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Mâıtre de conférence, Université de Lille (CRIStAL) Encadrant de thèse







Abstract

The advent of interactive technologies in our everyday life has led researchers and designers to
study how we interact with these automated systems. In arts, and particularly in music, the
support of digital technologies offers a still growing and almost infinite amount of creativity
opportunities for artists. However this evolution can have consequences on the spectators
of musical interactions of a new kind. For instance, the disappearing of the physical link
between gestures and sound can generate doubts about the genuine contribution of the artists
compared to the one of autonomous processes like sequencers or audio tracks. Making music
with computers and electronic sensors raises many further questions regarding the audience.
To address these issues, both artists and researchers from the Human Computer Interaction
(HCI), musicology or cognitive sciences communities have developed protocols and techniques
in order to better understand the spectator experience and to improve it. Although these
contributions may definitely benefit the spectators of digital performances, to our knowledge,
their efficiency has not been formally compared and spectator experience remains an elusive
phenomena not totally captured by field studies.

To clarify the notion of spectator experience, we identify its potential components from the
literature. From there, we propose and assess a first model of the familiarity an observer has
with a digital instrument. We complete this theoretical contribution, by reviewing the existing
Spectator Experience Augmentation Techniques (SEATs) and structuring them in a taxonomy.

We then contribute a series of experiments to compare the effect of SEATs on spectator
experience. To do so, we decompose the equivocal phenomena of spectator experience in
objective and subjective components easier to handle in experimental protocols. In particular,
we underline the central role of Attributed Agency, that is the evaluation by an observer of
the level of control of someone executing an action. With this methodological approach,
we compare the efficiency of 2 SEATs: pre-concert explanations and visual augmentations,
which are the real-time display of graphical representations of the musician’s interactions and
the mechanisms of their digital musical instrument. We show the positive impact of visual
augmentations on the subjective experience of spectators and on the improvement of the trust
they have in the genuine contribution of the musician. In a complementary study, we detail
contrasts between experts and novices especially in terms of subjective comprehension and we
demonstrate the impact of the levels of detail of visual augmentations on spectator experience.

This work also proposes guidelines and tools for future developments. Thus, we introduce
PEANUT, a conceptual pipeline for the augmentation of music performances. The pipeline
is based on a modular architecture that includes the acquisition of electrophysiological and
subjective signals from the audience as well as the extraction of information from the musician’s
interactions with their instrument. Data are integrated in objects called ”correspondences”
that aim at mimicking the internal models of spectators. In extension of this concept, we
reveal preliminary results that support the relevancy of grip force as an objective marker of
Attributed Agency.

Finally, in order to facilitate the reuse of our data and to certify the transparency of our
analyses, we follow the Open Science’s recommendations and publicly publish the integrity of
our anonymised raw data as well as our tools and statistical analyses that conducted to the
conclusion presented in this work. In the same vein, we pay special attention to the statistical
process by including Bayesian methods allowing us to develop sounder interpretations.

I



Abstract

La multiplication des équipements numériques dans notre quotidien a amené chercheuses et
designers à étudier la façon dont nous interagissons avec ces systèmes automatisés. Dans
les arts, et en particulier la musique, cet apport technologique ouvre encore aujourd’hui des
possibilités de créativité presque sans limite, notamment grâce à la disparition des contraintes
physiques de production du son rencontrées avec les instruments acoustiques. Toutefois, cette
évolution n’est pas sans conséquence sur les spectateurs de ces interactions musicales d’un
nouveau genre. Ainsi, la disparition du lien physique entre la gestuelle des musiciens et le
son peut perturber l’expérience des spectateurs et les amener à douter de la contribution
de l’artiste comparée à celle de processus automatisés comme les séquenceurs et les pistes
audio. Pour répondre à ces problématiques, artistes et chercheurs en IHM, en musicologie et
en sciences cognitives ont développé des techniques visant à mieux comprendre et à améliorer
l’expérience spectateur. Malgré le concours indéniable de ces techniques, à notre connaissance
leur efficacité n’a encore jamais été formellement comparée et l’experience spectateur reste un
phénomène élusif qui n’apparâıt pas totalement capturé par les études de terrain.

Pour clarifier la notion d’experience spectateur, nous identifions ses composants potentiels
dans la littérature. De là, nous proposons et évaluons un premier modèle de la familiarité qu’un
observateur peut avoir avec un instrument numérique. Nous complétons cette contribution
théorique avec une revue des techniques d’augmentation de l’expérience spectateur (SEATs)
et les structurons dans une taxonomie.

Dans une série d’experimentations, nous comparons ensuite l’impact des SEATs sur l’expé-
rience des spectateurs. Afin de permettre l’étude de ce phénomène relativement ambigu, nous
le décomposons en composants subjectifs et objectifs plus facilement adressables dans nos
protocoles. En particulier, nous soulignons le rôle central de l’agentivité attribuée qui est
l’évaluation par une observatrice du niveau de contrôle d’une personne en train d’executer une
action. Avec cette approche méthodologique, nous évaluons l’efficacité de deux SEATs: les
explications d’avant concert et les ”augmentations visuelles”, technique qui consiste à diffuser
en temps réel les représentations graphiques des interactions du musicien et les mécanismes de
son instrument. Nous démontrons l’impact positif des augmentations visuelles sur l’expérience
subjective des spectateurs ainsi que sur leur confiance dans la contribution des musiciens.
Dans une étude complémentaire, nous apportons des détails sur les contrastes entre experts
et novices, en particulier en termes de compréhension subjective et nous démontrons l’impact
du niveau de détails des augmentations visuelles sur l’expérience des spectateurs.

Ce travail propose également des lignes directrices et des outils pour les développements
futurs. Ainsi, nous présentons PEANUT, un pipeline conceptuel pour l’augmentation des
performances musicales. Structuré en modules, le pipeline inclut l’acquisition de signaux
électrophysiologiques et subjectifs des spectateurs ainsi que l’extraction d’informations des
interactions musicales. Les données sont ensuite intégrées dans des objet nommés corre-
spondances dont la fonction est de reproduire les modèles internes des spectateurs. Nous
enrichissons ce concept d’une étude préliminaire dans laquelle nous démontrons la pertinence
de la force de préhension comme marqueur objectif de l’agentivité attribuée.

Enfin, nous adhérons aux recommandations Open Science et déposons publiquement l’en-
semble de nos données anonymisées ainsi que les outils et les analyses statistiques qui ont mené
à nos conclusions. Dans la même idée de transparence et de reproductibilité, nous portons une
attention particulière aux traitements statistiques en y incluant des méthodes bayésiennes qui
nous permettent de proposer des interprétations plus fiables et plus étayées.

II



This thesis is dedicated to Julie and our son Marcello and to my grandmother who gave me
the love of books and knowledge.





Acknowledgements

This work would not have been possible without the crucial help of many people:

I would like to thank Pr. Myriam Desainte-Catherine and Pr. Marcelo Wanderley for
having reviewed this work and for their precious recommendations. I also do thank Dr. Stuart
Reeves who accepted to examine the thesis defense in remote conditions.

I feel really grateful to my supervisor Laurent Grisoni and my master Head Professor Yvonne
Delevoye-Turrell who took the challenge to welcome an ”atypical profile” student. Thank you
very much Yvonne for the chance you gave me and the trust you have placed in me and
thank you Laurent for your inspirational vision of science and for making this multidisciplinary
adventure a reality.

For nearly five years, I received daily support from Florent Berthaut, my co-supervisor.
Thank you very much Florent for your help, your constant support and all the discussions we
had. I am looking forward to our next collaborations (which have already started) !

My sincere appreciation goes to Janick Naveteur who taught me, among many things, to
love methodology, statistical analyses and punctuation.

During these last 6 years, I had the full support of my family even though I could not visit
them so often. I really thank you all for that, my parents, my sister, my brother and all the
Capra family (and related!).

I would like to thank everybody at the doctoral school Science for engineers (SPI) and in
particular Thi Nguyen and Malika Debuysschère.

Along the way, I had the chance to cross passionate and compassionate persons, Fabien
Torre, Bérangère Stassin, Laurent Sparrow, Antoine Deplancke, Clémence Roger, S lawek Sta-
worko and Daniel Lewkowicz. Thank you guys for your support and the inspiration you gave
me by doing your job the way you do.

As temporary assistant professor at Lille University, I often received support from colleagues.
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Natalie, Ahmed, Anne-Sophie and Peggy.

Thanks to the IrDive team for their support during the TOSCADE and WICE sessions:
Yann Coello, Alain Fargue, Marion Vincent, Laurence Delbarre, Diane Togbe and Mohamed
Ladrouz. Thank you Mathieu Giraud for your piano.

IV



A musical thank you to Olivier for his great help on the grip force project.
Thanks to my Master mates, Juliette, Anthony, Florian, and Augusto José Mendes Tomaca-
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Every act of perception, is to

some degree an act of creation.

G.M. Edelman

Introduction

Music is one of the most intense connections between our internal universe and the external

world. When you think about it, it is fascinating how simple air vibrations can have a so direct

yet so complex influence on us. A few notes of music are enough to elicit deep emotions,

bring back memories to consciousness, invite to meditation or emphasize motivation and even

improve stamina.

When the music is played live, the experience we feel is even more vivid as we face the

music being created before our eyes and ears and as we share it with others in audience. One

of the main goals of this work is to understand what makes the experience of live music so

special.

Context: Intimate relation with music

In a few preliminary considerations, we would like to briefly present historical and cognitive

insights that can be useful to introduce our work on the experience of spectators of electronic

music performances.

Music is sound and movement

Until recently in the history, live performances were the only configuration we had to enjoy

music. For millenaries, before recording and broadcasting technologies, musicians and listeners

had to share a relative immediate vicinity. More generally, our relation to sound is not only au-

ditory. From the singing of birds, or even the wind in the trees, to the first human vocalisations

(-550 000) or the very first music instrument (-40 000), a flute made in a bone, the perception

of auditory signals is almost systematically associated with a physical origin and a location that

we can see, touch or smell. And when the causal process of a sound can not be established,

magical explanations may arise like the presence of a ghost due to a human-voice-like sound

of the wind blowing in a creaky corridor.

1



With the advent of technology, we started to get used to the fact that a sound may not have

a visible or physical origin. A conversation over the phone is an example of distanciation of the

link between auditory signals and usually associated modalities like the fact of seeing, smelling

or touching someone when speaking with them. Yet, the feeling of being with the person we

speak to over the phone still exists, even if the caller is not physically present. In this case, the

experience we share is more about the link we have with our inner representation of the person

rather than the physical person herself. With this simple example, we want to illustrate that

the contribution of technology is not only the reduction of physical constraints of the world,

it is also a mediation between the external environment and the inner representations we built

of it.

Inner experience and deep mechanisms

In many aspects, music is as much an inner experience as a perceptive experience. This

very special relationship we entertain with music could find its origin in the same deepest

mechanisms that support our interaction with the world.

From a neuroscience perspective, watching someone playing music triggers a large variety

of processes. Among them are the ones supporting our ability to integrate information coming

from different modalities (hearing and sight for instance). These mechanisms, already effective

at birth, are the basis upon which complex abilities are built much later like speaking or walking.

Another determinant asset is our propensity to unconsciously simulate the actions made

by others as we watch them. It is supported by a wide spread network of neurons identified as

”mirror neurons” that have the distinctive functionality to get activated both when we realise

an action and when we observe the action performed by someone else, like a mirror would,

hence the name.

By founding our interpretation of the world on the integration of multiple modalities and the

unconscious simulation of others’ actions, evolution made us very adaptive to our environment,

capable of high level social interactions, and as a lucky side effect, particularly equipped to

play and enjoy music.

Later in this work (1.3.3), we will see how these insights from cognitive neurosciences

will help us study the experience of spectators. In particular, we will analyse the importance

of these mechanisms in our ability to evaluate the level of control musicians have over their

instruments.

2



Digital musical instruments

A revolution occurred in music with the appearance of Digital Musical Instruments (DMIs).

For the first time in the history of music, artists were not constrained any more to physically

produce the sound. Along with the progressive inclusion of computers on stage, DMIs offer

artists the opportunity to express their creativity with almost limitless expression modalities.

We will discuss in more details on the possibilities provided by digital instruments in section

1.2 but here we would like to introduce important questions of this work.

As we will explore it, cultural and cognitive foundations support the deep connections

between music, gestures and experience. So what would be the impact of instruments that

disconnect the sound from the gestures ? If a musician can still have a multimodal interaction

with the instrument, by seeing it, touching it, hearing it, or even building it, what would be

the consequences of the restrictive perception a spectator has of these interactions ? To what

extent would the experience of spectators be altered by a confusion in the relationship of

gesture and sound production ?

In this work, we address the question of the experience of spectators of digital in-

teractions with a multidisciplinary approach. By considering the cognitive aspects of

our relationship to music and the possibilities of real time technologies, we propose to

clarify the notion of spectator experience and to evaluate the techniques that improve

this experience, particularly through the mediation of visual representations of musical

interactions.
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Challenges

Methodological challenge: live from the lab

The experiments presented in this thesis address the experience of spectators of music per-

formances and were mostly conducted in lab. The approach of a subjective phenomena like

concert experience outside of its ecological environment may seem counterproductive. Actu-

ally, it allows for the production of knowledge that would be impossible to gather or identify

with a field approach. In this work, we often discuss the contributions and the limitations of

”in the lab” versus ”in the wild” approaches (especially in Chapter 4). We conclude to the

indeniable complementarity of the two approaches, especially in the study of human behavior

and we advocate for the spread of mixed-methods in HCI.

Statistical challenge: the Bayesian approach in HCI & Open Science

At several moments in the production of this thesis, we had to question our approach of

statistical analyses to propose more robust and reliable interpretations of our data. After

extensive reading and trainings, the Bayesian approach appeared to be just what we were

looking for. The works of Kay et al. [120] and Wagenmakers et al. [203] (and the forum

at https://forum.cogsci.nl ) were critically helpful to assimilate the Bayesian fundations and

provide concrete advice to apply them on the analyses of our precious data. To provide the

evidence required by diverse readers, we accompanied the Bayesian analyses with frequentist

statistics and their famous (rather than well known) p-values. Still, our interpretations were

most of the time based on the evidence quantification offered by the bayesian framework.

Considering the moderate sample size of our experimentations (around 20), we found the

approach particularly convenient and sound.

Quite naturally, we extended the cumulative uncertainty paradigm that imbues the Bayesian

approach by joining the Open Science movement. Thus, all the data of the research presented

in this document are available at: https://o0c.eu/0TH/

”So what ?” challenge: Multidisciplinarity in the real world

During the thesis (2016-2020), we received a lot of enthusiastic comments about multidis-

ciplinarity, about the relevance of the openness to other fields and the sustainability of the

approach compared to intellectual dead ends that too restrictive paradigms may lead to. Yet,

4
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we also received consistent warnings on potential publishing issues. Members of a community

could face difficulties to evaluate a multidisciplinary work that de facto embeds contents that

are not strictly relevant for their expertise. The challenge was real. So we are pleased to have

experienced the openness of the HCI community where our protocols and statistic analyses

more common in Cognitive Sciences than in Computer Science were well received and appre-

ciated. We hope that this work can be seen as another illustration that HCI offers a breeding

ground to multidisciplinarity and proves the relevance and sustainability of the approach.
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Thesis structure and contributions overview

Chapter 1 presents the theoretical framework of the thesis. After a brief review of the neu-

rosciences of music, we propose a historical evolution of Digital Musical Instruments (DMIs),

detail the cognitive concepts we use throughout the document and expose the previous con-

tributions in the understanding and the improvement of the experience of spectators of per-

formances with DMIs.

In chapter 2, we propose a model of the familiarity spectators have with an instrument.

We confront this model through an online study and underline the central role of Attributed

Agency (the spectator’s evaluation of the musician’s level of control) in spectator experience.

In chapter 3 we present a taxonomy of Spectator Experience Augmentation Techniques

(SEATs). This formal description of the various contributions in the literature is meant to help

the analysis of existing techniques and the creation of novel ones.

The contribution of this chapter was published in the proceedings of NIME 2020 and

obtained the Best Poster award. [39]

In Chapter 4, we present and apply a methodology to compare the impact of two augmen-

tation techniques on spectator experience: pre-concert explanations and visual augmentations.

To this matter, we developed a controlled protocol based on subjective and objective tasks.

The results reveal the efficiency of visual augmentations on the global experience and its subjec-

tive components. Specifically, when the performances are displayed with visual augmentations,

participants evaluate a greater musician’s contribution compared to the one of autonomous

processes. This study also provides methodological insights such as the relevance of Bayesian

statistical analyses in HCI and the complementarity of ’in the lab’ approaches with the common

field studies paradigms.

In a second part, we refine the insights on visual augmentations by focusing on two factors:

levels of detail (LODs) of visual augmentations, that are the amount and the type of visual

information displayed during the performance and the expertise spectators have in digital

musical instruments and electronic music in general. With this study, we expose refinements on

LODs and their impact on spectator experience. We also reveal surprising differences between

expert and novice spectators. The former do out perform the latter but only in subjective

reports, not in objective tasks. We discuss these contrasts with the idea that expertise here

would rather be the confidence observers have in their inner representations of the musical
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interactions rather than an objective ability to extract components from their perception.

The contribution of this chapter related to the protocol of evaluation of spectator expe-

rience augmentation techniques was published in the proceedings of DIS 2020 [37].

The contribution of this chapter related to the study of levels of detail and expertise was

published in the proceedings of NIME 2020 [38] and has been selected for an extended

version in the MIT Computer Music Journal.
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In Chapter 5, we extend the studies of spectator experience augmentation techniques

(SEATs) and present a conceptual pipeline that augments music performances by integrating

data from the musician, from the audience and from dynamic databases of augmentations.

To link these heterogeneous data, we introduce the concept of Correspondences, that are

dynamic objects designed to imitate the spectators internal models. They allow for the identi-

fication of perceptive lacks of a particular aspect of the interaction and the selection of optimal

augmentations.

In a second part, we address the need of continuous measurements during a live experience.

Indeed, in ecological contexts, measuring the experience through questionnaires or comprehen-

sion tasks can be rather intrusive and artificialise the experience we try to capture. In this

preliminary study, we reproduce with musical interactions the grip force pattern observed in

previous studies. We also discuss the relevance of grip force as marker of Attributed Agency.

The contribution of this chapter related to the pipeline was published in the proceedings

of CMMR 2017. [36]
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Music is a language that doesn’t speak in par-

ticular words. It speaks in emotions, and if it’s

in the bones, it’s in the bones.

Keith Richards

1
Background and contribution positioning

Before focusing on music performances which are at the centre of this work, we introduce a few

preliminary considerations that will help to understand our approach and highlight the origin

of the deep relation humans have to music. Most of the concepts and theories presented in

this introductory matters are intense research fields by their own and will not be fully deployed.

Instead, we would like the reader to envision this multidisciplinary introduction as a guided

selection of key concepts and frameworks on which our research is grounded.
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1.1 Special relationship with music

Music is one of the most intense connection between our internal universe and the exter-

nal world. A few notes of music are enough to elicit deep emotions [116, 115, 202], bring

back memories to consciousness [106, 105, 8] , invite to meditation or conversely emphasize

motivation [119] and even improve stamina [118, 117].

The questions related to our specific relation with music is not a recent matter, from ancient

Greeks [30] to recent studies involving high technological equipments [137], researchers and

artists continue to explore the subtle mechanisms that make music able to transport our bodies

and our souls.

So why do we love music so much ? What makes Nietzsche claim that ”Without

music, life would be a mistake.” or Einstein confessing ”I see my life in terms of music.” ?

Among the tremendous amount of answers to these questions, a first indication could be

that music simply gives us pleasure. With various intensities music is proven to activate neural

areas associated with reward and pleasure [215, 24, 65]. As established by Menon et al. [144],

our brain is particularly well structured to make ”listening to music one of the most rewarding

and pleasurable human experiences”. From a physical perspective, the pleasure can be bodily

experienced with the chill (”‘shivers-down-the-spine”) that music can trigger with the enjoyable

characteristic to be highly reproducible [186]. Furthermore, as our mood is evolving in our

everyday life, music is also satisfying because it can accompany us [197] and suit our personal

mood-related goal and permit comfort ourself or relieve stress [176, 187].

Emotions A major reason to our attachment to music may also lie in the emotional states

it can induce or express [218, 116, 79, 114]. Even if the studies of the emotions elicited by

music are beyond the scope of this work, it is worth noting that they represent hundreds of

publications [64] in large variety of fields like psychology, philosophy, medicine or musicology.

This still effervescent domain of research is a good indicator of the richness and the diversity

of the links between music and emotions.

The physical aspect of the emotion-music relation needs also to be considered to under-

stand the approach we developed work. As every emotions, emotions induced by the music

is constituted of a physical component (well illustrated by the ”heat maps” of Nummenmaa

- Fig. 1.1). Furthermore, in their widely recognized theoretical framework of the emotional
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responses to music, Juslin and Västfjäll [116] expose mechanisms through which music induce

emotions. Among them, three mechanisms the brain stem reflexes, the visual imagery and

musical expectancy , underline the physicality of music that will become more concrete when

we will present the importance of gestures and their perception in live music.

Source: Nummenmaa et al. (2014)

Figure 1.1: Emotions are not only a cognitive state. Bodily topography of emotions. Regions
whose activation increased (warm colors) or decreased (cool colors) when feeling each emotion.
The colorbar indicates the t-statistic range. (From [155])
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We saw that one of the reasons we love music is that it triggers emotional as well as

physical arousal. When you think about it, it is fascinating how simple air vibrations can have

a so direct yet so complex influence on us. This wide range of presence is reflected by the

music cerebral processing that is as physical as neural.

Music is sound and sound is vibrations, most of the time air vibrations, even if it can also

diffuse in water or solids like concrete or human bones. Thus listening to music is primarily

processing these air vibrations to neural impulses. As depicted on figure 1.2 - left, the inner ear

transduces air vibrations into neural signals. From there, the vibratory nature of the sound is

transformed in biological signal (transduction). Those signals reach the auditory cortex through

the cochlea nerve, the brain stem and the thalamus via chemical and electrical messages. While

encoded for neural transport, the information will regain a physical form to process some of

the physical parameters of the sounds. Indeed, before leaving the auditory cortex and get

addressed by higher level processes (memory, semantic interpretation, ...) the information

is decoded in areas physically organised to fit its frequency distribution. This characteristic

of a structure spatially organised in correspondence with the tonality is called tonotopy. As

illustrated on figure 1.2 - right, the primary auditory cortex follows a tonotopic structure

meaning that its subareas triggered by given frequencies are spatially arranged following a

gradient of frequencies. Even in the brain, the processing of music has physical deployments.

1.1.1 Good vibrations in the brain

To conclude this brief cerebral overview, let us consider a last aspect of music cerebral pro-

cessing. Notice on figure 1.2 - left how the auditory cortex projects to multiple brain areas.

Among them we find the motor cortex that is involved in sensory-motor feedback circuits [215]

and in the control of movements. This path or wiring is a biological evidence of a theory

that wants to reunite the body and the mind processes in the constitution of the experience

of music: the embodied music.

1.1.2 Music, body and mind

Music instinctively invites to movement. As illustrated by the dozens of web videos of new born

babies reacting to music by moving, sometimes even from their mother’s womb, or doing their

first dance steps when they can barely walk and much later in clubs where people meet to dance

in synchrony. Conversely, moving in rhythm with music, tapping with the foot or mimicking
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Source: (left) Zatorre, R. (2005). Music, the food of neuroscience?. Nature, 434(7031),
312-315. (right) Chittka L, Brockmann

Figure 1.2: Music is as physical as abstract in the brain. Left: From Zatorre 2005. Illustration
of the processing of audio signals coming from an instrument. Right: Lateral view of the brain.
The primary auditory cortex (in blue) contains a topographic map of the cochlear frequency
spectrum (shown in kilohertz).

an instrument can give the impression of a clearer perception of the music. In other words,

everything happens as if the perception of music and music performing were part of a same

mechanism. In this subsection, we briefly present a selection of cognitive science, musicology,

psychology and neuroscience contributions that constitute the theoretical framework on which

we will base the methodology developed in this document.

1.1.2.1 Embodiment

The idea that we interact with the world via mechanisms that fusion perception and action is

at the core of philosophical and cognitive frameworks known as embodiment and enactivism

[198, 81, 183](Review [85]). They are attempts to explain how we experience the world and

find their roots in philosophical works from Immanuel Kant [184] and Maurice Merleau-Ponty

[145]. The main idea that the reader should keep in mind is that they posit that consciousness

(and by extension conscious perception) can not be differentiate from the body. Even high

level processes are rooted in sensorimotor mechanisms ”that link the agent to the world in

which she is embedded” [179]. The ecological psychology perspective also integrates such

ideas by pointing the influence of learned knowledges, current mood and past experiences in

our perception of the environment [87]. So embodiment and enactivism are opposed to the

cognitivism vision that considers consciousness more like a computer and perception of the
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world as uniquely materialized by mental representations disconnected from the physicality of

the body.

The embodiment theory is also supported by cumulative evidence from the neuroscience

field. We saw in the previous subsection that the processing of the sound in the brain can

include areas associated with movement. The related neurons, called mirror neurons, are part

of a much wider network that is thought to sustain our relation to the world [170, 82] and how

we interact with it. The mirror neurons have the characteristic of being activated during the

execution of an action and the observation of an action [83, 92]. The activation of the same

neurons in action and perception leads the theory to hold that we do not need to explicitly

think to understand the intentions, the actions, or the emotions of another person as our brain

unconsciously and automatically make us feel them as we feel our own intentions, actions or

emotions [156]. From a musical perspective, the embodiment theory is a solid framework that

led researchers to propose a dedicated application to an embodied music theory.

1.1.2.2 Embodied music

As mentioned by Schiavio et al [179], the first examples of the application of embodiment

to the music cognition are proposed at the beginning of the 00’s [96, 217]. Contrary to the

cognitivist music psychology for which the brain is like a computer with specialized software

for music processing [138], in the embodied music framework, the role of both the performer

and the listener’s body is crucial in the musical understanding [166, 167, 132]. For Godøy, our

relation to music is a ”fusion” of auditory and motor sensations [89]. In fact, neuroscience data

[148, 216] support the idea that the musical meaning is decoded via action based processes

and unconscious motor simulations. These flows of information that constitute the relationship

between our body and the external world are called internal models [212].

The concept of internal models is at the core of the embodied music cognition. Indeed, they

are the hypothesized mechanisms by which listening to music is sufficient to infer not only the

gestures and the interaction that produced the sound but also the intentions and the feelings

conveyed by the music [89, 131]. The models operate the gestures-sound association through

primary goal-based actions knowledge [180] and get enriched by accumulating experiences.

We precise that our research is based on an embodied approach closer to the one pro-

posed by Leman [132] rather than the enactivist one defended by Matyia and Schiavio [141].

The two paradigms share the main statement that ”experience of the world is a result of
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mutual interaction between the sensorimotor capacities of the organism and its environment”

[71]. But Leman includes in his embodied music theory the role of purely representational

processes and maintains a theoretical space for a mediation between the mind and the body.

In this work, we will support the idea of a mixed contribution of ”pure” enactive/embodied

and ”pure” cerebral interpretations of the multiple aspects (physical, emotional, intentional)

conveyed by music. The debates are still lively about these questions. They strongly rely on

multidisciplinary approaches as contributions from neurosciences, philosophy and even Human

Computer Interaction and Artificial intelligence constantly interoperate.

1.1.2.3 Multimodality and crossmodality

A last aspect of the experience of music stands in its multimodal nature. Indeed, we saw that

music experience is an embodied phenomenon that relies on action-perception mechanisms.

These mechanisms are not only based on the single auditory modality but integrate visual cues,

motion sensations (proprioception), effort and dynamic [90]. Besides their individual integra-

tion, the multiple sensory inputs can also interfere, meaning that the information perceived by

a modality can be modulated by the information of an other modality [142]. This crossmodal-

ity in the musical experience is a crucial characteristic to encompass when studying spectator

experience [200]. In section 1.3.1.2 we will address in more details the consequences of the

multimodal integration of cues that constitutes the experience of music, especially considering

the musical gestures.

1.1.3 Conclusion: harmony for mind and body

In this section, we saw that our relation to music is a wide multidisciplinary question that

can not be reduced to a simple translation of vibrations into neuronal signals. Whether as a

performer or as a spectator, mind and body form a system from which the experience of music

emerges. Still, musicians keep an extra very special link with the music as they can create it,

thanks to music instruments. In fact, the coupled system they create with their instrument can

be seen as a cognitive system by itself [45] where the instrument is embodied in the musicians

[98] as an extension of their body [154]. In the next section, we address the questions of digital

musical instruments and focus on the technological evolution that gave musicians the ability

to design and customize their instruments.
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1.2 Digital Musical Instruments

From the very first known music instrument (-40 000), a flute made in a bone [47], to the

inclusion of artificial intelligence [70], musical instruments always followed or contributed to

(see Fig. 1.13 - page 35) the technological evolution of humanity. As pointed by Cadoz

[32], the tight link between music and technology do raise questions at a moment in history

where technology is undergoing dramatic change. From this, the emergence of digital musical

instruments (or DMIs) is a major step in the history of music.

In this section, we propose a historical overview of DMIs, a description of their main mech-

anisms and the interaction they enable. An exhaustive presentation of DMIs and the related

works of the prolific community they aggregate could not stand in one PhD ! Here, we will

highlight how technological events, like the generation of sound from electricity modulations

and the generalisation of personal computers, led to an explosion of the creative possibilities

offered to artists and started to raise new questions for the audience.

1.2.1 History

1.2.1.1 Origins of DMIs

Electronic musical instruments appeared at the end of the XIXth century or the beginning of the

XXth century. The Telharmonium is considered as one of the first. Invented by Thaddeus Cahill

in 1897, the instrument looks like a massive organ and generates sound from electromagnetic

interaction between ”tonewheels” and coils. As depicted in Figure 1.3 - Left, a tonewheel is

a metal disc with bumps or cogs that concentrate the electromagnetic field when they pass

in front of the coil. Doing so the electrons inside the coil are ”pushed” (cog) and gradually

”retained” (inter cog). The signal forms a sinusoidal wave which frequency depends on the

rotation speed of the wheel or its size. That wave is transported along wires, amplified and

diffused as a tone through speakers (which were telephone speakers at this time). From this

basic electromagnetic phenomenon and the multiplication of the tonewheels, the instrument

was polyphonic and the musician could play with the harmonics.

