
HAL Id: tel-03273235
https://theses.hal.science/tel-03273235v1

Submitted on 29 Jun 2021

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

A model-driven methodology to unify software
engineering in the internet of things

Imad Berrouyne

To cite this version:
Imad Berrouyne. A model-driven methodology to unify software engineering in the internet of
things. Modeling and Simulation. Ecole nationale supérieure Mines-Télécom Atlantique; Université
du Québec à Chicoutimi, 2021. English. �NNT : 2021IMTA0233�. �tel-03273235�

https://theses.hal.science/tel-03273235v1
https://hal.archives-ouvertes.fr

THÈSE DE DOCTORAT DE

L’ÉCOLE NATIONALE SUPÉRIEURE
MINES-TÉLÉCOM ATLANTIQUE BRETAGNE
PAYS-DE-LA-LOIRE - IMT ATLANTIQUE

ÉCOLE DOCTORALE NO 601
Mathématiques et Sciences et Technologies
de l’Information et de la Communication
Spécialité : Informatique

Par

Imad BERROUYNE
A Model-Driven Methodology to Unify Software Engineering in the
Internet of Things

Thèse présentée et soutenue à Saguenay, le jeudi 4 février 2021
Thèse No : 2021IMTA0233
Unité de recherche : IMT Atlantique Bretagne-Pays de la Loire, Ecole Mines-Télécom
Laboratoire des Sciences du Numérique de Nantes – LS2N (CNRS, UMR 6004)

Rapporteurs avant soutenance :

Yann-Gaël GUÉHÉNEUC Professeur – Université Concordia, Montréal (Canada)
Davide DI RUSCIO Maître de conférences (HDR) – Université de L’Aquila, L’Aquila (Italie)

Composition du Jury :

Président : Yann-Gaël GUÉHÉNEUC Professeur – Université Concordia, Montréal (Canada)
Examinateurs : Abdenour BOUZOUANE Professeur – Université du Québec à Chicoutimi, Saguenay (Canada)

Jean-Claude ROYER Professeur – IMT Atlantique, Nantes (France)
Mehdi ADDA Professeur – Université du Québec à Rimouski, Rimouski (Canada)
Luigi LOGRIPPO Professeur – Université du Québec en Outaouais, Gatineau (Canada)
Davide DI RUSCIO Maître de conférences (HDR) – Université de L’Aquila, L’Aquila (Italie)

Directeur de thèse : Jean-Claude ROYER Professeur – IMT Atlantique, Nantes (France)
Co-encadrant de thèse : Massimo TISI Maître assistant – IMT Atlantique, Nantes (France)
Co-encadrant de thèse : Jean-Marie MOTTU Maitre de conférences – Université de Nantes, Nantes (France)

ABSTRACT

The Internet of Things (IoT) aims for connecting Anything, Anywhere, Anytime
(AAA). This assumption brings about a good deal of software engineering challenges.
These challenges constitute a serious obstacle to its wider adoption. The main feature
of the Internet of Things (IoT) is genericity, i.e., enabling things to connect seamlessly
regardless of their technologies.

Model-Driven Engineering (MDE) is a paradigm that advocates using models to ad-
dress software engineering problems. MDE could help to meet the genericity of the IoT
from a software engineering perspective. In that sense, the IoT could be a requirement
provider on the one hand and MDE its solution provider on the other. Existing MDE
approaches focus on modeling the behavior of things. But, little attention has been paid
to network-related modeling.

The present thesis presents a methodology to create smart networks of things based
on MDE. It aims to cover and leverage the network-related aspects of an IoT application
compared to the existing work. The principle we use consists of avoiding the intrinsic
heterogeneity of the IoT by separating the specification of the network, i.e., the things,
the communication scheme, and the constraints, from their concrete implementation, i.e.,
the low-level artifacts (e.g., source code). Technically, the methodology relies on a model-
based Domain-Specific Language (DSL) and a code generator. The former enables the
specification of the network, and the latter provides a procedure to generate the low-level
artifacts from this specification. The adoption of this methodology permits making soft-
ware engineering of IoT applications more deterministic and saving a significant amount
of lines of code compared to the state of practice.

Keywords : Internet of Things, Software Engineering, Model-Driven Engineering,
Model Transformation, Policy Enforcement, Code Generation

3

RÉSUMÉ

L’Internet des objets (IdO) vise à connecter tout objet, partout, en tout temps (TTT).
Cette hypothèse entraîne de nombreux défis en matière de génie logiciel. Ces défis consti-
tuent un sérieux obstacle à son adoption à grande échelle. L’une des principales caracté-
ristiques de l’IdO est la généricité, c’est-à-dire permettre aux objets de se connecter de
manière transparente, quelles que soient la technologie qu’ils utilisent.

L’Ingénierie Dirigée par les Modèles (IDM) est un paradigme qui préconise l’utilisation
de modèles pour résoudre les problèmes de génie logiciel. L’IDM pourrait aider à répondre
au besoin de généricité de l’IdO du point de vue du génie logiciel. Les approches d’IDM
existantes se focalisent essentiellement sur la modélisation du comportement des objets.
Peu d’attention a été accordée à la modélisation liée à leur réseautage.

La présente thèse présente une méthodologie pour l’IdO basée sur l’IDM. Fonda-
mentalement, elle fournit une solution pour créer des réseaux intelligents d’objets. Le
principe que nous utilisons consiste à contourner l’hétérogénéité intrinsèque de l’IdO en
séparant la spécification du réseau, c’est-à-dire les objets, le schéma de communication
et les contraintes, de son implémentation concrète, c’est-à-dire les artefacts logiciels de
bas niveau (par exemple, le code source). Techniquement, la méthodologie repose sur un
langage dédié basé sur les modèles pour la spécification du réseau et une procédure pour la
génération du code des artefacts de bas niveau à partir de cette spécification. L’adoption
de cette méthodologie rend l’ingénierie logicielle des applications d’IdO plus rigoureuse,
permet de prévenir les bogues plus tôt et de gagner du temps.

Mots clés : Internet des objets, Génie logiciel, Ingénierie dirigée par les modèles,
Transformation des modèles, Politiques de contrôle, Génération de code

5

To Mina, for her incredible patience and determination.
This manuscript is her diploma.

To Mustapha, for the outstanding conditions.

This work is entirely dedicated to them.

Life has this strange thing of being brutal
but endearing...

ACKNOWLEDGEMENTS

I want to express my gratitude to my supervisors for their exceptional support and
devotion. I thank Jean-Claude Royer, who directed my thesis on the IMT Atlantique side
and offered a deep insight into the study, Abdenour Bouzouane, who led my thesis on the
UQAC side and provided valuable guidance. My thanks equally go to Massimo Tisi, who
co-directed this work and whose friendly advice has greatly enlightened my understanding
of model transformation, Mehdi Adda, who co-directed this work and whose insightful
and convivial discussions have substantially contributed to my knowledge on control and
policies enforcement and Jean-Marie Mottu who co-directed my work and constantly
ensured that my thesis was progressing smoothly.

I wish to acknowledge the insightful recommendations provided by Soichiro Hidaka and
Noël Plouzeau as members of the monitoring committee. I want to thank my colleagues
in the NaoMod team and the jury members, Yann-Gaël Guéhéneuc, Davide Di Ruscio,
and Luigi Logrippo, for their precious feedback and advice.

I would like to extend my special thanks to Laboratoire des Sciences du Numérique de
Nantes (LS2N), IMT Atlantique, Université du Québec à Chicoutimi (UQAC), Université
du Québec à Rimouski (UQAR), Université du Québec en Outaouais (UQO) and the
National Research Council Canada (CNRC) for providing us with the proper environment
to succeed and for their financial support. The assistance supplied by Delphine Turlier
(IMT Atlantique) and Anie Tremblay (UQAC) for accomplishing the administrative duties
was greatly appreciated.

My warmest thanks go to my parents, my sisters, and my brother for their uncondi-
tional support during this journey.

11

TABLE OF CONTENTS

Abstract 3

Résumé 5

Dedication 7

Acknowledgements 11

List of Tables 17

List of Figures 19

List of Abbreviations 21

Synthèse en Français 25

Introduction 33

1 State of the Art & Context 37
1.1 From Network of Computers to Network of Things 37

1.1.1 The Conventional Internet . 37
1.1.2 Towards the IoT . 38
1.1.3 Software Engineering for the IoT 39

1.2 Model-Driven Engineering . 42
1.2.1 Modeling . 42
1.2.2 Model Transformation . 43
1.2.3 MDE and IoT . 47

1.3 Summary . 54

2 Modeling a Network of Things 59
2.1 Reification of IoT concepts . 59

2.1.1 Things . 61

2.1.2 Channels . 65
2.1.3 Users and Roles . 67
2.1.4 Network . 68
2.1.5 Forwarding . 69

2.2 Every “thing” is a model . 71
2.2.1 Metamodel . 71
2.2.2 Network Model . 73
2.2.3 Usability of the Model . 74

2.3 Domain-Specific Language . 74
2.3.1 Integrated Development Environment 75
2.3.2 Readability and Maintainability . 75

2.4 Summary . 76

3 Controlling a Network of Things 79
3.1 Model-based Control . 79

3.1.1 Policy . 79
3.1.2 Rule . 81
3.1.3 Control Types . 82

3.2 Communication Control Rules . 83
3.2.1 Structure . 84
3.2.2 Potential Applications . 84
3.2.3 Ports Communication Control . 85
3.2.4 Things Communication Control . 85
3.2.5 Users Communication Control . 87
3.2.6 Communication Control Based on Roles 87
3.2.7 Combinations . 88

3.3 Smart Rules . 89
3.3.1 Structure . 90
3.3.2 Potential Applications . 90
3.3.3 Behavioral factors . 91
3.3.4 Temporal factors . 91

3.4 Conflict detection and resolution . 92
3.4.1 Early Detection . 93
3.4.2 Conflict Detection Algorithms . 93

3.4.3 Resolution Strategies at Enforcement 96
3.5 Summary . 97

4 Generation of the Network Artifacts 99
4.1 Code Generator . 99

4.1.1 Core Architecture . 100
4.1.2 Model Loading . 100
4.1.3 Extensibility . 101

4.2 Model Transformation . 102
4.2.1 Model-to-Model Transformation . 103
4.2.2 Model-to-Text Transformation . 106

4.3 Enforcement Strategies . 107
4.3.1 Enforcement of Communication Control Rules 107
4.3.2 Enforcement of Smart Rules . 112

4.4 Summary . 114

5 Assessment 115
5.1 Methodology . 115
5.2 Evaluation . 117

5.2.1 Quantitative Evaluation . 117
5.2.2 Qualitative Evaluation . 119

5.3 Case Study: Smart home . 120
5.3.1 Description . 121
5.3.2 Implementation . 122

5.4 Potential Applications . 123
5.4.1 Smart City . 123
5.4.2 Industry 4.0 . 124

5.5 Discussion . 124
5.5.1 Research Considerations . 124
5.5.2 Threats to validity . 126

6 Conclusion & Perspectives 133
6.1 Contributions of the thesis . 134

6.1.1 Contribution 1: Software Engineering Methodology 134
6.1.2 Contribution 2: Model-Based Network Abstractions 135

6.1.3 Contribution 3: Model-Based Control Abstractions 135
6.1.4 Contribution 4: Code Generator . 135

6.2 Perspectives . 135
6.2.1 Model-Driven Reverse Engineering 136
6.2.2 Better Artifacts Generation . 136
6.2.3 Simulation . 137

Bibliography 139

Appendices 155

A Xtext Grammar for the Networking Language 155

B Xtext Grammar for the Policy Language 159

C ATL Rules for Networking and Forwarding Transformations 162

D ATL Rules for Communication Control Transformations 173

E ATL Rules for Smart Rules Transformations 186

LIST OF TABLES

1.1 Summary of the main existing MDE approaches for the IoT 56

3.1 The combination of rule entities. 82

4.1 Code generator plugin interfaces . 101

5.1 Comparison of the required lines of code with CY-DSL, C, Java
ăand Arduino . 118

17

LIST OF FIGURES

1.1 The four-layers architecture of MDA . 43
1.2 The two types of model transformation . 44
1.3 The four-layers architecture of MDA applied to IoT 48

2.1 The mapping of the information theory model concepts to the IoT concepts 60
2.2 A simplified version of the ThingML metamodel 62
2.3 Statechart-based behavior of a temperature sensor 63
2.4 A graph-based example of a network of things 66
2.5 Networking language metamodel . 72
2.6 An auto-completion example to suggest the possible paths 75
2.7 The early detection of inconsistencies in the editor 76
2.8 Modeling the network: the first step of the methodology 77

3.1 Policy language metamodel . 80
3.2 A conflict detection error in the editor of opposite rules 94
3.3 A conflict detection error in the editor between coarse and fine grained rules 94
3.4 Controlling the network: the second step of the methodology 97

4.1 The core components of the code generator 99
4.2 Generation of network artifacts using the T-PROCESS 103
4.3 GTRs for adding the communication interface and forwarding 104
4.4 Generation of access control rules for Mosquitto and RabbitMQ 107
4.5 Enforcement checkpoints . 108
4.6 Enforcement at the “on receive” checkpoint 109
4.7 Enforcement at the “on send” checkpoint 109
4.8 Enforcement of a user-based rule . 110
4.9 Enforcement of a role-based rule . 110
4.10 Enforcement of a Best-Effort strategy . 111
4.11 GTR for applying the trigger:executeFunction rule 112
4.12 GTR for applying the trigger:goToState rule 113

19

List of Figures

4.13 Generation of the network artifacts: the last step of the methodology . . . 114

5.1 BPMN diagram of the methodology . 116
5.2 CY-CGEN execution time according to the number of things 119
5.3 A smart home example . 120

20

LIST OF ABBREVIATIONS

EMF Eclipse Modeling Framework (EMF) is an established framework devel-
oped and maintained by Eclipse to create metamodels. Multiple model-
based tools rely on this framework as a basis. Xtext uses EMF to define the
abstract syntax of a DSL. As ThingML-DSL and CY-DSL are built using
Xtext, they are both relying on EMF. The role of EMF in the methodology
is to offer a common modeling basis for our model-based tools.

TH-DSL ThingML-DSL (TH-DSL) is the domain-specific language introduced by
Harrand et. al [90] within the ThingML toolset. TH-DSL offers a means
to specify the behavior of a thing in the form of a statechart. This speci-
fication is an EMF model. The role of TH-DSL in the methodology is to
enable writing the behavior of a thing.

TH-Model ThingML-Model (TH-Model) is an EMF model encapsulating the behavior
of a thing deemed to be written using TH-DSL. By having an EMF model,
we are able to reuse the existing EMF-based solutions (e.g., ATL, Acceleo)
in our methodology.

TH-CGEN ThingML-Code Generator (TH-CGEN) is the code generator introduced
by Harrand et. al [90] to generate the low-level code from an EMF model
encapsulating a statechart-based behavior of a thing. The role of TH-
CGEN in the methodology is to generate the low-level code from the TH-
Model.

CY-DSL CyprIoT-DSL (CY-DSL) is the domain-specific language we introduce
within the CyprIoT toolset. CY-DSL offers a means to specify a network
of things and optionally to specify a control policy enforced in the net-
work. This specification is an EMF model. The role of CY-DSL in the
methodology is to enable the wiring of the things specified using TH-DSL.

CY-Model CyprIoT-Model (CY-Model) is an EMF model encapsulating the specifica-
tion of the network and the policies deemed to be written using CY-DSL.
By having an EMF model, we can reuse the existing EMF-based solutions

21

List of Abbreviations

(e.g., TH-Model, ATL, Acceleo) in our methodology.

CY-GEN CyprIoT-Code Generator (CY-GEN) is the code generator we introduce
within the CyprIoT toolset. CY-GEN takes as input the model specified
in CY-DSL, then generates the network of things in the low-level code and
any textual artifact derived from this input model (e.g., documentation,
configuration file).

Mod-Load Model Loading (Mod-Load) is the procedure we propose in CY-GEN that
is responsible for loading the models (i.e., CY-Models and TH-Models)
required by the transformation process.

M2MT M2MT (Model-to-Model Transformation) is a type of model transforma-
tion aiming to produce a target model artifact from the input model. For
instance, this mechanism allows us to adapt the model of a thing according
to some properties (e.g., topology) of the network model.

M2TT M2TT (Model-to-Text Transformation) is a type of model transformation
aiming to produce a target text artifact from the input model. For instance,
this mechanism allows us to generate some textual artifacts that are not
part of a thing’s internal behavior (e.g., access control rules, configuration
file, documentation). In general, the information necessary to make these
artifacts exists in the network model, yet it needs to be written in the
syntax of these artifacts.

T-
PROCESS

The Transformation Process (T-PROCESS) is the transformation work
that occurs within CY-GEN. It includes both model-to-model transforma-
tions and model-to-text transformations. In this process, we implemented
the required code to transform TH-models according to the CY-Model
specification and the code necessary to generate the textual artifacts.

ATL The ATLAS Transformation Language (ATL) is a model-to-model trans-
formation language based on EMF, i.e., it takes an EMF input model and
produces an EMF output model. ATL allows us to adapt the model of a
thing written in TH-DSL according to some properties (e.g., topology) of
the network model written in CY-DSL.

GTR The Graph Transformation Rule (GTR) is a graphical formalism that we
use for readability purposes to present the ATL rules as the reader may
be unfamiliar with ATL syntax. Still, the ATL rules are provided in the

22

List of Abbreviations

appendices. The GTR consists of two sides, the Left-Hand Side (LHS) and
the Right-Hand Side (RHS). The LHS presents the model before it under-
goes the transformation or the input model, while the RHS presents the
model after transformation. The GTR has no direct role in the methodol-
ogy; instead, it makes ATL rules more presentable.

MQTT MQTT (Message Queuing Telemetry Transport) is open OASIS and ISO
standard (ISO/IEC 20922) publish and subscribe protocol used generally
for a decoupled communication between resource-constrained devices. This
protocol is widely used in the IoT. A publish and subscribe communication
consists of a sender, a receiver, and a broker. The sender and the receiver
communicate with the broker. The broker serves as an intermediate be-
tween the things. The advantage of having a broker is that it can store
the message published by a thing in a topic and send it to the things that
subscribed to this topic in a decoupled manner. We rely on MQTT in our
methodology as a communication protocol between things.

Mosquitto Mosquitto is an open-source MQTT broker that is largely used in the IoT.
Mosquitto requires some access control rules to ensure secure access to
its topics. Within our methodology, we generate these access control rules
automatically.

RabbitMQ RabbitMQ is another open-source MQTT broker that is largely used in
the IoT. In the same way as Mosquitto, it also requires some access control
rules to ensure secure access to its topics. We automatically generate its
access control rules within our methodology to emphasize its ability to
generate multiple textual artifacts from a unique model.

23

SYNTHÈSE EN FRANÇAIS

Introduction

L’Internet des Objets (IdO) est un paradigme qui vise à connecter Tout objet, parTout,
en Tout temps (TTT) [15]. En particulier, ce paradigme permet de connecter des objets
de tailles diverses allant des bactéries [16] aux superordinateurs. Manifestement, chaque
objet a ses propres exigences. Par exemple, un capteur de petite taille peut nécessiter
un client utilisant le Protocole pour Applications Contraintes (CoAP) pour se connecter
au web, en raison de ses ressources limitées, alors qu’un ordinateur portable nécessite un
client utilisant le Protocole de Transfert Hypertexte (HTTP). Les prémisses de l’IdO
sont que (1) tout ce qui a une puissance de calcul (2) peut se connecter à l’Internet. Alors
que la première prémisse (1) est liée au matériel, la deuxième (2) pourrait être abordée
en utilisant une approche appropriée de génie logiciel.

L’ingénierie logicielle pour l’IdO est complexe. D’une part, de nombreuses parties
prenantes sont impliquées (par exemple, des responsables de sécurité, du réseau ou du
commerce), chacune utilisant ses propres outils et méthodes [19]. D’autre part, l’hétéro-
généité (par exemple, des langages de programmation et des protocoles) [20] cause, entre
autres, un problème d’interopérabilité en entravant la communication entre les objets. En
général, une application d’IdO typique contient plusieurs plateformes, langages et pro-
tocoles. De plus, chaque jour, un nouvel objet connecté émerge, avec des fonctionnalités
souvent non standards.

Néanmoins, bien qu’elle soit problématique, l’hétérogénéité constitue le facteur diffé-
renciateur entre l’IdO et l’Internet classique. En effet, de nombreuses études [21, 22, 23,
24, 25] suggèrent qu’il est nécessaire de connecter des objets de gammes différentes au
moyen de différents protocoles.

Peu d’approches de génie logiciel ont été proposées pour répondre aux exigences de
l’IdO. Aujourdhui, les approches existantes sont souvent chronophages, exigent beau-
coup d’expertise et conduisent à des applications d’IdO insuffisamment testées et peu
sûres [18, 27]. En effet, l’hétérogénéité exige d’impliquer plus de ressources humaines et
d’expertise que d’habitude. C’est pourquoi, la plupart des entreprises, souvent dotées de

25

Synthèse en Français

ressources humaines inappropriées ou limitées, ne répondent pas à ces exigences de ma-
nière adéquate. Ainsi, il peut en résulter des applications défectueuses qui peuvent être à
l’origine d’attaques à grande échelle telles que Mirai et Persirai [28, 29].

En fait, pour les experts en sécurité, les approches de génie logiciel existantes ont
montré leurs limites en matière de sécurité des réseaux. L’institut SANS rapporte que
près de 90 % des professionnels de la sécurité affirment que des changements aux contrôles
de sécurité sont nécessaires dans le domaine de la sécurité pour l’IdO [30].

Il est clair que l’IdO a besoin d’une nouvelle approche de génie logiciel. L’Ingénierie
Dirigée par les Modèles (IDM) est un paradigme qui a le potentiel de surmonter cer-
taines des problématiques de l’IdO. Il peut permettre de concevoir des applications d’IdO
robustes et fiables en séparant la spécification (source d’intention) de l’implémentation
(source d’hétérogénéité). En particulier, en permettant la conception d’une application
d’IdO complète de manière unifiée à l’aide de modèles d’une part, et l’interprétation de
ces modèles à l’aide d’un générateur de code d’autre part. Par exemple, le Langage de
Modélisation Unifié (UML) [31] est un langage de modélisation générique permettant de
concevoir, à l’aide de modèles, toute application Orientée Objet (OO). Les modèles UML
sont utilisés à des fins d’illustration, de génération de code [32] ou de génération de cas
de test [33] pour n’en citer que quelques-uns. Dans cette thèse, nous nous dirigeons vers
le même objectif, mais pour l’IdO.

Par ailleurs, l’IDM a été mise en uvre avec succès aux systèmes adaptatifs et distribués,
à savoir l’approche Model@Runtime [34] et dans la sécurité dirigée par les modèles [116].
De plus, un modèle peut être utilisé à diverses autres fins telles que l’analyse de la sécurité
du réseau et l’évaluation de ses vulnérabilités [35], entre autres.

Dans cette thèse, nous proposons d’étudier dans quelle mesure l’IDM peut fournir des
outils de génie logiciel cohérents pour concevoir un réseau d’objets connectés et hétéro-
gènes. Nous proposons une méthodologie de génie logiciel basée sur les modèles en ce
sens. Celle-ci comprend trois volets. Premièrement, la modélisation d’un réseau d’objets,
deuxièmement le contrôle d’un réseau d’objets, troisièmement la génération du code du
réseau d’objets. Nos résultats montrent que cette méthodologie présente les avantages
suivants : une économie en termes de ligne de code, une séparation des responsabilités et
une meilleure communication des parties prenantes.

26

Synthèse en Français

Modélisation d’un réseau d’objets

Dans ce premier volet, nous introduisons des concepts pour la modélisation d’un réseau
d’objets. La modélisation consiste en deux parties, notamment la partie théorique basée
sur l’IDM et la partie d’interface, c.-à-d. l’ensemble des outils permettant d’exploiter la
partie théorique, basé sur un Langage Dédié (LD) équipé d’un système de détection des
anomalies dans le modèle.

Dans la partie théorique, nous réifions les principaux concepts nécessaires pour la
modélisation d’un réseau d’objets. Les concepts introduits (par exemple, canal, réseau,
utilisateur, rôle) reposent sur la théorie de l’information de Shannon [134] et s’intègre dans
la couche M2 de l’Architecture Dirigée par les Modèles (MDA), initié par le consortium
Object Management Group (OMG) [68].

Nous utilisons certains outils d’IDM déjà établis, à savoir ThingML, pour modéliser
le comportement d’un objet et Xtext, pour créer la syntaxe du LD. Nous concentrons
notre thèse sur la modélisation des concepts primitifs pour connecter les objets. La mo-
délisation, ayant lieu à la couche M1, utilise les concepts réifiés dans la couche M2, pour
créer le modèle. Les modèles permettent d’éviter les détails techniques, qui sont source
d’hétérogénéité. En effet, grâce aux modèles, un ingénieur logiciel peut créer un modèle
spécifiant un réseau d’objets en utilisant uniquement les concepts primitifs réifiés. Ainsi,
seuls les aspects nécessaires pour créer la logique commerciale du réseau sont attendus.
La génération des artéfacts de bas niveau, permettant de passer de la couche M1 à la
couche M0, consiste en une procédure spécifique interprétant ce modèle, selon le langage
de programmation cible.

Techniquement, nous supposons que le comportement d’un objet est basé sur ThingML-
DSL (TH-DSL) [90]. Celui-ci permet de spécifier un comportement à l’aide d’un dia-
gramme états-transitions, avec la possibilité d’inclure des fonctions et des propriétés
qui peuvent être appelées depuis un état. TH-DSL fournit une syntaxe basée sur la
grammaire Xtext, représentant la forme textuelle d’un modèle Eclipse Modeling Fra-
mework (EMF), appelée ThingML-Model (TH-Model). Nous avons créé un LD appelé
CyprIoT-DSL (CY-DSL), dédié exclusivement à la modélisation du réseau. Il fournit
notamment les concepts primitifs pour lier les objets spécifiés avec TH-DSL. En effet,
CY-DSL est basé également sur Xtext, qui est donc une représentation textuelle d’un mo-
dèle EMF. EMF propose un mécanisme, appelé référencement inter-modèles, qui permet
d’intégrer d’autres modèles EMF. Nous utilisons ce mécanisme pour importer le TH-Model

27

Synthèse en Français

à l’intérieur du modèle du réseau, appelé CyprIoT-Model (CY-Model).
CY-DSL est intégré dans l’Environnement de Développement Intégré (EDI) Eclipse.

Il bénéficie donc des avantages d’un EDI (par exemple, coloration syntaxique, rapport
d’erreurs, auto-complétion, débogueur, refactoring) [144], lui permettant d’augmenter la
productivité des ingénieurs logiciels.

CY-DSL applique des validateurs syntaxiques et sémantiques pour assurer que la mo-
délisation du réseau est correcte. En effet, ces validateurs aident à prévenir certaines in-
cohérences (par exemple, communication utilisant des formats de message incompatibles,
port et chemins incompatibles) en les signalant sous forme d’erreurs ou d’avertissements
dans la console de l’EDI. Ce mécanisme permet de gagner du temps en aidant à anticiper
les bugs lors du déploiement du réseau [145, 146].

Contrôle d’un réseau d’objets

Le volet précédent montre comment créer un modèle du réseau à l’aide de concepts
unifiés au niveau du modèle. Dans ce deuxième volet, nous montrons comment utiliser ce
modèle pour contrôler le comportement du réseau à l’aide de politiques déclaratives. Le
contrôle correspond à la faculté d’injecter des moniteurs permettant soit de restreindre la
communication soit de déclencher des actions.

Le contrôle permet une spécification plus précise du comportement attendu du réseau,
moyennant des politiques. L’unification des concepts de réseautage au niveau du modèle
facilite cette spécification et évite les problèmes de mise en uvre de bas niveau. En effet,
il est plus difficile de spécifier de telles contraintes lorsqu’on intervient directement sur le
code (hétérogène) de bas niveau.

Le réseau applique les politiques, qui contiennent des règles. Ces règles ont une struc-
ture spécifique et appliquent des actions en fonction des éléments du réseau spécifié, par
exemple, l’objet, le canal, l’utilisateur. Une politique vise à garantir que l’application
d’IdO se comporte comme prévu du point de vue d’une partie prenante telle que, par
exemple, un agent de sécurité, un gouvernement ou le propriétaire du réseau.

La structure de règles offre deux types de contrôle d’un point de vue théorique, à
savoir un contrôle de la communication et un contrôle du comportement des objets. Cette
structure peut aussi servir à divers objectifs de contrôle à l’avenir, jusqu’à présent, nous
avons choisi de mettre en uvre les deux types de contrôle suivants :

28

Synthèse en Français

— Contrôle de la communication [150] : consistant à interdire ou autoriser l’envoi
ou la réception de messages entre deux entités. L’entité peut être, entre autres, un
objet, un utilisateur ou un canal. Par exemple, nous pouvons spécifier une règle
pour refuser ou autoriser l’échange de messages entre deux objets, deux utilisateurs,
deux rôles ou la combinaison de certains d’entre eux.

— Contrôle du comportement de l’objet [140] : consistant à appliquer une action
sur l’objet en fonction de l’état actuel d’un autre objet. En effet, comme le compor-
tement de l’objet consiste en un diagramme états-transitions, le contrôle vise donc
à modifier le comportement encapsulé dans ce diagramme, de manière à satisfaire
la règle. Par exemple, une règle peut spécifier qu’un objet tx doit passer à l’état si

lorsque l’état actuel d’un objet ty est sj.

Génération du code d’un réseau d’objets

Dans les deux précédents volets, nous introduisons les concepts pour créer une spéci-
fication rigoureuse d’un réseau d’objets. Ce dernier volet présente le générateur de code,
appelé CyprIoT Code Generator (CY-CGEN), qui a la fonction de générer le code de
bas niveau implémentant la spécification du réseau et des politiques, tous deux écrits en
CY-DSL.

La génération de code se fait en trois étapes : a) charge le modèle du réseau contenant
les TH-Models et les politiques, b) transforme les TH-Models pour les connecter selon la
spécification du réseau et applique les politiques c) génère les artéfacts de bas niveau (par
exemple, le code, la documentation, les règles de contrôle d’accès).

Le CY-CGEN se base sur la Transformation de Modèles (TM). La TM [78] est un
processus basé sur des règles de transformation qui prend un ou plusieurs modèles en
entrée pour produire un artéfact logiciel en sortie. Il existe deux types de transformations :
Modèle à Modèle (MàM) et Modèle à Texte (MàT). Le premier type produit un modèle
en sortie tandis que le second produit du texte en sortie, à partir du modèle d’entrée.
Nous utilisons les deux types pour l’interprétation du modèle du réseau, encapsulé dans
le CY-Model.

Une transformation MàM nous permet d’adapter le TH-Model (c’est-à-dire le compor-
tement de l’objet) selon le CY-Model (c’est-à-dire la spécification du réseau) au niveau
du modèle. Ce mécanisme prend les informations du CY-Model et ajoute uniquement ce
qui est nécessaire au TH-Model, afin d’être conforme à la spécification du réseau. Comme

29

Synthèse en Français

ce processus se déroule au niveau du modèle (en utilisant des concepts unifiés), l’inter-
opérabilité des objets est préservée. Les TH-Models transformés sont ensuite utilisés pour
générer leur équivalent dans le code de bas niveau à l’aide du générateur de code de
ThingML, appelé ThingML Code Generator (TH-CGEN).

Une transformation MàT nous permet de générer des artéfacts connexes qui ne font pas
partie du comportement interne d’un objet (par exemple, règles de contrôle d’accès, fichier
de configuration, documentation) et qui sont nécessaires au bon fonctionnement du réseau.
Les informations nécessaires à la production de ces artéfacts se trouvent généralement dans
la spécification du réseau, mais pour ces artéfacts elles doivent être écrites dans le bon
format.

Par ailleurs, nous avons opté pour une architecture modulaire, favorisant l’extensibilité
et la séparation des responsabilités. Le noyau du CY-CGEN fournit certaines caractéris-
tiques de base nécessaires à la mise en uvre d’un réseau de base, c’est-à-dire connecter les
objets et appliquer les politiques. Ce noyau ne met pas en uvre ce que nous appelons les
connaissances d’expert, mais propose de faire cela à l’aide de plugins. Par connaissances
d’expert, nous entendons la capacité à utiliser les informations du modèle du réseau pour
extraire des connaissances plus avancées, éventuellement à l’aide d’une procédure plus
spécifique. Cela peut conduire à la génération automatique d’artéfacts logiciels, qui né-
cessite normalement une certaine expertise, ou à l’introduction d’une expertise dans le
processus de génération du code.

Résultats

Nous avons testé notre méthodologie sur des réseaux allant de 1 à 25 objets. Nous
utilisons les méthodes de génie logiciel traditionnelles comme base de référence, avec des
objets basés sur C, Java et Arduino. Nous avons comparé le nombre de lignes de code
nécessaire entre notre base de référence et la méthodologie proposée dans cette thèse.

Nos résultats montrent que notre méthodologie permet d’économiser une quantité
significative de lignes de code comparée aux méthodes traditionnelles d’ingénierie logicielle
pour l’IdO. Le taux de gain de lignes de code varie entre 64.29% et 97.89% pour plusieurs
cas d’utilisation. Ce gain correspond à la partie générée automatiquement par CY-CGEN.

30

Synthèse en Français

Conclusion

La présente thèse plaide en faveur d’une méthodologie intégrée de génie logiciel basée
sur des modèles pour concevoir et déployer des réseaux d’objets. L’IDM est un paradigme
prometteur pour répondre à certaines exigences de l’IdO, notamment les problèmes d’hé-
térogénéité et d’interopérabilité. Notre méthodologie rend le cycle de développement d’une
application d’IdO plus rigoureux et permet de définir précisément les responsabilités. La
première contribution de cette thèse est une nouvelle approche de conception des applica-
tions d’IdO. La deuxième contribution consiste en un formalisme nouveau pour modéliser
un réseau d’objets hétérogènes. La troisième contribution consiste en un mécanisme de
contrôle pour permettre de mettre en uvre des contraintes au réseau. La quatrième contri-
bution consiste en un générateur de code pour interpréter un modèle abstrait du réseau
et générer ses artéfacts logiciels de bas niveau. À notre connaissance, il n’existe dans la
littérature aucune méthodologie fondée sur les modèles qui fournisse des outils aussi in-
tégrés pour créer un réseau d’objets, mettre en uvre des politiques et générer le code de
bas niveau.

