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Techniques de codage pour le stockage à long terme d’images
numériques dans l’ADN synthétique

Résumé

L’explosion de la quantité de données est l’un des plus grands défis de
l’évolution numérique, entraînant une croissance de la demande de stockage
à un rythme tel qu’elle ne peut pas rivaliser avec les capacités réelles des pé-
riphériques. L’univers numérique devrait atteindre plus de 175 zettaoctets
d’ici 2025, tandis que le 80% de ces données est rarement consultée (données
froides), mais archivée sur des bandes magnétiques pour des raisons de sécu-
rité et de conformité réglementaire. Les dispositifs de stockage convention-
nels ont une durée de vie limitée de 10 à 20 ans et doivent donc être fréquem-
ment remplacés pour garantir la fiabilité des données, un processus qui est
coûteux en termes d’argent et d’énergie. L’ADN est un candidat très promet-
teur pour l’archivage à long terme de données «froides» pendant des siècles
voire plus à condition que l’information soit encodée dans un flux quater-
naire constitué des symboles A, T, C, G, pour représenter les 4 composants
de la molécule d’ADN, tout en respectant certaines contraintes d’encodage
importantes. Dans cette thèse, nous présentons de nouvelles techniques de
codage pour le stockage efficace d’images numériques dans l’ADN. Nous
avons implémenté un nouvel algorithme de longueur fixe pour la construc-
tion d’un code quaternaire robuste qui respecte les contraintes biologiques et
proposé deux fonctions de "mapping" différentes pour permettre une flexi-
bilité par rapport aux besoins d’encodage. De plus, l’un des principaux défis
du stockage des données dans l’ADN étant le coût élevé de la synthèse, nous
faisons une toute première tentative pour introduire une compression con-
trôlée dans la solution de codage proposée. Le codec proposé est compétitif
par rapport à l’état de l’art. En outre, notre solution de codage / décodage de
bout en bout a été expérimentée dans une expérience de laboratoire humide
pour prouver la faisabilité de l’étude théorique dans la pratique.

Mots clés: Stockage de données dans l’ADN, Codage d’images, ADN syn-
thetique, Compression d’images, Codage robuste
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Encoding techniques for long-term storage of digital images
into synthetic DNA

Abstract

Data explosion is one of the greatest challenges of digital evolution, causing
the storage demand to grow at such a rate that it cannot compete with the
actual capabilities of devices. The digital universe is forecast to grow to over
175 zettabytes by 2025 while 80% is infrequently accessed (“cold” data), yet
safely archived in off-line tape drives due to security and regulatory compli-
ance reasons. At the same time, conventional storage devices have a limited
lifespan of 10 to 20 years and therefore should be frequently replaced to en-
sure data reliability, a process which is expensive both in terms of money and
energy. Recent studies have shown that due to its biological properties, DNA
is a very promising candidate for the long-term archiving of “cold” digital
data for centuries or even longer under the condition that the information
is encoded in a quaternary stream made up of the symbols A, T, C and G,
to represent the 4 components of the DNA molecule, while also respecting
some important encoding constraints. Pioneering works have proposed dif-
ferent algorithms for DNA coding leaving room for further improvement. In
this thesis we present some novel image coding techniques for the efficient
storage of digital images into DNA. We implemented a novel fixed length al-
gorithm for the construction of a robust quaternary code that respects the bi-
ological constraints and proposed two different mapping functions to allow
flexibility according to the encoding needs. Furthermore, one of the main
challenges of DNA data storage being the expensive cost of DNA synthesis,
we make a very first attempt to introduce controlled compression in the pro-
posed encoding workflow. The, proposed codec is competitive compared to
the state of the art. Furthermore, our end-to-end coding/decoding solution
has been experimented in a wet lab experiment to prove feasibility of the
theoretical study in practice.

Keywords: DNA data storage, Image coding, Synthetic DNA, Image com-
pression, Robust encoding
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“The true sign of intelligence is not knowledge, but imagination...”

Albert Einstein
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Chapter 1

Introduction

1.1 Digital data storage

The problem of data explosion constitutes nowadays one of the greatest chal-
lenges of digital evolution. The continuous greedy use of the internet, includ-
ing digital platforms and social networks is leading to an immersive increase
in the generation of digital data which needs to be handled and stored effi-
ciently. This information overload is massively stored in the servers of big
data centers where it is being organized and archived using different tech-
nologies according to the data’s nature and demand. Data centers contain
a set of routers and switches that transport traffic between the servers and
to the outside world. To better understand the organization of the data into
server systems, figure 1.1 illustrates the various parts of current memory and
storage units.

Figure 1.1: Hierarchy of data

Data storage can be hierarchically divided in 6 different layers.

• The top layer consists of small-size processor registers which handle the
data which is accessed very frequently in immediate term and therefore
needs to be fast and efficient. This type of storage is power-on and small
in capacity.

• The second layer contains cache processors which are acting as a tem-
porary storage area where the processors of the top layer can retrieve
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data from easily. This layer is also working power-on and it is small in
capacity and fast in access time.

• The third layer is the last power-on part of the pyramid. It consists of
the Random Access Memory (RAM) which contains short term data that
can be read in any order, to retrieve information needed by the cache
processors of the previous layer. RAM memory is medium capacity
and fast in access time.

• The next layer consists of the flash storage which can work off-line and
contains short term data. It is large in capacity but slower in access time.

• The second power-off layer consists of the hard drives (HDD). It is used
for mid term storage and contains data which is less frequently used
and therefore it is slower in access time than flash storage. This type of
memory has a large size and a large capacity.

• Finally, the last part of the pyramid concerns the data which is very
infrequently accessed. This type of data can be stored in tape back-ups
which are very slow in access time and very large in capacity.

It is easy to notice that the volume of data which is more frequently ac-
cessed is extremely small compared to the data of less frequent demand. To
this end, the last two layers of the hierarchy consist of solutions of a large
capacity which unfortunately also exhibit a much larger volume.

An article published in Forbes magazine [3] mentions that according to
International Data Corporation (IDC), 22 Zettabytes (ZB) of digital storage
will be shipped across all storage media types between 2018 and 2025, with
nearly 59% of that capacity supplied by the HDD industry. Figure 1.2 depicts
the predicted exponential growth in the byte shipment for the different types
of storage media. As can be seen, by 2025 there is expected to be significant
amounts of digital stored in HDDs, in various solid state storage as well as
magnetic tape.

Figure 1.2: Byte Shipment as reported in [3]

It is clear that this exponential growth in the generation of digital data
should not be neglected and we are about to face some serious obstacles
given the existing storage resources! In the next paragraph we will provide
some interesting statistics that clearly expose the impact of this data explo-
sion in many different aspects of our everyday life.
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1.1.1 Some statistics

According to an article published in [4], the rapid rise in smartphone usage,
IoT adoption, and big data analytics have led to a massive growth in data
centers, and they come with a cost. This article presents the following statis-
tics as provided by IDC.

• In 2012 there existed 500.000 data centers to handle global traffic while
today there exist more than 8 million.

• The yearly CO2 emissions of data centers reaches the amounts of CO2
produced by the global airline industry.

• Every year, millions of data centers worldwide are draining country-
sized amounts of electricity. Several models even predict that data cen-
ter energy-usage could engulf over 10% of the global electricity supply
by 2030 if left unchecked.

• 90% of the existing data have been only generated in the last 2 years.

• The amount of energy used by data centers continues to double every
four years.

Along with the above numbers, it is also known that storage media have a
limited life-span which varies from 3-5 years for HDD drives and 20-30 years
for back-up tape drives. To reassure reliability of the stored data, it is there-
fore necessary that data centers frequently replace the different storage units,
a fact that leads to a huge hardware waste. Furthermore, the replacement of
older storage units yields the need for migrating the data into the new units,
a process which is expensive both in terms of money and energy. All these
facts, reveal that the enormous increase in the generation of data is causing
important pollution to the environment. Due to the resulting environmental
impact, increased pressure has been placed on companies to follow a green
policy by building green or sustainable data centers which utilize energy-
efficient technologies.

1.1.2 What is cold data?

For managing, storing and re-purposing digital content, industries and data
centers differentiate the data into three levels, hot, warm and cold, based on
interest or access priorities. The frequency of data demand (metaphorically
called data temperature) denotes the most appropriate unit to which each
type of data should be stored. More precisely, hot data refers to assets that
require the fastest storage as they are accessed most frequently. It is thus
stored in the nearest or closest spots from the accessing points such as solid
state or flash drives and CPU. Warm data represents information that is less
accessible and is stored on a bigger storage capacity or file servers for rel-
atively cost-efficient concern. Finally, the data which is very rarely or even
never accessed and doesn’t require on-line workflow is placed on the slow-
est low-cost options of storage mediums such as tape and optical discs and
is termed as cold data.

Figure 1.3 depicts the different levels of data temperature as well as the
most appropriate means of storage according to the access frequency. It is
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Figure 1.3: The different types of storage according to data’s temper-
ature (image taken from [5].)

clear that the largest part of digital information consists of cold data and in
spite of its infrequent use, this information must be nevertheless stored in
back-up tape drives due to security and regulatory compliance reasons. Old
photographs stored by users on Facebook is one such example of cold data;
Facebook recently built an entire data center dedicated to storing such cold
photographs [6]. Furthermore, as the percentage of cold data has reached the
80% over the last years, it is clear that the total cost for preserving this type
of information increases significantly along time!

1.1.3 Problem definition

All current storage media used for cold data storage (Hard Disk Drives or
tape) suffer from two fundamental problems. First, the rate of improvement
in storage density is at best 20% per year, which substantially lags behind the
60% rate of cold data growth. Second, current storage media have a limited
lifetime of five (HDD) to twenty years (tape). As data is often stored for much
longer duration (50 or more years), due to legal and regulatory compliance
reasons, data must be migrated to new storage devices every few years, thus,
increasing the price of data ownership. It is therefore necessary to find new
resources for the storage of digital data which exhibit higher capacity and
longer life-span. Some interesting solutions to this problem are presented in
the following paragraph.

1.1.4 Existing solutions

Longevity of data storage is not only important for financial or environmen-
tal reasons, but it is also crucial for preserving fundamental and invaluable
cultural heritage for next generations. To deal with this problem, scientists
have been studying the use of alternative means of higher durability.

Several projects, for instance at the University of Southampton [7] or at
Hitachi [8], are currently considering new forms of very long term digital
storage, using molding silica glass, which estimated storage length time in
the range of 100 million years. However, these projects are currently stymied
by an important problem related to space: both developed at most a storage
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capacity that does not exceed 40 MBytes per inch, i.e. a very low value com-
pared to the one Terabyte per square inch capacity reached by any standard
hard disk.

An other very interesting solution, proposes the use of the DNA molecule
which is life’s information-storage material, as an alternative approach for
digital data storage. Interestingly enough, recent works have proven that
storing digital data into DNA is not only feasible but also very promising as
the DNA’s biological properties allow the storage of a great amount of infor-
mation into an extraordinary small volume, for centuries or even longer, with
no loss of information. This thesis aims to present some novel algorithms and
techniques for the storage of digital information into DNA and thus the next
sections are dedicated in explaining the term of DNA data storage as also in
analysing the most important assets and challenges.

1.2 What is DNA coding?

DNA (deoxyribonucleic acid), is the support of heredity in living organisms.
It is a complex molecule corresponding to a succession of four types of nu-
cleotides (nts), Adenine (A), Thymine (T), Guanine (G), Cytosine (C). DNA
can be double strand if one single strand binds on a complementary one ac-
cording to the complementary base pairing rule (Chargaff’s rule) [9] which
denotes that DNA base pairs are always adenine with thymine (A-T) and cy-
tosine with guanine (C-G). It is this quaternary genetic code that inspired the
idea of DNA data storage which suggests that any binary information can be
encoded into a DNA sequence of A, T, C, G.

More specifically, some important advances in the field of synthetic bi-
ology have allowed artificial synthesis of DNA strands in a laboratory (in
vitro). The produced DNA is synthetic but shares the same extraordinary
properties as the real one. The only difference would be the fact that artificial
synthesis does not require any particular DNA templates, allowing virtually
any quaternary sequence of A, T, C, G to be synthesized in the laboratory.
This means that the produced DNA will not necessarily contain any genes,
which are DNA sequences responsible for producing life. On the contrary
any sequence of nucleotides can be assembled into a DNA strand. Conse-
quently using this technique any digital information can be synthesized into
DNA on the condition that it has been previously encoded into a quaternary
representation, a process which is called DNA coding. Once synthesized
into the form of DNA, the encoded sequence can be retrieved using some
special machines, the sequencers. DNA sequencing is the biological process
which allows reading any DNA strand and decoding it to provide their qua-
ternary content. Those two fundamental biological processes of DNA syn-
thesis (writing) and sequencing (reading) work similarly to a noisy channel
and thus construct an encoding workflow for digital storage.

1.2.1 Advantages

DNA possesses three key properties that make it a very promising candidate
for archival storage of digital data.
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• First, it is an extremely dense three-dimensional storage medium that
has the theoretical ability to store 455 Exabytes in 1 gram. In contrast, a
3.5” HDD can store 10 TB and weighs 600 grams today.

• Second, DNA can last several centuries even in harsh storage environ-
ments. The decoding of the DNA of a woolly mammoth that had been
trapped into permafrost for 40.000 years [10] is only one example which
proves DNA’s longevity in contrast to HDD and tape drives which have
a life-span of five and twenty years respectively.

• Third, it is very easy, quick, and cheap to perform in-vitro replication of
DNA; tape and HDD have bandwidth limitations that result in hours or
days for copying large Exabyte-sized archives.

• Finally, DNA is life’s information storage material the main composi-
tion of which will never change. This comes in contrast to other means
of storage which tend to change over the years according to the tech-
nological progress and so do the corresponding decoding devices. This
means that on the long term, due to the incompatibility of the stored
data with the new decoders, the stored content might not be decodable.
For example almost 20 years ago, computers used to have a special in-
put for floppy discs which is no longer the case. Consequently, any
information that was stored in floppy disks is no longer accessible. On
the contrary, DNA will exist forever in living organisms and even if the
methods used for sequencing will further improve, the new sequencers
will always be adapted for decoding the exact same molecule.

The above properties reveal that storing digital data into DNA is an ex-
tremely promising solution. According to an article published in the journal
of "Nature" [11], in a very rough theoretical estimation, scientists claim that
1kg of DNA would be enough for storing all the world’s digital information.
Figure 1.4 depicts a table taken from [11] comparing the molecule of DNA to
some widely used storage devices, the hard disks and flash memories.

Figure 1.4: Comparison of DNA to other means of digital data storage
[11]
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1.2.2 The challenges

As described in section 1.2, DNA synthesis and sequencing are the key pro-
cedures which allow the archiving of digital data into DNA. While funda-
mental in the field of biology those two processes introduce some important
challenges.

To begin with, DNA synthesis requires the construction of DNA strands
(oligos) of no more than 200-300 nts. This restriction stems from the fact
that the error of the synthesis increases exponentially with the increase in the
length of the oligos and such short oligos have a low error probability. It is
thus necessary to cut the encoded quaternary strand into smaller chunks and
also yields the need for introducing some special headers to allow correct
reconstruction at the decoding.

Secondly, both DNA synthesis and sequencing include some fine and del-
icate biological manipulations and thus those two processes are expensive
and require several dollars per synthesized/sequenced oligo. It is therefore
necessary to efficiently compress during the the data to be archived before it
is stored into DNA.

Another important drawback rises from the process of DNA sequencing
which is prone to errors creating insertions, deletions or substitutions of nu-
cleotides in the decoded sequence. Luckily there are some special rules for
the encoded strands which allow reducing the probability of error but un-
fortunately without eliminating it. Those rules will be described in a later
section.

Finally, a last but not negligible challenge lies in the longevity of DNA.
While being an important asset which allows storage of digital data for cen-
turies and maybe over it also requires that the know-how of the decoding
process should be passed on to the next generations to allow long-term de-
coding of data that had been stored many years ago. It is therefore very
important, to safely preserve this information into durable materials while
also ensuring that it is encoded in a way that will be easy for any new user
to retrieve and understand. An interesting study on this particularly diffi-
cult challenge has been presented in [12]. Another interesting idea could be
storing the decoding information in silica glass. Some interesting works for
storing information in silica glass have been proposed in [13].

1.3 Outline

The main contribution of this thesis is the introduction of an end-to-end so-
lution for the efficient storage of digital images into synthetic DNA. Since
DNA synthesis (writing) is an expensive process that costs several dollars
per synthesized strand, state of the art methods have been compressing im-
ages using the classical JPEG standard which is optimized for a binary rep-
resentation and then transcoding the binary output into DNA. Since this is
an open-loop solution which is not optimized for DNA’s quaternary encod-
ing, in our work we propose for the first time, a workflow which includes
the process of image coding to allow controlled compression of the input im-
age. In other words, we provide a "closed-loop" solution which optimally
compresses and encodes the input aiming to the reduction and control of the
synthesis cost. To this end we introduced two different encoding solutions to
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be applied according to the needs of the encoding. We first implemented a
fixed-length encoding solution which is optimized due to a source allocation
algorithm to provide the best image quality for a given cost. This solution
uses a novel constrained fixed-length quaternary code which is robust to se-
quencing (reading) noise. We then implemented a second variable-length
encoding solution which is inspired by the classical JPEG standard to further
improve the encoding performance. Finally since the encoded data needs to
be synthesized into small DNA fragments which are stored in the same pool,
we propose different formatting scenarios for cutting the encoded strands
into smaller chunks and introduce the necessary headers for the correct re-
construction. The thesis is organized as follows:

• In this chapter (chapter:1), we have already introduced the main ideas
and goals of DNA data storage and we have explained the reasons for
which this field of study is expected to flourish in the following years to
provide interesting solutions for digital data storage.

• In chapter 2, we provide a generalized workflow for DNA data storage
by introducing each of the different sub-processes. We then present the
state of the art methods by analysing the methods which have been pro-
posed and explain our contributions compared to the existing solutions.

• In chapter 3, we present the algorithm for constructing a novel fixed
length quaternary code which has been used in our proposed encoding
methods. To evaluate this quaternary code we analyse its assets and
weaknesses compared to state of the art algorithms for the construction
of DNA codes. We also provide two different algorithms for mapping
the input data to the codewords of the proposed constrained quaternary
code. The first mapping algorithm exploits the code’s redundancy to
robustify the encoded data while the second one creates an encoding
which is resistant to noise.

• The above methods have been used in chapter 4 to construct a fixed-
length image coding solution which uses a source allocation algorithm
to allow controlled compression.

• In chapter 5, we introduce a new variable-length encoding solution us-
ing the main workflow of the classical JPEG standard while modifying
it to produce an optimized quaternary encoding. For this last encoding
case we combined our code construction algorithm proposed in chap-
ter 3 with another variable-length one proposed in the bibliography to
produce an efficient entropy-coding model.

• In chapter 6, we propose multiple formatting scenarios adapted to the
needs of each proposed encoding solution, for creating decodable DNA
chunks than contain all the necessary header information for the decod-
ing. Since the formatting headers contain fundamental information for
the correct reconstruction of the input image, we also propose a method
for robustifying those headers with the use of error-correcting barcodes.

• In chapter 7, we present a wet-lab experiment which has been carried-
out for one of the proposed encoding solutions in order to prove feasi-
bility of the end-to-end solution when also including the intermediate
biological manipulations.
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• Finally, in chapter 8, we provide a summary of the methods presented
in this thesis by conducting conclusions, discussing some important
points and presenting some interesting steps to follow in our future
studies.
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Chapter 2

State of the art on DNA coding

2.1 General workflow

In the previous section, we presented the reasons for which DNA is an eco-
friendly solution offering the possibility of storing a great amount of informa-
tion in a very small volume while also promising longevity of the stored data.
We also explained that DNA coding is a multi-disciplinary subject which is
inspired by the quaternary code of DNA and highly depends on the biolog-
ical processes of DNA synthesis and sequencing. Those two methods are
reminiscent of a digital noisy source channel which adds any type of noise
to the transmitted data. Therefore, the process of DNA data storage can be
thought of as a classical encoding workflow for the transmission of 4-ary data
through a noisy channel. The general coding scheme for DNA data storage
is depicted in figure 2.1.

Figure 2.1: Main component parts of a typical DNA storage process.

Although this process might seem simple, it is very important to denote
that this is only a very rough and simple presentation of the general DNA
coding workflow. However, as briefly explained in section 1.2.2, DNA syn-
thesis and sequencing are very delicate and complex processes which intro-
duce some important constraints when it comes to the encoding of digital
data. In the following sections we will briefly explain those complex yet fun-
damental biological procedures in more detail and we will present the main
challenges as well as the elaborated solutions which form a more complete
extended workflow.

2.1.1 The structure of DNA

DNA is a molecule composed of two strands of nucleotides forming a double
helix that is carrying genetic instructions for the development, functioning,
growth and reproduction of organisms. The two DNA strands are known
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as polynucleotides as they are composed of simpler monomeric units called
nucleotides. Each nucleotide is composed of one of four nitrogen-containing
nucleobases (cytosine [C], guanine [G], adenine [A] or thymine [T]), a sugar
called deoxyribose, and a phosphate group. The double helix has a fixed
backbone which is composed by alternating phosphate and sugar groups.
[14] The sugar in DNA is 2-deoxyribose, which is a pentose (five-carbon)
sugar. The sugars are joined together by phosphodiester bonds between the
third and fifth carbon atoms of adjacent sugar rings. These are known as
the 3’-end (three prime end), and 5’-end (five prime end) carbons. There-
fore, any DNA strand normally has one end at which there is a phosphate
group attached to the 5’ carbon of a ribose (the 5’ phosphoryl) and another
end at which there is a free hydroxyl group attached to the 3’ carbon of a
ribose (the 3’ hydroxyl). The orientation of the 3’ and 5’ carbons along the
sugar-phosphate backbone confers directionality to each DNA strand. The
two opposite DNA strands are linked through hydrogen bonds between the
nitrogen-containing nucleobases according to the complementary base pair-
ing rule which states that DNA base pairs are always adenine with thymine
(A-T) and cytosine with guanine (C-G). As a result the two strands are com-
plementary and this yields the fact that the content of one strand defines the
content of the opposite one. This complementary base pairing plays a great
role in the creation of exact copies of a DNA molecule as one strand can be
used to synthesize the corresponding complementary one. This process of
creating copies is performed using special enzymes called Polymerases and
the process of cloning is called Polymerace Chain Reaction (PCR)(see figure
2.3). In the DNA double helix, the direction of the nucleotides in one strand
is opposite to their direction in the other strand: the strands are antiparal-
lel. The asymmetric ends of DNA strands are said to have a directionality of
five prime end (5’), and three prime end (3’), with the 5’ end having a termi-
nal phosphate group and the 3’ end a terminal hydroxyl group. The bases
lie horizontally between the two DNA strands (figure 2.2). It is important
to remark that during the process of PCR amplification the creation of the
clone-strands follows a direction from the 5’end to the 3’end of the original
DNA strands.

During PCR the original strands of DNA are separated and a polymerase
enzyme is bound on special short DNA sequences (primers) which are spe-
cific for the given enzyme. The enzyme glides upon each strand with di-
rection from 5’end to 3’end constructing the corresponding complementary
strand of each of the two original strands creating this way identical copies.
PCR amplification can be repeated many times and after y PCR cycles there
are 2y new strands created.

In DNA coding this process of PCR is highly important for the introduc-
tion of some extra redundancy in the produced DNA strands, which can be
useful for error correction. More precisely, in the presence of multiple copies
of an oligo, some of which might carry errors of insertions, deletions or sub-
stitutions of nucleotides, one can easily compute the most representative con-
sensus DNA sequence which is expected to be the closest to the correct one.

1https://commons.wikimedia.org/wiki/File:DNA_chemical_structure.svg
2https://creativecommons.org/licenses/by-sa/3.0/
3https://commons.wikimedia.org/wiki/File:Polymerase_chain_reaction.svg
4https://creativecommons.org/licenses/by-sa/3.0/deed.en

https://commons.wikimedia.org/wiki/File:DNA_chemical_structure.svg
https://creativecommons.org/licenses/by-sa/3.0/
https://commons.wikimedia.org/wiki/File:Polymerase_chain_reaction.svg
https://creativecommons.org/licenses/by-sa/3.0/deed.en
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Figure 2.2: The structure of a DNA molecule. (source:wikipedia1.
Figure under creative commons license.2

2.1.2 DNA synthesis

Oligonucleotide synthesis is the chemical synthesis of DNA sequences. The
majority of biological research and bioengineering involves synthetic DNA.
Today, all synthetic DNA is custom-built using the phosphoramidite method
by Marvin H. Caruthers. Oligos are synthesized from building blocks which
replicate natural bases. The process has been automated since the late 1970s
and can be used to form desired genetic sequences as well as for other uses
in medicine and molecular biology. However, the chemical construction of
DNA sequences is impractical beyond 200-300 bases and constitutes a haz-
ardous process. These oligos, of around 200 bases, can be connected using
DNA assembly methods, creating larger DNA molecules [15]. Although in-
formation can be retrieved very quickly from DNA through next generation
sequencing technologies, de novo synthesis of DNA is a major bottleneck in
the process. Only one nucleotide can be added per cycle, with each cycle
taking seconds, so the overall synthesis is very time consuming.

As described in [16] the commonly used phosphoramidite synthesis chem-
istry consists of a four-step chain elongation cycle that adds one base per cy-
cle onto a growing oligonucleotide chain attached to a solid support matrix
(Fig. 2.4).

• In the first step, a dimethoxytrityl (DMT)-protected nucleoside phos-
phoramidite that is attached to a solid support (usually contained within
a synthesis column) is deprotected by the addition of trichloroacetic
acid. This activates the support-attached phosphoramidite for chain
elongation with the next phosphoramidite monomer.

• In the second step, the next base in the sequence is added in the form
of a DMT-protected phosphoramidite and is coupled to the 50-hydroxyl
group of the previous nucleoside phosphoramidite in the sequence form-
ing a phosphite triester.



14 Chapter 2. State of the art on DNA coding

Figure 2.3: The process of Polymerace Chain Reaction (PCR) ex-
plained (source: Wikipedia 3, figure under creative commons licence

4

• Third, any unreacted 50-hydroxyl groups are capped by acylation to
render any unextended sequences inert in subsequent rounds of the
chain elongation cycle and thus reducing deletion errors in the finished
oligonucleotide sequences.

• In the fourth step, the phosphite triester linkage between the monomers
is converted to a phosphate linkage via oxidation with an iodine solu-
tion to produce a cyanoethyl-protected phosphate backbone.

• The synthesis cycle then repeats for the next base in the sequence via
the removal of the 50-terminal DMT protecting group. After the desired
sequence has been synthesized from the 30 to 50, the oligonucleotide is
chemically cleaved from the solid synthesis support and the protecting
groups on the bases and the backbone are removed.

The above process has been automated since the late 1970s and can be
used to form desired genetic sequences as well as for other uses in medicine
and molecular biology. However, creating sequences chemically is imprac-
tical beyond 200-300 bases, and is an environmentally hazardous process.
These oligos, of around 200 bases, can be connected using DNA assembly
methods, creating larger DNA molecules.

