Keywords: Edge-labeled graph, Spanning tree, Metaheuristic, Polyhedral Combinatorics, Branch-and-bound

The minimum labeling spanning tree problem (MLSTP) is a combinatorial optimization problem that consists in finding a spanning tree in a simple edge-labeled graph, i.e., a graph in which each edge has one label associated, by using a minimum number of labels. It is an NP-hard problem that has attracted substantial research attention in recent years. In its turn, the generalized minimum labeling spanning tree problem (GMLSTP) is a generalization of the MLSTP that allows the situation in which multiple labels can be assigned to an edge. Both problems have several practical applications in important areas such as computer network design, multimodal transportation network design, and data compression. This thesis addresses several connectivity problems defined over edge-labeled graphs, in special the minimum labeling spanning tree problem and its generalized version. The contributions in this work can be classified between theoretical and practical. On the theoretical side, we have introduced new useful concepts, definitions, properties and theorems regarding edge-labeled graphs, as well as a polyhedral study on the GMLSTP. On the practical side, we have proposed new heuristics -such as the metaheuristic-based algorithm MSLB, and the constructive heuristic pMVCAand exact methods -such as new mathematical formulations and branch-and-cut algorithmsfor solving the GMLSTP. Computational experiments over well established benchmarks for the MLSTP are reported, showing that the new approaches introduced in this work have achieved the best results for both heuristic and exact methods in comparison with the state-of-the-art methods in the literature.

Résumé

Soit L un ensemble fini d'élements appelés étiquettes. On appelle graphe étiqueté simple, un graphe simple dans lequel à chaque arête est associée une étiquette prise dans L. Le problème de l'arbre couvrant de nombre d'étiquettes minimal (en anglais: the minimum labeling spanning tree problem, MLSTP) est un problème d'optimisation combinatoire consistant à trouver un arbre couvrant dans un graphe étiqueté simple en utilisant un nombre minimum d'étiquettes. Le problème est NP-dur. Il a fait l'objet d'un nombre important de recherche au cours des dernières années. L'une de ces directions de recherche a par ailleurs conduit à l'étude d'une généralisation du problème dite problème generalisée de l'arbre couvrant de nombre d'étiquettes minimal (en anglais: the generalized minimum labeling spanning tree problem, GMLSTP). Le problème GMLSTP modélise les situations dans lesquelles plusieurs étiquettes peuvent être assignées à un arête. Les deux problèmes ont plusieurs applications pratiques dans des domaines importants tels que la conception de réseaux informatiques, la conception de réseaux de transport multimodaux et la compression de données. Nous proposons dans cette thèse plusieurs résultats théoriques contribuant à l'implantation de nouveaux schémas de résolution pratique de ces problèmes. En particulier, sur le plan théorique, nous avons introduit de nouveaux concepts, définitions, propriétés et théorèmes utiles, ainsi qu'une étude polyédrale du domaine des points réalisables d'une nouvelle formulation de GMLSTP. Cette formulation et son analyse ont permi le développement d'algorithmes de branchement et de coupe (branch-and-cut) pour la résolution exacte des problèmes. De nouvelles heuristiques ont été également développées -telles que l'algorithme basé sur la métaheuristique MSLB, et l'heuristique constructive pMVCA. Des résultats d'expériences numériques sur des benchmarks du problème MLSTP sont données. Elles démontrent la qualité des approches proposées dans cette thèse puisque, aussi bien pour les approches exactes qu'approchées, nous obtenons, comparativement à l'état de l'art du domaine, les meilleurs résultats de la littérature.

Mots-clés: Graphes à arêtes étiquetées, Arbre couvrant, Métaheuristiques, Polyédres, Branchand-bound.

List of Figures

Chapter 1 Introduction

Trees are one of the most fundamental concepts in Graph Theory. A tree is an undirected connected graph that has no cycles, or, alternatively, it is an undirected graph in which any two vertices are connected by a unique simple path. In its turn, a spanning tree of a graph G is a subgraph which is a tree and spans all the vertices of G. Spanning trees are closely related to connected graphs in the sense that a graph has a spanning tree if and only if it is connected. Also, a spanning tree is a connected graph with the minimum number of edges.

Given a connected undirected weighted graph G, the minimum spanning tree problem (MSTP) is a classical optimization problem that aims to find a spanning tree of G such that the sum of the weights of the selected edges is minimum. On the one hand, there are some algorithms that solve the MSTP in polynomial time, e.g. the Prim's algorithm and the Kruskal's algorithm [START_REF] Cormen | Introduction to algorithms[END_REF]. On the other hand, several problems derived from the MSTP are NP-Hard, such as the Steiner tree problem [START_REF] Karp | Reducibility among combinatorial problems[END_REF], the generalized minimum spanning tree problem [START_REF] Myung | On the generalized minimum spanning tree problem[END_REF], the capacited minimum spanning tree problem [START_REF] Jothi | Approximation algorithms for the capacitated minimum spanning tree problem and its variants in network design[END_REF], and the degree constrained minimum spanning tree problem [START_REF] Bui | An ant-based algorithm for finding degree-constrained minimum spanning tree[END_REF], among others.

The main subject of this Thesis is the minimum labeling spanning tree problem (ML-STP), another variant of the MSTP. The MLSTP is a NP-hard combinatorial optimization problem, introduced by [START_REF] Chang | The Minimum Labeling Spanning Trees[END_REF], that consists in finding a spanning tree in an edgelabeled graph (ELG), a graph in which each edge has one label associated, by using a minimum number of labels. The MLSTP has applications in areas such as computer networks [START_REF] Consoli | Greedy Randomized Adaptive Search and Variable Neighbourhood Search for the minimum labelling spanning tree problem[END_REF], multimodal transportation networks ([START_REF] Van-Nes | Design of Multimodal Transport Networks: A Hierachical Approach[END_REF], and data compression [START_REF] Chwatal | Solving an Extended Minimum Label Spanning Tree Problem to Compress Fingerprint Templates[END_REF], as discussed later in Section 1.2.

ELGs are commonly used to model situations where it is desirable to represent the same characteristic among different regions of the graph. One can say ELGs can represent qualitative properties instead of quantitative ones. Several problems defined over ELGs have been addressed in the last few years, such as the MLSTP [START_REF] Chang | The Minimum Labeling Spanning Trees[END_REF], the minimum labeling s-t-path problem [START_REF] Carr | On the red-blue set cover problem[END_REF], the minimum labeling s-t cut problem [START_REF] Coudert | Shared risk resource group complexity and approximability issues[END_REF], the minimum labeling Steiner problem (Cerulli et al., 2006a), the labeled maximum matching problem [START_REF] Carrabs | The labeled maximum matching problem[END_REF], and the maximum flow with the minimum number of labels [START_REF] Granata | Maximum Flow Problems and an NP-Complete Variant on Edge-Labeled Graphs[END_REF], among others. All these variants illustrate the importance of the problem in the scientific literature.

This work presents new useful concepts and definitions regarding to ELGs; heuristic, exact and hybrid approaches to solve the MLSTP; a polyhedral study of this problem; and a brief discussion about problems related to the MLSTP. In the remaining of this Chapter we introduce some basic concepts and definitions which are necessary to fully understand our contribution. We also discuss the motivations for studying the MLSTP, present the general and specific objectives of this work, and make a brief overview of the next chapters of this Thesis.

Basic concepts and denitions

In this Section we introduce some basic concepts and definitions necessary for understanding this work, as well as conventions that will be used throughout this Thesis. First, we state the concept of ELG and give the formal definition of the MLSTP: Definition 1.1. An edge-labeled graph is an undirected simple graph G = (V, E, L), in which V is the set of vertices, E is the set of edges, L is the set of labels, and l(e) ∈ L represents the label associated with the edge e, ∀e ∈ E. Definition 1.2. Given a connected ELG G = (V, E, L), the MLSTP aims to find a spanning tree T = (V, E , L), such that E ⊆ E, L ⊆ L, and |L | is minimized.

An equivalent definition for the MLSTP is given by [START_REF] Brüggemann | Local search for the minimum label spanning tree problem with bounded color classes[END_REF], based on the concept of subgraph induced by a set of labels. Proving the equivalence between Definitions 1.2 and 1.4 is straightforward. Indeed, as observed by Xiong et al. (2005a), if G[L] is connected, then any spanning tree of G[L] has at most |L | labels; if L * is the smallest set of labels such that G[L *] is connected, then any spanning tree of G[L *] is a minimum labeling spanning tree of G. Throughout this Thesis we use this Definition 1.4 of the MLSTP.

Let G = (V, E, L) be an ELG as given in Definition 1.1. In order to standardize its representation:

• The elements of the set of vertices V will be represented by positive integer numbers, for instance: V = {1, 2, 3, . . .};

• The elements of the set of labels L will be represented by uppercase letters, for instance: L = {A, B,C, . . .};

• Each element of the set of edges E will be represented in the form e = (p, q), where p, q ∈ V are the endpoints of e, for instance: E = {e 1 = (1, 2), e 2 = (1, 3), e 3 = (2, 3), . . .}.

In order to provide a better visualization of the ELGs, as observed in the Figure 1.1, the graphs will have a color associated with each label l ∈ L, as indicated by a subtitle near each graph. For this reason, the terms label and color will be used interchangeably throughout this work. Additionally, there is a letter close to each edge (arc) indicating its label. 2008) that allows multi-labeling. In this case, multiple labels can be assigned to an edge, which could be mathematically represented by the function l m : E → 2 L . Note that, if an edge e ∈ E has m = |l m (e)| ≥ 2, it may be replaced with m parallel edges (leading to a multigraph), where each edge is associated with a different label of l m (e).

Remark that any method proposed for the GMLSTP can be directly used on the MLSTP, since the latter is a special case of the former. Follows a simple definition of the GMLSTP based on the multigraph representation of multi-labeling.

Definition 1.5. Let G = (V, E, L) be a connected multi ELG, i.e. an ELG which could have parallel edges and loops, the GMLSTP aims to find a smallest cardinality subset L ∈ L such that G[L] is connected.

The example in Fig. 1.2 shows a small instance for the GMLSTP in which V = {1, 2, 3, 4, 5, 6, 7, 8}, L = {A, B,C, D, E, F}. Finally, in some occasions is also convenient to define the concept of arc-labeled digraphs (ALD):

Definition 1.6. An arc-labeled digraph is a directed (multi) graph D = (V, A, L), in which V is the set of vertices, A is the set of arcs, L is the set of labels, and the function l a : A → L returns the label associated with the input arc.

Analogously to the definition of E on ELGs, each arc a ∈ A is represented as a = (p, q), for p, q ∈ V , such that p is the tail of a and q is its head. For instance: A = {a 1 = (1, 2), a 2 =

(1, 3), a 3 = (2, 3), . . .}.

Motivation

Much attention has been spent with problems defined on ELGs in the last few years, specially with the MLSTP, one of the most (if not the most) widely studied problem regarding the ones defined on this kind of graph. The MLSTP has been addressed by many heuristic, exact and approximation methods. The main motivation of this work is to develop new exact, heuristic an hybrid techniques for the MLSTP in order to obtain better results both in terms of solution quality and computational time. Moreover, to highlight the relevance of the theme, it is possible to identify important applications for the MLSTP in several areas, such as:

Design of homogeneous computer networks: As described by [START_REF] Consoli | Greedy Randomized Adaptive Search and Variable Neighbourhood Search for the minimum labelling spanning tree problem[END_REF], the ML-STP (GMLSTP) can be applied in the design of homogeneous computer networks to provide connectivity between all the nodes by using the minimum number of physical (or logical) media types. This kind of network presents some desirable characteristics, such as low cost to implement and lower complexity, which reduces the maintenance costs. Examples of different possible communication media types are (mono or multimode) fiber optic cables, twisted pair Ethernet cables, coaxial cables, or different technologies/frequencies of wireless links [START_REF] Tanenbaum | Redes de computadores[END_REF].

The Figure 1.3 illustrates the GMLSTP applied to the design of a homogeneous computer network. Fig. 1.3(a) shows the logical project of a network with six routers. The lines represent the possible links while the letters represent the media that is compatible with each router. Fig 1.3(b) demonstrates the ELG generated from the logical project: for each router there is a vertex, for each protocol there is a label, and for each link there is a set of edges corresponding to the common protocols between two routers. Fig. 1.3(c) presents the solution of the GMLSTP associated with the logical project. Systems [START_REF] Lam | How park-and-ride schemes can be successful in Eastern Asia[END_REF], offered to attract car users to public transport; and the TrainTaxi system from Netherlands, which uses a dedicated taxi fleet to collect and distribute train passengers.

The fundamental component of the multimodal transport system is the design of the multimodal transport network. It consists in planning the interconnection between the different types of transport modes and their transfer points. Multimodal transport networks are an interesting approach to deal with the current (public) transport problems, such as deterioration of access to city centers, recurrent congestion and environmental impacts. user. The SC is composed of all entities involved directly or indirectly in this process, such as manufacturers, suppliers, warehouses, carriers and consumers [START_REF] Ballou | Gerenciamento da Cadeia de Suprimentos-: Logística Empresarial[END_REF].

The transportation network is the set of transport modes, locations and routes by which a product can be delivered. The mode of transportation is the manner in which a product is moved from one location to another in the supply chain network. Commonly, the companies can choose between air, truck, rail, sea, and package carriers as modes of transport for products.

According to [START_REF] Chopra | Supply chain management. Strategy, planning & operation[END_REF], the transportation network is a relevant component of the costs of the SCs, accounting for more than ten percent of the United States Gross Domestic Product (GDP) in 2002. pany that wants to deliver goods from Brazil to all the other countries of South America. Fig.

1 .6(a) shows the ELG generated: the vertices represent the countries and each label is associated with a carrier that can be hired to move the products between the countries indicated by the edges. Fig. 1.6(b) presents a solution for this instance of the GMLSTP where all countries are served by hiring only the carriers A, C and D.

Objectives

The main objectives of this work are as follows.

• Review the MLSTP, describing practical applications and some of the most successful solution methods proposed in the literature.

• Perform a theoretical study on the ELGs, leading to new useful concepts and definitions that can be used by the heuristic and exact methods proposed.

• Develop exact approaches based on mixed-integer programming (MIP) for the MLSTP, as well as conduct a polyhedral study for the problem.

• Develop a general hybrid (MIP-heuristic) algorithm capable of solving large instances of the MLSTP in reasonable time.

• Address some variants and problems related to the MLSTP that arose during this study.

Thesis outline

The remainder of this work is organized as follows.

• Chapter 2 performs a literature review of both MLSTP and GMLSTP. The most successful heuristic, metaheuristic and exact methods for these problems are described.

• Chapter 3 presents new concepts and definitions related to the ELGs as well as theoretical results, such as reduction rules, lower bounds, and ELG transformation techniques.

• Chapter 4 describes a new MIP-based formulation composed only by the edge variables for the GMLSTP, namely CCut, a branch-and-cut algorithm, a new branch-and-bound strategy, new sets of valid inequalities and the computational experiments.

• Chapter 5 defines the polytope of CCut, proves that three new families of inequalities and the bounding constraints are facet defining under certain conditions, and compares the polytope defined by the formulations described in this work.

• Chapter 6 describes improvements for the exact methods introduced previously: a new mathematical formulation that extends CCut; two new branching strategies for solving the CCut model; and a new branch-and-cut algorithm. Further, computational experiments are performed to evaluate the proposed methods.

• Chapter 7 presents new constructive and local search heuristics and a hybrid metaheuristic for the GMLSTP, describing how an exact procedure is integrated into the heuristic framework. Computational experiments are reported comparing the proposed methods with the state-of-the-art ones.

• Chapter 8 addresses other connectivity problems defined on ELGs, such as the minimum labeling path problem and the maximum flow minimal labeling problem. Moreover, we propose extensions and/or adaptations of the colorful cuts formulation for solving these problems.

• Chapter 9 addresses the minimum labeling global cut problem, which aims to find the minimum number of labels whose removal disconnects the input ELG. We propose three new mathematical formulations for this problem and branch-and-cut algorithms to solve them.

• Chapter 10 introduces a new connectivity problem defined on ELGs, the minimum representation spanning tree problem. In contrast to the MLSTP, this new problem aims the homogeneity of each vertex in the solution graph. We propose a mathematical formulation for the problem, as well as two new constructive heuristics.

• Chapter 11 discuss the concluding remarks and the possible paths for the continuity of this research.

Chapter 2

Literature Review

This Chapter presents a literature review on the MLSTP, introducing some of the more important results regarding both this problem and the GMLSTP. First, a brief overview on works about the MLSTP and the GMLSTP is presented. In the sequel, we recall an NP-completeness proof for the problem and discuss more in deep the heuristic, metaheuristic, and exact methods with the best results in the literature. The reader should refer to [START_REF] Granata | Maximum Flow Problems and an NP-Complete Variant on Edge-Labeled Graphs[END_REF] for more information on problems formulated over ELGs, they have conducted an extensive survey on this kind of problem.

The MLSTP was proposed by [START_REF] Chang | The Minimum Labeling Spanning Trees[END_REF], which have proved it is NP-hard by reduction from the set covering problem. Independently, [START_REF] Broersma | Spanning trees with many or few colors in edge-colored graphs[END_REF] have proved that the MLSTP is NP-hard by reduction from the minimum dominating set problem.

Given f , the maximum number of edges with the same label, [START_REF] Brüggemann | Local search for the minimum label spanning tree problem with bounded color classes[END_REF] have applied the local search technique k-switching and have proved that the MLSTP is polynomial time solvable if f ≤ 2, but it is NP-hard and APX-complete for f ≥ 3. Moreover, they have showed that the problem can be approximated with a factor equal to f /2 through k-switching.

Since the late 1990s, many heuristic and exact methods have been developed for the MLSTP. The most successful greedy heuristic algorithm is the maximum vertex covering algorithm (MVCA) [START_REF] Chang | The Minimum Labeling Spanning Trees[END_REF]. Given its capacity to achieve relatively good results in a short amount of time, the MVCA is commonly found in construction or rebuilding phases of metaheuristics. Section 2.2 address the MVCA in more detail. Recently, [START_REF] Cerrone | Carousel greedy: a generalized greedy algorithm with applications in optimization[END_REF] have proposed a new general greedy heuristic, namely the carousel greedy algorithm (CGA), and used the MLSTP for validate the concept. They have adapted the iterated greedy algorithm (IGA) [START_REF] Ruiz | A simple and effective iterated greedy algorithm for the permutation flowshop scheduling problem[END_REF] and the pilot method [START_REF] Duin | The Pilot method: A strategy for heuristic repetition with application to the Steiner problem in graphs[END_REF] to the MLSTP and compared them with the CGA, which achieved the best results. The CGA is presented in Section 2.3.

Several metaheuristics-based algorithms have been proposed for the MLSTP. The first one was the genetic algorithm of Xiong et al. (2005a), obtaining better results in comparison with the MVCA. [START_REF] Cerulli | Metaheuristics Comparison for the Minimum Labelling Spanning Tree Problem[END_REF] have analyzed the performance of the metaheuristics reactive tabu search, simulated annealing (SA) and VNS, while [START_REF] Xiong | Improved Heuristics for the Minimum Label Spanning Tree Problem[END_REF] developed the modified genetic algorithm (MGA), achieving the best results so far. [START_REF] Nummela | An effective genetic algorithm for the minimum-label spanning tree problem[END_REF] have proposed tree new genetic algorithms for the MLSTP, but, unfortunately, they have not compared them with the other metaheuristics in the literature. [START_REF] Consoli | Solving the minimum labelling spanning tree problem using hybrid local search[END_REF] have proposed an hybrid VNS-SA method and [START_REF] Consoli | Greedy Randomized Adaptive Search and Variable Neighbourhood Search for the minimum labelling spanning tree problem[END_REF] have implemented methods based on the metaheuristics GRASP and VNS, outperforming both MGA and VNS-SA. Moreover, [START_REF] Chwatal | Solving the Minimum Label Spanning Tree Problem by Mathematical Programming Techniques[END_REF] have implemented an ant colony optimization method for the problem. Recently, [START_REF] Consoli | Solving the Minimum Labelling Spanning Tree Problem by Intelligent Optimization[END_REF] developed two new metaheuristics-based methods, COMPL and INTELL, that use the concepts of complementary space and auto-adjusting parameters over a VNS framework, achieving the best heuristic results for the problem so far. These methods are detailed in Section 2.4. [START_REF] Cerrone | Omega one multi ethnic genetic approach[END_REF] have proposed a multi ethnic genetic algorithm for the MLSTP, but only presented preliminary experiments on small ELGs.

The first exact method for the MLSTP was proposed by [START_REF] Chang | The Minimum Labeling Spanning Trees[END_REF]: it consists of an implicit enumeration method based on an A * -search algorithm. [START_REF] Chen | Comparison of heuristics for solving the gmlst problem[END_REF] proposed the first mixed integer linear program (MIP) formulation for the problem based on the Miller-Tucker-Zemlin (MTZ) inequalities for cycle elimination, whereas [START_REF] Captivo | A Mixed Integer Linear Formulation for the Minimum Label Spanning Tree Problem[END_REF] proposed an MIP formulation based on the root-oriented single commodity flow model (SCF).

In their extensive study on mathematical programming techniques for solving the GML-STP, [START_REF] Chwatal | Solving the Minimum Label Spanning Tree Problem by Mathematical Programming Techniques[END_REF] adapted previous formulations-SCF and MTZ-to the GML-STP and proposed four new MIP models:

• The multicommodity flow formulation (MCF) extends the SCF with the introduction of multiple commodities.

• The cycle-elimination formulation (CE) ensures the feasibility of the integer solutions by enforcing the minimum number of edges and prohibiting cycles.

• The directed cut formulation (DCut) is a directed cut-based formulation with an exponential number of constraints.

• The epsilon connectivity formulation (EC) is a cut-based formulation with an exponential number of constraints but without arc variables. [START_REF] Chwatal | Solving the Minimum Label Spanning Tree Problem by Mathematical Programming Techniques[END_REF] further proposed cuts to strengthen the models and introduced a polyhedral comparison to evaluate the relative quality of its linear relaxations (LR). They also implemented branch-and-cut (BC) and branch-and-cut-and-price (BCP) algorithms based on the formulations CE, DCut, and EC. The present investigation is focused on the DCut and EC models, which provided the best numerical results along with some strengthening cuts. Sections 2.5, 2.6 and 2.7 detail these formulations.

The next sections recall The NP-completeness proof provided by [START_REF] Chang | The Minimum Labeling Spanning Trees[END_REF] for the MLSTP and discuss more deeply the most successful heuristic, metaheuristic, and exact methods proposed for the MLSTP. Given U the universe set, S a set of subsets of U, and a constant k ∈ Z + , the question associated with the decision version of the set covering problem, which is NP-complete [START_REF] Karp | Reducibility among combinatorial problems[END_REF], is if there exists a set

NP-completeness proof

C ⊆ S such that |C| ≤ k and S∈C (S) = U. First, let G(U, S) = (V, E, L) be an ELG built as follows: let V = {v u | u ∈ U}, V = {v s | s ∈ S}, and V = V ∪ V ∪ {v * }, where v * is a special vertex; let L = {k s | s ∈ S} and L = L ∪ {k * }, where k * is a special label; finally, let E = {e = (v * , v s) | s ∈ S}, such that l(e) = k * , ∀e ∈ E , let E = {e = (v s , v u) | s ∈ S such that u ∈ s}, such that l(e) = k s , ∀e ∈ E , and let E = E ∪ E .
It is straightforward to verify that this construction can be accomplished in polynomial time and that G(U, S) = (V, E, L) has a spanning tree with k labels if and only if a minimum set covering with k -1 sets does exist. Figure 2.1 illustrates the construction of the graph G(U, S).

MVCA

It is possible to state that MVCA is the most important constructive heuristic for the MLSTP. As introduced previously, it has been used to provide initial solutions or to complete partial ones by many metaheuristic-based methods, such as the VNS and GRASP procedures proposed by [START_REF] Consoli | Greedy Randomized Adaptive Search and Variable Neighbourhood Search for the minimum labelling spanning tree problem[END_REF] and COMPL and INTELL ones proposed by [START_REF] Consoli | Solving the Minimum Labelling Spanning Tree Problem by Intelligent Optimization[END_REF]. Even other constructive heuristics, such as the Pilot Method [START_REF] Cerulli | Metaheuristics Comparison for the Minimum Labelling Spanning Tree Problem[END_REF] and the Carousel Greedy [START_REF] Cerrone | Carousel greedy: a generalized greedy algorithm with applications in optimization[END_REF], rely on MVCA to build or to rebuild solutions.

As proposed by [START_REF] Chang | The Minimum Labeling Spanning Trees[END_REF], the MVCA consists in: starting with an empty ELG G = (V, E = / 0, L = / 0), iteratively add to L the label l that covers as many uncovered vertices as possible, until G is connected. [START_REF] Chang | The Minimum Labeling Spanning Trees[END_REF] have demonstrated that the

time complexity of MVCA is O(|V | • |E| • |L|).
Arguing that the MVCA could lead to unconnected solutions, [START_REF] Krumke | On the Minimum Label Spanning Tree Problem[END_REF] have proposed a modified version the MVCA in order to guarantee the correctness of the so- In addition, [START_REF] Krumke | On the Minimum Label Spanning Tree Problem[END_REF] also have proved that MVCA can yield a solution no greater than 1 + 2ln|V | times optimal. Afterwards, [START_REF] Wan | A Note on the Minimum Label Spanning Tree[END_REF] factor of H f , where H f is the f th harmonic number (equation 2.1). Later, they constructed a worst-case family of graphs such that the MVCA solution is exactly H f times the optimal solution.

H f = f ∑ i=1 i -1 = 1 + 1 2 + 1 3 + • • • + 1 f .
(2.1) [START_REF] Consoli | Constructive heuristics for the minimum labelling spanning tree problem: a preliminary comparison[END_REF] have studied several variants of the MVCA, such as the Frequency MVCA, the Random MVCA, and the Pilot-First MVCA. Recently, [START_REF] Cerrone | Carousel greedy: a generalized greedy algorithm with applications in optimization[END_REF] have conducted an experiment on the quality of the selections performed by the MVCA. They have generated 10.000 ELGs randomly in such a way that the optimal solution is known in advance, and executed the MVCA for each graph. They have shown that the first selections of the MVCA are not good, once the average percentage of the selected labels that are in the optimal solution was less than 55%. On the other hand, for the last selections, the average percentage of the selected labels that are in the optimal solution was between 55 and 77%. Furthermore, in a second experiment, the authors have demonstrated that the MVCA performs very poorly when L has a small cardinality.

The Carousel Greedy Algorithm

The carousel greedy algorithm (CGA) is a generalized greedy heuristic proposed by [START_REF] Cerrone | Carousel greedy: a generalized greedy algorithm with applications in optimization[END_REF] which seeks to overcome some of the known problems of the traditional greedy approaches, such as the poor quality of the first greedy choices. The authors have applied the CGA to the MLSTP and compared it with others constructive heuristics, namely the IGA, the Pilot Method and the MVCA. The CGA achieved the best performance.

The CGA adapted to the MLSTP is presented in the Algorithm 2.2. The method takes two parameters: α ∈ N controls the number of iterations in the carousel phase, while β ∈ (0, 1] controls the size of the carousel. The first step (line 2) is to take an initial solution using the MVCA. The destruction phase (line 3) removes some labels from the initial solution, leaving a partial one. The carousel phase (lines 4 to 7) consists in removing the label that was first added to the current solution and to add a new one using the greedy criteria of MVCA. The final phase (lines 8 to 10) applies the MVCA until a feasible solution is obtained. Figure 2.2 illustrates an execution of CGA adapted for the MLSTP.

Algorithm 2.2: The Carousel Greedy Algorithm completes infeasible solutions given by the Shaking-Phase by using the MVCA procedure and then it tries to delete labels, one by one, whilst maintaining feasibility.

1 procedure CGA(G = (V, E, L), α, β) 2 Let C ← MVCA(G)
Algorithm 2.3: VNS para o MLSTP.

1 procedure VNS(G = (V, E, L)) 2 C ← randomSolution(); 3 repeat 4 k ← 1, k max ← 4 3 |C|; 5 while k < k max do 6 C ← Shaking-Phase(C, k); 7 C ← Local-Search(C); 8 if |C | < |C| then 9 C ← C ; 10 k ← 1, k max ← 4 3 |C|;

The Directed Cut Formulation

The directed cut (DCut) formulation, proposed by [START_REF] Chwatal | Solving the Minimum Label Spanning Tree Problem by Mathematical Programming Techniques[END_REF], is a root-oriented model that ensures the connectivity of the solution by enforcing the existence of a valid directed path from an arbitrary root vertex r ∈ V to all other vertices of the graph. To this end, it defines the ALD D = (V, A, L), in which every edge e ∈ E yields two antiparallel arcs a, a to the set A.

Let e(a) be the originating edge of a, and let the function l a : A → L denote the label of the arc a such that l a (a) = l(e(a)).

The DCut formulation uses the set of binary variables z l ∈ {0, 1}, ∀l ∈ L to indicate that the label l is in the solution and the variables y a , ∀a ∈ A, equals to 0, to show that the arc a is not used in the final arborescence. The program (2.2) through (2.7) presents the DCut formulation proposed by [START_REF] Chwatal | Solving the Minimum Label Spanning Tree Problem by Mathematical Programming Techniques[END_REF]. For sake of unified notation the formulation given here is adapted for the multigraph approach.

Minimize ∑ l∈L z l (2.2)

s.t. ∑ a∈δ -(S) y a ≥ 1, ∀S ⊆ V \{r}, (2.3) z l a (a) ≥ y a , ∀a ∈ A, (2.4) y a + y a ≤ 1, ∀a ∈ A, (2.5) z l ∈ {0, 1}, ∀l ∈ L, (2.6) y a ≥ 0, ∀a ∈ A.
(2.7)

The objective function (2.2) aims to minimize the number of labels; the exponential number of directed cut constraints (2.3) ensures the feasibility of the solution, where δ -(S)

denotes the set of ingoing arcs of the cut set [S,V \S], for S ⊂ V ; constraints (2.4) bind the label and arc variables; constraints (2.5) reinforce the formulation by prohibiting single edge circuits, where a represents the antiparallel arc of a; and expressions (2.6) and (2.7) define the domain of the variables.

The B&C algorithm proposed by [START_REF] Chwatal | Solving the Minimum Label Spanning Tree Problem by Mathematical Programming Techniques[END_REF] for the DCut formulation separates inequalities (2.3) by computing the maximum flow from r to each vertex v ∈ V \{r}.

If the minimum (rv)-cut found is less than 1, then the corresponding constraint is added to the model.

The Epsilon Connectivity Formulation

The epsilon connectivity formulation was motivated by the findings of [START_REF] Captivo | A Mixed Integer Linear Formulation for the Minimum Label Spanning Tree Problem[END_REF], who showed (for flow formulations) that the correct optimal objective function value can be obtained even if the edge variables are continuous. [START_REF] Chwatal | Solving the Minimum Label Spanning Tree Problem by Mathematical Programming Techniques[END_REF] extended this result for further GMLSTP formulations such as DCut and EC.

Hence, the EC formulation defines the continuous edge variable x e , ∀e ∈ E, to denote that e is used or not in the final tree. The EC formulation uses the same set of binary variables z l ∈ {0, 1}, ∀l ∈ L, as the DCut model. The program (2.8) through (2.12) presents the EC formulation proposed by [START_REF] Chwatal | Solving the Minimum Label Spanning Tree Problem by Mathematical Programming Techniques[END_REF]. For sake of unified notation the formulation given here is adapted for the multigraph approach.

Minimize ∑ l∈L z l (2.8)

s.t. ∑ e∈δ (S)
x e ≥ ε, ∀S ⊂ V, S = / 0, (2.9) z l(e) ≥ x e , ∀e ∈ E, (2.10)

z l ∈ {0, 1}, ∀l ∈ L, (2.11)
x e ≥ 0, ∀e ∈ E.

(2.12)

The objective function (2.8) minimizes the number of labels; with some arbitrary small real number ε, the exponential set of cut-based constraints (2.9) ensures the feasibility of the solution, where δ (S) denotes the edges of the cut set [S,V \S]; constraints (2.10) bind label and edge variables; expressions (2.11) and (2.12) define their domains. The model can be further strengthened by inequalities (2.13).

∑ e∈δ (v)

x e ≥ 1, ∀v ∈ V.

(2.13)

In their work, [START_REF] Chwatal | Solving the Minimum Label Spanning Tree Problem by Mathematical Programming Techniques[END_REF]

Strengthening the formulations

Furthermore, [START_REF] Chwatal | Solving the Minimum Label Spanning Tree Problem by Mathematical Programming Techniques[END_REF] proposed additional inequalities to strengthen the formulations. (2.15)

The strong linkage constraints, namely (2.16) and (2.17), provide a more direct link between the label and edge (arcs) variables by replacing their respective inequalities (2.4) and

(2.10). Note that the tree search and strong linkage constraints cannot coexist because this simultaneity could discard several valid solutions, including the optimal one. Moreover, the strong linkage cannot be used in the multi-labeling scenario when it is addressed by the function l m : E → 2 L . However, this restriction does not apply to the multigraph approach.

z l a (a) = y a , ∀a ∈ A.