31

INTRODUCTION

The Internet of Things (IoT) is reshaping our society’s relationship with technology.
Prominent applications such as Smart Homes [1], Wearables [11], and Smart Cities [12]
make the IoT more and more visible in our everyday life. It is expected to see more IoT
applications in the near future [13]. Gartner reports that more than 14 billion connected
devices are already in use, and forecasts that this number will grow to 25 billion by
2021 [14].

The IoT aims for connecting Anything, Anywhere, Anytime (AAA) [15]. In partic-
ular, connecting things of different sizes ranging from bacterias [16] to supercomputers.
Manifestly, each thing has its requirements. For instance, a tiny sensor may require a
Constrained Application Protocol (CoAP) [17] client to connect to the World Wide Web
(WWW), because of its limited resources, while a laptop requires a standard Hyper-
text Transfer Protocol (HTTP) client. The premises of the IoT are that (1) anything
with computing power (2) can connect to the Internet. While the former premise (1) is
hardware-related, the latter (2) could be tackled using an appropriate software engineering
approach.

Software engineering for the IoT is hard [18]. On the one hand, many stakeholders are
involved (e.g., Security, Business, Network), each using its own tools and methods [19].
On the other hand, heterogeneity of software technologies (e.g., languages, protocols) [20]
causes, inter alia, an interoperability problem by hindering communication between things.
Commonly, a typical IoT application contains multiple computing platforms, languages,
and protocols from various ranges. Besides, every day a new thing emerges, with often
non-standard proprietary technologies.

Nevertheless, although it is problematic, heterogeneity constitutes the differentiating
factor between the IoT and the conventional Internet. Indeed, numerous studies [21, 22,
23, 24, 25] suggest that it is necessary to connect things from different ranges by means
of different protocols.

The IoT generates much hype; still, only a few software engineering approaches have
been proposed to meet its requirements. Today, the existing approaches are time-consuming,
require expertise, lack separation of concerns [26], and lead to poorly tested and insecure

33

Introduction

IoT applications [18, 27]. Heterogeneity provokes the involvement of more human resources
and expertise than usual. Hence, most companies, often with inappropriate or limited hu-
man resources, fail to respond adequately; this may result in flawed applications that
sometimes lead to large-scale network attacks such as Mirai and Persirai [28, 29].

As a matter of fact, for security experts, existing software engineering models based
on a quick-fix approach, i.e., fixing the bug when it arises at runtime, have shown their
limits w.r.t. security. The SANS Institute reports that almost 90% of security professionals
affirm that changes to security controls are required in the IoT [30].

Clearly, the IoT needs a novel software engineering approach adequate to its require-
ments. MDE is a promising paradigm having the potential to overcome some of these
requirements. It can help in designing robust and reliable IoT applications by separating
the specification (source of intent) from the implementation (source of heterogeneity).
Particularly, by enabling the design of a complete IoT application in a unified manner
using models on the one hand, and the interpretation of these models using an automatic
code generator on the other. For instance, the Unified Modeling Language (UML) [31] is
a generic modeling language to design, using models, any Object-Oriented (OO) appli-
cation. UML models are used for illustration purposes, code generation [32] or test cases
generation [33] to cite a few. In the present thesis, we are heading towards a similar goal,
i.e., enabling the design of an IoT application using models and the automatic generation
of its low-level software artifacts.

MDE has successfully been applied to some adaptive and distributed systems, namely
the Model@Runtime approach [34] and in model-driven security [116]. The latter finds
its use in various purposes, such as security analysis and threat assessment [35], to name
just a few.

In this thesis, we propose to investigate the ability of MDE to provide consistent
software engineering tools to design an IoT application. Concretely, we offer a model-
based software engineering methodology for a) the modeling of a network of things, b)
the control of this network with a policy, and c) code generation. The network enables to
connect things according to a topology, where each thing has a statechart-based behavior,
the policy relies on the elements of the network (e.g., state of a thing, time) to force a
runtime behavior, and the code generator interprets the two to generate the low-level
software artifacts. We use lines of code as our evaluation criteria to compare the proposed
approach with the current state of practice.

This manuscript is structured as follows. Chapter 1 gives an overview of state of art.

34

Introduction

Chapter 2 and Chapter 3 present the modeling abstractions to specify and control a
network of things. Chapter 4 shows how model transformation bridges the gap between
the model-based specification of the network and its concrete implementation. Chapter 5
embodies the whole methodology, provides an evaluation, depicts a concrete case study,
and discusses the benefits and limitations. Finally, we present the conclusion and point
out some future research directions.

35

Introduction

Research Questions

We propose to investigate the following research questions (RQs):

RQ1: What software engineering process should be followed to design a network of het-
erogeneous things?

RQ2: How can MDE enable interoperability between heterogeneous things?

RQ3: How can MDE provide effective control mechanisms to regulate the behavior of a
network of heterogeneous things?

RQ4: What are the qualitative and quantitative benefits of using a MDE methodology
to design and implement a network of heterogeneous things?

36

Chapter 1

STATE OF THE ART & CONTEXT

1.1 From Network of Computers to Network of Things

From an evolutionary perspective, the connection is a natural human need [36]. Before
the existence of the Internet, people used to connect physically either face to face, by postal
mail, by telegram (1875), or by phone (1876). The emergence of digital electronics in the
late 1950s enabled the proliferation of computers among the vast majority of people. While
the connection was previously tied physically to space and time, the Internet enabled a
virtual connection between people, no matter when and where.

1.1.1 The Conventional Internet

In 1960, the Advanced Research Projects Agency Network (ARPANET) was the first
major attempt to interconnect computers; it relied on the Internet Protocol Suite (known
as TCP/IP) to enable a standard communication and used the concept of packet switching
which is the basis for data transfer on the Internet today. In 1985, based on the advance-
ment of the ARPANET and the contribution of the European Organization for Nuclear
Research (CERN), The National Science Foundation Network (NSFNET) [37] created a
larger system of interconnected university-based computers and grew into what is called
nowadays the Internet.

The emergence of personal computers, brought computing and connectivity closer to
individuals, leading to the adoption of the Internet at large scale. The technology has
since then evolved. As it was predicted by Moore’s law [38], the number of transistors in
an integrated circuit doubles every two years. Consequently, bringing computing power
to smaller devices. This factor paved the road to the Internet of Things (IoT).

37

Chapter 1 – State of the Art & Context

1.1.2 Towards the IoT

The term IoT was coined for the first time by Kevin Ashton [39] in 1999 while working
at MIT Auto-ID Labs. According to him, the conventional Internet is centered primarily
around human beings as the only providers of data. As human beings have limited time,
attention, and accuracy, his data are also limited. Whereas, things have the potential to
generate unlimited and accurate data (e.g., sensing the environment) faster and cheaper.
This new requirement challenges the TCP/IP architecture, as heterogeneous sources of
information could be involved.

In the scope of the present thesis, we define a thing as any device
regardless of its size that has computing power and can connect to
a network, regardless of the communication mean.

Remark

The IoT is a generalization of the conventional Internet [40]. Indeed, while the data of
the conventional Internet has been mainly generated directly by input devices such as a
keyboard or mouse, the IoT is a paradigm meant to generate data from pre-programmed
things. For instance, collecting data from sensors and producing actions by actuators,
thus naturally expanding the scope of possibilities for an ambient intelligence [41], i.e.,
the ability for things to be more useful for people.

The IoT makes the computing ubiquitous. Indeed, while the desktop and personal
computers were so far the norms, tiny devices such as sensors and actuators are expected
to be also more present, enabling connectivity in a distributed and decoupled manner.
Ultimately, the IoT aims for connecting AAA [15].

Today, no consensus has been yet reached on the exact definition of the IoT. Atzori
et al. [15] view the IoT as the idea of connecting things or objects in a way that they
can accomplish common goals. Miorandi et al. [42] see it as an umbrella keyword for
the extension of the conventional Internet to the physical world by incorporating sensor
and actuator devices. Gubbi et al. [135] consider that the integration of tiny sensors and
actuators to the conventional Internet, defines and justifies the creation of the IoT as a
paradigm. Al-Fuqaha et al. [43] describe the IoT as the idea that transforms traditional
objects into more useful objects by exploiting emerging technologies such as pervasive
computing, embedded devices, communication technologies, and sensor networks.

38

1.1. From Network of Computers to Network of Things

The IoT still faces several obstacles related to its engineering, scalability, and deploy-
ment. For instance, software-engineering-wise, the IoT lacks a set of best practices to build
scalable, robust, and secure applications [44]. Deployment-wise, the intrinsic heterogene-
ity of the IoT creates an interoperability problem between things, restricting the ability
to achieve seamless smart scenarios [45].

The concept of smart scenario [46] refers to the ability to achieve a
smart goal using multiple contextual factors (e.g., states of a thing,
properties of a thing, space, time)

Remark

1.1.3 Software Engineering for the IoT

As stated by Atzori et al. [15], the IoT is a paradigm with many visions. This obser-
vation partly explains the lack of a widely accepted software engineering approach. Still,
numerous authors agree on the one hand that a) it aims to connect AAA [47, 48, 49, 50, 51],
and on the other that b) all software engineering approaches aim to leverage the smart side
of interconnected objects [52, 53, 54, 55]. There is, therefore, a pressing need for a unifying
software engineering approach to meet these two crucial requirements. In this thesis, we
introduce a methodology based on models that is heading towards this objective.

Presently, software engineering for the IoT consists of programming each thing to fit
the needs of the application [56, 57, 58, 59]. The existing approaches require a significant
amount of time, as many skills are required, from networking and security to programming.
For instance, a typical IoT application may have multiple things based on heterogeneous
programming languages, heterogeneous protocols, and require some degree of control of
the network. Such an approach is less likely to scale, typically in very large networks
involving Wireless Sensors and/or Actuators Network (WSAN), as it lacks a trace and
relies on programming each thing separately, thus making engineering indeterministic,
time-consuming, repetitive and prone to bugs.

In most scenarios, the IoT will rely on the conventional Internet’s backbone [135] for
communication unless the conditions are inconvenient, namely because of resources or the
requirements of the application. The layers lower than the data layer in the Open Sys-
tems Interconnection (OSI) model receives a consensus w.r.t. the standards introduced
for the IoT [136]. The current work aims to contribute to the data layer, one level higher.

39

Chapter 1 – State of the Art & Context

Several protocols emerged to address the communication requirements at the data level.
Message Queuing Telemetry Transport (MQTT) [139] is a publish and subscribe protocol
used generally for a decoupled communication between resource-constrained devices. A
publish and subscribe communication consists of a sender, a receiver, and a broker. The
sender and the receiver communicate as an intermediate between them. The advantage
of using a broker is that it can store the message published by a thing in a topic, and
send it to the things that subscribed to this topic in a decoupled manner. Z-Wave [10] is a
radio protocol dedicated to smathomes to send data between things; it enables the com-
munication between Z-Wave equipped products and supports mesh networks. Zigbee [8]
is a protocol dedicated to personal area networks (PAN), i.e., interconnecting devices
centered on an individual person’s workspace. It supports multiple types of networks:
point-to-point, tree or mesh networks. These protocols often target a specific range of
things, and provide little or no interoperability between them.

Furthermore, the previous challenges were owned by the IoT too, mainly due to its
distributed and decoupled nature. In fact, the conventional Internet was not meant for
scalable interoperability between nodes. Currently, the applications running on top of the
Internet (e.g., WWW, chat, peer-to-peer, audio/video-conference) are based on standards
(e.g., HTTP, MQTT, BitTorrent, VoIP) and function as silos. Each silo runs indepen-
dently from the other. During the creation of the Internet, interoperability between these
silos was not an urgent need. Thus, standards were a good compromise to bring connectiv-
ity to these quite homogeneous nodes. At that point, the IoT is different; interoperability
is instead crucial to enable smart scenarios. Arguably, the next milestone is to bring
interoperability among these silos.

On another note, the fifth generation of the cellular network (5G) covers the connec-
tivity of resource-constrained devices [60], specifically for Low Power Wide Area (LPWA),
but still requires using different protocols, namely NB-IoT or eMTC, that fit best the re-
quirements of the thing. Not to mention that standardization takes time and has high
upfront costs to be adopted at a large scale by providers. Indeed, heterogeneity will un-
deniably persist, hence the need to embrace it instead of containing it in a standard.

40

1.1. From Network of Computers to Network of Things

Heterogeneity refers to the various software technologies required
at a low-level to create a network of things. It includes primarily
heterogeneity of programming languages (e.g., C, Java, Arduino)
and protocols (HTTP, MQTT, Zigbee).

Remark

Some approaches tend to contain this interoperability problem with standardization
(e.g., standard architecture, standard platform) [61, 62, 63, 64, 65]. Standards lack inclu-
siveness, as certain things could not afford their cost (e.g., computing resources required,
cost of adoption) [16]. We believe that this is not a scalable strategy for the IoT to reach
its ultimate goal, i.e., connecting AAA. In the present thesis, we tackle this problem at
the software engineering phase using MDE. Thus, embracing heterogeneity as an intrinsic
feature of the IoT rather than trying to eliminate it with standards.

41

Chapter 1 – State of the Art & Context

1.2 Model-Driven Engineering

Model-Driven Engineering (MDE) is a software engineering paradigm where “every-
thing is a model” [66]. Indeed, every software artifact (e.g., specification, test suites, source
code) can be seen as a model of a lower-level artifact or system. The objective of such
formalism is to reuse, maintain, update, and test software artifacts using automatic tools.

1.2.1 Modeling

MDE is an umbrella keyword for the paradigm advocating the use of models as the
main unit in designing software [67]. By representing everything as a model, MDE offers
machine-ready access to the process of software engineering. Thanks to that, several steps
of this process can be automated.

The Model-Driven Architecture (MDA) initiative is a set of guidelines proposed by
the Object Management Group (OMG) in 2001 as a standard approach for model-based
software engineering [68]. Basically, the MDA consists of separating the functional speci-
fication from its implementation using a four-layers architecture. It focuses on means to
produce concrete artifacts from abstract diagrams using a technique called Model Trans-
formation (MT) (cf. Section 1.2.2). Generating code (concrete artifact) automatically from
its abstract specification (abstract diagram) is an example of MT.

The MDA provides several layers (cf. Figure 1.1), each corresponds to a technical
space and fulfills a specific duty on the whole architecture. Figure 1.1 shows the four-
layers architecture. The highest layer, i.e., the meta-metamodel (M3-Layer), defines the
language to specify the metamodel. The meta-metamodel, being the highest level of ab-
straction, has been sufficiently tackled in the literature, and it is out of the scope of this
work. Its two common implementations are Meta-Object Facility (MOF) [69] and Ecore, a
metametamodeling solution offered by the Eclipse Modeling Framework (EMF) [70]. The
EMF is a state-of-art standard framework, maintained by the Eclipse foundation 1, to de-
sign models. Further, we use EMF in the implementation of the methodology proposed in
the present thesis (cf. Section 2). The next layer, i.e., the metamodel (M2-Layer), defines
the concepts of a specific domain to specify its model at a lower level (M1-Layer).

The most used meta-modeling language in MDA is the UML. The UML provides
metamodels (M2-Layer) to specify, in the form of diagrams, various aspects of an OO
application. These diagrams represent the UML model. So, UML can be used to cre-

1. https://www.eclipse.org/

42

1.2. Model-Driven Engineering

M3 : MetaMetaModel

M2 : Metamodel

M1 : Model

M0 : Real World

co
nf

or
m

s
to

co
nf

or
m

s
to

co
nf

or
m

s
to

Example

conforms to

UML Class Diagram
Instance

Figure 1.1 – The four-layers architecture of MDA

ate a model of a Java application consisting, e.g., of a class diagram [71], an activity
diagram [72], and a communication diagram [73]. Because the model is designed with
a standard formalism, it can be interpreted automatically by some MDE tools [74] for
several purposes, such as the generation of low-level code (e.g., Java, C++ or C#), the
generation of the documentation or the test cases [33].

One common way to specify a model consists of using a Domain-Specific Language
(DSL). A DSL, in contrast with a General-Purpose Language (GPL) (e.g., C, Java, Go),
provides a specific solution to a particular field, such as the IoT in our case. In general, the
creation of a DSL requires two essential ingredients: a parser for the syntax and a semantic
analyzer to validate the meaning of the expressions. Several tools exist to facilitate the
creation of a DSL. Among them, we can cite Xtext [75], MPS [76] and Spoofax [77]. Xtext,
in particular, relies on EMF for parsing; it converts any parsed file into an EMF model.
Thus, an Xtext-based DSL offers a way to create a model in a textual form. Further, we
use Xtext for the implementation of our DSL solution.

1.2.2 Model Transformation

Model Transformation (MT) [78] is the process that takes one or more input models to
produce a target artifact (either a model or text) by means of transformation languages.

43

Chapter 1 – State of the Art & Context

Model-to-Model Transformation

Source
Metamodel

Destination
Model

Source
Model

Destination
Metamodel

conforms to conforms to
Transformation

Source
Model

Code
Generator

Model-to-Text Transformation

Tr
an

sf
or

m
at

io
n

Generated
Code

Figure 1.2 – The two types of model transformation

In this part, experts are expected to map the abstract concepts to some other concepts,
either at the same level of abstraction or at a lower level. In the present thesis, we use
MT to transform the specification of a network, containing things and policies, into the
network’s concrete software artifacts.

Figure 1.2 illustrates how MT occurs. There are two types of transformations: Model-
to-Model Transformation (M2MT) and Model-to-Text Transformation (M2TT).

Model-To-Model Transformation

M2MT aims to produce a target model artifact from the input model. For instance,
this mechanism allows us to adapt the model of a thing according to some properties (e.g.,
topology) of the network model.

Among the main transformation tools dedicated to M2MT, we can cite Query/View/-
Transformation (QVT) (standard) [83], Tefkat [79], Kermeta [80] and ATLAS Transfor-
mation Language (ATL) [81].

QVT is an OMG standard that defines a set of languages to express M2MT. It con-
sists of two main languages: QVT Relations (QVT-R), a declarative language, and QVT
Operational (QVT-O), an imperative language. To date, the literature lacks a complete
implementation of the standard, Eclipse MMT [82] is considered as its most advanced
implementation attempt. Some languages such as ATL and Tefkat implements several
concepts introduced by QVT.

Tefkat is a declarative transformation language with a very expressive and readable

44

1.2. Model-Driven Engineering

syntax. However, the language has no support for imperativeness. This limitation com-
plicates its adoption for some complex transformations, as this complexity can be hard
to express merely using a declarative style [84].

Kermetta is a platform for the creation of a rich development environment based on
metamodels. It provides an imperative language dedicated to executable meta-modeling,
i.e., a way of adding operational semantics to the metamodel. Kermetta is not a transfor-
mation language, but offers a means to write a M2MT in an imperative way within this
environment. The verbosity and the lack of readability (due to its imperative style) make
writing complex transformations difficult.

ATL is mostly a declarative language, based on EMF and a readable syntax. It sup-
ports imperative instructions; however, as recommended by the authors, this must be
used only if necessary. ATL permits to achieve transformations across different EMF-
based models using transformation rules. We use ATL for M2MT in the present thesis as
it is easy to use, readable, well documented, and provides both declarative and imperative
styles. Listing 1.1 depicts an example of a basic rule in ATL. This rule transforms the
ElementX of an input model conforming to the metamodel MetamodelA, to a target model
conforming to the metamodel MetamodelB, by filling its attributeB with attributeA from the
input model. The same principle can be used to extract any information from the input
model (e.g., model of the network) and adds it to the target model (e.g., model of the
thing).

1 rule basicRule {
2 from
3 i: MetamodelA!ElementX
4 to
5 t: MetamodelB!ElementY (
6 attributeB <− i.attributeA −− Replacing with attributeA from the input model
7)
8 }

Listing 1.1 – A basic transformation rule in ATL

45

Chapter 1 – State of the Art & Context

Model-To-Text Transformation

M2TT aims to produce a target text artifact from the input model. For instance,
this mechanism allows us to generate some textual artifacts that are not part of the
internal behavior of a thing (e.g., access control rules, configuration file, documentation).
In general, the information necessary to make these artifacts exists in the model of the
network, yet it needs to be written in the syntax of these artifacts.

Among the main M2TT languages, we can cite Meta Object Facility Script (MOF-
Script) [85] and Acceleo [86].

MOFScript is an imperative M2TT language that permits the generation of the text
output. It also relies on an OMG standard, named MOFM2T, that complements QVT.
MOFScript is based on EMF and uses templates and rules for the generation of the text
output. It comes as an Eclipse plugin.

1 [template network2documentation(n : Network)]
2 [file (n.name.concat(’.md’), false)]
3
4 # Information about the network
5 ∗ Name : [n.name/]
6 ∗ Domain : [n.domain\/]
7
8 # Available things
9 [for (th : Thing | n−>getThings())]

10 ∗ [th.name/]
11 [/for]
12 [/file]
13 [/template]

Listing 1.2 – A basic Acceleo template to generate a documentation in Markdown syntax

Acceleo is a recent M2TT language that supports EMF models. It uses templates
with a readable syntax and some built-in features such as advanced string manipulation,
error detection, code completion, refactoring, and a tractability mechanism that allows
tracking down the source of an element in the text output. Unlike MOFScript, Acceleo
has a feature called Incremental Generation to modify a generated code and protect it
against future generations. We use Acceleo for M2TT in the present thesis because of

46

1.2. Model-Driven Engineering

these benefits. Listing 1.2 shows a simple template to generate some documentation from
a model to a markdown syntax output. Acceleo permits operations ranging from basic
ones such as simply writing a string (e.g., writing the name of the network with n.name)
to more advanced ones such as a for loop (e.g., Lines 9 to 11). The same principle can
be used to extract any information from an input model (e.g., model of the network) and
write it in various textual output artifacts (e.g., access control rules, configuration file).

1.2.3 MDE and IoT

Generally speaking, software engineering consists of five phases: understanding and
specifying requirements, design, implementation, testing and deployment [87]. Without
a transparent separation of concerns, multiple factors can undermine this software engi-
neering cycle; communication issues, lack of skills, and misalignment of business needs
and resources are some of these factors [88]. The methodology presented in this thesis
contributes to the design and implementation phases and helps separate concerns.

MDE can dissect the complexity of the IoT through the four-layers architecture as
shown in Figure 1.3. Indeed, we can create metamodel for the IoT at the M2-Layer to
model an IoT application based on unified concepts at the M1-Layer, consequently avoid-
ing heterogeneity at the M0-Layer. This heterogeneity can be delegated to an automatic
code generation process where we map abstract concepts to their low-level equivalent for
each target platform.

So far, we have seen that the IoT can play the role of the requirement provider. Ideally,
MDE, on the other hand, can play the role of the solution provider. In reality, the two
paradigms share an interesting commonality, they both seek genericity; the IoT seeks
to connect generic things, while MDE seeks to unify and automate the development of
generic software artifacts [89].

The use of MDE as a software engineering approach for the IoT has been tackled in the
literature. We explore in what follows the most relevant approaches. From our literature
review, two groups emerged. The approaches that use MDE for modeling the things and
those for modeling the network. The former group corresponds to the keyword things of
the Internet of Things (IoT), and the latter to the keyword internet.

47

Chapter 1 – State of the Art & Context

M3 : MetaMetaModel

M2 : Metamodel

M1 : Model

M0 : Real World

co
nf

or
m

s
to

co
nf

or
m

s
to

co
nf

or
m

s
to

conforms to

Unified IoT
Model

IoT Metamodel

Automatic
Code Generation

IoT Application

Ecore

Figure 1.3 – The four-layers architecture of MDA applied to IoT

Modeling the thing

The modeling of a thing consists of using abstract concepts to describe its internal
behavior. We can distinguish two ways; the first consists of mapping the behavior into
some established formalism such as a statechart or a workflow chart, and the second
consists of defining the behavior with an unconventional formalism. The former benefits
from interoperability with the established tools, while the latter generally reflects better
the reality using some intuitive concepts.

Harrand et al. propose ThingML [90], an approach based on EMF consisting of two
underlying components: ThingML-DSL (TH-DSL), a DSL to specify a model of a thing,
and ThingML Code Generator (TH-CGEN), a code generator that produces the low-level
code from this model. TH-DSL abstracts the behavior into a statechart [91, 92] on the
one hand, and the code generator reproduces this statechart using the low-level code
concepts (e.g., C, Java, Javascript, Go) on the other. TH-DSL supports the embedding
of low-level code (i.e., inserting chunks of low-level code inside the model) and provides a
means to connect a single thing to a network via a protocol. Nevertheless, ThingML lacks
abstractions to create a network, i.e., making things collaborate towards a common goal
according to a defined network scheme.

48

1.2. Model-Driven Engineering

Yakindu [93] is another statechart-based tool to design the behavior of a thing inside
a visual editor. It provides a code generator for C/C++, Java, and Python. Contrary to
ThingML, Yakindo lacks the means to connect a thing to a network and the possibility
to embed the low-level code.

Eclipse Vorto [94] uses an unconventional formalism to abstract the thing’s capabilities.
Its underlying concepts are: information model, function, operation, and attribute. A
function consists of a set of attributes and a set of operations. The functions are grouped
inside the information model. Eclipse Vorto proposes to use code generators to produce
code by interpreting the information model. The solution also offers a repository to share
and reuse information models and code generators. Compared to ThingML, modeling the
behavior is rather limited; only a few operations are achievable, and networking is not
covered.

Fuch et al. [95] propose to program a thing using a UML2 Activity Diagram (UAD).
The behavior is designed in the form of activity. The latter is transformed into a script to
be executed by an interpreter running on the thing. Activities can communicate between
each with their input/output interfaces via a prototypical communication protocol sug-
gested by the authors. However, the approach focuses merely on the advantages of UADs
to ease collaboration between things. Also, only one type of thing (namely SUN Spot [96])
has been considered in their study.

Modeling the network

Modeling the network consists of wiring things through their external interfaces, to
form a network of things. Indeed, the model of the network contains the behavior of things
and the interactions between them. Because of the intrinsic heterogeneity of the IoT,
i.e., presuming that we must be able to connect things regardless of their programming
languages or protocols, the wiring of things is difficult using their low-level heterogeneous
concepts. Hence, the need for higher abstractions free from the technical considerations
to enable seamless wiring.

The wiring consists of linking the ports of things via channels.

Remark

49

Chapter 1 – State of the Art & Context

A channel is an abstract concept defining the medium that is en-
abling a communication between two things.

Remark

A port is a logical address within a thing that serves to exchange
messages with the outside.

Remark

The existing approaches for network modeling are disparate; some approaches target
Wireless Sensor Networks (WSN) (a network of many tiny sensors dedicated to collecting
data) [97], others target the web of things (the IoT using existing web technologies) [98]
and others target a specific category of IoT applications. According to our literature re-
view, we noticed a lack of a full-scale, documented, and open-source approach for modeling
a network of things. In what follows, we discuss the existing approaches extensively under
this strand, as a significant part of the present thesis contributes to this area.

Ciccozzi et al. [99] presents a conceptual model of Mission-Critical Internet of Things
(MC-IoT) systems. These systems are characterized by a significant need for dependability,
safety, security, and availability due to their intolerance to failure [26]. The conceptual
model depicts the relationships between the various entities of a typical MC-IoT system.
The authors merely point out some directions on applying MDE to these types of IoT
systems.

Dietterle et al. [100] present a way to map the Specification and Description Language
(SDL) [101] with TinyOS component models [102] to enable a formal description of com-
munication protocols. TinyOS is an open-source operating system designed for wireless
sensor networks. Then, a general scheme for creating code from these models is proposed.
This approach focuses only on using TinyOS at runtime, making it less generic than our
methodology.

Salihbegovic et al. [103] present a Visual Domain-Specific Modeling Language (VDSML)
based on a JavaScript editor. It aims at giving an IoT engineer a user interface to design
an IoT system virtually. Only a set of predefined things is available to use within their
editor. The tool offers a code generator for the configuration file of OpenHab [104]. How-
ever, the formal specification of the language, such as the metamodel, is not provided.

50

1.2. Model-Driven Engineering

Therefore, it is difficult to assess the scope of their contribution and evaluate whether the
language is extensible beyond the limited set of things they mention.

Amrani et al. [105] introduce a DSL to design a network of things. The language allows
to declare the possible actions of a thing. Those actions must be mapped to concrete
events in the target platform. The DSL is accompanied by a rule-based policy language
to trigger actions when certain conditions are met. The communication between things is
not conceptualized in the DSL metamodel. The code generation is not discussed.

Bertran et al. [106] present a tool based on the Sense/Compute/Control (SCC) paradigm [107].
It consists of a DSL, a generator of Java code interfaces, a simulator, and a deployment
framework. Although the DSL can abstract the specification of a thing, the engineer must
implement its behavior in Java after code generation. Also, the framework assumes that
things are capable of running Java, while this may not be the ideal programming language
choice for certain ranges of things.

Glombitza et al. [108] provide an approach to model a thing as a web service so
that it can communicate with the established web services in the WWW. They permit
to compose these web services using a state-machine-based DSL. The DSL comes with a
code generator that generates the C++ code. The authors assume that the communication
between these web services is based on their own novel protocol [109].

Node-red [110] is a flow-based visual tool allowing to connect things, APIs, and online
services using a browser-based editor. It presumes that the things are already deployed.
Basically, it enables to map the output of a thing to another’s input; this mapping is made
from their editor. Node-red is centralized and useful only to create a “mashup” [111, 112,
113] of existing applications or services; it does not cover the creation of a network from
scratch.

Einarsson et al. [114] propose a DSL dedicated to the modeling of smart home ap-
plications. The DSL can describe the interaction of a thing with a cloud platform. The
authors assume that all things communicate homogeneously, i.e., using one single pro-
tocol. A model-to-text transformation is applied to the smart home model to generate
the code. The approach covers only the interactions with a cloud platform; local home
networks are out of the scope of their approach, although this may be added in the future.

Furthermore, we also found some open source ecosystems such as OpenHAB 2, Do-
moticz 3 and Home Assistant 4 that targets exclusively smart home applications.

2. https://www.openhab.org
3. https://www.domoticz.com/
4. https://www.home-assistant.io

51

Chapter 1 – State of the Art & Context

In the present thesis, we provide a way to specify a network of things in the form of a
model. Our approach aims to be inclusive enough to support any IoT application based
on a network.

Modeling the control

The model of the network provides a global view of the application. This model can
be exploited for various purposes. In the present thesis, we exploit this model for control
purposes based on declarative policies. The function of these controls is to make sure that
the network behaves as expected from the perspective of the policy maker (e.g., security
officer, administrator, privacy officer, automation maker).

A declarative policy is a tool to constrain or influence the network’s
behavior according to some conditions.

Remark

We specify some constraints inside a policy using the attributes of the network. Then,
we enforce these constraints depending on the context [115]. For instance, if our infras-
tructure permits it, we may write the control either directly in the thing or in the form of
access control rules if the control must be handled by an external component. The ability
to control the network is another significant part of the present thesis; we analyze some
relevant approaches in this field.

Control can be seen as a generic word containing security, privacy, or automation. We
explore in what follows the potential of applying MDE for control purposes. Some of the
presented approaches use MDE, namely the Model-Driven Security (MDS) approaches,
and some try to apply their own control approach and formalism.

MDS consists of using MDE for security purposes. Basin et al. [116] present a compre-
hensive overview of MDS studies. Most of them consist of modeling security requirements
at the model level, then generating the security mechanisms at a low-level using a ded-
icated process. For illustration, Basin et al. show, using a concrete example, how the
specification of a security policy is transformed by a code generation tool to control the
behavior of a Graphical User Interface (GUI). These studies are designed to experiment
specific security features of standalone applications and are not meant to cover distributed
systems.

52

1.2. Model-Driven Engineering

Lang et al. [117] propose a MDS approach to specify and enforce declarative policies,
based on Attribute-Based Access Control (ABAC) [118]. ABAC is an access control
paradigm that defines a policy using characteristics (known as attributes) of the system.
Their approach permits to generate machine-enforceable access and logging rules. The
authors illustrate their approach with a hypothetical intelligent transportation system.

Loddersted et al. [119] proposes an extension of UML to include security concepts, tar-
geting distributed systems. Their approach relies on Role-Based Access Control (RBAC) [120].
RBAC is an access control paradigm where access decisions are based on the role assigned
to a user. They extend the UML with some security concepts in the form of a UML profile.
As a proof-of-concept, they generate an Enterprise JavaBeans (EJB) application enforcing
the policy. The authors claim that the approach can improve productivity during the soft-
ware engineering cycle. However, no quantitative study is included in their paper, while
we propose to measure the benefits of our methodology using quantitative and qualitative
evaluations.

Martínez et al. [121] propose an approach to obtain a Platform-Independent Model
(PIM) of the global access control policy in a network. A PIM is a model encapsulating the
domain structure and behavior, free from the technological platform used to implement
it. Their approach uses the firewall configuration files in the system to extract all access
control rules. Then, these rules are transformed into PIMs for each firewall and merged into
a global access control model. A eXtensible Access Control Markup Language (XACML)
policy can be easily derived from this model.

Neisse et al. [122] propose an open-source model-based security toolkit, to specify and
enforce security policies. The enforcement consists of creating a monitor directly in the
thing. To illustrate their approach, the authors apply it to a smart home case study.

Sicari et al. [123] proposes a policy framework for the IoT. The framework contains a
specification language based on Extensible Markup Language (XML) and an enforcement
engine targeting smart health applications.