Sadly for Cahill, the Telharmonium did not meet a large popularity, probably because a full

room was required to contain the giant tonewheels. Yet, the technique of producing sound by

generating electrical sinusoidal waves and adding them on top of each other, called additive

synthesis, was a huge contribution with countless successors.
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Source: Public Domain

Source: Public Domain

Figure 1.3: Telharmonium (1897) and the Theremin (1920) were the first instruments to allow
the generation sound with contactless processes. Left - Detail of a tonewheel used in the
Telharmonium. Right - Alexandra Stepanoff playing the theremin on NBC Radio, 1930

1.2.1.2 Synthesizers

Following the Telharmonium, the Theremin (1920), invented by the Russian inventor Lev

Sergeyevich (known as Leon Theremin), introduced the first musical instrument with con-

tactless interaction. Here again, tones with any pitch can be generated. The modulations

are controlled by the movement of the musician’s hands around the two metal antennas of

the instrument 1.3. These two instruments are the ancestors of the synthesizers which will

generalize the sound synthesis with the addition, the subtraction and frequency manipulation

of electrical signals. Their popularity rapidly grows with iconic devices like the ones invented

by Robert Moog ( Moog Synthesizer - mid 60’s, minimoog - 1970) or the Yamaha DX7 (John

Chowning, 1983) which was the first actual digital instrument. Digital synthesizers pushed

further the synthesis by replacing the analog processing, meaning directly supported by volt-

age control using knobs, buttons and faders, by a digital signal processing where the synthesis

is numerically-controlled. With components like Digital Signal Processors (DSP) which can

transform any real-world signal like voice, audio or motion into manipulable numeric data,

Digital Musical Instruments look more and more like computers.
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1.2.1.3 Samplers and sequencers

Somewhere between synthesizers and computers, samplers are a central piece of many elec-

tronic music setups. Their main functionality is to play on demand pre-recorded audio sources.

Historically, audio sampling was introduced in the 1940’s by the French composer Pierre Scha-

effer. In his experimental creation Musique Concrète, Schaeffer manipulated pre-recorded

magnetic tapes to create sound collages and play them in loop. In 1963, the Mellontron is

one of the first instruments to propose audio sampling, still via magnetic audio tapes that are

read accordingly to the key pressed by the musician. Since the first digital sampler Musys

released by EMS in 1969, the miniaturisation and the parallel evolution of computer music,

audio sampling was integrated in synthesizers like in the Fairlight CMI instruments, delivered

as a stand-alone device like in the Akai S1000 and virtualized in computer software. The

ability to trigger pre-record sounds but also to modify their pitch, volume, to reverse them or

play them in loop made the sampler a staple of modern music exploited by a wide diversity of

artists from all styles and generations.

18



Sequencers Often associated with a sampler, a sequencer can record, edit and play back

music. The information stored and manipulated by a sequencer is not an audio signal but

a control data like MIDI or OSC (See Section 1.2.1.6). Whether as software or a dedicated

device, the sequencer typically sends commands to a sampler that plays associated sounds.

This functionality is particularly used to play autonomous sequences of music. Thus, a musician

can launch a sequence, like a drum loop, and overdub it with a bass melody for instance.

1.2.1.4 Computer music

Computer music really spread with the democratisation of personal computers in the 1990’s.

Before this date, the initiatives of making music with computers are mostly supported by

mathematics researchers and the machines could require a full room to get set up. (Fig 1.4).

Named after the CSIRAC, the CSIR Mark 1 (Trevor Pearcey and Maston Beard - late 40’s) is

the first computer that played music in public. Forty years later, with the miniaturisation of

the machines and the democratisation of their price, computers became a very popular tool

for artists. Especially in music where a large part of the music creation, recording, production

and diffusion will progressively be manageable with a single computer and a few accessories.

With the evolution of computers and digital storage, the level of customisation goes one step

higher. Musicians can play and configure multiple tracks at the same time, in real time, thanks

to the rich user interfaces of optimized dedicated software.

From the 1980’s, software evolved in parallel of the hardware (computers) and also became

more affordable, ergonomic and responsive. In the 2000’s, a computer equipped with software

solutions like Avid Pro Tools, Apple Logic, Ableton Live or Propellerhead Reason, can reproduce

any analog, often expensive, device allowing musicians to produce professional music contents

from their home studio. Finally, in the late 2010’s, the miniaturisation gives smartphones and

tablets the capacity to compute heavy sound processing and run full Digital Audio Workstations

(DAWs). With these late innovations taking a large advantage of the high rate internet

connections, musicians can record and produce music wherever they want.

1.2.1.5 Instruments programmers

Besides music production or edition software, a range of programming languages progressively

offered musicians the ability to control their music with great refinements. In 1957, Max

Matthews officially gave the first computer music performance with his Music I that produced
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Source: John O’Neill - GFDL

Figure 1.4: CSIRAC (1949) is one of the first stored program computer. Despite rumours,
this model was not proven to be able to play music. One of its evolution, the CSIR Mark 1 is
officially the first computer that played music (early 1950’s)

a 17 seconds preprogrammed melody, running on an IBM 704. Twelve years later, a real

time control was possible with the music synthesis system GROOVE. With the development of

personal computing at the end of the 1980’s, MAX proposes a graphical interface to control

external hardware devices before becoming MAX MSP and real time sound synthesis. In 1997,

MAX’s creator Miller Puckette launched an open-source initiative: Pure Data. Both MAX

MSP and Pure Data (PD) propose modules to create complex graphs of processes with a

high level of customisation. As depicted in Figure 1.5, a PD patch is a collection of connected

modules. These modules are boxes with inputs and outputs (Fig. 1.5 - red circle) connected by

graphical wires. Some modules can process sound while others convey discreet or continuous

flow of data. With physical devices, the costly operation of connecting the frequency output

of a sinusoidal generator to the volume input of a digital sampler becomes a trivial mouse

click work with such programming languages. Thus, with a relatively small time investment,

a computer running a pure data patch becomes a full custom musical instrument. The mouse

or the keyboard of the computer are not the only way to play the computer. The control can

be devoted to an external device, like a digital piano keyboard or a drum pad, thanks to the

ability of DMIs to exchange information.

1.2.1.6 Communications protocols

Musical Instrument Digital Interface (MIDI) As the sound and parameter modulations

became electrical, and then digital musical instruments allowed for the exchange of information

between each other. At the beginning of the 1980’s, companies looked for a standardisation
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Source: John O’Neill - GFDL

Figure 1.5: A Pure Data patch. Programming languages allow musician for refined, complex
and custom sound processing.

of the communication protocols between instruments. After common discussions between

manufacturers, the initiative finally came up with the Musical Instrument Digital Interface or

MIDI in 1982. With the MIDI protocol, devices from different manufacturers can communicate,

synchronize or control each other. For instance, a common MIDI setup is a digital piano

keyboard linked to an audio sampler. When a key is pressed on the keyboard, the reference

of the key, along with various information like the velocity the key was pushed, is transmitted

via the MIDI protocol to the audio sampler that triggers the corresponding sound. We will

describe in more details the relation between controllers and sound processes in section 1.2.2.2.

Open Sound Control (OSC) In 1997, Adrian Freed and Matt Wright [72] present Open

Sound Control, a protocol inspired by the network communication protocols allowing for better

performances than MIDI in terms of time resolution and flexibility of usage. In particular, it

offers higher data resolutions (32 or 64 bits) to manipulate more complex control streams.

Additionally OSC allows musicians to route the messages between instruments over common

communication networks, including the Internet, and also to send messages to multiple recip-

ients/modules/instruments.

1.2.1.7 Instruments makers

During the late 1990’s, in parallel of the generalisation of personal computers in the creative

industry, the creation, the modification or the hacking of electronic devices becomes popular.
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Source: Bela - Youtube video

Figure 1.6: A Bela electronic board in a basic setup (from the Bela Platform Youtube channel) -
In the 2010’s customisable electronic boards became more and more popular making musicians
able to build their instrument from the ground up.

Companies like Arduino or Bela now propose microcontrollers mounted on electronic boards,

diverse ready-to-mount sensors or compatible components. All these electronic equipments are

designed to be modular and easily integrable in already existing music setups. Conveniently,

their microcontroller can be configured with program sent from a personal computer. Coupled

with a large amount of tutorials and documentation, affordable prices and enlarged customisa-

tion possibilities, these equipments allow musicians to literally compose their instrument and

to link with refined dynamic relations a large variety of sensors to any audio signal and effects.

1.2.1.8 NIME

The success of a workshop at the ACM Conference on Human Factors in Computing Systems

(CHI) in 2001 inaugurated an new international conference dedicated to research on new tech-

nologies in musical expression and artistic performances: New Interfaces for Musical Expression

(NIME). Each year, in a place around the world, artists and researchers expose their work on

the instruments of the future and discuss diverse issues in terms of design of controllers and

interfaces, real-time gestural control or perceptual and cognitive issues related to instruments

control ([110] for a complete review of fifteen years of NIME 2002-2017).

Finally, by intertwining artistic performances and scientific contributions, by supporting
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discussions between fields like design, HCI, computer, or musicology, research in musical ex-

pressiveness is a symbiosis, ”where artists could not have been so far with computers without

the help of researchers and engineers, and vice versa, from a scientific point of view, we could

not have reached such complex questionings about our field if artists were not involved in the

process1.[61].

At the time this thesis was written, we just attended our first NIME edition and finally

exchanged (even if remotely because of COVID19) with this welcoming and very enthusiastic

community !

1.2.1.9 Conclusion

In this overview of the evolution of musical instruments, we saw that artists are offered con-

tinuously growing creative possibilities. In fact, musicians can play pre-recorded materials or

generate new ones in real time, customize and build their own instruments or augment existing

ones to eventually shape refined custom interactions and deploy their artistic envision. In the

next subsection, we will describe the main technical aspects of the DMIs that allow for such a

diversity of usage.

1.2.2 Structure and functioning

Digital musical instruments (DMIs) allow musicians to generate, trigger and control any sound

in an infinite amount of ways. Tanaka an instrument is not utilitarian, and is not designed for

a single well-defined application To achieve this diversity of usage, a multidisciplinary approach

involving fields like engineering, arts and design [143], is required in the creation of DMIs. The

global structure of DMIs can be summarized in three main components: control interface,

mappings and audio processes.

1.2.2.1 Control interface

The control interface is the part of the DMI that is used by the performer to control the

instrument (See Fig. 1.7). It is commonly composed of physical sensors like buttons and

faders or graphical elements of touch interfaces. Actually, any sensor can take part in the

1”On peut réellement parler de symbiose parce que on ne peut pas imaginer que les artistes aient pu aller
aussi loin qu’ils ne sont arrivés aujourd’hui avec l’ordinateur sans l’aide des chercheurs et des ingénieurs et vice
versa du point de vue scientifique, on est arrivé à un degré de complexité des questions qui se posent dans le
domaine qui n’aurait jamais pu être atteint si les artistes n’avaient pas participé.”
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Figure 1.7: Conceptual framework for New Interface for Musical Expression and model of a
digital musical instrument (Adapted from [209, 13])

control of the instrument as long as its output remains interpretable by the system: wearable

sensors for control by motion, computer vision, electrophysiological signals ([147]) ... The

integration of several sources, called sensor fusion,[134] is also possible and even encouraged

as it is shown to improve the experience of the performer by giving the DMI a better accuracy

(compensation of sensor deprivation and individual spatial and temporal limitations) [143].

While in an acoustic instrument the interface is ”inherently bound up with the sound

source” [100], in DMIs the interface is mostly independent from the sound source. This

separation allows for a wide range of control gestures and opens artistic and scientific questions

about the approach to adopt in the design of controllers [49, 205, 147, 33]. For a DMI to

be responsive, the interface should rely on sophisticated engineering solutions and refined

sensors but it not so often a respected practice [143]. Beyond engineering, phenomenological

approaches propose to maintain an inherent integrality by adopting a logical approach of

control interface with physical sensing of an object [103]. At the end of the day, ”Musical

interface construction proceeds as more art than science, and possibly this is the only ways

that it can be done” as pointed by Cook [49] showing that the question of control interfaces
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in DMIs remains vivid and at the heart of the The International Conference on New Interfaces

for Musical Expression (NIME) community [110].

Gestures As control interfaces are a mean for gestures to become sound, the question of

musician’s gestures is central in music research (e.g. in [205, 201]). Before covering the

embodied approach of gestures in the next section, here we would like to briefly review the

contributions that aim at clarifying and describing musical gestures.

The notion of a gesture can be too broad and difficult to define [201], especially because

gestures are multifunctional and have multiple significations, from physical to metaphorical.

Furthermore, some gestural inputs that can be used to interact with sound processes are not

necessarily movements, like data obtained from image or sound analysis [147] or physiological

data (EEG ...). In music research, these various interpretations are often different facets of rich

musical experiences [111]. By clearly leaving the ambition to cover the whole multidisciplinary

question of gestures, Jensenius et al. nevertheless extracted [111] four functional categories

of gestures from a large review of contributions [86, 31, 60, 205] : sound-producing gestures,

communicative gestures, sound-facilitating gestures and sound-accompanying gestures. From

there, sound-producing gestures can be further subdivided in excitation gestures (like a violin

bow stroke) and modulation gestures (like a pitch bend)[33], furthermore, according to Bowers

and Hellström [25], non sound-producing gestures with DMIs preserve an expressive latitude

that can join the Jensenius’s definition of communicative gestures.

Finally, DMIs are not necessarily direct sources of sound by themselves [205], so contrary

to acoustic instruments, the term ”sound-producing” gestures should be temperate with DMIs

as the gestures are not sufficient to generate sound. Furthermore, we will see below that a

musical gesture with DMI is not constrained to a particular relation with sound production.

1.2.2.2 Mappings: bringing an interface to life

The mapping is the correspondence between the performer’s gestures, acquired by the control

interface, and the musical parameters. Unlike acoustic instruments where the mapping is

imposed by the instrument structure, in DMIs, the mapping must be defined and this is an

extremely difficult task [100]. Mapping is ”bringing an interface to life.” for Hunt et al. [100],

and it can ”make or break” interesting user interfaces according to Malloch & Wanderley [140].

In this work, we will focus on two important characteristics that mappings provide to a DMI,
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knob fader button

Figure 1.8: A MIDI controller with knobs, faders and button. Through the mapping, each
sensor is configurable to alter one or multiple parameters of one or multiple audio processes.

the definition of its identity and the complexity of the interaction it allows.

Defining an instrument The role of the mapping in a DMI is crucial because it defines the

user interaction [140] and thus, it has been the object of voluminous research (eg:[99, 204, 5]).

Choi considers the mapping as a primary factor to distinguish a DMI from an other [44]. From

a performer as well as a spectator perspective, the character of a instrument is changed by

altering the mapping, even when keeping constant the interface and the sound [100]. In

this work, we will use mapping alteration to create multiple instruments from a same control

interface.

Various complexity Depending on the number of inputs and outputs, a mapping can be

more or less complex, more or less expressive. Kirk and Hunt [99] propose to classify mappings

as follows:

• one-to-one : in this straight forward mapping, a single control is connected to the alteration

of a single sound parameter. In DMI, this mapping is the one of a fader controlling the

frequency parameter of the sound synthesis.(Fig 1.9 - top left)

• many-to-one : in this mapping, also called convergent mapping [175], multiple inputs are

required to control one parameter, like the control of the volume when playing violin. In this

case, the bow-speed, the bow pressure and the finger positions all contribute in the control

one that single parameter. (Fig 1.9 - top right)

• one-to-many : in this mapping, also called divergent mapping [175], one control can alter

multiple parameters of the sound synthesis, like the bow of violin can influence many aspects
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of the sound synthesis such as volume or timber. (Fig 1.9 - bottom left)

• many-to-many : in addition to the mappings listed by Kirk and Hunt, the many-to-many

mapping is a complex configuration where multiple controllers are required to influence many

parameters of the sound synthesis in non one-to-one relations. (Fig 1.9 - bottom right)
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PITCH
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ONE-
TO-ONE

PITCH

ONE-
TO-MANY

PITCH

VOLUME
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SENSOR

SENSOR

SENSOR

SENSOR

Figure 1.9: Four types of mappings (adapted from [99]). Non one-to-one mappings are more
engaging and expressive but too complex mappings can make sound expressions exceedingly
difficult to reproduce, especially in public conditions [149].

Thus, depending on their configuration, mappings can be obvious like the ones mimicking

acoustic instruments eg: a percussive gesture on a pad that triggers a percussive sound. They

can also be more complex and even invisible eg: a single arm gesture could trigger multiple

sounds at the same time with a pitch modulation proportional to the amplitude of the arm

when the gesture is performed from top to bottom and with a vibrato modulation when

the arm gesture in performed from bottom to top. This example illustrates the complexity

mappings can develop and how they can appear too complex and become exceedingly difficult

to reproduce in public conditions [149].

1.2.2.3 Audio processes

An audio process is the audio part of a DMI. Contrary to most acoustic instruments, DMIs

can manage multiple audio processes that are combined to form the instrument audio output.

From the two preceding notions, interface and mappings, we can draw a typical use of DMIs:

Via the interface, musicians control audio processes accordingly to their related mapping. We

will describe common configurations in which audio processes can be fully dependent from the

performer interaction but can also have a static or dynamic autonomous behaviour.
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Fully dependent An audio process can be fully dependent of the performer. In that case, an

input (e.g. : a gesture) is necessary to hear something from the instrument like most acoustic

instruments would behave.

Static autonomous An audio process can follow a predefined score without any access of

the control interface apart from the initial start signal and the stop signal. This is a typical

functionality of the demo songs proposed by digital pianos. Musicians can still play over the

playback but they can not modify it.

Dynamic autonomous This type of audio process is particularly useful for interactive perfor-

mances with a variable ratio of autonomous processes and direct interaction of the musician.

The process can follow a predefined score but can also be modified by the control interface.

For instance, the performer can control the speed of the playback, alter the pitch or even

reverse the audio process via the control interface.

An other common practice is to record a sequence of interactions during the performance

and play it back automatically in loop, a technique called live-looping. In that case, the

behaviour of the audio process is mixed. Starting fully dependent during the recording of

the sequence, it goes autonomous when the musician triggers the playback of the recorded

sequence. The performer is thus freed of playing that particular sequence and can then freely

control the sequence parameters (dynamic autonomous) or focus on any other audio process

(static autonomous).
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Source: Cook, P. (2017). 2001: Principles for Designing Computer Music Controllers.
In A NIME Reader (pp. 1-13). Springer, Cham.

Figure 1.10: From [49], the Java Mug (top right), is an illustration of the opportunity for
musicians to build instruments that fit their internal models. Here, the mug is the author’s
favourite object. The gap with spectators’ internal model can lower their experience during
performances using such instruments.

1.2.3 Conclusion: the instrument artists have in mind

We saw that digital musical instruments concentrate many technological improvements of this

past hundred years. They offer artists countless configurations thanks to their modular design

that removes the physical constraints of sound production and allows for custom and complex

mappings. These characteristics are invitations to experimental development often leading

DMIs performers to be their own instrument makers and testers. From this all, the shift with

acoustical instruments is radical.

Adapting DMIs to the performers’ needs, creativity and projects will continue to raise

challenges for the NIME community in terms of expressiveness, reliability, reproducibility or

durability. Still, in 2020, musicians never had such a profusion of ways to shape their instru-

ments to fit what they have in mind, to fit their internal embodied models [62] that animate

their relation to the world (see Section 1.1.2.2. These opportunities to shape the instrument

to tightly fit one’s internal model can be illustrated by the JavaMug (Fig. 1.10), an instrument

made out of the author’s favourite object.

What does this relation to their instrument become in public performance ? How can artists

deploy the artistic envision, the skills or the sensitivity they intended in the customisation of
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their instrument ? Is it possible for the audience to fully appreciate the performance like they

would with acoustic instruments ?

These questions are central to this work, in the next part, we will address them and for

dedicated research and methodologies in favour of the spectator experience.
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1.3 The challenges of spectator experience

We saw in previous sections that the experience of music is supported by cerebral and bodily

mechanisms also called internal models. We also described how the evolution of digital musical

instruments freed the musicians from many physical constraints in production and manipulation

of sound and allow them to build and customize instruments. With such conditions, DMIs

become extension of musicians’ internal models.

Paradoxically, the creative opportunities and the proximity artists have with their instrument

can distance spectators with perceptive difficulties during live performances. Indeed, we will

see that, contrary to acoustic instruments, interactions with DMIs do not provide enough cues

to observers for them to build reliable internal models and share the richness of the musicians’

envision. In this section, we will present how, in response to these new challenges, research

emerged and contributed to define, measure and improve spectator experience.

c© Kmeron

Figure 1.11: From a spectator point of view, musical gestures with Digital Musical Instruments
can be difficult to perceive and to decode compared to acoustic instruments.
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1.3.1 Performances with DMIs: gaps in perception for the spectators

1.3.1.1 Live concerts

The live performance is a very particular moment for musicians. For many of them, this is the

primary goal of playing music. Many conditions are in place to make the event special. The

stage, whether a virtually delimited space in the street or a large stage with dedicated lights, is

a decorum that intensifies the moment. When playing, the sound is louder than in rehearsals

and the music produced is more condensed in intentions, freed from unintentional and casual

playing that happens at home.

For centuries, the live performance was actually the unique way to share music. Today,

listening to music has never been so easy. Technology in 2020 offers the best listening con-

ditions for a relatively reasonable investment, video techniques allow for immersive contents

with extreme realistic renderings and social media let people talk to artists without almost

any barrier. Still, people love to go to concerts, whatever the conditions, in small bars or in

stadiums, sometimes whatever the distance or the cost.

So why are concerts more popular than ever ? Maybe because a live performance is a show.

In the literal sense, performing is showing, exposing, embodying an artistic envision. So, despite

some rare exceptions, a concert is a dedicated moment for sharing. Sharing emotions, pleasure,

aesthetic, all in a delimited time, in a delimited space. The intensity and the ephemerality

of the moment are probably strong factors to explain why people attend concerts. Why does

music feels more intense, deeper and live in these conditions ?

1.3.1.2 Performances with acoustic instruments: an embodied and crossmodal ex-

perience

One of the reasons of the deeper experience of music in live concerts lies in the embodied and

crossmodal nature of music experience (See section 1.1). For spectators, seeing a musician

playing an acoustic instrument increases the experience of music because the complementary

perception of music and musicians participates in the construction of a richer internal model

of the interactions occurring on stage (See section 1.1.2.2). The virtuosity of musicians is

particularly visible even for naive spectators with no expertise. Indeed, with the explicit and

known affordances [88] of acoustic instruments, the audience can most of the time ”delineate

action relationship between the instrument and the musician” [201].
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c© Kmeron

Figure 1.12: Gestures with Digital Musical Instruments do not always allow spectators to
perceive the intention or the contribution of the performer.

Multiple work confirmed that musical gestures with acoustic instruments are not only

instrument control contingencies (e.g. : [204]). They are expressive, communicate aspects of

the musicians internal states [59], and may be different during concert than when executed

alone [60]. For Visi et al., they act as bridge between bodily movement and meaning formation

[201]. Thus beyond movement, musical gestures encode intentions, goals, and expressions

[130] and their undemanding decoding is handled by internal models.

Besides, the consistency between a gesture and the related sound (like the gesture ampli-

tude and volume for instance) fits well with the the predictions listeners can build upon their

internal models of the interaction. Additionally, musicians’ body movements are known to

convey emotions by themselves [57] and so enrich the experience with non exclusively audio

contents. Finally, audiovisual perception also improves the ability to extract musical properties

like the level of tension or creativity [200, 125].
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1.3.1.3 Performance with DMIs: gaps in perception for the spectators

From a spectator point of view, many aspects of performances with acoustic instruments fade

out in performances with digital musical instruments (DMIs).

Unusual instruments Thanks to the modularity and the relatively low cost of components,

musicians can easily build or configure their own DMIs to fit their creative projects. Conse-

quently, concerts are often performed with devices that exist nowhere else and so the audience

can not build any expertise from earlier expositions or identified repertoires. Besides, contrary

to acoustic instruments for which physical affordances can inform about their potential sound

or functioning, no clear interpretation of the musical possibilities can be inferred from the

appearance of DMIs.

Control dislocation Because DMIs separate sound from control, a characteristic called con-

trol dislocation [147], a series of difficulties arise for the spectators. The control interface of

the instrument is not always visible (hidden sensors, tiny controllers, see section 1.2.2.1 for

details) and their activation with gestures is not always obvious. A gesture can activate a

sensor at a moment and later the same gesture can lead to nothing if the controller is tempo-

rally deactivated, when the gesture was not sensed for instance. Furthermore, the confusion is

reinforced as the same controller can be used to control different sound parameters throughout

the same performance and multiple artists can use the same interface in different instruments.

Complex mappings Additionally, depending on the mapping, the physicality of a gesture

is not necessarily reflected in the audio output, if not reversed. Thus, a greater amplitude in

the gestures will not always trigger a greater modulation in the sound or a single percussive

gesture can be used to slowly and continuously modulate multiple sound parameters at the

same time (divergent mapping, see 1.2.2.2). Consequently, contrary to acoustic instruments,

no clear outcome expectation or explicit link is accessible for spectators when subtle gestures

can trigger large audio consequences and vice versa.

New sounds Additionally to these control and gestural aspects, sound synthesis is an other

shift with acoustic instruments. As pointed by Tanaka [194], sound synthesis is powerful pre-

cisely because it creates new and never heard sounds and so can disorient the listener. In a

context where gestures can be connected to complex mappings, or transformed via live algo-
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rithms, autonomous processes like audio loops or sequenced partitions (see section 1.2.2.3) can

also contribute to the disorientation of the audience especially in the context of multiprocesses

instruments, e.g. multiple tracks or loops.

A historical example of an instrument which control interface (a keyboard) has not a

direct physical link with sound process (here, strings).

Figure 1.13: Viola organista - Leonardo da Vinci - XVIth century
Television report from AFP: Aleksandra Gawlik - organ teacher from Krakow - when
attending a concert of a Viola organista, the mixed instrument between violin and
keyboard invented by Leornado Da Vinci : ” I’m truly amazed about what I heard,
this is a total surprise to see a keyboard and hear a string instrument ! It’s
really an incredible impression, this is very surprising ! This is the first time I’ve heard
such an instrument, it’s fantastic !”

Virtuous innovations Not all technological innovations in DMIs are to be associated with

disturbances for the audience experience. For instance, the improvement of haptic feedback

for control interfaces is a great musician experience improvement that has no negative conse-

quences for spectators. Some innovations can also benefit both performers and observers like

devices that can dynamically and explicitly adapt their shape to fit richer interactions [171].

We will see next that the negative counterparts of performances with DMIs led researchers

to adopt new approaches and put the spectator experience at a central place.

1.3.1.4 Interest, trust and understanding

The generalisation of interactive technologies in public contexts progressively invited the HCI

community to preserve a space in the effervescence of its contributions in design of interactions

for the question of the spectators of these interactions. Many contexts like museums, theatres

and concert hall are concerned by public interactions and so the interest was not limited to

the musical context (e.g.: [164, 165]). In his final talk at the Stockholm Music Performance
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Symposium 2002, Andrew Schloss exhorted the community to consider the understanding of

the audience of DMIs music performances. In particular, he claimed that the disappearing of

cause-and-effect relationship between the performer and the instrument makes the performance

seems like magic. ”Magic is great; too much magic is fatal” [181]. One of the key idea of this

call is to stress the term performance when proposing a musical performance. To do so, artists

should give enough visual cues to spectators for them to regain interest in the performance,

understand the interaction and trust that the musicians are actually performing.

1.3.1.5 Adopting the spectators’ perspective

To our knowledge, one of the first initiatives to classify digital interaction with an approach

exclusively based on the spectator experience is the one proposed by Reeves et al. [164].

The motivation of the approach can be resumed in one sentence: ”How should a spectator

experience a performer’s interaction with a computer ? ” .

Thus, Reeves et al. choose to name what is happening on stage with respect to the

spectator perception. To do so, they [164] regroup the gestures with no distinctions under the

term manipulations and the outcomes under the term effects. Then, they propose to describe

the events on stage ”in term of the extent to which spectators experience a performer’s

manipulation versus their effects”. So, as depicted on Fig. 1.14, manipulations and effects

can be hidden, partially hidden, transformed, revealed or amplified. With these markers set,

four design strategies are exposed:

• Secretive : manipulations and effects tend to be hidden

• Expressive : manipulations and effects are revealed

• Magical : manipulations are hidden and effects revealed

• Suspenseful : manipulations are visible ”but effects only get revealed when the spectator

gets to take their turn as a performer”

Even if originally grounded in the larger context of observers of digital interaction, like in

demos, museums or theatre performances, this taxonomy fits well with DMIs performances.

The variety of interaction encompassed by the taxonomy can include musical interaction and

their impact on spectator experience. For instance, secretive interactions are described as the

ones that get revealed when the spectator eventually becomes a performer. The interpretation

could be correlated with the expertise of spectators as they could perceive a manipulation or an

effect as revealed (the interaction is not secretive any more) where novices would still evaluate
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Figure 1.14: The correspondence between manipulations and effects lead to four approaches
to designing the spectator’s view: secretive, suspenseful, magical, expressive. (From [164])

interaction components as hidden, or partially hidden.

1.3.1.6 Synthesis

In this subsection, we saw that great creative opportunities for artists can also decrease the

experience of spectators. Consequently, we saw that HCI and NIME communities decided to

adopt new research approaches in favour of audience experience. In the next subsection, we

will review the research initiative that contribute to the definition of spectator experience.

1.3.2 Defining the experience of spectators

The experience of spectators of music performances is an elusive phenomenon whose explo-

ration and definition elicited numerous contributions from HCI, NIME, musicology or philosoph-

ical communities. In this subsection, we propose a selective review of potential components of

spectator experience and their related research in a music context. Most of the time, the con-

tributions do not ambition a definitive description of the music experience but rather focus on

identified emotional or cognitive states which intensity or valence is modulated by performance

components.

1.3.2.1 Definitions and components of spectator experience

Tension A definition of musical experience emerged in the works of psychologists and philoso-

phers about the notion of tension [146, 125, 158]. As pointed by Vines et al. [199] : ”Musical

experience may be characterized as an ebb and flow of tension that gives rise to emotional

responses”. Here again, the link between musical experience and emotion 2is underlined and

includes physiological markers like cardiac or respiratory functions [125]. Many contributions
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(e.g. : [146]) associate the quite intuitive notion of tension with structural features of music

like pitch range or harmonic relations but also with implicit expectations based on a musical

genre experience as mentioned in [199]. Eventually, from the different definitions in literature,

tension is not exactly a synonym but rather a proxy for the musical experience. Furthermore,

the notion is more related to musical content and structure rather than a full experience of

attending a music performance.

Flow Another component of the experience, or rather, a specific state of the experience is

the flow. This immersive cognitive and emotional state is accessible to performance spectators

[55] even if it is far more documented with cases of active behaviour like playing music, doing

sport or working. As defined by Csikszentmihalyi [55], the flow is ” The state in which people

are so intensely involved in an activity that nothing else seems to matter; the experience itself

is so enjoyable that people will do it even at great cost, for the sheer sake of doing it” [54].

