
HAL Id: tel-03227791
https://theses.hal.science/tel-03227791v1

Submitted on 17 May 2021

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Collision induced dissociation of polycyclic aromatic
hydrocarbons in a quadrupolar ion trap : Differentiation

of isomeric structures in cosmic dust components
Mickaël Carlos

To cite this version:
Mickaël Carlos. Collision induced dissociation of polycyclic aromatic hydrocarbons in a quadrupolar
ion trap : Differentiation of isomeric structures in cosmic dust components. Astrophysics [astro-ph].
Université Paul Sabatier - Toulouse III, 2020. English. �NNT : 2020TOU30232�. �tel-03227791�

https://theses.hal.science/tel-03227791v1
https://hal.archives-ouvertes.fr


THÈSETHÈSE
En vue de l’obtention du

DOCTORAT DE L’UNIVERSITÉ DE
TOULOUSE

Délivré par : l’Université Toulouse 3 Paul Sabatier (UT3 Paul Sabatier)

Présentée et soutenue le 03/02/2020 par :
Mickaël Carlos

Dissociation induite par collisions d’hydrocarbures
aromatiques polycycliques dans un piège à ions

quadripolaire. Séparation des structures isomériques des
composantes de la poussière cosmique.

JURY
M. Cristian FOCSA Professeur Rapporteur
M. Serge MARTIN Directeur de Recherche Rapporteur
Mme Joëlle MASCETTI Directeur de Recherche Rapporteure
M. Jose CERNICHARO Professeur Examinateur
M.Paul M. MAYER Professeur Examinateur
M. J.-M. L’HERMITE Directeur de Recherche Examinateur
Mme Christine JOBLIN Directrice de Recherche Directrice de thèse
M. Hassan SABBAH Maïtre de Conférence Co-directeur de thèse

École doctorale et spécialité :
SDU2E : Astrophysique, Sciences de l’Espace, Planétologie

Unité de Recherche :
IRAP(UMR)

Directeur(s) de Thèse :
Christine Joblin et Hassan Sabbah

Rapporteurs :
Mme Joëlle MASCETTI , M. Serge MARTIN et M. Cristian FOCSA





à Rafaël,
Sacha, Agostinho, Joaquim,

ma femme et toute ma famille.





Acknowledgments

Many people have inspired me through my thesis and lift me to be able to perform

all this work, I hope I will not forget to mention anyone because I will not forget meeting

them. First I would like to thank Dr Christine Joblin and Dr. Hassan Sabbah for

their trust and patience. The constant debate and guidance helped me to see through

the process of getting the marrow of my work leading me here today. Thank you for

pushing me, showing me that I always have to be painstacking in my research and in

understanding things. Thank you both for participating in showing me both sides of

astrophysics. Then I would like to than Patrick Moretto-Capelle my Ph.D. godfather,

for the shared moments, teachings and jokes. I would like to give a very special thank

you to Josette Garcia for always being there to answer to my numerous questions and

administrative issues, secondly I’d like to thank here for her zest for life and her friend-

ship. Then I would like to thank Dr Genevieve Soucail and the people from the école

doctorale SDU2E for their understanding.

Separately I would like thank both laboratories I had the opportunity to be appart.

First in the LCAR, thanks to the interesting discussions about science (or not) to Jean-

Marc L’Hermite, Sebastien Zamith, Juliette Billy, Bruno Lepetit, Pierre Cafarelli.

Special thank you to my appraised fellow Ph.D. students, to name a few: Olivier, Eric

M. & Qi, Eric M., Julien, Evgeny, Maxime, Julie, Maxime, Vincent, Gabriel, Pierrot,

Bastien for coffee, frisbee intermeds, football tricks, for always making me smile, for the

music and discussions.



Again for all their help and support I’d like to thank Patricia, Fanny, Malika

and Emmanuelle. In the engineering department I would like to thank Daniel, Laurent,

Stéphane and Michel.

In IRAP, special thank to Loic Noget and Anthony Bonamy for their patience and

help. Thanks to Karine Demyk, Olivier Berné, Isabelle Ristorcelli for making me feel

home. Then I would like to point out some people which from accompanied me through

this journey: Shubadip, Rémi, Mingchao, Sacha, Gaby, Fabrizio, Dianailys, Sujay,

Sarah, Paolo, Abraham. Thank you very much for all this moments.

I would like to adress a special thank you to the people from the europah project

and the people met at the europah Ecole de physique des Houches for the friendship, the

discussions and the scientific exchanges thanks to Ambra, Ameek, Dario, Elena, Fred-

erik, Georgios, Julianna, Lindsey, Lorenzo, Martin, Ozan, Rijutha, Rushdi, Sanjana,

Shreyak, Thiebaut, Thomas, Yaolin.

Thank you very much to each and every one of the people a could meet during this

Ph.D.

I acknowledge support from the European Research Council under the European
Union’s Seventh Framework Programme ERC-2013-SyG, Grant Agreement n. 610256
NANOCOSMOS”. I acknowledge support from La Region Occitanie, Grant n. 15066466.
Finally, all the comic strips are used with the permission of Jorge Chan, check out his
website ‘Piled Higher and Deeper’, www.phdcomics.com



CONTENTS 3

Contents

Description [fr] 1

Chapter I 11

Introduction 11

1.1 Astrophysical context . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

1.1.1 Cycles of star life and interstellar matter . . . . . . . . . . . . . 12

1.1.2 Interstellar molecules and dust . . . . . . . . . . . . . . . . . . . 14

1.1.3 Aromatic Infrared bands, C60 and the astro-PAHs . . . . . . . 17

1.2 The key question of the formation of astro-PAHs . . . . . . . . . . . . . 19

1.2.1 Insight from combustion chemistry . . . . . . . . . . . . . . . . 19

1.2.2 Investigation in laboratory astrophysics . . . . . . . . . . . . . . 20

1.2.3 PAHs in meteorites . . . . . . . . . . . . . . . . . . . . . . . . . 21

1.2.4 The key m/z=202 species . . . . . . . . . . . . . . . . . . . . . 23

1.3 Framework . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

1.3.1 The NANOCOSMOS project . . . . . . . . . . . . . . . . . . . 24

1.3.2 Objectives of this work . . . . . . . . . . . . . . . . . . . . . . . 25

Chapter II 27

Molecular Analyser : AROMA 27

2.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

2.1.1 Mass spectrometry techniques . . . . . . . . . . . . . . . . . . . 28

2.1.2 Quadrupolar Ion trap . . . . . . . . . . . . . . . . . . . . . . . . 31

2.1.2.1 Introduction to quadrupolar ion traps . . . . . . . . . 31

2.1.2.2 About ion trapping . . . . . . . . . . . . . . . . . . . . 33

2.1.3 Laser ion sources techniques . . . . . . . . . . . . . . . . . . . . 34

2.1.3.1 Principle of REMPI . . . . . . . . . . . . . . . . . . . 34



4 CONTENTS

2.1.3.2 Laser mass spectrometry . . . . . . . . . . . . . . . . . 35

2.2 The AROMA setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

2.2.1 Ion production . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

2.2.1.1 Description . . . . . . . . . . . . . . . . . . . . . . . . 38

2.2.1.2 Performances . . . . . . . . . . . . . . . . . . . . . . . 41

2.2.2 Time of flight mass spectrometry . . . . . . . . . . . . . . . . . 42

2.2.2.1 Description . . . . . . . . . . . . . . . . . . . . . . . . 42

2.2.2.2 Performances . . . . . . . . . . . . . . . . . . . . . . . 44

2.2.3 Ion trap . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

2.2.3.1 Description . . . . . . . . . . . . . . . . . . . . . . . . 47

2.2.3.2 Capabilities . . . . . . . . . . . . . . . . . . . . . . . . 50

Chapter III 51

Collision induced dissociation procedure 51

3.1 Collision Induced Dissociation . . . . . . . . . . . . . . . . . . . . . . . 52

3.1.1 History . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

3.1.2 Collision Induced Dissociation of PAHs . . . . . . . . . . . . . . 55

3.2 CID procedure in AROMA . . . . . . . . . . . . . . . . . . . . . . . . . 57

3.2.1 Cooling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

3.2.2 Isolation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

3.2.3 Dipolar excitation . . . . . . . . . . . . . . . . . . . . . . . . . . 63

3.2.3.1 Principle . . . . . . . . . . . . . . . . . . . . . . . . . 63

3.2.3.2 Secular frequency for m/z=202.08 . . . . . . . . . . . 64

3.2.3.3 The excitation window . . . . . . . . . . . . . . . . . . 65

3.2.4 Global CID procedure . . . . . . . . . . . . . . . . . . . . . . . 66

3.3 CID results in AROMA . . . . . . . . . . . . . . . . . . . . . . . . . . 68

3.3.1 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

3.3.2 Compilation of other techniques . . . . . . . . . . . . . . . . . . 75

3.3.3 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76



CONTENTS 5

Chapter IV 79

Using CID to differentiate m/z=202 PAH isomers 79

4.1 CID of m/z=202 isomers . . . . . . . . . . . . . . . . . . . . . . . . . 80

4.1.1 Survival yields of m/z=202 isomers . . . . . . . . . . . . . . . . 80

4.1.2 Carbon loss of m/z=202 isomers . . . . . . . . . . . . . . . . . 82

4.2 Mixture of pure PAHs . . . . . . . . . . . . . . . . . . . . . . . . . . . 83

4.3 Application to complex samples . . . . . . . . . . . . . . . . . . . . . . 85

4.3.1 Plasma dust analogues . . . . . . . . . . . . . . . . . . . . . . . 85

4.3.2 Allende Meteorite . . . . . . . . . . . . . . . . . . . . . . . . . . 87

Chapter V 91

Insights into dissociation dynamics of m/z = 202.08 91

5.1 Ion dynamics in the trap . . . . . . . . . . . . . . . . . . . . . . . . . . 92

5.2 Interaction between trapped/excited ions and rare gas . . . . . . . . . . 94

5.3 The Monte-Carlo method . . . . . . . . . . . . . . . . . . . . . . . . . 99

5.4 Adjusting the η energy transfer parameter on pyrene . . . . . . . . . . 99

5.5 Extracted dissociation rates for the other m/z = 202 isomers . . . . . . 102

Chapter VI : Conclusion 105

Chapter VI : Conclusion [Fr] 109



6 CONTENTS

References 113

Annexes 139

A General principles 139

A.1 Ion trap theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 139

A.1.1 Quadrupolar potential . . . . . . . . . . . . . . . . . . . . . . . 139

A.1.2 Quadrupolar hyperbolic geometry . . . . . . . . . . . . . . . . . 141

A.1.3 Quadrupolar trap : ion motion . . . . . . . . . . . . . . . . . . 142

A.1.4 Mathieu Equation . . . . . . . . . . . . . . . . . . . . . . . . . . 144

A.2 Time of Flight theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . 145

B Other relevant experiments 147

B.1 Off resonance experiments. . . . . . . . . . . . . . . . . . . . . . . . . . 147

B.2 On resonance procedure applied with Helium . . . . . . . . . . . . . . . 152



Description [fr]

Le cycle de vie et de mort des étoiles est intimement lié à l’évolution physico-chimique

de la matière. Cette évolution concerne la synthèse d’éléments lourds comme le fer

dans les processus de nucléosynthèse stellaire. D’autre part, la matière se complexi-

fie formant une grande variété de molécules ainsi que des petits grains de poussière.

Le carbone est un élément central de cette matière. La majorité des molécules ob-

servées sont des molécules organiques. De plus le milieu interstellaire est peuplé de très

grandes molécules carbonées de type hydrocarbures aromatiques polycycliques (HAP)

qui sont révélées par des bandes à 3.3, 6.2, 7.7, 8.6 et 11.3µm qui sont observées en

émission sous l’excitation des photons ultraviolets des étoiles jeunes. Le carbone est

également impliqué dans la formation des poussières dans l’enveloppe des étoiles de la

branche asymptotique des géantes (étoiles AGB) et dont le rapport carbone-oxygène

est supérieur à 1. Ces grains carbonés ont un lien possible avec la formation des HAP

comme cela est connu dans notre environnement pour le cas des suies. Le modèle HAP

en astrophysique est confronté jusqu’à ce jour au manque d’identification d’espèces

individuelles de cette famille. Il faut noter cependant que l’identification de signatures

spectrales spécifiques du fullerène C60 et de son cation confirme la présence de grandes

molécules carbonées dans les milieux astrophysiques. La question des mécanismes mis

en jeu dans la formation des HAP et des fullerènes dans ces milieux est donc cruciale.

Le projet NANOCOSMOS financé par le Conseil européen de la recherche a pour

objectif de mieux comprendre les processus qui mènent à la formation des poussières

d’étoiles en général et des HAP en particulier. Le projet combine l’observation détail-
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lée de la composition moléculaire et des conditions physiques des enveloppes d’étoiles

AGB à des expériences de laboratoire afin d’élucider les mécanismes chimiques mis en

jeu et de produire des analogues de ces poussières. Plusieurs scénarios ont été pro-

posés pour rendre compte de la formation des HAP dans les processus de combustion

comme le mécanisme HACA (hydrogen abstraction carbon addition). Dans le projet

NANOCOSMOS, différents réacteurs sont utilisés pour produire des poussières et la

machine Stardust a été construite spécifiquement pour simuler la chimie des AGB.

Le contenu moléculaire des échantillons produits est ensuite analysé avec le dispositif

AROMA qui est au centre de ce travail de thèse.

Le dispositif AROMA présente la particularité de combiner des techniques laser

pour la production des ions, un piège ionique et un spectromètre de masse par temps

de vol. La source d’ions est constituée d’un laser à 1064 nm qui permet une désoprtion

douce des espèces moléculaires et d’un laser à 266 nm qui permet une ionisation efficace

dans le cas des HAP. Les ions peuvent ensuite être stockés dans le piège à ions avant

d’être transférés vers la partie spectrométrie de masse. L’objectif de ce travail de thèse

est de tirer profit du piège d’AROMA afin de réaliser des expériences de dissociation

induite par collisions (CID pour collision induced dissociation) qui pourraient être

utilisées pour obtenir des informations complémentaires sur la structure des molécules

analysées par spectrométrie de masse. En particulier, un certain nombre d’échantillons

étudiés y compris des météorites comme Murchison et Allende, présentent un pic en

masse dominant à m/z = 202 qui correspond à la formule chimique C16H10. Plusieurs

isomères sont possibles dont le pyrène et le fluoranthène qui sont souvent considérés

comme les composants principaux des différents échantillons (synthétiques ou naturels)

qui ont été étudiés dans ce travail. De structures compactes, l’un peut être considéré

comme précurseur des grands HAP plans et l’autre de structures carbonées à trois

dimensions (espèces intermédiaires vers les fullerènes) qui sont favorisées par la présence

d’un cycle à cinq carbones.

Ce travail s’articule autour d’une caractérisation de l’utilisation du dispositif AROMA

et de la mise en place d’une procédure expérimentale CID. Le chapitre II présente une

description détaillée du dispositif AROMA, de ses fonctionnalités et de ses perfor-

mances. Le chapitre III présente ensuite la procédure CID comprenant l’isolation de
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l’espèce parent à 1 m/z et une optimisation du refroidissement des ions afin d’améliorer

le contrôle du processus de dissociation. La CID est activée par collisions obtenues par

l’accélération des ions piégés en présence d’un gaz rare (Ar, He). Nous avons exploré

différentes conditions d’excitation. Avec une excitation hors résonance une cascade de

dissociation est observée mais ne permet pas de tracer l’origine de chaque fragment.

Nous avons donc préféré des expériences d’excitation en résonance qui permettent a

priori de cibler les ions parents que l’on souhaite exciter. Il faut néanmoins pour cela

utiliser un voltage très bas qui est à la limite de la stabilité du voltage de piégeage. Nous

avons donc utilisé un voltage un peu plus élévé pour notre travail de différenciation des

isomères à m/z = 202.

Le chapitre IV est consacré à l’étude de la différenciation par CID de trois isomères

de C16H10 que sont les deux structures compactes : pyrène et fluoranthène, ainsi que la

structure alkylée du 9-éthynylphénanthrène. Nos études montrent que la présence de

ce dernier peut être facilement mise en évidence mais qu’il est beaucoup plus compliqué

de différencier les deux isomères compacts même en utilisant des énergies de collision

plus élevées. En plus des corps purs et de leurs mélanges, nous avons analysé des échan-

tillons complexes produits dans un plasma poussiéreux d’acétylène et provenant de la

météorite Allende. Les résultats obtenus montrent que pour tous ces échantillons sauf

un du plasma poussiéreux le pic à m/z = 202 comprend principalement des structures

condensées comme le pyrène et le fluoranthène.

Au cours de ce travail de thèse, des simulations numériques correspondant aux

expériences effectuées ont été menées afin de mieux appréhender le comportement des

ions dans le piège. Ceci comprend la simulation de la dynamique des ions dans le piège

avec ou sans gaz, ainsi que l’accélération des ions lors de la procédure CID. De cette

modélisation nous avons pu extraire des distributions d’énergie cinétique des ions et

de temps de collision. Nous avons utilisé ces distributions dans une méthode Monte-

Carlo à deux dimensions qui calcule l’augmentation de l’énergie interne en fonction

des conditions expérimentales. Ces simulations sont présentées dans le chapitre V et

nous ont permis d’obtenir un certain nombre de résultats. En particulier, nous avons

mis en compétition l’augmentation d’énergie interne lors de l’excitation des ions avec

leur taux de dissociation. Nous avons ainsi pu ajuster les courbes de dissociation
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du pyrène mesurées dans nos expériences en optimisant la valeur du paramètre η. Ce

paramètre représente le taux de transfert entre énergie cinétique et énergie interne dans

nos conditions expérimentales. Nous avons montré que la même valeur du paramètre η

permet de rendre compte de la courbe de dissociation du fluoranthène. Dans le cas du

9-éthynylphénanthrène, nous avons pu déterminer un taux de dissociation en accord

avec l’énergie d’activation prévue pour cet ion.

Enfin, le chapitre VI conclut ce travail et propose quelques perspectives.
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“Piled Higher and Deeper”by Jorge Cham www.phdcomics.com

1.1 Astrophysical context

From the big bang to nowadays, the study of the universe and its history, helps us

understanding the laws of physics and testing our models. Each piece of information

that we can get about the outer space gives us new fitting constrains that helps us to

“converge” towards the best models. In the following, we briefly describe the evolution

of interstellar matter that is intimately coupled to the star life cycle. This matter is

composed of gas and tiny dust particles.

1.1.1 Cycles of star life and interstellar matter

The evolution of matter in a galaxy is intimately linked to the star life cycle (see

Fig. 1.1). Dense molecular clouds can collapse by gravitational instability and form

new stars with associated planetary systems. These stars are powered by nuclear

fusion reactions, burning hydrogen in their main sequence stage and then helium and

heavier elements in more evolved stages. Depending on the mass of the star, low- and

medium-mass versus high-mass (M>8M�), the star will evolve on the Asymptotic Giant

Branch branch of the Hertzsprung–Russell diagram (later AGB stars) or become a

supernova. AGB stars are characterized by a strong mass loss, leading to the formation

of large circumstellar envelopes. These envelopes are the sites of formation of molecules

and dust grains that are then ejected into the diffuse interstellar medium (ISM). The
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elemental composition of these envelopes depends on the evolution stage of the central

star, leading to either oxygen-rich or carbon-rich envelopes. The AGB star will evolve

into a relatively short-lived post-AGB phase. Then the mass-loss process will stop and

the object will evolve into a planetary nebula powered by a very hot central star.