Mavropoulos et al. [35] suggest a metamodel to describe IoT applications along with
their security requirements. They use a DSL to specify hardware, software, social, and
security elements. The approach is not meant for code generation, but rather for security
analysis and visualization.

Furthermore, the OASIS consortium provides a framework to express and enforce poli-
cies [124]. It defines a declarative language called XACML to express an ABAC policy in
XML. The framework decouples the access control logic from the low-level code. It relies

53

Chapter 1 – State of the Art & Context

on a request-response model where access control decisions are taken dynamically at run-
time. It also defines the mechanisms to process this policy. The security framework needs
a centralized Policy Decision Point (PDP) to evaluate access requests vis-a-vis the policy.
La Marra et al. [125] proposes a solution to enforce a XACML policy in a decentralized
fashion. Next Generation Access Control (NGAC) [126] proposes another approach to
ABAC that decouples the access control logic from the low-level code. It is similar to
XACML but differs on the expression of policies, the treatment of attributes, the compu-
tation of decisions, and the enforcement. Moreover, we could also find a study on access
control languages that compared the benefits of XACML, XACL [127], APPEL [128],
P3P [129] and EPAL [130]. The study concluded that XACML was the most suitable
access control language for the IoT among the studied languages [131].

In the present thesis, we provide a way to specify policies at the model-level using the
attributes specified in the network model. We then provide a code generation process that
interprets these policies to enforce them in the low-level code.

1.3 Summary

The IoT faces several software engineering challenges to build scalable, robust, and
secure applications. The intrinsic heterogeneity of the IoT creates an interoperability
problem between things, restricting the ability to make smart scenarios. Presently, most
of the existing software engineering approaches for the IoT consist of programming each
thing to fit the application’s needs. These approaches require a significant amount of time,
as many skills are required, from networking and security to programming.

Recently, several model-based approaches emerged to tackle heterogeneity in the IoT.
In this respect, the literature distinguishes two underlying concepts in the IoT; the concept
of thing and the concept of network. The modeling of a thing consists of using abstract
concepts to describe its internal behavior. We can distinguish two ways; the first consists of
mapping the behavior into some established formalism such as a statechart or a workflow
chart, and the second consists of defining the behavior with an unconventional formalism.
The former benefits from interoperability with the established formal tools, while the latter
generally aims to reflect reality using some intuitive concepts. For our methodology, we
opted for a statechart-based behavior to model things based on ThingML. This work
constitutes our baseline.

The modeling of a network consists of wiring things through their external interfaces to

54

1.3. Summary

form a network of things. This modeling offers a broader perspective on the IoT application
that can be employed to control the network. Because of the presumed heterogeneity of the
IoT, the wiring is complicated at the code level. Hence, the need for higher abstractions
free from the technical considerations to enable seamless wiring. The existing approaches
for network modeling are disparate; some approaches target WSN (a network of many
tiny sensors dedicated to collect data), others target the web of things(i.e., the IoT using
existing web technologies) and others target a specific category of IoT applications such
as smarthomes or TinyOS-based things. According to our literature review, we noticed a
lack of a full-scale, documented, and open-source approach for modeling and controlling
a network of things generically. Moreover, only a few approaches leverage the power of
MDE for the automatic code generation of a complete network, which can consequently
reduce the redundant tasks and help tackle the interoperability problem of the IoT.

Table 1.1 presents a summary of the main existing MDE approaches for the IoT. The
first column cites the reference paper. The second column corresponds to the scope of
their modeling solution. The third column corresponds to its target usage, and the fourth
column indicates whether it is open source. Many research studies focus either on creating
a model of the behavior of the thing or adding controls for some specific usecases. The
literature lacks a generic approach to model a network of things, constrain it and generate
its code.

The Problem

By and large, the existing software engineering approaches in the literature still suffer
from heterogeneity at low-level, interoperability issues, redundant tasks, difficulty to con-
trol a network, and overlapping concerns. The root cause of these issues is often difficult
to capture during a traditional software engineering experience.

The Proposed Solution

We propose to dissect this problem using various MDE, primarily by separating the
specification (using unified concepts at the model-level) from the implementation of the
network, thus making these issues more visible, hence easier to capture and solve with an
appropriate engineering tool.

55

Chapter 1 – State of the Art & Context

Table 1.1 – Summary of the main existing MDE approaches for the IoT

Reference Design
Scope Target Usage Source code

[90] Thing-level Multi-platform Code
Generation Open Source

[93] Thing-level Multi-platform Code
Generation Open Source

[94] Thing-level Multi-platform Code
Generation Open Source

[95] Thing-level Sun SPOT [96] Code
Generation N/P

[103] Network-level OpenHab Configuration
Generation N/P

[110] Network-level Things Mashup Open Source
[105] Network-level Modeling N/P
[106] Network-level Simulation

Java Framework Open Source
[108] Network-level iSense [132] Code Generation N/P
[114] Cloud-level IoT platforms APIs N/P

[124] (*) Control-level ABAC and RBAC Open source
[35] Control-level Security analysis and

visualization Open source
[122] Control-level Adding a monitor in the thing Open source
[123] Control-level Smart health applications N/P

(*) : Not based on MDE but decouples the specification from the implementation
ăN/P : Not Provided

56

WHAT TO EXPECT?

The following chapters introduce a model-based software engineering methodology to
design a network of (presumably heterogeneous) things. The proposed approach target
static networks where things are known before deployment. We plan to cover dynamic
networks, i.e., where thing may be added at runtime, in our future iteration. The present
work complements the literature w.r.t. MDE and MDS for the IoT.

The underlying building blocks of the methodology are:

1. A DSL, to model a network of things (cf. Chapter 2).

2. A policy language, to control the network (cf. Chapter 3).

3. A code generation process based on model transformation, to wire the things and
enforce the policies (cf. Chapter 4).

Chapter 5 presents an algorithm depicting the software engineering process that we ad-
vocate. It shows step by step, thanks to a Business Process Model and Notation (BPMN)
diagram, the various responsibilities, and the process to design a network of things with
our methodology. We apply this process to a case study in Section 5.3. Finally, we an-
swer the research questions, wrap up the contributions and present the future work in
Chapter 6.

57

Chapter 2

MODELING A NETWORK OF THINGS

The literature contains approaches to model a thing’s behavior, yet it lacks a com-
prehensive modeling solution to specify a network of things and generate its concrete
low-level code from its specification. This chapter presents the concepts for modeling a
network of things, the theory (based on MDE), and the user interface (based on a DSL).
It provides some means to wire things.Although the theory is reproducible with any other
modeling formalism offering the possibility to create and use a metamodel, we tried to
use some state-of-art MDE tools, namely ThingML [90], to model the behavior of a thing
and Xtext [133], to create the syntax of the DSL. To illustrate these concepts, we show a
few small examples throughout the chapter.

2.1 Reification of IoT concepts

Problem 1. The heterogeneity creates a barrier for seamless communication between
things. The proposed solution consists of reifying primitive networking concepts at the
model level, to wire things irrespective of their programming language or protocol.

The reification of primitive networking concepts takes place at the M2-Layer. We use
these concepts in the M1-Layer to specify the network. Then, we move from M1-Layer
to M0-Layer (i.e., the concrete) using automatic code generation, as depicted by the
layers’ architecture in Figure 1.3. The reification was guided by the Shannon information
theory [134]. Shannon explains how communications occur between two parties, the sender
and the receiver, in our case, the sending thing and the receiving thing.

59

Chapter 2 – Modeling a Network of Things

Channel Information
source Destination

Noise

ReceiverTransmitter
Message Signal Signal Message

ThingMessage Deserialization
PubSub
ReqRep

Binary,JSON
Serialization MessageThing

Figure 2.1 – The mapping of the information theory model concepts to the IoT concepts

Reification refers to the process of creating a concrete concept from
something intangible/abstract. The low-level IoT concepts are chal-
lenging to unify due to heterogeneity. Their reification requires fo-
cusing on their commonalities necessary to wire things.

Remark

Figure 2.1 depicts a Shannon diagram of communication between two parties. Below
each box, we provide the potential mappings to some IoT concepts. The things are the
source and destination of the information. They encode a message on send using serial-
ization and decode it on receive using deserialization. The message is sent or received via
a channel (e.g., publish-subscribe, point-to-point).

Finding the right concepts that can unify heterogeneous low-level concepts is difficult.
We focused on their commonalities and identified a few primitive relations. Still, if some-
thing more specific is needed, it can be tackled during the interpretation of the model
(cf. Chapter 4). As we base our concepts on the information theory model, we must find
these concepts on any thing regardless of its characteristics. We also aim at making these
concepts readable to avoid the necessity of learning any new (time-consuming) skill.

Models allow avoiding the technical details, source of heterogeneity. A software engi-
neer can create a model specifying a network of things using only the reified primitive
concepts. Thus, only the aspects necessary to develop the network’s business logic are
expected in the metamodel. The process of code generation that allows moving from the
M1-Layer to M0-Layer interprets this model depending on the target low-level program-

60

2.1. Reification of IoT concepts

ming language.
In the following sections, we discuss in detail these concepts. Within our methodology,

we define the following responsibilities:

— Thing Designer: one responsible for writing the behavior of the thing.

— Network Designer: one responsible for writing the behavior of the network.

— Policy Designer: one responsible for writing the policies, aiming to ensure the
correct functioning of the network from a specific angle (e.g., security angle, business
angle).

We provide a detailed BPMN diagram about the relationships between these responsi-
bilities in Section 5.1. Our methodology’s focus is on designing a network of things that is
eventually enforcing a policy. As shown in the BPMN of Figure 5.1, the Thing Designer
(upper row) provides the behavior of a thing in the form of a model. Then, the Network
Designer (middle row) uses these models to create the network. Finally, if a policy is
enforced (optional), the Policy Designer (bottom row) writes it and provides it to the
Network Designer.

2.1.1 Things

We present in this section ThingML, authored by Harrand et al. [90], as it is the
main requirement of our methodology. We presume that the model of a thing, called
ThingML-Model (TH-Model), is specified using ThingML-DSL (TH-DSL) 1. TH-DSL per-
mits specifying a statechart-based behavior along with functions and properties that can
be called within any state. Figure 2.2 depicts a simplified metamodel of TH-DSL and
TH-Model. The central concept in this diagram is the concept of Thing. We can start
reading this diagram from here. A Thing may posse a Property, a Statechart, a Func-
tion, a Port and a Message. While the diagram shows the big picture of what can be
achieved with TH-DSL, the most useful concepts to our methodology are, from the one
hand, that the Statechart may have a State with a Transition, from the other hand
that this Thing may have a Port that accept a specific Message. TH-DSL provides a
syntax based on the Xtext 2 grammar to write the model in a textual form.

1. https://github.com/TelluIoT/ThingML
2. https://www.eclipse.org/Xtext

61

Chapter 2 – Modeling a Network of Things

ConditionalAction ForAction EmbeddedCode SendAction

hasStates

Transition FinalState

Port

 [0..*] hasFunctions

[0..1] hasBehavior

Thing

Property

[0..*] hasInstances

Configuration

[1..1] setsPort

[0..*] hasPorts

ReceiveMessage

[0..*] hasTransitions

[0..*] hasProperties
[0..*] hasProperties

[1..1] sendsViaPort

[1..1] receivesViaPort

[0..*] containsActions
[0..*] onEntry

Instance ExternalConnector

[0..*] onExit

[1..1] instantiateType

[1..1] hasProtocol

[0..*] hasExternalConnectors

[1..1] setsInstance

Function

Statechart

[1..1] transitionState

State

Message

[1..*] acceptsMsg

[1..1] receivesMsg

[0..*] hasMessges

[0..*] hasAnnotationsActionLanguage

PrintAction

AnnotationProtocol

Figure 2.2 – A simplified version of the ThingML metamodel

62

2.1. Reification of IoT concepts

Figure 2.3 depicts an example of the behavior of a temperature sensor based on a
statechart and Listing 2.1 shows its equivalent in TH-DSL. Each state accomplishes a
specific goal, and each state can have a transition specifying its next state. In this example,
the state SendTemperature uses the port sendingTemperaturePort to send the temperature
in Line 41. The port provides a means to route some data within the statechart to a specific
internal address, identified by the port name. This statechart needs to be specified by a
Thing Designer.

Initiliaze

Sensor
Initialized

SendTemperature
TemperatureSent

SenseTemperature

TemperatureSensed RegulateSamplingRate

Timeout

Uses a port
for sending

Figure 2.3 – Statechart-based behavior of a temperature sensor

1 thing temperatureSensor
2 @c_header "#include <DHT.h>" // DHT is a library to read the temperature from a sensor
3 @c_header "dht sensor;"
4 {
5 property currentTemperature : UInt8 // variable storing the current temperature
6 property sensorPin : UInt8 = 8 // the pin where to read the data
7 property samplingRate : UInt8 = 3000 // the sampling rate
8 message temperatureMessage(temperatureValue: UInt8)
9 provided port sendingTemperaturePort {

10 sends temperatureMessage // the sending port
11 }
12 function sense() do
13 ‘sensor.read11(‘&sensorPin&‘)‘ // embedding arduino code to read the temperature; &sensorPin&

sets the value 8 in the low−level code
14 currentTemperature = ‘sensor.temperature‘ // assiging the temperature value to the

currentTemperature property
15 end
16 statechart temperatureSensorBehavior init initialize {
17 state initialize {
18 on entry do

63

Chapter 2 – Modeling a Network of Things

19 println "initialize"
20 ‘sensor.begin();‘
21 end
22 transition −> senseTemperature
23 }
24 state senseTemperature {
25 on entry do
26 println "senseTemperature"
27 sense()
28 end
29 transition −> regulateSampling
30 }
31 state regulateSampling {
32 on entry do
33 println "regulateSampling"
34 ‘delay(‘&samplingRate&‘)‘ // setting the sampling rate
35 end
36 transition −> sendTemperature
37 }
38 state sendTemperature {
39 on entry do
40 println "sendTemperature"
41 sendingTemperaturePort!temperatureMessage(currentTemperature) // sending the current

temperature via the sending port
42 end
43 transition −> senseTemperature
44 }
45 }
46 }
47 datatype UInt8<1> // Mapping the types UInt8 into its low−level equivalents
48 @type_checker "Integer"
49 @c_type "uint8_t"
50 @java_type "byte"
51 @js_type "byte"

Listing 2.1 – The behavior of the temperature sensor in ThingML-DSL; the syntax for
embedding code is: ‘<EMBEDDED CODE>‘.

As shown in the metamodel of Figure 2.2, TH-DSL offers the concept of external

64

2.1. Reification of IoT concepts

connector. This concept enables us to wire the port with the outside by specifying the
protocol and the serialization format. The TH-CGEN reproduces the same statechart
specified in TH-DSL as well as the external connector in a target programming language
(e.g., C/C++, Arduino, JavaScript, Go).

We created a DSL called CyprIoT-DSL (CY-DSL), dedicated exclusively to net-
working; its metamodel is presented in Section 2.2.1. We show its underlying usage
in Section 2.3. Listing 2.2 depicts the declaration of a thing. For instance, Line 1 im-
ports the model (i.e., ThingML statechart) of a light sensor, and has been assigned the
role sensor (cf. More details about roles in Section 2.1.3). It consists of a name as an
identifier (i.e., TemperatureSensor) and the relative path in disk of the TH-Model (i.e.,
"temperatureSensor.thingml").

When it is not possible to express an instruction using TH-DSL syntax, TH-DSL
permits embedding low-level code at the model-level. The TH-CGEN places the embedded
code, as such, in the statechart of the target programming language. Thus, at worst,
expressing low-level concepts from the model-level is still possible (e.g., Lines 14 and 34
of Listing 2.1).

In summary, ThingML is useful for us to specify a thing’s behavior in the form of
statechart with a communication interface (i.e., port wired via an external connector)
and the generation of its equivalent in the low-level code using TH-CGEN.

1 import LightSensor "lightSensor.thingml" assigned sensor
2 import TemperatureSensor "temperatureSensor.thingml" assigned sensor
3 import Gateway "gateway.thingml" assigned actuator, sensor

Listing 2.2 – Declaration of a thing

2.1.2 Channels

As shown in Figures 2.1 and 2.4, the channel constitutes the medium between the
interface of the sender and the receiver. The utility of a channel concept arises because
of the need to wire various things without concerns about the concrete details of their
communication means, namely the protocol or the message format. This point is a crucial

65

Chapter 2 – Modeling a Network of Things

requirement to foster collaboration between heterogeneous things.

Broker

Thing

Thing

Thing

Channel

Egde 1

Egde 3

Egde 2

Example of a path

Figure 2.4 – A graph-based example of a network of things; the channel is the medium
between things; The combination: Edge 1, Edge 2 is a path; the combination: Edge 1,
Edge 3 is another path.

We performed a bottom-up analysis on IoT data protocols. Then, we factorized their
commonalities in the concept of channel (e.g., the ability to route a message via a dis-
tinct path is a commonality). The Enterprise Integration Patterns book [138] references
ten message channels on message-oriented applications; namely Point-to-Point Channel,
Publish-Subscribe Channel, Datatype Channel, Invalid Message Channel, Dead Letter
Channel, Guaranteed Delivery, Channel Adapter, Messaging Bridge, Message Bus. We
focus our study on two largely used types of channels in the IoT: Publish-Subscribe and
Point-to-Point. The former type is often used when things (e.g., MQTT-based thing) must
communicate in a decoupled manner without the need to know each other [137]. These
things only need to know the information about the broker that acts as an intermediary
between them. The latter type is used when things are accessible via a public interface,
such as an IP address or a Uniform Resource Locator (URL) or visible in a local network
(e.g., Zigbee-based thing), so that another thing can reach it.

1 channel mySimpleChannel {
2 path indoor
3 path temperaturePath (temperatureMessage:JSON) fork indoor
4 }

Listing 2.3 – Declaring channel, path and fork (Line 1 to 6)

66

2.1. Reification of IoT concepts

The concept of channel decouples the communication of things from their program-
ming languages, thus enabling seamless networking at the model-level using only abstract
concepts. Listing 2.3 shows an example of a channel, containing two paths, where the
second is a fork of the first, i.e., the path temperaturePath is contained in the path indoor.
The concept of path offers a uniquely identified way to exchange messages via the channel,
while a fork enables us to organize paths in the form of a tree [138]. It is inspired from
existing protocols, for instance, in MQTT [139] a message is exchanged via a topic, while
in HTTP via a URL. MQTT is a publish-subscribe protocol that enables many-to-many
communication between things using hierarchical topics. Both topics and URLs can be
unified under the concept of path.

For a more concrete example, in HTTP we consider the URL https://atlanmod.org/-
cypriot/ as a path and https://atlanmod.org/cypriot/smarthome as one of its forks, like-
wise in MQTT we consider the topic org/atlanmod/cypriot/ as a path and org/atlanmod-
/cypriot/smarthome as one of its forks. As shown in Listing 2.3, a path consists of an
identifier (temperatureTopic), a declaration of the accepted message (temperatureMessage)
and the message serialization format (JSON). Hence, an exchange via a path is transpar-
ent, thus easing detection of incompatibility between a message and a path or a port.
The compatibility refers to the fact that a message must be accepted (i.e., understood)
by the sending port, the receiving port and the path that links them, to reach its des-
tination correctly. For instance, the sendingTemperaturePort is compatible with the path
temperatureTopic as both accepts the message temperatureMessage.

2.1.3 Users and Roles

We also reify the concepts of user and role. Lines 2-3 of Listing 2.4 show an example
of a user declaration. It consists of an identifier (i.e., Bob or Alice) and optionally a token
for identification at a low-level (i.e., pa$$word). The declaration of a user serves to specify
the owner of a thing. A user can own several things, but only one user can own a thing.
The owner has the right to access and share the thing’s messages within a policy (cf.
Section 3.2.5). For the sake of focus, users’ ability to share the same thing is not supported
for now. The concept of user gives more context w.r.t. the place of the thing in the network
and provides the opportunity to group the things by user.

The concept of role in the IoT is useful because it can help to attach a specific re-
sponsibility to a thing or a group of things. This responsibility enables a more specific
control in the network, especially large ones (cf. Chapter 3 for more details). Declaring

67

Chapter 2 – Modeling a Network of Things

a role has a similar syntax than a user. Lines 5-6 of Listing 2.4 show an example of a
role declaration. It consists of an identifier (i.e., sensor or actuator) and can be assigned
to several things, as shown in Listing 2.2. Also, a thing can have simultaneously several
roles.

1 // User declaration
2 user Bob:pa$$word
3 user Alice:pa$$word
4 // Role declaration
5 role sensor
6 role actuator

Listing 2.4 – Declaration of users and roles

2.1.4 Network

First, the Network Designer declares things, channels, roles, and users, then, uses
them to specify the network. The things and channels must be instantiated to be used
inside the network. Several instances may be derived from the same declaration. The
concept of network describes the global network configuration. It defines what things to
instantiate and what channels are available. It also contains the wiring of the things’ ports
to the channels. As shown in Listing 2.5, a network has an identifier (mySimpleNetwork)
and a domain (org.atlanmod.mynetwork). A domain is supposed to be unique and serves as a
global identifier for the network at a low-level. For instance, we can use the domain in the
path structure as the root path. Inside the network, we can declare an instance of a thing
(based on the imported TH-Model). An instance of a thing consists of an identifier (e.g.,
myTempSensor, myGW), the platform specifying the target programming language (e.g.,
C/POSIX based), and if necessary the owner (e.g., Bob). We can also declare an instance
of a channel. An instance of a channel sets a protocol (e.g., MQTT); this information
provides the code generator with the target protocol to be implemented in the low-level
code. Finally, we can specify to bind a port of an instance of thing to one or multiple paths
of any of the available instances of channels (e.g., Line 10 of Listing 2.5).

A network can also enforce a policy. Multiple policies can be enforced. For instance,

68

2.1. Reification of IoT concepts

in Listing 2.5, both roleBasedPolicy as well as smartpolicy are enforced. Policies and control
strategies are discussed in detail in the next chapters.

The network serves as a glue to make distributed statecharts communicate and ex-
change messages from a conceptual perspective. It constitutes the entry point for the code
generator (cf. Section 4.2.1).

1 network mySimpleNetwork {
2 domain org.atlanmod.mynetwork
3 enforce roleBasedPolicy, smartpolicy
4 // Instances of things
5 instance myTempSensor : TemperatureSensor platform POSIX owner Bob
6 instance myGW : Gateway platform JAVA owner Bob
7 // Instance of a channel
8 instance zigbeeChannel:ptpChannel protocol ZIGBEE
9 // Binding : Sending (i.e., =>) the sensed temperature by myTempSensor

10 bind myTempSensor.TempDataPortSend => zigbeeChannel{temperaturePath}
11 // Binding : Receiving (<=) the sensed temperature
12 bind myGW.TempDataPortRec <= zigbeeChannel{temperaturePath}
13 }

Listing 2.5 – Specification of a network; sending (=>) and receiving (<=) messages via
a path

2.1.5 Forwarding

Usually, in the IoT, because of limited resources, a thing may need to pass through a
more powerful intermediary thing before reaching its final destination. In the IoT litera-
ture, this mechanism is cited as multihop routing or as intermediary gateway. Implement-
ing this simple mechanism using low-level concepts is arduous because of heterogeneity.

The concept of forwarding enables to forward an existing binding (i.e., bind) to another
path. For instance, in Line 14 of Listing 4.1, we forward the temperature received via
ZIGBEE by myGW to temperatureTopic, a path of mqttBroker that is using MQTT as a
protocol. We assume in this case that myGW supports both protocols. Then, we bind
the port receivingTemperaturePort of myRD to receive the message sent to tempMQTTPath.

69

Chapter 2 – Modeling a Network of Things

myGW plays the role of an intermediary thing between myTempSensor and myRD. In this
particular usecase, we link two things using different protocols without dealing with the
low-level heterogeneity as we are designing our network using model-based and unified
concepts. The code generator handles this heterogeneity through an automatic process
(cf. Chapter 4).

In fact, due to variation in sizes of things, an interoperability issue is a common trait
of connectivity of things in the IoT [140]. The ability to forward an existing binding at
the model-level allows navigating freely between the various ranges of things. The imple-
mentation of these forwarding is kept for the code generation phase. During code genera-
tion, some specific procedures interpret these model-based forwarding and reproduce their
equivalent in the target programming language of the involved things (cf. Section 4.2.1).

1 network mySimpleNetwork {
2 domain org.atlanmod.mynetwork
3 enforce roleBasedPolicy, smartpolicy
4 // Instance of things
5 instance myRD : RemoteDisplay platform JAVASCRIPT owner Bob
6 ...
7 // Instance of a channel
8 instance zigbeeChannel:brokerChannel protocol ZIGBEE
9 instance mqttBroker:brokerChannel protocol MQTT(server="mqtt.atlanmod.org:1883")

10 ...
11 // Binding : We add an identifier (i.e., tempBindGw) to the bind
12 bind tempBindGw : myGW.TempDataPortRec <= zigbeeChannel{temperaturePath}
13 // Forwarding
14 forward tempBindGw to mqttBroker{temperatureTopic}
15 // Binding : Receiving the forwarded temperature message
16 bind myRD.receivingTemperaturePort <= mqttBroker{temperatureTopic}
17 }

Listing 2.6 – Forwarding of an existing binding

70

2.2. Every “thing” is a model

2.2 Every “thing” is a model

Problem 2. The reusability of software artifacts by machine is crucial for large scale
networks. The proposed solution is to use models, so that the software engineering
cycle can benefit from MDE tools.

The metamodel (M2-Layer) is a defining piece of our methodology. It contains the
networking concepts and how these relate to each other. The metamodel allows us to
create the network model, i.e., the CyprIoT-Model (CY-Model) (M2-Layer).

We present in the next section an EMF-based metamodel for our networking language.
Everything is a model in the lower layer, the behavior of a thing is a model (i.e., TH-Model)
and the network that is wiring them is also a model (i.e., CY-Model). These models
naturally represent a real-world IoT application (M0-Layer).

2.2.1 Metamodel

The proposed metamodel consists of two parts: the networking part and the policy part
(cf. Chapter 3). Figure 2.5 depicts the metamodel for the networking part. It shows how
the reified concepts depend on each other. This formalism provides us with the language
to express our CY-Model. Also, to position our work w.r.t. state of the art, we highlighted
in white and bold the concepts of ThingML. Otherwise, we created a link with the policy
concepts (Light Gray) that will be the next chapter’s subject.

In Figure 2.5, the network class possesses the highest number of relationships, making
it a central concept of our formalism. The network can have multiple instances, either
instances of things or instances of channels. The former enables instantiating TH-Models
and using its constituents (e.g., Port, Message, Property). In contrast, the latter allows
instantiating a channel by setting the communication protocol (e.g., MQTT, HTTP,
COAP, ZIGBEE) and using its paths. The network enables us to bind the ports of these
TH-Models to any path of the instances of channels.

Typically, two ports can communicate if they are compatible, i.e., they accept both
the same type of message; otherwise, this results in an invalid model. For instance,
in Listing 2.5 as the port TempDataPortRec of myGW consumes the messages sent by
TempDataPortSend of myTempSensor, we presume that both things have compatible ports,
otherwise an error will be reported in the editor (cf. Section 2.3).

In summary, by using this metamodel, we end up with two kinds of models, (1)
TH-Models, containing the behavior of each thing, and (2) the network model (i.e.,

71

Chapter 2 – Modeling a Network of Things

Instance

ChannelToInstantiate
targetedProtocol : ChannelProtocol

server : EString

InstanceChannel
name : EString

InstanceThing
name : EString

User
name : EString

password : EString

TypeThing
name : EString

importPath : thingml::Thing

ChannelToBind

Network
name : EString

Bind
name : EString

bindAction : BindAction = WRITE

portToBind : thingml::Port

Policy
name : EString

PoliciesEnforcement
strategy : EnforcementStrategies Domain

name : EString

Path
name : EString

customName : EString

serializer : Serializer

acceptedMessage : thingml::Message

[0..*] fork

[0..*] hasPaths

ThingToInstantiate
targetedPlatform : Platform

[0..*] bindPaths

[1..1] targetChannel

[0..*] assignedRoles

[0..*] assignedRoles

[0..*] Instantiate

Role
name : EString

[1..1] owner
[1..1] thingToInstantiate

[1..1] channelToInstantiate

[1..1] instantiateTypeThing

[1..1] instantiateTypeChannel

[1..1] hasDomain

[0..*] hasBinds
[1..1] forwardBind

[1..1] forwardToChannel

NetworkForward
name : EString

[1..1] bindInstanceThing

[1..1] instantiateTypeChannel

TypeChannel
name : EString

[0..*] hasForwards

ChannelProtocol
MQTT

BLUETOOTH

HTTP

COAP

ZIGBEE

ZWAVE

Platform
POSIX

POSIXMT

JAVA

ARDUINO

JAVASCRIPT

GO

EnforcementStrategies
BESTEFFORT

DENYFIRST

ALLOWFIRST

Serializer
JSON

BINARY

BindAction
READ

WRITE

[0..*] hasEnforcedPolicies

[1..1] hasPolicyEnforcement

Networking Language Policy Language (cf. Chapter 3)

Figure 2.5 – Networking language metamodel; boxes in green represent enumerations

72

2.2. Every “thing” is a model

CY-Model), including these TH-Models and specifying how they interact between each
other via their ports.

2.2.2 Network Model

The network model (i.e., CY-Model) is the unique primary input in our methodology.
It conforms to the metamodel (cf. Figure 2.5) and can serve to generate various outputs
depending on the use. We focus on code generation (cf. Chapter 4).

The network model provides stakeholders (e.g., software engineer, business manager,
security officer) a common artifact to work together instead of working in silos. It enables
to work based on a unified view of the network in place of dealing with different artifacts
(e.g., written document, databases, email, drawing). From this view, we can derive various
valuable artifacts using an adequate MDE tool or a manual procedure.

A unique input offers the opportunity for tracing every step of the software engineering
process. Using some MDE tools, we could follow the evolution of its attributes through-
out the code generation process, from the input to the final artifact. Moreover, it helps
to identify the parts that can be automated by an existing MDE tool, thus, benefiting
from a rigorous trace to determine the parts that have to be done manually or need the
intervention of an expert.

The Network Designer fills each attribute of the metamodel with a concrete value,
depending on the intended scenario. This value corresponds to a real-world element. In
this particular example, we presume that Bob owns a temperature sensor in the real
world; Bob is the value for the user, and the instance represents the temperature sensor.
The interpretation of such information depends on the needs of the engineer. For instance,
it can be interpreted to write access control rules w.r.t. Bob, draw a diagram, or document
the application in a plain text file.

2.2.3 Usability of the Model

The model relies on rigorous formalism, as shown in Section 2.2.1. Thus, to be valid,
a set of rules defined by the metamodel (i.e., the model conforms to the metamodel) and
CY-DSL (i.e., checking the semantic—cf. Section 2.3.1) has to be respected. These rules
enable us to check syntactically and semantically the correctness of the network at the
design stage.

Also, the model can be used for various other purposes and we aim to use it as an input

73

Chapter 2 – Modeling a Network of Things

for any automatable software engineering task for our IoT application. To highlight few
examples, we can cite two of its primary uses: a) Model Transformation [141], consisting of
transforming the behavior of the TH-Models according to the specification of the network
in the CY-Model, or to generate some text such as a user manual (cf. Chapter 4) and b)
Model Views [142], which enables to explore various facets of the network model, such as
a visual report of its resistance to security threats [35]. We focus on the present thesis on
model transformation. Further, we detail how we use it for control and code generation
purposes.

Model transformation allows generating automatically the network artifacts from a
rigorous and valid network model. This process reduces the quantity of manually written
code, thus limiting the surface of human-induced bugs.

2.3 Domain-Specific Language

Problem 3. The unfamiliarity of model-based approaches to software engineers is an
obstacle to its adoption. The proposed solution is a DSL based on a readable syntax.

We created a DSL based on the metamodel of Figure 2.5, named CY-DSL 3 [143]. It
is also based on the Xtext grammar, and is therefore a textual representation of an EMF
model. EMF offers a mechanism, called inter-model referencing, that enables to use other
EMF models. We use this mechanism to import the TH-Model inside the CY-Model. The
full grammar can be found in Appendix A.

CY-DSL relies on the same concepts shown in the previous section, but in a textual
form. Hence, while the model represents the back-end, CY-DSL represents its front-end.
It is a practical option to create models from an Integrated Development Environment
(IDE).

2.3.1 Integrated Development Environment

The CY-DSL benefits from the advantages of an IDE (e.g., syntax highlighting, error
reporting, auto-completion—cf. Figure 2.6) [144] same as popular programming languages.
An IDE consists of a set of tools (e.g., editor, debugger, refactoring) to increase the
productivity of software engineers. By default, CY-DSL is integrated into Eclipse IDE.

3. https://github.com/atlanmod/CyprIoT

74

2.3. Domain-Specific Language

CY-DSL is backed by some syntactic and semantic validators to ensure the correctness
of the network. Indeed, these validators help prevent some inconsistencies (e.g., preventing
a communication using incompatible message formats, or incompatible port and path) by
reporting them instantly in the form of errors, warnings, or notices as shown in Figures 2.7.
This mechanism saves time by helping to anticipate early runtime bugs [145, 146].

One can still write a CY-DSL file using any editor (e.g., vim, nano, notepad++),
i.e., without relying necessarily on Eclipse. We also offer a command-line interface that
plays the same role. It takes a CY-DSL file as input and shows the inconsistencies after
execution.

Figure 2.6 – An auto-completion example to suggest the possible paths

Figure 2.7 – The early detection of inconsistencies in the editor; the usecase of an incom-
patible port and path

2.3.2 Readability and Maintainability

Readability corresponds to the degree whereby a piece of code is easy or difficult to
grasp by a software engineer or, in some cases, a machine. Multiple factors can influence

75

Chapter 2 – Modeling a Network of Things

readability (e.g., keywords, line length, indentation, space). CY-DSL is a declarative lan-
guage, making it easier to learn. The syntax in Appendix A, shows that we use intuitive
and comprehensible keywords (e.g., thing, channel, path, instance, policy, rule).