This broad definition is greatly detailed in the work of Csikszentmihalyi and is completed with

many others (e.g. : [67, 168], ”being in the zone” [121]). Nevertheless, a consensus seems to

merge on the conditions to access the flow and includes:

• the perception of situations in which challenges and skills are equal [67]

• thoughts that are led by a purpose and meaning [54]

• little distinction between oneself and the environment [54]

Prediction / Expectation When listening to music or attending a concert, being able to

predict what is going to happen is a source of pleasure and satisfaction [101]. The expectation

is also a characteristic that can induce the flow state described above [54] and plays a central

role in creating musical tension and relaxation [125]. Importantly, the expectancy mechanisms

are part of our capacity to feel and decode music (see Section 1.1.2.2) and, as pointed by

Zatorre et al. [216] are crucial in setting up temporal and melodic expectancies at the heart of

musical understanding [101]. Included in these mechanisms, our internal models help predict

the outcome of musical interactions. A rewarding process is triggered when predictions are

confirmed but can be frustrating when they are not [177].

2The study of the relation of music and emotions is a wide subject which detailed review is out of the scope
of this document. We very briefly explored the related literature in section 1.1 and we saw how much music
and emotions are tightly intertwined. In section 1.3.4, we will see that measurement tools used in the study
of emotions, especially electrophysiological equipments, also contribute in the study of music experience (e.g.:
[66]). Besides, emotional responses are of course not specific to music and can be elicited by an infinity of
external like internal circumstances. We invite the interested reader to read the two main reviews on music and
emotions [115, 146].
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Communication design issues Another approach in the definition of the spectator expe-

rience is proposed by transposing a user-system communication approach in a performer-

spectators perspective. In [9], Victoria Bellotti pointed five design issues – attention, address,

action, alignment, accident – in the communication between a user and a system. Fyans et al.

[75] proposed to transpose them to the perspective of observers of digital interactions, leading

to five challenges for spectator experience:

• Address: How does the spectator know that the performer is directing communication to

the system ?

• Attention: How does the spectator know that the system is responding to the performer?

• Action: How does the spectator think the user controls the system?

• Alignment: How does the spectator know that the system is doing the right thing?

• Accident: How does the spectator know when the performer (or the system) has made a

mistake?

In the studies developed in this work, we will in our turn adapt the Bellotti-Fyans challenges

to evaluate how spectator experience can be improved.

Error perception The possibility of an error is an element of risk that makes the performance

more engaging [17] and a failure on stage can also be aesthetic [97]. Thus, the ability to

perceive errors, to distinguish a desired outcome and its original gesture from a mistake, can

contribute to the experience of spectators and their judgement of skills and thus virtuosity

[78].

From the transposition of communicative design issues between a user and a system to a

spectator’s perspective (see above), Fyans et al. [76] choose to focus first on the impact of error

understanding on the experience – i.e. the Accident item. They propose a model describing

how different sources of error judgement impact the understanding of error by spectators of

DMI performances. Their model is built upon the parallel analysis of the internal models of

both performers and spectators.

We will see in this work that this modelling approach allows for interesting methodological

advantages like the capacity to isolate and assess a potential component of the model.

Liveness In his book ”Liveness: Performance in a mediatized culture”[2], Philip Auslander

defines the liveness as ”the kind of performance in which the performers and the audience are

both physically and temporally co-present to one another”. He completes the description of
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Fyans, A. C., Gurevich, M., & Stapleton, P. (2009, June). Where Did It All
Go Wrong? A Model of Error From the Spectator’s Perspective. In NIME
(pp. 171-172).

Figure 1.15: The possibility of failure makes performance more engaging. To better understand
its role, Fyans et al. [76] proposed a model of spectator understanding of error including the
internal model of spectators.

liveness with the authenticity [2] that is the character of a performance exposing perceptible

effort and skills in opposition with pre-recorded contents. However the definition is diversely

interpreted in the literature. As pointed by Bin [17], in HCI, a more common meaning of

liveness is related to the perception of causality that we specifically address next.

1.3.2.2 Audience experience: instruments characteristics

From these descriptors of music experience, characteristics of instruments that support the

spectator experience can be extracted. Most of the time obvious in acoustic instruments,

these characteristics are challenges for the NIME community. Here is a brief review of the

main definitions reported in the literature.

Expressivity Although there is no unique definition in the literature, expressivity can be

described as the capacity of an instrument when performed to convey emotions and meaning.

We saw (see 1.3.1.2) that performances with acoustic instruments, because of musician’s

gestures, are particularly rich in terms of meaning and emotions. When performances include

DMIs, when gestures can be less meaningful, expressivity becomes a crucial design issue for

performers and spectators (See the interesting work of Astrid Bin for review [17]).
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Familiarity Familiarity is the feeling of knowing about the behaviour and the possibilities of

an instrument. It can be associated with other concepts in the literature as mental model [75]

or as an extension of transparency [69] (see below). It is a rather large component of the

experience as it provides the spectator the ability to detect the intentions and the virtuosity of

the performance of the musicians as well as their errors.

Transparency Defined by Fels et al. [69], transparency is the resulting property of an

instrument which behaviour is well understood by musicians and audience. Specifically, it ”

provides an indication of the psychophysiological distance, in the minds of the player and the

audience, between the input and output of a device mapping ” [69]. Transparency can be

associated to the notion of intimacy developed by Richard Moore [150], even if first intended

with a musician perspective, as they both underline the importance of a clear relation between

the musical possibilities of an instrument and the physiological capabilities of the performer.

Thus, in a spectator perspective, transparency is the ability of an instrument to make the

audience understand which control produces which sound.

Instrumentality The notion of instrumentality encompasses the criteria that makes an device

an instrument. For Cadoz, instrumentality is present ” when, for any object (real or simulated)

and for any interaction (in real world, in virtual world or in mixed ones), the variables that

represent or characterize them are mechanical (for example forces and displacements), and

the processes respect energy consistency.” [31]. With the evolution of instruments and the

disappearing of physical constraints, the notion evolved to include criteria also based on the

audience perception like liveness, expressiveness, causality or expectation [53]. As the interest

for audience perception increases, instrumentality becomes a criterion for the evaluation of

novel digital instruments [3, 27].
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1.3.2.3 Synthesis

We saw that spectator experience can be accessed through many notions. Sometimes their

meaning overlap or describe the same phenomenon but either from the instrument perspective

or the spectator’s. For instance familiarity and transparency encompass the same attributes

(intention, causality) the former as a perceptive characteristic (in familiarity), the latter as a

design capability (in transparency). Besides, it is not clear if the listed notions are descriptors

or components of spectator experience as some notions are constitutive of others like the role

of familiarity in the emergence of flow.

Still, among the multiple definitions and components, the notion of causality seems central.

As it is embedded, with variable saliency, in all the notions presented above, we address it

specifically in the following section.

1.3.3 Attributed agency and perceived causality

We saw in the last subsection that the literature of spectator experience is diverse and in-

cludes multiple potential components. Among them, the perception of causality between the

musician’s gestures and the sound is recurrent.

In this subsection, we will see that perception of causality is a prerequisite of higher-level

considerations. We will show how the notion of apparent causality can be explored through

the cognitive framework of agency and its transposition to attributed agency. From there,

we will draw methodological opportunities to explore this component of the experience in a

controlled environment.

1.3.3.1 A prerequisite for higher-level perception

A common point to the previously reported definitions and models of spectator experience

is the role of the perception of the causal link between the behaviour of musicians and the

sound. In fact, many contributions (e.g.: [15, 68, 26]) expose it as a prerequisite to identified

components of the experience like evaluation of skills, or perception of errors.

For Jon Croft [53] perceived causality between performer’s action and the sound is a key

component of liveness in DMI performances. This proposition is supported by research under-

lining that gesture-sound causality is required to understand the functioning of an instrument,

experience liveness, and access higher-level evaluative concepts like skills or virtuosity [15, 68].
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Liveness through perceived causality In order to improve the liveness of DMI perfor-

mances, Berthaut et al.[13] ground the design of visual interactive content (i.e. visual aug-

mentation) on a better understanding of the underlying mechanisms of perception of causality

by spectators. The authors propose an approach based on the apparent mental causation, a

model of agency developed by Wegner et al [208]. These notions are primary related to actions

we conduct ourselves but Berthaut et al. propose to transpose these self-centred notions to

the perception of actions pursued by others. Before focusing back on Berthaut’s approach, we

need to present a few details about the concept of agency.

1.3.3.2 Agency

Agency, or sense of agency, or self-agency, is our ability to consider ourselves as authors of

our own actions. It refers to the link between execution of voluntary movements and the

modifications they apply to our environment [95]. Disturbed in patients of mental afflictions

like schizophrenia, it is a common ability for healthy people and stands as a basic and constant

underpinning of our interaction with the world [193].

The central position of agency in our relation to the environment triggers a lot of debates

and research contributions from diverse fields like philosophy (e.g.: [81, 95]), cognitive neu-

rosciences (e.g.: [94, 58]), or psychiatry in the understanding of schizophrenia (e.g.: [109]).

Depending the context and the framework, we will see that it can be address as a judgment

or as a feeling.

Two main models From this dense literature, two main models of agency emerge: the

comparator model [73, 22] claims that agency emerges thanks the same predictive mechanisms

that support voluntary action. The second model is the one developed from Wegner’s work.

We will call it postdictive model [193] as it explains agency emergence from post-hoc inferences

(see Apparent mental causation above).

The models are often challenged on their efficiency to explain behavioural or pathological

observations. Their detailed presentation is out of the scope of this document, instead, we

propose to introduce to the reader their main characteristics on which we will later ground our

research approach.

Predictive - Comparator model The main claim of the comparator model [212, 73, 21] is

that feeling of agency emerges from the correlation between a desired goal and sensory-motor
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Figure 1.16: The neurocognitive mechanisms underlying the sense of agency [193]. There is
a consensus on the role of comparator 3 in the emergence of sense of agency. Note that the
computational model presented here, with feedback control loops and feed-forward comparators
(1,2,3) is the one used to explain the underlying mechanisms of voluntary action.(adapted from
[193, 211, 22, 73])

feedbacks. The comparisons between predicted states and actual outcomes are conducted

thanks to efference copies that are copies of the motor commands sent to motor control.

These copies allow for parallel motor simulations to predict sensory consequences and correct

the action toward the desired goal thanks to continuous comparisons (feed forward). In the

comparator model, sense of agency arises when the sensory feedback of the ongoing action are

close to these motor simulations (Fig 1.16).

To sum up, in the comparator model, agency is a feeling of being in control based on

predictive mechanisms.

Postdictive model Introduced by Wegner & Weathley [208], apparent mental causation

is a theoretical proposition to explain our feeling of free will, of voluntary control, when we

act in the world. The main idea proposed by the authors is that we infer causality between

an action and its consequence from the a posteriori integration of three criteria – priority,

consistency, exclusivity – introduced like so: ”When a thought appears in consciousness just

before an action (priority), is consistent with the action (consistency) and is not accompanied

by conspicuous alternative causes of the action (exclusivity), we experience conscious will and

ascribe authorship to ourselves for the action” [208]

This definition exposes apparent mental causation as a post-hoc inference rather than an
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immediate feeling emerging from sensory-motor cues. It also highlights the fact that this

integration is a prerequisite to our ability to ascribe the authorship of our actions to ourselves,

i.e. sense of agency. In other words, the natural feeling of being in control during an action

could be a mind trick [207] as agency occurs after the action.

To sum up, in the postdictive model [208], agency is rather a judgement based on a

posteriori criteria: priority, consistency, exclusivity.

1.3.3.3 Attributed agency: a first insight

In previous sections, we saw that the perception of causality is crucial in many definitions of

spectator experience. We also explored the work of Wegner et al [208] who link apparent

mental causality to the wider phenomenon of agency, that is our ability to consider ourselves

as actors of our actions. Besides, we saw that Wegner et al. consider agency as a postdictive

mechanism where agency is correlated to the action-posterior consideration of three distinct

criteria.

From these theoretical background, Berthaut et al. [15] propose to link the liveness of

DMI performances to the causality between performer’s actions and sound as perceived by the

audience. Furthermore, the authors propose to study this perceived causality by transposing

Wegner’s self-agency model (I am author of my actions) to the ability to ascribe authorship

to someone else’s actions, a phenomenon authors call attributed agency.

With the transposition to the observer perspective, the criteria for the emergence of agency

(see section 1.3.3.2 ) become criteria for the emergence of Attributed Agency [15]:

• Priority : originally refers to the necessity of a prior conscious thought before the action. For

spectators, the temporal order can be associated to the temporal nature of the performer’s

actions in relation to the musical outcome.

• Consistency : originally refers to the necessity of the action to be consistent with the prior

thought. For spectators, this can be transposed to the consistency between actions and the

musical outcome. Unintuitive mappings can link gestures of any kind to any type of sound

parameters with changes in scale, linearity or continuity.

• Exclusivity : originally refers to the number of possible causes of an action. For spectators,

exclusivity issues can appear with multiprocess DMIs where the origin of sound is not clear

between autonomous processes and musician’s gestures. Complex mappings can also impact

exclusivity when multiple changes occur in the sound while multiple gestures are being made.
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We will see in section 1.3.5 that the transposition of Wegner’s theory to the perception of

causality by spectators can offer interesting design guidelines for the creation of techniques to

improve the experience of spectators.

1.3.3.4 Attributed agency: the need for richer models

The seminal work of Berthaut et al.[15] on Attributed Agency is a distinctive step in the com-

prehension of spectator experience. As Attributed Agency is the perception of the authorship

of someone else’s actions, this a particularly relevant approach to explore the relation of an ob-

server and a performer. Besides, the criteria from which Attributed Agency emerges constitute

methodological items that can conveniently be addressed individually.

However, we saw that the postdictive model of agency from which Berthaut et al. conceive

Attributed Agency is not the only relevant model of agency and it may too strictly exclude

predictive aspects supported by the comparator model. Another argument in favour of the

relevancy of the comparator model as precursor of Attributed Agency is that it shares mecha-

nisms with the internal models of interaction we often refer to in this document. Additionally,

taken individually, these two models are not sufficient to fully explain agency and more recent

research expose the relevancy of a weighted composition of them [193].

Besides, for the sake of clarity we exposed only two models of agency but the subject

elicit many interesting approaches that could complement the consequent definition of At-

tributed Agency. For instance, personal background beliefs could influence our judgement of

someone else’s agency ([80, 189] reported in [193]). If one personally knows the performer

and knows that they always practices their performances with a great contribution and few

autonomous processes, one can perceive a clear Attributed Agency during a performance even

if live conditions and obscure mappings disturb the perception of causality.

In this work, Attributed Agency is a central theoretical ground. We will extend

the previous works with Attributed Agency and propose to enhance the underlying

components upon which previous research stand to capture richer aspects of our

capacity to associate a musical outcome to a performer’s behaviour.

1.3.4 Measuring the experience

The measurement of spectator experience is a sensitive operation as the method employed

can impact the experience we try to evaluate. Asking a participant about their experience
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during a performance can be disturbing and interrupt the moment. Conversely, questioning

a participant after the performance may elicit biased answers as the participant should live

again from their memory the experience they had long minutes ago and report a revisited

feedback. Objective non verbal measurements like electrophysiological signals are useful to

lower those biases as they can discreetly provide data while the participant is enjoying the

performance. Unfortunately, the interpretation of objective signals is not as rich and specific

as introspective reports. Indeed, the analysis should be conducted with precautions as no

marker, to our knowledge, can precisely and exclusively variate in function of the dependent

variable we target, especially with high level aspects like musical experience.

In this section we will review measurement methods and targeted components of spec-

tator experience. Most of the time, researchers base their work on introspective reports of

participants after a performance [19, 213, 11, 35] and gather fruitful knowledge. Alternative

initiatives are also presented and discussed along with the ongoing debate of ”in the wild”

versus ”in the lab” experiments.

Questionnaires and interviews Fyans et al. analysed interviews of participants after having

watched videos of performances to address the perception of skills[74], mental models, intention

and error perception [78]. Benford et al. [11] use a questionnaire and ask spectators of two

performances to rate their enjoyment and their understanding of the performance, after the

first performance and again after the second performance. The authors completed the study

with voluntary video interviews ”to capture more detailed thoughts and reactions”. Brown

et al. also use questionnaires to evaluate the perception of dual, i.e. human and machine,

agency in musical performances [27]. Attributed agency is also explored by Berthaut et al.

[15] who asked participants through a computer questionnaire their rating of the influence of

the performer’s gestures as well as their confidence in their answers.

Spectator experience can also be addressed to evaluate DMIs (e.g.: [128, 3, 213]). In [3],

Barbosa et al. use a questionnaire as an evaluation method to address the comprehension of

a DMI by the audience. The authors base their questions on the Bellotti-Fyans challenges

(see 1.3.2.1) and explore causality with questions like ”How understandable are the actions

made by the user for interacting with the system?”, effect comprehension: ”Did the system

provide enough audiovisual information for the audience to understand what is happening

between the user and it?”, mapping comprehension: ”How clear is the relationship between
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(a) A continuous response digital interface. A one
dimensional non verbal measurement device used in
the study of musical tension. (adapted from [185])

(b) Continuous rating interface - Left: two-
dimensional scale (valence - arousal) for emotional
rating – Right: one-dimensional scale for unexpect-
edness of musical events (From [66])

the user’s actions and the resulting sound?”, Intention comprehension: ”How successful was the

user to express himself using the system?”; ”Was the user’s intention well understood?”, Error

comprehension: ”Were the system’s errors perceived (e.g. technical problems and software

bugs)?”; ”Were the user’s errors noticeable?”[3].

Continuous responses We saw previously (see sub-section 1.3.2.1) that tension is a potential

component of the musical experience, preferably described as a proxy of the experience. The

tension judgement is also associated to methodological approaches that advantageously rely on

a single dimension continuous non verbal measurement thanks to a device named continuous

response digital interface (CRDI) [139]. As depicted on figure 1.17a, while listening to music,

participants are asked to move the CRDI indicator to the right to indicate when they perceive

a tension or to the left to indicate when they perceive a release. Alternatively, in [6], authors

use a linear slider from a USB MIDI controller.

Without the memory biases of post concert questionnaires and relatively little disturbing,

continuous reports during performances are a relevant compromise to measure spectator ex-

perience, they can also take the form of votes. Bin et al. [19] explore the connection between

error perception and enjoyment thanks to post performance questionnaires but also by col-

lecting data during the performance via a dedicated mobile app and a simple two-buttons

interface.
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Objective signals Alternatively to subjective reports, physiological measurement is a promis-

ing way to gather objective data about the audience experience. In [43], Chapados & Levitin

showed that tension judgement ([200]) and electrodermal activity were particularly correlated

when spectators could watch and listen to a music performance compared to unimodal condi-

tions.

Complementary measures A single electrophysiological signal is often not sufficient to

produce rich interpretations. Besides, it can be precious to accompany objective measurements

with introspective reports to clarify the interpretation of raw signals. Egermann et al. [66]

provide quantitative data to the study of the link between expectation and emotions thanks

to an extensive set of physiological, continuous and introspective measurements:

• Psychophysiological measurements:

– device: respiration belt — dependent variable: respiration

– device: photoplethysmograph — dependent variable: blood volume pulse

– device: finger electrodes — dependent variable: skin conductance

– device: electromyography sensors — dependent variable: expressive muscle activations

• Continuous subjective measurement:

– device: touch screen with a two-dimensional scale (valence - arousal) — dependent vari-

able: emotion state

– device: touch screen with a one-dimensional scale — dependent variable: unexpectedness

of musical events

• Questionnaires and interviews:

– device: clipboard questionnaire — dependent variable: familiarity with the performance

– device: paper questionnaire — dependent variable: socio-demographic characteristics,

musical training, music preferences

– device: cameras & microphones (x2) — dependent variable: behaviour

Such extensive measurements provide rich data materials with the counterpart of a pro-

portionally extensive processing and analyses (See [66] for details).

Insights from related fields Here are examples that leave the musical context but the

approaches could be exported to music performances. They also underline the relevancy

of objective measurement of spectator experience. Wang et al. [206] developed their own
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Figure 1.18: Electrophysiological measurement can inform about the spectator engagement.
Here, the galvanic skin response of a spectator watching a dance performance.(From [129])

electrodermal activity sensor to measure the level of engagement of spectator in a theatre

context. An interesting approach was developed by Latulipe et al. [129] to measure the

engagement of spectators of a dance performance. Beyond the measurement of electrodermal

activity, Latulipe et al. includes a secondary feedback of experts (choreographs) who watched

the video accompanied of the signals previously measured on participants (See Fig. 1.18).

1.3.4.1 In the wild - in the lab

In the study of audience experience, most research rely on an ”in the wild” approach [41, 10],

utilising observations, post-performance questionnaires and guided interviews of spectators. In

contrast, few ”in the lab” experiments have been conducted on audience experience. They

all rely on videos of performances to address components of the experience. In a controlled

environment, experiments from the lab allow for refined measurements with fewer distraction

for the participants.

However, data analysis methods for controlled experimentation can be considered as a

risk for misleading or overly narrow results [153]. Thus, experiments should mix objective and

subjective trials to limit the bias often met in field studies [29]. Another limitation of the ’in the

lab’ approach naturally lies in the evaluation of a live phenomena in a controlled environment.

In this context, important aspects of the experience of live music are missing, from the social

environment to the ceremonial of the concert hall. Still, these rich aspects are more grounded
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in the field of sociological studies, the interested reader is invited to read the related literature

[157, 63, 28] on the subject.

1.3.4.2 Synthesis

We saw that the measurement of spectator experience can be supported by introspective

reports, continuous measurements and objective data capture. Some components are relatively

straight forward to assess like the tension, while the measurement of others, like understanding

or expectation, induces methodological challenges. Often conducted ”in the wild”, studies can

also take place ”in the lab” in less ecological but more controlled environments for refined

measurements. In fact, it appears from this review that no unique methodology can capture

the entire reality of the experience of participants without biases and limitations. Therefore, it

seems relevant to ambition the study of spectator experience with complementary approaches,

mixing objective and subjective measurements.

1.3.5 Improving the experience

These last fifteen years, the growing interest for spectator experience led researchers and

artists to work on techniques to improve the experience of audiences of DMI performances.

Numerous initiatives include design guidelines, demos, explanations of the instruments or visual

augmentations. In this section, we will review these contributions and expose their respective

advantages and limitations.

1.3.5.1 Building a repertoire

We saw in section 1.3.2.2 that the familiarity spectators have with a DMI can positively impact

their experience. Thus, a first way to improve the experience is to increase the familiarity of

people with a particular instrument. It can be initiated by promoting the use and dissemina-

tion of the instrument and building a repertoire of compositions around it. Once a majority

of spectators have seen the instrument played by many musicians in different contexts, or

even practiced it themselves, they are aware of its potential for musical expression and of its

behaviour. Thereby, the familiarity issue does not exist any more. This kind of “natural famil-

iarity” is definitely effective but requires a large amount of time and energy to be achieved.

Moreover, this method is not compatible with the very idea behind DMIs and the exponential

creativity they embed. Whether a musician wants to evolve its instrument or let other mu-
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sicians modify it, as soon as the instrument changes, the whole process of natural familiarity

needs to start all over again.

1.3.5.2 Explanations

Spectator experience lies partially in the understanding of the operations of a DMI. Thus,

demonstrating the behaviour of the instrument can be a valuable solution. Building the famil-

iarity with a pedagogical method is a simple way to make an audience understand what is going

on on stage. Before, after and even in breaks during the performance, musicians can explain

how their instrument works. Prior hands-on demos, where the audience can actually play the

instrument, are also a good way to increase their experience during the actual performance.

However, both these methods trigger some reservations as the technical understanding of an

instrument is not necessarily linked to a better appreciation of the performance. For example,

Bin et al. [18] demonstrate that explanations before the performance do improve the under-

standing of the instruments and its mechanisms but do not increase either the appreciation or

interest. Besides these results, the audience may forget or unconsciously misreport important

details from the performance [136] and the demos may not be possible when dealing with a

large audience.

1.3.5.3 Designing approach

Another strategy to increase the experience of spectator lies in the design of the instrument

itself.

Designing for transparency The idea is to expose clear and intuitive mappings so the link

between the gestures and the sound modifications operated by these gestures are obvious for

the spectator. We saw that this fluency of perception of mappings is called “transparency” (See

1.3.2.2). Aiming for transparency from the very first steps of the design of a musical device

can lead to “easier to perceive” instruments [152]. Following that lead, an interesting way to

increase the transparency is the use of metaphors [69]. In that case, the common background

of inexperienced audience, their general knowledge, are used as a mould to grow new knowledge

about an instrument mapping. For instance, the timbre of a sound can be modified as the shape

of an associated graphical representation that is getting sculpted. However, the instruments

designed according to these specifications tend to maintain the familiarity we have with acoustic
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(a)
(b)

Figure 1.19: (a) Example of AVUI built with the toolkit proposed by Correia et al. The
interface of the instrument used by the musician is composed of audiovisual elements that
allow the audience to better understand the performance. (From [50]) – (b) Interface with
visual feedback of graphical representations of sound synthesis (organic shape) and controls
(straight lines).(From [113])

instruments and physical laws and so may require the performers to restrain their expressivity

with respect to all potential combinations of gestures, sensors, mappings and content usually

available for DMIs.

Audiovisual interfaces The restrictions of design for transparency can be lifted by audiovi-

sual interfaces. Indeed, they are designed to expose the instrument capabilities through visual

feedback and facilitate the comprehension of both musicians and audience (e.g. :[113, 50]).

For Jorda et al. [113], visual feedback enables the audience ”to watch the music and how it

is being constructed” and therefore improves the understanding of spectators in addition to

exciting elements they provide to the show through video projections. In [50], Correia et al.

propose to intricate sound and images inside a same interface called AVUI (AudioVisual User

Interface). In the sense of musicians becoming instruments makers that we saw earlier (See

Section 1.2.1.7) and 1.2.3), the contribution of Correia et al. includes a toolkit and guidelines

to implement and customise these audiovisual interfaces.

1.3.5.4 Haptic augmentation

Haptic feedback is a promising way to amplify musicians’ gestures [1, 196]. In [1], Joanne

Armitage addresses the issue of gestures in live coding. Making music exclusively by coding

through the small surface of a laptop can indeed lead to expressivity issues for spectators [181].

In response, the author developed a haptic system called ’Key’ that transduces the keystrokes

the artist trigger while coding into variable vibrations that spectators can feel by holding a
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device. Doing so, Armitage bridges a highly mediated practice with physical signals to enhance

the embodied relation of spectators with the performer. Additionally, haptic feedback can be

used in parallel of DMI performances to improve the audience comprehension (significantly at

low tempo only) [195] but it can also be used with augmented traditional instruments to push

spectator experience in unexplored crossmodalities [196].

1.3.5.5 Visual augmentations

A last strategy explored by both artists and researchers is to augment the performance with

information that complements the audience experience without modifying the performer’s in-

terface. This augmentation can be done for various goals regarding the audience experience,

such as increasing the audience enjoyment, engagement or comprehension, e.g. turning mag-

ical interfaces into expressive ones [163]. It may also take many forms that mostly aim at

providing optimised graphical representations of the ongoing interactions.

Revealing the inner mechanisms of DMIs Berthaut et al. propose [14] to extract mu-

sical interactions parameters and graphically represent them to reveal the inner mechanisms

(controllers, mappings, sound processes) of DMIs (See Fig. 1.20). The visual augmentations

are then projected or included via augmented reality setups and overlap the device so spec-

tators can keep their attention on the interaction space rather than on a deported screen.

Hence, by recreating the causal link between the performer’s gestures and the sound, visual

augmentations support an increase Attributed Agency for spectators.

Additionally, the setup also contributes to clarify the performer’s intentions and expressive-

ness by exposing the details of the interactions. From there, the augmentations also enable the

distinction between autonomous processes and actual live music production. Such a discrimi-

nation between live and pre-recorded music is crucial in the experience of live music. It provides

cues to audience that the performance is actually live and thereby comfort their interest and

their trust in the musician.

Visual augmentations for orchestra Following the seminal work of Berthaut, Perrotin et

al. [161] propose a projection of visual augmentations behind the performers of an orchestra.

The augmentations inform the audience about the role of each musician in a voice synthesis

performance by associating the performers and the parameters they control with a colour. The

information displayed can be related-to-gesture parameters (Fig. 1.21b) or related-to-sound
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Figure 1.20: With Rouages, Berthaut et al. propose graphical representations of musical
interactions parameters - Berthaut et al. (2013)

(a) Visual feedbacks of related-to-
gestures parameters of an orchestra. Per-
formers control a voice synthesis with a
stylus on a tactile surface. The trajec-
tory of each stylus is represented with the
color associated to the performer. (From
[161])

(b) Visual feedbacks of related-to-sound
parameters of an orchestra. The circu-
lar lines represent the pitch versus the
time. The avatars represent the articu-
lation control. Each colour corresponds
to a musician. (From [161])

parameters (Fig. 1.21a). As depicted on Figure 1.21b, additionally to the evolution of notes

through time, authors provide embodied cues through avatars whose expression metaphorically

indicate the articulation one should do to emit an approaching sound of the one controlled by

the musician.

Multichannel augmentations In [11], Benford et al. use visual augmentations to inform the

audience about the progression in a non-linear musical piece. The music is actually composed

of micro pre-recorded sequences triggered by the pianist and is intertwined with the poetical

narration of a journey up a mountain. Beyond the projections of visual augmentations on

stage, a mobile app, synchronized with the performance, provides didactic information to the
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audience like the previous steps taken by the artist in the journey, her current location on the

map and the potential next step. Finally, the engagement of the audience is maintained even

after the performance thanks to an online retrospective archive to review the different versions

of the performance.

1.3.5.6 Synthesis

In this section, we reviewed the contributions of artists and researchers to improve the expe-

rience of spectators of DMI performances. In particular, visual augmentations expose many

advantages as they do not constrain the artists neither in their exploitation of the technical

possibilities of DMIs, nor in the design they choose to deploy. Furthermore, by providing cues

in a modality deeply linked with experience (one neuron out of two is dedicated to visual pro-

cessing in the brain), visual augmentations have decisive potential to fill the perceptive gaps

for spectators of digital interactions.
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1.4 Our approach

1.4.1 Context of research

In this chapter, we saw that our relation to music is a deeply embodied experience, especially

in live conditions. We overviewed the evolution of digital musical instruments (DMIs) and

explored how they offer infinite creative opportunities for artists by erasing the physical con-

straints of sound production and control. However, without this link between the musician’s

gestures and music, we observed that spectators lack embodied cues and can face difficulties

in enjoying the artists’ contribution, their intention or their virtuosity.

