Since the vectors v1, ...,vn can be chosen to be orthonormal,
the matrix H is orthogonal, i.e., HTH = In, thus we can alternatively write the above
equation as

A = HDHT . (2.5)

The spectral radius of a matrix A is the non-negative real number given by

ρ(A) = max{|λi| : 1 ≤ i ≤ n},

The set {λi : 1 ≤ i ≤ n} is called the spectrum of A.

Let A be an m× n matrix. The matrix ATA is evidently a symmetric n× n matrix,
and thus its eigenvalues are real. The singular values of A are the square roots of the
eigenvalues of ATA.

Let λi be an eigenvalue of L with the corresponding normalized eigenvector, vi, Lvi =
λivi. Then,

λi = vTi (λivi) = vTi (Lvi) = vTi (BBTvi) = (vTi B)(BTvi) = (BTvi)
T (BTvi),

which corresponds to the inner product of the real vector BTvi with itself. Therefore, the
eigenvalues of the graph Laplacian are non-negative

λi ≥ 0.

Since all the rows of the Laplacian matrix sum up to zero, the constant vector 1 =
(1, 1, ..., 1) is a Laplacian eigenvector which corresponds to the zero eigenvalue. Then, the
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2.3. Random Matrix Theory (RMT)

zero eigenvalue is always present in the Laplacian matrix spectrum and the eigenvalues
are usually ordered as

λ1 ≥ λ2 ≥ ... ≥ λn = 0.

The spectrum of L has also non-negative real eigenvalues and its smallest eigenvalues
is equal to zero, i.e., λn = 0. The eigenvalues of the normalized Laplacian matrix L satisfy
0 = λn ≤ λ1 ≤ 2. The multiplicity of λi = 0 corresponds to the number of connected
components of the graph. In addition, the smallest non-zero eigenvalue of the matrices L
and L is referred to as the spectral gap, a key property for graphs, related to the connec-
tivity and the dynamics of numerous processes on the graph such as RWs. Furthermore,
a larger spectral gap of the Laplacian matrix implies a more highly intertwined subgraph
structure [41]. In other words, a large value of the smallest non-zero eigenvalue implies
that there is a high number of links between any two possible pairs of clusters in the
graph.

From (2.2), we note that the RW normalized Laplacian LRW and the symmetric nor-
malized Laplacian L have the same spectrum. To see the connection between the proba-
bility transition matrix P and the normalized Laplacian matrix L, note that

D−1/2(In −L)D1/2 = D−1/2(D−1/2AD−1/2)D1/2 = P.

As a consequence, if λi is an eigenvalue of L then 1 − λi is an eigenvalue of P. In
particular, the value one is always an eigenvalue of P since zero is always an eigenvalue
of L.

In the following subsection, we provide preliminary definitions and an overview of
different concepts on random matrices.

2.3 Random Matrix Theory (RMT)

As announced in the introduction, in this section, we review the main analytical tool that
is RMT by recalling some of its basic concepts. The study of random matrices began with
the work of Wishart in 1928 [42], who was interested in the distribution of the so-called
empirical covariance matrices, which ultimately led to the Marcenko-Pastur distribution
in 1967. Random matrices were utilized by Wigner in the 1950’s as a statistical tool to
model energy levels of heavy nuclei [43], and led to the well-known Wigner semi-circle
distribution. Branching off from these early physical and statistical applications, RMT
has become a vibrant research field of its own, with scores of beautiful results in the last
decades. In the next chapter we provide the formal definition of the famous Marcenko-
Pastur and Wigner semi-circle distributions.

We will only consider concepts of RMT necessary for the study of random graphs, and
leave aside many topics. For more detailed and comprehensive introductions to RMT, see
[44], [45], [46].
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2.3. Random Matrix Theory (RMT)

2.3.1 Types of Random Matrices

Wishart Matrix

Historically, the first defined random matrix is the well-known Wishart matrix. Let
x1...xn ∈ Cp be independent and identically distributed (i.i.d) p−dimensional random
vectors distributed as Gaussian with zero mean and variance Σ, i.e., N(0,Σ). Then, the
Wishart distribution is the probability distribution of the eigenvalues of the p×p random
matrix Cp, i.e.,

Cp =
1

n

n∑
k=1

xkx
H
k .

Historically, this was the first random matrix studied by John Wishart who provided
the joint distribution of the eigenvalues of Cp.

Wigner Matrix

After the introduction of Wishart matrices, Eugene Wigner [43] studied the eigenspetrum
of large Hermitian matrices, a kind of random matrices, known nowadays as Wigner
matrices used to model the nuclei of heavy atoms. Wigner matrices, denoted in the
following by X satisfy the following properties:

• X is an n× n random Hermitian matrix.

• The upper-triangular entries Xij, 1 ≤ i ≤ j ≤ n, are i.i.d.(complex) random vari-
ables with zero mean and unit variance.

• The diagonal entries are i.i.d. real random variables.

Euclidean Random Matrix (ERM)

In many physical applications, pairwise interactions can depend on distance, such that
the strength or probability of interaction related to physical distance via a function over
an Euclidean space. Random matrices that incorporate this constraint are known as
Euclidean random matrices (ERM) [47], and have been used to model physical phenomena
such as diffusion [48] and wave propagation [49].

The Euclidean random matrix is a relevent class of random matrices introduced by
Mézard, Parisi and Zee [47]. An ERM is an n × n matrix Mn, whose entries are a
function of the distance of pairs of random points distributed according to some probability
distribution in a compact set Ω of Rd represented as

Mij = f(‖xi − xj‖p)− uδij
∑
k

f(‖xi − xk‖p), (2.6)
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2.3. Random Matrix Theory (RMT)

where u is a real parameter which enables us to interpolate between the two most in-
teresting cases u = 0, 1. The case where u = 0 is the simplest mathematical problem
with correlated matrix elements and the case where u = 1 is the natural problem which
appears when studying for instance vibration modes of an amorphous solid, instantaneous
normal modes of a liquid. The function f is a measurable mapping from Rd to C, xi are
the positions of n points, δij is the Kronecker symbol, and u ∈ R.

The adjacency and Laplacian matrices of RGGs belong to the class of ERMs. Indeed,
when u = 0 and f(x) = 1(0≤‖x‖≤r), then Mn is the adjacency matrix of the RGG. This
leads us to the field of graph theory.

There are many problems that involve Toeplitz-like structures. In the following, we
define toeplitz and circulant matrices that play a fundamental role in developing the
results of this thesis.

Toeplitz and Circulant Matrices

Toeplitz structure is very interesting in itself for all the rich theoretical properties it in-
volves, but at the same time it is important for the impact that it has in applications.
Much of the theory of weakly stationary processes involves applications of Toeplitz matri-
ces. Toeplitz matrices also arise in solutions to differential and integral equations, spline
functions, problems in physics, mathematics, statistics, and signal processing. The most
common and complete reference about Toeplitz matrices is given by Grenander and Szegö
[50]. A more recent work devoted to the subject is Gray [51].

A Toeplitz matrix is an n×nmatrix Tn with elements tk,j = tk−j for k, j = 0, 1, ..., n−1,
defined as

Tn =



t0 t−1 . . . t−(n−1)

t1 t0 . . . tn−2
...

. . . . . .
...

tn−1
. . . . . . t0


.

The most famous and arguably the most important result describing Toeplitz matrices
is Szegö’s theorem for sequences of Toeplitz matrices {Tn} which deals with the behavior
of the eigenvalues as n goes to infinity.

A common special case of Toeplitz matrices is when every row of the matrix is a right
cyclic shift of the row above it, i.e.,

tk = t−(n−k) = tk−n, for, k = 1, 2, ..., n− 1.

A matrix of this form is called a circulant matrix and is defined as
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Cn =



c0 c1 . . . c(n−1)

c(n−1) c0 . . . cn−2
...

. . . . . .
...

c1 c2 . . . c0


.

Circulant matrices arise, for example, in applications involving the discrete Fourier
transform (DFT) and the study of cycle codes for error correction. Block circulant matri-
ces are defined similarly, except that the structure refers to block, rather than elements.
In general, the blocks are free to have any structure.

2.3.2 Empirical distribution of eigenvalues

In RMT, random matrices are often studied in asymptotic conditions when their size
tends to infinity. Although asymptotic conditions are obviously not a realistic assumption
for practical problems where one rather deals with large matrices but finite of size n,
nonetheless, working in the n → ∞ limit leads to very precise approximations of the
properties of large but finite matrices.

Due to the large size of real-world systems, the performance analysis of many appli-
cations requires the knowledge of the eigenvalue distribution of large random matrices.
For example, in multivariate statistics, suppose that we have a very large dataset with
correlated variables. A common technique to deal with this large dataset is to reduce the
dimension of the problem using for instance a principal component analysis, obtained by
diagonalizing the covariance matrix of different variables. But one can wonder whether
the obtained eigenvalues and their associated eigenvectors are reliable or not (in a sta-
tistical sense). Hence, the characterization of eigenvalues is an example of features that
one would like to study. In addition, the eigenvalues of the adjacency matrix have many
applications in graph theory. For example, they describe certain topological features of a
graph, such as connectivity and enumerate the occurrences of sub-graphs [19]. Eigenvalues
of the Laplacian matrix provide information about diffusion, and have many applications
in studying random walks on graphs and approximation algorithms [19].

The distribution of the eigenvalues can be characterized through the empirical spectral
distribution (ESD). In the following, we define the empirical and the limiting distribution
of the eigenvalues.

Definition 19 (Empirical Spectral Distribution). Let {Xn}∞n=1 be a sequence of n × n
random Hermitian matrices. Suppose that λ1, ..., λn are the real eigenvalues of Xn. The
ESD of Xn is defined as

FXn
n (x) =

1

n

n∑
i=1

1λi≤x.
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The empirical spectral distribution of the n × n matrix is the probability measure
which puts mass 1/n at each of its eigenvalues. One important and useful property of
large random matrices is that often the ESD converges to a unique and deterministic limit,
i.e., FXn

n → FXn as n→∞. This limiting function is called limiting spectral distribution
(LSD).

In addition to the different definitions of the convergence of random sequences intro-
duced in Section 2.2, the convergence of the ESD of Hermitian matrices to a LSD can be
shown using the Levy distance. The Levy distance is a metric on the space of cumulative
distribution functions of one dimensional random variables. It is named after the French
mathematician Paul Levy. In the following, we define the Levy distance, and provide an
upper bound of the Levy distance between two distribution functions.

Definition 20 (Levy Distance, [52]). Let FA
n and FB

n be two distribution functions on R.
The Levy distance L(FA

n , F
B
n ) is defined as the infimum of all positive ε such that, for all

x ∈ R,
FA
n (x− ε)− ε ≤ FB

n (x) ≤ FA
n (x+ ε) + ε.

The following lemma provides an upper bound on the Levy distance between two
empirical spectral distribution functions of two matrices depending on the trace of the
difference of the respective matrices.

Lemma 6 (Difference Inequality, [53], page 614). Let A and B be two n × n Hermitian
matrices with eigenvalues λ1, ..., λn and µ1, ..., µn, respectively. Then,

n∑
k=1

|λk − µk|2 6 trace(A−B)2,

and

L3(FA
n , F

B
n ) 6

1

n
trace(A−B)2,

where L(FA
n , F

B
n ) denotes the Levy distance between the empirical distribution functions

FA
n and FB

n of the eigenvalues of A and B, respectively.

Throughout this thesis, we utilize several concentration inequalities which show that
a random variable with large probability assumes values in a small neighborhood of its
mean. We will write E[x] to denote the expectation of x. In the same way, we denote
the variance of a random variable x by Var(x). We use Bin(n, p), Pois(λ) and N(µ, σ2) to
denote the binomial, Poisson and normal distributions, respectively.

In the following we review well-known and relevant concentration inequalities.

2.3.3 Concentration Inequalities

Concentration and large deviation inequalities are very useful tools to study large matrices.
A fundamental inequality is the Markov inequality given in the following theorem.
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Theorem 7 (Markov inequality). Let x ≥ 0 be a non-negative random variable with
E[x] <∞. Then

P(x ≥ t) ≤ E[x]

t
, t > 0.

Markov inequality is a fundamental result to derive numerous concentration inequal-
ities. In the following, we provide the Chebyshev inequality that controls fluctuations of
a random variable around its mean.

Theorem 8 (Chebyshev Inequality). Let x be a non negative random variable with
E[x2] <∞. Then, for any t > 0

P(|x− E[x]| ≥ t) ≤ Var(x)

t2
.

The bounds provided by the Markov and the Chebyshev inequalities decay as t−1 and
t−2, respectively. However, the Markov inequality can be applied to derive an exponen-
tially decaying bound known as the Chernoff bound.

Lemma 9 (Chernoff Bound). Define the log-moment generating function ψ of a random
variable x and its Legendre dual ψ∗ as

ψ(λ) = logE[eλ(x−E[x])], ψ∗(t) = sup
λ
{λt− ψ(λ)}.

Then
P(x− E[x] ≥ t) ≤ e−ψ

∗(t) for all t ≥ 0.

Proof. Let us apply the Markov inequality to the random variable eλ(x−E[x]) > 0. Then,
for any λ ≥ 0, we obtain

P(x− E[x] ≥ t) = P
(
eλ(x−E[x]) ≥ eλt

)
≤ e−λtE[eλ(x−E[x])]

= e−{λt−ψ(λ)}.

(2.7)

As the left hand side of (2.7) does not depend on the choice of λ ≥ 0, the bound holds
also for λ which maximizes the exponent λt − ψ(λ), yielding the statement of Lemma
9.

Note that Chernoff bound provides a bound only for the probability P(x ≥ E[x] + t),
that is the probability that the random variable x exceeds its mean E[x] by a fixed amount
t. However, we can obtain an inequality for the lower tail by applying the Chernoff bound
to the random variable −x, as

P(x ≤ E[x]− t) = P(−x ≥ E[−x] + t).
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In particular, given an upper and lower tail bounds, we can obtain a bound on the
magnitude of the fluctuations using the union bound

P(|x− E[x]| ≥ t) = P ((x ≥ E[x] + t) or (x ≤ E[x]− t))
≤ P(x ≥ E[x] + t) + P(−x ≥ E[−x] + t).

(2.8)

In numerous cases, the proof of a bound for the upper tail can be straightforward
extended to derive a bound for the lower tail, and a global bound can be obtained by
applying (2.8). In some cases, bounds for the upper and lower tail are proved under
assumptions that are not invariant under negation. For example, if we prove an upper
tail bound for a convex function f(x), this bound does not automatically imply a bound
for the lower tail since −f(x) is concave and not convex. In such cases, a bound for the
lower tail must be proved separately.

Chernoff bound is very useful and can be easy to manipulate. In fact the log-moment
generating function λ→ ψ(λ) is a continuous function and can therefore be investigated
using calculus which makes the Chernoff bound very flexible and powerful.

In the following, we show an additional useful inequality involving sums of independent
random variables known as Hoeffding inequality. Consider a sum of independent random
variables

x = x1 + ...+ xn,

where xi are i.i.d. centered random variables. Intuitively, while x can take values of order
O(n), very likely it is of order O(

√
n), i.e., the order of its standard deviation. In the

following, we state Hoeffding inequality.

Theorem 10 (Hoeffding inequality). Let x1, ..., xn be independent bounded random vari-
ables, i.e., |xi| ≤ a and E[xi] = 0. Then, for t > 0

P

{∣∣∣∣∣
n∑
i=1

xi

∣∣∣∣∣ > t

}
≤ 2 exp

(
− t2

2na2

)
.

This inequality implies that fluctuations larger than O(
√
n) have small probability.

For example, for t = a
√

2n log(n) we get that the probability is at most 2
n
.

The following inequality referred to as Bernstein inequality [54], uses the variance of
the summands to obtain a tighter bound compared to Hoeffding inequality.

Theorem 11 (Bernstein Inequality). Let x1, ..., xn be independent centered bounded ran-
dom variables, i.e., |xi| ≤ a and E[xi] = 0, with variance E[x2i ] = σ2. Then, for t > 0

P

{∣∣∣∣∣
n∑
i=1

xi

∣∣∣∣∣ > t

}
≤ 2 exp

(
− t2

2nσ2 + 2
3
at

)
.

Numerous additional upper bounds for E[eλx] are derived from Bernstein or Markov
inequality. In the following, we state several strong inequalities under more restrictive
assumptions.
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Lemma 12 ([55]). Let x ∼ Bin(n, p), E[x] = np. Then, for t ≥ 0

P {x ≥ E[x] + t} ≤ exp

(
− t2

2 (E[x] + t/3)

)
.

A global upper bound for a binomial distribution is given under more restrictive as-
sumptions in the following lemma.

Lemma 13 ([55]). Let x ∼ Bin(n, p), E[x] = np and 0 < t ≤ 3
2
. Then,

P {|x− E[x]| ≥ tE[x]} ≤ 2 exp

(
−t

2

3
E[x]

)
.

An additional and more general upper bound applicable to any random variable x, is
obtained using its corresponding probability generating function.

