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This dissertation focuses on voting with partial preferences in the form of top-k ballots. We study ways to minimize the amount of communication required to approximate or to output the correct winner from truncated ballots with respect to different voting rules and we propose and analyze different methods allowing a compromise between the accuracy of the result and the amount of communication required; some require only one round of communication, while others are interactive.

2 Abstract to reveal more information.

Key words: partial preferences

First, we assume that voters give, in a single shot, their top-k alternatives (for a fixed k); we define a version of voting rules (Borda, Harmonic, Copeland, Maximin, ranked pairs and STV) that works for such k-truncated votes. We consider two measures of the quality of the approximation: the probability of selecting the same winner as the original rule, and the score ratio. We do a worst-case study (for the latter measure only), and for both measures, an average-case study and a study from real data sets. Among the voting rules studied, we pay a particular attention to the single transferable vote (STV) voting rule. We start by testing empirically to which (quantitative) extent clone-proofness, which is a key property of (STV) and ranked pairs (RP), is preserved when replacing complete ballots by k-truncated ballots. Then, we study the closeness of the k-truncated version of STV to plurality with runoff. Finally, we investigate the computational complexity of the possible winner problem for top-k ballots under STV.

Second, we consider interactive communication protocols, that can ask voters for more information in an adaptive fashion. We study possible ways to elicit voters' preferences in an efficient manner so that the winner is determined. We consider exact methods and heuristics to guide the choice of the next voter to query. For the former we focus on STV voting rule; building on an existing protocol of Conitzer and Sandholm [START_REF] Conitzer | Communication complexity of common voting rules[END_REF], we propose a new protocol and we show how we can reduce the amount of communication required in practice. For the latter, we explore two heuristic methods: [START_REF] Kenneth | A difficulty in the concept of social welfare[END_REF] we adapt Monte Carlo Tree Search (MCTS) approach to vote elicitation in order to select the most prominent voter to ask in each round based on its evaluation function Upper Confidence Bounds for Trees (UCT), and [START_REF] Arrow | Handbook of social choice and welfare[END_REF] we propose an alternative search heuristic able to select the voter (under certain conditions) for whom we want

Résumé

Cette thèse porte sur le vote avec des préférences partielles sous forme de top-k votes. Nous étudions des moyens pour réduire la quantité de communication requise pour déterminer le résultat de l'élection (de manière exacte ou approchée) à partir de bulletins tronqués selon différentes règles de vote et nous proposons et analysons différentes méthodes permettant un compromis entre précision du résultat et quantité de communication requise; certaines ne requièrent qu'une seule phase de communication, alors que d'autres sont dynamiques.

Premièrement, nous supposons que les électeurs donnent, d'un seul coup, leurs top-k préférences (pour un k fixe); nous définissons une version des règles de vote (Borda, Harmonique, Copeland, Maximin, ranked pairs et STV) qui fonctionne pour ces kvotes tronqués. Nous considérons deux mesures de la qualité de l'approximation : la probabilité de sélectionner le même gagnant que la règle originale et le ratio de score. Nous faisons une étude du pire des cas (pour cette dernière mesure seulement), et pour les deux mesures, une étude à partir de données synthétiques et réelles. Nous accordons une attention particulière à la règle vote simple transférable (STV). Nous commençons par tester empiriquement jusqu'à quel point la résistance aux clones, qui est une propriété clé de STV, est préservée lorsque on remplace des bulletins complets par des bulletins tronqués. Ensuite, nous étudions la proximité de la version k-tronquée de STV à la pluralité à deux tours. Enfin, nous étudions la complexité du problème des gagnants possibles pour les k-votes tronqués pour STV.

Deuxièmement, nous envisageons des protocoles de communication qui demandent aux électeurs de compléter leurs votes de manière dynamique. Nous étudions des moyens pour éliciter les préférences des électeurs de manière efficace afin de déterminer le gagnant. Nous considérons des méthodes exactes et des heuristiques pour guider le choix du prochain électeur à interroger. Pour le premier cas, nous nous concentrons sur STV ; en nous appuyant sur un protocole existant [START_REF] Conitzer | Communication complexity of common voting rules[END_REF], nous proposons un nouveau protocole et nous montrons comment nous pouvons réduire la quantité de communication requise en pratique. Pour le deuxième cas, nous explorons deux méthodes heuristiques : [START_REF] Kenneth | A difficulty in the concept of social welfare[END_REF] nous adaptons l'approche de la recherche dans les arbres de Monte-Carlo (MCTS) 
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Introduction (English Version)

Social choice theory concerns the design and analysis of methods for aggregating individual preferences towards a collective decision making. Central questions are: How can we choose a winning outcome from the often conflicting individuals' preferences? What are the properties of different voting systems? etc. Questions on social choice have captivated the interest of many researchers from the 18 th century with Nicolas de Condorcet and took off in 20 th century with Kenneth Arrow.

Voting theory, which is an important part of social choice theory, is one of the most popular ways of reaching common decisions using voting methods. Voting methods are applied to high-stakes settings such as political elections, middle-stakes including hiring committee and elections in local organizations, and low-stake such as scheduling a meeting date using an online survey. In this context, a set of individual opinions (preferences) is aggregated into a collective decision according to a predefined voting rule. Any electoral system (political or non-political) is based on a voting rule. There are a large number of variations in electoral systems, but the most common systems are plurality voting, the two-round (runoff) system or preferential voting such as single transferable vote (STV).

Classical Social choice focuses on normative and game-theoretic issues that includes an extensive study of the axiomatic method and proofs of several characterization and impossibility theorems. The most authoritative reference on classical social choice theory is the two-volume Handbook of Social Choice and Welfare [START_REF] Arrow | Handbook of social choice and welfare[END_REF][START_REF] Arrow | Handbook of social choice and welfare[END_REF]. Computational social choice, by comparison, is an interdisciplinary field of study at the interface of social choice theory and theoretical computer science. It involves the application of techniques developed in computer science to the study of social choice mechanisms, such as the development of algorithms for aggregating individual preferences towards collective decisions.

One prominent research stream within computational social choice deals with communication aspects of voting. Chapter 10 of the Handbook of Computational Social Choice edited by Boutilier and Rosenschein [START_REF] Boutilier | Incomplete information and communication in voting[END_REF] provides background on incomplete information and communication in voting. This line of research focuses on quantifying the amount of information about preferences that is needed to accurately decide the election's outcome. Clearly a high communication burden is a drawback that can hinder the practical applicability of a voting rule. For example, in many legislatures, such as for the Irish presidential elections which employ STV electoral system; voters are allowed to only submit a partial ranking: they rank a subset of the candidates, and leave the rest unranked. This is the main motivation to study the problem of social choice under incomplete knowledge which comes down to partial preferences. This in turn raises a central question: How elicit agents' preferences in an efficient way in order to minimize the amount of information required to determine a winning outcome ? Topics covered in this area include: incomplete knowledge, preference elicitation (elicit the partial information in one shot and output a winner using only the information at hand), communication protocols (ask agents to expand their partial ballots in several shots, until the outcome is determined), online voting and vote streams.

In this thesis we tackle the problem of incomplete preferences in voting where we are interested in determining the winning outcome given partial preferences. As input we consider top-k votes by asking voters to list their k preferred candidates (instead of all candidates). Then the question is: Given a voting rule, how can we determine the winner when we know only top-k votes? We consider two ways of proceeding:

• For the first context, we assume that we know nothing more than these top-k votes. We define approximations of voting rules based on ordinal input (including Borda, Harmonic, Copeland, Maximin, ranked pairs and STV) using top-k votes instead of complete ones. To measure the quality of the proposed approximations, we consider two measures: (i) an empirical one by measuring the frequency with which the approximation outputs the true winner based on randomly generated profiles and on real-world data, and (ii) a theoretical one which is the score ratio between the score of the true winner and of the winner of the approximate rule. We pay particular attention to the STV voting rule by studying theoretically and empirically different aspects when using truncated ballots.

• For the second context, we are interested in incremental elicitation protocols by asking some voters to complete their votes until the winner is known. We focus on top-k queries where one voter will be asked at a time and i.e. if she is queried for the k th time, she will be asked to provide her k th preferred candidate. First, we propose exact methods for interactive vote elicitation where we elicit preferences from voters in rounds until the winner is known. Second, we explore heuristic the voter (under certain conditions) for whom we want to reveal more information.

Then, we empirically study the average number of questions asked to voters in order to determine the winner when using the two proposed heuristics.

Introduction (Version Française)

La théorie du choix social concerne la conception et l'analyse de méthodes d'agrégation des préférences individuelles en vue d'une prise de décision collective. Les questions centrales sont : Comment pouvons-nous choisir un gagnant parmi les préférences souvent contradictoires des individus ? Quelles sont les propriétés des différents systèmes de vote ? etc. Les questions sur le choix social ont captivé l'intérêt de nombreux chercheurs comme Nicolas de Condorcet, Jean-Charles de Borda and Kenneth Arrow.

La théorie du vote, qui est un élément important de la théorie du choix social, est l'une des moyens populaires pour parvenir à une décision commune en utilisant les méthodes de vote. Ces méthodes de vote s'appliquent dans un contexte politique (élection d'un président, d'une assemblée) ou non (conseil de classe, d'administration etc.). Dans ce contexte, un problème de vote consiste en un ensemble de candidats et un ensemble de votants, chque votant a des préférences sur les candidats. Le but d'une règle de vote est de déterminer un candidat préféré collectivement. Il existe un grand nombre de variantes dans les systèmes électoraux, mais les systèmes les plus courants sont les suivants : la pluralité, la pluralité à deux tours (appelée aussi « scrutin majoritaire à deux tours ») ou le vote préférentiel tel que le vote simple transférable (STV). porte sur les aspects communicationnels du vote. Le chapitre 10 du Handbook of Computational Social Choice publié par Boutilier et Rosenschein [START_REF] Boutilier | Incomplete information and communication in voting[END_REF] fournit l'historique et le contexte sur l'information et la communication incomplètes dans le vote. Cet axe de recherche vise à quantifier la quantité d'information nécessaire sur les préférences des votants pour décider avec précision du résultat de l'élection. Il est clair qu'une charge de communication élevée est un inconvénient qui peut entraver l'applicabilité pratique d'une règle de vote. Par exemple, dans de nombreuses assemblées législatives, comme lors des élections présidentielles irlandaises qui utilisent le système électoral STV, les électeurs ne peuvent soumettre qu'un ordre partiel : ils classent un sous-ensemble des candidats et laissent le reste sans classement. C'est la principale motivation pour étudier le problème du choix social dans le cadre d'une connaissance incomplète qui se résume à des préférences partielles. Cela soulève à son tour une question centrale : Comment éliciter les préférences des agents de façon efficace afin de minimiser la quantité d'information requise pour déterminer un résultat gagnant ? Parmi les sujets abordés dans ce domaine, mentionnons : les connaissances incomplètes, l'élicitation des préférences (éliciter les préférences partielles en un seul coup et désigner un gagnant en utilisant seulement l'information disponible), les protocoles de communication (demander aux votants de compléter leurs bulletins de vote partiels en plusieurs coups jusqu'à ce que le résultat soit déterminé), le vote en ligne et les flux de vote.

Dans cette thèse, nous abordons le problème des préférences incomplètes dans le vote en suggérant de demander aux électeurs de ne classer que leurs k candidats préférés (où k peut varier selon les électeurs et/ou au cours du processus). On dit que de tels votes sont k-tronqués. L'avantage est que non seulement cela permet d'économiser des efforts de communication, mais il est aussi souvent plus facile pour l'électeur de connaître la partie supérieure de son classement (composée de ses k candidats préférés) que le reste du classement. Ensuite, la question est la suivante : étant donné une règle de vote, comment pouvons-nous déterminer le vainqueur alors que nous ne connaissons que les top-k votes des votants ? Pour répondre à cette question, nous étudions la quantité d'information nécessaire pour déterminer le résultat de l'élection (de manière exacte ou approchée) à partir des bulletins tronqués selon différentes règles de vote et nous proposons et analysons différentes méthodes permettant un compromis entre précision du résultat et quantité de communication requise; certaines ne requièrent qu'une seule phase de communication, alors que d'autres sont dynamiques. Afin de déterminer le résultat de l'élection à partir des bulletins tronqués, nous considérons deux façons de procéder :

1-Des protocoles non-dynamiques

Des protocoles à une seule phase de communication où toutes les préférences des votants doivent être recueillies en même temps. Dans ce modèle, le centre de vote recueille immédiatement les meilleurs k bulletins, pour une valeur fixe de k, et délivre un vainqueur à partir de cette information partielle sans exiger aux électeurs de fournir des informations supplémentaires. Dans ce cas, si l'on veut calculer avec certitude le vainqueur d'une règle de vote donnée, il faut demander aux électeurs de déclarer l'ensemble de leurs préférences, c'est-à-dire de déclarer leur ordre linéaire. Relaxons l'objectif de certitude et visons plutôt à calculer le gagnant avec une probabilité assez élevée. En échange, nous demandons moins d'information : Les électeurs donnent leurs top-k meilleurs candidats pour un k > 1 fixe, c'est-à-dire qu'ils rapportent une liste de classement des k candidats qu'ils préfèrent le plus.

Nous généralisons la définition d'une règle de vote de telle sorte qu'elle utilise des bulletins tronqués comme entrée : nous définissons des approximations des règles de vote qui prennent comme entrée les top-k candidats de chaque bulletin. La question est alors : Ces approximations sont-elles de bons prédicteurs de la règle originale ? Nous répondons à cette question en considérant deux mesures :

• la probabilité que la règle approximative sélectionne le 'vrai' gagnant. Pour ce faire, nous générons des profils aléatoires avec des ordres de préférence complets et tronquons ces ordres de manière à ce que les électeurs ne classent que leurs meilleurs choix. Nous calculons ensuite la probabilité que le gagnant des top-k bulletins de vote est le même que le gagnant des bulletins complets pour différentes règles votes.

• le ratio entre les scores (pour la règle originale) du vrai vainqueur et celui du vainqueur de la règle approximative.

Pour cette dernière mesure, nous présentons une analyse théorique du pire des cas. Pour les deux mesures, nous présentons une étude empirique, basée sur des profils générés aléatoirement (en utilisant le modèle Mallows φ [START_REF] Mallows | Non-null ranking models[END_REF] et une mixtures de Mallows [START_REF] Lu | Learning mallows models with pairwise preferences[END_REF]) et sur des données du monde réel.

Nous nous concentrons sur les règles de vote avec des préférences ordinales comme entrée où les électeurs soumettent un ordre complet sur les candidats. 1 Nous définissons plusieurs top-k règles qui correspondent aux règles de vote standard. Nous considérons trois types de règles : (1) les règles à base de score (PSR), à savoir : Borda, Harmonique ; (2) les règles à base de comparaison par paires, à savoir : Copeland, Maximin et ranked pairs, et [START_REF] Arrow | Handbook of social choice and welfare[END_REF] une règle basée sur l'élimination à savoir le vote simple transférable (STV).

Pour la première mesure et afin d'évaluer la capacité des approximations à prédire le vrai gagnant, nous proposons maintenant une approche empirique. Puisque nous voulons mesurer expérimentalement la probabilité que le gagnant de la top-k approximation d'une règle coïncide avec le vrai gagnant, nous avons besoin de connaître ce vrai gagnant, et donc d'avoir accès au profil vrai. Pour ce faire, nous considérons le processus suivant :

1) prendre un profil complet (avec n votants et m candidats) ;

2) pour k = 1 à m -2 : comparer le gagnant approximatif au gagnant correct L'étape 1 varie selon que nous sommes dans le cadre de la génération aléatoire ou dans le cadre des données du monde réel. Pour le premier, nous générons un profil en fonction d'une distribution donnée. Pour le dernier, nous générons un profil en sélectionnant n * (n * < n) votes de manière uniforme et aléatoire parmi les votes disponible dans l'ensemble des données.

En appliquant cette approche, nos résultats expérimentaux sur des profils générés aléatoirement en utilisant le modèle Mallows suggèrent qu'une très petite valeur de k fonctionne très bien dans la pratique. Par exemple, la Figure 1 Nous considérons maintenant les données réelles de Preflib [START_REF] Mattei | Preflib: A library for preferences http://www. preflib[END_REF] : la base de données Dublin-Nord avec 12 candidats et 3662 électeurs. Les données de Dublin contiennent quelques bulletins avec un ordre partiels. Comme nous avons besoin de bulletins de vote complets pour mener nos expériences, nous avons exclu tous les bulletins partiels. Nous sommes intéressés à prédire le résultat pour des petites et larges élections. Pour ce faire, nous considérons des données avec des échantillons de n * électeurs parmi n (n * < n), en commençant par n * = 10 et en incrémentant n * par pas de 10. Dans chaque expérience, 1000 profils aléatoires sont construits avec n * votants ; ensuite, nous considérons les k meilleurs bulletins obtenus à partir de ces profils, avec k ∈ {1, 2, 3}, et nous calculons la fréquence avec laquelle nous choisissons le vrai gagnant. La Figure 2 (resp. Figure 3) présente les résultats de Dublin pour les petites (resp. larges) élections n * ∈ {10, ..., 100} (resp. n * ∈ {100, ..., 2000}). Pour la deuxième mesure (calculer le ratio entre le score du vrai vainqueur et celui du vainqueur de la règle approximative) nous avons considéré les règles dont la définition est basée sur la maximisation de score (Borda, Harmonique, Copeland et Maximin). Notez que comme la règle STV et ranked pairs ne sont pas basées sur la maximisation de score (pour une discussion, voir [START_REF] Conitzer | Preference functions that score rankings and maximum likelihood estimation[END_REF]), elles ne seront pas considérées dans notre étude. Les ratios de score dans le pire des cas sont particulièrement pertinents si le score d'un candidat est significatif au-delà de son utilisation pour déterminer le vainqueur. C'est certainement le cas de Borda, car la règle de Borda est souvent considéré comme une mesure du bien-être social (voir [START_REF] Aspremont | Social welfare functionals and interpersonal comparability[END_REF]). Ce ratio de score du pire des cas est appelé le prix de la top-k troncation. Definition 0.1. Soit f une règle de vote définie par la maximisation d'un score S, et

f k une approximation top-k de f . Le prix de la top-k troncation pour f , f k , m et k, est défini comme suit R(f, f k , m, k) = max P ∈Pm S(f (P )) S(f k (P k )) (1) 
Les limites obtenues dans le pire des cas sont plutôt négatives : très négatives pour Copeland (∞) et Maximin (m-k), moins négatives pour Borda (Θ( m k )), et encore moins pour Harmonique (Θ( m k log k )). Bien que les limites théoriques sont, au mieux, modérément encourageantes, nos expériences montrent qu'en pratique le ratio d'approximation est bien meilleur que dans le pire des cas : nos résultats sur l'évaluation du ratio sur des profils générés en utilisant le modèle Mallows ainsi que des données réelles suggèrent qu'une très petite valeur de k fonctionne très bien en pratique ce qui contraste largement les limites théoriques.

Par example, si nous considérons les données 2002 de Dublin Nord (m = 12, n = 3662) avec des échantillons de n * électeurs parmi n (n * < n) où n * = {15, 100} (voir Figure 4). Dans chaque expérience, 1000 profils aléatoires sont construits avec n * électeurs ; ensuite, nous considérons les k meilleurs bulletins obtenus à partir de ces profils avec k = {1, ..., 11}. Là encore, les résultats sont très positifs, surtout avec un grand nombre d'électeurs. Dans le même contexte (i.e. top-k communiqué en un seul coup), nous avons accordé une attention particulière à la règle STV qui présente un intérêt particulier dans le vote car elle est difficile à manipuler et possède une propriété normative très importante : la résistance aux clones. En fait, plusieurs questions se posent : jusqu'à quel point la résistance au clonage est préservée lors du remplacement des bulletins complets par des bulletins k-tronqués ? Quel est le lien entre la règle ST V k (la version STV avec k bulletins tronqués) et la règle de la pluralité à deux tours ? Sachant qu'il est NPcomplet de décider si un candidat est vainqueur possible pour STV étant donnée un profil partiel ; quelle est la complexité de ce problème lorsqu'on considère les "bulletins tronqués uniformes" (k fixe) ? Nos conclusions sur ces questions sont les suivantes, respectivement, comme suit :

• Pour la question de la résistance au clonage, les résultats obtenus à l'aide de profils générés au hasard (sur le modèle de Mallows en variant φ) montrent que la résistance au clonage augmente rapidement avec k et diminue avec φ. De plus, elle augmente considérablement avec le nombre d'électeurs. Avec des données réelles, la résistance au clonage augmente rapidement avec k, voire plus rapidement qu'avec des profils générés au hasard. Le même résultat s'applique à la version k-tronquée de la règle ranked pairs (RP), à savoir RP k (voir Figure 5). Les résultats sur des profils générés aléatoirement à partir du modèle Mallows (voir Figure 6) montrent que l'algorithme proposé réduit significativement l'ensemble des candidats sur lesquels nous ne pouvons pas décider. Les résultats en variant φ montrent que lorsque φ = 0.7 un seul candidat sur 7 n'est ni gagnant possible ni perdant nécessaire compte tenu des deux meilleurs votes. Pour φ = 0.8, l'ensemble des candidats sur lesquels nous ne pouvons pas décider n'est présent qu'avec une probabilité de 2.7% et il diminue à 1.6% (resp. 1.08%) lorsque φ = 0.9 (resp. φ = 1).

2-Des protocoles dynamiques

Maintenant, nous voulions calculer le vrai gagnant, plutôt qu'un gagnant approximatif, en permettant une communication interactive (dynamique). Un protocole dynamique ou interactif demande aux électeurs d'élargir progressivement leurs votes partiels, jusqu'à ce que le résultat du vote soit déterminé. Nous avons étudié les moyens possibles de réduire au minimum la quantité de communication requise pour déterminer le résultat de l'élection à partir de bulletins tronqués. Plus précisément, la question ici est : Quel est le nombre suffisant de bits (en moyenne) qui doit être communiqué par les électeurs au centre de vote pour que le gagnant soit déterminé ? Pour répondre à cette question, nous avons d'abord proposé des méthodes exactes pour choisir l'électeur à interroger à chaque tour jusqu'à ce que le gagnant soit connu. Ensuite, nous avons exploré des heuristiques. 

Organisation du manuscrit

Cette thèse est organisée comme suit:

Le chapitre 1 présente les notions et concepts de base de la théorie du vote. Ceci inclut la définition des familles de règles de vote les plus importantes, telles que : les règles à base de score, les règles de comparaison par paires et les règles basées sur l'élimination. De plus, nous examinons l'utilisation de plusieurs modèles de préférences utilisés pour générer les préférences des électeurs en fonction d'une distribution antérieure.

Le chapitre 2 se focalise sur la détermination du gagnant avec des préférences partielles. Nous décrivons les notations de base du vote avec des préférences partielles. Ensuite, nous présentons les solutions existantes pour déterminer le gagnant lorsque les préférences des électeurs sont incomplètes. Enfin, nous abordons le problème d'élicitation de préférence où nous présentons les travaux existants sur les deux types d'élicitation de vote, à savoir : l'élicitation interactive (dynamique) et l'élicitation noninteractive (non-dynamique).

Dans le chapitre 3, nous proposons des approximations des règles qui ne prennent en compte que les top-k meilleurs candidats (pour un k > 1 fixe) de chaque électeur. Dans ce cas, les électeurs rapportent leurs top-k préférences en un seul coup. Nous considérons deux mesures de la qualité de l'approximation : la probabilité de sélectionner le même gagnant que la règle originale et le ratio de score. Nous proposons une analyse théorique du pire des cas (pour cette dernière mesure seulement), et pour les deux mesures, une étude de cas moyen et une étude à partir d'ensembles de données réelles.

Le chapitre 4 se concentre sur la règle de vote simple transférable (STV). Tout d'abord, nous étudions empiriquement jusqu'à quel point la propriété clé de STV, à savoir la résistance aux clones, est préservée lorsque nous considérons des bulletins tronqués. Deuxièmement, nous étudions la proximité de la version k-tronquée de STV (à savoir ST V k ) à la pluralité à deux tours. De plus, nous étudions la complexité du problème du gagnant possible pour les top-k vote. Enfin, nous proposons des moyens pour réduire au minimum la quantité de communication requise pour utiliser STV. En nous basant sur un protocole existant, nous montrons comment nous pouvons réduire la quantité de communication requise dans la pratique. Nous étudions ensuite empiriquement le coût moyen de communication de ces protocoles.

Le chapitre 5 propose un processus incrémentiel d'élicitation de vote en utilisant des méthodes heuristiques pour guider le choix du prochain électeur. Tout d'abord, nous adaptons l'approche de recherche dans l'arbre de Monte-Carlo (MCTS) dans un contexte d'élicitation de vote pour sélectionner l'électeur le plus en vue à interroger dans chaque tour. Deuxièmement, nous proposons une heuristique de recherche alternative capable de sélectionner l'électeur (sous certaines conditions) pour lequel nous voulons révéler plus d'information. Ensuite, nous étudions empiriquement le nombre moyen de questions posées aux électeurs afin de déterminer le gagnant en utilisant les deux heuristiques proposées. 

Chapter 1

Voting

This chapter provides an overview of the basic notations and concepts in voting theory. This includes the definition of the most important families of voting rules with ordinal preferences as input, such as: positional scoring rules, pairwise comparison rules and elimination based rules. Also, we investigate the use of several distributional preference models used to generate voters' preferences based on a prior distribution such as Impartial Culture (IC), Impartial Anonymous Culture (IAC), Mallows model, Mixture of Mallows and Single Peaked Impartial Culture (SP-IC).

Introduction

Social choice is an area of research concerned with the design of methods for collective decision making. The main question investigated in this field is: How best to aggregate the agents' preferences over a given set of alternatives so as to determine the best alternative for the group? For instance, in political elections, voters submit their individual preferences over a set of available candidates standing for election. In this context, given the collective preferences of the voters, various voting rules are used to determine which candidate should win the election.

We focus on voting rules with ordinal preferences as input where voters submit a collection of complete rankings/orders over candidates. For example, consider the situation in which a consumer is asked to compare different products (X, Y and Z), a natural given response is: 'I prefer product X to product Y to product Z'. There are other rules that are not based on orders but on subsets of candidates such as approval rule where each voter may approve any number of candidates and the winner is the most-approved candidate. In this thesis we consider rules with ordinal input because we focus on truncated ballots and in other cases (rules based on subsets of candidates) the notion of truncated ballots is meaningless.

The analysis of methods for collective decision has captivated the interest of many researchers who were mainly interested in the design and theoretical evaluation of voting rules. Three results are most prominent and associated with the development of social choice theory:

1) Condorcet's paradox: presented by Marquis de Condorcet [START_REF] Antoine | Essai sur l'application de l'analyse à la probabilité des décisions rendues à la pluralité des voix[END_REF] who investigated majority voting and observed that the majoritarian preference relation can be problematic and irrational because it contains cycles. Suppose that a majority of voters prefers a to b, an other majority prefers b to c and yet a final one prefers c to a. Clearly, the pairwise majority relation is cyclic and violates transitivity.

2) Arrow's impossibility theorem: stated by Kenneth Arrow [START_REF] Kenneth | A difficulty in the concept of social welfare[END_REF] who dealt with a class of possible aggregation methods which he called social welfare functions. Arrow's impossibility theorem states that a particular combination of axioms are only satisfied by dictatorial rules (the election outcome depends only on the opinion of one voter) when considering three or more alternatives.

3) Gibbard-Satterthwaite's theorem (aka. GST): presented (independently) by Allan Gibbard and Mark Satterthwaite [START_REF] Gibbard | Manipulation of voting schemes: a general result[END_REF][START_REF] Allen | Strategy-proofness and Arrow's conditions: Existence and correspondence theorems for voting procedures and social welfare functions[END_REF] who stated that given at least 3 candidates, any resolute voting rule (outputs a unique winner) that is surjective (for every candidate, there is some profile for which that candidate wins) and strategyproof (no voter will ever have an incentive to misrepresent her preferences) is a dictatorship.

This chapter is organized as follows. In Section 1.2, we describe basic notations and concepts of the voting model used in preference aggregation. In Section 1.3 we give an overview of the most important families of voting rules such as positional scoring rules (plurality, Borda and Harmonic), pairwise comparison rules (Copeland, Maximin and Ranked Pairs) and elimination based rules (plurality with runoff, single transferable vote and Coombs). Finally, in Section 1.4 we describe several distributional preference models used to generate voters' preferences based on a prior distribution.

Voting Model

Voting consists in aggregating voters' preferences over a set of candidates in order to determine a consensus decision or recommendation where a winner is chosen from a set of candidates. In the following, we start by introducing some basic notations on voting. An election is a triple E = (N, A, P ) with:

• N = {1, ..., n} is the set of voters (or agents) with |N | = n;

• A = {a, b, ...} is the set of candidates (or alternatives), with |A| = m; and

• P = ( 1 , ..., n ) is the complete preference profile of voters in N , which corresponds to a collection of complete rankings on A. For each voter i ∈ N , i ∈ P denotes the preference relation of voter i which corresponds to a complete linear order over A. We will refer to this order either as a preference order, a ballot, or, a vote; we use these terms interchangeably.

For any a, b ∈ A, a i b means that voter i prefers a to b. For the sake of simplicity, we may write a b by omitting the voter's number.

Example 1.1. Let us consider an election with three candidates and three voters i.e. A = {a, b, c} and n = 3. Table 1.1 presents the complete preference profile of the voters.