(2.16)

z l(e) = x e , ∀e ∈ E.
(2.17) Let l s (E) be the set of labels represented by the set of edges E ⊆ E. The node label inequalities (2.18) strengthen the DCut and EC models with respect to its linear relaxations (LR) by requiring at least one active label for every cut [S,V \S] with |S| = 1. [START_REF] Chwatal | Solving the Minimum Label Spanning Tree Problem by Mathematical Programming Techniques[END_REF] showed that a vertex v is occasionally sufficiently connected in the LR, according to inequalities (2.3) and (2.13), with S = {v}, but the LR is infeasible with respect to the associated node label inequality.

∑ l∈l s (δ (v)) z l ≥ 1, ∀v ∈ V. (2.18)
Part II

Theoretical, Exact, and Heuristic Approaches

The second part of this thesis presents the main contributions of this work with respect to both the MLSTP and the GMLSTP. We present new interesting theoretical results about edge-labeled graphs, such as label contraction operations and polyhedral studies. Further, we introduce a new mathematical formulation and a new MIP-based metaheuristic for these problems. Finally, we carry out computational experiments in order to evaluate the performance of the proposed methods in comparison with the best ones in the literature.

Chapter 3

Theoretical Aspects

In this Chapter we present new useful concepts, definitions and theoretical results regarding ELGs, the MLSTP, and the GMLSTP. First, we recall the definition of ELG and introduce some new notation. Then, we formalize the concepts of edge and label contraction on ELGs, as well as discuss the relation between label contraction and induction by labels. In the sequel, we address procedures that transform ELGs while keeping the optimality with respect to the GMLSTP. Finally, we propose bounds on the number of edges, vertices, and on the objective function for the GMLSTP.

Recall, from Definition 1.1, that an ELG G = (V, E, L) is an undirected graph in which

V is the set of vertices, E is the set of edges, and L is the set of labels. Further, let the function l : E → L represents the label associated with the edge e and the function

E(L) = {e ∈ E | l(e) ∈
L }, L ∈ L, be the set of edges that have the label in L . Also, recall, from Definition 1.3, that

G[L] = (V, E(L), L)
is the spanning subgraph of G induced by the set of edges E(L).

Label Contraction

In this Section, we introduce the label contraction operation on ELGs and discuss some important characteristics of the contracted graphs. For the next definitions, let G = (V, E, L) be an edge-labeled graph such that k ∈ E, and i, j ∈ V . Furthermore, let π(k, i, j) be a function that changes each endpoint of the edge k to j if it is equal to i or keep it unchanged otherwise. Proof. Let C ⊆ L\L . To prove this Theorem, we show that G[L ∪C] is connected if and only if

H[C] is connected. (⇒) Suppose G[L ∪ C] is connected and H[C] is disconnected. In such case, H[C] has an empty cut-set [N,V \N], N ⊂ V , N = / 0. Further, let N = {v(S 1), v(S 2), • • • , v(S n)} be the rep- resentation of this set in terms of W (G[L]). Further, let W = {S | v(S) ∈ N}, W ⊂ W (G[L]), and W = W (G[L])\W . Since G[L ∪ C] is connected, there is an edge e = (v 1 , v 2) ∈ E such that v 1 ∈ S a , v 2 ∈ S b , S a ∈ W
(⇐) Suppose H[C] is connected and G[L ∪ C] is disconnected. In this case, G[L ∪ C] has an empty cut-set [N, N], N ⊂ V , N = / 0, N = V \N. Since G[L ∪ C] is G[L] plus the edges of E(C), and given that W (G[L]) = {S 1 , S 2 , • • • , S w }, we have, without loss of generality, that N = S 1 ∪ S 2 ∪ • • • ∪ S n and N = S n+1 ∪ S n+2 ∪ • • • ∪ S w , n < w. However, given that H[C] is connected, the cut-set [{v(S 1), v(S 2), • • • , v(S n)}, {v(S n+1), v(S n+2), • • • , v(S w)}] is not

Transformations on Edge-Labeled Graphs

In this Section we address some characteristics of the ELGs that allow us to transform it without losing the optimality with respect to the GMLSTP. These transformations lead to graphs with a the results presented in Proposition 3.2 and Corollary 3.1, but here we give a more formal treatment for these results, as well as extend them. First we give the formal definitions of monochromatic cycles and cuts, as well as discuss how to deal with it.

Definition 3.6. Given an ELG, a monochromatic cycle is a cycle formed solely by edges with the same label.

Proposition 3.2. [START_REF] Krumke | On the Minimum Label Spanning Tree Problem[END_REF]: Without loss of optimality, any monochromatic cycle can be broken by arbitrarily choosing an edge and removing it from the graph.

Proof. Let G(V, E, L) be an edge-labeled graph, and Algorithm 3.1 describes the procedure MCR, which uses disjoint sets data structures [START_REF] Cormen | Introduction to algorithms[END_REF]. The initializatoins of the data structures are performed in lines 2, 3, 5, and 6. The main loop of line 4 iterates over each label of the input ELG, while the loop of the lines 7 to 10 iterates on the set of edges with the label l, removing the cycle ones. Lastly, a monochromatic-cycle-free graph is returned in line 13. The initialization of the structures takes O(n). The internal loop performs at most 3 Union-Find operations for each edge of the graph, while keeping the history of the changes on the Union-Find structure S allows to restore it with the same number of operations that have changed it. Thence, the complexity of the MCR is

P = {e 1 = (v 1 , v 2), e 2 = (v 2 , v 3), • • • , e n = (v n , v 1)}, such that l(i) = k, ∀ i ∈ P,
O(n + α(m, n) • m)
, and since the input ELG is connected, m ≥ n -1, and the complexity of the

MCR is O(α(m, n) • m).
Algorithm 3.1: The monochromatic cycles removal procedure (MCR).

1 procedure MCR(G = (V, E, L))

2

Let E ← / 0 be the resulting set of edges; Let E l ← / 0 be an auxiliary set of edges;

6 Let H ← / 0 carry the history of changes on S; Demonstration. From Definition 3.7, if G has a monochromatic cut with the label k, this label belongs to every feasible solution for the problem. In this case, from Theorem 3.1, we have that solving the GMLSTP for G / / {k} is equivalent to solving the problem for G and we can deal only with monochromatic-cuts-free graphs. Proof. Let C be any subset of L. We prove this proposition by demonstrating that H Based on Proposition 3.4 and on the concept of transitive closure, we can state a dominance rule on the labels of an ELG with respect to the GMLSTP.

7 foreach e = (v 1 , v 2) ∈ E({l}) do 8 if Find(v 1) = Find(v 2) then 9 E l ← E l ∪ {e}; 10 H ← Union(v 1 , v 2); 11 S ← Restore-Union-Find-DS(S, H); 12 E ← E ∪ E l ; 13 return G(V, E , L);
[C] = (V, E , L) is connected if and only if G[C] = (V, E, L) is connected. (⇒) Suppose H[C] is connected and G[C] is disconnected. In this case G[C] has two disjoint set of vertices S, S ⊂ V , such that u ∈ S, v ∈ S, e = (u, v) ∈ E ,
Definition 3.10. Let G = (V, E, L) be an ELG such that l, k ∈ L. The label k is dominated by the

label l if F c (k) ⊆ F c (l).
Proposition 3.5. Let G be an ELG such that the label k is dominated by the label l. The label k can be removed from the set G without loss of optimality for the GMLSTP.

Demonstration. This demonstration uses the Proposition 3.4 and the graph H = F(G) = (V, E, L). Let L * be an optimal solution for the GMLSTP on H. If k / ∈ L * , then the proposition holds. If k ∈ L * and l / ∈ L * , then the solution L = (L * \{k}) ∪ {l} is also optimal. Indeed,

|L * | = |L | and H[L] is connected since E({k}) ⊆ E({l}). Finally, if k, l ∈ L * , then L * is not
optimal because the graph H[L * \{k}] is connected. In fact, for every edge removed from H[L *],

there is an parallel edge in E({l}).

Bounds for the GMLSTP

In this Section we introduce some useful bounds for the GMLSTP. First, we present two upper bounds on the number of edges that are necessary to consider. In the sequel, we discuss the minimum number of vertices for an instance to be non-trivial, and, finally, we discuss some lower bounds on the objective function of the GMLSTP. From Proposition 3.2 we can derive directly the following corollary:

Corollary 3.1. [START_REF] Krumke | On the Minimum Label Spanning Tree Problem[END_REF]: With respect to the GMLSTP, the maximum number of edges with the same label that is necessary to consider In the sequel, we discuss that the bound given by Corollary 3.1 can be further improved if considering only non-trivial instances of the GMLSTP, as defined bellow. Next, we show that is easy to solve the GMLSTP if the number of vertices of the input graph is small.

is |V | -1. Formally, |E({l})| ≤ |V | -1, ∀l ∈ L.
Proposition 3.7. Let G = (V, E, L) be a connected monochromatic-cycles-free ELG. The GML- STP is trivially solvable if |V | < 5.
Demonstration. The cases are the following:

|V| = 1: the solution is / 0.

|V| = 2: the solution is {l}, for any l ∈ L.

|V| = 3: if some label l has two or more edges, the solution is {l}. Otherwise, take arbitrarily a spanning tree of G and the solution is its set of labels, which have cardinality 2.

|V| = 4: if some label l has three or more edges, the solution is {l}. If some label l has two or more edges, add l to the solution and complete the spanning tree of G arbitrarily with the edge e, the solution is {l, l(e)}. Otherwise, take arbitrarily a spanning tree of G and the solution is its set of labels, which have cardinality 3.

Note that both Propositions 3.6 and 3.7 can be used to terminate earlier any heuristic method, such as the MVCA. In the sequel of this section, we discuss some lower bounds on the objective function of the GMLSTP.

Proposition 3.8. Let G = (V, E, L) be a monochromatic cycles free graph, and let L = Corollary 3.2. If b * = 1, it is the optimal solution for the problem, and this solution is found trivially by the MCR procedure (Algorithm 3.1).

{l 1 , l 2 , • • • , l |L| } be the set of labels of G such that |E({l i })| ≥ |E({l i+1 })|, ∀ 1 ≤ i ≤ |L| -1.
Corollary 3.3. After the MCR procedure, if any method find a solution with value 2, this solution is optimal.

Another lower bound for the GMLSTP can be obtained if we relax the connectivity constraint of the problem. The resulting problem, namely the label covering problem (LCP), can be defined as follows:

Definition 3.11. Let G = (V, E, L) be an ELG, and let d(v) denote the degree of the vertex v ∈ V .

The label covering problem aims to find a set L ⊆ L such that d(v) ≥ 1, for all the vertices of

G[L].
Finally, let G = (V, E, L) be an ELG such that u, v ∈ V . If the path from u to v with the minimum number of labels uses |L |, L ⊆ L labels, the solution for the GMLSTP on G is not lesser than |L |. This lower bound can be extended by testing all possible pairs u, v. The problem of finding the minimum number of labels to connect two vertices on a ELG is better discussed in the Chapter 8.

Chapter 4

MIP-Based Exact Methods

In this chapter, we describe a new mathematical formulation for the GMLSTP, namely CCut.

The proposed model is based on the concept of colorful cuts; The absence of edges, arcs, and flow variables is the main difference between CCut and previous mathematical formulations for the problem. In remaining of this chapter we introduce the CCut formulation and describe branch-and-cut strategies for solving the model. Finally, we compare the proposed methods with the best ones in the literature. Proof. (⇒) By way of contradiction, suppose that G is connected and there exists a colorful cut K(S) = / 0. In this case, δ (S) = / 0, and there is no path between the vertices of S and V \S.

The colorful cuts formulation

B B F B B C F B B C F A B C D E F a) 8 1 2 3 4 5 6 7 A A D C E F E A B C E F b) D 8 1 2 3 4 5 6 7 A A C E F E S V \ S D A B F c) D 8
(⇐) Suppose not. Suppose that any colorful cut K(S) of G is not empty and G is not connected.

If G is not connected, it has one maximal connected component S ⊂ V , S = / 0. However, if K(S) = / 0, then δ (S) = / 0, and there is an edge from S to a vertex v ∈ V \S. Hence, S ∪ {v} is a connected component, and S is not maximal.

The CCut formulation is derived directly from Proposition 4.1; it is presented in the program (4.1) through (4.3). The model defines only the group of binary variables z l ∈ {0, 1}, for which z l = 1 means that every edge with the label l is in the solution.

Minimize ∑ l∈L z l (4.1) Remark that solving the CCut model for medium to large size input graphs is not practical due to the exponential set of inequalities (4.2). For this reason, the constraints (4.2) are replaced initially by the set (4.5), which grants every vertex of the graph has an incident edge.

s.t. ∑ l∈K(S) z l ≥ 1, ∀S ⊂ V, S = / 0, (4.2) z l ∈ {0, 1}, ∀l ∈ L. (4
Then, the remaining constraints can be added on demand to the model, as discussed better in Section 4.2.

∑ l∈K({v}) z l ≥ 1, ∀v ∈ V. (4.5)
In the following sections we propose branch-and-cut algorithms for solving the CCut formulation and present computational experiments comparing these methods with the best ones in the literature.

Branch-and-cut algorithms

As introduced previously, solving the CCut formulation for medium to large size input ELGs is not practical due to the size of the exponential set of inequalities (4.2). In such case, it is interesting to use only a subset of these constraints at beginning, namely the constraints (4.5), and add the remaining ones to the model on demand. In this sense, we present in this section three branch-and-cut algorithms we propose for solving the CCut formulation. Refer to [START_REF] Wolsey | Integer programming[END_REF] or [START_REF] Wolsey | Integer and combinatorial optimization[END_REF] for more information on branch-and-cut algorithms.

First, let z * l be the value of the variable z l in a given a solution for the linear relaxation of the CCut model. We separate the colorful cuts inequalities (4.2) by using a simple DFS procedure, as proposed by [START_REF] Chwatal | Solving the Minimum Label Spanning Tree Problem by Mathematical Programming Techniques[END_REF] for the EC formulation (refer to Section 2.6): starting from an arbitrary root node, execute a depth-first search considering only the edges e with z * l(e) > 0; let S be the set of vertices reached by the DFS procedure; if S = V , then the colorful cut inequality derived from S is added to the model. Observe that this procedure can be used for integer solutions as well.

Alternatively, it is also possible to separate the colorful cuts inequalities (4.2) by using the maximum flow algorithm, as proposed by [START_REF] Chwatal | Solving the Minimum Label Spanning Tree Problem by Mathematical Programming Techniques[END_REF] for the DCut formulation (refer to Section 2.5). However, recall the DFS procedure can be executed in

O(|V | + |E|)
time, which is faster than the maximum flow algorithm. Besides, observe that both separation routines discussed are only heuristics. To separate exactly the colorful cuts inequalities, it is necessary to solve a weighted version of the minimum labeling global cut problem, which is discussed in Chapter 9.

In the sequel, we describe the branch-and-cut algorithms BC A , BC I , and BC R . The only difference between the proposed algorithms is the moment they call the separation procedure.

In BC A , the separation procedure is called whenever a solution is found. In BC I , the separation procedure is called whenever an integer solution is found. Further, in BC R , the separation routine is carried out on the root node of the branch-and-bound tree until it is not possible to add more cuts, and for the rest of the branch-and-bound tree, the separation procedure only is called when an integer solution is found. Lastly, let BC X (F, P) denote when the algorithm BC X is being used to solve the model F using the separation procedure P, and, analogously, let LR(F, P) denote the linear relaxation of the model F using the separation procedure P.

Computational experiments

This section reports the computational experiments performed in order to evaluate the quality of the CCut formulation along with the proposed branch-and-cut algorithms. First, we study briefly the linear relaxation of CCut and evaluate the algorithms BC A (CCut, DFS), BC R (CCut, DFS), and BC I (CCut, DFS). Then, we compare the one with the best results with the best methods in the literature, namely EC and DCut.

All experiments reported in this chapter were implemented in C++ language and compiled by using g++ 4.6.3 with the optimization flag -O3. The CCut formulation and all of its derived procedures were implemented using the Concert library and Cplex 12.51 as the solver. The experiments were performed on a computer with Intel(R) Core(TM) i7-4790K CPU, 3.4GHz, 16 GB of RAM, and Ubuntu 14.04 as the operating system. Although the processor of this device has more than one core, the algorithms were executed using a single core and a single thread. Further, we turned off all presolve features and all automatic cutting-plane generation procedures while all other parameters of the Cplex were set to their respective default values.

We treated the colorful cuts inequalities (4.2) with dynamically generated cutting-planes added as User Cut Callbacks, and implemented a Lazy Constraint Callback to reject disconnected graphs eventually found as feasible integer solutions of the incomplete model.

We Observe that the separation procedure did not find cuts for 231 out of 240 input instances, and, for this reason, these results are omitted from the table.

From the results reported in Table 4.1, we can see that changing the colorful cuts inequalities (4.2) by the set of inequalities (4.5) does not cause much impact on the linear relax-ation of CCut. Indeed, the exact separation procedure did not find cuts for the majority of the input graphs. Besides, even when the separation is able to add cuts into the model, its impact is not much relevant. In this sense, we have opted to use the DFS routine described previously as separation procedure for the colorful cuts inequalities due to its simplicity and fast running times. The second experiment aims to evaluate the branch-and-cut algorithms 4.2. Each line of the table reports the execution of one algorithm for one input ELG. The first column identifies the method while the second one identifies the input instance, using the same format from Table 4.1. The next three columns, UB, LR, and LB, report, respectively, the values of the upper bound, linear relaxation, and lower bound found by the methods.

BC A = BC A (CCut, DFS), BC R = BC R (CCut,
The columns t(s) and lrt(s) report, respectively, the cpu-time 1 spent by each method to solve the instance and its linear relaxation. The column Nodes presents the number of nodes solved in the branch-and-bound tree, and the column Cuts shows the number of colorful cuts added to the model. Lastly, the column Gapr reports the relative difference between the LR and the UB: Gapr = (UB -LR)/UB. Further, bold results evidence when one method outperformed all competitors.

From the results reported in Table 4.2 it is possible to observe that all methods were able to solve all input instances to optimality in less than one hour. Despite of that, the method BC A performed too slow in relation to the other two. Comparing the methods BC R and BC I we have that the latter outperformed the first in 8 input instances, against 2 in the opposite direction. As expected, the number of cuts added to the model is very small, and there is no impact on the linear relaxations. Surprisingly, the number of nodes visited by BC I is smaller in comparison 1 All reported times are in seconds.

with BC A . It happened because BC I is able to find good upper bounds faster than BC A . We have also performed similar experiments comparing the algorithms BC A , BC R , and BC I for the formulations EC, DCut, and its variations (adding the strengthening inequalities described in Section 2.7). BC I achieved the best performance in all experiments.

According to the experiments performed by [START_REF] Chwatal | Solving the Minimum Label Spanning Tree Problem by Mathematical Programming Techniques[END_REF], the best exact methods for the MLSTP in the literature are the branch-and-cut procedures based on the formulations EC sn (the program 2.8 to 2.12 with the strengthening inequalities 2.17 and 2.18) and DCut sn (the program 2.2 to 2.7 with the strengthening inequalities 2.16 and 2.18). The third experiment we performed compares these methods with the branch-and-cut algorithms proposed for solving the formulations CCut (the program 4.1 to 4.3) and CCut t (the program 4.1 to 4.3 with the strengthening inequality 4.4). The results are reported in Tables 4.3 and4 4.2, except for the columns Opt, indicating the number of instances the method was able to solve to optimality, and Gap, that reports the relative difference between the LB and the UB: Gap = (UB -LB)/UB. The Gap is zero if the optimality is proved. The columns UB, LR, LB, Gap, and Gapr report average values considering the ten instances in the dataset, while the columns t(s), lrt(s), Nodes 3 , and Cuts report the total sum of these values. Bold results evidence when one method outperformed all competitors.

From Table 4.3 it is possible to observe that the four methods were able to solve all instances with n = 100 to optimality within a time limit of two hours. Notwithstanding, the running times of the methods BC I (EC sn , DFS) and BC I (DCut sn , MaxFlow) were worse than the ones of the methods BC I (CCut, DFS) and BC I (CCut t , DFS). The best overall performance was obtained by the algorithm BC I (CCut t , DFS). Indeed, it has achieved the best execution time for 10 out of 12 datasets and the best linear relaxations.

From the results presented in Table 4.4 it is possible to observe that the methods were not able to solve all instances with n = 200 to optimality within a time limit of two hours for each input graph. In this aspect, the best performing method was the algorithm BC I (CCut, DFS), that was able to solve 113 instances out of 120, followed by the algorithm BC I (CCut t , DFS), which solved 112 instances. In special, these methods have solved all 10 instances in the dataset 200md-250, while the other two methods have solved only 1 and 2 instances, respectively. Again, the execution times of the CCut based methods are much smaller, as well as the algorithm 2 CCut stands for BC I (CCut, DFS), CCut t stands for BC I (CCut t , DFS), EC sn stands for BC I (EC sn , DFS), and DCut sn stands for BC I (DCut sn , MaxFlow).

3 For space reasons, k stands for 10 3 times and m stands for 10 6 times.

BC I (CCut t , DFS) has achieved the best linear relaxations. For this set of instances, the method BC I (CCut, DFS) performed slightly better that the BC I (CCut t , DFS). In fact, the first has solved one instance more than the latter, and executed faster in 9 out of 12 datasets.

Concluding remarks

In this chapter we have introduced CCut, a new mathematical formulation based on the concept of colorful cuts for solving both the MLSTP and the GMLSTP. In addition, we have proposed three branch-and-cut algorithms, separation procedures, and performed computational experiments to assess the new proposed methods.

The results have showed that the methods based on the CCut formulation outperformed the best exact methods described in the literature. Considering the benchmark used, the algorithm BC I (CCut, DFS) has solved to optimality 233 out of 240 input graphs. One reason for this good performance is the absence of edges, arcs, and flow variables, as well as the linking constraints that bound these variables to the label ones. For instance, considering a graph with n = 200 and d = hd, the EC formulation has 15920 edge variables and the same number of the linking constraints (2.10).

Further, the experiments suggest that it is not worth separating exactly the colorful cuts inequalities (4.2). Despite of that, we believe that the proposed methods can be further improved by adding new families of cuts to it. For instance, the addition of the tree search inequality (4.4)

to the model was able to improve significantly its linear relaxation. Chapter 5

A Polyhedral Study on CCut Formulation

Studying the polyhedron derived from a MIP formulation is a powerful tool for solving NPhard problems. This approach can lead to a deeper understanding of the problem and to the discovering of new families of strong valid inequalities, which stands for non-dominated and non-redundant ones. In its turn, this kind of cuts are very useful for the design of effective branch-and-cut algorithms. In the sequel, we formalize the concepts of dominated and redundant inequalities, following the definitions given by [START_REF] Wolsey | Integer programming[END_REF].

Given a set P = {x ∈ R n + | Ax ≤ b}, where A is an m by n matrix, b an m-dimensional column vector, and x an n-dimensional column vector of variables.

Definition 5.1. [START_REF] Wolsey | Integer programming[END_REF]: An inequality µx ≤ µ 0 is a valid inequality for P if µx ≤ µ 0 for all x ∈ P.

Definition 5.2. [START_REF] Wolsey | Integer programming[END_REF]: If µx ≤ µ 0 and µ x ≤ µ 0 are two valid inequalities for P, the first dominates the second if there exists u > 0 such that µ ≥ uµ , µ 0 ≤ uµ 0 , and (µ, µ 0) = (uµ , uµ 0).

Definition 5.3. [START_REF] Wolsey | Integer programming[END_REF]: A valid inequality µx ≤ µ 0 is redundant in the description of P if there exists k > 2 valid inequalities µ i x ≤ µ i 0 . and weights u i > 0,

for i = 1, • • • , k, such that (∑ k i=1 u i µ i)x ≤ (∑ k i=1 u i µ i 0) dominates µx ≤ µ 0 .
Figure 5.1 illustrates the concepts of dominated and redundant inequalities. In Fig.

5

.1(a), the inequality 2x 1 + 4x 2 ≤ 9 is dominated by the inequality x 1 + 3x 2 ≤ 4 (take u = 1 2). In Fig. 5.1(b), the inequality 5x 1 -2x 2 ≤ 6 is redundant because of the inequalities 9x 1 -5x 2 ≤ 6 and 6x 1x 2 ≤ 9 (consider u = (1 3 , 1 3)).

Given the Definitions 5.1, 5.2, and 5.3, we have that it is desirable to know which inequalities are non-redundant in the description of P, i.e., the necessary inequalities. In practice, it is important to avoid using an inequality when it is possible to find quickly one (or some) that Proposition 5.1. [START_REF] Wolsey | Integer programming[END_REF]: Given a polyhedron P ⊆ R n , a valid inequality µx ≤ µ 0 of P, and the face

F = {x ∈ P | µx = µ 0 }. If P is full-dimensional, i.e. its dimension is n, µx ≤ µ 0 is
necessary in the description of P if and only if F is a facet of P, which means the dimension of

F is n -1.
In the remaining of this chapter we define the polytope of the CCut formulation, prove that three new families of inequalities and the bounding constraints are facet defining under certain conditions, compare the polytope defined by the formulations described in this work, and present an example ELG that emphasizes the convex hull of the GMLSTP is not completely described. The polyhedral comparison results for the studied polytope show that the new model is theoretically superior to current state-of-the-art formulations. The following section investigate the polyhedron defined by the CCut formulation, proving it is full dimensional for non-trivial instances of the GMLSTP.

Denition of the CCut polytope

This section formally presents the polyhedron defined by the CCut formulation with the aim of proving it is full dimensional. We are not interested in trivial instances of the GMLSTP and therefore assume that the input ELG is connected and has at least tree vertices, refer to Propositions 3.6 and 3.7. We are neither interested in the case of an input ELG G with monochromatic cuts, as given by Definition 4.2. We have already discussed how to deal with monochromatic cuts in the Chapter 3. Refer to Proposition 3.3.

Let m = |L|, Z = (z l) l∈L , and let

P CCut (G) := conv{Z ∈ {0, 1} m | Z satisfies (4.2)} (5.1)
be the polytope defined by the CCut formulation. We can now state the central result of this section:

Proposition 5.2. If G is a monochromatic-cut-free graph, the polytope P CCut (G) is full dimen- sional, i.e., dim(P CCut (G)) = |L| = m.
(5.2)

Proof. We prove the proposition by showing that the problem has m + 1 affinely independent feasible solutions. In fact, since the input graph G is connected, there exists one vector Z 0 , representing the feasible solution with all the labels of G. Furthermore, for each label l ∈ L, there exists a vector Z l , representing the solution L\{l}; this solution is feasible because there are no monochromatic cuts in the input graph.

It is easy to verify that these solution vectors are affinely independent by choosing Z 0 as source and subtracting it from all other solutions. This operation leads to m vectors that are clearly linearly independent:

z 1 z 2 z 3 • • • z m z 1 z 2 z 3 • • • z m Z 0 = [1 1 1 1 ••• 1] Z 1 = [0 1 1 1 ••• 1] Z 1 -Z 0 = [-1 0 0 0 ••• 0] Z 2 = [1 0 1 1 ••• 1] Z 2 -Z 0 = [0 -1 0 0 ••• 0] Z m = [1 1 1 1 ••• 0] Z m -Z 0 = [0 0 0 0 ••• -1].
In the following sections, we discuss cases in which the variable bounding inequalities are facet defining and examine in detail the colorful cut inequalities (4.2) with respect to the polytope P CCut (G). We also introduce new concepts to support the propositions.

Variable bounding inequalities

Given that every polytope P CCut (G) is contained in a unitary m-dimensional hypercube, the variable bounding inequalities (5.3) and (5.4) are clearly valid for the GMLSTP. In this section, we argue that the bounding inequalities (5.3) are always facet defining and that the non-negativity inequalities (5.4) also define facets under certain conditions.

z l ≤ 1, ∀l ∈ L.
(5.3)

z l ≥ 0, ∀l ∈ L.
(5.4)

Theorem 5.1. For any l ∈ L, the associated variable bounding inequality z l ≤ 1 defines a facet of the polytope P CCut (G).

Proof. For every label l ∈ L, we can use all the solution vectors described in Proposition 5.2, except Z l . Since these solutions are a subset of an affinely independent set of points, they are also affinely independent.

Theorem 5.2. The inequality z l ≥ 0, for l ∈ L, defines a facet of the polytope P CCut (G) if and only if l is not part of any colorful cut K(S) of G with |K(S)| = 2.

Proof. (⇐) For any l ∈ L, let Z 0 be the solution vector corresponding to the set of labels L\{l}, and let Z k , k ∈ {1, 2, • • • , m -1}, be the solution vector corresponding to L\{k, l}. Since l is not part of any colorful cut with |K(S)| = 2, these solution vectors are feasible and affinely independent. In fact, choosing Z 0 as the source and subtracting it from all other solutions yields m -1 linearly independent vectors:

z 1 z 2 • • • z m-1 z m z 1 z 2 • • • z m-1 z m Z 0 = [1 1 1 ••• 1 0] Z 1 = [0 1 1 ••• 1 0] Z 1 -Z 0 = [-1 0 0 ••• 0 0] Z 2 = [1 0 1 ••• 1 0] Z 2 -Z 0 = [0 -1 0 ••• 0 0] Z m-1 = [1 1 1 ••• 0 0] Z m-1 -Z 0 = [0 0 0 ••• -1 0]. (⇒) If K(S) = {k, l} is a colorful cut of G, and the associated inequality (4.2) z k + z l ≥ 1 is valid, then (z l + z k ≥ 1) -(z k ≤ 1
) is exactly z l ≥ 0, which is redundant.

The colorful cut inequalities

The main objective of this section is to prove that the colorful cut inequalities (4.2) are facet defining in many cases. However, to do so we must first define the concepts of minimal colorful cuts and T-labels as well as some of their properties.

Definition 5.4. A colorful cut K(S) is minimal if there does not exist a disconnecting set of labels K such that K ⊂ K(S).

Property 5.1. Let K(S) be a minimal colorful cut of the graph G; thus G[L\L] is connected for every subset L ⊂ K(S).

Proof. If G[L\L] is disconnected for some subset L ⊂ K(S), then L is a disconnecting set of labels, and K(S) is not a minimal colorful cut.

Note that Property 5.1 can be used to easily verify whether a given colorful cut In other words, if a minimal colorful cut K(S) induces a T-label X, then every solution that has just one label of K(S) must also have X because it becomes a monochromatic cut. The implicit interaction between the colorful cut K(S) and its induced T-label X leads to the valid inequality

K(S) is minimal. Indeed, if G[L\L] is connected for every L ⊂ K(S) such that |L | = |K(S)| -1, then K(S) is minimal.
(∑ l∈K(S) z l) + z X ≥ 2, X ∈ T(S), (5.5)
where T(S) denotes the set of T-labels induced by K(S).

Property 5.2. Let K(S) be a colorful cut of G for S ⊂ V , and let K

(S) = L\K(S). If X ∈ K(S)
is not a T-label induced by K(S), then there exists a label k ∈ K(S), denoted by U(S, X), such that the solution L = U(S, X) ∪ K(S, X) is feasible, where K(S, X) = K(S)\{X}.

Proof. Let us assume the contrary. Suppose that X / ∈ T(S) and k ∈ K(S) such that the solution

{k} ∪ K(S, X) is feasible. In this case, X is part of a monochromatic cut in G[{k} ∪ K(S)],
∀k ∈ K(S). According to Definition 5.5, X ∈ T(S). This is a contradiction. First, we introduce m = |L| solutions that are in F CCut (S). Then, we suppose that these solutions lie on a generic hyperplane µz = µ 0 . Finally, we prove that this hyperplane is exactly a multiple of the associated colorful cut inequality (4.2).

For any S ⊂ V , let s = |K(S)|. Without loss of generality, let the indices of the labels in

K(S) be 1, 2, • • • , s. Furthermore, let Z l , for l ∈ {1, 2, • • • , s, s + 1, • • • , m}
, be the solution vectors built as follows.

For any l ∈ {1, 2, • • • , s}, Z l is the solution vector corresponding to the set of labels {l} ∪ K(S); and, for any l ∈ {s + 1, • • • , m}, Z l is the solution vector corresponding to the set of labels U(S, l) ∪ K(S, l), where U(S, l) is underlined:

K(S) K(S) z 1 z 2 • • • z s z s+1 z s+2 • • • z m Z 1 = [1 0 0 ••• 0 1 1 1 ••• 1] Z 2 = [0 1 0 ••• 0 1 1 1 ••• 1] . . . Z s = [0 0 0 ••• 1 1 1 1 ••• 1] Z s+1 = [0 0 0 ••• 1 0 1 1 ••• 1] Z s+2 = [1 0 0 ••• 0 1 0 1 ••• 1] . . . Z m = [0 1 0 ••• 0 1 1 1 ••• 0].
According to Property 5.1, any solution in the form {l} ∪ K(S) is feasible for l ∈ K(S); according to Property, 5.2 any solution in the form U(S, l) ∪ K(S, l) is feasible for l ∈ K(S). In addition, it is evident that by construction

Z l ∈ F CCut (S), ∀l ∈ {1, 2, • • • , m}.
(5.7)

Moreover, we have the following lemma:

Lemma 5.1. Let e s ∈ R m be a vector representing the left-hand-side coefficients of the corresponding inequality (4.2), defined as follows:

e s l =
1 for 1 ≤ l ≤ s,

0 for s + 1 ≤ l ≤ m.
With respect to the already defined set of solution vectors Z, consider the following linear system:

µ•Z l = µ 0 , ∀l ∈ {1, 2, • • • , m}, (5.8)
where µ ∈ R m , µ 0 ∈ R, and '•' stands for the usual scalar product. The unique solution of (5.8) verifies (µ, µ 0) = α(e s , 1).

