Nano-ions in interaction with non-ionic surfactant self-assemblies - Archive ouverte HAL Access content directly
Theses Year : 2020

Nano-ions in interaction with non-ionic surfactant self-assemblies

Les nano-ions en interaction avec les auto-assemblages de tensioactifs non-ioniques

(1)
1

Abstract

Nanometer-sized ions (nano-ions), such as ionic boron clusters, polyoxometalates (POMs) and large organic ions, have spawned remarkable interest in recent years due to their ability to adsorb or bind to electrically neutral chemical systems, such as macrocyclic host molecules, colloidal nano-particles, surfactants and polymers etc. The underlying adsorption or binding processes were shown to be driven by a solvent-mediated phenomenon, the chaotropic effect, which drives the nano-ion from the water bulk towards an interface. Thus, hydration water of the ion and the interface is released into the bulk resulting in a bulk water structure recovery. This effect is particularly strong for nano-ions. Therefore, they were termed superchaotropic or hydrophobic ions as an extension to classical (weakly) chaotropic ions such as SCN-. All commonly studied superchaotropes, though chemically diverse, share physical characteristics such as low charge density and high polarizability. Herein, the effects of nano-ions on ethoxylated non-ionic surfactant self-assemblies, micellar and bilayer phases, are elucidated to draw conclusions on their chaotropic and/or hydrophobic nature. By combining small angle scattering of neutrons and x-rays (SANS and SAXS), and phase diagrams, non-ionic surfactant/nano-ion systems are examined and compared, from the nanometer to the macroscopic scale. Thus, all studied nano-ions are found to induce a charging of the surfactant assemblies along with a dehydration of the non-ionic surfactant head groups. Furthermore, chaotropic and hydrophobic ions differ in their effects on the micellar shape. Superchaotropic ions drive the elongated non-ionic surfactant micelles towards spherical micelles (increase in curvature), whereas hydrophobic ions cause a transition towards bilayer phases (decrease in curvature). It is concluded that superchaotropic nano-ions act like ionic surfactants because their addition to non-ionic surfactant systems causes a charging effect. However, nano-ions and ionic surfactants are fundamentally different by their association with the non-ionic surfactant assembly. The nano-ion adsorbs to the non-ionic surfactant heads by the chaotropic effect, while the ionic surfactant anchors into the micelles between the non-ionic surfactant tails by the hydrophobic effect. The comparison of the effects of adding nano-ions or ionic surfactant to non-ionic surfactant was further investigated on foams. The foams were investigated regarding foam film thickness, drainage over time and stability, respectively using SANS, image analysis and conductometry. The tested superchaotropic POM (SiW12O404-, SiW) does not foam in water in contrast to the classical ionic surfactant SDS. Nevertheless, addition of small amounts of SiW or SDS to a non-ionic surfactant foaming solution resulted in wetter foams with longer lifetimes. Meanwhile, the foam film thickness (determined in SANS) is increased due to the electric charging of the non-ionic surfactant monolayers in the foam film. It is concluded that the remarkable behavior of nano-ions – herein on non-ionic surfactant systems – can be extended to colloidal systems, such as foams, polymers, proteins or nanoparticles. This thesis demonstrates that the superchaotropic behavior of nano-ions is a versatile tool to be used in novel formulations of soft matter materials and applications.