The number in the left column corresponds to the number of voters, while the voters' preferences are in the right column. 

(a, b) = N P (a, b) -N P (b, a) = # {i ∈ N |a i b} - # {i ∈ N |b i a}.
Given an election E = (N, A, P ) as input, a voting rule is used to determine the winner over the set of candidates where:

• An irresolute voting rule (aka. voting correspondence or social choice correspondence) is a function F : E → S which, for each election, outputs a non-empty subset S of A, whose elements are called the (co-)winners of the election E under F .

• A resolute voting rule (aka. social choice rule) is a function f : E → A, which for each election outputs a single winner. Resolute rules are typically obtained from composing an irresolute rule with a tie-breaking mechanism either by using a predefined priority relation on candidates or a predefined priority relation on voters.

In the remaining, we will consider the resolute version of voting rules and break ties using prespecified linear order over the candidates in A, called tie-breaking priority. The voting rule is then denoted by f . To alleviate notation we will simply write f , leaving implicit.

Voting Rules

The use of voting rules to aggregate preferences has become a topic of intense study, and one of great importance in ranking, recommender systems, resource allocation, and other applications of social choice to computational systems. Voting rule is a very common way of resolving disagreements, determining common opinions and choosing public policies. It represents a procedure for making a choice from the set of candidates. Various voting rules exist in the literature, we focus on three important subclasses with ordinal preferences.

1) Positional Scoring Rules (PSR):

A positional scoring rule is defined by a vector s = (s 1 , ..., s m ) such that s 1 ... s m and s 1 > 0. Each candidate receives s j points from each voter who ranks her in the j th position, and the score of a candidate is the total number of points she receives from all voters. The winner is the candidate with highest total score over all the votes. Let S(x) for x ∈ A denote the score of a candidate x. The most common positional scoring rules are:

• Plurality: In plurality rule, each voter gives 1 point to the candidate she ranked first, and the winner is the candidate who receives the highest total number of points. The score vector for plurality rule is s P lurality = (1, 0, . . . , 0). Hence, the cumulative score of a candidate corresponds to the number of voters by which it is ranked first.

• Borda: In Borda rule, each candidate receives m-1 points from each voter i who ranks her in the first position, m-2 points to the candidate ranked second, or in general m -k points to the candidate ranked in the k th position. The score vector for Borda rule is s Borda = (m -1, m -2, . . . , 1, 0). The winner is the candidate who obtains the highest total number of points. Borda's rule takes a special place within the class of scoring rules as it chooses those candidates with the highest average rank in individual rankings.

• Harmonic: In Harmonic rule, each candidate receives 1 point from each voter i who ranks her in the first position, 1 2 points to the candidate ranked second, or in general 1 k points to the candidate ranked in the k th position. The score vector for Harmonic rule is s Harmonic = (1, 1 /2, . . . , 1 /m). The winner is the candidate who obtains the highest total number of points.

2) Pairwise Comparison Rules: For these rules, the output is determined from the majority graph or from the weighted majority graph. For any two alternatives a and b, we can simulate a pairwise comparison between them, by seeing how many voters prefer a to b, and how many prefer b to a. The rules that we will refer to are: Copeland (based on the majority graph); Maximin and Ranked Pairs (based on the weighted majority graph).

• Copeland: The Copeland rule chooses the candidate who beats the highest number of other candidates in pairwise elections. An alternative receives one point for each win in a pairwise election, 1 2 point for each draw, and 0 point for each loss. The Copeland score of a candidate x is the number of candidates y with an edge from x to y in M (P ), plus half the number of candidates y = x with no edge between x and y in M (P ). The Copeland winners are the candidates with highest Copeland score.

• Maximin: The Maximin rule selects candidates for which the minimum pairwise majority margin is maximized, that is, alternatives x for which

S m (x) = min x∈A(y =x) (N P (x, y))
• Ranked Pairs (RP): The ranked pairs rule proceeds by ranking all pairs of candidates (x, y) by decreasing order according to Score P (x, y) (using tiebreaking when necessary); starting from an empty graph over A, it then considers all pairs in the described order and includes a pair in the graph if and only if it does not create a cycle in it (if Score P (x, y) = 0 we ignore the produced edge). At the end of the process, the graph is a complete ranking, whose top element is the winner. This way of breaking ties in RP is called immediate tie-breaking. Another alternative is to consider all the possible ways of breaking ties whenever two pairs are tied, and then use the tie-breaking at the very end to choose between the winners. This is called Parallel Universe Tie breaking (PUT) [START_REF] Brill | The price of neutrality for the ranked pairs method[END_REF] which will not be considered in this thesis.

3) Elimination-Based Rules: For these rules, two or more rounds are needed in order to determine the outcome of the election (depending on the voting rule used). Within this family of rules, candidates having the lowest support are sequentially eliminated. Ballots are then transferred from the eliminated candidate to the next/earlier preferred candidate indicated on the ballots. In the following we present the most common elimination based rules such as, plurality with runoff, single transferable vote and Coombs. Note that like RP, these rules are affected by how ties are broken in each round where two possible ways exist: either to consider the immediate tie-breaking and break ties whenever they occur, or to use the PUT version by considering all the possible ways of breaking ties [START_REF] Conitzer | Preference functions that score rankings and maximum likelihood estimation[END_REF]. In this work we consider immediate tie-breaking for elimination based rules.

• Plurality with runoff : Plurality with runoff proceeds in two rounds: the two candidates ranked first by the largest number of voters go to the second round (runoff), and majority is used to determine the winner.

• Single Transferable Vote (STV)1 : Given a prespecified linear order over the candidates, the ST V rule proceeds in rounds (up to m -1). In each round, the candidate with the smallest number of voters ranking them first is eliminated and the votes who supported it now support their preferred candidate among those that remain. If two or more candidates are tied for the least number of votes, the tie is broken immediately using a prespecified linear order over the candidates. The last remaining alternative is the STV winner.

• Coombs: As in STV, Coombs rule needs up to m -1 rounds. In each round, instead of deleting the candidate with the fewest first-place votes as done in STV, we eliminate the candidate with the most last-place votes, and the votes who supported it now support their earlier preferred candidate among those that remain (using the tie-breaking priority if necessary). The last remaining alternative is the Coombs winner.

We illustrate the different voting rules seen above using the following example. When considering positional scoring rules, the winner for different rules is computed as follows:

• The plurality vector is s P lurality = (1, 0, 0, 0, 0) and the scores of candidates a, b, c, d, e are 33, 16, 11, 18 and 22, respectively. The plurality winner is candidate a. Under elimination based rules, the winners are determined as follows:

• For plurality with runoff, candidates a and e have the highest plurality score with 33 votes to a and 22 votes to e. In the second round, candidate e has the majority by beating candidate a [START_REF] Allen | Strategy-proofness and Arrow's conditions: Existence and correspondence theorems for voting procedures and social welfare functions[END_REF][START_REF] Enzenberger | A lock-free multithreaded monte-carlo tree search algorithm[END_REF]. Thus, e is the winner under plurality with runoff.

• For STV, Figure 1 To illustrate the PUT version of STV, we consider the following profile of 10 voters over three candidates A = {a, b, c}: • For Copeland, Figure 1. All the voting rules seen above are computable in polynomial time when considering the resolute version by breaking ties when necessary where:

4 a b c 2 b a c 1 b c a 3 c b a
3
• for positional scoring rules and plurality with runoff, the complexity is O(nm).

• for Copeland, Maximin, ranked pairs and STV, the complexity is O(nm 2 ). Note that when considering the Parallel Universe Tie breaking (PUT) version, which consists in exploring all possibilities when different candidates are tied; some voting rules become NP-complete such as RP [START_REF] Brill | The price of neutrality for the ranked pairs method[END_REF] and STV [START_REF] Conitzer | Preference functions that score rankings and maximum likelihood estimation[END_REF].

Distributional Preference Models

Analyzing voting rules by assuming that voters' preferences are drawn according to a prior distribution has become increasingly common in voting theory. In this section, we briefly review the most important distributional preference models used in social choice such as Impartial Culture (IC), Impartial Anonymous Culture (IAC), Mallows φ model, Mixture of Mallows and Single Peaked Impartial Culture (SP-IC) presented below:

• Impartial Culture (IC) [START_REF] Guilbaud | Les théories de l'intérêt général et le problème logique de l'agrégation[END_REF]: Each voter's ranking is drawn uniformly at random from the set of all possible total orders over A. For m candidates, there are m! possible strict rankings. IC assumes that the probability of observing any of the m! preference orders is equally likely for each voter. If these are chosen by n voters, then there are m! n possible profiles.

• Impartial Anonymous Culture (IAC) [START_REF] Kuga | Voter antagonism and the paradox of voting[END_REF]: Let us define a voting situation as a vector n = (n 1 , n 2 , ..., n m! ), where n i denotes the number of voters endowed with ranking number i (each of the m! rankings being referred to by a number between 1 and m!). Under IAC, two profiles are equivalent if they correspond to the same voting situation. Then, instead of considering all profiles as equivalent as IC does, IAC considers all voting situations as equivalent. This assumes of course that the voting rule is anonymous, which implies that applying the rule to two equivalent profiles gives the same output.

Example 1.3. Given two voters and two candidates a and b, IC assumes that all profiles are equally likely where four possible profiles (presented below) are generated with a probability of 1 4 to occur.

1 a b 1 b a 1 a b 1 b a 1 a b 1 b a 1 b a 1 a b
On the other hand, when considering IAC, we do not distinguish between profiles IC and IAC are the two most prominent distributions studied in the social choice literature and used for sampling voters' preferences. They provide a worst case assumption that do not generally reflect real world preferences [START_REF] Regenwetter | Behavioral Social Choice -Probabilistic Models, Statistical Inference, and Applications[END_REF]. More realistic probabilistic models of preferences, or parametrized families of distributions over rankings, have been proposed in statistics and econometrics. These models typically reflect some process by which people rank, judge or compare alternatives. A commonly used model adopted widely in voting theory is the Mallows φ-model [START_REF] Mallows | Non-null ranking models[END_REF].

• Mallows φ model [START_REF] Mallows | Non-null ranking models[END_REF]: (We will simply call the Mallows model hereafter) is parameterized by a modal or reference ranking σ and a dispersion parameter r,σ) , where:

φ ∈ [0, 1], with P (r; σ, φ) = 1 Z φ d(
r is any ranking, d is the Kendall tau distance, and

-Z = r φ d(r ,σ) = 1 • (1 + φ) • (1 + φ + φ 2 ) • ... • (1 + ... + φ m-1 ) is a normal- ization constant.
With small values of φ, the mass is concentrated around σ, while φ = 1 gives the uniform distribution (IC), where all profiles are equiprobable and all candidates are equally likely to be a winner. Table 1.3: Kendall tau distance of the possible rankings r with respect to the reference ranking σ : a b c.

Assume φ = 0.97, then Z = 1 × (1 + 0.97) × (1 + 0.97 + 0.97 2 ) = 5.734. In the following, we compute the probability of different rankings r with respect to σ: [START_REF] Doignon | The repeated insertion model for rankings: Missing link between two subset choice models[END_REF] propose a practical method of sampling from the Mallows model using Repeated Insertion Model (RIM). Given a reference ranking σ = σ 1 , σ 2 , . . . σ m and a sequence of insertion probabilities p ij i for j i i, i m such that i j=1 p ij = 1, ∀i m; a ranking r is generated at random by first drawing an insertion vector j = (j 1 , . . . , j m ) satisfying j i i, ∀i m where each j i is drawn independently with probability p ij , and then applying a repeated insertion function Φ σ (j) that maps an insertion vector j over a raking σ into a new ranking Φ σ (j) by placing each σ i , in turn into a ranking j i for all i m. Assume a reference ranking σ = a b c over three candidates a, b and c. At step 1 (i = 1, j = 1), a is added to r with a probability p 11 . At step 2, b is inserted above a at the first position with a probability p 21 (i = 2, j = 1) or below b at the second position with a probability p 22 (i = 2, j = 2). At step 3, c is inserted at the first position with a probability p 31 (i = 3, j = 1), at the middle with a probability p 32 (i = 3, j = 2) or at the last position with a probability p 33 (i = 3, j = 3). If we consider the insertion vector j

-P (a b c) = 1 Z φ d(a b c,a b c) = 0.97 0 5.734 = 0.174 -P (a c b) = 1 Z φ d(a c b,a b c) = 0.97 1 5.734 = 0.169 -P (b a c) = 1 Z φ d(b a c,a b c) = 0.
= (1, 1, 2), then Φ σ (1, 1, 2) = (b c a)
where according to σ, a is inserted in the first position, then we insert b in the first position by moving a down to get b a, finally, c is inserted in the second position giving b c a. Doignon et al. [START_REF] Doignon | The repeated insertion model for rankings: Missing link between two subset choice models[END_REF] show that the distribution induced by RIM with insertion function Φ σ is identical to that of the Mallows φ model with reference ranking σ and dispersion parameter φ when:

p ij = φ i-j 1 + φ + • • • + φ i-1 , j i m (1.1)
Example 1.5. Let us consider the same setting as in Example 1.4 where σ : a b c and φ = 0.97. We start by computing the probability distributions using Eq. 1.1 as shown in the table below. For example p 21 = 0.97 (2-1) 1+0.97 = 0.49. • Mixture of Mallows model [START_REF] Lu | Learning mallows models with pairwise preferences[END_REF]: To overcome the unimodal nature of Mallows model, mixtures of Mallow's have been considered. Let p be a positive integer, a mixture model consists of p Mallows models with a probability distribution over them. Formally, given:

φ = 0.97 i = 1 i = 2 i = 3 j = 1 p
reference rankings σ 1 , . . . , σ p , -dispersion parameters φ 1 , . . . , φ p , and mixing coefficients (discrete probability distribution) λ 1 , . . . , λ p where each λ i , 1 i p is between 0 and 1, and p i=1 λ p = 1.

We select rankings from the p models according to the probability distributions induced from RIM model [START_REF] Mallows | Non-null ranking models[END_REF][START_REF] Lu | Learning mallows models with pairwise preferences[END_REF]. The mixing coefficients are used to choose the appropriate model i ∈ [1, p] for each generated ranking. One possible way (detailed in Algorithm 1.1) is to start with a uniform random real number in [0, 1) and first subtract off the first probability λ 1 , if the result is negative then we return the first model 1; otherwise, in a loop we select the next model and we subtract off the next probability until we get a negative result. Finally, we return the appropriate model.

Algorithm 1.1: Choose the Appropriate Model to Generate Rankings

Input : λ = {λ 1 , . . . , λ p }, Model = {1, . . . , p}

1 i ← 1 2 x ← random real number ∈ [0, 1) 3 draw ← x -λ i 4 while draw > 0 do 5 i ← i + 1 6 draw ← draw -λ i 7 return M odel [i]
Example 1.6. Let us consider two Mallows models (p = 2) with parameters:

σ 1 = b c a, φ = 0.19, λ 1 = 0.22 and σ 2 = b a c, φ = 0.34, λ 2 = 0.78 .
We start by computing the probability distributions for each value of φ using Eq. 1.1 as shown in the two tables below:

φ = 0.19 i = 1 i = 2 i = 3 j = 1 p 11 = 1 p 21 = 0.16 p 31 = 0.03 j = 2 - p 22 = 0.84 p 32 = 0.16 j = 3 - - p 33 = 0.81 φ = 0.34 i = 1 i = 2 i = 3 j = 1 p 11 = 1 p 21 = 0.26 p 31 = 0.08 j = 2 - p 22 = 0.74 p 32 = 0.24 j = 3 - - p 33 = 0.68
Now we choose a model to generate the first ranking following Algorithm 1.1 where

M odel = [1, 2].
We start be considering the first model with λ 1 = 0.22, assume we take x = 0.69 then draw= 0.69 -0.22 = 0.47. Since draw> 0, we take now the second model with λ 2 = 0.78 and draw = 0.47-0.78 = -0.31 < 0. Thus, the algorithm terminates and the second model with σ 2 = b a c, φ = 0.34, λ 2 = 0.78 is considered. Now, assume we take the insertion vector j = (1, 1, 3); then

r = Φ σ 2 (1, 1, 3) = (a b c
) where b is inserted first, a is inserted next in the first position by moving b down, finally, c is inserted in the third position.

Among probabilistic analysis used in social choice, there is also an increasing focus on domain restrictions [START_REF] Walsh | Uncertainty in preference elicitation and aggregation[END_REF][START_REF] Elkind | Structured preferences[END_REF][START_REF] Mattei | Empirical evaluation of voting rules with strictly ordered preference data[END_REF]. One of the most common domain restrictions considered in social choice theory is that of single peaked preferences introduced by Black [START_REF] Black | On the rationale of group decision-making[END_REF]. Single-peakedness is the idea that all voters have a certain most-preferred value along a shared axis, and derive less and less satisfaction from values that are further away from their preferred one.

• Single peaked impartial culture (SP-IC): Generates singled peaked votes uniformly. The model draws rankings uniformly at random from the set of orders that are consistent with a given social axis (a fixed order over candidates). In general, given m candidates at integer points on the social axis form 1 to m, there are 2 m-1 different singled peaked votes. Walsh [START_REF] Walsh | Generating single peaked votes[END_REF] describes how to generate singled peaked votes uniformly. He shows that half of all these single peaked votes end in m and are made up of all the single peaked votes from 1 to m -1 augmented with m at their end. The other half of these single peaked votes end in 1 and are made up of all the single peaked votes from 2 to m augmented with 1 at their end. 

/4 0 1 /4 1 /4 0 1 /4 b a c 1 /4 1 /4 1 /4 0 1 /4 0 c a b 1 /4 1 /4 1 /4 0 1 /4 0 Table 1.

Conclusion

In this chapter we have introduced basic notions of voting model used in preference aggregation. We have also presented the most important families of voting rules used to select the winner based on the voters' preferences. Finally, we have discussed several distributional preference models used to generate preferences based on a prior distribution. In the next chapter, we focus on determining winners or making decisions with incomplete information about voters' preferences.

Chapter 2

Voting with Partial Preferences In this chapter we relax the assumption that each voter provides a complete preference order over candidates. We focus on determining the winner or making decisions with incomplete information about voters' preferences. We describe the basic notations of voting with partial preferences. Then, we discuss existing solutions to determine the winners with partial voters' preferences. Finally, we tackle the problem of preference elicitation where we present existing work on the two types of vote elicitation, namely: interactive elicitation and non-interactive elicitation.

Introduction

Classical voting rules discussed in Chapter 1 assume that voters' ballots are complete preference orders over candidates (except plurality and approval voting). The process is easy when all the voters submit all their preferences to the voting center. However, asking voters to submit a complete ranking over the whole set of candidates is not viable for several reasons:

• when the number of candidates is large enough, requiring a complete specification of the voter's preference can be difficult and too costly in terms of time and/or cognitive effort.

• voters may wish to rank only a subset of candidates as it is not always possible for a voter to compare all available alternatives.

• voters may have privacy concerns which prevent them from revealing their full preference rankings.

This raises the challenge of partial voting where agents are allowed to cast partial preference orders. In practice, voting systems often permit voters to declare a partial order over a subset of the candidates. For example, in the 2002 Election for Dublin West, 9 candidates ran, but 29, 988 voters ranked only a median of 4 candidates over the set of candidates, and only 12.7% of the voters cast a complete vote. Also, in the 2007 Glasgow City Council elections separated by wards, available ballot data report the results of all the ward level elections which were originally held under STV. Figure 2.1 shows the number of ranked candidates by (around 10, 000) voters for 5 wards when they were asked to rank 11 candidates. Most voters chose to rank between 1 and 3 of the 11 candidates.

Partial voting can have a significant effect on elections [START_REF] Emerson | The original borda count and partial voting[END_REF]. For example, in elections for the Tasmanian Parliament, voters are allowed to submit partial ranking where they rank a minimum number of candidates; usually this number represents the number of members to be elected. Then, the Hare-Clark system is applied. 1 This voting system is also know as the Proportional Representation through the Single Transferable Vote (PR-STV) which corresponds to the multi-winner version of STV.

The chapter by Boutilier and Rosenschein [START_REF] Boutilier | Incomplete information and communication in voting[END_REF] of the Handbook of Computational Social Choice provides background on work on incomplete information and communication in voting. In this chapter, we address the problem of partial preferences where: In Section 2.2 we describe the basic concepts about incomplete preferences. Section 2.3 introduces solution concepts to determine the winners with partial information: possible and necessary winners, regret based winner computation and probabilistic models. Finally, Section 2.4 describes elicitation techniques and their analysis.

Partial Votes and Profiles

In order to reduce the communication requirements of voting, a natural way consists in obtaining partial information about voters' preferences. Incomplete information represents a challenging problem in preference aggregation. We begin by introducing basic notations and defining several models of partial preferences that will be used throughout this chapter.

Formally, an incomplete vote is defined by an election E = (N, A, R) where:

• N = {1, ...,

n}, the set of voters (or agents),

• A = {a, b, ...}, the set of candidates (or alternatives) such that |A| = m, and

• R = {R 1 , . . . , R n }, the partial profile of voters in N over A where each R i is a
partial order of voter i over A. We will refer to R i either as a partial vote or an incomplete vote; we use these terms interchangeably.

A partial vote R i can represent information about voter i's responses to queries. The most natural queries that can be represented as a partial preference order are2 : • Next best alternative: Voter i states her next most preferred alternative: her k th ranked candidate assuming that her k -1 candidates have already been provided (the next best alternative of voter i and her previous votes corresponds to answering a top-k query).

•
• Set choice (the same S): All voters are presented with the same subset S ⊂ A, and asked to give complete or partial rankings over the candidates in S.

• Set choice (not the same S): Each voter i is presented with a subset S ⊂ A (not the same for all voters), and asked to give complete or partial ranking over the candidates in S.

A completion of R i is any vote i that extends R i for each i ∈ {1, . . . , n}. Let C(R i ) denote the set of completions of R i , that is, the set of all complete linear order i that extend 

R i . A partial profile is a collection of partial votes R = {R 1 , . . . , R n }. Let P = C(R) = C(R 1 ) × ... × C(R n ) be the set of completions of R. Example 2.1. Let us consider a partial profile R = {R 1 , R 2 , R 3 }

Solution Concepts with Partial Preferences

In voting situations where the voters' preferences are partly known, a fundamental question arises: Is the information at hand sufficient to determine a collective decision? Several researches have focused on determining the winner given only incomplete voters' preferences where different solution concepts were considered to deal with such problem [START_REF] Bachrach | Probabilistic possible winner determination[END_REF][START_REF] Hazon | On the evaluation of election outcomes under uncertainty[END_REF][START_REF] Konczak | Voting procedures with incomplete preferences[END_REF][START_REF] Lu | Robust approximation and incremental elicitation in voting protocols[END_REF]: the use of possible and necessary winners, minimax regret and probabilistic models.

Possible and Necessary Winners

The partial information about the voters' preferences may or may not be sufficient to output the winner for a specific voting rule f . In the case where the winner cannot be determined, the information at hand may inform us on the presence of certain candidates to be potential winners. In this context, Konczak and Lang [START_REF] Konczak | Voting procedures with incomplete preferences[END_REF] introduced the concept of possible and necessary winners denoted PW and NW, respectively; where:

• a candidate c is a possible winner for a partial profile R and a voting rule f if c wins under at least one completion of the partial votes in R, i.e. C(R), and

• a candidate c is a necessary winner for a partial profile R and a voting rule f if it wins for all completions of the partial votes in R.

If f is resolute, then there can be at most one necessary winner. Also, x is necessary winner if and only if it is the only possible winner.

Note that knowing the possible winners given a partial profile allows to identify candidates that cannot win called necessary losers. By definition, candidate x is a necessary loser if it is not a possible winner. Note that given the partial profile R, there is no necessary winner because there are two possible winners.

Possible and necessary winners problems have gained a significant attention [START_REF] Bartholdi | Single transferable vote resists strategic voting[END_REF][START_REF] Conitzer | When are elections with few candidates hard to manipulate[END_REF][START_REF] Walsh | Uncertainty in preference elicitation and aggregation[END_REF][START_REF] Xia | Determining possible and necessary winners under common voting rules given partial orders[END_REF]. Complexity of these problems depends on the voting rule used and the setting. Three main settings have been studied for general partial profiles:

1) the number of candidates is bounded and the votes are weighted i.e. a voter with integer weight α can be viewed as α voters voting identically. 3 The PW problem is NP-complete for STV, plurality with runoff, Borda, Maximin and Copeland rules. The NW problem is co-NP-complete for STV and plurality with runoff [START_REF] Conitzer | When are elections with few candidates hard to manipulate[END_REF][START_REF] Lang | Winner determination in voting trees with incomplete preferences and weighted votes[END_REF][START_REF] Silvia Pini | Incompleteness and incomparability in preference aggregation: Complexity results[END_REF][START_REF] Walsh | Uncertainty in preference elicitation and aggregation[END_REF].

2) the number of candidates is bounded and the votes are unweighted i.e. each voter's vote counts the same. The possible and necessary winner problems can always be solved in polynomial time, assuming the voting rule can be solved in polynomial time [START_REF] Conitzer | When are elections with few candidates hard to manipulate[END_REF][START_REF] Walsh | Uncertainty in preference elicitation and aggregation[END_REF].

3) the number of candidates is unbounded and the votes are unweighted. Bartholdi and Orlin [START_REF] Bartholdi | Single transferable vote resists strategic voting[END_REF] show that for STV, PW is NP-complete and NW is co-NP-complete. Xia and Conitzer [START_REF] Xia | Determining possible and necessary winners under common voting rules given partial orders[END_REF] show that: PW and NW are polynomial time solvable for Plurality. For Copeland and Ranked Pairs, PW is NP-complete and NW is co-NP-complete. For Maximin, PW is NP-complete but NW is polytime solvable.

For positional scoring rules (including Borda), PW is NP-complete while NW is in P . The easiness of the necessary winner problem is due to the use of algorithms that find a completion of the partial profile that refute the claim.

Minimax Regret

Another way considered to determine the winner given a partial profile R is the use of minimax regret (MMR) concept proposed by Lu and Boutilier [START_REF] Lu | Robust approximation and incremental elicitation in voting protocols[END_REF]. This measure is used to determine the quality of a proposed winner x ∈ A given the information at hand by computing how far from the optimal solution could be given any completion of R in the worst case called the maximum regret of a candidate x (denoted by M R(x, R)). Then, the minimax optimal solution (denoted by x * R ) is the candidate with the minimum M R. Formally, given a partial profile R:

M M R(R) = min x∈A M R(x, R) (2.1) x * R ∈ argmin x∈A M R(x, R) (2.2)
where:

M R(x, R) = max P ∈C(R) Regret(x, P ) (2.3) Regret(x, P ) = max y∈A S(y, P ) -S(x, P ) (2.4)
and S(x, P ) is the score of candidate x given P .

where Regret(x, P ) represents the regret of selecting x as the winner for a specific voting rule f rather than another candidate y ∈ A given 

P = C(R). Note that if M M R(R) = 0, then the minimax winner x * R is optimal in any completion P ∈ C(R).
, M R(c, R) = S(a, C(R)) -S(c, C(R)) = 5 -2 = 3. Also, if we consider the completion C(R) = {a b c, a b c, b c a} then M R(c, R) = 3.
Hence, M M R = 1 and x * R is candidate a.

Probabilistic Concepts

Bachrach et al. [START_REF] Bachrach | Probabilistic possible winner determination[END_REF] propose a probabilistic notion for possible winner candidates. Given a partial profile R, they compute a proportion of completions of R (i.e. C(R)) for which a specific candidate is a possible winner. They assume that voters' preferences are drawn according to a uniform distribution (i.e. impartial culture, cf. Chapter 1) and sample completions using the latter. They show the effectiveness of their algorithm to provide proportion of the sampled profiles with high probability for voting rules computed in polynomial time.

A different approach was investigated by Hazon et al. [START_REF] Hazon | On the evaluation of election outcomes under uncertainty[END_REF] using probabilistic models to deal with incomplete information. Indeed, authors study the possibility of computing the probability of a particular candidate winning an election given partial information in the form of probability distributions over a set of candidates. Hazon et al. propose an algorithm that allows to compute the probability of candidate's victory under a variety of voting rules. For a constant bounded number of alternatives, they show that computing the probability of a winning candidate is polytime solvable for any voting rule solved in polynomial time. However, when the number of candidates is not bounded, they show that the problem becomes P-hard for plurality, Borda and Copeland rules.

Example 2.4. Let us consider the following profile over a set of 3 candidates A = {a, b, c} and 2 voters. Each voter i's preference is associated with a probability and the sum of the probabilities is equal to 1.

V oter 1 V oter 2 Table 2.1: Example of a partial profile with probability distributions over preferences following Hazon et al. [START_REF] Hazon | On the evaluation of election outcomes under uncertainty[END_REF].

V oting results (a, b, c) P robability 1, 1, 0 The first row represents a voting result which is a vector of votes of the possible voting scenarios for candidates a, b and c, e.g. vector (2, 0, 0) means that 2 votes are given to candidate a and 0 vote to b and c. The second column shows the probabilities for each possible voting scenario that consists in the product of the probabilities of the voters' preference, e.g. the probability associated to b is 1 3 × 3 4 .