Lemma 14. Let x be a random variable. Then, for any t > 0

P{x ≥ t} ≤ F (a)

at
,

where F (a) is the probability generating function and a ≥ 1.

In the following, we introduce the Hölder, Cauchy-Schwarz and Minkowski inequalities.

Lemma 15 (Hölder Inequality). For p > 1 and 1
p

+ 1
q

= 1, the Hölder inequality is given
by

n∑
i=1

|xiyi| ≤

(
n∑
i=1

|xi|p
)1/p( n∑

i=1

|yi|q
)1/q

.

For p = 2, it reduces to the Cauchy-Schwarz inequality.

Lemma 16 (Minkowski Inequality). For p ≥ 1, the triangle inequality for the `p-norm is
given by (

n∑
i=1

(|xi + yi|)p
)1/p

≤

(
n∑
i=1

|xi|p
)1/p

+

(
n∑
i=1

|yi|p
)1/p

.

The following inequalities hold for all x ∈ Rd or x ∈ Cd.

• ‖x ‖∞≤ ‖x‖1 ≤ d‖x‖∞.

• ‖x‖∞ ≤ ‖x‖2 ≤
√
d‖x‖∞.

• ‖x‖∞ ≤ ‖x‖2 ≤ ‖x‖1 ≤
√
d‖x‖2.
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2.3.4 Asymptotic Behavior of Matrices

The major use of this section is to provide tools in order to relate the asymptotic behavior
of two sequences of matrices and introduce the concept of asymptotic equivalence of
sequences of matrices.

We will be considering sequences of n × n matrices that are equivalent as n becomes
large. To measure the distance between two matrices, we use the weak norm of the
difference of two matrices.

Lemma 17 ([51]). Two sequences of n × n matrices {An} and {Bn} are said to be
asymptotically equivalent if

1. An and Bn are uniformly bounded in strong (and hence in weak) norm:

‖An‖, ‖Bn‖ ≤M <∞, n = 1, 2, ...

and

2. An −Bn = Dn goes to zero in weak norm as n→∞

lim
n→∞

‖An −Bn‖HS = lim
n→∞

‖Dn‖HS = 0.

We use the abbreviation An ∼ Bn for the asymptotic equivalence of the sequences
{An} and {Bn}. Several properties exist that relate the asymptotic equivalence between
two matrices and their corresponding eigenvalues.

The following result shows that if the weak norm of the difference between two sym-
metric matrices is small, then the sums of the eigenvalues of each must be close.

Lemma 18 ([51]). Given two square symmetric matrices A and B with ordered eigen-
values αk and βk, respectively, then

| 1
n

n−1∑
k=0

αk −
1

n

n−1∑
k=0

βk| ≤ ‖A−B‖HS.

An immediate consequence of the lemma is the following corollary.

Corollary 2 ([51]). Given two sequences of asymptotically equivalent square symmetric
matrices {An} and {Bn} with eigenvalues αn,k and βn,k, respectively, then

lim
n→∞

1

n

n−1∑
k=0

(αn,k − βn,k) = 0,
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and hence if either limit exists individually,

lim
n→∞

1

n

n−1∑
k=0

αn,k = lim
n→∞

1

n

n−1∑
k=0

βn,k.

The following theorem is a fundamental result concerning asymptotic eigenvalue be-
havior of asymptotically equivalent sequences of matrices [51].

Theorem 19 ([51]). Let {An} and {Bn} be asymptotically equivalent sequences of square
symmetric matrices with ordered eigenvalues αn,k and βn,k, respectively. Then, for any
positive integer s the sequences of matrices {As

n} and {Bs
n} are also asymptotically equiv-

alent,

lim
n→∞

1

n

n−1∑
k=0

(αsn,k − βsn,k) = 0,

and hence if either limit exists individually,

lim
n→∞

1

n

n−1∑
k=0

αsn,k = lim
n→∞

1

n

n−1∑
k=0

βsn,k. (2.9)

Since the previous theorem holds for any positive integer s, by adding sums corre-
sponding to different values of s to each side of (2.9). This observation leads to the
following corollary.

Corollary 3 ([51]). Suppose that {An} and {Bn} are asymptotically equivalent sequences
of square symmetric matrices with ordered eigenvalues αn,k and βn,k, respectively and let
f(x) be any polynomial. Then,

lim
n→∞

1

n

n−1∑
k=0

(f(αn,k)− f(βn,k)) = 0,

and hence if either limit exists individually,

lim
n→∞

1

n

n−1∑
k=0

f(αn,k) = lim
n→∞

1

n

n−1∑
k=0

f(βn,k). (2.10)

Additional key result from matrix theory is the Wielandt-Hoffman theorem [56] stated
in the following

Theorem 20 (Wielandt-Hoffman Theorem, [56]). Given two Hermitian matrices A and
B with eigenvalues αk and βk, respectively, then

1

n

n−1∑
k=0

|αk − βk|2 ≤ ‖A−B‖2HS.
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The Cauchy-Schwarz inequality applied to the Wielandt-Hoffman Theorem yields the
following stronger lemma.

Lemma 21 ([51]). Given two Hermitian matrices A and B with eigenvalues αk and βk,
in nonincreasing order, respectively, then

1

n

n−1∑
k=0

|αk − βk| ≤ ‖A−B‖HS.

In order to analyze the spectra of random graphs, the knowledge of the spectrum
of several fundamental random matrices is required. In the following section, we recall
well-known results on the LSD of relevant matrices.
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Chapter 3

State of the Art

3.1 Introduction

In this chapter, we review fundamental results concerning asymptotic eigenvalue behavior
of asymptotically equivalent sequences of matrices. Then, we provide a survey of fun-
damental results from spectral graph theory (SGT) domain. Finally, we provide results
related to network dynamics and introduce an important concept for the characterization
of diffusion behaviors in graphs called spectral dimension (SD).

3.2 Spectral Graph Theory (SGT)

SGT is the study of eigenvalues and eigenvectors of graph matrices. Questions about
spectral properties are very important in graph theory to understand various properties
of random graphs. Therefore, spectral graph methods have become a fundamental tool
in the analysis of large complex networks. The results can be utilized in a broad range
of applications in machine learning, data mining, web search and ranking. In particular,
spectral analysis of the adjacency matrix or related matrices are of prior interest in graph
theory. For example the probability of hitting times of RWs on graphs is governed by
the spectrum of the transition matrix [18]. In network epidemics, the time evolution of
the infected population is also govened by the spectral radius and spectral gap of the
adjacency matrix [16], [57], [58].

The spectra of random matrices and random graphs have been extensively studied in
the literature, see [59], [53], [60], [61], [46]. In this section, we review relevant eigenvalue
properties of some random graphs.
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(a) Histogram of the eigenvalues of
Wigner matrices and the semi-circle law,
for n = 500.

(b) Illustration of the real and imaginary parts
scaled by

√
1000 of the eigenvalues of a 1000 ×

1000 matrix with independent, standard normal
entries.

Figure 3.1: Illustration of the semi-circle law and the full circle law.

3.2.1 Spectrum of ER Random Graph

In Chapter 2, we have introduced ensembles of random matrices with i.i.d. entries. The
ESD of a random Hermitian matrix has a very complicated form when the order of the
matrix is large. In particular, it seems very difficult to characterize the LSD of an arbitrary
given sequence of random Hermitian matrices [59], [62]. A pioneering and famous work
on the spectral distribution of random Hermitian matrices owes to Wigner, which is now
known as Wigner’s semicircle law [43], [63].

In the following, we recall the well-known results due to Wigner concerning the con-
vergence of the ESD of the aforementioned Wigner matrices.

Theorem 22 (Wigner’s Semicircle Law, Theorem 2.5 and Theorem 2.9 [59]). Consider
an n × n symmetric matrix X with independent entries 1√

n
Xij such that E[Xij] = 0,

E[|Xij|2] = 1 and E[|Xij|2+ε] <∞ for an ε > 0. Then, as n→∞, FX
n ⇒ F almost surely,

where
dF

dx
=

1

2π

√
4− x21(|x|≤2)

and FX
n is the ESD of X.

Moreover, if the elements Xij are identically distributed, the result holds without the
need for the existence of the moment E[|Xij|2+ε] for an ε > 0. The LSD of Wigner matrices
with independent and identically distributed upper-diagonal Xij ∼ N(0, 1

n
) entries, is

shown in Figure 3.1 (a). For non-symmetric matrices, the LSD follows the full-circle law
[64], which is exemplified in Figure 3.1 (b).

Let us consider again the Wishart or the sample covariance matrix Cp. The conver-
gence of the ESD of the sample covariance matrix with i.i.d. entries of zero mean and
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variance normalized to n to a LSD was studied in [65]. This LSD is known as Marchenko-
Pastur law. In the following, we recall the well-known Marchenko-Pastur theorem.

Theorem 23 (Marchenko-Pastur Law, [65]). Consider a matrix X ∈ Rp×n with i.i.d.
entries 1√

n
Xij, such that Xij has zero mean and unit variance. As n, p → ∞ with p

n
→

c ∈ (0,∞), the ESD of Cp = XXT converges weakly and almost surely to a non-random
distribution function F given by

dF

dx
= (1− c−1)δ(x) +

1

2πcx

√
(x− a)1(x≥a)(b− x)1(x≤b)

where a = (1−
√
c)2, b = (1 +

√
c)2 and δ(x) = 10(x), i.e., delta function at zero (Dirac).

Random matrices in Wigner’s setup correspond to the adjacency matrix of ER random
graph where edges appear independently with probability p, i.e., G(n, p) [6]. If p is held
constant as n → ∞, then the setup is equivalent to Wigner’s random matrix setting.
However, in graph theory, we are often interested in graphs where p decreases with n.

As mentioned in Chapter 2, the ER graph G(n, p) are classified in different regimes
depending on the value of p. In the following, we discuss some results and observations
related to the LSD of G(n, p) in the different regimes.

In the case when p = w( 1
n
) and p ≤ 1

2
, the LSD of G(n, p) is the semi-circle distribution.

It can be proved by the method of moments, and the proof follows along the lines of the
proof for Wigner’s matrices. We state the result in the following theorem and the detailed
proof can be found in [66], [67] or [68].

Theorem 24 ([66], Theorem 3.4). Assume p = w( 1
n
) and p ≤ 1

2
. Let A be the adjacency

matrix of a random graph G(n, p). Then, as n → ∞, the ESD of the matrix 1√
np(1−p)

A

converges in distribution to the semi-circle distribution function which has a density func-
tion

f(x) =
1

2π

√
4− x2,

with support [−2, 2].

In the case when p = c
n

and c is fixed, i.e., p = O( 1
n
), the ESD of G(n, p) does not

converge to the semi-circle distribution. Instead, the spectrum is a composition of two
components: a discrete component consisting of spikes and a continuous component [69].
For small values of c, the discrete spectrum is dominant whereas, for large values of c, the
continuous spectrum is dominant. The continuous spectrum approaches the semi-circle
distribution as c gets larger. This asymptotic behavior can be explained by the continuity
between the regimes with w( 1

n
) and O( 1

n
) modeled by c → ∞. In fact, the LSD is given

in Theorem 24. The presence of the discrete spectrum depends on the structure of the
graph for different values of c. When p = c

n
with c < 1, the spectrum is characterized

entirely by trees. The dominance of trees determines the appearance of mass points
in the spectrum. We could approximate the LSD by computing the spectra of small
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trees. When c > 1, there exists a giant component, which determines the appearance
of the continuous component of the spectra. Nevertheless, for c > 1 there exist also
small connected components, mostly trees, that determine the appearance of the discrete
component of the spectrum, see Theorem 3.

3.2.2 Spectrum of Random Geometric Graph (RGG)

In this section, we provide existing results on spectrum of RGGs. First, the work in
[70] investigates numerically the combinatorial Laplacian spectra of RGGs. The spectra
consist of both a discrete and a continuous part. The discrete part is a collection of Dirac
delta peaks at integer values. The peaks appear mainly due to the existence of symmetric
motifs1. The symmetric motifs are numerous in RGGs and they determine the appearance
of sharp and distinct peaks in the spectra of Laplacian and adjacency matrices, a feature
often found in the spectrum of matrices associated to graphs of real-world networks. By
contrast, similar peaks are not visible in the Laplacian spectrum of non-spatial random
graph models such as ER graphs. In [71] the symmetric motifs in RGGs are analyzed and
the probabilities of their appearance in both the connectivity and thermodynamic limits
are studied. In the thermodynamic regime, the probability that the closest nodes are
inter-changeable approaches one, whilst in the dense regime of fixed connection radius,
this probability depends upon the dimension of the Euclidean space.

As mentionned in Section 2.3, the adjacency and Laplacian matrices of RGGs are
in the class of Euclidean random matrices. The work in [72] analyzed the spectra of
Euclidean random matrices when both the number of vertices n and the dimension of the
Euclidean space d go to infinity proportionally. However, this result cannot be applied to
our problem as we assume that n grows large whereas the space dimension d is fixed.

Jiang in [73] studied the LSD of Euclidean random matrices Mn when the dimension
d remains fixed and n → ∞. In the following theorem, we recall the result showing that
the ESD of Euclidean random matrices with d fixed converges to the Dirac distribution
at zero as n→∞.

Theorem 25 (LSD of Euclidean Random Matrix, [73]). Let d ≥ 1 be fixed and Mn be as
in (2.6) with u = 0, i.e.,

Mij = f(‖xi − xj‖22).

Let {xi : i ≥ 1} be Rd-valued random variables with maxi≥1 E[et0‖xi‖
α
] < ∞ for some

constants α > 2 and t0 > 0. Suppose f ∈ [0,∞) with wm = supx>0 |f (m)(x)| satisfying
log(wm) = o(m) log(m) as m→∞. Then, with probability one, the ESD converges weakly
to δ0 as n→∞.

In addition, the work in [49] studied the probability distributions of eigenvalues of
Hermitian and non-Hermitian Euclidean random matrices. The analysis in [49] focuses in
a class of functions where the real symmetric n × n Euclidean matrix M have elements

1 Symmetric motifs are subsets of nodes which have the same adjacencies.
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defined through some specific function f such as the cardinal sine (sinc) defined as Mij =
sin(|xi−xj |)
|xi−xj | , or the cardinal cosine (cosc) defined as Mij =

cos(|xi−xj |)
|xi−xj | , where vectors xi define

positions of n randomly chosen points inside a three-dimensional cube.

The results in Theorem 25 and in [49] require the continuity of the function f defining
the Euclidean matrix. Thus, they cannot be applied to the step function considered in
this work.

Regarding spectral properties of the adjacency matrix of RGGs, in [74] and [75], the
authors show that the spectral distribution of the adjacency matrix converges to a deter-
ministic LSD in the thermodynamic regime as n→∞. Due to the difficulty to compute
exactly this spectral measure in the thermodynamic regime, the work in [74] proposes an
approximation for it as the average vertex degree γ → ∞. Additionally, Bordenave in
[74] characterizes the spectral measure of the adjacency matrix normalized by n in the
dense regime. In the dense regime and as n→∞, due to the normalization factor n, all
the finite eigenvalues of the adjacency matrix vanish and only the eigenvalues scaling as
n in the adjacency matrix do not vanish in the normalized adjacency matrix. In order
to analyze the behavior of the finite eigenvalues of the adjacency matrix, in this work we
study the LSD of the RGG adjacency matrices without normalization in the connectivity
and dense regimes.

In [16], a closed form expression for the asymptotic spectral moments of the adjacency
matrix of an RGG G(Xn, rn) is derived in the connectivity regime. Then, an analytical
upper bound for the spectral radius is given in order to study the behavior of the viral
infection in an RGG. We have the following closed-form expression for the asymptotic
expected spectral moments of RGGs.

Theorem 26. Consider set of n nodes distributed uniformly and independently on the
d-dimensional unit torus Td ≡ [0, 1]d. Then, we form an RGG G(n, rn) by adding an edge
between two vertices when the distance between them does not exceed a certain threshold rn.
When the average vertex degree an = Ω(log(n)), the asymptotic expected spectral moments
are given as

E[mk] = (nrn)k−1
1

2(k − 1)!

k−2∑
j=1

(
k − 1

j − 1

)
Ek−1,j,

where Ek−1,j are the Eulerian numbers2 and mk is the k-th spectral moment of the G(n, rn).

Furthermore, the author in [77] shows that, in the connectivity regime, the spectral
measures of the transition probability matrix of the RW in an RGG and in a deterministic
geometric graph (DGG) with nodes in a grid converge to the same limit as n → ∞.
However, this convergence is not studied for the full range of the connectivity regime.
More specifically, the proof in [77] is based on a condition on the radius rn. The condition
enforced on rn in [77] implies that for ε > 0, the result holds only for RGGs with an

2The Eulerian number En,k gives the number of permutations of {1, 2, ..., n} having k permutation
ascents [76].
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average vertex degree an that scales as Ω (logε(n)
√
n), when d = 1, as Ω

(
log

3
2
+ε(n)

)
when d = 2, as Ω

(
log1+ε(n)

)
for d ≥ 3.

