Analyses de données omiques : clustering et inférence de réseaux - TEL - Thèses en ligne
Thèse Année : 2020

Omics data analysis : clustering and network inference

Analyses de données omiques : clustering et inférence de réseaux

Résumé

The development of biological high-throughput technologies (next-generation sequencing and mass spectrometry) have provided researchers with a large amount of data, also known as -omics, that help better understand the biological processes.However, each source of data separately explains only a very small part of a given process. Linking the differents -omics sources between them should help us understand more of these processes.In this manuscript, we will focus on two approaches, clustering and network inference, applied to omics data.The first part of the manuscript presents three methodological developments on this topic. The first two methods are applicable in a situation where the data are heterogeneous.The first method is an algorithm for aggregating trees, in order to create a consensus out of a set of trees. The complexity of the process is sub-quadratic, allowing to use it on data leading to a great number of leaves in the trees. This algorithm is available in an R-package named mergeTrees on the CRAN.The second method deals with the integration data from trees and networks, by transforming these objects into distance matrices using cophenetic and shortest path distances, respectively. This method relies on Multidimensional Scaling and Multiple Factor Analysis and can be also used to build consensus trees or networks.Finally, we use the Gaussian Graphical Models setting and seek to estimate a graph, as well as communities in the graph, from several tables. This method is based on a combination of Stochastic Block Model, Latent Block Model and Graphical Lasso.The second part of the manuscript presents analyses conducted on transcriptomics and metagenomics data to identify targets to gain insight into the predisposition of Ankylosing Spondylitis.
Le développement des méthodes de biologie haut-débit (séquençage et spectrométrie de masse) a permis de générer de grandes masses de données, dites -omiques, qui nous aident à mieux comprendre les processus biologiques.Cependant, isolément, chaque source -omique ne permet d'expliquer que partiellement ces processus. Mettre en relation les différentes sources de donnés -omiques devrait permettre de mieux comprendre les processus biologiques mais constitue un défi considérable.Dans cette thèse, nous nous intéressons particulièrement aux méthodes de clustering et d’inférence de réseaux, appliquées aux données -omiques.La première partie du manuscrit présente trois méthodes. Les deux premières méthodes sont applicables dans un contexte où les données peuvent être de nature hétérogène.La première concerne un algorithme d’agrégation d’arbres, permettant la construction d’un clustering hiérarchique consensus. La complexité sous-quadratique de cette méthode a fait l’objet d’une démonstration, et permet son application dans un contexte de grande dimension. Cette méthode est disponible dans le package R mergeTrees, accessible sur le CRAN.La seconde méthode concerne l’intégration de données provenant d’arbres ou de réseaux, en transformant les objets via la distance cophénétique ou via le plus court chemin, en matrices de distances. Elle utilise le Multidimensional Scaling et l’Analyse Factorielle Multiple et peut servir à la construction d’arbres et de réseaux consensus.Enfin, dans une troisième méthode, on se place dans le contexte des modèles graphiques gaussiens, et cherchons à estimer un graphe, ainsi que des communautés d’entités, à partir de plusieurs tables de données. Cette méthode est basée sur la combinaison d’un Stochastic Block Model, un Latent block Model et du Graphical Lasso.Cette thèse présente en deuxième partie les résultats d’une étude de données transcriptomiques et métagénomiques, réalisée dans le cadre d’un projet appliqué, sur des données concernant la Spondylarthrite ankylosante.
Fichier principal
Vignette du fichier
98227_HULOT_2020_archivage.pdf (15.54 Mo) Télécharger le fichier
Origine Version validée par le jury (STAR)

Dates et versions

tel-03224181 , version 1 (11-05-2021)

Identifiants

  • HAL Id : tel-03224181 , version 1

Citer

Audrey Hulot. Analyses de données omiques : clustering et inférence de réseaux. Médecine humaine et pathologie. Université Paris-Saclay, 2020. Français. ⟨NNT : 2020UPASL034⟩. ⟨tel-03224181⟩
342 Consultations
410 Téléchargements

Partager

More