In our review of contributions to address these issues and better understand such an elusive

phenomenon, we saw that spectator experience embeds multiple components with no clear

hierarchy of their individual influence. We found that, consequently, its measurement raises

methodological challenges that would benefit from a complementary vision between field and

lab studies.

Furthermore, we exposed augmentation techniques that both artists and researchers de-

veloped in order to improve the spectator experience. We saw that these techniques can take

many forms and rely on variable strategies to support the better accessibility and enjoyment

of audiences. Although these techniques may definitely benefit the spectators of digital per-

formances, to our knowledge, their efficiency has not been formally compared and no insights

have been provided about the components of the audience experience that they respectively

affect. Besides, a formal analysis of these techniques has not yet been conducted that would

greatly facilitate their development.

1.4.2 Contributions

To address these issues, we propose to develop a multidisciplinary approach grounded on

conjoined frameworks of HCI and cognitive sciences. Thus, in the studies described in this work,

we develop theoretical, methodological and practical aspects towards a better understanding

of spectator experience.

In complement to the main outline of the thesis, we propose to the reader an alternative

navigation in the document that can be presented in a global threefold contribution.
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1.4.2.1 Defining - theoretical contribution

To comply with its multiple facets, we believe that the definition of spectator experience

would benefit from a modelling approach. In a first study, we propose to evaluate the role

of Attributed Agency among other components in the emergence of familiarity, an important

aspect of spectator experience (chapter 2). We also propose a decomposition of spectator

experience based on subjective and objective elements which relevancy significantly appears in

the literature (chapter 4).

1.4.2.2 Measuring - methodological contribution

To contribute to the methodological challenge of measuring the spectator experience, we pro-

pose a controlled protocol that aims at evaluating the efficiency of augmentation techniques

on subjective and objective components of the experience (chapter 4). In particular, we inves-

tigate the perception of the contribution of performers (Attributed Agency) compared to the

one of autonomous processes. We then refine our protocol to take into account the partic-

ipants’ expertise and the impact of controlled levels of detail in the augmentations (chapter

4). Finally, we present a preliminary study that evaluates the relevancy of grip force as an

objective marker of Attributed Agency in the context of musical performances (chapter 5).

1.4.2.3 Improving - practical contribution

This work highlights the role of visual augmentations in the improvement of spectator experi-

ence, especially in terms of Attributed Agency. To help future research and pave the way for

better augmentations, we propose three contributions. We introduce a taxonomy of specta-

tor experience augmentation techniques (SEATs) and use it to analyse previous contributions

(chapter 3). We present visual augmentations with selectable levels of detail for a more per-

sonal experience (chapter 4). And finally, we present a conceptual pipeline that generates

personalised augmentations based on the integration of physiological signals from spectators

and interaction parameters of performers (chapter 5).
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La musique exprime ce qui ne peut être

dit et sur quoi il est impossible de rester

silencieux.

Victor Hugo

2
The role of attributed agency in familiarity

Main contributions

- Decomposition of familiarity in evaluable dimensions

- Demonstration of the importance of Attributed Agency in spectator experience

- Experimental contrasts between acoustical instruments and Digital Musical Instruments in

terms of spectator experience

The contribution of this chapter was reviewed and corrected following a rejected submis-

sion to the 12th conference on Creativity & Cognition (2019).
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2.1 Introduction

Digital Musical Instruments (DMIs) used in public performances are often customised by the

performers, if not created from scratch. As we saw in last chapter, the modularity of DMIs

offers great creative opportunities for artists to develop their own controllers, mappings our

sound processes. In the end, the DMIs they conceive are integrated in the cognitive models of

musicians so they precisely know their capabilities, mechanisms and autonomous processes.

From a spectator point of view, instruments used in DMI performances are most of the

time unknown. We noted in section 1.3.1.3 that the lack of familiarity with an instrument

can trigger difficulties for the audience to perceive the causal link between the performers’

gestures and the sound produced on stage. Therefore, without a reliable mental model of the

interactions, the experience of observers unfamiliar with the instrument is directly impacted.

In response to this issue, we observed in section 1.3 that artists and researchers proposed

solutions to improve spectator experience through the design of the instruments or dynamic

augmentations. We saw in section 1.3.4 that these research are supported by measures of spec-

tator experience and related aspects like enjoyment, error perception and Attributed Agency

that appears to have a recurrent position in the literature.

2.1.1 Measuring components rather than consequences

However, measuring such features might not be sufficient if the overall familiarity of the

audience with the interaction is not understood correctly. Indeed, the perception of expertise,

skill, error or intention of the performer can be considered as consequences of the familiarity

with a musical interaction rather than dimensions of the familiarity itself.

The more familiar we are with an instrument, with the way the sound is controlled and

produced, with the context of the performance, the better we can perceive features like errors,

skills, intention of the musician and then assess the quality of the performance. Consequently,

while they can help measure the audience experience, with which they are correlated, these

features do not provide insights on the reasons for familiarity.

We think it can be insightful to investigate the components which, when changed, have

a more direct impact on the overall familiarity, and in turn on the perception of skill, error or

intention. Furthermore, familiarity is by definition (knowing an instrument and its possibilities)

highly dependent on the spectator’s profile, including their expertise in technology and musical
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genres.

2.1.2 Benefit of controlled conditions

Additionally, existing research has focused on the study of full performances, which participants

were asked to attend or watch videos of. During these performances many factors of familiarity

may vary with no possible control of interference with each other, such as the order of gestures

performed, the mappings used, or the specifics and constraints of the musical genre. In this

uncontrolled context, it is not possible to precisely isolate the effects on spectator experience of

the different components of a performance that are the mapping, the instrument appearance

or the type of gestures. Consequently, decisions on the design of an instrument or performance

are more difficult to take.

2.2 Our approach

The work presented in this chapter aims at a better understanding of the familiarity, a key

component of the experience of spectators of DMI performances. To this end, we propose a

decomposition of Familiarity which includes Attributed Agency, Instrumentality and Expertise.

We address these components through an internet study with controlled stimuli1extracted from

a dataset of simple musical interactions (Unit Perceived Interaction - UPIs - See 2.2.2). Finally,

we extract models from the data and compare them to identify the most relevant approach.

2.2.1 Familiarity dimensions

As other high-level cognitive abilities, familiarity is not a unitary notion. It can be decomposed

into components that differ by their nature, their inner rules as well as the type of information

they convey. These diverse aspects relate to perception, expertise or attention and all con-

tribute to the constitution of a mental model of the instrument for musicians and spectators

(See section 1.1.2.2).

Taking this into account, our approach is to decompose familiarity into dimensions that

we can both evaluate and improve. Based on results in HCI, NIME, and cognitive sciences

that have explored various aspects of spectator experience (see section 1.3.2), we propose to

1All stimuli are available online. Stimuli used in the study: https://o0c.eu/0WS — Full dataset: https:

//o0c.eu/1WS
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decompose familiarity into five components: Attributed Agency, Instrumentality, Instrument

expertise, Musical culture and Musical genre expertise.

These in turn contain dimensions that can be evaluated independently:

2.2.1.1 Attributed agency

As detailed in section 1.3.3, Attributed Agency can be approached by a transposition to the

spectator perspective [15] of the apparent mental causation, e.g. the judgment of causality of

one’s action, defined by Wegner et al [208]. As the original model, Attributed Agency can be

decomposed in three dimensions:Priority, Consistency, Exclusivity

The consistency aspect is also closely related to the notion of naive physics, that is a set

of innate or common knowledge about the physical world like gravity or friction that can also

be used in digital interfaces as physical metaphors [104].

2.2.1.2 Instrumentality

Instrumentality relates to common knowledge that allows one to predict the range of sound

possibilities of a musical instrument from its appearance. It is composed of two dimensions: the

composition , i.e. shape and material, and behavior, i.e. mechanisms and degree of autonomy

from the musician’s actions.

2.2.1.3 Instrument expertise

Instrument expertise relates to the exposure the spectator has had to the instrument, from a

first-time observer to an expert player.

2.2.1.4 Musical culture

Musical culture corresponds to a basic knowledge of musical theory, that can for example be

used to represent pitch as vertical position of a graphical element, i.e. mimicking a staff.

2.2.1.5 Musical genre expertise

Musical genre expertise is composed of dimensions that correspond to the familiarity with the

specifics of a genre, such as of structure and constraints. The effect of this category is obvious

in the study by Bin et al. [18], where the same instrument played in two genres has a different

impact on familiarity.
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2.2.1.6 Decomposition of familiarity

Finally, the complete decomposition of familiarity that we propose includes the following di-

mensions:

Familiarity = AAexclusivity +AApriority +AAconsistency

+ Icomposition + Ibehavior

+Eexpertise

+Mculture

+Gstructure +Grules

(2.1)

2.2.1.7 Adaptation of the model to the experimental context

A simplified model To maintain a decent amount of questions in the survey developed to

assess this model of familiarity, we opted for a simplified version and kept three main variables:

Attributed Agency, Instrumentality and Expertise.

Decomposition of attributed agency Besides, we saw that Attributed Agency (see section

1.3.3) can theoretically be decomposed in Exclusivity, Priority and Consistency. Additionally

to the evaluation of the model of familiarity, we take the opportunity of this study to assess

this decomposition through its simplified version with Exclusivity and Consistency only.

Thus, the simplified equation is now:

Familiarity = AttributedAgency(AAexclusivity +AAconsistency)

+ Instrumentality

+Expertise

(2.2)

2.2.2 Unit Perceived Interactions

In this study of the familiarity spectators can have with a musical interaction, we want to gather

specific data to determine the weight of each of the components of the model of familiarity we

hypothesize (Equation 2.2). Because artistic expression can be extremely complex and rich,

many aspects of a performance are indistinctively in play. A controlled approach can help to
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exclude uncontrolled variable as much as possible and so provide refined results.

To this end, the stimuli we developed for this study are basic performative actions which

perceptual parameters are controlled. They take the form of videos where a single gesture

triggers a change on identified parameters of the interaction. We call these videos Unit

Perceived Interactions (UPIs).

2.2.2.1 Parameters

As indicated on table 2.1, a UPI combines eight perceptual parameters (and their modalities):

• Instrument: the instrument used in the interaction

• Point of view: the angle and the distance from which the interaction is observed (3 modal-

ities)

• Gesture: the type of gesture executed by the performer (5 mods.)

• Gesture profile: the way the controller evolves from a start to an end position (2 mods.)

• Gesture amplitude: the amplitude of a gesture (2 mods.)

• Sound parameter: the sound parameter modulated in the interaction (3 mods)

• Mapping: the mapping configured in the instrument (4 mods.)

• Intro: an audio signal played before the interaction, while the musician is standing still at

his instrument (5 mods.)

example A UPI can be for instance the video of a musician turning a knob on a midi

controller that triggers a pitch modulation seen from a side point of view. Such UPI can be

used as a stimulus alongside another one presenting the very same interaction but triggering

a modulation of timbre rather than pitch to evaluate the impact of the sound parameter. One

could also compare it with a UPI shot from a different angle to evaluate the impact of the

point of view and so on.

2.2.2.2 A first dataset of UPIs

In the preparation of this study, we built a first dataset of UPIs with 4 instruments selected to

represent a ’technological range’ from the most archetypal to the most disruptive: an acoustic

guitar, a digital piano, a MIDI controller with knobs and faders (see Fig. 1.8), a hand tracking

device for midair gestures (Leap Motion). Two takes were shot for each UPI for potential

variability needs. After a shooting session and automatic post production processing to cross
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POINT OF VIEW

FRONT As seen from front, the instrument may be partially visible

FRONT 
BOTTOM

As seen from a lower front position , the instrument may be not 
visible

SIDE As seen from a side eye view, the instrument is always visible

GESTURE

TURNING The gesture of turning a knob

SLIDING The gesture of push/pull a slider 

MIDAIR-CIRCLE The hand draws a circle over the instrument 

MIDAIR-TRANS A vertical movement of the hand

USUAL The gesture commonly associated with the instrument (only used 
with generic instruments : guitar, piano)

GESTURE PROFILE

0-1-0 The gesture starts from a minimum goes to a maximum and come 
back to the origin

0-1 The gesture starts from a minimum goes and remains to a 
maximum (pending gesture) not yet available in the dataset

GESTURE AMPLITUDE

SMALL The gesture is deployed with a small amplitude

LARGE The gesture is deployed with a large amplitude

SOUND PARAMETER

PITCH The pitch of the sound

TIMBRE The timber of the sound

USUAL The sound commonly associated with the instrument (only used 
with generic instruments : guitar, piano)

MAPPING

LINEAR The sound modulation follows the gesture

STAIRCASE A continuous gesture triggers discreet stepped modulations

REVERSED The sound modulation is reversed from the gesture

DIS2CONT A discreet gesture (e.g. a single guitar picking) triggers a 
continuous pitch modulation (as in V13)

INTRO

The intro is an audio signal played before the interaction, while the musician is 
standing still at his instrument, not interacting with it 

Modality Description

NO No introduction

INTRO_0 The exact same sound

INTRO_1 The same sound parameter through the same mapping but the 
nature (speed, rythm, …) of the modification is a bit di erent 

INTRO_2 The same sound parameter through a di erent mapping

INTRO_3 A di erent sound parameter and a di erent mapping

INSTRUMENT

The instrument used in the interaction

Table 2.1: List of perceptual parameters and their modalities manipulated in the dataset of
Unit Perceived Interactions 65



the different perceptual parameters, the dataset counts up to 2000 UPIs 3.

2.3 The study

In this section, we present the study that allows us to evaluate our hypothesised model of

familiarity. We proceeded in three steps.

First, as detailed below, we carefully selected UPIs from our dataset to cover the largest

range of effect on each dimension we want to assess. See section 2.3.1

Second, after the experiment, we conducted a first analysis of the collected data to confirm

our previsions of effect range on each dimension. See section 2.3.2

Third, with the confirmation that our stimuli covered a large range of effect, we analysed

the data to validate our hypothesized model of familiarity. See section 2.3.2

2.3.1 Methodology

2.3.1.1 Stimuli selection

To compose the stimuli of the study, we extracted UPIs from our dataset with the ambition to

cover the largest range of effect on each dimension Expertise, Consistency , Instrumentality and

Exclusivity . Thus, we chose 4 subsets of UPIs according to their expected score in Expertise,

Consistency , Instrumentality and Exclusivity . Practically, by induction from their perceptual

parameters, we chose the two UPIs for which we predicted minimum and maximum values for

a given dimension as well as two or three other videos expected to sit between these extreme

values.

Example of stimuli selection For instance, as the Consistency is the dimension that relates

to the causality between an action and its consequences, we hypothesised this dimension

score to be maximum with a video (UPI-02) of a string picking on a guitar (see table 2.2)

and minimum with a video (UPI-10) showing a musical interaction that produces a discrete

volume variation (OFF/ON/OFF) from a continuous midair translation gesture above a Leap

Motion. All in all, as a same UPI could lay in multiple subsets, 13 stimuli were extracted (Fig.

2.2).

Balanced order The order of the stimuli was designed in order to shuffle the different per-

ceptual parameters, to evenly distribute stimuli that targeted the same dimension and to avoid
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UPI INTRO INSTRU MAPPING SND PARAM GESTURE
UPI-01 NO NANO LINEAR

LINEAR
TIMBRE TURNING

UPI-02 NO
UPI-03 INTRO_0 NANO LINEAR PITCH TURNING
UPI-04 NO LEAP REVERSED PITCH MA-TRANS
UPI-05 INTRO_3 NANO LINEAR PITCH TURNING
UPI-06 NO PIANO NOTE TRIG

NOTE TRIG

NOTE TRIG

UPI-07 NO GUITAR

GUITAR

GUITAR

LINEAR
LINEAR

TIMBRE MA-CIRCLE
UPI-08 NO PIANO HIGH-SOFT TAPING

TAPING

UPI-09 INTRO_2 NANO LINEAR PITCH TURNING
UPI-10 NO LEAP CONT2DIS PITCH MA-TRANS
UPI-11 INTRO_1 NANO LINEAR PITCH TURNING
UPI-12 NO LEAP LINEAR TIMBRE MA-CIRCLE
UPI-13 NO DIS2CONT PITCH PICKING

PICKING

Table 2.2: The 13 video stimuli (Unit Perceived Interactions) and their perceptual parameters

interference due to the succession of conditions too similar. However, even if the survey is rel-

atively short (less than 20 min), we took the risk of a limited order effect since all participants

viewed the videos in the same order.

2.3.1.2 Participants

32 participants (20 males, 12 females, 36.7 y.o ±4.3) were recruited to answer a survey at

home via Internet. They were previously invited to plan a 20 minutes window where they would

not be disturbed and they had to shut down their phone during the experience. They were

informed that it was a survey and not a quiz with good or bad answers so they had to answer

freely with their personal opinion. The exclusion criteria were hearing and vision impairments.

After control of the reported answers, no participants were excluded. A quick technical check

at the beginning of the survey was made to ensure the good quality of the sound before the

first part of the survey. The first page presented the study and its goal. Participants were

informed about their rights and conditions to access and remove their personal data.

2.3.1.3 Expertise profiles

The first part of the survey consisted of subjective and objective questions related to the par-

ticipants skills and knowledge in music practice, electronic/experimental music performances

and technology2. Depending on their score, participants were associated to one or more ex-

2See appendix A for details.
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pertise profiles: Musician, Electro, and Techno. The Musician expertise was associated with

participants playing music on a regular basis or with solid musical education. The Electro

expertise was associated with participants who listen to electronic music and attend digital

or even experimental performances. The Techno expertise was associated with participants

that proved knowledge about digital devices, such as Arduino boards or infrared camera, and

recent technological innovations. Participants with no expertise were associated to the profile

No Expertise. A single participant could hold several areas of expertise, e.g. Techno Musician.

The participants of the current study were composed of 17 people with at least one expertise

profile and 15 participants with no expertise.

Click on the video to play it and answer the questions below 

Only by its appearance, I could have predict the sound of the instrument.
Strongly Agree
Agree
Undecided
Disagree
Strongly disagree

This video is hard to understand, not so clear.
Strongly Agree
Agree
Undecided
Disagree
Strongly disagree

Figure 2.1: Survey interface (zoomed) with the video player and the first questions.

2.3.1.4 The survey

Apart from the general and profile questions described above, the survey is composed of 13

pages. Each page presents a video stimulus and a set of 6 questions related to the displayed

interaction. The questions can appear in the form of multiple choices, Likert-style scale or

yes/no/other radio buttons. The confidence is randomly asked and is computed as a multiplier

of the answer corresponding score.

To access the next page, participants have to answer every questions. They can not

navigate backwards. Participants are free to replay and pause the video at will. After the 7th

page, participants are invited to take a short a break if necessary before resuming the survey
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for the last 6 questions. The last page thanks the participants for their time.

Details of the questions On each page, 2 questions individually targets Familiarity and

Attributed Agency and 4 questions individually targets the components Consistency , Exclu-

sivity , Instrumentality and Expertise. To reduce the redundancy of the questions and keep

the participant’s attention, the questions are extracted of a set of 3 to 4 equivalent questions,

some with an negative form. In that case, a negative coefficient was applied to the answer.

Affirmations were followed by Likert-style scales of the degree of agreement:

Strongly agree / Agree / Undecided / Disagree / Strongly Disagree

Examples of questions by dimensions (The complete survey is available in appendix B.1) :

• Agency:

– ”The musician is totally in control.”

– ”The musician does not seem to control his instrument.”

• Familiarity:

– ”Globally, I find this interaction familiar, natural.”

– ”This video is hard to understand, not so clear.”

• Consistency:

– ”Is the sound consistent with the musician gesture ?”

– ”The sound fits what the musician wanted to do.”

• Exclusivity:

– ”In this video, the sound is controlled by: the musician / the computer / both / other”

– ”It is certain that in this video, the musician is the only one in commands.”

• Instrumentality:

– ”Considering its appearance only, do you think the sound matches the instrument ?”

– ”Only by its appearance, I could have predict the sound of the instrument.”

• Expertise:

– ”Have you already seen musicians playing like this, that is with the same gestures but

maybe with another instrument ?”

– ”Have you already played the current instrument (at least once) ?”
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2.3.2 Predicted impact of stimuli on targeted dimensions

2.3.2.1 Research question

Before analysing the link between Familiarity and its hypothetical dimensions, in this part of

the study we evaluate the predicted impact of the stimuli we selected on these dimensions

(Table 2.2).

2.3.2.2 Results

No order effect By deciding to expose participants to questions in the same order, we took

a relative risk of order effect. Data analysis through Spearman’s rho excludes such order effect

(ρs <−0.34, p < 0.004).

Predictions partially confirmed As shown on figure 2.2, the subsets of stimuli did gradually

impact their targeted dimensions even if the rank order was not always perfectly predicted. The

post-hoc results confirmed the gradient effect of each set on its target dimension and generally

followed our prevision for the minimum and maximum values. However it also revealed some

discrepancies in the hypothesised ranking order especially for the Exclusivity dimension.

UPI-07 UPI-12 UPI-01 UPI-02 UPI-13 UPI-12 UPI-02 UPI-10 UPI-08 UPI-04 UPI-01 UPI-02 UPI-03 UPI-11 UPI-09 UPI-05 UPI-06 UPI-02
0.10

0.41

0.90

1.11

0.83

-0.34

-0.75

-0.70

-1.23

1.20

0.22

1.41

0.05

-1.38

1.52

-0.81

0.16

-1.06

Expertise Instrumentality Consistency Exclusivity

Predicted rank

Figure 2.2: For each familiarity dimension, we composed a subset of stimuli that we predict
should gradually impact a target dimension (e.g. UPI-07, UPI-12, UPI-01, UPI-02 for Exper-
tise). This figure shows the predicted versus the measured rank of each stimuli. The actual
measured score is indicated at the top each bar.

2.3.2.3 Discussion

Lack of literature To our knowledge, this is the first study to evaluate the effect of perceptual

parameters of musical interactions on components such as Exclusivity or Instrumentality . This
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lack of literature constrained us to select our stimuli by arbitrarily inferring their impact on

familiarity and the other dependent variables. We debated with the team to validate the

selection of UPIs, still it remains an arbitrary inference from perceptual parameters.

Predictions globally confirmed As illustrated on Figure 2.2, post-hoc results globally con-

firmed the expected gradient effect for each component. The less effective rank hypothesis

concerns the Exclusivity dimension (Fig. 2.2). Initially, we decided to manipulate the intro

parameter to support an impact on Exclusivity dimension. As described in Table 2.1, the intro

parameter indicates the presence of an audio signal before the interaction, while the musician

is standing still and not interacting with the instrument. We anticipated that the presence

of an introduction would be a negative factor for the exclusivity judgement depending on the

nature of the introduction. The more the introduction sounds like the audio signal triggered

by the interaction, the more likely the sound triggered by the musician could be associated

to an autonomous source, and therefore downgrade the exclusivity judgement. The measures

did not follow our ranking predictions but we kept the stimuli subset in the results as a solid

gradient effect, even if not in the right order, was confirmed.

No bias in the data To sum up from this first analysis, the stimuli used in the study ensure a

gradient effect on each of the components we target. We can now proceed to the model analysis

with the insurance that no particular bias can downgrade the consequent interpretations.

2.3.3 A first model of familiarity and its limitations

2.3.3.1 Research questions

Now that we confirmed the predicted impact of our stimuli on Consistency , Exclusivity , In-

strumentality and Expertise, in this part of the study, we evaluate the model of Familiarity

based on Attributed Agency, Instrumentality and Expertise.

2.3.3.2 Results

Correlations To get a a first overview of the results, we computed individual correlations

that confirmed the strong link between Familiarity and the proposed dimension as shown on

figure 2.3.
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Table 2.3: Correlations table: Familiarity and its hypothesised components show multiple
correlations.

Expertise Surprisingly, Expertise did not correlate directly with Attributed Agency nor with

Familiarity (p > 0.325). However, a positive correlation with the Instrumentality (r414 =

0.295, p < 0.001) may give the Expertise an indirect link on the level of control perceived

(Attributed Agency) or the Familiarity. The Expertise dimension is discussed in more details

in its dedicated section.

2.3.3.3 Linear model of Familiarity

Individual correlations indicate a link between our variables of interest. We will now build the

model of familiarity from the hypothetical dimensions and evaluate it.

Methodology Before processing the data, outliers where trimmed following the Cook dis-

tance. This preprocessing is part of the Automatic Data Preparation from SPSS (V25). All

the following comparisons of models are based on the Akaike information criterion (AICc) and

the accuracy.

A relevant model and questions on Expertise To analyse the contribution of each di-

mension, we computed a linear model of Familiarity with Attributed Agency, Instrumen-

tality and Expertise as factors. Data show a strong contribution of Attributed Agency

(β = 0.883, p < 0.001) and a moderate contribution of Instrumentality (β = 0.117, p < 0.001).

Expertise does not reached the significance level. This model has an accuracy of 40.8% and

a Akaike information criterion (AICc) of 53.725 (Table 2.4).

2.3.3.4 Familiarity 6= Agency and decrease of Instrumentality

The primary analysis of the results partially confirmed the proposed dimensions but also high-

lighted an almost mirror relationship between Attributed Agency and Familiarity. However,
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Familiarity = Attr. Agency + Instrumentality + Expertise

Model term Coef. Sig. Importance

Intercept -0.002 0.974

Attributed Agency 0.555 0.000 0.883

Instrumentality 0.205 0.000 0.117

AICC : 53.725 Accuracy : 40.8%

Table 2.4: Linear model of familiarity based on Attributed Agency, Instrumentality and Exper-
tise. Expertise contribution did not reached the significance level and was therefore excluded
from the model.

the interpretation as a strict equivalence between the two notions can be excluded from the

clear difference in the focus of their related questions in the survey.

From there, the exploration of cases where Familiarity and Attributed Agency are not

correlated can be useful.

-1.5

-0.675

0.15

0.975

1.8

UPI-13 : Unusual sound param
UPI-07 : Unusual gesture + unusual sound param
UPI-02 : Usual sound param + usual gesture

Cons. Expert.Instru.Fam. Attr. Ag. Exclu.

Figure 2.3: Left - Often highly correlated, Familiarity and Attributed Agency differ in some
situations associated with a very low Instrumentality score and contrast in Expertise and
Attributed Agency. Top Right - Usual picking gesture with an acoustic guitar. Bottom Right
- MidAir gesture with no visible tracking device.

Cases with no correlation between Attributed Agency and Familiarity The strong cor-

relation between Attributed Agency and Familiarity disappears with some UPIs. In that case,

observers judges the interaction with a very low Instrumentality score.

In video UPI-07, the guitar triggers a digital sound (timbre modulation) from a contactless

gesture, a MidAir Circle, without any tracking device visible on screen. Compared to a UPI

showing a classical picking gesture triggering a usual acoustic guitar sound (UPI-02), a radical

decrease in instrumentality is logically observed (t62 = 13.644,C = 1.99, p < 0.001). The same
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low Instrumentality score is also observed in UPI-13 where the musician triggers the pitch

modulation of a synthetic sound with the same usual picking gesture than in UPI-02 still

without any device or cable visible on screen.

Participants reconsider their Expertise from Instrumentality evaluation In these 2 ex-

amples, Familiarity is identical and the interaction did not impact the other dimensions the

same way they impacted Instrumentality . As shown on figure 2.3, Familiarity does not change

between UPI-13 and UPI-07 but an important difference in Attributed Agency, carried by

Consistency , is observed.

Second remarkable divergence, Expertise, that is the expertise a participant reports having

with an instrument, is positive for UPI-13 (guitar with unusual sound output) and negative

for UPI-7 (tilted guitar with unusual gesture and sound) even though they both display an

acoustic guitar. In the context of UPI-07, observers seem to consider the instrument as a

new one and therefore, reconsider their expertise and moderate their ability to judge

(Attributed Agency = 0.188±0.5 ) the level of control of the musician.

An interpretation of Fig 2.3 is that spectators judge unfamiliar with low Exclusivity and

Consistency an interaction with a instrument they know but that does not have the usual sound

outcome (UPI-13). When the guitar is tilted, and both outcomes and gestures are unusual,

they also judge the interaction as unfamiliar but the acoustic instrument is considered by

participants as an instrument they have no expertise about (UPI-7).

Here we have the demonstration of how an acoustic instrument (guitar) becomes a DMI

for spectators. DMIs are not considered as instruments defined by their physicality or shape,

but by they entire interaction possibilities. From this distinctive appreciation, they logically

evaluate their own expertise on multiple criteria, physical aspect, mappings, and sound output,

rather than on the physical aspect alone as they might for acoustic instruments

2.3.4 Agency dimensions

In the survey, we ask question about the global Attributed Agency and specific questions that

target its dimensions Consistency and Exclusivity [208, 15] (See 1.3.3 for details). From these

data, we confirm the link between Attributed Agency with a linear model. Consistency is by

far the main component and supports 85 % of the explained variance.
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Attributed Agency =  Consistency + Exclusivity

Model term Coef. Sig. Importance

Intercept 0.130 0.001

Consistency 0.676 0.000 0.851

Exclusivity 0.266 0.000 0.149

AICC : -1049 Accuracy : 30.6 %

Figure 2.4: The survey results confirm the role of Consistency and Exclusivity in the emergence
of Attributed Agency.

2.3.5 Limitations

Based on a web survey, this study avoid some biases due to the usual lab conditions: exper-

imenter in the room, unusual environment or schedule constraint. However, the absence of

an experimenter to confirm that the questions were perfectly understood could have led to a

lower variability on some questions. In this regard, we excluded from the results a question

that appeared after the experiment to be too ambiguous.

Furthermore, all the questions appeared on the same page, below the video player. This

proximity may have encouraged the participants to answer the same way to questions that

seemed similar. However, as our results showed correlations and discrepancies, a strong effect

of this bias can be excluded.

Finally, as for any model, our model of familiarity requires a large amount of data to improve

its capability to produce useful indications on random interactions. The model presented in this

chapter was built from only 13 UPIs and could be refined by applying the present methodology

to the other interactions registered in our dataset.

2.4 Conclusion

In this chapter, we proposed and evaluated a decomposition of the familiarity. Our data show

a tight relation between Familiarity and Attributed Agency, confirming the importance of

Attributed Agency in the spectator experience. Our survey did not clearly exposed the role of

Expertise. In further studies, we will address Expertise with refined profiles evaluation. Finally,

thanks to an approach by components, we revealed contrasts in the evaluation of Attributed

Agency by observers for a same Familiarity evaluation. In particular, we propose a detailed

hypothesis about how observers change their perception from an acoustic instrument into a

DMI.
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Music has always pushed the envelope of

what defines interaction.