2.1.3 DNA sequencing

As described in section 1.2, one can read the content of DNA strands with
the use of some special machines, the sequencers. In practice, there are many
different machines to perform sequencing. However, the most popular-ones
for DNA data storage, are the Illumina sequencers which belong to the cate-
gory of Next Generation Sequencing (NGS) and the Oxford Nanopore which
is a more recent model and belongs to the group of third-generation DNA
sequencers. To get a better idea of how sequencing works we will describe in
this section the way those two models function for reading a DNA strand.
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Figure 2.4: The steps of a cycle of DNA synthesis (source: [16])

Illumina: One of the most accurate sequencing machines is the one of Illu-
mina which reads DNA strands using a method called Sequencing by Syn-
thesis (SBS). This method works in different cycles.
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Figure 2.5: Illumina flowcell (source: [17])

Figure 2.6: Sequencing with illumina explained (source: [17]).

To begin with, short sequencing DNA-templates (which we will call primers),
are immobilized on the surface of a proprietary flow cell surface (figure 2.5)
designed to present the DNA in a manner that facilitates access to enzymes.
The primers that are bound on the flow-cell are complementary to the 3’ and
5’ ends (which we will call primers) of the oligos to be read allowing them
to bind on the flow-cell’s sequencing templates as shown in (figure 2.6 b). In
the next step, the free ends of the oligos bend and bind on the correspond-
ing complementary templates forming a bridge-like form (figure 2.6 c). In
this phase of the sequencing the reading begins. Special enzymes allow the
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synthesis of the complementary strands by binding the corresponding nu-
cleotides on the "bridge single strands". The complementary nucleotides are
fluorescently labeled using 4 different dyes according to the nucleotide type.
Each time a nucleotide is bound in position, the fluorescent dye is imaged to
identify the base and then enzymatically cleaved to allow incorporation of
the next nucleotide. This is the reason why this process is called sequencing
by synthesis. Once the double strands are created, they are separated again
discarding the original strands and the same process will be repeated many
times creating this way thousands of copies, which are frequently mentioned
as reads, of each stored oligo. This process of copying the oligos by forming
bridges and synthesizing the complementary strand is called Bridge Ampli-
fication (BA). BA works similarly to PCR and is adding the required redun-
dancy to allow denoising. More precisely, amplification creates up to 1,000
identical copies of each single stored oligo in close proximity creating a blob
of the same oligo which is expected to emit at every new synthesis cycle the
same sequence of fluorescent colors forming blobs of the same color which
are easily identified (see figure 2.7).

Figure 2.7: Illumina basecalling explained. Image from Illumina [17]
showing how the four-colours work and the camera system in the
older sequencers, the image of the cameras comes from the Bentley

Nature paper of 2008 [18]

Base calls are made directly from the signal intensity measurements dur-
ing each cycle and thus raw error rates greatly reduces compared to other
technologies. However, in the case that different oligos which are bound to
neighboring regions on the Illumina flow-cell happen to have similar struc-
ture of nucleotides the spotted color clusters might be overlapping merging
the different color blobs into one, creating this way a difficulty in identify-
ing the separate oligo structures and this way, introducing some errors in the
sequenced DNA strands. An image of the Illumina sequencer is depicted in
figure 2.8.
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Figure 2.8: The Illumina sequencer 1

Figure 2.9: Sequencing with Nanopore explained [19].

Oxford Nanopore: As revealed by the name a Nanopore sequencer consists
of a flowcell of nano-scale pores (holes) through which passes a single strand
of DNA. An ionic current is constantly passing through the nanopores at the
same time with the DNA strands. As different nucleotides differ in size, each
one of them will create a different change in the flow of ions when passing
through the pore. The information about the change in current can be used to

1https://www.illumina.com/systems/sequencing-platforms/nextseq.html

https://www.illumina.com/systems/sequencing-platforms/nextseq.html
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identify each molecule. More specifically, the changes in the ionic current as
biological molecules pass through the nanopore or near it generate a signal
which is then used for the decoding of each oligo.

The produced raw data (electrical signals) is processed using machine-
learning techniques into basecalled data (the sequence of DNA bases). In
other words, the electrical signals are translated into sequences of nucleotides.
This procedure is carried out using kmer tables that translate sequentially
fragments of the electrical signals into sets of nucleotides. A descriptive im-
age of the function of the Nanopore sequencer is shown in figure 2.9.

It is the smallest sequencing device currently available. It can plug di-
rectly into a standard USB3 port on a computer with low hardware require-
ment and simple configuration. It also allows to sequence longer reads (up
to few hundred thousand base pairs), improving the assembly quality [20].
Its portability, affordability, and speed in data production makes it suitable
for real-time applications, enabling the sequencing of full human genomes
quickly and at affordable prices. However, some analysis on the results of
MinION nanopore sequencer like [21] show that although the sequencing
coverage is generally consistent, between 2% and 3% of the positions are
underrepresented. Among those, approximately 50% were located at the be-
ginning and the end of the reference sequence which can lead to the loss of
both ends when its coverage does not reach 20x since we are not able to cor-
rect and assemble those fragments. An image of the Illumina sequencer is
depicted in figure 2.10.

Figure 2.10: The MinION nanopore sequencer by Oxbord Nanopore
Technologies2

2.2 A constrained problem

DNA synthesis is a procedure with a very low error-probability as long as
the DNA strands to be synthesised do not overpass the length of 150-300
nts. For longer sequences the synthesis error increases exponentially. Conse-
quently to reduce this error to minimum, the DNA sequences to be synthe-
sized need to be cut into short pieces and formatted in such a way that the
initial sequence can be correctly reconstructed in the decoding part. Detailed
explanation for the formatting of the DNA sequence will be given in chapter
6.

On the contrary, the biological procedure of DNA sequencing introduces
much error which can not be neglected and therefore there is a need for
dealing with the erroneous oligos produced by the sequencer. Studies have

2https://nanoporetech.com/products

https://nanoporetech.com/products
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shown that the three main factors causing errors in the sequenced oligos are
the following:

• Homopolymers: Consecutive occurrences of the same nucleotide should
be avoided [22].

• G, C content: The percentage of G and C in the oligos should be lower
or equal to the one of A and T [22].

• Pattern repetitions: The codewords used to encode the oligos should
not be repeated forming the same pattern throughout the oligo length
[23].

Taking into account all the above rules the sequencing error can be re-
duced. Consequently, to be efficient, any DNA coding algorithm should re-
spect the above rules in order to reduce as much as possible the probabilities
of sequencing error. To this end, in chapter 3 of this work we propose a novel
efficient encoding algorithm which can be used for the encoding of digital
information into DNA using codewords that respect all those biological con-
straints.

Formatting Synthesis

ENCODER
{A,T, C,G}

Mapping

4-ary 
code
4-ary 
code

Figure 2.11: Encoding of digital data into DNA.

2.2.1 Encoding

Until this point, it is clear that the encoding of digital data into DNA is
strongly constrained by the biological part of the process. More precisely,
to sum up the main obstacles which have been discussed in the previous sec-
tions the encoding should provide a quaternary code which will respect the
sequencing restrictions to ensure robustness and the length of the DNA oli-
gos to be synthesised should not be higher than 150-300 nts. Consequently,
the structure of a reliable encoder for DNA coding contains the following
sub-parts (see figure 2.11).

The first step in the encoding workflow is the construction of a dictionary
of codewords composed by the symbols A, T, C and G similarly to the nu-
cleotides of the DNA molecule. Those codewords should provide a robust
encoding when assembled at a long sequence. This means that the quater-
nary strands should not contain homopolymers, high G,C content compared
to the content of A and T and finally it should not contain repeated patterns.

The next sub-process of a DNA workflow is a mapping function which
assigns input symbols to codewords of the quaternary code. This function
can be a simple one to one function or a more sophisticated one. In later



2.3. Existing works 21

sections of this work we will extensively explain the mapping methods that
have been used for our studies.

Finally, as the oligo length is restricted due to the synthesis limitations
to avoid errors, it is necessary to adopt some formatting function for cutting
the produced long encoding into shorter oligos and adding special headers
for the reconstruction of the input at decoding. Those headers can contain
information for the address of the data chunk in the original long sequence,
information for any necessary encoding parameters as well as information
about the input characteristics as for example the size. A general overview
of the encoding of data into DNA is described by figure 2.11.

2.2.2 Decoding

Since DNA data storage is a process which is prone to both writing and read-
ing errors, the decoding should include some techniques to predict, detect or
even to correct the sequenced data. As explained in section 2.1.2, the addi-
tion of redundancy is necessary for the detection of errors and can be easily
achieved using the method of PCR amplification which is applied during
both DNA synthesis and sequencing. Consequently, in the output of the se-
quencer there will be multiple copies of each synthesised oligo. Each copy
might contain different types of errors in various positions and this yields the
need for selecting the most representative copy for each oligo. This selection
can be based on computing a consensus sequence using all of the erroneous
copies of each oligo or on finding the most frequent among all copies. This
process can be followed by some error correction algorithm to treat any re-
maining errors for obtaining an error free decoding. It is important to men-
tion that the efficiency of the error correction highly depends on the methods
and machines that have been used during sequencing as some particular se-
quencers can cause higher error rates than others and can therefore create
stronger distortion. Finally using the inverse mapping function one can re-
trieve the digital information which had been stored into DNA. An overview
of the decoding process is described by figure 2.12.

DECODER

Sequencing Inverse
Mapping

Sequencing
Error

Oligo 
selection Deformatting Error

correction

{A,T, C,G}

4-ary 
code

Figure 2.12: Decoding of digital data stored into DNA.

2.3 Existing works

DNA data storage is a relatively new field of research and thus the state of the
art is limited to a few pioneering works which have, however, contributed
widely to this emerging topic.



22 Chapter 2. State of the art on DNA coding

2.3.1 First references to the idea of DNA data storage

The idea for storing digital data using the DNA molecule ages back in the late
50’s when soviet physicist Mikhail Samoilovich Neiman and cybernetician
Norbert Wiener expressed ideas regarding the possibility of recording, stor-
age, and retrieval of information on synthesized DNA and RNA molecules
[24], [25]. However the first attempt of DNA data storage came in 1988 when
the artist Joe Davis and researchers from Harvard collaborated for storing a
5 x 7 matrix in a DNA sequence in E.coli, which once decoded, formed a pic-
ture of an ancient Germanic rune representing life and the female Earth [26].
In the matrix, ones corresponded to dark pixels while zeros corresponded
to light pixels. In 2007 at the University of Arizona scientists create a device
which is using addressing molecules to encode mismatch sites within a DNA
strand. These mismatches were then able to be read out by performing a re-
striction digest, thereby recovering the data. This was the starting point for
various interesting works that followed, introducing multiple novel encod-
ing algorithms that brought DNA data storage to practice and contributed
widely to this emerging topic. In the following sections we will present the
most widely used studies in the bibliography and briefly analyse the pro-
posed solutions.

2.3.2 The first application of DNA data storage by Church et al.

In 2012, George Church et al. encode for the first time a 659-Kbyte book that
was co-authored by Church into DNA. In their experiment the authors used
a very simple encoding, by randomly translating zeros to A or C and ones
to T or G [22]. The encoded sequence was then written onto a microchip as
a series of DNA fragments using an ink-jet printer. The encoding resulted
in 54,898 oligonucleotides, containing 96 bases of data along with a special
22-base sequence at each end to allow the fragments to be copied in parallel
using the PCR amplification, and a unique, 19-base “address” sequence to
denote the segment’s position in the original document.

The resulting PCR amplified oligos were then read back using an Illumina
sequencer to retrieve the original text. The storage density of the DNA frag-
ments produced by this method was estimated to be more than 700 terabytes
per cubic millimeter. This result represented the largest volume of data ever
artificially encoded in DNA, and proved that data density for DNA is sev-
eral orders of magnitude greater than that of state-of-the-art storage media
as shown in their plot in 2.13.

Not only did this work make a pioneering step to prove the feasibility
of using DNA as an alternative means of storage while demonstrating the
extraordinary capacity compared to conventional storage devices but it also
revealed that sequencing can be an error prone process. By analysing the
different errors which occurred during sequencing this work provided a first
study of the main constraints to be respected during the encoding.

After this important first step, several works followed to propose new
encoding techniques, attempting to provide a robust encoding which would
allow reducing the sequencing errors obtained in this study.
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Figure 2.13: Results of the study carried out by Church et. al. [22]

2.3.3 First biologically constrained encoding by Goldman et al.

In 2013, Goldman et al. [1] proposed a novel algorithm for encoding digital
data into binary so to respect the main sequencing constraints. The encoding
proposed using ternary Huffman algorithm to encode each byte of a binary
sequence into the digits 0,1 and 2. Those digits are then associated to three
of the symbols A, T, C and G omitting the symbol that has been used for the
encoding of the previous digit, so to ensure that no base is used twice in a
row. This strategy avoided the creation of homopolymers while still mak-
ing use of DNA’s four-base potential. To enhance the reliability of the oligos
and determine the data’s position in the original file, Goldman’s team syn-
thesized oligonucleotides carrying 100 bases of data, with an overlap of 75
bases between adjacent fragments, so that each base was represented in four
oligonucleotides creating a fourforld redundancy. Even so, the researchers
lost two 25-base stretches during sequencing, which had to be manually cor-
rected before decoding. The encoding followed in this study is explained in
figure 2.14.

The code construction proposed by this work has been thereby used by
Microsoft researchers in their later works.

2.3.4 Introduction of Reed-Solomon codes by Grass et al.

To deal with the remaining sequencing errors, in 2015, Grass and his team
[27] have proposed for the first time the use of Reed Solomon codes to intro-
duce error correction in the encoding. More precisely, in this work the au-
thors proposed mapping the data to blocks which contain elements from Ga-
lois Field 47 (GF(47)). The column of each block is extended using a unique
index consisting of elements in GF(47). The extended columns are then en-
coded to DNA by mapping each of the GF(47) elements to a triplet of nu-
cleotides while ensuring that there is no repetition of the same base in the
two last positions ensuring that homopolymers are avoided. Each encoded
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Figure 2.14: Goldman et. al. encoding [1]

column represented a DNA fragment to be synthesized and stored in silica
to ensure long-term storage without corruption of the DNA. In their study
the authors reported perfect retrieval of 83 kB of data encoded using a Reed-
Solomon code, an error-correcting code used in CDs, DVDs, and some tele-
vision broadcasting technologies. The storage workflow is shown in figure
2.15.

Figure 2.15: Grass et. al. encoding [27]

2.3.5 First random-access implementation by Yazdi et al.

At the same year (2015) Yazdi et al. [28] have introduced an important way
for allowing random access using specific and robust addressing in the en-
coding! In their study, the authors proposed the addition of some specially
designed primers in both ends of the encoded data to allow selective PCR
amplification of particular oligos instead of amplifying the full oligo pool.
The primers were specially designed to be robust to sequencing errors and
the encoding DNA words for each oligo depend on the corresponding primer.
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More precisely, for each oligo the DNA code is constructed by ensuring there
is no correlation of the payload to the oligo’s addressing primer as this would
create secondary structures which can be catastrophic and can lead to losing
the full oligo during sequencing.

In a later study published in 2017 [29], the authors provided an experi-
ment testing the efficiency of their proposed encoding using the MinION —
Oxford Nanopore’s handheld sequencer for the reading of the DNA while
also using JPEG compression to reduce the synthesis cost. This study has
devised error-correcting algorithms specifically for the kinds of mistakes the
MinION makes. The result is an error-free read-out, demonstrated earlier
this year when the team stored and sequenced around 3.6 kB of binary data
coding for two compressed images.

Finally in a co-authored paper of Chao Pan ( [30]), the research group
proposed the use of inpainting techniques for post-processing the image and
correcting discolorations which occurred due to the synthesis and sequenc-
ing errors.

2.3.6 Reed Solomon codes on headers by Blawat et. al

In 2016 Blawat et al. [31] published another interesting method for construct-
ing a robust quaternary code. In their work, the authors presented a new
method for creating a quaternary code by encoding each byte of some digital
data to 5 nucleotides using the following algorithm. To begin with the first
three pairs of bits are encoded to the corresponding nucleotides from table
1 of figure 2.16 and represent the first, second and fourth nucleotide respec-
tively in the encoded DNA word. Then the last pair of bits can be encoded
to a pair of nucleotides among 4 different options as presented in table 2 of
figure 2.16 and will be placed in the third and fifth position of the resulting
DNA word. As a result, for each byte there are provided 4 different DNA
words. To ensure that the limitation concerning the maximum run-length is
respected, the 4 options are filtered so to not create homopolymers.

Figure 2.16: Blawat et. al. encoding [31]

To do so the authors propose keeping only the options that do not violate
the following rules.

• The first three nucleotides shall not be the same.

• The two last nucleotides shall not be the same.
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With the above described constraints at least 2 valid DNA symbols can
be found for every data byte, thus introducing some redundancy which can
be used for error detection. More precisely, the authors proposed separating
the different codeword options into different predefined clusters and encode
each input byte using the encoding of a specific cluster according to the byte’s
position. For example one option would be to use codewords from cluster A
to represent even positions and cluster B for odd byte positions. Thus, in the
case where an error alternates a codeword expected to be found in one cluster
to another one that belongs to some other cluster, error detection is possible.
Furthermore, in this work the authors proposed robustifying the addressing
headers using Reed Solomon codes to allow a more reliable decoding.

2.3.7 DNA coding using Fountain codes by Erlich et al.

At the same year (2016), Columbia University researchers Yaniv Erlich and
Dina Zielenski published a method based on a fountain code [32], an error-
correcting code used in video streaming. As part of their method, they used
the code to generate many possible oligos on the computer, and then screened
them in vitro for desired properties. Focusing only on sequences free of
homopolymers and high G content, the researchers encoded and read out,
error-free, more than 2 MB of compressed data—stored in 72,000 oligonu-
cleotides—including a computer operating system, a movie, and an Amazon
gift card. Their encoding followed the following steps:

Figure 2.17: Erlich et. al. encoding [32]

First, the input binary file is segmented in partitions. Then using a luby
transform droplets of bits are created by selecting randomly segments from
the input sequence and bit-wise adding them attaching also the random seed
used for the selection. The resulting bit droplets are then encoded into qua-
ternary and scanned for satisfying the biological constraints of GC content
and homopolymers. Encoded droplets which do not respect the above re-
strictions are discarded while the rest are used for creating the oligos. This
process is repeated until enough oligos are produced resulting in a densely
compressed encoding that reaches a capacity of 1.98 bits/nt.
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2.3.8 Efficient end-to-end workflow by Microsoft researchers

In 2016 Borhholt et al. in a Microsoft research presented a DNA based archiv-
ing system using the quaternary code introduced by Goldman et al. In this
study they improved the encoding by avoiding the fourfold redundancy us-
ing themselves addressing primers for allowing random access [33]. Re-
searchers in Microsoft have then in 2017 presented some extra studies to
improve their results using a clustering algorithm to cluster and correct the
multiple reads provided by the sequencer allowing a better reconstruction
quality [34], [35]. Finally, in 2019, a Microsoft team successfully encoded the
word “hello” in snippets of fabricated DNA and converted it back to digital
data using a fully automated end-to-end system, which is described in [36].

Those are the most well-known studies on DNA data storage until the
starting date of the study presented in this manuscript! More details about
the contributions of this work are given in the next section.

2.4 Contributions of this work

While DNA data storage is suited for the archiving of any type of digital data,
the subject of this thesis focuses on the encoding of images. All the studies of
the state of the art which have been described above, are providing some way
for building a quaternary encoding of digital data by respecting the biologi-
cal restrictions discussed in section 2.2. Each one of those encodings exhibits
different advantages and weaknesses and since the subject is still very new
it is necessary to provide new encoding ideas which can help enriching the
existing studies and improve the quality of the stored data.

As the main drawback of DNA data storage is the high synthesis cost,
the encoding methods proposed in the bibliography attempt to improve the
storage capacity while also being robust to sequencing errors. To this end,
some studies have proposed compressing images with JPEG before encod-
ing. However, no study has proposed a method for controlling this compres-
sion such that it provides a closed loop solution which can allow selecting
the best compression parameters for a given coding potential. In our study
we included a source allocation algorithm which offers the possibility of not
only reducing the synthesis cost, but also promising an optimal quality of
the stored image for a predefined encoding rate and thus a given synthesis
cost. As a low complexity source allocation requires a fixed length code we
also propose a new efficient algorithm for the construction of a robust fixed
length DNA code that facilitates the nucleotide allocation method. We also
introduce two different mapping methods. The first one deals with pattern
repetitions which might be the cause of error increase in the Illumina se-
quencers and has not been tackled by previous studies, and the second one
aims in decreasing the visual impact of substitution errors which may remain
after error correction. The reason for implementing a fixed-length encoder
stems from the fact that variable-length coding is less robust to sequencing
errors. In other words, in case of an error, variable-length coding is prone to
losing important information about the structure of the encoded data which
can result in wrong reconstruction of the input image.

To prove this last claim, we also implemented a variable-length encoder
which is inspired by the classical binary JPEG encoder. This idea has been
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created thanks to the JPEG Ad Hoc group which has recently shown inter-
est in building a new JPEG standard for the purpose of image coding into
DNA. Our proposed solution uses a modified workflow of the classical JPEG
standard for binary coding which optimizes the compression of the input
image according to a constrained quaternary code, producing a compressed
nucleotide stream which is robust to sequencing error. Finally, we present a
new formatting structure for cutting the encoded information into oligos and
adding the needed headers which suits our proposed encoding.
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Chapter 3

A novel constrained quaternary
encoding

3.1 Introduction

One of the main challenges for providing an efficient solution for DNA data
storage is the construction of a DNA code which is robust to sequencing
noise. The process of sequencing can be compared to a digital noisy chan-
nel of wireless communications which can introduce bit errors, erasures, or
even full packet loss to the transmitted data. To deal with such errors, in
communication systems, the encoding process is composed by two main sub-
processes as described by figure 3.1. The source coding aims in the encoding
of the input information to a binary representation while the channel coding
process adds any needed redundancy to allow error detection and correc-
tion. Examples of such redundancy would be the use of parity nucleotides
to check correctness of the data received by the decoder as proposed by Ap-
puswammy et al. in [37], or the use of Reed-Solomon codes as proposed by
Grass et al. in [27] and Blawat et al. in [31] which are used for error correc-
tion. Hence, since sequencing is error-prone, it is necessary that both source
and channel coding are applied when encoding digital data into DNA. In
this section, we will present our proposed methods for encoding any source
symbols into a quaternary stream while being robust to sequencing noise.

Channel
coding

Source
coding

Input
data

Error

Channel Noisy
data

Figure 3.1: Encoding process of communication systems. The se-
quencing process resembles to a noisy channel of wireless communi-
cations as it introduces similar types of errors. Therefore the encoding
of digital data into DNA should be encoded accordingly using both

source coding and channel coding to deal with sequencing noise.

As extensively described in section 2.3, in the state of the art works, there
have been proposed many different DNA code-construction algorithms. Nev-
ertheless, most of the existing methods propose a variable length solution
while also limiting application to binary input data. In this work we intro-
duce a novel fixed length algorithm for building a robust fixed-length qua-
ternary code that respects the biological restrictions imposed by sequencers
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and can be applied to any representation of the input.
While this thesis focuses on the robust encoding of images into DNA, the

proposed codebook creation is not restricted by the nature of the input data.
Consequently, before discussing the application of our proposed code to im-
age coding, we will first introduce in this chapter the method for creating a
constrained quaternary code given an input set of symbols of any kind. We
also propose a novel mapping function for assigning the constructed DNA
codewords to the input indices so to avoid pattern repetitions.

3.2 Creating a constrained DNA code - Our solution

3.2.1 General Definitions

Before explaining the algorithms proposed by this work, it is necessary to
define some notions related to the encoding. We first introduce the three
following sets:

• The set V = {v1, v2, . . . , vK} of elements vk ∈ Rn with k = {1, 2, . . . , K}.

• The set C∗ of finite sequences (words) cj over the alphabet {A, T, C, G}
with j = {1, 2, . . . , L}.

• A set Σ = {1, 2, . . . , K}, Σ ⊂ Z∗+

Let us define the function α : V 7→ Σ such that:

α(vk) = k, ∀vk ∈ V (3.1)

that provides the index k of some element vk ∈ V . We also define Γ : Σ 7→ C∗
the mapping function which provides the following relation:

Γ(k) = cj, with cj ∈ C∗ (3.2)

The above function maps the index k of some element vk ∈ V to some code-
word cj ∈ C∗. The mapping can provide a one-to-one or one-to-many re-
lation depending on the needs of the encoding. The composition of α and
Γ, αn = Γ ◦ α, stands for the encoding function which assigns a codeword
cj ∈ C∗ to an input symbol vk.

Obviously, Γ is invertible and the inverse function can then be expressed as:

Γ−1(cj) = k (3.3)

and will provide the index k which is mapped to some given codeword cj ∈
C∗. Thus to retrieve the element in V that corresponds to the index k one can
apply the inverse function:

α−1(k) = vk (3.4)

When it comes to DNA coding for archival purposes, the code C∗ should
contain viable codewords which respect the main rules imposed by the se-
quencing as detailed in section 2.2. Having introduced the main terms of the
encoding process, in the next paragraph we will explain our proposed al-
gorithm for constructing a novel constrained fixed length code for encoding
any the elements of any source input into DNA words.



3.2. Creating a constrained DNA code - Our solution 31

3.2.2 Construction of the codewords (PAIRCODE)

Let’s assume the source set V , and let Σ = {1, 2, . . . , K}with |Σ| = K, be a set
of indices of the elements vk ∈ V to be encoded into a set C∗ = {c1, c2, . . . , cL}
of L quaternary codewords (with L ≥ K) of length l. The goal of this en-
coding algorithm is to generate the code Γ where Γ : Σ → C?. We denote
Γ(k) = ck the codeword associated with the index k ∈ Σ.

The algorithm for the construction of the code C∗ is inspired by the re-
strictions imposed by the biological procedures included in the process of
DNA data coding. The main idea is the creation of codewords by selecting
elements from a set of duplets (pairs of symbols) which, when assembled in a
longer strand, create an acceptable sequence. This means that this assembly
creates no homopolymer runs and contains a percentage of G and C which is
lower or equal to the percentage of A and T. More precisely, the codewords
are constructed by selecting elements from the following dictionaries:

• C1 = {AT, AC, AG, TA, TC, TG, CA, CT, GA, GT}

• C2 = {A, T, C, G}

As observed, dictionary C1 is composed by pairs of symbols that when
selected and concatenated to create a longer strand, the resulting quaternary
stream will respect the biological restrictions. More precisely, to ensure that
the code does not create homopolymers, dictionary C1 does not contain pairs
of the same symbol. This means that the pairs AA, TT, CC and GG are omit-
ted from C1. Furthermore, to keep the CG percentage lower or equal to the
one of A and T, the pairs GC and CG are also excluded.

Figure 3.2: Evolution of the percentages of A,T (blue curves) and
G,C (red curves) for a centered Gaussian source of variance σ2 and
mean µ = K

2 (K denoting the number of different source symbols)
in function of the source dynamic normalized by K. The dashed
and continuous-line curves represent two different cases of codeword

length l of 6 and 7 nucleotides respectively.
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Codewords of an even length l, are constructed by selecting l
2 pairs from

dictionary C1. Codewords of an odd length, are constructed by selecting l−1
2

pairs from C1 also adding a symbol from C2 at the end of the codeword. For
the construction of a codeword of length l, the first b l−1

2 c nucleotide pairs will
be filled by choosing symbol pairs from C1. There are 10b

l−1
2 c different choices

for filling those first nucleotide pairs. Then, to fill in the last nucleotide or
equivalently the last pair of nucleotides in the case of even codewords, one
should choose a symbol from C2 or a last pair of symbols from C1 respectively.