1 3 . 1 4 + 1 2 . 3 4 1, 0, 1 1 6 . 1 4 0, 1, 1 1 6 . 3 4 0, 2, 0 1 3 . 3 4 2, 0, 0 1 2 . 1 4 0, 0, 2 0 
The voters' preferences are presented in Table 2.1. For instance, voter 2 will vote to candidate a (resp. b) with a probability of 1 4 (resp. 3 4 ) and she will not vote for candidate c. Following Hazon et al.'s approach, Table 2.2 presents the generated probabilities where the probability that candidate a (resp. b, c) is the winner for plurality rule is:

1 2 . 1 3 . 1 4 + 1 2 . 3 4 + 1 2 . 1 6 . 1 4 + 1 2
. 1 4 = 0.375 (resp. 0.542 and 0.083).

Preference Elicitation

In previous section we described techniques to determine the winner given partial preferences. Such solution concepts may succeed to output the winner with incomplete ballots; however, they do not provide ways to minimize the amount of information elicited. Effectively eliciting preferences from voters is of high importance. This problem is known as preference elicitation which was investigated in different domains such as healthcare [START_REF] Marieke | A systematic review to identify the use of preference elicitation methods in healthcare decision making[END_REF], recommender systems [START_REF] Loepp | Choice-based preference elicitation for collaborative filtering recommender systems[END_REF], crowdsourcing [START_REF] Cohensius | Efficient crowdsourcing via proxy voting[END_REF] and marketing [START_REF] Huang | Consumer preference elicitation of complex products using fuzzy support vector machine active learning[END_REF] where the system asks questions to different users in order to learn about group's preferences. In voting situations, preference elicitation refers to elicit a partial profile from voters in an efficient way in order to minimize the amount of information required to determine a winning outcome of high quality.

A voting rule does not specify how the votes are elicited from the voters (these rules are just functions mapping the preferences of all the voters to a winner). Different ways of determining the winner of an election by eliciting preferences from voters are based on specific protocols. A protocol is similar to an algorithm, with instructions replaced by communication actions; such actions specify bits that the voter should communicate, depending on her knowledge. Formally, a protocol for a voting rule f is a protocol that computes f ( 1 , ..., n ), given that i is the private information of voter i. The (deterministic) communication complexity of a voting rule f is the minimum cost of a protocol for f . A communication protocol is held between two parts: the voters and the voting center where the former send their preferences to the latter who is responsible for collecting the votes, computing the final result, and communicating the final outcome to the voters. Efficient communication protocols allow to determine how the relevant parts of the votes are elicited from the voters in the aim to minimize the communication cost of the protocol. For instance, for plurality with runoff, one possible way of eliciting the votes is to ask every voter to report her complete preference order. Alternatively, a simpler protocol is held in three steps: (1) each voter sends only the name of her most-preferred candidate to the voting center, (2) the voting center sends the name of the two finalists to the voters and (3) voters send the name of their preferred finalist to the voting center. One line of research focuses on the computational complexity of various issues related to elicitation. Conitzer and Sandholm [START_REF] Conitzer | Communication complexity of common voting rules[END_REF] study the communication complexity of various voting rules and determine upper and lower bounds for communication. They show that an upper bound (resp. lower bound) of ‰(n log m) (resp. Ω(n log m)) bits are needed for plurality and plurality with runoff. For Borda, Copeland and ranked pairs an upper bound (resp. lower bound) of ‰(n m log m) (resp. Ω(n m log m)) bits are needed. For STV, an upper bound (resp. lower bound) of O(n(log m) 2 ) (resp. Ω(n log m)) bits of communication are needed. (The communication complexity of STV will be discussed in Chapter 4.) Walsh [START_REF] Walsh | Complexity of terminating preference elicitation[END_REF] considers the question of how to decide when we can terminate eliciting preferences from the voters as the winner is determined. This problem is related to the computation of possible and necessary winners. Walsh shows that the complexity of deciding when to stop elicitation depends on the elicitation strategy. Conitzer and Sandholm [START_REF] Conitzer | Vote elicitation: Complexity and strategy-proofness[END_REF] show that determining how to elicit effectively voters preferences is NP-complete for Borda, Copeland, Maximin and STV while it is easy for plurality.

We now describe several techniques for the elicitation of voter preferences. Existing work on vote elicitation using partial profiles can be classified into two classes according to the type of interaction with the voters, namely: interactive elicitation and noninteractive elicitation (or one-shot elicitation). Some of work on these two classes uses the techniques described in Section 2.3 to guide the process of elicitation. These two approaches are described in the next two subsections.

Interactive Elicitation Protocols

An interactive elicitation protocol asks voters to expand their partial ballots in an incremental way, until the outcome of the vote is eventually determined. Recently, work on interactive elicitation received a considerable attention where algorithms that work well in practice have been proposed to elicit the relevant part of the voters' preferences. Authors consider different forms of queries through the elicitation process such as top-k, next best alternative, set of candidates and pairwise comparison queries.

This line of research starts with Kalech et al. [START_REF] Kalech | Practical voting rules with partial information[END_REF] who consider top-k ballots in vote elicitation. Authors propose an iterative algorithm that allows the voters to cast their preferences incrementally starting by top-1 ballots, then top-2, etc., until there is sufficient information for knowing the winner using possible and necessary winner concept. Experiments on real data show that their deterministic algorithm is able to reduce the communication cost by 35% and determine the winner correctly. To further reduce the information elicited, Kalech et al. propose an approximation algorithm able to save up 90% of preferences communicated. While there is no guarantee to output the correct winner, authors show that in practice their heuristic predicts the correct outcome with high probability.

Lu and Boutilier [START_REF] Lu | Robust approximation and incremental elicitation in voting protocols[END_REF] expand their work on determining the winner given partial preferences, using minimax regret solution, to vote elicitation. They propose a multiround incremental elicitation process that uses minimax regret to determine the winner given partial profile and to guide the choice of the voter to query. They consider two forms of queries: pairwise comparisons and next best alternative. The elicitation scheme of Lu and Boutilier [START_REF] Lu | Robust approximation and incremental elicitation in voting protocols[END_REF] asks one query of a single voter at each round while the scheme of Kalech et al. [START_REF] Kalech | Practical voting rules with partial information[END_REF] asks at each round all voters to answer a particular query simultaneously which can effectively reduce the number of rounds.

Naamani Dery et al. [START_REF] Lihi | Reaching a joint decision with minimal elicitation of voter preferences[END_REF] present two elicitation algorithms for finding a winner with little communication between voters. They show that their algorithms are able to reduce the communication between voters by half. In a recent work, Naamani Dery et al. [START_REF] Dery | Lie on the fly: Strategic voting in an iterative preference elicitation process[END_REF] take preference elicitation a step further by making the connection between manipulation (or strategic voting) and incremental preference elicitation. Indeed, when eliciting preferences from voters in an incremental way and query them to cast their preferences between two available candidates, voters may have an intention to vote strategically and misreport their preferences in order to make a specific candidate win or lose. Naamani Dery et al. provide a practical elicitation algorithm to avoid such scenarios to occur when considering pairwise comparison queries.

While most previous work studied a specific type of queries to elicit from voters, Zhao et al. propose a more general incremental elicitation framework, with more types of elicitation questions, is cost-effective elicitation [START_REF] Zhao | A cost-effective framework for preference elicitation and aggregation[END_REF]. Indeed, the voting center may ask a voter not only for her top-k preferred alternatives but also about her preference between two alternatives or her set of preferred candidate. In each round, the question asked depends on the missing information that will be used to reveal the most relevant information about the voter's preferences. In their work [START_REF] Zhao | A cost-effective framework for preference elicitation and aggregation[END_REF], Zhao et al. show how to compute the cost-effective questions in a preference elicitation framework.

One-Shot Elicitation Protocols

In one-shot elicitation (aka. non-interactive elicitation) the voting center elicits the partial information at once and outputs a winner from the available information without requiring voters to provide extra preferences. Different forms of partial vote have been considered including: top-k preferences, pairwise comparison between candidates or the set of the voters' preferred candidate. A possibility consists in computing possible winners given these partial vote: this is the path followed by Baumeister et al. [START_REF] Baumeister | Campaigns for lazy voters: truncated ballots[END_REF] who consider truncated ballots of the top-k, bottom-k and doubly truncated votes with top and bottom segments provided. Given these specific form of partial preferences, Baumeister et al. propose ways of extending some voting rules to deal with these partial preferences. Xia and Conitzer [START_REF] Xia | Determining possible and necessary winners under common voting rules given partial orders[END_REF] consider partial vote in the form of pairwise comparisons between candidates. They propose polynomial-time algorithms to check whether a given candidate is a necessary winner for positional scoring rules, Maximin and plurality with runoff5 given partial profile.

Another possibility -which is the one we choose to follow in Chapter 3-consists in generalizing the definition of a voting rule so that it takes partial vote as input. In this line, Oren et al. [START_REF] Oren | Efficient vote elicitation under candidate uncertainty[END_REF] analyze top-k voting by assessing the values of k needed to ensure the true winner is found with high probability for specific preference distributions, both theoretically and empirically. Their theoretical results were derived in both a worst and an average case under impartial culture. Although the latter are a little bit discouraging, their empirical results on Mallows model show that small values of k work well in practice. Filmus and Oren [START_REF] Filmus | Efficient voting via the top-k elicitation scheme: a probabilistic approach[END_REF] Narodytska and Walsh [START_REF] Narodytska | The computational impact of partial votes on strategic voting[END_REF] consider the computational impact of partial vote on strategic voting when voters submit top-k ballots. For Borda rule, they consider two possible ways to deal with truncated ballots by adjusting the scoring vector, namely: modified Borda Count [START_REF] Peter | The politics of consensus: For the resolution of conflict and reform of majority rule[END_REF] and average score modified Borda Count [START_REF] Cullinan | A borda count for partially ordered ballots[END_REF][START_REF] Grandi | A borda count for collective sentiment analysis[END_REF] (these two options will be considered in Chapter 3). For STV, they simply ignore votes once all their candidates are eliminated (this way to deal with truncated ballots for STV will be considered in Chapter 4). They show that under STV and average score modified Borda Count, partial voting does not change the situations where strategic voting is possible. However, under modified Borda Count partial voting can increase the situations where strategic voting is possible. Lu and Boutilier [START_REF] Lu | Vote elicitation with probabilistic preference models: Empirical estimation and cost tradeoffs[END_REF] propose a general framework for choosing the optimal threshold k for top-k elicitation in one-round protocols using minimax regret. Skowron et al. [START_REF] Skowron | Achieving fully proportional representation: Approximability results[END_REF] use top-k voting as a way to approximate the Monroe and Chamberlin-Courant multi-winner voting rules. Their experimental evaluation on synthetic data and real word data set show that their algorithm is able to output the near-perfect solution. Lackner [START_REF] Lackner | Incomplete preferences in single-peaked electorates[END_REF] studies the recognition of singled-peaked top-k profiles by proposing an algorithm to determine whether a given partial profile can be completed in such a way that it is single-peaked.

Conclusion

In this chapter we have relaxed the assumption that each voter provides a complete preference ranking over all candidates by dealing with incomplete voters' preferences. We have described the basic notations of voting with partial preferences. Then, we have discussed existing solution concepts for winner determination with incomplete ballots. Finally, we have tackled the problem of preference elicitation where we have discussed existing work on the two types of vote elicitation, namely: interactive elicitation and non-interactive elicitation. In the next chapters we propose ways to deal with partial preferences in the form of top-k ballots for different voting rules.

Part II Contributions

Part II presents the contributions of this dissertation. Chapter 3 proposes "top-k approximations" of rules, which take only into account the top-k candidates of each ballot. Chapter 4 focuses on STV voting rule and proposes ways to minimize the amount of communication required to use single-winner STV. Finally, Chapter 5 proposes an incremental vote elicitation process using heuristics to guide the choice of the next voter to ask. In this chapter we consider top-k ballots where we suggest to fix a rank k, to ask all voters to specify their best k candidates, and then we propose "top-k approximations" of rules, which take only into account the top-k candidates of each ballot. We consider two measures of the quality of the approximation: the probability of selecting the same winner as the original rule, and the score ratio. We make a worst-case study (for the latter measure only), and for both measures, an average-case study and a study from real data sets.

Introduction

The necessity of effectively aggregating voters' preferences is of great importance especially with systems containing large collections of candidates to choose from. We suggest to ask voters to report only their top-k candidates, for some (small) fixed value of k (the obtained ballots are then said to be k-truncated). The advantage of doing so is that not only it saves communication effort, but it is also often easier for voter to find out the upper part of their ranking (consisting of their preferred k candidates) than the rest of it. However, this raises the issue of how usual voting rules should be adapted to k-truncated ballots.

Reporting top-k truncated ballots is a specific form of voting with incomplete preferences, and is highly related to vote elicitation. More specifically existing work on top-k ballots can be classified into two classes according to the type of interaction with the voters (cf. Chapter 2):

• Interactive elicitation: the voting center asks voters to expand their truncated ballots in an incremental way, until the outcome of the vote is eventually determined.

• Non-interactive elicitation: the voting center elicits the top-k ballots at once, for a fixed value of k, and outputs a winner from this partial information without requiring voters to provide extra information.

Our contribution in this chapter concerns non-interactive elicitation. We generalize the definition of a voting rule such that it takes truncated ballots as input1 : we define approximations of voting rules which take as input the top-k candidates of each ballot. The question is then: Are these approximations good predictors of the original rule? We answer this question by considering two measures:

• the probability that the approximate rule selects the 'true' winner. To do so, we sample random profiles of full rankings and truncate the rankings so that voters only rank their top-k choices. We then compute the probability that the winner of the top-k ballots is the same as the winner of the full ballots for different voting rules.

• the ratio between the scores (for the original rule) of the true winner and the winner of the approximate rule.

For the latter measure we give a worst-case theoretical analysis. For both measures we give an empirical study, based on randomly generated profiles and on real-world data.

Even for small k, we find that top-k ballots are enough to identify the correct winner quite frequently for different voting rules, especially for data taken from real elections.

This contribution can be seen as a continuation of Filmus and Oren [START_REF] Filmus | Efficient voting via the top-k elicitation scheme: a probabilistic approach[END_REF] (cf. Chapter 2, Section 2.4.2). We go further on several points: we consider more voting rules: Borda, Harmonic, Copeland, Maximin, ranked pairs and STV; beyond impartial culture, we consider a large scope of distributions; within the Mallows φ model [START_REF] Mallows | Non-null ranking models[END_REF] and Mixture of Mallows [START_REF] Lu | Learning mallows models with pairwise preferences[END_REF]. We also study score distortion; and we include experiments using real-world data sets.

Our interpretation of top-k ballots is epistemic: the central authority in charge of collecting the votes and computing the outcome ignores the voters' preferences below the top-k candidates of each voter, and has to cope with it as much as possible. Voters may very well have a complete preference order in their head (although it does not need to be the case), but they will simply not be asked to report it. These truncated ballots certainly do not mean that voters see the candidates below the top-k as being indifferent or incomparable. This chapter is organized as follows: Section 3.2, defines the top-k approximations of different voting rules. Section 3.3 analyses empirically the probability that the approximate rule selects the true winner. Finally, Section 3.4 analyses (theoretically and empirically) the score distortion.

Approximating Voting Rules from Truncated Ballots

We consider one-shot protocols where all input information needs to be gathered at the same time. In this model, if we wish to compute the winner for a given voting rule with certainty, we need to ask voters to report their entire preferences, i.e. to report their linear order. Let us relax the goal of certainty and instead aim to compute the winner with high-enough probability. In exchange, we ask for less information: Voters report top-k-ballots for a fixed k 1, i.e. they report a ranked list of their k most-preferred candidates.

We define a top-k election as follows:

Definition 3.1. Given k ∈ {1, ..., m -1}, a top-k election is a triple E = (N, A, R)
where N and A are as before, and

R = ( k 1 , ..., k n ), where each k i is a ranking of k out of m candidates in A. R is called a top-k profile. If P is a complete profile, k i is the top-k truncation of i (i.
e. the best k candidates, ranked as in i ), and A top-k (resolute) voting rule is a function f k that maps each top-k election E to a candidate in A. If we apply a top-k voting rule to a complete profile P this implies that we will use the top-k truncated ballots induced from P , i.e. f k (P ) = f k (P k ).

P k = ( k 1 , ..., k n ) is the top-k-profile
In this section we define several top-k rules that correspond to standard voting rules discussed in Chapter 1. We consider positional scoring rules (PSR), namely: Borda, Harmonic in Section 3.2.1; pairwise rules, namely: Copeland, Maximin and ranked pairs in Section 3.2.2, and one elimination based rule namely STV in Section 3.2.3.

Positional Scoring Rules

An extension of positional scoring rules to top-k voting as follows: When starting from a specific PSR for complete ballots, defined by scoring vector s = (s 1 , . . . , s m ), three choices of s * particularly make sense:

• zero score: the non-ranked candidates get a zero score, i.e. s * = 0

• average score: the non-ranked candidates get the average score of the remaining candidates, i.e. s * = 1 m-k (s k+1 + . . . + s m )

• maximal score: the non-ranked candidates get the score of the candidate ranked in the (k + 1) th position, i.e. s * = s k+1 .

We denote the corresponding approximate rules as f 0 k uses the zero score, f av k uses the average score and f max k uses the maximal score.

For Borda, the first two choices have been considered in the literature where Borda av k is known under the name average score modified Borda Count [START_REF] Cullinan | A borda count for partially ordered ballots[END_REF][START_REF] Grandi | A borda count for collective sentiment analysis[END_REF], while Borda 0 k is known under the name modified Borda Count [START_REF] Peter | The politics of consensus: For the resolution of conflict and reform of majority rule[END_REF]). 

= (1, 1 2 , 1 3 , 1 3 , 1 3 
), respectively.

Young [START_REF] Peyton | Social choice scoring functions[END_REF] characterized positional scoring rules by these four properties, which we describe informally (for resolute rules):

• Neutrality: all candidates are treated equally

• Anonymity: all voters are treated equally

• Reinforcement: if P and Q are two profiles (on disjoint electorates) and x is the winner for P and the winner for Q, then it is also the winner for P ∪ Q.

• Continuity: if P and Q are two profiles and x is the winner for P but not for Q, adding sufficiently many votes of P to Q leads to elect x.

These four properties still make sense for truncated ballots. It is not difficult to generalize Young's result to top-k PSR: Proof. The left-to-right direction is obvious. For the right-to-left direction, let us first define the top-k-only property: a standard voting rule is top-k-only if for any two complete profiles P, P , if P k = P k , then F (P ) = F (P ). Then (1) a positional scoring rule F is top-k-only if and only if s k+1 = . . . = s m (if this equality is not satisfied, then it is easy to construct two profiles P , P such that P k = P k and F (P ) = F (P )). Now, assume f k is a top-k rule satisfying neutrality, anonymity, reinforcement, and continuity. Let F be the standard voting rule defined by F (P ) = f k (P k ). Clearly, F also satisfies neutrality, anonymity, reinforcement, and continuity, and due to Young's characterization result, F is a PSR, associated with some vector (s 1 , . . . , s m ). Because F is also top-k-only, using (1) we have s k+1 = . . . = s m , therefore, f k is a top-k-PSR.

Rules Based on Pairwise Comparisons

With incomplete preference orders, comparing all pairs of candidates is not possible due to the lack of information submitted by the voters. Now, given a truncated ballot 

M W k (R) is the m × m matrix defined by M W k (R)(a, b) = N R (a, b) -N R (b, a). Then, given a k-truncated profile R = ( k 1 , . . . , k n ),

Single Transferable Vote Rule

Given top-k ballots as input, we propose a natural generalization of STV rule which is quite popular. It is used, for example, in local elections in San Francisco (with k = 3). The analogous rule that allows submitting partial rankings of any length (not fixed to some k) is also widely used, for example in the Irish presidential elections, voters are allowed to only cast a partial ranking by ranking a subset of the candidates, and leave the rest unranked.

For each 1 k m, we define ST V k as follows: Just like STV , in each round, we eliminate a candidate ranked first by the smallest number of voters (breaking ties using if necessary). If all the k candidates in some ballot have been eliminated, the vote is ignored in later rounds (and is called exhausted). We repeat this process until one candidate remains, who is the winner according to ST V k . Although the top-k rules can be seen as a voting rule on their own, we view them as an approximation of the standard rule. In this context, we take the top-k rule to be a rule which takes profiles of full linear orders as input, truncates the preferences to become top-k ballots, and then proceeds as above.

For all our rules we considered (Borda, Harmonic, Copeland, Maximin, ranked pairs and STV) we observe that:

• for k = m -1 (or equivalently, k = m), the k-truncated version of the rule coincides with the standard rule, i.e. f m-1 = f (for instance, Copeland m-1 coincides with Copeland, etc.).

• for all rule f we consider, when k = 1, f 1 coincides with plurality.

Probability of Selecting the True Winner

The first way of measuring the quality of the top-k approximations is to determine the probability that they output the 'true winner'; that is, the winner of the original voting rule, under various Mallows φ model (Subsection 3.3.1), mixture of Mallows (Subsection 3.3.2) and real-world data (Subsection 3.3.3). We will ask: How often do the k-truncated rule and the standard one declare the same candidate to be the winner?

Our main practical objective is to obtain, depending on the context, a value of k small enough to allow for painless communication of preferences, but large enough so that the probability of obtaining the true winner from the top-rules is high.

In order to assess the ability of the k-truncated approximations to predict the correct winner, we propose now an empirical approach. Since we want to measure experimentally the probability that the output of the top-k approximation of a rule coincides with the true winner, we need to know this true winner, and therefore we need to have access to the true profile. For doing so, we consider the following process:

1) take a complete profile P (with n voters and m candidates);

2) for k = 1 to m -2: compare f k (P ) to f (P ).

Step 1 varies according to whether we are in the random generation setting or the real world data setting. For the former, we draw a profile according to a given distribution (Subsections 3.3.1 and 3.3.2). For the latter, we draw a profile by selecting n votes uniformly at random from the collection of votes found in the data set (Subsection 3.3.3).

We iterate these two steps a sufficiently large number of times (over 1000 profiles) and we obtain empirically the probability that the original rule and its approximation select the same winner. To approximate Harmonic, we consider the average score version.

Note that we cannot simply stop the process if we reach a k such that f k (P ) = f (P ), because there is no guarantee that f k (P ) will still be equal to f (P ) for k > k. Here we follow the research direction initiated by Filmus and Oren [START_REF] Filmus | Efficient voting via the top-k elicitation scheme: a probabilistic approach[END_REF], but we consider more rules, and beyond Impartial Culture we also consider correlated distributions within the Mallows model parameterized by a reference ranking σ and a dispersion parameter φ ∈ [0, 1], Mixture of Mallows (cf. Chapter 1) and real data sets.

Experiments Using Mallows φ Model

For each experiment we draw 1000 random preference profiles. In the first set of experiments, we take m = 7, we let n and φ vary, and we measure the accuracy of the approximate rule for k = 1 and k = 2. Results are reported on Table 3.1. Note that for k = 1, our results can be viewed as answering the question: With which probability does the true winner with respect to the chosen rule coincide with the plurality winner?

For k = 1: when n 100 and φ 0.7, prediction reaches 90% for Borda, Copeland Maximin and STV, 92% for RP, and 94% for Harmonic. Better results are obtained as we increase n (n = 500): for n 500 and φ 0.7, the accuracy is perfect for all rules. For φ = 0.8, the success rate decreases but results are still good with a large number of voters e.g. when φ = 0.8 and n = 500, it is around 0.95 for Copeland, M aximin, RP and STV, and 0.96 for Borda and Harmonic. For φ = 0.9 and n = 500, the rate reaches 86% for Harmonic and 72% for Copeland, with intermediate (and similar) results for Borda, Maximin, RP and STV. For larger φ (φ = 1), the accuracy is much lower. Indeed, for the IC, the rate decreases dramatically when k becomes small, except for Harmonic (73% when n = 500 against 46% for STV, 31% for Copeland and around 40% for the remaining rules).

For k = 2: when φ < 1, the accuracy of all truncated rules improves significantly if the number of voters is increased. Indeed, the probability of selecting the true winner reaches 100% (resp. 98%) when φ 0.7 (resp. φ = 0.8) and n 400 (resp. n 500). , especially with high values of φ. In all cases, top-2 ballots seem to be always sufficient in practice to predict the winner with 100% accuracy with a low value of φ.

In the second set of experiments, we are interested in determining the value of k needed to predict the correct winner with large elections and with a high value of φ. We take k = {1, ..., m}, n = 2000, φ = {0.9, 1} and m = 20. (Here we consider the same setting used by Filmus and Oren [START_REF] Filmus | Efficient voting via the top-k elicitation scheme: a probabilistic approach[END_REF] in their experiments when φ = 1.) Note that when φ 0.8, our results show that k = 1 always suffices for 100% accuracy for all truncated rules. Figure 3.4 shows depicted results where 1000 random preference profiles are generated for each experiment. Results suggest that in large elections and unless φ is very high (φ = 0.9), top-k rules succeed to identify the true winner when k = 8 (resp. k = 14) for Harmonic (resp. the remaining rules) out of m = 20. For φ = 1, all voters' preferences are needed to determine the winner except for Harmonic that requires only k = 15 voters' preferences over 20 available. We can also observe the behavior of different truncated rules when φ = 0.9: the best accuracy is obtained again by Harmonic and the accuracy of all other rules are very close, which we found surprising. When φ = 1, the latter behavior changes: Harmonic still has the best results, followed by Borda av and STV, then the remaining rules. The good performance of Harmonic in all cases can be explained by the fact that the closer the scoring vector to plurality, the better the prediction.

In the next experiments, in the aim to determine the value of k (as a function of m) for which the k-truncated rules maximizes the probability of coinciding with the standard ones, we vary the number of candidates m ∈ {7, 10, 15, 20} and φ ∈ {0.9, 1} when n = 1000. Results are depicted in Figure 3.5 where 1000 random preference profiles are generated for each experiment. We also comment on results when n = 2000. The results for Borda av are:

• for φ = 0.7, k = 1 is always sufficient, whatever m.

• for φ = 0.8, k = 2 (resp. k = 1) is always sufficient for n = 1000 (resp. n = 2000), whatever the value of m.

• for φ = 0.9, we observe that the minimal value of k such that the correct winner is always correctly predicted is around 4 5 m (for n = 1000) and 7 10 m (for n = 2000).

• for φ = 1, the minimal value of k is m -1: we always find a generated profile for which we get an incorrect result if the profile is not complete.

The results for Copeland, Maximin, RP and STV are similar to those for Borda. For Harmonic, we observe that k = 1 is always sufficient for φ 0.8 and n = 2000, and that for φ = 0.9 (resp. φ = 1), the value of k needed is around 2 5 m (resp. 3 4 m).

In order to see how our approximations behave with a small number of voters and a high dispersion parameter, we take k = {1, ..., m -1}, n = 15, m = 7, and φ ∈ {0.9, 1}. The results are on Figure 3.6. The best performance is obtained by Harmonic: even with few voters, winner prediction is almost perfect when k = 4 over 7 candidates. With a small number of voters, STV outperforms Borda and pairwise rules where the success rate reaches 98% when k = 5. The worst performance is obtained with Copeland, while the other rules perform more or less equally well. These results are consistent with the results obtained by Skowron et al. [START_REF] Skowron | Achieving fully proportional representation: Approximability results[END_REF] for multiwinner rules: elections with few voters and high dispersion appear to be the worst-case scenario for predicting the correct winner using top-truncated ballots.

Experiments Using Mixture of Mallows model

Now, we consider Mixture of Mallows (cf. Section 1.4) with p Mallows models when p = 1, p = 2 and p = 3 (Figure 3.7 (a), (b) and (c), respectively) and we measure the accuracy of the approximate rules. For each experiment we draw 1000 random preference profiles. We take m = 7, n = 500 and we vary p ∈ {1, 2, 3} and k ∈ {1, . . . , 7}. From the results, we observe that inducing more correlation between voters decreases the prediction of the correct winner for all rules. Indeed, increasing the number of models tend towards the impartial culture (all orders are increasingly equally likely), while a Mallows model with p = 1 will have a more tightly correlated set of votes, tending towards a Mallows model with a low φ. When p = 1, Harmonic rule gives the best performance, followed by Borda. With a mixture of two and three mallows models, the latter behavior changes where Harmonic still has the best prediction, followed by pairwise rules, then Borda. For p = 2 (resp. p = 3), top-3 (resp. top-4) ballots are sufficient to output the correct winner under Harmonic. For the remaining rules, the winner is predicted with 99% accuracy using top-5 ballots when p = {2, 3}.

Experiments Using Real Data Sets

We now consider real data set from Preflib [START_REF] Mattei | Preflib: A library for preferences http://www. preflib[END_REF]: 2002 election for Dublin North constituency with 12 candidates and 3662 voters. Dublin data contains some incomplete ballots. Since we need full ballots to run our experiments, we excluded all partial ballots. 2 We are interested in predicting the result for small and large elections. To do so, we consider data with samples of n * voters among n (n * < n), starting by n * = 10 and increment n * in steps of 10. In each experiment, 1000 random profiles are constructed with n * voters; then we consider the top-k ballots obtained from these profiles, with k = {1, 2, 3}, and we compute the frequency with which we select the true winner. Figure 3.8 shows results for Dublin data with small elections (n * = {10, ..., 100}). Our results suggest that predicting the correct winner for small elections fails rather often when k is too small (k 1 4 m). We also see that performance increases with the number of voters. Consistently with the results of Figure 3.6, with a small number of voters, Harmonic gives the best performance followed by STV then the remaining rules e.g. For Harmonic (resp. STV), 92% (resp. 82%) accuracy is reached with k = 3 over 12 candidates and n * = 50 against around 75% for the remaining rules.