Atau Tanaka

3
A taxonomy of Spectator Experience Augmentation

Techniques (SEATs)

Main contributions

- Taxonomy of eleven dimensions to organise the Spectator Experience Augmentation Tech-

niques contributions

- Review and normative description of Spectator Experience Augmentation Techniques

The contribution of this chapter was published in the proceedings of the International

Conference on New Interfaces for Musical Expression (NIME 2020) [39] and received the

Best Poster Award.
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3.1 Introduction

As we saw in section 1.3.5 and as illustrated on Figure 3.1, artists and researchers proposed

techniques to improve the experience of spectators of performances with Digital Musical In-

struments (DMIs). Because of the perceptive issues induced by musical interactions with

DMIs (see section 1.3.2.2 for extensive listing), these techniques facilitate the accessibility of

performances with existing and future interactive systems.

We propose to name these techniques Spectator Experience Augmentation Techniques

(SEATs).They range from textual information [11] and pre-performance demos [16], to aug-

mented reality displays [14, 160] and haptic feedback devices [1, 195].

To our knowledge a formal analysis of SEATs has not yet been conducted, restraining

the development of such techniques. Most classifications related to DMIs are defined from

the musician or instrument designer point of view, such as the dimension space proposed by

Birnbaum et al. [20]. Previous work on audience experience has led to classifications such as

challenges for the design of DMIs from an audience perspective [93] and to a 2D space for the

analysis of action and effect perception [163].

In this chapter we present a taxonomy for Spectator Experience Augmentation Techniques

(SEATs). This taxonomy is aimed at artists and researchers as it can help inform the design

of performances to compensate for the alteration of audience experience in performances with

digital interfaces.

3.2 Spectator Experience Augmentation Techniques

It is essential to point out that, by using the term augmentations, we focus on techniques

which have no impact on the design of the performer’s interface, i.e. they do not change

the way performers interact. Rather, they provide additional information to the audience on

various components of the performance, such as performer’s equipment, gestures or intentions.

SEATs may be designed with various goals in mind. They may be: pedagogical, with a

focus on helping spectators understand performers’ interactions; aesthetic or engaging, with a

focus on increasing the implication of the audience; or even disruptive, so that performances

appear as magical or secretive [164]. Therefore, the values chosen for each dimension of our

taxonomy may have an impact on multiple aspects of the audience experience.

We do not include interfaces or techniques for audience participation in our taxonomy as
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actively involving spectators with a direct control on the artistic content developed ”on stage”

implies a specific approach with numerous extra considerations and dimensions.

Finally, for genericity reasons, our taxonomy does not take the display technology into

account. For instance, visual augmentations with the same dimensions could be achieved

through projection mapping, with video AR on a smartphone or with an optical see-through

head-mounted display. Our aim is that this taxonomy will remain usable by designers of

performances with future technologies.

3.2.1 Taxonomy dimensions

Our taxonomy is composed of eleven dimensions, described below. For each of them, we

provide the range of possible values and discuss their potential impact.

3.2.1.1 Spatial Alignment

This dimension describes how augmentations are spatially aligned with the performance com-

ponents. Possible values include: aligned, when the augmentations are perceived as coming

from the component itself; co-located when they can be perceived while maintaining the focus

on the performance; distant when there is a shift in focus required to access them.

For instance, visual augmentations of a music performance could be aligned if using a

Pepper’s ghost augmented-reality display, co-located if projected on a screen behind the mu-

sician, or distant if displayed on the spectators’ mobile devices. While aligning augmentations

seem ideal because it preserves the focus on the performance, the presentation of complex

information might cause sensory or cognitive overload for the audience, in which case a more

distant presentation is preferable.

3.2.1.2 Temporal Alignment

This dimension pertains to when spectators can access to the augmentations: Before, During

or After the performance.

For instance, in the case of verbal explanations, they may be provided as a pre-performance

demo, as comments during the performance, or as a post-performance discussion. If presented

before the performance, augmentations may provide cues for the audience without any alter-

ation to the performance. However if they are too complex or given too long before, some of

the information may not be remembered when needed. If presented during, the information
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is given when needed but it might distract or overwhelm the audience. If presented after, the

information might be lacking to understand events when they happen, but the magical aspect

[164] of the performance is preserved.

3.2.1.3 Temporal Density

This dimension relates to the temporal range that the augmentations cover. It can be broadly

defined as a low, medium and high.

For example, augmentations of a music performance could range from displaying only the

last played note to displaying the whole score. While a high density will help the audience

forge a stronger sense of performer’s intentions or actions over time, and may help them in

perceiving virtuosity or errors, providing too much information might also distract them from

the current actions.

3.2.1.4 Temporal Control

This dimension describes the possibility for the audience to control the temporal range covered

by the augmentations, i.e. on which part of the performance they will access information. It

ranges from none to full.

An example would be textual explanations provided one by one either synchronously with

events of the performance or on request, with spectators being able to freely scroll through

them. From a design perspective, allowing for temporal control may help spectators build a

better understanding of the performance, but it might also lead them to miss augmentations

that should be perceived at a specific time.

3.2.1.5 Semantic Density

This dimension relates to how much information is provided by a SEAT. It can also be seen as

the information level-of-detail. Like temporal density, it can be broadly classified low, medium

and high. For instance, augmentations on a digital musical instrument may range from only

showing which synthesizer is being played, to showing the detailed audio graph including the

activity of all synthesis parameters. We will see in more detail in chapter 4 that levels of detail

do have an impact on the spectator experience.

This dimension is essential as one needs to ensure that the density is sufficient to provide

useful information but not too high so that it does not result in sensory or cognitive overload
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Spatial
Alignment

Temporal
Alignment

Temporal
Density

Temporal
Control

Semantic
Density

Semantic
Control

Pres.
Nature

Pres.
Modality

Content
Nature

Content
Reactivity

Agents

Perrotin
[160]

co-located during medium none medium none
abstract /
conceptual

visual
technical /
gestural /

reactive
avatar /

origin

Benford
[11]

co-located
/ distant

before /
during /

after
high full medium limited

abstract /
linguistic

visual
technical /
intentional

semi-fixed —

Armitage
[1]

distant during low none low none figurative haptic gestural reactive —

Turchet
[195]

distant during low none low none figurative haptic gestural reactive —

Bin [16] aligned before medium none low none linguistic
auditory /

visual
technical /

gestural
fixed —

Berthaut
[14]

aligned during low none medium none abstract visual
technical /
gestural /

causal
reactive —-

Table 3.1: Analysis of Spectator Experience Augmentation Techniques along the dimensions
of our taxonomy

for the audience.

3.2.1.6 Semantic Control

Symmetrically to temporal control, this dimension indicates if the level of semantic detail can

be chosen by the audience, allowing for the personalized journeys suggested by Benford et al.

[11]. It ranges from none to full.

In the case of textual explanations, it can for example go from a single level of detail given

to all spectators to multiple versions targeted at different levels of expertise, e.g. children /

adults or novices / experts.

This level may also be automatically selected according to emotional or cognitive states

measured through wearable physiological sensors, as we proposed it with our conceptual

pipeline (See section 5). This dimension has an impact on the accessibility of the augmenta-

tions. Increasing the control helps avoiding too simple or too complex information depending

on spectator’s expertise, but it also increases the complexity of implementation for the per-

formance designers. One also needs to ensure that the control interface is not too difficult or

that it does not distract spectators from the performance.

3.2.1.7 Presentation nature

This dimension relates to the form given to the information provided to the audience. Possible

values include figurative, abstract, conceptual, and linguistic.

For instance, to indicate that a certain key was played by a musician the augmentation can
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display respectively a close-up of their hands and the keyboard, a colour changing shape, the

note on a scale or the note name. This dimension involves a trade-off between the information

explicitness, maximised with linguistic or figurative augmentations, and its compactness which

can be optimised with abstract or conceptual augmentations showing only essential information.

It also has implications on the aesthetic integration of the augmentations in the performance.

3.2.1.8 Presentation modality

This dimension describes how the augmentations are displayed. The modality can be visual,

auditory and haptic.

For example, the subtle gestures of a performer on a sensor can be amplified using changes

in a visual shape that represents the sensor or through vibrotactile feedback reproducing the

gestures. The choice of modality depends on the type of performance and its scalability. While

visual and auditory displays can be generalised, haptic ones imply more restrictions as individual

devices need to be designed.

3.2.1.9 Content nature

This dimension pertains to the nature of the content displayed by the augmentations, i.e.

on which aspects of the performance the SEAT provides information. We identified four

possible aspects: technical to reveal the mechanisms of the interface [14]; gestural, to amplify

subtle/hidden movements [160]; intentional, so that the audience understand what performers

are trying to accomplish [77]; causal, so that spectators have a clear perception of who from

the performer or autonomous processes is responsible for variations in the sound.

The choice of content nature depends strongly on the aim of the augmentations. Showing

the intention can highlight the performer’s virtuosity or affect the audience emotional response,

while technical augmentations may increase the level of comprehension of the audience.

3.2.1.10 Agents

This dimension describes the representation a SEAT can give of the agents in a performance

and of their interactions. Agents are entities that can interact with instruments and interact

together, like 3 musicians on stage or a composite crew including virtual agents. We envision

4 values for this dimension. Origin, so that spectators perceive who is the source of events

in the performance, for example amongst members of an orchestra [160] or between the
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performer and automated processes. Avatar indicates if the SEAT uses representations of

the agents to provide additional information. This modality could be used in performances

where the musicians are not physically located in the same place or when an agent is virtual.

Communication when musicians exchange information not directly linked to sound production,

such as synchronisation or support signals. Interactions indicates the capacity of a SEAT to

augment the interactions between agents. This can be useful for instruments with shared

controls and rich musician-to-musician interfaces such as bf-pd [56].

3.2.1.11 Content reactivity

This dimension describes the relation between the augmentations and the performance. It can

be fixed when the augmentations are pre-defined and do not change with the performance,

semi-fixed when some elements of the augmentations change according to the performance,

and reactive when augmentations are generated from information extracted in realtime during

the performance.

For instance, visual augmentations can be pre-recorded videos provided at pre-defined

moments or synthetic graphics triggered and adapted dynamically based on the performers

actions. While a reactive content guarantees that the augmentations will adapt to changes

in the performances, it involves a technical complexity not always achievable. For example

performers intentions can not be extracted dynamically during the performance. It may also

lead to information being provided in a less accessible way than fixed content if it is not

designed carefully, e.g. with multiple visual indications overlapping.
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a b

c d

Figure 3.1: Spectator Experience Augmentation Techniques: a) pre-performance explanation,
b) textual information on mobile, c) haptic wearables, d) visual augmentations
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3.3 Analysis of existing SEATs

Table 3.1 provides a decomposition of the following SEATs from the literature.

Perrotin et al. [160] use visual augmentations projected behind a digital orchestra to display

the musical parameters (e.g. notes) played by each musician.

Benford et al. [11] use visual augmentations, both conceptual and textual, projected on

stage and available on spectators’ mobile devices to provide an overview of the structure and

intentions in a musical performance.

Armitage [1] uses haptic augmentations to provide the audience with vibrotactile feedback

that amplifies the performer’s key presses in a live coding performance.

Berthaut et al. [14] use visual augmentations to reveal the mechanisms of a DMI (including

sensor values, sound processes activity and sensor to processes mappings) to the audience with

an augmented reality display.

Bin et al. [16] uses pre-concert explanations of the instrument to increase the spectators’

level of enjoyment and comprehension.

Turchet et al. [195] use a wearable haptic device to provide vibrotactile feedback to the

audience to amplify the musician’s gestures.

3.4 Using the taxonomy for design

When creating SEATs for a particular performance, our taxonomy can be used to explore

different designs with various effects on the audience experience. Starting from a very common

visual display of information behind the performer, the following directions could for example

be chosen, depending on the desired effect:

• In order to improve the perception of the performer’s control, i.e. the audience’s Attributed

Agency [15], value of the Spatial Alignment dimension can be increased, for example using

augmented reality displays which would place the information directly on top of the per-

former’s gesture, therefore improving the causal link between actions and effects. However,

attention must then be paid to the quantity of displayed information, so as not to overload

visually the performance and reduce the visibility of the performer’s gestures.

• In order to increase the audience engagement in the performance, the Presentation Modal-

ity dimension could combine visual and haptic feedback, for example through the use of

belts or wristbands providing vibrotactile feedback. This direction however poses issues for
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implementation, as it requires to equip each spectator with a individual device or constrains

them to fixed positions (e.g. seats) with built-in feedback.

• Finally, one could choose to adapt the augmentations to spectators with different levels of

expertise. In that case, the value of the Semantic Control dimension could be increased.

This would however require an individual or grouped device for the selection of the level

of information provided by the augmentations, for example using a voting system. In ad-

dition, this dimension requires choosing which levels of information will be made available

and how they will each be displayed, potentially constraining the aesthetic choices for the

performances.

3.5 Conclusion

In this chapter, we proposed a taxonomy for Spectator Experience Augmentation Techniques

(SEATs), which complement digital performance interfaces in order to improve the audience

experience. We showed how our taxonomy can be used for the analysis of existing techniques

and the design of novel ones. As future work, we believe a formal evaluation should be con-

ducted, through both ecological and controlled experiments, which would precisely determine

the impact of each of these dimensions on the audience experience. Artists and researchers

would then benefit from a better understanding of how to design the spectator experience while

preserving the expressiveness and appropriation possibilities of digital performance interfaces.
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The nature of reality

Is pure subjective fantasy

Space and time and here and now

Are only in your mind

Andy Bell

4
A methodology for the study of SEATs

Main contributions

- Controlled protocol for the study of Spectator Experience Augmentation Techniques

- Decomposition of spectators experience in objective and subjective components

- Bayesian analyses of spectator experience

- Improvement of the trust in the musician’s contribution

- Proposition of a new design challenge for spectator experience: the Association

The contribution of this chapter related to the protocol of evaluation of spectator expe-

rience augmentation techniques was published in the proceedings of the ACM conference

on Designing Interactive Systems (DIS 2020) [37].

The contribution of this chapter related to the study of levels of detail and expertise

was published in the proceedings of the International Conference on New Interfaces for

Musical Expression (NIME 2020) [38] and has been selected for an extended version in

the MIT Computer Music Journal.
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4.1 Introduction

In the previous chapter, we presented a taxonomy to structure the Spectator Experience Aug-

mentation Techniques (SEATs) proposed by the HCI and NIME communities. The large

amount of contributions illustrates the important effort of artists and researchers in the im-

provement of spectator experience in electronic music contexts. As we saw in 1.3, this effort

is a response to the multiple challenges induced by performances with Digital Musical In-

struments (DMIs) when considering the perspective of spectators. The proposed techniques

range from pre-performance demos [16] to augmented-reality displays [14] and provide various

types of information about the instrument, its mechanisms and the ongoing interactions of the

musician.

While they constitute a promising solution to the issue of audience experience with digital

performances, the efficiency of SEATs have not yet been formally compared. Therefore, their

respective effect on the many aspects of the spectators experience remains unclear.

Among them, doubts about the performer’s involvement is one of the identified risks for the

audience’s interest and experience [181, 190]. Indeed, when the collaboration between humans

and machines happens in public, the audience can face difficulties in distinguishing the actual

human contribution from the contribution of autonomous processes. As described in section

1.3.3, this issue is a direct consequence of a disturbed Attributed Agency that SEATs should

compensate.

Moreover, existing SEATs do not take sufficient account of important individual factors

like the expertise of spectators with DMIs or their personal sensibility to the amount or type

of information conveyed by the augmentations.

In this chapter, we first introduce a controlled approach to study the efficiency of SEATs on

multiple aspects of spectator experience, including Attributed Agency. We apply this protocol

to compare two common SEATs, pre-concert explanations and visual augmentations. In a

second section, we complete our methodological contribution with a specific evaluation of the

impact of the levels of detail (LODs) exposed by visual augmentations and the role of expertise

in the spectator experience.
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Figure 4.1: After a familiarisation phase, participants followed 4 successive blocks target-
ing the components of the experience: subjective experience in Blocks 01 and 04, objective
comprehension in Blocks 02 and 03 and subjective comprehension in Block 03.

4.2 Controlled protocol for the evaluation of Spectator Experi-

ence Augmentation Techniques

In this section, we evaluate the impact of two Spectator Experience Augmentation Techniques

(SEATs), pre-performance demo and visual augmentations. We investigate their effect on

multiple aspects of the audience experience, including subjective and objective comprehension,

especially looking at the perception of the performer’s contribution (Attributed Agency). From

the results, we derive insights which can inform both the design of future techniques and the

evaluation of the audience experience with digital performances.

4.2.1 Study: comparison of two SEATs

In this subsection, we describe the protocol used in this study. The video stimuli and the exper-

imental conditions are presented, as well as the components of the experience we address. For

the sake of clarity, the presentation of the tasks is structured by experience components rather

than the chronological order. Following the general presentation of the protocol, methodolog-

ical details of each component and the associated results are presented and briefly discussed

one by one.

4.2.1.1 Overview

For the participants, the experiment mostly consists in watching videos and answering subse-

quent questions. The experiment lasts one hour including consents signature, equipment setup

and interviews. As shown on Figure 4.1, the experiment is composed of a familiarisation phase

and four experimental blocks. Throughout the blocks, objective and subjective aspects of the

spectator experience are addressed.
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4.2.1.2 Hypotheses

Following the work of Berthaut [14, 15] on visual augmentations, and the conclusions of Bin

[16] that even if explanations can familiarise the audience with a new digital instrument, they

may not suffice to increase their experience, we hypothesised a greater impact of the visual

augmentations on the spectator subjective experience and their objective comprehension. We

also hypothesised that this impact is due to the provided information, not only to the increased

visual richness of graphical material inclusion.

4.2.1.2.1 Taxonomy comparison Our hypothesis is also supported by the preliminary

comparison of the SEATs through their dimensions in the taxonomy we present in chapter 3.

As indicated on Table 4.1, the main differences lie in two dimension:

- temporal alignment: the explanations about the instrument behaviour occur before the per-

formance while the visual augmentations happen during the performance.

- content reactivity : the content of pre-concert explanation is considered as fixed in the sense

that it does not change with the performance. This modality for content reactivity is a direct

consequence of the before value for temporal alignment. Visual augmentation in the contrary

propose a reactive content reactivity throughout the performance.

Spatial
Alignment

Temporal
Alignment

Temporal
Density

Temporal
Control

Semantic
Density

Semantic
Control

Pres.
Nature

Pres.
Modality

Content
Nature

Content
Reactivity

Agents

Explain aligned before medium none low none linguistic
auditory /

visual
technical /

gestural
fixed —

V-AUG
aligned during low none medium none abstract visual

technical /
gestural /

causal
reactive —-

Table 4.1: Preliminary analysis of the two SEATs addressed in this study, along their dimensions
of our taxonomy. Explain : Pre-concert explanations - V-AUG : Visual augmentations. (The
complete taxonomy is presented in chapter 3.)

From this preliminary analysis, the hypothesis of a greater efficiency of the visual aug-

mentations technique is supported. Indeed, reactive content during the performance clear

the memorisation issues of pre-concert explanations and so are more likely to improve the

experience of spectators.
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4.2.1.3 Decomposing the experience

To handle the elusive concept of experience, we split it into three measurable features, the

objective comprehension, the subjective experience and the subjective comprehension. Each

aspect is evaluated through one or more tasks and distributed across blocks of our protocol.

This methodology maintains the participants attention with short and diversified tasks, and by

addressing the experience under multiple aspects prevents from too narrow results [29].

4.2.1.3.1 Subjective experience Experience is by definition a subjective phenomenon and

is therefore difficult to assess in a quantitative manner. Moreover, qualitative user feedback

represent useful insights that should be taken into consideration. In order to keep this infor-

mation and allow for comparative analysis, the protocol addresses the subjective experience in

2 way:

• A guided rating task where the participants are asked to independently rate constituents

of the performanc: the music, the virtuosity of the musician, the visual aspects and their

overall appreciation of the performance. This task is tested twice and constitutes Block 01

and Block 04 (Figure 4.1). We placed the task at the beginning and at the end to let the

time to the participants to integrate the SEATs’ behaviour and control for a potentially too

flat learning curve.

• Semi-structured interviews allow for more personal and detailed feedback and are crucial

to fully understand what the participant experienced. For this purpose, with the consent

of the participant, the experiment is fully audio taped. The interviews occurred after the

familiarisation phase and at the end of the experiment (Figure 4.1).
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4.2.1.3.2 Objective comprehension The objective comprehension refers to the ability of

the spectator to integrate factual elements of the interaction, like who from the musician or

the machine is the author of a sound modulation, addressed in Block 02, or who is more

contributing in a performance, addressed in Block 03 (Figure 4.1).

4.2.1.3.3 Subjective comprehension Midway between subjective experience and objec-

tive comprehension, subjective comprehension relates to the inner feeling of being able to

perceive an aspect of the interaction. This aspect of the experience is tested in Block 03

(Figure 4.1).

4.2.1.4 Experimental conditions

Figure 4.2: Conditions and Spectator Experience Augmentation Techniques evaluated in our
stud: A) Control, B) Explain (pre-performance explanations), C) V-AUG (visual augmenta-
tions), D) The experimental setup

To study the impact of the two SEATs, we presented our stimuli under four experimental

conditions1:

4.2.1.4.1 Control condition In the control condition, the performance is showed as is,

without any cues or explanation. (See Figure 4.2-A)

4.2.1.4.2 Preliminary explanations (Explain) In the Explain condition, a short video

demo (65 seconds) is played before the performance. This video is a close-up on the musician

hands and the instrument that will be used in the subsequent performance. The musician

demonstrates each mapping, from sensors (button, slider, knob) to sound parameters, with

verbal explanations (See Figure 4.2-B). The participant can hear each sound processes played

individually as well as their modulations allowed by the instrument. The performance is played

right after the demo.

4.2.1.4.3 Visual augmentations (V-AUG) In the V-AUG condition, visual augmenta-

tions are overlaid on the performance (See Figure 4.2-C). Visual augmentations are graphical
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representations of the behaviour of the instrument updated in real time. Similar to Berthaut

et al. [14] they represent:

• The sensors and their activity in order to make them more visible (Figure4.3, I)

• The mappings between sensors and sound processes, which appear when the musician ma-

nipulates them and disappear after. (Figure4.3, II)

• The three sound processes with three shapes whose appearance changes according to changes

in their sound parameters (from either the musician or the computer) : colour hue represents

pitch, size represents volume, rotation represents scrolling in the sound, contours represent

a delay effect. (Figure4.3, III)

I

II

III

Figure 4.3: Visual augmentations are graphical representations updated in real time of the
behaviour of the instrument. I) Sensors II) Mapping III) Processes. See Section Visual aug-
mentations (V-AUG) for details.

4.2.1.4.4 Disruptive visual augmentations (V-DIS) In the V-DIS condition, visual aug-

mentations are also overlaid on the performance but they are uncorrelated with the musician

gestures. They were actually extracted from another performance. This condition aims at

controlling that the effect of the visual augmentations on the experience are not only due

to the increased richness of graphical material inclusion. The V-DIS condition is not intro-

duced until Block 03 in order to let the participants integrate the correct behaviour of the

visual augmentations. Note that the participants were not informed that incongruent visual

augmentations could occur.

1All stimuli, illustration videos of the conditions, anonymised raw results and statistical analyses can be
found her:
http://o0c.eu/0DA (under the ”Have a SEAT on stage” folder.)
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4.2.1.5 Controlled stimuli

The stimuli used in this study are videos of short electronic music performances (about 30s)

shot from an identical point of view1. Each video presents a musician behind a table on which

a digital musical instrument (DMI) is placed next to a computer (see Figure 4.2-A). The video

starts by a fade in with music already playing and the musician manipulating the DMI. The

video ends with a fade out.

The control device used by the musician is a MIDI control surface (Korg NanoKontrol)

composed of sensors: linear potentiometers (faders), rotating potentiometers (knobs) and but-

tons (see Figure 4.2-B). Linked to the device by USB, the computer is running a music software

(Pure Data) allowing for the control of three sound processes (and their associated parame-

ters) : a bass track (pitch, note length, filter, volume), a beat/percussion track (trigger note,

echo, filter, volume) and a textural track (position in sample, filter, volume, echo). This setup

(controller + computer) constitutes the common architecture of many DMIs.

4.2.1.5.1 The mapping The mapping is the relation between the sensors of the control

device and the sound parameters. It impacts multiple aspects of the performance [100]. In

particular, the mapping influences the contribution of the musician by setting the ratio between

the controls given to the musician and those given to autonomous processes. Thus the role of

the mapping is crucial in the definition of an instrument [100]. In order to vary the contribution

level of the musician, from very high to very low, we designed three instruments from the MIDI

controller:

• In the first instrument, all sound parameters are associated with sensors, meaning that all

changes in the sound of the performance originate from the sensors manipulated by the

musician. The musician’s contribution is very high.

• In the second instrument, some of the parameters are automated while others are connected

to sensors, the musician’s contribution is lower.

• In the third instrument, most sound parameters are automated and some are shared, i.e.

the musician can take control of them temporarily. The musician’s contribution is therefore

very low.

To limit the complexity in gesture perception by participants, all mappings were one-to-one:

one sensor controls one parameter only.
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4.2.1.5.2 Performance masking - Learning bias The controlled evaluation of the aug-

mentation techniques requires to display the same performances under each augmentation

condition. Because of this repetitive exposition, the participant could memorise a performance

and answer the questions related to a condition having in mind the cues provided by the same

performance under a different condition. To avoid this learning bias, we created a number of

sound banks, i.e. different bass, percussive and textural sounds, and used them in post pro-

duction to generate multiple stimuli from original video footages. Thus, the resulting stimuli

presented the very same gestures, performance structure and instrument mapping but with a

slightly different sound output making it harder for a participant to notice the potential repeti-

tion of a performance. Besides this ”performance masking”, participants were informed before

the experiment that the device used by the musician may have different settings throughout

the videos and thus should be considered as a distinct instrument regardless of its identical

physical aspect.

4.2.1.6 Participants

21 participants (16 males, 4 females, 1 deliberately not reported) aged of 34.9 ±4.2 (22-57)

were involved in the study. The protocol follows the ethic rules of the Helsinki Declaration.

All participants were voluntary and signed an informed consent before getting equipped and

start the experiment. The exclusion criteria included hearing and vision impairments. After

control, no subject was excluded.

4.2.1.7 Procedure

After having read and signed the consent form, the participant was equipped with two watch-

bands measuring cardiac and electrodermal activity, and with a light eye-tracking device. The

physiological aspects of the experiment are not mentioned in the present document and will

be covered in a future study. During the whole experiment, the participant was seating at a

desk in front of a laptop equipped with a mouse (see Figure 4.2 - D). She or he was informed

that the experiment consisted in watching videos and answering the subsequent questions via

a survey form. After each block, the participant was offered to take a short break.

The experiment started with a questionnaire to control the participant’s hearing and sight

abilities and to evaluate their expertise in three disciplines: music as a performer, electronic

music (as a spectator in concerts) and recent technologies. Data treatment of the scores of
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expertise led to 3 expertise profiles: musician - electro - techno. These profiles were used to

control the homogeneity of the groups in Block 02 that followed a between-groups design.

4.2.1.8 Data analysis

Data was recorded, anonymised and stored in real time during the experiment by a bespoke

experiment software developed in Python. For technical reasons, one participant did not

finish the second block and was excluded of the analysis for this block. Subjective reports

were obtained via Likert scales and were analysed with parametric tools when the normality

assumptions were met [191, 40]. All the analyses were conducted under the common frequentist

paradigm and were combined to Bayesian statistics.

When the assumptions for parametric tests were met, we looked for a main effect through

the analysis of variance (ANOVA or repeated measures ANOVA). We used a Mauchly’s test

to control the sphericity (with a Greenhouse-Geisser correction when required). In case of a

significant main effect post-hoc T tests were conducted. When the assumptions for parametric

tests were not met, the analysis was conducted with non parametric statistical treatments. For

repeated measures, we used a Friedman test. In case of a significant main effect, we conducted

pairwise comparisons with a Wilcoxon Signed-Rank Test. For dependent comparison, we used

a Kruskall-Wallis test. In case of a significant main effect, we conducted pairwise comparisons

with a Mann-Whitney Test. All post-hoc tests significance were adjusted with Bonferroni

correction for multiple tests.

Bayesian statistics offer sounder analysis when dealing with relatively small samples like

ours (n=21) [120, 102]. Besides, by clearly exposing the evidence in the data that support

either the null or the alternative hypothesis, they also provide a more intuitive interpretation

[126] and are increasingly considered as the researcher-centred design of statistics [120]. In

this work, whenever possible, the ANOVA, the pairwise test [172, 151, 174, 173] and the

linear regression [46, 48, 133] are expanded with their Bayesian version and a Bayes factor

is reported as BF01 when data better support the null hypothesis and as BF10 when data

support the alternative hypothesis (note that ’01’ becomes ’10’). For example, the statement

BF10 = 2.4 means that the data are 2.4:1 in favour of the alternative hypothesis, so 2.4 times

more likely to occur under a model including the corresponding effect. The posterior odds

have been corrected for multiple testing by fixing to 0.5 the prior probability that the null

hypothesis holds across all comparisons[107, 210]. Analyses were performed with IBM SPSS
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v25, R studio 1.2 and JASP (Bayesian statistics) [107, 203].

4.2.2 Tasks and results

4.2.2.1 Familiarisation

Before entering the first block of the protocol, the participants were asked to simply watch

3 short videos with no other instructions. The videos presented the same performance under

three conditions: control, V-AUG, and Explain. After the trial, they were asked to freely

comment on what they had just seen. Then they were informed that during the experiment

they will see these three types of videos.

4.2.2.2 Subjective experience

The subjective experience is assessed in Block 01 and in Block 04 (See Figure 4.1) through a

within subjects design (N = 21).

4.2.2.2.1 Protocol In Block 01, the same short music performance is presented 3 times,

once per condition, in random order: V-AUG, Explain, Control. In Block 04, another short

music performance is presented 4 times, once per condition, in random order: V-AUG, Explain,

Control and the disruptive condition V-DIS in which visual augmentations are not correlated

with the performance. The participants were not informed that incongruent visual augmenta-

tions could occur.

4.2.2.2.2 Task The task was the same for Block 01 and Block 04. The participants had to

rate their global experience and three aspects that we hypothesise to support this experience,

namely, the music, the visual aspect and the virtuosity of the musician. After each video, they

had to answer 4 questions in randomised order on 7-point Likert scales:

• From 1 (min) to 7 (max), rate the global quality of the performance.

• Considering the visual aspect only, rate the performance from 1 (min) to 7 (max).

• Considering the virtuosity of the musician only, rate the performance from 1 (min) to 7

(max).

