Fluid Dynamic Modeling of Biological Fluids : From the Cerebrospinal Fluid to Blood Thrombosis
Modélisation des fluides biologiques : du liquide céphalo-rachidien à la thrombose sanguine
Résumé
In the present thesis, three mathematical models are described. Three different biomedical issues, where fluid dynamical aspects are of paramount importance, are modeled: i) Fluid-structure interactions between cerebro-spinal fluid pulsatility and the spinal cord (analytical modeling); ii) Enhanced dispersion of a drug in the subarachnoid space (numerical modeling); and iii) Thrombus formation and evolution in the cardiovascular system (numerical modeling).The cerebrospinal fluid (CSF) is a liquid that surrounds and protects the brain and the spinal cord. Insights into the functioning of cerebrospinal fluid are expected to reveal the pathogenesis of severe neurological diseases, such as syringomyelia that involves the formation of fluid-filled cavities (syrinxes) in the spinal cord.Furthermore, in some cases, analgesic drugs -- as well drugs for treatments of serious diseases such as cancers and cerebrospinal fluid infections -- need to be delivered directly into the cerebrospinal fluid. This underscores the importance of knowing and describing cerebrospinal fluid flow, its interactions with the surrounding tissues and the transport phenomena related to it. In this framework, we have proposed: a model that describes the interactions of the cerebrospinal fluid with the spinal cord that is considered, for the first time, as a porous medium permeated by different fluids (capillary and venous blood and cerebrospinal fluid); and a model that evaluates drug transport within the cerebrospinal fluid-filled space around the spinal cord --namely the subarachnoid space--.The third model deals with the cardiovascular system. Cardiovascular diseases are the leading cause of death worldwide, among these diseases, thrombosis is a condition that involves the formation of a blood clot inside a blood vessel. A computational model that studies thrombus formation and evolution is developed, considering the chemical, bio-mechanical and fluid dynamical aspects of the problem in the same computational framework. In this model, the primary novelty is the introduction of the role of shear micro-gradients into the process of thrombogenesis.The developed models have provided several outcomes. First, the study of the fluid-structure interactions between cerebro-spinal fluid and the spinal cord has shed light on scenarios that may induce the occurrence of Syringomyelia. It was seen how the deviation from the physiological values of the Young modulus of the spinal cord, the capillary pressures at the SC-SAS interface and the permeability of blood networks can lead to syrinx formation.The computational model of the drug dispersion has allowed to quantitatively estimate the drug effective diffusivity, a feature that can aid the tuning of intrathecal delivery protocols.The comprehensive thrombus formation model has provided a quantification tool of the thrombotic deposition evolution in a blood vessel. In particular, the results have given insight into the importance of considering both mechanical and chemical activation and aggregation of platelets.
Dans cette thèse, trois modèles mathématiques ont été proposés, avec l’objectif de modéliser autant d’aspects complexes de la biomédecine, dans lesquels la dynamique des fluides du système joue un rôle fondamental: i) les interactions fluide-structure entre la pulsatilité du liquide céphalo-rachidien et la moelle épinière (modélisation analytique); ii) dispersion efficace d’un médicament dans l’espace sous-arachnoïdien (modélisation numérique); et iii) la formation et l’évolution d’un thrombus au sein du système cardiovasculaire (modélisation numérique).Le liquide céphalorachidien est un fluide aqueux qui entoure le cerveau et la moelle épinière afin de les protéger. Une connaissance détaillée de la circulation du liquide céphalorachidien et de son interaction avec les tissus peut être importante dans l’étude de la pathogenèse de maladies neurologiques graves, telles que la syringomyélie, un trouble qui implique la formation de cavités remplies de liquide (seringues) dans la moelle épinière.Par ailleurs, dans certains cas, des analgésiques - ainsi que des médicaments pour le traitement de maladies graves telles que les tumeurs et les infections du liquide céphalorachidien - doivent être administrés directement dans le liquide céphalorachidien. L’importance de connaître et de décrire l’écoulement du liquide céphalorachidien, ses interactions avec les tissus environnants et les phénomènes de transport qui y sont liés devient claire. Dans ce contexte, nous avons proposé: un modèle capable de décrire les interactions du liquide céphalo-rachidien avec la moelle épinière, considérant cela, pour la première fois, comme un milieu poreux imprégné de différents fluides (sang capillaire et veineux et liquide céphalo-rachidien); et un modèle capable d’évaluer le transport d’un médicament dans l’espace sousarachnoïdien, une cavité annulaire remplie de liquide céphalo-rachidien qui entoure la moelle épinière.Avec le troisième modèle proposé, nous entrons dans le système cardiovasculaire.Dans le monde entière, les maladies cardiovasculaires sont la cause principale de mortalité. Parmi ceux-ci, nous trouvons la thrombose, une condition qui implique la formation d’un caillot à l’intérieur d’un vaisseau sanguin, qui peut causer sa occlusion. À cet égard, un modèle numérique a été développé qui étudie la formation et l’évolution des thrombus, en considérant simultanément les aspects chimico-biomécaniques et dynamiques des fluides du problème. Dans le modèle proposé pour la première fois, l'importance du rôle joué par les gradients de contrainte de cisaillement dans le processus de thrombogenèse est pris en compte.Les modèles sélectionnés ont fourni des résultats intéressants. Tout d’abord, l’étude des interactions fluide-structure entre le liquide céphalo-rachidien et la moelle épinière a mis en évidence es conditions pouvant induire l’apparition de la syringomyélie. Il a été observé comment la déviation des valeurs physiologiques du module d’Young de la moelle épinière, les pressions capillaires dans l’interface moelle-espace sousarachnoïdien et la perméabilité des compartiments capillaire et veineux, conduisent à la formation de seringues.Le modèle de calcul pour l’évaluation de la dispersion pharmacologique dans l’espace sousarachnoïdien a permis une estimation quantitatif de la diffusivité effective du médicament, une quantité qui peut aider à l’optimisation des protocoles d’injections intrathécales.Le modèle de thrombogenèse a fourni un instrument capable d’étudier quantitativement l’évolution des dépôts de plaquettes dans la circulation sanguine. En particulier, les résultats ont fourni des informations importantes sur la nécessité de considérer le rôle de l’activation mécanique et de l’agrégation des plaquettes aux côtés de la substance chimique.
Origine | Version validée par le jury (STAR) |
---|