The next experiments uses again Dublin data, but now we consider larger elections. We sample n * voters, for n * ∈ {100, . . . , 2000} with samples of n * voters among n (n * < n), starting by n * = 100 and increment n * in steps of 50. Similarly to the above experiments, 1000 random profiles are constructed with n * voters; then we consider the top-k ballots obtained from the sampled profiles, with k ∈ {1, 2, 3}. Results are reported on Figure 3.9. Arrows indicate the number of voters from which the prediction is perfect.

For large elections, performance increases with n * and k. For k = 1, the different approximations exhibit almost the same behavior except Harmonic that performs better especially with few voters. Obviously, increasing the value of k leads to a decrease in the number of voters needed for correct winner selection. Indeed, eliciting only k = 1 4 m candidates over 12 for each voter is sufficient to predict the correct winner when n * 570 (resp. n * 800) for Borda and Harmonic (for the remaining rules). In general, the different approximations needs a sufficient number of voters to converge to the correct prediction. Scoring rules tend to require less voters.

Measuring the Approximation Ratio

In the previous section, we measured empirically the quality of the approximation by the frequency with which it outputs the true winner of the original rule. Now, we take a different path where we propose to evaluate the quality of the approximations by computing the score ratio between the score of the true winner and of the winner of the approximate rule. In Section 3.4.1 we analyze theoretically the score distortion in the worst case. We complete our study by an empirical analysis of the average-case study and a study from real data sets in Section 3.4.2 and Section 3.4.3, respectively.

Worst Case Study

In order to measure the quality of approximate voting rules whose definition is based on score maximization, a classical method consists in computing the worst-case approximation ratio between the scores (for the original rule) of the 'true' winner and of the winner of the approximate rule. Using worst-case score ratios is classical: they are defined for measuring the quality of approximate voting rules [START_REF] Caragiannis | Procaccia. Socially desirable approximations for dodgson's voting rule[END_REF][START_REF] Service | Communication complexity of approximating voting rules[END_REF], for defining the price of anarchy of a voting rule [START_REF] Brânzei | How bad is selfish voting[END_REF] or for measuring the distortion of a voting rule [START_REF] Boutilier | Optimal social choice functions: A utilitarian view[END_REF].

Worst-case score ratios particularly make sense if the score of a candidate is meaningful beyond its use for determining the winner. This is definitely the case for Borda, as the Borda count is often seen as a measure of social welfare (see [START_REF] Aspremont | Social welfare functionals and interpersonal comparability[END_REF]). This worst-case score ratio is called the price of top-k truncation. Note that as STV and RP are not based on score maximization (for a discussion, see [START_REF] Conitzer | Preference functions that score rankings and maximum likelihood estimation[END_REF]) they will not be considered in our study. Definition 3.5. Let f be a voting rule defined by the maximization of a score S, and f k a top-k approximation of f . The price of top-k-truncation for f , f k , m, and k, is defined as For k = 1, under Borda 0 1 candidate b is the winner. Then, R(Borda, Borda 0 1 , 4, 1) = 22 19 .

R(f, f k , m, k) = max P ∈Pm S(f (P )) S(f k (P k )) ( 3 
For k = 2, under Borda 0 2 candidate a is the winner. Then, R(Borda, Borda 0 2 , 4, 2) = 22 22 =1.

We devote Subsection 3. 

Positional Scoring Rules

Let f s be a positional scoring rule defined with scoring vector s. Assume the tiebreaking priority favors x 1 . Let f s k be a top-k approximation of f s , associated with vector s = (s 1 , . . . , s k , s * ), with the same tie-breaking priority. Let s = (s 1 -s * , . . . , s ks * , 0) = (s 1 , . . . , s k , 0), i.e.

s i = s i -s * for i = 1, . . . , k. Obviously, f s k = f s k . For instance, if f s is the average-score approximation of the Borda rule, then s = (m - 1, . . . , m -k, m-k-1 2 ) and s = (m -1 -m-k-1 2 , . . . , m -k -m-k-1 2 , 0).
Let S(x, P ) be the score of x for P under f s and S k (x, P k ) be the score of x for P k under f s k . From now on when we write scores we omit P and P k , i.e. we write S(x) instead of S(x, P ), S k (x) instead of S k (x, P k ) etc. In the rest of Subsection 3.4.1 we assume k 2.

Let x 1 = f s k (P k ) and x 2 = f s (P ).

Upper bound: We start by computing an upper bound of the worst-case score ratio.

Lemma 3.1.

R(f s , f s k , m, k) 1 - s k+1 s 1 + 1 + s * s 1 ms k+1 s 1 + . . . + s k
Proof. The total number of points given to candidates under

f s k is n(s 1 + . . . + s k ), therefore S k (x 1 ) n m (s 1 + . . . + s k ).
Let us write S(x 2 ) = S 1→k (x 2 ) + S k+1→m (x 2 ), where S 1→k (x 2 ) (resp. S k+1→m (x 2 )) is the number of points that x 2 gets from the top-k (resp. bottom m -k) positions of the ballots in P . Let γ be the number of ballots in which x 2 is not in the top-k positions. Then S k+1→m (x 2 ) γs k+1 .

As x 2 appears in at least

S k (x 2 ) s 1 top-k ballots, we have γ n - S k (x 2 ) s 1 . Moreover we have S(x 1 ) S 1→k (x 1 ) = S k (x 1 ) + ns * S k (x 2 ) + ns * = S 1→k (x 2 ). Now, S(x 2 ) S 1→k (x 2 ) + n - S k (x 2 ) s 1 s k+1 S 1→k (x 2 ) + n -S k (x 2 )-ns * s 1 s k+1 (1 -s k+1 s 1 )S 1→k (x 2 ) + ns k+1 + ns * s k+1 s 1 (1 -s k+1 s 1 )S(x 1 ) + ns k+1 + ns * s k+1 s 1 S(x 2 ) S(x 1 ) 1 -s k+1 s 1 + ns k+1 (1 + s * s 1 ) m n(s 1 +...+s k ) 1 -s k+1 s 1 + s k+1 (1 + s * s 1 ) m s 1 +...

+s k

Lower bound: We now focus on the lower bound. We build the following pathological complete profile P such that:

• the winner for P k (resp. P ) is x 1 (resp. x 2 ).

• in P k , all candidates get the same number of points (x 1 wins thanks to tiebreaking), and x 1 and x 2 get all their points from top-1 positions.

• in P , the score of x 1 is minimized by ranking it last everywhere where it was not in the top-k positions, and the score of x 2 is maximized by ranking it in position k + 1 everywhere where it was not in the top-k positions.

• P k is symmetric in {x 3 , . . . , x m }.
Formally, P k is defined as follows:

1) for each ranked list L (resp. L ) of k -1 (resp. k) candidates in {x 3 , . . . , x m }: α votes x 1 L and α votes x 2 L (resp. β votes L ). α and β will be fixed later.

2) α and β are chosen in such a way that all candidates get the same score S k (.).

3) the tie-breaking priority relation favors x 1 . Now, P is obtained by completing P k as follows:

1) each top-k vote x 1 L is completed into x 1 Lx 2 -. "-" means the remaining candidates are in an arbitrary order.

2

) each top-k vote x 2 L is completed into x 2 L -x 1 . 3) each top-k vote L is completed into L x 2 -x 1 .
Example 3.7. For m = 5 and k = 3, we obtain the profile presented in Table 3.2.

Lemma 3.2. S k (x 1 ) = S k (x 2 ) = α(m -2)s 1 M and f or i 3, S k (x i ) = 2α(s 2 + . . . + s k )M + β(m -k -1)(s 1 + . . . + s k )M
where M = (m-3)! (m-k-1)! Table 3.2: Profile P when m = 5 and k = 3 P 3 P α votes: x 1 x 3 x 4 α votes: x 1 x 3 x 5 α votes: x 1 x 4 x 3 α votes: x 1 x 4 x 5 α votes: x 1 x 5 x 3 α votes: x 1 x 5 x 4 α votes: x 2 x 3 x 4 α votes: x 2 x 3 x 5 α votes: x 2 x 4 x 3 α votes: x 2 x 4 x 5 α votes: x 2 x 5 x 3 α votes: x 2 x 5 x 4 β votes: x 3 x 4 x 5 β votes: x 3 x 5 x 4 β votes: x 4 x 3 x 5 β votes: x 4 x 5 x 3 β votes: x 5 x 3 x 4 β votes: x 5 x 4 x 3 α votes: x 1 x 3 x 4 x 2 x α votes: x 1 x 3 x 5 x 2 x α votes: x 1 x 4 x 3 x 2 x α votes: x 1 x 4 x 5 x 2 x α votes: x 1 x 5 x 3 x 2 x α votes: x 1 x 5 x 4 x 2 x α votes: x 2 x 3 x 4 x 5 x α votes: x 2 x 3 x 5 x 4 x α votes: x 2 x 4 x 3 x 5 x α votes: x 2 x 4 x 5 x 3 x α votes: x 2 x 5 x 3 x 4 x α votes: x 2 x 5 x 4 x 3 x β votes: x 3 x 4 x 5 x 2 x β votes: x 3 x 5 x 4 x 2 x β votes: x 4 x 3 x 5 x 2 x β votes: x 4 x 5 x 3 x 2 x β votes: x 5 x 3 x 4 x 2 x β votes: x 5 x 4 x 3 x 2 x Proof. In P k , x 1 and x 2 appear in top position in a number of votes equal to α times the number of different permutations (ordered lists) of (k-1) candidates out of (m-2), i.e. α (m-2)! (m-k-1)! times. Thus

S k (x 1 ) = S k (x 2 ) = α (m-2)! (m-k-1)! s 1 .
To compute S (x i ); for each i 3, x i appears in (2, . . . , k) position in a number of votes equal to 2α times the number of different permutations (ordered lists) of (k -2) candidates out of (m -3) i.e. 2α (m-3)! (m-k-1)! .

Also, x i appears in (1, . . . , k) position in a number of votes equal to β times the number of different permutations (ordered lists) of (k -1) candidates out of (m -3) i.e. β (m-3)! (m-k-2)! .

Thus,

S k (x i ) = 2α (m-3)! (m-k-1)! s 2 + • • • + 2α (m-3)! (m-k-1)! s k + β (m-3)! (m-k-2)! s 1 + • • • + β (m-3)! (m-k-2)! s k .
Then, 

S k (x i ) = 2α (m-3)! (m-k-1)! (s 2 + • • • + s k ) + β (m-3)! (m-k-2)! (s 1 + • • • + s k ).
β α = (m -2)s 1 -2(s 2 + . . . + s k ) (m -k -1)(s 1 + . . . + s k )
Proof. Using Lemma 3.2 and in order to ensure that all candidates have the same score in P k , we must have:

S k (x 1 ) = S k (x i ) ⇒ α(m -2)s 1 M = 2α(s 2 + . . . + s k )M + β(m -k -1)(s 1 + . . . + s k )M ⇒ α((m -2)s 1 -2(s 2 + . . . + s k )) = β(m -k -1)(s 1 + . . . + s k ) Then we get: α = (m -k -1)(s 1 + . . . + s k ) and β = (m -2)s 1 -2(s 2 + . . . + s k )
This holds if and only if

β α = (m -2)s 1 -2(s 2 + . . . + s k ) (m -k -1)(s 1 + . . . + s k )
Thus, in P k , thanks to the tie-breaking priority, the winner is x 1 . Thanks to the tie-breaking priority, the winner in P k is x 1 . Now, in P , the winner is x 2 and the scores of x 1 and x 2 are given by the following Lemma: Lemma 3.4.

S(x

1 ) = Qαs 1 S(x 2 ) = Qαs 1 + Qαs k+1 + Q(m -k -1)βs k+1 where Q = (m-2)! (m-k-1)! Proof.
x 1 appears at the top of (m-2)! (m-k-1)! α votes and at the bottom of all others, hence S(x 1 ) = Qαs 1 .

x 2 appears α (m-2)! (m-k-1)! times top position, and in position (k + 1) in the remaining votes, i.e., α (m-2)! (m-k-1)! + β (m-2)! (m-k-2)! where:

• x 2 appears in top position in a number of votes equal to α times the number of different permutations of (k -1) candidates out of (m -2) i.e. α (m-2)! (m-k-1)! with a score of s 1

• x 2 appears in position (k + 1) in a number of votes equal to α times the number of different permutations of (k -1) candidates out of (m -2) i.e. α (m-2)! (m-k-1)! with a score of s k+1

• x 2 appears in position (k + 1) in a number of votes equal to β times the number of different permutations of k candidates out of (m -2) i.e.

β (m-2)! (m-k-2)! with a score of s k+1 Thus S(x 2 ) = α (m-2)! (m-k-1)! s 1 + (m-2)! (m-k-1)! s k+1 + β (m-2)! (m-k-2)! s k+1 S(x 2 ) = α (m-2)! (m-k-1)! (s 1 + s k+1 ) + β (m-2)! (m-k-2)! s k+1 Lemma 3.5. R(f s , f s k , m, k) 1 - s k+1 s 1 + s k+1 s 1 ms 1 s 1 + . . . + s k Proof. From Lemma 3.4 we get S(x 2 ) S(x 1 ) 1 + s k+1 s 1 + (m -k -1) s k+1 s 1 β α .
Finally, using the expression of β α in Lemma 3.3 we get

S(x 2 ) S(x 1 ) 1 + s k+1 s 1 + (m -k -1) s k+1 s 1 (m-2)s 1 -2(s 2 +...+s k ) (m-k-1)(s 1 +...+s k )
From this we conclude: As a corollary, when s * = 0 the lower and upper bounds coincide giving a tight worst-case approximation ratio for this class of approximations. Corollary 3.1.

R(f s , f s k , m, k) 1 + s k+1 s 1 + s k+1 s 1 (m-2)s 1 -2(s 2 +...+s k ) s 1 +...+s k 1 + s k+1 s 1 + s k+1 s 1 (m-2)s 1 +2s 1 -2(s 1 +...+s k ) s 1 +...+s k 1 + s k+1 s 1 + s k+1 s 1 ms 1 s 1 +...+s k -2 1 -s k+1 s 1 + s k+1 s 1 ms 1 s 1 +...+s k Proposition 3.1. 1 -s k+1 s 1 + s k+1 s 1 ms 1 s 1 +...+s k R(f s , f s k , m, k) 1 -s k+1 s 1 + 1 + s *

W hen s

* = 0, R(f s , f s k , m, k) = 1 -s k+1 s 1 + 1 + s * s 1 ms k+1 s 1 +...+s k Proof.
When s * = 0, we have s 1 = s 1 then the lower bound is equal to:

1 - s k+1 s 1 + ms k+1 s 1 + . . . + s k
The upper bound is equal to:

1 -s k+1 s 1 + 1 + s * s 1 ms k+1 s 1 +...+s k = 1 -s k+1 s 1 + ms k+1 s 1 +...+s k where , s * = 0 = 1 -s k+1 s 1 + ms k+1 s 1 +...+s k where , s 1 = s 1
This is however not guaranteed when s * > 0 (the reason being that the pathological profile used in the proof of Lemma 3.1 may not be the worst). In particular, for different approximate scoring rules, the lower and lower bounds are as follows:

1) Case of Borda 0 k :

• s i = m -i, s * = 0, s i = m -i • (s 1 , . . . , s k ) = (m -1, . . . , m -k) = km -k(k+1) 2 • s k+1 = m -k -1 R(Borda, Borda 0 k , m, k) = k m-1 + 2m(m-k-1) k(2m-k-1)
2) Case of Borda av k :

• s i = m -i, s * = m-k-1 2 , s i = m -i -m-k-1 2 • (s 1 , . . . , s k ) = ( m+k-1 2 , . . . , m-k+1 2 ) = mk 2 • s k+1 = m -k -1 1-m-k-1 m-1 + (m-k-1)(m+k-1) k(m-1) R(Borda, Borda av k , m, k) k(3k-m+1)+4(m-k-1)(m-1) k(m+k-1)
3) Case of Borda max k :

• s i = m -i, s * = m -k -1, s i = m -i -(m -k -1) = k -i + 1 • (s 1 , . . . , s k ) = (k, . . . , 1) = k(k+1) 2 • s k+1 = m -k -1 1-m-k-1 m-1 -2mk(m-k-1) k(m-1)(k+1) R(Borda, Borda max k , m, k) 1-m-k-1 k +(1+ m-k-1 k ) 2m(m-k-1) k(k+1)
4) Case of Hamonic 0 k :

• s i = 1 i , s * = 0, s i = 1 i • (s 1 , . . . , s k ) = (1, . . . , 1 k ) = 1 + k-1 2k 2 • s k+1 = 1 k+1 R(Harmonic, Harmonic 0 k , m, k) = k k+1 + m (k+1)(1+ 1 2 •••+ 1 k )
Table 3.3 summarizes the obtained upper and lower bounds for different approximate voting rules: Note that for k -approval with k > k and s * = 0, the (exact) worst-case ratio m k does not depend on k .

f k lower bound upper bound Borda 0 k k m-1 + 2m(m-k-1) k(2m-k-1) k m-1 + 2m(m-k-1) k(2m-k-1) Borda av k 1 -m-k-1 m-1 + (m-k-1)(m+k-1) k(m-1) k(3k-m+1)+4(m-k-1)(m-1) k(m+k-1) Borda max k 1 -m-k-1 m-1 -2mk(m-k-1) k(m-1)(k+1) 1 -m-k-1 k + (1 + m-k-1 k ) 2m(m-k-1) k(k+1) Harmonic 0 k k k+1 + m (k+1)((1+ 1 2 ...+ 1 k ) k k+1 + m (k+1)((1+
As a corollary, we get the following order of magnitudes when m grows:

Corollary 3.2. R(Borda, Borda 0 k , m, k) = Θ m k , R(Borda, Borda av k , m, k) = Θ m k R(Borda, Borda max k , m, k) = Θ m k , R(Harmonic, Harmonic 0 k , m, k) = Θ m k log k

Copeland

For the Copeland rule, the ratio makes less sense, because the Copeland score is less meaningful as a measure of social welfare. Moreover, there are several ways of defining the Copeland score (assign 0 point for every lost contest, 1 point for every won contest and α points (with possibly α = 1 2 ) for every draw), all leading to the same rule. However, this has no impact on the negative result below, as long as a Condorcet loser3 has score 0. Still, for the sake of completeness we give the following result:

Proposition 3.2. R(Copeland, Copeland k , m, k) = ∞.
Proof. Let P be the following profile:

• P k contains two votes x 1 x 2 . . . x k , and one vote L for each ordered list of k candidates among m.

• P is obtained by completing P k by adding x 1 (resp. x 2 ) in last position (resp. in position k + 1) when it is not in the top-k positions.

In P k , the winner for Copeland k is x 1 . In P , the Copeland winner is x 2 . Now, with respect to P , the Copeland score of x 1 (resp. x 2 ) is 0 (resp. m -1), hence the result.

Maximin

Let M aximin be the Maximin rule with tie-breaking priority order x 1 . . . m, and M aximin k be the k-truncated version of the Maximin rule with the same tie-breaking priority order. Let S M m (x 2 , P ) and S M m (x 1 , P k ) be the Maximin scores of x 2 and x 1 for P and P k , respectively, with S M m (x 2 , P ) = min y = x 2 N P (x 2 , y) and similarly for P k . Let P be a profile, and let x 1 = M aximin k (P k ) and x 2 = M aximin(P ). All candidates have the same Maximin score in P k , therefore, by tie-breaking priority, M aximin k (P k ) = x 1 .

Upper bound

Lemma 3.6. R(M aximin, M aximin

k , m, k) m -k + 1.
Proof. Because x 1 = M aximin k (P k ), we must have S M m (x 1 , P k ) 1 (otherwise we would have S M m (x 1 , P k ) 0, meaning that x 1 does not belong to any top-k ballot, and in this case we cannot have

x 1 = M aximin k (P k )). Now, S M m (x 2 , P ) S M m (x 2 , P k ) + (m -k) S M m (x 1 , P k ) + (m -k), therefore, S M m (x 2 ,P ) S M m (x 1 ,P ) S M m (x 1 ,P k )+(m-k) S M m (x 1 ,P k ) m -k + 1
Lower bound: Now, for the lower bound, we consider the following cyclic profile Cyc:

Cyc x 1 x 2 . . . m -1 m x 2 x 3 . . . m x 1 x 3 x 4 . . . x 1 x 2 . . . . . . . . . . . . m x 1 . . . m -2 m -1
Now, let P be obtained from Cyc by the following operations for every vote in Cyc:

• if x 1 is not in the top-k positions in the vote, we move it to the last position (and move all candidates who were below x 1 one position upward)

• if x 2 is not in the top-k positions in the vote, we move it to the (k + 1) th position (and move all candidates who were between position k + 1 and 2's position one position downward).

Example 3.8. For m = 5, k = 2, we get the profile P in Table 3.4.

Table 3.4: Cyclic profile when m = 5 and k = 2

P 2 P x 1 x 2 x 2 x 3 x 3 x 4 x 4 x 5 x 5 x 1 x 1 x 2 x 3 x 4 x 5 x 2 x 3 x 4 x 5 x 1 x 3 x 4 x 2 x 5 x 1 x 4 x 5 x 2 x 3 x 1 x 5 x 1 x 2 x 3 x 4 Lemma 3.7. R(M aximin, M aximin k , m, k) m -k.
Proof. M aximin(P ) = x 2 , and the Maximin scores of x 1 and x 2 in P are:

S M m (x 1 , P ) = 1 and S M m (x 2 , P ) = m -k. Hence S M m (x 2 ,P ) S M m (x 1 ,P ) = m -k. Proposition 3.3. m -k R(M aximin, M aximin k , m, k) m -k + 1.
Proof. Putting Lemmas 3.6 and 3.7 together.

This worst-case ratio is quite bad, except if k is close to m. However, arguably, the Maximin score makes less sense per se (i.e. as a measure of social welfare) than a positional score such as the Borda count.

Discussion

The obtained worst-case bounds are rather negative: very negative for Copeland and Maximin, less so for Borda, and even less so for Harmonic. However, the Maximin and Copeland scores make less sense as a measure of social welfare than positional scores.

For different approximations, the score ratio is very diverse. For positional scoring rules, the approximation ratio is reasonable, especially if k is not too small; for Maximin and Copeland, this is much less good, but scores for these two rules are also arguably less meaningful per se. For instance, if k = m 4 (which means that voters have to report one fourth of their rankings), the approximation ratios for Harmonic, Borda, Maximin and Copeland are respectively 4 log( m 4 ) , 4, 3m 4 and ∞. Now, we may wonder whether these worst cases do occur frequently in practice or if they correspond to rare pathological profiles. The next two subsections show that the latter is the case.

We devote the next two sections to an experimental study, first considering randomly generated profiles and then real data from the Preflib library. We show that averagecase results are much more positive than in the worst case.

Average Case Evaluation

This section presents the evaluation of the approximation ratio for different truncated voting rules using data generated from the Mallows model and Mixture of Mallows. For each experiment, we draw 10000 random profiles. We present simulation results with m = 7 and n = 15. We simulate the elicitation of top-k (k ∈ {1 . . . 6}) preferences with different values of φ = {.7, .8, .9, 1} and mixture of p Mallows models p = {1, 2, 3}. We present results of the approximation ratio for different truncated voting rules. Figure 3.10 shows obtained results with different values of φ. Figure 3.11 reports on results with mixture of p Mallows when p = {1, 2, 3}.

Results suggest that the value of the approximation ratio decreases when k increases. In practice, results are much better than in the worst case: best results are obtained by Harmonic, followed by Borda and finally Maximin.

Real Data Sets

Again we consider 2002 Dublin North data (m = 12, n = 3662) with samples of n * voters among n (n * < n) where n * = {15, 100}. In each experiment 1000 random profiles are constructed with n * voters; then we consider the top-k ballots obtained from these profiles with k = {1, . . . , 11}. Again, the results are very positive especially with a large number of voters. 

Conclusion

In this chapter we have considered "k-truncated approximations" of rules (Borda, Harmonic, Copeland, Maximin, ranked pairs and STV) which take only the top-k candidates of each ballot. Then, we have proposed two measures of the quality of the approximation: the probability of selecting the same winner as the original rule, and the score ratio.

For the first measure, we have measured empirically the quality of the k-truncated rules by the frequency with which they output the true winner. Empirical results demonstrate the practical viability and advantages of our approximations. Our results suggest that small values of k work very well in practice: [START_REF] Kenneth | A difficulty in the concept of social welfare[END_REF] with real data, top-3 ballots over 12 candidates are good predictors of the correct winner with a sufficient number of voters, (2) with data generated from Mallows φ model and when φ 0.8 (resp. φ = 0.9, φ = 1), eliciting k = 1 (k = 7 10 , k = m -1) is sufficient to output the true winner when n = 2000 voters. (These results are valid for all rules except Harmonic which needs only k = 1 (resp. k = 2 5 , k = 3 4 ) when φ 0.8 (resp. φ = 0.9, φ = 1).) (3) with data generated from Mixture of Mallows, best prediction is obtained with Harmonic where top-3 (resp. top-4) out of 7 are sufficient to output the correct winner under Harmonic when p = 2 (resp. p = 3).

For the second measure, we have studied the theoretical bounds of these approximations, for rules whose definition is based on score maximization (Borda, Harmonic, Copeland and Max imin), by identifying the order of the worst-case ratio. Also, we have tested the ability of these truncated rules to predict the standard voting rules based on both randomly generated profiles and real data. While the theoretical bounds are, at best, moderately encouraging, our experiments show that in practice the approximation ratio is much better than in the worst case: our results on the evaluation of the accuracy on random Mallows model as well as real data suggest that a very small value of k work very well in practice which largely contrast the theoretical bounds. 

In this chapter, we focus on Single Transferable Vote (STV) (cf. Chapter 1). We start by studying empirically to which (quantitative) extent clone-proofness, which is a key property of STV, is preserved when replacing complete ballots by truncated ballots. Also, we test the resistance of RP k to cloning since, among the ordinal voting rules, apart from STV; RP also satisfies clone-proofness. Then, we study empirically the proximity to plurality with runoff of the rules ST V k for varying k. In the second part, we study the computational complexity of the possible winner (PW) problem for top-k ballots under

STV where we show that for k = 1, it can be solved in polynomial time, but is NPcomplete when k 2. While the problem in difficult in the worst case, we show that in practice there is a simple algorithm that is able to label almost all candidates as possible winners or necessary losers. In the third part, we study a possible way to minimize the amount of communication required to use single-winner STV. We consider interactive communication protocols for STV. Building on a protocol proposed by [START_REF] Conitzer | Communication complexity of common voting rules[END_REF], we show how we can reduce the amount of communication required in practice. We then study empirically the average communication complexity of these protocols, based on randomly generated profiles, and on real-world election data.

Introduction

We focus on a specific, but particularly important, single-winner voting rule: single transferable vote (STV) which is of particular interest for voting. There are good reasons for that:

• First, STV is appealing, because of its (apparent) technical simplicity which makes it easy to understand, especially because its several-round definition is reminiscent of that of plurality with runoff (note that the two rules coincide for three alternatives).

• Second, STV is NP-hard to manipulate, even for one voter [START_REF] Bartholdi | Single transferable vote resists strategic voting[END_REF], although this worst-case difficulty does not really carry on to the average case [START_REF] Walsh | An empirical study of the manipulability of single transferable voting[END_REF][START_REF] Laslier | Heuristic voting under the Alternative Vote: the efficiency of 'sour grapes' behavior[END_REF].

• Third, STV enjoys a very important normative property: clone-proofness introduced by Tideman [START_REF] Tideman | Independence of clones as a criterion for voting rules[END_REF] which requires a voting rule to be robust to the introduction of similar candidates. 1 Freeman et al. [START_REF] Freeman | On the axiomatic characterization of runoff voting rules[END_REF] gave an axiomatic characterization of STV as a social welfare function. They show that STV is the only rule in a family of iterative elimination rules that satisfies clone-proofness. On the other hand, STV fails to satisfy a number of other important properties, such as monotonicity, participation, or Condorcet-consistency 2 , but in many contexts, being sensitive to cloning balances the failure of these other properties. To give a simple example: at the 2002 French presidential, it has been argued that sensitivity to cloning was the cause of the socialist candidate Lionel Jospin not to go to the second round (which he would probably have won). Sensitivity to cloning is of primary importance not only for political elections, but also for low-stake collective decision making [START_REF] Schulze | A new monotonic, clone-independent, reversal symmetric, and condorcet-consistent single-winner election method[END_REF][START_REF] Freeman | On the axiomatic characterization of runoff voting rules[END_REF].