(5.9)

Proof. For any l ∈ {1, 2, • • • , s -1}, µ•Z l = µ 0 = µ•Z l+1 ⇒ µ•Z l = µ•Z l+1 ⇒ µ l = µ l+1 .
Consequently,

µ 1 = µ 2 = • • • = µ s = α.
In addition, for any l

∈ {s + 1, s + 2, • • • , m}, µ•Z U(S,l) = µ 0 = µ•Z l ⇒ µ•Z U(S,l) = µ•Z l ⇒ µ l = 0.
Therefore, we also have

α = µ 0 ,
and finally, (µ, µ 0) = α(e s , 1).

Theorem 5.3. The face F CCut (S) is a facet of P CCut (G) if and only if K(S) is a minimal colorful cut and it does not induce any T-labels, i.e., T(S) = / 0.

Proof. (⇐) It follows from Lemma 5.1 that the unique solution of (5.8) verifies (5.9). In this case, the provided solution vectors Z l , for l ∈ {1, 2, • • • , m}, are affinely independent. Therefore, dim(F CCut (S)) = m -1, and F CCut (S) is a facet of P CCut (G).

(⇒) If the colorful cut K(S) is not minimal, then there exists a disconnecting set of labels K ⊂ K(S), and the valid inequality

∑ l∈K z l ≥ 1
clearly dominates the colorful cut inequality associated with K(S).

On the other hand, if X ∈ T(S), then the T-label inequality (5.5) associated with K(S) and X is valid, and

(∑ l∈K(S) z l) + z X ≥ 2 + (-z X ≥ -1)
is exactly the colorful cut inequality associated with K(S), which is redundant. In this case, F CCut (S) is not a facet of P CCut (G).

The T-label inequalities

In the previous section, we have shown that inequality (5.5) is valid if a minimal colorful cut

K(S) induces a T-label X.
In this section, we present the entire family of these inequalities, and we prove that it defines a facet of P CCut (G) under certain conditions. To this end, we must first extend the T-label concept and discuss some of its new properties.

Definition 5.6. Given a minimal colorful cut K(S) and a label X ∈ K(S), we say that X is a

k-T-label induced by K(S) if X is part of a monochromatic cut in every graph G[L\L] such that L ⊂ K(S) and |L | = |K(S)| -k.
The concept of k-T-labels extends the concept of T-labels in such a way that even if we keep k labels of K(S), then we must also use the induced k-T-label because it becomes a monochromatic cut. Likewise, for T-labels, if a colorful cut K(S) induces a k-T-label X, then the following inequality is valid:

(∑ l∈K(S) z l) + k • z X ≥ 1 + k, X ∈ T k (S), (5.10)
where T k (S) denotes the set of k-T-labels induced by K(S). In the following, we refine the characterization of the k-T-labels and their inducing colorful cuts. For the following properties, let K(S) be a minimal colorful cut and let s = |K(S)|.

Property 5.3. If k ≥ s, then T k (S) = / 0. Property 5.4. If a label X ∈ K(S) is a (k +1)-T-label induced by K(S), then X is also a k-T-label induced by K(S), for k ≥ 1. It follows that T s-1 (S) ⊆ T s-2 (S) ⊆ • • • ⊆ T 2 (S) ⊆ T(S).
Note that, even when X ∈ K(S) is a (k + 1)-T-label induced by K(S), the corresponding inequality (5.5) remains valid (but redundant). Starting from (5.10) and adding to it k • (-z X ≥ -1), we arrive exactly at inequality (5.5).

Property 5.5. If X ∈ K(S) is not a k-T-label induced by K(S) for k < |K(S)|, then there exists a set U k (S, X) ⊂ K(S) with exactly k labels such that the solution U k (S, X) ∪ K(S, X) is feasible, where K(S, X) = K(S)\{X}.

Proof. Suppose not. Suppose that X / ∈ T k (S) and K ⊂ K(S), |K | = k such that the solution K ∪K(S, X) is feasible. In this case, X is part of a monochromatic cut in the graph G[K ∪K(S)],

∀K ⊂ K(S), and X ∈ T k (S) according to Definition 5.6.

Lemma 5.2. Let K(S) be a minimal colorful cut of a graph G such that X,Y ∈ T(S). The inequality

(∑ l∈K(S) z l) + z X + z Y ≥ 3, X,Y ∈ T(S), (5.11)
is valid with respect to P CCut (G) if one of these four cases holds:

(a) The inequality z X + z Y ≥ 1 is valid. (b) {k, w} such that {k, w} = U 2 (S, X) = U 2 (S,Y). (c) For any {k, w} = U 2 (S, X) = U 2 (S,Y), there exists a set K ⊆ K(S)\{k, w} such that {X,Y } ∪ K is a disconnecting set of labels. (d) X ∈ T 2 (S) or Y ∈ T 2 (S).
Proof. Let L ⊆ L be a feasible solution of the GMLSTP for the graph G. Consider the following cases:

(1) If |K(S) ∩ L | = 1, then inequality (5.11) is clearly valid because X,Y ∈ T(S).

((3) If |K(S) ∩ L | ≥ 3, then inequality (5.11) is also valid.

) If |K(S) ∩ L | = 2, then neither X nor Y is needed. However, if (a), then either X or Y is needed and (5.11) is valid. Let {k, w} = K(S) ∩ L . The same occurs if (b). If {k, w} = U 2 (S, X), then Y ∈ L . If {k, w} = U 2 (S,Y), then X ∈ L . If (c), even with {k, w} = U 2 (S, X) = U 2 (S,Y), 2
Property 5.6. If X,Y ∈ T(S) and Lemma 5.2 does not hold, then there exists a valid solution of the form U 2 (S,Y) ∪ K(S,Y)\{X}.

Proof. Let {k, w} = U 2 (S, X) = U 2 (S,Y) such that K ⊆ K(S)\{k, w} | {X,Y } ∪ K is a dis-
connecting set of labels. The solution {k, w} ∪ K(S,Y)\{X} is clearly valid.

In the following, we address the T-label family of inequalities (5.12).

(∑ l∈K(S) z l) + z X ≥ 2, ∀S ⊂ V, S = / 0, ∀X ∈ T(S).
(5.12)

Let K(S) be a minimal colorful cut of the graph G, X ∈ T(S), and let

F T-label (S, X) := {Z ∈ P CCut (G) |(∑ l∈K(S) z l) + z X = 2} (5.13)
be the face induced by the respective T-label inequality (5.12). To prove that F T-label (S, X) is a facet of the polytope P CCut (G), we again use the indirect proof. First, we introduce m ≥ |L| solutions that are in F T-label (S, X). We then suppose that these solutions lie on a generic hyperplane µz = µ 0 . Finally, we prove that this hyperplane is exactly a multiple of the associated T-label inequality (5.12).

Let

l ∈ {1, 2, • • • , s, s + 1, • • • , m -1, m, m + 1, • • • , m + t -1}, solution vectors: K(S) K(S)\T(S) T(S) z 1 z 2 • • • z s z s+1 z s+2 • • • z m-t z m-t+1 z m-t+2 • • • z m Z 1 = [1 0 0 ••• 0 1 1 1 ••• 1 1 1 1 ••• 1] Z 2 = [0 1 0 ••• 0 1 1 1 ••• 1 1 1 1 ••• 1] Z s = [0 0 0 ••• 1 1 1 1 ••• 1 1 1 1 ••• 1] Z s+1 = [0 0 0 ••• 1 0 1 1 ••• 1 1 1 1 ••• 1] Z s+2 = [1 0 0 ••• 0 1 0 1 ••• 1 1 1 1 ••• 1] Z m-t = [0 1 0 ••• 0 1 1 1 ••• 0 1 1 1 ••• 1] Z m-t+1 = [0 1 0 ••• 1 1 1 1 ••• 1 0 1 1 ••• 0] Z m-t+2 = [1 0 0 ••• 1 1 1 1 ••• 1 1 0 1 ••• 0] Z m = [0 1 0 ••• 1 1 1 1 ••• 1 1 1 1 ••• 0] Z m+1 = [1 0 0 ••• 1 1 1 1 ••• 1 1 1 1 ••• 0] Z m+t-1 = [1 1 0 ••• 0 1 1 1 ••• 1 1 1 1 ••• 0].
For any l ∈ {1, 2, • • • , s}, Z l is the solution vector corresponding to the set of labels {l} ∪ K(S). For any l ∈ {s + 1, • • • , m -t}, Z l is the solution vector corresponding to the set of labels U(S, l) ∪ K(S, l), where U(S, l) is underlined.

For l ∈ {m -t + 1, m -t + 2, • • • , m -1},
Z l is the solution vector corresponding to the set of labels U 2 (S, l) = U 2 (S, X) ∪ K(S, l)\{X}, l ∈ T(S)\{X}, and any label w

∈ U 2 (S, l) is underlined. Finally, Z m , Z m+1 , • • • , Z m-t+1 , are the solution vectors U 2 (S, l) = U 2 (S, X) ∪ K(S, X), ∀l ∈ T(S).
According to Property 5.1, any solution of the form {l} ∪ K(S) is feasible for l ∈ K(S);

according to Property 5.2, any solution of the form U(S, l) ∪ K(S, l) is feasible for l ∈ K(S).

According to Property 5.6, the solutions U 2 (S, l) ∪ K(S, l)\{X} are feasible because Lemma 5.2 does not hold. Finally, the solutions U 2 (S, X) ∪ K(S, X) are also feasible according to Property 5.5. In addition, it is evident that from the construction

Z l ∈ F T-label (S, X), ∀l ∈ {1, 2, • • • , m, m + 1, • • • , m -t + 1}.
(5.14)

Lemma 5.3. Let e s ∈ R m be a vector representing the left-hand-side coefficients of the corresponding inequality (5.12), defined as follows:

e s l =        1 for 1 ≤ l ≤ s, 0 for s + 1 ≤ l ≤ m -1, 1 for l = m.
With respect to the already defined set of solution vectors Z, consider the following linear system: (5.15) where µ ∈ R m , µ 0 ∈ R, and '•' stands for the usual scalar product. The unique solution of (5.15) verifies (µ, µ 0) = α(e s , 2).

µ•Z l = µ 0 , ∀l ∈ {1, 2, • • • , m, m + 1, • • • , m -t + 1},
(5.16)

Proof. For any l ∈ {1, 2, • • • , s -1}, µ•Z l = µ 0 = µ•Z l+1 ⇒ µ•Z l = µ•Z l+1 ⇒ µ l = µ l+1 .
It follows that,

µ 1 = µ 2 = • • • = µ s = α.
In addition, for any l

∈ {s + 1, s + 2, • • • , m -t}, µ•Z U(S,l) = µ 0 = µ•Z l ⇒ µ•Z U(S,l) = µ•Z l ⇒ µ l = 0.
For l ≥ m and w ∈ U 2 (S, l),

µ•Z w = µ 0 = µ•Z l ⇒ µ•Z w = µ•Z l ⇒ µ w = µ l = α. For l ∈ {m -t + 1, m -t + 2, • • • , m -1}, µ•Z l = µ 0 = µ•Z m , U 2 (S, l) = U 2 (S, X) ⇒ µ•Z l = µ•Z m ⇒ µ l = 0.
Therefore, we also have

2α = µ 0 .
Finally, (µ, µ 0) = α(e s , 2).

We can now state the central theorem of this section: ((a) ⇒) If the colorful cut K(S) is not minimal, then there exists a disconnecting set K ⊂ K(S), and the valid inequality

(∑ l∈K z l) + z X ≥ 2
clearly dominates the T-label inequality associated with K(S).

((b) ⇒) If inequality (5.2) is valid for any additional label Y ∈ T(S), then

(∑ l∈K(S) z l) + z X + z Y ≥ 3 + (-z Y ≥ -1)
is exactly the T-label inequality associated with K(S), which is redundant.

((c) ⇒) If X ∈ T 2 (S), then the 2-T-label inequality (5.10) associated with K(S) and X is valid and

(∑ l∈K(S) z l) + 2 • z X ≥ 3 + (-z X ≥ -1)
is exactly the T-label inequality associated with K(S), which is redundant.

For any of the cases (a), (b), or (c), F T-label (S, X) is not a facet of P CCut (G).

The k-T-Label inequalities

This section presents the k-T-label family of inequalities. We extend Theorem 5.4 and prove that these inequalities also define facets of the polytope P CCut (G) under some conditions. Let

(∑ l∈K(S) z l) + k • z X ≥ 1 + k, ∀S ⊂ V, S = / 0, ∀k ∈ {1, ..., K(S) -1}, ∀X ∈ T k (S),
(5.17) be the family of k-T-label inequalities. Moreover, let K(S) be a minimal colorful cut of the graph G, s = |K(S)|, X ∈ T k (S), and let

F k-T-label (S, X) := {Z ∈ P CCut (G) |(∑ l∈K(S) z l) + k • z X = k + 1} (5.18)
be the face induced by the respective k-T-label inequality (5.17).

We prove that F k-T-label (S, X) is a facet of the polytope P CCut (G) by indirect proof. Without loss of generality, let the indices of the labels in K(S) be 1, 2, • • • , s, and let the index of the label X be m. Furthermore, let Z l , for l ∈ {1, 2, • • • , s, s+1, • • • , m-1, m}, be the solution vectors built as follows.

For any l ∈ {1, 2, • • • , s}, Z l is the solution vector corresponding to the set of labels {l} ∪ K(S). For any l ∈ {s + 1, • • • , m -1}, Z l is the solution vector corresponding to the set of labels U(S, l) ∪ K(S, l). For l = m, Z l is the solution vector corresponding to the set of labels

U k (S, X) ∪ K(S, X).
It is evident that the proposed solution vectors represent feasible solutions according to Properties 5.1, 5.2, and 5.5. In addition, it is evident that

Z l ∈ F k-T-label (S, X), ∀l ∈ {1, 2, • • • , m}. (5.19)
Thus, we can state the following lemma:

Lemma 5.4. Let e s ∈ R m be a vector representing the left-hand-side coefficients of the corresponding inequality (5.17), defined as follows:

e s l =        1 for 1 ≤ l ≤ s, 0 for s + 1 ≤ l ≤ m -1, k for l = m.
With respect to the already defined set of solution vectors Z, consider the following linear system:

µ•Z l = µ 0 , ∀l ∈ {1, 2, • • • , m}, (5.20)
where µ ∈ R m , µ 0 ∈ R, and '•' stands for the usual scalar product. The unique solution of (5.20) verifies (µ, µ 0) = α(e s , k + 1).

(5.21)

Proof. For any l ∈ {1, 2, • • • , s -1}, µ•Z l = µ 0 = µ•Z l+1 ⇒ µ•Z l = µ•Z l+1 ⇒ µ l = µ l+1 .
It follows that,

µ 1 = µ 2 = • • • = µ s = α.
In addition, for any l ∈ {s

+ 1, s + 2, • • • , m -1}, µ•Z U(S,l) = µ 0 = µ•Z l ⇒ µ•Z U(S,l) = µ•Z l ⇒ µ l = 0.
Finally, for l = m and w ∈ U k+1 (S, l),

µ•Z w = µ 0 = µ•Z l ⇒ µ•Z w = µ•Z l ⇒ k • µ w = µ l ⇒ µ l = k • α.
Therefore, we also have

(k + 1) • α = µ 0 .
Finally, (µ, µ 0) = α(e s , k + 1).

Theorem 5.5. If

Polyhedral comparisons

This section aims to achieve the following two objectives: 1) to examine the effect of adding the tree search (4.4), T-label (5.12), and k-T-label (5.17) inequalities to the polytope P CCut (G); and

2) to compare P CCut (G) with the polytopes described by the formulations EC (2.8-2.12) and DCut (2.2-2.7), presented respectively in Sections 2.6 and 2.5. The remainder of this section uses superscripts to identify when a formulation is strengthened by some cut. Table 5.1 shows the superscripts and their associated constraints. Theorem 5.6.

P CCut tlk (G) ⊂ P CCut tl (G) ⊂ P CCut t (G) ⊂ P CCut (G).
(5.22)

Proof. Since CCut t is exactly the CCut formulation with the addition of the tree search inequalities (4.4), we have P CCut t (G) ⊆ P CCut (G). By the same reasoning, P CCut tlk (G) ⊆ P CCut tl (G) ⊆ P CCut t (G). The remainder of the proof uses the three graphs shown in Fig. 5.4. The solution given in Fig. 5.4a is feasible for the CCut formulation; however, it violates the associated tree search inequalities (4.4). Thus, P CCut t (G) ⊂ P CCut (G). The solution given in Fig. 5.4b is feasible for the formulation CCut t ; however, the label C is a T-label induced by the colorful cut K({1}) = {A, B}, and the solution violates the associated T-label constraint (5.12). In this case, P CCut tl (G) ⊂ P CCut t (G). The solution given in Fig. 5.4c is feasible for the formulation CCut tl ; however, the label D is a 2-T-label induced by the colorful cut K({1, 2, 7, 8}) = {A, B,C}, and the solution violates the associated k-T-label constraint (5.17).

= z B = 1 2 1 2 z C = z D = 1 2 D 1 2 1 2 1 2 1 2 1 2 1 2 A 1 2 b) 1 A D 2 7 3 6 A B B C z A = z B = 1 2 1 2 z C = z D = 1 2 D 1 1 1 1 2 1 2 1 2 1 2 1 2 4 5 1 2 C C 1 2 c) 1 2 7 3 6 B z A = z B = 1 2 1 2 z C = z D = 1 2 4 5 8 9 z E = z F = 1 1 D D D D A A B C C F F E E 1 2 1 1 1 1 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2
Thus, P CCut tlk (G) ⊂ P CCut tl (G), and the proof is concluded.

Let P z denote the projection of some polytope P on the Z variable space. For polytopes defined in the (Z, X) variable space, P z := conv{Z ∈ R |L| | (Z, X) ∈ P}, whereas for polytopes defined in the (Z,Y) variable space, P z := conv{Z ∈ R |L| | (Z,Y) ∈ P}. In the following, the solutions presented in Fig. 5.5 are used to prove Lemmas 5.5 and 5.6. Observe that the inequality associated with the colorful cut K({3, 4}) = {A, B} is violated in both solutions given in Fig.

In fact, z

A + z B = 1 4 + 1 4 = 1 2 < 1. 2 3 4 5 A D A E C B 1 2 1 2 1 2 1 4 1 4 1 4 1 4 z A = z C = z E = z D = z B = 1 4 1 4 1 2 1 2 1 2 a) b) 1 B 2 3 4 5 A D A E C B 1 B z A = z C = z E = z D = z B =
P h z (G) ⊆ P CCut (G), ∀h ∈ {EC, EC s , EC n , EC t , EC sn , EC nt }.
(5.23)

Proof. Consider the LR solution presented in Fig. 5.5a. We have shown that the solution is not feasible for the CCut formulation; yet it does not violate any constraints of the formulations EC, EC s , EC n , EC t , EC sn , or EC nt .

Lemma 5.6.

P h z (G) ⊆ P CCut (G), ∀h ∈ {DCut, DCut s , DCut n , DCut t , DCut sn , DCut nt }.
(5.24)

Proof. Consider the LR solution presented in Fig. 5.5b. We have shown that the solution is not feasible for the CCut formulation, yet it does not violate any constraints of the formulations DCut, DCut s , DCut n , DCut t , DCut sn , or DCut nt .

Let P CCut zx (G) := conv{(Z, X) ∈ R |L|+|E| | Z ∈ P CCut (G)
and x e = z l(e) , ∀e ∈ E} be the extension of the polytope P CCut (G) to the (Z, X) variable space.

Theorem 5.7.

P CCut zx (G) ⊂ P h (G), ∀H ∈ {EC, EC s , EC n , EC sn }.
(5.25)

Proof. The first part of the proof is given by Lemma 5.5. Additionally, we need to prove that (Z, X) respects all EC constraints as well as those of the strong linkage and node labels. Con- x e ≥ ∑ l∈K(S)

z l ≥ 1 ≥ ε, ∀S ⊂ V, S = / 0,
and inequalities (2.9) are respected.

Let P CCut zy (G) := conv{(Z,Y) ∈ R |L|+|A| | Z ∈ P CCut (G)
and y a = z l a (a) , ∀a ∈ A} be the extension of the polytope P CCut (G) to the (Z,Y) variable space.

Theorem 5.8.

P CCut zy (G) ⊂ P h (G), ∀h ∈ {DCut s , DCut sn }.
(5.26)

Proof. The first part of this proof is given by Lemma 5.6. Additionally, we need to prove that

y a ≥ ∑ l∈K(S) z l ≥ 1, ∀S ⊆ V \{r}, S = / 0,
and inequalities (2.3) are respected.

Before proposing the next theorem, we provide an algorithm that extends the polytope P CCut (G) with the aim to show that every (extended) feasible solution for the CCut formulation is also feasible for the DCut formulation. Furthermore, we discuss some properties of the procedure and introduce the notation used to prove Theorem 5.9. Algorithm 5.1:

Let v 0 , v 1 , • • • , v n-
Extension of Z to (Z,Y *) 1 Procedure Ext(G = (V, E, L), Z) 2 D 1 = (V, A,Y 1) ← BuildDigraph(G, Z); 3 for i ← 1, 2, • • • , n -1 do 4 F i ← MaxFlow(r → v i , D i); 5 F i ← RemovePositiveFlowCircuits(F i); 6 for each a ∈ A do y i+1 a ← Min(y i a , 1 -f i a); 7 D i+1 ← (V, A,Y i+1); 8 for each a ∈ A do y * a ← f m(a) a = Max(f 1 a , f 2 a , • • • , f n-1 a); 9 return (Z,Y *);
Let A be a set of arcs, and let Y = (y a) a∈A denote a vector of arc capacities. On line 2,

D 1 = (V, A,Y 1
) denotes the directed graph derived from G in which each edge e ∈ E is replaced by two opposite arcs a, a ∈ A, with respective weights of 0 ≤ y 1 a = y 1 a = z l a (a) = z l a (a) = z l(e) ≤ 1.

The loop of lines 3 through 7 aims to find a set of maximum flows

F i = (f i a) a∈A , from r to v i , ∀v i ∈ V \{r}.
On line 4, MaxFlow(r → v i , D i) is a procedure that computes one optimal flow vector F i of the maximum flow problem with the node source r and the destination v i in the digraph D i , considering y i a as the capacity of the arc a. For the case in which F i contains any positive flow circuits, it is well known that they may be removed without changing the maximum flow value.

Note that because of the positive flow circuit removal, for any a ∈ A, either f i a = 0, f i a = 0, or

f i a = f i a = 0. For any a ∈ A, let m(a) = argmax i=1,2,••• ,n-1
(f i a) be the index of the greater flow that passed through the arc a. On line 6, all arc capacities are updated, and the digraph of the next iteration is created on line 7. Observe that the y series

   y 1 a = z l(e) , y i+1 a = Min(y i a , 1 -f i a), for i ≥ 1,
are non-increasing since y i+1 a ≤ y i a . Finally, the return value (Z,Y *) is the CCut solution vector

Z extended with the variables Y * . In the following, we state Lemmas 5.7 and 5.8 and use them to prove Theorem 5.9.

Lemma 5.7.

For each i = 1, 2, • • • , n -1, ∑ a∈δ -(S) y i a ≥ 1, ∀S ⊆ V \{r}, v i ∈ S ⇒ ∑ a∈δ -(S) y * a ≥ 1, ∀S ⊆ V \{r}, v i ∈ S.
Proof. If the left side of the lemma is true, then F i ← MaxFlow(r → v i , D i), and from the mincut max-flow theorem, it follows that the maximum flow from r to v i is greater than 1. Since

y * a ← f m(a) a = Max(f 1 a , f 2 a , • • • , f i a , • • • , f n-1 a)
, ∀a ∈ A, the right side of the lemma is also true.

Lemma 5.8.

y j a ≥ f i a , ∀ j such that n -1 > j > i.
Proof. If f i a = 0, the lemma holds. The lemma also holds if

j = i + 1 since f i a = 0 ⇒ f i a = 0 ⇒ y i+1 a = y i a .
Once f i a = 0, y i+1 a ≤ 1f i a , and from the non-increasing property of the y series f k a ≤ y i+1 a ≤ 1f i a , for any k ≥ i + 1. Because of the nature of the function Min(y i a , 1f i a), the minimum possible value of y i+1 a is attained when Theorem 5.9.

f i a is at maximum. Because f k a ≤ 1 -f i a , y k+1 a ≥ 1 -1 + f i a ⇒ y k+1 a ≥ f i a . Once k ≥ i + 1,
P CCut zy * (G) ⊂ P DCut (G).

(5.27)

Proof. The first part of the proof is given by Lemma 5.6; the second part consists in proving that Ext(G, Z) = (Z,Y *) ∈ P DCut , ∀Z ∈ P CCut (G). To this end, we must show that (Z,Y *) respects all DCut constraints (see Section 2.5).

• Constraints (2. From the definition of the y series, we also have y

m(a)+1 a ≤ 1 -f m(a) a . Thus, f m(a) a ≤ 1 -f m(a) a ⇒ f m(a) a + f m(a) a ≤ 1 ⇒ y * a + y * a ≤ 1,
and Constraints (2.5) are satisfied.

• Constraints (2.3): We need to prove that

∑ a∈δ -(S) y * a ≥ 1, ∀S ⊆ V \{r}, S = / 0.
(5.28)

To this end, we use mathematical induction on Algorithm 5.1, from which we derived the following inequalities:

∑ a∈δ -(S) y i a ≥ 1, ∀S ⊆ V \{r}, v i ∈ S.
(5.29)

Observe that, if (5.29) is true for every i = 1, 2, • • • , n -1, then it follows from Lemma 5.7 that (5.28) is also true.

Since y 1 a = z l(e) , ∀a ∈ A, and Z is feasible for CCut, the result holds for i = 1. Now let us assume, by induction hypothesis, that (5.29) holds for every i ≤ k -1, for k ≤ n -1, and we prove that it is still true for i = k. Let S k denote any set of vertices such that

S k ⊆ V \{r} and v k ∈ S k . If ∑ a∈δ -(S k) y k a = ∑ a∈δ -(S k) y 1 a ,
then the result holds for the same reason it holds for i = 1. Furthermore, if any v i ∈ S k , for i < k, then the result holds by induction hypothesis. For the remaining case we have

∑ a∈δ -(S k) y k a < ∑ a∈δ -(S k)
y 1 a , and v i / ∈ S k , ∀i < k.

In this case, at least one arc capacity y k a , a ∈ δ -(S) was changed compared with y 1 a .

Consider the largest value for w, with w < k, such that the flow F w changes some capacity y w+1 a , a ∈ δ -(S). In this case, based on flow conservation, we have

∑ a∈δ -(S k) f w a = ∑ a∈δ + (S k) f w a because v w / ∈ S k . Let b ∈ δ -(S k)
∑ a∈δ -(S k) a =b y k a ≥ ∑ a∈δ -(S k) a =b f w a = ∑ a∈δ -(S k) f w a = ∑ a∈δ + (S k) f w a . Moreover, y w+1 b = 1 -f w b and f w b = 1 -y w+1 b . Thus, ∑ a∈δ -(S k) a =b y k a ≥ f w b + ∑ a∈δ + (S k) a =b f w a ⇒ ∑ a∈δ -(S k) a =b y k a ≥ 1 -y w+1 b + ∑ a∈δ + (S k) a =b f w a .
Because w < k is the index of the last iteration, which changed the capacity y w+1 b , y k b =

y w+1 b . Finally, ∑ a∈δ -(S k) y k a = ∑ a∈δ -(S k) a =b y k a + y w+1 b ≥ 1 + ∑ a∈δ + (S k) a =b f w a ≥ 1.
Corollary 5.1.

P CCut zy * (G) ⊂ P DCut n (G).
(5.30)

Proof. From Theorem 5.9, we have P CCut zy * (G) ⊂ P DCut (G). Furthermore, the node label constraints (2.18) are a subset of the colorful cut inequalities (4.2).

The section above compared the polytope P CCut (G) with the polytopes defined by the EC and DCut formulations as well as with their variations. Figure 5.6 summarizes the results described in this section.

CCut convex hull study

Taking into account all inequalities introduced in the previous sections, it may be interesting to determine whether a complete description of the polytope P CCut (G) is attained. Figure 5.7

shows that it is not the case. Indeed, the basic feasible solution of this example satisfies all inequalities (colorful cuts, tree search, T-labels, and k-T-labels), yet still contains fractional variables. However, the graph in Fig. 5.7 might serve as a starting point in the search for new families of facet-defining inequalities.

cut: (S = {1}) z A + z B + z C ≥ (5.31) colorful cut: (S = {2}) z A + z F + z G ≥ (5.32) colorful cut: (S = {3}) z B + z F + z G ≥ (5.33) colorful cut: (S = {1, 2, 3}) z C + z F + z G ≥ (5.34) colorful cut: (S = {4}) z D + z F + z G ≥ (5.35) colorful cut: (S = {5}) z E + z F + z G ≥ (5.36) colorful cut: (S = {6}) z C + z D + z E ≥ (5.37) T-label C: (S = {1, 6}) z A + z B + z C + z D + z E ≥ (5.38) tree search: z A + z B + z C + z D + z E + 3z F + 3z G ≥ (5.39)

Concluding remarks

In the present chapter, we have provided some interesting results for the CCut polytope, in par-1 ticular concerning its dimension and its facet compositions. New valid inequalities were intro-2 duced, and the conditions in which they define facets have been given. We have proposed poly-3 hedral comparisons between the polytope associated with the state-of-the-art formulations-

4

DCut and EC-and their variations. Our results show that the CCut formulation theoretically 5 performs better with respect to its polytope than all currently available mathematical formula-6 tions for the GMLSTP and MLSTP. On the other hand, in Section 5.7, we have shown that all 7 facets introduced here were insufficient to reach the CCut polytope convex hull.

Chapter 6

Improved Exact Methods

Chapter 4 has presented studies on MIP-based exact methods for solving the GMLSTP, such as CCut, a new mathematical formulation for the problem, as well as branch-and-cut algorithms for solving this model. In this chapter we discuss two improvements for the methods previously addressed in Chapter 4. First, we propose a new mathematical model that extends CCut by using the concept of partitioning cuts. Then, we introduce a new branching strategy for solving CCut. Lastly, we combine these two approaches into a new branch-and-cut algorithm. We can observe from the computational experiments performed that the new approaches were able to achieve the best results regarding exact methods for the MLSTP so far.

The partitioning cuts formulation

This section presents the partitioning cuts formulation (PCut), a new mathematical model for solving both the MLSTP and the GMLSTP. As well as the CCut formulation, PCut defines only |L| binary variables. Moreover, as discussed later, PCut can be seen as an extension of CCut.

Before introducing the model, it is necessary to formalize the concepts of proper partitionings, partitioning graphs, and partitioning cuts, as well as to discuss an important property related to these concepts. As a consequence of Proposition 6.1, we have that the connectivity of an ELG G could be verified by checking the connectivity of G((P)) for every possible proper partitioning of the vertices of G. In addition, observe that G((P)) itself is an ELG (possibly an edge-labeled multigraph) and thence, all the properties that hold for this kind of graph also holds for G((P)).

We are particularly interested in Propositions 3.2 and 3.8, respectively the monochromatic cycle removal property and the lower bound on the number of edges necessary to connect an ELG.

Given an ELG G = (V, E, L) and a proper partitioning of its vertices Alternatively, we can express the partitioning cuts inequalities (6.2) with respect to the cardinality of the partitioning set P, as presented in the inequalities (6.4) to (6.8). Let PCut n denote the set of partitioning cuts with |P| = n.

P = {S 1 , S 2 , • • • , S p },
G((P)) = (V , E , L), V = {s1 = v(S 1), s2 = v(S 2), s3 = v(S 3), s4 = v(S 4)}.
(PCut 2) ∑ l∈L |E {l}, G * ((P)) | • z l ≥ 1, ∀P ∈ P(G), |P| = 2, (6.4) (PCut 3) ∑ l∈L |E {l}, G * ((P)) | • z l ≥ 2, ∀P ∈ P(G), |P| = 3, (6.5) (PCut 4) ∑ l∈L |E {l}, G * ((P)) | • z l ≥ 3, ∀P ∈ P(G), |P| = 4, (6.6)
. . .