It is obvious to prove that such an encoding respects the first restriction
among the ones described in 2.2 for avoiding homopolymers. Furthermore,
by construction, the proposed algorithm is expected to produce a percentage
of A’s and T’s which is around 60% and a percentage of C’s AND G’s which is
around 40%. This is consistent with the recommended percentages for reduc-
ing the sequencing error. To verify the GC percentage of a stream produced
by our proposed method, we have computed the evolution of the A,T and
G,C percentages of a DNA sequence which has been created using our code
and given an input source of symbols that follows a Gaussian distribution of
the variance σ2. Figure 3.2 illustrates the result of the different percentages
in function of the source dynamic. As expected, we can see that the amount
of content of G’s and C’s tends towards 40% while the one of A’s and T’s
tends to 60% as the source becomes more uniform (big values of σ). Inter-
estingly enough, the plot shows that the dashed line (even codeword length)
reaches the asymptote more rapidly than the continuous line (odd codeword
legth). This is due to the fact that in the case of an odd codeword length, the
codewords are constructed using an extra nucleotide from the dictionary C2,
which obviously modifies the two percentages. Therefore, it is clear that our
encoding process deals with the first two restrictions described in 2.2

At this point, it is necessary to mention that if the number K of different
indices k to be encoded is lower or equal to 4 we avoid an encoding which
uses exclusively symbols from dictionary C2. This is due to the fact that in
the case where the same index k is repeated many times in a row in the input
sequence, the encoding can create either homopolymer runs or pattern repe-
titions. Hence, even though it is feasible, an encoding rate R = 1 nt/index is
avoided in order to ensure robustness of the code. As a result the codebook
size L is given by the following relation.

L =

{
10

l
2 , if l is even

10b
l
2 c ∗ 4, l is odd

(3.5)

If the code was not constrained by the biological restrictions of DNA se-
quencing, the code would contain all 4l possible arrangements of the symbols
A, T, C and G. However, since some codewords are considered as non-viable
due to the fact that they might contain homopolymer runs or increase the G,C
content, the length L of the constrained code C∗ will be restricted to specific
values. More precisely, assuming L ∈ {L1, L2, . . . }, then:

L1 = 10 and Li+1 =

{
4Li, i: odd
10Li−1, i: even

(3.6)

Consequently, it is obvious that the codebook length increases at an order
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of O(n). More specifically, in the worst case where one needs to add an extra
pair of symbols to the codeword length to cover the needed size k of symbols
to be encoded into quaternary, the codebook size L will increase by 10. This
codebook extension can be relatively big compared to the encoding needs
(L >> K) and can possibly leave a big part of codewords unused. Such an
example is the case where K = 12 in which a code of L = 40 constrained
codewords would be required, thus leaving 28 codewords unused. In other
words, the number of unused codewords is more than 2 times bigger than the
number K of input indices to encode. However, this unused part can be ex-
ploited to deal with the last biological restriction of pattern repetitions which
can occur in the case where the same index is repeated many times in the
initial sequence. The idea is to replicate m times K into L so that each symbol
in Σ is represented by more than one codewords in C∗ in such a way so to
make use of the full codebook length. Using this method, which we will call
replication step, in every repetition of the same symbol a different codeword
will be used for the representation, not creating long pattern repetitions in
the final encoded sequence. The replication step of the mapping algorithm
can cause an increase in the encoding cost but will provide an encoded se-
quence which will be more robust to the biological error. Thus, depending on
the needs and the purposes of the encoding, the user can select whether the
replication stage is necessary or not. There are three different mapping al-
gorithms each one using a different replication method. Further explanation
about this encoding step will be given in section 3.3.

3.2.3 Discussion

The algorithm described in the above section provides a constrained code C∗
of a size L which contains only viable DNA codewords which when assem-
bled at a longer DNA strand, respect the restrictions described in section 2.2.
The proposed algorithm is efficient and low complexity but due to the way
of constructing the DNA words using specific pairs of symbols, some viable
codewords are omitted. More precisely, the selected code omits the following
categories of viable codewords:

• Codewords with a correct GC percentage which contain a consecutive C
and/or G in positions i and i + 1 of a codeword with i an even non-zero
integer.

• Codewords with no homopolymers that contain the same nucleotide
in positions i and i + 1 of a codeword with i an even non-zero integer.
To this last case we should precise that since codewords are concate-
nated for the creation of an encoded DNA strand, it is important that
the concatenation avoids homopolymers. Therefore, codewords which
begin or end with repetition of the same nucleotide 3 times should be
avoided. In addition to this, codewords can either begin or end with a
pair of the same symbol but this should not be allowed in both the be-
ginning and the end of codewords. Once a selection of allowing a pair
of the same symbol in the beginning or the end of codewords has been
chosen, it should be respected through-out the whole encoding.

The construction of a code which includes the above types of viable code-
words, which are omitted when using our codebook construction algorithm
(PAIRCODE), can be achieved using the following method.
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• Construct a code C containing all 4l different quaternary words of A, T,
C and G of length l.

• Read every word in C discarding the ones which:

– Have a high G,C percentage
– Contain an homopolymer run
– Have a repetition of the same symbol twice in the end of the code-

words. This last restriction can be also applied by allowing a pair
of the same symbols in the beginning but avoiding it in the end of
codewords.

The above method results in a constrained code D that contains all possi-
ble viable codewords that respect the DNA sequencing constraints. This is
an asset over the proposed PAIRCODE algorithm. However, this filtering
of codewords from the set C requires O(n2) extra computations. This addi-
tional complexity is increasing as the size of the code to construct gets higher.
Furthermore, the creation of the constrained code using PAIRCODE is trivial
and instantly creates a code containing only viable codewords even if omit-
ting some of them. On the contrary the creation of the code D requires extra
computations and if the code will need to be computed both during encoding
and decoding the computational time can increase. A solution to this prob-
lem would be the storage of all possible codes of any possible size so to avoid
recomputing it with every use but this would require allocating much mem-
ory. Consequently, while PAIRCODE is omitting some viable codewords, it is
more efficient in computational cost and does not need storage of the created
codes. Table 3.1 shows the comparison in terms of computational time and
number of generated codewords for both methods of DNA code construc-
tion. Even though the difference in computational time might seem negligi-
ble for creating a code of shorter DNA codewords, we must point out the fact
that this code might need to be created multiple times iteratively when ap-
plied to algorithms which search for a convergence point. Such an algorithm
is the one of source allocation for the optimization of the encoding which will
be extensively discussed in latter sections. Therefore, in such a scenario, the
difference in computation time between the two algorithms adds-up and the
total difference might reach much higher values.

PAIRCODE EXHAUSTIVE CODE
# nts Time (s) # words Time (s) # words
2 nts 10−3 s 10 10−3 s 10
3 nts 2 ∗ 10−3 s 40 5 ∗ 10−3 s 60
4 nts 9 ∗ 10−3 s 100 2 ∗ 10−2 s 130
5 nts 3 ∗ 10−2 s 400 4 ∗ 10−2 s 612
6 nts 2 ∗ 10−2 s 1,000 10−1 s 1,944
7 nts 10−1 s 4,000 1 s 9,618
8 nts 2 ∗ 10−1 s 10,000 1, 8 s 29,856
9 nts 1.2 s 40,000 8.4 s 140,352
10 nts 2.5 s 100,000 35 s 465,024

Table 3.1: Comparison between the PAIRCODE algorithm and the
Exhaustive code generation (for word length 2nt to 10nt).
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(a) (b)

(c) (d)

Figure 3.3: Mapping of quantized values into quaternary code

3.3 The proposed mapping algorithm for avoiding pattern
repetition

3.3.1 The algorithm

The mapping step of the encoding algorithm is an application Γ : Σ 7→ C∗
associating an index in Σ to one or more possible codewords in C∗. As ex-
plained in the previous section, the mapping algorithm is different according
to the needs of the encoding. In the case where one wishes to have a more
robust encoding, they can use a replication step in which the algorithm en-
sures that the set of indices Σ can fit more than one times into the codebook
C∗. The replication step increases the robustness of the encoded sequence by
inserting more randomness which can also be used to give some informa-
tion about possible errors that may occur in the sequencing part. However, a
drawback of the replication step is the increase in the encoding cost. It is ob-
vious that there is a trade-off between the encoding robustness and the final
encoding cost so it is up to the user to select if this replication step is useful.
In the case where the replication phase of the mapping is not used (m = 1),
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the mapping algorithm is trivial (see figure 3.3a.) and is described as:

Γ(k) = ck (3.7)

If the replication step is needed for the purposes of the encoding, the map-
ping algorithm works as illustrated in figure 2b. In this case, the code C∗ is
constructed so that each index in Σ is mapped to m ≥ 2 different non-empty
quaternary codewords in C? following a one-to-many relation in such a way
that it is uniquely decodable. By ensuring L ≥ 2K, the pseudo-random map-
ping can at least provide two possible codewords for one input symbol. The
value of m can be selected by the user and the mapping is performed using
the following algorithmic steps:

1. Decide the number of replications m needed for the encoding.

2. Build the corresponding code C∗ of size L ≥ mK using all possible code-
words of length l which can be built following the rules described in
section 3.2.2.

3. The mapping of the input indice k to a codeword in C∗ is given by:

Γ(k) = crK+k, with r ∈ Z+ and 0 ≤ r < m (3.8)

The choice of the value r can be either random or can follow some predefined
selection pattern.

In the case where the corresponding code size L is very large compared
to the number K of symbols to encode such that (L ≥ 2K) the encoding can
profit of a replication step either-way. For example, in the case where one
needs to encode 12 symbols (K = 12), the corresponding code will have a
size of L = 40. Therefore there can be m = 3 replications of the set of symbols
Σ into C∗ by default. Thus it is important that before selecting the number of
replications needed for the encoding the user is aware of the dynamic of the
corresponding code. The algorithm for the encoding of a known set of sym-
bols Σ to quaternary words in C∗ is described in algorithm 1 (see Appendix
A).

Another important point would be the fact that when a fixed set of symbol
indices Σ should be encoded into a quaternary code C∗, it is probable that a
part of the codewords is left unused (grey partition in figures 3.3a and 3.3b).
An interesting approach for taking advantage of those unused words would
be their assignment to the most probable codewords from Σ, assuming that
the information of symbol frequency is also transmitted to the decoder. This
mapping scenario is illustrated by figure 3.3c. In later sections we will discuss
the possibility that the size K of the set Σ is not predefined but is rather com-
puted according to some desired code size L. Such an example is the case of
using the proposed code construction algorithm for image coding where the
input has to be quantized and encoded such that the encoding rate does not
exceed a predefined value Rtarget. In such applications the size of the code L is
given as an argument and the encoding should be performed by quantizing
the input in such a way so that the code is fully used (i.e., L is a multiple of
K) providing the optimal compression quality. In other words, the produced
code C∗ has no codewords which are left unused and consequently the map-
ping can be described by figure 3.3d. The encoding procedure in such a case
is explained by algorithm 2 (see Appendix A).
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class
A
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B

Figure 3.4: Mapping of quantized values into quaternary codewords
using a controlled selection of one of the m possible codewords for a

given index.

3.3.2 Discussion

The number of times m that the dictionary Σ can fit into the code C∗, re-
veals the number of different codewords of C∗ that represent any symbol in
Σ. Hence, during encoding one needs to select one of the different possible
codewords for coding each input symbol. This selection can be performed
using a random generator, as described in the algorithm above, or another
interesting option would be using a deterministic function which will be
known to the decoder. Such an example would be the following one. Assum-
ing a set of symbols Σ of length K which fits m = 2 times in the code C∗. Then,
let’s imagine that the codewords of C∗ are divided into two different classes
A and B containing the first and the second possible codewords assigned to
each symbol from Σ accordingly (see figure 3.4). A possible deterministic
encoding scenario would be coding an index k using the first corresponding
codeword representation ck if the index k is found in an odd position of the
input stream, or using the second representation ck+K if the index is found
at an even position of the input stream. An interesting advantage of using
such a deterministic function for selecting one of the possible codewords as-
signed to some index can be its potential use for correcting errors that might
occur during the sequencing of the data. Consequently, if an error occurs in
the decoder turning a codeword belonging to one class into a codeword that
belongs to another class, one will be able to detect that an error has occurred
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in this position correcting it to the closest codeword belonging in the correct
class.

3.4 Comparison to the State of the Art

DNA data storage is a new field of research which is expected to make a
breakthrough in the domain of “cold" digital data archiving. As described in
section 2.3, some existing pioneering works suggest different algorithms for
encoding the digital information into a quaternary sequence of A, T, C, G. In
this section, we describe the advantages of the encoding algorithm proposed
in this work in comparison to existing encoding methods.

The first attempt of encoding digital data into DNA is described in [22]
by the works of Church et al. In this work each binary bit is encoded to one
nucleotide giving a total coding potential of 1 bit/nucleotide. To improve the
coding potential, as well as the robustness of the encoding to errors, follow-
ing works have adopted some more complicated encoding algorithms. More
precisely Goldman et al. in [1], have proposed an algorithm that respects
the constraint from section 2.2 of avoiding homopolymer runs to improve
the quality of sequencing. This encoding applies a ternary Huffman algo-
rithm to compress the binary sequence into a ternary stream of three symbols
(trits). Then, each of the trits is encoded into a symbol from the dictionary
{A, T, C, G} each time avoiding the symbol that has been previously used.
However, unlike our proposed algorithm, in the encoding of a quantized or
a sparse signal (as for instance the wavelet coefficients of a DWT transform
where a same quantized value can be consecutively repeated many times),
this encoding algorithm can create pattern repetitions which is an ill-case
leading to a higher error probability at the phase of sequencing [23]. Further-
more, since the works of Goldman et. al. use Huffman codes which rely on
the frequency distribution of the input in such an encoding and unlike our
proposed encoding algorithm, it is necessary to transmit the distribution to
the decoder.

A later study in [28], introduces the use of addressing fields to allow ran-
dom access in the reading and writing of the DNA oligos. As the address-
ing primers contain fundamental information which should be correctly re-
trieved the authors propose a novel encoding for DNA data storage which is
built such that secondary structure is avoided in the encoded DNA strands.
More precisely the DNA code differs for each oligo and is constructed ac-
cording to the oligo’s address field. More precisely the code is constructed
ensuring that there is no strong correlation between the encoding codewords
and the addressing header which could lead to the oligo binding on itself and
therefore leading to important loss in sequencing. According to a later publi-
cation [29], this encoding can reach a coding potential of 1.57 bits/nt. While
this encoding avoids undesirable cross-hybridization problems during the
process of oligo selection and amplification and can allow some limited error
correction one possible drawback is the fact that the code is varying accord-
ing to the addressing primer it is not fixed throughout the encoding process.

Another interesting work has been proposed by Blawat et al. [31]. In this
study, the authors have proposed using 5 nucleotides to encode 8 bits of in-
formation using a method for avoiding homopolymers. Furthermore, the en-
coding inserts some randomization in the selection of the codewords which
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Codec JPEG 2000 JPEG
PSNR (dB) 57 48.1 40.2 35.9 61.5 49.2 40.6 35.6

Our rate (bits/nt)
K ≤ L ≤ 2K 3.8 6.4 16 32 2.46 3.86 9.4 23.6

Our rate (bits/nt)
L ≥ 2K 2.7 5.3 13.3 26.6 2.05 3.21 7.7 19.72

Goldman et al.
rate (bits/nt)

2.9 5.7 14.4 28.8 2.25 3.53 8.6 22.4

Table 3.2: Comparison of Our encoder with L ≥ 2K and our encoder
with K ≤ L ≤ 2K to Goldman et. al. [1] Here the rate is expressed
in bits per nucleotide (bits/nt) to highlight the coding potential of the

different solutions.

can be exploited for avoiding pattern repetitions as well as for correcting
some types of errors that may occur. The coding potential of this method is
5 nucleotides per 8 bits of binary sequence which is equivalent to 1.6 bits/nt.
Our proposed algorithm also needs 5 nucleotides to encode 8 bits (255 dif-
ferent symbols). Nevertheless, a strong advantage of our algorithm is the
fact that when applied for transcoding, it can be extended to the encoding
of more than 8 bits of information. In addition to this, it can be applied to
any type of input data (binary or not). In the works of Grass et al. [27], the
encoding is performed using Reed Solomon codes. This encoding achieves a
coding potential of 1.187 bits/nt introducing some extra redundancy in order
to allow error correction. Nevertheless, similarly to [31], it is only applicable
to binary stream. Bornholt et al. in [33] have applied the same encoding as
in [1] improving the encoding scheme and avoiding the fourfold redundancy
which is suggested by the latter and synthesizes each DNA chunk in 4 shifted
copies of the initial sequence. For further information about the fourfold re-
dundancy the reader can refer to [1].

Parameter
Church

et al. [22]
Goldman
et al. [1]

Yadzi
et al. [28]

Grass
et al. [27]

Bornholt
et al. [33]

Blawat
et al. [31]

Erlich
et al. [38]

Our work
(raw data)

Input data
(Mbytes)

0.65 0.75 0.017 0.08 0.15 22 2.15 0.26

Coding potential
(bits/nt)

1 1.58 1.57 1.78 1.58 1.6 1.98 1.6

Redundancy 1 4 1 1 1.5 1.13 1.07 1
Error correction No Yes Yes Yes No Yes Yes No

Table 3.3: Comparison to previous works - Coding potential: maxi-
mal information content of each nucleotide before indexing or error
correcting. Redundancy: excess of synthesized oligos to provide ro-
bustness to dropouts. Error correction/ detection: the presence of
error-correction code to handle synthesis and sequencing errors. Full
recovery: DNA code was recovered without any error. Net infor-
mation density: input information in bits divided by the number of

synthesized DNA nucleotides (excluding primers).

Finally, Erlich et al [38] have implemented an encoding using Fountain
codes to reach a high coding potential. Similarly to most of the previously
mentioned works, despite the efficiency in terms of information density, this
type of encoding is only applicable to binary information while also being
very expensive in computational cost. To evaluate the efficiency of our en-
coding algorithm we have compared it to the one proposed by [1]. The choice
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Figure 3.5: Comparison to the encoding algorithm of Goldman et. al.
For the encoding we consider each byte (8 bits, K=256) as a symbol
to be encoded. The figures show the evolution of the PSNR (dB) in
function of the rate (nts/byte) for different compression qualities us-

ing the JPEG codec (top figure) and the JPEG2000 (bottom figure).
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of this work for the comparison is for two main reasons. Firstly, the work
proposed by [1] is one of the most popular ones and is to our knowledge the
most widely used until this day. Secondly, similarly to our encoding, the al-
gorithm proposed by this work can be applied to any type of symbols and is
not limited to the encoding of binary data. For the comparison we have used
the JPEG and JPEG2000 codecs to compress a set of 10 different images 1 of
size 1510× 5120 pixels to different compression rates. For the experiments
we used the classical transcoding method which is used in bibliography for
encoding digital images into DNA. More precisely, we assume each byte of
the binary stream produced by JPEG and JP2000 codecs represents a differ-
ent symbol and thus K = 28 = 256. We then compared our algorithm to the
one proposed in [1] to encode the binary stream into a quaternary sequence
of A, T, C and G and have built the curves of coding potential (expressed in
nts/pixel) in function of the PSNR. The results of this comparison are illus-
trated in figure 3.5. In table 3.2 we also show the coding rates expressed in
bits/nt for different values of PSNR. More precisely, in our results we com-
pare the encoder of [1] to the one proposed in section 3.2.2 for two different
cases of mapping. The first case (L ≥ 2K), is the mapping of one symbol
index to at least two different codewords as proposed in section 3.3, and the
second case (K ≤ L ≤ 2K) corresponds to the mapping of the most fre-
quent symbol indices to the codewords that are left unused. Those results
reveal the fact that our proposed encoder’s efficiency in terms of coding po-
tential in the encoded stream of nucleotides is comparable to the encoder
proposed by Goldman et al and even slightly better. It is also very interest-
ing to point out again that thanks to mapping repetition our encoder ensures
that the encoded sequence of nucleotides does not contain pattern repetitions
which endanger the reliability of the sequencing and can therefore produce
sequencing errors.

Furthermore, the encoding solution proposed in [1] embeds a ternary
Huffman tree to transform the output bitstream of some codecs (like JPEG
and JPEG2000) into a ternary sequence of 0,1 and 2 and then encodes it into a
sequence of A, T, C and G. Because of the use of Huffman, the probabilities of
the different input symbols should be known or transmitted to the decoder
as well. To the contrary, our proposed quaternary coder produces a simple
fixed length code that doesn’t require the transmission of any side informa-
tion, allowing easier error correction in case of an insertion or deletion error.
Hence, given also the fact that the proposed algorithm is flexible to modifi-
cations according to the encoding needs, those results are very encouraging
while proposing a highly robust code. A comparison of the coding potential
that has been reached using the different encoding approaches proposed by
the state of the art is presented in table 3.3.

3.5 A controlled code-mapping resistant to sequencing noise

As extensively described in section 2.2 the sequencing of DNA strands is an
error-prone process and can cause insertions, deletions and substitutions of
nucleotides introducing important noise in the decoded data. Illumina and

1https://people.xiph.org/~tdaede/pcs2015_vp9_vs_x264/png/

https://people.xiph.org/~tdaede/pcs2015_vp9_vs_x264/png/
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Nanopore are the two most widely used types of sequencers. While Illu-
mina is the most reliable solution providing a low error-rate in the decod-
ing, scientists are turning towards the more recent Nanopore machine due
to its low cost, fast throughput and user-friendly small size. Unfortunately
this type of sequencer introduces more noise in the decoded sequence com-
pared to the Illumina, creating the need for finding new ways to deal with
errors in the decoded sequence. Existing studies have proposed some inter-
esting methods for error correction by adding redundancy in the encoded
sequence, while always using robust encoding to reduce the possibility of se-
quencing noise. However, the high error-rate introduced by sequencers can’t
easily be completely eliminated. Thus, in this study we take a very first step
in proposing an algorithm which provides a solution resistant to sequenc-
ing noise. In other words, this algorithm aims to reduce the impact of the
remaining sequencing errors. In this first attempt, we will assume that the
input set of symbols Σ contains the indices of vectors produced by a Vector
Quantizer(VQ) and we will only focus on the noise of substitutions.

3.5.1 Introduction to the proposed resistant to noise mapping

In [39] DeMarca et al. have proposed an algorithm for assigning binary words
to codevectors of a multi-dimensional vector quantizer (VQ) in such a way
so to be resistant to single-word errors which are inserted by a binary sym-
metric channel. Inspired by this idea and under the assumption that the sub-
stitutions created by sequencers can be considered as bit error noise intro-
duced by digital channels, we extend the algorithm proposed in [39] which
is applied to binary codewords to propose a new mapping function which is
using a constrained quaternary code. This new mapping algorithm is very
interesting in the case that the set Σ contains the indices of vectors which are
produced by a VQ. It is also necessary to mention that while in reality se-
quencing can also cause errors of insertions and deletions for this first study
we will only treat substitution errors.

Before describing the proposed mapping algorithm it is important to in-
troduce some basic notions and definitions. Let V = {v1, v2, . . . , vK} with
V ∈ Rn be a set of n-dimensional vectors vk with 1 ≤ k ≤ K and let’s assume
that Σ contains the indices k of the vectors in V . For the encoding of such
vectors, it is necessary to define a code of at least K quaternary codewords
to be assigned to the vectors’ indices. Since this study focuses on DNA data
storage this specific code should be created using some constrained encoding
that respects the sequencing restrictions discussed in 2.2 in order to reduce
the noise of the reading process. Hence, in this study we will use as a code
the set C∗ of codewords ck which is constructed using the dictionaries C1 and
C2 providing a constrained encoding. We recall that the size K of the code
C∗ is restricted to specific values as the words should be created according to
the constraints imposed by the process of DNA coding.

Assuming a substitution error in the encoded quaternary stream, some
correct codeword cc ∈ C∗ will be transformed to an erroneous codeword ce
with either ce /∈ C∗ or ce ∈ C∗. Under the hypothesis that the error rate
produced by the sequencer will be reasonably small, such that any codeword
can be affected by only one error, the Hamming distance dH between the
correct and the erroneous codeword will be dH(cc, ce) = 1. Therefore, for
each correct codeword cc of length l there are different erroneous codewords
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Figure 3.6: Example of a Hamming sphere. The cross-elements de-
note non viable words that would belong in the Hamming sphere but

are omitted due to the constrained quaternary code.

of distance 1. The set of all possible erroneous codewords can be, according
to coding theory, represented in the Hamming Space as a sphere H(cc) of
radius 1 the center of which is the correct codeword cc. An example of such
a sphere is depicted in figure 3.6. Let us define C the set of codewords of
length l constructed by using all 4l possible arrangements of A, T, C and
G such that C∗ ⊂ C. We then define as C∗ the set of all codewords wu that
belong to C but not to C∗. Hence, C = C∗ ∪ C∗. In the case where C∗ = C there
would be 4l different spheres the cardinality of which would be |H(cc)| = 3l.
However, as explained in section 3.2.2, since the code used for DNA coding
excludes some words which can’t be viable due to the encoding constraints,
in this work we consider K different spheres with varying cardinality. In
other words, some codewords ce that would normally belong to some sphere
of center cc might be omitted due to the fact that they do not respect the
rules of DNA coding (i.e., ce /∈ C∗). As a result, a substitution can cause two
different possible types of error:

• Decodable error: The substitution transforms a correct codeword cc to
an erroneous codeword ce which exists in the constrained code C∗ pro-
posed in section 3.2.2 and therefore ce ∈ H(cc). Decoding will then pro-
vide an erroneous vector ve instead of the correctly decoded vector vc.
In the case that the Euclidean distance dE(vc, ve) is small, the produced
error will not significantly affect the visual quality of the decoded im-
age. To this end, we propose a special mapping algorithm which allows
the assignment of codeword indices to vectors such that the possible
errors will lead to a minimum distortion. This algorithm is analytically
described in section 3.5.2.

• Undecodable error: The substitution transforms a correct codeword cc
to an erroneous codeword ce which does not exist in the constrained
code C∗. In this case, decoding is not possible and thus the application
of some error correction is necessary to allow decoding. To distinguish
the erroneous codewords ce from the undecodable erroneous words we
will define the later as wu. The applied correction techniques are further
described in section 3.6.
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b) Example of a controlled mapping where close codewords in terms of
Hamming distance are mapped to vectors that are close in Euclidean distance.

Figure 3.7: An example of using a simple mapping vs. using a con-
trolled noise resistant mapping for L = 40.