Figure 1.1 The lifecycle of the interstellar medium (ISM) is related to the star evolution from their
formation in molecular clouds to the end of their life when they eject matter either in the form of a
wind or through a supernova explosion in the case of massive stars (M>8M�). During its stay in the
ISM (τ ∼100 Myr), the matter circulates between diffuse phases and denser molecular clouds, which
are the nursery of new stars. Once formed, stars evolve on a few billion years timescale for a low mass
star such our Sun. Different molecules can be used to trace the different steps in the lifecycle of the
ISM as illustrated here. From Tielens [2013].

High-mass stars will lead to supernova explosion at the end of their lives. Super-

novae are a major source of heavy elements in the interstellar medium from oxygen

through to rubidium. All the matter ejected from dying stars will replenish the ISM

in new matter, that will form new clouds that can at some point lead to the formation

of new stars. The matter therefore cycles within one galaxy in close relation with the

stellar evolution cycle.
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1.1.2 Interstellar molecules and dust

Interstellar matter is mainly composed of hydrogen and helium, the main constituents

at the birth of the Universe. The other elements (C, N, O, Fe, Mg, Si, S...) that were

synthesized by the successive generations of stars represent only 1.5 % of the mass of

the ISM. These are the building blocks for an increased complexity leading to a large

variety of molecules and dust grains. The list of molecules that were detected so far in

the ISM as well as in circumstellar environments is given in Table 1. A large number of

these molecules are organic. The largest molecule identified so far is the fullerene C60

and its cation C+
60 (and possibly C70, cf. Sect. 1.1.3). Identified aromatic molecules are

limited to benzene (Cernicharo et al. [2001]) and benzonitrile (McGuire et al. [2018]).

Interstellar space is populated by tiny dust grains, less than 1 µm in size. It is

generally considered that dust grains are formed in evolved stars and evolve in the

different phases of the ISM (see Fig. 1.1). The grains absorb and scatter stellar light,

in particular in the visible and ultraviolet (UV), and reemit their energy in the infrared

(IR). The combined study of the extinction curve with the IR emission spectrum has

led to models in which the grains are described by three main populations (Desert

et al. [1990]; Draine and Li [2007]; Compiègne et al. [2011]). These populations consist

of large grains of typical size 0.1 µm composed of silicates and covered by amorphous

carbon, very small grains of sizes between a few and a few tens of nanometers made

of carbon and including possibly metals, and large carbonaceous molecules such as

polycyclic aromatic hydrocarbons (PAHs) as discussed in the next section.

Dust grains play a key role in the chemistry. They are responsible for the production

of the simplest molecule, H2 (Wakelam et al. [2017]). In dense molecular clouds which

are protected from UV photons, the grains are very cold. Atoms and molecules stick to

their surface forming icy mantles (cf. Fig. 1.2). The ices are formed through accretion

and grain surface chemistry which can build new molecules. Molecular complexity is

expected to increase upon energetic processing including UV irradiation, cosmic ray

bombardment and thermal processing (Ehrenfreund and Charnley [2000]). In particu-

lar, when new stars form, the evolution of the ices in the circumstellar envelopes and

disks of young stellar objects is dominated by thermal processes with a possible con-
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tribution of UV irradiation especially in the environment of high-mass stars (Boogert

et al. [2015]). These complex molecules are expected to be common ingredients for new

planetary systems (Herbst and van Dishoeck [2009]).

Figure 1.2 Scheme of an icy interstellar grain and the mechanisms involved in its processing. The
labelled molecular species represent the most common species detected in interstellar ices. From Burke
and Brown [2010].
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H2 C∗3 c-C3H C∗5 C5H C6H CH3C3N CH3C4H CH3C5N HC9N c-C6H∗6 C∗60
AlF C2H l-C3H C4H l-H2C4 CH2CHCN HC(O)OCH3 CH3CH2CN (CH3)2CO CH3C6H n-C3H7 C∗70
AlCl C2O C3N C4Si C2H∗4 CH3C2H CH3COOH (CH3)2O (CH2OH)2 C2H5OCHO i-C3H7CN C+∗

60
C∗∗2 C2S C3O l-C3H2 CH3CN HC5N C7H CH3CH2OH CH3CH2CHO CH3OC(O)CH3C2H5OCH3 c-C6H5CN
CH CH2 C3S c-C3H2 CH3NC CH3CHO C6H2 HC7N CH3CHCH2O

CH+ HCN C2H∗2 H2CCN CH3OH CH3NH2 CH2OHCHO C8H CH3OCH2OH
CN HCO NH3 CH∗4 CH3SH c-C2H4O l-HC6H∗ CH3C(O)NH2
CO HCO+ HCCN HC3N HC3NH+ H2CCHOH(?) CH2CHCHO(?) C8H−

CO+ HCS+ HCNH+ HC2NC HC2CHO C6H− CH2CCHCN C3H6
CP HOC+ HNCO HCOOH NH2CHO CH3NCO H2NCH2CN CH3CH2SH(?)
SiC H2O HNCS H2CNH C5N HC5O CH3CHNH CH3NHCHO
HCl H2S HOCO+ H2C2O l-HC4H∗ HOCH2CN CH3SiH3 (2017) HC7O
KCl HNC H2CO H2NCN l-HC4N H2NC(O)NH2
NH HNO H2CN HNC3 c-H2C3O

NO MgCN H2CS SiH∗4
H2CCNH

(?)
NS MgNC H3O+ H2COH+ C5N−

NaCl N2H+ c-SiC3 C4H− HNCHCN
OH N2O CH∗3 HC(O)CN SiH3CN
PN NaCN C3N− HNCNH C5S (?)
SO OCS PH3 CH3O MgC4H

SO+ SO2 HCNO NH+
4

SiN c-SiC2 HOCN H2NCO+

SiO CO∗2 HSCN NCCNH+

SiS NH2 H2O2 CH3Cl
CS H+

3 (∗) C3H+ MgC3
HF SiCN HMgNC
HD AlNC HCCO

FeO? SiNC CNCN
O2 HCP HONO

CF+ CCP MgC2H
SiH? AlOH
PO H2O+

AlO H2Cl+
OH+ KCN
CN− FeCN
SH+ HO2
SH TiO2

HCl+ C2N
TiO Si2C

ArH+ HS2
N2 HCS

NO+? HSC
NS+ CO

HeH+ aNC

Table 1 Molecules detected in the interstellar medium and circumstellar shells (as of 10/2019). Extracted from the Cologne Database for Molecular
Spectroscopy. https://cdms.astro.uni-koeln.de/classic/molecules
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1.1.3 Aromatic Infrared bands, C60 and the astro-PAHs

Figure 1.3 The mid-IR spectra of UV-irradiated regions such as the Orion bar associated with a
massive star-forming region and the planetary nebula NGC 7027 (evolved star), are dominated by
emission features that are assigned to aromatic CC and CH modes. More specifically, these bands are
attributed to polycyclic aromatic hydrocarbons (PAHs). The underlying broad plateaus and continua
are likely due to carbonaceous nanograins including PAH clusters. From Peeters et al. [2004].

The aromatic infrared bands (AIBs) are a set of emission features in the mid-IR

that are well observed in regions that are submitted to UV irradiation (cf. Fig. 1.3;

Peeters et al. [2004]). The positions of the AIBs at 3.3, 6.2, 7.7, 8.6 and 11.3 µm

are characteristic of aromatic CC and CH bonds. In addition, the emission mechanism

implies that the carriers are of small (molecular) size (Sellgren [1984]). Leger and Puget
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[1984] and Allamandola et al. [1985] proposed the PAH model in which the AIBs

arise from the radiative vibrational emission from PAHs excited by UV irradiation.

Examples of PAH structures are provided in Fig. 1.4. PAHs are expected to be the

most abundant molecules after H2 and CO (Leger et al. [1989]).

Figure 1.4 Examples of PAHs with their structures and chemical formulae.

The main drawback with the PAH model is that so far no individual molecules

could be identified from neither the analysis of the AIB spectra nor the identification

of diffuse interstellar bands through the near-UV to near-IR range with specific elec-

tronic transitions of PAHs (Salama et al. [1999]; Salama et al. [2011]). Some related

fullerene species were however recently detected, which confirmed the presence of large

carbonaceous molecules in the gas-phase and the excitation mechanism as proposed

in the PAH model. C60 was the first to be identified thanks to its four IR active

modes. The emission bands were found to be especially intense and not mixed with

PAH emission in the planetary nebula Tc 1 (Fig. 1.5; Cami et al. [2010]). The authors

discussed that C70 could be present as well although its assignment remains tentative.

The IR bands of C60 have been detected in star-forming regions (Sellgren et al. [2010];

Castellanos et al. [2014]), in evolved stars (García-Hernández et al. [2011b]; García-

Hernández et al. [2011a]; Otsuka et al. [2014]) and in the diffuse ISM (Berné et al.

[2017]), which shows that this large molecule is present in various environments.

18



Chapter I : Introduction

Figure 1.5 Detection of the four IR active bands of C60 (in red) in the planetary nebula Tc1 and
tentative detection of C70 bands (in blue). From Cami et al. [2010].

1.2 The key question of the formation of astro-PAHs

1.2.1 Insight from combustion chemistry

Polycyclic aromatic hydrocarbons (PAHs) are organic compounds containing only car-

bon and hydrogen and are composed of two or more fused aromatic rings (cf. Figure

1.4). They have received increased attention in recent decades in air pollution studies

due to their carcinogenicity and mutagenicity. They are produced during pyrolysis and

combustion of organic matter, fossil fuels, petrochemicals and open biomass burning.

PAHs in space are supposed to be formed in the circumstellar envelopes (CSE) of

AGB stars. A combustion-like process (Frenklach and Feigelson [1989]; Cherchneff et al.

[1992]) has been proposed to describe their formation, in which small hydrocarbon car-

bon chains (e.g., acetylene C2H2) form PAHs that nucleate into larger-size PAHs and,

ultimately, into soot-like nanograins. Several chemical pathways have been proposed

to describe the formation and growth of these species in the combustion and labora-

tory astrophysics communities. The hydrogen-abstraction/acetylene-addition (HACA)

mechanism (Frenklach and Wang [1991]) has been exceptionally cited. In this model,

a key role has been given to mid-size PAHs, especially pyrene (C16H10), in the for-

mation of the critical nucleus from the gas phase ensuring the transition toward the
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solid phase (Frenklach and Wang [1991], Wang and Frenklach [1997]). The detailed

mechanism describing the gas-phase chemistry includes the pyrolysis and oxidation of

species with one or two carbons, the formation of higher, linear hydrocarbons up to six

carbon species, the formation of benzene C6H6 and further reactions leading to PAHs,

as well as the oxidation pathways of the aromatic species. The difference between an

acetylene flame and the CSE of a carbon-rich AGB star is the presence of oxygen in the

former, which is absent in the latter, where it is locked in the very stable CO molecule.

Alternative models have been proposed to explain PAH growth in flames. These

include the phenyl-addition-cyclization (PAC) mechanism (Shukla et al. [2008]; Shukla

and Koshi [2010]), the methyl-addition-cyclization (MAC) mechanism, which involves

the addition of two or three methyl radicals on PAHs. Recently a new mechanism has

been presented, known as the hydrogen-abstraction-vinylacetylene-addition (HAVA)

(Zhao et al. [2018]) to explain the growth from pyrene to more complex PAHs such

as benzo(e)pyrene C20H10. HAVA has an advantage for low-temperature environments

as explained in Shukla and Koshi [2012a] because it represents a barrier-less reaction

pathway and leads to PAH growth through six-membered ring expansions via a single

collision event (Kaiser et al. [2015], Kaiser et al. [2012]). It could therefore be a relevant

process in the ISM.

Figure 1.6 Presentation of the HACA and HAVA processes in the growth of PAHs from naphthalene.
The red arrow means that HACA, HAVA and MAC can be involved. From Shukla and Koshi [2012a].

1.2.2 Investigation in laboratory astrophysics

Different activities are carried out in the laboratory in relation with the formation

of cosmic dust as shown in Table 2. Some consist in the production of cosmic dust
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analogues. Others focus on the study of the kinetics of individual reactions in particular

in the case of the formation of PAHs Marin et al. [2020].

Several techniques have been used for the production of dust analogues as summa-

rized in Table 2 from Martínez et al. [2019]. The Table presents the precursors used,

the temperature range at which the experiments have been carried out and specifies

if ionic species were involved in the chemistry. The involved pressure is not specified

since its value is poorly defined. The list of references within the table is represen-

tative but not exhaustive. In the inner layers of CSEs, dust nucleation is driven by

neutral-neutral reactions in the temperature range ∼1500-2500K. These conditions

differ from most of the techniques presented in Table 2. The Stardust machine though

has been specifically designed to approach them Martínez et al. [2018]. In particular,

thermalized atoms are used as precursors for dust formation.

Technique Precursors T(K) Ion
chemistry Wall effect Refs

Laser ablation Graphite +
quenching gas ≥ 4000K Yes No Kroto et al.

[1985], Jager
et al. [2008]

Combustion/
Flames Hydrocarbons 1800-2500K weak No Carpentier et al.

[2012]
Pyrolysis (laser

induced) Hydrocarbons 1000-1700
≥ 3500 no depending

on reactor Jager et al.
[2006], Jäger
et al. [2009]

Pyrolysis Hydrocarbons 600-2000K no depending
on reactor Biennier [2009]

Dusty Plasmas Hydrocarbons 600-2000K weak yes Kovačević et al.
[2005],Contreras
and Salama
[2013], Maté
et al. [2016]

SGAS: Sputter
Gas aggregation

sources
Stardust

Graphite + H2 ≤ 1000K weak/no No Martínez et al.
[2018]

Table 2 Comparison between typical laboratory techniques used to synthesize cosmic dust analogues.
From Martínez et al. [2019]

1.2.3 PAHs in meteorites

The content of meteorites in organics has been previously reviewed (Pizzarello et al.

[2006], Sephton [2005]). A variety of techniques have been employed to probe the
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presence and nature of aromatic hydrocarbons, including PAHs. Solvent or super-

critical fluid extraction combined to gas-chromatography mass spectrometry (GC-MS)

have been used (Pizzarello et al. [2006]). Correlations between the detected molecular

weight of aromatic compounds and the extraction methods have been observed. Using

these techniques, Basile et al. [1984] detected 30 polycyclic aromatic compounds in a

Murchison solvent extract with fluoranthene and pyrene as the most abundant compo-

nents. A series of studies on carbonaceous chondrites has been achieved in the 1980s

and 1990s on Murchison and Antarctic CM2 meteorites. In all cases, the most abun-

dant compounds in the extracts were phenanthrene, fluoranthene and pyrene (Sephton

[2002]).

Laser desorption laser ionization mass spectrometry (L2MS) has become a powerful

tool to detect and characterize the distribution of PAHs and related aromatic species

in meteorites and extraterrestrial materials (Spencer et al. [2008]). It requires minimal

sample processing and handling, thus minimizing the risk of additional sample con-

tamination. It offers the advantage of studying the spatial distribution of the detected

species. It has been shown to be the most sensitive method for these compounds (at-

tomoles range) (Sabbah et al. [2017]). However, this technique lacks the possibility of

isomeric differentiation for which the most reliable method is provided by GC-MS. Still,

in a recent work (Sabbah et al. [2017]) showed the capability of L2MS to demonstrate

that pyrene is the most abundant isomeric species at m/z = 202 in Murchison. This

has been done using collision induced dissociation in the AROMA setup, which is at

the core of this work.

The Murchison meteorite has been the most extensively studied chondrite for its

aromatic content, but PAH studies have also been performed on a variety of chondrites.

The list of species found in these chondrites includes benzene, toluene, alkyl benzenes,

and PAHs such as naphthalene, phenanthrene, pyrene, and alkylated derivatives, and

larger PAHs with up to 5 and 6 rings (Basile et al. [1984], Naraoka et al. [2000]). Using

GC-MS, Naraoka et al. [2000] examined the molecular and carbon isotopic abundances

of PAHs in Asuka (A)-881458, an Antarctic carbonaceous chondrite. They identified

more than 70 PAHs ranging from naphthalene to benzo(ghi)perylene, with fluoranthene

and pyrene being the most abundant. They concluded that two reaction pathways of
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extraterrestrial PAH formation can be distinguished leading to respectively the "pyrene

series" and the "fluoranthene series".

Figure 1.7 Analysis of the PAH content in the Murchison meteorite using the AROMA setup (Sabbah
et al. [2017]).

1.2.4 The key m/z=202 species

The peak at m/z = 202 is found to be a dominant PAH peak in samples such as soot

samples Faccinetto et al. [2011] and cosmic dust analogues Pino et al. [2019]. It is

also a dominant peak in the Murchison (Sabbah et al. [2017]) meteorite. A key role

has been attributed to this PAH, often identified as pyrene, in models of soot forma-

tion. In particular, Frenklach and co-workers (Frenklach [2002]) proposed that the

nucleation of soot occurs via physical association of PAHs as small as pyrene. How-

ever, a combined experimental and theoretical study on pyrene dimerization (Sabbah

et al. [2010]) has seriously challenged this model by showing that pyrene molecules

cannot condense efficiently at temperatures characteristic of combustion environments

(>1000 K). Therefore, other chemical pathways are required for PAH growth and soot
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nucleation at high temperature.

In this respect, a recent work on pyrene synthesis at high temperature (1400 K) show

that along with the HAVA mechanism, molecular mass growth processes from pyrene

may lead through systematic ring expansions to more complex PAHs and ultimately

to 2D graphene-type structures (Zhao et al. [2018]).

Different pathways lead to different isomers at m/z = 202, i.e. pyrene and fluoran-

thene (Shukla and Koshi [2012b], cf. Figure 1.6). These will then lead to the formation

of different species along formation pathways. For instance, a route to the formation

of fullerenes such as C60 could be driven by fluoranthene (Shukla and Koshi [2012b])

thanks to the appearance of the first 5-carbon ring which enables 3D structures. From

fluoranthene and via the HACA mechanism, the two consecutive species at m/z = 226

and 250 should most probably be benzo[ghi]fluoranthene and corannulene. The latter,

is a part of C60 fullerene structure and an essential component of the curved graphene

layers observed in soot particles in the core region (Müller et al. [2007]).

1.3 Framework

1.3.1 The NANOCOSMOS project

NANOCOSMOS is a project that is supported by the European Research Council over

the 2014-2020 period. It relies on a synergy between CSIC in Madrid under the respon-

sibility of José Cernicharo and José-Àngel Martín Gago and CNRS in Toulouse under

the responsibility of Christine Joblin. NANOCOSMOS combines new observational

strategies with state-of-art laboratory studies to change our view on the origin and

evolution of stardust. A major topic concerns the production of stardust analogues

in the laboratory and the identification of the key species and steps that govern the

formation of these nanograins. As introduced in Sect. 1.2.2 the Stardust machine in

Madrid (Martínez et al. [2018]) is an innovative setup that has been designed to sim-

ulate dust formation in the atmosphere of evolved stars. Other reactors are used in

the project to get insights into the chemistry that leads to the formation of nanograins

in general and PAHs in particular. These involve the cold plasma reactors at Laplace

(Calafat et al. [2007]; Despax et al. [2012]).
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The dust samples that are produced in the different reactors are analyzed at the

molecular level using the AROMA setup, another machine that has been build in

Toulouse for NANOCOSMOS. This hybrid mass spectrometer has been at the center

of my PhD work as described below.

Figure 1.8 The Stardust machine in Madrid has been developed in the framework of the NANOCOS-
MOS project to mimic the formation of dust in evolved stars (Martínez et al. [2018]).