Les ions de taille nanométrique (nano-ions), tels que les clusters ioniques de bore, les polyoxométalates (POM) et les grands ions organiques, ont suscité un intérêt remarquable ces dernières années en raison de leur capacité à s’adsorber ou se lier à des systèmes chimiques électriquement neutres, tels que les molécules hôtes macrocycliques, les nanoparticules, les tensioactifs et les polymères, etc. Il a été démontré que ces processus d'adsorption ou de liaison sont induits par un phénomène médié par solvant, l'effet chaotropique, qui pousse le nano-ion de la masse d'eau vers une interface. Ainsi, l'eau d'hydratation de l'ion et de l'interface est libérée dans la masse d'eau, ce qui entraîne une restitution de la structure intrinsèque de l'eau. Cet effet est particulièrement fort pour les nano-ions. Ils sont par conséquent appelés ions superchaotropiques ou hydrophobes dans le prolongement des ions classiques (faiblement) chaotropiques tels que le SCN-. Tous les superchaotropes couramment étudiés, bien que chimiquement divers, partagent des caractéristiques physiques telles qu'une faible densité de charge et une grande polarisabilité. Les effets des nano-ions sur les auto-assemblages de tensioactifs non ioniques éthoxylés, les phases micellaires et bicouches, sont ici élucidés pour tirer des conclusions sur leur nature chaotropique et/ou hydrophobe. En combinant la diffusion aux petits angles des neutrons et des rayons X (SANS et SAXS), et les diagrammes de phase, les systèmes tensioactifs non ioniques/nano-ion sont examinés et comparés, du nanomètre à l'échelle macroscopique. Ainsi, il est montré que tous les nano-ions étudiés induisent un chargement électrique des assemblages de tensioactifs ainsi qu'une déshydratation des têtes de tensioactif non-ionique. En outre, les ions chaotropiques ou hydrophobes diffèrent dans leurs effets sur la forme micellaire. Les ions chaotropiques entraînent les micelles allongées de tensioactif non-ionique vers les micelles sphériques (augmentation de la courbure), tandis que les ions hydrophobes provoquent une transition vers les phases bicouches (diminution de la courbure). Il est conclu que les nano-ions superchaotropiques agissent comme des tensioactifs ioniques car leur ajout à des systèmes de tensioactifs non ioniques provoque un effet de charge. Cependant, les nano-ions et les tensioactifs ioniques sont fondamentalement différents par leur association avec l'ensemble des tensioactifs non ioniques. Le nano-ion s'adsorbe sur les têtes des tensioactifs non ioniques par effet chaotropique, tandis que le tensioactif ionique s'ancre dans les micelles entre les queues des tensioactifs non ioniques par effet hydrophobe. La comparaison des effets de l'ajout de nano-ions ou de tensioactifs ioniques à des tensioactifs non ioniques a été approfondie sur les mousses. Les mousses ont été étudiées en ce qui concerne l'épaisseur du film de mousse, le drainage dans le temps et la stabilité, respectivement en utilisant la SANS, l'analyse d'image et la conductométrie. Le POM superchaotropique testé (SiW12O404-, SiW) ne mousse pas dans l'eau contrairement au SDS classique de tensioactif ionique. Néanmoins, l'ajout de petites quantités de SiW ou de SDS à une solution moussante de tensioactif non ionique a permis d'obtenir des mousses plus humides avec une durée de vie plus longue. Entre-temps, l'épaisseur du film de mousse (déterminée en SANS) est augmentée en raison de la charge électrique des monocouches de tensioactifs non ioniques dans le film de mousse. Il est conclu que le comportement remarquable des nano-ions - ici sur les systèmes tensioactifs non ioniques - peut être étendu aux systèmes colloïdaux, tels que les mousses, les polymères, les protéines ou les nanoparticules. Cette thèse démontre que le comportement superchaotropique des nano-ions est un outil polyvalent qui peut être utilisé dans de nouvelles formulations de matériaux et d'applications de la matière molle.
Fichier principal
Vignette du fichier
HOHENSCHUTZ_2020_archivage.pdf (7.81 Mo) Télécharger le fichier
Origin : Version validated by the jury (STAR)

Dates and versions

tel-03173636 , version 1 (18-03-2021)

Identifiers

  • HAL Id : tel-03173636 , version 1

Cite

Max Hohenschutz. Nano-ions in interaction with non-ionic surfactant self-assemblies. Other. Université Montpellier, 2020. English. ⟨NNT : 2020MONTS064⟩. ⟨tel-03173636⟩
233 View
238 Download

Share

Gmail Facebook Twitter LinkedIn More