3.5.2 The proposed controlled mapping algorithm

Before explaining the proposed mapping algorithm it is important to under-
stand its main purpose. The idea behind this new controlled mapping is the
assignment of indices of vectors which are close in Euclidean distance dE
to codewords which are close in terms of Hamming distance dH. The rea-
son for performing such an assignment stems from the initial requirement
that a single substitution error should produce a minimum visual distortion.
Therefore, in case of an error during sequencing and assuming that the se-
quencing noise is small enough, a correct codeword cc will be transformed to
an erroneous one ce one which will have a small Hamming distance with the
correct one (dH(cc, ce) = 1). Thus, if cc and ce are assigned to input vectors
which are close in Euclidean distance, the error will not significantly affect
the image quality.
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For better understanding of the algorithm’s main purpose let’s take the
following example. Let us assume a set Σ of vector indices k with 1 ≤ k ≤ K
corresponding to vectors vk and a code C∗ of words of length l = 3 nts as de-
picted in figure 3.7 Let’s also assume a simple one-to-one mapping function
(figure 3.7a) such that:

Γ(k) = ck

Since in our study the relation between the input vectors vk ∈ V and their
corresponding indices k ∈ Σ is trivial with α(vk) = k, it is obvious that the
assignment of an indice k in some codeword cj ∈ C∗ with j = {1, 2, . . . , K}
yields the assignment of the vector vk to cj. Thus, to simplify notations, in
this chapter we will from now on be mapping directly the vectors from V to
the codewords in C∗ Then, vector v1 is represented by codeword c1=’ATA’.
Let’s then suppose that v1 belongs to a neighborhood of vectors which are
close in Euclidean distance. Assuming a substitution error in the first po-
sition of c1 which transforms the codeword ’ATA’ to the codeword ’CTA’
which is decoded to the vector v10. Since v10 does not belong in the neigh-
borhood of the correct vector v1 (the two vectors are far in terms of Euclidean
distance), the visual distortion caused by this substitution is expected to be
high. On the contrary, in the case where the word ’CTA’ was mapped to a
vector such as v11 (figure 3.7b), which belongs to the neighborhood of v1,
the substitution error will cause an erroneous decoding to a vector which
is close in Euclidean distance to the correct one and hence the MSE will be
low. Therefore, a mapping such as the one proposed by figure 3.7b would be
preferable. The proposed resistant to noise mapping aim is creating such an
optimal assignment to minimize the distortion caused by substitution errors.
To further define which vectors can be considered as close vectors we intro-
duce a set S(v) which contains the closest vectors to the vector v in terms of
Euclidean distance dE. The central idea of the proposed mapping is to assign
codewords of the same sphere to vectors which belong to the same neighbor-
hood as shown in figure 3.8. However, such an assignment is not possible
for every neighborhood S and thus it is necessary to perform this assignment
according to some priority. To this end, we define the following empirical
function F(v) for a vector v as proposed by DeMarca et al. in [39]:

F(v) =
p(v)

φβ(v)
(3.9)

where p(v) is the probability of v in the input sequence, and

φ(v) = ∑
j|vj∈S(v)

dE(vj, v) (3.10)

with β ≥ 0 a trade-off parameter. Therefore, vectors with a higher value for F
are considered to belong in a denser neighborhood and should consequently
get higher priority to be assigned to the same sphere of words. The algorithm
can be very roughly described by the following parts:

• For each codeword cq: Create a sphere containing the Bq codewords
which have a Hamming distance of 1 with cq. As the code C∗ is con-
strained, the different spheres H(cq) created for each codeword cq will
have a different cardinality Bq due to the fact that some codewords are
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omitted as non-viable. Thus, we define B = max
q

(Bq), q ∈ {1, . . . , L}.

• For each input vector vk with k ∈ {1, 2, . . . , K}:

– Find a set S(vk) of B neighboring vectors vkb
(b ∈ {1, 2, . . . , B})

which are the closest to vk in terms of Euclidean distance dE(vk, vkb
).

– Compute the following empirical function F(vk).

• Use algorithm 3 to progressively perform assignment of vectors vk to
codewords cq such that vectors with a bigger F(vk) as well as their
neighboring vectors vn ∈ S(vk) will be assigned to the same sphere
of codewords whenever possible as depicted in figure 3.8. If this is
not possible assignment is performed such that vectors are assigned to
codewords that do not belong to the current sphere H(cq) and have a
small Hamming distance from the codewords already assigned to their
neighboring vectors. This progressive assignment of vectors vk ∈ V to
codewords cq ∈ C∗ results in a set of vectors Vs which is sorted accord-
ing to the codeword assignment.

• Optimization of the first assignment:

– Exchange the previously mapped codewords between each possi-
ble pair of vectors from Vs.

– For each exchange check if the average distortion has decreased. If
true keep this change, else keep the initial state of mapping.

Figure 3.8: Assuming a vector vk, the set S(vk) contains the B closest
to vk vectors vkb

in terms of Euclidean distance. Then given a code-
word cq, the Hamming sphere H(cq) of radius 1 contains all possible
codewords cqi with i ∈ {1, . . . , Bq} for which dH(cq, cqi ) = 1. An
optimal case of mapping would be the one where all vectors that be-
long to the same neighborhood S(vk) are assigned to the same sphere
H(cq). However as this mapping is not possible for all the words
cq ∈ C∗ we search for a solution that globally optimizes the assign-

ment such that close codevectors are mapped to close codewords.

3.6 Proposed decoding of undecodable words

As discussed in section 3.5.1 in the case in which a substitution error creates
an undecodable word it is necessary to employ some error correction to allow
decoding. In this section we will propose two possible methods for correcting
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undecodable words. To begin with, it is important to denote that the study
of the proposed decoding algorithms relies on three main assumptions.

• A substitution error will produce an erroneous codeword which will
not differ from the original one in more than one nucleotide.

• Using the mapping algorithm proposed in the previous section it is
probable that codewords that are close in terms of Hamming distance
are assigned to codevectors which are close in terms of Euclidean dis-
tance.

• Since the input data is an image there can be correlations between neigh-
boring elements.

The proposed error-resistant mapping can only be applied to fixed-length
encoding workflows. It is this fixed-length code which allows the applica-
tion of some error-correction methods for correcting any undecodable words
which have occurred after a substitution error. The proposed error-correction
methods are explained in the next two subsections.

3.6.1 Simple Correction Decoding (SCD)

The first method which we will call Simple Correction Decoding (SCD) is
making use of the first two assumptions described in the above section (3.6).
Let us assume a correct word cc which is corrupted by a substitution error
producing an undecodable erroneous codeword wu. Given the first assump-
tion, dH(cc, wu) = 1. To allow decoding, wu should be first corrected to a
decodable word cd. The idea behind SCD is to correct wu to some word cd
we chose as most appropriate the codeword cd ∈ C∗ which is assigned to
the median vector-index of the input image. This choice has two possible
outcomes. Either cd will be equal to cc creating no visual distortion in the
decoded image, or cd 6= cc and dH(cc, cd) = {1, 2}. To better understand
this last relation let’s consider the following example. Assuming a correct
codeword cc = ACA which due to a substitution error in the first position, is
transformed to the undecodable word wu = GCA. Since this erroneous word
is not found in the constrained codebook C∗, the codeword should be cor-
rected to some existing decodable one. Supposing that the median vector is
assigned to the codeword cd = GTA we correct wu to cd and dH(ACA,GTA) =
2. However, if the median vector was assigned to the codeword cd = TCA we
would have dH(ACA,TCA) = 1. In other words, if the correction is performed
at the same nucleotide where the error was made then the distance between
the correct codeword and the corrected one will be either 0 or 1, else it will
be 2.

3.6.2 Advanced Correction Decoding (ACD)

By making use of the third assumption indicated in section 3.6 which states
that there can be correlations between neighboring elements in an image, we
propose a second more sophisticated decoding, which we will call Advanced
Correction Decoding (ACD) and takes advantage of possible correlations be-
tween neighboring elements of an image. ACD works in two consecutive
decoding cycles. In the first cycle, it performs a first decoding by simply



48 Chapter 3. A novel constrained quaternary encoding

Figure 3.9: The decoding grid after the first decoding step. Gray tiles
represent undecodable codewords wu which still remain in their qua-
ternary codeword representation while white tiles represent already
decoded codewords which have been already assigned some index of

input vector during the first decoding.

1

Figure 3.10: The different sets used for ACD decoding. Each unde-
codable word wu constitutes the center element of a neighborhood
Cu of neighboring codewords cj

u. The set Vu contains the vectors to
which are mapped the codewords cj

u ∈ Cu. Each undecodable code-
word wu is the center of a sphere H(wu) containing decodable code-
words ci

u which have a Hamming distance of 1 to wu. The vectors to
which are mapped the codewords that belong to the sphere H(wu),

form the set of vectors VHu .

omitting all the undecodable words. More precisely, this step decodes the
words which exist in the code C∗ to the corresponding VQ indices of Σ while
in parallel reconstructing the image in the VQ block-space to retrieve the spa-
tial information. After this decoding cycle, the undecodable words are still
expressed in quaternary representation but are spatially placed to the corre-
sponding positions in the image resulting in a decoding state which can be
described by figure 3.9.

Before continuing to the second part of the decoding it is important to
define the following notions:

• Assuming a setW ⊂ C∗ containing all the undecodable words wu with
u = {1, 2, . . . , U}.

• We define as Cu ⊂ C∗ the set of decodable neighboring codewords cj
u

with j ∈ {1, . . . , |Cu|} where 0 ≤ |Cu| ≤ 8, which are found around an
undecodable word wu. The size of the neighborhood depends on the
needs of the encoding process and can vary. In our study, for simplicity,
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we are going to test the proposed algorithms for the 8 neighboring ele-
ments around wu (1-ring neighborhood). As depicted in figure 3.9 after
the first decoding cycle the neighborhood might contain vector indices
which are already decoded but it is also possible to include some other
remaining undecodable codewords. Furthermore it is obvious that the
same element might be present more than once in some neighborhood.

• We define Vu ⊂ V as the set of vectors vj
u with 0 ≤ |Vu| ≤ 8 to which

the codewords in Cu have been assigned.

• We define as VHu the set of vectors νi
u, 1 ≤ i ≤ |H(wu)| to which have

been assigned the codewords in the Hamming sphere H(wu).

• Define the set S = Cj ∩ H(wu) = {c1, c2, . . . , cZ} containing codewords
cz ∈ C∗ with z = {1, 2, . . . , Z} which belong to the intersection of the
neighborhood of words of Cu and the Hamming sphere H(wu) of the
undecodable word wu.

The second round of the decoding algorithm aims to decode the remain-
ing undecodable words. This step is more complicated and is working ac-
cording to the following steps:

• If |S| = 1 and S = {ck} then cu ← ck

• If |S| > 1
- Define f (cz) as the frequency of a word cz, cz ∈ S
- cu ← cz ∈ S such that cz = arg max

z
f (cz)

• if |S| = ∅

- Compute: D(νi
u) =

∑
|Vj |
j=1 dE(ν

i
u,vj

u) f (Γ−1(vj
u))

|VHu |
, ∀νi

u ∈ VHu

- cu ← cd where cd = Γ(vd) with vd := arg min
νi

u

(D(νi
u))

3.7 Experimental results

In our study we performed multiple comparisons in order to prove the effi-
ciency of the proposed mapping algorithm. For each comparison we ran 10
different realisations of random substitution errors added on the same input
image and have plot the improvement in PSNR in function of the error rate.
As explained in 3.5.2, the main assumption behind the proposed mapping
algorithm is the restriction of the errors to one substitution per quaternary
word. Thus, for the noise addition, we used a uniform random distribution
to select a percentage of correct codewords from the encoded sequence and
we introduced an error of one nucleotide in each selected codeword. The
points in each of the plots presented in this section correspond to the mean
value of the 10 different realisations of noise.

To begin with, to set an upper bound in the performance of the con-
trolled mapping we tested the improvement of PSNR compared to the non-
controlled case by adding only decodable errors. More specifically, in this
experiment we added random substitutions while ensuring that the created
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erroneous words exist in the constrained codebook. Figure 3.11a, shows the
improvement of PSNR (∆PSNR) for different parameters of K and n for VQ
in function of the introduced error rate. As observed in this figure, the con-
trolled mapping can improve the PSNR by at least 3 and at most 7.5 dB in
the optimal case where no corrections are needed. The addition of only de-
codable errors might not be a realistic case in practice but this plot reveals the
true potential of the proposed mapping algorithm. This is because in the case
of an undecodable error the correct codeword will be transformed to an er-
roneous undecodable one wu with dH(cc, wu) = 1. Then, at the decoding, the
erroneous undecodable word wu will need to be first corrected to a predicted
decodable codeword cd with dH(wu, cd) = 1. This yields that dH(cc, cd) ≤ 2.
Consequently, since the mapping is optimized for only one substitution per
word and the Hamming spheres are created to have a radius of 1, this will
reduce the performance of the mapping algorithm.

However, the creation of only decodable errors is not a realistic scenario
and thus we performed a second more realistic experiment in which we also
created undecodable errors, always by creating a random substitution to a
percentage of selected codewords. This new experiment is presented in fig-
ure 3.11b and depicts the improvement of PSNR in function of different error
rates comparing the controlled and non-controlled mapping using SCD for
correcting the undecodable words. As expected the undecodable errors de-
creases the improvement of PSNR providing a best case of ∆PSNR= 3dB.

To improve those results and since SCD is a simple decoding where the
undecodable word is corrected to the codeword mapped to the median vector-
index of the quantized input image, we also tested the case of ACD. The
result is shown in figure 3.11c which depicts the improvement in PSNR com-
paring the controlled mapping using ACD to the non-controlled mapping
using SCD. This case reveals the total improvement which can be achieved
providing a ∆PSNR between 2.5 and 5dB. On the right column of figure 3.11
we also present the visual improvement for each of the previous cases on
the input image which was used in our experiments. The visual results are
presented for an error rate of 3%, which is the percentage of substitutions
introduced by the sequencer of the Nanopore (according to a study in [40]),
and for the values of K and n which provided the best PSNR improvement
in each case. The resistant to noise controlled mapping algorithm proposed
in section 3.5 as well-as the proposed decoding of undecodable words de-
scribed in section 3.6 have been published in [41].

To further test the efficiency of the proposed controlled mapping we have
also performed an experiment using a discrete wavelet transform (DWT) for
the decomposition of an image to 3 levels and quantizing each of the sub-
band independently using a VQ. This particular encoding workflow using
wavelets will be further studied and analysed in later sections. We neverthe-
less present here the results of the efficiency of the proposed noise resistant
mapping. In our experiment, we encoded an image using a simple mapping
without repetition and the proposed controlled mapping. For both mapping
cases we used the encoding workflow briefly described above, reaching a
compression rate of R = 14.81 bits/nt. The encoding produces two differ-
ent representations according to the mapping which has been use in each
case. We then added substitution errors to the same positions of the encoded
strands. For the decoding of any undecodable codewords which might have
occurred after the introduction of noise, the ACD decoding method has been
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applied in both mapping cases. The visual results of this experiment are
shown in figure 3.13 where it can be seen that the improvement of the PSNR
when using the proposed controlled noise-resistant mapping is 2dB. Those
results are very promising and encourage us to extend this work in our fu-
ture studies to the use of the Levenshtein distance, in order to also allow the
algorithm to deal with insertions and deletions.

3.8 Conclusion

In this chapter we have introduced our proposed solution for generating a
constrained codebook of DNA codewords which respect the biological re-
strictions of DNA sequencing. The proposed code-construction algorithm
(PAIRCODE) can be used for implementing fixed length encoding solutions
and achieves a coding potential which is comparable to the most well-known
DNA coding methods among the state of the art. To exploit any redundant
codewords of the code which is generated using PAIRCODE we have in-
troduced a mapping function which performs a one-to-many assignment of
source symbols to quaternary codewords of the code. This assignment al-
lows dealing with the problem of pattern repetitions which can occur in the
case that a source symbol is repeated many times in a row. Consequently,
even though PAIRCODE does not outperform all existing encoding meth-
ods, it has the great advantage of being applied to any type of data without
being constrained to binary inputs while also ensuring that there are no re-
peated patterns in the encoded strand. Summing up all the assets of our
proposed encoding, it is interesting to denote that such an algorithm would
be appropriate to be used in image coding: unlike previous works which use
transcoding, it can be directly applied to encode sparse input data such as
the quantized coefficients of some transforms. In addition to this, it can also
avoid the pattern repetitions that can occur due to the consecutive occurrence
of the most frequent symbols as in the case of quantized data. Consequently,
this algorithm is a good candidate to be embedded to a workflow for image
coding for DNA data storage. In the next chapter we present our proposed
solution for implementing such a workflow which is useful for the efficient
compression of digital images so to control and reduce the high DNA synthe-
sis cost. Finally, since DNA sequencing is an error-prone process we propose
an alternative mapping function which is resistant to the noise of substitu-
tions which can be caused by sequencers and can be applied in the case that
the source belongs to the space of vectors of length greater than 2. The pro-
posed solution significantly reduces the impact of substitution noise in the
visual quality of the decoded images.
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a) Controlled mapping vs.non-controlled mapping (decodable errors only)
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b) Controlled mapping SCD vs. non-controlled mapping SCD.
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c) Controlled mapping ACD vs. non-controlled mapping SCD

Figure 3.11: PSNR improvement in function of the error rate for dif-
ferent cases of VQ parameters K and n. The three different plots cor-
respond to different experiments as explained in the legends a, b and

c.
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a) Controlled mapping vs.non-controlled mapping (decodable errors only)

b) Controlled mapping SCD vs. non-controlled mapping SCD

c) Controlled mapping ACD vs. non-controlled mapping SCD

Figure 3.12: Visual results for each of the cases a, b and c for the values
of K and n that provided the best performance. The selected error rate
for those images is 3% accordingly to the percentage of substitutions

caused by the Nanopore sequencer [40].
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Simple Mapping (ACD)
PSNR=25.524 dB

Controlled Mapping (ACD)
PSNR=27.281 dB

Figure 3.13: Results of the use of controlled mapping algorithm vs.
the use of simple mapping when applied to a workflow containing
DWT and Vector Quantization. For the encoding we apply a 3-level
DWT and quantize each subband independently using Vector Quan-
tization. We then map the quantized codevectors to codewords of
a code produced by our PAIRCODE algorithm using simple or con-
trolled mapping. The encoded strands have been then corrupted by
substitution noise inserted at the same positions of the strand. The
figure depicts the impact of the error for the two different mapping

cases.
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Chapter 4

Design of a closed-loop
DNA-based image coder

4.1 Introduction

One of the main goals of this thesis is to propose a full encoding workflow
for the robust and efficient encoding of digital images into synthetic DNA.
While multiple existing methods in the bibliography have been tested on
image coding there is still room for further study and improvement. One
of the greatest limitations of DNA data storage being the high cost of DNA
synthesis, it is necessary to efficiently compress the input data before the
encoding so to reduce the expenses.

Previous works until today have been transcoding binary information
from many types of data into DNA, without taking into consideration the
data characteristics. Thus, when encoding an image into DNA, the state of
the art works have been using the protocol of JPEG which optimally com-
presses an image given some arbitrary target rate of compression expressed
in bits/pixel. Then, the output bitstream of JPEG is transcoded to a qua-
ternary stream leading to an "open loop" coding solution. In other words
the compression is not optimized according to some quaternary encoding
but is instead compressed according to a binary encoding. The implemen-
tation of a closed-loop transcoding algorithm for JPEG would be an option
for further improving compression but such an encoding would be compu-
tationally expensive. As the DNA synthesis process is an expensive process
requiring several dollars per synthesized oligo, it is fundamental to control
this cost by including the compression into the process of encoding. There-
fore, in our approach we don’t use some fixed black box of compression. We
rather designed a new codec (fully controllable) embedding a quaternary en-
coder leading to a "closed loop" coding solution so to be able to perform an
optimal source allocation algorithm that can optimally compress the image
given a target rate expressed in nucleotides/pixel (or bits/nucleotide) and
not in bits/pixel. Indeed, our approach doesn’t perform "transcoding" from
binary to quaternary (as in the case of the state of the art) but rather we are
directly encoding using a quaternary code the quantized coefficients allow-
ing optimal rate/distortion control. Therefore, the encoding process in DNA
is considered as a main factor for the optimal compression, something which
is not possible when using the standard JPEG to compress.

In the next sections we present our proposed encoding workflow for the
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efficient encoding/decoding of digital images into synthetic DNA while con-
trolling the synthesis cost by optimizing the parameters used for the com-
pression to provide the best possible visual quality.

4.2 A novel image coding/decoding solution into synthetic
DNA

In this section we present our first proposed encoding for storing digital data
into DNA. As explained in section 2.4, due to the high cost of DNA synthe-
sis it is necessary to compress the data before encoding it into a quaternary
representation of A, T, C and G. Previous works have used the JPEG proto-
col for compressing images before storing them into DNA. However, JPEG
provides a compression quality which has been optimized for a given bit rate
and therefore for the storage of binary bits rather than nucleotides.

In our study we propose including the compression process in the general
workflow and applying a source allocation algorithm, which we will thereby
call nucleotide allocation, to provide a closed loop solution by computing
the optimal compression parameters given a predefined nucleotide rate. In
other words, instead of using an existing compression protocol which is built
for source coding, we introduce a simple step-by-step compression process
which is constructed to deal with DNA coding. Allocation is an iterative al-
gorithm which can be time consuming and computationally complex. To this
end, we introduce a new efficient algorithm which produces a fixed-length
quaternary code and facilitates the job of the nucleotide allocation. In con-
trast to existing coding methods in the bibliography the proposed encoding
can be applied to any type of input data, binary or not. Furthermore, since
pattern repetition is one factor which can cause errors during sequencing we
also introduce for the first time a novel mapping algorithm for assigning to
the input values the quaternary words of a fixed length code in such a way
so to avoid creating patterns during the encoding.

The proposed compression workflow uses the following steps. To begin
with a DWT is applied for reducing spatio-temporal redundancies on the
input image providing a set of DWT subbands. Those subbands are then
independently quantized using some quantization method (scalar or other)
and separately encoded into a quaternary representation using a novel ef-
ficient algorithm for building the quaternary code. A nucleotide allocation
algorithm for computing the optimal quantization parameters to provide the
best possible image quality for a given compression rate expressed in bits/nt
or nt/pixel. This predefined compression rate is equivalent to controlling the
DNA synthesis cost and can therefore allow an estimation of the best qual-
ity/cost trade-off. This optimization is fundamental given the high cost of
DNA synthesis which remains one of the main drawbacks of DNA data stor-
age.

Once the quatization parameters have been selected by the allocation ,
they are then used for compressing the DWT subbands and encoding them
independently into long strands of A, T, C, and G. As explained in section
2.1.2 the biological process of DNA synthesis limits the oligo size to 100-300
nts to promise reliability. Thus, after encoding each of the encoded subband
strands is cut into smaller oligos of predefined size and formatted by adding
any necessary headers to form the set of final oligos, ready to be synthesized!
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The set is then sent to some company or laboratory of biology for synthe-
sis. The produced DNA is then stored in safe capsule-sized containers that
guarantee to keep it safe from corruption for centuries or even longer.

4.3 Source Allocation

The purpose of source allocation is to select the optimal compression param-
eters for the allocation of a given number of units of source information so
to achieve a minimum compression distortion. When applied for encoding
input data in binary representation this algorithm is called bit allocation. In
this thesis we apply a source allocation for the encoding into a chain of nu-
cleotides and will therefore call it nucleotide allocation.

The most well-known protocols used for image compression is JPEG and
JPEG 2000 which use transform coding to enable better (more targeted) quan-
tization. Those protocols are using bit-allocation to optimally quantize the
DCT or DWT subbands accordingly of an input image into a compressed bi-
nary stream. As previously mentioned, inspired by standard of JPEG 2000,
in this work we select the DWT transform for the compression but any other
similar transform (such as DCT) could also be applied. DWT decomposes the
input image into subbands of different resolution to capture spatio-temporal
information. Thus, the main purpose of nucleotide allocation is to compute
the optimal quantization parameters of each DWT subband to obtain the
maximum quality in the reconstructed image.

In general the allocation of coding resources has been early recognized as
a key issue in transform coding and in subband coding problems. A first an-
alytical approach came by Huang and Schultheiss, who stated the theoretical
optimal bit-rate allocation for generic transform coding in the high-resolution
hypothesis [42]. They proposed allocating the optimal bit-rate to each set of
data depending on their variances. While simple and elegant this interesting
solution only holds when a high rate is available for encoding.

Shoham and Gersho have then proposed in [43] an optimal algorithm
with no such restriction on the target bit-rate; however, it requires the compu-
tation of the RD characteristics for each possible quantization step, and thus
its computational complexity is high. Ramchandran and Vetterli presented
in [44] an RD approach to encode adaptive trees using generalized multi-
resolution wavelet packets. For the general case, an analytical expression of
optimal rates has not been found, and different approaches have been ap-
plied. One of the most successful theories often used for solving the problem
consist in modelling the relationship between the RD characteristics of the
data sets and the global RD characteristics. The theory aims at minimising
the distortion for a given maximal rate of the reconstructed data, by opti-
mally allocating source units such as bits or as in this case nucleotides, to
the various classes of data, which in our case will be the different subbands.
For the case of orthogonal subband coding, Gersho and Gray showed in [45]
that the global distortion DT can be expressed as a sum of the sb subband
distortions Dsb:

DT(RT) =
SB

∑
sb=1

Dsb(Rsb)
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Usevitch has then extended this approach to the case of biorthogonal
wavelet transform [46], modifying the above relation using some weights
ωsb which account for the non-orthogonality of the filters:

DT(RT) =
SB

∑
sb=1

ωsbDsb(Rsb) (4.1)

The problem of source allocation can then be expressed as follows:

min
Rsb

DT =
SB

∑
sb=1

ωsbDsb(Rsb), w.r.t. RT =
SB

∑
sb=1

asbRsb ≤ Rtarget (4.2)

where asb is the fraction of total pixels of subband sb. Namely, if Psb is the
number of pixels in the subband sb:

asb =
Psb

∑SB
k=1 Pk

(4.3)

In other words, the goal is to minimize the total distortion with respect
to some defined total target rate Rtarget. In the above equation the rate Rsb of
each subband sb is parametrized by a set of quantization parameters Qsb of
the quantizer used for the compression. Hence, the problem can be expressed
as:

min
Qsb

DT =
SB

∑
sb=1

ωsbDsb(Rsb(Qsb)), w.r.t. RT =
SB

∑
sb=1

asbRsb(Qsb) ≤ Rtarget

(4.4)
It is therefore clear that one fundamental step for solving the problem of

allocation is the correct computation of the R-D curves of the different sub-
bands. One simple but computationally expensive approach for this compu-
tation is the use of a "brute force approach" which computes the R-D curves
point by point. To simplify the computations later works in [47] propose rep-
resenting the scalar-quantized coefficients using generalized gaussian mod-
els. An analytical solution to both rate allocation and distortion allocation
problems can then be given by defining a model for subbands R-D curves,
in order to lower the computational complexity of the algorithm while im-
proving its accuracy. This approach tries solving equation 4.2 by introducing
the lagrangian functional as presented by C. Parisot in [47], resulting in the
following relation:

J(R, λ) =
SB

∑
sb=1

ωsbDsb(Rsb(Qsb)) + λ(
SB

∑
sb=1

asbRsb(Qsb)− Rtarget)) (4.5)

By imposing the zero-gradient condition, it is found that the resulting
optimal rate allocation Ropt verifies the following equation:

ωsb
asb

∂Dsb(Rsb(Qsb))

∂Rsb(Qsb)

∣∣
Rsb(Qsb)=Ropt

= −λ (4.6)
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Thus, the optimal rates correspond to points having the same slope on the
“weighted” R-D subband curves. To compute the slopes T.André proposed
in [48] the modeling of the R-D curves using splines. This solution is one of
the solutions used in our studies and will explain it in more detail in the next
sections.