1.3.2 Objectives of this work

The AROMA analyzer combines laser and ion trap techniques to mass spectrometry

in a high vacuum environment. Through its two laser steps ion source, this setup is

particularly suited to detect PAHs in dust samples, including cosmic dust analogues
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generated in a variety of reactors and also meteorites, which are of interest as a potential

stardust source in the laboratory. A limitation though in the molecular analysis is that

a peak in a mass spectrum can be attributed to a given chemical formula but not to a

given structure. Still having information on the structure is crucial to get information

on the chemical pathways involved in the growth of PAHs and associated particles as

discussed in Sect. 1.2.1 and 1.2.4. The objective of this work is therefore to optimise

the ability of AROMA to get further structural insights through collision induced

dissociation (CID) experiments.

AROMA is not a commercial setup in which the CID procedure has already been

implemented. Therefore part of this work has been to get better knowledge on the

characteristics of the setup and investigate the CID conditions that are best suited

for our scientific objectives. In parallel of implementing a procedure for isomer differ-

entiation, we have investigated the possibility of extracting molecular data from our

measurements, in particular dissociation rates that are crucial to determine the sta-

bility of PAHs in astrophysical environments (cf. Sect. 1.1.3). Finally, simulations of

PAH ion dynamics and energetics were performed to guide the experimental procedure

and support the analysis of the results.
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Figure 2.1 Working with AROMA

2.1 Overview

In this chapter, I describe the experimental apparatus used during my PhD. AROMA

is a hybrid mass spectrometer consisting of a time-of-flight spectrometer combined with

a quadrupolar ion trap. It is coupled to a laser desorption/ionization source. First, I

introduce these various techniques and then focus on the specificity of AROMA and

its functionalities including ion generation, ion trapping, collision induced dissociation

(CID) and mass spectrometry analysis.

2.1.1 Mass spectrometry techniques

Mass spectrometry (MS) is a powerful analytical technique, which measures the mass

to charge ratio (m/z). The value of z represents the charge number and the mass is

defined in dalton (Da) or unified atomic mass unit (u) as 1/12 of the mass of the atom

of 12C in its lowest state.

The masses of the nucleons are 1.672649 × 10−27 kg for protons and 1.674930 ×

10−27 kg for neutrons. This leads to the values listed in Table 3 which can be used to

calculate the mass associated with a given chemical formula containing these elements.

From table 3 we can see that an oxygen atom O has a mass of 15.995 whereas CH4 as

a mass of 16.021. Both are close to 16 with a negative mass defect for O and a positive

mass defect for CH4. They can be differentiated for a high enough mass resolution
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(typically 1000). Approaching the exact mass is very important to differentiate species

with close m/z in complex mixtures.

Name of Element Symbol Mass in u
Hydrogen 1

1H 1.007
Helium 4

2He 4
Carbon 12

6 C 12.000
Nitrogen 14

7 N 14.003
Oxygen 16

8 O 15.995
Argon 40

18Ar 39.96

Table 3 Typical elements found in our studies and their masses in u.

Different types of instruments are used in MS (cf. Table 4) depending on the needed

resolution, sensitivity, ion generation techniques, etc... We very briefly present these

MS techniques below.

Analyzer type Symbol Principle of separation
Electric sector E or ESA Kinetic Energy
Magnetic sector B Momentum
Quadrupole Q m/z (trajectory stability)
Ion trap IT m/z (resonance frequency)
Time of flight TOF Velocity (Time)
Fourier transform ion cyclotron reso-
nance

FTICR m/z (resonance frequency)

Fourier transform orbitrap FT-OT m/z (resonance frequency)

Table 4 Types of mass analysers and their separation principle. Table adaptated from Hoffman and
Stroobant [2007].

Sector mass spectrometry Magnetic sectors deflect ions according to their mo-

mentum. In this type of mass spectrometer, ions leaving the ion source are accelerated

to a high velocity. The ions then pass through a magnetic sector in which the magnetic

field is applied in a direction perpendicular to the direction of ion motion. Thus, ions

are deflected to a circular motion of a unique radius, of curvature according to its m/z

ratio, in a direction perpendicular to the applied magnetic field. In a similar way, elec-

trostatic sector analyzers deflect ions based on their kinetic energy. The electric sector

applies a force perpendicular to the direction of ion motion, and therefore has the form
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of an arc. In single mode configuration (single magnetic sector), the mass resolution

is limited by the fact that ions leaving the ion source do not all have exactly the same

energy and therefore do not have exactly the same velocity. To reach high resolution

an electric sector should be added to focus ions according to their kinetic energy. Con-

ventional magnetic sector instruments are generally double - focusing systems, which

means that they use a single electric sector and single magnetic sector.

Quadrupole mass analyzer It consists of four parallel metal rods, or electrodes.

The ions are accelerated by a potential of 5-15 V and injected into the area between the

4 rods. An electrical quadrupole field is applied. Opposite electrodes have potentials

of the same sign; one set with (U + V cos(ωt)) and the other with −(U + V cos(ωt)).

U is a direct (DC) voltage and ω is the frequency of the alternating (AC) voltage of

amplitude V. The applied voltages affect the trajectory of ions traveling down the flight

path centered between the four rods. For given DC and AC voltages, only ions of a

certain m/z ratio pass through the quadrupole filter and all other ions are thrown out

of their original path. In this manner, the ions of interest are separated and could be

monitored on the detector.

Ion trap mass analyzer The ion trap is a variation of the quadrupole mass

filter, and consequently is sometimes refer to as a quadrupole ion trap. It consists of

ring electrode and a pair of end-cap electrodes. The trap contains ions in a three-

dimensional volume rather than along the center axis. Helium gas is added to the trap

causing the ions to migrate toward the center. Radio- frequency voltage is applied and

varied to the ring electrode. As radio-frequency voltage increases, heavier ions stabilize

and lighter ions destabilized and then collide with the ring wall. After trapping, the

ions are detected by placing them in unstable orbits, causing them to leave the trap to

the detector.

Time of flight Time of flight (TOF)-MS is achieved by differentiating the ions

through the time needed for an ion to go from one point to another. All the ions are

prepared with a specific kinetic energy and thus their velocity depends on their m/z

ratio. This technique used in AROMA is described in more details in Appendix A.2.
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Fourier Transform Ion Cyclotron Resonance Fourier Transform Ion Cy-

clotron Resonance (FTICR)-MS consists in exciting the ions into their cyclotronic

frequency in a fixed magnetic field. The ion current image is recorded as a function

of time and a Fourier transform is performed on the signal to give a mass spectrum.

With orbitrap this is the technique that provides the highest mass resolution.

FT orbitrap The general principle of an orbitrap is similar to the FTICR tech-

nique but without using a magnetic field. This is the newest MS technique that is only

commercialized since 2005.

2.1.2 Quadrupolar Ion trap

2.1.2.1 Introduction to quadrupolar ion traps

Quadrupolar ion traps (QIT) are a powerful tool for mass-selective detection, storage,

and excitation of the ion motion and they have been widely used since their devel-

opment (Paul and Steinwedel [2014]; March [1997]; March and Todd [2005]; March

[2009]). For mass analysis, they can be used as a stand-alone instrument or combined

with other mass analyzers (section 2.1.1). The ions are “sensed” by their motion in the

trap by superimposing a specific signal on the electrodes and observing its variation

induced by charge motion in the trap. QIT can also be operated as mass filters before

further study of the ions, the so-called MS/MS experiments. This functionality is also

a common way to record the mass spectrum by selectively ejecting the ions depending

on their mass and sending them to a detector. Key developments are summarized in

Table 5.

QIT exist in two main configurations: linear form and three-dimensional form.

Linear quadrupole ion traps (LQIT) are widely used in MS instruments for the trapping

and cooling of atomic and molecular ions. Their advantages are their high injection

efficiency and high storage capability. The total number of ions that can be stored in

a three-dimensional ion trap is limited by space charge effects.

31



Chapter II : Molecular Analyser : AROMA

1953 First disclosure (Paul and Steinwedel [1953])
Mass-selective

detection
1959 Storage of microparticules (Wuerker et al. [1959])
1959 Use as a mass spectrometer(Fischer [1959])
1962 Storage of ions for RF spectroscopy (Dehmelt and Major

[1962])
1968 Ejection of ions into an external detector (Dawson and

Whetten [1970b, 1968]); use s a mass spectrometer (Daw-
son and Whetten [1970a])

Mass-selective
storage

1972 Combination of QUISTOR with quadrupole mass filter for
analysis of ejected ions (Bonner et al. [1972a]); Character-
ization of the trap, CI, ion/molecule kinetics, etc. (Bonner
et al. [1972b])

1976 Collisional focusing of ions (Bonner et al. [1976])
1978 The selective ion reactor (Fulford and March [1978] Fulford

and March)
1979 Resonant ejection of ions (Armitage et al. [1979])
1980 Use as a GC detector (Armitage [1979])
1982 Multiphoton (IR) Dissociation of ions (Hughes et al.

[1982])
1984 Disclosure of the ion trap detector, (ITD)TM (Stafford et al.

[1984])

Mass-selective
ejection

1985 Ion trap mass spectrometer ITMSTM (Kelley et al. [1985])
1987 MS/MS, CI, Photo-dissociation, injections of ions, mass-

range extension, etc. Fourier transform quadrupole ion
trap (Syka and Fies [1987])

1984:
1988 Deliberate addition of contributions from non-linear field

using stretched geometry and non-hyperbolic electrode sur-
faces (Syka [1995])

1989 Extension of mass/charge range via resonant ejection
(Kaiser et al. [1989])

1990 High resolution mode of operation (Schwartz et al. [1991],
Syka [1995])

1995:
2001 Linear ion traps (Bier and Syka [1995], Syka [1995], Hager

[2001])
1997 Use of ion/molecule reactions in isotope ratio measure-

ments (Barber et al. [1998])
2002 Digital ion trap (Ding and Kumashiro [2001])

Table 5 Milestones in the mass spectrometric development of quadrupole ion traps from March
[2009] and March and Todd [2015].
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2.1.2.2 About ion trapping

A quadrupolar ion trap has m/z operating stability regions which are defined by

the Mathieu equations (See Appendix A.1) and can be represented in a [au, qu] plane.

Figure 2.2 shows in blue the stability region in the x direction of the trap and in red the

stability region in the y direction. These areas overlap in purple corresponding to the

couple [au, qu] of values which enable the trapping of specific m/z species. We can then

find the solutions for the specific case of our trap by tuning its operating conditions

according to the following equations:

ax = 4eU
mr2

0ω
2 (1)

qx = − 2eV
mr2

0ω
2

with U the DC voltage applied on the electrodes, V the AC amplitude, ω the RF

pulsation and 2 r0 the distance between opposite electrodes. From the symmetry in

the geometry in the trap we find that ax = −ay and qx = −qy.
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Figure 2.2 Representation of stable and unstable regions in the [au, qu] space. Adapted from March
and Todd [2005].

2.1.3 Laser ion sources techniques

Laser light has interesting properties for the production of ions from different types of

samples in MS analysis. These include pulsed operation, narrow range of wavelength

and precise spatial impact distribution. Here we describe the essential steps of ion

production achievable through laser light: laser desorption, laser ionisation and the

resonance enhanced multi-photon ionization (REMPI) principle.

2.1.3.1 Principle of REMPI

The efficiency of the laser ionization determines the number of ions and is a key param-

eter for selective ion production. As can be seen in Figure 2.3, molecules can be ionized

through different photo-processes depending on their ionization energy and electronic
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structure. Vacuum ultraviolet single-photon ionization (SPI) has been proposed as a

universal soft ionization method for organic compounds and has been applied to study

asphaltenes as well as surfaces, materials, aerosols, drugs, and peptides. In AROMA,

we use a REMPI scheme in which the first photon has to be resonant with intermedi-

ate electronic states of the molecule before the second photon is absorbed towards the

ionization continuum.

Figure 2.3 Left: [1+1] REMPI scheme used in AROMA. It involves the absorption of two photons
from the same laser pulse and implies a resonant intermediate state and a virtual state higher in
energy that the ionization threshold, Right: Ionization energies for different classes of molecules as
a function of the number of carbons from Desgroux et al. [2013]. The blue triangles correspond to
PAHs.

This technique has been chosen rather than electron impact ionization because it

is less energetic and therefore leads to less fragmentation of the molecular population

that is submitted to mass analysis.

2.1.3.2 Laser mass spectrometry

Laser mass spectrometry techniques with high sensitivity and microprobe spatial

resolution were widely introduced to the analytical chemistry community in the 1970’s

(Dietze and Zahn [1972]; Moenke-Blankenburg [1972]; Hillenkamp et al. [1975]; Dietze

et al. [1976]). These techniques were amongst the first capable of directly probing

solid sample surfaces, an area that was at the time largely unexplored by mass spec-
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trometry. This sparked an explosion of instruments coupling lasers to mass analyzers

and led to the development of two powerful techniques during the 1980’s and 1990’s:

matrix-assisted laser desorption/ionization mass spectrometry (MALDI-MS) (Karas

et al. [1985]; Karas et al. [1987]; Karas et al. [1990]; Hillenkamp et al. [1991]) and laser

desorption laser ionization mass spectrometry (L2MS) (Voumard et al. [1993]; Zenobi

[1994]). These two techniques opened the door for investigations in the analysis of

non-volatile species including large biomolecules and other organic species in native or

artificial matrices. The ability to directly probe molecules in their native environments

represented a significant advance in the utility of these techniques, largely eliminating

the requirement for time-demanding extraction procedures.

LDI In MALDI-MS and its simpler cousin LDI-MS, desorption/ionization occurs

during a single laser pulse. Despite the lack of clear understanding regarding the

involved mechanisms, these techniques have proven to be a powerful tool for prob-

ing a wide variety of chemical systems. These include meteoritic samples (Hammond

and Zare [2008]; Becker et al. [2001]), polydisperse polymers (Schriemer and Li [1996];

McEwen et al. [1997]), large biomolecules (Chaurand et al. [1999]; Jackson et al. [2005])

and fractions of petroleum (Acevedo et al. [2005], Herod et al. [2007]). However, obtain-

ing an artifact-free signal from any of these samples requires a careful combination of

optimized instrumental parameters and selection of the matrix. Without such consider-

ations, the resulting spectra can be obscured by excessive fragmentation, plasma-phase

reactions resulting in detectable ion clusters, or, worse, the absence of any signal at all.

L2MS In L2MS, desorption and ionization are separated in time and are realized

by different lasers. The technique has been developed at Stanford University in the

laboratory of Professor Richard N. Zare (Hahn et al. [1987]; Hahn et al. [1988]; Zenobi

et al. [1989]) and applied to PAH analysis successfully by several groups (Kovalenko

et al. [1992], Morrical et al. [1998]). It has been proven to be of high interest and ca-

pabilities in the study of organic compounds and characterization of aromatic species

in extraterrestrial materials Engelke et al. [1987]; Hahn et al. [1987]; Kovalenko et al.

[1992]; Spencer et al. [2008]; Faccinetto et al. [2008]; Sabbah et al. [2012].
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The combination of focused laser-assisted thermal desorption and ultra-sensitive

laser ionization provides sensitivity, selectivity, and spatial resolution capabilities that

are unmatched by traditional methods of analyses. It has been shown that the detection

limit is very low (down to the attomole (10−18mole)) (Hahn et al. [1987]) thus the

analysis only needs a very small quantity of the studied sample. As an example of

such studies, PAH compounds were unexpectedly detected within the Almahata Sitta

meteorites and their distribution within meteorite fragments provided important clues

as to the identity and history of the asteroid parent body (Sabbah et al. [2010]).

2.2 The AROMA setup

AROMA “Astrochemistry Research of Organics with Molecular Analyzer” (Figure 2.4)

is a unique molecular analyzer setup developed in the framework of the NANOCOS-

MOS project. AROMA main purpose is to analyze, with micro-scale resolution, the

molecular content of cosmic dust analogues, including the stardust analogues that are

produced in the NANOCOSMOS Stardust machine in Madrid (cf. Figure 1.8). It can

also be used to analyze the content of other dust analogues created in plasma reactors

and natural samples such as meteorites (see Section 4.3). The set-up has been con-

structed by the Greek company, Fasmatech, following design guidelines provided by

the IRAP team. It is mainly composed of three parts, which achieve different steps

in the performed experiments. These will be described later in further details. They

consist in:

• a laser desorption/ionization source that offers the possibility of probing PAHs,

carbon clusters and fullerenes in solid samples by performing either LDI in a

single step or L2MS in two steps.

• A segmented LQIT (see Section 2.1.2.1) that allows trapping and isolating desired

species and further performing CID experiments as well as photodissociation

studies.

• An orthogonal TOF (oTOF) mass analyzer equipped with a two-stage reflec-

tron and a fast microchannel plate (MCP) detector operating at a pressure of

10−7 mbar.
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Figure 2.4 AROMA scheme and picture: ion source using laser beams coming from the optical
table, ion trap in which the ions are stored, eventually processed by collisions or photons and sent to
the orthogonal time of flight for detection.

2.2.1 Ion production

2.2.1.1 Description

Sample preparation We perform our experiments using a stainless steel sample

holder. In Figure 2.5 we can see the plate with squares of different sizes and depths in

order to be able to use different samples of different size and shapes with two rectangular
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holes 3.5cm×3cm×1mm and 2.5cm×3cm×1.5mm as height×width×depth.

Figure 2.5 Stainless steel sample holder.

The sample is positioned vertically thus special care is needed to attach it on the

sample holder. Three type of samples are analyzed with this configuration:

• Pure samples:

Pure PAHs were dissolved to 1mg/mL solutions in toluene. From each solution,

two to three 5 µL drops were successively spotted onto a 6mm or 10mm stainless

steel sample disk. The disks are then fixed to the sample holder by a copper

or carbon conductive tape. All samples were introduced into the system via a

vacuum interlock, after allowing 1/2 h for the toluene to evaporate under ambient

conditions.

• Meteorite samples:

One to few milligrams of meteorite sample is powdered in order to be analyzed.

It is crushed using a pestle. Then the powder is stuck on the stainless-steel

plate (Figure 2.5) using copper conductive tape which does not contribute to the

background signal.

• Cosmic dust analogues:

Samples of cosmic dust analogues were delivered on a substrate. They can be put

on our stainless-steel sample holders, respecting the size constraints, by sticking

them with carbon conductive tape.

In order to introduce a new sample in AROMA, we open the load lock to insert the
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stainless steel plate. Then the entry lock is closed, and pumped to achieve the same

pressure (around 10−6 mbar) as the ion source. The entry lock is then opened on the

side of the ion source and the stainless steel plate is positioned with the sample in front

of the middle of the trap.

Laser technicalities Figure 2.6 shows the path of the laser beams on the optical

table (see Figure 2.4). A polarizer/analyzer is positioned in the middle of the light

path to control the intensity of the pulse. Then almost at the end of the path of the

beams on the optical table, a 50/50 mirror is placed to redirect 50% of the flux to a

detector which gives us the information on the power of the lasers. The actual energy

arriving in the ion source has been measured to be >50% of the first measurement.

Figure 2.6 Laser scheme and picture of the optical table.

L2MS has been implemented in AROMA and this is the configuration I have used in

my PhD work. As shown in Figure 2.7, it consists in desorbing, with a pulsed infrared

laser beam, the solid material into the gaseous phase, with minimal fragmentation,

and then crossing the desorption plume with an ultraviolet (UV) laser to selectively

ionize the gas-phase aromatic organic molecules. Interestingly, the technique does not

require any treatment to prepare the sample. In addition, the use of the UV laser

for ionization allows us to detect PAHs with a very high sensitivity, down to tens of

attomoles (Sabbah et al. [2017]). The IR and UV laser pulses are synchronized using

a delay generator, with a precision in the range of 10−12 sec (picoseconds).
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Figure 2.7 Desorption/ionization scheme in the ion source.