Compared to [77], in this thesis we study the LSD of the normalized Laplacian matrix
of RGGs in the connectivity regime for a wider range of scaling laws of the average vertex
degree an, or equivalently a wider range of scaling laws of the radius rn. More specifically,
for d ≥ 1, we show that the LSDs of the normalized Laplacian matrix of RGGs and for
DGGs converge to same limit when an = Ω(log(n)). Additionnaly, we extend the work
in [77] and study the LSD of the normalized Laplacian for RGGs under on any `p-metric
with p ∈ [1,∞]. Moreover, we study the LSD of the normalized Laplacian matrix of
RGGs in the thermodynamic regime. To overcome the problem of singularities due to
isolated nodes in the thermodynamic regime, we investigate the LSD of the normalized
Laplacian on a modified graph by adding auxiliary edges among all the nodes with an
arbitrary eventually vanishing weight. The corresponding normalized Laplacian is known
as the regularized normalized Laplacian [78].

In the following section, we briefly review spectrum of circulant matrices useful for the
analyzes in Chapter 4.

3.2.3 Spectrum of Circulant Matrices

The eigenvalues and eigenvectors of circulant matrices are related to the discrete Fourier
transform (DFT). For a sequence of n complex numbers a0, a1, ..., an−1, the DFT is defined
as follows

αm =
n−1∑
k=0

ake
−2πimk/n. (3.1)

Recall that an n × n matrix Cn is circulant if each row is a cyclic shift of the row
above it. In the following, we show that the eigenvalues of a circulant matrix are given
by the DFT of the first row of the matrix and the normalized eigenvectors of a circulant
matrix are the Fourier modes.

Using the circulant structure of the matrix, we write the eigenvalues equation Cnv =
λv as a set of n difference equations [70]

n−1−m∑
k=0

ckvk+m +
n−1∑

k=n−m

ckvk−(n−m) = λvm for m = 0, 1, ...n− 1.

Assuming solutions of the form vk = ρk yields,

n−1−m∑
k=0

ckρ
k + ρ−n

n−1∑
k=n−m

ckρ
k = λ.
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If we choose ρ−1 = 1, that is, ρ is one of the complex n-th roots of unity such that
ρm = e−2πim/n for m = 0, 1, ..., n− 1 we have an eigenvalue

λ =
n−1∑
k=0

cke
−2πimk/n, (3.2)

with the corresponding eigenvector

v =
1√
n

(1, e−2πim/n, ..., e−2πim(n−1)/n).

Comparing (3.1) and (3.2) shows that the eigenvalues are given by the DFT of the
first row of the matrix.

The 2d DFT of the n× n matrix A is the matrix α of the same size with entries

αlm =
n−1∑
g=0

n−1∑
h=0

Aghe
−2πigl/ne−2πihm/n for l,m = 0, 1, ..., n− 1. (3.3)

Let B denote a symmetric n1n2 × n1n2 block circulant matrix with circulant blocks.
The matrix B has n1× n1 circulant blocks each of size n2× n2. The eigenvalues of B can
be found by taking the 2d DFT of the n1 × n2 matrix formed by arranging the elements
of the first row of B [70]. To see that, we use the spectral decomposition of B

B = FHΛF, (3.4)

where Λ is a diagonal matrix whose entries are the eigenvalues of B and F is the 2d DFT
matrix. That is, F = Fn1 ⊗ Fn2 where Fn1 is the n1−point DFT matrix.

Multiplying both sides of (3.4) by F gives

FB = ΛF.

Consider only the first column in the above equation

FB1 = ΛF1. (3.5)

Note that every entry in the first column of F is 1. Therefore,

FB1 = λ. (3.6)

Thus, to find the eigenvalues of B, arrange the elements of its first row in a n1 × n2

matrix row-wise and using (3.3) take the 2d DFT. The elements of the resulting matrix
are the eigenvalues.

This procedure is generalized to find the eigenvalues of symmetric matrix B with any
number of levels of circulant structure. The author in [70] shows that the eigenvalues of
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B are found by taking the d-dimensional DFT of an n1 × n2 × ... × nd tensor of rank d
obtained from the first block row of B.

Given the simplicity of circulant matrices, an obvious approach to study asymptotic
properties of sequences of Toeplitz matrices is to approximate them by sequences asymp-
totically equivalent of circulant matrices and then applying the results developed for cir-
culant matrices. Such results are most easily derived when strong assumptions are placed
on the sequence of Toeplitz matrices, which keep the structure of the matrices simple and
allow them to be well approximated. For example, assumptions where the sequence {tk,j}
is assumed to be absolutely summable and also the case of sequences of banded Toeplitz
matrices. Under such assumptions, the basic approach is to find a sequence of circulant
matrices Cn that is asymptotically equivalent to the sequence of Toeplitz matrices Tn.
The choice of an appropriate sequence of circulant matrices to approximate a sequence of
Toeplitz matrices is not unique. An example of such circulant matrix is constructed and
can be found in [51].

The most famous and arguably the most important result of this type is Szego’s
theorem for sequences of Toeplitz matrices {Tn} which deals with the behavior of the
eigenvalues as n goes to infinity.

3.3 Diffusion Dynamics and Spectral Dimension (SD)

The theory of dynamical processes on complex networks combines concepts of graph theory
and non-linear dynamics. It studies elements or agents whose states evolve following a
dynamical rule. This dynamical rule models interactions with neighboring elements. Here,
these elements or the agents are modeled by the vertices of a graph G = (Xn, E) and the
edges specify their interactions. The study of dynamical processes on complex networks
differs from the characterization of structural network properties of complex networks
presented in the previous sections but they are related. In the following, we show the
relation between diffusion processes, normalized Laplacian matrix and spectral dimension.

In the following section, we briefly survey spreading processes and the SD useful for
the analyzes in Chapter 6.

3.3.1 Diffusion Dynamics and Laplacian Matrix

In general, a dynamical process on a graph with n vertices is a n-dimensional dynamical
process. The state of the system at time t is described by the vector (x1(t), ..., xn(t))
where each xi(t) characterizes the state of vertex i at time t. The time evolution of xi(t)
is determined by its own value and the values of xj(t), the adjacent vertices j ∈ {1, ..., n}
only. The graph structure describes this interaction pattern. The variable xi(t) itself is
usually a real or complex number or an element of some discrete set, but can also be a
more complex mathematical object.
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The first distinction between dynamical processes is whether the time t is a discrete
or a continuous variable. In the case of a discrete time t ∈ N, the dynamics are governed
by an equation of the form

xi(t+ 1) = fi (xi(t), {xj(t)| j ∼ i}) , (3.7)

where the function fi, which describes the time evolution of the vertex i, consists of a
component depending on xi(t) and another component depending on the set of neighbors
of i.

When the graph is undirected, in the case of a continuous time t ∈ R, the real-valued
state variable xi is generally described by a differential equation of the form

dxi
dt

= hi(xi(t)) +
∑
j∈Xn

Aijgij(xi(t), xj(t)).

In this case, the function hi specifies the intrinsic dynamics of vertex i as if it was
isolated from all other vertices and gij describes the influence of the neighbors j on the
dynamics of i. Many important processes, such as synchronization and spreading dynam-
ics, fall into this class of dynamics.

A simple but generic class of dynamics consists of diffusion processes. It is a linear pro-
cess, without intrinsic dynamics, i.e., hi(x) = 0, and the coupling function gij(xi(t), xj(t))
is the difference between the two variables, i.e., gij(xi(t), xj(t)) = xj(t) − xi(t). Despite
its simplicity, diffusion is rather generic because it is a paradigmatic model for all kinds
of spreading dynamics.

Traditionally, diffusion in physics describes the movement of a gas from regions with
high concentration to regions with low concentration along some gradient, for example in
pressure or temperature. However, also other types of spreading dynamics are modeled
as diffusion processes. The spread of infectious diseases in a population, the transfer
of information or fads from individual to individual without a common broadcaster, the
change of opinions in a society, and the exploration of the World Wide Web by random
searching are just some examples. A possible picture of diffusion are RWs. On a graph,
consider a particle that moves randomly along the edges from vertex to vertex in discrete
steps. The diffusion process is recovered from the RW by either considering a number of
random walkers n which tends to infinity and let xi(t) describe their density at vertex i
or, equivalently, let xi(t) simply be the probability of a random walker to be at vertex i
at time t.

The interplay between dynamic and structure of a network is of central interest. We
consider dynamics at the nodes of the graph that are coupled via the graph Laplacian
matrix.

In the context of diffusion, the state variable xi(t) describes, for example, the amount
of substance at vertex i. The substance will flow along the edges from vertices with a
high value to vertices with a lower value. Hence, xi(t) changes with time according to
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dxi
dt

= c
∑
j∈Xn

Aij(xi(t)− xj(t)). (3.8)

The constant c is a diffusion coefficient. The termAij describes the adjacencies between
nodes. Splitting the two terms in the sum yields

dxi
dt

= −c
∑
j

Lijxj(t). (3.9)

In matrix notation, (3.9) can be rewritten in terms of the Laplacian matrix, as

dx

dt
+ cLx(t) = 0.

This equation has the form of a continum diffusion equation with the Laplace operator
[79] replaced by −L, the reason why it is called the graph Laplacian.

The time evolution is described by (3.9) which corresponds to a random walker in
discrete time that jumps to the next vertex at each time step. Now, we consider the jump
rate across each edge normalized by di, the degree of the vertex that the random walker
is currently occupying, i.e., the rate to jump from vertex i to vertex j is d−1i . Thus, the
corresponding diffusion equation is given by

dxi
dt

= c
∑
j∈Xn

Aij

(
xj(t)

dj
− xi(t)

di

)
.

The sum on the right hand side can be split, which leads to the matrix form

dxi
dt

= c
∑
j

Aij
xj(t)

dj
− cxi(t)

di
di

= c
∑
j

(
Aij
dj
− δij

)
xj(t) = −c

∑
j

LRW
ij xj(t). (3.10)

In matrix notation, (3.10) can be rewritten in terms of the RW normalized Laplacian
matrix LRW, as

dx

dt
+ cLRWx(t) = 0.

In this case, the RW normalized Laplacian matrix LRW is the time evolution operator of
the diffusion process which is obviously the reason why it is called the RW normalized
Laplacian.

An additional important quantity to characterize diffusion processes is the probability
P0(t) that a walker returns to its starting point after t steps. Shortly refer to as return
probability. On a finite graph, there is always a finite probability for a random walker
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to visit any site of the connected component it started in. In the limit of t → ∞, the
random walker returns to its starting vertex at some point in time with probability one.
In a graph with infinite nodes, this probability can be less than one and the RW is called
transient.

The return probability P0(t) is directly linked to the normalized Laplacian eigenvalue
distribution function ρ(λ), also called the spectral density function of the RW normalized
Laplacian LRW, or equivalently, the normalized Laplacian matrix L by the following
equation

P0(t) =

∫ ∞
0

e−λtρ(λ)dλ. (3.11)

A derivation of this relation can be found in [80]. Equation (3.11) relates the behavior
of Po(t) to the spectral density function of the normalized Laplacian matrix L. In par-
ticular, the long time limit of Po(t) is directly linked to the behavior of ρ(λ) for λ → 0
[81].

When the ED follows a power-law tail asymptotics, i.e., ρ(λ) ∼ λγ−1, γ > 0 for λ→ 0
then, for t→∞, we get

P0(t) ∼ t−γ. (3.12)

This result can be obtained by substituting the spectral density function of the nor-
malized Laplacian in the expression of the return probability P0(t) given in (3.11) and
using Gamma function with y = λt defined as follows

Γ(x) =

∫ ∞
0

e−yyx−1dy = tx
∫ ∞
0

e−λt(λ)x−1dλ. (3.13)

Then

P0(t) = t−γtγ
∫ ∞
0

e−λtλγ−1dλ = t−γΓ(λ). (3.14)

Let us consider some examples. In a d-dimensional regular lattice, the low eigenvalue
density is given by ρ(λ) ∼ λd/2−1. Then, the use of (3.12) yields the well known result
[80]

P0(t) ∼ t−d/2.

For the case of a random ER graph in [82] is proven that for λ → 0, the spectral

density of the normalized Laplacian matrix has the form ρ(λ) ∼ e
−c√
λ , with c a constant,

which yields the expression of the long time behavior given by

P0(t) ∼ e−at
1/3

, (3.15)

where a is constants depending on the specific network.
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3.3.2 Spectral Dimension

In a graph in which a particle moves randomly along edges from a vertex to another vertex
in discrete steps, the diffusion process can be thought as a stochastic RW. Then, the SD
ds is defined in terms of the return probability P(t) of the diffusion [83]

ds = −2
d ln P(t)

d ln(t)
,

t being the diffusion time. The spectral dimension, ds, defined above is a measure of
how likely a random walker return to the starting point after time t. In contrast to the
topological dimension, ds need not be an integer. Note that this definition is independent
of the particular initial point.

When Alexander and Orbach introduced the SD, it was considered as a useful tool
to characterize the low-frequency vibration spectrum of fractals [84]. Nowadays, the SD
is considered by many as the appropriate generalization of the Euclidean dimension of
regular lattices to irregular structures in general, whether fractals or not. These irregular
structures includes polymers, proteins, glasses, percolation clusters. In this thesis, we
investigate the SD of random geometric graphs.

When the spectral density function of the normalized Laplacian matrix scales as a
power-law, the spectrum of the graph Laplacian provides a second way to define the SD
of a network by its asymptotic behavior for λ → 0. This justifies why this quantity is
called ”spectral”. For an infinite network, the definition of the SD is given by the relation

ds
2

= lim
λ→0

log(F (λ))

log(λ)
= 1 + lim

λ→0

log(ρ(λ))

log(λ)
, (3.16)

where F (λ) and ρ(λ) are the ESD and the empirical spectral density of the normalized
Laplacian matrix L of the graph, respectively.

Exact values of ds are only known for a rather limited class of models. For instance,
Euclidean lattices in dimension d have SD ds = d. In the case of the percolation problem,
Alexander and Orbach conjectured that the SD of a percolating cluster is ds = 4/3 [84]. In
[85], the SD of an additional random geometry, called random combs is studied. Random
combs are special tree graphs composed of an infinite linear chain with a number of linear
chains attached according to some probability distribution. In this particular case, the
SD is found to be ds = 3/2.

In chapter 6, we study the return-to-origin probability of RWs P0(t) and the SD of
RGGs.
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Chapter 4

Spectrum of the Normalized
Laplacian of RGGs

4.1 Spectrum of the Normalized Laplacian of RGGs

In this chapter, using tools from random matrix theory and probability theory, we analyze
the spectrum of RGGs in the connectivity and thermodynamic regime. In particular, we
analyze the eigenvalues and LSD of the normalized Laplacian matrix of RGGs and its
regularized version in the connectivity and the thermodynamic regimes under any `p-
metric, with p ∈ [1,∞] and under any dimension d ≥ 1 finite. Unlike ER graphs, the
RGG is an inherently harder model to work with since the nature of the graph induces
dependencies between edges. Therefore, the classical spectral methods might fail as the
edges of the RGG are not independent.

To the best of our knowledge, explicit expressions for the LSD or the eigenvalues of
the combinatorial Laplacian and normalized Laplacian for RGGs are still not known in
the full range of the scaling laws for the radius rdn in the connectivity regime, nor in the
thermodynamic regime. In this work, we first extend the work in [77] by proposing another
sequence of matrices called deterministic geometric graph (DGG) with nodes in a grid as
an approximation for the actual RGG. Then, we provide a bound on the Hilbert-Schmidt
norm of the difference between the RGG and the DGG regularized normalized Laplacian
matrices in both the connectivity and thermodynamic regime.

In the connectivity regime, i.e., an = Ω(log(n)), we prove that the normalized Lapla-
cian matrices for RGGs and DGGs are asymptotically equivalent with high probability.
Then, we use the regular structure of the DGG to show that the LSD of the RGG nor-
malized Laplacian converges with high probability to the Dirac distribution at one in
the full range of the connectivity regime as n → ∞. We give the rate of convergence
for different cases depending on the chosen average vertex degree an. More precisely,
we show that when an ≥ log1+ε(n) for ε > 0, the rate of convergence of probability is
O
(
1/n(an/12 log(n))−1)

)
. In particular, we show that, when an = c log(n), for c > 24, the
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rate of convergence of probability is O
(
1/nc/12−1

)
, and when c ≤ 24, a slower rate of

convergence of probability holds and scales as O (1/n). When the graph is dense, i.e., an
scales as Ω(n), the LSD of the normalized Laplacian for an RGG converges with the rate
of convergence O

(
ne−n/12

)
.

In the thermodynamic regime, we show that the spectrum of the regularized normal-
ized Laplacian of an RGG obtained by using any `p-metric can be approximated by the
spectrum of the regularized normalized Laplacian of a DGG, with an error bound which
is valid with high probability and dependent upon the average vertex degree an = γ.
Finally, using the regular structure of the DGG, we provide an analytical approximation
for the eigenvalues of the RGG regularized normalized Laplacian matrix.