• Considering the music only, rate the performance from 1 (min) to 7 (max).
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4.2.2.2.3 Results The hypothesised decomposition of the subjective experience following

the music, visual and virtuosity subjective ratings was strongly supported (BF10 = 479) by a

linear regression model (F(3,17) = 14.7, p < 0.001, R2 adj: 0.67).
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Figure 4.4: Bayesian posterior distributions of the global experience ratings in Block 04. Par-
ticipants reported a better experience when the performance was augmented with visual aug-
mentations. The V-DIS (incongruent visual augmentations) and Explain conditions did not
differ from the control condition.

A strong effect (BF10 = 19.5) of the SEATs was found on global experience (χ2(3) =

17.40, p < 0.001) only in Block 04. As illustrated on Figure 4.4, post-hoc tests showed that

ratings in the V-AUG condition presented very strong evidence (BF10 = 29.7) of a superiority

with the control condition and a substantial superiority (BF10 = 3.3) with the Explain condition.

No difference (BF01 = 1.9) with the V-DIS condition was detected. However, the data showed

evidence for the absence of difference between the control condition and the V-DIS condition

(BF01 = 2) and the Explain condition (BF01 = 3.6).

An effect of the SEATs on the visual rating was found in both Block 01 and Block 04

(F(3,60) = 14.938, p < 0.001 - BF10 > 319), obviously triggered by the graphical material inclu-

sion of the visual augmentations.

4.2.2.2.4 Discussion The visual augmentations led to a greater subjective experience in

the last block but no effect of the augmentation techniques (SEATs) was measured in the first

block. This can be explained by the learning curve associated to the visual augmentations.

When we designed the experiment, we opted to deliver no prior information or comments

about the conditions to the participants. So we hypothesised that the participants would

require some expositions to the visual augmentations before integrating their behaviour and

their purpose. Without a clear estimation of the learning curve, we placed the measurement
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of the subjective experience twice in the protocol, once at the beginning and once at the end.

More formal information should be collected in ecological conditions, like a concert, but the

visual augmentations used in the experiment are quite explicit and we advocate for a short

learning curve of a few minutes. This estimation is supported by the emergence of better results

in the V-AUG condition of Block 02 and a decisive contribution of the visual augmentations

on the subjective comprehension assessed in Block 03.

4.2.2.3 Subjective comprehension

The subjective comprehension is assessed in Block 03 (See Figure 4.1) through a within-subjects

design (N=21).

4.2.2.3.1 Protocol Videos of short music performances were presented under four con-

ditions: V-AUG, V-DIS, Explain and Control. Contrary to the V-AUG condition, the visual

augmentations in the V-DIS condition are not correlated with the musician’s gestures.

4.2.2.3.2 Task: Bellotti-Fyans challenges This task is built upon 5 communication de-

sign issues namely Address, Alignment, Attention, Accident and Action introduced by

Bellotti et al. [9] in a user-computer interaction context and transposed by Fyans et al. [77]

to the perspective of spectators of interactions. In turn, we transpose these challenges from

a design perspective to an evaluation perspective by assessing the perception of these design

features by observers. We call them the Bellotti-Fyans challenges.

After each video, participants had to indicate on a 5-step likert scale their degree of

accordance with statements built from the Bellotti-Fyans design challenges. Contrary to the

objective comprehension task where participants must perform by giving good answers, in this

task the participants were informed that there were no good or bad answer and they should

report their inner feeling rather than a definitive answer. Only the extreme values of the scales

had a label: ”I totally disagree” and ”I totally agree”. The question asked was ”To which

extend do you agree with the following statement ?” :

• ”In this video, I know when the musician is interacting with the instrument and when he is

not.”(Address)

• ”In this video, I can see when the instrument is responding to the musician gesture and

when it is not.”
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• ”In this video, I can see if the musician is controlling the instrument or if he is not.”(Action)

• ”In this video, I can see when the instrument is correctly functioning and when it is

not.”(Alignment)

• ”In this video, I can see if the musician or the instrument made a mistake.”(Accident)
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Figure 4.5: The effect of the Spectator Experience Augmentation Techniques (SEATs) on the
Bellotti-Fyans challenges.

4.2.2.3.3 Results The augmentation techniques (SEATs) often led to a distinct apprecia-

tion of a same interaction (See Figure 4.5). Despite rather subtle differences in the meaning

of the questions, like in Alignment versus Attention, different patterns are clearly observed.

• Address: A substantial effect (BF10 = 3.7) of the SEATs was detected on the evaluation

of the Address challenge (χ2(3) = 10.07, p = 0.018). Bayesian post-hoc tests showed weak

to substantial evidence of a better evaluation for the V-AUG and the V-DIS conditions

compared to the other conditions (BF10 = 2).

• Attention: A very strong effect (BF10 = 160) of the SEATs was detected on the evaluation

of the Attention challenge (χ2(3) = 12.95, p = 0.005). Post-hoc tests showed a better

evaluation in the V-AUG condition compared to the Control condition (p = 0.02,BF10 = 99)

and to the Explain condition (p = 0.051,BF10 = 13.8) and weak evidence (BF10 = 2.5) for a

better evaluation in the V-DIS condition compared to control.

• Action: A very strong effect (BF10 = 161) of the SEATs was detected on the evaluation of
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the Action challenge (χ2(3) = 18.75, p < 0.001). Post-hoc tests showed a better evaluation

in the V-AUG condition compared to the control condition (p = 0.03,BF10 = 112), to the

Explain condition (p = 0.02,BF10 = 104) and, with weak evidence, to the V-DIS condition

(BF10 = 2.7).

• Alignment: A substantial effect (BF10 = 5.12) of SEATs was detected on the evaluation of the

Alignment challenge (χ2(3) = 10.99, p = 0.012). Post-hoc tests showed a better evaluation

in the V-AUG condition compared to the control condition (p= 0.051,BF10 = 9), the Explain

condition (BF10 = 2.8) and quite interestingly a substantial difference (BF10 = 4.4) with the

V-DIS condition.

• Accident: Data showed no effect (BF01 = 2.4) of the SEATs on the evaluation of the Accident

challenge (χ2(3) = 3.66, p = 0.301).

4.2.2.3.4 Discussion The assessment of the subjective comprehension revealed interesting

contrasted results. By analysing the tendency of a spectator to project their ability in a

fictive task, we are obviously not measuring their objective abilities but rather the confidence

they have in the mental model they built up from the interaction [78]. The SEATs did not

significantly influence the participants’ subjective feeling of being able to detect errors from the

musicians or the machine. From a cognitive point of view, this suggests that neither the visual

augmentations nor the pre-performance explanations could reduce the spectator’s difficulties

in perceiving the performer’s intention and predicting the result of an action [77].

However, visual augmentations (V-AUG ) induce positive evaluations of the other Fyans-

Bellotti challenges, where they overtake the Control and the Explain conditions, which suggests

that they help spectators build and trust a mental model of the instrument and of the per-

former’s interactions with it.

The difference between the congruent (V-AUG ) and the disruptive augmentations (V-DIS)

is not always measurable. The inclusion of incongruent visual augmentations led to the same

feeling of being able to detect when the musician was interacting with the instrument (Ad-

dress) and when the instrument was responding to the musician (Attention). Conversely the

congruent condition V-AUG overtakes the V-DIS condition in the evaluation of the level of

control of the musician (Action) and in the evaluation of the proper functioning of the instru-

ment (Alignment). Since there is no global subjective rating of the stimuli in this task, these

findings need refinements to clearly identify the link between the subjective comprehension and
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the global experience. Still, the design of SEATs and their evaluation can already benefit from

these first insights of the approach by components.

4.2.2.4 Objective comprehension

The objective comprehension was assessed by two tasks, a modulation attribution task in Block

02 and a Global Contribution Task in Block 03 (See Figure 4.1).

4.2.2.4.1 Modulation attribution task The task was to detect a given change of one

of the processes parameters in a short music performance and correctly decide who from the

musician or the computer was the author. The participants answered in real time, while

the video was playing, by pressing a key associated with their answer (the musician or the

computer) on the keyboard.

After each video, participants evaluated on Likert scales how difficult they found the task

(from ’really easy’ to ’really difficult’) and what was their trust in their performance on 5-steps

scale (1: ”I answered randomly”, 5: ”I’m very confident in my answer”).

In order to limit the duration of the experiment, this task followed a between-groups design.

The videos were displayed under a condition depending on the group to which the participant

was randomly assigned. Groups: V-AUG (n=9), Explain (n=5 + 1 excluded), Control (n=6).

The expertise of participants within each group was controlled, the 3 groups were homogeneous

(χ2
(12) = 25.48, p = 1).

4.2.2.4.2 Results The score of the modulation attribution task was computed by measur-

ing the percentage of time during which the key pressed by the participant matched the actual

origin of the modulation.

Participants reported that the task was quite difficult. The data confirmed that impression

with an average score of 42.3% globally (see Table 4.2 for details).

Despite concomitant results in favour of the visual augmentations (Table 4.2), the task did

not permit to expose significant contrasts of the SEATs’ influence on the participants’ scores

(F(2,17) = 3.215, p = 0.184). This lack of power is mainly due to the rather small size of the

groups and the difficulty of the task. The Bayesian analysis showed weak evidence in favour of

an effect of the SEATs (BF10 = 1.6) and weak superiority of the scores in the V-AUG condition.

No influence of the SEATs on the reported difficulty (F(2,17) = 0.257, p = 0.575, BF01 = 3.1 )

was found, neither on the reported confidence (F(2,17) = 2.952, p = 0.220 - BF10 = 1.3).
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Score [% of success] V-AUG Explain Control

Mean 44.9 42.3 38.4
Stdev 4.0 4.3 6.3
Min 39.8 35.6 28.0
Max 53.7 47.0 45.0
Difficulty [-3,3]

Median 0.000 1.000 0.500
Min -0.667 -0.667 -0.667
Max 2.000 1.500 2.000
Confidence [-3,3]

Mean 0.213 -0.700 -0.111
Stdev. 0.498 1.083 0.455
Min -0.667 -2.000 -0.667
Max 0.667 0.667 0.667

Table 4.2: Modulation attribution task - Descriptive statistics

4.2.2.4.3 Global Contribution Task This task occurred in Block 03 and followed a within-

subjects design (N=21) with 2 factors: Augmentation technique: V-AUG, V-DIS, Explain and

Control — Contribution level of the musician: contrib low, contrib med, contrib high

Contrary to the modulation attribution task where the authorship of a specific event was

targeted, in this task, the participants had to determine who from the musician or the computer

was globally the most contributing over a whole performance.

As explained in Section The mapping, we designed three instruments which allowed us

to vary the musician’s and computer’s respective contributions. These mappings resulted in,

respectively, a large contribution of the computer, a large contribution of the musician and

a rather balanced ratio still in favour of a greater contribution of the musician. Thus, the

musician contributed the most in 66% (2/3) of the stimuli.

This two-factors design lead to 4 SEATs x 3 contribution levels = 12 videos. The stimuli

implying the same contribution level of the musician were generated from the same original

video footages. To control for a potential learning bias, these stimuli were post produced

with different audio outputs following the performance masking technique detailed in Section

Controlled stimuli.

After each video, the participants indicated who from the musician or the computer was

the most contributing and reported their level of confidence in their answer on a 6-step likert

scale with labelled extreme values; 0: ”I answered randomly” - 5: ”I’m very confident”.

4.2.2.4.4 Results The average success score was 60.6%±12.5 and 65.1% of the reported

answers indicated that the musician contributed the most.
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Figure 4.6: Global Contribution Task: the participants largely promoted the greater contri-
bution of the musician (90%, orange) and were more confident in their answers (black dots)
when the performances were augmented with visual augmentations (V-AUG ). The perfor-
mances augmented with incongruent visual augmentations (V-DIS) led to an under estimation
of the musician contribution.

Considering the score of the participants to this task, the data showed a strong effect

(F(2,40) = 7.18, p = 0.002 - BF10 = 600) of the contribution level taken alone and a very strong

effect (F(6,120) = 5.98, p < 0.001 - BF10 > 100000) of the interaction between the contribution

levels and the augmentation techniques. A second analysis was run to understand the details

of the interaction. It exposed a very strong link (BF10 > 7000) between the choice of the par-

ticipants for the most contributing and the SEATs (χ2
(4) = 28.432, p < 0.001). As illustrated

in Figure 4.6, post-hoc tests showed that 90% of the stimuli presented in the V-AUG condi-

tion were associated to a greater reported contribution of the musician, 67% in the Explain

condition, 60% for the control condition. Interestingly, the lowest count of reports for the

contribution of the musician was measured in the V-DIS condition where 56% of the stimuli

were associated with a greater contribution of the computer.

A moderate (BF10 = 2.9) effect of the SEATs was found on the confidence participants

had in their answer (F(3,60) = 3.683, p = 0.017). Following the overestimation of the musician

contribution in the V-AUG condition, post-hoc tests showed that the confidence of the partici-

pants in their answer was significantly higher (p = 0.049,BF10 = 4.19) in the V-AUG condition

than the control condition and (BF10 = 2) the Explain condition.

4.2.2.4.5 Discussion The impact of augmentation techniques (SEATs) on the objective

tasks is contrasted. The lack of power did not permit to clearly expose their role with weak

evidence in favour of the visual augmentations in the Modulation Attribution Task. Conversely,

the Global Contribution Task led to significant results and revealed a misleading effect of the
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visual augmentations that conducted the participants to over estimate the musician contribu-

tion. These findings are discussed in the general discussion alongside with the insights of the

other blocks.

4.2.3 Discussion

In this section, we combine the findings discussed in the previous sections and provide insights

and perspectives on Spectator Experience Augmentation Techniques (SEATs), and in particular

the use of visual augmentations. We also propose to add the Association as a new item in the

Bellotti-Fyans challenges.

4.2.3.1 Visual augmentations offer a better experience

The findings of this study expose the positive role of the visual augmentations over multiple

aspects of the experience of spectators of performances with digital instruments. They also

confirm the weak contribution of the preliminary explanations reported in the literature [16].

The low efficiency of preliminary explanations can be interpreted as a difficulty for the

audience to memorise and manipulate the large amount of information necessary to integrate

complex interactions. The real time support of visual augmentations as well as their ability to

abstract interactions mechanisms probably made a strong difference. Yet, with this sole first

study, we can not strengthen these interpretations because we are missing formal descriptions

of the two techniques. A taxonomy of the SEATs could help to refine the study of their

impact by allowing for an approach by components rather than the holistic comparison we

present here.

The contribution of the visual augmentations was not measurable on the ratings of the

music, or the virtuosity of the musician, but the data do support a significant improvement

of the overall experience of the spectator. Importantly, the effective impact of the visual

augmentations is not due to the only effect of the additional graphic material of this technique.

When the augmentations were not correlated to the interactions, participants gave a better

rating to the visual aspect but no difference with the control condition was detected in terms

of global experience.

The interest for the visual augmentations was also reported during short interviews when we

asked the participants what augmentation technique they would choose if they were to attend

an electronic music performance. A large majority (80%) opted for the visual augmentations
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but we also had some participants advocating for no augmentations at all, neither explanations

nor visual augmentations, to preserve ”their natural experience of music”. Depending on the

expertise of the participants and their tolerance to graphical inclusions in terms of cognitive

interference, the SEATs should permit to vary the LODs and even let the user turn it off.

4.2.3.2 Restoring the trust in musicians

Even if the visual augmentations did not increase the objective comprehension of the spectator

as we hypothesised, they led to an interesting side effect. When the participants had to

distinguish the contribution of the musician from the one of the computer, they over estimated

the contribution of the musician and at the same time were more confident in their evaluation

when the performances were displayed with visual augmentations (V-AUG ). From an objective

perspective, this observation lowers the efficiency of the visual augmentations used in the study

to clearly expose the reality. But it also represents a positive bias that can compensate the

doubt of uncomprehending spectators and restore their trust in the musician. Conversely, the

disruptive augmentations (V-DIS), extracted from another performance, led to a sub estimation

of the contribution of the musician, a reduced confidence of the participants in their answers,

and the misperception of a greater contribution of the computer.

These observations could highlight the presence in the audience experience of a subtle

balance between the continuous objective cues emitted by the performer and an inner, poten-

tially discreet, validation by the observer that everything is going as expected, with a clear

contribution of the musician and a moderate support of the machine. As a design guideline,

this suggests that the more a performance is demanding in term of artistic virtuosity, the more

the audience needs to be able to perceive the ratio of the human/machine contribution, in

order to preserve their trust.

4.2.3.2.1 The unexpected benefits of disruptive cues The insertion of uncorrelated vi-

sual augmentations led the participants to evaluate differently some aspects of the interactions

but not all. The confusion is more visible in the results of the Bellotti-Fyans challenges (See

the discussion of the Subjective comprehension section). These contrasts in the results reflect

the composite nature of the mental models at the origin of the spectator’s experience and ex-

pectations [101, 62]. They also highlight the inconsistent effect of the augmentations used in

the study. Now that the potential efficiency of the visual augmentations is formally supported,
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design research should compare different types of visual augmentations, graphical material or

LODs and explore their influence on identified observer’s mental models like the one from the

Bellotti-Fyans challenges or the components of the experience we addressed in this work.

4.2.3.2.2 Controlling the level of magic We saw that can lead to the perception of a

lower contribution of the musician. They also tend to blur the mental models of the observers.

This property could be manipulated by the musicians. By designing the SEATs to increase

the amount of disruptive cues in the augmentations, musicians could decide to veil their

manipulations at the same time of a music climax and let the audience think that something

”magical” is happening. In a sense, if too much doubt about the musician’s contribution

on the music can reduce the interest of the audience, a parsimonious approach can lead to

interesting strategies in the artistic performance, like a navigation in the 2-dimensional space

proposed by Reeves et al.[164] (See Figure 4.7).

4.2.3.3 Call for a new design challenge: Association

The Bellotti-Fyans challenges provided insightful data for the evaluation of the subjective

experience of the spectators. However, it is not clear if these challenges are sufficient to

characterise the ability of a device to expose the contributions of both the user and the system

to the audience. To this end, we propose to add another ”A” to the five already present in the

Bellotti-Fyans challenges with the ”Association” challenge. The term Association relates to

the design decisions that enable a device to expose to the spectators the respective and shared

contributions of its user and the system itself. This challenge also relates to the exclusivity

dimension of agency defined by Wegner et al. [208], transposed to the audience.

Interactions with simple devices do not need such augmentations as the integration by an

observer of the inherent cues is obvious to evaluate the contribution of the user, like when

observing a seller with a cash machine. But when the interactions become more complex, when

the system they address is capable of producing actions that mimic the one a user could make,

like a musician with a digital instrument, or a worker with an exoskeleton, the contributions

of the user and the machine are mixed from a spectator perspective. An observer of such

interaction implying a device with a high Association score should have a clear appreciation

of the actual part of the user’s actions in the intended production, without the difficulty to

integrate the multiple cues perceived from the interaction. The shared contribution of both the
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system and the user should also be appreciable. The decisions that lead to a good Association

score should be part of the design process or ensured by dedicated augmentations.

4.2.3.4 Limitations

In this work, we aimed at investigating refined aspects of the experience and minimising the

biases inherent to the study of human behaviour by conducting a controlled study. Although

the results of the experiment did provide genuine insights on the effect of SEATs, a number

of limitations remain. A first improvement would be a validation of the questionnaires, in

particular regarding subjective comprehension.

As other ”in the lab” studies, our work relies on the data analysis methods for controlled

experimentation that can be considered as a risk for misleading or overly narrow results [153].

In consequence, we chose to include interviews and to mix objective and subjective trials to

limit the bias often met in field studies [29]. Besides, we believe that the extension of the data

analysis with Bayesian statistics is particularly helpful in this context of medium sample size

(21 participants).

Finally, another limitation of our work naturally lies in the evaluation of a live phenomena

in a controlled environment. In this context, important aspects of the experience of live music

are missing, from the social environment to the ceremonial of the concert hall. Aware of these

limitations, we do not consider this work as an exhaustive approach, much to the contrary as

we are very open to the contributions of other disciplines in the study of the relations between

humans and artificial systems. Joining the ”movement” of mixed-methods [52], we believe

that there should be more dialogue between the ”in the lab” and ”in the wild” paradigms.

This enthusiasm is shared by recent discussions in the HCI community [135], which highlights

the importance of identifying insights and biases of each paradigm.

4.2.3.4.1 Summary In this section, we presented a controlled study to evaluate the effect

of Spectator Experience Augmentation Techniques on the audience experience. We showed

that, contrary to pre-concert explanations, visual augmentations increase the global subjec-

tive experience. In particular, visual augmentations support the observer’s confidence in their

mental representations of the interactions, and induce an over estimation of the musician’s

contribution (Attributed Agency) compared to the machine’s and consequently restore specta-

tors’ trust in electronic musicians. Finally, we proposed to extend the Bellotti-Fyans challenges
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Figure 4.7: When controlled by the musician, the nature and the amount of visual augmenta-
tions allow to navigate in the 2-dimensional space proposed by Reeves et al.[164] (Illustration
adapted from [164])

with the Association challenge, as the ability of a device to expose the contributions of both

the user and the system to the audience.

In the next section, we apply the methodology presented here in order to further investigate

how visual augmentations influence spectator experience and to explore the role of expertise.
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4.3 The role of expertise and levels of detail of visual augmen-

tations

4.3.1 Introduction

In the previous section, we compared two Spectator Experience Augmentation Techniques

(SEATs) and showed the efficiency of visual augmentations on multiple aspects of the spectator

experience. In this section, we want to refine these first insights about visual augmentations.

Indeed, as we saw in 1.3.5, even if techniques explore different modalities (visual, haptic,

auditory) and address different aspects of the performance (technical, gestural, intentional),

they offer the same fixed level of information to all spectators.

We believe that augmenting the audience experience implies considering spectators from

an individual perspective. In fact, the amount and the kind of information needed by each

spectator can differ depending on their personal sensitivity and their expertise with Digital

Musical Instruments (DMIs). In this section, we propose to evaluate the role of the levels

of detail (LODs) in the visual augmentations and the influence of the expertise on spectator

experience. Specifically, we will extend the protocol presented in 4.2.1 and evaluate the impact

of LODs and expertise on the objective comprehension and the global experience of spectators

of DMI performances.

4.3.1.1 Levels of detail

The LOD approach originates from the field of computer graphics where it is used to adapt

3D models and scenes complexity in order to reduce rendering load. It can also be found in

the field of information visualisation to adapt quantity of information in order to limit visual

overload. In the HCI literature, LODs allow users to access different levels of complexity in

the interface, such as with Zoomable User Interfaces [7], or in a musical context to build and

manipulate complex musical structures [4].

In our case, LODs allow spectators to adapt the amount and the type of information

provided by visual augmentations about the interactions of a musician with a DMI.

1All stimuli, illustration videos of the conditions, anonymised raw results, statistical analyses and implemen-

tation demos can be found here: http://o0c.eu/0NA (under the ”All you need is LOD” folder)
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4.3.1.1.1 Taxonomy From a normative perspective with respect to the taxonomy we pre-

sented in chapter 3, LODs relate to the Semantic Density dimension of visual augmentations

and their free modification by users corresponds to the Full modality of Semantic Control.

4.3.2 Design and implementation

In this subsection, we describe the design and implementation of visual augmentations with

controllable LODs for Digital Musical Instruments (DMIs).

4.3.2.1 Visual augmentations

We saw in 4.2.1.4.3 that visual augmentations reveal aspects of DMIs that are not easily

perceived by the audience due to their lack of familiarity with them and the absence of physical

link between gesture and sound. This includes subtle and/or hidden gestures sensed by the

interface, complex or unusual mappings between the gestures and the various controllable

parameters and the dynamic behaviour, potential range of output and internal structure of a

DMI.

However, the potential complexity of DMIs implies that visual augmentations may become

too detailed if one aims at representing all their events and components, which might in turn

degrade the spectator experience that we are trying to improve. Spectators might also prefer

more or less detailed information for aesthetic reasons and at various times in the performance.

To that extent, we propose to define dedicated LODs for each section (Interface, Processes,

Mappings) of the visual augmentations. These local LODs can be chosen independently or

combined as global LODs such as the ones we describe in section 4.3.2.3.

4.3.2.2 Local LODs

The augmentations specifically designed for a section of the instrument are called local LODs.

We propose 4 LODs for the Interface section, 3 levels for the Mappings section, and 5 levels

for the Processes section1. Each local LOD features a level 0 in which the section is not

augmented. If all three sections are at level 0, no information is added to the performance.

One should note that the information provided by each level can be displayed in different ways,

the representations proposed in our implementation are only one of the many possibilities that

artists can explore.
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In the Interface section,

Level 1 only indicates the global activity, e.g. when the musician performs a gesture sensed by

the system.

Level 2 represents the activity of each sensor of the physical interface, allowing one to perceive

fast and complex gestures such as bi-manual or multi-finger interactions.

Level 3 describes both the activity and the type of each sensor (discrete/continuous, shape of

sensor ...).

Level 4 adds a representation of their values and range.

In the Mappings section

level 1 only describes to which processes the sensors are connected.

Level 2 refines the connection to the parameter level.

Level 3 adds a representation of the operation or series of operations which transform sensor

values into parameters values [69], e.g. scaling, inverting, combining and so on.

In the Processes section,

Level 1 visualises the output of the system as a whole, merging the activity of all sound

processes.

Level 2 provides a detailed activity for each process of the system, e.g. a distinct shape whose

size indicates the volume of the corresponding sound process.

Level 3 adds a dynamic representation of parameters (i.e. inputs) that can be controlled on

the processes.

Level 4 adds parameters names, types and values range, i.e. as performers would see them

when performing with a GUI.

Level 5 provides a detailed representation of the complete internal graph of audio synthesis and

effects that generate the sound of each process. It corresponds to what the musician would

access when designing their instrument, and is potentially similar to the mental model they

have when performing.

4.3.2.3 Global LODs

Global LODs are a combination of local LODs. They provide the spectators with a convenient

way to control the LODs by modifying several sections at a time : Interface (I), Mappings (M)
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(a) (b)

(c) (d)

(e) (f)

(g)

Figure 4.8: The 7 global levels of detail (LODs) used in our experiment, as seen by the
participants. Each is built as a combination of local LODs for the Interface, Mappings and
Processes sections (details in 4.3.2.2 and 4.3.2.3).

and Processes (P). For instance, ”SENSORS (I4-M0-PO)” is a global LOD called ”SENSORS”

and uses Level 4 for the Interface section and Level 0 for the others.

In the following study, we use 7 global LODs with increasing quantity of information (See

Figure 4.8).

NONE (I0-M0-P0) provides no information at all. The performance remains unchanged.
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SENSORS (I4-M0-PO) amplifies the gestures performed by displaying representations of

the types and values for all sensors of the interface. It is therefore similar to the LODs provided

by Turchet and Barthet [195] with haptics, and Perrotin et al. [160] for visuals. In the case of

our study, faders, knobs and buttons of a MIDI controller are displayed.

PROC (I0-M0-P2) displays the sound processes of the instrument as separate shapes with

graphical parameters associated to extracted audio features (loudness with size, pitch with

color hue, brightness with color luminance), allowing spectators to identify the broad structure

of the instrument and the activity of processes. This LOD corresponds to the representa-

tions traditionally used to illustrate electronic music performances (e.g VJiing) and defined as

audiovisual entities by Correia et al. [51].

SENS PROC (I4-M0-P2) shows both amplified gestures and the activity of separate pro-

cesses. It provides information on both the interface and processes of the instrument, without

detailing its internal structure or behaviour.

MAPPINGS (I4-M1-P2) adds information pertaining to how sensors are mapped to the

sound processes. It shows when a sensed gesture has an effect on a sound process but not

what effect it has, i.e. not what is exactly controlled by each sensor. In our implementation,

mappings are displayed as lines between sensors and processes, which appear when a control is

performed and then fade out. It is similar to the level of information proposed in the Rouages

project [14].

FULL COMBINED (I4-M2-P3) refines both the Mappings and Processes sections. It shows

which parameter are controlled by each sensor and displays both the parameters and activity

of the processes. In our implementation, each process is represented by a composite shape

with an outer ring displaying the input parameters (i.e. gain with size, filter cutoff with color

luminance, position in sample with rotation, delay feedback with shape repetition, pitch with

color hue), while the activity is shown by an inner graphical element. This level is similar to

the augmentations described by Berthaut et al. [15].

FULL GRAPH (I4-M2-P5) provides a complete overview of the instrument with param-

eters names and value range, processes names and mappings between each sensor and the

parameters. It corresponds to the mental model musicians might have of their instrument,

with the exact structure, mappings and range of sonic possibilities. In our implementation,

each process is labelled and displayed as a group of graphical sliders and buttons representing

each parameter, with their names, value and range of values, and another slider serves as a
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VU-meter. Although this global LOD uses the maximum of each local LODs, we chose to

limit the Mappings section to level M2 so that the amount of information remains reasonable.

Similarly, the structure of the instrument used in our study is essentially a stack of samplers

and effects with one parameter each, so that level P5 adds very little information compared

to level P4. This structure was chosen in order to reduce the gap in quantity of information

from the previous global LOD, i.e. we do not add a complex audio graph in addition to the

details on parameters when going from FULL COMB to FULL GRAPH. FULL GRAPH can

be seen as similar to approaches where the full complexity of the instrument is shown such as

in live-coding performances.

4.3.2.4 Implementation

a b c

Figure 4.9: Possible implementations1 of visual augmentations with LODs : a) Shared close-up with
Video AR projected behind the musician and artist defined LOD, b) Mobile AR with individual LOD
control, c) Spatial AR with an optical combiner shared between all spectators and mobile control to
vote for the LOD.

The implementation of visual augmentations with controllable LODs raises questions re-

garding how to retrieve the information from the instrument and how to give the audience

access to the LODs. In this work, the visual augmentations were implemented using the

Godot game engine. The information, including activity and mappings, was retrieved in real

time from the instrument, implemented with Pure Data, via OpenSoundControl messages.

This extraction might however be more difficult with less open software, in which case only

the lower LODs might be accessible, i.e. interface and processes activity but not the internal

mappings. We envision multiple possibilities for implementing visual augmentations with LODs

in a performance setting.

A first one relies on individual views of the augmentations, in order to allow each spectator

to choose their LOD freely. This can be implemented with a mixed-reality headset or a mobile
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device as shown in Figure 4.9.b.

To avoid forcing the audience to wear or hold devices which may impair their experience,

another possibility is to use a single spatial AR display, either projection mapping or an optical

combiner (e.g. Pepper’s ghost display), such as depicted in Figure 4.9.c, in which case viewers

all perceive the augmentations spatially aligned with the physical instrument. Another possi-

bility is to film and reproject a close-up view of the interface integrating the augmentations,

as shown in Figure 4.9.a. This solution however moves the focus away from the physical per-

former. In these scenarios, only one LOD can be displayed at a time. LOD control may be

performed by musicians or accompanying visual artists, so that they can modulate the audience

experience during the performance. But the shared LOD can also be chosen by spectators.