2.2.1.2 Performances

Desorbing laser The samples are positioned vertically in the ion source chamber

at low pressure (10−6 mbar) and are observed by a microscopic camera. The laser

desorption (LD) is achieved by irradiating the sample with the fundamental wavelength

of a Nd:YAG IR (1064 nm) pulsed laser with pulse duration of 5 to 7 nanoseconds (Q-

Smart450, Quantel). This leads to thermally exciting the molecules/atoms which will

be detached from the surface leading to the formation of an expanding plume. The

typical energies used in the experiments are 40-500µJ/pulse on a 300 µm spot. It can

be distinguished from ablation techniques due to its low photon fluence. As shown

by Haglund Jr [1996], laser desorption can be distinguished from ablation by the fact

that only the first mono-layers of the sample are affected. It corresponds therefore

to a “soft ablation”. It is achieved by tuning down the laser fluence. The interaction

with the laser leads to a very fast heating process with rate of 108 K/s which can be

opposed to other thermal desorption techniques with a 10-50K/s (Deckert and George

[1987]). This has also the advantage of favoring desorption over fragmentation for the

molecules in the sample. The extraction of molecules from the surface happens indeed

to be faster than the fragmentation of molecular bounds. The “soft ablation” produces

an expanding plume of mostly neutral molecules and atoms. At the basis of the plume

the density of molecules can be very large allowing three body reactions and modifying

chemical composition of the desorbed molecules. Such a regime has not been observed

in our experimental tests on pure PAH compounds. When performing LDI this laser is

also the ionizing laser. This configuration is favorable to observe species such as small
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carbon clusters using a similiar energy of ∼ 100µJ/pulse as the one used to desorb

PAHs.

Ionizing laser The desorbed plume is intercepted perpendicularly by a second

laser in the UV domain using the fourth harmonic output at 266 nm. The typical pulse

energy used for this experiment is 3 to 5 mJ pulse−1. The pulse duration is of 5 - 7 ns.

The laser wavelength is made to selectively ionize aromatic species (see Figure 2.3).

In practice, this gas-phase ionization creates a low-fraction of ions inside the plume,

which is not commonly considered to be a plasma.

2.2.2 Time of flight mass spectrometry

2.2.2.1 Description

In the AROMA set-up, ions are mass-separated in a reflectron time of flight (TOF)

using a modified Wiley- McLaren geometry (Wiley and McLaren [1955]). It is mounted

in an orthogonal configuration as presented in Figure 2.8. Ions leaving the LQIT arrive

in the acceleration zone and are orthogonally accelerated, using a high voltage pulse

(-2000 V) of 80µs duration, into the flight tube. A dual microchannel plate (MCP)

set in a Chevron configuration, coupled with a large collector anode, is used as a

detector. Orthogonal TOF (oTOF) decouples the conditions established in the laser

desorption/ionization source with the initial conditions for TOF mass analysis, which

results in enhanced mass resolving power over the entire mass range of interest.
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Figure 2.8 Scheme of the TOF in AROMA.

Since all the ions are not departing exactly from the same point, our TOF has a

dual stage reflectron which enables the time focusing of the ions on the MCP receptors,

thus increasing the resolution of the mass analyser. Indeed, it has been shown by

experiments and calculations that a dual stage reflectron enables a second order (time

and velocity) correction contrary to a single stage for which only the first order (time)

correction is achieved (Doroshenko and Cotter [1999]). The high voltage in the first

part of the reflectron drastically decreases the speed of the ions and the second one

(from the bottom of the tube) timely focus them on the MCP detector.

The horizontal time of flight (HTOF) After their production, the ions are

directed by a set of high-voltage lenses and focused through a small aperture into an

octapole which aim is to collect, focus and kinetically cool the ion cloud to achieve

the best possible ion transfer (Papanastasiou et al. [2008]). This is done by injecting

a pulse of He gas. The ions are then transferred to the segmented LQIT for storing

and processing. At the end of the LQIT (Q8 segment), the ions are sent with a kinetic

energy kick of 45 eV through the hexapole and the ion focusing optics to the exciting

electrode of the oTOF. This procedure is already a first time of flight that discriminate

the ions as a function of their mass. We call horizontal time of flight (HTOF) the
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delay between the departure of the ions from the Q8 segment to the application of the

extraction voltage of the oTOF.

A first mass selection range is here performed by choosing a specific HTOF time.

This time corresponds to a specific span of ions travelling at a certain speed enabling

them to be sent in the oTOF in the next step. In order to achieve a fully representative

spectrum of an experiment, we have to record different spectra while scanning the

HTOF (Figure 2.9).

Figure 2.9 Example of 4 spectra obtained at different values of HTOF that are then overlapped to
generate a complete mass spectrum.

2.2.2.2 Performances

In the following parts, we explain the procedure of the experiment starting here with

some performances of the detection in AROMA. A very good mass resolution (m/∆m)

of 8000-10000 at 200-300 m/z is achieved (see Figure 2.11), whereas common L2MS

systems have a resolution of a few undreds to 1000 (Faccinetto et al. [2011]). Thanks

to the combination of ion trap and oTOF we are not limited by the initial conditions

(kinetic expansion of the ion cloud) of the ionization source. This high resolution is
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combined to an extended mass range: from 20 to 104 m/z, and high mass accuracy up to

10 ppm. Thus we set the experimental procedure to access isolation at 1 m/z resolution,

and to perform collision induced dissociation and photo-dissociation experiments in the

future.

Figure 2.10 shows the L2MS spectrum obtained for pure pyrene, C16H10. In addition

of the 13C species, fragments are observed essentially corresponding to -H and -2H loss.

The -H fragment is found to form efficiently a complex with H2O.

Figure 2.10 L2MS spectrum of a pyrene sample.
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Figure 2.11 Experimental determination of the mass resolution in the AROMA set-up: example of
a pure sample of pyrene.

As shown in Figure 2.11, we can easily achieve a resolution of > 7000. This resolu-

tion enables us to differentiate species such as C16 and C15H12, as shown in Figure 2.12

in the case of complexe samples here the Almahata Sitta meteorite.

When performing extensive experiments with pyrene (C16H10) we could using 10µg

on a gold disc of 1 cm, we could perform more than 10000 IR laser shots on the sample

and still getting an intensity ≥ 5000 (accepting that a signal over 100 can be unam-

biguously be said not to be an artefact).

46



Chapter II : Molecular Analyser : AROMA

Figure 2.12 L2MS spectrum of a fragment of the Almahata Sitta meteorite from Sabbah et al. [2020].

2.2.3 Ion trap

2.2.3.1 Description

Combining an L2MS ion source to a Time of flight (TOF) has been done before:

Hahn et al. [1987]; Hahn et al. [1988]; Zenobi et al. [1989]; Spencer et al. [2008];

Faccinetto et al. [2008]; Faccinetto et al. [2011]; Brédy et al. [2015]. In addition,

AROMA comprises a trap (LQIT), which allows us to perform MS/MS experiments

and therefore obtain information on ion structures.

Ion journey

Figure 2.13 describes the ion journey in the AROMA setup. After production in

the ion source, the ions are directed towards the ion trap by an acceleration plate at

20-200 V. Then a set of high-voltage lenses slow and focus the ion cloud through a

small aperture into the octapole as shown on panel a) of Figure 2.13. The purpose of

the octapole is to collect, focus and kinetically cool with a buffer gas (Ar, He) the ion

cloud. Ion transfer into the LQIT (panel b) of Figure 2.13) is therefore optimised.
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Figure 2.13 The journey of ions from the ion source to the extraction zone of the oTOF.

Linear quadrupole ion trap in AROMA

The LQIT (see scheme in Figure 2.14 and picture in Figure 2.15) is segmented into

8 parts from Q1 to Q8. Each DC potential applied on the segments can be tuned in

order to control the global trajectory of the ions in the LQIT. The ions can be moved

from a segment to another by changing the DC voltages. In standard experiments,

the ions are stored in the second segment called Q2 by creating a little potential well

(panel b) in Figure 2.13). A number of operations can be performed in Q2 such as CID

as discussed below. For photo-dissociation experiments, the ions have to be sent to the

Q5 segment (panel c) in Figure 2.13). After processing, the ions are then stored in the

Q8 segment (panel d)) before being ejected with 25 eV through the RF hexapole ion

guide (panel(e)) and on low voltage lens to focus the ions them oTOF (panel f)).
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Figure 2.14 Schematic diagram of the LQIT with all its components.

Figure 2.15 Picture of the LQIT present in the AROMA set-up.
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2.2.3.2 Capabilities

Besides being able to store ions for times of the order of seconds the capabilities of the

LQIT involve mainly three segments:

• In Q2, ions are stored, cooled and trapped. In this segment, isolation of a specific

mass can be achieved using resolving DC technique or Filtered Noise Function

(FNF) see 3.2.2. As we will show in the next Chapter, ion motion can be excited

by applying dipolar excitation. Thus CID can be performed by pulsing gas in Q2

during this excitation.

• In Q5, there is the possibility to perform photo-dissociation studies on trapped

ions.

• In Q8, ions are finally parked before sending them to the extraction region of the

oTOF.

The rest of the segments are being used as potential walls to trap the ions or, on the

opposite, as negative gradients to transfer them along the ion trap.

In Chapter III, I will further explain the different steps involved in AROMA exper-

iments:

• internal and kinetic cooling of the ions through gas injection in the trap,

• isolation procedure leading to 1m/z resolution isolation, which is important in

dissociation studies,

• and, finally, the application of dipolar excitation in order to perform CID to

achieve dissociation studies and isomer differentiation.
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Chapter III

Collision induced dissociation procedure
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3.1 Collision Induced Dissociation

Collision Induced Dissociation (CID) corresponds to the process of fragmenting a

molecule by getting some energy by one or several collisions with a background gas.

The history of CID is closely related to the history of mass spectrometry as summarized

in the next section. In the following, we focus on CID experiments performed on PAHs

and present the procedure which has been implemented on the AROMA setup. In

particular, we illustrate the effect of the dipolar excitation parameters (amplitude and

duration) on the CID spectra.

3.1.1 History

Figure 3.1 Mass spectrum of CO obtained in a sector mass spectrometer after CO dissociates in C,
O and even produces CO2 through recombination from Thomson [1914].
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The first CID signal was observed by Thomson [1914] (see Figure 3.1) and by

Aston [1919] to account for residual signals coming from Collision Activation (CA).

Following this observation, two main directions appeared. The first aimed to reduce

the effect of CA or to avoid it in order to get mass spectra dominated by the analyte

parent ion. The second focused on how to use CA to obtain CID spectra and get

insights into the fragmentation behavior of the studied species. After a few studies

performed by Kolotyrkin et al. [1953], and Melton and Rosenstock [1957]) we have

to wait until the work of McLafferty and Schuddemage [1969] and McLafferty et al.

[1973b] to demonstrate the usefulness of fragmentation following CA in identifying

isomeric structures. Thus the next studies focused on developing CID as a tool to

differentiate isomers. Many of them were performed using keV CA (McLafferty and

Schuddemage [1969], McLafferty et al. [1973b,a]). Other works led by J. Beynon and

R. Cooks concentrated on describing the interaction of the ions with different gas from

rare gas to H2 or C4H10 (Beynon et al. [1972], Cooks et al. [1975], Cooks [1973], Kim

et al. [1974]). When the use of MS/MS (cf. Section 2.1.2) was recognized, Cooks and

co-workers combined chemical ionization and sector mass spectrometers to analyse

chemical mixtures (Kondrat and Cooks [1978], Busch et al. [1983]).

It is only in the late 1970s that commercial instruments using CA and MS/MS were

built. All CID experiments were carried out using sector mass spectrometers with keV

collision energies involving 1 to 10 collisions until the use of triple quadrupole for

MS/MS as described by Yost and Enke [1978, 1979]. The use of the triple quadrupole

allows access to collision energies of less than 100 eV in the center of mass (com) (Daw-

son and Douglas [1983], Douglas [1982], Dawson [1982, 1983]). New CA conditions were

also found using a cyclotron resonance instrument (Cody and Freiser [1982]). Louris

et al. [1987] used a quadrupole ion trap with a background pressure of 1 mTorr to

perform CID (106 collisions at Ecom = 15 eV as given in Equation 4). With increasing

control of the ion motion within the quadrupolar ion trap or in FTICR setups, the col-

lisional energy could get lower and lower as shown in Figure 3.2 from the model from

Goeringer and McLuckey [1996]. The different conditions of CA in CID experiments

have been reviewed by Mayer and Poon [2009].
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The principle of CID can be described as follows:

• CA in which an ion P gets internally excited by the collision with a neutral target

N by the transfer of a part of the kinetic energy to the internal energy of the ion.

PK0
E0

int

+ +NK′ → PK1
E1

int

+ +NK′′ (2)

where K is the kinetic energy and Eint the internal energy,

with K0 > K1 and E0
int < E1

int.

Thus, after storing enough internal energy the molecule will have the possibil-

ity to relax by changing conformation or breaking one or more bonds. In our

experiments, we are interested by the latter case which is referred to:

• the decomposition of the activated ion.

PKn
En

int

+ → AKA

EA
int

+ +BKB

EB
int

(3)

Where En
int is the internal energy built after n collisions which can lead to fragmen-

tation. In this process the parent ion gives birth to two fragments A and B which

contain kinetic and internal energy (unless B is an atom).

MS instruments offer the possibility to optimize key parameters to get insight on

the kinematics of the CA and CID process. However the mechanism of CA is difficult

to quantify and models should be made to describe energy transfer during collisions.

These rely on approximations that limit the use of CID for quantitative studies on the

energetics of the ions.

54



Chapter III : Collision induced dissociation procedure

Figure 3.2 Results of random walk simulations involving 10000 collisions of n-butylbenzene ions with
150mV resonant excitation within 10−3 Torr of He at 300K. The ion internal energy distribution based
on the model derived by Goeringer and McLuckey [1996] corresponds to a Boltzmann distribution at
a temperature of 419K. From Goeringer and McLuckey [1996].

3.1.2 Collision Induced Dissociation of PAHs

A number of CA experiments have been carried out to differentiate PAH isomers,

but some of them led to contradictory results. Shushan and Boyd [1980] demonstrated

that it is possible to differentiate PAH isomers in sector instruments by using either the

decomposition of metastable ions or CA at impact energies of 4 keV in He collision gas.

With the latter technique, the authors concluded that it is possible to differentiate the

two studied isomers at m/z=202.08, namely pyrene and fluoranthene. On the opposite,

Pachuta et al. [1988] studied the dissociation of several PAHs including fluoranthene

and pyrene, using high-energy excitation (7, 8 keV) and concluded that it was fairly

hard to differentiate isomers only relying on these experiments. They suggested that

due to isomerization prior to dissociation nearly identical fragmentation patterns are

experienced for different parent PAH isomers. The difference with the conclusions of

Shushan and Boyd [1980] could be attributed to differences in ion production in both

experiments. This has been shown to be a possible differentiation factor (Zenobi et al.

[1989]). Arakawa et al. [2000] tried to use keV collision energies to achieve new ways

to differentiate isomers such has pyrene and fluoranthene based on their dissociation

pattern but did not succeed neither by varying the collisional gas (air, N2 and Ar) nor
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the kinetic energies (from 600 eV to 5 keV). It is only recently that Gatchell et al. [2014]

and Stockett et al. [2014] evidenced another type of dissociation channel involving a

single carbon loss as compared to the usual hydrogen and C2H2 loss. This channel

was attributed to non statistical fragmentation and referred to as a knockout process

(Stockett et al. [2015a]), which can be reached at high collisional energies (Ecom=30-50

eV, ∼2 keV of collision energy for pyrene in He). Fragmentation involving knockout

was applied on isomers (Stockett et al. [2015b]) and the authors concluded that they

could differentiate isomers better than using statistical fragmentation.

Pyle et al. [1997] used CID at lower energies (∼100 eV collisions, Ecom ∼16.5 eV

for pyrene in Ar) showing the possibility to differentiate pyrene from fluoranthene by

their number of “ortho-hydrogen” interactions (pairs of neighboring hydrogens on the

same cycle), which are six and seven, respectively, and leads to fluoranthene losing

more easily its hydrogens than pyrene. A similar conclusion was obtained for the two

isomers chrysene and benz(a)anthracene. Nourse et al. [1992] studied the sequential

fragmentation of pyrene cations using multistage CID dissociation in a quadrupolar

ion trap. Guo et al. [1999] used a slow heating approach in a FTICR-MS to fragment

PAH ions step by step using a multi-step MS/MS (MSn) approach.

The possibility of using CID to quantify the energetics of PAHs has been inves-

tigated by the group of P. Mayer as an alternative to the photoelectron photoion

coincidence (PEPICO) experiments carried out at the VUV synchrotron (West et al.

[2018a]). Breakdown curves, which represent the evolution of the relative abundance

of the parent and fragments, have been obtained as a function of the center-of-mass

collision energy (Ecom) similarly to the curves obtained as a function of the VUV pho-

ton energy. Using the Rice Ramsperger Kassel Marcus (RRKM) theory to model the

dissociation, the authors could fit these breakdown curves and derive values for the ac-

tivation energy and entropy of reaction/dissociation. The limitation though is that the

conversion of Ecom into internal energy of the ions presents some uncertainty leading

to large error bars (West et al. [2014a,b, 2018a,b]).
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3.2 CID procedure in AROMA

In AROMA experiments, the ions are kinetically excited inside a segment of the LQIT

in which a pulse of rare gas is injected. From this point of view, this is similar to the

experiments performed in FTICR-MS setups (Guo et al. [1999]). The pulsed injection

of gas leads to some variation of the pressure during the experiment. In addition, as

will be described in Chapter V, the ions in the trap are not in a uniform trajectory and

their kinetic energy oscillates between zero and hundreds of eV upon dipolar excitation.

Thus this leads to a wide distribution of collision energies whose range depends on

the actual pressure in the trap. The CID conditions in AROMA imply then that the

distributions of collision frequency and collision energy (in the laboratory frame) evolve

as a function of time.

Performing CID experiments in the AROMA set-up consists in several steps:

• producing the ions in the ion source,

• transmitting them to the Q2 segment of the LQIT. During this transfer and in

Q2 the ions can be thermalized with collisions with the buffer gas.

• Isolating the species of interest (parents) and then performing CA by applying a

dipolar excitation amplitude and injecting another pulse of rare gas (Ar or He).

• Performing mass analysis on the ions (remaining parents and fragments) by send-

ing them to the TOF.

3.2.1 Cooling

After being formed in the ion source the ions are sent to the LQIT. The transit of

the ions in the octapole (cf. Section 2.2.3.1) before reaching the LQIT is synchronized

with a gas pulse, typically He or Ar, raising the pressure to ∼ 10−2 mbar during a 20

to 50ms time window. The collisions with the gas will allow the cooling of the ions

both in kinetic energy and in internal energy. This cooling step is important if some

analysis on the energetics of ion fragmentation has to be performed.

Drahos and Vékey [2001] described the evolution of the ion energy in partially

inelastic collisions. Without an additional source of excitation, the ions will lose their

kinetic energy and then relax their internal energy to achieve thermalization at the gas
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temperature.