4.4 Quantization

As described in the above sections the efficient compression of the input im-
age is necessary in order to reduce the synthesis cost. Compression is per-
formed using a quantization step after a DWT decomposition which quan-
tizes the image coefficients of each subband independently, using the desired
parameters to determine the quantization quality. The number and the type
of parameters vary according to the type of Quantizer selected. In our study
we carried out experiments using two different types of quatizer, Uniform
Scalar Quantizer and VQ. The detailed study will be explained in the next
sections. While quantization serves to the reduction of the synthesis cost,
compression can lead to the creation of uniformity in blocks of neighboring
coefficients and can therefore create pattern repetitions in the encoding. Con-
sequently, even though in section 3.5.2 we have presented all the possible ap-
plications of the mapping algorithm according to the encoding needs, when
applied to image coding the mapping should be selected so to treat pattern
repetitions. The proposed value for the number of different codewords to
represent each coefficient value is therefore m ≥ 2. Furthermore since the
compression should be optimal to provide the best possible quality it is clear
that the encoding should take advantage of the full length of the code. Thus,
the mapping algorithm should respect the following constraints:

• The number L of codewords in the code C∗ and the number K of indices
of quantized subband coefficients to encode in Σ should be related as
L ≥ 2K.

• To achieve the best possible quality for a given coding potential defined
by L there should be no codewords in C∗ left unused. Consequently the
mapping of symbols to codewords should be done according to figure
4.1.

In the following sections we will present the encoding and the selection of the
preferred quantization parameters according to each type of quantizer used
in our experiments. It is important to denote that other types of quantization
could also provide interesting results. Such an example would be the use
of Lattice VQ as presented in [49] and [50] in which the approximating vec-
tors are centroids of Voronoi polyhedrons of same size and shape which are
forming a lattice. Interesting applications of Lattice quantizers on image cod-
ing with wavelet transform and rate-distortion models have been presented
in [51] and [52].

4.4.1 Nucleotide allocation using Uniform Scalar Quantization

The simplest and most low-cost quantizer for testing the performance of our
proposed encoding is the Uniform Scalar Quantizer with no dead-zone. The
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Figure 4.1: Optimized Mapping of quantized values into quaternary
code for image coding application

scalar quantizer has only one parameter to define the quantization quality
and that would be the quantization step-size q. Consequently, in this case,
optimization of the compression using a nucleotide allocation algorithm can
be achieved by selecting an optimal quantization step-size qsb for each of the
different subbands sb with 4 ≤ b ≤ SB and SB = 3 ∗ (#`) + 1 of an #`-level
DWT, which minimizes the compressed image’s distortion DT for a given
target compression rate Rtarget. In other words, when used along with a uni-
form scalar quantizer, the problem addressed by nucleotide allocation can be
described by equation 4.4 where Qs = {qsb}. More precisely, the source allo-
cation will estimate the optimal combination of subband rates Rsb which give
a final total rate RT = Rtarget while providing a minimum subband distortion
Dsb and therefore a minimum total distortion DT. The encoder and decoder
in the case where DNA coding is applied on image compression that uses a
scalar quantizer is described in figure 4.2.

DNA 
codingQ

nucleotide
allocation

q

DNA 
decoding

DECODER

ENCODER

Figure 4.2: The general DNA encoding schema for image coding
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Nucleotide allocation using splines approximation

As introduced in section 4.3, to solve the problem of optimal source allo-
cation he main principle of this solution is to build the Rate-Distortion (R-D)
curves for each of the subbands of DWT by varying the value of the quantiza-
tion parameters at a sufficient range and computing this way the global R-D
curve for the reconstructed image. One of the main goals of this solution is to
correctly build the R-D curves. An interesting and efficient low-complexity
solution is the one proposed by André in [48] which suggests approximat-
ing the R-D curves using splines to avoid computing many points in the R-D
curve. We recall that the allocation problem can be solved using equation
4.6. In this work we used the DWT 9/7 which is biorthogonal with weights
ωsb ≈ 1. Furthermore since in this experiment we use a Uniform Scalar
Quantizer, the allocation is only parametrized by the quantization step size
q.

As explained in the previous section the allocation can be performed by
solving the following equation:

∂Dsb(R(Qsb))

∂R(Qsb)

∣∣
Qsb=(Q)∗sb

= −λasb (4.7)

The solution of the above equation is given by computing the slope on a
continuous R-D curve. However, since the rate Rsb of a subband sb is taking
discrete values, the corresponding curve is not continuous. Thus, for solv-
ing the above equation, we need to approximate the continuous curve using
smoothing splines and then compute an approximation of the desired slope
λ for two close consecutive points D(R1) and D(R2) on the smoothed R-D
curve as:

λ =
D(R2)− D(R1)

R2 − R1
(4.8)

We compute the smoothed R-D curve and solve the allocation problem
for some given value of λ for each subband of the DWT as follows:

• Select r different decreasing values for the quantization step-size q, quan-
tize and encode the subband coefficients to obtain r different points on
the R-D curve. As explained in section 3.3, the code C∗ has a defined
dynamic. Thus, given the relation between the number K of indices to
encode in Σ and the size of the code L, the number of codewords that
are left unused will vary. Consequently, different values of quantiza-
tion step qsb may require the same code size L for the encoding, thus
producing the same encoding rate Rsb. This means, that there might be
multiple values of MSE achieved for a given rate as depicted in figure
4.3. Since the main goal of nucleotide allocation is the minimization of
MSE for a given target rate, we select for each rate the point that pro-
vides the lowest MSE value lying on the convex hull of the R-D curve
(black line in figure 4.3)

• Create a smoothed approximation of the rough R-D curve obtained be-
fore using smoothing b-splines approximation (red curve in figure 4.3).
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• Select the point on the smoothed curve which has the closest slope to the
value of λ. To accelerate the computations, the method of dichotomy
can be used for locating the desired point.

• The selected point provides an approximation of the desired rate R∗sb.
The desired subband rate R∗sb is expressed in nucleotides/coefficient
and is equal to the desired codeword length l∗ of the code. Then, it
is easy to compute the corresponding desired size L∗ of the code C∗ as:

L∗ =

{
10

l∗
2 , if l∗ is even

10b
l∗
2 c ∗ 4, l∗ is odd

(4.9)

• Using L∗ one can derive the number of quantization levels and using the
maximum and minimum values of the subband coefficients the desired
quantization step-size q∗sb.

• Performing the encoding using this estimated value of q∗sb the real val-
ues of Rsb and Dsb are obtained and constitute one point on the global
R-D curve of the reconstructed image.

• Repeating the same procedure for many different values of lambda if
needed a complete global R-D curve can be obtained which contains
the optimal parameters for many different target rates Rtarget.

The performance of the above nucleotide allocation algorithm has been
tested on 512x512 pixel image of Lena providing the R-D curve depicted on
the left side of figure 4.4.

Nucleotide allocation using permutations

The method described in the previous section is using splines to approximate
the R-D curve of each subband and thus the parameters derived from the
allocation will provide a total rate RT which is close to the desired target rate
Rtarget but not exactly equal. In this section we will present a new algorithm
which computes the quantization parameters so to provide the real RT values
which are predefined by the user as an input.

Let Rsb = {0, 2, 3, . . . , N}, be the set of all the possible values of subband
rates where Rsb is computed in nucleotides per subband-coefficient (nt/coef)
and |Rsb| = N. It is clear that a subband rate Rsb = 1 nt/coef is omitted be-
cause our proposed code construction algorithm (explained in section 3.2.2)
respects the sequencing constraints by using specific pairs of symbols to form
viable quaternary words. Therefore, the length l of the produced words will
be at least 2 nt. This means that any subband can either not be encoded at
all and thus Rsb = 0 nt/coef or Rsb ≥ 2 nt/ coef. The problem of alloca-
tion can be more simply expressed as finding the best possible distribution
of rate-values Rsb to the SB different subbands sb such that:

• The total rate RT of the reconstructed image is equal to the target rate
Rtarget.

• The total distortion DT is minimized.
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As explained in section 4.3, one way for solving the problem of allocation
is the brute force approach by finding all possible points of the R-D curve
for each subband to optimally distribute resources to the different subbands.
Apart from the method of building the R-D curves and computing the target
points using the slopes of the curves, in this section we will propose a new
exhaustive method for performing the allocation without building the R-D
curves. The proposed method is computationally expensive but has the ad-
vantage of computing the real optimal values of Rsb with no approximations
and thus the exact target rate Rtarget defined in the input.

The above problem can be solved using a problem of ordered arrange-
ments (permutations) by the following steps:

• Find all the possible ways for filling SB different positions (different
subbands), with one of the elements Rp

sb ∈ Rsb (possible subband rates)
where sb = 1, 2, . . . , SB and p = 1, . . . , NSB. The solution is given by the
following matrix Pt which is composed by the NSB different permuta-
tions.

PT =


R1

1 R1
2 . . . R1

SB
R2

1 R2
2 . . . R2

SB
...

... . . . ...
RNSB

1 RNSB

2 . . . RNSB

SB

 (4.10)

where the columns represent the different subbands and the lines the
different permutation cases. In other words, this matrix contains all
the possible allocations which provide any possible total rate RT. By
encoding an input image using all the possible permutations existing in
PT to encode the different DWT subbands we get a cloud of points as
depicted in figure 4.5.

• The solution of the allocation problem is found among the lines of PT
which give a total rate of RT = Rtarget. The next step to solve the allo-
cation problem is therefore to reduce the matrix PT to a new matrix PR
where all lines of which provide a total rate equal to Rtarget.

PR =


R1

1 R1
2 . . . R1

SB
R2

1 R2
2 . . . R2

SB
...

... . . . ...
RG

1 RG
2 . . . RG

SB

with G < NSB (4.11)

More precisely, the solution is given by the line of PR which provides the
minimal MSE value. Hence, to detect the optimal line of permutations it is
necessary to encode the image using the encoding provided by the different
lines of PR. More precisely the quantization step size for the encoding is
given by:

qsb =
m(vsbmax − vsbmin)

Lsb
with Lsb =

{
10

Rsb
2 , if Rsb is even

10b
Rsb

2 c, if Rsb is odd

where, vsbmin and vsbmax are the minimum and maximum respectively values
of the coefficients of subband sb.
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Encoding the SB subbands using the different permutations of rates (lines)
of PR we end up with G different cases of encoding. The solution of the
nucleotide allocation is the line of PR which provides the minimum MSE and
thus the best visual quality in the reconstructed image.

4.4.2 Nucleotide allocation for Vector Quantization

In the previous sections we have presented the proposed techniques for op-
timally compressing an image to be efficiently encoded into DNA using a
Uniform Scalar Quantizer. To further improve the performance of the com-
pression in this section we propose the use of a VQ for the quantization.
Similarly to the SQ case, we will perform a VQ on the coefficients of the sub-
bands sb ∈ {1, 2, . . . , SB}, with SB = 3i + 1 produced by an #`−level DWT
decomposition. More precisely, the purpose of VQ is to map n-dimensional
vectors in the vector space Rn into a finite set of vectors V (the codebook)
defined here as:

V = {v̂k ∈ Rn|k = 1, 2, . . . , K}
The quantization algorithm is described by the following relation:

Q : Rn → V ⊂ Rn

The codebook V contains the centroid vectors that have been computed
after clustering a set of training vectors according to the generalized Lloyd
algorithm presented in [53]. For an efficient quantization, the training vectors
used for creating the codebook should come from a set of images which have
a similar content to the one of the image to be encoded.

As explained in section 4.3, the nucleotide allocation aims in the selection
of the optimal setQ∗sb of quantization parameters for each subband sb. In the
case of VQ, the Q∗sb contains the parameters K∗sb and n∗sb for the quantization
of each subband sb. Hence, the quantization requires the use of a codebook
of K∗sb vectors of length n∗sb which should be constructed using a training set
of vectors coming from a large set of subbands of similar characteristics. To
reduce the computational cost, it is preferable to build all possible codebooks
of vectors for all different values of Ksb and nsb in advance rather than com-
puting it during the allocation. The codebook can be stored to be used for
images of similar characteristics. It is important to denote that an efficient
VQ requires a well-trained codebook. For the codebook construction we se-
lect a large-enough set of images with similar content to the input image. The
images should then be decomposed into #` DWT levels to produce SB sub-
bands. Each subband sb of the training images is then divided into a large set
of training vectors of length nsb. Then, by performing a k-means clustering,
the set of training vectors is divided into K∗sb clusters and a set of Ksb cen-
troid vectors is computed to constitute the final codebook to be used for the
quantization of the corresponding subband of the input image. The output of
the VQ will be a matrix of vector indices that represent the different vectors
in the codebook. Using the above method, one can construct the codebooks
of any desired value of Ksb and nsb for every level of DWT and every sub-
band type of the training set. Consequently, when performing the nucleotide
allocation, the codebook for each subband and any selected optimal value
K∗sb and n∗sb can be directly retrieved. The proposed nucleotide allocation for
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the encoding of an image into DNA using VQ is described by the following
steps:

• The input image is decomposed into SB subbands using a DWT. Each
DWT subband sb with sb = {1, 2, . . . , SB} is then quantized and en-
coded independently.

• A source allocation algorithm is used to find the set Qsb of optimal pa-
rameters of VQ that solve equation 4.4 and minimize the distortion for
a given target rate. However, similarly to the scalar case, since the sub-
band rate Rsb is taking discrete values, equation 4.6 is not derivable so
to allow computation of the desired slope λ on the R-D curve. To this
end, we will need to first create a continuous approximation of the R-
D curve for each subband sb. To build the approximation of the R-D
curves for each subband sb we exhaustively compute the rate Rsb and
the distortion Dsb produced by the vector quantizer for each set of pa-
rameters (Ksb, nsb). Then, from the set of produced points on the R-D
curve, we select the points lying on the convex hull. As the convex hull
may not be smooth enough to allow correct computation of the slopes
λ we use an exponential decay approximation which can provide a fair
estimation of the slope at each computed point. Figure 4.8 shows a typ-
ical example of the R-D curve for one subband of a 9-7 biorthogonal
wavelet decomposition along with the convex hull and its exponential
approximation. Finally, by selecting the points that correspond to the
desired slope for every subband one can select the optimal tuning, i.e.
the values of K∗sb and n∗sb for sb ∈ {1, 2, . . . , SB}, which provides the low-
est distortion Dsb for a given subband rate Rsb. The global R-D curve for
encoding an 512x512 pixel image of Lena is depicted in figure 4.9.

• Each subband is quantized according to the selected parameters. For
the quantization, we select the codebook which has been already com-
puted and corresponds to the same subband type and the selected op-
timal values of K∗sb and n∗sb. We then decompose the subband into K∗sb
vectors of length n∗sb and quantize each one of them to the indice of the
closest vector from the ones in the selected codebook. This last step
results in a matrix of quantized vector indices.

• The matrix of indices is encoded using our proposed code construction
algorithm described in section 3.2.2 to produce a quaternary stream of
A, T, C and G.

A schematic representation of the VQ encoding/decoding workflow is
depicted in figure 4.6. At this point it is necessary to discuss some important
points concerning the application of VQ to DNA image coding. While VQ
allows a very efficient compression in terms of coding potential, it is clear that
the decoding of some image that has been encoded using the method of VQ
requires knowledge of the codebook that has been used for the quantization.
This yields that the codebook should be also stored into DNA to allow correct
decoding of the stored image in the long-term. The storage of the codebook
can be expensive if used for encoding only one image. However, in the case
that the same codebook is used for encoding many different images the cost
of the codebook storage is compensated.
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Pattern repetition problem: VQ is an efficient way for compressing images
as blocks of information are being packed into quantization vectors which
are then encoded to a codeword of C∗. It is also a solution which is adapted
to the needs of the encoding since we are able to capture the source distri-
bution while using a fixed length code. While this quantization is very effi-
cient in terms of coding potential, the fact that more than one elements can
be represented by the same codeword can easily cause the problem of pat-
tern repetitions which is an ill-case for DNA coding as it can produce errors
in the sequencing process. Figure 4.7 depicts an example of the same infor-
mation encoded in an oligo using VQ with (bottom oligo) and without (top
oligo) treating the case of pattern repetitions. Therefore, by applying a dou-
ble representation to the most frequent vectors, as discussed in section 3.3,
the pattern repetition can be avoided. This is due to the fact that in the case
of repetition of the same vector one can alternate the two associated code-
words increasing this way the robustness of the encoded sequence. More
precisely, we propose two different cases of mapping to deal with patterns.
In the first case which is depicted in figure 3.3c all the vector indices in Σ
are mapped once to the K first codewords of C∗. Then the p most probable
vector indices from Σ are also mapped to a second codeword from the L− K
remaining vectors of C∗. In the second case we ensure that all vector indices
in Σ can be encoded by at least m different codevectors in C∗ (L = 2K). In
our experiments we used m=2. This second case of mapping is described in
figure 3.3d. For further details in the encoding algorithm and the mapping
process the reader can refer to section 3.3.

The global R-D curve for encoding an 512x512 image of Lena is depicted
in figure 4.9.

This last curve depicts the results of comparison of our compression scheme
which is using a scalar quantizer (section 4.4.1) and 4 different cases of VQ:

• Without treating patterns: Lena inside or outside the training set.

• Treating patterns (for Lena outside the training set):

– Using only 80% of the code C∗ for the encoding (K = 80
100 L) and

using the 20% remaining codewords (K− L) to allow double repre-
sentation of the most frequent quantized vectors.

– Mapping 100% of the code (L = 2K).

The results show significant improvement in comparison to the results
obtained by the scalar case. The above results on the storage of digital images
into DNA using Vector Quantization have been published as an abstract for
the DCC 2020 [54] conference and as a full conference paper in EUSIPCO
2020 [55].

4.5 Conclusions

In this chapter we have introduced a fixed-length encoder for the efficient
compression of images into synthetic DNA. Our proposed solution allows
controlling the synthesis cost by including the PAIRCODE algorithm pre-
sented in the previous chapter in a "closed-loop" source allocation which pro-
vides the optimal compression quality for a predefined coding potential.
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For the compression of the images, in our experiments we tested two dif-
ferent alternatives of quantization. The first option uses a simple uniform
scalar quantizer and to our knowledge constitutes the first attempt among
the existing methods in bibliography which is allowing the code to be op-
timized with respect to the quaternary representation of the 4 DNA bases
while also respecting the biological restrictions imposed by DNA sequenc-
ing. Even though this encoding produced interesting results in terms of pro-
viding an optimal code for a given compression rate, due to simplicity of
the compression the coding potential which is achieved is not high enough.
Thus, to enhance the performance of the compression we also tested the use
of a Vector Quantizer for the process of quantization. This solution provided
much more promising results as unlike scalar quantization, VQ captures the
source thanks to the training of the codebook. However since VQ depends
on the construction of a good codebook which has been trained using a good
data set of images. Furthermore, this codebook has to be known to the de-
coder to allow correct reconstruction of the input image and therefore this
increases the cost of the encoding. To this end, we have proposed a solution
for reducing the cost of the codebook storage by using the same codebook to
encode multiple images of the same content while storing it to some known
codebook DNA database.

Finally, we discussed about the potential study of replacing VQ with a
Lattice Vector Quantizer which is expected to provide even more promising
results since it does not require transmission of the codebook to the decoder
while exploiting at the same time the advantage of increased compression
efficiency that can be achieved by VQ.
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Figure 4.3: RD-curve of one subband sb as provided by the nucleotide
allocation using Scalar Quantization. The ’x’ points represent the dif-
ferent RD points obtained by the different quantization step-size val-
ues qsb. The ’o’ points represent the selected points for building the
rough representation of the RD curve (in black). The red curve repre-

sents the smoothed RD-curve obtained using b-splines.
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Figure 4.4: Left: R-D curve provided by the nucleotide allocation us-
ing spline approximation for a 512x512 pixel image of Lena. The se-
lected point corresponds to the visual quality of the image provided
on the right side. Right: Visual quality of the selected point in the R-D

curve.



4.5. Conclusions 69

Figure 4.5: Example of a point cloud of values of Rate vs. PSNR when
using all existing permutations of subband rates to encode some in-
put image. The best values of PSNR for each encoding Rate are kept

as the optimal encodings of the allocation method.
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Figure 4.6: Coding/decoding workflow using Vector Quantization.

5' end of payload -  ATGT ATAT ATAT ATAT ATGT ATGT GTGT GTAT ATAT ATAT GTGT ATGT ATGT ATAT ACAT ATGT GTAT ATGT - 3' end of payload
5' end of payload - TGAAG TTGAA GCATA TGATG ACTCT GATCG AGCTC GTCGG TGCTT TGACT CTGAA TAAGC CTTCT TATAG - 3' end of payload

Figure 4.7: Example of an oligo encoded using VQ with pattern repetitions
(top oligo) as well as avoiding pattern repetitions (bottom oligo)



70 Chapter 4. Design of a closed-loop DNA-based image coder

Figure 4.8: Behaviour of the rate-distortion curve in one wavelet sub-
band of Lena image. Each point corresponds to different value of Ksb
and nsb. The convex hull is plotted in black and its continuous expo-

nential approximation in red.

Figure 4.9: Comparison of the global rate-distortion curves for 5 dif-
ferent cases of Vector Quantization of Lena image. Blue: scalar quan-
tizer, Orange: VQ, Lena inside the training set with pattern repetition
(Ksb = Lsb for all subbands sb). Yellow: VQ, Lena outside the training
set with pattern repetition. Purple: VQ, Lena outside the training set
no patterns (NP) with L=2K. Green: VQ, Lena outside the training set

using only 80% of the code (Ksb is 80% of Lsb for all subbands sb).
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Chapter 5

A JPEG-based coding algorithm for
DNA image storage

5.1 Introduction

In the previous chapter we presented an encoding workflow for the efficient
compression of an input image to be stored into DNA. Compression is con-
trolled and optimised thanks to a nucleotide allocation algorithm which is
applied to a fixed length encoding that uses the constrained code presented
in section 3.2.2. As explained earlier, in our main study we have selected
to implement and use a fixed-length code instead of a variable-length one
as the latter is more prone to errors. Nevertheless, variable-length coding
can provide better results in terms of compression ratio. This thesis focuses
on the encoding of digital images into DNA. Inspired by the JPEG standard
used for the compression of images in classical source coding, we propose a
new variable-length encoding workflow for producing a constrained DNA
code which is optimized using entropy-coding. Many state of the art works
have used the JPEG algorithm to first compress an input image into a binary
stream, then encoding it into a quaternary representation of A, T, C and G
using some constrained DNA coding algorithm. While this practice can pro-
vide satisfying results it does not guarantee an optimized solution in terms
of compression efficiency. This is due to the fact that the compression is per-
formed using binary Huffmann codes and is thus optimized for a binary out-
put. In this chapter, we make a very first attempt to implement a modified
JPEG coding algorithm adapted to the needs of DNA data storage. The pro-
posed algorithm uses the same general workflow as the classical JPEG one
with the difference that the encoding is performed using constrained codes
to be more robust to sequencing errors. In the next sections we will describe
the algorithm and will compare its efficiency to our proposed fixed length
workflow.

5.2 Theoretical background: The JPEG algorithm

The classical JPEG standard is using the following encoding steps. First, an
input image is decomposed into blocks of size 8 by 8 as shown in figure
5.1. The blocks which are at the edges of the image are padded. Then a
DCT is performed to each block and the produced coefficients are quantized
using predifined quantization tables which have been computed based on
psychovisual threshold experiments. The quantization table which is used
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Figure 5.1: Block decomposition for JPEG

for luminance is given by the following matrix:

G =



16 11 10 16 24 40 51 61
12 12 14 19 26 58 60 55
14 13 16 24 40 57 69 56
14 17 22 29 51 87 80 62
18 22 37 56 68 109 103 77
24 36 55 64 81 104 113 92
49 64 78 87 103 121 120 101
72 92 95 98 112 100 103 99


(5.1)

After quantization of the blocks two different processes follow to com-
pute the AC and DC quantization indices. The DC quantization values are
obtained using Differential coding with DPCM which computes the differ-
ence between the first element of each block and the first element of the pre-
vious block to obtain a vector of differences. The obtained sequence is then
encoded using a variable length coding (VLC) that encodes each difference
value according to the category to which the corresponding value belongs
to. In more detail, the category of an element specifies the number of bits
needed for one’s encoding. Thus each difference value can be expressed as
a couple [category, value] in which the category field is later encoded using
Huffman codes and the value is transformed to the corresponding binary
representation using the number of bits denoted by the category.

The AC quantization indices are computed by parsing each block using
a zig-zag scanning to create a sequence of quantized coefficients from the
input block. Each sequence is then encoded using a Run-level coding that
counts the number of consecutive zero values and the category of the first
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Range
Category

(#bits used for encoding)
0 0

-1, 1 1
-5, . . . ,−2, 2, . . . , 5 2
-7, . . . ,−4, 4, . . . , 7 3

-31, . . . ,−16, 16, . . . , 31 4
-63, . . . ,−32, 32, . . . , 63 5

-127, . . . ,−64, 64 . . . , 127 6
-255, . . . ,−128, 128, . . . , 255 7
-511, . . . ,−256, 256, . . . , 511 8

-1023, . . . ,−512, 512, . . . , 1023 9
-2047, . . . ,−1024, 1024, . . . , 2047 10
-4095, . . . ,−2048, 2048, . . . , 4095 11
-8191, . . . ,−4096, 4096, . . . , 8191 12

-16383, . . . ,−8192, 8192, . . . , 16382 13
-32767, . . . ,−16384, 16384, . . . , 32767 14

Table 5.1: Category range for encoding values using JPEG

non-zero element which follows the run of zeros. The category of a non-
zero element depends on the value of the element itself and corresponds to
the number of bits which are used for its encoding as shown in table 5.1.
This process produces a sequence of couples [run/category, value] which are
then encoded using VLC. More precisely, the run/category field is encoded
using Huffman coding while the value is encoded by transforming it to its
corresponding binary representation. The encoding of the values in binary
is performed using a number of bits which is indicated by the category. The
range of values which can be encoded by each category are predefined and
known to both the encoder and the decoder. By concatenating the AC and
the DC binary sequences the final output of JPEG is obtained. The general
workflow of the classical JPEG standard is depicted in figure 5.2.

Level
offset

8x8 
DCT

Uniform
Scalar

quantization

Differential
coding VLC

Zig-zag
scan

Run-level
coding VLC

Quantization
tables

Compressed 
AC indices

Compressed
DC indices

DC quantization indices

AC quantization indices

Figure 5.2: Workflow of the JPEG standard

5.3 The proposed variable-length DNA coding algorithm

Inspired by the main workflow of the classical JPEG standard in this section
we present a modified version of this algorithm for the encoding of an image
into a constrained quaternary representation of A, T, C and G. As explained
in the previous section JPEG is using two main coding techniques to a binary
representation. The first technique is the Huffman coding used to encode the
run/category of the AC indices as well as the category of the DC indices.
Huffman codes take into consideration the frequency of each run/category
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AC element or category DC element throughout the full image and assigns
binary words to the different values while ensuring that each binary repre-
sentation is not a prefix of another. The main asset of Huffman coding is that
the algorithm assigns the shortest words to the most frequent elements so
to enhance the performance of the encoding in terms of compression. Then,
the second method used in JPEG is a simple binary coding of the values of
AC and DC indices. This encoding is simply transforming each value into
its binary representation using a number of bits which is predefined by the
category field that precedes. It is therefore clear, that in order to modify the
existing JPEG algorithm so to provide a quaternary representation one would
need to replace those two binary encodings by some appropriate quaternary
ones while also respecting the encoding constraints of DNA coding (see sec-
tion 2.2).