Voting system such as the one used in the Open Symphony project [214] may be used, in the

form of a web interface accessible from their mobile devices, as depicted in Figure 4.9.c. In

this case the displayed LOD reflects either the majority or the average vote.

Finally, an intermediary solution is to provide multiple views of the augmentations for

groups of spectators, using video (i.e. multiple or multiscopic screens) or optical AR (mirrors

at multiple angles). For each group, the LOD can be fixed at a different value, so that

spectators can move towards or look at the display they prefer. A voting system may also be

setup separately for each group.

4.3.3 Usage and effects of LODs

We will now present the experiment we designed to evaluate the impact of LODs on audience

experience and understanding, and study the use of controllable LODs by spectators with

different expertise. In order to retrieve accurate and individual data on spectator experience

we chose to conduct a controlled experiment in the lab. We discuss the advantages and

limitations of such ’in the lab’ studies in more details in 4.2.3.4 and plan to address social and

environmental aspects of public performances in a future work.

4.3.3.1 Procedure

18 participants (16 M, 2 F) took part in the experiment, aged of mean 29 (±7.3 , min=20,

max=43). Before the beginning of the experiment, they were presented with the details of

the experiment and signed a consent form. Participants sat in front of a 24” screen, equipped

with headphones and a Pupil-labs Core eye-tracking device (the details of the eye tracking are
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Figure 4.10: Left Regardless of the LOD, Experts perceived a higher contribution of the
musician than Novices. Center LODs did not impact equally the subjective perception of the
interactions. Experts reported higher evaluations of the subjective dimensions of the spectator
experience.

addressed in a forthcoming study).

We measured their expertise with the instrument presented in the study using questions

regarding their practice of DMIs, their use of graphical user interfaces similar to the one in

Figure 4.8 and their use of control surfaces. We also asked how often they attended electronic

music performances. This allowed us to compute an expertise score, and we used it to separate

them into two groups: 9 experts and 9 novices. The experts had a music practice of 17.3±6.4

years (±6.4, min=10, max=30) and an electronic music practice of 10.7±7.3 years (±7.3,

min=2, max=25) against 1.6±2.6 (±2.6, min=0, max=7) of music practice and no electronic

music practice for the novices. Experts had all used both graphical interfaces for music and

control surfaces such as the ones presented in the experiment. Per year, experts claimed going

to 12.8±8.3 (±8.3, min=2, max=30) electronic music performances, while for novices the

average was 0.6±1.5 (±1.5, min=0, max=5).

4.3.3.1.1 Dynamic stimuli The stimuli were videos of short performances with a DMI

composed of a Korg NanoKontrol (Fig. 1.8) controlling a set of Pure Data patches with three

sound processes (melodic, rhythm, granular texture) each with multiple parameters (See Figure

4.8).

We designed three sets of mappings between the interface sensors (knobs, faders, buttons)

and the parameters. Each set was intended to target a different level of contribution of the

musician, i.e how much of the changes in the sound are due to them vs automated. The
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Figure 4.11: When participants could choose their favourite LODs in real time, strategies
emerged as illustrated. They were refined in the interviews.

first set is completely manual so no changes happen without a gesture. It corresponds to the

maximum contribution level. The second features automations for half the parameters, the

rest being manipulated by the musician. In the third set of mappings, most parameters are

automated and the musician is able to take control of some of them temporarily, giving the

highest contribution to the computer.

In order to play the videos with dynamic overlapping visual augmentations, we designed

the experiment in the Godot game engine. Videos were played synchronised with the playback

of control data recorded in Pure Data, so that the sound and the visual augmentations were

generated dynamically during the playback. This technical setup gave us the flexibility to play

the video footage of a performance and to accompany it with arbitrary audio processes and

visual augmentations in real time.

The experiment lasted around 45mn and was composed of 2 blocks.

4.3.3.1.2 Block 1: fixed LODs In the first block, participants watched 7 LODs x 3

contribution levels = 21 videos of short performances (20s). Each video was followed by a

questionnaire of 9 order-randomized questions to evaluate their experience and comprehension.

The survey included only one objective question. We evaluated the ability of the participants

to correctly detect the contribution levels that we induced by the mappings by answering the
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question ”Who from the musician or the computer contributed the most to the performance

?”. They also could choose ’both equally’.

The other questions were subjective and were based on 5 communication design issues

introduced by Bellotti et al [9] and transposed to the spectator perspective by Gurevitch and

Fyans [93]. We complement them with Association (4.2.3.3) that targets the capacity to

expose to spectators the contributions of the user (musician) and the system (DMI). These

design challenges are well adapted to the evaluation of DMIs as they allow for an assessment

by components of the subjective experience of spectators. Participants answered on 7-step

scales to the question ”To which extent do you agree with the following statement ?”. Only

the extreme values of the scales had a label: ”I totally disagree” and ”I totally agree”.

• ”In this video, I know when the musician is interacting with the instrument and when he is

not.”(Address)

• ”In this video, I can see when the instrument is responding to the musician gesture and

when it is not.” (Attention)

• ”In this video, I can see if the musician is controlling the instrument or if he is not.”(Action)

• ”In this video, I can see when the instrument is properly functioning and when it is not.”(Alignment)

• ”In this video, I can see if the musician or the instrument made a mistake.”(Accident)

• ”In this video, I can see the contribution of the musician and the one of the computer.”(Association)

Finally, the participants had to report their personal rating of the performer’s virtuosity and

the overall performance on a 7-point scale.

4.3.3.1.3 Block 2: dynamic LODs In the second block, participants could change with

the scroll wheel the LOD of the augmentations as the video was playing. In a first task, they

watched 3 short (60s) performances and were asked to select the LOD that gave them the best

experience, i.e. that they preferred. In a second task, they watched the same performances

and were asked instead to choose the LOD that allowed them to understand best what the

musician was doing.

4.3.3.2 Results

Data was recorded, anonymised and stored in real time during the experiment by a bespoke

experiment software developed in the Godot game engine.

Subjective reports were obtained via Likert scales and were analysed with parametric tools
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when the normality assumptions were met. The analyses were conducted under the common

frequentist paradigm and were combined to Bayesian statistics [120]. A Bayes factor is reported

as BF01 when data better support the null hypothesis and as BF10 when data support the

alternative hypothesis (note that ’01’ becomes ’10’). For example, the statement BF10 =

2.4 means that the data are 2.4 times more likely to occur under a model including the

corresponding effect. The posterior odds have been corrected for multiple testing by fixing to

0.5 the prior probability that the null hypothesis holds across all comparisons. Analyses were

performed with SPSS v25, R studio 1.2 and JASP [107].

4.3.3.2.1 Block 1: fixed LODs Analysis did not revealed any group effect and any effect

of the LODs on the objective task. Overall, the evaluation of the factual contribution ratio

between the musician and the computer proved difficult.

Still, from a subjective perspective, an interesting group effect (χ2 = 12, p = 0.002,BF10 =

11) showed that Experts considered the musician contributed more than the computer in 62%

of the stimuli compared to 45.5% for Novices (Figure 4.10 - Left).

As depicted in Figure 4.10 - Center, experts reported higher evaluations of the subjective

questions. Regardless of the group, the Accident was the least rated, meaning that participants

were not so confident in their capacity to detect errors. The effect of the LOD was revealed

on most of the subjective questions (all p− values < 0.027,all BF10 > 6), with the exception

of Accident and Virtuosity (all p− values > 0.22,all BF01 > 4). Two LODs were particularly

effective, SENS and FULL COMB.

Reading the graph (4.10 - Center) from left to right, compared to NONE, the control

condition, SENS, the LOD exposing the sole sensors activity, presents a significant boost in

all dimensions, then PROC exposes an equivalent score to NONE. From SENS PROC to

FULL COMB a rather linear progression is observed. In the Experts group, the progression

tends to extend to FULL GRAPH. In a much more volatile distribution, the results for the

Novices group nevertheless present FULL COMB as the most effective. The efficiency of

FULL COMB for Novices is also supported by an analysis of the difference with the Experts’

scores. For 6 (out of 9) dimensions, the smallest difference is measured when visual augmen-

tations are presented with FULL COMB. This result is a good illustration of the expected role

of visual augmentations, compensate the lack of expertise of novices for a better experience.
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4.3.3.2.2 Block 2: dynamic LODs The score for these tasks was calculated by accumu-

lating the time participants spent using each LOD. Both tasks, experience and comprehension,

show comparable evolution characterised by a minimum for the control condition NONE and

a maximum for the higher LODs (Figure 4.11).

A decisive effect of LODs was found (F(6,90) = 9.94, p < .001,BF10 > 10000) but with

no difference between the groups (BF01 = 4). Novices favoured FULL COMB and SENS

for experience and FULL GRAPH for comprehension. Experts chose the highest LODs for

experience and FULL COMB and FULL GRAPH for comprehension.

4.3.3.3 Discussion

4.3.3.3.1 LODs affect subjective comprehension . The interviews confirmed and ex-

tended the quantitative analyses. Despite the absence of effect of LODs on factual perception,

participants favoured levels FULL GRAPH and SENSORS for understanding the performance,

especially when the music got more complex with many fast changes in the sound. This sug-

gests that LODs influence the subjective comprehension of spectators, even if their factual

understanding is not improved. It also suggests that amplifying the gestures (SENSORS level)

might be more informative than displaying the activity of processes alone (PROC level).

4.3.3.3.2 Visual augmentations and expertise . Our study reveals interesting insights

on the nature of expertise in DMI spectators. Results of Block 1 showed that experts per-

ceivea higher contribution of the musician when novices perceive a higher contribution of the

computer. Also, experts put more trust in their personal representation of the interactions as

proven by their higher evaluation of the Bellotti-Fyans challenges.

This contrast is confirmed in Block 2 where only novices favoured the SENSORS LOD

over no augmentations for a better comprehension and experience (Fig. 4.11), as if experts

already had an internal representation of the interactions with the sensors and therefore did

not need that LOD.

Apart from SENSORS, both experts and novices mostly utilised FULL COMB when they

could choose their favourite LOD. But when they had to choose a LOD in order to better un-

derstand the interactions, experts equally used FULL COMB and FULL GRAPH when novices

massively favoured FULL GRAPH. As both groups scored poorly in the objective task in Block
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1, whatever the LOD, these preferences in LOD are to be taken as subjective beliefs in a

facilitation of understanding rather than a factual help.

4.3.3.3.3 Errors and virtuosity . The absence of effect of LODs on both the Accident

dimension (i.e. the feeling of being able to perceive a potential error) and the virtuosity ratings

underlines the crucial role of error perception in the emergence of a judgement of virtuosity

[93]. A solution to this issue could be inspired by music video games where the virtuosity is

materialised by screen indications of combos of successful moves. Such informative contents

are efficient and spectacular but imply the restriction of any improvisation or non-expected

techniques. Another solution would be to design LODs that inform on the virtuosity, such as

visualisations of input complexity or extra-ordinary values for controls and musical parameters.

4.3.3.3.4 LOD choice strategies Strong differences in the choice of favoured LODs at

the individual level were revealed by the data and refined by the interviews. When analysing

the answers of participants regarding how they would use the LODs in public performance, we

can distinguish 3 clear strategies:

- all or (almost) nothing: 4 participants claimed they would alternate between the

maximum LOD (or just start with it) in order to form a mental image of how the instrument

works (i.e. its capabilities) and then go back to no augmentations or to the SENSORS level,

in order to focus on the musician’s gestures.

- adapting to complexity / performance: 4 participants claimed they would use LODs

as a way to adapt to the complexity of the instrument or music, or change it depending on

the musician playing

- progression: 2 participants mentioned that their appreciation of LODs evolved over

time, the more complex ones becoming more enjoyable and accessible, so that they would end

up not going back to the lower LODs.

One must note than even within these strategies there are interpersonal variations, again

highlighting the utility of a controllable LOD on visual augmentations.

4.3.3.3.5 Summary In this section, we investigated the design of LODs in visual augmen-

tations and their effect on the audience experience. We also showed that experts perceive
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a greater contribution than novices despite similar scores for objective tasks. Both profiles

develop personalised approaches of LODs and we advocate for technology development that

include the possibility for spectator to change freely the LOD or turn it off. As future work,

we think that augmentations with LODs should be extended to other interfaces, e.g. gestural

controllers or graphical interfaces such as live-coding, and that the effect of aesthetic choices

should be investigated.

While our results provide useful insights, we believe the controlled experiment approach

that we took could be combined with in the wild study of performances.

4.4 Conclusion

In this chapter, we saw that controlled experiments in the lab can provide refined insights

on spectator experience. In particular, we showed significant contrasts in the efficiency of

pre-concert explanations and visual augmentations. We also contributed to clarify the role of

expertise of spectators and proposed the first controlled study, to our knowledge, that addresses

the impact of LODs in visual augmentations.

One of the striking aspects revealed by these two related studies is that experience seems

to mostly rely on subjective aspects. One might argue that the subjectivity of experience

does not require experimental evidence when we all have the intuition of a very personal

relation to music. But with these results, we highlight the crucial role of the subjective beliefs

in our perception capabilities in the experience of watching a musical performance. Even

when objective data show our rather low ability to decrypt musical gestures and the inner

mechanisms of DMIs during interactions, visual augmentations and expertise tend to provide

cues and background that constitute the subjective support of a greater experience.
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If you had a sign above every

studio door saying ‘This Studio

is a Musical Instrument’ it would

make such a different approach to

recording.

Brian Eno

5
Towards personalised augmentations of experience

Main contributions

- Conceptual pipeline for optimal augmentations

- Preliminary insights to support the continuous measurement of Attributed Agency through

grip force

The contribution of this chapter related to the pipeline was published in the proceedings

of the International Symposium on Computer Music Multidisciplinary Research (CMMR

2017) [36].
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We saw in the previous chapters that visual augmentations are an effective way to improve

the experience of spectators without constraining musicians to modify their interface. We also

demonstrated that the levels of detail (LODs) of visual augmentations can impact spectator

experience which led us to advocate for customisable setup where spectators can choose their

desired type of visual augmentations. To date, the selection of the type of augmentations and

the LOD relies on the active choice of the user from a limited range of augmentations.

In this chapter, we first present a conceptual pipeline that addresses the issue of

optimal augmentations in live performances. We complete this conceptual contribu-

tion with the study of a potential objective marker of Attributed Agency that could

integrate one of the modules of the pipeline.

5.1 PEANUT: a pipeline for spectator experience augmenta-

tions

In this section, we propose a conceptual pipeline that supports the autonomous gen-

eration of optimal visual augmentations based on a continuous evaluation of the fa-

miliarity of the audience. The process includes the extraction of data from the musical

interactions and the audience, the detection of perceptive gaps and the generation of specific

augmentations. To encode and process these information, we introduce a conceptual object:

the correspondence. While this pipeline remains conceptual, it was designed so that it could

be implemented by addressing the challenges described in 5.1.3.

Here is a scenario that we envision with our pipeline:

Patricia attends an electronic music concert. At the entrance, she is given a small device

equipped with physiological sensors (a choice of either a bracelet or a special glass that she

holds). During the concert, she has trouble understanding what is happening, in particular what

the musician’s action on the sound is. The device senses a change in a set of physiological

signals, that corresponds to a loss in familiarity, and sends the data to a server. Patricia

may also directly indicate her loss in familiarity with a graphical slider on an app on her

smartphone. Simultaneously, this server has been analysing the musician’s gestures, the flow

of data inside the instrument and the musical output. When it receives Patricia’s familiarity

signals, the server, with settings defined by the musician, selects the adequate augmentations

to be displayed. They aim at compensating for the familiarity disruption caused by the musical
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interaction context. Consequently, visual augmentations are displayed around the musician

either for Patricia alone when she watches the performance through her smartphone (e.g. with

video augmented-reality), or for the group of people around her using a mixed-reality display.

They provide information that improve her degree of familiarity, allowing her for example to

perceive the link between the musician’s gesture and the resulting sound, and to enjoy the

performance to a larger extent.

5.1.1 Correspondences.

In order to handle the heterogeneous data (physiological, behavioural, musical, visual, me-

chanical) associated with spectator experience, we introduce the notion of correspondence:

a conceptual object that stands as a digital multidimensional representation of a musical in-

teraction. It can be viewed as an initiative to imitate the internal model of spectators.

5.1.1.1 Properties

A correspondence associates several properties :

• musical output: audio

• gesture data: time series of 3D coordinates

• visual data: video of the movement

• control data : time series of sensor values

• Agent: author of the interaction. As we saw it in chapter 3, this property specifies the author

of the interaction. Indeed, interactions are not only produced by one musician but can be

triggered and mastered by another one in a collaborative performance or, more usually, by

autonomous prepared processes, e.g. automations or playlists.

5.1.1.2 Elements

Each property is subdivided in three elements: a raw format element, a semantic element, and

a classification element.

5.1.1.2.1 Raw format element The raw format element is a pointer to a collection of

related files. For instance, the raw element of the visual property of a clap correspondence is a

pointer to a collection of short videos showing a clap from different angles and velocities and
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the raw element of the audio property a pointer to a collection of short audio recordings of a

clap.

5.1.1.2.2 Semantic element The semantic element is composed of annotated descriptors

of the property. For our clap example, the semantic element of the visual property could list

obvious descriptors as ”hands”, ”clap”, ”applause”, ”brief” but also more precise descriptors

relative to specific taxonomies developed in the different analysis of gesture and sound.

The descriptors can be freely provided by the audience or taken from refined existing models

such as [33] or [112]. For instance, ”excitation gesture” or ”effective gesture” could be used

to populate the semantic element of the gesture property of a correspondence.

Interestingly, by holding descriptors for each property of a unique interaction (aka corre-

spondence), the semantic element offers the possibility to analyse the links between descriptors

from different properties by the analysis of their co-occurrence. Finally, looking forward to the

implementation, the processing of meaningful descriptors can rely on the strong foundation of

web semantics [12].

5.1.1.2.3 Classification element The classification element is dedicated to the classifica-

tion of the raw elements through machine learning methods and thus allows for the pairing of

close correspondences with respect to their different properties. To compute such a distance

between correspondences, multidimensional vectors can be used alongside more specific tech-

niques as neural networks, informed by an efficient semantic analysis thanks to the semantic

element of a given property.

5.1.1.3 Familiarity scores

In addition, correspondences hold a score for some familiarity dimensions: Attributed Agency,

consistency, exclusivity, instrumentality (See chapter 2 - 2.2.1.6 for details).

For example, two correspondences with the same musical result, e.g. the fade-in of an audio

loop, can have different gesture and control properties depending on the mapping chosen for

the DMI. While a continuous gesture on a fader would have a high score (meaning, the most

natural way to fade) for the consistency dimension, a discrete tap on a pad would have a low

one, since the effect would no be consistent with the cause for a spectator, e.g. discrete input

and continuous output.
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This score of familiarity held by each correspondence plays a central role in our approach

for an increase of familiarity as it allows for sorting correspondences from obvious to abstruse

for a given audience. It is computed performance after performance from error estimation

between the predicted score and the measures extracted from the audience.

5.1.2 The pipeline
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Figure 5.1: The proposed pipeline with its main modules and data flows

Our envisioned pipeline (Fig 5.1) is composed of five modules that handle the extraction

of data from the musician and their instrument (EXT M), the extraction of physiological and

subjective data from the audience (EXT A), the processing of the data (IA) and the selection

of fitting augmentations (AUG ) based on a database of correspondences (DB C ).

The pipeline is used at three different moments: before, during and after a performance.

5.1.2.0.1 Before Before the performance, correspondences, coming from a shared online

database, or recorded specifically for the instrument, are saved in the DB C module.
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5.1.2.0.2 During 1 During the performance, IA receives musical interaction data ex-

tracted by EXT M. This data consists of both dynamic values such as gestural parameters,

audio features and control values. Besides, physical (position of gestures and sensors), logical

(tracks, effects, synthesizers, ...) and structural information about the musical interaction are

directed to the AUG module. 2 IA encode these signals into correspondence objects. 3

Simultaneously, IA receives the familiarity evaluation (with the identification of the sensed

individual or group) from EXT A. If the familiarity evaluation is low, 4 IA finds in DB C

correspondences similar to the ongoing one, and select the familiarity dimensions that need to

be compensated depending on their scores in these. IA then sends AUG the data required for

the augmentation: live correspondences, associated signals from EXT M with dynamic and

structural data and identification of the source of the familiarity evaluation (in order to display

the augmentations only to the correct person or group). 5 AUG creates (or selects if it al-

ready exists) the augmentation that matches the received structural data, for example a visual

augmented-reality link between the physical position of a sensor and a virtual representation

of an audio track. 6 Augmentations are then connected to EXT M and listen to the signals

required to update the augmentation, e.g. control values for the sensor, loudness of the track.

5.1.2.0.3 After After the performance, the familiarity extracted from the audience can be

reused to refine the scores for the familiarity dimensions in each detected correspondence of

DB C .

5.1.3 Modules

5.1.3.1 Database of correspondences (DB C).

DB C manages all pre-existing correspondences. These can be generic, or specific to an

instrument or performance. It receives queries from IA to select correspondences matching the

ones detected during the performance.

5.1.3.1.1 Web architecture of databases A very promising approach in dealing with

heterogeneous data is the use of databases. Even if the efficiency of machine learning and

analysis tools is still evolving, a numerous amount of initiatives, especially in analysis of emotion

(DEAP[124], RECOLA[169], EATMINT [42]) but also in music-related actions [91], contribute

to shared databases that compile multimodal and synchronized experimental data.
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The main goal of these databases is to predict complex and abstract states, e.g. the

emotional state of an individual, thanks to the analysis of their physiological and behavioural

signals such as face expression, electrodermal activity or heart rate variation. Most of the

existing databases are composed of 15 to 30 entries referencing data of diversified nature.

5.1.3.1.2 Web tools to gather data To allow the gathering of a more relevant amount

of cross data, we first need to facilitate the indexing thanks to the more and more intuitive

and effective front-end technologies of the web. We propose to develop a web interface that

could provide the specific tools to aggregate the data required to constitute the properties of

a correspondence. A typical correspondence would require a short video footage of a gesture,

the motion capture of this gesture, sensor value and audio output of the instrument. Tags

could also be manually added for each of these properties.

The interface could be accessible from an open web platform where artists as well as

researchers could populate the database, to constitute their own correspondences and therefore

optimize their pipeline with more personal choices of gestures, mappings or sound processes.

5.1.3.1.3 Online evaluation sessions The same online platform can then be used for

crowdsourced online evaluation sessions in which correspondences are exposed to participants

with different levels of expertise. Their task is to indicate their understanding, using a ques-

tionnaire along the familiarity dimensions, and tag the correspondences.

5.1.3.2 Extraction of the musician’s interactions (EXT M).

As explained in Section 5.1.2, EXT M extracts data from the instrument and musician’s gesture

which is then sent to IA in order to be aggregated into live correspondences.

5.1.3.2.1 Large range of interest variables In the way we extracted data from musical

interaction in our studies (Chapter 4), EXT M extracts sensors states, mapping values as well

as musical result of the musician interactions. At the musician level, EXT M extracts the

control gestures, the body movements and physiological signals. In addition to these signals,

structural information needs to be provided for further use in the augmentations, such as the

position of the physical sensors of the DMI and the position of the musician’s hands, the list

of tracks, effects or other sound processes with their names, or the mappings between sensors

and sound parameters. While some of these obviously need to be defined by the musician
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manually, or sensed by devices external to the instrument, others can be extracted through a

trans-disciplinary approach.

5.1.3.2.2 Current developments Regarding the instrument input, research on gesture

recognition, especially concerning hand gestures as demonstrated by Rautaray & Agrawal

[162], can be used to identify the performed musical gestures. Regarding the instrument

output, research in music information retrieval (MIR) provides tools for segmenting music

from the audio signal only [159] using spectral, tonal, rhythmical descriptors and methods.

Finally, the extraction can be facilitated by a multimodal approach, similarly to techniques

developed for video indexing [188], as some events might appear clearer on one channel than

on others. For example, control data might inform on the temporal boundaries of a change in

the sound that can then be analysed

5.1.3.2.3 Challenges We identify two main challenges for the implementation of this mod-

ule.

The first challenge is the access to the data from the DMIs. In fact, while extraction from

the audio signal provides many features that can be used to detect correspondences, it might

not be enough for precise analysis. In order to access pre-mappings and post-mappings data, to

differentiate between manual and automated changes and to analyse the output of individual

tracks or other sound processes, one can not rely solely on the DMIs inputs and outputs, i.e.

additional software components will need to be integrated.

In most DMIs, plug-ins can be added at various stages of the instrument. However,

the API might not provide enough information on the instrument to a single plugin. For

example, one plugin per track might be needed to access and send the audio output features

for each separately. The integration of EXT M will be simpler if DMIs are built using patching

environments such as PureData or Max/MSP, where the musician has more control over the

architecture of the instruments.

The second challenge is to combine detailed but costly and slow analysis of features for

the detection of correspondences with maximum accuracy, and fast but less accurate analysis

of features for the update of augmentations in AUG .
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5.1.3.3 Extraction of the audience familiarity (EXT A).

The role of this module is to extract the audience subjective and objective information in order

to inform IA.

We saw in chapter chapter 1 that familiarity is one of the key aspects of the experience of

live music relies on multiple underlying mechanisms. Therefore, to initiate ecological (i.e. out

of the lab, in “real life”) measurements of physiological signals, we propose a dual methodology

to extract the familiarity of the audience.

5.1.3.3.1 Subjective assessment of familiarity First, we base the subjective assessment

on a familiarity application for mobile phone. Its main purpose is to supply IA with data about

the ongoing familiarity of the audience, from a graphical familiarity slider that spectators

activate.

As other authors [6][19], we believe this continuous survey could be a good methodological

answer to the reservations we exposed about questionnaires after the performance.

5.1.3.3.2 Objective assessment of familiarity The second part of the extraction relies

on physiological signals. Neuroscience studies show that the expertise, a key component of

familiarity, influences the perception of action [34]. Those findings, applied to music expertise,

may lead to a better understanding of its role in the live music experience. By measuring

the peripheral signals, we aim at discovering potential patterns that could correlate with the

subjective data we extract. Widely used in the emotion studies, and rather suitable to extract

in natural condition, several signals are particularly interesting in our musical context: Heart

rate variability [178], electrodermal activity [182], oculometry (eye tracking + pupillometry)

and the grip force that we will develop in the next part of this chapter (Section 5.2). The

complementary analysis of extracted features of such signals already gave interesting result

in the emotion classification by machine learning algorithms [122] and need to be further

extended in music experience studies. Moreover, these signals can already be acquired by

wearable devices and the quantified self movement [192] will surely provide more accurate and

affordable devices in the near future.

5.1.3.4 Integration and Analysis (IA).

IA is the central hub that connects to all the other modules. Its role is to:
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• compute the live correspondences with the data extracted

• match the computed live correspondence with a correspondence from the database to cal-

culate the familiarity dimensions that need to be augmented;

• supply the AUG module with the information needed for the relevant augmentation selection.

5.1.3.4.1 Classification support To fulfil these tasks, the module can rely on the classi-

fication element of each property of correspondences. The classification element is a machine

learning model dedicated to the classification of raw data. This model is pre-computed with

the raw files registered in the correspondence. Its goal is to discriminate new stimuli and detect

those who match with the recorded one. Considering the heterogeneity of the modalities, each

property might require a specific machine learning model and specific extracted features.

For example, MIR descriptors for a sound element and a deep convolutional network for

picture classification. The main idea is to use the set of models as a global digital representation

of the correspondence that can either be projected, depending of the context, on a single and

more easy to handle property or be represented as a multidimensional vector that allows

similarity comparison of whole correspondences (the matching process).

Considering the variety of data and processes it has to handle, this module needs to be

regularly updated with recent findings in signal processing, machine learning or movement

models. Without a strongly modular structure of the available tools that the pipeline has at

its disposal, the framework may not be able to evolve and thereby join a long list of deprecated

initiatives.

5.1.3.5 Augmentation (AUG).

This module manages both a database of available augmentations and a set of active ones.

5.1.3.5.1 Selection When a correspondence needs to be augmented, AUG receives the

data required to create a new or select an existing augmentation, such as the physical position

of the gesture and sensors and logical components of the instruments, the familiarity dimensions

that need to be compensated, the destination of the augmentation (individual or group) and

the data from EXT M that the augmentation should listen to. The augmentations are selected

from a database of augmentations designed to compensate the various dimensions of familiarity.
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5.1.3.5.2 Challenges A first challenge is the creation of a framework that allows one to

design augmentations according to the specific dimensions of familiarity that they compensate.

Rules will need to be defined so that one can adapt an augmentation to the artistic specificity

of a particular performance.

A second challenge is the design of augmentations that provide just enough content to fill

the multimodal gap without distracting the audience from the musical performance because

of a too heavy cognitive load.

We believe that the development of the AUG module could start from the taxonomy we

introduced in this thesis (chapter 3).

5.1.4 Synthesis

In this section, we presented a conceptual pipeline for augmenting familiarity of the audience

with Digital Musical Instruments and reviewed associated research results and challenges. We

introduced the notion of correspondence as an initiative to mimic the internal representations

spectators have of a musical interaction. Integrating data from musicians, instruments and

audience, correspondences allow for the selection of optimal augmentations to target specific

perceptive gaps and improve the familiarity of spectators with the ongoing interactions. Among

the presented modules and the central role of artificial intelligence, the continuous measurement

of electrophysiological markers of familiarity components like Attributed Agency is crucial.

In the next section, we will introduce a first contribution to the practical development of

this conceptual pipeline with a study of a potential objective marker of Attributed Agency.
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5.2 Measuring the attributed agency through GFv

The measurement of objective markers of Attributed Agency is a great source of innovations

in terms of spectator experience. In this section, we build on the embodiment theory

and previous related studies to proposea hypothesis: watching a musical performance

triggers unconscious action simulation mechanisms whose amplitude could be linked

to the level of Attributed Agency the observers perceive from a musical interaction

with Digital Musical Instruments (DMIs).

We saw in chapter 1 that expectation [101] is one the components of music experience.

Furthermore, we know from the work of neuropsychologists like Jeannerod [108] or Grafton [92]

that the motor system is involved in the prediction of goal-directed actions. Extending these

conclusions, a recent study by Blampain et al. shows that the action simulation can be tracked

through the GFv (GFv) exerted by a participant holding a sensor device in his dominant hand

while watching or mentally visualising an action [23], in that case a hand crushing a strawberry

with a slap (Fig. 5.2).