The syntax shows the intended scenario. This point is particularly helpful in improving
communication between stakeholders. Indeed, communication skills are crucial in software
engineering [147], a high-level textual description of the network provides a central source
of information, thus offering a unified platform to discuss various aspects of the applica-
tion.

The model also provides a broader picture of the network, leading to a more participa-
tory decision making w.r.t. its features. This comprehensive picture allows stakeholders to
move easily towards a common goal [148]. Indeed, each stakeholder can discuss a partic-
ular aspect of the application before moving to more advanced steps, making the process
quickly iterative. It is, therefore, convenient to maintain the network. For instance, one can
keep several versions of the CY-Model depending on the discussions between stakeholders.

2.4 Summary

By reifying these network concepts, we offer software engineers a unified environment
to specify a network of heterogeneous things. The CY-DSL provides a way to specify the
model in a textual form. It can also control its syntax and semantics, resulting in a correct
model and fewer bugs in the network at runtime. Figure 2.8 presents a straightforward
illustration to summarize what has been achieved in this chapter. As shown in this fig-
ure, at this stage, our methodology consists essentially of a CY-DSL file, backed by the
CY-Model. The CY-Model imports the TH-Models to use them in the specification of
the network. Further, we will update this figure to position each contribution, w.r.t. the
overall methodology.

DSL
File

import

ThingML
models

spe
cify

Network
Specification

Figure 2.8 – Modeling the network: the first step of the methodology

76

Chapter 3

CONTROLLING A NETWORK OF THINGS

The previous chapter shows how to create a model of the network based on unified
concepts. This chapter shows how we can use this model to control the network’s behavior
based on a declarative policy. By control, we refer to the ability to inject monitors to either
restrict communication or trigger actions according to some conditions. We will discuss
solely the controls’ specification in this chapter; its enforcement is developed in the next
one.

3.1 Model-based Control

Problem 4. The heterogeneity creates a barrier for crosscutting control. The proposed
solution consists of specifying the controls at the model-level where the network concepts
are unified.

The model offers a unified description of the network. The control allows for a more
specific description by adding constraints on its behavior. Specifying such global con-
straints is hard when dealing with heterogeneous low-level code.

Figure 3.1 depicts the metamodel of the control abstractions. These abstractions also
have a textual version, based on Xtext (cf. Appendix B for the full grammar). It is the
continuation of the network metamodel of Figure 2.5. The network enforces policies that
contain rules. These rules have a specific structure and apply actions based on the elements
of the specified network (e.g., thing, channel, user). This section describes the rule-based
control system we offer.

3.1.1 Policy

Generally speaking, a policy can serve various purposes [149] (e.g., communication
control, administrative goal). In this thesis, we focus on two main aspects, communication
control (cf. Section 3.2) and smart scenarios (cf. Section 3.3). A policy ensures that the

77

Chapter 3 – Controlling a Network of Things

TypeThingThingWithStateOrPort InstanceThing

ThingAnyRoleUser Path

SubjectOther

TypeChannel InstanceChannel

Rule
name : EString

RuleComm RuleTriggerCommSubject

CommObject

Policy
name : EString

CronExpression
expression : EString

Conditions

Time
name : EString

ThingWithFunction
function : thingml::Function

parameters : thingml::Parameter

TypeTrigger

ThingWithState
state : State

ChannelAnyObjectOther

ActionTrigger
goToState : EString

executeFunction : EString

[0..*] hasRules

[1..1] hasCondition

[1..1] hasExpression

ThingWithPort
port : thingml::Port

ActionComm
send

receive

sendreceive

[1..1] hasTime

[1..1] hasThing

[1..1] hasThing

[1..1] hasThingWithStateOrPort

[1..1] hasThingWithStateOrPort

[1..1] hasCommSubject

[1..1] hasOtherSubject [1..1] hasOtherObject

[1..1] setTypeTrigger

[1..1] setTypeComm

TypeComm
deny : Eboolean = false

allow : Eboolean = false

actionComm : ActionComm = send

[1..1] triggerFunction [1..1] triggerGoToState

[1..1] hasThingWithState[1..1] setActionToTrigger

[1..1] hasCommObject

Networking Language (cf. Chapter 2) Policy Language

Figure 3.1 – Policy language metamodel; continuation of Figure 2.5; boxes in green rep-
resent enumerations.

78

3.1. Model-based Control

IoT application is behaving as expected from a stakeholder’s perspective, such as security
officer, government, or the owner of the network. It contains a set of rules. We define a
rule as the composition of a subject (e.g., thing, instance, port or role), an action type
(e.g., permission, trigger), an action (e.g., send, receive, goToState, executeFunction), an
object (thing, instance, port, message or path) and time (e.g., specific date, period). As
shown in Line 3 of Listing 2.5, one or more policies can be enforced in the network; in
this particular example, the network enforces roleBasedPolicy and smartpolicy.

Listing 3.1 shows a specification of a policy written in CY-DSL. It consists of an
identifier (i.e., smartpolicy) and two rules, that we discuss further. This policy is enforced
in mySimpleNetwork (Line 3 of Listing 2.5).

The policy’s specification is readable and relieved from the low-level technical details.
It needs to be written by a Policy Designer. The Network Designer chooses what policy
to enforce. The enforcement inside the low-level code is the concern of the code generator
(cf. Chapter 4), assumed by experts. Experts are responsible for developing the enforce-
ment strategies in the code generator and mapping the model’s abstract concepts into
their concrete equivalents at a low-level.

3.1.2 Rule

A rule specifies the conditions necessary for an action on an object. Listing 3.2 depicts
its structure. It comprises 5 parts: Subject, ActionType, Action and Object and Time.
The subject is the entity applying an action, and the object is the entity undergoing the
action. The time permits to delimit the effect of the rule over time. The ability to use
model-based abstractions permits the dissociation of the network’s safety from its concrete
implementation (source of heterogeneity).

1 policy smartPolicy {
2 rule myTempSensor−>state:isLow trigger:goToState myAC−>state:isOn
3 rule myTempSensor−>state:isLow trigger:executeFunction myAC−>function:setTemperature(25)
4 }

Listing 3.1 – An example of a policy (Discussed in Section 3.3.3)

79

Chapter 3 – Controlling a Network of Things

rule <Subject> <ActionType>:<Action> <Object>

Listing 3.2 – Rule syntax

An entity is any distinct concept within the network that can be
uniquely identified, such as a thing, a user, a role, a path, or a
channel. In the diagrams of Figures 2.5 and 3.1, the entities are the
class having the attribute name.

Remark

Table 3.1 depicts the possible entities of a rule for each of its parts and how they can
be combined. The rule in Listing 3.2 has to be used alongside this table. The first column
contains the subject’s supported entities and the fourth column, the object’s entities.

Table 3.1 – The combination of rule entities.

Subject Action
Type Action Object Control Type

Port
ăInstance of thing

Thing
User
ăRole

Permission
Send

ăReceive
ăSend-Receive

Port
ăInstance of thing

Thing
User
ăRole
Path

Channel

Communication

State Trigger
goToState

executeFunction
State

Function Thing Behavior

3.1.3 Control Types

The rule structure previously mentioned offers two types of control, namely a com-
munication control and a behavioral control. The separation of the specification from the
implementation permits focusing on specifying the constraints we wish to see in the im-
plementation. This structure can serve various control purposes down the road and may

80

3.2. Communication Control Rules

be subject to extension. So far, we chose to implement these two types of control first as
a proof of concept:

— Communication Control [150]: consisting of denying or allowing the sending
or receiving of messages. For instance, a rule can deny or allow the port py from
sending its messages to the port px. We may apply the same control for two things,
two users or the combination of these entities.

— Thing Behavior Control [140]: consisting of triggering an action (i.e., goToState,
executeFunction) on the object based on the current state of the subject. Indeed, as
the behavior consists of a statechart, the control aims to change this statechart so
that it satisfies the intent of the rule. For instance, a rule can specify that a thing
tx should go to the state si when the current state of a thing ty is sj.

In summary, this section introduced the central notions of the rule-based system we
use for control. In the next sections, we show in more detail how we may use them.

3.2 Communication Control Rules

Problem 5. The communication flow is a critical asset of a network of things, hence
the need to regulate it. However, its regulation at a low-level is burdensome because of
heterogeneity. The proposed solution consists of specifying this regulation at the model-
level, and enforcing it by the code generator using a dedicated procedure.

The network encompasses a communication flow analogous to the representation of
Figure 2.1. Communication control rules specify the constraints on this flowmany entities
of the network where this flow transit are controllable. For instance, in a thing we can
control what to receive and what to send at the port level, in a channel, we can control
what message to accept at the path level and at the user level we can control the message
that can be sent or received by the thing s/he owns.

By default, we presume that all the communications are denied unless a rule allows
things to communicate. The communication control rules allow controlling communication
between things, users, roles, and the combination of all of them.

We can control communication using ports, things, users, and roles. The smallest level
of granularity among these entities is the port. The port is a checkpoint, i.e., where an
action (e.g., deny, allow) can take place concretely. Then comes, in that order, an instance
of a thing, type of thing, and user/role. When the subject/object is a type of thing, the

81

Chapter 3 – Controlling a Network of Things

action applies to all its instances. When it is a user, it applies to all things and instances
s/he owns, and when it is a role, it applies to all things and instances where this role is
assigned.

Moreover, the object can be of type channel or path. The path is also a checkpoint,
i.e., it is where the action (e.g., deny, allow) can take place concretely. When the object
is a channel, the action applies to all its paths.

3.2.1 Structure

From the rule structure of Listing 3.2, we inherit the structure of Listing 3.3 for the
communication control rules. We use the keywords deny or allow to control the actions of
send, receive or send−receive. Further, we detail all the possibilities of such rule.

rule <Subject> <deny | allow>:<send | receive | send−receive> <Object>

Listing 3.3 – Communication control rule syntax

3.2.2 Potential Applications

The communication control type has various applications in the real world, such as
access control [151], content-based control [152] or privacy control. For instance, ABAC
and RBAC are two established access control paradigms. The specification and imple-
mentation of these paradigms vary. Our communication control approach is singular and
aims to be generic, yet, we partially cover the specification of ABAC and RBAC from an
access control perspective. For instance, if we consider that the elements of the network
are the attributes, we cover, to some extent, the concepts of ABAC. Whereas for RBAC,
we provide a dedicated concept of role that can be used in our communication control
rules.

This thesis focuses on the software engineering aspects of the IoT; however, we believe
that extending our methodology to cover the specification and implementation of ABAC
and RBAC is a promising avenue of research. All the more that access control is an

82

3.2. Communication Control Rules

important milestone for the IoT [153, 154]. The separation of the specification from the
implementation should ease the enforcement of such access control models.

3.2.3 Ports Communication Control

The port decides to accept a new message, or prevent it from leaving. It is an essential
notion from a communication control perspective. It is one of the few checkpoints of the
network, where we can apply a control concretely, and the most fine-grained communica-
tion control we offer. A rule can specify that two ports are denied or allowed to send or
receive messages. We separate the specification of control w.r.t. sending and receiving. A
port may enable sending but deny receiving, and vice versa.

Listing 3.4 shows an example of such a rule. It denies the port TempDataPortSend
of the instance myTempSensor from sending messages to the port TempDataPortRec of

the instance myGW. Depending on the enforcement strategy and the network specifica-
tion, there may be slightly different interpretations of this rule during code generation.
We provide details w.r.t. the enforcement strategies in Section 4.3. Nevertheless, gener-
ally, we assume that whenever the port TempDataPortSend tries to send a message, where
TempDataPortRec can potentially receive it, sending the message should be denied from
sending at TempDataPortSend level by the code generator.

The control at the port level matters because it offers the ability to deny or allow
only a specific interaction type. This control may be useful to define what facet of thing
is accessible. For instance, an untrusted thing may be denied to communicate with a port
that handles authentication.

rule myTempSensor−>port:TempDataPortSend deny:send myGW−>port:TempDataPortRec

Listing 3.4 – Denying communication between ports

3.2.4 Things Communication Control

There are two levels of granularity on the thing level: the control at the instance level,
and at the type level. As a reminder, a type of thing must be instantiated to be used in

83

Chapter 3 – Controlling a Network of Things

the network.

Instances of Things Communication Control

Controlling communication between instances of things is the second level of granu-
larity we offer. It applies to all ports of the instance.

Listing 3.5 shows an example of such a rule. It denies the instance named myTempSensor
from sending messages to the myGW regardless of the sending port. This rule assumes that
whenever myTempSensor tries to send a message, where myGW can potentially receive it,
sending this message should be denied from leaving myTempSensor.

The control at this level is useful to regulate the interaction of the smallest unit (i.e.,
an instance of thing) of the network with any other entity.

rule myTempSensor deny:send myGW

Listing 3.5 – Denying communication between instances of things

Thing Types Communication Control

Controlling communication between types of things is the third level of granularity of
control. It applies to all the instances of the type. Listing 3.6 shows an example of such
rule. This rule denies all instances of type TemperatureSensor from sending messages to any
instance of type Gateway.

rule TemperatureSensor deny:send Gateway

Listing 3.6 – Denying communication between thing types

The control on the thing type-level enables to set the communication rules globally,
before the configuration of the network. This control may be useful to prevent some im-

84

3.2. Communication Control Rules

proper network configurations or conflicts of interest. For instance, for privacy reasons,
we can restrict any sensitive type of thing, such as a Private Security Camera to commu-
nicate with any type presumably communicating publicly, such as a Web Server or URL
(equivalent to a path).

3.2.5 Users Communication Control

A user can own one or more instances of things. The user-based control applies to
all the instances of things the user owns. Listing 3.7 shows an example of such a rule. It
denies the instances owned by the user Bob from sending messages to instances owned by
the user Alice. The control at this level enables a person-oriented regulation.

rule Bob deny:send Alice

Listing 3.7 – Denying communication between users

3.2.6 Communication Control Based on Roles

A role can be assigned to multiple things. One major difference with a user from a
control perspective is that a thing can have multiple roles. All the permissions given to a
role will be applied to all things with that role. This concept is useful to create hierarchies
of things with specific responsibilities. Listing 3.8 shows an example of such rule. It denies
the instances with the role secretThingRole from sending messages to instances with the
role publicThingRole.

rule secretThingRole deny:send publicThingRole

Listing 3.8 – Denying communication between roles

85

Chapter 3 – Controlling a Network of Things

3.2.7 Combinations

The previous sections showed communication rules based on a subject and an object
of the same type (i.e., both are of type thing, or user or role). In this section, we show
how we can combine different types of subjects and objects.

Combinations of entities

Combining the entities cited in the previous sections offers a more flexible way to
constrain the network. Indeed, we can control communication between two different enti-
ties. We can specify a rule controlling whether a port can communicate with an instance,
a type of instance, a user, or a role. The action applies respectively to all ports of the
instance, all instances of the type, all instances owned by the user, and all instances with
that role.

The same principle is also valid for the combination of other entities. Another example,
we can specify a rule controlling whether an instance can communicate with a port, a type
of instance, a user or a role; the action applies respectively to the port, all instances of
the type, all instances owned by the user, and all instances with that role.

The subject and object can be of different granularity; the rule applies to all elements
of these two levels. For instance, if the subject is a port, the object is a user, and the
action is to deny sending, then the control will deny the port from sending to any port
of any thing owned by this user. Listing 3.9 shows an example of such rule. All the
instances of type Gateway are denied sending to any instance that has been assigned the
role publicThingRole.

rule Gateway deny:send publicThingRole

Listing 3.9 – Denying communication between a type of thing and a role

Combining entities with channels and paths

Unlike the object, the subject can also be of type channel or path, as shown in Ta-
bles 3.1. This syntax permits to control the communication between the entities and the

86

3.3. Smart Rules

channel. A channel contains a set of paths. A path is another essential notion from a con-
trol perspective; it is a checkpoint that enforces a control concretely. Indeed, depending
on the policy, it can accept or refuse to transmit a message from one end to another.

On the one hand, we can specify a rule with an entity as a subject and a path as an
object, resulting in applying the action between this entity and this path. On the other
hand, we can also specify a channel as an object, resulting in applying the action to all its
paths. Listing 3.10 shows an example of such a rule. All the instances of type Gateway are
denied to send to the path myRestrictedPath (Line 1) and the channel myRestrictedChannel
(Line 2).

1 rule Gateway deny:send path:myRestrictedPath
2 rule Gateway deny:send channel:myRestrictedChannel

Listing 3.10 – Denying communication between a type of thing and a path or channel

All the rules presented so far aim to regulate the communication flow. This type
of control is useful to set the boundaries between the elements of the network. These
boundaries may prevent some unexpected behaviors on the network, such a data leakage
or a breach of trust.

3.3 Smart Rules

Problem 6. The interoperability of things to achieve smart scenarios suffers from het-
erogeneous concepts at a low-level. The proposed solution consists of specifying these
smart scenarios at the model-level, and implementing them by a code generator using a
dedicated procedure.

The previous section shows how we can specify the control of communication flow; in
this section, we present how we can control the network’s behavior according to contextual
factors, such as the state of things and the time.

This type of control enables the specification of smart scenarios, i.e., the ability to
trigger certain actions according to the context of the network [54]. The difficulty to

87

Chapter 3 – Controlling a Network of Things

implement smart scenarios is often caused by heterogeneity of things at a low-level. In
our methodology, we avoid this heterogeneity at design time by relying on unified concepts
at the model-level and delegate it to the automatic code generation process.

3.3.1 Structure

From the rule structure of Listing 3.2, we inherit the structure of Listing 3.11 for smart
rules. We use the keyword trigger to activate two actions: goToState or executeFunction.
The former triggers a thing to go to a particular state, and the latter triggers a function
within a thing.

rule <thingID>−>state:<stateID> trigger:<goToState | executeFunction>
<thingID>−><state: | function:><stateID | functionID>

Listing 3.11 – Smart rule syntax

3.3.2 Potential Applications

By lacking a common representation of the behavior at a low-level with traditional
software engineering, it is challenging to implement a smart scenario where things col-
laborate towards a common goal. This kind of scenario implies the ability of a thing to
impact another thing’s behavior, regardless of its resources. The hypothesis of relying on
a statechart-based thing, i.e., a specific and unified way to specify the behavior, enables
its control according to its state.

The specification of such smart scenarios must be seamless, i.e., not impacted by
the low-level technical details, such as the communication protocols or the programming
languages that are often heterogeneous. This heterogeneity may distract us from achieving
interoperability of these heterogeneous things, that is enabling these smart scenarios.

The network may be influenced by two types of factors: behavioral factors (i.e., the
properties and the states of things) and temporal factors (i.e., the physical time). For
instance, in a typical smart scenario, we may specify that when a thing tx is on the
state si, the thing ty must be in the state sj. Thus, ty adjusts its behavior according to

88

3.3. Smart Rules

the state of tx. Specifying this simple example requires many skills and resources with a
traditional software engineering approach, as many heterogeneous concepts are involved
at a low-level.

3.3.3 Behavioral factors

The behavioral factors correspond to the control according to the states of things.
A smart rule can activate two actions: a) goToState, instructing the thing to go to a
specific state, and b) executeFunction, executing a function in the thing. These actions
are triggered based on the current states of the subject or object thing. For instance, the
rule in Line 2 of Listing 3.12 specifies that the state isLow of myTempSensor (i.e., instance
of a temperature sensor), triggers myAC (i.e., instance of an air conditioner) to be at the
state isOn (typically for an optimal cooling).

Also, as a thing can provide a function (sequence of instructions), there are cases
where a function must be executed depending on the state of another thing. For instance,
the rule in Line 3 specifies that the state isHigh of myTempSensor, triggers the function
setTemperature(25) of mySAC (thus, setting the temperature to 25◦C when it is warm).

3.3.4 Temporal factors

The ability to depend on the physical time is one of the defining features of IoT
applications [42]. For this reason, a rule can optionally require the satisfaction of some
temporal factors to be enforced. The temporal factors correspond to a specific date and
time or a period. When a temporal factor is set, the control consists of applying the action
only when the temporal condition is met. For instance, controlling a communication or

1 policy smartPolicy {
2 rule myTempSensor−>state:isLow trigger:goToState myAC−>state:isOn
3 rule myTempSensor−>state:isLow trigger:executeFunction myAC−>function:setTemperature(25)
4 }

Listing 3.12 – Go to a state (Line 2) and execute a function (Line 3) according to another
thing’s state

89

Chapter 3 – Controlling a Network of Things

triggering an action only at a specific time of the day.
As shown in Listing 3.13, the syntax consists of adding the keyword when and spec-

ifying either a specific time or a period using the keyword time:. Listing 3.14 shows an
example. The rule states that mySAC must go the state isOn if the myTempSensor reaches
the state isLow, but only when the time is between 20/01/2020 at 11:00:00 and 20/01/2020
at 13:00:00.

rule <thingID>−>state:<stateID> trigger:<goToState | executeFunction>
<thingID>−><state: | function:><stateID | functionID>

when time:<start>−<end>

Listing 3.13 – Smart rule syntax including the temporal factors; for readability reasons,
this syntax is divided in three lines

The specification of these temporal factors is straightforward, but their implementation
may be difficult in a decoupled system as there is no standard way to define the physical
time (cf. Chapter 4). Logical time is unsuitable in this case, as it is not a problem of
ordering. Instead, things depend on the physical world, incidentally one fundamental
promise of the IoT.

The temporal factors are useful in controlling a network according to the physical envi-
ronment. The separation of the specification from the implementation helps better tackle
the difficulty of implementing time. We show in the next chapter some implementation
strategies.

3.4 Conflict detection and resolution

Problem 7. The detection of conflicts at deployment is costly and difficult to debug. The
proposed solution consists of detecting and resolving them early in the editor.

The detection of conflicts between rules can help for a safe deployment. We consider
that two rules conflict when they cannot be enforced simultaneously. These conflicts can
be prevented at various steps of the software engineering process.

90

3.4. Conflict detection and resolution

We enable the detection of most conflicts between any rule in the long-run. So far, we
only offer some conflict detection and resolution mechanisms w.r.t. the communication
rules. Given their variability, there could be some implicit conflicts that are difficult to
notice. For instance, a rule involving only users may conflict with a rule involving a more
fine-grained entity such as a port or a thing. We provide mechanisms to detect them
directly and ask the software engineer to resolve them.

3.4.1 Early Detection

The conflicts are displayed in real-time in Eclipse IDE (cf. Example in Figure 3.2).
The model is deemed invalid until the conflict is resolved. This mechanism prevents the
engineer from introducing bugs by detecting inconsistencies in the model earlier. Fig-
ures 3.2 and 3.3 show examples of the errors that may be displayed. Figure 3.2 reports an
inconsistency of the model due to two opposite rules; namely, the first rule allows device2
to send to pubsub1, while the second states the opposite. Figure 3.3 depicts two rules
that specifies opposite constraints at different levels of granularity; namely, the first rule
deny temperatureSensor from sending to the actuator airConditioner, while the second allows
temperatureSensor to send to actuators.

3.4.2 Conflict Detection Algorithms

We present a few algorithms that we use in our implementation to detect conflicts
between rules. The goal here is to show that conflict detection can be automated. Some
aspects, such as their efficiency or their scalability, did not receive any detailed treatment
and will be addressed as a future work. These algorithms are executed in the editor in

1 policy smartPolicy {
2 rule myTempSensor−>state:isLow trigger:goToState mySAC−>state:isOn

when time:20012020@11:00:00−20012020@13:00:00
3 }

Listing 3.14 – Go to a state (Line 2) and execute a function (Line 3) according to another
thing

91

Chapter 3 – Controlling a Network of Things

Figure 3.2 – A conflict detection error in the editor of opposite rules

Figure 3.3 – A conflict detection error in the editor between coarse and fine grained rules;
airConditioner has been assigned the role actuator earlier.

real-time. When a conflict is detected, an error is shown, asking the engineer to resolve
it. We implemented these algorithms as a proof of concept; more of such algorithms will
be developed for more fine-grained conflict detection in the future.

So far, we implemented three algorithms: (Algorithm 1) Detection of opposite rules
(Algorithm 2) Detection of a conflict between a group (i.e., a role or a user) and a thing
and (Algorithm 3) Detection of a conflict between a role and a user.

Input: InputRule : Rule to test, AllRules : Collection of all rules
Output: Contradictory : Array of opposite rules
Contradictory ← ∅;
if size(AllRules) > 0 then

foreach r ∈ AllRules do
if subject(r) = subject(InputRule) & object(r) = object(InputRule) &
action(r) 6= action(InputRule) then

Contradictory ← Contradictory ∪ {r};
end

return Contradictory;
Algorithm 1: Detecting opposite rules

Algorithm 1 is a basic procedure detecting opposite rules. Two rules are opposite if
they enforce opposite actions for the same subject and object. The algorithm returns the
collection of opposite rules, w.r.t. an input rule (the rule having the focus in the editor).

92

3.4. Conflict detection and resolution

It iterates over all rules to check whether the subject and the object are equal on the
one hand and whether the actions are opposed, i.e., when a rule denies an action (e.g.,
deny:send) the other allows it (e.g., allow:send) and vice versa. If so, it adds the rule to
the Contradictory collection and returns it.

Input: InputRule : Rule to test, AllRules : Collection of all rules
Output: Conflicting : Array of conflicting rules
Conflicting ← ∅;
if size(AllRules) > 0 then

foreach r ∈ AllRules do
if subject(r) = subject(InputRule) & object(r) ∩ object(InputRule) 6=
∅ & action(r) 6= action(InputRule) then

Conflicting ← Conflicting ∪ {r};
end

return Conflicting;
Algorithm 2: Detecting a conflict between a thing and a group

Algorithm 2 aims at detecting conflicts between a group (user or role) and a thing.
A group consists of several things. The algorithm returns the conflicting rules, w.r.t. an
input rule. It iterates over all rules and checks whether the subject and the object (or
type role or user) contains the object of the input rule on the one hand, and whether the
actions are opposed on the other. If so, it adds the rule to the Conflicting collection and
returns it.

Input: InputRule : Rule to test, AllRules : Collection of all rules
Output: Conflicting : Array of conflicting rules
Conflicting ← ∅;
if size(AllRules) > 0 then

foreach r ∈ AllRules do
if subject(r) ∩ subject(InputRule) 6= ∅ &
object(r) ∩ object(InputRule) 6= ∅ & action(r) 6= action(InputRule)
then

Conflicting ← Conflicting ∪ {r};
end

return Conflicting;
Algorithm 3: Detecting conflict between two groups

Algorithm 3 aims at detecting conflicts between two groups, i.e., when the subject
and the object are either a user or a role. The algorithm returns the conflicting rules,
w.r.t. an input rule. It checks whether any thing contained in the subject/object set of

93

Chapter 3 – Controlling a Network of Things

the input rule is also contained in the subject/object set of any other rule. Then, it checks
whether the actions are opposed. If these two conditions are met, it adds the rule to the
Conflicting collection and returns it.

3.4.3 Resolution Strategies at Enforcement

The detection of conflicts in the editor asks the software engineer for an intervention
to resolve the conflict. This mechanism is far from complete, and in some cases, it may
not be able to detect a conflict. Hence, the resolution of conflicts at enforcement consists
of deciding what action takes precedence in case of conflict during code generation. The
software engineer must specify the resolution strategy for each enforced policy. We propose
a few resolution strategies, namely: Best-Effort, Deny-First, Allow-First. We discuss some
of these strategies in the next chapter (cf. Section 4.3.1). Line 3 of Listing 3.15 shows an
example of the specification of a resolution strategy; namely Deny−First for roleBasedPolicy
and Best−Effort for smartpolicy.

1 network mySimpleNetwork {
2 domain org.atlanmod.mynetwork
3 enforce roleBasedPolicy Deny−First, smartpolicy Best−Effort
4 ...
5 }

Listing 3.15 – Specification of the resolution strategy

94

3.5. Summary

3.5 Summary

A model-based control allows for a more specific description of the network. We offer
two main types of rules, communication control rules, and smart rules. While the former
controls the communication flow, the latter provides means to specify smart scenarios
based on behavioral and temporal factors. A mechanism of conflict detection and resolu-
tion is proposed to limit bugs as early as possible. Figure 3.4 updates the global view of
our methodology with what has been achieved in this chapter. A policy is now enforced
in the specification of the network.

DSL
File

import

ThingML
models

inc
lud
es

enforces

Policy

Network
Specification

Figure 3.4 – Controlling the network: the second step of the methodology

95

Chapter 4

GENERATION OF THE NETWORK

ARTIFACTS

So far, we saw how to write a specification of a network along with the policy. This
chapter presents the code generator that generates the low-level code implementing the
network and the policies, both written in CY-DSL. We explore its main building blocks,
i.e., the procedures for wiring things, enforcing policies, generating textual artifacts, and
extending the overall process with plugins.

4.1 Code Generator

CY-DSL provides the networking and the policy language and serves to express with
high-level abstractions the CY-Model. The next step consists of interpreting this model
to produce the application artifacts. We describe the functioning of the code generator.
Subsection 4.1.1 presents its core architecture, Subsection 4.1.2 explains how it loads the
models and Subsection 4.1.3 shows how it can be extended.

IoT Application
Artifacts

Plugins

Access
Control

Data
consistency Etc...

Code Generator
Domain-specific

language

Policy language

Networking
language

Interpret Produce

ThingML
models

Import

Concrete Code
(e.g, Arduino)

CG-Core

Phases Transform GenerateLoad

Hook

Network
Generator

Command
Line

Interface

Plugins
Loader

Future Work

Figure 4.1 – The core components of the code generator

97

Chapter 4 – Generation of the Network Artifacts

4.1.1 Core Architecture

The code generator, named CyprIoT Code Generator (CY-CGEN), interprets the
CY-Model and generates the corresponding low-level code of each imported thing. The
core components are depicted in Figure 4.1. It takes as input the CY-Model, based on
CY-DSL, and follows three steps: a) it loads the CY-Model and the TH-Models it con-
tains, b) it transforms the TH-Models to wire them as specified by the CY-Model and
enforces the policies, and c) it generates the low-level application artifacts (e.g., code,
documentation, access control rules).

The core of the CY-CGEN (CG-Core) is composed of three modules: Network Gener-
ator (CG-NG), Plugin Loader (CG-PL), and a Command Line Interface (CG-CLI). The
CG-NG processes the CY-Model following a sequence of phases executed in order. This
order ensures that the requirements of each phase have been met before its execution.
These phases are in order: Load, Transform, Generate. Each phase has a responsibility
depicted in Table 4.1. The CG-NG module transforms the TH-Models according to the
CY-Model. Then, using TH-CGEN as a library generates the low-level code for the target
programming language (e.g., Java, C, Go) specified for the instance in the CY-Model. The
CG-PL is responsible for loading plugins that are hooked into CG-Core (cf. Section 4.1.3).
The CG-CLI offers a means to use the CY-CGEN as a standalone application. It takes
as an input the CY-Model along with some optional arguments. Then, based on these
elements, it produces the application artifacts.

We concentrated our efforts into the three former phases, in the future we plan to add
two more phases: Verify, to test and certify the conformity of the generated artifacts w.r.t.
the network model and Deploy, to automatically deploy the generated artifacts into the
network. This process is iterative and can be improved over time to cover more complex
networking scenarios.

4.1.2 Model Loading

Model Loading (Mod-Load) is the first major step of code generation. It takes place
at the Load phase and has the function to load and process the behavior of things. In this
thesis, we presume that the behavior of things is based on a TH-Model. We show in Sec-
tion 4.2 how things are transformed to conform with the network specification. ThingML
is, as presumed by their authors, Turing complete. Therefore, it enables to model theo-
retically any behavior in the form of a statechart. The Mod-Load selects the TH-Models

98

4.1. Code Generator

Table 4.1 – Code generator plugin interfaces

Interface Input Output Task

Load Network Model ThingML Models
Load a thing with a behavior,
then convert into a ThingML
model

Transform Network Model
ThingML models ThingML Models

Transform the ThingML mod-
els to conform with the network
model

Generate Network Model
ThingML Models Network artifacts Generate network artifacts

inside the CY-Model and transfers them to the relevant transformation procedure in the
Transform phase. As shown in Table 4.1, the Mod-Load requires as input a CY-Model
and returns the included TH-Models.

By opting for ThingML as the only solution to design a thing’s behavior, we create
an obstacle to the adoption of our methodology. One must learn ThingML to use our
methodology correctly. Still, we offer some preliminary insights w.r.t. this issue. To include
non-model-based things such as a legacy thing, we suggest loading a behavior from a
concrete code, as long as the engineer can provide a procedure to be reverse-engineered
into a TH-Model. Thus, satisfying the output requirement of the Load phase.

As proof of concept, during our study, we have reverse-engineer the external interfaces
of an Arduino program. We developed a plugin that loads the program, finds the chunks
of code that handle the protocol commands (e.g., Publish or Subscribe commands for
MQTT) and then renders a TH-Model embedding the concrete code of the behavior as is,
but abstracting its communication interfaces into ports so that they can be wired within
CY-DSL. This approach provided us with some preliminary insights w.r.t. this issue, that
manifestly needs more work in the future.

4.1.3 Extensibility

The implementation choices of CY-CGEN are not definitive. Its modular architecture
fosters extensibility and separate concerns. CY-CGEN provides some core features neces-
sary for implementing a basic network, i.e., wiring the things and enforcing the policies.
It does not implement expertise knowledge but offers mechanisms to achieve it by experts

99

Chapter 4 – Generation of the Network Artifacts

using plugins. By expertise knowledge, we refer to the ability to use the network model
information to extract some advanced knowledge w.r.t. the network, i.e., to use the net-
work elements as the input of a specific procedure to generate some original artifacts that
generally requires some expertise (e.g., the specification of access control rules).