As described in section 2, in the works of Goldman et al. [1] the authors
have presented an interesting algorithm for encoding an input sequence of
symbols to a constrained DNA sequence. One of the main assets of this al-
gorithm compared to other state of the art methods is that similarly to our
proposed constrained codebook it can be applied to any type of input with-
out being restricted to binary inputs. We recall that the algorithm proposed
by Goldman works according to the following steps:

• The input sequence is encoded using a ternary Huffman into a stream
of the trits 0, 1 and 2.

• Reading the ternary sequence, each trit is replaced with one of the three
nucleotides different from the previous one used, ensuring no homopoly-
mers were generated.

Hence, since the above algorithm is using Huffman codes it seems to be an
interesting candidate to replace the binary Huffman encoding of the classical
JPEG standard.

Then, for replacing the binary encoding of the non-zero values of the AC
and DC indices of JPEG we propose using our constrained code presented
in 3.2.2. This code provides a simple fixed length encoding of any input se-
quence of elements. It is a promising method that works similarly to the
classical fixed-length binary encoding and provides a quaternary represen-
tation while respecting the sequencing constraints. The use of this code will
change the range of the categories which will now determine the number of
nucleotides rather than the number of bits that will be used for the encoding
of an element. Since in our encoding a representation of 1nt per element is
not permitted, category 1 is omitted from the list of possible categories as
shown in table 5.2.

In other words, in the proposed variable length algorithm we have used
the main workflow of JPEG by replacing the binary VLC with a quaternary
VLC algorithm which is using the algorithm proposed in Goldman et al. in-
stead of the binary Huffman and our constrained code instead of the classi-
cal binary encoding. The modified workflow is presented in figure 5.3. In
the following section we provide experimental results on the performance of
this modified JPEG code compared to the fixed length encoding which has
been proposed in the previous chapter 4. We also provide the results of the
transcoding method which encodes the binary output of a classical JPEG us-
ing a fixed length coding for encoding each byte of the JPEG binary stream.
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Range
Category

(#nt used for encoding)
0 0

-5,. . . ,−1, 1, . . . , 5 2
-25,. . . ,−6, 6, . . . , 25 3

-75,. . . ,−26, 26, . . . , 75 4
-275,. . . ,−76, 76, . . . , 275 5

-775,. . . ,−276, 276, . . . , 775 6
-2775,. . . ,−776, 776, . . . , 2775 7

-7775,. . . ,−2776, 2776, . . . , 7775 8

Table 5.2: Category range for encoding values using DNA. Category
1 is omitted due to the biological constraints imposed by DNA se-

quencing.
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Figure 5.3: Workflow of the modified JPEG workflow to suit the
needs of DNA coding

5.4 Comparison of the different encoding solutions

In this section we compare all the encoding methods proposed in this thesis.
Namely, we will compare the two fixed-length encoding solutions using a
Uniform Scalar Quantizer as proposed in section 4.4.1 and a VQ as proposed
in section 4.4.2 to the variable-length encoding solutions based on the JPEG
standard and more precisely our proposed "closed-loop" solution of inserting
our code in JPEG and the simpler transcoding method. For the comparison
we applied all the encoding cases on the image of a cat (see figure 5.4) and
built the curve of PSNR in function of the coding potential in bits/nt. The
training set of cat images used for the construction of the codebook of vec-
tors for the case of VQ encoding is given in B. The test cat-image which has
been encoded does not belong in this training set. The result of the compar-
ison is given in figure 5.5. As observed, the fixed length encoding with the
Scalar Quntizer has the less efficient performance. This result is justified by
the fact that, as expected, fixed length solutions are less performant than vari-
able length encodings and in the case of a Scalar quantization the encoder is
not taking into consideration the distribution of the source and thus the com-
pression is less adapted to the characteristics of the input image. However,
this has been only our very first attempt to build a simple fixed-length en-
coder which allows controlling the compression rate to test the performance
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Figure 5.4: Original image of cat which has been used in our experi-
ment of comparing the efficiency of the different encoding methods

of our proposed PAIRCODE algorithm.
Interestingly enough, the fixed-length solution which is using a VQ for

the quantization, provided results which are comparable to the ones of the
variable-length solutions. This improvement in the performance is explained
by the fact that in the case of a VQ the encoder uses some knowledge of the
characteristics of the input. This information stems from the use of a well-
selected training set of images, with similar characteristics to the input image,
for the creation of a good codebook of quantization vectors. Furthermore, as
explained in section 4.4.2, since the use of VQ can create strong patterns in
the encoded strands due to the repetition of the most frequent coefficients, we
have also included in this comparison a case in which 20% of the produced
constrained code is dedicated to the double mapping of the most frequent
input elements. In other words, the most frequent coefficient indices in Σ
will be represented by two different codewords in C∗ instead of only one. As
expected, since this solution uses some extra redundancy to avoid patterns,
this encoding scenario is slightly less efficient than the one of simple VQ
which is not avoiding patterns.

We also observe that among the variable length solutions, simple transcod-
ing shows the best results. In other words, even if the "closed-loop" solution
of inserting the quaternary code into the code of JPEG to allow controlling
the compression was expected to perform better, the result is different than
predicted. The difference in the performance between the two variable length
encoding methods is explained by the constraints imposed on the quaternary
encoding. More specifically, in the proposed "closed-loop" solution the cat-
egory 1 that is using 1nt to encode a value is omitted in order to avoid the
creation of homopolymers. However, in most cases the values of category
1 are the most frequent ones, and thus in the transcoding case those values
will be encoded by 1 bit while in the quaternary case they are encoded by
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2 nts. This explanation becomes even more apparent when checking how
the difference in both cases’ performance evolves with the increase of the en-
coding rate. When the more the encoding rate increases, the more frequent
values which are found around zero will be quantized to category 1 and thus
transcoding will take the lead in terms of performance. Nevertheless, since
this has been only a first proposal for implementing an efficient variable-
length quaternary encoding for DNA data storage, the proposed algorithm
can be further improved to deal with this issue and provide better results.

Even though the above experiment is testing the strength of the encoding
scenarios in terms of compression quality, one must not neglect the main ob-
stacle of DNA coding which is the error-prone DNA sequencing. It is clear,
that even though a fixed length encoding might be less efficient in compres-
sion, it is more robust to sequencing noise. This is due to the fact that in
the case of an error during sequencing, only a part of the decoding will be
affected. To facilitate understanding, let’s take the following example. As-
suming the case of a deletion error the full structure of an oligo is affected by
shifting all the nucleotides following the deleted-one, by one position. How-
ever, since the encoding is fixed-length, the decoding of one oligo does not
depend on the decoded information of the previous oligos. Thus, even is one
oligo is lost, the following oligo can be correctly decoded. on the other hand,
in a variable-length encoding, a deletion error in some oligo will also affect
the rest of the decoding and the structure of the image can be lost. To prove
this claim we have tested the decoding of an image in the presence of one
single deletion at a random position for the cases of a simple fixed-length
encoding using Vector Quantization and the two variable length solutions of
transcoding and modified JPEG for DNA. The selection of testing the error
impact for the case of VQ relies on the fact that it provided the most interest-
ing results in terms of coding potential. Furthermore to ensure that the addi-
tion of noise is not favorable for the case of VQ we have selected adding the
deletion noise in the LL subband of DWT so to create the strongest possible
distortion. The impact of such an error in the visual quality of the decoded
image is presented in figures 5.7 and 5.6 for an encoding which produces an
image of the same PSNR and rate respectively. As observed, the impact of
a single deletion error in the case of a fixed-length encoding using VQ af-
fects less the visual quality of the input image and causes the loss of a single
vector. However, in the case of a variable length encoding, one deletion will
completely change the decoding and reconstruction of the image causing a
much bigger visual distortion. More precisely, in the case of transcoding,
the error has a much worse impact on the decoding of the image. To give
an explanation to this fact, let’s consider a pool of oligos which have been
selected as the most representative ones after computing the consensus se-
quences. Then let’s assume that all the selected oligos are correct except for
one, which has suffered a deletion error. In the case of the modified JPEG,
one deletion will cost a shift in all the nucleotides that follow the deletion.
Therefore, the total impact on the long reconstructed strand will be a shift of
all nucleotides following the deleted nucleotide by one position to the left.
Let us now think of the same type of error in the case of transcoding. In this
case, the DNA strand has to be first decoded into a binary representation by
decoding each 5 nts of the DNA sequence to one byte and then the produces
binary stream is decoded using the JPEG standard. Consequently, in the case
of transcoding, one single deletion will create a shift on the DNA strand after
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the deleted nucleotide resulting to a wrong decoding of all the bytes that fol-
low the deletion. This creates much more distortion that leads in losing big
part of the input image.

Figure 5.5: Comparison of the different proposed encoding solutions.
The methods compared are the following: nucleotide allocation using
SQ and PAIRCODE for the encoding (red), nucleotide allocation us-
ing VQ and PAIRCODE for the encoding without treating pattern rep-
etition(blue) and treating pattern repetition(green), JPEG transcoding
(magenta) and JPEG with the quaternary code included in the opti-

mization (black).

It is obvious that, as predicted, the fixed length encoding solutions are
much more robust to noise as in the case of variable-length one error can
result in losing the structure of the image. It is therefore clear that in DNA
coding the selection of the best encoding solution does not only rely upon
the performance, but highly depends on the robustness to sequencing error.
Hence, as observed, VQ is a fixed-length solution which is robust to noise
and comparable in performance with the variable-length encoding methods
and seems to be a promising candidate to be selected for the needs of DNA
data storage! However, as explained in section 4.4.2, the proposed VQ so-
lution requires knowledge of the codebook that has been used for the quan-
tization. In this manuscript, there have been proposed several solutions to
this issue, such as the use of the same codebook to encode multiple images
and the creation of a database of codebooks to be used for the purpose of
DNA coding. Nevertheless, since the results of VQ have been so encourag-
ing, it is in our first priorities in future works to test the application of Lattice
VQ ( [49], [50], [52], [51], [56], [57]) for the encoding as it does not require
knowledge of the codebook for the decoding.

5.5 Conclusions

In this chapter, we extend our study to the implementation of a variable-
length encoding method which is based on the JPEG standard of binary im-
age coding. The proposed solution constitutes an extension of the existing
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standard to the generation of a quaternary DNA representation which is op-
timized using entropy coding with respect to the biological constraints im-
posed by the sequencing process. To test the efficiency of our proposed solu-
tion we compared it to the fixed-length solutions presented in the previous
chapter as well as to the method of transcoding a JPEG compressed binary
stream which has been widely used in the state of the art. In addition to this,
we tested the robustness of each encoding method to one single deletion er-
ror.

The comparison proved the performance of the fixed-length encoding
with VQ to be comparable to the variable-length methods while being the
most robust solution. Our proposed JPEG-based encoding method provided
very interesting results but did not out-perform the method of JPEG transcod-
ing. This is justified by the fact that in order to respect the sequencing con-
straints our proposed algorithm avoids an encoding which is using 1 nt for
the encoding of a source symbol. Such a restriction does not apply to the case
of JPEG transcoding which is using a binary optimization for the encoding. It
is however important to denote that our JPEG-based solution remains more
robust to sequencing noise than transcoding.

Summing up all the above points, one can conclude that fixed-length so-
lutions are much more robust to sequencing noise than variable-length so-
lutions for which the decoding of an element depends on the correct decod-
ing of the elements that precede it and risks losing information of the image
structure. Thus, the choice of the optimal encoding solution depends on the
needs of the encoding as well as the robustness of the sequencing machine
which is used for reading back the DNA sequences. Furthermore, since the
results of a variable-length encoding are more interesting in terms of cod-
ing potential, we strongly believe that further improvement in the encod-
ing of our proposed JPEG-based solution can provide much more promising
results. Finally the addition of some error-correction techniques can allow
the encoding to be more robust to sequencing noise for ensuring that the in-
formation about the image structure is maintained throughout the decoding
process.

nt allocation using VQ
1 deletion in LL subband

JPEG "closed loop"
1 deletion

transcoding
1 deletion

Figure 5.6: The impact of one deletion error on a 512x512 pixel image
of a cat for the different encoding solutions.The original images have

been compressed to obtain the same Rate of 25.5 bits/nt.
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nt allocation using VQ
1 deletion in LL subband

JPEG "closed loop"
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transcoding
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Figure 5.7: The impact of one deletion error on a 512x512 pixel image
of a cat for the different encoding solutions. The original images have

been compressed to obtain the same PSNR value of 38.5 dB.
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Chapter 6

Formatting the encoded data for
oligo synthesis

6.1 Introduction

In the previous chapters we have explained the different encoding options
for storing an efficiently compressed image into DNA. Namely, we have
presented both a fixed length and a variable-length encoding solution. The
proposed fixed-length encoding consists of a compression part which uses a
9/7 DWT to decompose the input image into different subbands, a subband
quantization step which can be performed either by a Uniform Scalar quan-
tizer or a VQ, an allocation to determine the optimal quantization param-
eters to efficiently compress the input image and reduce the synthesis cost
by building the appropriate quaternary code and finally a mapping function
which is adaptable to the needs of the user and can be either avoiding pat-
terns or resistant to sequencing noise. The proposed variable length encoding
solution consists of two different encoding scenarios. The first one is using
the classical JPEG standard for the efficient compression of images in a binary
representation which is later encoded in a quaternary representation using
the PAIRCODE codec proposed in section 3.2.2. However, since this encod-
ing is open-loop and provides an encoding which is optimized according to
the binary representation of the input we then proposed a second encoding
scenario. In this second variable-length solution we proposed modifying the
main structure of the classical JPEG standard to provide a constrained qua-
ternary representation of A, T, C and G. Consequently, the above encoding
methods provide in the output a long sequence of nucleotides. However, as
discussed in section 2.1.2, the synthesis of DNA inserts one final restriction to
be respected in the DNA coding workflow and requires cutting the encoded
strands into shorter chunks of information and formatting them by adding
particular headers related to the position and the encoding parameters used
for each data-chunk.

The proposed fixed-length encoder provides in the output a long sequence
of nucleotides for each of the DWT subbands which is designed according to
the needs of DNA data storage. Similarly in the case of using the proposed
variable length encoder (or else JPEG DNA), the output will be a sequence
of encoded data as well as a set of frequencies for the different categories of
the DC indices as well as the different run/category pairs of the AC indices
of DCT. Thus, for any of the encoding scenarios, the process of formatting
should be designed according to the workflow used for the encoding and
should contain all the necessary headers that should be stored along with
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the data for correctly decoding and reconstructing the image that has been
stored into DNA. Consequently, the headers contain important information
which should be correctly decoded and retrieved without errors so to ensure
reliability. To protect those important headers we propose protecting them
using the method of barcoding which we will further explain and describe in
the next sections along with the proposed formatting for each of the different
encoding cases which have been used in our experiments.

6.2 The proposed formatting for the fixed length encoding

As explained in chapter 2 the efficiency of DNA data storage highly depends
on the quality and reliability of the decoding and thus on the quality of PCR
amplification and sequencing. We recall that during decoding the synthe-
sized oligos are amplified into multiple copies with the process of PCR in-
troducing the necessary redundancy to facilitate the decoding process. PCR
amplification requires specific primer sequences of a length of around 20 nts
to allow correct binding of the polymerase enzyme so to create enough copies
of each synthesized oligo.

The amplified oligos are then passed through the sequencers to read the
content of the DNA strands. The sequencing can be performed by either the
Illumina or the MINION Nanopore machine. Both of the sequencers require
special primers to start the reading process. Consequently, each oligo needs
to contain special primer fields which are related to the bioloical processes of
PCR amplification and sequencing.

During sequencing, the DNA strands can be read in both senses starting
from either the 3’ or the 5’ end of the oligos. This means that after sequencing
some of the reads will need to be reversed and complemented to be used for
the decoding. To this end one special nucleotide is placed in each oligo-end
to indicate the sense of the reading.

Another important field to be added to each oligo, is a header of ID which
will contain the identification number of each stored image. This ID is re-
quired in the case where multiple data is stored at the same DNA pool. This
particular field can be very useful for random-access in the DNA pool of oli-
gos. More precisely, many works such as the ones presented in [28] and [37]
are exploiting the possibility of retrieving and reading particular sections of
information from a DNA memory by using the field of ID as a key.

Finally, a parity field (P) can verify the correctness of an oligo. For check-
ing the parity one can use a field of 4 nts for counting the parity of each of
the 4 different nucleotides of DNA independently. More precisely, we define
that the first nucleotide of the parity field is used for checking the parity of
A’s, the second for the parity of T’s, the third one for the parity of C’s and
finally the last nucleotide for the parity of G’s in the encoded payload. To
make sure that no homopolymers are created, we define that an even parity
is represented by the symbols A or C and an odd parity by the symbols T or
G. This way if all 4 nucleotides have the same parity in the payload, one can
alternate the two symbol-options and avoid repeating the same symbol more
than 2 times.

All the above fields are required for an efficient encoding and should be
included to all the produced oligos. The rest of the oligo length is used for
storing the payload or in other words the encoded image as well as all the
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necessary headers containing information about the specific encoding of the
image to be stored. Consequently, the content of the payload depends on the
encoding methods used for producing the DNA sequence containing the in-
put image. Thus, it is obvious that the type and the number of headers to be
stored in the payload along with the encoded data varies according to the dif-
ferent encoding techniques. More precisely, while the general formatting of
the oligos is common for all the proposed compression workflows, there are
slight changes in the content of headers according to the type of quantization
and mapping used for the encoding.

Our proposed general compression workflow decomposes the input im-
age using an #`-level DWT decomposition into SB different subbands. Each
subband is then independently quantized and encoded into a quaternary
stream. The quantization parameters are optimally selected for each subband
thanks to the nucleotide allocation algorithm described in section 4.3. Con-
sequently, since the different DWT subbands are independently treated, for
the formatting we propose creating SB different Subband Information Oli-
gos (SIO) which will contain information about their specific encoding as for
example the quantization parameters selected for each subband, the length
of the encoding codewords etc. Furthermore, it is necessary to introduce a
Global Information Oligo (GIO) which will contain all the global informa-
tion for the encoding such as the image size and the number of DWT levels
that were used in the encoding. Since the SIO and GIO only store headers for
the decoding while the length of the oligo is relatively big, in those two types
of oligos there is an empty field left which can be filled with any needed extra
information. An example would be to replicate many times the same head-
ers so to introduce some extra redundancy which can improve the decoding.
This extra redundancy does not affect a lot the total encoding cost as this
type of padding fields will occur only in the GIO and SIO oligos. Finally, the
data will be cut and formatted into Data Oligos (DO) including an additional
offset header which encodes the position of the data in the input image. The
length of each field of the oligo formatting is predefined according to the en-
coding needs. Let us call g the length of a data field in a DO. Then for each
encoded image there will be produced one GIO and SB different SIO. The
number of DO d is then given by the following relation:

d =
SB

∑
sb=1

MN
4(#`)

lsb

g
(6.1)

where M and N represent the number of rows and columns of the input
image, lsb denotes the length of the quaternary words in the code C∗sb of each
subband sb. The proposed formatting is illustrated in figure 6.1.

6.2.1 Formatting when using DWT and Uniform Scalar Quantizer

As explained in the previous paragraph in any case of encoding all the pro-
duced oligos will follow a same general format containing the payload field
surrounded by the headers of Primers, Sense, ID and parity. The payload can
be filled either with global information on the encoding and will follow the
format of a GIO, with a SIO containing specific information on the encoding
of some subband sb with 1 ≤ sb ≤ SB or with a DO containing the data of
some subband sb.
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Primer 1 S Payload P S Primer 2ID5' end - - 3' end 

Figure 6.1: General formatting of an oligo. Any synthesized oligo
should contain a primer sequence in both ends (Primer 1, Primer2)
to allow both PCR amplification of the synthesized oligos and to en-
able reading by the sequencer. Oligos should also contain a sense nu-
cleotide (S) in each end and after the primer sequences to denote the
way that the oligo has been sequenced. The field of ID contains the
identifier of the stored information and is unique for each different
type of information stored in the form of oligos. The data is encoded
into a constrained quaternary sequence of nucleotides and stored in
the Payload field and a parity field (P) can control the parity of the

payload to verify its reliability.

In the case of a Uniform Scalar Quantizer the formatting of a GIO contains
one header in the beginning to denote the type of payload (G), a header con-
taining the number of levels used for the DWT (#lvls of DWT), then the num-
ber of image rows (#image rows) and finally the number of image columns
(#image columns). The rest of the oligo (empty field) can be filed with any
needed redundant information to facilitate error correction or with random
padding (see figure 6.2).

The formatting of an SIO should contain all quantization parameters which
are necessary for decoding and recovering the stored quantized image. More
precisely, the SIO will contain one header in the beginning to denote the pay-
load type (S), a header field to denote the type of subband which can be
either HH, HL, LH or LL, a header field to mark the level of the subband
#` (Lvl of DWT), a field containing the quantization step-size q selected for
this particular subband, a field containing the size L of the quaternary code
C for the given subband, a field to denote the sign of the minimum value
existing in the quantized subband and a last field containing the minimum
value (min val) of the subband (see figure 6.2). As the minimum value of the
subband can be a float and not necessarily an integer, this last field can be
separated if needed in 3 sub-fields containing the integer part of the mini-
mum subband value, the decimal part rounded to some digit and expressed
as integer as well as the number of decimal digits used for the encoding ex-
pressed as integer. As in the GIO the remaining length can be used for any
needed information or it can be filled with random padding.

Finally, the data oligo payload contains a long field of encoded data which
is preceded by the necessary headers starting with a header to denote the
type of payload (D) which is followed by a field to denote the type of subband
from which the corresponding data come from as well as the level of the
subband and the offset of the data in the subband. This proposed formatting
is depicted in figure 6.2.

6.2.2 Formatting when using DWT and Vector Quantization

Similarly to the case of using a Uniform Scalar Quantization, in the case of
VQ the formatting will follow the same general format with a payload en-
closed between the global header fields of Primers, Sense, Parity and ID of
the encoded image. The payload will follow one of the three possible formats
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S Lvl of DWTType of subband L

G #image rows #image columns#lvls of DWT Empty field

Empty field

Primer 1 S Payload P S Primer 2ID

D Type of subband Lvl of DWT offset data (DO)

(GIO)

(SIO)q

(General format)

min val_sign min val

Figure 6.2: Proposed oligo formatting for a compression workflow
that uses a DWT and a Uniform Scalar Quantizer

of GIO, SO or DO so to store all the needed information about the encoding
parameters in order to allow correct decoding of the stored data.

As explained in section 4.4.2 VQ is more efficient in terms of the achieved
compression rate but the main drawback is the fact that the codebook of vec-
tors needs to be known to the decoder to correctly retrieve the stored image.
To this end, in this section, we propose two different alternatives for format-
ting the encoded data when VQ is used for the quantization. In our exper-
iments we have shown that in the case where the codebook has been built
using a good training set of images which share similar characteristics and
depict similar content, one codebook can efficiently encode many different
images of the same kind. Consequently, the more images stored using the
same codebook the more the cost for storing the codebook is compensated.
Codebooks can potentially be stored in some database which will contain
many codebooks of different content, for example human faces, cats, land-
scapes, buildings etc. and be uniquely used for the purposes of DNA data
storage. In other words, in order to ensure the knowledge of the encoding
codebook to the decoder, any image which is stored into DNA using VQ
will need to be encoded according to some codebook that already exist in
the codebook database. The codebook database can be either stored online
to allow decoding of the corresponding stored images in the short term, or
in a most realistic scenario of long term preservation it could also be stored
into DNA. A DNA encoded database can be a pool of codebook oligos which
will be identified thanks to a particular header of codebook ID and can be
retrieved among different codebooks anytime using the methods proposed
by Appuswamy et. al in [37]. In this last work, the authors proposed an in-
vitro query processing allowing to access data directly in the DNA storage
by realizing SQL operations using molecular biology techniques. More pre-
cisely, with the help of PCR, DNA nucleases [58] and overlap-directed DNA
assembly methods, we can detect single DNA sequence in a background of
100 nanograms of irrelevant DNA sequences.

A proposed formatting when encoding an image using VQ is depicted in
figure 6.3. It is obvious that in any encoding scenario the general format of
the oligos containing the primers, sense, parity check and image ID remains
the same. Furthermore, similarly to the Scalar Quantization case, when VQ is
used for the encoding there can exist 3 different types of payload containing
global information on the encoding (GIO), information regarding the specific
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encoding of each subband (SIO) and the encoded data (DO). In a VQ format-
ting scenario the SIO should contain the quantization parameters regarding
the number of vectors K used for the encoding as well as the vector length n.
In addition to this, the GIO should contain an extra header field to denote the
codebook ID (cb ID) to allow identification of the encoding codebook by the
decoder. In the lowest part of figure 6.3 we provide a proposed formatting
for the case in which the codebook should be stored into DNA.

A complete codebook should contain the encoding vectors for all the dif-
ferent subbands and for any possible value of K and n. Therefore each code-
book oligo must contain the following header fields:

• Codebook ID (cb ID): It corresponds to the unique identifier of a code-
book.

• Vector type (vec type): To denote the type of vectors used in VQ. It
corresponds to the "shape" of the vectors and can be either row, column
or block vectors.

• Subband (sb): It corresponds to the subband for which the encoding
codebook is required. This field contains the level of DWT and the type
of subband (HH, HL, LH or LL).

• Offset: It corresponds to the offset of the vector data which are included
in the oligo.

The vector values follow the above header fields. Each vector value is
expressed using the following information:

• sign: Denoting if the value is positive or negative

• int: The integer part of the vector value encoded using our proposed
codebook construction

• dec: The decimal part of the vector value expressed as integer. It can
contain a predefined number of digits.

6.2.3 Formatting when using VQ and controlled mapping

In sections 3.5.1 and 3.5.2 we have proposed a sequencing noise resistant
mapping for reducing the visual impact of substitution errors on an image
that is encoded in DNA using VQ. This controlled mapping creates an opti-
mal mapping by appropriately sorting the codewords in the quaternary code
according to the probabilities of each quantization vector in the codebook. It
is therefore obvious that since the optimal mapping depends on the input
characteristics it will be different for each input image and thus it is neces-
sary to also store the sorting of the codewords produced by the mapping.

The proposed formatting for including a controlled mapping in the en-
coding method is the same as the one used for VQ with the only difference
that in the case that controlled mapping is used we introduce one extra pay-
load type which is dedicated to the storage of information about the map-
ping. The most efficient way to store the required information is by provid-
ing a set of sorted vector indices which correspond to each codeword in the
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...

S Lvl of DWTType of subband n

G #image rows #image columns#lvls of DWT Empty field

Empty field

Primer 1 S Payload P S Primer 2ID

D Type of subband Lvl of DWT offset data (DO)

(GIO)
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cb ID

cb ID

dec.2sign 2 int. 2

Figure 6.3: Proposed oligo formatting for a compression workflow
that uses a DWT and a Vector Quantizer

quaternary code as selected by the mapping function. The proposed format-
ting of a VQ which is using controlled mapping is depicted in figure 6.4. The
mapping payload (MO) which is depicted as a last possible case of payload
type is composed by a nucleotide to denote the payload type ’M’, a field to
denote the subband type (HL,HH,LH or LL), the level of DWT, an offset to
denote the order of the information to follow and finally the set of the map-
ping indices.