(PCut |V |-1) ∑ l∈L |E {l}, G * ((P)) | • z l ≥ |V | -2, ∀P ∈ P(G), |P| = |V | -1, (6.7) (PCut |V |) ∑ l∈L |E {l}, G * ((P)) | • z l ≥ |V | -1, ∀P ∈ P(G), |P| = |V |. (6.8)
Observe that PCut 2 is exactly the colorful cuts inequalities (4.2). In this sense, we have that the PCut formulation can be seen an extension of the CCut model. Moreover, since all PCut inequalities are valid for both the MLSTP and the GMLSTP (from Propositions 6.1, 3.2 and 3.8), we can ensure the corretude of the formulation. In addition, note that PCut |V | is exactly the tree search inequality (4.4) derived from G.

Further, since the set of inequalities PCut 2 and the CCut inequalities (4.2) are equivalent, they can be separated exactly as discussed in Section 4.2. Unfortunately, we were not able to provide a MIP-based exact separation algorithm for the remaining PCut n inequalities. We leave

this as an open question in this work. Notwithstanding, we have made an effort to evaluate the effectiveness of the PCut inequalities. In this sense, we have generated 100 graphs with

|V | = 14 and separated the PCut inequalities by enumeration.

Table 6.1 shows the results of the experiments on the impact of PCut inequalities on the linear relaxation of CCut. The first column identifies the formulation, while each of the remaining ones presents the results for one dataset, which is a set of 10 ELGs with the same edge density d. Further, we also provide the average number of non-empty labels |L| of the dataset. Each line of the table reports the average results over the ten graphs in each dataset.

The first three lines are the reference values: The lines OPT, CCut t , and Gap, refer, respectively, to the optimal integer solution, to the linear relaxation of CCut formulation with the tree search constraint but without any separation method, and to the relative difference between them (Gap = (OPT -CCut t)/OPT). The remaining lines are divided in groups of three and each group reports the results of separating a subset of PCut inequalities1 . The first line of the group gives the average linear relaxation obtained, the second line reports its gap with relation to the value in OPT, and the third line report the number of cuts added to the model. PCut * means the separation of all PCut inequalities. PCut s refers to the subgroup of all PCut inequalities composed only by unitary partitions, except for one big partition, e.g.

P = {{v 1 , v 2 , v 3 }, {v 4 }, {v 5 }, {v 6 }, {v 7 }} .
From the results of the Table 6.1 we have that the PCut * inequalities have a substantial impact on the linear relaxation of CCut. Indeed, for sets with d ≤ 0.4 the Gap is ≤ 1.1%.

Another point that caught our attention was the reduced number of cuts added to the model. For instance, 3.4 cuts (in average) were enough to lead the gap to 0% in line PCut * and column d = 0.20. Considering the groups individually, we have that PCut 10 performed better for low density graphs while PCut s obtained the best results for medium-to-high density graphs. Therefore, the results presented justifies further studies on the PCut inequalities. Due to its exponential size, separating the PCut set of inequalities (6.2) by enumeration is not practical for medium to large size input graphs. In this sense, we have proposed a greedy heuristic, denominated PCut h , for separating these cuts. It is a deterministic multistart procedure that uses |V | -2 partitionings as starting points. Though, before introducing the complete heuristic, we need to introduce the generatePartitioning routine and to define two neighborhood structures: NS and NM. In the same sense, performing a migrate move on P is to make S a ← S a \{v a } and S b ← S b ∪{v a }.

Given an integer

Given that, let NS(P) and NM(P) denote, respectively, the set of all possible swap and migration moves performed from the partitioning P.

Consider G = (V, E, L) the input ELG, and Z * a solution for the linear relaxation of CCut, the heuristic PCut h is presented in Algorithm 6.1. The loop of the lines (2 to 10) controls the multistart procedure where the first partitioning with positive violations found is returned.

The initial partitioning is generated on line 3. The loop of the lines (5 to 10) controls the number of moves without positive violation that are allowed. Lastly, the loops of the lines 6 and 8 evaluates the solutions from NS and NM. We have added a memory to the method (line 10) to try to avoid cycles between the partitionings.

Algorithm 6.1: Separation heuristic for PCut inequalities We have evaluated the behavior of the separation heuristic PCut h on the same graphs of the previous experiment. The results are reported in Table 6.2, which has the same structure of the Table 6.1. The results showed that PCut h has obtained a satisfactory performance, mainly for instances with low edge density. Observe that the performance deteriorates as the density of the input graphs grows. Fortunately, the worst performance of the CCut formulation, according to the experiments discussed in Section 4.3, is when the input graph has a small density. More detailed experiments are presented in Section 6.3.

1 procedure PCut h (G = (V, E, L), Z *) 2 for bigPartitionSize ← 2 to |V | -1 do 3 s 0 ← s 1 ←

Branch-and-bound strategies

The Simplex method [START_REF] Dantzig | The generalized simplex method for minimizing a linear form under linear inequality restraints[END_REF] is one of the most efficient approaches for solving linear programs in which all the variables are continuous, i.e. they are not required to be in- From the results reported in Section 4.3 it is possible to observe that the number of nodes visited in the branch-and-bound tree is too big. It is due to the fact that in CCut formulation, setting a variable z = 1 has much more impact on the subproblem than setting z = 0. Indeed, in the first case a set of edges is added to the solution whereas in the second case it is easy to find a substitute for the label that is forbidden to be in the solution. It could be reinforced by the fact that the number of labels in the solution is commonly much smaller than the number of labels of the input graph. For instance, the average best solution found for the dataset 200-ld-250 is 13.8 (refer to Table 4.4), which stands for only 5.52% from the total labels in the input ELGs.

Such difference between setting a binary variable to 1 or to 0 leads to highly unbalanced branchand-bound trees. Figure 6.6(a) depicts the structure of a highly unbalanced branch-and-bound tree.

As an alternative to the traditional branch-and-bound method, based on a binary decision tree, we propose the colorful cuts branch-and-bound (CCutBB), which uses the CCut branching strategy, which performs the branching phase using a colorful cut inequality (4.2) as a pivot.

Given a colorful cut that at least one label l ∈ K(S) must be in the solution (and thence to have z l = 1), otherwise the resulting graph will be disconnected. In this sense, we propose to use K(S) as a pivot to partition the problem into k subproblems such that the variables of the subproblem k are set in the following way: z k = 1, and z x = 0, ∀x < k. Follows that three questions have to be answered in order to implement the colorful cuts branch-and-bound: (i) which colorful cut should be used as a pivot? (ii) how the labels in the selected pivot should be sorted? And (iii) in which sequence the nodes should be processed?

K(S) = {A 1 , A 2 , • • • , A k },
We have answered these questions empirically. The resulting procedure, namely the colorful cuts branch-and-bound, is presented in Algorithms 6.2, 6.3, and 6.4. Algorithm 6.2 describes the procedure CCutBB, which is the main function. The necessary initializations are performed in lines 2 to 4. The main loop (lines 5 to 17) performs a DFS traversal in the branchand-bound tree. The next node to be processed is selected in the line 6 and its linear relaxation is solved in line 7, returning a lower bound (LB) and the solution vector Z * . Two small variants of the MVCA are used in the lines 8 and 9 in order to obtain better upper bounds, making possible to close some nodes earlier. The procedure MVCA' adds all labels fixed to 1 to the solution and then performs the original MVCA. The procedure MVCA" uses Z * , the solution vector of the linear relaxation of the node, to guide the MVCA. At each iteration, it adds to the solution the label l whose have the maximum value of Z * l . Once all the remaining labels have z * l = 0, it turns into the original MVCA. The lines 10 to 13 present the bound conditions and if these conditions are not met, it is necessary to perform a branch on this node (lines 14 to 17) using the procedure CCutBranch.

Algorithm 6.3 describes the procedure CCutBranch, which is responsible for partitioning the given node into smaller subproblems. The necessary initialization is given in line 2.

Then, the procedure CCutSelect (described later) is called in order to choose a colorful cut as a pivot (line 3), which is sorted (line 4) with respect to the number of edges possessed by the label. The loop of the lines 5 to 10 creates the new nodes by copying the current one and fixing some of its variables according to the rules described previously. Finally, the new set of nodes is returned (line 11) as a stack.

The procedure CCutSelect, presented in Algorithm 6.4, describes the strategy for selecting the colorful cut which will be used as a pivot for the CCut branching. It consists in contracting all the labels of the graph which have been fixed to 1 (lines 3 and 4), removing all edges whose label was fixed to 0 (lines 5 and 6), and selecting the colorful cut with the minimum number of labels, considering only the singletons, i.e., the unitary sets of vertices (lines 7 to 9). Algorithm 6.2: Colorful cuts branch and bound The Figure 6.4 illustrates a colorful cuts branch-and-bound tree on the z variables of CCut formulation. Observe that this new branching tree is wider than the traditional one since it could create more than two subproblems at each branching phase. On the other hand it is shorter and more balanced, given that each subproblem has a variable set to 1. Figure 6.6(b)

1 procedure CCutBB(G = (V, E, L),
depicts the structure of a wide and short colorful cuts branching tree.

In addition, observe that the structure of the colorful cuts branch-and-bound tree makes it very suitable for applying the domination rule (refer to Definition 3.10 and Proposition 3.5)

and the monochromatic cuts removal (refer to Definition 3.7 and Proposition 3.3). Indeed, from Algorithm 6.3: Colorful cuts branching strategy We have performed an experiment to verify the quality of the CCut branching strategy in comparison to the branch-and-cut algorithm BC I (CCut t , DFS), which uses the traditional binary branching strategy. This experiment is presented in Section 6.3. Unfortunately, as reported in Tables 6.5 and 6.6, we have observed that the CCut branching strategy presents serious convergence problems. Probably, it is due the fact that the number of nodes in the branch-and-bound tree grows too fast with its height.

1 procedure CCutBranch(currentNode) 2 newNodeStack ← emptyStack; 3 K ← CCutSelect(); 4 Sort K so that |E(K i)| ≤ |E(K i+1)|, for i = 1 to size(K) -1;
1 procedure CCutSelect(G = (V, E, L), currentNode) 2 H = (V , E , L) ← G = (V, E, L);
Aiming to combine the balance provided by the colorful cuts branch-and-bound tree with the convergence power of the traditional one, we propose a new hybrid branching strategy, namely the colorful cuts hybrid branch-and-bound (CCutHB). Given an integer parameter h 0 > 0, it consists in using the colorful cuts branching in the first few h 0 levels of the tree 2 and then switch to the traditional binary branching. This strategy allows a good use of the contraction and dominance properties at the beginning of the tree whereas it delivers much smaller subproblems to the traditional branch and bound. Further, the traditional branch-and-bound phase of this method could be solved by calling directly the Cplex solver. All experiments reported in this chapter were implemented in C++ language and compiled by using g++ 4.6.3 with the optimization flag -O3. The formulations and all of its derived procedures were implemented using the Concert library and Cplex 12.51 as the solver. The experiments were performed on a computer with Intel(R) Core(TM) i7-4790K CPU, 3.4GHz, 16

GB of RAM, and Ubuntu 14.04 as the operating system. Although the processor of this device has more than one core, the algorithms were executed using a single core and a single thread within a time limit of 2 hours. Further, we turned off all presolve features and all automatic cutting-plane generation procedures while all other parameters of the Cplex were set to their respective default values. Moreover, it is possible to observe from the experiments reported in Chapter 4 that the branch-and-cut algorithm BC I (CCut t , DFS), CCut t for short, has obtained very consistent results with respect both to running times and linear relaxation quality. For this reason, we use this method as a reference to assess the quality of the improvements proposed in this chapter.

The first experiment performed studies the impact of separating heuristically the PCut inequalities in the root node of the branch-and-cut algorithm BC I (CCut t , DFS). For this experiment, we have considered the graphs with number of vertices n = |V | ∈ {100, 200} from the group 2 of ELGs generated by [START_REF] Cerulli | Metaheuristics Comparison for the Minimum Labelling Spanning Tree Problem[END_REF] (refer to Section 4.3 for more details). However, due to the size of the input graphs, we had to modify slightly the heuristic PCut h , presented in Algorithm 6.1. In the lines 6 and 8, instead of evaluating all the sets NS(s i) and NM(s i), we evaluate just n solutions taken randomly from each set. Further, we have changed the limits for the generation of the initial solution (line 2) to [n -60, n -10]. We call this modified version of PCut h as PCut rh .

The results of this experiment are reported in Tables 6.3 and6 The results for instances with n = 100 show that separating the PCut inequalities improves slightly the linear relaxation of the model. However, it could not obtain better results than CCut t . Despite both methods were able to solve all instances of this group to optimality, seems that adding the PCut inequalities to the model makes it harder to solve. Indded, CCut t has achieved the best time for 11 out of 12 datasets. For instances with n = 200, PCut rh stills improving the linear relaxation of CCut t . Besides, for this group, adding the PCut inequalities has shortened the time needed to solve 7 datasets out of 12. Observe that the performance of the new method gets better as the number of label increases and the edge density get smaller.

Indeed, for instances with d = 0.2 and l = |L| = 200, the method CCut t + PCut rh was able to obtain a better upper bound as well as to solve more instances to the optimality. The second experiment aims to verify the quality of the branching strategy CCutBB (in-1 troduced in Section 6.2), by comparing it with the branch-and-cut algorithm BC I (CCut t , DFS), 2 for short CCut t , which uses the traditional binary branching strategy. Again, we have carried Tables 6.5 and 6.6. These tables follow the same structure of tables 6.3 and 6.4, except that 6 we have removed the columns cuts and gapr and added the column nodes, which stands for the 7 total number of nodes solved in the branch-and-bound tree. Considering the set of instances with 100 vertices, it is possible to observe that CCutBB is very competitive for graphs from medium to high edge densities. Indeed, it has solved all instances to optimality as well as obtained the best times for 5 out of 8 datasets. Notwithstanding, its performance decreases considerably for low density graphs. Specially, CCutBB has used 500 + s for solving all 10 instances of the dataset 100-125-0.2, while CCut t has used just 21s.

Further, observe that the number of nodes solved by the branch and bound tree of the CCutBB procedure is smaller for 11 out of 12 datasets. As expected, it is due to the fact that the CCutBB tree is more balanced than the CCut t one.

For the set of instances with 200 vertices, despite the fact CCutBB still visits less nodes, it did not performed well. It was able to solve the problems faster for high density input graphs (d = 0.8) with l ≤ 200 and for the dataset 200-50-0.5. However, for the remaining datasets, its running times are too big in comparison to the CCut t ones. Furthermore, CCutBB was not able to solve any instances from the dataset 200-250-0.2 as well as managed to solve only two instances from the dataset 200-200-0.2. Along with the results for instances with 100 vertices, it suggests CCutBB presents serious convergence problems for ELGs with low edge density (l = 0.2) and high number of labels (l ≥ n).

Lastly, the next experiment aims to evaluate three versions of the method CCutHB (refer to Section 6.2), namely CCutHB(h 0 = 1), CCutHB(h 0 = 2), and CCutHB(h 0 = 2) + PCut rh (for short PCutHB). The latter stands for using the heuristic PCut rh for separating the PCut inequalities at the root node of the method CCutHB(h 0 = 2), which has performed better than CCutHB(h 0 = 1). We have executed the methods for each instance from the group 2 of ELGs generated by [START_REF] Cerulli | Metaheuristics Comparison for the Minimum Labelling Spanning Tree Problem[END_REF] with number of vertices n = |V | = 200 and the results of this experiment are reported in Table 6.7. Each line of this table reports the results obtained by one method. The lines are grouped four by four and each group represents a dataset, which is a sett with ten input ELGs with the same n-l-d configuration. The first column identifies the algorithm, while the next two identify the dataset. The columns ' ', UB, t(s), cuts, gap, and gapr have the same meaning as in Table 6.3. The column lrt(s) reports the total time (in seconds) necessary to solve the root node of all instances in a dataset. Finnally, the columns nodesT and nodesC stands, respectively, for the total number of nodes solved in the traditional branch-and-bound tree phase and in the CCut branching one.

From the results of this experiment it is possible to observe that all approaches derived from CCutHB have outperformed CCut t with respect to the number of instances solved to optimality. It is important to highlight that both CCutHB(h 0 = 2) and PCutHB(h 0 = 2) have only failed to solve 2 out of 120 instances to optimality. It is the best known result so far. Further, these methods have also achieved the best UB values for all datasets, with the exception of CCutHB(h 0 = 1) for the dataset 200-250-0.2.

Considering the graphs with edge density d ∈ {0.5, 0.8}, the method CCutHB(h 0 = 1) has achieved the best results. Indeed, although all approaches have solved the four datasets to optimality, this method was able to complete the tasks in much smaller times, specially for instances with l ≥ 200. For this group of instances, seems that separating the PCut inequalities only increases the completion time of the method. On the other hand, CCutHB(h 0 = 2) has achieved the best results for input ELGs with edge density d = 0.2. In fact, it has obtained the best times for 3 out of 4 groups and, along with PCutHB(h 0 = 2) solved more instances to optimality than the other methods. Regarding separating heuristically the PCut inequalities on the root node of PCutHB(h 0 = 2), the results suggest that it becomes relevant as the density of the input graphs decreases and its number of labels increases. Particularly for the dataset 200-250-0.2, the hardest one in this set of experiments, this method was able to improve the running time of CCutHB(h 0 = 2) and to reduce the total number of nodes in the branch-and-bound tree by a factor of 3.57.

Concluding remarks

In this chapter we have introduced two improvements for the CCut formulation. The first one is based on a new mathematical model, namely PCut, that extends CCut by using the concept of partitioning cuts. The second is a new hybrid branching strategy for solving the CCut model which is based on the concept of colorful cuts. In addition, we have proposed branch-andcut algorithms and separation procedures, as well as performed computational experiments to evaluate the new proposed methods. The improvements proposed lead to four new branch-and cut algorithms, namely CCutBB, CCutHB(h 0 = 1), CCutHB(h 0 = 2), and PCutHB(h 0 = 2). We can observe from the computational experiments carried out that the new approaches were able to overperform CCut, achieving the best results regarding exact methods for both the MLSTP and the GMLSTP so far.

Regarding to PCut model and to the partitioning cuts inequalities, the results have showed that they were able to improve slightly the results of the CCut formulation. Moreover, separating these cuts on the root node of the CCutHB(h 0 = 2) has showed to worth for instances with low density and a large number of labels. In its turn, CCutBB, the branchand-bound algorithm that uses only the CCut branching strategy did not performed well. As evidenced by the experiments, it has presented serious convergence problems. Although, the hybrid branching strategies proposed have successful combined the balance of the new branching strategy with the convergence power of the traditional one. It is relevant to evidence that the resulting methods CCutHB(h 0 = 1) and CCutHB(h 0 = 2) have improved the performance of CCut formulation, being able to solve to optimality 238 out of 240 input graphs.

We believe the proposed methods can be further improved with the development of new heuristics for separating the PCut inequalities. Other improvements would be to provide a smart way to select which of the methods would be used based on the characteristics of the input ELG, or to change dynamically the parameter h 0 accordingly to the node to be solved. Chapter 7

Heuristic Methods

In this chapter we propose a new heuristic approach for both MLSTP and GMLSTP. First, we present a revised version of the maximum vertex covering algorithm, the most successful constructive heuristic for these problems, and provides a tighter bound to its time complexity. Further, a new MIP-based metaheuristic is proposed for solving the GMLSTP, the multi-start local branching (MSLB). It combines the efficiency of the proposed constructive heuristics with the capacity of exploration of a new local search method based on MIP. The computational experiments performed show that the MSLB is superior to the current state-of-the-art metaheuristics in respect to quality of the solutions and processing times.

The remainder of this chapter is structured as follows: Section 7.1 introduces a modified version of the maximum vertex covering algorithm and provides a tighter bound on its time complexity. Section 7.2 presents the multi-start local branching, a new MIP-based metaheuristic for solving the MLSTP. Section 7.3 discuss an experimental analysis of the proposed method in comparison of the state-of-the-art metaheuristics for the problem.

Revised MVCA

As discussed in Section 2.2, one can say the MVCA is the most successful constructive heuristic for both MLSTP and GMLSTP. It has been used to provide initial solutions or to complete partial ones by many metaheuristic-based methods. Moreover, even other constructive heuristics rely on MVCA to build or to rebuild solutions.

This section proposes a revised version of MVCA, namely rMVCA, with the aim of providing a best upper bound on its running time complexity. This new version is based on Theorem 3.1 and on the fact that G / / L has exactly the same number of vertices as the number of connected components of G[L], for L ∈ L, as discussed in Section 3.1. The main idea is to carry out fewer operations to determine the next label to be added to the solution. To do so, at each iteration, the method keeps a precomputed version of the graph for each possible choice of label, as well as update these auxiliary data structures dynamically.

Assume that G is a monochromatic-cycle-free ELG. As discussed in Section 3.2, the monochromatic cycles can be broken by using Algorithm 3.1. The rMVCA is presented in Algorithm 7.1: in the line 2, C is defined to carry the set of labels of the solution; the loop of line 3 computes the graph G l = G / / {l}, ∀l ∈ L, that stands for the resulting graph if the label l is added to the current solution; the loop of lines 4-14 represents one iteration of the method, while its condition assures the connectivity of the final graph; the greedy choice of the rMVCA is performed in the line 5; the loop of lines 7-10 updates the input graph to reflect the label chosen to enter the solution; in the line 11 the solution is updated; and in the loop of lines 12-14

each graph G l , l ∈ L\C, is updated such that G l = G / /C ∪ {l}. Recall, from Definition 3.5, that
ξ (e, E l) stands for the projection of the edge e on the set of edges of the graph G l .

Algorithm 7.1: Revised MVCA

1 procedure rMVCA(G = (V, E, L)) 2
Let C ← / 0 be the set of labels of the solution; Proof. First, rMVCA assumes that the input graph does not have monochromatic cycles. Let G = (V, E, L) be the input graph. This implementation represents the set of vertices of the graphs G and G l , ∀l ∈ L, by using data structures for disjoint sets [START_REF] Cormen | Introduction to algorithms[END_REF]. Since O(n) union-find operations are necessary to compute each graph G l , the loop of the line 3 takes O(α n kn) time.

3 foreach l ∈ L do G l ← G / / {l} = (V l , E l , L) ;
Let p be the number of iterations of the main loop. We have that p < n, because at most n -1 labels are added to the final solution, as well as p < k, because all the labels are added to the solution in the worst case. Remark that the number of vertices of each graph is given by n minus the number of successful union operations performed on that graph, what can be computed while contracting it. Then, the greedy choice of the line 5 is performed in O(pk) ⊆ O(kn) total time. Also, the condition of the loop in the line 4 and the operations of lines 6 and 11 can be carried out in constant time, resulting in O(p) ⊆ O(n) total time.

The update of the current solution graph, lines 7-10, requires O(n) union-find operations per iteration, in a total time of O(α n pn) ⊆ O(α n kn). Finally, let q i = |E * | be the cardinality of E * at the ith iteration. Thus, the total number of union-find operations necessary to update each graph G l , l ∈ L\C (lines 12-14) is q = ∑ p i=1 q i . Since E * stands for the set of edges that actually contracted two vertices of G, and only n -1 edges do contract vertices of G during the complete execution of the rMVCA, follows that q = n -1. Thus, as the method keeps k graphs updated, this step takes an overall time of O(α(q, n) • kq) ⊆ O(α n kn). As a consequence, the time complexity of the rMVCA is O((α n kn)

+ (kn) + (n) + (α n kn) + (α n kn)) ⊆ O(α n kn).

Multi-start local branching

In this section, we introduce the multi-start local branching procedure (MSLB), a new hybrid metaheuristic for the MLSTP. The MSLB incorporates two new constructive heuristics: a parametrized version of MVCA (pMVCA) and a MIP-based procedure denominated round and contract (R&C), and a local search family of heuristics based on a local branching approach (LB). The remaining of this section describes the methods pMVCA, R&C, and LB, as well as the metaheuristic MSLB.

Parametrized MVCA

The first few choices made by greedy heuristics, such as the rMVCA, play an important role in the quality of the solution they yield. This is due to the fact that initially, these methods do not have enough information to make good decisions, while these bad decisions could lead the solution towards a local minimum. In fact, an experiment performed by [START_REF] Cerrone | Carousel greedy: a generalized greedy algorithm with applications in optimization[END_REF] on 10.000 randomly generated ELGs have demonstrated that from the first 25% selections of MVCA, less than 50% of the labels were part of the optimal solution.

This section proposes a parametrized version of rMVCA, denominated pMVCA, in order to minimize the impact of the initial choices of the method while keeping the greediness of the last selections. To this end, at each iteration, the label to enter into the solution is chosen randomly from the Restricted Candidate List (RCL) in the same way as in GRASP [START_REF] Resende | Greedy randomized adaptive search procedures Greedy Randomized Adaptive Search Procedures: GPASP Greedy randomized adaptive search procedures GPASP[END_REF], where the RCL is a list with the |RCL| best label selections for that iteration. Given δ , θ ∈ (0, 1], two parameters of pMVCA, the size of the RCL at iteration

i ∈ {0, 1, • • • } is given by max(1, |L| • δ • θ i).
Note that δ defines the initial size of the RCL, while θ controls the gradual reduction of its size through the iterations, what increases the greediness of the algorithm.

Some characteristics of pMVCA make it very suitable for multi-start procedures: it is based on an efficient constructive heuristic, the rMVCA; the randomness of the first choices allows the method to generate diversified solutions, as well as different configurations of δ and θ allow it to explore varied regions of the solution space; and the greediness of its last choices does not allow the method to generate very bad solutions.

Round & Contract heuristic

As discussed previously, the majority of the successful heuristic algorithms proposed for the MLSTP rely on MVCA. In this section we present the Round & Contract (R&C) procedure, a MIP-based constructive heuristic proposed as an alternative to this fact.

Let Z * ← CCut * (G) represent the solution of the linear relaxation (LR) of the CCut formulation for the graph G, such that Z * l is the value of the variable associated with the label l in Z * . The R&C starts with the solution C = / 0, and, while G / / C is not connected, at each iteration, adds to C the label c ∈ L\C with the greater Z * c . Given that CCut has an exponential number of constraints, it was executed with the singleton inequalities (4.5) in the place of the set of colorful cuts ones (4.2). Despite the fact that the constraints 4.2 could be dynamically separated, for the sake of performance, it is not carried out in the R&C method.

The R&C method is described in Algorithm 7.2. Each iteration of the main loop (lines 3-7) solves the linear relaxation of the CCut formulation for G (line 4); selects the label c with greater Z * c (line 5); add it to the solution (line 6); and contracts the current solution graph G to reflect the inclusion of c in C (line 7). The loop stops when the graph has only one vertex, then the solution C is returned (line 8).

Algorithm 7.2: Round and contract heuristic

1 procedure R&C(G = (V, E, L)) 2
Let C ← / 0 be the set of selected labels; and (e) illustrates the choices of R&C, which lead to the solution {A, B}.

3 while |V | > 1 do 4 Z * ← CCut * (G); 5 c ← argmax l∈L\C (Z * l); 6 C ← C ∪ {c}; 7 G ← G / / {c} ; 8 return C;

A local search heuristic based on local branching techniques

The local branching technique, as proposed by [START_REF] Fischetti | Local branching[END_REF], is a generic strategy designed to improve the heuristic behavior of MIP solvers. It consists to solve the MIP with or ∆(x, x) ≥ k + 1 (right branch). Then, the left branch subproblem is solved first to search for better incumbent solutions in the subspace near to x, while the right branch subproblem is responsible for solving the remaining problem.

This section proposes a new family of local search heuristics for the GMLSTP, denominated LB, inspired on the local branching technique. Since there is no compromise with optimality, there is no interest in solving the right branch subproblem. Furthermore, to have more control of the method, we have re-partitioned the left branch into the yet smaller subproblems:

∆(x, x) = 1, ∆(x, x) = 2, • • • , ∆(x, x) = k. Given C ⊆ L,
∑ l∈L z l ≤ B -1. (7.2)
Remark that, as in the R&C heuristic, the CCut formulation is initialized with the singleton constraints (4.5) in the place of colorful cuts inequalities (4.2). However, the LB procedure has to care with the feasibility of the returned solutions. To this end, whenever an integer solution C is found, it is executed a depth-first search procedure on G[C] and if it is disconnected, the inequality 4.2 related to each component of G[C] is added to the model. This was carried out by using the Lazy Callbacks feature of Cplex. Further, note that it is advantageous to configure the solver in order to prioritize feasibility over optimality.

The multi-start local branching metaheuristic

In this section, we present the multi-start local branching (MSLB) procedure. It is a new MIP-based hybrid metaheuristic for the MLSTP that uses the constructive heuristics rMVCA, pMVCA and R&C to yield good solutions fast, and the LB family of local search heuristics in order to improve their quality. The MSLB can be divided into four phases, namely Initialization, Tuning, Roulette, and MIP-Based, and the latter three are executed in sequence within a multi-start loop until a stop condition is reached.

The Initialization phase is responsible for performing the preliminary operations necessary for the execution of the MSLB, such as the preparation of data structures and the removal of monochromatic cycles from the input graph. Further, due to the deterministic behavior of the heuristic rMVCA, it is carried out in this phase in order to achieve an initial upper bound fast.

The Tuning phase of MSLB consists in a big number of calls to the constructive heuristic pMVCA. Recall that pMVCA is very efficient because it is based on rMVCA and that its behavior depends on the parameters δ and θ . Let ∆ = {0.05, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7},

Θ = {0.1, 0.2, 0.3, 0.4}, and Ω = {(δ , θ) | δ ∈ ∆, θ ∈ Θ}.
The Tuning phase is presented in Algorithm 7.3. The main loop (lines 2-5) is executed once for each set of parameters ω ∈ Ω.

Then, the heuristic pMVCA is executed λ = 200 times for the selected ω (lines 3 and 4) and the best p = 100 solutions found on the overall procedure are kept in the pool of solutions P (line 5). Let A B = (A\B) ∪ (B\A) represent the symmetric difference between the sets A and B. In order to increase the diversification of the MSLB, a solution C that has |C C | ≤ 1 for some C ∈ P it is not allowed to enter P. Moreover, the values of the parameters ∆, Θ, λ , and p were chosen through empirical observations.

Algorithm 7.3: Tunning phase of MSLB 1 procedure Tuning(G = (V, E, L),Ω,P,λ) 2 foreach ω ∈ Ω (in a random way) do

3 for i = 1, 2, • • • , λ do 4 C ← pMVCA(G, ω); 5 P ← update_pool(P,C);
The Roulette phase of MSLB uses the information obtained in the Tuning phase in order to execute the pMVCA heuristic privileging the parameters ω ∈ Ω which had better performance. This strategy allows the MSLB to adapt itself to the characteristics of the input instance. Let p ω be the number of solutions in P that were obtained by using pMVCA with the configuration ω, and let p Ω = ∑ ω∈Ω p ω . The Roulette executes the pMVCA twice the number of iterations of Tuning. For each iteration, it chooses randomly a parametrization ω ∈ Ω in a biased way, where p ω /p Ω is the probability of ω to be chosen. The Roulette phase is presented in Algorithm 7.4. The main loop of the procedure (lines 2-5) is executed 2λ • |Ω| times. At each iteration, a set of parameters ω ∈ Ω is selected (line 3), the pMVCA is carried out (line 4), and the pool of solutions P is updated (line 5). Note that the update of P reflects immediately on the probabilities of each ω to be chosen.

Algorithm 7.4: Roulette phase of MSLB

1 procedure Roulette(G = (V, E, L),Ω,P,λ) 2 for i = 1, 2, • • • , (2λ • |Ω|) do 3 ω ← biased_randomly_pick(Ω, P); 4 C ← pMVCA(G, ω); 5 P ← update_pool(P,C);
The procedures based on the CCut formulation are executed at the MIP-Based phase.

The R&C heuristic is carried out first, and, due to its deterministic behavior, it is executed just once during the entire MSLB. Subsequently, the family of local search heuristics LB is applied in order to improve the quality of the solutions in P. The MIP-Based phase is described in Algorithm 7.5. First, the R&C heuristic is executed (lines 2-4). Afterward, the LB 2 is applied over each solution C ∈ P (lines 5-7). Let maxLB k ≥ 3 be an input parameter that limits the Lastly, at the end of the MIP-Based phase, the pool of solutions P is reinitialized and the method is redirected to the Tuning phase.

Computational experiments

In this section, we perform computational experiments in order to evaluate and compare the metaheuristic proposed in this work with the state-of-the-art ones in the literature, both in terms of solution quality and computational running time. In the sequel, a statistical analysis is applied to the results. The MSLB metaheuristic, proposed in this work, is compared with the methods GRASP and VNS proposed by [START_REF] Consoli | Greedy Randomized Adaptive Search and Variable Neighbourhood Search for the minimum labelling spanning tree problem[END_REF] and COMPL and INTELL proposed by [START_REF] Consoli | Solving the Minimum Labelling Spanning Tree Problem by Intelligent Optimization[END_REF].

Environment setup

The MSLB metaheuristic was implemented in C++ language and compiled by using g++ 4.8.4, with the optimization flag -O3. The CCut formulation and all of its derived procedures were implemented using the Concert library and Cplex 12.51 as the solver. The experiments were performed on a computer with Intel(R) Core(TM) i7-4790K CPU, 4.00GHz, 16 GB of RAM, and Ubuntu 14.04 as the operating system. Although the processor of this device has more than one core, the algorithm was executed by using a single core and a single thread.