4.2 Preliminaries

This section recalls the graph model under study, which is the RGG, and provides pre-
liminary technical results.

Let us precisely define the RGG studied in this work. We consider a finite set Xn of
n nodes, x1, ..., xn, distributed uniformly and independently on the d-dimensional torus
Td ≡ [0, 1]d. Taking a torus Td instead of a cube allows us not to consider boundary effects.
Given a geographical distance rn > 0, we form a graph by connecting two nodes xi, xj ∈ Xn
if the `p-distance between them is at most rn, i.e., ‖xi − xj‖p ≤ rn with p ∈ [1,∞] (that
is, either p ∈ [1,∞) or p =∞), see Figure 4.1(a). Such graphs, denoted by G(Xn, rn), are
called RGGs and are extensively discussed in [29]. Typically, the function rn is chosen
such that rn → 0 when n→∞.

Two different scaling regimes for an are of particular interest in this chapter. The
first one is the connectivity regime, in which the average vertex degree an grows logarith-
mically in n or faster, i.e., Ω(log(n)) [29]. The second scaling regime of interest is the
thermodynamic regime, in which the average vertex degree is a constant γ, i.e., an ≡ γ
[29].

In general, it is a challenging task to derive exact Laplacian eigenvalues for complex
graphs. We remark that for this purpose, the use of deterministic structures is of much
help. Therefore, we introduce an auxiliary graph called the deterministic geometric graph
(DGG) with nodes in a grid useful for the study of the LSD of RGGs [77].

As for RGGs, we let Dn be the set of n grid nodes that are at the intersections of all
parallel hyperplanes with separation n−1/d, and define a deterministic graph G(Dn, rn) in
the grid by connecting two nodes x′i, x

′
j ∈ Dn if ‖x′i− x′j‖p ≤ rn for p ∈ [1,∞], see Figure

4.1(b). Given two nodes in G(Xn, rn) or in G(Dn, rn), we assume that there is always
at most one edge between them. There is no edge from a vertex to itself. Moreover,
we assume that the edges are not directed. In the following, we define the normalized
Laplacian matrix for G(Xn, rn) and G(Dn, rn).

Let N (xi) be the set of neighbors of vertex xi in G(Xn, rn) and N (x′i) be the set of
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Figure 4.1: Illustration of an RGG (a) and a DGG (b) for n = 16.

neighbors of vertex x′i in G(Dn, rn). Let L(Xn) and L(Dn) be the normalized Laplacian
matrices for G(Xn, rn) and G(Dn, rn), respectively, with entries,

L(Xn)ij = δij −
χ[xi ∼ xj]√
N(xi)N(xj)

, L(Dn)ij = δij −
χ[x′i ∼ x′j]√
N(x′i)N(x′j)

, (4.1)

where N(xi) and N(x′i) are the sizes of the two sets N (xi) and N (x′i), respectively, and
δij is the Kronecker delta function. The term χ[xi ∼ xj] takes unit value when there is
an edge between nodes xi and xj in G(Xn, rn) and zero otherwise, i.e.,

χ[xi ∼ xj] =

 1, ‖xi − xj‖p ≤ rn, i 6= j

0, otherwise.

A similar definition holds for χ[x′i ∼ x′j] defined over the nodes in G(Dn, rn). Recall
that an denotes the average vertex degree in G(Xn, rn) and, in particular, in the thermo-
dynamic regime an ≡ γ for a constant γ. In G(Dn, rn), the number of neighbors of each
vertex is the same. For simplicity, we denote this number by a′n = N(x′i). In particular,

in the thermodynamic regime N(x′i) = γ′. We have also N(xi, x
′
i) =

∑
j

χ[xi ∼ xj]χ[x′i ∼

x′j] ≤ a′n ∀ i, j.
Note that the above formal definition of the normalized Laplacian in (4.1) requires

G(Xn, rn) and G(Dn, rn) not to have isolated vertices. To overcome the problem of sin-
gularities due to isolated vertices in the termodynamic regime, we follow the scheme
proposed in [78]. It corresponds to the normalized Laplacian matrix on a modified graph
constructed by adding auxiliary edges among all the nodes with weight α

n
> 0. Specifically,
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the entries of the normalized Laplacian matrices are modified as

L̂(Xn)ij = δij −
χ[xi ∼ xj] + α

n√
(N(xi) + α)(N(xj) + α)

, L̂(Dn)ij = δij −
χ[x′i ∼ x′j] + α

n√
(a′n + α)(a′n + α)

.

(4.2)

The corresponding matrices are referred to as the regularized normalized Laplacian
matrices [78]. Observe that for α = 0, (4.2) reduces to (4.1).

4.3 Main Results

The matrices L̂(Xn) and L̂(Dn) are symmetric, and consequently, their spectra consist
of real eigenvalues. We denote by {µ̂i, i = 1, .., n} and {λ̂i, i = 1, .., n} the sets of all
real eigenvalues of the real symmetric square matrices L̂(Xn) and L̂(Dn) of order n,
respectively. Then, the empirical spectral distribution functions of L̂(Xn) and L̂(Dn)
are defined as

F L̂(Xn)(x) =
1

n

n∑
i=1

1µ̂i≤x, and F L̂(Dn)(x) =
1

n

n∑
i=1

1λ̂i≤x,

To show that F L̂(Dn) is a good approximation for F L̂(Xn) when n is large in both the
connectivity and thermodynamic regimes, we provide a bound on Hilbert-Schmidt norm
of the difference between the RGG and the DGG normalized Laplacian matrices.

4.3.1 Upper Bound the Hilbert-Schmidt norm of the Difference
Between two Regularized Normalized Laplacian Matrices

In the following Lemma 27, we upper bound the Hilbert-Schmidt norm of the difference
between the matrices L̂(Xn) and L̂(Dn) for any average vertex degree an.

Lemma 27 (Upper Bound on the Hilbert-Schmidt norm of the difference between L̂(Xn)
and L̂(Dn)). For d > 1 and p ∈ [1,∞], the Hilbert-Schmidt norm of the difference between
L̂(Xn) and L̂(Dn) is upper bounded as follows:

‖L̂(Xn)− L̂(Dn)‖2HS ≤

∣∣∣∣∣ 1n∑
i

∑
j

(
χ[xi ∼ xj] + α

n

)2
(N(xi) + α)(N(xj) + α)

− b

n(a′n + α)2

∣∣∣∣∣
+

∣∣∣∣∣∣∣∣∣
2b

n(a′n + α)2
−

2

(∑
i

N(xi, x
′
i) + α

n

∑
i

N(xi) + αa′n + α2

)
n(a′n + α)

(∑
i

√
N(xi) + α

)2

∣∣∣∣∣∣∣∣∣ ,
where b = na′n + α2 + 2αa′n.
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Proof. To upper bound the Hilbert-Schmidt norm of the difference between the regularized
normalized Laplacian matrices L̂(Xn) and L̂(Dn), we first give the following lemma.

Lemma 28. If ai ≥ 0 and bi > 0 for all i, and there exists an ai > 0, then

n∑
i=1

ai
bi
>

n∑
i=1

ai

n∑
i=1

bi

.

By using Lemma 6, we upper bound the Hilbert-Schmidt norm of the difference be-
tween L̂(Xn) and L̂(Xn) as

‖L̂(Xn)− L̂(Dn)‖2HS =
1

n
Trace

[
L̂(Xn)− L̂(Dn)

]2
=

1

n

∑
i

∑
j

[
χ[xi ∼ xj] + α

n√
(N(xi) + α)(N(xj) + α)

−
χ[x′i ∼ x′j] + α

n√
(a′n + α)(a′n + α)

]2

=
1

n

∑
i

∑
j

[ (
χ[xi ∼ xj] + α

n

)2
(N(xi) + α)(N(xj) + α)

+

(
χ[x′i ∼ x′j] + α

n

)2
(a′n + α)2

]

− 2

n

∑
i

∑
j

(
χ[xi ∼ xj] + α

n

) (
χ[x′i ∼ x′j] + α

n

)
(a′n + α)

√
(N(xi) + α)(N(xj) + α)

.

We notice from the last equation that
∑
j

χ[xi ∼ xj] = N(xi) corresponds to the number

of neighbors of vertex xi in the RGG, and similarly
∑
j

χ[x′i ∼ x′j] = a′n corresponds to the

number of neighbors of vertex x′i in the DGG. Let b = na′n + 2αa′n + α2 and N(xi, x
′
i) =∑

j

χ[xi ∼ xj]χ[x′i ∼ x′j]. Then, by applying Lemma 28 we get the following upper bound.

‖L̂(Xn)− L̂(Dn)‖2HS ≤
b

n(a′n + α)2
−

2

(∑
i

N(xi, x
′
i) + α

n

∑
i

N(xi) + αa′n + α2

)
n(a′n + α)

(∑
i

√
N(xi) + α

)2

+
1

n

∑
i

∑
j

(
χ[xi ∼ xj] + α

n

)2
(N(xi) + α)(N(xj) + α)

.

Using the triangle inequality, the result follows.

Note that in the thermodynamic regime, for d > 1, the Hilbert-Schmidt norm of the
difference between the matrices L̂(Xn) and L̂(Dn) is upper bounded as in Lemma 27 by
letting an ≡ γ being a positive constant. When the graph is connected, it is not necessary
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to work with the regularized normalized Laplacian, but we consider only the normalized
Laplacian in (4.1) by enforcing α = 0 in (4.2). Therefore, in the connectivity regime, the
Hilbert-Schmidt norm of the difference between the matrices L(Xn) and L(Dn) is bounded
as follows:

‖L(Xn)− L(Dn)‖2HS ≤

∣∣∣∣∣ 1n∑
i

∑
j

χ[xi ∼ xj]
2

N(xi)N(xj)
− 1

a′n

∣∣∣∣∣+

∣∣∣∣∣∣∣∣∣
2

a′n
−

2
∑
i

N(xi, x
′
i)

na′n

(∑
i

√
N(xi)

)2

∣∣∣∣∣∣∣∣∣ .

Next, we state a general theorem in which we provide an upper bound for the proba-
bility that the Hilbert-Schmidt norm of the difference between the DGG and RGG regu-
larized normalized Laplacian matrices is greater than a certain value t, under any average
vertex degree an. Then, we specify the result for each of the connectivity and thermody-
namic regimes.

Theorem 29. For d ≥ 1, p ∈ [1,∞] and t > max
[
4(n+2α)a′n+4α2

n(a′n+α)
2 , 8(n+2α)an+4α2

n(an+α)2

]
, the

inequality take place:

P
{
‖L̂(Xn)− L̂(Dn)‖2HS > t

}
≤ 2P

{∣∣∣∣∣∑
i

N(xi)− nan

∣∣∣∣∣ > tn(an + α)2 − 4α2

8
(
1 + 2α

n

) − nan

}

+ 2P

{∣∣∣∣∣∑
i

N(xi)− nan

∣∣∣∣∣ > tn(an + α)

16

}
+ P

{∑
i

|an −N(xi)|2 >
tn(an + α)2

8

}
.

(4.3)

Proof. See Appendix A.1.

In the following we state a corollary to specify the result given in Theorem 29 for the
thermodynamic regime.

Corollary 4. In the thermodynamic regime, i.e., an ≡ γ finite, for d ≥ 1, p ∈ [1,∞] and

t > max
[
4(n+2α)γ′+4α2

n(γ′+α)2
, 8(n+2α)γ+4α2

n(γ+α)2

]
, we get

P
{
‖L̂(Xn)− L̂(Dn)‖2HS > t

}
≤ 320(n− 1)ϑ

tn2(γ + α)2
,

where ϑ =
[
θ(d) + 2(n− 2)(θ(d))2rdn

]
.

Under the conditions described above, for every t > max
[

4γ′

(γ′+α)2
, 8γ
(γ+α)2

]
as n→∞,

lim
n→∞

P
{
‖L̂(Xn)− L̂(Dn)‖2HS > t

}
= 0.

Proof. See Appendix A.3.

50



4.3. Main Results

Informally, this result means that as n→∞, for any fixed t greater than a threshold
that depends on the average vertex degree γ, the value ‖L̂(Xn)−L̂(Dn)‖2HS is never greater
than t with high probability. Therefore, L̂(Dn) approximates L̂(Xn) with an error bound

which is valid with high probability of max
[

4
γ′
, 8
γ

]
when n → ∞ and α → 0, which is

valid with high probability. This in particular implies that the error bound becomes small
for large values of the degree.

In the following Lemma 30, we provide a lower bound on the degree of the vertices in
G(Dn, rn), useful for the following studies.

Lemma 30 (Lower Bound on the Vertex Degree of the DGG). For any chosen `p-metric

with p ∈ [1,∞], d ≥ 1 and an ≥ 2d1+1/p

2d−1 , we have

a′n ≥
an

2d1+1/p
,

where an is the average vertex degree of G(Xn, rn) and a′n is the degree of each vertex in
G(Dn, rn).

Proof. See Appendix A.2.

The following theorem shows that the Hilbert-Schmidt norm of the difference between
the normalized Laplacian matrices L(Dn) and L(Xn) converges to zero in probability as
n→∞.

Theorem 31. In the connectivity regime, i.e., an = Ω(log(n)), for an ≥ 2d1+1/p

2d−1 , d ≥ 1,

p ∈ [1,∞] and t > 8d1+1/p

an
, we have

P
{
‖L(Xn)− L(Dn)‖2HS > t

}
≤ min

[
320(n− 1)ϑ

tn2γ2
, 6n exp

(
−(an − rn)

12

)]
,

where ϑ =
[
θ(d) + 2(n− 2)(θ(d))2rdn

]
.

Proof. See Appendix A.3.

This result implies that for a fixed t we obtain a value for n and an upper bound on
the probability that the Hilbert-Schmidt norm exceeds t. Therefore, we can choose n′ > n
as large as we want to make the error arbitrarily small with a controlled high probability.

We notice that in the connectivity regime the approximation is tighter as we increase
n. For any t > 0, and ε > 0 there exists an n0 such that for any n > n0

P
{
‖L(Xn)− L(Dn)‖2HS > t

}
< ε.

This means that as n→∞, the value ‖L(Xn)−L(Dn)‖2HS is never greater than a fixed
t > 0 with high probability. This result show the concentration of the Hilbert–Schmidt
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norm of the difference between the normalized Laplacian matrices L(Dn) and L(Xn) as
n → ∞. In addition, we observe that the normalized Laplacian matrices are bounded in
the strong norm. Hence, by applying Lemma 17, we conclude that the matrices L(Dn)
and L(Xn) are asymptotically equivalent in probability. Then, Corollary 3 guarantees the
convergence in probability of the two LSDs.

In the following corollary we provide the rate of convergence of probability of the spec-
trum of the RGG normalized Laplacian matrix to the spectrum of the DGG normalized
Laplacian matrix for different ranges of the average vertex degree an.

Corollary 5. In the connectivity regime, i.e., an = Ω(log(n)), the spectrum of the RGG
normalized Laplacian matrix L(Xn) converges to the spectrum of the DGG normalized
Laplacian matrix L(Dn) with convergence rate depending on an as follows.

P
{
‖L(Xn)− L(Dn)‖2HS > t

}
=



O (1/n) , an = c log (n) and c ≤ 24,

O
(
1/nc/12−1

)
, an = c log (n) and c > 24,

O
(
1/n(an/12 log (n))−1

)
an ≥ log1+ε (n) and

an = o(n) with ε > 0

O
(
ne−n/12

)
an = Ω(n)

Proof. We have ϑ < θ(d)an

(
1
an

+ 2
)

and t > 8d1+1/p

an
then,

A =
320(n− 1)ϑ

tn2a2n
<

320ϑ

tna2n
<

40ϑ

nand1+1/p
=

40θ(d)
(

1
an

+ 2
)

nd1+1/p
,

and

B =
6n

exp
(
an
12

[
1− rn

an

]) =
6

n

an
12 log(n)

[1− rnan ]−1
,

therefore,

P
{
‖L(Xn)− L(Dn)‖2HS > t

}
< min

40θ(d)
(

1
an

+ 2
)

nd1+1/p
,

6

n
an

12 log(n) [1−
rn
an

]−1

 .
Note that, when an = c log (n), c > 24, then B < A and the rate of convergence

is O
(
1/nc/12−1

)
, and when c ≤ 24, the rate of convergence is O (1/n). For ε > 0 and

an ≥ log1+ε (n), the rate of convergence is O
(
1/n(an/12 log (n))−1

)
. When the graph is dense,

i.e., an scales as Ω(n), the LSD of the normalized Laplacian matrix of the RGG converges
to the Dirac measure at one with rate of convergence O

(
ne−n/12

)
. Hence, from the result

in Theorem 31 and Corollary 3 follows that the LSDs of the normalized Laplacian matrix
for G(Xn, rn) and G(Dn, rn) converge to the same limit as n → ∞ under any chosen
`p-metric, and the convergence holds in the full range of the connectivity regime, i.e,
an = Ω(log(n)).