At the beginning of the cooling, the kinetic energy of the background gas can be

neglected and Ecom can be expressed by:

Ecom = mG

mion +mG

× Ekin (4)

Where mG and mion are the masses of the buffer gas and of the ions, respectively. At

the end of the cooling, when the ion is slowed down (its laboratory frame kinetic energy

is close to zero), one can write:

〈Ecom〉 = 〈Ekin,G〉 (5)

〈Ekin,G〉 = 3
2 × kb × TG (6)

In this case a part of the internal energy of the molecule will be transferred to the

whole system as kinetic energy. This leads to collisions with negative energy transfer

called “super elastic collisions” in Drahos and Vékey [2001].

Thus in order to work on ion populations with more controlled energy distributions

(kinetic and internal) we have to increase the pressure of gas and the interaction time at

the beginning of the trapping in order to increase the number of collisions and reach the

conditions of thermalization with the gas. From the simulations presented in Chapter

V, we see that kinetic cooling under trapping conditions is achieved after less than 500

µs even at 10−3 mbar pressure of Ar. Using He as cooling gas, there is a factor 10 in

cooling efficiency due to the difference in mass, which means that we need to increase

the interaction time by a tenfold thus up to 5ms.

The first step in the CID procedure was therefore to produce ions that were spatially

focused, internally and kinetically cool.

In the control software of the AROMA set-up, the cooling is performed by three steps:

• Delay with the previous function to synchronize with the injection of the gas

pulse

• Gas injection time whose value constrains the duration of opening of the gas valve.
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Relative to Ar, the cooling power of He is lower but induces less fragmentation.

• A second delay determining the residual gas pressure before the next step. From

simulations in Chapter V, this delay has to be over 10ms to kinetically cool the

ions with He (we decided to double the previous 5ms to take in account the

uncertainties on the value of the pressure). In order to achieve internal cooling

we also need to add some time leading to an interaction time of 100ms.

Cooling is performed not only after the production of ions but also after any manipu-

lation of the ions in the trap that could lead to kinetic or internal excitation such as

the isolation step (Sect. 3.2.2) and after CID.

3.2.2 Isolation

Ion isolation can be accomplished by applying to the electrodes of the Q2 segment one

or several of the following excitations: a DC resolving voltage, one or several dipolar

excitations (DE) or a filtered-noise-field (FNF, first described in Goeringer et al. [1994]).

In the first technique, ions are put in the instability region of the ion trap as explained

in Figure 3.3. Its ejection power makes it very suitable to eliminate undesired ions that

are not in the close vicinity of the species of interest. However the large DC voltages

that are commonly associated with this method increase the loss of ions.

Applying a DE excitation requires three parameters: the frequency which has to

be chosen depending on the conditions of the ion trap and the m/z of interest, the

amplitude [100 - 200mV] and time [1̃0ms] which tune the efficiency of the ejection of

the ions.
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Figure 3.3 Representation of the [a, q] parameters depending on the masses with the stability
regions (with dots of different colors: red = 202.08) before applying the DC resolving voltage and
with DC at 15V and 3V. At 37V m/z = 202.08 is the only one remaining in the stability diagram.

The FNF technique consists in generating a frequency comb which employs a single

excitation waveform containing all the frequencies for a specific m/z excited range

(like a comb of DE excitation). But before being converted into an analog signal,

a rapid digital filtering method is applied to remove from the comb the frequencies

corresponding to the m/z of interest. Thus the FNF will excite all the ions except

the ones of interest. Still, FNF is more easy to apply on a large scale, whereas DE

excitation isolation is easier to apply close to the m/z of interest. Combining these two

techniques enables a fast, very efficient enhanced isolation procedure for any species of

interest.
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Figure 3.4 Pyrene mass spectrum in L2MS transmission mode.

Figure 3.5 Example of DC resolving isolation (30V in order to preserve as much m/z = 202.08
species) on a pure pyrene sample.

1 m/z resolved isolation of m/z=202.08 Figure 3.4 shows a typical spectrum

of pyrene generated by L2MS and obtained in transmission mode (presented earlier in

Figure 2.10 but shown here as a reminder). In order to isolate the parent ion and more

61



Chapter III : Collision induced dissociation procedure

specifically the full 12C isotopologue, we need to perform 1m/z resolution at round m/z

202.08 for the isolation. We first apply the DC resolving voltage at 30V (see Figure

3.5). The most stable species in the trap are the ones with m/z close (±1-2 m/z) to

the species of interest. We then use a low amplitude (100mV) in single DE excitation

(on small ranges, even one m/z) or in FNF (on larger scales) and are able to selectively

eject any m/z species even isotopomers (Figure 3.6 ).

More specifically in the case of m/z=202.08 species :

• Resolving DC is applied to eliminate all the ions besides a small m/z range (200

to 204).

• A FNF/DE filter is then applied in the range from m/z=198 to 206 which

excludes excitation of m/z=202.08.

Figure 3.6 Typical spectrum with one m/z isolation of the peak at m/z=202.08.

In Figure 3.6 we observe that a good isolation of the peak at m/z=202.08 has been

achieved. The small bumps at m/z=202.6, 202.9, 203.6 etc... do not correspond to

mass peaks but are due to the response of the MCP detector, more specifically to the

ringing effect associated with a high ion intensity signal.

As a reminder it is desired to perform these steps with as less gas pressure as possible

in order to avoid collisions and subsequently CA of the ions that could produce new

species. Even if the ions of interest are not ejected or fragmented, there is however
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no information on their kinetic and internal energy. Thus after these steps one has to

remember to cool down the ions by injecting buffer gas and wait some time for the ions

to kinetically and internally cool down.

3.2.3 Dipolar excitation

3.2.3.1 Principle

To perform CID in AROMA, the ions which are trapped in the RF field given by

Equation 7 are kinetically excited by a DE called AC which is given by Equation 8

and is superimposed on two of the opposed electrodes (cf. Figure 3.7). Physically

the DE will make the ions oscillate around their stable position with regard to the

trapping conditions. From the technical data provided by Fasmatech with AROMA,

we can assume that this process occurs in the presence of Ar gas at a pressure between

10−2 and 10−3 mbar. In the case of AROMA in order to improve the efficiency of the

trapping it has been decided that the RF field is created using a squared waveform

potential.

RF = U + V · u (ω1t+ φ1) (7)

AC = Vop · cos(ω2t+ φ2) (8)

With

Vop = 0.8 · Vapp + 0.023 (9)

u (ω1t + φ1) is the square function with 50% duty (half period -1 and half +1).

This leads to RF = U + V for half a period and RF = U − V for the other half.

Finally, Vapp is the voltage applied on the electrodes from the User Interface and Vop
the actual voltage on the electrodes.
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Figure 3.7 On the left, the trapping mode where a squared RF electrical field is applied to the
electrode. On the right we see that a sinusoidal signal is superimposed on two of the electrodes to
create the dipolar excitation (DE).

3.2.3.2 Secular frequency for m/z=202.08

This is the resonant frequency at a given m/z. When applied through a DE it will

induce the highest increase in kinetic energy. In the case of m/z=202.08, the trapping

conditions are a RF signal at 1.3 MHz with 180 V of amplitude. This leads to a secular

frequency fs of 205.6 kHz, as calculated with the following equations from Ding et al.

[2004]:

au = 4eU
mr2

0Ω2 with U = 0 ⇒ au = 0 (10)

qu = − 2eV
mr2

0Ω2 ⇒ qu = 0.3481 (11)

βu = 1
π

arccos
cos

π
√
q2
u

2

 cosh
π

√
q2
u

2

 = 0.3290 (12)

ωs = 1
4πβu × Ω (13)

fs = 1
2βu × Ω = 205.6 kHz (14)

with ω[rad.s−1]= 2× π × f [s−1].
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3.2.3.3 The excitation window

Ideally, one would like to control the excitation frequency in order to excite selectively

the parent ions and avoid exciting the fragments once produced. As an example in

Figure 3.8 we show the effect of the excitation amplitude and frequency on the ion

excitation efficiency. This figure shows that the excitation efficiency is very important

and has a large span for excitation amplitudes over 200mV. At low voltage (here

100mV) the DE only efficiently accelerates the m/z = 202.08 but, as we increase the

voltage (200mV), the same DE frequency will also efficiently excite molecules with m/z

= 202.08 ± 1.

Figure 3.8 Effect of the frequency and amplitude of the DE excitation on the dissociation yield of
the pyrene parent ions. We observe a widening of the excitation band with the increase of the DE
amplitude. Plateaus are observed showing the experimental resolution of the DE in AROMA of 1 kHz.

With the Figure 3.8 we understand that an excitation off resonance can have the

same effect on the dissociation yield as an on resonance excitation at low amplitude.

For example, an excitation at 187 kHz (on resonance) with 100mV leads to a 20% disso-

ciation yield whereas an excitation at 188 kHz with 200mV leads to a 40% dissociation

yield.

This result has implication for both the CID and the isolation procedure. In the

isolation procedure, it shows that, for a amplitude larger than 150mV, the DE excita-

65



Chapter III : Collision induced dissociation procedure

tion will definitively affect the other m/z close to the ejected ions. By increasing the

DE amplitude we can therefore eject a larger range of m/z. On Figure 3.8, we have

also observed a resolution of 1 kHz in frequency which happened to be centered on an

integer. This peculiarity has been discussed with the Fasmatech company and has been

attributed to the interaction between the squared form of the driving RF potential and

the sinusoidal form of the DE.

In terms of CID it shows that, over 150mV, the ions at m/z=201.07 (first fragment)

can also be excited and thus be subjected to fragmentation. This has to be considered

in the case of fine experiments in which dissociation pathways, energetics and branching

ratios are studied.

3.2.4 Global CID procedure

The capabilities of AROMA lie in the multiple collision regime consisting of hundreds

of collisions of very low collisional energy < 1 eV and the capability to achieve different

regimes. All the functions and parameters used in CID experiments are presented in

Table 6. The mass spectra are recorded by the accumulation of 50 or 100 spectra.
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Function Subfunction Experimental
parameters

Ion source IR laser 100-150 µJ
UV laser 5-7 mJ

Trapping Trapping frequency 1300 kHz
Trapping amplitude 180 V

Kinetic and internal energy
cooling

He gas pulse duration 110 µs
Interaction time 100ms

Low resolution isolation
DC resolving trap frequency 1150 kHz
DC resolving voltage 32 V
Interaction time 1ms

Low mass filter Trap frequency 865 kHz
Interaction time 1ms

Kinetic and internal energy
cooling

He gas pulse duration 90 µs
Interaction Time 50ms

(1)DE filter
Frequencies [172-186]

[188-190] kHz
Excitation time 5-10ms
Amplitudes 150-500mV

OR

(2)FNF

Frequency comb [170-190] kHz

Frequency gaps [186.5-
187.5] kHz

Repetitions 15
Amplitude 150mV

Kinetic and internal energy cooling

DE CID

Gas pulse duration 110 µs
Delay (synchro gas/DE) 2.5ms
Excitation frequency f0
Excitation time [0-100]ms
Excitation amplitude [0-3000]mV

Kinetic and internal energy cooling
Detection

Table 6 Time function of the different steps involved in a CID experiment. When presenting the
results we will specify the DE Excitation CID part.
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3.3 CID results in AROMA

Here we present some CID experiments which have been performed in AROMA for the

pyrene cation C16H+
10 for potential isomeric differentiation (see Chapter IV) as well as

dissociation studies (see Chapter V).

Peak normalisation In the presentation of the CID results, we use two types of

intensities:

Int
m/z
rel = Intm/z

Intallm/z

Int
m/z
rel,norm = Int

m/z
rel

max(Intm/zrel )
(15)

With :

• Intm/zrel being the relative intensity of the considered m/z species,

• Intm/z its absolute intensity

• Intallm/z the sum of all the absolute intensities

• max(Intm/zrel ) being the normalization factor corresponding to the highest relative

intensity.

• Intm/zrel,norm represents the normalized intensities, which can be considered as the

survival yield (SY) in the case of the parent ions.

As an example, we refer to Figure 3.12, which presents a typical series of CID spectra

in relative intensities on the left and the corresponding extracted SY and normalized

intensities of the fragments on the right. The latter are also called breakdown curves.

3.3.1 Results

In order to take the best benefit of the capabilities of our setup in controlling the exci-

tation window (the mass range of ions which will be efficiently excited) we performed

various conditions of on resonance CID. In this type of experiments, one m/z resolution

isolation has been performed and the secular frequency needed to excite the targeted

ions has to be found with the highest possible precision (± 1 kHz).
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Dipolar Excitation amplitude = [0-100mV] In Figure 3.9, with low excita-

tion amplitude and long excitation time (50ms), DE is in principle limited to the parent

ions and this leads to the loss of m/z=202.08 to produce m/z=201.07 and 200.06.

We can achieve 100% fragmentation of the parent ions to produce 80% of m/z=201.07

and 20% of m/z=200.06.

Figure 3.9 On resonance CID experiments applied on pyrene cations for 50ms and with DE at
187 kHz±1 for amplitudes from 1mV (upper curve) to 100mV (lower curve).
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Figure 3.10 Two examples of on resonance CID experiments at low excitation amplitudes between
1 and 100mV and for an excitation time of 50ms. The first experiment is shown in solid lines and
the second in dashed lines.

For amplitudes under 100mV we have to use relatively long excitation time be-

tween 50ms and 100ms to perform dissociation of the full population. During these

experiments, the parent ions (m/z=202.08) accumulate internal energy via successive

collisions at low energy leading to the possibility to depict the dissociation threshold.

These low excitation conditions imply that the fragments are not significantly excited

by the DE. This disables subsequent dissociation which could come from residual in-

ternal energy after the first dissociation.

Function Subfunction experimental
parameters

DE Excitation CID

Background Gas pulse duration
(Ar)

110 µs

Delay 2.5ms
Frequencies 187 kHz
Excitation Time 100ms
amplitudes [0-100]mV

Translational and Internal cooling

Table 7 DE Excitation function in the case of very slow heating CID experiments.

Table 7 reports the CID experimental conditions used to achieve this type of exper-
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iments. An example is presented in Figure 3.10, in which we plot the SY of the parent

ions (m/z=202.08) and the production of the fragments (-H, -H2/2H)). The two set

of experiments have been recorded in the same conditions (excitation time=50ms,

on resonance with excitation frequency EF=187 kHz). The conditions for the first set

(plain lines in Figure 3.10) have been optimized to loose just one or two hydrogen atoms

(or an H2 molecule). The setup was then shut down and restarted before performing

the second set of experiments (dashed lines in Figure 3.10).

The onset of dissociation is around 40mV for the first experiment and around 50mV

for the second one. This error of around 25% is found to be too high to accurately define

a dissociation threshold for a specific structure. From the analysis of the data presented

in Figure 3.10 we concluded that at this low excitation amplitude, it will be difficult

to differentiate isomers with precision. The observed variation in the measurements

could be explained by the fact that the driving amplitude of the trap is at 180 Volts

and we superimpose an excitation amplitude of less than 100mV. These low values of

excitation are of the same order as the uncertainty of the power generator. Thus we

decided to perform CID experiments with higher excitation amplitude (200mV) to get

farther from the limit of our instrument.

Dipolar Excitation amplitude = 200mV At 200mV, the excitation window

is larger and we are exciting the species at m/z=201.07. However most of the resulting

fragments are in the range of HTOF window corresponding to the parent ions. Thus

it is a promising method for isomer discrimination or compound identification. Table

8 reports the CID experimental conditions used to achieve this type of experiments.

Figure 3.12 presents the SY recorded for pyrene as a function of the excitation time. We

observe that we end breaking the parent ions (m/z=202.08) into both m/z=201.07

and 200.06, with a prevalence of the latter. The 50% SY of pyrene ions is reached after

1000 µs of excitation.
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Function Subfunction experimental
parameters

DE Excitation CID

Background Gas pulse duration 110 µs
Delay 2.5ms
Frequencies 187 kHz
Excitation Time [0-2000] µs
amplitudes 200mV

Translational and Internal cooling

Table 8 Dipolar Excitation experimental function description when performing slow heating CID
experiments.

Figure 3.11 CID spectra of pyrene cations as a function of the excitation time for on-resonance DE
and an excitation amplitude of 200mV.
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Figure 3.12 On the left: Spectrum of a set of CID experiments performed on resonance (187 kHz)
at 200mV on pyrene cations as a function of time. On the right: The extracted survival yield
achieved using Equation 15.

One objective of these experiments was to optimize the conditions of excitation of

the ions of interest to probe the fragmentation “thresholds”. In Figure 3.11 we see

that for a DE of 200 mV, the main fragment is C16H+
8 at m/z=200.06 after 1.3 ms.

This can be explained by the re-excitation of the m/z=201.07 species (see Figure 3.8),

which is effective at 200mV, combined with the fact that the activation energy of

m/z=201.07 is significantly smaller than that of m/z=202.08 (E0 = 3.3±1.1 eV com-

pared to 5.4±1.2 eV; West et al. [2014b]). Further comparison of the CID results

obtained at 200 mV will be performed in Chapter IV.

Dipolar Excitation amplitude above 500mV On the opposite, I also explored

CID at high dipolar excitation amplitudes and short excitation time (50-100 µs) as can

be seen in Figures 3.13 and 3.14. However, I noticed that the total ion signal drastically

dropped as shown in these figures . This drop in ion signal is in accordance with what

was shown in Nourse et al. [1992], Pachuta et al. [1988].
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Figure 3.13 CID spectra of pyrene cations in Ar obtained with on resonance DE for 50 µs. The
evolution of the total ion signal is shown on the right.

Figure 3.14 CID spectra of pyrene cations in Ar obtained with on resonance DE for 100 µs. The
evolution of the total ion signal is shown on the right.

In Figure 3.15 we present a CID experiment breakdown curve achieved at a DE

excitation of 500mV. The amplitude has been chosen to minimise the loss of ions

during the CID process. Compared to Figure 3.12, one can see clearly here the loss of

m/z=200.06 into more dehydrogenated fragments.

74



Chapter III : Collision induced dissociation procedure

Figure 3.15 Example of decay curve of pyrene achieved at DE amplitude of 500mV as a function
of time.

3.3.2 Compilation of other techniques

In our experiment we could observe most of the fragments observed in Shushan and

Boyd [1980], Pachuta et al. [1988], Nourse et al. [1992], Pyle et al. [1997], Guo et al.

[1999]) and also in photodissociation experiments (West et al. [2014b]).

In Shushan and Boyd [1980] the ions are ionized by electron impact and sent on

helium to provoke CID with 4 keV kinetic energy before being detected. The spectrum

before CID already shows fragmentation with significant differences between isomers.

The full population is then dissociated. Although there are differences between the

isomers, it is hard to disentangle the contribution from dissociative ionization from

that of CID. leading to differences in isomers which is hard not to link to the difference

from the ionization. Using different techniques such as CID, electron-impact, surface

collision and photodissociation, Pachuta et al. [1988] found the same fragments and

fragments groups as our study and could observe differences in the dissociation pattern

depending on the technique used and the collision energy, as was shown also by Pyle

et al. [1997] and Nourse et al. [1992]. To retrieve the fragmentation pathways for these

fragments, some studies have been done in Nourse et al. [1992], and Guo et al. [1999]

using CID in MSn experiments. In addition, West et al. [2014b] studied the dissoci-
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ation cascade by combining photodissociation with selective ejection of intermediate

fragments.

We indeed found a lot of similarities with the study by West et al. [2014b] in

which the authors reported 34 fragments compared to 29 in our experiments, most

of them being common in both experiments. A main difference between our CID

experiments and photodissociation experiments is that, in our CID process, only the

ions whose secular frequency is included in the excitation window of the DE excitation

are accelerated and thus gain internal energy, whereas in photodissociation all the

trapped ions can absorb the radiation and thus be excited to the point of dissociation.