The proposed architecture provides access to the core of the generation process via
plugins. Table 4.1 shows the available interfaces for plugins where each interface corre-
sponds to a phase. It accomplishes a definite task and imposes a specific type of input
and output. Indeed, a typical network of things may involve some expertise (e.g., safety,
access control, data consistency). The plugin system provides experts a way to include
their concerns in the code generation process. For instance, as a proof of concept, we
implemented a plugin to generate access control rules for a Mosquitto MQTT broker (cf.
Section 4.2.2). We hook this plugin to the Generate interface that provides us with the
network model and the transformed ThingML models. We then utilize them to produce
a set of access control rules that must be enforced in the broker for a safe deployment.
The same principle may be applied for any other network artifact.

4.2 Model Transformation

MT [78] is a process based on transformation rules (usually written by experts) that
takes one or more input models to produce a target artifact. We use both types of trans-
formations, i.e., M2MT and M2TT, for the interpretation of the network model.

The Transformation Process (T-PROCESS) (cf. Figure 4.2), i.e., the transformation
work accomplished inside the CY-CGEN, takes place at the Transform phase. It has the
function to transform the input models, i.e., the CY-Model and TH-Models, into the
target artifacts by changing the behavior of the TH-Models according to the CY-Model,
and if necessary generating any related textual artifact. In this process, the experts are
expected to map the abstract concepts into low-level concepts for the artifacts’ automatic
generation.

As shown in Figure 4.2, we use ATL 1 for M2MT and Acceleo 2 for M2TT, two state-
of-the-art transformation tools. We use two technologies for transformation because ATL
targets only M2MT while Acceleo targets only M2TT. ATL uses rules to apply the trans-
formation, where it matches an element in the input model to produce another element

1. https://www.eclipse.org/atl/
2. https://www.eclipse.org/acceleo/

100

4.2. Model Transformation

T-PROCESS

CyprIoT
Model

Input CyprIoT
Model

Model-To-Text
Transformation

Model-To-Model
Transformation

CyprIoT
Model

ThingML
Model ThingML

Model

Transformed
according to

CyprIoT Model

AC Rules

Configuration
File

Documentation

ThingML
Model

ThingML
Model

ThingML
Model

Import

Thing 1 Thing 2 Thing 3

For each thing

Expert Zone

{} Low-Level Code
(C, JAVA, Arduino..etc)

produce
using

T-CGEN

Modelling Zone

do

do

input

input transform

Using Abstract Concepts

produce
using

templates

etc.

Figure 4.2 – Generation of network artifacts using the T-PROCESS; Modeling Zone:
specification of the network and things; Expert Zone: interpretation of abstract concepts
into low-level concepts by experts for the generation of artifacts

in the output model that is satisfying the rule. Acceleo relies on templates, where it fills
a template’s placeholders with information from the input model.

The next subsections explain how ATL and Acceleo generate our network artifacts.

4.2.1 Model-to-Model Transformation

M2MT allows us to decorate the TH-Model (i.e., the behavior of the thing) according
to the CY-Model (i.e., the specification of the network) at the model-level. Indeed, it
takes information from the CY-Model and adds only what is needed to the TH-Model to
conform to the specification of the network. As this process takes place at the model-level,
interoperability is preserved. The transformed TH-Models are then used to generate their
equivalent in the low-level code using TH-CGEN.

The ATL rules of this process are provided in Appendix C and depicted in this section
using Graph Transformation Rules (GTR) [155]. In the GTR, the left-hand side (LHS)
shows the TH-Model before transformation, while the right-hand side (RHS) shows the
TH-Model after transformation. All the elements added in the RHS (in white) are added
according to the specification of the network in the CY-Model.

We present how we use two M2MT to adapt TH-Models according to the CY-Model:
(1) adding the communication interface according to the network (i.e., adding the protocol

101

Chapter 4 – Generation of the Network Artifacts

ThingMLThing

MyPort

Message

hasPort

acceptMessage

ThingMLThing

MyPort

Message

hasPort

acceptMessage
MyProtocol

MyExternalConnector

addressAnnotation serializerAnnotation

portNumberAnnotation

pathAnnotation

LHS RHS

hasAnnotation

connectPort

viaProtocol

hasAnnotation

MyPort

Message

acceptMessage

LHS

State

ReceiveMsgEvent

MyExternalConnector

MyProtocol

waitForEvent

receivesOnPort

receivesMessage

connectPort

viaProtocol

MyPort

Message

acceptMessage

RHS

State

ReceiveMsgEvent

MyExternalConnector

MyProtocol New_ Protocol

New_ExternalConnector

New_PortacceptMessage

waitForEvent

MsgSend

hasActionreceivesOnPort

receivesMessage
sendsReceivedMessage

sendOnPort

connectPort
connectPort

viaProtocolviaProtocol

(1) Adding the communication interface

(2) Forwarding an existing binding

hasAnnotation

hasAnnotation

Figure 4.3 – Upper Part (GTR (1)): Adding the communication interface according to
the specification of the network. Lower part (GTR (2)): Forwarding an existing binding;
white boxes are added based on the CY-Model; the added External Connector box is
thicker for readability purpose only.

and path) and (2) forwarding an existing binding. (1) and (2) tackle the networking
problems in Chapter 2 respectively in Sections 2.1.4 and 2.1.5. In Section 4.3, we show
how we tackle the enforcement of the policies.

Wiring

The upper part of Figure 4.3 depicts the GTR of (1), the full code in ATL syntax is
provided in Appendix C. On the RHS, the elements in white (i.e., MyExternalConnector,
MyProtocol and some annotations) are added according to the specification of the network
in the CY-Model. An external connector links a port to a protocol and uses annotations
for the configuration of the protocol (e.g., for MQTT, the annotations specify the broker
address, the port, the topic, and the serialization format). Indeed, a bind consists of adding
MyExternalConnector to the TH-Model along with the connection information specified in
the CY-Model. TH-CGEN reproduces the equivalent of this external connector in the low-

102

4.2. Model Transformation

level code. For instance, for myRD in Listing 4.1, it adds the external connector to connect
the port receivingTemperaturePort via the protocol MQTT (with the configuration: addres-
sAnnotation=“mqtt.atlanmod.org”, serializerAnnotation=“JSON” and the portNumber-
Annotation=“1883”) through the path (i.e., topic) pathAnnotation=“temperatureTopic”.
The annotations values are defined within TH-CGEN and must be filled for each proto-
col within the model. This specification gives TH-CGEN all the information needed to
generate the low-level code containing the correct communication interface for myRD.

If the target programming language is C/Posix and the communication protocol is
MQTT, then TH-CGEN generates a statechart communicating via MQTT in C/Posix
language; the same would apply in the case of Java or Arduino. Indeed, ThingML offers a
plugin system to implement protocols. The plugin developer must define how to map the
protocol’s specification in the model to its equivalent in a target programming language.
Thus, as the low-level code is a mere translation of the TH-Model, interoperability is
preserved at the low-level code. The T-PROCESS applies this M2MT to all things in the
network. So, in summary, the function of this transformation is to connect things in the
form of a network.

Forwarding

The lower part of Figure 4.3 depicts the GTR of (2), the full code in ATL syntax is
provided in Appendix C. To forward the binding corresponding to MyExternalConnector
(via MyProtocol using MyPort), we create a New_ExternalConnector with a New_Pro-
tocol (i.e., creating a new external connector using the protocol needed for forwarding).
For the sake of readability, we omitted adding the annotations (that are similar to (1)) of
the New_ExternalConnector and New_Protocol. The transformation looks for any state
waiting to receive the message to forward (i.e., ReceiveMsgEvent waiting for Message)
and adds the action MsgSend to the event. MsgSend consists of sending the received mes-
sage as such using the New_ExternalConnector (via New_Protocol using New_Port that
accepts the same received message). This transformation is useful to enable a seamless
cross-range interoperability using an intermediary thing as a bride between ranges. It en-
ables to forward a received message as such with, e.g., a protocol pi via a new protocol,
e.g., pj, presuming that the thing is physically equipped to support both protocols.

The transformed TH-Models “interoperate” at the model-level as only abstract and
unified concepts (e.g., port, path, bind) are used. TH-CGEN (cf. Figure 4.2) reproduces
the same concepts at the low-level code for each TH-Model (i.e., same statechart, same

103

Chapter 4 – Generation of the Network Artifacts

communication interface) according to the specified target programming language for each
thing.

4.2.2 Model-to-Text Transformation

The lack of low-level concepts’ unification adds another layer of complexity to inter-
operability between things. Indeed, heterogeneity of low-level concepts (e.g., user, topic,
URL, permission, documentation, configuration) inhibits connecting things safely and
leads to poor synchronization between all the network elements. This subsection shows
how we use the unified network specification to automatically generate some network
artifacts using M2TT.

M2TT allows us to generate any related textual artifact that is not part of the in-
ternal behavior of a thing (e.g., access control rules, configuration file, documentation).
The information necessary to make these artifacts is usually contained in the network’s
specification, yet it needs to be written in the right format. For instance, in the example
of Listing 4.1, we must ensure a secure access control into the MQTT broker between the
myGW and myRD. The information about access control is contained in the CY-Model.
We must write it in the right syntax, i.e., the syntax of the target broker at low-level;
Figure 4.4 shows an example for Mosquitto 3, RabbitMQ 4. The goal of M2TT is to gen-
erate this kind of artifacts based on templates. It uses the network’s unified specification
to synchronize, using an automatic process, the low-level textual artifacts. By synchro-
nization, we refer to the ability to reproduce the same information uniformly through all
the artifacts of the network (e.g., the equivalent information that appears in the access
control rules should appear in the documentation file).

The syntax and semantics of these textual artifacts are specified using Acceleo tem-
plates. Figure 4.4 depicts an illustration of how Acceleo textual generation works. To show
that this process can be applied to generate various textual artifacts based on the same
source model, we provide a demonstration on how to generate the same access control
rules for two MQTT brokers, namely Mosquitto and RabbitMQ. As shown in the figure,
the M2TT fills their respective templates automatically using the information contained
in the CY-Model.

Moreover, the artifacts may be diverse; the CY-CGEN offers an interface to the
T-PROCESS via the plugin system. Thus, a developer can make a custom plugin to

3. https://mosquitto.org
4. https://www.rabbitmq.com

104

4.3. Enforcement Strategies

Mosquitto Access Control Rules

user Bob
topic write org/atlanmod/smarthome/myMQTTChannel/tempMQTTPath
user Monitor
topic read org/atlanmod/smarthome/myMQTTChannel/tempMQTTPath

network {
 domain org.atlanmod.smarthome
 instance myRD : remoteDisplay platform JAVASCRIPT owner Monitor
 instance myGW : gateway platform ARDUINO owner Bob
 bind sensedTempBind : myGW.receivingTempPort <= tempZigbee{tempPath}
 forward sensedTempBind to myMQTTChannel{tempMQTTPath}
 bind myRD.receivingTemperaturePort <= myMQTTChannel{tempMQTTPath}
}

Legend (after transformation)
text

text
Part of Acceleo Template
Added based on C-Model

$ rabbitmqctl set_permissions bob " " "org/atlanmod/smarthome
/myMQTTChannel/tempMQTTPath" " "
$ rabbitmqctl set_permissions monitor " " " " "org/atlanmod/smarthome
/myMQTTChannel/tempMQTTPath"

RabbitMQ Permissions Commands
Model to Text Transformation

C-Model (in C-DSL syntax)

Figure 4.4 – Generation of access control rules for Mosquitto and RabbitMQ using M2TT;
same information indicated with same sign; for RabbitMQ syntax, first argument (" ") is
for configure permission, second for write permission and third for read permission.

generate any textual artifact in a traceable manner by leveraging any step of the code
generation process. In a large network, writing many of these textual artifacts uniformly
is time-consuming (e.g., requires learning a new syntax, synchronizing the artifacts man-
ually) and exposes the IoT engineer to introduce more bugs.

4.3 Enforcement Strategies

The enforcement refers to the implementation of the policies in the generated ar-
tifacts. It takes place at the Transform phase and relies on MT. In Section 4.3.1, we
present our strategy to implement the enforcement of communication control rules, and
in Section 4.3.2, we present our strategy to implement the smart rules. We also point out
the various other strategies that could be implemented.

4.3.1 Enforcement of Communication Control Rules

The enforcement of communication control rules consists of interpreting the rules
presented in Section 3.2 to include them inside the deployable network artifacts. In this
section, we first discuss the possible enforcement checkpoints in a network (i.e., areas
where we can take action for enforcement), then, the enforcement mechanisms.

105

Chapter 4 – Generation of the Network Artifacts

Thing Thing

Broker

Checkpoint Send Receive

Figure 4.5 – Enforcement checkpoints

Enforcement Checkpoints

As depicted in Figure 4.5, controls can be enforced at various checkpoints of the
network architecture: 1) in the broker (if any), by controlling the access to it, or 2) in
the thing by changing its internal behavior in the TH-Model, on send or on receive. The
choice of the right enforcement checkpoint depends on the strategy. Some checkpoints may
be more or less preferable for various reasons such as security, trust, or implementation
challenges in some scenarios.

From a security perspective, controlling the communication on receive requires check-
ing whether the message satisfies the control conditions before the reception. The message
can still be intercepted while traveling and demands additional processing on receive. This
processing may waste (scarce) resources in case the received message does not satisfy the
conditions. Whereas, when communication is controlled on send, the message remains
until it meets the control conditions; this is more secure and privacy-friendly as the thing
keeps control over the message. Moreover, sometimes distributed control can be more
scalable and flexible and avoids the single point of failure risk associated with the broker.

Enforcement Mechanisms

Our methodology relies on separating the specification from the implementation; the
policy’s enforcement depends on the parameters of the specified network. Hence, many
enforcement strategies at the implementation may be adopted according to these param-
eters.

The enforcement mechanisms of a communication control rule consist of programmati-
cally allowing or denying sending or receiving on the checkpoints, at the model level, using
M2MT, i.e., transforming the behavior inside the TH-Model to satisfy the rule. We show
a few examples of such mechanisms using illustrative figures. All these mechanisms are
applied at the model-level using M2MT and are permitted by the TH-Model formalism.

106

4.3. Enforcement Strategies

The full code in ATL syntax is provided in Appendix D.
Figure 4.6 shows an example of a simple rule consisting of three things. The rule

denies thing2 from receiving any message from thing1. In this case, the enforcement, as
stated by the rule, occurs at thing2 on the receive checkpoint. The same mechanism is
applied in Figure 4.7, but on the send checkpoint. We consider that this enforcement is
correct as it translates the exact meaning of the rule in the implementation. Sometimes
the correct enforcement may not be possible at low-level for technical reasons. Indeed,
several deployment factors, such as the expected architecture or hardware infrastructure,
may influence the enforcement. So far, we experimented with these enforcements with
specific usecases consisting of the most used things and channels. If these enforcements
do not fit the technical environment at runtime, experts must develop a plugin to fill this
gap.

thing1

thing2

Broker

Deny Allow Send Receive

thing3

rule thing2 deny:receive thing1

Figure 4.6 – Enforcement at the “on receive” checkpoint

thing1

thing2

Broker

Deny Allow Send Receive

thing3

rule thing2 deny:send thing1

Figure 4.7 – Enforcement at the “on send” checkpoint

107

Chapter 4 – Generation of the Network Artifacts

thing1

thing2

Broker
thing3

rule Alice deny:receive Bob

Bob Alice

owns owns

Figure 4.8 – Enforcement of a user-based rule

thing1
<sensor>

thing2
<sensor>

Broker
thing3

<actuator>

rule sensor deny:receive Broker
rule actuator deny:send Broker

<text> assigned role

Figure 4.9 – Enforcement of a role-based rule

Figure 4.8 shows the enforcement of a rule involving users. Alice is denied to receive
any message from Bob. The enforcement consists of preventing any message, sent by any
thing owned by Bob, to be received by any thing owned by Alice.

Figure 4.9 shows the enforcement of a rule-based on roles. The first rule denies any
thing with the role sensor from receiving a message from the broker, as a sensor is only
expected to send data. The second rule denies any thing with the role actuator from
sending a message to the broker, as an actuator is only expected to receive instructions.
The enforcement targets all the things having these roles and blocks the reception of
messages on the receive checkpoint for sensors and on the send checkpoint for actuators.

In some cases, the correct enforcement of the rule is a undecidable, i.e., it is impossible
for the CY-CGEN to decide the correct enforcement. For instance, the rule in Figure 4.10
denies thing1 from sending a message to thing2. thing2 and thing3 consumes the same
path. If we deny thing1 from sending to the path of thing2, we will be preventing thing3

108

4.3. Enforcement Strategies

thing1

thing2

Broker
thing3

rule thing1 deny:send thing2

Enforcement Strategy : Best Effort

Figure 4.10 – Enforcement of a Best-Effort strategy

from receiving the message. Thus, the correct enforcement, as stated by the rule, is not
possible in this configuration. In this case, rely on the enforcement strategy, as shown in
Line 3 of Listing 4.1, to find a trade-off.

1 network mySimpleNetwork {
2 domain org.atlanmod.mynetwork
3 enforce myPolicy Best−Effort
4 ...
5 }

Listing 4.1 – Specifying the enforcement strategy

The enforcement strategy serves as a tie break in contentious rules. It backs CY-CGEN
to decide how to interpret the rules and implement them at the transformed TH-Models.
We suggest three strategies: Best−Effort, Deny−First and Allow−First. The Best−Effort
strategy is our default strategy. It enforces correctly as many rules as possible and finds
a trade-off with minimal risk to safety for contentious rules. For instance, Figure 4.10
presents a contentious rule where we enforce the control at thing2 by preventing it from
receiving any message from thing1, instead of enforcing this control at thing1 as this
exposes thing1 to leak its messages to thing3. The strategy Deny−First presumes that
all communications are denied unless there is a rule allowing them. While the strategy
Allow−First assumes the opposite, i.e., all communications are allowed unless there is a

109

Chapter 4 – Generation of the Network Artifacts

rule denying them. These enforcement strategies must be implemented once by an expert
in the form M2MT or M2TT and are applied automatically by CY-CGEN.

4.3.2 Enforcement of Smart Rules

As the network specification relies on unified concepts at the model-level, we avoid
interoperability issues to achieve smart scenarios. The enforcement of smart rules consists
of adding only what is needed in each thing so that the output model conforms to the rule.
As shown in Figure 4.2, the enforcement relies on a M2MT based on ATL. The transfor-
mation inputs are the CY-Model and the TH-Model of the thing to be transformed. The
output is a transformed TH-Model incorporating the needed part from the smart rule.

ThingMLThing

Statechart

otherState

hasBehavior

LHS RHS

subjectState

Port
hasPort

hasState

ThingMLThing

Statechart

otherState

hasBehavior

subjectState

Port
hasPort

hasState

MessageSendAction

OnEntry

CommandMsg

sendMessage

acceptSendingMessage

usePortToSend

hasOnEntry

hasMessageSendAction

ThingMLThing

Statechart

State1

hasBehavior

LHS RHS

State2

Port
hasPort

hasState

State3

Function

Parameter

hasFunction
hasState

hasParameter

Thing

Statechart

State1

hasBehavior

State2

Port
hasPort

hasState

State3

Function

Parameter

hasFunction

hasState

hasParameter

ReceiveMsgEvent

ReceiveMsgEvent

ReceiveMsgEvent

ExecFunction

CommandMsg

ExecFunction

ExecFunction

functionToExecute

hasAction

hasAction

hasAction

waitForEvent waitForEvent
waitForEvent

acceptMessage
receivesMessage

Figure 4.11 – Upper Part for Subject, Lower Part for Object; applying the trigger:exe-
cuteFunction rule GTRs (3) with the subject thing having two states and the object thing
having three states; white boxes are added based on the CY-Model.

There may be various way to enforce smart rules, we present here our implementa-
tion. This implementation serves as a proof of concept, more advanced implementations
covering other concerns may be implemented in the future. Figure 4.11 depicts the GTR
of trigger:executeFunction rule (cf. Line 3 of Listing 3.1) and Figure 4.12 the GTR of

110

4.3. Enforcement Strategies

trigger:goToState rule (cf. Line 2 of Listing 3.1). The full code in ATL syntax is provided
in Appendix C.

The enforcement of a trigger:executeFunction rule consists of two M2MTs; one for the
subject thing and the other for the object thing. On the one hand, in our implementation,
this transformation must add in the subject thing a way to inform the object thing
that it entered the subject state and, on the other hand, to add a way for the object
thing to receive this information. We create a message and send it on the entry of the
subject state (i.e., we use MessageSendAction OnEntry to send CommandMsg). ThingML
offers a mechanism to listen to events within a thing (e.g., receiving a new message
event). An event waits for the message inside all states of the object thing (i.e., we use
ReceiveMsgEvent). This event is added to every state to ensure that the function can be
executed anytime regardless of thing’s current state. Once the object thing receives the
message, it executes the function (i.e., we use ExecFunction) with the specified Parameter
in the rule. We try to send the message using an existing path between the two things. If
no direct path exists between them, we try to find an indirect path.

ThingMLThing

Statechart

otherState

hasBehavior

LHS RHS

subjectState

Port
hasPort

hasState

ThingMLThing

Statechart

otherState

hasBehavior

subjectState

Port
hasPort

hasState

MessageSendAction

OnEntry

CommandMsg

sendMessage

acceptSendingMessage

usePortToSend

hasOnEntry

hasMessageSendAction

ThingMLThing

Statechart

State1

hasBehavior

LHS RHS

State2

Port
hasPort

hasState

objectState

Function

Parameter

hasFunction
hasState

hasParameter

Thing

Statechart

State1

hasBehavior

State2

Port
hasPort

hasState

objectState

hasState

ReceiveMsgEvent

ReceiveMsgEvent

Transition

CommandMsg
Transition

hasAction

hasAction

waitForEvent
waitForEvent

acceptMessage
receivesMessage

gotToState

goToState

Figure 4.12 – Upper Part for Subject, Lower Part for Object; applying the trigger:goTo-
State rule GTRs (4) with the subject thing having two states and the object thing having
three states; white boxes are added based on the CY-Model.

111

Chapter 4 – Generation of the Network Artifacts

The trigger:goToState rule in Figure 4.12 uses the same principle, but adds, inside all
states of the object thing, a transition to the state to go to (instead of an ExecFunction
in comparison with a trigger:executeFunction rule). These transformations enable the
enforcement of a smart scenario at the model-level. TH-CGEN reproduces the equivalent
statechart for each thing in the low-level code.

4.4 Summary

The last step of our methodology consists of generating network artifacts from the
network model. This chapter introduced an extensible code generator, named CY-CGEN,
capable of interpreting the model and generating the specified network’s artifacts. Fig-
ure 4.13 depicts the global picture of our methodology, compared to the previous version,
we added the part responsible of the generation of the artifacts.

DSL
File

Input

C Code Arduino
Code

Java
Code

import

ThingML

Code generator

Transformed
ThingML models

generates

Code generators

ge
ne
rat
es

ThingML
models

inc
lud
es

enforces

Policy

Network
Specification

Textual
Artifact

Figure 4.13 – Generation of the network artifacts: the last step of the methodology

112

Chapter 5

ASSESSMENT

This chapter wraps up the content of the present thesis and to highlight its value.
Section 5.1 embodies the engineering steps of the methodology. Section 5.2 evaluates it.
Section 5.5 discusses its most valuable insights and raises its limitations.

5.1 Methodology

We present our methodology in the form of a rigorous procedure to be easily repro-
duced or extended. Moreover, we apply it on a hypothetical case study in Section 5.3, and
provide directions for some of its potential applications in Section 5.4.

We opted for a BPMN to outline the engineering process to follow by software engi-
neers, according to their responsibilities. BPMN is a model-based method proposed by
the OMG to describe the process of business activities using a readable diagram [156].
Figure 5.1 depicts the BPMN diagram of our methodology. Three responsibilities share
the execution of the tasks presented previously (cf. Section 2.1), the Thing Designer,
the Network Designer, and the Policy Designer. Each responsibility is contained in
a row that comprises a set of tasks.

113

C
hapter

5
–

A
ssessm

ent

Figure 5.1 – BPMN diagram of the methodology

114

5.2. Evaluation

5.2 Evaluation

In this section, we discuss our results. Section 5.2.1 evaluates from a quantitative
perspective the performance of our methodology in terms of Lines of Code (LoC). From a
qualitative perspective, Section 5.2.2 points out some of its essential characteristics that
improve software engineering for the IoT as a whole.

5.2.1 Quantitative Evaluation

We tested our methodology on networks ranging from 1 to 25 things. We use traditional
software engineering as a baseline, with things based on C (suitable for any range), Java
(ideal for medium and large things), and Arduino (ideal for small things). We compare
the LoC needed between the baseline and our model-based methodology. The compared
code for C, Java and Arduino is the output of CY-CGEN; code written by real software
engineers should be within these ranges. As our focus is on networking, we presume that
the behavior of things is not part of this evaluation as it has been evaluated within the
ThingML approach [90]. We compare only the LoC needed for networking and policy
enforcement. We removed the comments and empty lines from the counts.

For this experiment we used MQTT as a communication mean. C, Java, Arduino and
MQTT are among the most used technologies in the IoT [157]. Table 5.1 depicts our
results, we save for each thing:

— 175 LoC (94.09% gain) for C, 126 (91.97%) for Java and 91 (89.22%) for Arduino
(CY-DSL: 11 vs. C: 186 vs. Java: 137 vs. Arduino: 102) with the wiring transfor-
mation.

— 233 LoC (97.89% gain) for C, 10 (64.29%) for Java and 19 for Arduino (79.17%)
(CY-DSL: 5 vs. C: 237 vs. Java:14 vs. Arduino: 24) with the forwarding transfor-
mation.

— 118 LoC (96.72% gain) for C, 117 (96.69%) for Java and 116 (96.67%) for Arduino
(CY-DSL: 4 vs. C: 122 vs. Java: 121 vs. Arduino: 120) with the trigger:executeFunc-
tion rule.

— 122 LoC (96.83% gain) for C, 127 (96.95%) for Java and 120 (96.77%) for Arduino
(CY-DSL: 4 vs. C: 126 vs. Java: 131 vs. Arduino: 124) with the trigger:goToState
rule.

115

Chapter 5 – Assessment

Table 5.1 – Comparison of the required LoC with CY-DSL, C, Java and Arduino for each
M2MT

Number of Lines of Code

Transformation CY-DSL C (% gain) Java (% gain) Arduino (% gain)

Wiring 11 186 (94.09%) 137 (91.97%) 102 (89.22%)

Forwarding 5 237 (97.89%) 14 (64.29%) 24 (79.17%)

trigger:goToState 4 122 (96.72%)1 121 (96.69%)2 120 (96.67%)3

trigger:executeFunction 4 126 (96.83%)4 131 (96.95%)5 124 (96.77%)6

1 Subject thing (Subj): 59 LoC + Object thing (Obj): 63 LoC
2 Subj: 57 LoC + Obj: 64 LoC
3 Subj: 58 LoC + Obj: 62 LoC
4 Subj: 63 LoC + Obj: 63 LoC
5 Subj: 67 LoC + Obj: 64 LoC
6 Subj: 62 LoC + Obj: 62 LoC

The LoC correspond to the white elements in the GTRs (cf. Section 4.2), added auto-
matically by CY-CGEN. The more things are in the network, the more LoC are generated
automatically, consequently saving time and bugs with the benefit of having a tangible
specification of the network and a traceable transformation process. With traditional soft-
ware engineering, we must connect each thing separately (this task is automated by the
wiring and forwarding M2MTs, cf. Section 4.2.1), and eventually make it part of a smart
scenario (automated by the enforcement of policies, cf. Section 4.3). Traditional engineer-
ing is time-consuming in particular for large networks and exposes software engineers to
the low-level heterogeneity that increases their chances of introducing bugs.

Also, the CY-CGEN generates automatically the textual artifacts based on M2TT.
For the access control rules files of Mosquitto and RabbitMQ (two widely used MQTT
brokers in the IoT), we generate approximately 60 characters per thing and for each file
in the worst-case scenario. Factors such as the granularity of control may influence the
complexity of the rules and the number of characters. More characters could understand-
ably be saved if additional textual artifacts are needed, with a reasonable investment in
time to write the plugin and the Acceleo template of the M2TT, set it up and forget it.

Figure 5.2 shows the time needed to generate the network according to the number
of things. We notice that the execution time grows exponentially, possibly due to some
implementation issues. As future work, we will explore some implementation strategies to
improve the scalability of code generation.

116

5.2. Evaluation

Figure 5.2 – CY-CGEN execution time according to the number of things

5.2.2 Qualitative Evaluation

The present thesis introduces a methodology also contributing to some intangible
factors w.r.t. to software engineering for IoT, such as the communication between stake-
holders, the separation of concerns, and the ability for early bug detection. We describe
here the qualitative value of our contribution in that respect.

Communication skills are crucial in software engineering [147]. Indeed, having a high-
level model of the network could improve communication between stakeholders as it fosters
sharing development results and facilitates close collaboration [9]. The CY-Model, because
it uses primitive concepts and a representation, presents the intended networking scenario
in a readable fashion. In this model, changes can be applied earlier to fit stakeholders’
needs before moving forwards. Also, the CY-Model serves as a unique source to generate
the artifacts needed by each stakeholder using the CY-CGEN or, eventually, a manual
process. This disposition allows us to quickly move towards a common goal [148] by relying
on a unique global picture.

The process in Figure 5.1 depicts the concerns and their relationships, making each
step of the engineering deterministic and consequently manageable. Indeed, each matter
has its specific set of tasks directed towards a particular interest (i.e., thing behavior tasks
for the Thing Designer, network behavior for the Network Designer, and constraints on

117

Chapter 5 – Assessment

Smart Curtain

Smart Light

Outdoor
Light Sensor

C

Smart
Air Conditionner

Remote Display

Temperature
Sensor

C

Zigbee

Z-wave

MQTT

Gateway

Movement Sensor

Zigbee

Bluetooth

Zigbee

Legend
Direct Path

Example of Indirect Path

Temperature Sensor Statechart Example

Initiliaze

Sensor
Initialized

isHigh

Temperature <20

isLow

Temperature >20

Function
senseTemperature()
 returns Integer

Properties
ManufacturerName : String
Temperature : Integer
Port
sendTemperature

JS

C

Arduino

C

C

Door
LockC

Zigbee

Go

Z-wave

C Programming Language

Figure 5.3 – A smart home example

the network for the Policy Designer).
The CY-DSL provides some real-time insights in the editor to prevent inconsistencies

(e.g., communication using incompatible message formats, incompatible port and path),
using auto-completion or by showing suggestions. These insights give the software engi-
neers a tool to avoid bugs earlier and are consequently saving time [145, 146].

Finally, the evaluation of communication control rules lacks because it was difficult
to quantify their benefits (some rules may remove LoC, and some may add more), we
will evaluate them in the future. Nevertheless, these rules save time by exempting the
IoT engineer from controlling the communication using heterogeneous concepts at a low-
level. Generally speaking, we expect that some significant time would be saved using our
methodology, w.r.t. dealing with heterogeneity. Indeed, adapting each thing at a low-level
requires more engineering skills to find the right solutions to wire heterogeneous things,
while this redundant work could be automated in the CY-CGEN.

5.3 Case Study: Smart home

To illustrate our methodology, we present a case study consisting of a simple smart
home. In Section 5.4, we point out the possibilities to leverage our methodology on more
potential applications.

118

5.3. Case Study: Smart home

5.3.1 Description

In this section, we describe the case study, namely the network and the policies, then
we provide its implementation with CY-DSL syntax in Section 5.3.2.

Network

We illustrate our study with the smart home of Figure 5.3. Bob is a user and the
owner of the smart home. We opted for a smart home as it generally contains heteroge-
neous things and protocols and requires few smart scenarios. Heterogeneous computing
platforms (e.g., C, Java, Python) and communication protocols (e.g., MQTT, Zigbee,
Z-Wave, Bluetooth) are used.

The Gateway (C, owner: Bob) is based on an Arduino program and supports Zigbee,
Z-wave, and Bluetooth. The first group consists of tiny things, namely the Temperature
Sensor (C/Posix, owner: Bob), the Outdoor Light Sensor (C/Posix, owner: Bob), and the
Movement Sensor (C/Posix, owner: Bob). The second group consists of medium things;
namely the Smart Light (C/Posix, owner: Bob), the Door Lock (C/Posix, owner: Bob).
The third group consists of large things, namely the Smart Air Conditioner (Go, owner:
Manufacturer—presuming that some devices are owned by their manufacturer for mainte-
nance reasons), the Smart Curtain (Arduino, owner: Manufacturer), and the Remote Dis-
play (Javascript, owner: Manufacturer). Three ranges are represented, each corresponds
to a role assigned to the thing: small (i.e., resource-constrained, e.g., temperature sensor),
medium (sufficient resources, but limited, e.g., gateway), large (no resource constraints,
e.g., Remote Display). The wiring of these things follows the scheme in Figure 5.3 and is
the Network Designer’s responsibility.

The behavior of things is based on TH-Models, consisting of statecharts. Sometimes,
we could not represent the entire behavior using only ThingML concepts; in this case,
we embedded some low-level code in some states of the statechart. The correctness of
this embedded code is the responsibility of the Thing Designer. From a Network Designer
perspective, what matters is the wiring of these TH-Models, i.e., the communication flow.

Policies

We presume that we have two policies, one for communication control named commPolicy
, encapsulating the interest of a maintenance agent, and the other for smart scenarios
called smartPolicy, encapsulating the interest of an automation agent.

119

Chapter 5 – Assessment

The commPolicy consists of these two rules:

— Usecase 1: For privacy reasons, Bob devices should not communicate with the
manufacturer devices.

— Usecase 2: Because of their limited resources, the small things should be denied
to communicate directly with large things.

The smartPolicy consists of these three rules:

— Usecase 3: If the temperature is high, the air conditioner should start cooling.
— Usecase 4: During the night, the light should be turned on and the smart curtain

should be closed.
— Usecase 5: If there is no movement in the house, the door should be locked.

5.3.2 Implementation

First, in Listing 5.1, we start by declaring the types of things that we use in the
network, each declaration imports the TH-Model encapsulating the thing’s behavior. We
also assign to each thing a role corresponding to its size. We will use this information in
the policies (cf. Listing 5.3).