Also, out of all the common voting rules of the zoo, STV is among the few ones that is used in political elections, both for single-winner voting and multi-winner voting. Indeed, the world's largest elections that allow voters to rank candidates (and not just select the top choice) are probably the elections for the Australian House of Representatives. Each of 150 districts sends a representative, who is chosen by single transferable vote. Voters are asked to rank/order the candidates in their district. (Partial rankings are not allowed.) While it would be easy to compute the winner from electronic ballots, counting the paper ballots is a major undertaking; in the 2016 elections, it took more than a week. Since this makes for bad TV, the "two-party-preferred" heuristic is used to quickly estimate the winner: officials guess which two candidates are most likely to win, and the majority margin between these is counted and reported. ST V k (cf. Chapter 3) presents a better way to handle STV elections, that can find the election winner quickly enough for TV, and that do not require voters to give full rankings. In many legislatures, such as for the Irish presidential elections, voters are allowed to only submit a partial order by ranking a subset of the candidates, and leave the rest unranked; If all ranked candidates are eliminated by STV, the vote is then 'exhausted' and ignored during further counting. This variant of STV with partial rankings corresponds to ST V k with a fixed k. The freedom to give partial rankings is popular with voters. In the 2002 elections in Dublin, for which full ballot data is available, most voters chose to rank between 3 and 5 of the 12 candidates, with only 8% of voters submitting a full ranking (see Figure 4.1).

Although ST V is clone proof, unfortunately this does not carry on to ST V k for k m-2: For k = 1, ST V 1 coincides with plurality which is highly sensitive to cloning while ST V m-1 (=STV) is clone proof. What happens in between? The goal here is to check to which (quantitative) extent clone-proofness, which is a key property of ST V , is preserved when replacing complete ballots by truncated ballots. Where there are few other known clone-proof rules; a noticeable exception is ranked pairs since among the ordinal rules seen in Chapter 1, ranked pairs also satisfies clone-proofness. Therefore, it is an interesting question for which one of STV and RP clone-proofness resists more to truncation. We answer this question empirically and we show that RP k and ST V k resist to cloning almost similarly. Also, we study empirically the connection of ST V k to the plurality with runoff rule. Indeed, plurality and STV are at the two extremities of the families of rules ST V k . An intriguing question is the proximity of plurality with runoff to rules of this family. Plurality with runoff is intuitively related to plurality (since its selection of finalists is based on plurality scores) and to ST V (since it proceeds by elimination of candidates based on plurality scores, and both rules coincide for m = 3). It is thus natural to wonder to study the proximity to plurality with runoff of the rules ST V k for varying k. We answer this question empirically and we show that STV is closer to plurality with runoff than plurality.

As specified, ST V k ignores exhausted votes, which implicitly assumes that we act as if the voters are indifferent between all unranked candidates. Given these top-k ballots, we would want to compute all possible winners (cf. Chapter 2) of STV. A problem with this proposal is that it is not clear how to efficiently decide which candidates are possible winners. It is known that determining PW for STV with truncated votes is NP-complete in the general case; however, with "uniform truncated ballots" (fixed k) the complexity of the PW problem has not been studied, except of course for k = m-1 (since ST V m-1 = ST V ). In this chapter we study the computational complexity of the possible winner problem for top-k ballots. Indeed, we show that the problem is NP-complete, even for top-2 ballots. When given top-1 ballots (that is, we only know the plurality scores of the candidates), we give a simple characterization of the set of possible winners, which also yields a polynomial-time algorithm. While the problem is difficult for k 2, we show that there is a simple algorithm that is able to label almost all candidates as possible winners or necessary losers. Indeed, we propose an approximation of the problem: given k-truncated ballots and a candidate c, we propose an algorithm, namely P W top-k , that returns three possible results: (1) YES for which case c is a PW, (2) NO for which case c is not a PW and (3) MAYBE for which case we don't know if c is a PW or not. Results show that P W top-k allows to label almost all candidates as YES or NO and to reduce the set of candidates that we cannot decide on (MAYBE). Suppose we are not satisfied to merely approximate the true STV winner. Another way to lower the workload for voters by allowing interactive communication protocols (cf. Chapter 2), that can ask voters for more information in an adaptive fashion. In 2005, Conitzer and Sandholm [START_REF] Conitzer | Communication complexity of common voting rules[END_REF] studied such protocols for several common voting rules that take rankings as input. They found that, asymptotically and in the worst case, for many popular rules (such as Borda, Copeland, and ranked pairs) we cannot do better than to ask for the entire ranking outright. This can be annoying to voters (as it is to many Australians), and costly. In contrast, Conitzer and Sandholm [START_REF] Conitzer | Communication complexity of common voting rules[END_REF] found a natural communication protocol for STV where the average voter only needs to name a logarithmic number of candidates. The Conitzer-Sandholm (CS) protocol begins by asking each voter for their top candidate. Based on this information, the candidate with the lowest plurality score is eliminated. The protocol then asks the supporters of this candidate for their next-most-preferred choice. The key insight is that only a small minority of voters can be supporters of the eliminated candidate (by choice of that candidate); indeed at most n/m supporters are possible, where n and m are the total number of voters and of remaining candidates, respectively. Repeating the elimination process, we see that in total we ask at most n m

+ n m-1 +• • •+ n 2 ≈ n•
log m many questions during the elimination phase. 3Can this protocol be improved? We do not offer an alternative with a better worstcase guarantee, but we propose a protocol that needs less communication in practice, and that never requires more communication than the CS protocol. Our protocol first asks voters for their initial top choices. Then, we identify a set of candidates that can safely be eliminated simultaneously. This avoids querying the same voter many times in a row, if that voter likes many niche candidates. This basic idea (slightly adapted to handle tie-breaking issues) allows for lower communication cost, on both random profiles and on real election data. On data from Australian elections, we find that many candidates are necessary losers, and can therefore immediately be eliminated, giving a more rigorous alternative to the current two-party-preferred heuristic.

The remainder of this chapter is structured as follows: Section 4.2 addresses the empirical evaluation of the resistance of ST V k and RP k to cloning. Section 4.3 studies empirically the connection of ST V k to plurality-with-runoff rule. Section 4.4 inves-tigates the possible winner problem for STV given k-truncated ballots. Section 4.5 focuses on communication protocols.

We mention that part of this chapter includes results from our papers:

• "Manel Ayadi, Nahla Ben Amor, Jérôme Lang 

Resistance to Cloning of ST V k and RP k

Tideman [START_REF] Tideman | Independence of clones as a criterion for voting rules[END_REF] introduced the notion of independence of clones, which requires a voting rule to be robust to the introduction of similar candidates. Notably, while most voting rules fail Tideman's condition, the parallel-universe version of STV and RP satisfy it, and the resolute version essentially satisfies it as well (see below). In this section, we study empirically to what extent ST V k and RP k stay clone-proof.

Let us make the notion of clone-proofness formal. Given a candidate x, introduce a new set of candidates X called clones of x. Let A = (A \ {x}) ∪ X . A ranking over A is compatible with a ranking over A if all elements of X are ranked contiguously in . A profile P = ( 1 , . . . , n ) over A is compatible with a profile P = ( 1 , . . . , n ) over A if for every i, i is compatible with i . A (possibly irresolute) voting rule is clone-proof if, given a profile P and a profile P compatible with P , x is a winner in P if and only if one of the clones of x is a winner in P , and for any y = x, y is a winner in P if and only if it is a winner in P .

Let f be either STV or RP . Then the resolute version of f with immediate tiebreaking is clone-proof, provided that tie-breaking is consistent with cloning: Let P = ( 1 , . . . , n ) be a profile over A, and P = ( 1 , . . . , n ) a profile over A = A \ {x} ∪ X compatible with P . Take a tie-breaking relation over A, and suppose over A is compatible with . In this case, if f (P ) = x then f (P ) ∈ X , and if f (P ) = y = x then f (P ) = y.

In order to evaluate the resistance of f k to cloning, we propose an empirical approach by cloning a candidate and measuring experimentally the probability that cloning significantly changes the outcome. We clone the winner and a candidate chosen at random from A. For doing so we repeatedly do the following:

1) generate a complete profile P (with n voters and m candidates), and then 2) for each k ∈ {1, . . . m}:

• we construct a profile P obtained from P by cloning the winner (note that there are m + 1 candidates in P ), and

• we compare f k (P ) to f k (P ).
These steps are iterated a sufficient number of times to obtain meaningful results. 

Experiments Using Mallows φ Model

For each experiment we draw 1000 profiles. We present simulation results for small and large elections when m = 5 as we vary φ and n. We simulate the elicitation of top-k preferences where k ∈ {1, . . . , 5} for n ∈ {30, 500} with φ ∈ {0.7, 0.8, 0.9, 1}. We say that cloning sensitivity does not occur if the winner after cloning is the same as before, or a clone of the winner before cloning. We give the probability that clone sensitivity does not occur under ST V k and RP k , when we clone: (i) one candidate chosen randomly (Figure 4.2) and (ii) the winner under ST V k or RP k (Figure 4.3).

Resistance to cloning increases rapidly with k and decreases with φ. Also, it significantly increases with the number of voters. When we clone one candidate at random (Figure 4.2), experiments suggest that with small and large elections, the frequency of clone resistance is about 84% when k = 1. As we increase k, performance increases. Best results are obtained with a large number of voters and a small φ (φ 0.8). With a large φ (φ > 0.8), ST V k and RP k fail clone-proofness even when k = 4. From the results, ST V k and RP k resist to cloning almost similarly. Indeed RP k barely outperforms ST V k when φ 0.8 with an average performance rate of 0.03%. When φ = 1, the latter behavior changes: ST V k barely outperforms RP k with an average performance rate of 0.04%. For φ = 0.7 (resp. φ = 0.8), k = 2 (resp. k = 4) and n = 500, RP 2 (resp. RP 4 ) is clone-proof while ST V 2 (resp. ST V 4 ) resists to cloning with a probability of 97.5% (resp. 98%). For φ = 1, ST V 4 resists to cloning with a probability of 90% against 85% for RP 4 .

Unsurprisingly, cloning the ST V k or RP k winners (Figure 4.3) lead to a decrease in the probability of selecting the correct result especially when k = 1 and with a large number of voters since it is plurality. For instance, for ST V 1 the accuracy is around 30% (resp. 0.35%) when n = 30 (resp. n = 500) and φ = 0.8. As we increase k, cloning sensitivity decreases. Consistently with the above experiments, as we clone the winner, RP k barely outperforms ST V k when φ 0.9 with a negligible performance rate of 0.02%. The latter behavior changes when φ = 1, e.g. For φ = 0.7, RP 2 (resp. ST V 3 ) is clone proof. For φ = 1 and n = 500, ST V 3 resists to cloning with a probability of 50% against 44% to RP 3 .

Experiments Using Real Data Sets

We test the resistance of ST V k and RP k to cloning using Dublin data (12 candidates and 3662 voters) with samples of n * voters among n (n * < n) where n * = {30, 100, 1000} then we clone: (i) one candidate at random ( With real data sets, ST V k and RP k behave similarly. Consistently with the above experiments, the two truncated rules are clone-proof for small values of k (k 3) and a large number of voters (n = 1000) as we clone a candidate at random. When we clone the winner, ST V k and RP k often fail clone-proofness for small k. As we (barely) increase k, (k 4); they converge to the correct selection with a large number of voters, e.g. ST V 4 and RP 4 are clone-proof when cloning the winner with 1000 voters.

To conclude, resistance to cloning increases rapidly with k and decreases with φ. Also, it significantly increases with the number of voters. With data from Mallows model, results show that RP k and ST V k resist to cloning almost similarly with a performance rate of 0.03% for RP k . Best results are obtained with a small φ and a large number of voters. For real data, the two truncated rules behave similarly where resistance to cloning increases rapidly with k, even more rapidly than with randomly generated profiles.

ST V k and Plurality with Runoff

In this section we study the probability that ST V k outputs the same winner as plurality with runoff, depending on k. STV and plurality with runoff belong to the same family of elimination-based rules. Also, when m = 3, STV coincides with plurality with runoff. On the other hand, plurality with runoff has much in common with plurality. Now, our family of STV k -rules has plurality at one end and STV at the other. It is therefore an interesting question to know where in this spectrum we have an output that is likely to coincide with the output of plurality with runoff.

We answer this question empirically. For each experiment, we generate 1000 random preference profiles according to a Mallows distribution, for m = 7 candidates as we vary the number of voters n ∈ {100, ..., 500} and the dispersion parameter φ ∈ {0.7, 0.8, 0.9, 1}. We simulate the elicitation of top-k (k ∈ {1 . . . 6}) preferences where for each value of k, we compare the winner of ST V k with the winner of plurality with runoff. Figure 4.5 shows the probability that the ST V k -winner coincides with the winner of plurality with runoff. In particular, results in Figure 4.5 give the probability that STV and plurality with runoff give the same winner (for k = m -1) and the probability that plurality (=ST V 1 ) and plurality with runoff give the same winner (for k = 1). For φ = 0.7 (resp. φ = 0.8), we find that ST V 1 (resp. ST V 3 ) and plurality with runoff always coincide with a large number of voters (i.e. n = 500). Unsurprisingly, with greater values of dispersion parameter φ 0.9, the probability decreases, and good results are obtained only for a large number of voters. Perhaps more surprisingly, for impartial culture, the closeness between ST V k and plurality with runoff initially decreases from k = 1 to k = 2 or k = 3 (depending on n), but beyond that it increases with k. We do not observe this phenomenon with smaller values of φ.

Table 4.1 summarizes results of the average probability (for different values of n)

for which: plurality with runoff and plurality (=ST V 1 ) coincide, and plurality with runoff and STV coincide. From the results, STV is closer to plurality with runoff than plurality when φ 0.8. Indeed, when φ = 0.7 (resp. φ = 0.8) plurality with runoff and STV coincide with 100% (resp. 99%) accuracy while plurality with runoff and plurality coincide only in 97% (resp. 90%) of cases when φ = 0.7 (resp. φ = 0.8). As we increase φ, plurality and plurality with runoff are significantly different: they coincide only in 75% (resp. 61%) of cases when φ = 0.9 (resp. φ = 1). Also, when φ = 1, STV is very different from plurality with runoff where we obtain the same winner in only 65% of cases.

Plu. w/ runoff and Plu. coincide Plu. w/ runoff and STV coincide φ = 0.7 0.97 1 φ = 0.8 0.90 0.99 φ = 0.9 0.75 0.89 φ = 1 0.61 0.65 Table 4.1: Average probability for n ∈ {100, . . . , 500} for which: plurality with runoff and plurality coincide and plurality with runoff and STV coincide when φ ∈ {0.7, 0.8, 0.9, 1}.

In the following, in the aim to determine the value of k (as a function of m) from which ST V k maximizes the probability of coinciding with plurality with runoff, we vary the number of candidates m ∈ {8, 10, 15, 20} and φ ∈ {0.7, 0.8, 0.9, 1} when n = 500. Results are depicted in Figure 4.6 where 1000 random preference profiles are generated for each experiment.

Experiments suggest that with all values of m and when φ = 0.7, ST V k for 1 k m coincides with plurality with runoff. Thus, the winner under plurality, plurality with runoff and STV is the same. As we increase φ to 0.8, we find that ST V k for k ≈ 2 5 m coincides with plurality with runoff, e.g. For m = 15 (resp. m = 20), the two rules converge from k = 6 (resp. k = 8). Consistently with the above experiments, when φ = 0.9 plurality with runoff and STV coincide only in 90% on average for different values of m. Finally, for φ = 1, the same behavior as in Figure 4.5(d) still occurs.

To conclude, STV is closer to plurality with runoff than plurality especially with a low value of φ and a large number of voters. Indeed, ST V k for k ≈ 2 5 m (resp. k = 1) coincides with plurality with runoff when φ = 0.8 (resp. φ = 0.7). When φ = 0.9, the two rules coincide in only 90% of cases. For φ = 1, STV is very far from plurality with runoff, even further from it with ST V 2 which is somewhat surprising. 

Possible Winners with top-k ballots

In this section, we study the possible winner problem for STV with top-k ballots. It is known that it is NP-complete to decide whether a given candidate is a possible winner for STV in a given partial profile. This follows immediately from the NP-completeness of constructive manipulation for STV [START_REF] Bartholdi | Single transferable vote resists strategic voting[END_REF] which is equivalent to the possible winner problem with a profile where n -1 votes are fully specified, but we do not have any information about the last vote. While this case is known to be hard, the complexity of the possible winner problem for STV has not been studied for other 'shapes' of partial profiles.

We consider truncated ballots where a top-k profile is a collection of n top-k ballots given k m. We show that the problem is polynomial-time computable if k = 1, but that it is NP-complete for each fixed k 2. While the problem is difficult in the worst case, we show that in practice there is a simple algorithm that is able to label almost all candidates as possible winners or necessary losers.

Possible Winners with top-1 Ballots

The next result gives a closed-form characterization of possible winners for STV. This condition (without tie-breaking) was also considered (without proof) in [START_REF] Wang | Practical algorithms for STV and ranked pairs with parallel universes tiebreaking[END_REF] as a reduction technique for computing parallel universe STV co-winners using search algorithms. Proposition 4.1. Let P be a top-1 profile over A. Let S(x i ) be the plurality score of x i in P , that is, the number of votes in P ranking x i on top. Relabel candidates so that S(x 1 ) S(x 2 ) • • • S(x m ), and such that if S(x i ) = S(x i+1 ) then x i+1 x i . Then x i is a possible winner for ST V if there is no j > i such that either S(x j ) > j-1 s=1 S(x s ), or S(x j ) = j-1 s=1 S(x s ) and j i.

Proof. Assume there is a j > i such that S(x j ) > j-1 s=1 S(x s ), or S(x j ) = j-1 s=1 S(x s ) and j i. Then, there is no way for x i to avoid eliminating before x j , because it can only benefit from the transfers from the votes that initially support x s for s < j.

For the converse, consider any completion Q of P where x i is ranked second in every vote whose top is not x i . Assume there is a step where x i is eliminated, and let j be the smallest index such that j = i and such that x j has not been eliminated yet at that stage. The votes supporting x j are only those S(x j ) that supported it initially. Since all candidates x s with s < j and s = i have been eliminated, their votes have all been transferred to x i , and thus x i has exactly j-1 s=1 S(x s ) supporting votes. Since x i is eliminated before x j , either j-1 s=1 S(x s ) < S(x j ), or j-1 s=1 S(x s ) = S(x j ) and j i.

Example 4.2. Let P be such that S(x 1 ) = 1, S(x 2 ) = 2, S(x 3 ) = 4, S(x 4 ) = 6 and S(x 5 ) = 12. Let us give a few comments: in the best case for x 2 , the unique vote for x 1 is transferred to it; at the second round, it has 3 votes, but is eliminated right after that because S(x 3 ) = 4 > 3. In the best case for x 3 , at the end of the second round, all votes for x 1 and x 2 have been transferred to it and it gets 7 votes. Since 7 > S(x 4 ) = 6, in this case x 4 is eliminated next and if all its votes are transferred to x 3 , then x 3 gets 13 votes and wins against x 5 . In conclusion: x 1 and x 2 are necessary losers and The possible winners are x 3 , x 4 , x 5 .

We recall that candidate x is a necessary loser if it is not a possible winner. It turns out that in real STV elections, we can identify many necessary losers, even if we only know the plurality scores. Figure 4.7 shows the number of possible winners in elections for the Australian House of Representatives, for which plurality scores are publicly available for each of the 150 districts ('divisions') in each election year. We can see that in most divisions, there is only 1 possible winner (because they received a majority of first-place votes), or there are 2 possible winners (usually from the two major parties). It is very uncommon for there to be 3 or more possible winners.

Using Proposition 4.1, one can find the possible winners for STV given top-1 ballots in polynomial time. The complementary notion of necessary winner (i.e. a candidate who wins for all completions of the partial profile), is easily characterized: candidate x is the necessary winner iff it is top-ranked by a majority of voters (assuming n is odd; the characterization for even n depends on tie-breaking).

Algorithm for Possible Winners with top-k Ballots

The positive result for top-1 ballots does not extend to larger values of k: the possible STV-winner problem for top-k ballots is NP-complete, even for k = 2. This result is due to Dominik Peters and the proof is available in our accepted paper at AAMAS-2019 [START_REF] Ayadi | Single transferable vote: Incomplete knowledge and communication issues[END_REF].

Proposition 4.2. The possible STV -winner problem is NP-complete given top-2 truncated ballots.

In the worst case, the problem is difficult but we show that in practice there is a simple algorithm that is able to label almost all candidates as possible winners or necessary losers. Given top-k ballots and a candidate c, we propose an algorithm that returns three possible results: YES (in which case we know that c is a PW), NO (in which case we know that c is not a PW) and MAYBE (in which case we do not know if c is a possible winner or not).

Given top-k ballots, we start by removing necessary losers in the top-1 profile following Proposition 4.1. Then, we apply ST V k until all k candidates in some ballot have been eliminated. We refer to the obtained partial profile by an incomplete plurality profile which corresponds to a partial profile where the top candidate of some voters is unknown. For an incomplete plurality profile, we associate (s ∅ , S(x 1 ), . . . , S(x m )), where s ∅ is the number of voters for whom we do not know what their top candidate is, and S(x i ) are the number of voters for whom we know that x i is their top candidate (i.e. the plurality score of x i ). Let R be a top-k profile and V the incomplete plurality profile obtained by applying ST V k to R until all k candidates in some ballots have been eliminated. Given (s ∅ , S(x 1 ), . . . , S(x m )) associated to V , relabel candidates so that S(x 1 ) S(x 2 ) • • • S(x m ), and such that if S(x i ) = S(x i+1 ) then x i+1 x i . We propose two sufficient but not necessary conditions to label the available candidates where, we say that x i ∈ A is a:

1) necessary loser for ST V if there is j > i such that either S(x j ) > s ∅ + j-1 s=1 S(x s ), or S(x j ) = s ∅ + j-1
s=1 S(x s ) and j i.

2) possible winner for ST V if x i is the STV winner when we repeatedly do the following:

• place x i on top of the empty votes,

• recompute the plurality scores and remove the candidate with the fewest votes.

if neither ( 1) nor ( 2), then we do not know if x i is a possible winner or not.

Proof.

1) Assume there is a j > i such that S(x j ) > s ∅ + j-1 s=1 S(x s ), or S(x j ) = s ∅ + j-1 s=1 S(x s ) and j i. Then, there is no way for x i to avoid eliminating before x j , because it can only benefit from the transfers from the votes that initially support x s for s < j.

2) Placing x i on top of the empty votes corresponds to a possible extension of the incomplete plurality profile. If x i wins when applying STV on the obtained profile then, by definition, x i is a possible winner.

3) Since conditions ( 1) and ( 2) are sufficient but not necessary, some candidates will not be labeled as possible winners or necessary losers.

Given top-k ballots, Algorithm P W top-k outlines the whole process. It allows to answer the question: Is candidate x ∈ A a possible winner? by returning three possible results:

(1) YES: in which case x is a possible winner, (2) NO: in which case x is a necessary loser and, (3) MAYBE: in which case we don't know if x is a possible winner or not. In the following, we present simulation results when m = 7, n = 100 and varying φ. For each k ∈ {1, . . . , 6} we measure the average number of possible winners (denoted by YES), necessary losers (denoted by NO) and candidates that we cannot decide on (denoted by MAYBE). For each experiment, we draw 1000 random profiles. Results are reported on Figure 4.8. Depicted results suggest that with top-1 ballots, it is always possible to classify the available candidates to possibles winners and necessary losers. As we increase k (k 2), removing necessary losers leads to reduce the set of candidates that we cannot decide on, thus improve the identification of possible winners in a top-k profile. Also, from Figure 4.8 we notice that the candidates that we cannot decide on (MAYBE) are more present in profiles with low value of φ = 0.7 and when k = 2. As we increase φ, the set of candidates that we cannot decide on decreases. For example, when φ = 0.7 only one candidate out of 7 is neither possible winner nor necessary loser given top-2 ballots. For φ = 0.8, MAYBE's set is present only with a probability of 2.7% and it decreases to 1.6% (resp. 1.08%) when φ = 0.9 (resp. φ = 1). 
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Communication Protocols for STV

We now take a different path: we consider the determination of the STV winner for the complete profile, and consider interactive protocols (cf. Chapter 2) where voters may report their preferences incrementally, when the central authority asks them to do so. Indeed, we are no longer interested in computing an approximation of STV, but in computing the real STV winner.

In Section 4.5.1 we start from Conitzer and Sandholm's protocol [START_REF] Conitzer | Communication complexity of common voting rules[END_REF] and we give a practical amelioration of it. In Section 4.5.2 we propose an improvement of the latter protocol by identifying in each step strong necessary losers (necessary losers whose removal does not change the winner) and removing them. Then, the question we are interested in is :What is the sufficient number of bits (in average) that must be communicated by the voters to the voting center so that the winner is determined? We answer the latter question in Section 4.5.3 where we study the average communication complexity of these protocols and their practical communication complexity, based on randomly generated profiles and on real data sets from PrefLib.

Conitzer and Sandholm's Protocol

Conitzer and Sandholm [START_REF] Conitzer | Communication complexity of common voting rules[END_REF] studied the communication complexity of several voting rules, by giving specific protocols and by proving lower bounds obtained via fooling sets. For the case of STV, they showed that a lower bound on the communication complexity of Ω(n log m), which is the cost of communicating every voter's top choice. They were able to match this lower bound up to a log factor using the following protocol for STV, which we call P 1 . In the first round, d is eliminated. We ask the voter who supports d to name her next preferred candidate. We get P = {3 : a, 3 : c, 2 : b}. Next, b is eliminated. We ask the two voters supporting b for their next preferred candidate. We get P = {4 : a, 4 : c}. By tie-breaking, a wins.

Conitzer and Sandholm [START_REF] Conitzer | Communication complexity of common voting rules[END_REF] show that P 1 requires communication of at most O(n(log m) 2 ) bits. To see this, note that at a step where k candidates remain, at most n k voters rank the eliminated candidate first. Thus, the number of times we need to ask voters for their new favorite is at most n m + n m-1 + . . . + n, which is bounded by n log m. We can actually say something more precise: the worst case occurs when, in each step, all candidates are tied for elimination; in this case, when k candidates remain, exactly m k voters will send log k bits, and this goes on until k = 1. This gives an exact worst case cost of n log m + m-1 k=1 log k k+1 bits. In the subsequent discussion, we will not focus on the number of bits transmitted, and instead will count how often voters have to report their favorite remaining candidate. We refer to this as the number of questions asked. It is easy to see that, in the worst-case, for fixed n and m, the number of questions asked by protocol P 1 is

P Worst = n • 1 + m-1 k=1 1 (k+1) .

An Improved Protocol

At each step in the execution of the protocol, the central authority has partial knowledge of the votes. Therefore, it makes sense to identify those candidates that can still win (the possible winners) and those that cannot (the necessary losers). This is especially useful when interaction with the voters takes time: assume that the vote is about a meeting date; the execution of the protocol can take several days (due to some voters reacting slowly to their emails). If at some point in the execution of the protocol, we know that for sure the meeting will not be on November 22 nor November 24, this is useful information for voters, who can plan something else on these two days, and for the central authority, which does not have to pre-book a room for these days.

We start by noticing that at each step of the protocol P 1 , the information known by the protocol is essentially a top-1 profile. Therefore, Proposition 4.1 is applicable and we can calculate, at each step of the protocol, the remaining possible winners and necessary losers. Knowing the possible winners (and the necessary losers) at each step of the protocol is useful information, but it turns out that eliminating a candidate as soon as it becomes a necessary loser can change the final outcome: The source of the paradox lies in the tie between the initial score of c and the cumulative score of a, b, d, and e. However, we now identify a subset of necessary losers that can always be eliminated without changing the winner.

Let us rename the candidates so that they are ranked by increasing order of plurality score, then by tie-breaking priority: for each i, either S(x i ) < S(x i+1 ), or S(x i ) = S(x i+1 ) and x i+1 has priority over x i . We say that x i is dominant if either S(x i ) > i-1 j=1 S(x j ), or S(x i ) = i-1 j=1 S(x j ) and x i has priority over x j , where j is the largest index smaller than i such that x j is a dominant candidate. Note that to check whether x i is dominant, we need to iterate over all candidates x j , j < i. We say that x j is a strong necessary loser if there is an index i > j such that x i is dominant. By Proposition 4.1, a strong necessary loser is a necessary loser, but the converse is not always true: in Example 4.6, only d and a are strong necessary losers. Proof. Assume x i is the largest dominant candidate in the sequence (x 1 , . . . , x i-1 are thus the strong necessary losers). Then no matter in which order the candidates x 1 , . . . , x i-1 are eliminated, they will all be eliminated before all candidates in {x i , ..., x m }. Therefore, after i -1 elimination steps, the currently eliminated candidates are exactly x 1 , . . . , x i-1 . Eliminating them directly allows to "jump" over i -1 elimination steps, and the rest of the process continues exactly as if this jump had not been performed.

Protocol P 1 can be improved by checking at each step if there are strong necessary losers, and if so, eliminate them in addition to the current loser, and then send a query to all voters whose current top candidate has just been eliminated. A further improvement is possible by querying one voter at a time: it might be possible to rule out further candidates without knowing every voters' current top choice. To do this we need to generalize the notion of dominant candidate and strong necessary loser to incomplete plurality profiles. Assume again that candidates are renamed so that they are ranked by increasing order of plurality score, then by tie-breaking priority. A candidate x i is a safe necessary loser (SNL) if there is j > i such that S(x j ) > s ∅ +S(x 1 )+• • •+S(x j-1 ). Clearly, if x i is a safe necessary loser for an incomplete plurality profile then it is a strong necessary loser for every of its completions into a plurality profile, which implies that eliminating an SNL candidate cannot change the winner. This leads us to define the following protocol: The protocol terminates because at each step, either a candidate is removed, or s ∅ is decreased by 1. If s ∅ queries are made successively without any candidate being removed, then s ∅ reaches 0 and then there is at least one SNL (the current plurality loser with lowest priority). The winner returned at the end of the protocol is the STV winner because removing SNLs does not influence the winner. It can be proven that P 2 is as least as cheap as P 1 , in the sense that no voter is queried more often with P 2 than with P 1 . Finally, in the aim to further improve P 2 , we propose an adjustment on line 7 in P 2 . Indeed, several ways exist to select the empty voter among the available ones to query her next preferred candidate. In the following we propose three possible options to make the selection:

1) select a voter randomly among the available voters with empty votes. We refer to this method as P Rand 2 .