In our computations we have considered the group 2 of ELGs generated by [START_REF] Cerulli | Metaheuristics Comparison for the Minimum Labelling Spanning Tree Problem[END_REF], a benchmark already consolidated in the literature. Further, we also used the instances with 1000 vertices generated by [START_REF] Consoli | Solving the Minimum Labelling Spanning Tree Problem by Intelligent Optimization[END_REF]. Thus, the group of input graphs of the experiments has instances with number of vertices n = |V | ∈ {100, 200, 500, 1000}, number of labels l = |L| ∈ {0.25n, 0.5n, n, 1.25n}, and edge densities d ∈ {0.2, 0.5, 0.8}. Also, each dataset consists in 10 different graphs for one n-l-d configuration. The instances of the group 1 generated by [START_REF] Cerulli | Metaheuristics Comparison for the Minimum Labelling Spanning Tree Problem[END_REF] were not considered due to their very small dimensions.

Preliminary experiments

A first round of experiments was performed in order to determine the value of the parameter maxLB k . Recall this parameter controls the number of LB local search heuristics applied on the MIP-Based phase of MSLB. The value of maxLB k must be chosen carefully in order to provide a balance between capacity of improvement and computational cost. On the one hand, small values of maxLB k make it execute fast but limit the search to a reduced portion of the solution space. On the other hand, larger values of maxLB k allow the LB k to search a wide subset of the solution space but may limit the number of solutions the method is able to address.

Four challenging datasets were chosen for this experiment: 200-200-0.2, 200-250-0.2, 500-500-0.2, and 500-625-0.2. Then, for each maxLB k ∈ {3, 4, 5, 6, 7, 8}, and for each instance in the datasets, the MSLB was executed 10 times. The Table 7.1 reports, for each configuration of maxLB k , the total number of times the LB was able to find a solution better than the best one found in the previous phases (column #u), and the average objective function obtained for the 10 instances of the dataset (column avg.). Also, the best results for each line are highlighted in bold and the worst ones are sub-lined. From Table 7.1 it is possible to observe that the MSLB is not very sensitive to changes in maxLB k . Indeed, the difference between the best and the fourth total averages in only 0.02.

Although the maxLB k = 5 did not reach the best avg. for any individual dataset, this configuration always performed near the best, and, because of that, it was able to obtain the overall best results. A second round of tests was carried out with instances with n = 1000, from which we have noticed the LB performs too slow for this group. It happens because the LB heuristics are based on CCut, a mathematical formulation, and it does not scale with the size of input.

Based on the experiments reported here, we chose and do not execute any LB for instances with n ≥ 1000, and to set maxLB k = 5 for instances with n ≤ 500.

Performance analysis

The next experiments aim to compare the MSLB with the methods GRASP, VNS, COMPL (CMPL in the tables), and INTELL in terms of solution quality and computational running time. The MSLB was executed using a maximum allowed CPU time (max-time) as stopping condition. The max-time configuration was the same as the used by [START_REF] Consoli | Solving the Minimum Labelling Spanning Tree Problem by Intelligent Optimization[END_REF]: 20, 60, 300, and 1000 seconds for instances with 100, 200, 500, and 1000 vertices, respectively.

For each execution, the best solution found was recorded as well as the time at which it was obtained.

The results of these experiments are reported in Tables 7.2 -7.9. Each line of the tables represents a dataset, which is a set with 10 instances with the same n-l-d configuration. The first two columns of each table identify the input instances. The next column reports the optimal solution, obtained by the A * algorithm [START_REF] Chang | The Minimum Labeling Spanning Trees[END_REF], and the remaining columns show the computational results of the considered metaheuristics. The results reported in the columns Opt, GRASP, VNS, CMPL, and INTELL are the ones given in [START_REF] Consoli | Solving the Minimum Labelling Spanning Tree Problem by Intelligent Optimization[END_REF], which performed one single execution of the methods for each instance. Conversely, we choose to perform 10 runs of the MSLB for each dataset, in order to mitigate the effects of randomness in the evaluation of the method.

The last four columns refer to the results of MSLB: the average objective function over all the ten runs (column avg.), the best/worst average objective function obtained in a single run (column b.r./w.r.), and the average objective function considering the best result found for each individual instance over all the 10 runs (column best). The computational times reported in the tables are the average times (in seconds) at which the best solutions were obtained. For the columns b.r., w.r., and best, the average result is reported in the case of ties. When a metaheuristic reaches the optimum, the value is sub-lined to highlight this fact. Just as in [START_REF] Consoli | Solving the Minimum Labelling Spanning Tree Problem by Intelligent Optimization[END_REF], the performance of an algorithm is considered better than another if either it obtained a smaller average objective function value, or an equal average objective function value but in a shorter computational running time.

Tables 7.2 and 7.3 report the results for instances with n = 100. All the methods perform very well for this group. Indeed, they are able to find all the optimal values in a very small amount of time. However, it is possible to see that the MSLB needs less time than the others to yield the same results. Almost the same happens for instances with 200 vertices (Tables 7.4 and 7.5). But, for instances with l ≥ 100 and d = 0.2, the MSLB yielded better average objective values. Moreover, the MSLB was able to improve the best-known solution (BKS) for two datasets. These values are highlighted with a '*'. The analysis of the results for instances with n = 500, reported in Tables 7.6 and 7.7, can be divided in three groups. The methods obtained a similar performance for the datasets in the five first lines in terms of average objective value, but the MSLB achieved the best times.

INTELL and COMPL were the best ones in the dataset 500-625-0.2. For the remaining datasets, it is possible to state that the MSLB performed better than the others both in terms of solution quality and running time. Again, the MSLB was able to improve the BKS for five datasets (values with a '*'). The results for instances with n = 1000 (reported in Tables 7.8 and 7.9) highlights the difference in performance from MSLB to the other methods. The MSLB has improved the BKS for six datasets (values with a '*'), and also has proved the optimality for the dataset 1000-250-0.8. It was possible since the removal of monochromatic cycles detects any solution with value 1 and, after that, if any method finds a solution with value 2, this solution is optimal. Beyond that, even when the other methods are able to find the same average objective value for a dataset, much more time is needed. For instance, even reaching better solutions than INTELL, the total time of the MSLB was approximately 4.5 times smaller. Considering the above, it is possible to classify the benchmark into easy instances and hard ones. The majority of methods is able to reach the best solution for the easy instances.

For this group, the MSLB yield these solutions faster. It is mostly on account of the Tuning and Roulette phases, both relying on the pMVCA. On the other hand, for the hard datasets, the MSLB was able to find the best solutions. It was due to the capacity of intensification given by the LB family of local search heuristics.

Moreover, from the columns b.r. and w.r., is possible to see that the gap between the best and the worst runs of MSLB in very small. Indeed, this difference is 0 for 41 of 48 datasets.

For the remaining cases, this difference is ≤ 0.2 in 6 cases and 0.3 in the other one.

Statistical analysis

A statistical analysis was carried out to enrich the performance analysis of the computational experiments. These tests were conducted using the software R 3.0.2. and the package PMCMR 4.1. For the first test, the null hypothesis is that there is no significant difference between the algorithms and, hence, the deviations obtained were merely random. The Friedman test is a nonparametric procedure based on ranks that detects the existence of significant differences between the results of multiple multiple test attempts (e.g. for multiple algorithms) over different groups of instances.

From the results reported in Section 7.3.3 and considering the column avg. for the MSLB, the algorithms received ranks from 1 to 5 for each dataset. The ties were broken by the average of the ranks. The average ranks obtained considering all datasets of the benchmark was:

3 .990, 3.708, 4.073, 2.104, and 1.125, for the metaheuristics GRASP, VNS, COMPL, INTELL, and MSLB, respectively. Through the routine friedman.test, the statistic value obtained was χ 2 F = 136.867, with p-value = 2.2e-16. Indeed, the null hypothesis can be rejected with a level of significance α = 0.01 and 99% of confidence. Thus, we are able to detect significant differences between the algorithms on a pairwise comparison through post-hoc tests. According to the authors, this kind of constraint is important in real life situations when there is a limit that cannot be violated, such as the number of wireless network frequencies in some area. Moreover, the authors have demonstrated the kLSFP is NP-complete since it is a generalization of the MLSTP. The cost-constrained minimum label spanning tree problem: Given an edge-labeled-andweighted graph G = (V, E, L) and an integer constant k ∈ Z + , the cost-constrained minimum label spanning tree problem (CCMLSTP), also proposed by [START_REF] Xiong | The label-constrained minimum spanning tree problem[END_REF], aims to find a spanning tree with the smallest number of labels and a total edge cost of no more than k.

The minimal cost/minimal label spanning tree problem: The minimal cost/minimal label spanning tree problem (MC/MLSTP), proposed by [START_REF] Clímaco | On the bicriterion -minimal cost/minimal label -spanning tree problem[END_REF], is a bicriterion multiobjective problem that combines the MLSTP and the minimum spanning tree problem. Given an edge-labeled-and-weighted graph, the first objective is to minimize the sum of the weights of the edges of the resulting spanning tree, while the second aims to minimize its number of labels. According to [START_REF] Clímaco | On the bicriterion -minimal cost/minimal label -spanning tree problem[END_REF], these two criterion are conflicting in most cases. The next sections discuss in more detail some connectivity problems defined on ELGs, introduce new ones, and propose new MIP-based mathematical models, extensions and/or adaptations of the colorful cuts formulation, for solving these problems. We add a " " before the name of the problem in order to emphasize, to the best of our knowledge, when it is being first proposed in this work. Otherwise, we cite the work where the problem was introduced.

Connectivity problems with optional vertices

This section addresses a class of connectivity problems defined on ELGs in which it is not necessary to connect the entire graph, but only specific subsets of its vertices. The objective is to show how to adapt the CCut formulation to solve each of these problems.

The minimum labeling path problem [START_REF] Jacob | The minimum label path problem[END_REF]:

Given an input ELG G = (V, E, L),
and a pair of vertices s,t ∈ V , the aim of the minimum labeling path problem (MLPP) is to find a path connecting s to t by using the minimum number of labels. According to [START_REF] Carr | On the red-blue set cover problem[END_REF] and [START_REF] Broersma | Paths and cycles in colored graphs[END_REF], the MLPP is NP-complete. Note that the MLPP can be equivalently defined in the following way: given an input ELG G = (V, E, L), the goal is to find a smallest cardinality subset L ∈ L such that s and t are connected in G [L]. Verifying the equivalence between these definitions is straightforward (refer to the demonstration of Definition 1.4).

The

z l ∈ {0, 1}, ∀l ∈ L. (8.3)
As discussed in Section 3.3, the solution of the MLPP for any pair s,t ∈ V is a lower bound for the MLSTP. In such case, could be interesting to find out the best of these bounds, we denominate the labeled diameter of an ELG. A question arises: is that possible to compute the labeled diameter at once, instead of computing the MLPP for every s,t pair of the graph?

The min-color generalized forest problem [START_REF] Carr | On the red-blue set cover problem[END_REF]:

Given an ELG G = (V, E, L),
and set of pairs of distinct vertices V = {(s 1 ,t 1), (s 2 ,t 2), • • • }, the min-color generalized forest problem (MCGFP), proposed by [START_REF] Carr | On the red-blue set cover problem[END_REF], is a generalization of the MLPP that aims to find a smallest cardinality subset L ∈ L such that every pair (s,t

) ∈ V is connected in G[L].
The MCGFP is NP-hard, since the case when |V| = 1 is exactly the MLPP.

The CCut formulation adapted to the MCGFP is presented in the program (8.4) through (8.6). The objective function (8.4) minimizes the number of labels, and the exponential set of constraints (8.5) ensures that each pair of vertices (s,t) ∈ V is connected in the solution graph by requiring at least one active label for every colorful cut that separates these vertices.

Minimize ∑ l∈L z l (8.4) The prize-collecting minimum labeling tree problem: Motivated by a real world application on transport (or computer) networks, we propose the prize-collecting minimum labeling tree problem (PC-MLT), a more general connectivity problem defined on ELGs that extends the MLSTP, the MLPP and the MLSteiner. The PC-MLT consists in finding a minimum-labeled tree such that the sum of its prizes is greater than a required value. To the best of our knowledge, this is the first study on the PC-MLT. This problem has applications when it is desirable to achieve certain objective (e.g. to provide access to some resource to a certain number of people) by using a minimum number of labels. Observe from [START_REF] Balas | The prize collecting traveling salesman problem[END_REF] that the idea of prize-collecting optimization problems is not new. Therefore, since the MLSTP is NP-hard, the PC-MLT also belongs to this class of problems. The minimal labeling strongly connected problem: Given an ALD D = (V, A, L), the minimal labeling strongly connected problem (MLSCP) aims to find a set of labels L ⊆ L, such that |L | is minimized and D[L] is strongly connected. Recall a directed graph is strongly connected if there is a path in each direction between each pair of its vertices. The MLSCP is NP-complete. Again, Mutatis mutandis, the proof is the same given by [START_REF] Chang | The Minimum Labeling Spanning Trees[END_REF] to the MLSTP (refer to Section 2.1). Lastly, it could be interesting to consider an extension of the MFMLP in which the desired maximum s-t flow in the solution digraph should be greater than a given value F ≤ F * .

s.t. ∑ l∈K(S) z l ≥ 1, ∀S ⊂ V | ∃ (s i ,t i) ∈ V such that s i ∈ S
z l ≥ 1, ∀S ⊂ V, S ∩ Q = / 0, S ∩ Q = Q, (8
We call this extension the minimum labeling given flow problem (MLGFP).

Problems with enhanced connectivity

In this section, we address three problems defined on ELGs that look for solution graphs with more connectivity requirements than the MLSTP. This kind of problem arises when it is desirable the solution graph to still connected even if k links, k labels, or a node fails. We show how to adapt the CCut formulation to solve these problems.

Given an ELG G = (V, E, L), the aim of the minimum labeling vertex-biconnected graph problem (MLVBGP) is to find a minimum cardinality set of labels L ⊆ L, such that G[L] is vertexbiconnected, i.e. it is connected even if one vertex is removed from it.

The MLVBGP is NP-complete. The proof is given by extending the transformation given in Section 2. ∑ Several approximation algorithms have been proposed for the MLstCP [START_REF] Zhang | Approximation and hardness results for label cut and related problems[END_REF][START_REF] Tang | Approximating minimum label st cut via linear programming[END_REF][START_REF] Zhang | Efficient algorithms for the label cut problems[END_REF]. The best results were obtained by [START_REF] Zhang | Efficient algorithms for the label cut problems[END_REF], who proved the problem is l max -approximated and f max -approximated, where l max is the size of the largest st path and f max is an upper bound on the number of edges of a label. Lastly, [START_REF] Zhang | Efficient algorithms for the label cut problems[END_REF] have demonstrated that the MLGCP is can be solved polynomially if the input ELG is planar, has a small value of f max , or has a limited treewidth.

∑ l∈K(S v ,G v) z l ≥ 1,    ∀v ∈ V | G v = G[[V \{v}]] = (V v , E v , L v), ∀S v ⊂ V v , S v = / 0, (8.32) z l ∈ {0, 1}, ∀l ∈ L. (8
(S) = {1, 4}, K(S, G[[V \{1}]]) = {B}, K(S, G[[V \{2}]]) = K(S, G[[V \{3}]]) = {B,C}, and K(S, G[[V \{4}]]) = {C}. Observe that if v / ∈ N(S), and v / ∈ S, then K(S, G[[V \{v}]]) = K(S, G). Further, note that if v ∈ N(S), then K(S, G[[V \{v}]]) ⊆ K(S,
l∈K(S v ,G v) z l ≥ 1,    ∀S ⊂ V, S = / 0, |S| ≤ |V | -2, ∀v ∈ N(S), G v = G[[V \{v}]] = (V v , E v , L v).
In the following sections, we propose three new mathematical formulations for the ML-GCP and branch-and-cut algorithms to solve them. The computational experiments showed that the proposed methods are able to solve small and average sized instances in a reasonable amount of time.

Partition based formulations

The first model we propose, denominated PART, aims to partition the the set of vertices of the input ELG into two sets S and S = V \S. For any set S ⊂ V , S = / 0, the removal of all edges that have one endpoint in S and the other in S disconnects the graph. Let z l , ∀l ∈ L, be a variable that x e ≥ w iw j , ∀e = (i, j) ∈ E, (9.4)

x e ≥ w jw i , ∀e = (i, j) ∈ E, (9.5)

z l ≥ 0, ∀l ∈ L, (9.6)
x e ≥ 0, ∀e ∈ E, (9.7)

w v ∈ {0, 1}, ∀v ∈ V. (9.8)
The objective function (9.1) minimizes the number of labels that are necessary to disconnect the input ELG. The constraint (9.2) avoid connected solutions. The set of inequalities (9.3) binds the variables of labels with the edge ones. The constraints (9.4) and (9.5) activates the edges of the cut, while the constraints (9.6) to (9.8) define the domain of the decision variables.

Observe that combining the constraints (9.3), (9.4) and (9.5), we have z e ≥ x e ≥ |w i -

w j |,

A clustering based formulation

The second formulation we propose for the MLGCP is based in the cluster editing problem (CEP). The CEP consist in: given an undirected graph G = (V, E), transform G into a graph that consists of a disjoint union of cliques by inserting and/or deleting a minimum number of edges.

To solve the MLGCP in the way the CEP is solved, we consider the addition of an edge has cost 0, while the cost of the removal of e ∈ E is modeled as the cost of removing the label l(e) ∈ L from G.

Consider G = (V, E, L) the input ELG for the MLGCP. Let x i j , ∀i, j ∈ V , i = j, be a binary decision variable that is set to 1 if the edge e = (i, j) is part of the solution, and to 0

+x i j + x jk -x ki ≥ 0, ∀i, j, k ∈ V, i = j, j = k, k = i, (9.18) +x i j -x jk + x ki ≥ 0, ∀i, j, k ∈ V, i = j, j = k, k = i, (9.19) -x i j + x jk + x ki ≥ 0, ∀i, j, k ∈ V, i = j, j = k, k = i, (9.20) ∑ e=(i, j)∈E x i j ≥ 1, (9.21) z l ≥ 0, ∀l ∈ L, (9.22) x i j ∈ {0, 1}, ∀i, j ∈ V, i = j. (9.23)
According to [START_REF] Grötschel | Facets of the clique partitioning polytope[END_REF], G is a disjoint union of cliques if and only if G does not have any path with three vertices, for short P 3 , as its subgraph.

A tree elimination based formulation

The third formulation we propose for the MLGCP is based on the fact that a spanning tree is minimal connected graph with respect to its number of edges, and, as a consequence, if a graph does not have any spanning trees it is disconnected. Let T be the set of all spanning trees of G, such that L t (T), T ∈ T represents the set of labels of the edges of T ; and let z l , ∀l ∈ L, be a variable that is set to 1 if and only if the label l is part of the solution cut; the program (9.24) to (9.26) presents the tree elimination formulation (TEF). solution found, if it is possible to build a spanning tree with the remaining labels, the associated tree elimination inequality (9.25) is added to the model. We used the MVCA heuristic (refer to Section 2.2) to find spanning trees which uses the minimum number of labels.

Furthermore, we propose a separation heuristic for the tree eliminations inequalities (9.25). Let z * l be the value of the variable z l in the linear relaxation of the TEF model, and let H be an empty ELG with the same set of vertices of the input graph. Chose the label l with lower z * l and add all of it edges to H. Repeat this procedure until H is connected. If the sum of the values z * l of the selected labels is lesser than 1, then this cut is violated.

Computational experiments

In this section we describe the computational experiments performed in order to assess the performance of the mathematical formulations proposed for the MLGCP. All the methods were implemented in C++ language and compiled by using g++ 4.6.3, with the optimization flag -O3. All formulations and their derived procedures were implemented using the Concert library and Cplex 12.4 as the solver. The experiments were performed on a computer with Intel(R)

Core(TM) i7, 64 bits, CPU, 2.93GHz, 8 GB of RAM, and Ubuntu 14.04 as the operating system.

Although the processor of this device has more than one core, the algorithms were executed by using a single core and a single thread within a time limit of one hour.

We have considered the group 2 of ELGs generated by [START_REF] Cerulli | Metaheuristics Comparison for the Minimum Labelling Spanning Tree Problem[END_REF] We can observe from Table 9.1 that the models PART 2 and TEF are able to solve to optimality all the instances of this group. Although the model P3E has failed in only one instance, its computational times are too high in comparison with the other models. The TEF has obtained the best linear relaxation for all datasets and the best computational times for instances with small values of d and l.

The results for the method P3E are omitted from the next tables since it was not able to find any integer solution within one hour. From Table 9.2, we have that the TEF still has the best linear relaxation for all instances. For instances with l = 25, the TEF has the best computational times. While the PART 2 was able to solve all of the instances on this group, the TEF has failed for 32 graphs. Then, it is possible to notice a degradation on the performance of the TEF as the values of l and d grows.

1 We have observed from the results of the first set of experiments that the optimal solution for most of the instances considered is trivial in the sense that it was obtained by disconnecting exactly one vertex from the remaining of the graph. One question arises: how far are the optimal solutions from the trivial ones? Consider the labeled hypercube (LH) family of graphs built as follows: Let LH 0 = ({v}, / 0, / 0) be the LH graph of dimension 0. To build the LH n you take two graphs LH n-1 and connect each vertex to its correspondent by using an edge with a new label L n . Following this construction, we have that removing one label from any LH n graph, n > 0, disconnects it, while that all the the trivial solutions have cardinality n. Follows that the difference between the value of the optimal and the trivial solutions can be arbitrarily big. From Table 9.4 we have that PART 2 was able to solve all instances with 100 vertices within one hour. In contrast, TEF did not obtain the optimal solution in 9 of 30 instances, not even being able to yield any feasible solution in 3 cases. Moreover, it is possible to notice a degradation on the linear relaxations obtained by TEF in relation to the ones of the first experiment. From Table 9.5 we have that PART 2 was able to solve 25 of 30 of the instances with 200 vertices. As expected, the running times of this model grow as the number of labels of the input graph increases. The TEF only achieved the optimal solution for 5 instances, while it did not find any feasible solutions for another 5 instances. For the instances 200.100.80, 200.133.80, and 200.133.50 the TEF obtained the optimal solution in much less time than PART 2 .

Lastly, the computational experiments performed showed that the proposed methods are able to solve small to medium instances to optimality within one hour. The method P3E presented a bad performance due to its large number of variables and inequalities. In its turn, even having a poor linear relaxation, the PART 2 has achieved the best performance. This performance is due to the linear number of inequalities of the model (with respect to the edges of the graph) and to the branch-and-bound on the variables w, which have a linear dimension n. The model TEF achieved the best linear relaxations, but presented serious convergence problems. Chapter 10

The Minimum Representation Spanning Tree Problem

In this chapter we introduce the minimum representation spanning tree problem (MRSTP), a new connectivity problem defined on ELGs. In contrast to the MLSTP, which searches for the overall homogeneity of the network, the focus of the MRSTP is the homogeneity of each vertex in the graph. One application of the MRSTP is when it is necessary to make investments on the nodes of a network, for instance for buying software licenses, or hardware to enable the use of We prove the MRSTP is NP-complete by using the same steps Chang and Leu (1997) Lemma 10.2. The B-MRSTP is NP-hard.

Proof. This Lemma is proved by transforming the the decision version of the set covering problem (B-SCP), that is NP-complete [START_REF] Karp | Reducibility among combinatorial problems[END_REF] Observe that the construction of the graph G(U, S) can be accomplished in a polynomial

A MIP-based exact method

In this section we propose a MIP formulation for the MRSTP. Let x e be a binary variable that is set to 1 if the edge e ∈ E is in the final solution and to 0 otherwise, and let z v l be a binary variable that is set to 1 if the label l ∈ L is represented in the vertex v ∈ V and to 0 otherwise.

The formulation is presented in the program (10.1 to 10.6).

Constructive heuristics

Moreover, we propose the KBased and the PBased algorithms, two new greedy constructive heuristics for the MRSTP inspired by Kruskal's and Prim's algorithms [START_REF] Cormen | Introduction to algorithms[END_REF], were executed by using a single core and a single thread within a time limit of two hours.

For this set of experiments, we have considered the 120 edge-labeled graphs of the group 1, generated by [START_REF] Cerulli | Metaheuristics Comparison for the Minimum Labelling Spanning Tree Problem[END_REF]. This group of ELGs has instances with number of vertices n = |V | ∈ {20, 30, 40, 50}, number of labels l = |L| = n, and edge densities d ∈ {ld = 0.2, md = 0.5, hd = 0.8}. Also, each dataset consists in 10 different graphs for one n-l-d configuration.

Moreover, given the exponential size of the group of inequalities 10.2, it is not practical to solve the model with all of these constraints. In such case, given a solution for the linear relaxation of the model, we separate the inequalities 10.2 by using a simple DFS procedure:

compute the connected components of the solution graph by considering only the edges e ∈ E that have x e > 0, and add an inequality 10.2 for each maximal connected component found (if the graph is not connected). This separation procedure is also executed whenever an integer solution is found, to ensure its feasibility.

The results of the experiments are reported in Table 10.1. Each line represents a dataset with 10 different graphs for one n-l-d configuration, and the first group of columns identifies this dataset. The remaining columns are divided into three groups: KBased, PBased and Exact, related to the results obtained by the proposed heuristics and by the mathematical formulation, respectively. The column rt reports the best integer solution found by the methods. The columns t(ms) and t(s) indicates the average running time in milliseconds and seconds, respectively. The column O reports the number of optimal solutions found by the exact method. The column gap represents (as a percentage) the average value of the differences between the UBs and LBs achieved by the exact method. Finally, the column gapr reports (as a percentage) the average of the differences between the UBs and the linear relaxations 1 .

Regarding to the heuristics, we can observe that the KBased has obtained the best results, having lost to the PBased only in two datasets: 20-20-hd and 40-40-md. As expected from constructive greedy heuristics, both KBased and PBased has presented very small running times, ranging from 0.001 to 9.4 milliseconds, with a slight advantage for the KBased. Their objective function results, however, are not too close to the ones obtained by the exact method.

Despite of that, these heuristics arise as interesting alternatives for larger instances (e.g. 50-50hd), when the exact method is not able to find good integer solutions. Another way to improve these rt results is to use these heuristics to provide initial solutions for metaheuristic methods.

From the results reported, we have that the exact method performed very well for graphs with n ≤ 30, having solved 57 out of 60 instances. However, the performance drops very quickly for graphs with n ≥ 40, when the method solved only 34 out of 60 instances. Also, it is possible to observe from its running times that the complexity of the problem grows with the number of edges on the input graph, to the point of the exact method not being able to solve any instance on the dataset 50-50-hd. Further, for the instance 7 of this group, the exact method was not able to find any feasible integer solution2 .

Lastly, it is possible to state that the MRSTP is harder to solve to the optimality in comparison to the MLSTP. The mathematical formulation CCut was able to solve the MLSTP for all of the instances with 100 vertices of the group 2 of [START_REF] Cerulli | Metaheuristics Comparison for the Minimum Labelling Spanning Tree Problem[END_REF], while the exact method proposed for the MRSTP has failed to solve an entire set of instances with 50 vertices. In this sense, we believe that further researches can propose improved exact, heuristic and metaheuristic methods for this problem, as well as to study more deeply its characteristics in order to introduce reduction rules or preprocessing procedures.

of the CCut formulation. We have proposed the first MIP-based formulations to solve this problem. The computational experiments performed showed that the proposed methods are able to solve small to medium instances to optimality in a reasonable amount of time.

In future research projects, we intend to study some heuristic pre-processing techniques to apply on the input ELG without losing its optimality. Moreover, we further plan to adapt the MSLB in order to solve other problems defined on ELG, such as the minimum labeling path problem and the minimum global cut problem, aiming to evaluate this method in a more general way. Moreover, we believe that the search for more facet-defining families of inequalities should be continued, as well as the polyhedral studies for the related problems discussed in this work.

1. 1

 1 Small example for the MLSTP. 1.2 Small input instance for the GMLSTP . 1.3 Example of a homogeneous computer network design modeled as an instance of the GMLSTP . 1.4 Example of a multimodal transport network design 1.5 The GMLSTP applied to the design of a multimodal transport network 1.6 Example of a transportation network design 2.1 Transformation from the set covering problem to the MLSTP 2.2 Illustration of an execution of the carousel greedy algorithm adapted for the MLSTP . 2.3 Example of execution of the algorithm COMPL 2.4 Flowchart of the algorithm INTELL for the MLSTP 3.1 Illustration of the concepts of edge and label contraction 3.2 Relation between G, G[L], and G / / L , for L = {B,C} 3.3 The concepts of originating edge and edge projection 3.4 Illustration of the concept of monochromatic cycles 3.5 Illustration of the concept of monochromatic cuts 3.6 Example of transitive and chromatic closures 3.7 The concept of dominance of a label . 3.8 Illustration of transformations on the set of edges of ELGs 4.1 Example of colorful cut . 5.1 Example of dominance of inequalities .

Definition 1. 3 .

 3 Given an ELG G = (V, E, L), and a subset of labels L ⊆ L, G[L] is the spanning subgraph of G induced by the set of edges E(L) = {e ∈ E | l(e) ∈ L }. Definition 1.4. Let G = (V, E, L) be a connected ELG, the MLSTP aims to find a smallest cardinality subset L ∈ L such that G[L] is connected.

Figure 1 .

 1 Figure 1.1 illustrates the MLSTP. Fig. 1.1a shows an ELG G = (V, E, L) in which V = {1, 2, 3, 4, 5, 6, 7, 8}, L = {A, B,C, D, E, F}, and the label l(e) associated with the edge e ∈ E is indicated by the letter close to it. Fig. 1.1b presents an optimal solution G[L *], for L * = {A, D, F}, with cost |L * | = 3.

Figure 1

 1 Figure 1.1: Small example for the MLSTP. (a) A small ELG G = (V, E, L) with 8 vertices, 6 labels and 13 edges. (b) G[{A, D, F}], an optimal solution for G

Figure 1

 1 Figure 1.2: A small GMLSTP instance (a) with the l m : E → 2 L representation; (b) with the multigraph representation. (c) A minimum cardinality subset L * ⊆ L such that G[L *] is connected. (d) A labeled spanning tree obtained from G[L *], thence an optimal solution for this instance

Figure 1 . 3 :

 13 Figure 1.3: Example of a homogeneous computer network design modeled as an instance of the GMLSTP. (a) The logical network and (b) the ELG associated with it. (c) The solution for this instance of the GMLSTP

Figure 1 .

 1 Figure 1.4 presents the design of the multimodal transport network of a hypothetical metropolis that aims to reduce the use of private cars. Fig. 1.4(a) presents the set of regions considered. Fig. 1.4(b) shows the new transport modes proposed. Fig. 1.4(c) describes the possible interconnections the project foresees.

Figure 1 . 4 :

 14 Figure 1.4: Example of a multimodal transport network design. (a) The set of locations, (b) transport modes, and (c) paths planned

Figure 1 . 6 :

 16 Figure 1.6: Example of a transportation network design. (a) The design modeled as an instance of the GMLSTP and (b) its solution

 [START_REF] Chang | The Minimum Labeling Spanning Trees[END_REF] have proved the MLSTP is NP-complete by transforming the decision version of the set covering problem to the decision version of the MLSTP. Given an ELG G = (V, E, L) and a constant k ∈ Z + , the bounded minimum labeling spanning tree problem (B-MLSTP) aims to decide if there is a spanning tree T = (V, E , L) of G such that |L | ≤ k. It is easy to see that B-MLSTP is NP since a non-deterministic algorithm needs only to guess a subset of edges E ∈ E and check in polynomial time if T = (V, E , L) is connected and if |L | ≤ k.

Fig. 2

 2 Fig. 2.1(a) presents the sets U and S of an example instance for the set covering problem. Fig. 2.1(b) shows the ELG G(U, S) = (V, E, L). Fig. 2.1(c) presents a solution: a minimum labeling spanning tree for the graph G(U, S).