Second, in Listing 5.2, we declare the necessary channels for our network. We have five
channels. The first channel is dedicated to the Zigbee communications in the Gateway; it
contains two paths, one for the communication with the Temperature Sensor and another
for the Outdoor Light Sensor. The second channel is dedicated to the Gateway’s Bluetooth
communication; it contains one path for communication with the Movement Sensor. The
third channel is dedicated to Z-wave communications in the Gateway; it comprises two
paths, one for the communication with the Smart Light and another for the Door Lock.
The fourth channel is dedicated to the MQTT communication between the Gateway and
the Remote Display. This channel aims to forward the existing local communications
between the Gateway and the local things, to the Remote Display. The Gateway serves
as a more powerful thing to permit these small things (i.e., Temperature Sensor, Outdoor
Light Sensor, Smart Light, Door Lock) to communicate with a larger thing (Remote
Display). The channel contains four paths, each of these paths is meant to forward the
Zigbee and Z-wave communications of the Gateway. The fifth channel is dedicated to the
local Zigbee communication between the Smart Curtain and the Outdoor Light Sensor.

Third, Listing 5.3 we declare two policies; the policy named commPolicy aims at con-
trolling the communication in this network. The rule in Line 4 implements the usecase

120

5.4. Potential Applications

1 by restricting the things owned by the user Bob from communicating with the things
owned by the Manufacturer. The rule in Line 7 implements the usecase 2, by preventing the
things with the role smallThing from communicating with those with the role largeThing.

The policy named smartPolicy aims at creating smart scenarios. The rules in Lines 14
and 15 implements the usecase 3, i.e., when the TemperatureSensor is in the state isHigh,
the smartAirCond need to in the state isOn and execute the function setTemperature to set
the temperature to 25řC. The rules in Lines 18 and 19 implements the usecase 4, i.e.,
when the outdoorLightSensor is in the state dark, the smartLight needs to go to the state isOn
and the smartCurtain needs to go to the state isClose. The rules in Line 22 implements the
usecase 5, i.e., when the movementSensor is stable, the smartLock needs to go to the state
isLock.

Fourth, Listing 5.4 shows the implementation of the network. We enforce the former
policies in Line 5. Then, we create, from the one hand, the instances of things between the
Lines 7 and 15, and from the other hand, the instances of channels between the Lines 17
and 20. We bind the ports of the instances of things with the channels as intended by the
local network topology between the Lines 23 and 41. Finally, we forward the existing local
communications of the Gateway to the Remote Display via MQTT between the Lines 43
and 46.

5.4 Potential Applications

Our methodology offers the first brick for a fully integrated model-based software
engineering approach for the IoT. The plugin system opens the door for more extensibility.
Thus, if the current version does not satisfy an IoT application’s requirements, one can
still create a plugin to cover its needs. In this section, we enumerate some future potential
applications.

5.4.1 Smart City

At its current version, the CY-DSL supports the specification of only one network.
Yet, in the future, we can easily extend it to cover more than one network, with the
possibility to interconnect them. In that respect, our methodology could incorporate larger
applications involving many networks, such as a smart city.

A smart city [158] may contain multiple networks and policies, e.g., a network for

121

Chapter 5 – Assessment

traffic management, a network for electricity distribution, or a network for law enforce-
ment. These networks may be wired at the model-level independently from their technical
implementation and enforce various policies.

5.4.2 Industry 4.0

Industry 4.0 [159] consists of multiple networks achieving various scenarios in an in-
dustrial context. It generally consists of static networks. Rigor in the specification of these
networks is highly desirable for efficiency and failure avoidance.

Moreover, the communication between stakeholders (e.g., quality control officer, safety
officer, marketing manager) is crucial, hence the need for a common representation such
as a network model. This model could be a great asset to keep the processes transparent
for all these stakeholders.

Finally, in such a context, a model could also be used for various purposes, such as
real-time visualization, diagrams, security purposes, and automation.

5.5 Discussion

MDE helps automate many redundant tasks during the software engineering cycle
of an IoT application. The specification of a network helps unify the language, foster
sharing the development results of stakeholders, and separate concerns at the model-
level, consequently improving communication between engineers [9]. The code generator
avoids manual work that is often a source of bug-prone code. This approach bridges the
gap between heterogeneity and interoperability, two necessary but conflicting ideals for
the IoT. Nevertheless, some remarks and threats to validity should be considered. We
discuss them in this section.

5.5.1 Research Considerations

We justify a few research choices taken throughout the present work. First, we explain
the reasons behinds the way of designing a network. Second, we give our point of view
w.r.t. heterogeneity in the IoT. Third, we discuss how we are tackling the interoperability
problem in the IoT [160, 140].

122

5.5. Discussion

On Designing the Network

In our approach, we assume that the network’s design must be fixed during the mod-
eling phase, i.e., that its components (e.g., things, channels, users) and its topology are
defined during this phase. This assumption excludes any dynamic network, i.e., a network
that may change at runtime, from the present thesis’s scope.

We envision tackling dynamic networks in the future. We consider that the first major
milestone of the methodology, that we address in the present work, consists of connecting
things regardless of their implementations at low-level (e.g., languages, protocols) at the
model-level without interoperability issues.

At low-level, implementing a simple exchange in the IoT requires ensuring separately
that the things have a way to exchange information, either directly (using the same pro-
tocol) or indirectly (using an intermediary thing). They may also be programmed using
heterogeneous programming languages, thus leading to repeat the same task (i.e., imple-
menting the protocol) for two programming languages. Such manual software engineering
work is bug-prone, repetitive especially for large networks.

On Heterogeneity

The intrinsic heterogeneity of the IoT creates barriers to interoperability between
ranges. A range is any collection of things that are using quite homogeneous technologies.
For instance, because of its limited resources, a small thing may not send data directly
to a larger one, such as a remote server. We need a bridge between them. Implementing
correctly such a bridge is not trivial, as a good deal of expertise, platforms, protocols,
and hidden risks are involved. Hence, the necessity to separate concerns, as advocated
throughout this work.

Moreover, the lack of consensus for standard and proprietary technologies leads to
interoperability issues within the same range. For instance, a thing supporting Zigbee
cannot communicate directly with a thing using Z-wave, although there are both in the
same range. A common practice consists of using an intermediary thing such as a gateway,
supporting both protocols. Its role is to forward the message from the first thing to the sec-
ond. Implementing this mechanism at low-level is not always trivial among heterogeneous
technologies. We address this issue with the forwarding concept at the model-level.

123

Chapter 5 – Assessment

On Interoperability

Interoperability is a turning point to unlock the full potential of the IoT [161, 162].
As shown earlier, many approaches tackle the interoperability problem by avoiding het-
erogeneity, either with standards [163, 164] or a layer at runtime responsible for commu-
nication [110, 104]. Indeed, addressing the problem of interoperability at a low-level, i.e.,
adapting the code of heterogeneous things to interoperate, tends to be time-consuming
and bug-prone and complicates communication between stakeholders. Hence, the need for
a unifying methodology.

Moreover, while standardization is sufficient in a homogeneous context (e.g., HTTP
browsers, specific range of things), the challenge of connecting Anything, Anywhere, Any-
time (AAA) requires a more generic and inclusive software engineering solution that
embraces heterogeneity as an intrinsic feature of the IoT. The present methodology aims
to unify software engineering tools for the IoT, rather than eliminating heterogeneity with
a standard.

Finally, solving the interoperability problem in the IoT for any possible scenario is
challenging. We showed that MDE offers promising tools to, at least, unravel the problem
rigorously. Thus, enabling more straightforward networking, smart scenarios, and the
automatic generation of some textual artifacts contribute to interoperability. MDE could
help contain the problem without sacrificing the freedom to use the technology that works
best for the thing.

5.5.2 Threats to validity

Our approach suffers from some drawbacks of MDE [165, 166]. First, it may add
a semantic level for software engineers, provoking resistance for its adoption. Second,
it lacks a consistent integration with existing software engineering methods. Indeed, as
it still lacks maturity, a software engineer may be tempted to use it partially, creating a
maintainability problem. With this regard, we provide some thoughts in conclusion. Third,
as there is a separation between the specification and the implementation, there may be
a fear of losing control over the code. Fourth, the approach, by its nature, advocates for
a top-down development by presuming that all the network elements are known a priori,
making the structure of the designed network rigid.

Our approach needs more experimental work. First, the metamodel is incomplete and
needs more empirical experiments as we still cannot guarantee the inclusiveness and gener-

124

5.5. Discussion

icity of all networking concepts (i.e., covering all possible low-level elements of a network).
Second, we need an evaluation with real IoT engineers to assess the methodology’s ben-
efits concretely in terms of time. The current evaluation is based on the number of LoC
for M2MT and on the number of characters for M2TT (as the textual artifacts are not
necessarily code), thus suggesting approximately the time that may be saved. Third, the
current solution requires ThingML for the behavior of things, making the entry ticket
rather expensive, although we started working on a process for the reverse engineering of
a low-level code into a TH-Model. Fourth, we need more experiments on more complex
networking scenarios as the current results still do not guarantee the scalability of the
methodology.

125

Chapter 5 – Assessment

1 // User
2 user Bob
3 user Manufacturer
4
5 // Roles
6 role smallThing
7 role mediumThing
8 role largeThing
9

10 // Importing things
11 thing homeGateway
12 import "homeGateway.thingml"
13 assigned mediumThing
14
15 thing temperatureSensor
16 import "temperatureSensor.thingml"
17 assigned smallThing
18
19 thing doorLock
20 import "doorLock.thingml"
21 assigned smallThing
22
23 thing outdoorLightSensor
24 import "outdoorLightSensor.thingml"
25 assigned smallThing
26
27 thing smartLight
28 import "smartLight.thingml"
29 assigned smallThing
30
31 thing movementSensor
32 import "movementSensor.thingml"
33 assigned smallThing
34
35 thing smartAirCond
36 import "smartAirCond.thingml"
37 assigned mediumThing
38
39 thing smartCurtain
40 import "smartCurtain.thingml"
41 assigned mediumThing
42
43 thing remoteDisplay
44 import "remoteDisplay.thingml"
45 assigned largeThing

Listing 5.1 – Declaration of users, roles and things of the smart home

126

5.5. Discussion

1 channel gatewayZigbee {
2 path olsPath
3 path tsPath
4 }
5
6 channel gatewayBluetooth {
7 path msPath
8 }
9

10 channel gatewayZwave {
11 path dlPath
12 path slPath
13 }
14
15 channel gatewayMqtt {
16 path olsPath
17 path tsPath
18 path dlPath
19 path slPath
20 }

Listing 5.2 – Declaration of channels of the smart home

127

Chapter 5 – Assessment

1 policy commPolicy {
2
3 // Usecase 1
4 rule Bob deny:send−receive Manufacturer
5
6 // Usecase 2
7 rule smallThing deny:send−receive largeThing
8
9 }

10
11 policy smartPolicy {
12
13 // Usecase 3
14 rule myTS−>state:isHigh trigger:goToState mySAC−>state:isOn
15 rule myTS−>state:isHigh trigger:executeFunction mySAC−>function:setTemperature(25)
16
17 // Usecase 4
18 rule myOLS−>state:isDark trigger:goToState mySL−>state:isOn
19 rule myOLS−>state:isDark trigger:goToState mySC−>state:isClosed
20
21 // Usecase 5
22 rule myMS−>state:isStable trigger:goToState myDL−>state:isLocked
23
24 }

Listing 5.3 – The enforced policies in the smart home

128

5.5. Discussion

1 network smarthomeNetwork {
2 ///// Domain of the network
3 domain fr.nantes.bob
4 ///// Enforcing the policies
5 enforce commPolicy, smartPolicy // cf. Listing 5.2
6 ///// Instanciating things
7 instance gateway: homeGateway owner Bob platform POSIX
8 instance myTS: temperatureSensor owner Bob platform POSIX
9 instance mySL: smartLight owner Bob platform POSIX

10 instance myDL: doorLock owner Bob platform POSIX
11 instance myOLS: outdoorLightSensor owner Bob platform POSIX
12 instance myMS: movementSensor owner Bob platform POSIX
13 instance mySAC: smartAirCond owner Manufacturer platform GO
14 instance mySC: smartCurtain owner Manufacturer platform ARDUINO
15 instance myRD: remoteDisplay owner Manufacturer platform JAVASCRIPT
16 ///// Instanciating channels
17 instance zigbeeGW: gatewayZigbee platform ZIGBEE
18 instance bluetoothGW: gatewayBluetooth platform BLUETOOTH
19 instance zwaveGW: gatewayZwave platform ZWAVE
20 instance mqttGW: gatewayMqtt platform MQTT
21 ///// Binding things and channels
22 // Zigbee
23 bind myOLS.myPort => zigbeeGW{olsPath}
24 bind olsLink: gateway.olsPort <= zigbeeGW{olsPath} // olsLink is an id for this binding
25 bind mySC.olsPort <= zigbeeGW{olsPath}
26 bind myTS.myPort => zigbeeGW{tsPath}
27 bind mySAC.tsPort <= zigbeeGW{tsPath}
28 bind tsLink: gateway.tsPort <= zigbeeGW{tsPath} // tsLink is an id for this binding
29 // Bluetooth
30 bind myMS.myPort => bluetoothGW{msPath}
31 bind gateway.msPort <= bluetoothGW{msPath}
32 // Zwave
33 bind myDL.myPort => zwaveGW{dlPath}
34 bind dlLink: gateway.myTS <= zwaveGW{dlPath} // dlLink is an id for this binding
35 bind mySL.myPort => zwaveGW{slPath}
36 bind slLink: gateway.slPort <= zwaveGW{slPath} // slLink is an id for this binding
37 // MQTT
38 bind myRD.olsPort <= mqttGW{olsPath}
39 bind myRD.tsPort <= mqttGW{tsPath}
40 bind myRD.dlPort <= mqttGW{dlPath}
41 bind myRD.slPort <= mqttGW{slPath}
42 ///// Forwarding existing links to an MQTT broker
43 forward olsLink to mqttGW{olsPath}
44 forward tsLink to mqttGW{tsPath}
45 forward dlLink to mqttGW{dlPath}
46 forward slLink to mqttGW{slPath}
47 }

Listing 5.4 – Configuration of the smart home network (=> send, <= receive)

129

Chapter 6

CONCLUSION & PERSPECTIVES

The present thesis’s outcome is a novel software engineering approach based on MDE
for the IoT. We showed that by abstracting the common concepts of similar technologies
and separating the business logic from the technical details, we make software engineering
for the IoT deterministic and save a significant amount of LoC. MDE helps accelerate
engineering by defining separate responsibilities and automating many redundant tasks
that may be error-prone, using code generation.

Thus, the presented contributions lead to the following answers to our research ques-
tions:

— RQ1: What software engineering process should be followed to design
a network of heterogeneous things? The literature lacks a consistent software
engineering process for the IoT. Traditional methods contain many redundant tasks
and expose the applications to bugs, as they fail to consider the inherent features
of the IoT (e.g., heterogeneity, interoperability, smart scenarios). MDE helps unify
networking concepts at a higher-level, thus avoiding the low-level heterogeneity.
MDE should be followed at least to enable networking based on unified concepts.
By relying on these unified concepts, we can enable interoperability and smart
scenarios.

— RQ2: How can MDE enable interoperability between heterogeneous things?
By elevating the level of abstraction, MDE permits to avoid the low-level hetero-
geneity, that is the leading cause of interoperability issues. At the model-level, we
erase this heterogeneity by creating an abstract platform to specify the business
logic of the IoT application, and we offer a code generation process to reproduce
this application with the low-level (heterogeneous) concepts.

— RQ3: How can MDE provide effective control mechanisms to regulate the
behavior of a network of heterogeneous things? The proposed model-based
networking concepts offer a unified platform enabling the specification the controls

131

Chapter 6 – Conclusion & Perspectives

and their enforcement during code generation with a specific strategy.

— RQ4: What are the qualitative and quantitative benefits of using a MDE
methodology to design and implement a network of heterogeneous things?
CY-DSL provides a centralized interface for the engineering process, while the code
generator exempts the engineer from manual work, by automating the generation of
a significant amount of LoC. As this process is rigorous, traceable, and automatic,
it helps save time and avoid buggy IoT applications.

Finally, Section 6.1 lists and describes the main contributions, and Section 6.2 presents
some potential perspectives to enhance this work.

6.1 Contributions of the thesis

The present thesis advocates for an integrated model-based software engineering method-
ology to design and deploy a network of things. Thus, we consider that a first contribution
is a novel approach to designing IoT applications. The second consists of the networking
abstractions to help wire heterogeneous things. The third consists of the control abstrac-
tions and mechanisms to help define constraints on the network. The fourth consists of a
code generator, based on MT, to interpret the model and generate the artifacts.

These contributions are implemented within an open-source project available on Github,
called CyprIoT 1. To the best of our knowledge, this is the first EMF-based tool that covers
the networking side of the IoT with state-of-the-art MDE techniques.

In the following subsections, we explain how each contribution is valuable from a
research perspective and how it can be extended in some future work.

6.1.1 Contribution 1: Software Engineering Methodology

Software engineering for the IoT inherited the tools and methods of classical applica-
tions. The IoT brings about new challenges that need to be addressed with a dedicated
approach. The first contribution provides a methodology that has a more transparent
development cycle for the IoT and where responsibilities are separated according to the
layers of the MDA reference model. The outcome of this contribution is a software engi-
neering procedure for the IoT.

1. https://github.com/atlanmod/CyprIoT/

132

6.2. Perspectives

6.1.2 Contribution 2: Model-Based Network Abstractions

The ability to create a network of things without being distracted by the technical
details is pivotal in the context of the IoT, where connectivity and collaboration of things
are highly desirable. The premises of the IoT presumes that any thing needs to connect.
Still, in reality, because of the technological limitations, each range of things has its
proper way to connect, creating an interoperability problem. We fill this gap by elevating
the abstraction level at the model-level to provide more inclusive networking concepts.
So, this contribution’s outcome is the ability to specify a network of things in a unified
manner.

6.1.3 Contribution 3: Model-Based Control Abstractions

The ability to control the network is also crucial in the context of the IoT. On the one
hand, we provide abstractions to control the communications flow, and on the other hand,
we give abstractions to create smart scenarios. The latter constitutes a defining feature
of the IoT as it permits to condition the network according to the contextual factors such
as the behavior (e.g., things states) and time. So, the outcome of this contribution is the
ability to specify rules to control the network.

6.1.4 Contribution 4: Code Generator

The separation of the specification from the implementation eases the network’s design
and the automatic code generation of the low-level code. The code generator is based on
MTs to wire the things in the form of a network, enforce the policies, and generate the
low-level code. So, this contribution’s outcome is the ability to generate the artifacts of a
network of things from a model.

6.2 Perspectives

This work is far from exhaustive; it presents what we believe to be a scalable strategy
in the long run to build robust IoT applications. In the course of our research, we identified
some potential research directions that we could not address, generally because of time
or resource limitations.

133

Chapter 6 – Conclusion & Perspectives

6.2.1 Model-Driven Reverse Engineering

The first potential line of research consists of taking full advantage of Model-Driven
Reverse Engineering (MDRE), by reverse engineering things that are programmed using
traditional software engineering. It may play a vital role in the adoption of our method-
ology.

This work could take place in two stages; the first stage consists of implementing a
procedure for the reverse engineering of the communication ports. This procedure converts
the low-level concepts towards the model-based ones. For instance, identifying an MQTT
client and mapping it to concepts such as a channel, port, and protocol in ThingML
syntax. The procedure enables us to wire the reversed ports with any other port in the
CY-Model, thus avoiding interoperability issues at low-level and allowing us to control
their communications with a policy. The second stage consists of implementing a more
advanced procedure to understand the low-level behavior and reverse engineer it into a
model-based one based on a statechart. Consequently, enabling to includes these things
into smart scenarios.

Applying MDRE may have a high price in terms of time investment and research
hazards to find the right approach. But, it will undoubtedly ease the design, adoption,
interoperability, and control that may, in the opposite, save time.

6.2.2 Better Artifacts Generation

The second potential line of research consists of enriching the code generation pro-
cess. At its current state, this process can only produce a network of connected thing,
with the possibility to enforce policies, and generate template-based textual artifacts, by
interpreting the model.

We could explore ways to support the generation of textual artifacts in natural lan-
guage. This feature may be useful to exempt the manual writing of any human-readable
artifact, such as documentation or a security assessment report.

Moreover, as the process is traceable because of model transformation, we could also
create a tool to verify the generated artifacts’ correctness w.r.t. the model. In that respect,
applying the theory behind Verdi [168], based on network semantics, may be a promising
start.

134

6.2. Perspectives

6.2.3 Simulation

The third potential line of research consists of simulating a network of things, before
deployment (e.g., generating C code for all things to simulate the network on a Linux
machine). This work may be useful to test the network’s scalability and performance at a
lower cost (e.g., predicting the power consumption and testing the probability of a node
becoming malicious).

Also, as the model contains the primary data about the network, one can aggregate this
data using an advanced technique such as machine learning to predict various aspects of
the network. These predictions could enable us to define better strategies for deployment,
especially when including resource-constrained ones.

135

BIBLIOGRAPHY

[1] B. L. R. Stojkoska and K. V. Trivodaliev, “A review of Internet of Things for
smart home: Challenges and solutions,” Journal of Cleaner Production, vol. 140,
pp. 1454–1464, jan 2017.

[2] M. M. R. Mozumdar, L. Lavagno, L. Vanzago, and A. L. Sangiovanni-Vincentelli,
“HILAC: A framework for hardware in the loop simulation and multi-platform
automatic code generation of WSN applications,” in Industrial Embedded Systems
(SIES), 2010 International Symposium on. IEEE, 2010, pp. 88–97.

[3] T. Riedel, N. Fantana, A. Genaid, D. Yordanov, H. R. Schmidtke, and M. Beigl,
“Using web service gateways and code generation for sustainable IoT system
development,” in 2010 Internet of Things (IOT). IEEE, 2010, pp. 1–8.

[4] X. T. Nguyen, H. T. Tran, H. Baraki, and K. Geihs, “FRASAD: A framework for
model-driven IoT Application Development,” in 2015 IEEE 2nd World Forum on
Internet of Things (WF-IoT). IEEE, 2015, pp. 387–392.

[5] R. M. Gomes and M. Baunach, “Code generation from formal models for
automatic rtos portability,” in 2019 IEEE/ACM International Symposium on
Code Generation and Optimization (CGO). IEEE, 2019, pp. 271–272.

[6] M. Hussein, S. Li, and A. Radermacher, “Model-driven Development of Adaptive
IoT Systems,” in MODELS (Satellite Events), 2017, pp. 17–23.

[7] I. Malavolta, L. Mostarda, H. Muccini, E. Ever, K. Doddapaneni, and
O. Gemikonakli, “A4WSN: an architecture-driven modelling platform for
analysing and developing WSNs,” Software & Systems Modeling, vol. 18, no. 4, pp.
2633–2653, jul 2018.

[8] S. C. Ergen, “ZigBee/IEEE 802.15. 4 Summary,” UC Berkeley, September, vol. 10,
no. 17, p. 11, 2004.

[9] A. B. Sandberg and I. Crnkovic, “Meeting Industry-Academia Research
Collaboration Challenges with Agile Methodologies,” in 2017 IEEE/ACM 39th
International Conference on Software Engineering: Software Engineering in
Practice Track (ICSE-SEIP), May 2017, pp. 73–82.

137

[10] M. B. Yassein, W. Mardini, and A. Khalil, “Smart homes automation using
Z-wave protocol,” in 2016 International Conference on Engineering & MIS
(ICEMIS). IEEE, 2016, pp. 1–6.

[11] R. W. Picard and J. Healey, “Affective wearables,” Personal Technologies, vol. 1,
no. 4, pp. 231–240, dec 1997.

[12] A. Zanella, N. Bui, A. Castellani, L. Vangelista, and M. Zorzi, “Internet of Things
for Smart Cities,” IEEE Internet of Things Journal, vol. 1, no. 1, pp. 22–32, feb
2014.

[13] M. Fell and H. Melin, “The emerging Internet of Things,” Carré & Strauss, 2014.

[14] G. Omale, “Gartner Identifies Top 10 Strategic IoT Technologies and Trends,”
Gartner website, 2018, [retrieved 2021-04-29]. [Online]. Available:
https://www.gartner.com/en/newsroom/press-releases/
2018-11-07-gartner-identifies-top-10-strategic-iot-technologies-and-trends

[15] L. Atzori, A. Iera, and G. Morabito, “The Internet of Things: A survey,”
Computer networks, vol. 54, no. 15, pp. 2787–2805, 2010.

[16] R. Kim and S. Poslad, “The Thing With E. coli: Highlighting Opportunities and
Challenges of Integrating Bacteria in IoT and HCI,” arXiv preprint
arXiv:1910.01974, 2019.

[17] Z. Shelby, K. Hartke, and C. Bormann, The constrained application protocol
(CoAP), 2014, [retrieved 2021-04-29]. [Online]. Available:
https://iottestware.readthedocs.io/en/master/coap_rfc.html

[18] F. Zambonelli, “Key Abstractions for IoT-Oriented Software Engineering,” IEEE
Software, vol. 34, no. 1, pp. 38–45, jan 2017.

[19] D. Spinellis, “Software-Engineering the Internet of Things,” IEEE Software,
vol. 34, no. 1, pp. 4–6, jan 2017.

[20] M. Aly, F. Khomh, Y.-G. Guéhéneuc, H. Washizaki, and S. Yacout, “Is
Fragmentation a Threat to the Success of the Internet of Things?” IEEE Internet
of Things Journal, vol. 6, no. 1, pp. 472–487, 2018.

[21] A. Gluhak, S. Krco, M. Nati, D. Pfisterer, N. Mitton, and T. Razafindralambo, “A
survey on facilities for experimental Internet of Things research,” IEEE
Communications Magazine, vol. 49, no. 11, pp. 58–67, 2011.

138

https://www.gartner.com/en/newsroom/press-releases/2018-11-07-gartner-identifies-top-10-strategic-iot-technologies-and-trends
https://www.gartner.com/en/newsroom/press-releases/2018-11-07-gartner-identifies-top-10-strategic-iot-technologies-and-trends
https://iottestware.readthedocs.io/en/master/coap_rfc.html

[22] Q. Zhu, R. Wang, Q. Chen, Y. Liu, and W. Qin, “IoT gateway: Bridgingwireless
sensor networks into Internet of Things,” in Embedded and Ubiquitous Computing
(EUC), 2010 IEEE/IFIP 8th International Conference on. IEEE, 2010, pp.
347–352.

[23] T. Park, N. Abuzainab, and W. Saad, “Learning How to Communicate in the
Internet of Things: Finite Resources and Heterogeneity,” IEEE Access, vol. 4, pp.
7063–7073, 2016.

[24] C. Sarkar, S. N. A. U. Nambi, R. V. Prasad, and A. Rahim, “A scalable
distributed architecture towards unifying IoT applications,” in 2014 IEEE World
Forum on Internet of Things (WF-IoT). IEEE, mar 2014, pp. 508–513.

[25] A. Kazmi, Z. Jan, A. Zappa, and M. Serrano, “Overcoming the Heterogeneity in
the Internet of Things for Smart Cities,” in Interoperability and Open-Source
Solutions for the Internet of Things. Cham: Springer International Publishing,
2017, pp. 20–35.

[26] P. Patel and D. Cassou, “Enabling high-level application development for the
Internet of Things,” Journal of Systems and Software, vol. 103, pp. 62–84, may
2015.

[27] Y. Seralathan, T. T. Oh, S. Jadhav, J. Myers, J. P. Jeong, Y. H. Kim, and J. N.
Kim, “IoT security vulnerability: A case study of a Web camera,” in Advanced
Communication Technology (ICACT), 2018 20th International Conference on.
IEEE, 2018, pp. 172–177.

[28] Trend Micro, “TrendLabs Security Intelligence BlogPersirai: New Internet of
Things (IoT) Botnet Targets IP Cameras - TrendLabs Security Intelligence Blog,”
[retrieved 2021-04-29]. [Online]. Available:
http://blog.trendmicro.com/trendlabs-security-intelligence/
persirai-new-internet-things-iot-botnet-targets-ip-cameras/

[29] N. Woolf, “DDoS attack that disrupted internet was largest of its kind in history,
experts say,” 2016, [retrieved 2021-04-29]. [Online]. Available: https:
//www.theguardian.com/technology/2016/oct/26/ddos-attack-dyn-mirai-botnet

[30] J. Pescatore and G. Shpantzer, “Securing the Internet of Things survey,” SANS
Institute, pp. 1–22, 2014, [retrieved 2021-04-29]. [Online]. Available:
https://www.sans.org/reading-room/whitepapers/covert/paper/34785

139

http://blog.trendmicro.com/trendlabs-security-intelligence/persirai-new-internet-things-iot-botnet-targets-ip-cameras/
http://blog.trendmicro.com/trendlabs-security-intelligence/persirai-new-internet-things-iot-botnet-targets-ip-cameras/
https://www.theguardian.com/technology/2016/oct/26/ddos-attack-dyn-mirai-botnet
https://www.theguardian.com/technology/2016/oct/26/ddos-attack-dyn-mirai-botnet
https://www.sans.org/reading-room/whitepapers/covert/paper/34785

[31] G. Booch, J. Rumbaugh, and I. Jacobson, The unified modeling language reference
manual, 1999, [retrieved 2021-04-29]. [Online]. Available: https://personal.utdallas.
edu/~chung/Fujitsu/UML_2.0/Rumbaugh--UML_2.0_Reference_CD.pdf

[32] I. A. Niaz and J. Tanaka, “Code generation from UML statecharts,” in Proc. 7 th
IASTED International Conf. on Software Engineering and Application (SEA
2003), Marina Del Rey, 2003, pp. 315–321.

[33] Y. G. Kim, H. S. Hong, D.-H. Bae, and S. D. Cha, “Test cases generation from
UML state diagrams,” IEE Proceedings-Software, vol. 146, no. 4, pp. 187–192,
1999.

[34] G. Blair, N. Bencomo, and R. B. France, “Models@ run. time,” Computer, vol. 42,
no. 10, 2009.

[35] O. Mavropoulos, H. Mouratidis, A. Fish, and E. Panaousis, “ASTo: A tool for
security analysis of IoT systems,” in Software Engineering Research, Management
and Applications (SERA), 2017 IEEE 15th International Conference on. IEEE,
2017, pp. 395–400.

[36] R. F. Baumeister and M. R. Leary, “The need to belong: Desire for interpersonal
attachments as a fundamental human motivation,” Psychological Bulletin, vol.
117, no. 3, p. 497529, 1995.

[37] D. L. Mills and H.-W. Braun, “The NSFNET backbone network,” in Proceedings
of the ACM workshop on Frontiers in computer communications technology, 1987,
pp. 191–196.

[38] R. Schaller, “Moore’s law: past, present and future,” IEEE Spectrum, vol. 34,
no. 6, pp. 52–59, jun 1997.

[39] K. Ashton et al., “That Internet of Things thing,” RFID journal, vol. 22, no. 7,
pp. 97–114, 2009.

[40] M. S. Mahdavinejad, M. Rezvan, M. Barekatain, P. Adibi, P. Barnaghi, and A. P.
Sheth, “Machine learning for Internet of Things data analysis: A survey,” Digital
Communications and Networks, vol. 4, no. 3, pp. 161–175, 2018.

[41] D. J. Cook, J. C. Augusto, and V. R. Jakkula, “Ambient intelligence:
Technologies, applications, and opportunities,” Pervasive and Mobile Computing,
vol. 5, no. 4, pp. 277–298, aug 2009.

140

https://personal.utdallas.edu/~chung/Fujitsu/UML_2.0/Rumbaugh--UML_2.0_Reference_CD.pdf
https://personal.utdallas.edu/~chung/Fujitsu/UML_2.0/Rumbaugh--UML_2.0_Reference_CD.pdf

[42] D. Miorandi, S. Sicari, F. De Pellegrini, and I. Chlamtac, “Internet of things:
Vision, applications and research challenges,” Ad hoc networks, vol. 10, no. 7, pp.
1497–1516, 2012.

[43] A. Al-Fuqaha, M. Guizani, M. Mohammadi, M. Aledhari, and M. Ayyash,
“Internet of things: A survey on enabling technologies, protocols, and
applications,” IEEE communications surveys & tutorials, vol. 17, no. 4, pp.
2347–2376, 2015.

[44] X. Larrucea, A. Combelles, J. Favaro, and K. Taneja, “Software engineering for
the Internet of Things,” IEEE Software, vol. 34, no. 1, pp. 24–28, 2017.

[45] J.-H. Oh, M.-K. Back, G.-T. Oh, and K.-C. Lee, “A Study on DDS-Based BLE
Profile Adaptor for Solving BLE Data Heterogeneity in Internet of Things,” in
Advances in Computer Science and Ubiquitous Computing. Singapore: Springer
Singapore, 2016, pp. 619–624.

[46] A. Ghosh, D. Chakraborty, and A. Law, “Artificial intelligence in Internet of
things,” CAAI Transactions on Intelligence Technology, vol. 3, no. 4, pp. 208–218,
2018.

[47] E. Borgia, “The Internet of Things vision: Key features, applications and open
issues,” Computer Communications, vol. 54, pp. 1–31, dec 2014.

[48] S. M. R. Islam, D. Kwak, M. H. Kabir, M. Hossain, and K.-S. Kwak, “The
Internet of Things for Health Care: A Comprehensive Survey,” IEEE Access,
vol. 3, pp. 678–708, 2015.

[49] R. Roman, P. Najera, and J. Lopez, “Securing the Internet of Things,” Computer,
vol. 44, no. 9, pp. 51–58, sep 2011.

[50] Z. Bi, L. D. Xu, and C. Wang, “Internet of Things for Enterprise Systems of
Modern Manufacturing,” IEEE Transactions on Industrial Informatics, vol. 10,
no. 2, pp. 1537–1546, may 2014.

[51] R. Want, B. N. Schilit, and S. Jenson, “Enabling the Internet of Things,”
Computer, vol. 48, no. 1, pp. 28–35, jan 2015.