2) select the voters with the minimal number of questions asked during the execution of P 2 among the voters with empty votes and choose one voter at random. We refer to this method as P Rand-M in 2 .

3) select the voters with the maximal number of questions asked during the execution of P 2 among the voters with empty votes and choose one voter at random. We refer to this method as P Rand-M ax , the voter who voted for d then a (i.e. 1 : d a) will be the next voter to query.

Evaluation of the Protocols

This section evaluates the average communication complexity of P 1 and P 2 with the different randomized methods to select the voter with the empty vote. We discuss experiments using Mallows model and real data. Our objective is to determine the communication complexity, in terms of the number of questions voters need to answer on average. Note that, for plurality elections, this number is 1, while for (say) Borda elections, this number is m in the worst-case. We find that STV only asks 2 or 3 questions for each voter when m = 7, or in the Dublin election data. Note that in the experiments where we measure the average communication cost, we will report only on P 2 since the average number of questions voters need to answer is almost the same with different randomized methods.

Experiments using Mallows φ model

For each experiment, we draw 1000 random profiles. In the first set of experiments, we present simulation results with m = 7 and n = 100, and let φ vary. We count the number of questions asked by P 1 and P 2 with φ ∈ {0.7, 0.8, 0.9, 1}. Figure 4.9 shows the average communication cost of P 1 , P 2 and compares it to P Worst , the worst-case cost of P 1 . Results suggest that in practice, both P 1 and P 2 ask fewer questions than in the worst case (P Worst ). P 2 asks fewer questions than P 1 for all parameter values, but the difference is more significant for lower φ. When φ = 1, more information is needed from voters under both P 1 and P 2 , and the savings of P 2 are smaller. To better understand the difference in the behavior of P 1 and P 2 and the advantage of using the different randomized methods, we now plot, for each k, how many voters are needed to answer k questions using P 1 , P Rand 2 , P Rand-M ax 2 and P Rand-M in 2 when n = 100, m = 7 and φ ∈ {0.7, 0.8, 0.9, 1}. Results are reported on Figure 4.10 taken over 1000 random samples. For instance, the first bar means that under P 1 and when φ = 0.7, 58 (resp. 34, 7,1) voters out of 100 were asked one (resp. 2, 3, 4) question(s).

φ = 0.7 φ = 0.8 φ = 0.9 φ =
Results show that all randomized methods of P 2 outperform P 1 where P 2 often only needs to ask a voter for her top alternative, and then never asks another question. Indeed, asking voters for their most preferred candidate decreases as we increase φ with all protocols, e.g. Under P 1 and when φ = 0.7 (resp. φ = 0.8, φ = 0.9, φ = 1), 58 (resp. 46, 38, 35) voters were asked one query. Now, when comparing P Rand-M in 2 and P Rand-M ax 2 , we find that:

• under P Rand-M in 2 all voters were asked no more than three questions with all values of φ (except when φ = 1 only one voter was asked four questions). With small values of φ, P Rand-M in 2 tends to ask one question to more than the half of the voters. As we increase φ, P Rand-M in 2 often asks 2 questions to almost half of the voters.

for φ = 0.7, 63.5% of voters were asked one query, 35.5% were asked two questions and 1 voter was asked three questions.

for φ = 1, 35% of voters were asked one query, 47% were asked two questions, 17% voters were asked three questions and 1 voter was asked four questions.

• under P Rand-M ax 2 some voters were asked four questions especially when φ 0.8. Compared to the other protocols, P Rand-M ax 2 asks the highest number of voters for their top alternative and then never asks another question.

for φ = 0.7, 68.6% of voters were asked one question, 26% were asked two questions, 5 voters were asked three questions.

for φ = 1, 39% of voters were asked one question, 41% were asked two questions, 17% voters were asked three questions and 3 voters were asked four questions.

Table 4.2 summarizes results of the average number of voters (for different φ) asked to submit their top-k for k ∈ {1, . . . , 4} with P Rand-M ax 2 and P Rand-M in 2 .

From the results, P Rand-M ax 2 tends to promote some voters to others by: maximizing the number of voters asked for their top-1 candidate and minimizing those asked for their second preferred by allowing voters to submit their top- 

Conclusion

In this chapter, we have focused on Single Transferable Vote (STV) voting rule. In the first part, given top-k ballots, we have tested the resistance of ST V k and RP k to cloning where we have showed that the two truncated rules behave almost similarly to the introduction of similar candidates. Results on randomly generated profiles show that resistance to cloning increases rapidly with k and decreases with φ. Also, it significantly increases with the number of voters. With real data, resistance to cloning increases rapidly with k, even more rapidly than with randomly generated profiles. Then, we have studied empirically the probability that ST V k and plurality with runoff coincide. Our findings are that STV is closer to plurality with runoff than plurality especially with low values of φ and a large number of voters. Indeed, ST V k for k ≈ 2 5 m (resp. k = 1) coincides with plurality with runoff when φ = 0.8 (resp. φ = 0.7). For φ = 1, STV is very far from plurality with runoff.

In the second part, we have investigated the computational complexity of the possible winner problem for top-k ballots under STV where we have showed that for k = 1, it can be solved in polynomial time, but is NP-complete when k 2. While the problem is difficult in the worst case, we have showed that in practice there is a simple algorithm that is able to label almost all candidates as possible winners, necessary losers and candidates that we don't know if they are possible winners or not. Results show that the proposed algorithm succeeds to identify possible winners and necessary losers and to reduce the set of candidates that we cannot decide on.

In the third part, we have considered interactive communication protocols for STV. Building on a protocol proposed by [START_REF] Conitzer | Communication complexity of common voting rules[END_REF], we have showed how we can reduce the amount of communication required in practice. We have then studied empirically the average communication complexity of these protocols, based on randomly generated profiles, and on real-world election data. Our results show that STV has low communication cost in practice when using the proposed protocol P 2 .

Chapter 5

Search Methods for Vote Elicitation In this chapter, we propose an incremental vote elicitation process using heuristic methods to guide the choice of the next voter to ask. Given top-k preferences, these heuristics will be used to choose at each round the voter to whom it is most relevant to ask to complete his k-vote by giving his next candidate (thus ranked k+1). For this purpose, first we propose to use the Monte Carlo Tree Search (MCTS) approach in a vote elicitation context to select the most prominent voter to ask in each round based on the Upper Confidence Bounds for Trees (UCT) evaluation function. Second, we propose a search heuristic able to select the voter (under certain conditions) for whom we want to reveal more information. Results on the evaluation of the average number of questions asked show the practical advantage of reducing the communication cost when using the proposed heuristics in an incremental elicitation process under Borda and Harmonic rules.

Introduction

In the previous sections we have considered exact methods for interactive vote elicitation to choose the voter to query in each round until the winner is known. In this chapter, we explore heuristic methods, based on evaluation functions that will guide the choice of the next voter to query. We still focus on top-k queries where one voter will be asked at a time and, if she is queried for the k th time, she will be asked to provide her k th preferred candidate (as in Section 4.5.2).

We are, in particular, interested by the use of Monte Carlo Tree Search (MCTS) which is a probabilistic and heuristic driven search algorithm that combines the classic tree search implementations alongside machine learning principles of reinforcement learning. The principle of MCTS is to analyze the most promising moves by incrementally expanding the search tree based on random sampling of the search space [START_REF] Guillaume | Monte-Carlo strategies for computer go[END_REF][START_REF] Kocsis | Bandit based Monte-Carlo planning[END_REF] MCTS is essentially used in AI games, namely all the top AI solutions for Go (game).

In this chapter, our goal is to built an interactive vote elicitation process, based on evaluation functions, that will guide the choice of the next voter to query in each round. Given top-k ballots, these evaluation functions are able to predict the most prominent voter to ask to submit her next preferred (ranked k+1) candidate in order to determine the winner with the minimum number of questions asked. For this purpose, first we propose to use the MCTS's technique based on the Upper Confidence Bounds for Trees (UCT) [START_REF] Kocsis | Bandit based Monte-Carlo planning[END_REF] evaluation function in a vote elicitation context. Second, we propose a simple heuristic evaluation function which proceeds in two main steps: (1) we identify two key candidates for whom we want to gather more information, and then (2) if there is at least a voter whose current ballot contains neither of these two candidates, query such a voter; otherwise, query a voter whose current ballot contains one of these two candidates.

The use of these evaluation functions in a vote elicitation process will allow us to reveal the most relevant information about the voters thus; reduce the information communicated between them. Finally, we use the necessary winner (cf. Chapter 2) to check whether the information elicited is sufficient to output the winner or not. In this context, Xia and Conitzer [START_REF] Xia | Determining possible and necessary winners under common voting rules given partial orders[END_REF] show that for any positional scoring rule and given a partial profile, it can be checked in polynomial time whether a given candidate is a necessary winner. We adapt their algorithm to the case of top-k ballots by considering two positional scoring rules, namely: Borda and Harmonic. This chapter is organized as follows: In Section 5.2 we describe the basic steps of MCTS algorithm and the UCT evaluation function used to select the best move in a game. In Section 5.3 we describe how to use the MCTS algorithm in a vote elicitation context where we consider the elicitation problem as a game between the voting center and the voters. Then we present the proposed vote elicitation process using MCTS with truncated ballots. In Section 5.4 we propose the search heuristic. Finally, Section 5.5 evaluates the proposed heuristics by measuring the number of questions asked to voters on average in order to determine the winner under Borda and Harmonic rules.

Monte Carlo Tree Search (MCTS)

The effectiveness of MCTS relies on selecting the most promising move to perform in a tree according to an evaluation function. Each node v in the tree represents a given position called a state of the game, denoted by S(v), with the root node representing the current state. Each parent node is directly linked to child nodes representing legal move leading to subsequent states, i.e. it represents the move from one state (the parent) to another (the child). Note that any parent node may have as many children as there are legal moves from the state for which it represents. The MCTS is an iterative process based on four steps. An outline of these steps is depicted in Figure 5.2 for one iteration: 1) Selection: In the selection step, the tree is traversed starting at the root node where an evaluation function is applied recursively until the most promising expandable node is reached. A node is expandable if it represents (i) a non-terminal state (a specific condition has not been reached yet), and (ii) is not fully expanded (it is a leaf node i.e. no known children so far). 2) Expansion: In the expansion step, for a given node from the selection step; we create one or more child nodes according to available actions at the current state.

3) Simulation: In this step, a simulation (aka. a playout) is run from the new node until a terminal state is reached. The simulation makes random moves and returns some value representing the result of the simulation on the new added node denoted by ∆.

4) Backpropagation:

In the Backpropagation step, the simulation result is backpropagated through the previously traversed nodes to update their statistics, starting from the node on which we ran the simulation and ending at the root node. Finally, the move played by the program is the child of the root with the highest number of visits. This step ensures that each node's value reflect simulations performed in the subtrees that they are part of.

In the selection step, picking which node to visit is performed using a selection strategy. The most popular one is the Upper Confidence Bounds for Trees (UCT) introduced by Kocsis and Szepesvari [START_REF] Kocsis | Bandit based Monte-Carlo planning[END_REF] and expressed for each state S(v) by:

U CT (S(v)) = Q(v) N (v) + C × ln N (p) N (v) (5.1)
where N (v) corresponds to the number of times v has been visited. Q(v) is the total reward (score) of all payouts that was performed on v. p is the parent of v and C is the exploration constant parameter, generally; can be tuned experimentally.

UCT is based on the balancing of exploitation and exploration in games. Indeed, the first part of the UCT's equation tends to promote moves with the highest win value which corresponds to the exploitation phase. While the second part corresponds to the exploration phase that tends to explore unexplored parts of the tree that currently may seem less than optimal but may be more effective in the long term. Note that when different nodes have the same UCT value, we choose one of them randomly. Algorithm 5.1 outlines the MCTS steps (adapted from Browne et al. [START_REF] Browne | A survey of Monte Carlo tree search methods[END_REF]). choose a ∈ untried actions from A(S(v 0 )) 
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Each node v in the tree is associated with four pieces of information: S(v) corresponds to the associate state, N (v) is the number of visits, Q(v) is the total reward and a(v) is the incoming action to v. A(state) corresponds to the set of actions available on a specific state. The term state = f (state, action) corresponds to the next state state decided based on the current state and the chosen action. The MCTS's steps are repeated for a fixed number of iterations. After the process is finished, the final move is performed: one of the children of the root node is selected as best move (line 23). Different final move strategies exist to determine the best child [START_REF] Guillaume | Progressive strategies for Monte-Carlo tree search[END_REF] including: Max Child (select the child that maximizes Q(v )), Robust Child (select the child that maximizes N (v )) etc.

Note that the complexity of MCTS is O( P I) where is the branching factor, P is the number of simulations of each child and I is the number of iterations.

The following example illustrates the MCTS algorithm. Each node v is labeled by Q(v)/N (v). To alleviate notation, instead of S(v i ) we will simply write S i .

Example 5.2. Figure 5.3 presents three iterations of the MCTS algorithm when

C = 1 √
2 starting by an initial state S 0 with values 0/0 (a state with 0 reward and 0 simulation performed).

• In the first iteration, we start by an initial state S 0 ; a decision must be taken between two possible moves S 1 and S 2 . Under the selection step, we compute the UCT value for S 1 and S 2 following Eq. 5.1: U CT (S 1 ) = U CT (S 2 ) = ∞. Since the two states have the same value, we select a state randomly. Assume we take S 1 which is not fully expanded. In the expansion step, a child node S 3 is added to S 1 and a playout is run from it. Suppose that the simulation step ends in ∆ = 20, thus; the value of the new node S 3 is 20/1. Finally, we backpropagate the result and update the statistics of S 1 and S 0 .

• In the second iteration, we start by an initial state S 0 with the updated states' values from the first iteration. A decision must be taken between two possible moves S 1 and S 2 where U CT

(S 1 ) = 20 1 + 1 √ 2 ln(1)
1 = 20 and U CT (S 2 ) = ∞. We select the child node with the highest UCT value which corresponds to state S 2 . Now, S 2 is not fully expanded. In the expansion step, a child node S 3 is added to S 2 and a playout is run from it. Suppose that the simulation step ends in 10, thus; the value of the new node is 10/1. The ascendents of S 2 are updated. Now the reward of S 0 is 30 with 2 visits.

• In the third iteration, we again have to choose between S 1 and S 2 so we recompute the UCT value of these nodes: U CT (S 1 ) = be seen as a particular game with two players: the voting center and the set of voters, where 'the set of voters' is considered as a single player:

• the voting center: asks a specific voter to complete her top-k vote, and;

• the set of voters: the selected voter by the voting center submits her next preferred candidate to the voting center whenever he was asked to do so.

In this game, players do not play against each other; however, the goal is to make moves by selecting the relevant voter and ask him to complete his partial vote in the aim to determine the correct winner. To communicate information between the voting center and the voters, we consider queries in the form of next-best-alternative by asking the voter: Who is your next preferred candidate ? Note that the next best alternative of voter i and her previous votes correspond to answering a top-k query.

Each node v corresponds to a voter i that holds the top-k candidates of i represented by L-where L corresponds to the top-k vote and "-" means that the voting center has no information about how the remaining candidates are ranked. At the start of the game, the root node corresponds to the initial available knowledge held by the voting center where each voter gives her top-1 ballot. The voting center may ask any voter i to expand her vote by submitting her second preferred candidate. More generally, after different iterations, the voting center may ask any voter i to expand her k vote by submitting her (k + 1) th preferred candidate. Thus, the root node will be linked to n children that correspond to possible legal moves (i.e. the different voters to ask) and the voting center will choose only one voter to query. Moving from one node to another corresponds to an elicitation process where a specific voter is selected and asked to complete her top-k ballot. The game ends when, given the voters' preferences, a necessary winner (cf. Chapter 2) is reached.

Our goal is to build an incremental vote elicitation protocol using the MCTS technique by minimizing the number of questions asked to voters in each round for a specific voting rule. To this end, the MCTS Algorithm 5.1 is used to guide the choice of the voter to be asked in each round by adapting its evaluation function, final move and terminal state as follows:

Evaluation function: In Eq. 5.1, the total reward Q(v) corresponds to the total number of questions asked to voters in all playouts performed on v. In a vote elicitation context, the constant C used to adjust the degree of exploration of the algorithm is strongly related to the number of voters (n) and the number of candidates (m). Since n and m can be high; the higher the constant C, the more the algorithm will tend to explore the less well rated moves. That is why we will assume that C = α(n × m) where α ∈ [0, 1].

Final move: Since our aim is to ask the minimum number of questions to voters, in Algorithm 5.1 we select the best child (line 23) using argmin Q(v ) which corresponds to the child node with the minimal number of questions of all playouts that have been performed.

Terminal state: When using MCTS in a vote elicitation context, given the partial voters' preferences, the terminal state corresponds to reaching a necessary winner for a specific voting rule.

Fortunately, given a partial profile, for any positional scoring rule it can be checked in polynomial time whether a given candidate is a necessary winner (Xia and Conitzer [START_REF] Xia | Determining possible and necessary winners under common voting rules given partial orders[END_REF]). In the following, we adapt their algorithm to the case of top-k ballots when considering a tie breaking over candidates for PSR. Let R be a partial profile containing the top-k votes of n voters. Each voter i reports a ranking list k i of k out of m candidates. For each candidate a ∈ A, we compute a minimal score and a maximal score (these two scores have already been considered by Konczak and Lang [START_REF] Konczak | Voting procedures with incomplete preferences[END_REF]):

• The minimal score of a candidate x is the lowest possible score x could obtain when considering all complete extensions of R. An unranked candidate x in k i will be ranked in the lowest position in the extension of k i denoted by C min ( k i ). Let C min (x, R) = {C min ( k i ), . . . , C min ( k n )} denote the completion of the partial profile R given x. Then, S min (x, R) corresponds to the minimal score of candidate x when considering the completions C min (x, R) with respect to a given PSR.

• The maximal score of a candidate x is the highest possible score x could obtain when considering all complete extensions of R. An unranked candidate x in k i will be ranked in the highest position in the extension of k i denoted by We consider the resolute version of positional scoring rules where whenever candidates are tied, we break ties using a predefined priority ordering over candidates . Then, given top-k ballots and , x ∈ A is a necessary winner with respect to a given positional scoring rule, if and only if for each y ∈ A, y = x either: (1) S min (x, R) > S max (y, R), or (2) S min (x, R) = S max (y, R) and x y.

C max ( k i ) i.e. x is ranked in position k + 1 in C max ( k i ). Let C max (x, R) = {C max ( k i ), . . . , C max ( k n )}
To test whether a is a necessary winner for positional scoring rules, given A = {a, b, c, d}, Xia and Conitzer [START_REF] Xia | Determining possible and necessary winners under common voting rules given partial orders[END_REF] test each of the alternatives y ∈ {b, c, d} in turn, attempting to find a completion of the partial profile that maximizes the score difference S(y) -S(a) by raising y as high as possible and lowering a as low as possible. Then, a is a necessary winner if S(a) > S(y) for all y ∈ {b, c, d}. The characterization used by Xia and Conitzer corresponds exactly to the above result when considering truncated ballots with a one small detail is that we also consider ties between candidates. Proof.

(1 ⇒ x is a necessary winner) proved by Xia and Conitzer [START_REF] Xia | Determining possible and necessary winners under common voting rules given partial orders[END_REF] (2 ⇒ x is a necessary winner) Assume (2) holds then S min (x, R) = S max (y, R). If S max (y, R) never reaches S min (x, R), then y will always have a score lower than x. If S max (y, R) reaches S min (x, R), then x will be always be the winner because x y. Therefore, x is a necessary winner.

If neither (1) nor (2) holds, then according to Xia and Conitzer x is not a necessary cowinner. Thus, regardless of the tie breaking used, x cannot be a necessary winner. In the first iteration, the program starts at state S 0 containing R with value 0/0. Possible moves consist in asking the 4 voters to cast their second preferred choice with a winning possibilities of 0/0. We compute the UCT value for different moves which is equal to ∞ for all states. In this case, we choose a random move among the four available. Assume we select S 2 . We are now at an unexpanded node (S 2 ). We expand S 2 by adding a node and a playout is run from the latter by asking voters randomly to report their next preferred candidate until a necessary winner is reached. A possible simulation consists in asking V 1 for her top-2 preferred candidate then V 3 for her second and third preferred, resulting in R = {e d, b d, c e d, d} and d is a necessary winner. The simulation step ends in 3 (corresponds to the number of questions asked to voters). Finally, we backpropagate the result and update the nodes. In the second iteration, we go back to the initial state with the updated values generated from the first iteration. Again we compute the UCT value for different states: U CT (S 3 ) = 3 1 + 6 ln(1) 1 = 3 and ∞ for the other states; a node is chosen randomly from the latter. Assume we select S 4 and we run a simulation from it which results in 4 questions asked to voters (ask V 2 then V 3 for their second preferred candidate, V 4 for her third preferred and V 1 for her second preferred). This gives R = {e In the third iteration, giving the initial state, we recompute the UCT value which is equal to 7.99 and 8.99 for S 2 and S 4 , respectively; and ∞ for S 1 and S 3 . Let S 1 be the next move to perform, we ran a simulation on it that results in 6 questions asked that will be backpropagated to the root node to update its value. In the fourth iteration, we select state S 3 with the highest UCT value and we run a playout on it that ends in 6 and we backpropagate the result. Now, S 0 has a value of 19/4. 

Final move

The described steps allow us to determine the first move to perform given the most preferred candidate of each voter. Following Protocol 5.2, we ask voter 2 to submit her next preferred candidate resulting in R = {e, b d, c, d}. Since there is no necessary winner given R, in the next step S 2 will be the root node and, similarly we perform different iterations to select the next voter to ask. This process is repeated until a necessary winner is reached given the different moves performed. Now, assume that in the next moves we ask: V 1 for her second preferred candidate and V 3 for her second and third preferred, resulting in R = {e d, b d, c e d, d} and d is a necessary winner. Thus, we stop eliciting preferences from voters and d is the winner.

Vote Elicitation Protocol Using a Heuristic Function

In this section, we propose another possible way to select the best voter during elicitation process. Now, we are no longer interested to select the voter using MCTS; however, we propose a simpler heuristic to choose at each round the voter to whom it is most relevant to ask to complete his k-vote. In the following, first we describe the proposed heuristic then we present the elicitation process using this latter.

The main idea of the search heuristic is to identify two key candidates for whom we want to gather more information. Then, if there is at least a voter whose current ballot contains neither of these two candidates, query such a voter; otherwise, query a voter whose current ballot contains one of these two candidates. Algorithm 5.3 presents the proposed search method where given an incomplete profile R, the algorithm proceeds as follows:

1) Compute the minimal score of each candidate S min (x, R) for all x ∈ A.

2) Let d be one of the candidates with the highest minimal score, i.e. d ∈ argmaxS min (x, R) for x ∈ A.

3) Compute the maximal score of each candidate S max (x, R) for all x ∈ A, x = d.

4) Let y be one of the candidates with the highest maximal score, i.e. y ∈ argmaxS max (x, R) for x ∈ A, x = d.

5) Let

Voters denote the set of selected voters who meet certain criteria (detailed below) by checking whether or not candidates d and y are present in their vote. These voters are chosen if one of these conditions is met (in the following order):

Condition 1: voters who did not rank neither candidate d nor candidate y.

Select voters with the minimal number of questions asked.

Condition 2: voters who did not rank candidate d and the number of questions previously asked is less or equal than m 2 . Select voters with the minimal number of questions asked. Condition 3: voters who did not rank candidate y and the number of questions previously asked is less or equal than m 2 . Select voters with the minimal number of questions asked.

Condition 4: if none of conditions 1-3 has been satisfied, we select voters with the minimal number of questions previously asked.

In the following, in each round, we determine the voter to ask to complete his vote using Algorithm 5.3. Tables below present the minimal and maximal scores of candidates in each round. (To alleviate notation we will simply write S min (x) and S max (x) for different completions of R.) Values in bold correspond to the highest minimal and maximal scores.

In the first round, given the most preferred candidate of each voter, there is no necessary winner. After computing the different scores, we choose a voter who did not rank candidates d and c: namely, voter 1. Given the new voter's preference and since no necessary winner exists, in the second round, we ask the voter who did not rank candidates d and e which corresponds to voter 3. Since there is no necessary winner, we continue with a third round: we choose voters according to condition 2: we select the voter who did not rank candidate d: namely, voter 3. In the fourth round, we select voters who did not rank candidate c and with the minimal number of questions previously asked. Thus, we choose between voters 2 and 4. Assume we select voter 2. Note that we cannot consider condition 2 (voters who did not rank candidate d) because voter 3 was already asked to submit 3 candidates. In the fifth round, we select the voter who did not rank candidate c and with the minimal number of questions previously asked: namely, voter 4. Given the new voter's preference, candidate d is a necessary winner. 

Empirical Results

In this section we evaluate the average communication cost of P M CT S and P Search . We discuss experiments using the Mallows φ model for different values of φ. Our objective is to determine the number of questions voters need to answer, on average, in order to determine the winner under Borda and Harmonic rules. Note that for Borda and Harmonic elections, in the worst case this number is m -1, while for (say) plurality elections, this worst case number is 1. We refer to this worst case number as P W orst .

We compare our results to the most common way of eliciting preferences iteratively using top-k ballots, where voters are allowed to cast their preferences incrementally starting by top-1 ballots, then top-2, etc., until there is sufficient information for knowing the winner. More precisely, in each round, given top-k ballots, we check whether or not a necessary winner exists. If no necessary winner has been found, all voters are asked to submit their next top-k preferred candidate. This elicitation process was used by Kalech et al. [START_REF] Kalech | Practical voting rules with partial information[END_REF] which we refer to as P Rounds . For instance, in Example 5.6, in order to determine the necessary winner, 2 rounds are needed, i.e. each voter submits her top-2 preferred candidate. For MCTS's experiments, we fix the constant C to 0.3 × (n × m) (0.3 was obtained experimentally), 10.000 playouts were conducted for each move. All experiments were performed on a 2.6GHz Intel dual Core i5 processor with 4GB of RAM memory.

For each experiment, we draw 1000 random profiles. We present simulation results with m = 7 and n = 10 as we vary the value φ ∈ {0.7, 0.8, 0.9, 1}. Figure 5.4 (resp. Figure 5.5) shows obtained results for Borda (resp. Harmonic) with P M CT S , P Search and P Rounds , and we also show P W orst for comparison. Results show that in practice, P M CT S , P Search and P Rounds ask much fewer questions than the worst case (P W orst ). For Borda rule, best results are depicted with P M CT S which is able to save up to 48% of communication cost followed by P Search that reduces communication by 46%, finally, P Rounds where the savings present only 31%, when φ = 0.7. When φ = 1, more information is needed from voters under P M CT S , P Search and P Rounds ; however, the savings of P M CT S and P Search are still notable compared to P Rounds : P M CT S saves up to 33% of voters preferences against 29% for P Search and 17% for P Rounds . A similar behavior occurs when considering Harmonic rule: P M CT S outperforms P Search and P Rounds . From the results in Figure 5.5, we can notice that Harmonic requires less communication cost compared to Borda where the savings of Harmonic with different values of φ are very important. Indeed, under Harmonic rule when φ = 0.7, P M CT S saves up to 64% of voters' preferences against 61% for P Search and 55% for P Rounds . As we increase φ (φ ∈ {0.8, 0.9}), the savings decrease by 5% (resp. 7%) when φ = 0.8 and 10% (resp. 14%) when φ = 0.9 under P M CT S (resp. P Search ) compared to the results when φ = 0.7. When φ = 1, P M CT S still outperforms the other protocols, i.e. P M CT S needs only 48% of voters' preferences against 54% under P Search and 58% under P Rounds . Figures 5.4 and 5.5 show that P M CT S has lower communication cost under both Borda and Harmonic rules compared to the other protocols. For P M CT S , we limit our experiments on small elections since evaluating the efficiency of MCTS with large elections is challenging: it is computationally expensive especially when the number of voters is high since it impacts the branching factor which prevents a deep look-ahead and hinders the construction of an effective evaluation function. Even though our conclusions are driven from experiments on small elections, we guess that the same behavior will be seen with large (real) elections.

In the next experiments, dedicated to P Search and P Rounds , we consider real data sets from Preflib presented in Table 4.3 (cf. Section 4.5.3.2) by excluding all partial ballots from the data and use only complete ones. Consistently with the above experiments, results show that P Search and P Rounds significantly perform better than P W orst especially under Harmonic rule. For instance, for Dublin North data only 47% (resp. 35%) of the voters' preferences are needed for P Search against 63% (resp. 45%) for P Rounds under Borda (resp. Harmonic). Also, results suggest that under Borda rule, P Search outperforms P Rounds by asking 7-16% fewer questions; however, under Harmonic, the savings of P Search are smaller compared to P Rounds , i.e. P Search asks 1-10% fewer questions than P Rounds . Both protocols are much better than the worst-case analysis except for Meath and Dublin West with Borda: all voters preferences are needed to determine the winner when using P Rounds (13 with Meath and 8 with Dublin West). This can be explained by the vote's distribution in these two data sets where the real winner does not appear in the first places (top-1, top 2, top 3) in a massive way unlike other candidates (for example in Dublin West the winner (b) appears 14% (resp. 17%, 16%) times in top-1 (resp. top-2, top-3) while the candidates (d) and (e) appear 22% and 25% in top-1, respectively. Indeed, this prevents the necessary winner to be determined in early rounds since his score will be very low compared to other candidates.