Figure 2 . 1 :

 21 Figure 2.1: Transformation from the set covering problem to the MLSTP. (a) An input instance (U, S) for the set covering problem. (b) the instance of the MLSTP originated from (U, S). (c) A solution of the MLSTP for this input graph

 lutions generated. The modified MVCA starts with the solution L = / 0 and, while G[L] is not connected, at each iteration, adds to L the label l ∈ L\L that minimizes the number of connected components of G[L]. They have showed that the time complexity of the modified MVCA is O(|E| + |L| • α(|E|, |V |) • min{|L| • |V |, |E|}), where α is the inverse of the Ackerman's function. The Algorithm 2.1 presents the modified version of the MVCA.

 have improved this bound to 1 + ln(|V | -1). Given E(L), L ⊆ L, the set of edges with label l(e) ∈ L , Xiong et al.Algorithm 2.1: The Modified MVCA 1 procedure MVCA(G = (V, E, L)) 2 Let C ← / 0 be the set of labels of the solution; 3 while G[C] is not connected do 4 let l ∈ L\C be the label that minimizes the number of components of G[C ∪ {l}]; have demonstrated that if |E({l})| ≤ f , ∀l ∈ L, then the MVCA has an approximation

 be the initial solution, and let s = |C|; 3 Remove from C the sβ labels that was added first; 4 for i = 1 to sα do 5 Remove from C the label that was first added to this set; 6 let l ∈ L\C be the label that minimizes the number of components of G[C ∪ {l}]; 7 C ← C ∪ {l} ; 8 while G[C] is not connected do 9 let l ∈ L\C be the label that minimizes the number of components of G[C ∪ {l}];

Figure 2 . 2 :

 22 Figure 2.2: Illustration of an execution of the carousel greedy algorithm adapted for the MLSTP. The parameters for this execution are s = 5, α = 1, and β = 0.4

 [START_REF] Consoli | Solving the Minimum Labelling Spanning Tree Problem by Intelligent Optimization[END_REF] have proposed two enhancements to the previous VNS algorithm: the complementary space search, which builds a new solution by only using labels that are not in the current solution; and a probabilistic auto-adjustable local search procedure inspired by the simulated annealing metaheuristic. These two enhancements have improved the efficiency and robustness of the previous version of the VNS.The first extension applied to VNS, the complementary space search, is an additional local search mechanism that aims to increase the diversification of the method, allowing it to visit different regions of the solution space. Given C, a solution for the MLSTP, the complementary space C = L\C is the set of labels of L that are not in C. Once the main loop of the VNS (line 5) is not able to improve the current solution, the MVCA is used to produce a new solution by using only the set of labels C. The VNS method enhanced with the complementary space search mechanism is denominated COMPL.

Figure 2 .

 2 Figure 2.3 illustrates an execution of the method COMPL: if begins from the solution C 0 , generated randomly, and applies on it the procedures Shaking-Phase and Local-Search from the previous version of VNS. Once these procedures was not able to enhance C 0 , the complementary space search is carried out on C 0 , yielding the solution C 1 . Then, the local search finds the solution C 2 , that is better than C 1 , but cannot enhance it. The complementary space search generates the solution C 3 , by using C 2 , and, since the method did not found any better solution, it returns C 2 .

Figure 2 . 3 :

 23 Figure 2.3: Example of execution of the algorithm COMPL. The circles represent the Shaking-Phase and the Local-Search procedures, while the arrow illustrates the complementary space search mechanism

Figure 2

 2 Figure 2.4: Flowchart of the algorithm INTELL for the MLSTP. The highlighted components are the ones that differentiate the method INTELL from VNS and COMPL

 proposed a simple separation routine for inequalities (2.9): Given a solution for the linear relaxation of the model, select an arbitrary node and execute a depth-first search (DFS) procedure considering only edges e with x e ≥ ε. If the DFS is unable to reach all the vertices, then the cut is added to the model. The DFS procedure can be executed in O(|V | + |E|) time, which is faster than the maximum flow algorithm used in the DCut formulation.

Definition 3. 1 .

 1 The contraction of an edge e = (v, w)∈ E, v = w, results in a new graph G/ e = (V , E , L), where V = V \{v}, E = {π(k, v, w) | k ∈ E\{e}}, and l(π(k, v, w)) = l(k), ∀k ∈ E . If v = w,the contraction of e results simply on its removal from E. Definition 3.2. By extension, the label contraction, denoted by G / / L , for L ⊆ L, is the operation that performs the contraction of every edge in E(L) on the graph G.

Figure 3 .

 3 Figure 3.1 illustrates the concepts of edge and label contraction. Fig. 3.1(a) presents an small ELG G. Fig. 3.1(b) shows the graph G/e, the resulting graph after the contraction of the edge e = (7, 1). Fig. 3.1(c) presents the graph G / / {D}, that is the graph resulting from G after the contraction of the label D.

Figure 3 . 1 :

 31 Figure 3.1: Illustration of the concepts of edge and label contraction. (a) the ELG G = (V, E, L). (b) the graph G after the contraction of the edge e = (7, 1), and (c) the graph G after the contraction of the label D

Figure 3 .

 3 Figure 3.2 illustrates the relation between G, G[L] and G / / L , for L = {B,C}. Fig. 3.2a, 3.2b and 3.2d present, respectively, the example graph G, G[L], and G / / L . Fig. 3.2c highlights the components of G[L] on G, evidencing that each component of G[L] is related to a vertex on G / / L , and each edge on G / / L is related to an edge on G.

Figure 3 . 2 :

 32 Figure 3.2: Relation between G, G[L], and G / / L , for L = {B,C}. (a) The ELG G. (b) G[L]. (c) The set of components of G[L] highlighted on G. (d) The graph G / / L with one vertex for each component of G[L] and one edge for each edge of G with endpoints in different components of G[L]

 and S b ∈ W . Hence v(S a) ∈ N, v(S b) ∈ V \N, and the edge e = (v(S a), v(S b)) ∈ [N,V \N].

 empty and the edge e = (v(S a), v(S b)), 1 ≤ a ≤ n, n < b ≤ w belongs to it. In this case, G[L ∪ C] has an edge e = (v a , v b), v a ∈ N, v b ∈ N, and [N, N] is not empty. Lastly, the Proposition 3.1 and the Definitions 3.4 and 3.5 address the relation between graphs obtained by the contraction of the same ELG but using distinct sets of labels. Let G = (V, E, L) be an ELG, M ⊂ E, and L , L ⊆ L. Further, let Π(e, M) be the resulting edge after applying e ← π(e, v, w), for each (v, w) ∈ M. Definition 3.4. Let G / / L = (V , E , L). The edge e ∈ E is an originating edge of e ∈ E if Π(e, E(L)) = e and l(e) = l(Π(e, E(L))). Definition 3.5. Let G / / L = (V , E , L), and G / / L = (V , E , L). The edge e ∈ E is the projection of the edge e ∈ E in the set of edges E , denoted by ξ (e , E), if e ∈ E is an originating edge of both e and e . Proposition 3.1. Let G / / L = (V , E , L), G / / L = (V , E , L), and e ∈ E . If l(e) / ∈ L , the edge e has a projection in the set E . Demonstration. Let e ∈ E be an originating edge of e ∈ E . If l(e) ∈ L , by Definitions 3.1 and 3.2, no edge with label l(e) belongs to G / / L . On the other hand, if l(e) / ∈ L , e = Π(e, E(L)) ∈ E , and, by definition, e is an originating edge of e .

Figure 3 .

 3 Figure 3.3 illustrates the Definitions 3.4 and 3.5. Fig. 3.3a, 3.3b and 3.3c present, respectively, the ELG G = (V, E, L), G = (V , E , L) = G / / {D, F}, and G = (V , E , L) = G / / {B,C}. Consider the edges e = (5, 6) ∈ E, e = (1, 4) ∈ E , and e = (1, 5) ∈ E . We have that e is the originating edge of both e and e , then ξ (e , E) = e as well as ξ (e , E) = e .

Figure 3 . 3 :

 33 Figure 3.3: The concepts of originating edge and edge projection. (a) G, an input ELG. (b) G = G / / {D, F}. (c) G = G / / {B,C}. The edge e = (5, 6) on G is the originating edge of the edges e = (1, 4) on G and e = (1, 5) on G . Thence, e is a projection of e and vice versa

3

 Let S ← Initialize(S) represent the Union-Find data structures; 4 foreach l ∈ L do 5

Figure 3 .

 3 Figure 3.4 illustrates the concept of monochromatic cycles. Fig 3.4(a) presents an example ELG G, which have two monochromatic cycles: the cycle 1 • 6 • 8 • 1 with label F and the cycle 2 • 3 • 4 • 5 • 2 with label C. Fig. 3.4(b) shows the graph G after breaking the cycle with label F, while Fig. 3.4(c) shows G after breaking the cycle with label C. Note that the graph of Fig. 3.4(c) is a monochromatic-cycles-free graph. Definition 3.7. Given an ELG G = (V, E, L), and a set of vertices S ⊂ V , the cut-set [S,V \S] is a monochromatic cut if l(e) = k, ∀e ∈ [S,V \S] .

Figure 3 . 4 :

 34 Figure 3.4: Illustration of the concept of monochromatic cycles. (a) en ELG G with two monochromatic cycles. (b) the graph G after the removal of the cycle with the label F. (c) a monochromatic-cycles-free graph

Figure 3 .

 3 Figure 3.5 illustrates the concept of monochromatic cuts. Fig 3.5(a) presents an ELG G with a monochromatic cut [S,V \S], for S = {3, 4, 5}, that has only edges with the label A. Fig 3.5(b) highlights the fact that the removal of all the edges with the label A from G leads to a disconnected graph. Fig 3.5(c) shows the graph G after the contraction of the label A.

Figure 3

 3 Figure 3.5: Illustration of the concept of monochromatic cuts. (a) The ELG G with the monochromatic cut [S,V \S], for S = {3, 4, 5}. (b) the disconnected graph G[{B,C, D, E, F}]. (c) the graph G / / {A}

Figure 3 .

 3 Figure 3.6 illustrates the concepts of transitive and chromatic closures.Figure 3.6(a)

 Figure 3.6 illustrates the concepts of transitive and chromatic closures.Figure 3.6(a) presents a small ELG G = (V, E, L). Fig. 3.6(b) highlights F c (F), the transitive closure of the label F ∈ L, and the Fig. 3.6(c) shows F(G), the chromatic closure of the graph G.

Figure 3 . 6 :

 36 Figure 3.6: Example of transitive and chromatic closures. (a) The edge-labeled graph G = (V, E, L). (b) The transitive closure of the label F. (c) the chromatic closure of the graph G.

 but there is no path between u and vin G[C]. However, from Definition 3.9, if e = (u, v) ∈ E , then there is a path between u and v in G[C], a contradiction (⇐) Suppose G[C] is connected and H[C] is disconnected. Since the transitive closure is an extension of the set of edges of G, H[C] is the graph G[C] with additional edges. The addition of edges cannot disconnect the graph G[C].

Figure 3 .

 3 Figure 3.7 illustrates the concept of dominance of labels. Fig. 3.7(a) presents the ELG G = (V, E, L). Fig. 3.7(b) shows the graph F(G), highlighting the dominance of the labels F and B over the labels E and D, respectively; Fig. 3.7(c) shows the graph G after the removal of the dominated labels;

Figure 3 . 8

 38 Figure 3.8 Illustrates two convenient modifications on the edges of an input ELG.Figure 3.8(a) shows the input ELG G = (V, E, L). In the Fig. 3.8(b), all the connected components of G[{l}], ∀l ∈ L, are paths, while in Fig. 3.8(c), all the connected components of G[{l}], ∀l ∈ L, are stars.

Figure 3 . 8 :

 38 Figure 3.8: Illustration of transformations on the set of edges of ELGs. (a) The ELG G. (b) Each monochromatic connected component of G represented as a path, and (c) as a star

Furthermore, based

 on Corollary 3.1 and on the definition of graph induced by a set of labels, we can state the following results: Remark. Let G = (V, E, L) be a monochromatic cycles free graph. The number of connected components of G[{l}] is |V | -|E({l})|. Indeed, since G is monochromatic cycles free, each edge of E({l}) reduces the number of connected components of G[{l}] by 1.

Proposition 3. 6 .

 6 Let l ∈ L be the label with the greater |E({l})| in a monochromatic cycles free graph. |E({l})| ≤ |V | -3 for non-trivial instances. Demonstration. From Corollary 3.1, |E({l})| ≤ |V | -1. Follow two trivial cases: |E({l})| = |V| -1: the optimal solution is {l} and it is found trivially by the MCR (Corollary 3.2). |E({l})| = |V| -2: G[{l}] has two connected components spanning the set of vertices S and S = V \S, respectively. Since the input graph is connected, the cut-set [S, S] is not empty and the solution is {l, l(e)}, e ∈ [S, S].

 Let b * be the minimum b ∈ N such that ∑ b i=1 |E({l b })| ≥ |V | -1. b * is a lower bound for the MLSTP on G. Demonstration. Suppose L is a solution for the MLSTP and |L | < b * . In such case, G[L] = (V, E , L) has |E| < |V | -1 edges. But the minimum number of edges for a graph to be connected is |V | -1. In other words, the minimum number of labels necessary to connect a monochromatic cycles free graph G = (V, E, L) is at least the cardinality of the minimum subset of L ⊆ L such that G[L] has |V | -1 or more edges. The following corollaries are useful for speeding up the computational experiments performed both in Chapters 4 and 7.

This

 Section presents the colorful cuts formulation (CCut), a new cut-based mathematical model for solving both the MLSTP and the GMLSTP. One can say the CCut formulation is compact because it defines only |L| binary variables. Notwithstanding, it has an exponential number of constraints. Before introducing the formulation, it is necessary to formalize the concepts of disconnecting set of labels and colorful cuts, as well as to state an important property of these cuts. Definition 4.1. The set K ⊆ L is a disconnecting set of labels if the number of connected components of the graph G[L\K] is greater than the number of connected components of G. Property 4.1. Let δ (S) be the set of edges of the cut set [S,V \S], and let l s (δ (S)) = {l(e) | e ∈ δ (S)} be the set of labels represented by the edges of δ (S). It is apparent that l s (δ (S)) is a disconnecting set of labels for every S ⊂ V , S = / 0.Definition 4.2. The disconnecting set K(S) ⊆ L is a colorful cut if it is derived from a cut set δ (S) such that K(S) = l s (δ (S)) for some S ⊂ V , S = / 0.

Figure 4 .

 4 Figure 4.1 illustrates the concept of colorful cuts. Fig. 4.1a presents a small edge-labeled graph G. In Fig. 4.1b the subset of vertices S = {1, 7, 8} is highlighted. Derived from S we have the cut set δ (S) = {(1, 2), (1, 5), (6, 7)}, and the colorful cut K(S) = {C, E}, that is the set of labels represented in δ (S). Fig. 4.1c reinforces that removing K(S) from G leads to a disconnected graph.

 Figure 4.1: Example of colorful cut. (a) An edge-labeled graph G. (b) The set S = {1, 7, 8}, the cut set δ (S) = {(1, 2), (1, 5), (6, 7)}, and the colorful cut K(S) = {C, E}. (c) The graph G[L\K(S)], that is disconnected

 .3) The objective function (4.1) minimizes the number of labels; the exponential set of constraints (4.2) ensures the connectivity of the solution graph by requiring at least one active label for every colorful cut of the graph. Notice that such constraints can be separated heuristicly either by the maximum flow algorithm proposed for the DCut formulation, or by the DFS procedure proposed for the EC formulation. Finally, the set of constraints (4.3) defines the domain of the variables. The CCut formulation can be further strengthened by inequality (4.4), which is derived from Proposition 3.8. It mimics the tree search constraints (2.14) and (2.15), described respectively for the DCut and EC formulations. Recall that E({l}) = {e ∈ E | l(e) = l}; the constraint requires a minimum number of edges (corresponding to a tree) to connect the graph.

 have considered the group 2 of ELGs generated by Cerulli et al. (2005), a benchmark already consolidated in the literature. The group of input graphs used in these experiments has instances with number of vertices n = |V | ∈ {100, 200}, number of labels l = |L| ∈ {n/4, n/2, n, 5n/4}, and edge densities d ∈ {ld = 0.2, md = 0.5, hd = 0.8}. Also, each dataset consists in 10 different graphs for each n-d-l configuration, totalizing 240 ELGs. The first experiment performed aimed to evaluate the impact, on the linear relaxation of CCut, of changing the colorful cuts inequalities (4.2) by the set of inequalities (4.5). To do so, we have executed the procedures LR(CCut, / 0) and LR(CCut, PART 2) for the 240 ELGs of the benchmark, where PART 2 represents the formulation with the same name (presented in Section 9.1) being used to solve the weighted version of the minimum labeling global cut problem and, thus, separate exactly the colorful cuts inequalities (4.2). The results of the first experiment are presented in Table 4.1. Each line of the table reports the results for one input ELG identified in the form n-d-l-i, where n = |V |, l = |L|, d is the density of the graph, and i ∈ {0 • • • 9} is the number of the instance on its dataset. The first column identifies the input instance. The next two columns report the results obtained by each procedure, while the column ∆ reports the difference between them. The column % presents the relative difference between the methods. The column Cuts shows the number of colorful cuts added to the model. Lastly, the column t(s) reports the time taken to solve LR(CCut, PART 2).

 DFS), and BC I = BC I (CCut, DFS). To do so, we have carried out each procedure for the first instance of each dataset with n = 200. The results are reported in Table

 .4. Each line of these tables reports the execution of one algorithm for one dataset, i.e. a set of 10 ELGs with the same n-d-l dimension. The first three columns identify the algorithm 2 and the dataset. The next columns have the same meaning as in Table

Figure 5

 5 Figure 5.1: Adapted from Wolsey (1998): Example of dominance of inequalities. (a) A dominated inequality. (b) A redundant inequality

 Definition 5.5. Given a minimal colorful cut K(S) and a label X ∈ L\K(S), we say that X is a T-label induced by K(S) if X is part of a monochromatic cut in every graph G[L\L] such that L ⊂ K(S) and |L | = |K(S)| -1.

Figure 5 .

 5 Figure 5.2 illustrates the concept of a T-label induced by a colorful cut. The example in Fig. 5.2a presents the graph G, in which F ∈ T({1}); Fig. 5.2b shows that for G[L\{A, B}], K({1, 4}) = {F} is a monochromatic cut; in Fig. 5.2c K({7, 8}) = {F} is a monochromatic cut for G[L\{A,C}]; and Fig. 5.2d shows that, for G[L\{B,C}], K({4}) = {F} is a monochromatic cut. Observe that D / ∈ T({1}). In fact, D is not a monochromatic cut in the graph G[L\{A,C}]; thus U({1}, D) = B.

Figure 5 .

 5 Figure 5.3 illustrates the concept of a 2-T-label induced by a colorful cut. The example given in Fig. 5.3a presents the graph G, in which F ∈ T 2 ({1}); Fig. 5.3b shows that for

 then either X or Y is needed. This occurs because (a) is valid in every graph G[{k, w} ∪ K(S)]. Finally, (d) reduces to (b).

 K(S) be a minimal colorful cut, where s = |K(S)|, t = |T(S)|, X ∈ T(S), T 2 (S) = / 0, and Lemma 5.2 does not hold for any Y ∈ T(S)\{X}. Without loss of generality, let the indices of the labels in K(S) be 1, 2, • • • , s; let the indices of the labels in T(S) be mt + 1, mt + 2, • • • , m; and let the index of the label X be m. Furthermore, consider the Z l , for

 Theorem 5.4. The face F T-label (S, X) is a facet of P CCut (G) if and only if the following three conditions are verified: (a) K(S) is a minimal colorful cut. (b) Inequality (5.11) is not valid for any Y ∈ T(S)\{X}. (c) T 2 (S) = / 0. It follows that, X is not a 2-T-label induced by K(S). Proof. (⇐) It follows from Lemma 5.3 that the unique solution of (5.15) verifies (5.16). In this case, the provided solution vectors Z l , for l ∈ {1, 2, • • • , m, m + 1, • • • }, are affinely independent.Therefore, dim(F T-label (S, X)) = m -1, and F T-label (S, X) is a facet of P CCut (G).

 (a) K(S) is a minimal colorful cut; (b) K(S) induces exactly one T-label X, i.e. T(S) = {X}; and(c) X is a k-T-label, but it is not a (k+1)-T-label induced by K(S), i.e. X ∈ T k (S), X / ∈ T k+1 (S);then the face F k-T-label (S, X) is a facet of P CCut (G).Proof. It follows from Lemma 5.4 that the unique solution of (5.20) verifies (5.21). In this case, the provided solution vectors Z l , for l ∈ {1, 2, • • • , m}, are affinely independent and verify the conditions (a), (b), and (c). Therefore, dim(F k-T-label (S, X)) = m -1, and F k-T-label (S, X) is a facet of P CCut (G).

Figure 5

 5 Figure 5.4: LR solutions that are feasible for the CCut formulation but are either (a) infeasible for CCut t , (b) infeasible for CCut tl , or (c) infeasible for CCut tlk

Figure 5

 5 Figure 5.5: LR solutions that are infeasible for the CCut formulation but feasible for EC (a) and DCut (b)

(

 Z,Y) respects all DCut constraints as well as those of the strong linkage and node labels. Note that the strong linkage constraints and inequalities (2.5) cannot coexist. Constraints (2.4) and strong linkage (2.16) are respected by the definition of P CCut zy (G). The node label constraints (2.18) are respected because they are a subset of the colorful cut inequalities (4.2). Finally, since y a = z l a (a) , ∀a ∈ A, we have ∑ a∈δ -(S)

 1 be any arbitrary ordering of the nodes in the set V , for n = |V |. For convenience, let r = v 0 be the root node of the DCut formulation. Consider Algorithm 5.1, where Z = (z l) l∈L ∈ P CCut (G).

 replacing k with j results in the lemma also holding for any j ≥ i + 2. Let P CCut zy * (G) := conv{Ext(G, Z) | Z ∈ P CCut (G)} be the extension of the polytope P CCut (G) to the (Z,Y) variable space.

 • ≤ y 1 a = z l a (a) , ∀a ∈ A, and Constraints (2.4) are respected. • Constraints (2.5): If m(a) = m(a), then f m(a) a + f m(a) a = 0 ≤ 1 because positive flow circuits are removed. Thus, y * a + y * a = 0 ≤ 1. This remains the case when m(a) < m(a) (the case m(a) > m(a) is symmetric). For this case, m(a) + 1 ≤ m(a). non-increasing property of the y series.

 be the arc whose capacity y w+1 b was changed. This means that f w b = 0 and f w b = 0. Then, from Lemma 5.8, it follows that

 Figure 5.7: Small convex hull counter-example. (a) Example graph. (b) A basic feasible solution with fractional label variables

 colorful

Definition 6. 1 .

 1 Given an ELG G = (V, E, L), P = {S 1 , S 2 , • • • , S p } is a proper partitioning of the vertices of G, for short partitioning, if (i) S ⊂ V , S = / 0, ∀S ∈ P, (ii) ∪ S∈P S = V , and (iii) S a ∩ S b = / 0, ∀S a , S b ∈ P, S a = S b . Definition 6.2. Given an ELG G = (V, E, L) and a proper partitioning of its vertices P = {S 1 , S 2 , • • • , S p }, the partitioning graph G((P)) = (V , E , L) is the graph built as follows: for each partition S ∈ P there is a vertex v(S) ∈ V , and for each edge e = (v 1 , v 2) ∈ E, v 1 ∈ S , v 2 ∈ S , there is an edge e = (v(S), v(S)) ∈ E , such that l(e) = l(e). Proposition 6.1. Let G = (V, E, L) be an edge-labeled graph, and P = {S 1 , S 2 , • • • , S p } a proper partitioning of its vertices. If G((P)) is disconnected, then G is disconnected. Proof. By way of contradiction, suppose that G((P)) = (V , E , L) is disconnected and G = (V, E, L) is connected. In this case, G((P)) has an empty cut-set [S ,V \S] with S = {v(S a), v(S b), • • • , v(S w)}. Then, by the definition of partitioning graphs, the cut-set [S ,V \S], for S = S a ∪ S b ∪ • • • ∪ S w , is empty on G and G is disconnected. It is a contradiction.

 let G * ((P)) denote the monochromatic-cycles free ELG obtained by applying the procedure MCR (refer to Algorithm 3.1) on G((P)). Definition 6.3. A partitioning cut (or a PCut inequality) is the tree search inequality (4.4) derived from a partitioning graph G * ((P)).

Figure 6 .

 6 Figure6.1 illustrates the concept of partitioning cuts as well as the definitions necessary to its understanding. Fig.6.1a presents a small edge-labeled graph G = (V, E, L) and a partitioning P = {S 1 = {1, 2}, S 2 = {3, 4}, S 3 = {5, 6}, S 4 = {7, 8}}. Fig.6.1b depicts the graph

 Figure 6.1: Proper partitioning, partitioning graphs, and partitioning cuts. (a) An edge-labeled graph G and a partitioning P = {S 1 = {1, 2}, S 2 = {3, 4}, S 3 = {5, 6}, S 4 = {7, 8}}. (b) The graphs G((P)) and (c) G * ((P)). The partitioning cut derived from G * ((P)) is 2z A + z B + z D + z F ≥ 3

 parameter 2 ≤ k ≤ |V | -1, the routine generatePartitioning is responsible to generate an initial partitioning P = {S 1 , S 2 , • • • , S p }, with p = |V |k + 1, of the vertices of G. All partitions are unitary, except for S 1 , that has k elements. The selection of vertices is made by id: the first k vertices are placed in S 1 while each of the remaining ones are put in a separate partition. Given a partitioning P and two partitions S a , S b ∈ P such that S a = S b , v a ∈ S a , and v b ∈ S b , performing a swap move on P is to make S a ← (S a \{v a }) ∪ {v b } and S b ← (S b \{v b }) ∪ {v a }.

Figure 6 .

 6 Figure 6.2 illustrates the swap and migrate moves. Fig. 6.2a presents an example edgelabeled graph G = (V, E, L) and a partitioning P = {S 1 = {1, 2}, S 2 = {3, 4}, S 3 = {5, 6}, S 4 = {7, 8}}. In Fig. 6.2b, there were a migration of the vertex 6 from S 3 to S 4 . In Fig. 6.2c there were a swap between the vertices 3 and 5. The PCut inequalities associated with the partitionings of Fig. 6.2a, b, and c are, respectively, 2z A + z B + z D + z F ≥ 3, z A + z B + z D + z E + z F ≥ 3, and z A + z B + z D + z E + 2z F ≥ 3.

Figure 6 . 2 :

 62 Figure 6.2: Example of swap and migrate moves. (a) An edge-labeled graph G and a partitioning P = {S 1 = {1, 2}, S 2 = {3, 4}, S 3 = {5, 6}, S 4 = {7, 8}}. (b) The partitioning after migrating the vertex 6: P = {S 1 = {1, 2}, S 2 = {3, 4}, S 3 = {5}, S 4 = {6, 7, 8}}. (c) The partitioning after swapping the vertices 3 and 5: P = {S 1 = {1, 2}, S 2 = {4, 5}, S 3 = {3}, S 4 = {6, 7, 8}}

 tegers or binaries. If on the one hand the Simplex method has an exponential worst-case time complexity, on the other hand it performs very well in practice. In contrast, it is necessary to use more sophisticated techniques, such as cutting-planes or branch-and-bound, to deal with integrality constraints. The first consists in solving the linear relaxation of the program and refine it iteratively by adding new linear inequalities, termed cuts, until a solution without fractional variables is found. The second consists in partitioning the solution space into disjoint subspaces and solving the resulting models, possibly repartitioning them. In the traditional branch-andbound method, after solving the linear relaxation of the model, a variable x with a fractional value x is selected and two subproblems are generated: one for x ≤ x and another for x ≥ x (x = 0 and x = 1 when x is binary), what leads to a binary branching tree. Figure6.3 illustrates a binary branch-and-bound tree on the z variables of CCut formulation.

Figure 6

 6 Figure 6.3: A binary branch-and-bound tree on the z variables of CCut formulation

 recall from Definition 4.2 and Proposition 4.1

 Strategy for quick selection of the pivot CCut

 Figure 6.4: A colorful cuts branch-and-bound tree on the z variables of CCut formulation

Figure 6 . 5 :

 65 Figure 6.5: The impact of the colorful cuts branching on an example ELG. (a) The ELG G = (V, E, L) and the colorful cut K({8}) = {A, B}, used as pivot. (b) The subproblem generated by setting z A = 1. (b) The subproblem generated by setting z A = 0, and z B = 1

Figure 6 .

 6 Figure 6.6 illustrates the limitations of the branching strategies described previously and presents the structure of the proposed hybrid branch-and-bound tree. Fig. 6.6(a) depicts an

Figure 6

 6 Figure 6.6: The limitations of the branching strategies and the structure of the hybrid branchand-bound tree. (a) An unbalanced traditional branch-and-bound tree. (b) A wide and short colorful cuts branch-and-bound tree. (c) The structure of the hybrid branching strategy. (d) The subtitles

 .4. Each line of these tables represents a dataset, which is a set with 10 instances with the same n-l-d configuration. The first two columns identify the input instances. The next column reports the average optimal solution for the dataset. It was obtained from the results reported in Chapter 4 3 , and the remaining columns show the computational results of the methods considered. The next six columns refer to the results of CCut t , while the last six refer to the results of adding the separation heuristic PCut rh on the root node of BC I (CCut t , DFS). The column ' ' reports the number of instances the method has failed in solving to optimality within each dataset. The columns UB, gap and gapr report, respectively, the average upper bound, the average gap ((UB -LB)/UB), and the average gap on the root node of the model ((UB -LR)/UB), considering each instance within each dataset. The column cuts refers to the total number of cuts added to the model. Lastly, the column t(s) reports the total time (in seconds) necessary to solve all instances in each dataset.

3

 out both methods for each instance from the group 2 of ELGs generated by Cerulli et al. (2005) 4 with number of vertices n = |V | ∈ {100, 200}. The results of this experiment are reported in 5

 It is easy to see that the rMVCA follows exactly the definition of the MVCA: it starts with the solution C = / 0, and, while the number of vertices of G / /C is greater than 1, iteratively adds to C the label that minimizes the number of vertices of G / /C. At each iteration of rMVCA, G / / C is the current solution graph, G l is G / / C ∪ {l}, ∀l ∈ L\C, and the label with minimum |V l | is the one to be added to the solution. Once the label c is chosen to enter the solution, it is necessary to update the current solution graph to G / /C ∪ {c} and each graph G l to G / /C ∪ {l} ∪ {c}. Remark that if an edge is not able to contract two vertices of G / /C, it cannot contract two vertices of G / /C ∪ {l}. Thence, when updating each graph G l , it is only necessary to consider the edges that were able to contract vertices of G / /C. Theorem 7.1. The time complexity of the rMVCA is O(α n kn), where n = |V |, k = |L|, α n = α(n, n), and α is the inverse of the Ackerman's function.

Figure 7 .

 7 Figure 7.1 illustrates an execution of the rMVCA by using data structures for disjoint sets to represent the vertices of the graphs G l , ∀l ∈ L. For sake of clarity, the union-find operations do not use path compression and union by rank, as well as the unions are done from the larger ID to the smaller one. The Fig.7.1a brings the input graph, the set of vertices of the graphs G l , and their cardinalities. The Fig.7.1b presents the update of the current solution graph after the choice of the label A. Fig.7.1c shows the graph at the beginning of the second iteration, as well as the set or vertices of G l , ∀l ∈ L\C, updated at the end of the previous iteration by using the set E * = {(1, 2), (3, 6), (3, 7)}. In Fig.7.1d is showed the update of the current solution graph after choosing the label B. Note that the edge e = (1, 1) ∈ E({B}) was not capable

Figure 7 .

 7 Figure 7.2 brings an example when the R&C heuristic leads to a solution better the one generated by the MVCA. Fig 7.2(a) presents the input ELG and the LR of CCut. Fig 7.2(b) and (c) illustrates the choices of MVCA, which lead to the solution {A, B,C}. In its turn, Fig 7.2(d)

Figure 7 . 2 :

 72 Figure 7.2: Comparison between the heuristics MVCA and R&C. (a) Input graph. (b-c) Execution of the MVCA that produces a solution with three labels. (d-e) Execution of the R&C that produces a solution with two colors. From (a) to (b) there is a contraction for edges with the chosen label A. After the selection of the label B, the graph in (d) becomes trivial

 a solution for the GMLSTP, B an upper bound, and an integer 2 ≤ k ≤ |C|, the local search heuristic LB k consists in solving the CCut formulation along with the constraints 7.1 and 7.2 within a time limit of k seconds. The constraint 7.1 forces CCut to search only for solutions that use exactly |C|k labels of C, while the inequality 7.2 discards solutions equal to or worse than the given upper bound. In other words, unless the timeout is reached, an execution of the procedure LB k for a reference solution C returns a solution that uses |C|k labels of C and improves the given upper bound, if such solution exists.

P

 search space of LB, let b be the value of the best solution in P, and let P * ⊆ P = {C ∈ P | |C| = b}. The LB k is then applied over each solution in P * , for each k ∈ {3, 4, • • • , maxLB k } (lines 8-11), in order to perform a deeper search over the most promising solutions. Note that the R&C could have been executed at the Initialization phase, just as rMVCA. However, unlike rMVCA and pMVCA, R&C is a MIP-based heuristic and hence has a longer running time. In this case, moving R&C to the MIP-Based phase allows the MSLB to finish the Tuning and the Roulette phases much earlier. Algorithm 7.5: MIP-Based phase of MSLB 1 procedure MIP-Based(G = (V, E, L),P,maxLB k) ← update_pool(P,C); 8 for k = 3, 4, • • • , maxLB k do 9 foreach C ∈ P * do 10 C ← LB k (G,C); 11 P ← update_pool(P,C);

 Figure 7.3 shows an overview of the multi-start local branching metaheuristic.

Figure 7 . 3 :

 73 Figure 7.3: Overview of the multi-start local branching metaheuristic

 Finally, although MSLB has been executed on a different machine from the other algorithms, both microprocessors have the same 4.0 GHz clock speed, what attenuates this difference.

G

 = (V, E, L). Fig. 8.1(b) depicts a solution with 3 labels while Fig. 8.1(c) shows a solution with only 2 labels.