52



4.3. Main Results

4.3.2 Eigenvalues and LSD of the Regularized Normalized Lapla-
cian of RGGs

In the following, we use the structure of the DGG to approximate the eigenvalues of
the regularized normalized Laplacian matrix of G(Xn, rn) in both the connectivity and
thermodynamic regime using the Chebyshev distance. Let us consider a d-dimensional
DGG with n = Nd nodes and assume the use of the Chebyshev distance. Then, the degree
of a vertex in G(Dn, rn) is given as [70]

a′n = (2kn + 1)d − 1, with kn = bNrnc ,

where bxc is the integer part, i.e., the greatest integer less than or equal to x. Note that
when d = 1, the Chebyshev distance and the Euclidean distance are the same.

In the following Lemma 32, by using the expression of the eigenvalues of the adjacency
matrix for a DGG under the Chebyshev distance [70], we approximate the eigenvalues of
the regularized normalized Laplacian matrix for G(Xn, rn) when the number of nodes n is
fixed and for any an. Then, we utilize this result to determine the LSD of the normalized
Laplacian matrix in the connectivity regime as n → ∞ in Corollary 6, and we provide
the analytical approximation for the eigenvalues in the thermodynamic regime as n goes
to infinity in Corollary 7.

Lemma 32 (Eigenvalue Distribution of the Regularized Normalized Laplacian Matrix).
When using the Chebyshev distance and d ≥ 1, the eigenvalues of L̂(Dn) are given by

λ̂m1,...,md = 1− 1

(a′n + α)

d∏
s=1

sin(msπ
N

(a′n + 1)1/d)

sin(msπ
N

)
+

1− αδm1,...,md

(a′n + α)
, (4.4)

with m1, ...,md ∈ {0, ...N− 1} and δm1,...,md = 1 when m1, ...,md = 0 otherwise δm1,...,md =
0. In (4.4), n = Nd, a′n = (2kn + 1)d − 1 and kn = bNrnc.

Proof. See Appendix A.4.

In the following Corollary 6, we provide the eigenvalue distribution of the normalized
Laplacian matrix for G(Xn, rn) in the connectivity regime as an ≥ 2d1+1/p and n→∞.

Corollary 6 (Eigenvalue Distribution of the Normalized Laplacian Matrix in the Con-
nectivity Regime). In the connectivity regime, i.e., an = Ω(log(n)), using the Chebyshev
distance, an ≥ 2d1+1/p, d ≥ 1, and letting α → 0, the eigenvalues of L(Dn) converge
asymptotically to the limiting

λm1,...,md = 1− 1

a′n

d∏
s=1

sin(msπ
N

(a′n + 1)1/d)

sin(msπ
N

)
+

1

a′n
, (4.5)

with m1, ...,md ∈ {0, ...N − 1}. In (5.3), n = Nd, a′n = (2kn + 1)d − 1 and kn = bNrnc.
Then, in particular, as n→∞, the LSD of L(Dn) converges to the Dirac measure at one.
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In the following Corollary 7, we provide the eigenvalues of the regularized normalized
Laplacian matrix L̂(Dn) in the thermodynamic regime as n→∞.

Corollary 7 (Eigenvalues of the Regularized Normalized Laplacian in the Thermody-
namic Regime). In the thermodynamic regime, by using the Chebyshev distance, γ ≥ 1
and d ≥ 1, as n→∞, the eigenvalues of L̂(Dn) are given by

λ̂f1,...,fd = 1− 1

(γ′ + α)

d∏
s=1

sin(πfs(γ
′ + 1)1/d)

sin(πfs)
+

1− αδf1,...,fd
(γ′ + α)

, (4.6)

where s ∈ {1, ..., d}, ms ∈ {0, ...,N} and fs = ms
N

in Q ∩ [0, 1] with Q denotes the set
of rational numbers. Also, γ′ = (2

⌊
γ1/d

⌋
+ 1)d − 1 and δf1,...,fd = 1 when f1, ..., fd = 0

otherwise δf1,...,fd = 0.

In Lemma 32, we generalize the results given in [77], [73] and [74]. On one hand, in [77],
the author shows that the spectral measures of the transition probability matrix of the
RW in RGGs and DGGs converge to the same limit in a specific range of the connectivity
regime. On the other hand, in [73], the author shows that, for a fixed dimension d
and n → ∞, the LSD of Mn = f(‖xi − xj‖2) converges to the Dirac measure in zero
under some conditions on the function f . However, the techniques used in [73] cannot be
applied to geometric graphs since the function f is required to be continuous. Additionally,
Bordenave in [74], characterizes the spectral measure of a normalized adjacency matrix in
the dense regime. In contrast, in this work we study the LSD of the normalized Laplacian
matrix for an RGG formed by using any `p-metric, 1 ≤ p ≤ ∞, and we show that it
converges to the same limit as for the normalized Laplacian matrix for a DGG in the full
range of the connectivity regime as n→∞. In particular, we show that they converge to
the Dirac measure at one as n goes to infinity in the full range of the connectivity regime.

4.4 Numerical Simulations

In this section, we validate our analytical results obtained in the section above by numer-
ical computations. More specifically, we corroborate our results on the spectrum of the
regularized normalized Laplacian matrix of RGGs in the connectivity and thermodynamic
regimes by comparing the simulated and the analytical spectra.

Figure 4.2(a) illustrates the empirical spectral distribution in the thermodynamic
regime of a realization for an RGG with n = 30000 vertices, α = 0.001 and the cor-
responding DGG. The illustrated theoretical distribution is obtained from the eigenvalues
given in Corollary 7. We notice that the gap that appears between the eigenvalue distri-
butions of the RGG and the DGG is upper bounded as in Corollary 4.

Here, we provide an additional example in the thermodynamic regime to quantify the
error between F L̂(Xn) and F L̂(Dn) for different values of γ using the Chebyshev distance.
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1) When γ = 100 and α = 10−3, d = 1 then as n→∞

P
{
‖L̂(Xn)− L̂(Dn)‖2HS > 0.019

}
→ 0.

2) When γ = 120 and α = 10−3, d = 1 then as n→∞

P
{
‖L̂(Xn)− L̂(Dn)‖2HS > 0.015

}
→ 0.

From these examples, we notice that for γ = 100, the LSD of the regularized normalized
Laplacian matrix in the RGG can be approximated by the LSD of a DGG with an error
bound which is valid with high probability of 0.019 when α = 10−3. Then, as we increase
the average vertex degree γ to γ = 120, we can notice a certain improvement. Therefore,
the larger the average vertex degree γ is, the tighter the approximation becomes.

We notice clearly that a jump of simulated F(x) for RGG is clearly visible. We expect
that this behavior appears mainly due to the existence of symmetric motifs that occur
abundantly in RGGs compared to the DGG.

In Figure 4.2(b) we compare the spectral distribution of a DGG (continuous lines)
with the one for an RGG with increasing the number of nodes n (dashed line for n = 500
and star markers for n = 30000) in the connectivity regime. We notice that the curves
corresponding to the RGG and the DGG match very well when n is large which confirm
the concentration result given in Theorem 31. Also, it appears that by increasing n, the
eigenvalue distribution converges to the Dirac measure at one, which confirms the result
obtained in Corollary 6.

4.5 Conclusions

In this chapter, we studied in details the spectrum of RGGs in both the connectivity
and thermodynamic regime. We first proposed an approximation for the regularized nor-
malized Laplacian matrix and obtained an upper bound on the Hilbert-Schmidt norm of
the difference between this approximation and the RGG regularized normalized Laplacian
matrix. In the connectivity, as n → ∞, we found that the DGG and RGG regularized
normalized Laplacian matrices are asymptotically equivalent with high probability. Then,
using the structure of the DGG, we found the the LSD of the RGG normalized Lapalcian
matrix converges to the Dirac measure at one in the full range of the connectivity regime.
In the thermodynamic regime, we found that the spectrum of the RGG regularized nor-
malized Laplacian matrix can be approximated by the spectrum of the DGG regularized
normalized Laplacian matrix with the corresponding error bound which is valid with high
probability. Then, with the regular structure of the DGG, we provided an analytical
approximation for the eigenvalues of the RGG regularized normalized Lapalcian matrix.
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(a) Thermodynamic regime, γ = 12, n = 30000
and α = 0.001.

(b) Connectivity regime for different n and rn =

log
3
2 (n)/n.

Figure 4.2: Comparison between the simulated and the analytical spectral distributions
of an RGG for d = 1.
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Chapter 5

Spectrum of the Adjacency Matrix
of RGGs

5.1 Introduction

In this chapter, we investigate spectral properties of the adjacency matrix of RGGs both
theoretically and with simulations in the connectivity regime and without normalization
by n. This contribution is motivated by the work of Bordenave in [74] that characterizes
the spectral measure of the RGG adjacency matrix normalized by n in the dense regime.
Due to the normalization factor n, in the dense regime and as n → ∞, all the finite
eigenvalues of the adjacency matrix vanish and only the eigenvalues scaling as n in the
adjacency matrix do not vanish in the normalized adjacency matrix. Therefore, in order
to analyze the behavior of the finite eigenvalues of the adjacency matrix, in this chapter
we investigate the spectrum of adjacency matrices of RGGs without normalization in the
connectivity and dense regimes.

Similarly to Chapter 4, we use the adjacency matrix of a DGG as an approximation
for the adjacency matrix of an RGG. We provide an upper bound on the Hilbert-Schmidt
norm of the difference between the adjacency matrices of the RGG and the DGG. More
precisely, under some conditions on the average vertex degree an, we show that the Hilbert-
Schmidt norm of the difference between two sequences of adjacency matrices of RGGs and
DGGs converges to zero in probability as n → ∞. Then, for ε > 0, using this result, we
show that the Levy distance between the eigenvalue distributions of the DGG and RGG
adjacency matrices vanishes with high probability as n → ∞ when the average vertex
degree, an scales as Ω(logε(n)

√
n) for d = 1 and as Ω(log2(n)) for d ≥ 2. Then, under the

`∞-metric we provide an analytical approximation for the eigenvalues of the adjacency
matrix of RGGs by taking the d-dimensional discrete Fourier transform (DFT) of an
n = Nd tensor of rank d obtained from the first block row of the adjacency matrix of the
DGG.
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5.2 Mains Results

First, we introduce a property called the minimax grid matching problem useful for the
following studies. Consider a square with area n in the plane that contains n grid points
arranged in a regularly spaced

√
n×
√
n array and n random points located independently

and randomly according to the uniform distribution on the square. For any particular set
of n random points, let Mn denote the minimum length such that there exists a perfect
matching1 of the (random) points to the grid points in the square for which the distance
between every pair of matched points is at most Mn. In other words, Mn is the minimum
over all perfect matching of the maximum distance between any pair of matched points.
Sharp bounds for Mn are given in [86], [87], [88]. We repeat them in the following lemma
for convenience.

Lemma 33. Under any `p-norm, the bottleneck matching is

• Mn = O

((
log n

n

)1/d
)
, when d ≥ 3 [86].

• Mn = O

( log3/2 n

n

)1/2
 , when d = 2 [87].

• Mn = O

(√
log ε−1

n

)
, with prob. ≥ 1− ε, d = 1 [88].

Let A(Xn) be the adjacency matrix of G(Xn, rn), with entries

A(Xn)ij = χ[xi ∼ xj],

where the term χ[xi ∼ xj] takes the value 1 when there is a connection between nodes xi
and xj in G(Xn, rn) and zero otherwise, represented as

χ[xi ∼ xj] =

 1, ‖xi − xj‖p ≤ rn, i 6= j, p ∈ [1,∞]

0, otherwise.

A similar definition holds for A(Dn) defined over G(Dn, rn). The matrices A(Xn)
and A(Dn) are symmetric and their spectrum consists of real eigenvalues. We denote by
{λi, i = 1, .., n} and {µi, i = 1, .., n} the sets of all real eigenvalues of the real symmetric
square matrices A(Dn) and A(Xn) of order n, respectively. The empirical spectral distri-
bution functions FA(Xn)(x) and FA(Dn) of the adjacency matrices of an RGG and a DGG,
respectively, are defined as Fn(x) and F ′n(x), respectively.

1A matching or independent edge set in a graph is a set of edges without common vertices. Perfect
matching is when every vertex of the graph is incident to exactly one edge of the matching.
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In the following, we first derive our result on the weak asymptotic equivalence of the
sequences of the adjacency matrices of RGGs and DGGs as n → ∞ in the connectivity
regime.

5.2.1 Concentration of the RGG Adjacency Matrix

Let a′n be the degree of the nodes in G(Dn, rn). In the following Lemma 34 we provide an
upper bound for a′n under any `p-metric.

Lemma 34. For any chosen `p-metric with p ∈ [1,∞] and d ≥ 1, we have

a′n ≤ d
1
p2dan

(
1 +

1

2a
1/d
n

)d
.

Proof. Here, we show how to upper bound the vertex degree a′n under any `p-metric,
p ∈ [1,∞]. Assume that G(Xn, rn) and G(Dn, rn) are formed using the `∞-metric and let
an and a′n be their average vertex degree and vertex degree, respectively.

In this case, for a d-dimensional DGG with n = Nd nodes, the vertex degree a′n is
given by [70]

a′n = (2kn + 1)d − 1, with kn = bNrnc and n = Nd.

Therefore, for θ(d) ≥ 2 and d ≥ 1, we have

a′n = (2kn + 1)d − 1 ≤ 2dan
θ(d)

(
1 +

1

2n1/drn

)d
≤ 2dan

(
1 +

1

2a
1/d
n

)d
.

Now, let b′n and bn be the vertex degree and the average vertex degree in G(Dn, rn)
and G(Xn, rn), respectively when using any `p-metric, p ∈ [1,∞]. Notice that for any
p ∈ [1,∞], we have

‖x‖∞ ≤ ‖x‖p.

Then, the number of nodes a′n that falls in the ball of radius rn is greater or equal
than b′n, i.e., a′n ≥ b′n. Hence,

b′n ≤ a′n ≤ 2dan

(
1 +

1

2n1/drn

)d
=
d1/p2dan
d1/p

(
1 +

1

2n1/drn

)d
.

It remains to show the relation between b′n and bn.
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Assume that the RGG is formed by connecting each two nodes when d1/p‖xi−xj‖∞ ≤
rn. This simply means that the graph is obtained using the `∞-metric with a radius equal
to rn

d1/p
. Then, the average vertex degree of this graph is an

d1/p
. In addition, we have

‖x‖p ≤ d
1
p‖x‖∞.

Therefore, we have the inequality

b′n ≤ d1/p2dbn

(
1 +

1

2n1/drn

)d
,

and Lemma 34 follows.

To prove our result on the concentration of the A(Xn) of RGGs and investigate its
relationship with A(Dn) under any `p-metric, we use the Hilbert-Schmidt norm of the
difference between two matrices.

Let Mn be the minimum bottleneck matching distance defined in Lemma 33. Under
the condition Mn = o(rn), we provide an upper bound for the Hilbert-Schmidt norm of
the difference between the adjacency matrices A(Xn) and A(Dn) in the following lemma.

Lemma 35. For d ≥ 1, p ∈ [1,∞] and Mn = o(rn), the Hilbert-Schmidt norm of the
difference between A(Xn) and A(Dn) is upper bounded as

‖A(Xn)−A(Dn)‖2HS ≤ d
1
p2d+1

∣∣∣∣∣ 1n∑
i

N(xi)− an

∣∣∣∣∣
+ d

1
p2d+1

∣∣∣∣∣an − 2

n

∑
i

Li

∣∣∣∣∣+ a′n,

(5.1)

where, N(xi) denotes the degree of xi in G(Xn, rn) and Li ∼ Bin
(
n, θ(d) (rn − 2Mn)

)
.

Proof. Define N(xi, x
′
i)=

∑
j

χ[xi ∼ xj]χ[x′i ∼ x′j] and let N(xi) =
∑
j

χ[xi ∼ xj] and a′n =∑
j

χ[x′i ∼ x′j]. Then, by a straightforward application of Lemma 6, we have

‖A(Xn)−A(Dn)‖2HS =
1

n
Trace [(A(Xn)−A(Dn)]2

=
1

n

∑
i

∑
j

[
χ[xi ∼ xj] − χ[x′i ∼ x′j]

]2
=

1

n

∑
i

N(xi) + a′n −
2

n

∑
i

N(xi, x
′
i).
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We notice that when ‖xi−xj‖p ≤ rn−2Mn, then ‖x′i−x′j‖p ≤ rn. So, all points within
a radius of rn−2Mn of xi map to the neighbors of x′i [77]. Thus, N(xi, x

′
i) is stochastically

greater than the random variable Li ∼ Bin(n, θ(d)(rn − 2Mn)). Hence,

‖A(Xn)−A(Dn)‖2HS ≤
1

n

∑
i

N(xi) + a′n −
2

n

∑
i

Li

≤

∣∣∣∣∣ 1n∑
i

N(xi)−
2

n

∑
i

Li

∣∣∣∣∣+ a′n

≤ d
1
p2d+1

∣∣∣∣∣ 1n∑
i

N(xi)−
2

n

∑
i

Li

∣∣∣∣∣+ a′n.