Results in Figure 5.7 show that the savings of Harmonic rule using P Search are smaller compared to P Rounds . We may wonder whether the communication cost of Harmonic could be improved if in P Search instead of starting with the top-1 preferred candidate of each voter, we ask the voters for their top-2 preferred candidate at the first round. We denote such protocol by P 2

Search . Figure 5.8 reports on results of the average number of questions asked under P Search , P 2 Search , P Rounds and P W orst with different real data sets. Depicted results show that P 2 Search asks 2-5% fewer questions than P Search . Consequently, the savings of P 2

Search increase compared to P Rounds by asking 3-12% fewer questions. Since Harmonic rule has a significantly lower communication cost compared to Borda, starting with top-2 ballots of each voter will allow the voting center to choose the "right" voter to query among the available ones which will accelerate the process of determining the necessary winner. 

Meath

Conclusion

In this chapter we have proposed an interactive elicitation process using two heuristic methods to choose the voter to query in each round. The first heuristic uses the UCT selection function of MCTS technique while the second one considers a simple search heuristic able to select the voter (under certain conditions) for whom we want to reveal more information. Our empirical study shows that these two heuristics are efficient to reduce the number of questions asked to voters under Borda and Harmonic rules.

From the results, both rules have low communication cost, either with P M CT S (Section 5.3) or P Search (Section 5.4). Although P M CT S outperforms P Search ; however, under P M CT S the computation and communication costs are not comparable. Indeed, with large elections the computation cost will be too heavy a burden to be supported by the voters, unless they may have to wait longer before being asked the next question.

The proposed elicitation protocols can be generalized to other voting rules. More precisely,

• P M CT S can be adapted to any voting rule; however, it will nevertheless be necessary to have an algorithm to determine whether x is a necessary winner, which can sometimes be NP-complete (For instance the problem is coNP-complete for Copeland and ranked pairs, while it is polynomial for Maximin and Bucklin [START_REF] Xia | Determining possible and necessary winners under common voting rules given partial orders[END_REF].)

• P Search only works for rules based on score maximization, such as: positional scoring rules (beyond Borda and Harmonic), Copeland and Maximin. Using this class of rules allows us to determine the minimum and maximum scores and identify the two key candidates for whom we want to gather more information.

between ST V k (the STV version with k-truncated ballots) and the plurality with runoff rule? Knowing that deciding whether a candidate is possible winner for STV given partial profile is NP-complete; what is the complexity of this problem when considering "uniform truncated ballots" (fixed k)? Our conclusions about these questions are, respectively, as follows:

• For the question of clone-proofness, results using randomly generated profiles (on Mallows model by varying φ) show that resistance to cloning increases rapidly with k and decreases with φ. Also, it significantly increases with the number of voters. With real data, resistance to cloning increases rapidly with k, even more rapidly than with randomly generated profiles. The same result holds with the k-truncated version of the ranked pairs (RP) rule, namely RP k .

• About the connection between ST V k and the plurality with runoff, we have studied the question empirically (on Mallows model by varying φ) and we conclude that ST V k for k ≈ 2 5 m (resp. k = 1) coincides with plurality with runoff when φ = 0.8 (resp. φ = 0.7). For φ = 1, STV is very far from plurality with runoff.

• Results about complexity are very interesting, in fact we have proved that with k = 1 determining the possible winner for STV can be solved in polynomial time, but the problem remains NP-complete when k 2 mainly due to the number of completions. While the problem is difficult in the worst case, we have showed that, in practice, there is a simple algorithm (P W top-k Algorithm 4.1) that is able to classify candidates into three classes: possible winners, necessary losers and candidates that we cannot decide on. Results on randomly generated profiles show that the proposed algorithm significantly reduces the set of candidates that we cannot decide on, thus, the number of completions. Results on Mallows model by varying φ show that when φ = 0.7 only one candidate out of 7 is neither possible winner nor necessary loser given top-2 ballots. For φ = 0.8, the set of candidates that we cannot decide on is present only with a probability of 2.7% and it decreases to 1.6% (resp. 1.08%) when φ = 0.9 (resp. φ = 1).

Second, we were interested in computing the real winner, rather than an approximate one, by allowing interactive communication. We have studied possible ways to minimize the required amount of communication. More precisely, the question here is: What is the sufficient number of bits (on average) that must be communicated by the voters to the voting center so that the winner is determined ? To answer this question, we first proposed exact methods for interactive vote elicitation to choose the voter to query in each round until the winner is known. Then we have explored innovative heuristic methods, based on evaluation functions that will guide the choice of the next voter to query. We still focus on top-k queries where one voter will be asked at a time and, if she is queried for the k th time, she will be asked to provide her k th preferred candidate

• For exact methods, we have focused on STV rule. Building on a protocol proposed by Conitzer and Sandholm [START_REF] Conitzer | Communication complexity of common voting rules[END_REF] which we called P 1 , we have proposed a new protocol (P 2 ) able to reduce the amount of communication required in practice for STV. Then we have empirically studied the average communication complexity of P 1 and P 2 , based on randomly generated profiles and on real-world election data. Our results show that STV has low communication cost in practice when using the proposed protocol P 2 by asking 5-10% fewer questions compared to P 1 . When using P 2 , most of the voters are asked to submit only their top preferred candidate. In P 1 , it is more common to be asked to submit two preferences. Thus, the low communication cost of STV might be a reason to prefer it to other traditional voting rules, such as Borda.

• For heuristic methods, first we have adapted the Monte Carlo Tree Search (MCTS) approach to vote elicitation in order to select the most prominent voter to ask in each round based on its evaluation function Upper Confidence Bounds for Trees (UCT). We called such protocol P M CT S . Second, we have proposed a simpler interactive protocol so called P Search that uses an alternative heuristic method able to select the voter (under certain conditions) for whom we want to reveal more information. Results on randomly generated profiles and real data show that P M CT S and P Search are efficient to reduce the number of questions asked to voters under Borda and Harmonic rules. From the results, P M CT S has low communication cost under both Borda and Harmonic rules.

Though we present a significant body of research in this dissertation, there are a number of interesting directions for future research:

• For the k-truncated approximations detailed in Chapter 3, we would like to consider approximations of a voting rule (here, top-k approximations) as a genuine rule, and to study their normative properties as doing by Caragiannis et al. [START_REF] Caragiannis | Procaccia. Socially desirable approximations for dodgson's voting rule[END_REF].

• Complete our study on STV detailed in Chapter 4, by considering STV in another incomplete information context, namely vote streams, where voters arrive one at a time [START_REF] Bhattacharyya | Fishing out winners from vote streams[END_REF][START_REF] Dey | Proportional representation in vote streams[END_REF]. The key practical question is to decide when we have enough information to eliminate one more candidate, so that the next voters will have less information to communicate.

• Complete our results on the use of heuristics on vote elicitation (in Chapter 5) by testing the performance of P M CT S and P Search with other voting rules (beyond Borda and Harmonic).

• Many interesting extensions can be considered when using MCTS (Chapter 5) in vote elicitation:

-In the simulation step, instead of playing random moves from all possible legal moves, it would be interesting to use a predefined simulation strategy to choose moves from a subset of available moves. This subset may help to reach an end game faster and increase the chance to win. For instance, using the output of the search heuristic (of Section 5.4) to select the next voter when running the simulation, would be a very good starting point for testing the MCTS's performance with a predefined simulation strategy.

-To reduce the computational cost of the simulation step, instead of simulating the game until the end, an evaluation cutoff strategy could be used to assess the game prematurely. An alternative is the fixed-length cutoff strategy [START_REF] Richard | Amazons discover monte-carlo[END_REF] where the simulation stops after a fixed number of d moves have been executed in the playout.

-To reduce the computational cost of MCTS in a vote elicitation context, MCTS has to be parallelized. Three possible ways exist to accomplish this task: (1) leaf parallelization [START_REF] Cazenave | On the parallelization of uct[END_REF] where independent simulated games are played in parallel for each leaf node, (2) root parallelization [START_REF] Cazenave | On the parallelization of uct[END_REF] where separate MCTS trees are created and when some number of iterations are finished, trees are combined to give a better statistic, and (3) tree parallelization [START_REF] Enzenberger | A lock-free multithreaded monte-carlo tree search algorithm[END_REF] where one shared tree is created from which several simultaneous games are played.
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  montre la probabilité que la règle approxmative donne le même vainqueur que la règle originale lorsque nous considèrons m = 20 et n = 200 et nous varions k et φ. Les résultats suggèrent que dans les larges élections et même si φ est très élevé (φ = 0, 9), les règles top-k arrivent à identifier le vrai vainqueur lorsque k = 8 (resp. k = 14) pour Harmonique (resp. les autres règles) sur m = 20. Pour φ = 1, toutes les préférences des électeurs sont nécessaires pour déterminer le vainqueur sauf pour Harmonique qui ne nécessite que k = 15 préférences des électeurs sur 20 disponibles.
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 1 Figure 1: Taux de réussite, n = 2000, m = 20: Mallows φ lorsque φ ∈ {0.9, 1} et en variant k.

Figure 2 :

 2 Figure 2: Taux de réussite, Dublin North: variant k ∈ {1, 2, 3} et n * = {10, . . . , 100}.

Figure 3 :

 3 Figure 3: Taux de réussite, Dublin Nord: variant k ∈ {1, 2, 3} et n * = {100, . . . , 2000}.

Figure 4 :

 4 Figure 4: Ratio approximatif avec l'ensemble de données de Dublin Nord pour différentes règles de vote tronquées.

Figure 5 :

 5 Figure 5: Résistance de ST V k et RP k au clonage en utilisant les données de Dublin (12 candidats et 3662 électeurs) avec des échantillons de n * électeurs parmi n (n * < n) où n * = {30, 100, 1000} puis nous clonons : (i) un candidat au hasard (Figure 5(a) et (c)) et (ii) le gagnant de ST V k et RP k (Figure 5(b) et (d)). Dans chaque expérience, 1000 profils aléatoires sont construits avec des électeurs n * .

Figure 6 :

 6 Figure 6: Identifier les gagnants possibles (YES), les perdants nécessaires (NO) et les candidats sur lesquels nous ne pouvons pas décider (MAYBE), quand m = 7, n = 100 et φ ∈ {0.7, 0.8, 0.9, 1} : modèle Mallows φ.

Figure 9 :

 9 Figure 9: Coût moyen de communication de la règle Borda avec le modèle Mallows φ lorsque : m = 7, n = 10 and φ ∈ {.7, .8, .9, 1}.
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Example 1 . 2 .

 12 Let us consider a setting with five candidates A = {a, b, c, d, e} and n = 100 voters having the following preference profile P . 33 a b c d e 16 b d c e a 3 c d b a e 8 c e b d a 18 d e c b a 22 e c b d a

Figure 1 .

 1 Figure 1.2 shows how STV voting rule can lead to two different winners when considering the parallel universe version. In the first round, candidate b and c are tied where they both receive 3 points. If we consider a first scenario where we eliminate b (branch 1 in Figure 1.2), then a is the winner in the second round. However, if we consider the second scenario (branch 2 in Figure 1.2) by eliminating c in the first round, then b is the STV winner. Thus, a and b are the co-winners of STV following PUT version.

Figure 1 . 2 :

 12 Figure 1.2: Example of STV voting rule when considering the parallel universe tie breaking version.

3 a d c b 3 a d b c 5 d c b a 4 b c a dFigure 1 . 3 :

 13 Figure 1.3: Majority graph representation.

Figure 1 . 4 :

 14 Figure 1.4: (a) Pairwise majority matrix representation, (b) the weighted majority graph induced from it, and (c) the resulting acyclic graph.

  Indeed, only three possible voting situations are presented: (2:a b), (2:b a) and (1:a b,1:b a) each one with a probability of 1 3 .

Example 1 . 4 .

 14 Let us consider a reference ranking σ : a b c over 3 candidates A = {a, b, c}. Table 1.3 presents the Kendall tau distance (the number of pairwise preference disagreements) of the possible rankings r with respect to σ. a b c a c b b a c b c a c a b c b a

97 1 5 .

 5 734 = 0.169 -P (b c a) = 1 Z φ d(b c a,a b c) = 0.97 2 5.734 = 0.164 -P (c a b) = 1 Z φ d(c a b,a b c) = 0.97 2 5.734 = 0.164 -P (c b a) = 1 Z φ d(c b a,a b c) = 0.97 3 5.734 = 0.159 Doignon et al.

  11 = 1 p 21 = 0.49 p 31 = 0.325 j = 2 p 22 = 0.51 p 32 = 0.333 j = 3 -p 33 = 0.342 Using the above probabilities, the model will generate different insertions vectors. Assume we consider the insertion vector j = (1, 1, 1), then r = Φ σ (1, 1, 1) = (c b a) where a is inserted first, b is inserted next in the first position by moving a down, finally, c is inserted in the first position by moving down b and a. Note that the probability induced when considering j and σ is equal to p 11 .p 21 .p 31 = 1 × 0.49 × 0.325 = 0.159 which corresponds to the same probability produced from Mallows model in Example 1.4 when σ : a b c and r = c b a (i.e. P (c b a) = 1 Z φ d(c b a,a b c) = 0.97 3 5.734 = 0.159).
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 17 Let us consider a set of 3 candidates and 3 different social axis a Table 1.4 presents the probability distributions with respect to different social axis under SP-IC where the possible ranking are in the first row and social axis are in the firstcolumn. There are 2 m-1 = 2 2 = 4 consistent single peaked orders with an uniform distribution of 1 4 . For example, given the social axis a b c, half of the single peaked votes are made up of candidates a and b, and augmented with c at their end, i.e. rankings a b c and b a c. The other half of the single peaked votes end in a and are made up of votes containing b and c, i.e. rankings b c a and c b a. a b c a c b b a c b c a c a b c b a a b c 1

4 :

 4 Single peaked rankings under SP-IC model with the social axis: (a b c), (b a c) and (c a b).

Figure 2 . 1 :

 21 Figure 2.1: In the Glasgow election City Council, most of the voters rank only 1 to 4 candidates out of 11.

  Pairwise comparisons: Voter i states which of two alternatives, a or b, is preferred to the other. For instance, given A = {a, b, c, d}, voter i prefers a to b and c to d, i.e. a b and c d. • Top-k queries: Voter i provides the top-k (ranked) alternatives from his complete preference order i for some 1 k m. For instance, given A = {a, b, c, d} and i = a b c d, the top-3 preferred candidates of i are: a b c.

  of three voters who were asked to state a pairwise comparison between three candidates A = {a, b, c}. The partial preferences of the voters are shown in Figure 2.2. For example, voter 1 prefers a b and a c, but he/she expresses no preference between candidates b and c.

Figure 2 .Figure 2 . 2 :

 222 Figure 2.3 presents the different possible completions of the partial profile R in Figure 2.2 to complete preferences orders where C(R) contains 12 profiles.

Figure 2 . 3 :

 23 Figure 2.3: Completions of the partial preference profile in Figure 2.2.
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 22 In Figure 2.2, the partial voter's preference R 1 (resp. R 2 , R 3 ) can be completed by adding b c (resp. b a, b a and c a), resulting in the following linear complete profile: P = {a b c, b a c, b c a} (other possible completions of R are in Figure 2.3). Under Borda rule, candidate a (resp. b, c) gets 3 (resp. 5, 1) points. Then, candidate b is a possible winner when considering the latter completion. Another possible extension of R 1 (resp. R 2 , R 3 ) is by adding b c (resp. b a, a b and a c), resulting in the following linear profile: P = {a b c, b a c, a b c}. Under Borda rule, candidate a (resp. b, c) gets 5 (resp. 4, 0) points. Then, candidate a is a possible winner when considering the latter completion.

Example 2 . 3 .Figure 2 . 4 :

 2324 Figure 2.4: Example of a partial profile where candidate a is the optimal minimax regret following Lu and Boutilier [54].
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 25 Let us consider a setting of 15 voters with the following profile P over three candidates A = {a, b, c}: 6 votes a b c 3 votes c b a 5 votes b a c 1 votes c a b

Figure 2 . 5 :

 25 Figure 2.5: Communication protocol for plurality with runoff.

Figure 2 .

 2 Figure 2.5 shows the communication protocol for plurality with runoff. In the first step, voters send their most preferred candidate where candidate a (resp. b and c) gets 6 (resp. 5 and 4) votes. In the second step, the voting center sends to the voters the candidates who received the highest scores using plurality, i.e. candidates a and b. Finally, in the third step, voters send their preferred candidate among the two finalists and candidate b is declared the winner.

  follow the same path of research where they study the performance of top-k voting under the impartial culture distribution (IC) for Borda, Harmonic and Copeland rules. They assess the values of k needed to ensure the true winner with high probability. More precisely, they show that for Borda and Harmonic (resp. Copeland) voting a lower bound of k = Ω(m) (resp. k = Ω m √ log m ) is needed for n sufficiently large relative to m. Their theoretical analysis is completed by numerical experiments showing that under the impartial culture, in the setting where m = 20 and n = 2000, Harmonic rule gives the best results where k = 15 out of 20 is sufficient to determine the winner, while for Copeland and Borda the whole profile is needed to ensure the winner.
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  induced from P and k. Example 3.1. Let us consider a profile of 6 voters with the following complete preferences over A = {a, b, c, d}: 2 votes b a c d 1 vote a d b c 2 votes c a b d 1 vote d b c a The 2-truncated profile induced from the above preferences is as follows: 2 votes b a 1 vote a d 2 votes c a 1 vote d b

Example 3 . 2 . 2 =, Harmonic av 2 and Harmonic max 2 ares Harmonic av 2 = ( 1 , 1 2 ,

 3222212 Let us consider an election over m = {a, b, c, d, e} candidates and a partial preference order of a voter i where a i b.The scoring vectors for Borda 0 2 , Borda av 2 and Borda max 2 are: s Borda 0 2 = (4, 3, 0, 0, 0) , s Borda av 2 = (4, 3, 1, 1, 1) and s Borda max (4, 3, 2, 2, 2), respectively. The scoring vectors for Harmonic 0 2 0.26, 0.26, 0.26) and s Harmonic max
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 2 

Theorem 3 . 1 .

 31 A top-k voting rule is a top-k PSR if and only if it satisfies top-k, neutrality, anonymity, reinforcement, and continuity.

kiExample 3 . 3 .

 33 and two candidates a, b ∈ A, we say that a dominates b in k i , denoted by a > k i b, if one of these two conditions holds: 1) a and b are listed in k i , and a k i b; 2) a is listed in k i , and b is not. For A = {a, b, c, d}, k = 2, and 2 i = (a b), then a dominates b (condition 1 is satisfied), both a and b dominate c and d (condition 2 is satisfied), but c and d remain incomparable in 2 i . Now, the notions of majority graph and weighted majority graph (cf. Chapter 1) are extended to top-k truncated profiles in a straightforward way. We define the ktruncated majority graph and the k-truncated weighted majority graph, based on the above description of pairwise comparison, as follows : Definition 3.3. k-truncated majority graph Given a k-truncated profile R, N R (a, b) = # i, a k i b is the number of voters in R for whom a dominates b. The k-truncated majority graph M k (R) induced by R is the graph whose set of vertices is the set of candidates A and in which there is a directed edge from a to b if the number of voters i such that a i b is strictly larger than the number of voters j such that b j a i.e. N R (a, b) > N R (b, a). Definition 3.4. k-truncated weighted majority graph Given a k-truncated profile R, for any tow candidates a, b, N R (a, b) = # i, a > k i b is the number of voters in R for whom a dominates b. The k-truncated pairwise majority matrix (or k-truncated weighted majority graph)

Example 3 . 4 .Figure 3 .

 343 Figure 3.1 shows the representation of the top-k majority graph for k = {1, 2, 3} where for each k, the Copeland winner is shaded. For Copeland 3 , candidate d is the winner. For Copeland 1 , candidate a has the majority by beating candidates b (20 to 10), c (20 to 15) and d (20 to 17). When we consider Copeland 2 , candidate d wins.

Figure 3 .

 3 Figure 3.2 shows the top-k pairwise majority matrix and the M aximin k winner for k = {1, 2, 3}. For M aximin 3 , the winner is also candidate d with a maximum pairwise majority equal to 12. For M aximin 1 , the minimum pairwise majority of different candidates are: S m (a) = 3, S m (b) = -10, S m (c) = -5 and S m (d) = -3. Then, candidate a wins with a maximum pairwise comparison equal to 3.

Figure 3 . 1 :Figure 3 . 2 :Figure 3 .

 31323 Figure 3.1: k-truncated majority graph, and k-truncated approximations of Copeland for k = {1, 2, 3}

Figure 3 . 3 :

 33 Figure 3.3: k-truncated weighted majority graph, and k-truncated approximations of RP for k = {1, 2, 3}. The dashed edges are omitted since they create cycles.
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 35 Let A = {a, b, c, d, e} and consider the following 21 top-2 ballots with tie-breaking priority : a b c d e. Under STV 2 , e is eliminated first, then c. The votes c e are now exhausted. Candidate d is eliminated next. Now, a and b are tied. Finally, a is the STV 2 winner thanks to tie breaking priority.

  For instance, consider the profile composed of 5 votes b a c d, 4 votes a b c d, 3 votes c d b a and one vote d a b c: under STV the winner is b. For ST V 1 , it is b too. However, for ST V 2 , it is a. Iterating this process a number of times allows us to evaluate the quality of top-k rules for different values of k.

Figure 3 . 4 :

 34 Figure 3.4: Success rate, n = 2000, m = 20: Mallows φ model when φ ∈ {0.9, 1} and varying k.

kFigure 3 . 5 :

 35 Figure 3.5: Success rate, m ∈ {7, 10, 15, 20}, n = 1000: Mallows φ model when φ ∈ {0.9, 1} and varying k.

Figure 3 . 6 :

 36 Figure 3.6: Success rate, m = 7, n = 15: Mallows φ model when φ ∈ {0.9, 1} and k = {1, ..., 6}.

Figure 3 . 7 :

 37 Figure 3.7: Success rate, m = 7, n = 500: Mixture of p Mallows models with p = {1, 2, 3}.

Figure 3 . 8 :

 38 Figure 3.8: Success rate, Dublin North: varying k ∈ {1, 2, 3} and n * = {10, . . . , 100}.

Figure 3 . 9 :

 39 Figure 3.9: Success rate, Dublin North: varying k ∈ {1, 2, 3} and n * = {100, . . . , 2000}.

. 1 ) 3 . 6 .

 136 Example Let P be a complete profile of 9 voters having preferences over three candidates A = {a, b, c, d} as follows: 4 votes a c b d 3 votes b a d c 2 votes b a d c When considering the complete profile, the score of different candidates is: S(a)=22, S(b)=19 and S(c)=8 and S(d)=5. The Borda winner is candidate a.

  4.1.1 to study the price of top-k-truncation for positional scoring rules. Subsections 3.4.1.2 and 3.4.1.3 give the price of top-k-truncation for Copeland and Maximin, respectively.

Lemma 3 . 3 .

 33 All candidates have the same score in P k if and only if

s 1 ms k+1 s 1

 1 +...+s kProof. Putting Lemmas 3.1 and 3.5 together.

Figure 3 . 10 :

 310 Figure 3.10: Approximation ratio when n = 15, m = 7 and φ ∈ {.7, .8, .9, 1}: Mallows model.

Figure 3 . 11 :

 311 Figure 3.11: Approximation ratio when n = 15, m = 7 and p = {1, 2, 3}: Mixture of p Mallows models.

Figure 3 . 12 :

 312 Figure 3.12: Approximation ratio with Dublin North data set for different truncated voting rules.
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Figure 4 . 1 :

 41 Figure 4.1: In the Dublin election, most of the 43,942 voters rank only 3 to 5 candidates out of 12.

Example 4 . 1 .

 41 Let P be a profile with n = 3 and A = {a, b, c}: 4 a c b 3 b a c 2 c b a Let : a b c. The ST V 2 (= ST V ) winner is b and the RP 2 winner is a. Let us clone b to {b, b }. A compatible profile P is {4 : a c b b, 3 : b b a c, 2 : c b b a}. For k = 2, the k-truncated profile is {4 : a c, 3 : b b , 2 : c b } : a b b c. Then, candidate a is the winner for both ST V 2 and RP 2 .

1 Figure 4 . 2 :

 142 Figure 4.2: Resistance to cloning of ST V k and RP k , a candidate at random cloned: Mallows φ model, m = 5, n ∈ {30, 500} and φ ∈ {0.7, 0.8, 0.9, 1}.

φ 1 Figure 4 . 3 :

 143 Figure 4.3: Resistance to cloning of ST V k and RP k , winner cloned: Mallows φ model, m = 5, n ∈ {30, 500} and φ ∈ {0.7, 0.8, 0.9, 1}.

Figure 4 .

 4 4(a) and (c)) and the ST V k and RP k winner (Figure 4.4(b) and (d)). In each experiment 1000 random profiles are constructed with n * voters.

Figure 4 . 4 :

 44 Figure 4.4: Resistance to cloning of ST V k and RP k : Dublin data.

Figure 4 . 5 :

 45 Figure 4.5: Probability that ST V k coincides with plurality with runoff: m = 7, n = {100, . . . , 500}, k and φ ∈ {0.9, 0.8}.

Figure 4 . 6 :

 46 Figure 4.6: Probability that ST V k coincides with plurality with runoff when n = 500: vary m ∈ {8, 10, 15, 20}, k ∈ {1, . . . , m} and φ ∈ {0.7, 0.8, 0.9}.

Figure 4 . 7 :

 47 Figure 4.7: In most divisions in recent elections for the Australian House of Representatives, there were only one or two possible winners, given plurality scores.

Example 4 . 3 .e

 43 Let P be a profile with n = 14 and A = {a, b, c, d, e, f } where : a b c d e: When applying ST V 2 (on the left profile), candidates e and f are eliminated first, then candidate a having the fewest number of votes is eliminated next. The obtained partial profile corresponds to the incomplete plurality profile (the profile on the right) issued from P such that: s ∅ = 1, S(b) = 2, S(c) = 4 and S(d) = 7. Proposition 4.3 gives an approximation of possible winner for STV given top-k ballots. Proposition 4.3.

Algorithm 4 . 1 :repeat 5 d 6 Remove d from the set of available candidates 7 L

 41567 P W top-k 1 Input: R = { k i , . . . , k n }, A 2 Initialize: Y ES ← ∅ , M AY BE ← ∅, L ← ∅ 3 N L 1 ←necessary losers given top-1 ballots using Proposition 4.1 4 ← candidate ranked first by the fewest voters (breaking ties) ← L ∪ {d} 8 until there is an empty vote

Example 4 . 4 . 1 • 1 • 1 f

 44111 Let us consider the following top-2 ballots of 6 voters over A ∈ {a, b, c, d, e, f } where : a b c d e f : Following Algorithm P W top-k , given top-1 ballot of each voter the scores of different candidates are: S(c) = 0, S(b) = 0, S(f ) = 1, S(d) = 1, S(a) = 1 and S(e) = 3. Candidates b, c and f are necessary losers, giving: N L 1 = {b, c, f }. Then we apply 1 vote : e b 1 vote : d f 1 vote : a e 1 vote : f c 1 vote : e a 1 vote : e f ST V 2 : candidates b and c are removed first then f with the lowest number of votes, giving: L = {b, c, f }. Now, the vote f c is empty, the resulting incomplete plurality profile is: s ∅ = 1, S(d) = 1, S(a) = 1 and S(e) = 3. Following the conditions in Proposition 4.3, there is no more necessary losers to remove, giving: N L 2 = ∅. Now we test whether candidates a, d and e are possible winners or not by ranking them on top of the empty vote as follows: • Rank a on top of the empty vote Round 1: eliminate d Round 2: eliminate e ⇒ a wins 1 vote : e ¡ ¡ b Rank d on top of the empty vote Round 1: eliminate a Round 2: eliminate d ⇒ e wins 1 vote : e ¡ ¡ b Rank e on top of the empty vote Round 1: eliminate d Round 2: eliminate a ⇒ e wins 1 vote : e ¡ ¡ b Giving the above completions, we have: Y ES = {a, e} and M AY BE = {d}. To conclude, given the top-2 ballots and A = {a, b, c, d, e, f } we can say that: (1) b, c and f are necessary losers, (2) a and e are possible winners, and (3) we don't know if d is a PW or not.

Figure 4 . 8 :

 48 Figure 4.8: Identifying possible winners (YES), necessary losers (NO) and candidates that we cannot decide on (MAYBE), when m = 7, n = 100 and φ ∈ {0.7, 0.8, 0.9, 1}: Mallows φ model.

Protocol 4 . 2 : P 1 1 2 ask i to send the name of her top candidate 3 repeat 4 d 5 Remove d from the set of available candidates 6 for each voter i ∈ N do 7 ifExample 4 . 5 .