S Lvl of DWTType of subband n

G #image rows #image columns#lvls of DWT Empty field

Empty field

Primer 1 S Payload P S Primer 2ID

D Type of subband Lvl of DWT offset data (DO)

(GIO)

(SIO)K

(General format)

cb ID

M offset mapping indices (MO)Type of subband Lvl of DWT

Figure 6.4: Proposed oligo formatting for a compression workflow
that uses a Vector Quantizer with controlled mapping

6.3 The proposed formatting for the variable-length encod-
ing

When it comes to variable length coding the general format of the oligo re-
mains the same as the one proposed in section for the case of fixed length
encoding. Thus, each oligo needs to contain, the sequencing primers, the
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F DC/AC offset

G #image rows #image columns#block-size max_runcat_AC

encoded frequencies

Primer 1 S Payload P S Primer 2ID

D offset data (DO)

(GIO)

(FIO)

(General format)

max_cat_DC Empty fieldmax_offset

Figure 6.5: Proposed oligo formatting for a compression workflow
that uses closed-loop JPEG for DNA coding

sense nucleotides, the identifier field and the parity check field. As in the
case of fixed length encoding, in this encoding scenario, there will also be
several different types of payload. A payload containing general informa-
tion about the encoding which will form a General Information Oligo (GIO),
a payload containing the frequencies of 3-ary Huffman used for the encoding
of AC and DC indices of the encoding algorithm which has been analytically
described in 5.3 that will form a Frequency Information Oligo (FIO) and a
payload containing the encoded data that will form a Data Oligo (DO). The
content of the different payload types is depicted in figure 6.5 and is analyti-
cally described in the following paragraph.

The GIO payload contains the following fields:

• A nucleotide that denotes the payload type (G) for distinguishing the
global information oligos from the other types.

• A field to determine the block size of the DCT of JPEG DNA (# block-
size).

• A field for the number of image rows (# image rows).

• A field for the number of image columns (# image columns).

• a field for the maximum category of DC indices available for this en-
coding (max_cat_DC).

• A field for the maximum index of run/category for the AC indices of
the encoding (max_runcat_AC).

• A field for the maximum offset of data oligos to determine the end of
the encoded data (max_offset). This field is necessary as all oligos have
the same oligo size and therefore the oligo containing the last part of
encoded data might be padded with random nucleotides to reach the
required oligo length.

• A field that will be randomly padded with random sequence of nu-
cleotides to reach the required oligo length (empty_field).

The FIO payload contains the header fields that is presented below:

• A nucleotide that denotes the payload type (F) for distinguishing the
Frequency Information Oligos from the other types.
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• A field to distinguish whether it is a DC frequency oligo which con-
tains the frequency of the category indices or an AC frequency oligo
which contains the frequency of the run/category indices of the AC co-
efficients (DC/AC).

• A field to denote the offset of the encoded frequencies or in other words
the order of the encoded frequencies (offset).

• The encoded frequencies (encoded frequencies).

Finally the DO payload contains the following information:

• A nucleotide that denotes the payload type (D) for distinguishing the
data oligos from the other types.

• A field to denote the order of the encoded data or else the offset of the
data (offset).

• The encoded data (data).

6.4 Barcodes

One of the main challenges when storing data into DNA is to ensure decod-
ability of the data. Since the high throughput DNA sequencing is a procedure
which introduces much noise in the oligos the full retrieval of the stored in-
formation can be at stake. One of the main problems when encoding images
into DNA is the fact that if an error occurs in some important headers, the
decoding becomes challenging if not impossible. This problem is also faced
in biological applications where biologists are using specific barcodes (short
sections of DNA) to tag DNA gene fragments in order to identify the species
to which those fragments belong to. Similarly to the formatting headers used
in DNA data storage, those barcodes hold important information and should
be correctly recovered during sequencing. To robustify this information sev-
eral works have proposed different methods to create error correcting DNA
barcodes which can be more robust to sequencing error. Inspired by this idea
we propose using such a method for protecting the most important header
fields of our proposed formatting to increase the reliability of the decoding.
In the next sections we will present the existing methods for creating robust
barcodes, we will explain the main assets of each method and will present
the method that we have proposed for our experiments.

6.4.1 Background and existing methods

As discussed in section 2.1.3, Next Generation Sequencing can create substi-
tutions, insertions or deletions of nucleotides. Therefore, the sequencing pro-
cess can be associated to a noisy channel for data transmission. Many works
on classical binary source-coding theory propose the use of binary error cor-
recting codes to robustify the transmitted information. Such an example is
the use of Hamming binary codes as presented in [59]. Inspired by this idea,
later works in [60] and [61] have proposed using binary linear error correct-
ing codes to create barcode sets for DNA coding applications but since lin-
ear codes are only capable of correcting substitution errors, Buchmann et al.
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have proposed in [2] the use of the so called "Sequence-Levenshtein codes" to
also allow correction of insertion and deletion errors. Sequence Levenshtein
code works very similarly to the classical Levenshtein codes [62] but is more
adapted to the DNA context. In order to better understand the barcode-set
creation using sequence Levenshtein distance let us first introduce the notion
of an error-correcting DNA code.

Let’s assume a code C containing all possible codewords that respect the
biological restrictions discussed in section 2.2. We define as error correcting
DNA barcode set B as a subset of C containing codewords w = {w1, w2, . . . }
such that:

d(wi, wj) ≥ 2µ + 1, ∀i 6= j (6.2)

where d(.) is the distance metric which can be either Hamming distance de-
noted as dH, Levenshtein distance denoted as dL or Sequence-Levenshtein
distance denoted as dSL and µ is the number of errors that can be corrected.
In the case of a Hamming distance the produced barcode set can correct only
substitution errors while in the rest two cases it also includes insertions and
deletions.

As proven in [2] by Buchmann et al., the best option for constructing a ro-
bust to sequencing error DNA barcode set is using the sequence Levenshtein
distance metric. The Sequence-Levenshtein distance between two arbitrary
words A and B is the minimum number of substitutions or/and deletions
or/and insertions which results in a word Â, finalized by one of the follow-
ing operations exactly once:

• Truncating Â to match the length of B

• Elongating Â to match the length and bases of B

The latter two operations do not increase the Sequence-Levenshtein distance
between A and B. Thus, dSL(A, B) = 0 if A is a prefix of B or vice versa.

The reason for which sequence-Levenshtein distance is more efficient in
error correction than the classical Levenshtein codes is because the latter fails
when used in real DNA applications where there is a DNA sequence that
follows the barcode prefix. To better understand this let us study a simple
example. Let’s assume a barcode set B containing the 3 following barcodes:

B = {"CAGG", "CGTC", "CTAT"}

All three codewords in the set have a Levenshtein distance of 3 compared to
any other word in the set. Now let’s suppose that the original DNA barcode
is "CAGG" and the occurence of a deletion error during sequencing in the
second position of the barcode. Then, "CAGG" is transformed to "CGG". The
deletion error will then create a word which does not exist in the barcode
set B revealing that an error has occurred. By checking the Levenshtein dis-
tances between the produced codeword "CGG" and all the barcodes in the set
B we easily find that the minimum distance occurs when comparing it to the
codeword "CAGG" and therefore the erroneous word will be corrected to the
original one. But let’s see what happens in a more realistic scenario where
the barcode is followed by some long DNA strand.

Let’s assume the same barcode set B as before and let’s suppose that the
original barcode "CAGG" was inserted in the beginning of some DNA se-
quence producing the DNA strand "CAGG|CA..." as depicted in figure 6.6.
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Figure 6.6: Figure taken from [2]. An example where Levenshtein
distance fails to capture a deletion error.

If the base ’A’ at the second position becomes deleted, the base ’C’ (previ-
ously on position 5) would now succeed the base at position 4 so that the
sequenced DNA received would read: "CGGC|A...". Using the simple Lev-
enshtein distance metric will fail to detect the original barcode in this case as
the produced erroneous word "CGGC" will be closer in terms of Levenshtein
distance to the word "CGTC" rather than the correct one.

However, according to the Sequence-Levenshtein distance dSL(CAGG, CGTC) =
2. More precisely, the codeword "CAGG" can be transformed to the word
"CGTC" using the following steps:

1. Deletion of the second base A: CAGG becomes CGG

2. Substitution of the last base G with a T: CGG becomes CGT

3. Elongation of the word by adding a C in the end of the codeword: CGT
becomes CGTC

Since the last step of elongation does not increase the distance metric, dSL("CAGG","CGTC")=
2. Thus even though those two words could co-exist in the same barcode set
according to the classical Levenshtein distance (as in that case dL("CAGG","CGTC")=
3), according to this new metric of Sequence-Levenshtein this is no longer
possible. Hence using the Sequence-Levenshtein metric one can build more
robust barcodes.

By testing different error scenarios the authors in [2] concluded that se-
quence Levenshtein codes are more efficient that classical Levenshtein codes
and thus this is the metric that we will also adopt for our experiments
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6.4.2 The algorithm for building error correcting barcode sets: discussion

The algorithm for building an error-correcting barcode set is composed by 3
main parts:

1. Selection of the length of barcodes l according to the number of errors µ
to be corrected. More precisely:

l ≥ 2µ + 1 (6.3)

2. Construction of a code C of codewords of length l which respects the
biological constraints for DNA coding (see section 2.2).

3. Build a set B ⊂ C of barcodes such that any words wi, wj ∈ B satisfy the
following equation:

dSL(wi, wj) ≥ 2µ + 1, ∀i 6= j (6.4)

The main challenge of an error-correcting barcode building algorithm lies
in the computational complexity of step 3. More specifically since the compu-
tation of an optimal barcode set with maximal cardinality can only be found
using an exhaustive search the distance between any two codewords should
be calculated at least once making L2

2 − L calculations necessary, with L de-
noting the size of the code containing all viable codewords of length l. To
lower the computational complexity, in [2], the authors propose the use of a
greedy closure evolutionary algorithm as it has been first proposed by [63].

This algorithm allows finding a local optimal solution to the given prob-
lem. The authors initialized the code set C with a small number (2-4) of
random barcodes that fulfill the distance requirement (the so-called seed).
Then, by checking all eligible barcodes in lexicographical order they added
the tested barcode to the code set if its distance was at least 2µ + 1 to every
other barcode that was already in the code set. Using an evolutionary ap-
proach (in the computational sense), they tried a large number of different
seeds or altered very successful seeds to find the seed giving the best, i.e.
largest code set. Among other heuristic algorithms for the generation of clas-
sic Levenshtein codes, this particular method has shown the best results [64].
Consequently, the authors re-run the same algorithm with multiple seeds to
find the seed that generated the largest barcode set.

In our works for this thesis, we extended this algorithm for the simultane-
ous creation of more than one barcode sets and the selection of the best case
for a given seed. Thus, there is no need for running multiple times the bar-
code construction algorithm for different seeds but instead we create many
barcode sets at once and select the set with the maximum cardinality. Fur-
thermore, the filtering of the code that contains all 4l possible quaternary
words of length l for excluding the non-viable DNA codewords can be com-
plex in computation time. Since the algorithm for constructing barcodes is al-
ready a complex process that requires long execution time we tried to lower
the complexity of this filtering step by replacing it with the algorithm PAIR-
CODE that has been proposed in 3.2.2.
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6.4.3 Our proposed barcoding algorithm

In this section we describe our proposed version of the algorithm for con-
structing error correcting DNA barcodes. This algorithm uses as an input
some code containing only viable codewords which respect the biological re-
strictions of homopolymers and GC content and provides as an output multi-
ple sets of barcodes. Each barcode set has a different cardinality and therefore
the largest set can be selected as the best option. This selection is due to the
fact that the more barcodes one set contains, the more different oligos can be
protected from noise. The proposed construction of all the possible barcode
sets using a constrained codebook is achieved by the following procedure:

• We first define a set C containing all possible quaternary words ck which
respect the sequencing constraints, with k = {1, 2, . . . , K}. We also de-
fine as B, a set containing S different barcode sets Bs with s = 1, 2, . . . , S,
S ≤ K.

• Initialization: Add one codeword ck ∈ C of the codebook C in a first
codeword set B1, set S = 1. This first word is considered as a seed of the
algorithm and for simplicity it can be selected to be the first codewords
c1 ∈ C.

• For each next codeword ck:
- Check the distance dSL(ck, cj) between ck and all codewords cj in each
of the existing barcode sets Bs with s = 1, 2, . . . , S.
- If dSL(ck, cj) ≥ 2µ + 1,∀cj ∈ Bs, then add cj to Bs. - If the previous
condition wasn’t met for any existing barcode set, create a new barcode
set BS+1 containing this codeword ck.
- Once all the possible barcode sets have been created and all codewords
in the input constrained code C have been used, we select the set Bs with
the biggest cardinality.

The above algorithm is more complex in terms of computational cost than
the one proposed in [2] but has the asset of creating more than one barcode
sets in one single run using as a seed only the selection of the first codeword
to be inserted in the first barcode set B1. By changing the first word which
is inserted in the first barcode set we change the seed of the algorithm and
therefore the different barcode sets that will be created will differ according
to this seed. As described in the previous section the barcoding algorithm
proposed in [2], the authors are using a step of filtering out the non-viable
codewords from a codebook which contains all possible 4l quaternary code-
words of length l. This filtering introduces some complexity to the barcod-
ing algorithm as it increases exponentially with the increase of the codeword
length l. Therefore, in this work we also propose the direct use of the code
constructed using PAIRCODE which has been described in section 3.2.2 to
reduce the complexity of the code construction step. As explained in sec-
tion 3.2.3, when using PAIRCODE the constrained codebook is built using
particular pair symbols to construct codewords which respect the biological
restrictions. Hence, some viable codewords are omitted. However, this code
construction is very simple in complexity and provides a set of suitable code-
words for DNA coding. It is thus expected that since some viable codewords
are missing, the number of barcodes found in the code will be lower than in
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# errors
codeword

length
Buschmann et. al.

[2]
Exhaustive Code PAIRCODE

1 4 4 4 4
1 5 12 10 10
1 6 28 25 19
1 7 77 76 59
1 8 186 202 132
1 9 615 615 426
2 6 3 2 2
2 7 5 5 4
2 8 8 9 7
2 9 17 18 14

Table 6.1: Comparison of the number of barcodes produced by: The
barcoding algorithm proposed in [2], our proposed barcoding algo-
rithm applied to an exhaustive code which contains all possible vi-
able DNA codewords (similarly to [2]), and our proposed barcoding
algorithm applied to a code constructed by PAIRCODE (see section

3.2.2).

the case where the code is constructed using the filtering of non-viable words
proposed by [2].

To test the efficiency of our proposed barcode construction algorithm, in
our studies we performed the following experiment. We tested the perfor-
mance of the barcoding algorithm for the following scenarios:

• Using the codebook filtering which is checking all 4l possible code-
words of length l and filtering out all the non-viable codewords that
don’t respect the encoding constraints. This exhaustive code as well as
its assets over the proposed PAIRCODE algorithm have been discussed
in section 3.2.3.

• Using directly the code produced by our proposed PAIRCODE algo-
rithm.

The result is depicted in table 6.1. From these results it is clear that our pro-
posed barcode construction algorithm in the case of using the exhaustive
code, can produce the same amount of barcodes with only one single run.
In the case where the proposed barcode construction is applied to a code cre-
ated using PAIRCODE, the number of barcodes produced is lower for longer
codewords when correcting one error but performs well enough for the cases
of shorter codewords or in the case of longer barcodes which can correct two
errors.

6.5 Conclusions

In this chapter, we have proposed multiple formatting scenarios for the con-
struction of DNA oligos that contain all the necessary information for the
correct decoding of the stored content. The more complicated the encoding
workflow, the more headers might be needed for the decoding, Since those
headers contain fundamental information for the reconstruction of the en-
coded image, such as details regarding the image structure, it is extremely
important to protect these fields by using some robust encoding. To this end,
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we proposed an algorithm for the creation of a set of DNA codewords, to
be used as barcodes for the correct identification of some important oligo
headers. Those barcodes are robust to sequencing noise as they can be easily
corrected in case of an error of insertion, deletion or substitution which can
be caused by the sequencing process.
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Chapter 7

Wet lab experiment

7.1 Description of the experiment

In order to verify the efficiency and robustness of the proposed encoding
methods we carried out a real wet lab experiment by synthesizing, storing
two small images in the form of DNA and retrieving the stored data with the
method of DNA sequencing. As this experiment has been realized in 2018, it
is important to denote that the encoding workflow which has been used for
this implementation corresponds to our first studies which have been fur-
ther improved over the last two years. However, due to multiple limitations
we haven’t been able to test our latest encoding models using a new wet-lab
experiment before the writing of this thesis. In the next paragraphs we will
describe the encoding, the methods used for the biological processes of syn-
thesis, storage and sequencing, as well as the decoding workflow adopted
for this experiment.

7.2 Encoding

7.2.1 The general workflow

In our experiment, we used two small gray-scale images which we efficiently
compressed encoded and stored into DNA using the following workflow.
To begin with, the input image of size MxN has been decomposed using a
3-level DWT into 10 different sub-bands. Each subband has been then in-
dependently quantized using a Uniform Scalar Quantizer. The quantization
step-size has been optimized thanks to a nucleotide allocation method, as
described in section 4.4.1, to provide the maximum quality (computed using
the PSNR) or equivalently the minimum distortion (computed using MSE)
for a given target compression rate Rtarget. More precisely, the nucleotide
allocation is using the method of spline approximation, which has been ex-
tensively explained in section 4.4.1 to provide an optimal value for qsb, with
1 ≤ sb ≤ 10 for each of the 10 subbands produced by the DWT. The values
of qsb are used for quantizing each subband of level #` with 1 ≤ #` ≤ 3,
producing a matrix Qsb of quantized subband coefficients of size M

2(#`)
x N

2(#`)
,

which are then restructured in a one dimensional vector vQsb by reading Qsb
using a raster scan. Each of the elements in vQsb is then encoded into a quater-
nary representation using the encoding algorithm proposed in section 3.2.2,
resulting in a long sequence of A, T, C and G. At the next step of the encod-
ing the long encoded subband strands need to be formatted into short oligos
to ensure that the DNA synthesis will provide very low error-rates. In this
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Figure 7.1: The formatting used in the wet-lab experiment.

experiment, the formatted oligos were 138 nts long. The reason for using this
length is linked to the fact that the quality of DNA synthesis was not guar-
anteed for oligos of a length higher than 150-200 nts at the time when the
experiment has been carried out. Today, companies which expertise in DNA
synthesis can manage to provide good quality oligos (with very low error
probability) of up to 300 nts. In this experiment, we adopted the formatting
strategy shown in figure 7.1.

We start the formatting by creating the payload fields of the oligos. We
first construct a global information oligo (GIO) payload which we denote
using 1nt of ’G’ attached to the left end. This oligo is holding the global in-
formation of the encoding such as the dimensions of the image M and N as
also the number of levels used in the DWT. The remaining nucleotides can be
either randomly padded respecting the biological restrictions or can contain
some extra copies of the above fields to introduce redundancy which is help-
ful for robustifying important headers. We then proceed to create 10 subband
information oligo (SIO) payload fields which we denote by attaching the nu-
cleotide ’T’ at the left end and contains information on the specific encoding
of each subband including the optimal step-size qsb, the minimum and max-
imum value of the quantized subband coefficients, the sign of the minimum
value, the number of quantization levels. Similarly to the GIO, the unused
length can be either randomly padded or filled with redundant information.
Then we cut the long encoded subband sequences into smaller chunks of
length 75 nts to be formatted into data oligo (DO) payloads. The DO are
marked by adding the nucleotide ’A’ in the left end which is followed by the
necessary headers to denote the subband type and level in which the corre-
sponding chunk originates as well as the offset denoting its position in the
initial strand. The remaining part of the DO is filled with the data chunk. As
the last data chunk of each encoded subband strand might be shorter than
the rest, we fill in the remaining payload length of the oligo with random
padding. After creating the different payload types we finalise the format-
ting by adding the fields of primers, sense (S), identifier (ID) and Parity (P)
as shown in figure 7.1.

7.2.2 Details on the encoding used for the experiment

In our experiment we selected to store two different images into DNA. A
128x128 pixel image of Lena and a 120x120 pixel image of the cover of the
album Mezzanine from the Massive Attack music band. The original images
selected for this experiment are shown in figures 7.3.a and 7.3.b while figures
7.3.c and 7.3.d depict the compressed versions which have been stored into
DNA.
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(a) nucleotide allocation R-D curve for Lena. The rate is expressed in nt/coeff.

(b) nucleotide allocation R-D curve for Mezzanine. The rate is expressed in nt/coeff.

Figure 7.2: Nucleotide allocation curves used for the wet lab ex-
periment for the image of Lena (top curve) and Mezzanine (bottom
curve). The ’x’-points mark the real computed points on the R-D
curve while the red curve represents the smoothed approximation of
the global allocation curve. The Rate is expressed in nts/coeff and the
point marked with an ’o’ represents the selected encoding rates and

distortion values of the images that have been stored into DNA.
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(a) Lena original image (b) Mezzanine original image

(c) Stored Lena image
PSNR = 32.5 dB

Rate = 2.68 bits/nt

(d) Stored Mezzanine image
PSNR = 29.67 dB

Rate = 1.78 bits/nt

Figure 7.3: The two images selected for our wet-lab experiment. Fig-
ures a and b show the original images whereas figures c and d depict
the compressed versions which have been selected using the source
allocation and have been stored into DNA. The PSNR values are com-

puted with respect to the original images.

For our wet-lab experiment we used the Rate-Distortion curves provided
by the allocation method using spline approximation as depicted in figure
7.2. More precisely we stored the image of Lena at a rate of R = 2.98 nt/pixel
or equivalently R = 2.68 bits/nt for an MSE = 36.43 and a PSNR = 32.5 dB.
The image of Mezzanine has been stored at a rate of R = 4.49 nt/ pixel or
equivalently R = 1.78 bits/nt for an MSE = 70.15 and a PSNR = 29.67 dB.
The reason for selecting these values of quality relies only on the budget (in
terms of euros) which was available for the experiment.

For the primer fields we used the following sequences which have been
provided by the IPMC laboratory in Sophia Antipolis:

• 3’ end primer: ’GTTCAGAGTTCTACAGTCCGACGATC’

• 5’ end primer: ’TGGAATTCTCGGGTGCCAAGG’

The above primers have been selected as they had reported a good per-
formance for the Illumina sequencer in previous sequencing experiments
carried-out by the CNRS/IPMC laboratory1 For the sense fields we have
used the nucleotides ’A’ and ’T’ to denote the 3’ end of the synthesized oli-
gos and a ’C’ or a ’G’ to mark the 5’ end. We recall that during sequencing

1Institut de Pharmacologie Moléculaire et Cellulaire à Sophia Antipolis, France.
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Figure 7.4: Part of the real formatted oligos that have been synthe-
sized during our wet-lab experiment.

the produced reads will correspond either to an estimation of the synthe-
sised oligo strand as is (following the correct sense) or to an estimation of
the complementary strand in the reverse sense. Consequently, some of the
reads received after sequencing will need to be reversed and complemented
before decoding. Therefore, receiving a C or a G nucleotide in the beginning
of some read denotes such a case.

As both images have been stored in the same pool of oligos we marked
each image using a different identifier. More precisely, for the ID fields we
used the following identifiers:

• Lena image: ’CTAG’

• Mezzanine: ’CTAC’

In this particular wet-lab experiment the parity field has not been used
and thus the parity field is only one nucleotide long instead of 4 nts (as pro-
posed in section 6.2) and has been filled-in randomly.

After the formatting we produced in total 662 oligos of length 138 nts for
the image of Lena and 875 oligos of length 138 nts for the image of Mezza-
nine. The encoded oligos have been then sent for synthesis. Figure 7.4 depicts
some of the encoded oligos that have been used in our wet-lab experiment.

7.3 DNA Synthesis and storage

For the synthesis of the produced oligos we colaborated with a well-known
public company based in San Francisco that manufactures synthetic DNA for
clients in the biotechnology industry. Twist was founded in 2013 by Emily
Leproust and Bill Peck, who each had worked on DNA synthesis technology
at Agilent Technologies, and Bill Banyai. The company sells the genes, gene
fragments, and oligonucleotides to customers who use them in fundamental
research such as the research of DNA data storage presented in this thesis.

On the 23rd of June 2018 the order of oligos has been placed and the DNA
pool of synthesized DNA oligos depicted on the left image of figure has been
delivered the 3rd of July 2018.

The product delivered by Twist Bioscience had to be stored at -20 ◦C to
guarantee storage up to one year or at -80◦C for longer preservation. It is im-
portant to denote that the oligos that have been ordered should then be am-
plified so to have enough oligos for performing further experiments. Thus,
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Figure 7.5: Left image: Pool of synthesized oligos produced by Twist
Bioscience. Right image: Capsules containing the synthesized DNA
libraries. The capsules have been provided by Imagene company

which is located in Evry in France.

reading a sample of the same synthesized pool of oligos in the future will not
require a new DNA synthesis. To produce enough copies of all the synthe-
sized oligos, our collaborators in IPMC performed simple PCR starting with
10ng of DNA product and amplifying it to 100ng creating many samples of
the initial DNA pool, the so-called libraries.

All libraries have been then stored into some specially designed capsules
provided by the company Imagene, based in Evry in France which allow
long-term preservation in room temperature. Imagene is a company which
proposes unique and disruptive solutions allowing the preservation of biospec-
imens at ambient temperature, thus to be free from the cold, its technical
constraints, its risks, its costs in equipment, energy and maintenance. This
preservation technology guarantees the preservation of the samples in con-
ditions never reached before on the market. This encapsulation is the final
part of the DNA data storage process and guarantees reliable preservation
in room temperature for many years. We therefore safely stored our pool of
oligos hoping that some day in the long future those two images will still be
available for next generations to decode. The encapsulated pools of oligos
form our wet-lab experiment are depicted in the rightt image figure .

7.4 DNA sequencing and oligo selection

Since one of the most challenging parts of this study is the errors inserted in
the sequencing process, in our wet-lab experiment we tested the efficiency
of the proposed workflow by reading and decoding our synthesized oligos.
Thus, after amplification, one of the amplified pools has been sequenced us-
ing the Illumina Next-Seq 500 technology. As explained in previous sections
the Illumina machine performs sequencing by synthesis. In other words the
machine can read the oligos by creating clusters of copies of each oligo bound
on the flow-cell. Thus, the result of the reading process is a set of reads that
constitute estimations of the original synthesized oligos. For each original
oligo, the sequencer provides a set of reads which might contain substitu-
tions, insertions, deletions or ambiguous base-calls marked with the symbol
’N’. Therefore, decoding is a challenging process and is possible only after
pre-processing the set of reads provided by the Illumina machine. In more
detail, during our experiment the Illumina machine produced 625,075,716
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Figure 7.6: Oligo pre-processing workflow

reads in total In this particular experiment part of the oligos were used for
another experiment, managed by EURECOM in Sophia Antipolis and thus a
small fragment of the above oligos contains data of SQL tables that have been
used in their experiments. The pre-processing workflow for cleaning the set
of oligos to initiate decoding is described by figure 7.6.