The condition enforced on rn, i.e., Mn = o(rn) implies that for ε > 0, (5.1) holds when

an scales as Ω(logε(n)
√
n) for d = 1, as Ω(log

3
2
+ε(n)) for d = 2 and as Ω(log1+ε(n)) for

d ≥ 3.

Notice that the term
∑
i

N(xi)/2 in Lemma 35 counts the number of edges in G(Xn, rn).

For convenience, we denote
∑
i

N(xi)/2 as ξn. To show our main result, we apply the

Chebyshev inequality given in Lemma 8 on the random variable ξn. For that, we need to
determine Var(ξn).

Lemma 36. When x1, ..., xn are i.i.d. uniformly distributed in the d-dimensional unit
torus Td = [0, 1]

Var (ξn) ≤ [θ(d) + 2θ(d)an].

Proof. The proof follows along the same lines of Proposition A.1 in [89] when extended
to a unit torus and applied to i.i.d. and uniformly distributed nodes.

We can now state the main theorem on the concentration of the Hilbert-Schmidt norm
of the difference between the adjacency matrices of RGGs and DGGs.

Theorem 37. For d ≥ 1, p ∈ [1,∞], a ≥ 1, Mn = o(rn) and t > 0, we have

P{‖A(Xn)−A(Dn)‖2HS > t} ≤ 2n exp

(
−anε2

3

(
1− 2Mn

rn

))

+
n
[
θ(d)(rn − 2Mn)(a− 1) + 1

]n
a

(
t

d
1
p 2d+3

+
an(2−c)

4

) +
d

2
p22d+6

[
θ(d) + 2θ(d)an

]
n2t2

,
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where ε =

(
t

d
1
p 2d+2an

+
(2− c)

4
− 2Mn

rn

)
and c =

(
1 + 1

2a
1/d
n

)d
.

In particular, for every t > 0, a ≥ 2, ε > 0 and an that scales as Ω(logε(n)
√
n) when

d = 1, as Ω(log2(n)) when d ≥ 2, we have

lim
n→∞

P
{
‖A(Xn)−A(Dn)‖2HS > t

}
= 0.

Proof. We upper bound the probability that the Hilbert-Schmidt norm of the difference
between A(Xn) and A(Dn) is higher than t > 0.

P
{
‖A(Xn)−A(Dn)‖2HS > t

}
≤ P

d 1
p2d+1

∣∣∣∣∣∣∣
∑
i

N(xi)

n
− an

∣∣∣∣∣∣∣+ d
1
p2d+1

∣∣∣∣∣∣∣an −
2
∑
i

Li

n

∣∣∣∣∣∣∣+ a′n > t


≤ P

{∣∣∣∣∣∑
i

N(xi)− nan

∣∣∣∣∣ > nt

d
1
p2d+2

}
+ P

{∣∣∣∣∣nan − 2
∑
i

Li

∣∣∣∣∣ > nt

d
1
p2d+2

− na′n

d
1
p2d+1

}
.

Let

A = P

{∣∣∣∣∣∑
i

N(xi)− nan

∣∣∣∣∣ > nt

d
1
p2d+2

}
,

and

B = P
{∣∣∣nan − 2

∑
i

Li

∣∣∣ > nt

d
1
p2d+2

− na′n

d
1
p2d+1

}
.

We first upper bound the term A using Lemma 8 and 36.

A = P

{∣∣∣∣∣∑
i

N(xi)− nan

∣∣∣∣∣ > nt

d
1
p2d+2

}
= P

{
|ξn − E[ξn]| > nt

d
1
p2d+3

}

≤ d
2
p22d+6Var(ξn)

n2t2
≤
d

2
p22d+6

[
θ(d) + 2θ(d)an

]
n2t2

.

Next, we upper bound B.
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B = P

{∣∣∣∣∣nan − 2
∑
i

Li

∣∣∣∣∣ > nt

d
1
p2d+2

− na′n

d
1
p2d+1

}
≤ nP

{
an − 2Li >

t

d
1
p2d+2

− a′n

d
1
p2d+1

}
+ nP

{
2Li − an >

t

d
1
p2d+2

− a′n

d
1
p2d+1

}
≤ nP

{
|an − Li| >

t

d
1
p2d+3

− a′n

d
1
p2d+2

+
an
2

}
+ nP

{
Li >

t

d
1
p2d+3

− a′n

d
1
p2d+2

+
an
2

}
(a)

≤ nP
{
|an − Li| >

t

d
1
p2d+3

+
an(2− c)

4

}
+ nP

{
Li >

t

d
1
p2d+3

+
an(2− c)

4

}
.

Step (a) follows by applying Lemma 34 and c =
(

1 + 1

2a
1/d
n

)d
. Then,

B ≤ nP
{
|E[Li]− Li| >

t

d
1
p2d+3

+
an(2− c)

4
− 2θ(d)nMn

}
+ nP

{
Li >

t

d
1
p2d+3

+
an(2− c)

4

}
≤ nP {|E[Li]− Li| > anε}

+ nP
{

Li >
t

d
1
p2d+3

+
an(2− c)

4

}
,

where

ε =

(
t

d
1
p2d+2an

+
(2− c)

4
− 2Mn

rn

)
.

We continue by letting

B1 = P {|E[Li]− Li| > anε} .

B2 = P
{

Li >
t

d
1
p2d+3

+
an(2− c)

4

}
.

For n sufficiently large and consequently an sufficiently large, we have 1 ≤ c < 2 and
0 < ε ≤ 3

2
. Therefore, by applying Lemma 13, we upper bound B1 as

P {|E[Li]− Li| > anε}
≤ P

{
|E[Li]− Li| > (an − 2nθ(d)Mn)ε

}
≤ 2 exp

(−ε2
3

(
an − 2nθ(d)Mn

) )
.

63



5.2. Mains Results

The last term B1 is upper bounded by using the Chernoff bound in Lemma 14.

The probability generating function of the binomial random variable Li is given by

[
aθ(d)(rn − 2Mn) + 1− θ(d)(rn − 2Mn)

]n
.

Therefore, for n sufficiently large, 1 ≤ c < 2 and a ≥ 1, we have

B2 ≤
[
θ(d)(rn − 2Mn)(a− 1) + 1

]n
a

 t

d
1
p2d+3

+
an(2− c)

4

 .

Finally, taking the upper bounds of A and B obtained from the upper bounds of B1

and B2 all together, Theorem 37 follows.

This result shows the convergence in probability of the Hilbert-Schmidt norm of the
difference between sequences of adjacency matrices of DGGs and RGGs by a straight-
forward application of Lemma 13 and 14 on the random variable Li, then by applying
Lemma 8 and 36 to ξn. Let us observe that the strong norms of adjacency matrices of
DGGs and RGGs are not uniformly bounded and then the convergence of the Hilbert-
Schmidt norm is not sufficient to prove the asymptotic equivalence of the sequences of
adjacency matrices of DGGs and RGGs.

Therefore, for adjacency matrices, we consider a weaker form of convergence in prob-
ability in terms of the Levy distance introduced in Definition 20 between the eigenvalue
distributions of the adjacency matrices of DGGs and RGGs as implied by the following
inequality

P
(
L3(FA(Xn), FA(Dn)) > t

)
≤ P

(
1

n

n∑
i

|λi − µi|2 > ε

)
≤ P

(
‖A(Xn)−A(Dn)‖2HS > ε

)
. (5.2)

In the limit, as n→∞, (5.2) goes to zero.

5.2.2 Eigenvalues of the Adjacency Matrix

In what follows, we provide the eigenvalues of A(Dn) which approximates the eigenvalues
of A(Xn) for n sufficiently large.

Lemma 38. For d ≥ 1 and using the `∞-metric, the eigenvalues of A(Dn) are given by

λm1,...,md =
d∏
s=1

sin(msπ
N

(a′n + 1)1/d)

sin(msπ
N

)
− 1, (5.3)
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Figure 5.1: An illustration of the cumulative distribution function of the eigenvalues of
the RGG adjacency matrix.

where, m1, ...,md ∈ {0, ...N − 1}, a′n = (2kn + 1)d − 1, kn = bNrnc and n = Nd. The
term bxc is the integer part, i.e., the greatest integer less than or equal to x.

Proof. See Appendix A.4.

The proof utilizes the result in [70] which shows that the eigenvalues of the adjacency
matrix of a DGG in Td are found by taking the d-dimensional DFT of an Nd tensor of
rank d obtained from the first block row of A(Dn).

For ε > 0, Theorem 37 shows that when an scales as Ω(logε(n)
√
n) for d = 1 and as

Ω(log2(n)) when d ≥ 2, the LSD of the adjacency matrix of an RGG concentrate around
the LSD of the adjacency matrix of a DGG as n→∞. Therefore, for n sufficiently large,
the eigenvalues of the DGG given in (5.3) approximate very well the eigenvalues of the
adjacency matrix of the RGG.

5.3 Numerical Results

We present simulations to validate the results obtained on the eigenvalues of the adja-
cency matrix of the RGG. More specifically, we corroborate the theoretical results on the
spectrum of the adjacency matrix of RGGs in the connectivity regime by comparing the
simulated and the analytical results.

Fig. 5.1 shows the cumulative distribution functions of the eigenvalues of the adjacency
matrix of an RGG realization with rn = log(n)√

n
and n = 2000 vertices and the analytical

spectral distribution in the connectivity regime. We notice that for the chosen average
vertex degree an = log(n)

√
n and d = 1, the curves corresponding to the eigenvalues of

the RGG and the DGG fit very well for a large value of n.
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5.4 Conclusions

In this chapter, we studied the eigenvalues distribution of the adjacency matrix of RGGs
in the connectivity regime. Under some conditions on the average vertex degree an, we
showed that the LSDs of the adjacency matrices of an RGG and a DGG converge to the
same limit as n → ∞ in a weaker form of convergence in probability in terms of the
Levy distance. Then, based on the regular structure of the DGG, we approximated the
eigenvalues of A(Xn) by the eigenvalues of A(Dn) by taking the d-dimensional DFT of
an Nd tensor of rank d obtained from the first block row of A(Dn).
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Chapter 6

Spectral Dimension of RGGs

6.1 Introduction

The study of dynamical processes on complex networks is a diverse topic. One of the
important dynamical processes identified by researchers is the process of diffusion on ran-
dom geometric structures. It corresponds to the spread in time and space of a particular
phenomenum. This concept is widely used and find application in a wide range of differ-
ent areas of physics. For example, in percolation theory, the percolation clusters provide
fluctuating geometries [90]. Additional applications are the spread of epidemics [91] and
the spread of information on social networks [92], which are often modeled by random
geometries.

In 1982, the spectral dimension (SD) is introduced for the first time to characterize the
low-frequency vibration spectrum of geometric objects [84] and then has been widely used
in quantum gravity [93]. We recall that in a graph in which a particle moves randomly
along edges from a vertex to another vertex in discrete steps, the diffusion process can be
thought as a stochastic RW. Then, the SD ds is defined in terms of the return probability
P(t) of the diffusion [83]

ds = −2
d ln P(t)

d ln(t)
.

In many applications, an estimator of the SD can serve as an estimator of the intrinsic
dimension of the underlying geometric space [94]. In the fields of pattern recognition
and machine learning [95], the intrinsic dimension of a data set can be thought of as the
number of variables needed in a minimal representation of the data. Similarly, in signal
processing of multidimensional signals, the intrinsic dimension of the signal describes how
many variables are needed to generate a good approximation of the signal. Therefore, an
estimator of the SD of RGGs is relevant and can be used for the estimation of the intrinsic
dimension in applications in which a complex network takes into account the proximity
between nodes.
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In this chapter, we provide an analytical expression for the spectral dimension of RGGs
in the thermodynamic regime.

6.2 Main Results

The main purpose of this chapter is the study of the return-to-origin probability of RWs
and SD on RGGs in the thermodynamic regime. In Chapter 4, we developed techniques
for analyzing the LSD of the regularized normalized Laplacian of RGGs in the thermody-
namic regime. In particular, we showed that the spectrum of the regularized normalized
Laplacian of an RGG can be approximated by the spectrum of the regularized normalized
Laplacian of a DGG with nodes in a grid. Then, we provided an analytical approximation
for the normalized Laplacian eigenvalues of the RGG in the thermodynamic regime. In
this chapter, we use this eigenvalues approximation to find the SD of RGGs in the ther-
modynamic regime. In particular, we use the eigenvalues in the neighborhood of λ1 = 0
to find the spectral dimension ds of RGGs in the thermodynamic regime.

Recall that when the Laplacian spectral density follows a power-law tail, the spectral
dimension ds can be described according to the asymptotic behavior of the normalized
Laplacian operator spectral density

ds
2

= lim
λ→0

log(F (λ))

log(λ)
, (6.1)

with F (λ) being the empirical spectral distribution function of the normalized Laplacian.

As shown in Chapter 3, the long time limit of the return probability P0(t) or equiv-
alently the SD is related to the normalized Laplacian ED in the neighborhood of λ1.
Therefore, to find the spectral dimension of RGGs in the thermodynamic regime, we need
to analyze the behavior of the ED of the regularized normalized Laplacian of RGGs in a
neighborhood of λ1.

Recall that the eigenvalues of the regularized normalized Laplacian of DGGs in the
thermodynamic regime are approximated in the limit as

λ(w) = λw1,...,wd ≈ 1− 1

(γ′ + α)

d∏
s=1

sin(πw
1/d
s (γ′ + 1)1/d)

sin(πw
1/d
s )

+
1− αδw1,...,wd

(γ′ + α)
. (6.2)

We have that he smallest eigenvalue λ1 of the normalized Laplacian is always equal
to zero, hence, 0 = λ1 ≤ λ2 ≤ ... ≤ λn ≤ 2. The second smallest eigenvalue λ2 is called
the Fidler eigenvalue. In the following, we show that the the Fidler eigenvalue, λ2 of the
regularized normalized Laplacian of RGGs goes to zero for large networks, i.e., λ2 → 0 as
n→∞.
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Lemma 39. The Fidler eigenvalue λ2 of RGGs in the thermodynamic regime is approx-
imated as

λ2 ≈
1

(γ′ + α)
+ 1− (1 + γ′)

d−1
d

sin( π
N

(γ′ + 1)1/d)

(γ′ + α) sin( π
N

)
, (6.3)

where n = Nd and γ′ = (2
⌊
γ1/d

⌋
+ 1)d − 1. In particular, as n→∞, λ2 →

α

(α + γ′)
.

Proof. In general, the eigenvalues in (4.4) are unordered, but it is obvious that the smallest
eigenvalue is λ0...0 and the next smallest one is λ1,0...0 = ... = λ0...0,1. Therefore, for n = Nd,
we have

λ2 = λ1,0...0

≈ lim
ms→0

(
1− 1

(γ′ + α)

sin( π
N

(γ′ + 1)1/d)

sin( π
N

)

d∏
s=2

sin(msπ
N

(γ′ + 1)1/d)

sin(msπ
N

)
+

1

(γ′ + α)

)
(6.4)

= 1 +
1

(γ′ + α)
− (1 + γ′)

d−1
d

sin( π
N

(γ′ + 1)1/d)

(γ′ + α) sin( π
N

)
. (6.5)

In large RGGs, i.e., n→∞, we get

lim
n→∞

λ2 ≈ lim
n→∞

[
1 +

1

(γ′ + α)
− (1 + γ′)

d−1
d

sin( π
N

(γ′ + 1)1/d)

(γ′ + α) sin( π
N

)

]
=

α

(α + γ′)
.

This lemma shows that the spectral gap of the regularized normalized Laplacian in
the thermodynamic regime closes as n→∞.

From Figure 6.1(a), we can notice that the eigenvalues of the DGG show a symmetry
and the smallest ones are reached for small values of w. Additionally, for small and
decreasing values of w, the eigenvalues of the regularized normalized Laplacian of DGGs
decrease. Therefore, in the following, we show that the empirical distribution of the
eigenvalues in a neighborhood of λ1, or equivalently, the eigenvalues for small values of w
of the regularized normalized Laplacian of DGGs follow a power-law asymptotics.

The eigenvalues of the regularized normalized Laplacian of RGGs in a neighborhood
of λ1 are then approximated by

λ(w) ≈ 1− 1

(γ′ + α)

[
sin(πw1/d(γ′ + 1)1/d)

sin(πw1/d)

]d
+

1− αδw
(γ′ + α)

,

for w → 0.
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The limiting distribution FL(D)(x) = limn→∞ F
L(Dn)(x) exists and is given by

FL(X )(x) =

∫ 1

0

1(−∞,x] (λ(w)) dw =

∫
λ(w)≤x

dw, (6.6)

where 1S(t) is the characteristic function on a set S defined as

1S(t) =

 1 if t ∈ S,

0 if t /∈ S.

The quantity
∫
λ(w)≤x dw is the measure of the set of all w such that λ(w) ≤ x. There-

fore, to compute (6.6), we only need to find the location of the points w for which λ(w) ≤ x
by solving λ(w) = x. However, The expression of λ(w) includes the Chebyshev polynomi-
als of the 2nd kind. In general there is no closed-form solution for w for this polynomial
function. To find the spectral dimension, only small eigenvalues are of interest. Therefore,
for γ′ finite, we use Taylor series expansion of degree 2 around zero, which is given by

λ(w) ≈ π2

6(γ′ + α)
w2/d(γ′ + 1)

d+2
d .