Figure 8

 8 Figure 8.1: The colorful traveling salesman problem. (a) The input ELG G = (V, E, L). (b) A solution for G using the labels B, C, and F. (c) A solution for G using the labels B and E

 Figure 8.2 brings an example of the kLSFP for k = 4. Fig. 8.2(a) depicts the input ELG G = (V, E, L). Fig. 8.2(b) presents G[{D, E, G, H}], an optimal solution for this instance which represents a spanning forest with four maximal connected components.

Figure 8

 8 Figure 8.2: The k-labeled spanning forest problem. (a) The input ELG G = (V, E, L). (b) A solution for G where G[{D, E, G, H}] has 4 maximal connected components

Figure 8 .

 8 Figure 8.3 illustrates the MC/MLSTP, highlighting the conflicting criteria. Fig. 8.3(a) brings the edge-labeled-and-weighted input graph. Fig. 8.3(b) presents a solution with 4 labels and 24 as the sum of the edge weights. Notwithstanding, Fig. 8.3(c) presents a solution with 5 labels and 21 as the sum of the edge weights.

Figure 8 . 3 :

 83 Figure 8.3: Example of the minimal cost/minimal label spanning tree problem. (a) The input edge-labeled-and-weighted graph. (b) A solution with 4 labels and edge cost 24. (c) A solution with 5 labels and edge cost 21

 Figure 8.4 depicts both the MLPP and the MCGFP. Fig. 8.4(a) presents an input ELG G = (V, E, L). Fig. 8.4(b) evidences that the solution of the MLPP on G for s = 1,t = 2 is {D}, for s = 5,t = 4 is {F}, and for s = 7,t = 6 is {C}. Fig. 8.4(c) shows that the solution for the MCGFP on G for V = {(1, 2), (5, 4), (7, 6)} is {A, B}.

Figure 8 . 4 :

 84 Figure 8.4: Example of the MLPP and of the MCGFP. (a) The input ELG G = (V, E, L). (b) The solution for three separate instances of the MLPP on G. (c) The solution for the MCGFP for V = {(1, 2), (5, 4), (7, 6)}

 Figure 8.5 illustrates the MLSteiner problem. Fig. 8.5(a) shows the input ELG G = (V, E, L), where Q = {1, 2, 6, 7} is the set of terminals, represented in black. Fig. 8.5(b) and 8.5(c) present two solutions with cost 3 and 2, respectively. Observe that both solutions use the Steiner vertex v = 3.

Figure 8 . 5 :

 85 Figure 8.5: Example of the minimum labeling Steiner problem. (a) An input ELG, where the set of terminals are represented in black. (b) A solution with 3 labels using the Steiner vertex 3. (b) A solution with 2 labels using the Steiner vertex 3

Formally

 , let G = (V, E, L) be an ELG, P : V → R a pricing function on the vertices of G, and PMIN an input constant representing the minimum prize to be collected. The aim of the PC-MLT is to find a minimum cardinality set L ⊂ L such that G[L] has a connected component spanning the set of vertices Q ⊆ V , namely the solution set, and ∑ v∈Q P(v) ≥ PMIN. Observe that the MLSTP is a special case of the PC-MLT: let P(v) = 1, ∀v ∈ V , and PMIN = |V |.

Figure 8 .

 8 Figure 8.6 illustrates the prize-collecting minimum labeling tree problem. Fig. 8.6(a) presents an input ELG for the PC-MLT with PMIN = 22. The prizes are presented near each vertex of G. Fig 8.6(b) shows a solution for this instance with L = {A,C, D}, Q = {2, 3, 4, 5, 8, 9, 11, 12}, and ∑ v∈Q P(v) = 27. The vertices of V \Q are in gray.

Figure 8 . 6 :

 86 Figure 8.6: Example of the prize-collecting minimum labeling tree problem. (a) An input ELG with prizes associated with its vertices. (b) A solution for this instance with L = {A,C, D}, Q = {2, 3, 4, 5, 8, 9, 11, 12}, and ∑ v∈Q P(v) = 27

Figure 8 .

 8 Figure 8.7 depicts both the MLAP and the MLSCP. Fig. 8.7(a) presents an input ALD D = (V, A, L). Fig. 8.7(b) shows a solution for the MLAP considering the root node r = 8. Fig. 8.7(c) illustrates a solution for the MLSCP.

Figure 8 . 7 :

 87 Figure 8.7: Example of both the MLAP and the MLSCP. (a) An input ALD D = (V, A, L). (b) L = {A, B, D, F}, a solution for the MLAP on D, considering the root node r = 8. (c) L = {A,C, D, F}, a solution for the MLSCP on D

Figure 8

 8 Figure 8.8: maximum flow minimal labeling problem. (a) An input ALD with capacities associated with its vertices and a maximum s-t flow F * = 10. Solutions for this input instance with (b) L = {A, B, D, E, F} and (c) L = {A, B, D, F}

 1. Let G(U, S) = (V, E, L), |U| ≥ 2, be the graph built from a set covering instance as given in Section 2.1. Let G ← G / / {k * }, and let v be the vertex originated from v * in the contraction. Add a new vertex w to G and, for every edge e = (v, j) ∈ E, add to G a new edge y = (w, j), such that l(e) = l(y). It is straightforward to verify that G has a vertexbiconnected spanning subgraph with k labels if and only if a minimum set covering with k sets does exist.

Figure 8 .

 8 Figure 8.9 illustrates the extension of the graph G(U, S) = (V, E, L). Fig. 8.9(a) brings the ELG G built from a set covering instance presented in Section 2.1, Fig. 2.1(b). Fig. 8.9(b) depicts the graph G = G / / {k * }, and Fig. 8.9(c) shows the graph G after adding the clone vertex w.

Figure 8

 8 Figure 8.9: The MLVBGP is NP-complete. (a) An ELG G(U, S) = (V, E, L) built from an instance of the set covering problem. (b) The graph G = G / / {k * }. (c) The graph G after adding the clone vertex w, depicted in gray

 .33) Indeed, this formulation can be further improved by replacing the set of inequalities (8.32) by the set (8.34). First, let N(S) = {v ∈ V \S | e = (v, x) ∈ δ (S) or e = (x, v) ∈ δ (S)}, for any S ⊆ V , be the set of neighbor vertices of S. Considering the graph G = (V, E, L) presented in Fig. 8.10(a) and S = {5}, we have that N

 G), and the colorful cut inequality associated with K(S, G) is domi-nated (or redundant) by the one associated with K(S, G[[V \{v}]]). Thence, to ensure the solution graph is biconnected, it is only necessary to satisfy the colorful cuts K(S, G[[V \{v}]]), for all S ⊂ V , S = / 0, |S| ≤ |V | -2, and for all v ∈ N(S). This is the set of constraints (8.34).

 Figure 8.11 illustrates the three enhanced connectivity problems discussed in this section. The graph in Fig. 8.11(a) is edge-2-connected, satisfying the MLEkCGP for k = 2. However, the removal of either the label D or the vertex 3 disconnects it. The graph in Fig. 8.11(b) is label-2-connected, satisfying the MLLkCGP for k = 2. Again, the removal of the vertex 3 disconnects it. The graph in Fig. 8.11(c) is vertex biconnected, satisfying the MLVBGP.

Figure 8 .

 8 Figure 8.11: Illustration of enhanced connectivity problems defined on ELGs. (a) An ELG that is edge-2-connected, satisfying the MLEkCGP for k = 2. (b) An ELG that is label-2-connected, satisfying the MLLkCGP for k = 2. (c) An ELG that is vertex biconnected, satisfying the MLVBGP

 Figure 9.2 illustrates the configurations allowed and forbidden to G become a disjoint union of cliques for any u, v, w ∈ V . Fig. 9.2(a) presents the allowed configurations, while the Fig. 9.2(b) presents the forbidden ones, namely, the P 3 subgraphs.

Figure 9

 9 Figure 9.2: Allowed and forbidden configurations according to the P 3 elimination inequalities. (a) The allowed and (b) the forbidden configurations

TEF

 z l ≥ 1,∀T ∈ T, (9.25)z l ∈ {0, 1}, ∀l ∈ L. (9.26)The objective function (9.24) minimizes the number of labels of the solution. The exponential set of tree elimination constraints (9.25) ensures that the solution graph is not connected by prohibiting any spanning tree of G. The constraints (9.26) define the domain of the decision variables z.

Figure 9 .

 9 Figure 9.3 illustrates the tree elimination constraints. Fig. 9.3(a) brings an input ELG G = (V, E, L), while Fig. 9.3(b) shows an spanning tree T of G that uses the set of labels {A,C, D, E}. Since T has to be eliminated for G to be connected, the inequality

Figure 9 . 3 :

 93 Figure 9.3: Illustration of spanning tree on an ELG. (a) An input ELG G = (V, E, L). (b) A tree of G with the set of labels {A,C, D, E}

 for the first set of computations. This group of input graphs has instances with number of vertices n = |V | ∈ {50, 100, 200}, number of labels l = |L| ∈ {0.25n, 0.5n, n, 1.25n}, and edge densities d ∈ {0.2, 0.5, 0.8}. Also, each dataset consists in 10 different graphs for one n-l-d configuration. The Tables 9.1 to 9.3 present the results of the first group of experiments performed.Each line represents a dataset with 10 different graphs for one n-l-d configuration. The first group of columns identifies the dataset. The column UB brings the average value of the best integer solutions found (considering all the methods). The remaining columns are divided into three groups: PART 2 , P3E and TEF, one for each formulation. The column O indicates the number of optimal solutions found by the method. The column t(s) indicates the average running time in seconds. The column gap represents (as a percentage) the average of the differences between the UBs and LBs achieved by the method. Finally, the column gapr reports (as a percentage) the average of the differences between the UBs and the linear relaxations 1 .

Figure 9 .

 9 Figure 9.4 presents the first four LH graphs.

Figure 9 . 4 :

 94 Figure 9.4: Illustration of the construction of the the labeled hypercube graphs. The graphs (a) LH 0 , (b) LH 1 , (c) LH 2 , and (d) LH 3

 new protocols. The problem also has applications in areas such as transport projects, network design, telecommunication systems, and distribution of energy. Follows the formal definition of the MRSTP.Definition 10.1. Given an ELG G = (V, E, L), the representation set of a vertex v ∈ V is the set of labels that have at least one edge incident to v. Formally, r(v) = K({v}), where K stands for the colorful cut defined by {v} (see Definition 4.2).Definition 10.2. Given an ELG G = (V, E, L), the minimum representation spanning tree problem (MRSTP) aims to find a spanning tree T = (V , E , L) of G such that the functionR(T) = ∑ v∈V |r(v)| is minimized. Remark that, since T is a tree, r(v) ≥ 1, ∀v ∈ V .Thence, it is convenient to use the representation function Rt(G) = ∑ v∈V (|r(v)| -1) as the objective function for the MRSTP.

Figure 10

 10 Figure 10.1(a) illustrates the MRSTP. Fig. 10.1(a) introduces the input ELG G = (V, E, L). Fig. 10.1(b) shows a solution with |L| = 3 and Rt = 4, while Fig. 10.1(c) presents another solution with |L| = 4 e Rt = 3. Observe that the best solution for the MLSTP is not necessarily the best one for the MRSTP.

Figure 10 . 1 :

 101 Figure 10.1: Illustration of the minimum representation spanning tree problem. (a) The input ELG G = (V, E, L). (b) A solution for the MRSTP with |L| = 3 and Rt = 4. (c) A solution for the MRSTP with |L| = 4 and Rt = 3

 , to the B-MRSTP. Given U the universe set, S a set of subsets of U, and a constant k ∈ Z + , the question associated with the B-SCP is if thereexists a set C ⊆ S such that |C| ≤ k and S∈C (S) = U.First, let G(U, S) = (V, E, L) be an ELG built as follows: consider the sets V = {p, q}, L = {W }, and E = {e = (p, q)} such that l(e) = W , initially composed only by auxiliary elements. Then, add a vertex v(u) to V for each u ∈ U, add a label S to L for each set S ∈ S, and for each u ∈ U and S ∈ S such that u ∈ S add the edge e = (p, v(u)) with the label l(e) = S to E.

Figure 10

 10 Figure 10.2 illustrates the construction of the graph G(U, S). Fig. 10.2(a) presents the sets U and S of an example instance of the SCP. Fig. 10.2(b) shows the ELG G(U, S) = (V, E, L) built from this instance. Fig. 10.2(c) presents a solution of the MRSTP for the graph G(U, S).

Figure 10

 10 Figure 10.2: Transformation from the SCP to the MRSTP. (a) An input instance (U, S) for the set covering problem. (b) the instance of the MRSTP originated from (U, S). (c) The solution of the MRSTP for this instance

Figure 10

 10 Figure 10.3: Transformation from the SCP to the MRSTP in a simple ELG. (a) An input instance (U, S) for the set covering problem. (b) the simple ELG originated from (U, S). (c) The solution of the MRSTP for this instance

 Based on Proposition 3.2, without loss of optimality for the GMLSTP, we can preprocess the input graph by breaking all of its monochromatic cycles. Therefore, with regards to the GMLSTP, we can deal just with monochromatic-cycle-free graphs (i.e. a graph G such that G[{l}] does not have cycles, for any l ∈ L). Let k = |L|, n = |V |, and m = |E|.

	Krumke and Wirth
	(1998) has proposed a monochromatic cycles removal method that can be executed in O(k • n +
	m). As an alternative, we propose a new monochromatic cycles removal procedure (MCR) that
	can be carried out in O(α(m, n) • m), where α stands for the inverse of the Ackerman's function.
	a monochromatic cycle of G. Without loss of generality, let
	e = e 1 = (v 1 , v 2) be an arbitrary edge of P, let G = (V, E\{e}, L) be the resulting graph after the
	removal of e from G, and let C be any subset of L. We prove this proposition by demonstrating
	that G[C] is connected if and only if G [C] is connected.
	If k / ∈ C then this statement holds. Indeed, G[C] is exactly G [C].
	(⇒) For any C ⊆ L, k ∈ C, suppose G[C] is connected and G [C] is disconnected. In this case
	G [C] has exactly two disjoint connected components, each one spanning respectively the set of
	vertices S, S ⊂ V , such that v 1 ∈ S and v 2 ∈ S. However, the path P\{e} connects v 2 to v 1 , and
	hence S to S. Then G [C] is connected.
	(⇐) For any C ⊆ L, k ∈ C, suppose G [C] is connected and G[C] is disconnected. G[C] is exactly
	the graph G [C] plus the edge e. The addition of an edge cannot disconnect the graph G[C].

Table 4 .

 4 1: Effectiveness of separing exactly the colorful cuts inequalities

	Instance	LR(CCut, / 0)	LR(CCut, PART 2) Cuts	∆	%	t(s)
	100-ld-100-4	8.45870	8.47738	1	0.01868 0.22% 0.613
	100-ld-100-9	5.53541	5.53549	1	0.00008 0.00% 3.432
	100-ld-125-5	6.45614	6.45620	1	0.00006 0.00% 0.891
	100-ld-125-6	7.72405	7.73515	4	0.01110 0.14% 1.533
	100-md-25-0	1.30000	1.30508	1	0.00508 0.39% 0.234
	200-hd-50-1	1.07843	1.07849	1	0.00006 0.01% 3.253
	200-hd-50-2	1.07059	1.07066	1	0.00007 0.01% 6.151
	200-hd-50-4	1.07110	1.07234	1	0.00124 0.12% 3.153
	200-hd-50-6	1.08063	1.08071	1	0.00008 0.01% 5.292

Table 4 .

 4 2: Comparison between the proposed branch-and-cut strategies

		Instance	UB	LR	LB	t(s) lrt(s)	Nodes Cuts Gapr
	BC A	200-hd-50-0	2	1.070 1.070	0.011 0.004	0	46.5%
	BC R		2	1.070 1.070	0.011 0.004	0	46.5%
	BC I		2	1.070 1.070	0.011 0.004	0	46.5%
	BC A	200-hd-100-0	2	1.288 1.587	1.777 0.015	0	35.6%
	BC R		2	1.288 1.587	1.254 0.015	0	35.6%
	BC I		2	1.288 1.591	0.949 0.011	0	35.6%
	BC A	200-hd-200-0	4	1.776 3.000	287.672 0.022	1	55.6%
	BC R		4	1.776 3.000	201.715 0.019	0	55.6%
	BC I		4	1.776 3.000	105.400 0.018	0	55.6%
	BC A	200-hd-250-0	4	2.024 3.000	67.946 0.032	2	49.4%
	BC R		4	2.024 3.000	52.117 0.031	2	49.4%
	BC I		4	2.024 3.000	51.736 0.031	2	49.4%
	BC A	200-md-50-0	2	1.273 1.273	0.014 0.006	1	36.3%
	BC R		2	1.273 1.273	0.012 0.005	1	36.3%
	BC I		2	1.273 1.273	0.012 0.004	1	36.3%
	BC A	200-md-100-0	4	1.763 3.001	23.178 0.012	7	55.9%
	BC R		4	1.763 3.001	15.305 0.012	3	55.9%
	BC I		4	1.763 3.000	8.603 0.012	3	55.9%
	BC A	200-md-200-0	5	2.649 4.000	140.025 0.015	0	47.0%
	BC R		5	2.649 4.000	109.262 0.012	0	47.0%
	BC I		5	2.649 4.000	62.533 0.012	0	47.0%
	BC A	200-md-250-0	6	3.010 5.000 1917.250 0.015	5	49.8%
	BC R		6	3.010 5.000 1478.250 0.014	4	49.8%
	BC I		6	3.010 5.000	844.391 0.014	6	49.8%
	BC A	200-ld-50-0	5	3.020 4.248	0.813 0.003	0	39.6%
	BC R		5	3.020 4.248	0.607 0.003	0	39.6%
	BC I		5	3.020 4.783	1.097 0.003	0	39.6%
	BC A	200-ld-100-0	8	5.010 7.263	27.750 0.009	2	37.4%
	BC R		8	5.010 7.263	21.756 0.009	2	37.4%
	BC I		8	5.010 7.000	5.970 0.006	1	37.4%
	BC A	200-ld-200-0	13 8.451 12.000 2676.640 0.009 12 35.0%
	BC R		13 8.451 12.000 2255.690 0.009	2	35.0%
	BC I		13 8.451 12.000 1509.730 0.009	2	35.0%
	BC A	200-ld-250-0	14 10.006 13.264 3164.200 0.012 21 28.5%
	BC R		14 10.006 13.000 655.298 0.012	2	28.5%
	BC I		14 10.006 13.000 796.199 0.012	1	28.5%

Table 4 .

 4 3: Computational results for ELGs with |V|=100

		d	l	Opt UB LR	LB	t(s)	lrt(s) Nodes Cuts Gap Gapr
	CCut	hd 25 10	1.8 1.074 1.074 0.035	0.008	0	0% 36%
	CCut t			10	1.8 1.074 1.074 0.033	0.007	0	0% 36%
	DCut sn			10	1.8 1.074 1.074 0.421	0.079	0	0% 36%
	EC sn			10	1.8 1.074 1.074 0.249	0.045	0	0% 36%
	CCut	hd 50 10	2	1.293 1.293 0.087	0.032	0	0% 35%
	CCut t			10	2	1.293 1.293 0.089	0.029	0	0% 35%
	DCut sn			10	2	1.293 1.293 1.187	0.322	0	0% 35%
	EC sn			10	2	1.293 1.293 0.786	0.333	0	0% 35%
	CCut	hd 100 10	3	1.766 2.266 4.021	0.057 18435	0% 41%
	CCut t			10	3	2.010 2.240 1.997	0.011 12191	0% 33%
	DCut sn			10	3	1.766 2.229 51.466	0.371 20562	0% 41%
	EC sn			10	3	1.766 2.192 25.449	0.286 12305	0% 41%
	CCut	hd 125 10	4	1.991 3.000 37.688	0.051	167k	0% 50%
	CCut t			10	4	1.991 3.000 37.376	0.048	167k	0% 50%
	DCut sn			10	4	1.991 3.000 277.572 0.395	136k	0% 50%
	EC sn			10	4	1.991 3.000 166.031 0.211	135k	0% 50%
	CCut	md 25 10	2	1.305 1.321 0.062	0.013	10	0% 35%
	CCut t			10	2	1.305 1.321 0.059	0.012	10	0% 35%
	DCut sn			10	2	1.305 1.321 0.639	0.183	10	0% 35%
	EC sn			10	2	1.305 1.321 0.380	0.127	10	0% 35%
	CCut	md 50 10	3	1.775 2.233 0.660	0.025	1345	0% 41%
	CCut t			10	3	1.825 2.183 0.556	0.011	1437	0% 39%
	DCut sn			10	3	1.775 2.169 6.089	0.164	1008	0% 41%
	EC sn			10	3	1.775 2.188 3.685	0.137	1020	0% 41%
	CCut	md 100 10	4.7 2.647 3.843 20.394	0.032	152k	0% 43%
	CCut t			10	4.7 3.092 3.811 18.230	0.009	148k	0% 34%
	DCut sn			10	4.7 2.647 3.777 187.047 0.175	135k	0% 43%
	EC sn			10	4.7 2.647 3.825 131.048 0.132	153k	0% 43%
	CCut	md 125 10	5.2 3.040 4.232 23.863	0.036	137k 0% 42%
	CCut t			10	5.2 3.671 4.203 9.079	0.012	61k	0% 29%
	DCut sn			10	5.2 3.040 4.295 324.641 0.193	212k 0% 42%
	EC sn			10	5.2 3.040 4.267 195.871 0.117	202k 0% 42%
	CCut	ld 25 10	4.5 2.859 3.545 0.175	0.011	380	0% 36%
	CCut t			10	4.5 2.869 3.561 0.173	0.009	391	0% 36%
	DCut sn			10	4.5 2.859 3.579 0.942	0.055	478	0% 36%
	EC sn			10	4.5 2.859 3.580 0.598	0.033	430	0% 36%
	CCut	ld 50 10	6.7 4.550 5.794 1.171	0.018	7572	0% 32%
	CCut t			10	6.7 4.694 5.842 1.274	0.012	9037	0% 30%
	DCut sn			10	6.7 4.550 5.733 6.937	0.083	6940	0% 32%
	EC sn			10	6.7 4.550 5.784 5.096	0.048	8154	0% 32%
	CCut	ld 100 10	9.7 7.183 8.951 26.957	0.031	153k 0% 26%
	CCut t			10	9.7 7.593 8.841 16.576	0.015	109k 0% 22%
	DCut sn			10	9.7 7.183 8.913 161.964 0.103	160k 0% 26%
	EC sn			10	9.7 7.183 8.875 104.659 0.064	146k 0% 26%
	CCut	ld 125 10	11 8.141 10.164 507.745 0.026	428k 0% 26%
	CCut t			10	11 8.767 10.146 21.259	0.016	109k 0% 20%
	DCut sn			10	11 8.141 10.213 1919.135 0.112	501k 0% 26%
	EC sn			10	11 8.141 10.139 564.177 0.074	398k 0% 26%

Table 4 .

 4 4: Computational results for ELGs with |V|=200

		d	l	Opt UB LR	LB	t(s)	lrt(s) Nodes Cuts Gap Gapr
	CCut	hd 50 10	2	1.080 1.080 0.113	0.045	0	0% 46%
	CCut t			10	2	1.080 1.080 0.122	0.051	0	0% 46%
	DCut sn			10	2	1.080 1.080 5.931	1.593	0	0% 46%
	EC sn			10	2	1.080 1.080 3.270	0.893	0	0% 46%
	CCut	hd 100 10	2.6 1.301 1.850 10.789	0.133	28k	0% 48%
	CCut t			10	2.6 1.301 1.844 10.713	0.113	28k	0% 48%
	DCut sn			10	2.6 1.301 1.794 313.865	2.429	27k	0% 48%
	EC sn			10	2.6 1.301 1.789 166.352	1.156	27k	0% 48%
	CCut	hd 200 10	4	1.815 3.000 961.758	0.202 3174k	0% 55%
	CCut t			10	4	2.096 3.000 975.084	0.025 3333k	0% 48%
	DCut sn			10	4	1.815 3.000 31958.389 4.657 3222k	0% 55%
	EC sn			10	4	1.815 3.000 14964.415 2.260 3150k	0% 55%
	CCut	hd 250 10	4	2.068 3.024 434.196	0.236	601k	0% 48%
	CCut t			10	4	2.068 3.024 434.990	0.247	601k	0% 48%
	DCut sn			10	4	2.068 3.088 10246.673 5.020 1201k	0% 48%
	EC sn			10	4	2.068 3.087 5670.172 2.460 1175k	0% 48%
	CCut	md 50 10	2.2 1.316 1.492 0.516	0.066	481	0% 39%
	CCut t			10	2.2 1.316 1.492 0.529	0.072	470	0% 39%
	DCut sn			10	2.2 1.316 1.495 18.209	0.956	872	0% 39%
	EC sn			10	2.2 1.316 1.488 8.431	0.556	772	0% 39%
	CCut	md 100 10	3.4 1.835 2.480 17.083	0.126	66k	0% 46%
	CCut t			10	3.4 1.902 2.555 17.892	0.055	72k	0% 44%
	DCut sn			10	3.4 1.835 2.614 453.806	1.314	83k	0% 46%
	EC sn			10	3.4 1.835 2.563 214.743	0.655	71k	0% 46%
	CCut	md 200 10	5.4 2.832 4.400 2352.854 0.139 6803k	0% 48%
	CCut t			10	5.4 3.274 4.420 2377.483 0.033 7077k	0% 39%
	DCut sn			9	5.4 2.832 4.349 21063.010 2.271 2921k	2% 48%
	EC sn			9	5.4 2.832 4.386 14097.577 1.161 3806k	2% 48%
	CCut	md 250 10	6.3 3.285 5.300 10557.906 0.153	27m	0% 48%
	CCut t			10	6.3 3.938 5.335 12280.528 0.034	34m	0% 37%
	DCut sn			1	6.3 3.285 4.984 59653.040 2.556 7446k	20% 48%
	EC sn			2	6.3 3.285 5.156 54075.540 1.337	13m	15% 48%
	CCut	ld 50 10	5.2 2.862 4.293 7.815	0.048	34k	0% 45%
	CCut t			10	5.2 2.878 4.294 7.711	0.045	35k	0% 44%
	DCut sn			10	5.2 2.862 4.249 96.178	0.377	34k	0% 45%
	EC sn			10	5.2 2.862 4.314 62.130	0.165	39k	0% 45%
	CCut	ld 100 10	7.9 4.635 7.060 466.704	0.075 1786k	0% 41%
	CCut t			10	7.9 4.772 7.121 529.135	0.047 2032k	0% 39%
	DCut sn			10	7.9 4.635 7.033 5689.845 0.474 1475k	0% 41%
	EC sn			10	7.9 4.635 6.992 3002.548 0.245 1478k	0% 41%
	CCut	ld 200 8	12	7.683 11.053 32303.712 0.096	66m 3% 36%
	CCut t			7	12.1 8.117 10.999 29671.498 0.062	62m 4% 33%
	DCut sn			1	12.3 7.683 10.567 67219.190 0.828	12m 13% 38%
	EC sn			5	12.1 7.683 10.716 54320.280 0.400	17m 7% 37%
	CCut	ld 250 5	13.8 9.007 12.388 48378.577 0.113	88m 7% 35%
	CCut t			5	13.8 9.606 12.456 49853.001 0.055	92m 6% 30%
	DCut sn			1	13.8 9.007 11.822 68644.820 0.932	11m 14% 35%
	EC sn			3	13.8 9.007 11.971 65669.390 0.417	18m 11% 35%

Table 5 .

 5 1: Superscripts and constraints associated with each formulation

	Constraint/Formulation

 straints (2.10) and strong linkage (2.17) are respected by the definition of P CCut zx (G). The node label constraints (2.18) are respected because they are a subset of the colorful cut inequalities (4.2). Finally, since x e = z l(e) , ∀e ∈ E, we have

	∑
	e∈δ (S)

Table 6 .

 6 1: Impact of PCut inequalities on the linear relaxation of CCut

					Dataset identification				
		d=0.20	0.25	0.30	0.35	0.40	0.45	0.50	0.60	0.80	1.0
		|L|=12.9	16.4	19.8	23.5	28.1	31.4	31.6	35.4	40.8	44.7
	OPT	9.9	9.4	8.1	8.5	7.9	8.1	6.3	5.9	4.7	4.0
	CCut t	7.900 7.550 6.450 6.517 6.308 6.317 4.900 4.503 3.464 2.831
	Gap	20.2% 19.7% 20.4% 23.3% 20.1% 22.0% 22.2% 23.7% 26.3% 29.2%
	PCut 2	8.758 7.900 6.883 6.980 6.569 6.492 5.290 4.702 3.586 2.917
	Gap	11.5% 16.0% 15.0% 17.9% 16.8% 19.9% 16.0% 20.3% 23.7% 27.1%
	Cuts	4.2	3.5	3.2	3.9	3.8	2.6	3.5	3.5	3.1	2.6
	PCut 3	9.336 8.284 7.164 7.274 6.841 6.820 5.515 4.876 3.666 3.002
	Gap	5.7% 11.9% 11.6% 14.4% 13.4% 15.8% 12.5% 17.4% 22.0% 25.0%
	Cuts	9.6	15.1	11.8	14.1	15.4	11.5	11.6	12.1	10.7	9.5
	PCut 4	9.606 8.538 7.390 7.496 7.007 7.006 5.620 4.963 3.729 3.034
	Gap	3.0% 9.2% 8.8% 11.8% 11.3% 13.5% 10.8% 15.9% 20.7% 24.1%
	Cuts	15.1	23.0	21.8	27.4	25.7	25.6	27.4	18.2	24.1	18.8
	PCut 5	9.731 8.761 7.545 7.664 7.166 7.209 5.696 5.057 3.758 3.058
	Gap	1.7% 6.8% 6.9% 9.8% 9.3% 11.0% 9.6% 14.3% 20.0% 23.6%
	Cuts	16.5	36.4	28.5	46.7	38.4	35.5	34.0	27.0	31.6	26.4

	PCut 10	9.900 9.400 7.917 8.500 7.729 7.545 5.465 5.063 3.835 3.076
	Gap	0.0% 0.0% 2.3% 0.0% 2.2% 6.8% 13.3% 14.2% 18.4% 23.1%
	Cuts	13.2	9.1	4.7	13.0	15.4	15.7	15.3	22.7	15.6	21.7
	PCut 11	9.900 9.400 7.600 8.129 7.208 7.165 5.410 4.998 3.738 3.041
	Gap	0.0% 0.0% 6.2% 4.4% 8.8% 11.5% 14.1% 15.3% 20.5% 24.0%
	Cuts	6.1	3.4	3.3	5.0	5.2	9.4	6.4	10.8	7.5	13.9
	PCut 12	9.600 8.900 7.100 7.480 6.960 6.815 5.271 4.893 3.512 3.027
	Gap	3.0% 5.3% 12.3% 12.0% 11.9% 15.9% 16.3% 17.1% 25.3% 24.3%
	Cuts	2.9	1.9	2.0	3.1	2.7	3.3	2.5	4.8	5.1	7.7
	PCut 13	8.900 8.000 6.650 7.050 6.625 6.450 5.150 4.718 3.140 2.966
	Gap	10.1% 14.9% 17.9% 17.1% 16.1% 20.4% 18.3% 20.0% 33.2% 25.9%
	Cuts	0.9	0.9	0.4	1.1	0.5	1.2	1.2	1.4	2.1	2.3
	PCut s	9.650 9.267 7.900 8.250 7.450 7.823 5.858 5.270 3.871 3.126
	Gap	2.5% 1.4% 2.5% 2.9% 5.7% 3.4% 7.0% 10.7% 17.6% 21.8%
	Cuts	2.9	3.3	4.1	7.8	7.5	11.5	20.4	23.0	17.1	23.2
	PCut *	9.900 9.400 8.007 8.500 7.825 7.903 5.919 5.319 3.908 3.159
	Gap	0.0% 0.0% 1.1% 0.0% 0.9% 2.4% 6.0% 9.9% 16.8% 21.0%
	Cuts	3.4	5.1	6.3	8.2	12.1	14.7	26.4	26.0	20.8	27.2

Table 6 .

 6 2: Impact of separating heuristicly the PCut inequalities

					Dataset identification				
		d=0.20 0.25 0.30 0.35 0.40 0.45 0.50	0.60	0.80	1.0
		|L|=12.9 16.4 19.8 23.5 28.1 31.4 31.6	35.4	40.8	44.7
	OPT	9.9	9.4	8.1	8.5	7.9	8.1	6.3	5.9	4.7	4.0
	PCut h	9.900 9.233 7.900 8.167 7.340 7.717 5.833 5.298 3.902 3.146
	Gap	0.0% 1.8% 2.5% 3.9% 7.1% 4.7% 7.4% 10.2% 17.0% 21.3%
	Cuts	3.2	3.2	3.8	7.9	6.9 12.1 20.9	23.3	29.1	27.9

Table 6 .