The raw-data (initial data) as produced by the sequencer are first filtered
to keep only the oligos which have the length of the synthesized DNA strands
which are 91nts long (91-mers). This step is reducing the number of oligos
that have been corrupted with insertion or deletion errors (indels) which are
the most difficult to treat since they can shift big part of the oligo affecting
the decoding. However, in the pool of 91-mers which are kept after this first
filtering, there might remain some oligos which have been affected by indels
as in the case where the number of insertions is equal to the number of dele-
tions the oligo length is not affected. The remaining oligos are then checked
for containing nucleotides marked as ’N’s keeping only the oligos which do
not contain such ambiguous base-calls. In the next stage of filtering we im-
pose some threshold according to the number of copies of each read. More
precisely, to reduce the number of errors and under the assumption that if an
oligo read has a low number of copies it is more probable to have been cre-
ated after some error during reading, we have kept only the reads that were
found to have at least two copies in the remaining set of oligos. Finally, as the
sense and ID fields are crucial for the correct decoding of the stored informa-
tion we scan the set of oligos for strands in which the above fields have been
affected. We therefore reject any reads that contain ’A’/’T’ or ’C’/’G’ in both
the beginning and in the end and we separate the rest of the oligos according
to the ID fields to decode each of the stored images. The oligos which are
kept after the above pre-processing workflow can be passed in the decoder.

7.5 Decoding

The output of the pre-processing workflow provides a set of reads that occur
in multiple copies. We will thereby refer to this number as the oligo’s fre-
quency. As explained in previous sections this redundancy is necessary for a
more reliable decoding and occurs due to the amplification of the synthesized
oligos during sequencing. One can imagine the procedure of sequencing like
the classical repetition coding used for transmission over a noisy channel that
may corrupt the transmission in various positions. As in repetition coding,
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the main idea of amplification is to repeat the oligos several times hoping that
the sequencing corrupts only a minority of these repetitions. Under this sim-
ple hypothesis, we assume that after all the copies of oligos are sequenced,
one can apply the method of majority vote to distinguish the most represen-
tative oligos. We therefore create a matrix Yo by sorting the remaining oligos
according to their frequency. More precisely, each line of Yo will represent
one read and the lines are sorted such that the most frequent oligos appear
in the lowest lines. The produced matrix will not contain multiple entries
of the same reads. The frequency of each read is denoted using a vector f
containing the number of copies of each line of the matrix. We then start the
decoding process. For the decoding we first create a matrix Yd of zero values
of size M by N. The idea is to read each line of Yo and fill the correspond-
ing cells of Yd with the decoded data of each oligo according to the decoded
address fields. In the case that some cells of Yd are already filled with some
decoded value which might have occurred by decoding some read of lower
frequency, the existing information is overwritten with the new data that ap-
pear lower in Yo and therefore have a higher frequency.

To prove our claim that the most frequent oligos will be the more reliable
ones we performed two different scenarios of decoding. The first scenario is
the decoding method discussed above, which is sorting the oligos according
to frequency and thus is overwriting the data existing in the most frequent
oligos above the previous ones found in the oligo pool, and a second scenario
where we decode using the not sorted matrix of oligos and the overwriting is
random. The result of those two decoding scenarios are presented in figure
7.7.
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PSNR=32.5 dB
Rate=2.68 bits/nt

PSNR=14.3 dB
Rate=2.68 bits/nt

PSNR=29.67 dB
Rate=1.78 bits/nt

PSNR=8.01 dB
Rate=1.78 bits/nt

Figure 7.7: Visual results for two different cases of reconstruction:
using the most frequent oligos (left column) and random selection
(right column). For the left images the PSNR value is only due to the
error inserted by the quantization process as we have managed to get
a reconstruction without any sequencing noise, For the right images
(random selection), both quantization and sequencing error appear.

7.6 On the reduction of the DNA sequencing cost

As explained, DNA synthesis and sequencing are expensive and can cost
several thousands of dollars depending on the size of the encoded data. On
one hand, in order to reduce the synthesis cost, we proposed compressing
the input image and control the coding rate thanks to a nucleotide-allocation
algorithm. By doing so, one can select an optimal rate which provides the
minimum distortion in the visual result. On the other hand, the sequenc-
ing cost can be decreased by reducing PCR and BA cycles which have been
explained in sections 2.1.1 and 2.1.3 respectively, and create multiple copies
of the synthesized strands to introduce the desired redundancy for robusnt-
ess to sequencing errors. We remind that PCR and BA take place before and
during sequencing respectively and can provide correct or erroneous clones
of the synthesized data. The reduction of the PCR and BA cycles can be
simulated by subsampling the data set of sequenced oligos which have been
provided by our wet-lab experiment. In the initial experiment we discarded
the oligos exceeding 91 nts as those oligos for the moment can not be decod-
able. This resulted to a total number of 28,876,259 sequenced oligos, from
which the initial encoded image should be reconstructed. In this experiment
we have subsampled this initial number of oligos using different sampling
sizes. For each case, the most frequent oligos from the subsampled data were
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selected as the most representative sequences and were used to decode and
reconstruct the image.

Consequently, for the decoding, we have subsampled the sequenced data
and reconstructed an image for each sampling size. The procedure was re-
peated twenty times for each sampling size and we computed the average
of the Peak Signal to Noise Ratio (PSNR) as well as the percentage of ex-
act matches when comparing the most frequent sequenced oligos with the
encoded correct ones. Those results are presented in figure 7.9 and provide
information about the quality of the reconstruction. In figure 7.8 we present
the visual results for different sampling rates as also the corresponding val-
ues of PSNR and SSIM.

Interestingly enough we observe that we can achieve a perfect reconstruc-
tion by using only a small percentage of the sequenced oligos provided by
our experiment. More precisely we can see in figure 7.9 that only using 5000
samples of the sequenced oligos we get 100% correctness when comparing
to the 662 original synthesised oligos. Taking into account the initial number
of amplified data (28,876,259 oligos) we conclude that only 0.0173% of those
oligos are needed for perfect decoding. This can be confirmed by the evolu-
tion of the visual results in figure 7.8. The above study has been published as
a conference paper in GRETSI 2019 [65].

#samples = 1500
PSNR = 13.05dB

SSIM = 0.59

#samples = 2250
PSNR = 28.12dB

SSIM = 0.95

#samples = 2500
PSNR = 40.79dB

SSIM = 0.97

#samples = 3500
PSNR = 47.53dB

SSIM = 0.99

#samples = 5000
PSNR = in f

SSIM = 1

Figure 7.8: Visual results after decoding at different subsampling
rates. Lena 128x128 pixels

7.7 Two years later...

Since the wet-lab experiment which has been described in this chapter has
been carried-out in 2018 we had the opportunity to test the decodability of
the data 2 years after the storage of the DNA oligos in the capsules. To this
end, our collaborators in the IPMC laboratory in Sophia Antipolis in France
have run a new round of sequencing using one of the stored libraries of oligos
and the same sequencing machine (Illumina NextSeq 500) that had been used
in the previous experiment. To test the efficiency of the sequencer with this 2
years old library, they have plot the number of times that each correct oligo
was read by the sequencer in this new sequencing round in function of the
one of two years ago. The result of this comparison is depicted in figure 7.10.

It is important to mention that the frequency of some oligo in the new
experiment depends on multiple factors. First of all in this new experiment,
a new library has been used. Since the libraries are built by taking a sample
of the PCR amplified pool of oligos, it is normal to select different amount of
copies for each correct oligo existing in the pool. In addition to this, in the



7.7. Two years later... 107

0 1000 2000 3000 4000 5000

Sampling size

0

20

40

60

80

100

120

P
S

N
R

 (
d
B

)

0 1000 2000 3000 4000 5000

Sampling size

0

20

40

60

80

100

%
 C

o
rr

e
c
t 
o
lig

o
s

Figure 7.9: The evolution PSNR and percentage of correct oligos for
different sampling sizes

experiments of IPMC they have noticed that PCR amplification was much
less performant for some oligos rather than others. Therefore, in this new
experiment the frequency of an oligo also depends on the efficiency of PCR
as well as the efficiency of BA (Bridge Amplification) during sequencing. We
recall that BA is a process used during Illumina sequencing which creates
copies of the oligos while reading them. Thus the number of times that a
correct oligo appears in the reads of this new experiment does not necessarily
only depend on the degradation of time. It is however proven, that even if
some oligos exist in few copies, we have still been able to recover all the
correct oligos which correspond to the stored data.

In our first experiment we have assumed that the correct oligos appear in
more copies than their erroneous representations. To check if this assumption
stil stands in the new sequencing, we decoded again the two stored images
of Lena and Mezzanine using the most frequent oligos for the decoding. The
result was a perfect reconstruction of the two encoded images. Consequently
we can conclude that after two years of storage correct decoding is still possi-
ble when using the most frequent oligos for the reconstruction. To verify our
results we also performed the experiment of decoding using random copies
of the oligos rather than the most frequent ones. Similarly to the experiment
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Figure 7.10: The number of copies of correct oligos in the second se-
quencing experiment (after 2 years of storage) in function of the num-
ber of correct oligo copies in the first sequencing experiment. Each
point in the point cloud corresponds to a different correct oligo. The
axis represent the number of identical correct copies of each oligo.
The x-axis corresponds to the sequencing experiment in 2018 and the

y-axis corresponds to the experiment of 2020.

performed two year earlier, this last attempt provided an erroneous recon-
struction. The visual results for both decoding cases is depicted in figure
7.11. Our future works, include the testing of the rest of the proposed encod-
ing scenarios, by a new wet-lab experiment.
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Figure 7.11: Visual results of the decoding of the stored oligos two
years after storage. The figures correspond to two different cases of
reconstruction: using the most frequent oligos (left column) and ran-
dom selection (right column). For the left images the PSNR value is
only due to the error inserted by the quantization process as we have
managed to get a reconstruction without any sequencing noise, For
the right images (random selection), both quantization and sequenc-

ing error appear.

7.8 Conclusions

In this chapter we presented the details of the wet-lab experiment which has
been carried-out to verify feasibility of our theoretical studies. Due to limi-
tations of budget and time due to the ongoing pandemic of COVID-19 our
study has been restricted to only testing our first proposed fixed-length en-
coding workflow which is using a Scalar Quantizer for the compression. This
single experiment has nevertheless allowed us to study the noise caused by
the Illumina sequencer, which is the most reliable and most widely used se-
quencing machine which exists until today. It is however in our first priori-
ties to perform more wet-lab experiments for testing the rest of the encoding
solutions proposed in this thesis while we have already prepared our next
oligos to be sent for synthesis in the following weeks. This new experiment
will also include testing the Nanopore sequencing and the robustness of our
solutions to the Nanopore’s increased sequencing noise.





111

Chapter 8

General conclusions and future
steps

8.1 Conclusions

In conclusion, in this thesis we have presented a study on the efficient stor-
age of digital images into DNA. Motivated by the need to reduce the high
DNA synthesis cost, we proposed for the first time an encoding solution
which allows controlling the compression of the input to produce an effi-
cient encoding and reduce the cost of DNA synthesis. More precisely, in our
encoding we used a workflow which efficiently compresses an input image
using a DWT and quantizing each of the produced subbands independently
to be then encoded in a quaternary representation of A, T, C and G. To this
end, we introduced a novel algorithm for creating a fixed length quaternary
code which can provide an encoding that respects the necessary sequencing
constraints to reduce the probability of sequencing errors. Our proposed al-
gorithm for constructing this code differs from the existing ones in the state
of the art as it is fixed length and can therefore be easily used to perform a
closed-loop nucleotide allocation to optimize the compression of some input
image without requiring high computational cost. Furthermore, in contrast
to the state of the art encoding methods, our proposed solution can be ap-
plied for encoding any type of data and is not restricted to binary inputs.

We also proposed a new mapping method which makes use of any un-
used codewords in the produced constrained code to allow double repre-
sentation of the most frequent coefficients and deal with pattern repetitions
which can lead to sequencing errors during reading. We then further im-
proved our compression workflow by using a Vector Quantizer instead of a
Uniform Scalar one. This last case allowed us to introduce a new sequencing-
noise resistant mapping algorithm to assign the vector indices produced by
VQ to the quaternary codewords of our code. This mapping aims in finding
the optimal assignment to reduce the visual impact of substitution errors in
the decoded image.

In our studies we mainly focused in providing a robust fixed-length en-
coding solution which allows controlled compression for reducing the syn-
thesis cost. The selection of a fixed-length encoding instead of a variable-
length one stems from the fact that since sequencing is prone to errors, in the
case of a variable length encoding an error can lead to losing the structure of
the data and lead to very poor decoding. To prove this claim, we have thus
implemented two different variable length solutions which are based on the
JPEG standard. The first solution is the one that has been mostly used by
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the state of the art and uses the classical JPEG protocol to compress the input
image into an optimized binary representation and then encodes the binary
stream into a quaternary representation. As this solution is not optimized
for a quaternary representation and requires passing from binary before en-
coding the input into DNA we also proposed a new modified version of the
JPEG algorithm by including the quaternary code inside the existing stan-
dard. In more detail, we used the same encoding workflow as the one of
classical JPEG for binary but we replaced the variable-length coding by com-
bining our proposed fixed length PAIRCODE algorithm for encoding the val-
ues and the algorithm proposed by Goldman et. al. [1] for the encoding of the
runs of zeros and categories. We then compared all the proposed encoding
methods in terms of compression efficiency and robustness. This comparison
has proven the fixed-length encoding methods to be much more robust to se-
quencing noise. Interestingly enough the results of the fixed-length method
of nt allocation using VQ are comparable to the results of variable length en-
coding. We therefore concluded that there is an important trade-off between
compression efficiency and robustness to error which has to be considered
for the selection of the most preferable encoding solution.

As DNA synthesis requires cutting and formatting the encoded informa-
tion into smaller oligos and since the proposed encoding workflow is more
complex than the ones proposed in bibliography, we have proposed different
formatting scenarios to suit each encoding method. Furthermore, since the
header information used for the formatting is highly important for a reliable
decoding we have proposed robustifying some fields using the method of
Error Correcting Barcodes.

Finally, during this thesis we have performed a wet lab experiment on
one of the proposed workflows testing the efficiency of our quaternary code
construction when used along with an Illumina Sequencer. It is important
to denote that as the topic of this thesis is relatively new and some of the
techniques used in the encoding (such as the nucleotide allocation and the
creation of the training sets for VQ) are complex and require long execution
time, it has been very challenging to provide further comparisons and results
on different images. However, we recognise the importance of performing
further experiments after the end of this thesis to provide a more complete
study on the efficiency of the different workflows.

8.2 Discussion

This thesis presents the first attempt of introducing controlled compression
in DNA data storage by proposing an end-to-end solution which is adapt-
able to the needs of the encoding and can reduce the high synthesis cost. The
produced results are very promising and set the ground work for further
study and improvement. As DNA data storage is a very challenging multi-
disciplinary field of study that highly depends on biological manipulations,
it is expected to evolve along with the changes in the methods and the ma-
chines used for DNA synthesis and sequencing. Thus the encoding methods
might change in the following years so to respect different encoding con-
straints. In addition to this, since this is a relatively new topic of research
with great potential in future applications, it is sure to attract much interest
in the next few years, hoping that the more it will be studied, the more the
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cost of biological processes such as DNA synthesis and sequencing will be
reduced.

It is very encouraging to notice that there is already a great interest on
the topic by many different research groups around the world. Namely, dur-
ing this thesis, we had the chance to collaborate with some of those teams
through the OligoArchive project Horizon 2020 1 which is founded by the
European Union. This collaboration includes the I3S/CNRS laboratory, the
IPMC/CNRS and EURECOM which are located in Sophia Antipolis in France,
as well as the Imperial College of London in the UK and the startup of Helix-
works which is synthesizing DNA and is located in Ireland. This project aims
in the creation of a prototype system will allow the research of the whole cy-
cle from encoding to the sequencing of data to DNA. Furthermore, recently,
the JPEG community has launched an Ad Hoc Group on Digital Media Stor-
age using DNA [66], in which we have the honor to participate as invited
experts on the topic of DNA data storage. We therefore hope that these col-
laborations will create some wonderful ideas that will help the field advance
rapidly so to be soon used in practice.

Another important point to be discussed is the fact that DNA data storage
is intended for the archiving of digital data to be decoded in the very long
term. The reading of DNA will always be guaranteed, since the molecule of
DNA exists in every living organism and thus there will always be some ma-
chine for its reading. However, it is fundamental to find a way for ensuring
that the decoder as well as the information for the decoding will be available
when needed to allow correct reconstruction after reading. Some interesting
works on digital preservation propose some solutions for creating durable
ways for storing the information for decoding while also expressing it in a
way that will be understandable by anyone in the future that might have no
previous knowledge on the encoding. Such solutions include the storage of
the decoding information in microfilms, as proposed by the company of EU-
PALIA in France [12] and in their latest collaboration with EURECOM in [67]
or in silica glass. Some interesting works for storing data in silica glass have
been proposed in [13].

8.3 Future work and perspectives

DNA data storage is a very promising new field of research which is expected
to play a significant role in the solution of fundamental challenges of digital
data storage. However, since it constitutes a multidisciplinary subject which
is highly constrained by some limitations of the biological manipulations,
there are multiple challenges to be addressed in the encoding of digital data
into DNA. This thesis sets the groundwork for further improvement for the
creation of an optimal image coding workflow for the storage of digital im-
ages into DNA. By summing up all the points discussed and studied by this
study as well as the state of the art works one can conclude to the following
challenges to be addressed:

• Biological constraints - The encoding workflow must consider the rele-
vant biological constraints on the coding process to avoid affecting the
stability of the sequence against sequencing errors.

1https://oligoarchive.eu

https://oligoarchive.eu
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• Compression efficiency - Due to the high cost of DNA synthesis, the
codec shall offer significantly increased compression efficiency regard-
ing simple solutions in the literature, e.g. based on binary coding.

• Random access - To reduce the sequencing cost, the encoding should
allow the access to specific parts of the information without having to
decode/sequence the full coded information.

• Error resilience - The encoding workflow must offer error robustness
and error correction reading/sequencing errors.

• Scalability - The encoding shall allow scalable representations of the in-
formation where reading only part of the full information offers a lower
quality or resolution of the full represented information.

• Ambiguity - The workflow shall allow decoding without any ambiguity,
i.e. a decoded bit may not be both ’0’ and’1’.

• Artificial recognition - The encoding shall allow the encoding output
to be unambiguously recognized as artificial; this may be relevant if
the artificial DNA stream should not be confused with natural DNA
streams.

While this thesis took a very first step in the introduction of a closed-
loop codec for the efficient compression of digital images into DNA, there
is still room for improvement on both the fixed-length encoding by using
for example Lattice VQ instead of a classical VQ, and the proposed variable-
length codec by improving the encoding workflow and introducing error-
correction techniques. Furthermore, another interesting point which would
help the improvement of the encoding workflows is the study of the noise of
different sequencers in order to robustify the encoding. Such a study would
provide extra information about the sequencing constraints and would al-
low the generation of DNA strands which are more adapted to the biological
experiments of synthesis and sequencing. At the same time, since a big per-
centage of the end-to-end workflow is dedicated to biological experiments,
the advances in the methods used during the biological manipulations can
significantly improve the quality of the encoding. For example, since the
nanopore sequencer is a user-friendly, low-cost sequencing method which
allows the reading of longer oligos, many companies which perform DNA
synthesis (such as Helixworks and DNA Script) are currently studying the
possibility of synthesizing longer DNA strands which are free from synthe-
sis error. It is therefore clear that there are many interesting paths to explore
from both the computer science and the biological perspective so that DNA
data storage will be soon a viable option towards a greener solution for long-
term archival.
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Appendix A

Algorithms

A.1 Section 1

Algorithm 1 Encoding Algorithm for a known set of symbols Σ (K is given)

1: Initialise the number m of representations needed for each symbol to encode
2: Compute length l of codewords needed for encoding m ∗ K symbols si ∈ Σ as:
3: if log10 (mK) not an integer then
4: if 10blog10 (mK)c ∗ 4 ≤ K then
5: l = blog10 (mK)c ∗ 2 + 1
6: else l = dlog10 (mK)e ∗ 2
7: end if
8: elsel = log10 (mK) ∗ 2
9: end if

10: Build code C∗ of L different codewords ci:
11: if l is even then
12: Construct all possible codewords of length l using l

2 choices from C1
13: else if l is odd then
14: Construct all possible codewords of length l by using l

2 choices from C1 adding
one symbol from C2

15: end if
16: Mapping of index values of quantization to codewords from C
Compute: Γ(si) = C∗(i + rand(1, m− 1) ∗ K)

Algorithm 2 Encoding Algorithm when optimizing K given a target compression
rate Rtarget

1: Rtarget = l
2: Compute size of the codebook L:
3: if l is even then
4: Construct codebook of length L = 10

l
2

5: else Construct codebook of length L = 10
l−1

2 ∗ 4
6: end if
7: Compute K = L

m (optimal solution for m = 2)
8: Mapping of symbols to codewords from C∗

Compute: Γ(si) = C∗(i + rand(1, m− 1) ∗ K)
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Algorithm 3 Mapping Algorithm
Definitions:
Set V = {v1, v2, . . . , vK} of codevectors vk , |V| = K
Set C∗ = {c1, c2, . . . , cL} of quaternary words cl, |C∗| = L
Define a mapping function Γ : V 7→ C∗

Set C ⊆ V of vectors vi : Γ(vi) = ∅
H(cl): Set containing codeword cl and the Bi codewords cn that differ from cl in one
nucleotide (Hamming distance of 1)
Define B = max

i
(Bi) with i ∈ {1, 2, . . . , L}

S(vk): Set containing vector vk and its B closest neigboring vectors vn

Function φ(vq) = ∑
j|vj∈S(vq)

d(vj, vq) with β ≥ 0 a trade-off parameter.

Empirical function: F(vq) = p(vq)/φβ(vq) where p(vq) is the probability of vq in the
input sequence

Phase 0: For the first (B+1) indices

1: Initialise: C = V
2: vq := {vi ∈ C : vi = arg max

v
F(v)}

3: Γ(vq) = cq

4: Γ(vn) = cn, ∀vn ∈ S(vq), cn ∈ H(cq)

Phase 1: For the remaining indices

1: while C 6= ∅ do
2: C− {vq, vn}
3: vq := {vi ∈ C : vi = arg max

v
F(v)}

4: if Γ(vn) = ∅, ∀vn ∈ S(vq) then
5: if ∃cq : ∀cn ∈ H(cq), Γ−1(cn) = ∅ then
6: Γ(vq) = cq

7: Γ(vn) = cn ,∀vn ∈ S(vq), ∀cn ∈ H(cq)

8: else
9: H := arg max

s
(|Hs|), ∀s ∈ {1, 2, . . . , K},

10: Γ−1(Hs) = ∅
11: Γ(vq) = cq

12: Γ(vn) = cn, ∀cn ∈ H(cq) : Γ−1(cn) 6= ∅
13: and vn = arg min

v
(d(vq, v)) with v ∈ S(vq)

14: end if
15: else
16: if Γ(vq) = ∅ but Γ(Aq) 6= ∅ with Aq ⊆ S(vq) then
17: if ∃cq: Γ(Aq) ⊆ H(cq) then
18: Γ(vq) = cq

19: else
20: H := arg max

s
(|Hs ∩ Γ(Aq)|) ∀s ∈ {1, 2, . . . , K}

21: if | arg max
s

(|H|)| ≥ 2 then

22: Let cj
n, j = 1, 2, . . . , be the tied indices

23: Define a = vn|Γ(vn) ∈ Γ(Aq) ∩ H(cq)

24: Define b = vn|Γ(vn) ∈ Γ(Aq) ∩ H(cj
n)

25: Assign to vector vq a word cq such that:
26:

∑
a

d(vn, vq) = min
q ∑

b
d(vn, vq)

27: end if
28: end if
29: end if
30: end if
31: end while
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Appendix B

Training set

Figure B.1: Training set of cat images used for training the codevec-
tors in our VQ experiments.
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Appendix C

Publications

C.1 Journals

1. Melpomeni Dimopoulou, Marc Antonini, Pascal Barbry, Raja Appuswamy,
"Image Storage onto Synthetic DNA", submitted to Signal Processing: Im-
age Communication journal, ELSEVIER, Oct. 2019.

2. Melpomeni Dimopoulou, Marc Antonini, "Data and image storage on syn-
thetic DNA - Existing solutions and challenges", submitted to Journal on
Image and Video Processing, EURASIP, Oct. 2020.

C.2 Conference papers

1. Melpomeni Dimopoulou, Marc Antonini, "Signal Quantization using the
Leaky Integrate-and-Fire neuron", Groupe de Recherche et d’Etudes du
Traitement du Signal et des Images 2017, Juan-Les-Pins, France

2. Melpomeni Dimopoulou, Effrosyni Doutsi, Marc Antonini, "A Retina-
Inspired Encoder: An Innovative Step on Image Coding Using Leaky
Integrate-and-Fire Neurons", International Conference on Image Pro-
cessing, 2018, Athens, Greece

3. Melpomeni Dimopoulou, Marc Antonini, Pascal Barbry, Raja Appuswamy,
"DNA coding for image storage using image compression techniques", COm-
pression et REprésentation des Signaux Audiovisuels, 2018, Poitiers,
France (Best Paper Award)

4. Melpomeni Dimopoulou, Marc Antonini, Pascal Barbry, Raja Appuswamy,
"A biologically constrained encoding solution for long-term storage of images
onto synthetic DNA", European Signal Processing Conference 2019, A
Coruña, Spain (Best Student Paper Award)

5. Melpomeni Dimopoulou, Eva Gil San Antonio, Marc Antonini, Pascal
Barbry, Raja Appuswamy, "On the reduction of the cost for encoding/decoding
digital images stored on synthetic DNA.", Groupe de Recherche et d’Etudes
du Traitement du Signal et des Images 2019, Lille, France.

6. Melpomeni Dimopoulou, Marc Antonini, Pascal Barbry, Raja Appuswamy,
"Storing Digital Data into DNA: A Comparative Study of Quaternary Code
Construction", International Conference on Acoustics, Speech, and Sig-
nal Processing, 2020, Barcelona, Spain.
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7. Melpomeni Dimopoulou, Marc Antonini, “Efficient storage of images
onto DNA using vector quantization”, Data Compression Conference,
2020, Utah, USA.

8. Melpomeni Dimopoulou, Marc Antonini, "Image storage in DNA using
Vector Quantization" European Signal Processing Conference 2019, 2020,
Amsterdam, Netherlands.

9. Melpomeni Dimopoulou, Eva Gil San Antonio, Marc Antonini, "A qua-
ternary code mapping resistant to the sequencing noise for DNA image cod-
ing", International Workshop on Multimedia Signal Processing, 2020,
Tampere, Finland.

10. Eva Gil San Antonio, Mattia Piretti, Melpomeni Dimopoulou, Marc An-
tonini, "Robust image coding on synthetic DNA: Reducing sequencing noise
with inpainting", International Conference on Pattern Recognition, 2020,
Milan, Italy.

11. Melpomeni Dimopoulou, Marc Antonini, "A JPEG-based image coding so-
lution for data storage on DNA", submitted to European Signal Processing
Conference (EUSIPCO), 2021, Dublin, Ireland.

C.3 Patents

1. Melpomeni Dimopoulou, Marc Antonini. METHODS FOR STORING
DIGITAL DATA AS, AND FOR TRANSFORMING DIGITAL DATA INTO,
SYNTHETIC DNA. United States, Patent n : 16/811,985. 2020 (Granted).

C.4 Awards

1. Best paper award at CORESA (2018) for “DNA coding for image storage
using image compression techniques”.

2. First prize in the regional contest of “Three Minute Thesis” of Côte
d’Azur in 2019.

3. Best student paper award with honorable mention at EUSIPCO 2019
conference for the paper “A biologically constrained encoding solution
for long-term storage of images onto synthetic DNA”.

4. Prize of excellence from the Université Côte d’Azur for the year 2019
(Prix d’ excellence UCA 2019).
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