[52] G. Kortuem, F. Kawsar, V. Sundramoorthy, and D. Fitton, “Smart objects as
building blocks for the Internet of Things,” IEEE Internet Computing, vol. 14,
no. 1, pp. 44–51, jan 2010.

141

[53] O. B. Sezer, E. Dogdu, and A. M. Ozbayoglu, “Context-Aware Computing,
Learning, and Big Data in Internet of Things: A Survey,” IEEE Internet of Things
Journal, vol. 5, no. 1, pp. 1–27, feb 2018.

[54] C. Perera, A. Zaslavsky, P. Christen, and D. Georgakopoulos, “Context Aware
Computing for the Internet of Things: A Survey,” IEEE Communications Surveys
& Tutorials, vol. 16, no. 1, pp. 414–454, 2014.

[55] G. Fortino, A. Guerrieri, and W. Russo, “Agent-oriented smart objects
development,” in Proceedings of the 2012 IEEE 16th International Conference on
Computer Supported Cooperative Work in Design (CSCWD). IEEE, may 2012, pp.
907–912.

[56] D. Norris, The Internet of things: do-it-yourself projects with Arduino, Raspberry
Pi, and BeagleBone Black. New York, NY, USA: McGraw-Hill Education TAB,
2015.

[57] C. Doukas, Building Internet of Things with the ARDUINO. North Charleston,SC,
USA: CreateSpace Independent Publishing Platform, 2012.

[58] A. N. Ansari, M. Sedky, N. Sharma, and A. Tyagi, “An Internet of Things
approach for motion detection using Raspberry Pi,” in Proceedings of 2015
International Conference on Intelligent Computing and Internet of Things. IEEE,
2015, pp. 131–134.

[59] M. Ibrahim, A. Elgamri, S. Babiker, and A. Mohamed, “Internet of Things based
smart environmental monitoring using the Raspberry-Pi computer,” in 2015 Fifth
International Conference on Digital Information Processing and Communications
(ICDIPC). IEEE, 2015, pp. 159–164.

[60] M. R. Palattella, M. Dohler, A. Grieco, G. Rizzo, J. Torsner, T. Engel, and
L. Ladid, “Internet of Things in the 5G era: Enablers, architecture, and business
models,” IEEE Journal on Selected Areas in Communications, vol. 34, no. 3, pp.
510–527, 2016.

[61] V. Casola, L. D’Onofrio, G. Di Lorenzo, and N. Mazzocca, “A service-based
architecture for the interoperability of heterogeneous sensor data: A case study on
early warning,” in Geographic Information and Cartography for Risk and Crisis
Management. Springer, 2010, pp. 249–263.

[62] S. Schmid, A. Bröring, D. Kramer, S. Käbisch, A. Zappa, M. Lorenz, Y. Wang,
A. Rausch, and L. Gioppo, “An architecture for interoperable IoT Ecosystems,” in

142

International Workshop on Interoperability and Open-Source Solutions. Springer,
2016, pp. 39–55.

[63] I. Gojmerac, P. Reichl, I. P. Žarko, and S. Soursos, “Bridging IoT islands: the
symbIoTe project,” e & i Elektrotechnik und Informationstechnik, vol. 133, no. 7,
pp. 315–318, 2016.

[64] G. Fortino, C. Savaglio, C. E. Palau, J. S. de Puga, M. Ganzha, M. Paprzycki,
M. Montesinos, A. Liotta, and M. Llop, “Towards multi-layer interoperability of
heterogeneous IoT platforms: The INTER-IoT approach,” in Integration,
interconnection, and interoperability of IoT systems. Cham: Springer, 2018, pp.
199–232.

[65] A. Bröring, S. Schmid, C.-K. Schindhelm, A. Khelil, S. Käbisch, D. Kramer,
D. Le Phuoc, J. Mitic, D. Anicic, and E. Teniente, “Enabling IoT ecosystems
through platform interoperability,” IEEE software, vol. 34, no. 1, pp. 54–61, 2017.

[66] J. Bézivin, “On the unification power of models,” Software & Systems Modeling,
vol. 4, no. 2, pp. 171–188, may 2005.

[67] S. Kent, “Model Driven Engineering,” in Integrated Formal Methods, M. Butler,
L. Petre, and K. Sere, Eds. Springer Berlin Heidelberg, 2002, pp. 286–298.

[68] J. M. Siegel, Model driven architecture (MDA)-MDA Guide rev. 2.0, 2014.
[69] O. M. Group, Meta Object Facility (MOF) Specification, 2000.
[70] D. Steinberg, F. Budinsky, E. Merks, and M. Paternostro, EMF: eclipse modeling

framework. London, UK: Pearson Education, 2008.
[71] D. Berardi, D. Calvanese, and G. De Giacomo, “Reasoning on UML class

diagrams,” Artificial intelligence, vol. 168, no. 1-2, pp. 70–118, 2005.
[72] M. Dumas and A. H. Ter Hofstede, “UML activity diagrams as a workflow

specification language,” in International conference on the unified modeling
language. Springer, 2001, pp. 76–90.

[73] A. Alsaadi, “The UML Communication Diagram Revisited,” in International
Conference on Software Engineering Advances (ICSEA 2007). IEEE, 2007, pp.
28–28.

[74] M. A. Gamboa and E. Syriani, “Automating Activities in MDE Tools,” in
Proceedings of the 4th International Conference on Model-Driven Engineering and
Software Development. SCITEPRESS - Science and and Technology Publications,
2016, pp. 123–133.

143

[75] M. Eysholdt and H. Behrens, “Xtext: implement your language faster than the
quick and dirty way,” in Proceedings of the ACM international conference
companion on Object oriented programming systems languages and applications
companion, 2010, pp. 307–309.

[76] JetBrains, “MPS: Meta Programming System,” 2015, [retrieved 2021-04-29].
[Online]. Available: https://www.jetbrains.com/mps/

[77] L. C. Kats and E. Visser, “The spoofax language workbench: rules for declarative
specification of languages and IDEs,” in Proceedings of the ACM international
conference on Object oriented programming systems languages and applications,
2010, pp. 444–463.

[78] S. Sendall and W. Kozaczynski, “Model transformation: The heart and soul of
model-driven software development,” IEEE software, vol. 20, no. 5, pp. 42–45,
2003.

[79] M. Lawley and J. Steel, “Practical declarative model transformation with Tefkat,”
in Satellite Events at the MoDELS 2005 Conference, J.-M. Bruel, Ed. Berlin,
Heidelberg: Springer Berlin Heidelberg, 2005, pp. 139–150.

[80] P.-A. Muller, F. Fleurey, and J.-M. Jézéquel, “Weaving executability into
object-oriented meta-languages,” in International Conference on Model Driven
Engineering Languages and Systems. Springer, 2005, pp. 264–278.

[81] F. Jouault and I. Kurtev, “Transforming models with ATL,” in Lecture Notes in
Computer Science (including subseries Lecture Notes in Artificial Intelligence and
Lecture Notes in Bioinformatics), vol. 3844 LNCS, 2006, pp. 128–138.

[82] E. F. Webdev, “Model-to-Model Transformation (MMT),” Jan 2013, [retrieved
2021-04-29]. [Online]. Available:
https://projects.eclipse.org/projects/modeling.mmt

[83] O. M. Group, Meta object facility (MOF) 2.0 query/view/transformation
specification, 2005, [retrieved 2021-04-29]. [Online]. Available:
https://www.omg.org/spec/QVT/1.1/PDF

[84] T. Mens and P. V. Gorp, “A Taxonomy of Model Transformation,” Electronic
Notes in Theoretical Computer Science, vol. 152, pp. 125–142, mar 2006.

[85] J. Oldevik, MOFScript user guide, 2006, [retrieved 2021-04-29]. [Online]. Available:
http://umt-qvt.sourceforge.net/mofscript/docs/MOFScript-User-Guide.pdf

144

https://www.jetbrains.com/mps/
https://projects.eclipse.org/projects/modeling.mmt
https://www.omg.org/spec/QVT/1.1/PDF
http://umt-qvt.sourceforge.net/mofscript/docs/MOFScript-User-Guide.pdf

[86] J. Musset, É. Juliot, S. Lacrampe, W. Piers, C. Brun, L. Goubet, Y. Lussaud, and
F. Allilaire, Acceleo user guide, 2006, [retrieved 2021-04-29]. [Online]. Available:
https://wiki.eclipse.org/Acceleo/User_Guide

[87] Ramamoorthy, Prakash, W.-T. Tsai, and Usuda, “Software Engineering: Problems
and Perspectives,” Computer, vol. 17, no. 10, pp. 191–209, oct 1984.

[88] H. Jeffrey, “Addressing the essential difficulties of software engineering,” Journal
of Systems and Software, vol. 32, no. 2, pp. 157–179, feb 1996.

[89] S. Gerard, J.-P. Babau, and J. Champeau, Model driven engineering for
distributed real-time embedded systems. United Kingdom: Wiley-IEEE Press, 2010.

[90] N. Harrand, F. Fleurey, B. Morin, and K. E. Husa, “ThingML: a language and
code generation framework for heterogeneous targets,” in Proceedings of the
ACM/IEEE 19th International Conference on Model Driven Engineering
Languages and Systems. ACM, 2016, pp. 125–135.

[91] B. Morin, N. Harrand, and F. Fleurey, “Model-based software engineering to tame
the IoT jungle,” IEEE Software, vol. 34, no. 1, pp. 30–36, 2017.

[92] A. Vasilevskiy, B. Morin, Ø. Haugen, and P. Evensen, “Agile development of home
automation system with ThingML,” in Industrial Informatics (INDIN), 2016
IEEE 14th International Conference on. IEEE, 2016.

[93] A. Muelder, “Yakindu,” [retrieved 2021-04-29]. [Online]. Available:
https://www.itemis.com/en/yakindu/state-machine/

[94] Eclipse, “Eclipse Vorto - IoT toolset for standardized device descriptions,”
[retrieved 2021-04-29]. [Online]. Available: https://www.eclipse.org/vorto/

[95] G. Fuchs and R. German, “UML2 activity diagram based programming of wireless
sensor networks,” in Proceedings of the 2010 ICSE Workshop on Software
Engineering for Sensor Network Applications. ACM, 2010, pp. 8–13.

[96] R. B. Smith, “SPOTWorld and the Sun SPOT,” in Proceedings of the 6th
international conference on Information processing in sensor networks. ACM,
2007, pp. 565–566.

[97] I. F. Akyildiz, W. Su, Y. Sankarasubramaniam, and E. Cayirci, “Wireless sensor
networks: a survey,” Computer networks, vol. 38, no. 4, pp. 393–422, 2002.

[98] D. Guinard, V. Trifa, F. Mattern, and E. Wilde, “From the Internet of Things to
the Web of Things: Resource-oriented Architecture and Best Practices,” in

145

https://wiki.eclipse.org/Acceleo/User_Guide
https://www.itemis.com/en/yakindu/state-machine/
https://www.eclipse.org/vorto/

Architecting the Internet of Things. Berlin, Heidelberg: Springer Berlin Heidelberg,
2011, pp. 97–129.

[99] F. Ciccozzi, I. Crnkovic, D. D. Ruscio, I. Malavolta, P. Pelliccione, and
R. Spalazzese, “Model-Driven Engineering for Mission-Critical IoT Systems,”
IEEE Software, vol. 34, no. 1, pp. 46–53, jan 2017.

[100] D. Dietterle, J. Ryman, K. Dombrowski, and R. Kraemer, “Mapping of high-level
SDL models to efficient implementations for TinyOS,” in Digital System Design,
2004. DSD 2004. Euromicro Symposium on. IEEE, 2004, pp. 402–406.

[101] K. K. Sandhu, “Specification and description language (SDL),” in IEE Tutorial
Colloquium on Formal Methods and Notations Applicable to Telecommunications.
IET, 1992, pp. 3–1.

[102] P. Levis and D. Gay, TinyOS programming. Cambridge, UK: Cambridge
University Press, 2009.

[103] A. Salihbegovic, T. Eterovic, E. Kaljic, and S. Ribic, “Design of a domain specific
language and IDE for Internet of Things applications,” in Information and
Communication Technology, Electronics and Microelectronics (MIPRO), 2015 38th
International Convention on. IEEE, 2015, pp. 996–1001.

[104] K. Kreuzer et al., “OpenHAB-empowering the smart home,” Openhab. org, Tech.
Rep., 2013.

[105] M. Amrani, F. Gilson, A. Debieche, and V. Englebert, “Towards User-centric
DSLs to Manage IoT Systems,” in MODELSWARD, 2017, pp. 569–576.

[106] B. Bertran, J. Bruneau, D. Cassou, N. Loriant, E. Balland, and C. Consel,
“DiaSuite: A tool suite to develop Sense/Compute/Control applications,” Science
of Computer Programming, vol. 79, pp. 39–51, 2014.

[107] D. Cassou, E. Balland, C. Consel, and J. Lawall, “Leveraging software
architectures to guide and verify the development of sense/compute/control
applications,” in Proceedings of the 33rd International Conference on Software
Engineering. ACM, 2011, pp. 431–440.

[108] N. Glombitza, D. Pfisterer, and S. Fischer, “Using state machines for a model
driven development of web service-based sensor network applications,” in
Proceedings of the 2010 ICSE Workshop on Software Engineering for Sensor
Network Applications. ACM, 2010, pp. 2–7.

146

[109] ——, “Integrating wireless sensor networks into web service-based business
processes,” in Proceedings of the 4th International Workshop on Middleware Tools,
Services and Run-Time Support for Sensor Networks - MidSens '09. ACM Press,
2009.

[110] IBM Emerging Technologies, “Node-RED. A visual tool for wiring the Internet of
Things,” 2016, [retrieved 2021-04-29]. [Online]. Available: http://nodered.org/

[111] J. Im, S. Kim, and D. Kim, “IoT mashup as a service: cloud-based mashup service
for the Internet of Things,” in Services Computing (SCC), 2013 IEEE
International Conference on. IEEE, 2013, pp. 462–469.

[112] M. Blackstock and R. Lea, “IoT mashups with the WoTKit,” in Internet of Things
(IoT), 2012 3rd International Conference on the. IEEE, 2012, pp. 159–166.

[113] S. Heo, S. Woo, J. Im, and D. Kim, “IoT-MAP: IoT mashup application platform
for the flexible IoT ecosystem,” in Internet of Things (IoT), 2015 5th
International Conference on the. IEEE, 2015, pp. 163–170.

[114] A. F. Einarsson, P. Patreksson, M. Hamdaqa, and A. Hamou-Lhadj,
“SmartHomeML: Towards a Domain-Specific Modeling Language for Creating
Smart Home Applications,” in Internet of Things (ICIOT), 2017 IEEE
International Congress on. IEEE, 2017, pp. 82–88.

[115] M. M. Casalino, H. Plate, and S. Trabelsi, “Transversal Policy Conflict Detection,”
in Lecture Notes in Computer Science. Springer Berlin Heidelberg, 2012, pp. 30–37.

[116] D. Basin, M. Clavel, and M. Egea, “A decade of model-driven security,” in
Proceedings of the 16th ACM symposium on Access control models and
technologies. ACM, 2011, pp. 1–10.

[117] U. Lang and R. Schreiner, “Proximity-Based Access Control (PBAC) using
Model-Driven Security,” in ISSE 2015, H. Reimer, N. Pohlmann, and
W. Schneider, Eds. Wiesbaden: Springer Fachmedien Wiesbaden, 2015, pp.
157–170.

[118] V. C. Hu, D. R. Kuhn, D. F. Ferraiolo, and J. Voas, “Attribute-based access
control,” Computer, vol. 48, no. 2, pp. 85–88, 2015.

[119] T. Lodderstedt, D. Basin, and J. Doser, “SecureUML: A UML-Based Modeling
Language for Model-Driven Security,” in �UML� 2002 — The Unified Modeling
Language. Springer Berlin Heidelberg, 2002, pp. 426–441.

147

http://nodered.org/

[120] D. Ferraiolo, D. R. Kuhn, and R. Chandramouli, Role-based access control. United
States: Artech House Publishers, 2007.

[121] S. Martínez, J. Garcia-Alfaro, F. Cuppens, N. Cuppens-Boulahia, and J. Cabot,
“Model-Driven Extraction and Analysis of Network Security Policies,” in
Model-Driven Engineering Languages and Systems. Berlin, Heidelberg: Springer
Berlin Heidelberg, 2013, pp. 52–68.

[122] R. Neisse, G. Steri, I. N. Fovino, and G. Baldini, “SecKit: A Model-based Security
Toolkit for the Internet of Things,” Computers & Security, vol. 54, pp. 60–76, oct
2015.

[123] S. Sicari, A. Rizzardi, L. Grieco, G. Piro, and A. Coen-Porisini, “A policy
enforcement framework for Internet of Things applications in the smart health,”
Smart Health, vol. 3-4, pp. 39–74, sep 2017.

[124] O. X. T. Committee et al., eXtensible access control markup language (XACML)
Version 3.0, OASIS, 2013, [retrieved 2021-04-29]. [Online]. Available:
http://docs.oasis-open.org/xacml/3.0/xacml-3.0-core-spec-os-en.pdf

[125] A. L. Marra, F. Martinelli, P. Mori, and A. Saracino, “Implementing Usage
Control in Internet of Things: A Smart Home Use Case,” in 2017 IEEE
Trustcom/BigDataSE/ICESS. IEEE, 2017, pp. 1056–1063.

[126] D. Ferraiolo, R. Chandramouli, R. Kuhn, and V. Hu, “Extensible access control
markup language (XACML) and next generation access control (NGAC),” in
Proceedings of the 2016 ACM International Workshop on Attribute Based Access
Control. ACM Press, 2016, pp. 13–24.

[127] S. Hada and M. Kudo, XML access control language (XACL): Provisional
authorization for XML documents, 2001.

[128] S. Reiff-Marganiec, L. Blair, and K. J. Turner, APPEL: the ACCENT project
policy environment/language, 2005.

[129] L. F. Cranor, “P3P: Making privacy policies more useful,” IEEE Security &
Privacy, vol. 1, no. 6, pp. 50–55, 2003.

[130] P. Ashley, S. Hada, G. Karjoth, C. Powers, and M. Schunter, “Enterprise privacy
authorization language (EPAL),” IBM Research, vol. 30, p. 31, 2003.

[131] H. F. Atlam, M. O. Alassafi, A. Alenezi, R. J. Walters, and G. B. Wills, “XACML
for Building Access Control Policies in Internet of Things,” in Proceedings of the

148

http://docs.oasis-open.org/xacml/3.0/xacml-3.0-core-spec-os-en.pdf

3rd International Conference on Internet of Things, Big Data and Security.
SCITEPRESS - Science and Technology Publications, 2018.

[132] C. Buschmann and D. Pfisterer, “iSense: A modular hardware and software
platform for wireless sensor networks,” 6. Fachgespräch Sensornetzwerke, p. 15,
2007.

[133] L. Bettini, Implementing domain-specific languages with Xtext and Xtend. United
Kingdom: Packt Publishing Ltd, 2016.

[134] C. E. Shannon, “A mathematical theory of communication,” Bell system technical
journal, vol. 27, no. 3, pp. 379–423, 1948.

[135] J. Gubbi, R. Buyya, S. Marusic, and M. Palaniswami, “Internet of Things (IoT):
A vision, architectural elements, and future directions,” Future generation
computer systems, vol. 29, no. 7, pp. 1645–1660, 2013, including Special sections:
Cyber-enabled Distributed Computing for Ubiquitous Cloud and Network
Services, Cloud Computing and Scientific Applications Big Data, Scalable
Analytics, and Beyond.

[136] A. Rayes and S. Salam, “The Internet in IoT—OSI, TCP/IP, IPv4, IPv6 and
Internet Routing,” in Internet of Things From Hype to Reality. Cham: Springer
International Publishing, oct 2016, pp. 35–56.

[137] P. T. Eugster, P. A. Felber, R. Guerraoui, and A.-M. Kermarrec, “The many faces
of publish/subscribe,” ACM Computing Surveys, vol. 35, no. 2, pp. 114–131, jun
2003.

[138] G. Hohpe and B. Woolf, Enterprise integration patterns: Designing, building, and
deploying messaging solutions. Boston, MA, USA: Addison-Wesley Professional,
2004.

[139] A. Banks and R. Gupta, MQTT Version 3.1.1, 2014, [retrieved 2021-04-29].
[Online]. Available:
https://docs.oasis-open.org/mqtt/mqtt/v3.1.1/os/mqtt-v3.1.1-os.pdf

[140] I. Berrouyne, M. Adda, J.-M. Mottu, J.-C. Royer, and M. Tisi, “A Model-Driven
Approach to Unravel the Interoperability Problem of the Internet of Things,” in
International Conference on Advanced Information Networking and Applications.
Springer, 2020, pp. 1162–1175.

149

https://docs.oasis-open.org/mqtt/mqtt/v3.1.1/os/mqtt-v3.1.1-os.pdf

[141] K. Czarnecki and S. Helsen, “Classification of model transformation approaches,”
in Proceedings of the 2nd OOPSLA Workshop on Generative Techniques in the
Context of the Model Driven Architecture, 2003, pp. 1–17.

[142] H. Bruneliere, F. M. de Kerchove, G. Daniel, S. Madani, D. Kolovos, and
J. Cabot, “Scalable model views over heterogeneous modeling technologies and
resources,” Software and Systems Modeling, vol. 19, no. 4, pp. 827–851, 2020.

[143] I. Berrouyne, M. Adda, J.-M. Mottu, J.-C. Royer, and M. Tisi, “CyprIoT:
Framework for Modelling and Controlling Network-Based IoT Applications,” in
Proceedings of the 34th ACM/SIGAPP Symposium on Applied Computing, ser.
SAC ’19. New York, NY, USA: Association for Computing Machinery, 2019, p.
832841.

[144] W. Snipes, E. Murphy-Hill, T. Fritz, M. Vakilian, K. Damevski, A. R. Nair, and
D. Shepherd, “Chapter 5 - a practical guide to analyzing ide usage data,” in The
Art and Science of Analyzing Software Data, C. Bird, T. Menzies, and
T. Zimmermann, Eds. Boston: Morgan Kaufmann, 2015, pp. 85–138.

[145] C. Ebert and C. Jones, “Embedded software: Facts, figures, and future,”
Computer, vol. 42, no. 4, pp. 42–52, 2009.

[146] T. Xu, X. Jin, P. Huang, Y. Zhou, S. Lu, L. Jin, and S. Pasupathy, “Early
detection of configuration errors to reduce failure damage,” in Proceedings of the
12th USENIX Conference on Operating Systems Design and Implementation, ser.
OSDI’16. Savannah, GA, USA: USENIX Association, 2016, p. 619634.

[147] A. Sukhoo, A. Barnard, M. M. Eloff, J. A. Van der Poll, and M. Motah,
“Accommodating soft skills in software project management,” Issues in Informing
Science & Information Technology, vol. 2, pp. 691–703, 2005.

[148] F. Ahmed, L. F. Capretz, and P. Campbell, “Evaluating the demand for soft skills
in software development,” It Professional, vol. 14, no. 1, pp. 44–49, 2012.

[149] P. Zhang, A. Durresi, and L. Barolli, “Policy-based mobility in heterogeneous
networks,” Journal of Ambient Intelligence and Humanized Computing, vol. 4,
no. 3, pp. 331–338, dec 2011.

[150] I. Berrouyne, M. Adda, J.-M. Mottu, J.-C. Royer, and M. Tisi, “Towards
Model-Based Communication Control for the Internet of Things,” in Federation of
International Conferences on Software Technologies: Applications and

150

Foundations, M. Mazzara, I. Ober, and G. Salaün, Eds. Springer, 2018, pp.
644–655.

[151] A. Ouaddah, H. Mousannif, A. A. Elkalam, and A. A. Ouahman, “Access control
in the Internet of Things: Big challenges and new opportunities,” Computer
Networks, vol. 112, pp. 237–262, 2017.

[152] H. Shen, “Content-based publish/subscribe systems,” in Handbook of Peer-to-Peer
Networking. Springer, 2010, pp. 1333–1366.

[153] I. Gudymenko, K. Borcea-Pfitzmann, and K. Tietze, “Privacy implications of the
Internet of Things,” in International Joint Conference on Ambient Intelligence.
Springer, 2011, pp. 280–286.

[154] P. N. Mahalle, B. Anggorojati, N. R. Prasad, R. Prasad et al., “Identity
authentication and capability based access control (IACAC) for the Internet of
Things,” Journal of Cyber Security and Mobility, vol. 1, no. 4, pp. 309–348, 2013.

[155] G. Rozenberg, Handbook of Graph Grammars and Computing by Graph
Transformation. The Netherlands: World Scientific Publishing Company, 1999.

[156] OMG, Business Process Modeling Notation, Final Adopted Specification, Version
1.0, 2006.

[157] A. Eclipse IoT Working Group, IEEE and IoT Council, “IoT Developer Survey
2020,” 2020, [retrieved 2021-04-29]. [Online]. Available:
https://outreach.eclipse.foundation/eclipse-iot-developer-survey-2020

[158] V. Albino, U. Berardi, and R. M. Dangelico, “Smart cities: Definitions,
dimensions, performance, and initiatives,” Journal of urban technology, vol. 22,
no. 1, pp. 3–21, 2015.

[159] H. Lasi, P. Fettke, H.-G. Kemper, T. Feld, and M. Hoffmann, “Industry 4.0,”
Business & information systems engineering, vol. 6, no. 4, 2014.

[160] M. Noura, M. Atiquzzaman, and M. Gaedke, “Interoperability in Internet of
Things: Taxonomies and open challenges,” Mobile Networks and Applications,
vol. 24, no. 3, pp. 796–809, 2018.

[161] K. K. Patel, S. M. Patel et al., “Internet of Things-IoT: definition, characteristics,
architecture, enabling technologies, application & future challenges,” International
journal of engineering science and computing, vol. 6, no. 5, 2016.

151

https://outreach.eclipse.foundation/eclipse-iot-developer-survey-2020

[162] J. Manyika, M. Chui, P. Bisson, J. Woetzel, R. Dobbs, J. Bughin, and D. Aharon,
“Unlocking the Potential of the Internet of Things,” McKinsey Global Institute,
2015, [retrieved 2021-04-29]. [Online]. Available:
https://www.mckinsey.com/business-functions/mckinsey-digital/our-insights/
the-internet-of-things-the-value-of-digitizing-the-physical-world

[163] J. K. D. Barriga, C. D. G. Romero, and J. I. R. Molano, “Proposal of a standard
architecture of IoT for Smart Cities,” in International Workshop on Learning
Technology for Education Challenges, L. Uden, D. Liberona, and B. Feldmann,
Eds. Cham: Springer, 2016, pp. 77–89.

[164] S. K. Datta, R. P. F. Da Costa, C. Bonnet, and J. Härri, “oneM2M architecture
based IoT framework for mobile crowd sensing in smart cities,” in 2016 European
conference on networks and communications (EuCNC). IEEE, 2016, pp. 168–173.

[165] F. Tomassetti, M. Torchiano, A. Tiso, F. Ricca, and G. Reggio, “Maturity of
software modelling and model driven engineering: A survey in the Italian
industry,” in 16th International Conference on Evaluation & Assessment in
Software Engineering (EASE 2012). IET, 2012, pp. 91–100.

[166] P. Mohagheghi and V. Dehlen, “Where Is the Proof? - A Review of Experiences
from Applying MDE in Industry,” in Model Driven Architecture – Foundations
and Applications. Springer Berlin Heidelberg, 2008, pp. 432–443.

[167] E. Reiter and R. Dale, Building natural language generation systems. Cambridge,
UK: Cambridge university press, 2000.

[168] J. R. Wilcox, D. Woos, P. Panchekha, Z. Tatlock, X. Wang, M. D. Ernst, and
T. Anderson, “Verdi: A framework for implementing and formally verifying
distributed systems,” SIGPLAN Not., vol. 50, no. 6, p. 357368, Jun. 2015.

152

https://www.mckinsey.com/business-functions/mckinsey-digital/our-insights/the-internet-of-things-the-value-of-digitizing-the-physical-world
https://www.mckinsey.com/business-functions/mckinsey-digital/our-insights/the-internet-of-things-the-value-of-digitizing-the-physical-world

Appendix A

XTEXT GRAMMAR FOR THE
NETWORKING LANGUAGE

Listing A.1 – Xtext Grammar for the Networking Language. This grammar provides the
language to create the network model in a textual form.

1 grammar org.atlanmod.cypriot.Cypriot with org.eclipse.xtext.common.Terminals
2
3 generate cyprIoT "http://www.atlanmod.org/CyprIoT"
4 import "http://www.thingml.org/xtext/ThingML" as thingml
5
6 CyprIoTModel returns CyprIoTModel:
7 imports+=Import∗
8 (declareTime+=Time |
9 declareThings+=TypeThing |

10 declareChannels+=TypeChannel|
11 specifyNetworks+=Network |
12 declareUsers+=User |
13 specifyPolicies+=Policy |
14 declareRoles+=Role)∗;
15
16 Import:
17 ’import’ importURI=STRING
18 ;
19
20 NamedElement:
21 User | Role | TypeThing | Network | Path | TypeChannel |
22 InstanceThing | InstanceChannel |
23 Bind | Policy | ChannelToBind | Rule | ThingAny | ChannelAny | SubjectOther |

ObjectOther |
24 ";" name=ID
25 ;
26

153

27 Role:
28 ’role’ name=ID
29 ;
30
31 User :
32 ’user’ name=ID(’:’ password=STRING)? (’assigned’ assignedRoles+=[Role] (","

assignedRoles+=[Role])∗)?
33 ;
34
35 TypeThing:
36 ’thing’ name=ID
37 (’import’ importPath=STRING)?
38 (’assigned’ assignedRoles+=[Role] ("," assignedRoles+=[Role])∗)?
39 ;
40
41 TypeChannel:
42 ’channel’ name=ID ’{’
43 (hasPaths+=Path)∗
44 ’}’
45 ;
46
47 Path:
48 ’path’ name=ID (’=’ customName=STRING)? (’(’ acceptedMessage=[thingml::Message] (’:

’ serializer=Serializer)? ’)’)? (’fork’ fork+=[Path])?
49 ;
50
51 enum Serializer:
52 JSON=’JSON’ |
53 BINARY=’BINARY’
54 ;
55
56 Network:
57 ’network’ name=ID ’{’
58 domain=Domain
59 (hasPolicyEnforcement=PoliciesEnforcement)?
60 (instantiate+=Instance |
61 hasBinds+=Bind |
62 hasForwards+=NetworkForward
63)∗
64 ’}’
65 ;
66
67 Domain:
68 ’domain’ name=DomainId
69 ;

154

70
71 DomainId:
72 VALIDID (=>’.’ VALIDID)+
73 ;
74
75 PoliciesEnforcement :
76 ’enforce’ hasEnforcedPolicies+=[Policy] (strategy+=EnforcementStrategies)? (","

hasEnforcedPolicies+=[Policy] (strategy+=EnforcementStrategies)?)∗
77 ;
78
79 enum EnforcementStrategies:
80 BESTEFFORT=’Best−Effort’ |
81 DENYFIRST=’Deny−First’ |
82 ALLOWFIRST=’Allow−First’ |
83 ;
84
85 NetworkForward:
86 ’forward’ (name=ID ’:’)? forwardBind=[Bind] ’to’ forwardToChannel=ChannelToBind
87 ;
88
89 Instance:
90 InstanceThing | InstanceChannel
91 ;
92
93 InstanceThing :
94 ’instance’ name=ID ’:’ instantiateTypeThing=ThingToInstantiate
95 ;
96
97 InstanceChannel:
98 ’instance’ name=ID ’:’ instantiateTypeChannel=ChannelToInstantiate
99 ;

100
101 ThingToInstantiate :
102 thingToInstantiate=[TypeThing] ’platform’ targetedPlatform=Platform (’owner’ owner=[

User])?
103 ;
104
105 ChannelToInstantiate :
106 channelToInstantiate=[TypeChannel] ’protocol’ targetedProtocol=PubSubProtocol (’(’’

server=’ server=STRING’)’)?
107 ;
108
109 Bind:
110 ’bind’ (name=ID ’:’)? bindsInstanceThing=[InstanceThing] (’[’thingPosition=INT’]’)? (’.’

portToBind=[thingml::Port]) bindAction=BindAction channelToBind=ChannelToBind

155

111 ;
112
113 enum Platform:
114 POSIX=’POSIX’ |
115 POSIXMT=’POSIMT’ |
116 JAVA=’JAVA’ |
117 ARDUINO=’ARDUINO’ |
118 JAVASCRIPT=’JAVASCRIPT’ |
119 GO=’GO’
120 ;
121
122 enum PubSubProtocol:
123 MQTT=’MQTT’ |
124 BLUETOOTH=’BLUETOOTH’ |
125 HTTP=’HTTP’ |
126 COAP=’COAP’ |
127 ZIGBEE=’ZIGBEE’ |
128 ZWAVE=’ZWAVE’
129 ;
130
131 enum BindAction:
132 READ=’<=’ |
133 WRITE=’=>’
134 ;
135
136 ChannelToBind:
137 targetChannel=[InstanceChannel] ’{’ bindPaths+=[Path] ("," bindPaths+=[Path])∗’}’
138 ;
139
140 IntLiteral:
141 INT
142 ;
143
144 VALIDID:
145 ID;

156

Appendix B

XTEXT GRAMMAR FOR THE POLICY
LANGUAGE

Listing B.1 – Xtex grammar for the Policy Language; continuation of Listing A.1. This
grammar provides the language to specify the policy.