 6 3: Computational results for CCut t + PCut rh on instances with |V | = 100

				CCut t		CCut t + PCut rh
	d	l Opt	UB	t(s) cuts gap gapr	UB	t(s) cuts gap gapr
	0.8 25 1.8	0 1.8 0.033	0 0% 36%	0 1.8 0.014	0 0% 36%
		50 2.0	0 2.0 0.089	1 0% 35%	0 2.0 14.210	8 0% 35%
		100 3.0	0 3.0 1.997	24 0% 33%	0 3.0 67.645	90 0% 33%
		125 4.0	0 4.0 37.376	4 0% 50%	0 4.0 78.578 107 0% 40%
	0.5 25 2.0	0 2.0 0.059	1 0% 35%	0 2.0 2.508	0 0% 35%
		50 3.0	0 3.0 0.556	5 0% 39%	0 3.0 60.531	99 0% 39%
		100 4.7	0 4.7 18.230	47 0% 34%	0 4.7 41.760 181 0% 33%
		125 5.2	0 5.2 9.079	49 0% 29%	0 5.2 51.809 264 0% 29%
	0.2 25 4.5	0 4.5 0.173	5 0% 36%	0 4.5 8.622	20 0% 36%
		50 6.7	0 6.7 1.274	12 0% 30%	0 6.7 8.241	80 0% 29%
		100 9.7	0 9.7 16.576 214 0% 22%	0 9.7 21.129 428 0% 20%
		125 11.0	0 11.0 21.259 566 0% 20%	0 11.0 32.954 648 0% 19%

Table 6 .

 6 4: Computational results for CCut t + PCut rh on instances with |V | = 200

				CCut t			CCut t + PCut rh
	d	l Opt	UB	t(s) cuts gap gapr	UB	t(s) cuts gap gapr
	0.8 50 2.0	0 2.0	0.122	0 0% 46%	0 2.0	0.064	0 0% 46%
		100 2.6	0 2.6	10.7	7 0% 48%	0 2.6 9863.0 534 0% 48%
		200 4.0	0 4.0	975.0	3 0% 48%	0 4.0	732.8	68 0% 48%
		250 4.0	0 4.0	435.0	22 0% 48%	0 4.0	839.1 110 0% 37%
	0.5 50 2.2	0 2.2	0.5	3 0% 39%	0 2.2	27.8	3 0% 37%
		100 3.4	0 3.4	17.9	8 0% 44%	0 3.4	421.6 113 0% 43%
		200 5.4	0 5.4 2377.5	63 0% 39%	0 5.4 1774.8 187 0% 39%
		250 6.3	0 6.3 12280.5	22 0% 37%	0 6.3 12115.0 156 0% 37%
	0.2 50 5.2	0 5.2	7.7	5 0% 44%	0 5.2	46.0	23 0% 44%
		100 7.9	0 7.9	529.1	18 0% 39%	0 7.9	399.4	83 0% 39%
		200 11.9	3 12.1 29671.5 238 4% 33%	2 11.9 26719.2 480 2% 31%
		250 13.7	5 13.8 49853.0 298 6% 30%	5 13.8 48435.0 424 7% 30%

Table 6 .

 6 5: Computational results for CCutBB on instances with |V | = 100

				CCut t		CCutBB	
	d	l Opt	UB	t(s) nodes gap	UB	t(s) nodes gap
	0.8 25 1.8	0 1.8 0.033	0 0%	0 1.8	0.007	0 0%
		50 2.0	0 2.0 0.089	0 0%	0 2.0	0.022	0 0%
		100 3.0	0 3.0 1.997 12191 0%	0 3.0	2.613 1157 0%
		125 4.0	0 4.0 37.376 167241 0%	0 4.0 47.693 19465 0%
	0.5 25 2.0	0 2.0 0.059	10 0%	0 2.0	0.016	14 0%
		50 3.0	0 3.0 0.556	1437 0%	0 3.0	0.528	493 0%
		100 4.7	0 4.7 18.230 148403 0%	0 4.7 16.368 9591 0%
		125 5.2	0 5.2 9.079 61949 0%	0 5.2 34.515 16099 0%
	0.2 25 4.5	0 4.5 0.173	391 0%	0 4.5	0.095	203 0%
		50 6.7	0 6.7 1.274	9037 0%	0 6.7	1.820 2428 0%
		100 9.7	0 9.7 16.576 109809 0%	0 9.7 53.747 29315 0%
		125 11.0	0 11.0 21.259 109374 0%	0 11.0 531.093 71576 0%
				CCut t			CCutBB	
	d	l Opt	UB	t(s)	nodes gap	UB	t(s) nodes	gap
	0.8 50 2.0	0 2.0	0.122	0 0%	0 2.0	0.049 0		0%
	100 2.6	0 2.6	10.7	28313 0%	0 2.6	5.7 621	0%
	200 4.0	0 4.0	975.0 3333282 0%	0 4.0	718.6 67729	0%
	250 4.0	0 4.0	435.0	601875 0%	0 4.0 1548.5 117481	0%
	0.5 50 2.2	0 2.2	0.5	470 0%	0 2.2	0.3 85	0%
	100 3.4	0 3.4	17.9	72969 0%	0 3.4	19.8 3832	0%
	200 5.4	0 5.4 2377.5 7077886 0%	0 5.4 4408.5 526126	0%
	250 6.3	0 6.3 12280.5 34418801 0%	0 6.3 17639.8 1439063 0%
	0.2 50 5.2	0 5.2	7.7	35236 0%	0 5.2	11.6 7245	0%
	100 7.9	0 7.9	529.1 2032335 0%	0 7.9	960.3 343314	0%
	200 11.9	3 12.1 29671.5 62381046 4%	8 12.4 61915.0 8881646 25%
	250 13.7	5 13.8 49853.0 92983303 6%	10 15.0	72000 8439352 34%

Table 6.6: Computational results for CCutBB on instances with |V | = 200

Table 6 .

 6 7: Computational results for CCutHB on ELGs with |V|=200

		d	l	UB	t(s)	lrt(s)	nodesT nodesC cuts gap gapr
	CCut t	0.8 50 0 2.0	0.122	0.051	0	0	0% 46%
	CCutHB(h 0 = 1)			0 2.0	0.049	0.042	0	0	0% 46%
	CCutHB(h 0 = 2)			0 2.0	0.049	0.042	0	0	0% 46%
	PCutHB(h 0 = 2)			0 2.0	0.052	0.040	0	0	0% 46%
	CCut t	0.8 100 0 2.6 10.713	0.112	28313	0	0% 48%
	CCutHB(h 0 = 1)			0 2.6	5.931	0.096	0	621	0% 48%
	CCutHB(h 0 = 2)			0 2.6	5.703	0.096	9	621	0% 48%
	PCutHB(h 0 = 2)			0 2.6 10280.1 10270.7	9	621 0% 48%
	CCut t	0.8 200 0 4.0	975.1	0.024 3333282	0	0% 48%
	CCutHB(h 0 = 1)			0 4.0	11.5	0.030	0	938	0% 48%
	CCutHB(h 0 = 2)			0 4.0 1012.8	0.031	0 67729	0% 48%
	PCutHB(h 0 = 2)			0 4.0 1566.9	515.0	0 67729	0% 48%
	CCut t	0.8 250 0 4.0	435.0	0.246	601875	0	0% 37%
	CCutHB(h 0 = 1)			0 4.0	64.9	0.033	1011	994	0% 37%
	CCutHB(h 0 = 2)			0 4.0 1750.8	0.033	0 77522	0% 37%
	PCutHB(h 0 = 2)			0 4.0 2319.5	489.4	0 77522	0% 37%
	CCut t	0.5 50 0 2.2	0.5	0.072	470	0	0% 39%
	CCutHB(h 0 = 1)			0 2.2	0.2	0.046	0	85	0% 39%
	CCutHB(h 0 = 2)			0 2.2	0.3	0.046	0	85	0% 39%
	PCutHB(h 0 = 2)			0 2.2	28.4	28.1	0	85	0% 37%
	CCut t	0.5 100 0 3.4	17.9	0.055	72969	0	0% 44%
	CCutHB(h 0 = 1)			0 3.4	3.8	0.038	0	454	0% 44%
	CCutHB(h 0 = 2)			0 3.4	26.4	0.038	0	4920	0% 44%
	PCutHB(h 0 = 2)			0 3.4	473.7	445.0	0	4920 0% 44%
	CCut t	0.5 200 0 5.4 2377.5	0.033 7077886	0	0% 39%
	CCutHB(h 0 = 1)			0 5.4	609.9	0.039	16093	541	0% 39%
	CCutHB(h 0 = 2)			0 5.4	781.0	0.039	0 26450	0% 39%
	PCutHB(h 0 = 2)			0 5.4 1032.5	213.1	0 26450 0% 39%
	CCut t	0.5 250 0 6.3 12280.5	0.034 34418801	0	0% 37%
	CCutHB(h 0 = 1)			0 6.3	925.2	0.037	89811	565	0% 37%
	CCutHB(h 0 = 2)			0 6.3	724.9	0.037	385 29716	0% 37%
	PCutHB(h 0 = 2)			0 6.3	937.3	207.8	332 29716 0% 37%
	CCut t	0.2 50 0 5.2	7.7	0.045	35236	0	0% 44%
	CCutHB(h 0 = 1)			0 5.2	9.3	0.025	3	132	0% 44%
	CCutHB(h 0 = 2)			0 5.2	3.6	0.026	0	1281	0% 44%
	PCutHB(h 0 = 2)			0 5.2	40.5	36.9	0	1281	0% 44%
	CCut t	0.2 100 0 7.9	529.1	0.047 2032335	0	0% 39%
	CCutHB(h 0 = 1)			0 7.9	310.5	0.039	212667	150	0% 39%
	CCutHB(h 0 = 2)			0 7.9	261.2	0.039	1077	2306	0% 39%
	PCutHB(h 0 = 2)			0 7.9	313.3	36.1	1130	2306	0% 39%
	CCut t	0.2 200 3 12.1 29671.5	0.062 62381046	0 4% 33%
	CCutHB(h 0 = 1)			0 11.9 18507.2	0.051 8657165	159 0% 31%
	CCutHB(h 0 = 2)			0 11.9 13435.0	0.051	241539	2704	0% 31%
	PCutHB(h 0 = 2)			0 11.9 16650.3	117.4	42631	2704 0% 31%
	CCut t	0.2 250 5 13.8 49853.0	0.055 92983303	0 6% 30%
	CCutHB(h 0 = 1)			4 14.1 44858.2	0.053 11616250	161 13% 31%
	CCutHB(h 0 = 2)			2 13.8 27907.1	0.053 3182721	2478 6% 30%
	PCutHB(h 0 = 2)			2 13.8 25679.9	72.2	891156	2463 6% 30%

Table 7 .

 7 1: Tunning of the parameter maxLB k

		maxLB k =3	4	5	6	7	8
	n	l d #u avg. #u avg. #u avg. #u avg. #u avg. #u avg.
	200 200 0.2 22 11.93 31 11.90 33 11.91 24 11.90 30 11.93 32 11.91
	200 250 0.2 10 13.77 16 13.73 15 13.75 15 13.75 15 13.72 13 13.74
	500 500 0.2 21 15.34 20 15.38 24 15.40 14 15.49 19 15.44 17 15.45
	500 625 0.2 8 18.07 8 18.10 16 18.03 10 18.08 17 18.03 18 18.01
		Total 61 59.11 75 59.11 88 59.09 63 59.22 81 59.12 80 59.11

Table 7 .

 7 2: Computational results for instances with n = 100

	MSLB

Table 7

 7

		.4: Computational results for instances with n = 200	
								MSLB		
	l d Opt GRASP VNS CMPL INTELL	avg. best b.r. w.r.
	50 0.8	2	2	2	2	2	2	2	2	2
	0.5	2.2	2.2 2.2	2.2	2.2	2.2 2.2 2.2 2.2
	0.2	5.2	5.2 5.2	5.2	5.2	5.2 5.2 5.2 5.2
	100 0.8	2.6	2.6 2.6	2.6	2.6	2.6 2.6 2.6 2.6
	0.5	3.4	3.4 3.4	3.4	3.4	3.4 3.4 3.4 3.4
	0.2 NF	8.1 7.9	8	7.9	7.9 7.9 7.9 7.9
	200 0.8	4	4	4	4	4	4	4	4	4
	0.5 NF	5.4 5.4	5.4	5.4	5.4 5.4 5.4 5.4
	0.2 NF	12.2	12	12.1	12	11.9 11.9 * 11.9 11.9
	250 0.8	4	4.1	4	4.1	4	4	4	4	4
	0.5 NF	6.3 6.3	6.3	6.3	6.3 6.3 6.3 6.3
	0.2 NF	13.9 13.9	13.9	13.9 13.77 13.7 * 13.7 13.8
	Total	-	69.4 68.9	69.2	68.9 68.67 68.6 68.6 68.7

Table 7 .

 7 6: Computational results for instances with n = 500

	MSLB

Table 7 .

 7 8: Computational results for instances with n = 1000

	MSLB

 CCut formulation adapted to the MLPP is presented in the program (8.1) through (8.3). The objective function (8.1) minimizes the number of labels, and the exponential set of constraints (8.2) ensures the connectivity of the vertices s and t in the solution graph by requiring at least one active label for every colorful cut that separates these vertices.

			Minimize ∑	z l	(8.1)
			l∈L		
	s.t.	∑	z l ≥ 1,	∀S ⊂ V, s ∈ S,t / ∈ S,	(8.2)
		l∈K(S)			

 TheMLSteiner is NP-hard since it is exactly the MLSTP if Q = V .The CCut formulation adapted to the MLSteiner problem is presented in the program (8.7) through (8.9). The objective function (8.7) minimizes the number of labels, and the exponential set of constraints (8.8) ensures that the vertices in Q are connected in the solution graph by requiring at least one active label for every colorful cut that separates them.

		Minimize ∑	z l	(8.7)
		l∈L	
	s.t.	∑	
		l∈K(S)	

 is set to 1 if and only if the label l is part of the solution cut. Let x e , ∀e ∈ E, be a variable that is set to 1 if and only if the edge e is part of the solution cut. And let w v , ∀v ∈ V be a variable that is set to 1 if the vertex v belongs to the set S and to 0 otherwise. The model PART is described

	v∈V s.t. 1 ≤ ∑	w v < |V |,		(9.2)
		z l(e) ≥ x e ,	∀e ∈ E,	(9.3)
	in the program (9.1) to (9.8).		
		PART = Minimize ∑	z l	(9.1)
		l∈L	

 what is equivalent to z e ≥ |w iw j |. Given that, it is possible to eliminate the edge variables from the formulation. Moreover, we can eliminate the symmetry of the solutions by arbitrarily choosing a vertex to be in S. The reformulated model, denominated PART 2 , is presented in the

	program (9.9) to (9.15).		
		PART 2 = Minimize ∑	z l	(9.9)
		l∈L	
	v∈V s.t. ∑	w v ≥ 1,		(9.10)
		w 1 = 0,		(9.11)
	z l(e) ≥ w i -w j ,	∀e = (i, j) ∈ E,	(9.12)
	z l(e) ≥ w j -w i ,	∀e = (i, j) ∈ E,	(9.13)
		z l ≥ 0,	∀l ∈ L,	(9.14)
	w v ∈ {0, 1},	∀v ∈ V.	(9.15)

 otherwise. Further, let z l , ∀l ∈ L, be a continuous variable that is set to 1 if and only if the label l is part of the solution cut. The formulation P3E is presented in the program (9.16)-(9.23). The objective function (9.16) minimizes the number of labels in the solution cut. The constraints (9.17) bind the edge with the label variables. The set of inequalities (9.18),(9.19), and (9.20) are the classic P 3 (paths with three vertices) elimination constraints, as discussed in the sequel.

	The inequality (9.21) ensures the solution is not empty. Finally, the expressions (9.22) to (9.23)
	define the domain of the decision variables.		
	P3E = Minimize ∑	z l	(9.16)
	l∈L		
	s.t. z l(e) ≥ x i j ,	∀e = (i, j) ∈ E,	(9.17)

 Table 9.1: Results of the computational experiments for instances with |V | = 50 Table 9.2: Results of the computational experiments for instances with |V | = 100 From Table9.3, we have that the TEF still has the best linear relaxation for all of the instances. However, it failed to solve three groups of instances (marked with a *). It was not able to yield feasoble integer solutions within one hour of execution. Even with a worse linear relaxation, PART 2 has solved 101 instances out of 120. Table 9.3: Results of the computational experiments for instances with |V | = 200

	Instance					P3E					PART 2	TEF
	|L| d	UB		O		t (s)	gap gapr		O t (s) gap gapr	O t (s) gap gapr
	ld	2,5		10		843,4		0 67,4		10	0,05	0 56,0	10 0,006	0	6
	12 md	7,4	10 Instance	947,0		0 90,4 PART 2	10	0,08	0 77,8	10 0,001 TEF	0 22,0
	hd	9,8 |L| d	10	596,7 UB	O	0 69,9 t (s)	10 gap gapr 0,05	0 35,3 O t (s)	10 0,001 gap gapr	0 24,2
	ld 25 md hd 15,5 2,7 9,9 50 md 32,7 10 1015,9 ld 13,2 10 997,5 10 1511,2 hd 43,3	10 10 10	0 74,6 34,4 0 93,4 9,7 0 96,1 6,9		10 0,183 0 93,7 10 0,31 0 97,1 10 0,31 0 97,5	0 38,1 10 5,7 0 81,7 10 9,4 0 87,9 10 2,5	10 0,009 0 57,4 10 0,04 0 48,5 10 0,05 0 43,4	0 0 38,9 8,6 0 31,7
	ld 50 md 11,6 2,8 100 md 45,4 9 1399,9 8,9 73,6 ld 15 10 188,3 10 805,2 0 94,8 10 699,5 hd 21,3 10 1280,9 0 97,2 hd 68,8 10 238,9		10 0 94,7 0,17 10 0,82 0 98,3 10 1,48 0 98,7	0 37,5 9 1219,8 0 85,1 0 3600 15,5 62,9 10 0,04 3,1 55,0 10 0,85 0 90,8 10 3,1 0 3600 9,4 62,8	0 13,7 0 40,3 0 45,9
	ld 62 md 12,1 2,8 200 md 54,1 10 1124,9 ld 15,9 10 715,0 hd 22,7 10 809,4 hd 93,8	0 73,8 614,4 0 95,1 6 2066,0 11,1 98,2 10 0,13 10 0 94,0 10 1,1 0 97,7 10 1,8 7 2051,9 14,3 98,9	0 38,0 0 3600 45,4 61,6 10 0,05 0 85,8 10 4,4 0 3600 32,3 56,9 0 91,0 10 12,7 0 3600 * *	0 11,1 0 45,5 0 58,6
			ld	16,1	10		691,6		0 93,9	0	3600 42,7 56,4
		250 md 56,5	3 2990,2 35,6 98,1	0	3600	*	*
			hd 99,4	5 2550,3 26,7 96,9	0	3600	*	*
			Instance				PART 2		TEF
			|L| d		UB	O t (s) gap gapr	O	t (s)	gap gapr
				ld		6,2	10	0,9	0 83,2	10	0,06	0 37,9
			25 md 16,5	10	0,7	0 91,1	10	0,09	0 35,6
				hd		21	10	0,5	0 86,3	10	0,1	0 39,2
				ld		6,8	10	2,5	0 83,7	10	0,4	0 37,7
			50 md 22,2	10	5,7	0 93,5	10	6,5	0 55,1
				hd 33,1	10	4,8	0 95,8	10	6,5	0 48,3
				ld		7,2	10	2,1	0 84,3	10	10,9	0 41,5
		100 md 26,5	10	9,3	0 95,3	5 2012,7	8,4 63,9
				hd 45,2	10 22,4	0 96,4	2 3071,5 10,3 61,8
				ld		7,2	10	3,1	0 84,1	10	75,8	0 38,0
		125 md 27,1	10 36,1	0 95,0	1 3409,0 17,8 55,7
				hd 48,6	10 43,3	0 96,7	0 3600,0 15,0 90,1

Table 9 .

 9 4: Results of the second experiment for instances with |V | = 100

		Instance		PART 2		TEF
	n.l.D	T P	UB	t(s) gap gapr	UB	t(s)	gap gapr
	100.50.20 15 13	13	3,0 0,0% 77,3%	13	5,0 0,0% 76,9%
	100.67.20 16 15	15	2,4 0,0% 85,7%	15	80,1 0,0% 86,7%
	100.83.20 16 14	14	4,3 0,0% 78,9%	14	25,1 0,0% 78,6%
	100.100.20 16 14	14	2,4 0,0% 84,6%	14 198,6 0,0% 85,7%
	100.117.20 16 14	14	2,8 0,0% 84,6%	14 351,4 0,0% 78,6%
	100.133.20 15 14	14 13,4 0,0% 81,1%	14 590,5 0,0% 82,1%
	100.150.20 16 15	15 11,2 0,0% 85,1%	15 361,2 0,0% 80,0%
	100.164.20 14 13	13	7,7 0,0% 81,5%	14 3600,0 9,8% 85,7%
	100.183.20 14 13	13	6,6 0,0% 79,9%	13 1234,3 0,0% 84,6%
	100.200.20 16 14	14 28,0 0,0% 81,1%	17 3600,0 27,1% 88,2%
	100.50.50 24 23	23	6,1 0,0% 88,1%	23	0,2 0,0% 78,3%
	100.67.50 34 30	30	7,1 0,0% 90,1%	30	27,6 0,0% 83,3%
	100.83.50 33 32	32 10,1 0,0% 90,9%	32 201,9 0,0% 81,3%
	100.100.50 36 35	35 10,0 0,0% 91,3%	35 2033,8 0,0% 85,7%
	100.117.50 38 35	35	6,3 0,0% 91,4%	* 3600,0	*	*
	100.133.50 40 37	37 18,1 0,0% 92,2%	* 3600,0	*	*
	100.150.50 40 38	38	7,5 0,0% 91,8%	41 3600,0 41,5% 90,2%
	100.164.50 40 37	37 163,9 0,0% 91,6%	* 3600,0	*	*
	100.183.50 41 35	35 58,8 0,0% 91,0%	41 3600,0 46,3% 91,9%
	100.200.50 41 39	39 14,6 0,0% 92,2%	42 3600,0 51,2% 92,9%
	100.50.80 35 31	31	2,9 0,0% 90,1%	31	0,1 0,0% 87,1%
	100.67.80 42 36	36	8,9 0,0% 91,1%	36	1,0 0,0% 66,7%
	100.83.80 41 38	38	7,3 0,0% 91,7%	38	2,9 0,0% 85,5%
	100.100.80 44 37	37 11,8 0,0% 91,7%	37	10,1 0,0% 83,8%
	100.117.80 46 42	42 13,2 0,0% 92,3%	42 146,5 0,0% 84,5%
	100.133.80 48 47	47 84,8 0,0% 93,0%	47 917,7 0,0% 87,9%
	100.150.80 42 38	38 17,5 0,0% 90,4%	38 120,8 0,0% 88,2%
	100.164.80 39 36	36	9,2 0,0% 90,6%	36 183,0 0,0% 86,1%
	100.183.80 42 40	40 19,7 0,0% 91,4%	40 1028,3 0,0% 90,0%
	100.200.80 43 42	42 15,8 0,0% 91,6%	43 3600,0 14,0% 89,9%

Table 9 .

 9 5: Results of the second experiment for instances with |V | = 200

		Instance			PART.2		TEF	
	n.l.D	T	P	UB	t(s)	gap gapr	UB	t(s)	gap gapr
	200.100.20 33 29	29 147,73 0,0% 91,3%	31 3600,00 27,5% 89,2%
	200.133.20 33 29	29 127,55 0,0% 90,3%	* 3600,00	*	*
	200.167.20 31 25	25 125,71 0,0% 89,7%			

Table 10

 10 .1: Computational experiments for instances with |V | ∈ {20, 30, 40, 50}

	Instance	KBased	PBased		Exact
	n d	rt t(ms)	rt t(ms)	rt	t(s) O	gap	gapr
	ld	12.4	0.0 12.7	0.0 12.3	0.0 10 0.00% 1.25%
	20 md	6.3	0.1	6.8	0.1	5.7	0.2 10 0.00% 3.04%
	hd	4.8	0.0	4.5	0.0	2.8	5.9 10 0.00% 6.16%
	ld	16	1.1 16.4	1.0 15.3	0.3 10 0.00% 1.12%
	30 md	9.3	1.6	9.5	1.6	6.7	10.3 10 0.00% 2.98%
	hd	5.7	1.1	6.4	1.3	3.8 2845.7 7 1.97% 8.78%
	ld	19.7	3.6 20.8	4.0 18.9	20.4 10 0.00% 2.08%
	40 md	12.7	4.5 12.6	4.4	8.6 1855.2 8 0.89% 4.21%
	hd	8.7	3.1	8.8	3.1	5.9 5585.1 3 7.79% 11.21%
	ld	23.7	7.9 24.1	8.1 21.7 728.7 9 0.17% 1.84%
	50 md	14.3	8.9 14.9	9.4	10 5062.1 4 1.93% 4.75%
	hd	12.6	6.1 13.9	7.2 15.1 7200.0 0 19.97% 21.27%

Unfortunately, we were not able to separate the sets PCut n for n ∈ {6, 7, 8, 9} due to its size.

The methods reported in Chapter

were not able to find all the optimal solutions for the instances with |V | = 200. The missing values were taken from[START_REF] Silva | Novos Ótimos para o Poblema da Árvore Geradora com Rotulação Mínima[END_REF]

The values for the linear relaxations were obtained by setting Cplex to NodeLimit(1).

We have used the rt value obtained by the KBased heuristic for this instance to compute the averages reported on the columns rt, gap, and gapr of the exact method in the line 50-50-hd.

The Table 7.10 presents the p-values obtained by the Nemenyi test through the routine posthoc.friedman.nemenyi.test. The p-values of Nemenyi test indicate that the performance of MSLB is significantly better than GRASP, VNS, and COMPL for α = 0.01 and 99% of confidence, as well as its performance is significantly better than INTELL for α = 0.05 and 95% of confidence. The tests performed strongly suggest that the results analyzed in the section 7.3.3 were not the result of randomness. The reader is referred to [START_REF] Demšar | Statistical comparisons of classifiers over multiple data sets[END_REF] and [START_REF] Derrac | A practical tutorial on the use of nonparametric statistical tests as a methodology for comparing evolutionary and swarm intelligence algorithms[END_REF] for more details about Friedman and Nemenyi tests and others nonparametric statistics, in addition to a more in-depth discussion on the power of these procedures.

Concluding remarks

In the present chapter, we have proposed a revised version of the MVCA, which is the most important constructive heuristic for both MLSTP and GMLSTP. We have performed a com-

Part III

Related Problems

The last part of this thesis is focused on problems related to the MLSTP, that is to say, connectivity problems defined over edge-labeled graphs. First, we propose new mathematical formulations based on CCut for solving several problems defined over ELGs. In the sequel, we discuss in more detail the minimum labeling global cut problem. Finally, we introduce the minimum representation spanning tree problem, prove it is NP-complete, and propose heuristic and exact algorithms to solve it.

Chapter 8

Exact Methods for Connectivity Problems dened on ELGs

As discussed in the previous chapters, given an ELG G = (V, E, L), the minimum labeling spanning tree problem aims to find a minimum cardinality subset of labels L ⊆ L such that the spanning subgraph induced by the set of edges with label in L is connected. Moreover, it is possible to state that the MLSTP is the most studied problem among the ones defined on ELGs (refer to Chapter 2 for more information on the literature of the MLSTP). Other examples of interesting problems defined on ELGs are the labeled maximum matching problem [START_REF] Carrabs | The labeled maximum matching problem[END_REF], the maximum labeled clique problem [START_REF] Carrabs | A mathematical programming approach for the maximum labeled clique problem[END_REF], and the rainbow cycle cover problem [START_REF] Silvestri | The rainbow cycle cover problem[END_REF].

In particular, many problems formulated on ELGs have the connectivity as a subjacent objective. This kind of problem has been the subject of research in recent years, as in the works of [START_REF] Carrabs | The rainbow spanning forest problem[END_REF] on the rainbow spanning forest problem, [START_REF] Ismkhan | Effective three-phase evolutionary algorithm to handle the large-scale colorful traveling salesman problem[END_REF] The minimum labeling vertex-biconnected graph problem [START_REF] Perez | On the Minimum Labelling Spanning bi-Connected Subgraph problem[END_REF]:

Chapter 9

The Minimum Labeling Global Cut Problem of that, the problem of finding an s-t cut with the minimum number of colors -namely, the minimum labeling s-t cut problem (MLstCP) -is NP-hard [START_REF] Jha | Two formal analyses of attack graphs[END_REF][START_REF] Coudert | Shared risk resource group complexity and approximability issues[END_REF].

respectively. Let G = (V, E, L) be the input ELG, and K be the set of the maximal monochromatic connected components (MMCC) of G. The KBased algorithm starts with the solution E = / 0 and, while G(V, E , L) is not connected, at each iteration, it adds to E , avoiding to create any cycles, the edges of the MMCC k ∈ K that minimizes the number of connected components of G(V, E , L).

Algorithm 10.1 describes the KBased heuristic. The necessary initializations are carried out in the lines 2 and 3. Each iteration of the main loop (lines 5 to 9) looks for the MMCC that minimizes the number of connected components, denoted by W (G), of the solution (line 6) and adds its non-cycle edges to the final graph (lines 7 to 9). Notice that given a solution tree, its Rt

Algorithm 10.1: The KBased heuristic for the MRSTP

2

Let E ← / 0 be the set of edges of the solution;

3 Let K be the set of MMCCs of G;

4

Let E(K) be the set of edges of the MMCC K ∈ K ;

In its turn, the PBased heuristic is a variant of the KBased algorithm. It starts with a solution maximal connected component S = {r}, where r ∈ V is an arbitrarily chosen root node, and executes the same main loop as the KBased algorithm. The difference is that the PBased heuristic only consider to enter the solution the MMCCs that make S to grow.

Computational experiments

In this section we describe the computational experiments performed to evaluate the performance of both the proposed heuristics and the mathematical formulation. All the methods were implemented in C++ language and compiled by using g++ 4.8.4, with the optimization flag -O3. The mathematical formulation and its derived procedures were implemented using the Concert library and Cplex 12.51 as the solver. The experiments were performed on a computer with Intel(R) Core(TM) i7, 64 bits, CPU, 4.00GHz, 16 GB of RAM, and Ubuntu 14.04 as the operating system. Although the processor of this device has more than one core, the algorithms

Chapter 11

Concluding Remarks and Future Work

In this thesis we have addressed several connectivity problems defined over edge-labeled graphs, in special the minimum labeling spanning tree problem and its generalized version.

We have carried out an extensive literature review on these problems, describing the state-ofthe-art contributions in each field. By observing the recent publications, one can verify that this theme is indeed an area of interest for researches.

The contributions of this work are both theoretical and practical. On the theoretical side, we have introduced new useful concepts, definitions, properties and theorems regarding edgelabeled graphs, as well as a polyhedral study on the GMLSTP. We can summarize the main theoretical contributions on this work as follows:

• We have introduced the concept of label contraction and some interesting properties relating contracted graphs with graphs induced by a set of labels;

• We have provided some results for the CCut polytope, in particular concerning its dimension and its facet compositions. New valid inequalities were introduced, and the conditions in which they define facets have been given;

• We have performed polyhedral comparisons againts the polytope associated with the state-of-the-art formulations and their variations. Our results have showed that CCut formulation theoretically performs better with respect to its polytope than all currently available mathematical formulations for the GMLSTP and MLSTP;

• We have proposed a new monochromatic cycles removal procedure (MCR) that can be carried out in O(α(m, n) • m), where α stands for the inverse of the Ackerman's function.

• On the practical side, we have proposed new heuristics -such as the metaheuristicbased algorithm MSLB, and the constructive heuristic pMVCA -and exact methods -such as new mathematical formulations and branch-and-cut algorithms -for solving the GMLSTP.

We can summarize the main practical contributions on this work as follows:

• • We have carried out computational experiments to compare the MSLB with the state-ofthe-art metaheuristics for the MLSTP. The results have showed that the MSLB achieved the best performance both in quality of solutions and processing times.

• We have presented a new mathematical formulation based on the concept of colorful cuts -namely CCut-for solving the GMLSTP. It is the first model to use only decision variables for labels.

• We have proposed branch-and-cut algorithms for CCut and compared them with the stateof-the-art exact methods for both the MLSTP and the GMLSTP. The computational experiments have showed that the proposed methods outperforms the previous ones.

• We have improved the CCut formulation by proposing and separating a new set of valid inequalities, namely the partitioning cuts inequalities;

• We have introduced CCutBB and CCutHB, two new branching strategies for solving the CCut formulation. The computational experiments performed shows that, from the best of our knowledge, the new approaches were able to achieve the best results regarding exact methods for the MLSTP so far.

The last part of this thesis has addressed problems related to the MLSTP, to be specific, connectivity problems defined over edge-labeled graphs (or digraphs). We have introduced new variants of the MLSTP, such as the minimum representation spanning tree problem and the prize collecting MLSTP. We have also proposed new mathematical formulations based on CCut for solving these problems.

Further, we have dedicated special attention to the minimum labeling global cut problem, since its weighted version arises as the separation problem for the colorful cuts inequalities