Figure 6.1(b) validates this approximation and shows that it provides an accurate
approximation. Hence, to compute (6.6), we only need to find the location of the points
w for which λ(w) ≤ x, by solving the new equation

λ(w) = x⇐⇒ π2

6(γ′ + α)
w2/d(γ′ + 1)

d+2
d = x.

By solving with respect to x, we obtain

w =
6d/2(γ′ + α)

d
2

πd(1 + γ′)(2+d)/2
xd/2.

Thus, the LSD of the normalized Laplacian of the RGG, FL(Xn)(x) for small x is
approximated by

FL(Xn)(x) ≈ 6d/2(1 + γ′ + 1)−
2+d
2

πd
xd/2. (6.7)

From (6.7), it is apparent that the empirical distribution of the eigenvalues, FL(Dn)(x)
of the regularized normalized Laplacian of a DGG in a neighborhood of λ1 follows a
power-law tail asymptotics.

Therefore, combining (6.1) and (6.7), we get the spectral dimension ds of RGGs in the
thermodynamic regime as
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(a) Eigenvalues of the DGG for
γ = 8 (blue line) and γ = 28 (red
line), d = 1.

(b) Comparison between the An-
alytical eigenvalues (blue) and its
Taylor series approximation of
degree 2 around zero (dashed or-
ange) for γ = 12, α = 0.1, d = 2.

Figure 6.1: Eigenvalues of the DGG.

ds ≈ lim
x→0

2 log
(
FL(Xn)(x)

)
log (x)

= lim
x→0

2 log

(
6d/2(γ′ + α)

d
2

πd(1 + γ′)(2+d)/2
xd/2

)
log (x)

= d.

This result generalizes the existing work on the standard lattice in which it has already
been shown that its spectral dimension, ds, and its Euclidean dimension coincide. In this
work, we show that the spectral dimension in DGGs with nodes in a grid is equal to the
space dimension d and is an approximation for the spectral dimension of the RGG in the
thermodynamic regime. Thus, by taking a vertex degree in the DGG corresponding to
the standard lattice, we retrieve the result for the lattice.

6.3 Conclusions

This chapter investigates the spectral dimension of RGGs in the thermodynamic regime.
The notion of spectral dimension could serve as an estimator of the intrinsic dimension of
the underlying geometric space in many problems. The intrinsic dimension in RGGs is a
technique that might be used to cope with high dimensionality data of networks modeled
as RGGs. The spectral dimension can be described according to the LSD of the nor-
malized Laplacian in a neighborhood of zero. Therefore, in this chapter we provided an
analytical approximation for the eigenvalues of an RGG regularized normalized Laplacian
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in a neighborhood of zero. Then, using Taylor series expansion around zero, we approxi-
mate the empirical distribution of low-eigenvalues which is useful for the derivation of the
spectral dimension in thermodynamic regime. The study shows that the spectral dimen-
sion ds for RGGs is approximated by the Euclidean dimension d in the thermodynamic
regime.
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Chapter 7

Conclusions and Perspectives

In this Ph.D. manuscript, we tackled the problem of spectral analysis of random geometric
graphs in different regimes using techniques from random matrix theory and probability
theory. In this chapter, we summarize the main contributions of this thesis and discuss
some possible extensions.

7.1 Summary of Contributions

As mentioned in Chapter 1, one possible way of describing a complex system is to consider
the system as a graph consisting of a set of vertices connected by links. In this case, the
graph may be represented by several matrices, such as adjacency or Laplacian matrices.
Then, the set of eigenvalues of one of these matrices is known as the network’s spectrum
and is utilized as a tool to understand topological and dynamical characteristics of a
network.

This thesis focuses on the theoretical understanding of the spectrum of large RGGs
in different regimes. The spectrum analysis of different matrices on RGGs allows us to
provide improvements over the existing results. We tackled this problem by benefiting
from a concentration phenomena in large size graphs in the connectivity and dense regime.

More precisely, in Chapter 4, we analyzed the spectrum of the regularized normalized
Laplacian of RGGs in different regimes. First, we proposed an approximation for the RGG
regularized normalized Laplacian matrix and obtained a bound on the probability that the
Hilbert-Schmidt norm of the difference between the approximation and the actual matrix
is greater than a certain threshold in both connectivity and thermodynamic regime. In
particular, in the connectivity regime, we proved that the normalized Laplacian matrices
of the RGG and the DGG are asymptotically equivalent with high probability. In the
thermodynamic regime, we approximated the spectrum of the RGG regularized normal-
ized Laplacian with the DGG regularized normalized Laplacian matrix, and we provided
an upper bound for the approximation error. Therefore, we used the deterministic struc-
ture of the DGG to provide an analytical closed form approximation for the eigenvalues
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of the RGG in both the connectivity and thermodynamic regime. In particular, In the
connectivity regime, when n→∞, we showed that the LSD of the normalized Laplacian
matrix of RGGs converges with high probability to the Dirac distribution at one in the
full range of the connectivity regime.

In Chapter 5, we studied the spectrum of the adjacency matrix of RGGs in the con-
nectivity regime. Under some conditions on the average vertex degree an, and using
Hilbert-Schmidt norm, we showed that the Levy distance of the eigenvalue distributions
of the adjacency matrix of RGGs and DGGs vanishes with high probability as n → ∞.
Then, for n finite, based on the regular structure of the DGG, we approximated the
eigenvalues of the adjacency matrix of the RGG by the ones of the DGG by taking the
d-dimensional DFT of an Nd tensor of rank d obtained from the first block row of A(Dn).

Finally, due to the link between dynamical processes such as diffusion and the nor-
malized Laplacian matrix, we apply the analysis in Chapter 4 to understand how the
return probability distribution and spectral dimension of an RGG is affected by the RGG
normalized Laplacian spectrum. More precisely, we investigated the spectral dimension of
RGGs in the thermodynamic regime using the expression of eignevalues of the regularized
normalized Laplacian found in Chapter 4. We derived an analytical approximation of the
eigenvalues of the RGG regularized normalized Laplacian matrix in a neighborhood of
λ1 = 0. Then, using Taylor series expansion around zero, we approximated the empirical
distribution of low-eigenvalues useful for the derivation of the spectral dimension in the
thermodynamic regime. The analysis shows that the spectral dimension ds for RGGs is
approximated by the Euclidean dimension d in the thermodynamic regime.

7.2 Perspectives

The different contributions discussed in this manuscript can be extended in multifold
directions and, used as a starting point to explore other and more efficient solutions. In
the following, we give possible future research directions inspired by the findings presented
in this thesis.

7.2.1 Spectrum Analysis of RGGs Using Free Probability Ap-
proach

In this thesis, we provided an approximation for the eigenvalues of the regularized normal-
ized Laplacian of RGG asymptotically in both connectivity and thermodynamic regime.
A limit of the analysis in the thermodynamic regime is that the obtained error bound
requires an average vertex degree finite but large enough for a good approximation. This
is because the trace norm bound shown in Chapter 4, which is, to the best of our knowl-
edge, the tightest bound found in this regime, is still not tight enough. Therefore, one
possible extension in this spirit is to investigate RGG spectrum using the free probability
approximation proposed in [46], [96]. In RMT, free probability theory is a very powerful
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tool in the understanding of diverse properties of matrices, most notably, statistics of
matrix eigenvalues. Hence, it can be investigated whether free probability approach can
be developed to provide more accurate spectrum.

7.2.2 RGGs in Hyperbolic Space

In this work, we studied the RGG which is an important model for spatial networks.
However, RGGs do not fit perfectly on the real world spatial networks in every aspect.
Therefore, various sophisticated RGGs are worth to be considered to improve this draw-
back.

Results in network science have shown that hyperbolic geometry in particular is well-
suited for modeling complex networks [97]. Typical properties such as heterogeneous
degree distributions and strong clustering can often be explained by assuming an under-
lying hierarchy which is well captured in hyperbolic space [97].

These observations offer new perspectives of analyzing RGG structural properties in
non-Euclidean space, and led, for instance, to consider as an extension, RGGs with real-
world properties by sampling nodes uniformly in the hyperbolic space. In such case, one
can investigate if the results obtained in this thesis continue to hold, and if not, how they
change.

7.2.3 Spectral Properties of Geometric Block Models (GBMs)

Another relevant extension of our analysis would be to consider and investigate a random
graph for community detection analogous to the stochastic block model (SBM) [98], called
the geometric block model (GBM) [99].

The SBM has been incredibly popular in theoritical and practical domains of commu-
nity detection. However, one aspect that SBM does not take into account but GBM does
is the so-called transitivity rule. Formally, the transitivity rule is defined as follows: if x,
y and z are three vertices in the graph. Then, if x and y are connected or are in the same
community and y and z are also connected by an edge or are in the same community,
then it is more likely that x and z are connected by an edge. This phenomenon is seen in
many real-world networks. For example, in social networks there is the phenomena that
friends having common friends is translated by the transitivity rule.

Recently, there has been contributions on GBM community detection problem. The
authors in [99] and [100] investigated the GBM community detection using the triangle
counting technique. Then, they showed that the simple triangle counting algorithm to
detect communities in the GBM is near-optimal in the regime where the average vertex
degree of the graph grows logarithmically with the number of vertices. They found that
the triangle counting algorithm performs extremely well compared to its application in
SBM. In the future, we can investigate the community detection problem in GBM by
analyzing the eigenvalues and eigenvectors of GBM normalized Laplacian matrix in both
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connectivity and thermodynamic regime, and compare the performance of the spectral
clustering algorithm with the triangle counting algorithm.
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Appendix A

Supplementary Material Chapter 4

A.1 Proof of Theorem 29

In this appendix, we provide an upper bound for the probability that the Hilbert-Schmidt
norm of the difference between the regularized normalized Laplacian matrices L̂(Xn) and
L̂(Dn) is higher than

t > max

[
4 (n+ 2α) a′n + 4α2

n(a′n + α)2
,
8 (n+ 2α) an + 4α2

n(an + α)2

]
. (A.1)

P
{
‖L̂(Xn)− L̂(Dn)‖2HS > t

}
≤ P

{∣∣∣∣∣ 1n∑
i

∑
j

(
χ[xi ∼ xj] + α

n

)2
(N(xi) + α)(N(xj) + α)

− b

n(a′n + α)2

∣∣∣∣∣
+

∣∣∣∣∣∣∣∣∣
2b

n(a′n + α)2
−

2

(∑
i

N(xi, x
′
i) + α

n

∑
i

N(xi) + αa′n + α2

)
n(a′n + α)

(∑
i

√
N(xi) + α

)2

∣∣∣∣∣∣∣∣∣ > t


≤ P

{∣∣∣∣∣ 1n∑
i

∑
j

(
χ[xi ∼ xj] + α

n

)2
(N(xi) + α)(N(xj) + α)

− b

n(a′n + α)2

∣∣∣∣∣ > t

2

}
+

P


∣∣∣∣∣∣∣∣∣

2b

n(a′n + α)2
−

2

(∑
i

N(xi, x
′
i) + α

n

∑
i

N(xi) + αa′n + α2

)
n(a′n + α)

(∑
i

√
N(xi) + α

)2

∣∣∣∣∣∣∣∣∣ >
t

2

 .
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Define,

A =

∣∣∣∣∣∣∣∣∣
2b

n(a′n + α)2
−

2

(∑
i

N(xi, x
′
i) + α

n

∑
i

N(xi) + αa′n + α2

)
n(a′n + α)

(∑
i

√
N(xi) + α

)2

∣∣∣∣∣∣∣∣∣ ,
and

B =

∣∣∣∣∣ 1n∑
i

∑
j

(
χ[xi ∼ xj] + α

n

)2
(N(xi) + α)(N(xj) + α)

− b

n(a′n + α)2

∣∣∣∣∣ .
In the following, we upper bound P

{
A >

t

2

}
and P

{
B >

t

2

}
.

First, we write P
{
A >

t

2

}
as

P
{
A >

t

2

}
= P


∣∣∣∣∣∣∣∣∣

2b

n(a′n + α)2
−

2

(∑
i

N(xi, x
′
i) + α

n

∑
i

N(xi) + αa′n + α2

)
n(a′n + α)

(∑
i

√
N(xi) + α

)2

∣∣∣∣∣∣∣∣∣ >
t

2



P
{
A >

t

2

}
= P


∣∣∣∣∣∣∣∣∣1−

(a′n + α)

[∑
i

N(xi, x
′
i) + α

n

∑
i

N(xi) + αa′n + α2

]
b

(∑
i

√
N(xi) + α

)2

∣∣∣∣∣∣∣∣∣ >
tn(a′n + α)2

4b


(a)
= P

b
(∑

i

√
N(xi) + α

)2

− (a′n + α)

[∑
i

N(xi, x
′
i) +

α

n

∑
i

N(xi)

+ αa′n + α2
]
>
tn(a′n + α)2

4

(∑
i

√
N(xi) + α

)2


= P


(
b− tn(a′n + α)2

4

)(∑
i

√
N(xi) + α

)2

> (a′n + α)

[∑
i

N(xi, x
′
i) +

α

n

∑
i

N(xi) + αa′n + α2

]}
.

Note that
∑
i

N(xi, x
′
i) ≤ na′n and N(xi) ≤ n. Then, in step (a) for n sufficiently large,

we remove the absolute value because
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∑
i

N(xi, x
′
i) + α

n

∑
i

N(xi) + αa′n + α2

b

(∑
i

√
N(xi) + α

)2 ≤ na′n + αn+ αa′n + α2

b

(∑
i

√
N(xi) + α

)2

≤

(
1 + α

a′n
+ α

n
+ α2

na′n

)
(

1 + 2α
n

+ α2

na′n

)
n2α

≤ 1.

Notice from the last equality that,
tn(a′n + α)2

4
> b⇔ t >

4na′n + 4α2 + 8αa′n
n(a′n + α)2

. Then

P
{
A >

t

2

}
= 0 for t >

4na′n + 4α2 + 8αa′n
n(a′n + α)2

. (A.2)

We continue further by bounding P
{
B >

t

2

}
as

P
{
B >

t

2

}
= P

{∣∣∣∣∣ 1n∑
i

∑
j
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χ[xi ∼ xj] + α

n
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}
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n
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n
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n
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(an + α)2
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}
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∑
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−
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+ P
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n
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}
.

Let

B1 =

∣∣∣∣∣ 1n∑
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∑
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(χ[xi ∼ xj] + α
n
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(an + α)2
− b

n(a′n + α)2

∣∣∣∣∣ ,
and

B2 =

∣∣∣∣∣ 1n∑
i

∑
j

(
(χ[xi ∼ xj] + α

n
)2

(N(xi) + α)(N(xj) + α)
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In the following, we upper bound the two probabilities P
{
B1 >

t

4

}
and P

{
B2 >

t

4

}
.

First, we write P
{
B1 >

t

4

}
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t

4

}
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(A.3)

Step (a) follows from
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8 (n+ 2α) an + 4α2

n(an + α)2
. Then,

P
{
D >

tn2(an + α)2 − 4nα2

8

}
= 0 for t >

8 (n+ 2α) an + 4α2

n(an + α)2
. (A.5)

Finally, we upper bound the remaining probability P
{
C2 >

tn

4

}
as

P
{
C2 >

tn

4

}
= P

{∑
i

∑
j

(χ[xi ∼ xj] + α
n
)2

(N(xi) + α)(N(xj) + α)
−
∑
i

∑
j

(χ[xi ∼ xj] + α
n
)2

(an + α)2
>
tn

4

}

= P

{∑
i

∑
j

(χ[xi ∼ xj] + α
n
)

(N(xi) + α)

(χ[xi ∼ xj] + α
n
)

(N(xj) + α)

−
∑
i

∑
j

(χ[xi ∼ xj] + α
n
)2

(an + α)2
>
tn

4

}
(a)

≤ P


(∑

i

∑
j

(χ[xi ∼ xj] + α
n
)2

(N(xi) + α)2

) 1
2
(∑

i

∑
j

(χ[xi ∼ xj] + α
n
)2

(N(xj) + α)2

) 1
2

−
∑
i

∑
j

(χ[xi ∼ xj] + α
n
)2

(an + α)2
>
tn

4

}

= P

{∑
i

∑
j

(
χ[xi ∼ xj] + α

n

)2
(N(xi) + α)2

−
∑
i

∑
j

(χ[xi ∼ xj] + α
n
)2

(an + α)2
>
tn

4

}
.