In our CID experiments, we firstly form m/z=201.07. With increasing amplitude,

more m/z=200.06 is observed similarly. A similar trend is observed in photoelectron

photoion coincidence (PEPICO) experiments when increasing the energy of the VUV

photon and is attributed to a sequential H+H loss [West et al., 2014b]. In our CID

experiment, the m/z=200.06 is expected to be formed from the dissociation of the in-

termediate at m/z=201.07 by loss of an additional H. The dissociation of m/z=201.07

will be easier than that of m/z=202.08 since the dissociation energy is significantly

decreased from 4.40 to 3.16 eV [West et al., 2018a]. There might therefore be enough

remaining energy from the dissociation of the parent to lose an additional H. The

m/z=201.07 ion might also get reexcited since its secular frequency is in the excita-

tion range.

From West et al. [2018a] we could retrieve energetics data on pyrene (Ionization

energy IE = 7.42± 0.01 eV and the dissociation energy Ediss = 4.16± 0.69 eV) and

fluoranthene (IE = 7.845± 0.010 eV and Ediss = 4.86± 1.1 eV). The two isomers are

very close in Ediss. It is therefore expected to be difficult to differentiate them in terms

of dissociation experiments as said in Nourse et al. [1992], Pachuta et al. [1988].

3.3.3 Discussion

In this part we report some plausible fragmentation patterns for the species observed

in our experiment in comparison with the results obtained using other dissociation

techniques from the literature. Using the excitation window from 3.2.3.3 we can try

to assign the different fragments and branching ratios from our experiments to specific
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parents. In our CID experiments, the fragmentation cascade stops when the fragments

are out of the range of the excitation window and the internal energy of the parent

ion is not enough to dissociate anymore. The branching ratios coming from our ex-

periments are therefore related to the rate at which the internal energy is deposited.

For instance, we can excite m/z = 202.08 very slowly (low excitation rate) by using a

low amplitude ([0 - 100mV]) and long excitation time (50ms). In this case, we firstly

form m/z = 201.07. With increasing amplitude, more m/z = 200.06 is observed. As

discussed before, it is not clear if this ion comes from the desexcitation of activated

m/z = 202.08 or from reexcitation of the m/z = 201.07 fragment. In some experiments

we observed that the m/z=202.08 parent ion fragments into m/z=200.06, 199.06 and

198.05 and even into some m/z=176 (and even m/z=152.05 and 126.04 in some ex-

periments) and corresponding dehydrogenated species. This indicates that the parent

ion has gained enough internal energy to reach higher dissociation channels such as

C2H2 and C4H2 losses and can be explained by the high collision energy tail that is

described in the collision energy distribution in Chapter V. All the results are sum-

marized in Table 9 where we have separated the fragments in groups corresponding to

the number of carbon loss compared with the parent ions at m/z=202.08. Since the

neutral products cannot be detected neither in our experiments, nor in the previous

studies, the formula provided for the neutrals are tentative and does not exclude mul-

tiple fragments. An obvious case is that of 2H/H2 channel that was discussed in the

dissociation of the pyrene cation by West et al. [2014b].
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m/z peak This
work Attribution

Hx losses
201.07 (C16H9)

√ b,c,d,e,f (202 - H)
200.06 (C16H8)

√ b,c,d,e,f (202 - 2H/H2)/c,e,f (201 - H)
199.06 (C16H7)

√ b(202 - 3H)/c,d,e,f (200 - H)
198.05 (C16H6)

√ a,b(202 - 4H)/c,d,e,f (200 - H2)/c,f (199 - H)
197.04 (C16H5)

√ a(202 - 5H)/c,e,f (198 - H)
196.04 (C16H4)

√ a(202 - 6H)/c,f (197 - H)/f (198 - H2)
193.03 (C16H)

√ a(202 - 6H)/c,f (197 - H)/f (198 - H2)
C2Hx losses

177.07 (C14H9)
√ c(202 - C2H)

176.07 (C14H8)
√ b,c,f (202 - C2H2)

175.07 (C14H7)
√ b(202 - C2H3)/c(201 - C2H2)/c(200 - C2H)

174.06 (C14H6)
√ a,b,c(202 - C2H4)/c,d,e,f (200 - C2H2) / e(199 - C2H)

173.05 (C14H5)
√ a(202 - C2H5) /c(199 - C2H2) / c,f (174 - H)

172.04 (C14H4)
√ a(202 - C2H6) / c(198- C2H2) / f (173 - H)

171 (C14H3)
√ c,f (197- C2H2)

170 (C14H2)
√ c,f (196- C2H2) / f (171 - H)

169 (C14H1)
√ f (170 - H)

168 (C14) ∅ f (169- H)
C4Hx losses

152.06 (C12H8)
√ a,b,c(202 - C4H2)

151 (C12H7)
√ a,b(202 - C4H3) / (c200 - C4H)

150 (C12H6)
√ a,b,c,e,f (202 - C4H4) / e(201 - C4H3) / c,d,e(200 - C4H2)/ e(199 -

C4H)/ e(176 - C2H2)
149 (C12H5)

√ a,b(202 - C4H5) / c(199 - C4H2)/ c(150 - H)
148 (C12H4)

√ a(202 - C4H6) / c(198 - C4H2)/ c,f (174 - C2H2)
147 (C12H3)

√ a(202 - C4H7)
146 (C12H2)

√ a(202 - C4H8) / c(196 - C4H2)
C6Hx losses

126.04 (C10H6)
√ b(202 - C6H4)

125 (C10H5)
√ b(202 - C6H5)

124 (C10H4)
√ c(174 - C4H2)/ c(150 - C2H2)

123 (C10H3)
√ b(202 - C6H7) / c(197 - C6H2)/ c(149 - C2H2) / c(198 - C6H3)/

122 (C10H2)
√ b(202 - C6H8) / c(196 - C6H2)/ c(148 - C6H2)/c(123 - H) / c(199

- C6H5)
121 (C10H1)

√ c(122 - H)
120 (C10)

√ c(121 - H)

Table 9 Analysis of the different m/z species detected in our CID experiments and possible assign-
ment. Previous results published in the literature have also been gathered corresponding to aShushan
and Boyd [1980], bPachuta et al. [1988], cNourse et al. [1992], dPyle et al. [1997], eGuo et al. [1999],
and f West et al. [2014b] illustrating the complexity of the dissociation patterns. * m/z peaks cor-
respond to species which are attributed to products of the reactivity in the trap of pyrene fragments
with H2O and potentially O2 and their subsequent fragmentation by CID (see FigureB.3).
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Through Chapters II and III, I presented the instrument AROMA and its capa-

bilities to detect PAHs and to study their dissociation behavior via the CID technique.

The main objective was to develop a CID procedure to differentiate isomeric structures

at a given m/z in order to analyse cosmic dust analogues and meteorites.

In this chapter, I will present the application of the CID procedure on three iso-

mers of C16H10, namely pyrene (PYR) and two other isomers fluoranthene (FLU) and

9-ethynylphenanthrene (ETHPH). Finally, experiments done towards differentiating

these isomers in natural samples (the Allende meteorite) as well as samples produced

in a dusty plasma reactor are presented.

Figure 4.1 Structures, ionization energy IE and dissociation energy E0 of the studied PAH isomers
with m/z=202

4.1 CID of m/z=202 isomers

4.1.1 Survival yields of m/z=202 isomers

We performed CID experiments on resonance (187 kHz) at 200mV for PYR, ETHPH,

and FLU (see Figure 4.2). The loss of the parent ions SY at 50% was investigated

as a mean to differentiate the isomers according to Kertesz et al. [2009]. Figure 4.2

shows that the time at which 50% of the parent population is lost is 755/950/1000µs

for ETHPH, FLU and PYR, respectively. Therefore, we can clearly differentiate the

condensed structures (PYR and FLU) from the alkylated structure, whereas the two

curves corresponding to the condensed structures fall very close. The intersection at

50% is separated but the values fall within the error bars. This means that we are at
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the limit of differentiating these types of isomers.

Figure 4.2 Survival yields of the three studied isomers of C16H10, namely pyrene (PYR), fluoranthene
(FLU) and 9-ethynylphenanthrene (ETHPH). The CID experiments were performed in the same
conditions with on resonance excitation and a DE amplitude of 200mV. Error bars coming from the
repetition of the experiments

As explained in Chapter III, the variation of SY with time is rather scattered at

an excitation amplitude of 100mV so the procedure would fail at a amplitude lower

than 200mV. To probe the complexity of any sample it would be interesting to obtain

a wider separation between FLU and PYR. We decided thus to use an excitation

amplitude of 500mV leading to the breakdown curves shown in Figure 4.3. However,

we observed that the decay curves of PYR and FLU overlap each other to the point that

no differentiation could be achieved. This is in line with conclusions made by Pachuta

et al. [1988] that using higher amplitude leads to higher internal energy transfer but also

a higher probability of isomerization which could lead to undifferentiated fragmentation

paths between isomers.
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Figure 4.3 Example of a decay curve of PYR (solid Line) and FLU (dashed line) achieved at DE
amplitude of 500mV as a function of time.

4.1.2 Carbon loss of m/z=202 isomers

Figure 4.4 Relative evolution of the losses of C2Hx and C4Hx in an attempt to differentiate the two
isomers FLU and PYR. From CID experiments on resonance and with a DE of 200mV.

In addition of hydrogen loss, the compact parent isomers exhibit some very weak

carbon loss channels. In Figure 4.4, we can observe that while the quantities of C2Hx

are very close for both isomers, FLU forms more C4Hx than PYR which has also been

noticed by Shushan and Boyd [1980]. However from the width of the error bars (de-
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rived by repeating the experiments) it is hard to conclude that this is a differentiation

criterion between FLU and PYR. A similar conclusion was obtained in the literature

for experiments at high collision energy (Pachuta et al. [1988], Nourse et al. [1992],

Pyle et al. [1997]). This has been explained as possible isomerization at the achieved

high internal energies.

4.2 Mixture of pure PAHs

After measuring the time at which the survival yields reach 50% for each isomer, the

next step was to see how this value will change if the sample contains two of these

isomers. Two samples of PAH mixtures were prepared, the first one containing an

equimolar mixture of PYR and FLU (PF) and the second one an equimolar mixture

of PYR and ETHPH (PE). Fullerene C60 has been introduced in the solution to have

a matrix that helps desorbing the isomers with comparable efficiency.

Figure 4.5 Survival yields of the three isomers and the mixtures (PE and PF) at 200mV excita-
tion amplitude as a function of time. The time at which 50% of the parent population is lost is
755/880/950/965/1000 µs for ETHPH/PE/FLU/PF/PYR respectively.

Figure 4.5 presents the decay curves of the two samples for a DE amplitude of

200mV. They show the excitation time leading to 50% of dissociation of the parent

ion m/z=202. As expected, the curves of the two mixtures lie in between the decay

curves of the isomers composing the mixture.

Figure 4.6 shows a different representation of the times associated with 50% survival
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yield in which the width of the rectangles corresponds to the uncertainties. The latter

have been determined as illustrated in Figure 4.7. We observed that the uncertainties

from the mixture of PYR and ETHPH is very wide which can be explained by the

fact that the curves of the two isomers are far from each other and there is likely some

dispersion in the mixture associated with the ion production by L2MS.

Figure 4.6 Scheme summarising the times associated with 50% survival yield of the three studied
isomers of C16H10, namely pyrene (PYR), fluoranthene (FLU) and 9-ethynylphenanthrene (ETHPH),
and their mixtures. The CID experiments were performed with DE on resonance (187 kHz) and at
200mV. The values correspond to 740<755<775 µs for ETHPH (in green), 835<880<905 µs for the
equimolar mixture of PYR and ETHPH (in violet), 900<950<975 µs for FLU (in red), 940<965<980
µs for the equimolar mixture of PYR and FLU (in light blue), and 970<1000<1035 µs for PYR (in
dark blue).

Figure 4.7 Description of the procedure of the projection to evaluate the errors of the measurements
as used in Figure 4.6.
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4.3 Application to complex samples

4.3.1 Plasma dust analogues

This part deals with the analysis of dust particles collected in a low-pressure plasma

excited at electron cyclotron resonance (ECR) produced in pure acetylene (C2H2). This

work is leaded by Richard Clergereaux at LAPLACE (University of Toulouse/CNRS).

The reactor is described elsewhere (Rojo et al. [2019].; Lagarde et al. [2001]). It operates

by coupling microwave electromagnetic field (2.45 GHz) with the cyclotron gyration

of electrons in a static magnetic field, at really low-pressure (typically from 0.1 to 7

mTorr). After a cleaning procedure dealing with a 10 min of oxygen plasma followed

by 5 min of argon plasma, the plasma is produced in pure acetylene. The gas is injected

at a constant flow rate, monitored by a mass flow controller, resulting in a working

pressure in the 0.3 – 3 mTorr range – the residual vacuum obtained by a combination

of rotary and turbomolecular pumps being less than 7.5x10−4 mTorr. The plasma is

ignited by optimizing the injection of 200W in the microwave antennae. Dust particles

are formed after few minutes and transported in the plasma volume Rojo et al. [2019]

or on the reactor walls. For ex-situ analyses, 3 cm × 3 cm stainless steel samples

were positioned above the central cusp and a carbon tape being used to have good

electrical and thermal contact between the sample and the reactor. In this work, we

focus on three samples that have been produced with 0.6 mTorr pressure of C2H2 at

three different times, 5, 8 and 10 min. The AROMA spectra show that they present

a really rich molecular composition: it includes various PAHs - up to coronene with a

predominance of pyrene - but also, and surprisingly in cold plasmas, carbon clusters.

It has been shown, using mass spectrometry and IR spectroscopy (Deschenaux et al.

[1999]) as well as numerical simulations (De Bleecker et al. [2006]), that PAHs can be

formed in abundance in acetylene RF capacitively-coupled plasmas. Figure 4.8 presents

the mass spectrum of the sample produced at 5 min. From m/z=100 to 250 a series

of carbon cluster (Cx species) and PAHs have been detected with m/z=202 (C16H10

dominating the spectrum of the PAHs).
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Figure 4.8 Mass spectrum of dust sample produced in 0.6mTorr of C2H2 for 5 minutes in a plasma
reactor.

We applied the CID procedure to check which types of isomers are contributing

to this peak. Figure 4.9 presents the dissociation decay curves of the m/z=202. It

intersects with the loss at 50% at 1040/1000/800 µs for the samples at 5/8/10 minutes

respectively.

Figure 4.9 Decay curves of the isolated m/z=202 peak, for CID experiments under on resonant
excitation (187 kHz) at 200mV. Plasma dust samples (dashed lines) using C2H2 as precursor for
5/8/10 minutes at 0.6mTorr pressure are compared with samples of pure isomers and their mixtures
(plain lines).

From Figure 4.6, we can see that 50% dissociation of the parent ion occurs at 755
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µs in the case of ETHPH and around 905-977 and 970-1035 µs for FLU and PYR,

respectively. For the dusty plasma sample at 5 and 8 minutes, the SY is on the verge

just at the limit of the error bars coming from PYR which suggest that it is entirely

PYR or likewise. In the experiment at 10 minutes, the 50% of the SY is reached after

800µs. This value is very close to the one of ETHPH (755µs) which means that there

is an important fraction of a less compact structure such as ETHPH.

This result suggests a change in the chemistry from short (5mins) to longer times

(>8mins). It would be interesting to connect the trend observed in molecular struc-

ture with the evolution of dust particles in the plasma and the possibility for surface

chemistry on the reactor walls.

4.3.2 Allende Meteorite

We introduced in chapter I (section 1.2.3) the presence of PAHs in meteorites especially

in Murchison. The peak m/z=202 is a major or dominant peak in this carbonaceous

meteorite. To apply our technique on such complex samples we studied two samples of

the Allende carbonaceous meteorite. We analyzed a fragment taken from the internal

part of the meteorite and another one from the external part. The peak m/z=202 dom-

inates the mass spectrum of the samples taken from the internal part of the meteorite

(Figure 4.10). This observation is reproduced with the sample taken from the crust

(external part) of the meteorite. Our results are in great agreement with the ones

achieved by Zenobi et al. [1989], considering that these species are heterogeneously

distributed in the meteorite samples.
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Figure 4.10 Mass spectrum from the Allende meteorite (internal part) achieved with the AROMA
set-up

Thus, we decided to apply our CID technique to get insights on the isomeric struc-

tures distribution at this m/z.

Figure 4.11 Decay curve of the isolated m/z=202 peak from Allende samples, for CID experiments
under on resonant excitation (187 kHz) at 200mV.

In Figure 4.11, we observe that the time to reach SY of 50% is at 965µs for the

internal part and 950µs for the external part of the Allende meteorite. Both Allende

samples show the tendency to be mostly composed of compact structures of m/z =202.

Their SY curves fall in between the two SY curves of FLU and PYR. The SY curve of
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the external sample almost overlap with the one of FLU suggesting that the latter is

dominant in this sample. The SY curve of the internal sample suggests that the peak

at m/z=202 is a mix of both PYR and FLU. Zenobi et al. [1989] suggested in his

L2MS study that his technique is more sensitive to PYR than FLU. To our knowledge,

our work is therefore the first discussion on isomeric structures in Allende meteorite.
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In this chapter, we discuss three applications of the modeling of the ion dynamics,

kinematics and energetics in order to:

• Get insights on the behavior of the ions in the Q2 segment of our AROMA set-up,

• Get information on the collisional dynamics,

• Determine dissociation dynamics parameters.

5.1 Ion dynamics in the trap

The Simion software (Dahl et al. [1990]) allows us to calculate electric and magnetic

fields as well as the trajectory of charged particles in these fields. We used it to model

our trap and simulate the ion motion/behavior in the trap.

In Figure 5.1, we show the model,

Figure 5.1 Scheme of the simplified model of the Q2 from the LQIT that is used in Simion simulations.

Simion can adapt calculations to minimize the number of operations and accelerate

the simulations. To do so Simion calculates the electric potential surface (EPS) in

the simulated space. Thus, at each time step, the program calculates the position

and velocity of the particle depending on the parameters from the previous frame.

Depending on the position of the ion on the EPS and the parameters of the EPS at

this point the program determines a relative time step to achieve the highest precision

in the calculations in the shortest time. A particle in a region of the EPS where

the potential lines are denser (the variation of the electrical potential are sharper) will
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experience much changes and thus more steps will be needed to achieve the same result

in the calculations than for an ion in a uniform electrical potential.

Using the formalism of the .gem files (where an object is described by geometric

forms), we could construct the 3D model presented in Figure 5.1 representing the Q1,

Q2 and Q3 segments of the LQIT in AROMA, used to calculate the dynamics of ions.

The simulations on the arrival of the ions in the ion trap and their translational

cooling were previously performed by Fasmatech. We thus concentrated on the behav-

ior of already trapped ions.

Trapping conditions After creating the model, we began performing simulations

for an ion at m/z=300 (coronene, C24H12). This is due to the fact that these simu-

lations were performed at the beginning of this PhD when studies on coronene were

performed for the commissioning of AROMA together with Fasmatech.

I modeled the motion of the ions in the trap to understand the conditions and get

“the picture” of the behavior of the ions in the ion trap (see Figure 5.2). Here only

the trapping conditions are applied which is called “driving” the ions, as described in

Chapter III and recalled in Equation 16 with frequency f1 = 1300 kHz and amplitude

V = 180V for 500µs of simulated lifetime of the ion.

RF = U + V · cos(ω1t+ φ1) (16)

The following figures (5.2 and 5.3) contain 5 sections:

• on top in red, the kinetic energy (K in eV) of the ion through time,

• in the middle in blue, its distance from the center of the trap (r in mm),

• down left is a representation of the radial evolution seen in the z section of the

trap (see Figure 5.1) with the pink oval circle representing the limits of the trap.