 4212456745 for each voter i ∈ N do ← candidate ranked first by the fewest voters (breaking ties) the top candidate of i was d then ask i to send the name of her next preferred candidate 8 until there exists a candidate c ranked first by a majority of voters Let A = {a, b, c, d} and P = {3 : a c d b, 3 : c a b d, 1 : d b a c, 1 : b d c a} with tie-breaking priority a b c d. We run P 1 .

Example 4 . 6 . 2 :

 462 Let us consider P = {5 : e b d a c, 2 : b a e c d}, and let the tie-breaking priority be a b c d e. The winner for P is c. The necessary losers given top-1 ballots are a, d and e. If we eliminate those three candidates, the winner is b.

Proposition 4 . 4 .

 44 The removal of strong necessary losers does not change the winner.

Protocol 4 . 3 : P 2 1repeat 4 for each safe necessary loser x i do 5 Remove x i 6 s

 432456 Query every voters' top candidate 2 Let (s ∅ , S(x 1 ), . . . , S(x m )) be the resulting plurality profile, with s ∅ = 03 ∅ ← s ∅ + S(x i ) 7Select an empty voter and query their new top alternative 8 Let x j be this new top alternative 9 S(x j ) ← S(x j ) + 1; s ∅ ← s ∅ -1 10 until the set of possible winners is a singleton

Example 4 . 7 .

 47 Let the candidates be a, b, c, d, e. After the first step, the plurality scores are (S(a) : 1, S(b) : 1, S(c) : 3, S(d) : 4, S(e) : 8). a and b are SNL and are removed. The resulting incomplete plurality profile is (s ∅ : 2, c : 3, d : 4, e : 8). We query a voter who votes for d, giving (s ∅ : 1, S(c) : 3, S(d) : 5, S(e) : 8). c is now a SNL and is removed, giving (s ∅ : 4, S(d) : 5, S(e) : 8). We query a voter who votes for e, resulting in (s ∅ : 3, S(d) : 5, S(e) : 9). d is now an SNL, and the winner is e.

Figure 4 . 9 :

 49 Figure 4.9: Average communication cost, Mallows.

2 Figure 4 . 10 : 2 ,

 24102 Figure 4.10: Average number of voters who were asked k questions when m = 7, n = 100 and φ ∈ {0.7, 0.8, 0.9, 1} under: P 1 , P Rand2

Figure 4 . 11 : 2 Figure 4 . 12 : 2 .

 41124122 Figure 4.11: Average communication cost, real data sets.
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 5151 Figure 5.1: Example of a tree representing the start game of TicTacToa.

Figure 5 . 2 :

 52 Figure 5.2: One iteration of the general MCTS approach.

Algorithm 5 . 1 :

 51 Pseudocode for Monte-Carlo tree search.
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 53 denote the complete completion of the partial profile R given x. Then, S max (x, R) corresponds to the maximal score of candidate x when considering the completions C max (x, R) with respect to a given PSR. We consider a partial profile R of 4 voters having partial preference orders over 4 candidates A = {a, b, c, d} with tie breaking : a b c d, where R = {a, c d, a, b a}. We consider Borda rule defined by a scoring vector s Borda = (3, 2, 1, 0). The minimal and maximal scores of candidate c are: • S min (c, R) = 3 when considering a possible completion C min (c, R) = {a b d c, c d b a, a d b c, b a d c} • S max (c, R) = 8 when considering a possible completion C max (c, R) = {a c b d, c d b a, a c b d, b a c d}.

Corollary 5 . 1 .

 51 Given top-k ballots and , x ∈ A is a necessary winner with respect to a given positional scoring rule, if and only if for each y ∈ A, y = x we have : 1) S min (x, R) > S max (y, R), or 2) S min (x, R) = S max (y, R) and x y.
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 54 Let us consider the same partial profile R in Example 5.3. Given R, the minimal and maximal scores of candidates under Borda rule are:• S min (a, R) = 8, S min (b, R) = 3, S min (c, R) = 3 and S min (d, R) = 2,• S max (a, R) = 9, S max (b, R) = 8, S max (c, R) = 8 and S max (d, R) = 7,

  d, b d, ce, d a c}. Then, we backpropagate the result to the root node. Now S 0 has a value of 7/2. 𝑈𝐶𝑇(𝑆 1 ): ∞ 𝑈𝐶𝑇(𝑆 2 ): 3 𝑈𝐶𝑇(𝑆 3 ): ∞ 𝑈𝐶𝑇(𝑆 4 ): ∞

𝑉 2 = 1 𝑆 0 : 7 / 2 𝑉 2

 210722 𝑏𝑑 -𝑉 3 = 𝑐𝑒 -𝑉 1 = 𝑒𝑑 -𝑉 4 = 𝑑𝑎 -𝑆 1 : 0/0 𝑆 2 : 3/1 𝑆 3 : 0/0 𝑆 4: 4/

28 𝑉 2 6 ?

 2826 1 ): 12.28 𝑈𝐶𝑇(𝑆 2 ): 9.28 𝑈𝐶𝑇(𝑆 3 ): ∞ 𝑈𝐶𝑇(𝑆 4 ): 10.Based on the result of the four iterations we select the final move with the minimal value which corresponds to S 2 .

13 Condition 1 : 13 Condition 1 :

 131131 Ask voter 1 Round 2 R = {e d, d, c, d} x Ask voter 3

Round 3 R 12 Condition 2 :voter 3 4 R 12 Condition 3 :

 312234123 = {e d, d, c a, d} x Ask Round = {e d, d, c a e, d} x Ask voter 2 or 4

Round 5 R 11 Condition 3 :voter 4 R

 51134 = {e d, d b, c a e, d} x Ask = {e d, d b, c a e,

Figure 5 . 4 :

 54 Figure 5.4: Average communication cost of Borda rule with Mallows φ model when: m = 7, n = 10 and φ ∈ {.7, .8, .9, 1}.

Figure 5 . 5 :

 55 Figure 5.5: Average communication cost of Harmonic rule with Mallows φ model when: m = 7, n = 10 and φ ∈ {.7, .8, .9, 1}.

Figure 5 . 6 (

 56 resp.

Figure 5 .

 5 [START_REF] Bachrach | Probabilistic possible winner determination[END_REF] shows the average number of questions voters asked by P Search , P Rounds and P W orst on real data sets under Borda (resp. Harmonic) rule.

Figure 5 . 6 :

 56 Figure 5.6: Average communication cost of Borda rule with real data sets under P Search , P Rounds and P W orst .

  

  

Table 1 :

 1 Probabilité moyenne pour n ∈ {100, . . . , 500} pour laquelle : pluralité à deux tours et pluralité coïncident et pluralité à deux tours et STV coïncident lorsque φ ∈ {0.7, 0.8, 0, 0.9, 1}.

		Plu. à/ 2 tours	Plu. à/ 2 tours
		et Plu. coïncident	et STV coïncident
	φ = 0.7	0.97	1
	φ = 0.8	0.90	0.99
	φ = 0.9	0.75	0.89
	φ = 1	0.61	0.65

• Les résultats sur la complexité sont très intéressants, en fait nous avons prouvé qu'avec k = 1 déterminer le gagnant possible pour STV peut être résolu en temps polynomial, mais le problème reste NP-complet quand k 2 principalement en raison du nombre de complétions possible. Bien que le problème soit difficile dans le pire des cas, nous avons montré qu'en pratique, il existe un algorithme simple (P W top-k Algorithme 4.1) qui permet de classer les candidats en trois classes : gagnants possibles, perdants nécessaires et candidats sur lesquels nous ne pouvons pas décider.

  d'évaluation heuristique simple qui se déroule en deux étapes principales : (1) nous identifions deux candidats clés pour lesquels nous voulons recueillir plus d'information, et ensuite (2) s'il y a au moins un électeur dont le bulletin actuel ne contient aucun de ces deux candidats, interroger cet électeur ; sinon, interroger un électeur dont le bulletin actuel contient un de ces deux candidats. Nous avons appelé ce protocole P Search .Nous avons étudié empiriquement le coût moyen de communication de P M CT S et P Search à partir de profils générés aléatoirement ( le modèle Mallows φ pour différentes valeurs de φ) et des données réelles. Notre objectif est de déterminer le nombre de questions auxquelles les électeurs doivent répondre, en moyenne, afin de déterminer le gagnant selon les règles de vote Borda et Harmonique. Nous

				Average Number of Questions	0 1 2 3	φ = 0.7 2.59 1.52 1.37	φ = 0.8 2.59 1.70 1.58	φ = 0.9 2.59 1.87 1.80 P Worst	P 1	φ = 1 2.59 1.96 1.91 P 2
					Figure 7: Coût moyen de communication, Mallows.
	Average Number of Questions	7 1 2 3 4 5 6	0 1 2 3 4 6.00 Average Number of Questions	Glasgow 2.82 P Worst 1.75 1.82 Figure 8: Coût moyen de communication, données réelles Debian ERS Sushi Dublin North Dublin West Meath 2.59 2.92 2.92 3.10 2.82 3.25 P 1 P 2 1.37 1.46 1.40 1.84 1.67 2.05 1.48 1.67 1.52 2.14 1.95 1.72 6.00 6.00 6.00 4.14 4.84 4.97 4.58 3.21 3.75 4.12 4.26 3.13 3.60 3.94 4.04
	• Pour les méthodes heuristiques, premièrement, nous proposons un processus in-φ = 0.7 φ = 0.8 φ = 0.9 φ = 1 0
		crémentiel d'élicitation de vote en explorant les méthodes heuristiques pour guider
		le choix du prochain électeur à intérroger. Compte tenu des préférences top-k, ces
		heuristiques seront utilisées pour choisir à chaque tour l'électeur à qui il est le plus
		pertinent de demander de compléter son k-vote en donnant son prochain candidat
		(ainsi classé k+1). À cette fin, nous proposons d'abord d'utiliser l'approche de
		recherche dans l'arbre de Monte-Carlo (MCTS) dans un contexte d'élicitation de
		vote pour sélectionner l'électeur le plus en vue à demander à chaque tour de com-

• Pour les méthodes exactes, nous nous sommes concentrés sur la règle STV. En nous basant sur un protocole proposé par Conitzer et Sandholm

[START_REF] Conitzer | Communication complexity of common voting rules[END_REF] 

que nous avons appelé P 1 , nous avons proposé un nouveau protocole (P 2 ) capable de réduire la quantité de communication requise en pratique pour STV. Ensuite, nous avons étudié empiriquement le coût moyen de communication de P 1 et P 2 , à partir de profils générés aléatoirement et de données réelles. Notre objectif est de déterminer la complexité de la communication, c'est-à-dire le nombre de questions aux quelles les électeurs doivent répondre en moyenne. Pour les profils générés aléatoirement, nous présentons les résultats de simulation avec m = 7 et n = 100, et laissons φ varier. Nous calculons le nombre de questions posées par P 1 et P 2 lorsque φ ∈ {0.7, 0.8, 0.9, 1}. La Figure 7 montre le coût moyen de communication de P 1 , P 2 en le comparant à P Worst , le coût du pire cas de P 1 . Les résultats suggèrent qu'en pratique, P 1 et P 2 posent moins de questions que dans le pire des cas (P Worst ). P 2 pose moins de questions que P 1 pour toutes les valeurs de φ, mais la différence est plus significative pour les φ inférieurs. Afin d'évaluer nos protocoles avec des ensembles de données réelles, la Figure 8 montre le nombre moyen de questions posées aux électeurs par les protocoles sur les ensembles de données réelles. P 2 donne de meilleurs résultats que P 1 en posant 5 à 10% moins de questions. pleter son vote en se basant sur la fonction d'évaluation Upper Confidence Bounds for Trees (UCT). Nous avons appelé ce protocole P M CT S . Deuxièmement, nous proposons une fonction présentons les résultats de simulation avec m = 7 et n = 10 en variant la valeur φ ∈ {0.7, 0.8, 0, 0.9, 1}. Figure 9 montre les résultats obtenus pour Borda avec P M CT S , P Search et P Rounds , et nous montrons aussi P W orst pour comparaison. Les résultats montrent que P M CT S et P Search sont efficaces pour réduire le nombre de questions posées aux électeurs sous les règles Borda et Harmonic. D'après les résultats, P M CT S a un faible coût de communication selon les règles Borda et Harmonic.

Table 1

 1 

	.1: Example of a complete preference profile.
	Definition 1.1. Majority Graph Given a complete profile P , let N P (a, b) = # {i, a i b}
	be the number of voters who prefer a to b in P . The majority graph M (P ) is the graph
	whose set of vertices is the set of the candidates A and in which for all a, b ∈ A, there
	is a directed edge from a to b (denoted by a → b) in M (P ) if a beats b in a pairwise
	election, that is, if a strict majority of voters prefer a to b i.e. N P (a, b) > n 2 .

Definition 1.2. The Weighted Majority Graph Given

  a complete profile P , the weighted majority graph associated with P is the graph M W (P ) whose set of vertices is the set of the candidates A and in which for all a, b ∈ A, there is a directed edge from a to b weighted by the number of voters who prefer a to b in P . Since the votes in P are linear orders, knowing M W (P ) is equivalent to knowing the pairwise majority matrix defined by: for all a, b ∈ A, Score P

Eliminated candidate in each round under STV voting rule. In the first round, candidate c receives the fewest number of votes (11 votes) and is eliminated. The votes for c are now transferred to d and e (3 votes to d and

  .1 presents the eliminated candidate in each round. 8 votes to e). In the next round, candidate b is eliminated and the voters that supported it now support d. In the third round, candidate e is eliminated and its votes go to candidate d. Now, d has 67 votes against 33 for candidate a. Thus, d is the STV winner.

	eliminate c	eliminate b	eliminate e	eliminate a
	Figure 1.1:			

is eliminated with 52 votes against 30 to d and 18 to b. In the third round, candidate d is eliminated with 63 votes against 21 to b and 16 to c. Finally, candidate b is eliminated with 51 votes against 49 to c. Thus, only candidate c remains which is elected to be the winner under Coombs.

  

	For pairwise comparison voting rules, we consider a new example because in the
	first profile, the majority graph does not contain cycles under Copeland, thus the RP
	and Copeland winners are the same (i.e. candidate c). We consider the following
	profile with 15 voters and 4 candidates; we break ties using the following priority order
	: a b c d:

• For Coombs voting rule candidate a receives the most last place votes

(64 votes 

to a against 36 votes to e) which will be eliminated in the first round. Next, candidate e

Table 1 .2: Pairwise majority matrix representation for weighted majority graph.

 1 shows the representation of the majority graph.

	Candidate c beats candidates a (9,6) and b (8,7). Candidate d beats candidates b
	and c (11,4). Candidate a (resp. b) beats candidate d (10,5) (resp. candidate a
	(9,6)). Then, the scores of candidates a, b, c and d are 1, 1, 2, 2, respectively.
	Thus, d and c are tied and c is the winner thanks to the tie breaking.
	• For Maximin, Table 1.2 shows the pairwise majority matrix of P. For instance,
	the value 5 corresponds to N P (a, d) -N P (d, a) = 10 -5 = 5. The last column S m
	represents the minimum pairwise majority for each candidate.
	N P a b c d S m
	a	--3 -3 5 -3
	b	3 --1 -7 -7
	c	3 1 --7 -7
	d -5 7 7 -	-5
	Under Maximin, the minimum pairwise majorities of the candidates are: S m (a) =
	-3, S m (b) = -7, S m (c) = -7 and S m (d) = -5. Thus, the Maximin winner is
	the candidate with the highest minimum pairwise majority, namely: candidate a.
	• For ranked pairs, Figure 1.4(a) shows the weighted majority graph induced from
	the majority matrix in Table 1.2, and Figure 1.4(b) presents the resulting acyclic
	graph when applying RP. Under RP, we add edges in descending order of weights
	and we retain an edge only if it does not create a cycle. We thus retain (d → b),
	(d → c), (a → d), omit (b → a) and (c → a) and retain (c → b). Hence, a
	is the RP winner which represents the only vertex without incoming edge in the
	resulting graph.	

Table 2 .

 2 2: Probability's table with probabilistic preferences following Hazon et al.[START_REF] Hazon | On the evaluation of election outcomes under uncertainty[END_REF] algorithm.

  Definition 3.2. A top-k PSR f sk is defined by a scoring vector s = (s 1 , s 2 . . . , s k , s * ) 0 and s 1 > s * . Each candidate in a top-k vote receives s j points from each voter i who ranks her in the j th position. A non-ranked candidate gets s * points. The winner is the candidate with highest total score.

	such that s 1	s 2	...	s k	s

* 

Table 3 .

 3 1: Success rate, m = 7, varying n, k and φ. With high values of φ, Harmonic still outperforms other rules followed by Borda av and STV then the other rules. Results for Borda rule suggest that Borda av k has the best results followed by Borda 0 k and then Borda max k

	φ n=100 n=200 n=300 n=400 n=500 n=100 n=200 n=300 n=400 n=500
			Borda 0 1					Borda 0 2
	0.7 0.902 0.958 0.986 0.992	1.0	0.952 0.984 0.997	1.0	1.0
	0.8	0.77	0.855	0.9	0.94	0.963	0.859	0.92	0.944 0.965 0.988
	0.9 0.588 0.694 0.685 0.718 0.771 0.722 0.788 0.815 0.854 0.859
	1	0.434 0.445 0.424 0.422 0.397 0.582 0.571 0.591 0.553 0.554
			Borda av 1					Borda av 2
	0.7 0.902 0.958 0.986 0.992	1.0	0.951	0.98	0.992	1.0	1.0
	0.8	0.77	0.855	0.9	0.94	0.963	0.853 0.913 0.956 0.972 0.986
	0.9 0.588 0.694 0.685 0.718 0.771 0.772 0.805 0.827 0.846 0.873
	1	0.434 0.445 0.424 0.422 0.397 0.576	0.56	0.586 0.598 0.584
			Borda max 1					Borda max 2
	0.7 0.902 0.958 0.986 0.992	1.0	0.947 0.987 0.992	1.0	1.0
	0.8	0.77	0.855	0.9	0.94	0.963	0.861 0.938 0.945 0.962 0.971
	0.9 0.588 0.694 0.685 0.718 0.771 0.704 0.794 0.802 0.814 0.845
	1	0.434 0.445 0.424 0.422 0.397 0.567 0.581 0.555	0.56 0.532
			Harmonic 1				Harmonic 2
	0.7 0.941 0.986 0.996	1.0	1.0	0.98	0.992	1.0	1.0	1.0
	0.8 0.895 0.916 0.958 0.959 0.968	0.958 0.974 0.987 0.988 0.996
	0.9 0.805 0.808	0.83	0.866 0.863 0.895 0.921 0.934 0.939 0.952
	1	0.725 0.742	0.74	0.697 0.737 0.872 0.867 0.859 0.861 0.859
			Copeland 1					Copeland 2
	0.7 0.908 0.968 0.991 0.994	1.0	0.947	0.99	1.0	1.0	1.0
	0.8 0.736 0.847 0.891 0.934 0.949	0.822 0.904 0.952 0.984 0.982
	0.9 0.497 0.567 0.655 0.684 0.726	0.62	0.69	0.77	0.805 0.838
	1	0.325 0.332 0.323 0.343 0.319 0.458 0.432	0.45	0.442 0.425
			M aximin 1					M aximin 2
	0.7 0.908 0.969 0.986	0.99	1.0	0.968 0.991	1.0	1.0	1.0
	0.8 0.787 0.856 0.915 0.939 0.955	0.872 0.934 0.961 0.976 0.977
	0.9	0.57	0.633 0.691 0.717 0.748 0.735	0.76	0.794 0.838 0.869
	1	0.415	0.4	0.423 0.393 0.391	0.52	0.532 0.544 0.545 0.525
				RP 1					RP 2
	0.7 0.926 0.972 0.995 0.995	1.0	0.963 0.994	1.0	1.0	1.0
	0.8 0.778 0.856 0.908 0.939 0.957	0.871 0.928 0.967 0.983 0.989
	0.9 0.587	0.64	0.674 0.718 0.749 0.725 0.765 0.777 0.838 0.862
	1	0.426 0.405 0.416 0.375 0.385 0.558 0.524 0.557 0.498 0.519
				ST V 1					ST V 2
	0.7 0.907 0.981 0.985 0.998	1.0	0.959 0.993 0.997	1.0	1.0
	0.8 0.808 0.865 0.917 0.918 0.943	0.882 0.933 0.962 0.966 0.974
	0.9 0.603	0.64	0.721 0.729 0.763	0.742 0.776 0.792 0.855 0.846
	1	0.45	0.464 0.477 0.471 0.468	0.576 0.593	0.61	0.592 0.585
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	1 2 ...+ 1 k )

3: Summary of upper and lower bounds of the price of top-k truncation for Borda 0 k , Borda av k , Borda max k and Harmonic 0 k .

  Let A = {a, b, c, d, e, f }. At some step of the execution of P 2 , some voters were asked to submit their next preferred, resulting in the profile P = {4 : c, 2 : b, 1 : e c, 1 : e b, 2 : a, 1 : d a, 2 : f b}. Giving P , candidate d is removed first, then f , e and a. The resulting incomplete plurality profile is (s ∅ : 3, s c : 5, s b : 5).

			2	.
	Example 4.8. Now, we choose a voter to query her next preferred candidate among the voters who
	voted for candidate a. Three possible voters are available, namely: (2 : a, 1 : d
	a). Under P Rand 2	, we choose one voter at random among the available ones. Under
	P Rand-M in 2	, we choose one voter among the two whose most preferred candidate was
	a, namely: 2 : a. Finally, under P Rand-M ax 2

  3 and top-4 candidates.

	Average Number of Questions	1 2 3 4	2.82	1.75 P Worst 1.82	2.59	1.48	1.37 P 1	2.92	1.67	1.46 P 2	2.92	1.52	1.40	3.10	1.95	1.84	2.82	1.72	1.67	3.25	2.14	2.05
		0	Glasgow	Debian		ERS	Sushi	Dublin North	Dublin West	Meath
	Unlike P Rand-M ax 2	, P Rand-M in 2	tends to be egalitarian by minimizing the number of

  1 create root node v 0 with state S 0 2 if v 0 is terminal then

	3	return game over
	4 else
	5	while within computational budget do
		/* Selection and Expansion	*/

6

T est ← T rue 7 while v 0 is non-terminal and Test do 8 if v 0 is not fully expanded then 9

  Figure 5.7: Average communication cost of Harmonic rule with real data sets under P Search , P Rounds and P W orst .

	13.00	11.00				P W orst		P Rounds			P Search
				9.00		8.00		8.00					
	5.00	4.98	5.00	3.92	3.00	2.93	4.00	3.96	5.00	4.46	6.00	3.00	2.79

  SearchFigure 5.8: Average communication cost of Harmonic rule with real data sets under P Search , P 2 Search , P Rounds and P W orst .

	13.00			11.00 P W orst		P Rounds			P Search			P 2	
						9.00			8.00			8.00							
	5.00	4.98	4.61	5.00	3.92	3.78	3.00	2.93	2.48	4.00	3.96	3.57	5.00	4.46	4.45	6.00	3.00	2.79	2.68

Il y a d'autres règles qui ne sont pas basées sur des ordres mais sur des sous-ensembles de candidats tels que la règle d'approbation où chaque électeur peut approuver n'importe quel nombre de candidats et où le gagnant est le candidat le plus approuvé. Dans cette thèse, nous considérons des règles à entrée ordinale parce que nous nous concentrons sur les bulletins tronqués et dans d'autres cas (règles basées sur des sous-ensembles de candidats) la notion de bulletins tronqués n'a pas de sens.

For single-winner elections, STV is often called instant runoff voting (IRV). We keep however the terminology STV, which seems to be more popular among the community, even for single-winner elections.

see https://en.wikipedia.org/wiki/Hare-Clark_electoral_system

The work of Briskorn et al.[START_REF] Briskorn | Bribery under partial information[END_REF] includes a complete classification of types of incomplete information

Weighted voting systems occur when some voters are more important than others and have more decision-power. These systems are used in a number of real-world settings like shareholder meetings and elected assemblies.

For plurality with runoff, the unique necessary winner is in P ; however, the necessary co-winner is coNP-complete.

Note that outputting possible winners can also be seen as a way of generalizing the definition of a voting rule to truncated ballots, but the obtained rule then tends to be very irresolute when the size of the partial ballots is small.

There are 43,942 ballots;

are complete.

A Condorcet loser is a candidate defeated by a majority in pairwise contests against any other alternatives.

Most voting rules with ordinal input fail to be clone-proof. Apart from STV, other noticeable exceptions are ranked pairs and Schulze. Among rules where the input does not consist of rankings over candidates, we find other clone-proof rules, especially approval voting and range voting.

Marquis de Condorcet introduced the Condorcet winner as a candidate who beats any other candidate by a majority of votes. Then, a voting rule is Condorcet-consistent if it outputs the Condorcet winner whenever there is one.

The existence of this protocol explains why counting STV elections on paper is feasible in the first place. We can view a paper ballot as an agent who is costly to 'communicate' with. First sort the papers into m physcial stacks according to top-ranked candidate. The Conitzer-Sandholm analysis shows that, to find the election winner, we only need to touch each ballot O(log m) times on average while redistributing.

.

questions asked to all voters: first ask voters who have not said much for their most preferred candidate and then ask the maximum number of voters for their top-2 ballots in order to minimize the number of voters to query for their top-3.

Experiments using Real Data sets

We consider data sets from Preflib [START_REF] Mattei | Preflib: A library for preferences http://www. preflib[END_REF] to run our experiments. Most of the available data contain some incomplete ballots. In order to evaluate our protocols with real data sets, we consider only votes with complete preferences. Figure 4.11 shows the average number of questions voters are asked by the protocols on real data sets. P 2 performs better than P 1 by asking 5-10% fewer questions. Both protocols are much better than the worst-case analysis suggests, by about 40%. and a simulation is run that ends in 0 (i.e. the simulation results is a loss) and results in S 3 with value 0/1. We backpropagate the result and update the nodes' values.

Finally, given the generated (partial) tree from the third iteration, using either the Max Child or Robust Child strategies; the algorithm will return S 1 as final move.

Vote Elicitation Protocol Using MCTS

In this section we propose to use Monte Carlo Tree Search's technique in vote elicitation when considering top-k truncated ballots. Indeed, aggregating voters preferences can 

Conclusion and perspectives

In this dissertation we have taken a comprehensive look at the amount of information needed to accurately decide the election's outcome given truncated ballots under different voting rules. We have considered successively two contexts and their associated questions:

First, we have assumed that the information from the voters is communicated in a single shot where each voter submits her k preferred candidates (for a fixed k). So using the top-k ballot, we were interested to approximate the true winner for different voting rules (Borda, Harmonic, Copeland, Maximin, ranked pairs and STV) by proposing "ktruncated approximations". The key question that we were interested in is: How often will these approximations lead a mistake and output a different winner than we would have obtained with complete ballots? To answer this question we have measured theoretically, for rules whose definition is based on score maximization (Borda, Harmonic, Copeland and Maximin), the score ratio between the true winner and the winner of the k-truncated rule. The obtained worst-case bounds are rather negative: very negative for Copeland (∞) and Maximin (m -k), less so for Borda (Θ( m k )), and even less so for Harmonic (Θ( m k log k )). Experimental results on random Mallows model as well as real data suggest that a very small value of k work very well in practice which largely contrasts the obtained theoretical bounds. Best prediction is always obtained when considering Harmonic rule. We have also measured empirically the probability that the approximate rule selects the same winner as the original rule. Results confirm the conclusion obtained with the score ratio and suggest that small values of k work very well in practice. For instance with real data, eliciting k = 1 4 m is a good predictor of the correct winner.

In the same context (i.e. top-k communicated in a single shot), we have paid a specific attention to STV rule which is of particular interest in voting since it is hard to manipulate and it enjoys a very important normative property: clone-proofness. In fact, several questions arise: To which (quantitative) extent clone-proofness is preserved when replacing complete ballots by k-truncated ones ? What is the connection RÉSUMÉ Les règles de vote classiques supposent que les bulletins de vote des électeurs sont des ordres de préférence complets sur les candidats. Cependant, lorsque le nombre de candidats est suffisamment élevé, il est trop coûteux de demander aux électeurs de classer tous les candidats. Il y a donc un compromis à faire entre l'efficacité d'une méthode d'agrégation des préférences et la charge de communication qu'elle fait peser sur les électeurs.

Dans cette thèse, nous abordons ce problème en suggérant de demander aux électeurs de ne classer que leurs k candidats préférés (où k peut varier selon les électeurs et/ou au cours du processus). On dit que de tels votes sont ktronqués. Nous étudions la quantité d'information nécessaire pour déterminer le résultat de l'élection (de manière exacte ou approchée) à partir de bulletins tronqués selon différentes règles de vote et nous proposons et analysons différentes méthodes permettant un compromis entre précision du résultat et quantité de communication requise; certaines ne requièrent qu'une seule phase de communication, alors que d'autres sont dynamiques.

MOTS CLÉS

Choix social computationnel, Approximation, Bulletins tronqués, Protocole de communication ABSTRACT Classical voting rules assume that voters' ballots are complete preference orders over candidates. However, when the number of candidates is large enough, it is too costly to ask the voters to rank all candidates. There is therefore a trade-off between the efficiency of an aggregation method and the communication burden it places on voters.

In this thesis, we address this problem by suggesting to ask voters to report only their k preferred candidates (where k may vary depending on the voters and/or during the process). The obtained ballots are then said to be k-truncated. We study