Figure 5.2: Among the interactions studied in Blampain et al. [23], High Intensity actions like
a hand crushing a strawberry trigger the largest GFv. From [23]

From this background, we propose a grip force experimentation in the context of musi-

cal interactions. With this methodological transposition from previous studies to our musical

context, we want to explore the efficiency of the setup to study the perception of interaction

parameters. The results presented in this section come from a preliminary study on the multi-

modality of musical interactions and the role of visual augmentations. As our sample size for

this first exploration is rather small (n=5), we will not expose nor discuss too subtle aspects.
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We invite the reader to consider this material as a first glance to potential methodological

benefits in the objective measurement of spectator experience.

5.2.1 The study

5.2.1.1 Participants

Five participants were recruited (3 M, 2 F, 29.9 y.o. ±6.6). One is a confirmed electronic

musician, the others do not have extensive musical education or practice. Before starting the

experiment participants were informed about the overall course of the experiment and about

their rights and conditions to access and remove their personal data. After having signed an

informed consent they answered a short questionnaire about their musical skills.

The exclusion criteria were hearing and vision impairments. After control, no participants

were excluded.

5.2.1.2 Stimuli

5.2.1.2.1 Unit Perceived Units The stimuli1used in this study are brief (4s) single-gesture

musical interactions that we call Unit Perceived Interactions (UPIs, see chapter 22.2.2 for more

details). To address the grip force response to the multimodality of musical interactions, we

used audio only, video only and audiovisual UPIs. The audio and video only stimuli were ex-

ported from the audiovisual UPIs. The whole set includes: 18 stimuli, 7 audiovisual interactions

(AV), 6 video only interactions (V) and 5 audio footages (A).

5.2.1.2.2 Transparency and Visual augmentations We used stimuli with variable trans-

parency (i.e. ”natural” feel of the interaction, see chapter 1 - 1.3.2.2). The most transparent

interaction is a single key stroke on a piano keyboard, the least transparent interaction is a

circular mid-air gesture over a tilted acoustic guitar (Fig. 5.3b).

To modulate the transparency of an interaction with a same instrument, we modified the

parameter controlled by the musician. For instance, in the interaction with the MIDI controller

NanoKorg, the musician pushes on of its buttons. In the transparent condition, the gesture

triggers a sound with the push and the sound stops when the musician releases the button.

In the non transparent condition, a continuous sound can be heard from the beginning of

the stimulus (autonomous process). When the musician pushes the button a light parameter
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(a) The Nanokorg MIDI controller and a visual aug-
mentation of the interaction.

(b) Mid-air gesture over a guitar with visual aug-
mentation

Figure 5.3

alteration is applied to the autonomous process and stops when the musician releases the

button.

To explore the grip force response to augmented interactions, the less transparent interac-

tions could be displayed with or without visual augmentations.

5.2.1.3 Tasks

The tasks mainly consist in watching videos or listening to brief audio sequences while holding

a grip force sensor (Fig. 5.4). The experiment is divided in two blocks with the same stimuli

in each block.

5.2.1.3.1 Passive and active tasks In the first block, participants just have to passively

watch or listen to stimuli while holding a grip force sensor. In the second block, in addition

to holding the sensor, they are asked to mentally visualise the ongoing interaction. For audio

stimuli, the instruction is to imagine the gesture that could produce the sound. For video

stimuli, the instruction is to visualise the interaction without its audio outcome. For audiovisual

stimuli, the instruction is to visualise the interaction and its audio outcome.

5.2.1.3.2 Trials Before the beginning of a trial, participants are instructed to take a few

seconds to position their arm, holding the grip force sensor until the experimenter calibrates

their baseline grip force. A trial consists in the exposition of a stimulus, five times in a row,

followed by a series of questions. We repeat the stimuli to compensate the potential surprise

of the first exposition and gather cumulative data to reinforce further analyses. After each
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trial, participants can lay the sensor on the table to relax their hand.

5.2.1.3.3 Blocks A block consists in the successive presentation of all the trials from

a same modality. Audio (A) only and video only (V) trials were randomly balanced but the

audiovisual trials (AV) always occurred in the third position, leading to two possible sequences,

A - V - AV or V - A - AV.

The first block contains the passive tasks, the second block the mental simulation tasks.

Figure 5.4: Top left - The grip force sensor is made of two squared metal surfaces enclosing
a pressure sensor. Top right - A circle indicating the position of the thumb. Bottom - The
device is held between the thumb and two fingers (index and middle fingers)

1All stimuli available here: https://o0c.eu/AA0
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5.2.2 Results

5.2.2.1 Signal filter

We followed the data preparation procedure proposed by Blampain et al.[23] and applied the

same thresholds and algorithms for artefacts filters. The baseline was tested and no significant

difference was observed between modalities (audio-only, video-only, audio-video ; F=.289,

p=0.89) indicating a proper calibration and the absence of shifting in the data.

5.2.2.2 Fatigue

We ignored and did not assess the fatigue caused by the experiment as previous and more

engaging study showed no particular fatigue. Indeed, in Blampain et al. [23], participants had

to hold the sensor 3 min per block before resting. Authors assessed the fatigue score and no

variation throughout the whole experiment was detected. In this study, participants had to

hold the sensor during a maximum of calibration + 5 repetitions x 4s stimulus ≈ 25 seconds

in the exact same position than documented before releasing the device.

5.2.2.3 Global overview

As depicted on Fig. 5.5a, the grip force variations (GFv) we measured show an increase

pressure shortly after the beginning of the interaction confirming the reproduction of the main

outcome observed in Blampain’s study (Fig. 5.5b). Please note that on our graph, t=0 ms

corresponds to the moment when the musician begins their movement while Blampain’s data

are aligned on the moment the hand touches the fruit.

5.2.2.4 Time normalisation

Regarding our small sample size (n=5), we do not present too subtle comparisons as they

require cumulative data for each condition.

Besides, the UPIs we chose as stimuli do not have the exact same timing sequence. They

are all composed of the same successive events but these events do not last exactly the same

duration. In order to gather as much signal as possible from these interactions with variable

durations, we normalised the data between the events common to each stimulus:

• STIM START TIME: beginning of the stimuli, the musician is in still position

• MovStartTime: initiation of the musician’s movement
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• MusicianTrigStartTime: the musician starts to trigger audio outcomes

• MusicianTrigStartTime: the musician stops to trigger audio outcomes

• MovEndTime: end of the musician’s movement, return to still position

5.2.2.5 Impact of transparency

With time normalisation, we have rather sufficient material for a specific analysis that contrasts

the GFv between transparent and not transparent interactions.

On Figure 5.6, our preliminary results 2indicate that during the time window when the

musician actually triggers sound [MusicianTrigStartTime - MusicianTrigStopTime], the GFv

is higher for transparent interactions. Besides, we observe a delay of the peak of GFv in

non transparent interactions that could also be less important. In the last sequence between

[MusicianTrigStopTime] and the end of the movement [MovEndTime], the average GFv looks

higher for non transparent interactions.

5.2.2.6 Impact of visual augmentations

On Figure 5.7, we compare transparent, non transparent, and augmented non transparent

interactions with a MIDI controller (Fig. 5.3a). Our data seem to indicate a gradual incidence

on GFv with a highest GFv for transparent interactions, a lowest GFv for non transparent

interactions and a intermediate level for non transparent interactions augmented with visual

augmentations.

5.2.2.7 Subjective reports

The results of the questionnaires will be addressed in the upcoming complete study.

5.2.3 Discussion

5.2.3.1 Transposition success

With this exploratory study, we confirm the relevancy of a transposition of the grip force

paradigm to musical interactions. Our results from a small sample size show that grip force

variations (GFv) appear to be an interesting marker for the study of spectator experience. In

particular, we observed higher GFv for transparent interactions compared to less transparent

2The noisy parts are due to a larger difference of duration between the original sequences. The spiky envelope
could be explained by the fact that longer sequences are shrink to fit into small spans. Future development may
help smooth the normalised data.
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interactions with autonomous processes which tends to indicate a link between Attributed

Agency and the GFv. This primary interpretation fits well with the embodied theory of music

and the parallel activation of the motor system during the perception of musical interactions.

When perceived cues suffice for the observers to build a reliable internal model of the inter-

action, like in transparent conditions, the motor simulation is amplified and triggers larger

GFv.

5.2.3.2 Research leads

5.2.3.2.1 Larger protocol The present study and the exploitable data it provides is a

clear call for further research. In particular, the protocol should be now deployed with a larger

sample size to gather cumulative data and allow for refined analyses. For instance, contrasts

in GFv could be used to analyse the respective impact of interaction parameters (control

interface,mapping, ...) or to complete our knowledge on the role of expertise in spectator

experience. In particular, it would be insightful to assess the objective consequences of the

stronger subjective experience regularly reported by experts in the studies presented in this

thesis (See chapter 4).

5.2.3.2.2 Ecological data Future technological improvements in sensors can open the way

for more ecological protocols based on grip force measurements. For instance, miniaturised

sensors could be placed around the body of a reusable glass equipped with a wireless transmitter

in the base, like the one used in Canada during Hockey matches. Spectators of a concert could

hold their glass during the concert and grip force data could be transmitted to a pipeline like

the one we presented in this chapter and be used to adapt visual augmentations or trigger

haptic augmentations.

5.2.4 Synthesis

With these preliminary results, we confirmed the potential methodological benefits of the grip

force paradigm in the study of the perception of musical interactions. In particular, with

greater sample size, the grip force setup can offer methodological opportunities to objectively

characterize aspects of the experience of spectators of performances with DMIs and opens the

way to more ecological experiments.
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5.3 Conclusion

In this chapter, we presented our contributions to improve the experience of spectators of

digital music performances. In particular, we exposed a conceptual pipeline that supports the

autonomous generation of optimal visual augmentations based on a continuous evaluation of

the familiarity of the audience. We presented the correspondences, a conceptual object that

aims at imitating the spectators internal model. We also introduced a transposition of the

grip force paradigm to the study of musical interactions. This preliminary experiment opens

the way for continuous monitoring of Attributed Agency and is a practical contribution to our

conceptual pipeline.
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(a) Taken globally, our data reproduce the results from Blampain et al. [23]. Here, the data are aligned
on the beginning of the musician’s movement, so t = 0ms corresponds to the moment the musician
initiates their movement.

(b) From Blampain et al [23], the darker shape is the GFv of observers watching High intensity action
videos like a strawberry crushed by a hand slap. Contrary to 5.5a, 0 is the moment when the hand
touches the object.

Figure 5.5: Grip force variations in mN for spectators watching or mentally visualising inter-
actions
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Figure 5.6: Time normalised GFv. To cope with unsynchronised interactions, the data on this
graph are normalised along temporal sequences delimited by events common to all interactions.

Figure 5.7: GFv for interactions with a NanoKorg MIDI controller. These preliminary data seem
to indicate a gradual incidence of transparency with a high level for transparent interactions,
a low level for non transparent interactions and an intermediate level for non transparent
interactions augmented with visual augmentations.
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Within a few years a simple and inexpensive device,

readily carried about, will enable one to receive on

land or sea the principal news, to hear a speech,

a lecture, a song or play of a musical instrument,

conveyed from any other region of the globe.

Nikola Tesla (1905)

6
Conclusion & perspectives

6.1 Conclusion

In this work, we presented our research on the experience of spectators of musical perfor-

mances with digital instruments. The multidisciplinary nature of this problematic led us to

adopt methodological and development resources from both computer and cognitive sciences.

Specifically, the controlled paradigm often used in cognitive psychology gave us a strong exper-

imental foundation to approach the sensitive study of human experience. Tools and methods

from the field of Computer Science and more specifically HCI allowed us to design finely paired

stimuli with subtle contrasts to extract details from the global experience of spectators. From

our point of view, we could hardly have obtained most of the insights presented in this doc-

ument without the help of this compound approach. Within this framework, we aimed at

contributing to the definition, the measurement and the improvement of spectator experience.

6.1.1 Capturing the experience

Trying to objectivise a subjective experience is not an easy catch. To capture the elusive phe-

nomenon of spectator experience, we proposed two complementary decompositions of a global

variable into components easier to handle in experimental protocols. First, we presented and

assessed a model of the familiarity spectators have of an instrument and confirmed the major
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role of Attributed Agency. In a second initiative, we decomposed the global experience in

three components, the subjective experience, the objective comprehension and the subjective

comprehension. We showed that the controlled study of these three different aspects of spec-

tator experience permits to gather complementary data to the one usually reported from field

studies.

6.1.1.0.1 Subjective comprehension, internal model and attributed agency In par-

ticular, we found that the items targetting the subjective comprehension deliver a good eval-

uation of the confidence observers have in their internal model of the ongoing interactions.

Interestingly, while not correlated with better objective abilities in the understanding of in-

teractions, this confidence is correlated to the perception of a greater contribution of the

musician (attributed agency) in musical interactions involving autonomous processes. In other

words, spectators do not need to objectively understand the musical interactions to perceive

the contribution of the musician.

We confirmed this interpretation by addressing the role of expertise in a controlled study

and found that, compared to novices, experts do perceive a higher attributed agency, report

higher subjective comprehension evaluations but do not score better than novices in objective

comprehension tasks. These concordant results strongly suggest that Attributed Agency in a

music performance context is a feeling mostly influenced by subjective considerations like the

trust in one’s internal model of interactions rather than an objective ability to perceive discreet

or fast details of the interactions. These findings are in line with the latest models of agency

[193] as they integrate both pre (expertise and personal belief in one’s internal model of the

interactions) and postdictive (consistency and exclusivity evaluation) components.

Finally, to extend the range of potential factors of the experience, we proposed in section

4.2.3.3 to add a new evaluation criteria to the Bellotti-Fyans challenges: the Association. This

property aims at evaluating digital systems with respect to their capacity to give the audience

the perception of the contribution of agents (musicians) and the one of autonomous processes.

6.1.2 Improving the experience

Among the Spectator Experience Augmentation Techniques (SEATs) reported in the litera-

ture, we chose to confront and detail the efficiency of visual augmentations. In particular,

we showed that when DMI performances are presented with visual augmentations, spectators
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report a greater subjective experience, and a higher subjective comprehension. Visual augmen-

tations also lead participants to think that the musician contributes more than autonomous

processes to the global performance, even when objectively autonomous processes contribute

more than the musician. We also presented evidence of the deleterious impact of disruptive

visual augmentations on the perceived contribution of the musician. Thus, in the context

of electronic music performances where doubts about the musician contribution may appear,

visual augmentations prove their efficiency at restoring the trust of spectators in the musicians

and to reverse the doubt in their favour.

To complete our approach, we documented the impact of the levels of detail (LODs) of

visual augmentations as well as the role of the expertise of spectators. Our analyses confirmed

the positive role of visual augmentations on the subjective comprehension and showed that

the efficiency of LODs was modulated by expertise. When novices can enjoy a relatively low

LOD, experts favour more exclusively richer visual representations. Thanks to complementary

interviews, we gathered more detailed feedback that make us advocate for a customisable use

of visual augmentations to allow spectators to freely modify, during the performance, the level

of augmentations they need, if any.

6.1.2.0.1 A pipeline for optimal augmentations In extension to our works on SEATs,

we presented a conceptual pipeline that supports the selection and the diffusion of optimal

augmentations. The modular architecture of the pipeline allows the integration of multiple

factors to select the most adapted augmentations: a module is dedicated to the extraction of

information coming from the musician and their instrument, another extracts from the audi-

ence electrophysiological data as well as subjective feedbacks while a third module integrates

these information into integrative objects that we call correspondences. A correspondence is

a conceptual object holding the parameters of an interaction and the consequent audience

responses. It is designed to imitate the internal models of spectators and reveal potential

perceptive issues in the interactions. Its evaluation allows the pipeline to select the optimal

augmentation for a target audience. The implementation of this pipeline requires several ad-

vances, especially in terms of measurement device, electrophysiological signals interpretation,

computing power and machine learning. In particular, increasing support from both cognitive

neurosciences [123, 127] and artificial intelligence [84] communities invites us to consider the

Bayesian modelling as a relevant implementation approach for correspondences.
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6.1.3 Facilitating future research

Finally, we aimed at facilitating future research by proposing a taxonomy of the SEATs, and

by following Open Science recommendations.

From the SEATs reported in the literature, we extracted recurring features and structured

them in a taxonomy. Its eleven dimensions and formal descriptors aim at clarifying the reviews

for future research and can also be used as a tool to refine the analysis of the efficiency of

SEATs. Indeed, identified descriptors can be isolated and individually manipulated to study

their respective impact on spectator experience. Also, to permit extra contributions to our

first database of SEATs, we built a website and joined discussions in the NIME community.

To complete the methodological contribution for future research, we think that the re-

productibility of the experiments and data sharing are worth a particular interest. In this

document, we presented the pragmatic benefits of the Open Science recommendations and

the use of Bayesian inferences in our statistical analyses. We believe that the generalisation of

these mutualisation practices, alongside with initiatives for a greater transparency of the data,

are essential to produce better studies and stronger interpretations1.

1At the time those words were written, the scientific world is shaken by a trust crisis in the context of the
covid19 pandemic and the Lancet just retracted a paper due to doubts on the ”veracity of the primary data
sources” by the co-authors themselves.
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6.2 Perspectives

6.2.1 Evaluating the experience in ecological contexts

The research conducted in this work was realised in a lab in order to control the different

conditions, minimize the random variables related to the environment and gather objectifiable

data. Yet, these conditions are far from the natural environment of music performances that

are the concert halls. We do integrate in our approach that a not negligible part of the

concert experience is missing in too constrained protocols. One solution to keep the best of

the two worlds, lab and field, could be the continuous measurement of objective signals like

electrophysiological markers directly in the concert hall.

The preliminary results we obtained with the analysis of the grip-force signal (see chapter

5.1.4 for details) are promising in the sense that they seem to reproduce, with musical interac-

tion stimuli, the ones obtained in previous psychophysics studies. More interestingly, we have

preliminary data that show a tendency for intermediate grip force variations for non transparent

interactions with visual augmentations between highest values for transparent interactions and

lowest values for non transparent interactions without visual augmentations. From this basis,

there are many interesting questions and the expertise is one of the most intriguing.

Specifically, we saw in chapter 4 that experts do not score higher than novices in objective

tasks about interactions with Digital Musical Instruments (DMIs). This indicates that experts

and novices both develop an imperfect inner simulation of the interactions. However, we saw

that experts do report a better subjective comprehension than novices. What would be the

consequences on grip force of similar imperfect representations but supported with a higher

confidence ? If a difference between novices and experts could be observed in the grip force

pattern, the interpretation of the influence of non physical considerations on premotor signals

(at the origin of the grip force variations) could be interesting to confront.

6.2.2 The augmenter

A part of this work is dedicated to finding solutions to make the audience feel more aware

of what is going on on stage during digital music performances. The extra mediation of

visual augmentations to make more transparent interactions already mediated by technology

may seem redundant. One may ask, why not explore a mediation that could suit both the

musicians and the audience ? This question may find an answer thanks to cumulative data
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gathered on the subjective comprehension. Throughout the thesis, the idea that spectators are

more influenced by their inner representations than the actual objective reality of an interaction

was strengthened. While this potential mismatch between perception and reality is a common

phenomena well known to illusionists and neuroscientists, here we have the possibility to infer

the role of the augmentations in the constitution of more reliable inner representations.

In the diversity of potential representations of a digital musical interaction, the ones expert

observers can build may have a greater similarity with the ones from the musicians. From our

data, it seems that they do not. Expert observers did not score much higher than novices

in objective tasks. Rather, they showed a greater confidence in their inner representations

and that factor seems to partially explain the better experience that they reported. This

point makes us think that the role of SEATs may not be only to make the interactions more

objectively understandable. They should not leave behind this role of a facilitation of the

objective comprehension, but they should especially embed cues that contribute to the sub-

jective comprehension, even if these cues are contradictory with objective cues. We saw it in

our studies with the preference of a rather balanced LOD compared to fully descriptive visual

augmentations. In this context, the cognitive overload should also play a modulative role.

To sum up, techniques to augment the experience of spectators should deliver a subtle

ratio of objective and subjective cues and should also consider the audience direct reactions.

Such a sensitive role is not a purely technical role any more. It requires to integrate a lot of

information and to ”feel” what should be the proper way to represent the ongoing interactions.

For these reasons we think there is place on stage for one more artist, the augmenter.

The augmenter could have access to every processes running on stage and could trigger

precompiled as well as live visual or haptic augmentations. From the evaluations of the effi-

ciency of the SEATs on identified aspects of the interactions, the augmenter could act as an

augmentations conductor and compose with the direct inputs from the musicians instrument

and connect them to banks of augmentations to emphasize parts of the interactions. On the

contrary the augmenter can leave the mystery on some parts, or even disturb the audience per-

ception on purpose with disruptive augmentations. As many artistic activities, the augmenter

would require training to reach the level of precision and virtuosity to personify (per-sonify ?)

the artistic intentions of the musicians. Compared to the VJs whose role is to illustrate the

music with rather exclusively graphical considerations, the augmenter performs as a human

mediation between digital systems and human agents to reveal the virtuosity of the musicians
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and the expressiveness of instruments.

6.2.3 Transposition to agency

The Attributed Agency is a cognitive concept that helped us apprehend a facet of the spectator

experience. Epistemologically it is also a transposition of the concept of agency from which

we also transposed the decomposition (priority, exclusivity and consistency) to initiate our first

models of the spectator experience. We now propose to transpose back what we learned from

the Attributed Agency to provide insights that may help the comprehension of agency issues,

inter alia, for pathological public.

We saw in this work the correlation between high scores in subjective comprehension and

the perception of a greater contribution of the musician in interactions where autonomous

processes were also engaged. By transposing the perception of the control that someone else

has over a device to the perception of one’s own control over the environment (agency), we

can expose potentially interesting parallels. Thus, with the transposition, the musician of the

Attributed Agency model becomes one self (free will), the instrument becomes one’s own body

and the music the desired outcome of an action. Some of the Bellotti-Fyans challenges can

then be adapted to characterise the spread of an agency disorder with questions like:

• Attention: I can feel when my body is responding to my will and when it is not.

• Action: I can feel when I’m controlling my body and when I am not.

• Alignment: I can feel when my body is properly functioning and when it is not.

• Accident: I can feel when I made a bad choice or when my body did something wrong.

• Association: I know the contribution of my will and the one of autonomous processes in my

body.

From a refined diagnosis, the use of visual augmentations in wearable device like smart glasses

could also be useful to people with agency disorder. How should we augment the environment

to reveal the consequences of a behaviour ?

Beyond pathological contexts, do we not, as citizens, need augmentations to be more aware

of the consequences of our actions at a local and global scale ? What would be our behaviour

if we could better distinguish our individual contribution from the other’s as our actions are

often dissolved in a noisy effusion of apparently disconnected micro movements. What if art
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could help us in this lack of perception about the world and our relationship with it?

We believe that artists are part of the crucial augmentations that society needs to embrace

essential human questions. By helping musicians to better share with spectators, by revealing

to the audience their intense link with the art they produce, hopefully we help the artists give

us a better perception of the connections between our behaviour and its consequences on the

harmony of the world.
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Appendices

A Profile questions

Below are the questions asked before each experiment to gather information about the partici-

pants expertise and cultural background. Note: all questions were expressed in FRENCH.

A.1 Exclusion controls

Before each experiment, we controlled that participants had no sight or hearing impairment.

A.1.1 Sight

”Do you need a visual correction ?” (y/n)

[ if yes ] ”Do you have it right now ?” (y/n)

[ if no ] Exclusion

A.1.2 Hearing

• On a scale from 1 to 5, what is the quality of your hearing ? (5 is very good)

(If you are equipped with a hearing aid, indicate 3)”

• The participant must click a button on the screen and a low tone sound is played

”Choose the correct answer. The sound played is rather:” (Low tone/ High tone/ Neutral

tone/ No sound)

[ If bad answer or no sound ] Exclusion

A.2 Digital technology knowledge

• ”Do you follow the news about digital technologies ?” (yes regularly/from time to time/never)

[If yes regularly/from time to time] ”What is the most recent innovation you have heard

about ?”

• ”Do you know theses devices ? Briefly describe their main functionality. Leave an empty

answer if you do not know the device.” (See figure below)
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Figure 1: Examples of digital devices for the evaluation of digital technologies knowledge.

A.3 Music and digital performances expertise

• ”Do you play music ?” (y/n)

[ If no ] End of music practice questions

• ”How many years of music practice do you have ?”

• ”How many years of electronic music practice do you have ?”

• ”Do you use graphical interfaces for playing music ?”

• ”Do you use control surfaces for playing music ?”

• ”In average, how many times a year do you attend a electronic music concert ?”
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B Web study survey

B.1 Questions on Familiarity

FAMILIARITY
This musical control is clear, obvisous.
Overall, I find this interaction rather familiar, natural
I have di culties understanding this video, it’s not so clear.
The ongoing action in the video is not clear, not obvious.

CONSISTENCY
This is the right gesture to use for  this kind of sonic interaction.
Do you find the sound consistent with the musician’s gestures ?
The sound is consistent with the intention of the musician.
The sound is NOT consistent with the intention of the musician.
For the same sonic outcome, the musician could have done something 
di erent.

EXPERTISE
Do you know the instrument that the musician is playing ? No | yes, I have 
already seen it | Yes, I have already played it
Have you already seen musicians playing like this, that is with the same 
gestures but maybe with another instrument ?
Have you already seen the instrument that the musician is playing ?
Have you already played the current instrument (at least once) ?

INSTRUMENTALITY
Without considering the musician nor his gestures, do you find the sound 
consistent with the instrument ?
Considering the instrument only, do you find the sound consistent with it ? 
Only by its physical appearance, I could have predicted the sound of the 
instrument.

EXCLUSIVITY
In this video, the sound is controlled by : 
The musician | A computer | Both | Something else (precise)
In this video, the musician does nothing, the computer is the only one in 
charge.  
It is clear that in this video, the musician is the only one to impact the sound.
In addition to his instrument instrument, the musician is assisted by a 
computer to manage to produce the sound

ATTRIBUTED AGENCY
The musician controls the situation.
The musician looks like he knows what he is doing.
The musician does not seem to control anything.

Figure 2: Questions and the Familiarity dimensions they target. Affirmations were followed by
Likert-style scales of the degree of agreement. See chapter 2
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to integrate factual elements of an interaction, like who from the musician or the machine

is the author of a sound modulation. 72–75, 81, 83, 86, 89, 119, 123

spectator experience augmentation technique technical solutions to improve the experi-

ence of spectators. e.g.: visual augmentations, pre-concert explanations, mobile appli-

cation .... 133

subjective comprehension Midway between subjective experience and objective comprehen-

sion, subjective comprehension relates to the inner feeling of being able to perceive an

aspect of an interaction. It can be addressed through the Bellotti/Fyans challenges. I,

73–75, 80, 82, 83, 88, 98, 119, 120, 122, 123

subjective experience The subjective experience is a global impression, a rather elusive feel-

ing related to how much we like, or evaluate something we experience, like a performance.

I, 73–75, 79, 80, 87, 88, 96, 117, 119, 120

The International Conference on New Interfaces for Musical Expression The International

Conference on New Interfaces for Musical Expression gathers researchers and musicians

from all over the world to share their knowledge and late-breaking work on new musical

interface design. The conference started out as a workshop at the Conference on Human

Factors in Computing Systems (CHI) in 2001. Since then, an annual series of interna-

tional conferences have been held around the world, hosted by research groups dedicated

to interface design, human-computer interaction, and computer music. 18, 132

visual augmentations Visual augmentations are graphical representations updated in real

time of the musical interactions and the inner mechanisms (controllers, mappings, sound

processes) of DMIs. I, 5, 40, 43, 44, 46, 64, 65, 68, 69, 72–76, 79, 80, 82, 84–90, 93,

96, 97, 99, 102, 110, 111, 115, 117, 120, 123, 124
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Acronyms

DMI Digital Musical Instrument. 2, 5, 16, 18–20, 22–24, 26–28, 32, 36, 37, 40, 41, 43,

48, 60, 64, 72, 77, 89, 90, 95, 99, 107, 110, 117, 122, 133, Glossary: Digital Musical

Instrument

GFv grip force variations. VI, 110, 113–116, 129

HCI Human Computer Interaction. I, V, 4, 5, 17, 28, 29, 31, 45, 49, 88, 89, 119

LOD level of detail. 72, 86, 87, 89–94, 97–99, 120, 123, 129, 133, Glossary: level of detail

NIME The International Conference on New Interfaces for Musical Expression. 17–19, 23,

29, 32, Glossary: The International Conference on New Interfaces for Musical Expression

SEAT spectator experience augmentation technique. I, II, VI, 64, 69, 72–75, 79, 80, 82–87,

120, 121, 123, 133, Glossary: spectator experience augmentation technique

163



Bibliography

[1] J. Armitage. Revealing timelines: Live coding and its gestures. Proceedings of ICLC,

2016.

[2] P. Auslander. Liveness: Performance in a mediatized culture. Routledge, 2008.

[3] J. Barbosa, F. Calegario, V. Teichrieb, G. Ramalho, and P. McGlynn. Considering

audience’s view towards an evaluation methodology for digital musical instruments. In

NIME ’12: Proceedings of the 2012 International Conference on New Interfaces for

Musical Expression, 2012.

[4] J. Barbosa, F. Calegario, V. Teichrieb, G. Ramalho, and G. Cabral. Illusio: A drawing-

based digital music instrument. In NIME ’13: Proceedings of the 2013 International

Conference on New Interfaces for Musical Expression, 2013.

[5] M. Battier. Trends in gestural control of music. Ircam, 2000.
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Glenn Gould Pluriel, pages 85–111, 1988.

[61] M. Desainte-Catherine. Les sciences de la musique: de nouveaux défis dans une société
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[171] A. Roudaut, A. Karnik, M. Löchtefeld, and S. Subramanian. Morphees: toward high”

shape resolution” in self-actuated flexible mobile devices. In Proceedings of the SIGCHI

Conference on Human Factors in Computing Systems, pages 593–602, 2013.

175

http://www.nime.org/proceedings/2014/nime2014_406.pdf


[172] J. N. Rouder, R. D. Morey, P. L. Speckman, and J. M. Province. Default bayes factors

for anova designs. Journal of Mathematical Psychology, 56(5):356–374, 2012.

[173] J. N. Rouder, C. R. Engelhardt, S. McCabe, and R. D. Morey. Model comparison in

anova. Psychonomic bulletin & review, 23(6):1779–1786, 2016.

[174] J. N. Rouder, R. D. Morey, J. Verhagen, A. R. Swagman, and E.-J. Wagenmakers.

Bayesian analysis of factorial designs. Psychological Methods, 22(2):304, 2017.

[175] J. B. Rovan, M. M. Wanderley, S. Dubnov, and P. Depalle. Instrumental gestural

mapping strategies as expressivity determinants in computer music performance. In

Kansei, The Technology of Emotion. Proceedings of the AIMI International Workshop,

pages 68–73. Citeseer, 1997.
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