• Down right, the motion of the ions through the x and y sections of the trap is

shown (see Figure 5.1).

The time of the experiment is represented with a color ladder from dark blue at 0µs

through green, yellow orange and dark red for 500µs.
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Figure 5.2 Simulations with Simion of the coronene cation motion in the Q2 segment of the AROMA
set-up with trapping conditions corresponding to RF frequency = 1300 kHz and V = 180 V. The ion
is “created”in the center of the trap (on the left), and at 1.4mm from the center (on the right)

As expected under trapped conditions, the ions will stay in an orbit combining ac-

celeration and deceleration phases, which comes from the geometry of the trap (when

getting closer to an electrode the ion will slow down until stopping before being ac-

celerated by the opposite potential of the electrode) and the alternative polarity of

the electrodes which will guide the motion of the ions in another oscillating motion.

Thus we noticed that, under these particular trapping conditions (V = 180V, F =

1300 kHz), coronene cations will achieve a maximum kinetic energy at the limit of the

orbit somewhere between 50 and 60 eV reaching higher kinetic energy till collision with

the electrodes or escaping from the trap. We could also see that the difference in kinetic

energy is closely related to their position in the LQIT.

5.2 Interaction between trapped/excited ions and rare gas

The previous simulations are interesting to understand the general behavior of the

ions in the trap but they correspond to a case with no background gas, which is not

realistic. Thus we also want to study the interaction of the ions with neutral gas in two

conditions, one in which they experience only the trapping mode (which would lead

to kinetic and internal cooling as explained in Chapter III) and one in which they are

accelerated by a DE (which is the CA method of our CID experiments, see Chapter

III). In the latter case, the ions are simultaneously accelerated by the DE and slowed
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down through collisions with the background rare gas.

We implemented the hard sphere model code supplied in Simion to quantify ion

kinematics induced by collisions with the buffer rare gas. Since Simion is not well

suited to perform calculations on the internal energies of ions, the transfer from kinetic

energy to internal energy is later evaluated.

We considered the studied ion as a sphere with diameter of 9Å. The simulations

for one ion is shown in Figure 5.3. It shows that after 0.5ms, the ion will be kinetically

cooled down and thus driven closer to the center of the trap.

Figure 5.3 Simulations with Simion of the coronene cation motion in the Q2 segment of the AROMA
set-up with trapping conditions corresponding to RF frequency = 1300 kHz and V = 180 V. In this
case, the ion is“created”off the center at 1.41mm with 10−3(on the left) and 10−2 mbar(on the right)
of Ar.

To perform these simulations, we needed to take in account the evolution of the

pressure of the rare gas after injection of a gas pulse, which was obtained from the

calibration provided by Fasmatech with AROMA. We therefore considered a range in

the Helium pressure between 10−2 and 10−3 mbar for at least 50ms.

Recalling the formula of the energy in the center of masses:

Egas
coll = mgas ·Kion

mgas +mion

(17)

With:

• mion = 300 for coronene

• mgas = 4 for He

• 10 ·mgas = 40 for Argon

• and Kion the kinetic energy of the ion upon collision.
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EHe
com = mgas ·Kion

mgas +mion

EAr
com = 10 ·mgas ·Kion

10 ·mgas + 300

EHe
com =4 ·Kion

4 + 300 EAr
com = 40 ·Kion

40 + 300
EHe
com = 4

4 + 300 ·Kion EAr
com = 40

40 + 300 ·Kion

EHe
com =0.013 ·Kion EAr

com = 0.12 ·Kion (18)

In order to describe the kinetic energy cooling rate by collisions, we retrieve from the

Simion calculations the collisional frequency (or time between collisions Tcoll) and Ecom

(the corresponding energy in the center of masses). To minimise the computational

time, the simulations were performed using Ar as the cooling gas rather than He

increasing Ecom by a factor of 10 (see Equation 18), which implies that the ions will

lose their kinetic energy ten times faster.

In Figure 5.3 we observe that after 500µs the ions are kinetically cooled with an

energy below 0.5 eV corresponding to the kinetic energy of the rare gas atoms at room

temperature. At 10−3 mbar of Ar a bit more time would be needed to cool down

(typically 5 ms). Thus in order to achieve internal energy cooling (which takes place

in spans of tens of milliseconds) for all the ions, we choose to change the delay given

to the ions to cool down in the experiment to 100 ms with a pressure assumed to be

between 10−3 and 10−2 mbar.

Ion kinematics and energetics From this point on, the simulations are done

for ions with m/z=202. Now the aim is to accelerate the ions in the LQIT in the

presence of a buffer pressure of Ar. A first step was to determine the secular frequency

fs in our numerical experiment. Figure 5.4 shows the evolution of the maximum of the

kinetic energy of ions in the trap as a function of the excitation frequency.
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Figure 5.4 Evolution of the maximum of the kinetic energy of a ion at m/z=202 excited through
with DE amplitude at 200mV.

We observe that the excitation efficiency is not symmetrical and the maximum is

achieved for fs=206.5 kHz which corresponds to the value calculated in Section 3.2.3.2.

This frequency is then used in all the simulations with a DE.

Figure 5.5 Evolution of the kinetic energy of a ion excited through on resonance DE at 200mV with
10−3 mbar of Ar buffer gas pressure.

We start the simulations by selecting an ion with kinetic energy within a Boltzmann

distribution at room temperature. The ion undergoes collisions and accelerations for
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a long time (see Figure 5.5) and for each collision we retrieve the kinetic energy (Ekin)

and the time between two collisions (Tcoll). Since both parameters are independent,

we assume that letting 10 ions evolve under these conditions for a time t is the same

as using a single ion for a duration of 10 t. We then derive the distributions for Ekin

(Ecom) and Tcoll that are used in a script using the Monte-Carlo method described in

the next section (see Figure 5.6).

Figure 5.6 Calculated distributions of Ecom and the time between collisions, Tcoll, for a DE at
200mV and 10−3 mbar of Ar buffer gas pressure.

Theses distributions have been fitted using classic distribution functions available

in the Matlab software (Dorf and Bishop [1998]). The best fit are an exponential

distribution for the Tcoll and a Burr (Type XII) distribution for Ecom (see equations 19

and 21).

Distexp(x;λ) =


λe−λx x > 0

0 x < 0
(19)

(20)

DistBurr(x; c, k) = ck
xc−1

(1 + xc)k+1

In order to get insight into the evolution of these distributions with the conditions of

the simulations we reported the median of each distribution in Table 10.

As expected, we observe that increasing the amplitude of the DE leads to an increase

of Ecom while Tcoll decreases (aka the collisional frequency increases). With increasing

the background gas pressure we observe a decrease in both Tcoll and Ecom. The increase
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Pressure
Amplitude 20mV 40mV 200mV 400mV 600mV

10−3 mbar Emed,Burr
com (eV) 3· 10−2 4.4· 10−2 0.289 0.739 1.08

Tmed,exp
coll (s) 3· 10−5 1.9· 10−5 9.7· 10−6 6.4· 10−6 5.5· 10−6

10−2 mbar Emed,Burr
com (eV) 1.4· 10−2 4.1· 10−2 0.157

Tmed,exp
coll (s) 2.6· 10−6 2· 10−6 1.4· 10−6

Table 10 The median of the measured distributions of Tcoll and Ecom from the simulations performed
with Simion, as a function of the DE amplitude and background gas pressure.

in pressure leads to a shorter time between collisions which prevents the ions to achieve

higher kinetic energies.

5.3 The Monte-Carlo method

In order to take advantage of the collisional data extracted from the simulations

with Simion we used a Monte-Carlo method in two dimensions. Randomly drawing

within the Ecom and Tcoll distributions, it builds a 105x3000 matrix containing the

evolution of the internal energy of 105 ions after they undergo 3000 collisions. The

time and energy are drawn randomly for each event of each ion. Therefore the total

time and internal energy depend on the ions. In order to match the experimental time

window it is necessary to draw enough collisional events.

With this Monte-Carlo method the energy of the ions could increase without any

limit. Since our aim is to fit the experimental breakdown curves, we need to incorporate

the competition between the increase of internal energy and the dissociation. This is

done by comparing Tcoll with the inverse of the dissociation rate k−1
diss. If the Tcoll

drawn in the distribution is lower than the k−1
diss then the collision occurs and the

heating continues. If k−1
diss is shorter than the drawn Tcoll then we consider that the ion

will have dissociated prior to the collision.

5.4 Adjusting the η energy transfer parameter on pyrene

The value of Ecom cannot be used directly to build up the internal energy of the ions

because it represents the maximum energy that can be transferred from kinetic into

internal energy. The energy that is actually transferred can be in the order of few tens

of percents and even less than ten percents of Ecom (Drahos and Vékey [2001];Mayer
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and Poon [2009]). Thus we introduce a conversion parameter η which will be adjusted

to reproduce the experimental data following Equation 21.

∆Eint = η × Ecom (21)

with ∆Eint the actual kinetic energy that is transfered into internal energy upon col-

lision. The internal energy will increase until reaching the point at which dissociation

will occur (1/kdiss >Tcoll). In these simulations, we used the value of kdiss for PYR,

which is provided in West et al. [2018a].

Figure 5.7 represents the simulated survival yield (SY, see section 3.3) (in light

blue) achieved after adjusting the values of the η parameter. The derived values for η

are represented in Figure 5.8 and are found to decrease with the excitation time. This

decrease can be due to the variation of the gas pressure inside the trap following the

pulsed injection of the buffer gas. It can also be due to a less effective energy transfer

at larger internal energies (as represented in Figure 5.8) as explained in Mayer and

Poon [2009] and Drahos and Vékey [2001].

Figure 5.7 Simulated decay of PYR compared to the CID experiment performed on resonance at
200mV
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Figure 5.8 Evolution of the η parameter through excitation time and as a function of 〈Eint〉.

The distributions of internal energy for pyrene cations over excitation time are

shown in Figure 5.9. They could be extracted from our simulations by treating the

competition between heating by collisions and dissociation. They show that the highest

energies as well as dissociation are reached after 0.6 ms and this corresponds to an

energy Ediss around 11 eV.

Figure 5.9 Calculated distributions of Eint as a function of time for pyrene ions activated by collisions
in Ar gas. In the inset, we report the number of remaining ions through time.
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5.5 Extracted dissociation rates for the other m/z = 202 iso-

mers

The values of the η parameter that we derived is specific of the excitation conditions

(DE characteristics, gas pressure and time). Using the same excitation conditions, we

can assume that the values of η remain the same for all isomers. Since the values of Ecom

are also independent on the isomers in the Simion calculations, the only difference that

we have to take into account is the variation of the dissociation rate between isomers.

Since kdiss has been reported by West et al. [2018a] for FLU, we simulated the SY of

this ion. The obtained curve appears to be in very good agreement with the experiment

(see Figure 5.10), which provides support to our approach.

The value of kdiss for ETHPH is unfortunately not known. Rouillé et al. [2019]

recently determined an activation energy E0 = 3.70 eV for the ethynyl group in the

1-ethynylpyrene cation. From this value we decided to estimate the dissociation rate of

ETHPH based on the Laplace transform of the Arrhenius law as explained in Boissel

et al. [1997]:

kdiss = Adiss
ρ(Eint − E0)
ρ(Eint)

(22)

where Adiss is a pre-exponential factor and ρ is the harmonic density of vibrational

states that can be calculated using the Beyer & Swinehart algorithm (Beyer and Swine-

hart [1973]) and the list of harmonic vibrational modes listed in the theoretical spectral

database of PAHs (Malloci et al. [2007]) (in the absence of ETHPH in this database,

we used the modes of PYR).

We then performed our simulations to extract the best value for Adiss and therefore

kdiss. The result of the fitting process can be seen in Figure 5.10 which shows the

comparison between the experimental data (with error bars) and the calculated one.

A value of Adiss=5·1015 s−1 was derived. The evolution of kdiss with internal energy

for the different isomers is summarised in Figure 5.11. It illustrates the much higher

dissociation rate of ETHPH relative to PYR and FLU.
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Figure 5.10 Comparison between calculated (line) and experimental (line with error bars) SY for
PYR, FLU and ETHPH.

Figure 5.11 Evolution of kdiss with internal energy for PYR and FLU (data from West et al. [2018a])
and for ETHPH (estimated in this work).

When relating with the Tcoll distribution for the corresponding conditions we ob-

serve a mean 〈Tcoll〉=10−5 s leading to a kexcitation=105 s−1. Reporting this kexcitation
in Figure 5.11 it gives 〈Eint〉=11.3 eV for PYR which corresponds to the maximum
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energy of the ions when using the dissociation rate of PYR.

Conclusion We could fit the PYR CID experimental data using simulated colli-

sional data from Simion, and the dissociation rate reported in West et al. [2018a].

The derived energy transfer parameter η could then be used in the simulations

of the FLU data in combination with the dissociation rate of FLU. The comparison

between simulations and experimental data is satisfactory, confirming the assumption

we made that the isomeric structure do not strongly impact the value of η. With this

result, we could determine the dissociation rate for ETHPH.
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Chapter VI

Conclusion

This work is dedicated to the study of the differentiation of PAH isomers in mass

spectrometry using collision induced dissociation (CID) in a quadrupolar ion trap. It

has been carried out in the framework of the NANOCOSMOS project, whose objective

is to elucidate the mechanisms involved in the formation of stardust. The AROMA

set-up has been developed in NANOCOSMOS to analyse the molecular composition

of stardust analogues and provide insights into the chemical pathways leading to the

nucleation and growth of dust. AROMA is a hybrid mass spectrometer coupled to a

laser desorption/ionization source and is unique to provide a very sensitive analysis of

the molecular content, in particular for PAHs.

We have studied the performances of the segmented ion trap of AROMA and cre-

ated a CID procedure with the aim to disentangle isomers by their fragmentation

patterns and decay curves. We have focused on the isomers of C16H10 (m/z = 202),

which are major species in most of our samples including the Murchison meteorite.

More specifically we have selected pyrene, fluoranthene and 9-ethynylphenanthrene,

which represent respectively a planar pericondensed structure, a structure including

a pentagonal cycle and one with an alkylated sidegroup. Each can reveal a different

chemistry in the growth of PAHs and associated dust particles.

A CID procedure was created, which includes an isolation step at one u resolution

105



Chapter VI : Conclusion

in m/z to isolate the 12C parent species, the optimization of the excitation conditions

and of the cooling of the ions before and after the CID process. This part has been

guided by numerical simulations on the dynamics of the ions inside the ion trap. We

found an excitation regime leading to slow heating, which allowed us to observe the

fragmentation threshold of the parent ions. However this regime which can be obtained

for a very low excitation voltage is sensitive to the stability of the system. This leads

to significant noise while averaging decay curves obtained in different experiments.

We therefore used excitation conditions at a relatively higher voltage to study the

fragmentation of the three isomers at m/z=202.

Determining the characteristic excitation timescale to achieve 50% of the fragmen-

tation of the parent ions, we were able to clearly disentangle 9-ethynylphenanthrene

from the other two condensed structures. The latter could be separated at the limit

of the systematic errors of the experiments. These results were confirmed when us-

ing mixtures of the three pure compounds. In order to improve the contrast in the

separation of the two condensed isomers, we increased the voltage and therefore the

collisional energy to better observe the carbon-loss channels but we could not improve

the differentiation of these isomers.

The CID procedure was applied on complex mixtures, which include samples from a

C2H2 dusty plasma and of the Allende meteorite. We determined that in these samples

the peak at m/z=202 is due to a mix of both pyrene and fluoranthene, except for one

sample in the dusty plasma, but we were not able to provide an abundance ratio due

to the limited precision of our measurements.

In order to better quantify the dynamics of the CID process in the trap we performed

detailed numerical simulations in the case of pyrene. Using the SIMION software pack-

age, We determined the frequencies of collisions and the time-dependent distributions

of the kinetic energy. A 2D Monte-Carlo algorithm was then developed to model the

evolution of the internal energy of the ions in a CID experiment. The dissociation

rate of pyrene determined by West et al (2018) was then incorporated to take into

account the competition between collisional heating and dissociation. The decay curve

of pyrene was then adjusted by tuning the η parameter which describes the efficiency

of conversion of collisional (kinetic) energy into internal energy in our experimental
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conditions. We found that the value of η changes as a function of excitation time. Us-

ing the same dependence of η with the energy for fluoranthene, we were able to fit its

decay curve. We were also able to derive a dissociation rate for 9-ethynyphenanthrene,

which is in agreement with the activation energy predicted for this ion.

This work opens perspectives on the use of CID in AROMA to gain information

on the molecular structures of the species analysed by mass spectrometry. It is now

necessary to study in a more systematic way the case of m/z=202 and confirm or not

that the condensed pyrene and fluoranthene are the dominant ones in most of our sam-

ples. If not, other less condensed isomers than 9-ethynylphenanthrene would have to be

explored. The case of m/z=200, the main fragment of m/z=202, would be interesting

to study in more details. Our preliminary experiments exhibit a different energetics in

its fragmentation between the species produced from pyrene and fluoranthene.

It would be useful to generalise the CID procedure over an extended range of masses

by determining the relevant parameters as a function of m/z. In the future, the prob-

lem related to the 1 kHz excitation resolution limitation might be fixed to extend

the capability of AROMA to study dissociation at threshold and derive dissociation

rates, which is crucial to quantify the stability of PAHs in astronomical environments

(Montillaud et al 2013).
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Chapter VI

Conclusion [Fr]

Ce travail est dédié à l’étude de la différenciation des isomères de molécules HAP dans

des expériences de spectrométrie de masse en utilisant la dissociation induite par col-

lisions (CID) dans un piège à ions quadrupolaire. Il a été réalisé dans le cadre du

projet NANOCOSMOS dont l’objectif est d’élucider les mécanismes mis en jeu dans

la formation de la poussière d’étoiles. Le dispositif AROMA a été developpé dans le

projet afin d’analyser la composition moléculaire d’analogues de poussière d’étoiles et

permettre de mieux comprendre les chemins chimiques conduisant à la nucléation et à

la croissance de cette poussière. AROMA est un spectromètre de masse hybride couplé

à une source désorption/ionisation laser qui est unique pour sa sensibilité en détection

du contenu moléculaire des échantillons, en particulier concernant les HAP.

Nous avons étudié les performances du piège à ions segmenté d’AROMA et créé

une procédure CID afin de séparer des isomères par leurs fragments et leurs courbes de

décroissance. Nous nous sommes focalisés sur les isomères de C16H10 (m/z = 202), qui

sont des espèces dominantes dans la plupart de nos échantillons incluant la météorite

Murchison. Plus spécifiquement, nous avons sélectionné le pyrène, le fluoranthène et le

9-ethinylphenanthrène, qui représentent respectivement une structure plane pericon-

densée, une structure incluant un cycle pentagonal ou un groupement alkylé. Chacune

de ces espèces peut révéler une chimie différente dans la croissance des HAP et des

particules de poussières associées.

Une procédure CID a été mise en place qui inclut une étape d’isolation avec une ré-

solution de 1 en m/z pour isoler l’espèce isotopologue 12C, l’optimisation des conditions

d’excitation et de refroidissement des ions avant et après le processus CID. Cette étape

a été guidée par des simulations numériques de la dynamique des ions dans le piège.
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Nous avons trouvé un régime d’excitation amenant à un chauffage lent, qui permet

d’observer le seuil de fragmentation de l’ion parent. Cependant ce régime nécessite un

très faible voltage pour l’excitation et est sensible à la stabilité du système. Ceci induit

une source de bruit significative lors du moyennage de courbes de décroissance obtenues

lors d’expériences différentes. Nous avons donc privilégié un voltage relativement plus

élevé pour étudier la fragmentation des trois isomères à m/z=202.