(A.6)
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Step (a) follows from applying Cauchy-Schwarz inequality. Then

P
{
C2 >

tn

4

}
≤ P

{∑
i

∑
j

(
χ[xi ∼ xj] +

α

n

)2 ∣∣∣∣ 1

(N(xi) + α)2
− 1

(an + α)2

∣∣∣∣ > tn

4

}

≤ P

{∑
i

∣∣(an + α)2 − (N(xi) + α)2
∣∣ > tn(an + α)2

4

}

≤ P

{∑
i

|an −N(xi)|2 + 2(an + α)
∑
i

|an −N(xi)| >
tn(an + α)2

4

}

≤ P

{∑
i

|an −N(xi)|2 >
tn(an + α)2

8

}
+ 2P

{∣∣∣∣∣∑
i

N(xi)− nan

∣∣∣∣∣ > tn(an + α)

16

}
.

(A.7)

Finally, P
{
C1 >

tn
4

}
is upper bounded by the sum of (A.4) and (A.5). We Use this

result combined with the upper bound of P
{
C2 >

tn
4

}
given in (A.7) to upper bound

the term P
{
B2 >

t
4

}
. Then, apply the new upper bound with (A.2) and (A.3) to upper

bound (4.3) and therefore Theorem 29 follows.

A.2 Proof of Lemma 30

In this appendix we show that for an ≥
2d1+1/p

2d− 1
and any `p-metric, p ∈ [1,∞], the vertex

degree a′n of G(Dn, rn) is lower bounded as

an
2d1+1/p

≤ a′n. (A.8)

First, we show that (A.8) holds under the Chebyshev distance. Let an RGG and a
DGG be obtained by connecting two nodes if the Chebyshev distance between them is at
most rn > 0. Recall that the Chebyshev distance corresponds to the metric given by the
`∞-norm. Then, the degree of a d-dimensional DGG with n nodes formed by using the
Chebyshev distance is given by [70]

a′n =
(
2bn1/drnc+ 1

)d − 1

=
(
2ba1/dn c+ 1

)d − 1,

where bxc is the integer part, i.e., the greatest integer less than or equal to x.

For p =∞, we have

an
2d
≤ a′n ⇐⇒ an ≤ 2da′n ⇐⇒ an ≤ 2d

(
2ba1/dn c+ 1

)d − 2d

⇐⇒ (an + 2d) ≤ 2d
(
2ba1/dn c+ 1

)d
.
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Notice that ba1/dn c ≥ (a
1/d
n − 1), then it is sufficient to show that

(an + 2d) ≤ 2d
(
2(a1/dn − 1) + 1

)d ⇐⇒ (an + 2d) ≤ 2d
(
2a1/dn − 1

)d
⇐⇒

(
1

2d
+

1

an

)
≤
(

2− 1

a
1/d
n

)d
.

By taking the log in both sides of the last inequality, yields

ln

(
1

2d
+

1

an

)
≤ d ln

(
2− 1

a
1/d
n

)
.

Consequently, under the Chebyshev distance, (A.8) holds for an ≥ 2d
2d−1 .

Next, we show that (A.8) holds under any `p-metric, p ∈ [1,∞]. Let bn and b′n be the
degrees of an RGG and a DGG formed by connecting each two nodes when d1/p‖xi−xj‖∞
≤ rn. This simply means that the graphs are obtained using the Chebyshev distance with

a radius equal to
rn
d1/p

. Then, the degree of the DGG can be written as

b′n =
(
2
⌊
b1/dn

⌋
+ 1
)d − 1.

When p = ∞, we have that (A.8) holds. Therefore, we deduce that for bn ≥
2d

2d− 1
,

we get
bn
2d
≤ b′n.

Note that for any `p-metric with p ∈ [1,∞) in Rd, we have

‖xi − xj‖p ≤ d1/p‖xi − xj‖∞.

Then the number of nodes a′n in the DGG that falls in the ball of radius rn is greater or
equal than b′n, i.e., b′n ≤ a′n. Therefore,

bn
2d

=
an

2d1+1/p
≤ b′n ≤ a′n.

Hence, for an ≥
2d1+1/p

2d− 1
, we get

an
2d1+1/p

≤ a′n.
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A.3 Proof of Corollary 4 and Theorem 31

In this Appendix, we show that the LSD of the regularized normalized Laplacian for a
DGG is a good approximation for the LSD of the regularized normalized Laplacian for an
RGG in both the connectivity and thermodynamic regimes.

To upper bound the terms obtained in Theorem 29, we use the Chebyshev inequal-

ity. Notice that
∑
i

N(xi)/2 that appears in Theorem 29 counts the number of edges in

G(Xn, rn). For convenience, we denote
∑
i

N(xi)/2 as ξn. In order to apply the Chebyshev

inequality, we determine the variance of the number of edges, i.e.,Var(ξn).

Let ϑ =
[
θ(d) + 2(n− 2)(θ(d))2rdn

]
. In the following, we upper bound the probabilities

given in Theorem 29 using Lemma 8 and 36.

We start by upper bounding the first term as follows:

P

{∣∣∣∣∣∑
i

N(xi)− nan

∣∣∣∣∣ > tn(an + α)2 − 4α2

4
(
1 + 2α

n

) − nan

}
=

P

{
|ξn − E[ξn]| > tn(an + α)2 − 4α2

8
(
1 + 2α

n

) − nan

}

≤
82
(
1 + 2α

n

)2
Var(ξn)[

tn(an + α)2 − 4α2 − 8(1 + 2α
n

)nan
]2

=
82
(
1 + 2α

n

)2
(n− 1)ϑ

n
[
tn(an + α)2 − 4α2 − 8(1 + 2α

n
)nan

]2 , (A.9)

and

P

{∣∣∣∣∣∑
i

N(xi)− nan

∣∣∣∣∣ > tn(an + α)

16

}
≤ 322Var(ξn)

t2n2(an + α)2

=
322(n− 1)ϑ

t2n3(an + α)2
. (A.10)

Finally, we upper bound the last term as

P

{∑
i

|N(xi)− an|2 >
nt(an + α)2

8

}
≤ P


(∑

i

|N(xi)− an|

)2

>
nt(an + α)2

8


= P

{∑
i

|N(xi)− an| >
(an + α)

√
nt

2
√

2

}
.
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Then,

P

{∑
i

|N(xi)− an|2 >
nt(an + α)2

8

}
≤ 2P

{∣∣∣∣∣∑
i

N(xi)− nan

∣∣∣∣∣ > (an + α)
√
nt

2
√

2

}

= 2P
{
|ξn − E[ξn]| > (an + α)

√
nt

4
√

2

}
≤ 64(n− 1)ϑ

tn2(an + α)2
.

(A.11)

Corollary 4 for the thermodynamic regime is obtained from upper bounding the terms
in the r.h.s of (4.3) in Theorem 29 obtained in (A.9), (A.10) and (A.11). In addition, by
letting α→ 0, the provided upper bounds hold in the connectivity case.

In the following, we propose a tighter upper bound for the Hilbert-Schmidt norm of
the difference between L(Dn) and L(Xn) in the connectivity regime. More precisely, the
following upper bounds are tighter when the average vertex degree scales as Ω(log1+ε(n))
or for an = c log(n) when c > 24.

First, observe that the number of nodes that fall in an arbitrary interval of radius rn
follows a binomial distribution. Then in order to derive the distribution of N(xi), we need
to derive the distribution of the nodes that fall in a ball centered in xi. To derive the
distribution of N(xi) in the connectivity regime, we throw at random a node which will
be in a random position and we are left with n−1 nodes. Then, we take a ball of size 2rn,
centered around the thrown node. If we throw randomly the remaining n−1 nodes, then,
N(xi) will be a random variable binomially distributed with parameters (n − 1, θ(d)rn),
i.e.,

P(N(xi) = k) =

(
n− 1

k

)
(θ(d)rn)k(1− θ(d)rn)n−k−1, for k = 0, ..., n− 1.

To upper bound the terms in the r.h.s of (4.3) given in Theorem 29, we use the upper
bounds for a binomially distributed random variable x given in Chapter 3 appropriate for
large deviations. These results play a key role to establish the relation between FL(Xn)

and FL(Dn).

We upper bound the first term in the r.h.s of (4.3) in Theorem 29 by using Lemmas
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12 and 13 as follows:

P

{∣∣∣∣∣∑
i

N(xi)− nan

∣∣∣∣∣ > tna2n
4
− nan

}
(a)

≤ P

{∑
i

|N(xi)− an| >
nta2n

4
− nan

}
(b)

≤ nP
{
|N(xi)− an| >

ta2n
4
− an

}
≤ nP

{
N(xi) >

ta2n
4

}
+ nPP

{
N(xi) < 2an −

ta2n
4

}

≤ n exp

− (tan − 4)2

16
(
t
6
− 2rn

a2n
+ 4

3an

)
 , for t >

8

an
.

(A.12)

Step (a) follows from

∣∣∣∣∑
i

zi

∣∣∣∣ ≤∑
i

|zi| and step (b) from
∑
i

|N(xi)− an| ≤ n |N(xi)− an|.

Now, instead of upper bounding the two last probabilities given in Theorem 29, we go
back to Appendix A.1 and upper bound (A.6) by letting α→ 0.

P
{
C2 >

tn

4

}
≤ P

{∑
i

∑
j

χ[xi ∼ xj]
2

N(xi)2
−
∑
i

∑
j

χ[xi ∼ xj]
2

a2n
>
tn

4

}

≤ nP
{

1

N(xi)
− N(xi)

a2n
>
t

4

}

P
{
C2 >

tn

4

}
= nP

{
a2n −N(xi)

2 >
ta2nN(xi)

4

}
= nP

{[
a2n −N(xi)

2
]

+
ta2n
4

[an −N(xi)] >
ta3n
4

}
≤ nP

{∣∣a2n −N(xi)
2
∣∣ > ta3n

8

}
+ nP

{
|an −N(xi)| >

an
2

}
≤ nP

{
−N(xi)

2 >
ta3n
8
− a2n

}
+ nP

{
|an − rn −N(xi)| >

an − rn
2

}
+ nP

{
N(xi) > an − rn +

√
ta3n
8

+ a2n − an + rn

}

= nP
{
−N(xi)

2 >
ta3n
8
− a2n

}
+ nP

{
|N(xi)− E[N(xi)]| >

an − rn
2

}
+ nP

{
N(xi) > E[N(xi)] +

√
ta3n
8

+ a2n − an + rn

}
.
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Then, applying Lemma 12 and 13, yields

P
{
C2 >

tn

4

}
≤ 2n exp

(
−(an − rn)

12

)
+ n exp

−3an

[√
t
8
an + 1− 1 + rn

an

]2
2
[
2− 2rn

an
+
√

t
8
an + 1

]
 ,

(A.13)

for t >
8

an
.

Finally, taking the upper bounds found by using the Chebyshev inequality in (A.9),
(A.10) and (A.11) combined with the upper bounds found by using Lemmas 12 and 13,
i.e., (A.12), (A.13) all together, then by applying Lemma 30 and letting α→ 0, Theorem
31 follows.

A.4 Proof of Lemma 32 and Lemma 38

In this appendix, we provide the eigenvalues of the regularized normalized Laplacian
matrix for a DGG using the Chebyshev distance. Then, the degree of a vertex in G(Dn, rn)
is given as [70]

a′n = (2kn + 1)d − 1, with kn = bNrnc ,

where bxc is the integer part, i.e., the greatest integer less than or equal to x. The
regularized normalized Laplacian can be written as

L̂(Dn) = I− 1

(a′n + α)
A− α

n(a′n + α)
11T , (A)

where I is the identity matrix, 1T = [1, ..., 1]T is the vector of all ones and A is the
adjacency matrix defined as

Aij =

 1, ‖xi − xj‖p ≤ rn, i 6= j, and p ∈ [1,∞],

0, otherwise.

When d = 1, the adjacency matrix A of a DGG in T1 with n nodes is a circulant
matrix. A well known result appearing in [51], states that the eigenvalues of a circulant
matrix are given by the DFT of the first row of the matrix. When d > 1, the adjacency
matrix of a DGG is no longer circulant but it is block circulant with Nd−1×Nd−1 circulant
blocks, each of size N × N. The author in [70], pages 85-87, utilizes the result in [51],
and shows that the eigenvalues of the adjacency matrix in Td are found by taking the
d-dimensional DFT of an Nd tensor of rank d obtained from the first block row of (A)

λm1,...,md =
N−1∑

h1,...,hd=0

ch1,...,hd exp

(
−2πi

N
m.h

)
, (A.14)
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where m and h are vectors of elementsmi and hi, respectively, withm1, ...,md ∈ {0, 1, ...,N−
1} and ch1,...,hd defined as [70]

ch1,...,hd =

 0, for kn < h1, ..., hd ≤ N− kn − 1 or h1, ...hd = 0,

1, otherwise.
(A.15)

The eigenvalues of the block circulant matrix A follow the spectral decomposition [70],
page 86,

A = FHΛF,

where Λ is a diagonal matrix whose entries are the eigenvalues of A, and F is the d-
dimensional DFT matrix. It is well known that when d = 1, the DFT of an n× n matrix
is the matrix of the same size with entries

Fm,k =
1√
n

exp (−2πimk/n) for m, k = {0, 1, ..., n− 1}.

When d > 1, the block circulant matrix A is diagonalized by the d-dimensional DFT
matrix F = FN1

⊗
...
⊗

FNd , i.e., tensor product, where FNd is the Nd-point DFT matrix.

Notice that all the matrices in (A) have a common eigenvector that is
(

1√
n
, ..., 1√

n

)
and this eigenvector coincides with the first row and column of F. Then,

(
1√
n
, ..., 1√

n

)
is

also an eigenvector of L̂(Dn).

The regularized normalized Laplacian can be expressed as

L̂(Dn) = I− 1

(a′n + α)
FHΛF− α

n(a′n + α)
11T

= FH

(
I− 1

(a′n + α)
Λ− α

n(a′n + α)
F11TFH

)
F

= FH

(
I− 1

(a′n + α)
Λ− nα

n(a′n + α)
eT1 e1

)
F

= FHΛ1F, (A.16)

where e1 = (1, 0...0) and Λ1 =
(
I− 1

(a′n+α)
Λ− nα

n(a′n+α)
eT1 e1

)
is a diagonal matrix whose

diagonal elements are the eigenvalues of L̂(Dn). Then, from (A.16), the derivation of
the eignevalues of L̂(Dn) reduces to the derivation of the eigenvalues of the normalized
adjacency matrix A′.

The normalized adjacency matrix A′ is defined as

A′ =
1

(a′n + α)
A.
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By using (A.14) and (A.15), the eigenvalues of A′ for a DGG in Td are given as

λ′m1,...,md
=

1

(a′n + α)

[
N−1∑

h1,...,hd=0

exp

(
−2πimh

N

)
−

N−kn−1∑
h1,...,hd=kn+1

exp

(
−2πimh

N

)]
− 1

(a′n + α)

= − 1

(a′n + α)

N−kn−1∑
h1,...,hd=kn+1

exp

(
−2πimh

N

)
− 1

(a′n + α)

λ′m1,...,md
= − 1

(a′n + α)

d∏
s=1

(
e
−2imsπ

N
kn − e 2imsπ

N
(1+kn)

)
(
−1 + e

2imsπ
N

) − 1

(a′n + α)

=
1

(a′n + α)

d∏
s=1

(
e

2imsπ
N

(1+kn) − e−2imsπ
N

kn
)

(
−1 + e

2imsπ
N

) − 1

(a′n + α)

=
1

(a′n + α)

d∏
s=1

sin(msπ
N

(2kn + 1))

sin(msπ
N

)
− 1

(a′n + α)
.

Then, we conclude that the eigenvalues of L̂(Dn) for n finite are given by

λ̂m1,...,md = 1− 1

(a′n + α)

d∏
s=1

sin(msπ
N

(2kn + 1))

sin(msπ
N

)
+

1− αδm1,...,md

(a′n + α)

λ̂m1,...,md = 1− 1

(a′n + α)

d∏
s=1

sin(msπ
N

(a′n + 1)1/d)

sin(msπ
N

)
+

1− αδm1,...,md

(a′n + α)
,

with m1, ...,md ∈ {0, ...N−1} and δm1,...,md = 1 when m1, ...,md = 0 otherwise δm1,...,md =
0.

In particular, as α→ 0, the eigenvalues of L(Dn) in the connectivity regime are given
by

λm1,...,md = 1− 1

a′n

d∏
s=1

sin(msπ
N

(a′n + 1)1/d)

sin(msπ
N

)
+

1

a′n
, (A.17)

with m1, ...,md ∈ {0, ...,N− 1}.
In the thermodynamic regime, for s ∈ {0, ..., d} we let fs = ms

N
then as n → ∞,

fs ∈ Q ∩ [0, 1] where Q denotes the set of rational numbers. Therefore, for γ ≥ 1, the
eigenvalues of L̂(Xn) can be approximated by the eigenvalues of L̂(Dn) given as

λ̂f1,...,fd = 1− 1

(γ′ + α)

d∏
s=1

sin(πfs(γ
′ + 1)1/d)

sin(πfs)
+

1− αδf1,...,fd
(γ′ + α)

, (A.18)

where γ′ = (2
⌊
γ1/d

⌋
+1)d−1 and δf1,...,fd = 1 when f1, ..., fd = 0, otherwise δf1,...,fd = 0.
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