Contribution to seismic modeling and imaging in the presence of reflector roughness
Contribution à la modélisation et à l’imagerie sismique en présence de rugosité d’interface
Résumé
Due to various geological processes and crustal movements, rough interfaces widely exist within the Earth. The rough interface can strongly affect seismic wave propagation, manifested as changes in the amplitude, phase, scattering angle, frequency content, and even the wave-type conversion. Inevitably, the quality of seismic imaging or inversion is also greatly influenced. Despite the numerous works devoted to the interaction of waves with rough interfaces, this interaction remains to be better understood, as it is still quite challenging to model the seismic wave propagation and to properly reconstruct the subsurface. The thesis investigates the effect of rough interfaces on seismic wave modeling and imaging, and explores the potential of an electromagnetic method to remove this effect and to better image the subsurface.We use a spectral-element method, and more specifically the code SPECFEM2D, for modeling acoustic wave propagation in the time domain. First, we consider a sinusoidal grating and illustrate numerically the consequences of the grating equation on the temporal signals. Then, using f-k analysis, we show the location of the different diffraction orders in the frequency-wavenumber domain. After a sensitivity analysis, we select an appropriate configuration that allows for the separation of diffraction orders from a shot gather. Last, both roughness height and correlation length are shown to obviously influence the appearance of the diffracted wavefield. However, the correlation length has less effect on the energy of the diffracted waves than the interface roughness.We adopt a full-waveform inversion (FWI) scheme based on the software package DENISE to study the influence of different roughness heights and correlation lengths on seismic imaging results. When the roughness height increases up to the dominant wavelength or is greater, the random noise dominates in the seismic data, and the FWI results significantly deteriorate, especially for the reconstruction of a horizontal reflector located below the rough interface. In contrast, the correlation length has a much smaller effect on both random noise and quality of the inverted results than the roughness height. As shown here, the interface roughness has a major impact on both seismic wave propagation and imaging. When a rough interface is expected to be present in the subsurface, its effect should be critically considered in FWI, in order to properly reconstruct reflectors possibly located below, and then to properly interpret images of the subsurface. In this context, we perform some preliminary tests on the use of a selective extinction method to remove the impact of the roughness on the wavefields. The results are promising and show the potential of the method for better imaging. In addition, the standard deviation of the amplitude of the processed data may be used to evaluate the characteristics of the rough interface, which is also of interest for geophysicists and geologists.
En raison de divers processus géologiques et de mouvements crustaux, les interfaces rugueuses existent largement dans la Terre. Une interface rugueuse peut affecter fortement la propagation des ondes sismiques par des changements d'amplitude, de phase, d'angle de diffusion, du contenu en fréquence et même de conversion de type d'onde. Inévitablement, la qualité de l'imagerie sismique ou de l'inversion en est fortement influencée. Malgré les nombreux travaux consacrés à l'interaction des ondes avec des interfaces rugueuses, cette interaction est loin d’être comprise, car il est encore difficile de modéliser la propagation des ondes sismiques dans un tel contexte et par conséquent de reconstruire correctement le sous-sol. Cette thèse étudie l'effet des interfaces rugueuses sur la modélisation et l'imagerie des ondes sismiques et explore le potentiel d'une méthode électromagnétique pour s’affranchir de cet effet et ainsi mieux imager le sous-sol.Nous utilisons une méthode numérique basée sur les éléments finis spectraux, et plus précisément le code SPECFEM2D, qui permet de modéliser la propagation des ondes acoustiques dans le domaine temporel. Tout d'abord, nous considérons un réseau sinusoïdal et illustrons numériquement les conséquences de l'équation de réseau sur les signaux temporels. Ensuite, en utilisant l'analyse f-k, nous montrons le positionnement des différents ordres de diffraction dans le domaine fréquence-nombre d'onde. Après une analyse de sensibilité, nous sélectionnons une configuration appropriée qui permet la séparation des ordres de diffraction à partir d’un shot gather. Enfin, il est montré que la hauteur de rugosité et la longueur de corrélation influencent manifestement l'apparence du champ d'onde diffracté. Cependant, la longueur de corrélation a moins d'effet sur l'énergie des ondes diffractées que la rugosité d'interface.Nous utilisons un schéma d'inversion de forme d'onde complète (FWI) basé sur le logiciel DENISE afin d’étudier l'influence de la hauteur de rugosité et de la longueur de corrélation sur les résultats d'imagerie sismique. Lorsque la hauteur de rugosité augmente jusqu'à atteindre la longueur d'onde dominante ou plus, le bruit aléatoire domine dans les données sismiques, et les résultats FWI se détériorent considérablement, en particulier pour la reconstruction d'un réflecteur horizontal situé sous l'interface rugueuse. En revanche, la longueur de corrélation a un effet beaucoup plus faible sur le bruit aléatoire et la qualité des résultats inversés.Comme démontré dans ce travail, la rugosité de l'interface a un impact majeur sur la propagation et l'imagerie des ondes sismiques. Lorsqu'une interface rugueuse est présente dans le sous-sol, son effet doit être examiné de manière critique dans le cadre de la FWI, afin de reconstruire correctement les réflecteurs éventuellement situés en dessous, puis d'interpréter correctement les images du sous-sol. Dans ce contexte, nous effectuons des tests préliminaires sur l'utilisation d'une méthode d'extinction sélective visant à enlever l'impact de la rugosité sur les champs d'ondes. Les résultats sont prometteurs et montrent le potentiel de la méthode pour une meilleure imagerie. De plus, l'écart type de l'amplitude des données traitées semble pouvoir être utilisé pour évaluer les caractéristiques de l'interface rugueuse, ce qui présenterait également un intérêt important pour les géophysiciens et les géologues.
Origine | Version validée par le jury (STAR) |
---|