En déterminant le temps d’excitation caractéristique pour obtenir 50% de fragmen-

tation des ions parents, nous avons pu clairement différencier le 9-ethinylphenanthrène

des autres structures condensées. Ces dernières ont pu être séparées à la limite des

erreurs systématiques des expériences. Ces résultats ont été confirmés en utilisant des

mélanges des trois composés purs. Afin d’augmenter le contraste pour les isomères

condensés, nous avons augmenté le voltage et donc l’énergie de collision pour mieux

observer les voies de fragmentation impliquant la perte de carbone. Néanmoins, nous

n’avons pas réussi à améliorer la différenciation de ces deux isomères.

La procédure CID a été appliquée à des mélanges complexes incluant des échantil-

lons de plasma poussiéreux de C2H2 et de la météorite Allende. Nous avons déterminé

que dans ces échantillons le pic à m/z=202 peut être attribué à un mélange de pyrène

et de fluoranthène, à l’exception d’un échantillon du plasma poussiéreux, mais nous

n’avons pas pu déterminer un rapport d’abondance en raison de la précision limitée de

nos mesures.

Afin de mieux quantifier la dynamique du processus CID dans le piège, nous avons

mené des simulations numériques détaillées pour le cas du pyrène. En utilisant le

logiciel SIMION, nous avons déterminé les fréquences de collisions et les distribu-

tions d’énergie cinétique dépendant du temps. Un algorithme Monte Carlo à 2D a

été développé pour modéliser l’évolution de l’énergie interne des ions dans une expéri-

ence CID. Le taux de dissociation déterminé par West et al (2018) pour le pyrène a

été incorporé dans l’algorithme afin de traiter la compétition entre chauffage par col-

lisions et dissociation. La courbe de décroissance du pyrène a été ensuite ajustée en

optimisant la valeur du paramètre η qui décrit l’efficacité de conversion de l’énergie

collisionnelle (cinétique) en énergie interne dans nos conditions expérimentales. Nous

avons trouvé que la valeur de η dépend du temps d’excitation. En utilisant la même
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dépendance de η avec l’énergie pour le fluoranthène, nous avons pu rendre compte de

sa courbe de décroissance. Nous avons également extrait un taux de dissociation pour

le 9-ethinylphenanthrène qui est en accord avec l’énergie d’excitation prédite pour cet

ion.

Ce travail ouvre des perspectives pour l’utilisation de la CID dans le dispositif

AROMA afin d’obtenir des informations sur les structures moléculaires des espèces

analysées par spectrométrie de masse. Il est maintenant nécessaire d’étudier de manière

plus systématique le cas de l’espèce HAP à m/z=202 et de confirmer si les structures

condensées pyrène et fluoranthène sont les espèces dominantes dans la plupart de nos

échantillons. Sinon, le cas d’isomères moins condensés que le 9-ethinylphenanthrène

devra être considéré. Le cas de m/z=200, fragment principal de m/z=202, mériterait

une étude plus détaillée. Des expériences préliminaires suggèrent en effet une énergé-

tique de fragmentation différente pour le fragment issu du pyrène comparé à celui du

fluoranthène.

Il serait utile de généraliser la procédure CID sur un domaine étendu de masses en

déterminant les paramètres pertinents en fonction du rapport m/z. Dans le futur, le

problème lié à la limitation à 1 kHz en résolution de l’excitation devra être résolu afin

d’augmenter la capacité d’AROMA d’étudier la dissociation au seuil et de déterminer

des taux de dissociation, ce qui est crucial pour quantifier la stabilité des PAHs dans

les environnements astrophysiques (Montillaud et al 2013).
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Annexes

A General principles

A.1 Ion trap theory

A.1.1 Quadrupolar potential

The electrical potential in any point of the QIT can be described using the formalism

reported in the book of March and Todd [2005]. It is developed in Cartesian coordinates

as follows.

These calculations are done in a trap with no background gas and for a single ion.

In case of interactions between ions and the background gas, a higher order term has

to be included in the equations.

φx,y,z = A · (λx2 + σy2 + γz2) + C (23)

With A · (λx2 +σy2 + γz2) the term depending on the position in the trap and C is

a fixed parameter which is applied to all electrodes to “Float” the system.. Moreover

λ, σ and γ are weighting parameters to apply to the different directions.

Satisfying the Laplace condition we get :

∇2φ = ∂2φ

∂x2 + ∂2φ

∂y2 + ∂2φ

∂z2 = 0 (24)
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Thus we need the partial derivatives of φ:

∂φ

∂x
= ∂

∂x
· (A(λx2 + σy2 + γz2) + C) (25)

∂φ

∂x
= ∂

∂x
· (A(λx2)) (26)

∂φ

∂x
= 2 · Aλx (27)

(28)

Which leads to the second derivative : ∂
2φ

∂x2 (29)

∂2φ

∂x2 = ∂φ

∂x
· (2 · Aλx) (30)

∂2φ

∂x2 = 2 · Aλ (31)

Hence : (32)
∂2φ

∂y2 = 2 · Aσ ∂2φ

∂z2 = 2 · Aγ (33)

We get then :

∇2φ = ∂2φ

∂x2 + ∂2φ

∂y2 + ∂2φ

∂z2 = A(2 · λ+ 2 · σ + 2 · γ) = 0 (34)

The only way to get A = 0 is in the absence of electrical field, therefore the solution is

given by:

λ+ σ + γ = 0 (35)

In the case of a linear QIT we can derive:

λ = −σ = 1 ⇒ γ = 0 (36)

Thus we can retrieve the quadrupolar potential by substituting these values in the

equation 23 gives :

φx,y = A · (x2 − y2) + C (37)
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A.1.2 Quadrupolar hyperbolic geometry

In the case of hyperbolic electrodes, their shape can be described by :

x2

x2
0
− y2

a2 = 1 ⇒ in the x direction

x2

b2 −
y2

y2
0

= − 1 ⇒ in the y direction

x2

x2
0
− y2

a2 = 1 ⇒ in the x direction

x2

b2 −
y2

y2
0

=− 1 ⇒ in the y direction
(38)

In most cases the electrodes are dispatched around a circle of radius r0. In order to

achieve a real quadrupolar potential we need x0 = y0, thus symmetrically it’s easier to

have a hyperbolas with condition :

x0 = y0 = r0 (39)

which changes Equation 38 into :

x2

r2
0
− y2

r2
0

= 1 ⇒ in the x direction

x2

r2
0
− y2

r2
0

=− 1 ⇒ in the y direction

x2 − y2 = r2
0 ⇒ in the x direction

x2 − y2 =− r2
0 ⇒ in the y direction

(40)

From earlier we know that the potential can be seen as the difference between the
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potential from the two directions :

φx,y = A · (x2 − y2) + C

φx,y = Ax2 − Ay2 + C With C being a unknown constant

(41)

We can write :

φx,y = Ax2 + C − Ay2 + C Whence :

φx,y = φx − φy

We can then define the potential on the surface by using the special cases respec-

tively y = 0, x0 = r0 and x = 0, y0 = r0.

φx = A · (r2
0) + C (42)

φy = A · (−r2
0) + C (43)

Which gives :

φ0
x,y = φx − φy

φ0
x,y = 2A · (r2

0) (44)

A = φ0
2r2

0
(45)

Whence the general equation of the potential in the trap :

φ0
x,y = φ0

2r2
0
· (x2 − y2) (46)

A.1.3 Quadrupolar trap : ion motion

The potential being described, we have to describe the motion of the ions in such a

potential, to simplify the expressions we can consider the expression on one component,
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say x :

φ0
x,y = φ0x

2

2r2
0

(47)

(48)

Since force = mass × acceleration we want the force deriving from the potential

which is of the form :

Fx = −e
(
dφ

dx

)
y

where dφ
dx

: (49)

dφ

dx
= 2φ0x

2r2
0

(50)

dφ

dx
= φ0x

r2
0

Whence (51)

Fx = −eφ0x

r2
0

(52)

From the second law of Newton we get :

m

(
d2x

dt2

)
= −eφ0x

r2
0

(53)

In the trapping conditions of the trap the potential is of form :

φ0 = U + V cos (ωt)(we prefer to use this form of potential) (54)

With U the DC voltage applied on the electrodes and V the AC voltage (0-to-peak

amplitude).

m

(
d2x

dt2

)
= −e(U + V cos (ωt))x

r2
0

(55)

Which we can separate into two terms :

(
d2x

dt2

)
= −

(
eU

mr2
0

+ (eV cos (ωt))
mr2

0

)
x (56)
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A.1.4 Mathieu Equation

We will use the mostly used canonical form of the Mathieu equation which form is :

d2u

dξ2 + (au − 2qucos(2ξ))u = 0 (57)

Where ξ is a dimensionless parameter equal to ωt2 , t being time and ω a frequency.

Thus u is the displacement (in our case x). Then au and qu are dimensionless stability

parameters which we call trapping parameters since they are the parameters that will

tune the trapping of a specific ion with a specific mass m depending on the frequency

ω, DC U and AC V voltage. We can get d2

dξ2 from :

d

dt
= d

dξ
· dξ
dt

= d

dξ
·
d
(
ωt

2

)
dt

(58)

d

dt
= d

dξ
· ω2 = ω

2 ·
d

dξ
(59)

Whence

d2

dt2
= d

dt
· d
dt

=
(
ω

2 ·
d

dξ

)
·
(
ω

2 ·
d

dξ

)
(60)

d2

dt2
=

(
ω2

4 ·
d2

dξ2

)
Whence : (61)

d2u

dt2
= ω2

4 ·
d2u

dξ2 (62)

Then we can identify this equation to Equation 57 giving :

d2u

dt2
= −ω

2

4 (au − 2qucos(2ξ))u (63)

d2u

dt2
= −

(
ω2

4 au − 2ω
2qu
4 cos(2ξ)

)
u (64)
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ax = 4eU
mr2

0ω
2 (65)

qx = − 2eV
mr2

0ω
2

A.2 Time of Flight theory

Figure A.1 Principle scheme of a TOF. Ions are sent at time t = 0 from a certain point with a
given energy Ek = z· U. They travel to the point d = x and depending on their m/z arrive at different
times t = tion. We can then recover the values of m/z for the ions depending on their time of arrival
by using the set of equations presented below.

The TOF-MS, is based on the measurements of the time of flight of chemical species

(atom, radical or molecules) in a drift tube. Ions are accelerated toward the detector,

through the drift tube, by applying one or more uniform electrical fields U . To simplify,

we will use one electrical field for the equations. The resulting potential energy Epot is

given by:

Epot = z · U

where z is the charge and U the voltage used to apply the uniform electrical field.

This potential energy is converted to kinetic energy once the ions are accelerated. The

145



Annexes

kinetic energy transmitted to the ions is given by:

Ep = Ek = z · U = 1
2 ·mionv

2
ion (66)

vion = 2

√
2 · z · U
mion

This means that the kinetic energy Ek of the ions depends on their charge z. Two

cases can be differentiated. Depending on the charge z being positive or negative

the direction of the force F is, respectively, either with or against the direction of the

electrical field Secondly, depending on the number of electrical charge the Ek of the ions

will be different: if z = 2 the Ek will double, which is interesting for the differentiation

of ions reaching different ionization states. As an example an actual ion of 16 ua mass

with z = 1 or a doubly charged ion z = 2 with mass of 32 u will arrive at the same

time on the detector. The distance being the same for all the ions they will arrive after

a time tion depending on their mass from equation 67.

tion = d

v
(67)

tion = d√
2 · z · U
mion

= d · √mion√
2 · z · U

Equation shows that the time of flight is proportional to the the square root of the

m/z ratio. If only singly charged ions are present, the lightest ones reach the detector

first. From this time we can derive the m/z of the ion:

2 · z · U
mion

= d2

t2ion
(68)

mion = 2 · z · U · t2ion
d2

This mion is the mass of the ion arriving on the detector after a time tion if its

departure happened at the time t0 = 0 s. Since achieving an exact synchronization is

hardly possible it can be calibrated by using ions with known mass that will solve the
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equation.

mreal
ion = 2 · z · U · t2ion

d2 + t0

mreal
ion = 2 · z · U

d2 · t2ion + t0

mreal
ion = A · t2ion +B

Using two known molecules we can assert the values of the A and B parameters and

thus find the calibration curve of the mass spectrometer. Ions with similar m/z will

arrive to the detector with a time of flight spread. This is due to the initial conditions

of ions in the extraction region. The assumptions made to express the time of flight

as in 67 consider that all ions are created in the same parallel plane to the electrodes

and so they acquire the same kinetic energy at the same time. In practice the things

occur differently, the ions generated in the ion source are created at different times

and accelerated with an initial kinetic energy spread. The resulting signal of the ion

arrival with the same m/z is a peak with certain width defining the resolution of the

instrument.

B Other relevant experiments

B.1 Off resonance experiments.

When performing the first CID experiments, some off resonance experiments were

performed with low resolution isolation (no ejection of the 13C isotope and 5̃% of frag-

mentation) leading to the formation of other fragments. Figure B.1 presents the case

of an off resonance DE at 1500mV and with different excitation times. Increasing the

excitation time leads to a lower survival yield, as expected. Due to the width of the

excitation pulse (in m/z) we know that we are exciting at least the fragments -Hx from

pyrene. This implies that these experiments cannot be used to investigate fragmenta-

tion pathways and the origin of fragments because both parents and fragments can be

excited simultaneously.
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Figure B.1 CID spectra of pyrene cations as a function of the excitation time for an off resonance
DE at 180 kHz (corresponding secular frequency of 210 m/z) and 1500mV.

A second type of experiments consists in fixing the excitation time and varying

the excitation amplitude as presented in FigureB.2 and FigureB.3. These present

two cases in which the excitation frequency is centered at lower or higher frequency

relative to the secular frequency of the parent ions, exciting the ions around m/z=210

and m/z=199, respectively. In the later case and for a long interaction time, the H loss

fragments (m/z=201.07) are 100% dissociated and do not appear in the mass spectra.
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Figure B.2 Off resonance CID experiments of pyrene cations with an excitation frequency at 180 kHz
(centered on m/z=210) applied for 2ms in the presence of He background gas.

Figure B.3 Off resonance CID experiments of pyrene cations with an excitation frequency at 190
KHz (centered on m/z=199) applied for 10ms in the presence of He background gas.

In Table 11, The species referred by a star * are identified as reactivity products with

oxygen (mainly H2O but also O2) in the trap. This reactivity involves the fragments

of the pyrene cation which contain an odd number of hydrogens (Bruneleau [2007]).

Further fragmentation by CID of these reactivity products is likely the explanation

for the fragments with an odd number of carbon (e.g. C15Hx). Other explanation
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would involve the knock out process as presented in subsection 3.1.2 but the excitation

energies we can achieved in our trap are not high enough to favour this process. The

idea of products induced by reactivity in the trap is also strengthened by the evolution

of the abundance of the odd number of carbon species as a function of time (FigureB.1)

and DE frequency in off resonance excitation (FiguresB.2 and B.3).

150



Annexes

m/z peak This
work Attribution

Hx losses
201.07 (C16H9)

√ b,c,d,e,f (202 - H)
200.06 (C16H8)

√ b,c,d,e,f (202 - 2H/H2)/c,e,f (201 - H)
*219.08
(C16H11O)

√
(201 + H2O)

*217.06
(C16H9O)

√
(219 - 2H)

*205 (C15H9O)
√

(217 - C) / (201-C+O)
CHx losses

*191.06 (C15H11)
√

(219 - CO)
189 (C15H9)

√ b(202 - CH)
*189 (C15H9)

√
(217 - CO)

188 (C15H8)
√ b(202 - CH2)

*188 (C15H8)
√

(217 - HCO)
187 (C15H7)

√ b(202 - CH3)
*187 (C15H7)

√
(217 - H2CO) (215 - CO)

186 (C15H6)
√ a,b(202 - CH4)

*186 (C15H6)
√

(215 - HCO)
185 (C15H5)

√ a(200 - CH3)
*185 (C15H5)

√
(215 - H2CO) (213 - CO)

184 (C15H4) ∅ a(200 - CH4)
*184 (C15H4)

√
(213 - HCO)

C2Hx losses
177 (C14H9)

√ c(202 - C2H)
*177 (C14H9)

√
(205 - CO)

C3Hx losses
*167 (C12H7O)

√
(219 - C4H4)

C5Hx losses
139 (C11H7) ∅ a,b(202 - C5H3)
138 (C11H6)

√ a(202 - C5H4)
137 (C11H5)

√ a,b(202 - C5H5)
135 (C11H3)

√ a(200 - C5H7)
134 (C11H2)

√ a(202 - C5H8)

Table 11 Analysis of specific m/z species detected in our CID experiments and possible assignment. *
m/z peaks correspond to species which we attributed to products of the reactivity in the trap of pyrene
fragments with H2O and potentially O2 and their subsequent fragmentation by CID (see FigureB.3).
Previous results published in the literature have also been gathered corresponding to aShushan and
Boyd [1980], bPachuta et al. [1988], cNourse et al. [1992], dPyle et al. [1997], eGuo et al. [1999], and
f West et al. [2014b] illustrating the complexity of the dissociation patterns.
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B.2 On resonance procedure applied with Helium

Experiments were performed at high voltages and long excitation times using helium

with the aim to stretch the time corresponding to SY = 0.5. Theoretically there is a

factor 10 between the achievable Ecom between He and Ar, which leads to achievable

longer excitation time when using He. Here the SY = 0.5 at DE=500mV is reached

at 350 µs with Ar while it is reached at 5000 µs with He.

Figure B.4 Example of decay curve of PYR (continuous line) and FLU (dashed line) at 500mV
using He instead of Ar.

As observed earlier in the case of Ar, the decay curves of PYR and FLU are too

close to each other to differentiate the two isomers. with values at 5500 and 5750µs

for SY = 0.5 in the case of PYR and FLU, respectively.
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Differentiation of isomeric structures in cosmic dust components

ABSTRACT : Polycyclic aromatic hydrocarbons (PAH) are large carbonaceous molecules that are

the subject of investigation in various fields from astrochemistry to environmental science. Being a

major constituent of cosmic dust, they play a key role in regions of star formation, where their in-

frared emission is excited by ultraviolet photons. However, the mechanisms involved in their formation

remain poorly understood. In simulation experiments in the laboratory as in meteorites, the mass

m/z=202.08 corresponding to the species C16H10, has been identified as a key species in the growth of

these PAHs. This chemical formula includes several isomeric structures that need to be differentiated.

We used the AROMAmolecular analyzer to study the differentiation of C16H10 isomers by collision-

induced dissociation (CID), in the case of fluoranthene and pyrene (two compact structures) and that of

9-ethynylphenanthrene (structure with an alkyl group). The various experimental parameters control-

ling the CID were explored in order to determine optimized conditions for our experimental conditions.

At low collision energy, we have shown that the criterion of 50% dissociation of parent ions can be

used to differentiate condensed from non-condensed structures but is more difficult to differentiate

between condensed structures. The procedure has been applied to individual species, their mixtures,

and more complex samples of meteorite (Allende) and laboratory analogues of cosmic dust (dusty

plasma).

We have modeled the dynamics of the ions in the trap and extracted frequency and energy distri-

butions of collisions. The competition with the dissociation rate was treated by Monte Carlo method.

The model fit of the pyrene dissociation curve quantified the parameter η of transfer of kinetic energy

into internal energy. The fluoranthene dissociation curve could be modeled using the same values for

η. Finally, we were able to determine the dissociation rate of 9-ethynylphenanthrene, which is not yet

known.
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