1 Policy:
2 ’policy’ name=ID ’{’
3 (hasRules+=Rule)∗
4 ’}’
5 ;
6
7 Rule:
8 (RuleComm | RuleTrigger) hasCondition=Conditions
9 ;

10
11 RuleComm:
12 ’rule’ (name=ID ’:’)? hasCommSubject=CommSubject setTypeComm=TypeComm

hasCommObject=CommObject
13 ;
14
15 TypeComm:
16 (deny?=’deny:’ | allow?=’allow:’) actionComm=ActionComm
17 ;
18
19 enum ActionComm:
20 send=’send’ | receive=’receive’ | sendreceive=’send−receive’
21 ;
22
23 Conditions:
24 ’when’ hasTime=Time
25 ;
26

157

27 Time:
28 ’time’ name=ID ’:’hasExpression=CronExpression
29 ;
30
31 RuleTrigger:
32 ’rule’ (name=ID ’:’)? thingWithState=ThingWithState setTypeTrigger=TypeTrigger
33 ;
34
35 TypeTrigger:
36 ’trigger:’ setActionToTrigger=ActionTrigger
37 ;
38
39 ActionTrigger:
40 (goToState=’goToState’ triggerGoToState=ThingWithState) |
41 (executeFunction=’executeFunction’ triggerFunction=ThingWithFunction)
42 ;
43
44 CommObject :
45 hasThingWithStateOrPort=ThingWithStateOrPort | hasOtherObject=[ObjectOther]
46 ;
47
48 ObjectOther:
49 Role | User | ThingAny | Path | TypeChannel
50 ;
51
52 CommSubject :
53 hasThingWithStateOrPort=ThingWithStateOrPort | hasOtherSubject=[SubjectOther]
54 ;
55
56 ThingAny:
57 InstanceThing | TypeThing
58 ;
59
60 ChannelAny:
61 InstanceChannel | TypeChannel
62 ;
63
64 SubjectOther:
65 Role | User | ThingAny
66 ;
67
68 ThingWithStateOrPort:
69 ThingWithPort | ThingWithState
70 ;
71

158

72 ThingWithPort:
73 thing=[ThingAny] ’−>’ getPort=GetPort
74 ;
75
76 ThingWithState:
77 thing=[ThingAny] ’−>’ getState=GetState
78 ;
79
80 ThingWithFunction:
81 thing=[ThingAny] ’−>’ getFunction=GetFunction
82 ;
83
84 GetPort:
85 ’port:’ port=[thingml::Port]
86 ;
87
88 GetState:
89 ’state:’ state=[thingml::State]
90 ;
91
92 GetFunction:
93 ’function:’ function=[thingml::Function] (’(’ (parameters+=[thingml::Parameter]) (’,’ (

parameters+=[thingml::Parameter]))∗ ’)’)?
94 ;
95
96 CronExpression:
97 seconds=CronElement minutes=CronElement hours=CronElement
98 days=CronElement months=CronElement daysOfWeek=CronElement (year=CronElement)?

| ’@’ constant=ID
99 ;

100 CronElement:
101 RangeCronElement | PeriodicCronElement
102 ;
103 RangeCronElement hidden():
104 TerminalCronElement ({RangeCronElement.start=current} ’−’ end=IntLiteral)∗
105 ;
106 TerminalCronElement:
107 expression=(IntLiteral | ID | ’∗’ | ’?’)
108 ;
109 PeriodicCronElement hidden():
110 expression=TerminalCronElement ’/’ elements=RangeCronList
111 ;
112 RangeCronList hidden():
113 elements+=RangeCronElement (’,’ elements+=RangeCronElement)∗
114 ;

159

Appendix C

ATL RULES FOR NETWORKING AND
FORWARDING TRANSFORMATIONS

Listing C.1 – The ATL rules for networking

1 module Network2Thing;
2
3 create OUT: ThingML from TH: ThingML, CY : CyprIoT;
4
5 uses Copier;
6 uses Helpers;
7
8 helper def : mqttNumber : Integer = 0;
9

10
11 rule copyState {
12 from s : ThingML!State(not (s.oclIsTypeOf(ThingML!CompositeState) or s.oclIsTypeOf(

ThingML!FinalState)))
13 to t : ThingML!State(
14 annotations <− s.annotations,
15 entry <− s.entry,
16 exit <− s.exit,
17 internal <− s.internal,
18 name <− s.name,
19 outgoing <− s.outgoing,
20 properties <− s.properties
21)
22 }
23
24 rule createExternalConnectorFromBind {
25 from s : CyprIoT!Bind(s.isBindMatchesInputThing())
26 using {
27 protocolName : String = s.getTargetedProtocolFromBind();

160

28 }
29 to
30 configuration : ThingML!Configuration(
31 name <− s.getInstanceThingNameFromBind()+’_Cfg’,
32 instances <− Sequence{instance},
33 connectors <− Sequence{externalConnector},
34 annotations <− Sequence{compiler,debug}
35),
36 compiler : ThingML!PlatformAnnotation(
37 name <− ’compiler’,
38 value <− s.getTargetedPlatfomFromBind()
39),
40 debug : ThingML!PlatformAnnotation(
41 name <− ’debug’,
42 value <− ’true’
43),
44 instance : ThingML!Instance(
45 name <− s.bindsInstanceThing.name,
46 type <− thisModule.inputThing()
47),
48 externalConnector : ThingML!ExternalConnector(
49 inst <− instance,
50 port <− ThingML!Port.allInstances()−>select(p | p.name=s.portToBind.name).first(),
51 protocol <− protocol,
52 annotations <− s.getAllPathsFromBind()−>collect(t | thisModule.multiplePaths(s, t))
53),
54 protocol : ThingML!Protocol (
55 name <− protocolName,
56 annotations <− Sequence{brokerAdress,portNumber,serializer}
57),
58 brokerAdress : ThingML!PlatformAnnotation(
59 name <− ’mqtt_broker_address’,
60 value <− s.getServerFromBind()
61),
62 portNumber : ThingML!PlatformAnnotation(
63 name <− ’mqtt_port_number’,
64 value <− s.getPortNumberFromBind()
65),
66 serializer : ThingML!PlatformAnnotation(
67 name <− ’serializer’,
68 value <− s.getAllPathsFromBind().first().serializer.toString().removeHash().toLower()

−− Create new protocol in ThingML when multiple type of serializers
69)
70 do {
71 if(thisModule.mqttNumber>=1){

161

72 protocol.name <− protocolName+thisModule.mqttNumber.toString();
73 }
74 thisModule.mqttNumber <− thisModule.mqttNumber + 1;
75 }
76 }
77
78 lazy rule multiplePaths {
79 from s : CyprIoT!Bind, t : CyprIoT!Path
80 to annotationMqtt : ThingML!PlatformAnnotation(
81 name <− s.bindAction.toString().removeHash().transformArrowToMQTTSyntax,
82 value <− s.getFullPathName(t)
83)
84 }

Listing C.2 – The ATL rules for forwarding.

1 module NetworkForward;
2
3 create OUT: ThingML from TH: ThingML, CY : CyprIoT;
4
5 uses Copier;
6 uses Helpers;
7
8 rule copyThingMLModel {
9 from s : ThingML!ThingMLModel

10 to t : ThingML!ThingMLModel(
11 configs <− s.configs,
12 imports <− s.imports,
13 protocols <− if(thisModule.firstNetwork().hasForwards.first().bridgeSubject.oclIsTypeOf

(CyprIoT!Bind) and thisModule.firstNetwork().hasForwards.first().bridgeSubject.
oclAsType(CyprIoT!Bind).getInstanceThingNameFromBind()=thisModule.
nameOfInputThing()) then CyprIoT!NetworkForward.allInstances()−>collect(b |
thisModule.resolveTemp(b, ’proto’))−>union(s.protocols) else s.protocols endif ,

14 types <− s.types
15)
16 }
17
18 rule copyThing {

162

19 from s : ThingML!Thing
20 to t : ThingML!Thing(
21 name <− s.name,
22 ports <− if(thisModule.firstNetwork().hasForwards.first().bridgeSubject.oclIsTypeOf(

CyprIoT!Bind) and thisModule.firstNetwork().hasForwards.first().bridgeSubject.
oclAsType(CyprIoT!Bind).getInstanceThingNameFromBind()=thisModule.
nameOfInputThing()) then CyprIoT!NetworkForward.allInstances()−>collect(b |
thisModule.resolveTemp(b, ’port’))−>union(s.ports) else s.ports endif,

23 annotations <− s.annotations,
24 assign <− s.assign,
25 behaviour <− s.behaviour,
26 fragment <− s.fragment,
27 functions <− s.functions,
28 messages <− s.messages,
29 includes <− s.includes,
30 properties <− s.properties
31)
32 }
33
34 rule copyConfig {
35 from s : ThingML!Configuration
36 to t : ThingML!Configuration(
37 annotations <− s.annotations,
38 connectors <− if(thisModule.firstNetwork().hasForwards.first().bridgeSubject.

oclIsTypeOf(CyprIoT!Bind) and thisModule.firstNetwork().hasForwards.first().
bridgeSubject.oclAsType(CyprIoT!Bind).getInstanceThingNameFromBind()=
thisModule.nameOfInputThing()) then s.connectors−>union(CyprIoT!
NetworkForward.allInstances()) else s.connectors endif ,

39 instances <− s.instances,
40 name <− s.name,
41 propassigns <− s.propassigns
42)
43 }
44
45 rule copyState {
46 from s : ThingML!State(not (s.oclIsTypeOf(ThingML!CompositeState) or s.oclIsTypeOf(

ThingML!FinalState)))
47 to t : ThingML!State(
48 annotations <− s.annotations,
49 entry <− s.entry,
50 exit <− s.exit,
51 internal <− s.internal,
52 name <− s.name,
53 outgoing <− s.outgoing,
54 properties <− s.properties

163

55)
56 }
57 rule copyCompositeState {
58 from s : ThingML!CompositeState
59 to t : ThingML!CompositeState(
60 name <− s.name,
61 annotations <− s.annotations,
62 entry <− s.entry,
63 exit <− s.exit,
64 history <− s.history,
65 initial <− s.initial,
66 internal <− s.internal,
67 outgoing <− s.outgoing,
68 properties <− s.properties,
69 region <− s.region,
70 session <− s.session,
71 substate <− s.substate
72)
73 }
74
75 helper context CyprIoT!Network def : collectEnforcedPoliciesInNetwork() : Sequence(CyprIoT!

Policy) = self.hasPolicyEnforcement.hasEnforcedPolicies;
76 helper context CyprIoT!Policy def : collectRuleBridgeFromPolicy() : Sequence(CyprIoT!

RuleBridge) =
77 self.hasRules−>select(r | r.oclIsTypeOf(CyprIoT!RuleBridge))
78 ;
79
80 helper context ThingML!ExternalConnector def : applyRuleBridge(annotation : ThingML!

PlatformAnnotation) : Sequence(ThingML!PlatformAnnotation) = thisModule.firstNetwork
().collectEnforcedPoliciesInNetwork()−>collect(p | p.collectRuleBridgeFromPolicy()−>
collect(r | if(r.isAnnotationPathMatchesRuleBridge(annotation)) then thisModule.
multiplePaths(r.bridgeSubject.oclAsType(CyprIoT!ChannelWithPath).getPath.path,r,
thisModule.firstNetwork()) else Sequence{} endif))−>flatten()−>union(self.annotations);

81
82 helper context CyprIoT!RuleBridge def : isAnnotationPathMatchesRuleBridge(annotation :

ThingML!PlatformAnnotation) : Boolean = self.bridgeSubject.oclAsType(CyprIoT!
ChannelWithPath).channel.oclIsTypeOf(CyprIoT!TypeChannel) and annotation.name=’
mqtt_publish_topic’ and not(annotation.value=self.getFullPathNameBridge(thisModule.
firstNetwork(),self.bridgeSubject.oclAsType(CyprIoT!ChannelWithPath).getPath.path)) and
thisModule.firstNetwork().instantiate−>exists(s | s.oclIsTypeOf(CyprIoT!InstanceChannel)
and s.oclAsType(CyprIoT!InstanceChannel).typeChannel.pubSubToInstantiate.name=self.
bridgeSubject.oclAsType(CyprIoT!ChannelWithPath).channel.name) and annotation.value=
self.getFullPathNameBridge(thisModule.firstNetwork(),self.bridgeSubject.oclAsType(CyprIoT
!ChannelWithPath).getPath.path);

83

164

84
85 rule copyExternalConnector {
86 from s : ThingML!ExternalConnector
87 to t : ThingML!ExternalConnector(
88 annotations <− s.annotations−>collect(a | s.applyRuleBridge(a))−>flatten(),
89 inst <− s.inst,
90 name <− s.name,
91 port <− s.port,
92 protocol <− s.protocol
93)
94 }
95
96 rule copyTransition {
97 from s : ThingML!Transition
98 to t : ThingML!Transition(
99 action <− if(thisModule.firstNetwork().hasForwards.first().bridgeSubject.oclIsTypeOf(

CyprIoT!Bind)
100 and thisModule.firstNetwork().hasForwards.first().bridgeSubject.oclAsType(

CyprIoT!Bind).getInstanceThingNameFromBind()=thisModule.
nameOfInputThing()

101 and not(s.event.oclIsUndefined())
102 and s.event.oclAsType(ThingML!ReceiveMessage).port.name=ThingML!Port.

allInstances().first().name
103 and s.event.oclAsType(ThingML!ReceiveMessage).message.name=ThingML!

Port.allInstances().first().receives.first().name)
104 then thisModule.groupActionTransition(s,s.event.oclAsType(ThingML!

ReceiveMessage))
105 else s.action endif,
106 annotations <− s.annotations,
107 event <− s.event,
108 guard <− s.guard,
109 name <− s.name,
110 target <− s.target
111)
112 }
113 lazy rule groupActionTransition {
114 from s : ThingML!Transition, r : ThingML!ReceiveMessage
115 to
116 groupAction : ThingML!ActionBlock(
117 actions <− if(not(s.action.oclIsUndefined())) then Sequence{sendAction,s.action}

else Sequence{sendAction} endif
118),
119 sendAction : ThingML!SendAction(
120 message <− ThingML!Port.allInstances().first().receives.first(),
121 port <− thisModule.resolveTemp(CyprIoT!NetworkForward.allInstances().first(), ’port’),

165

122 parameters <− Sequence{eventRef}
123),
124 eventRef : ThingML!EventReference(
125 receiveMsg <− r,
126 parameter <− r.message.parameters.first()
127)
128
129 }
130
131 rule bridgePaths {
132 from s : CyprIoT!NetworkForward (s.bridgeSubject.oclIsTypeOf(CyprIoT!Bind) and s.

bridgeSubject.oclAsType(CyprIoT!Bind).getInstanceThingNameFromBind()=thisModule.
nameOfInputThing())

133 to t : ThingML!ExternalConnector(
134 annotations <− ThingML!ExternalConnector.allInstances().first().annotations−>collect

(a | thisModule.addAnnotations(a)),
135 inst <− ThingML!ExternalConnector.allInstances().first().inst,
136 port <− port,
137 protocol <− proto
138),
139 proto : ThingML!Protocol(
140 name <− s.bridgeToChannel.targetedChannelInstance.typeChannel.targetedProtocol.

toString().removeHash()+’1’,
141 annotations <− Sequence{brokerAdress,portNumber,serializer}
142
143),
144 port : ThingML!RequiredPort(
145 name <− ’bridge_’+s.bridgeSubject.oclAsType(CyprIoT!Bind).

getInstanceThingNameFromBind()+’_’+s.bridgeSubject.oclAsType(CyprIoT!Bind).
portToBind.name,

146 sends <− ThingML!Port.allInstances().first().receives,
147 optional <− true
148),
149 brokerAdress : ThingML!PlatformAnnotation(
150 name <− ’mqtt_broker_address’,
151 value <− s.bridgeToChannel.targetedChannelInstance.typeChannel.server.toString().split

(’:’).first()
152),
153 portNumber : ThingML!PlatformAnnotation(
154 name <− ’mqtt_port_number’,
155 value <− s.bridgeToChannel.targetedChannelInstance.typeChannel.server.toString().split

(’:’).last()
156),
157 serializer : ThingML!PlatformAnnotation(
158 name <− ’serializer’,

166

159 value <− ’json’ −− Create new protocol in ThingML when multiple type of serializers
160)
161 }
162
163 lazy rule addAnnotations {
164 from s : ThingML!PlatformAnnotation
165 to t : ThingML!PlatformAnnotation(
166 name <− s.name.mirrorMqttPubSub(),
167 value <− s.value
168)
169 }
170
171 lazy rule multiplePaths {
172 from t : CyprIoT!Path, r : CyprIoT!RuleBridge, n : CyprIoT!Network
173 to annotationMqtt : ThingML!PlatformAnnotation(
174 name <− ’mqtt_publish_topic’,
175 value <− r.getFullPathNameBridge(n,t)
176)
177 }

Listing C.3 – The ATL helpers for networking and forwarding.

1 module Helpers;
2
3 create OUT: ThingML from TH: ThingML, CY : CyprIoT;
4
5 helper def : inputThing() : String = ThingML!Thing.allInstances().first();
6
7 helper def : nameOfInputThing() : String = thisModule.inputThing().name;
8
9 helper context String def : convertArrowToSendOrReceive() : String =

10 if self.startsWith(’#=>’)
11 then ’send’
12 else
13 ’receive’
14 endif
15 ;
16

167

17 helper context String def : mirrorSendOrReceive() : String =
18 if self.startsWith(’send’)
19 then ’receive’
20 else
21 ’send’
22 endif
23 ;
24
25 helper context String def : mirrorMqttPubSub() : String =
26 if self.startsWith(’mqtt_publish_topic’)
27 then ’mqtt_subscribe_topic’
28 else
29 ’mqtt_publish_topic’
30 endif
31 ;
32
33 helper context String def : replaceDotsWithSlashInDomain() : String =
34 self.replace(’.’, ’/’)
35 ;
36
37 helper context String def : removeHash() : String =
38 self.replaceAll(’#’, ’’)
39 ;
40
41 helper context String def : transformArrowToMQTTSyntax : String =
42 if self.startsWith(’=>’)
43 then ’mqtt_publish_topic’
44 else
45 ’mqtt_subscribe_topic’
46 endif
47 ;
48
49 helper context CyprIoT!Bind def : getPathName() : String =
50 if(self.getPathFromBind().customName.oclIsUndefined())
51 then self.getDomainFromBind().replaceDotsWithSlashInDomain()+’/’+self.

channelToBind.targetedChannelInstance.name+’/’+self.getPathFromBind().name
52 else
53 self.getPathFromBind().customName
54 endif
55 ;
56
57 helper context CyprIoT!Bind def : getFullPathName(p : CyprIoT!Path) : String =
58 if(p.customName.oclIsUndefined())
59 then self.getDomainFromBind().replaceDotsWithSlashInDomain()+’/’+self.

channelToBind.targetedChannelInstance.name+’/’+p.name

168

60 else
61 p.customName
62 endif
63 ;
64
65 helper context CyprIoT!RuleBridge def : getFullPathNameBridge(n : CyprIoT!Network,p :

CyprIoT!Path) : String =
66 if(p.customName.oclIsUndefined())
67 then n.domain.name.replaceDotsWithSlashInDomain()+’/’+self.bridgeObject.oclAsType

(CyprIoT!ChannelWithPath).channel.name+’/’+p.name
68 else
69 p.customName
70 endif
71 ;
72
73 helper context CyprIoT!Bind def : isBindMatchesInputThing() : Boolean =
74 self.getInstanceThingNameFromBind()=thisModule.nameOfInputThing()
75 ;
76
77 helper context CyprIoT!Bind def : getInstanceThingFromBind() : CyprIoT!InstanceThing =
78 self.bindsInstanceThing
79 ;
80
81 helper context CyprIoT!Bind def : getInstanceThingNameFromBind() : String =
82 self.getInstanceThingFromBind().name
83 ;
84
85 helper context CyprIoT!Bind def : getThingFromBind() : CyprIoT!TypeThing =
86 self.bindsInstanceThing.typeThing.thingToInstantiate
87 ;
88
89 helper context CyprIoT!Bind def : getThingNameFromBind() : String =
90 self.getThingFromBind().name
91 ;
92
93 helper context CyprIoT!Bind def : getTypeChannelFromBind() : CyprIoT!ChannelToInstanciate

=
94 self.channelToBind.targetedChannelInstance.typeChannel
95 ;
96
97 helper context CyprIoT!Bind def : getServerFromBind() : String =
98 self.getTypeChannelFromBind().server.toString().split(’:’).first()
99 ;

100
101 helper context CyprIoT!Bind def : getPortNumberFromBind() : String =

169

102 self.getTypeChannelFromBind().server.toString().split(’:’).last()
103 ;
104
105 helper context CyprIoT!Bind def : getTargetedProtocolFromBind() : String =
106 self.getTypeChannelFromBind().targetedProtocol.toString().removeHash()
107 ;
108
109 helper context CyprIoT!Bind def : getDomainFromBind() : String =
110 self.refImmediateComposite().oclAsType(CyprIoT!Network).domain.name
111 ;
112
113 helper context CyprIoT!Bind def : getAllPathsFromBind() : Sequence(CyprIoT!Path) =
114 self.channelToBind.paths
115 ;
116
117 helper context CyprIoT!Bind def : getTargetedPlatfomFromBind() : String =
118 self.bindsInstanceThing.typeThing.targetedPlatform.toString().removeHash().toLower()
119 ;
120
121 helper def : firstNetwork() : CyprIoT!Network = CyprIoT!Network.allInstances().first();
122
123 helper def : bindOfInputThing() : CyprIoT!Bind = thisModule.firstNetwork().

bindsContainingThingInNetwork().first();
124
125 helper context CyprIoT!Network def : bindsContainingThingInNetwork() : Sequence(CyprIoT!

Bind) =
126 self.hasBinds−>select(b | b.isBindMatchesInputThing())
127 ;

170

Appendix D

ATL RULES FOR COMMUNICATION
CONTROL TRANSFORMATIONS

Listing D.1 – The ATL rules for communication control

1 module RuleComm;
2
3 create OUT: ThingML from TH: ThingML, CY : CyprIoT;
4
5 uses HelpersComm;
6
7 rule copyExternalConnector {
8 from s : ThingML!ExternalConnector
9 to t : ThingML!ExternalConnector(

10 annotations <− s.addAnnotationsAfterEnforcements(),
11 inst <− s.inst,
12 name <− s.name,
13 port <− s.port,
14 protocol <− s.protocol
15)
16 }
17
18 lazy rule enforcePlatformAnnotation {
19 from s : ThingML!PlatformAnnotation(s.enforceAnyCommRule())
20 to t : ThingML!PlatformAnnotation(
21 name <− s.name,
22 value <− s.value
23)
24 }

171

Listing D.2 – The ATL helpers for communication control

1 module HelpersComm;
2 create OUT: ThingML from TH: ThingML, CY : CyprIoT;
3 uses Copier;
4 uses Helpers;
5
6 rule copyThingMLModel {
7 from s : ThingML!ThingMLModel
8 to t : ThingML!ThingMLModel(
9 configs <− s.configs,

10 imports <− s.imports,
11 protocols <− s.protocols,
12 types <− s.types
13)
14 }
15
16 rule copyState {
17 from s : ThingML!State(not (s.oclIsTypeOf(ThingML!CompositeState) or s.oclIsTypeOf(

ThingML!FinalState)))
18 to t : ThingML!State(
19 annotations <− s.annotations,
20 entry <− s.entry,
21 exit <− s.exit,
22 internal <− s.internal,
23 name <− s.name,
24 outgoing <− s.outgoing,
25 properties <− s.properties
26)
27 }
28
29 −− Get the network to make (support for first network only for the moment)
30 helper def : firstNetwork() : CyprIoT!Network = CyprIoT!Network.allInstances().first();
31
32 helper context CyprIoT!Network def : bindsContainingThingInNetwork() : Sequence(CyprIoT!

Bind) =
33 self.hasBinds−>select(b | b.isBindMatchesInputThing())
34 ;
35
36 helper context CyprIoT!Network def : bindsContainingThingObjectInNetwork(pathName :

String, commAction : String) : Sequence(Sequence(String)) =
37 self.hasBinds−>select(b | not(b.channelToBind.paths−>select(p | p.name=pathName).

isEmpty()) and b.bindAction.toString().convertArrowToSendOrReceive()=commAction)

172

38 ;
39
40 helper context CyprIoT!Network def : collectEnforcedPoliciesInNetwork() : Sequence(CyprIoT!

Policy) = self.hasPolicyEnforcement.hasEnforcedPolicies;
41
42
43 helper context Sequence(CyprIoT!RuleComm) def : collectRulesCommElements() : Sequence(

Sequence(String)) =
44 self−>collect(r | Sequence{r.commSubject.subjectOther.name ,r.effectComm.allow,r.

effectComm.actionComm.toString().removeHash(),r.commObject.objectOther})
45 ;
46
47 helper context CyprIoT!Policy def : collectRuleCommFromPolicy() : Sequence(CyprIoT!

RuleComm) =
48 self.hasRules−>select(r | r.oclIsTypeOf(CyprIoT!RuleComm))
49 ;
50
51 helper context Sequence(CyprIoT!RuleComm) def : collectRulesCommWithThingInSubject() :

Sequence(CyprIoT!RuleComm) =
52 self−>select(r | r.oclAsType(CyprIoT!RuleComm).isSubjectOfRuleTypeThing() and r.

oclAsType(CyprIoT!RuleComm).commSubject.subjectOther.name=thisModule.
nameOfInputThing())−>flatten()

53 ;
54
55 helper context CyprIoT!Policy def : collectRulesCommWithThingInSubjectFromPolicy() :

Sequence(CyprIoT!RuleComm) =
56 self.collectRuleCommFromPolicy().collectRulesCommWithThingInSubject()
57 ;
58
59 helper context Sequence(CyprIoT!Policy) def : rulesContainingThingInSubjectInPolicies() :

Sequence(CyprIoT!RuleComm) =
60 self−>collect(p | p.collectRulesCommWithThingInSubjectFromPolicy())−>flatten()
61 ;
62
63 helper context CyprIoT!Network def : rulesContainingThingInSubjectInEnforcedPolicies() :

Sequence(CyprIoT!RuleComm) =
64 self.collectEnforcedPoliciesInNetwork().rulesContainingThingInSubjectInPolicies()
65 ;
66
67 helper context ThingML!PlatformAnnotation def : isAnnotationContainerExternalConnector() :

Boolean =
68 self.refImmediateComposite().oclIsTypeOf(ThingML!ExternalConnector)
69 ;
70
71 helper context CyprIoT!RuleComm def : isRuleSend() : Boolean = self.effectComm.

173

actionComm.toString().removeHash()=’send’;
72
73 helper context CyprIoT!RuleComm def : isRuleReceive() : Boolean = self.effectComm.

actionComm.toString().removeHash()=’receive’;
74
75 helper context CyprIoT!RuleComm def : isRuleDeny() : Boolean = self.effectComm.deny;
76
77 helper context CyprIoT!RuleComm def : isThingInRuleSubject() : Boolean =
78 self.commSubject.subjectOther.oclAsType(CyprIoT!TypeThing).name=thisModule.

nameOfInputThing()
79 ;
80
81 helper context CyprIoT!Bind def : isThingInBind() : Boolean =
82 self.bindsInstanceThing.name=thisModule.nameOfInputThing()
83 ;
84
85 −−Subjects checks
86 helper context CyprIoT!RuleComm def : isSubjectOfRuleThingAny() : Boolean = self.

commSubject.subjectOther.oclIsTypeOf(CyprIoT!ThingAny);
87
88 helper context CyprIoT!RuleComm def : isSubjectOfRuleTypeThing() : Boolean = self.

commSubject.subjectOther.oclIsTypeOf(CyprIoT!TypeThing);
89
90 helper context CyprIoT!RuleComm def : isSubjectOfRuleInstanceThing() : Boolean = self.

commSubject.subjectOther.oclIsTypeOf(CyprIoT!InstanceThing);
91
92 helper context CyprIoT!RuleComm def : isSubjectOfRuleRole() : Boolean = self.commSubject.

subjectOther.oclIsTypeOf(CyprIoT!Role);
93
94 helper context CyprIoT!RuleComm def : isSubjectOfRuleUser() : Boolean = self.commSubject.

subjectOther.oclIsTypeOf(CyprIoT!User);
95
96 −−Objects checks
97 helper context CyprIoT!RuleComm def : isObjectOfRuleTypeChannel() : Boolean = self.

commObject.objectOther.oclIsTypeOf(CyprIoT!TypeChannel);
98
99 helper context CyprIoT!RuleComm def : isObjectOfRuleRole() : Boolean = self.commObject.

objectOther.oclIsTypeOf(CyprIoT!Role);
100
101 helper context CyprIoT!RuleComm def : isObjectOfRuleUser() : Boolean = self.commObject.

objectOther.oclIsTypeOf(CyprIoT!User);
102
103 helper context CyprIoT!RuleComm def : isObjectOfRuleThingAny() : Boolean = self.

commObject.objectOther.oclIsTypeOf(CyprIoT!ThingAny);
104

174

105 helper context CyprIoT!RuleComm def : isObjectOfRuleTypeThing() : Boolean = self.
commObject.objectOther.oclIsTypeOf(CyprIoT!TypeThing);

106
107 helper context CyprIoT!RuleComm def : isObjectOfRuleInstanceThing() : Boolean = self.

commObject.objectOther.oclIsTypeOf(CyprIoT!InstanceThing);
108
109 helper context CyprIoT!RuleComm def : isObjectOfRulePath() : Boolean = self.commObject.

objectOther.oclIsTypeOf(CyprIoT!Path);
110
111 −− First element of a type ... (for debugging)
112 helper def : firstEnforcedPolicy() : CyprIoT!Policy = thisModule.enforcedPoliciesInFirstNetwork

().first();
113
114 helper def : enforcedPoliciesInFirstNetwork() : Sequence(CyprIoT!Policy) = thisModule.

firstNetwork().collectEnforcedPoliciesInNetwork();
115
116 helper def : firstRuleInPolicyFromFirstEnforcedPolicy() : CyprIoT!Rule = thisModule.

firstEnforcedPolicy().hasRules.first();
117
118 helper def : firstBind() : CyprIoT!Bind = thisModule.firstNetwork().hasBinds.first();
119
120 helper context CyprIoT!Policy def : firstRuleOfPolicyAsRuleComm() : CyprIoT!RuleComm =

self.hasRules.first().oclAsType(CyprIoT!RuleComm);
121
122 helper def : rulesContainingThingInSubjectInFirstNetwork() : Sequence(CyprIoT!RuleComm) =
123 thisModule.enforcedPoliciesInFirstNetwork().rulesContainingThingInSubjectInPolicies()
124 ;
125
126 −− Checks on the first element only (for debugging)
127 helper context CyprIoT!PoliciesEnforcement def : isThingInFirstBind() : Boolean =
128 self.refImmediateComposite().oclAsType(CyprIoT!Network).hasBinds.first().isThingInBind()
129 ;
130
131 helper context CyprIoT!Policy def : isThingInFirstRuleSubject() : Boolean =
132 if(self.firstRuleOfPolicyAsRuleComm().isSubjectOfRuleTypeThing())
133 then (self.firstRuleOfPolicyAsRuleComm().isThingInRuleSubject())
134 else false endif
135 ;
136
137 helper def : isFirstRuleOfFirstPolicyEnforcingThing() : Boolean = thisModule.

firstEnforcedPolicy().isThingInFirstRuleSubject();
138
139 helper def : isThingInFirstBindFromFirstEnforcedPolicy() : String = thisModule.firstNetwork().

hasPolicyEnforcement.isThingInFirstBind();
140

175

141 helper def : isFirstRuleOfFirstPolicyDeny() : Boolean = thisModule.
firstRuleInPolicyFromFirstEnforcedPolicy().oclAsType(CyprIoT!RuleComm).isRuleDeny();

142
143 helper def : isFirstRuleOfFirstPolicySend() : Boolean = thisModule.

firstRuleInPolicyFromFirstEnforcedPolicy().oclAsType(CyprIoT!RuleComm).isRuleSend();
144
145 helper def : isFirstRuleOfFirstPolicyReceive() : Boolean = thisModule.

firstRuleInPolicyFromFirstEnforcedPolicy().oclAsType(CyprIoT!RuleComm).isRuleReceive();
146
147 helper def : isObjectPubSubInFirstRule() : Boolean = thisModule.

firstRuleInPolicyFromFirstEnforcedPolicy().oclAsType(CyprIoT!RuleComm).
isObjectOfRulePubSub();

148
149 helper def : actionOfFirstBind() : String = thisModule.firstBind().bindAction.toString();
150
151 −− Enforce or not (Boolean)
152 helper context ThingML!PlatformAnnotation def : noEnforcing() : Boolean = not(self.

enforceDenySubscribe() or self.enforceDenyPublish());
153
154 helper context ThingML!PlatformAnnotation def : enforceMe() : Boolean =
155 thisModule.firstNetwork().bindsContainingThingInNetwork().first()
156 ;
157
158 helper def : bindOfInputThing() : CyprIoT!Bind = thisModule.firstNetwork().

bindsContainingThingInNetwork().first();
159
160 helper context CyprIoT!Bind def : typeThingOfBind() : CyprIoT!TypeThing = self.

bindsInstanceThing.typeThing.thingToInstantiate;
161
162 helper context CyprIoT!Bind def : actionOfBindConverted() : String = self.bindAction.toString

().convertArrowToSendOrReceive();
163
164 helper def : inputThingFromBind() : CyprIoT!TypeThing = thisModule.bindOfInputThing().

typeThingOfBind();
165
166 helper context CyprIoT!RuleComm def : isInputThingInstanceInSubject() : Boolean = self.

isSubjectOfRuleInstanceThing() and thisModule.nameOfInputThing()=self.commSubject.
subjectOther.name;

167
168 helper context CyprIoT!RuleComm def : isTypeInputThingInSubject() : Boolean = self.

isSubjectOfRuleTypeThing() and thisModule.bindOfInputThing().typeThingOfBind().name=
self.commSubject.subjectOther.name;

169
170 helper context CyprIoT!RuleComm def : isInputThingInSubjectRoles() : Boolean = self.

isSubjectOfRuleRole() and not(thisModule.inputThingFromBind().assignedRoles.

176

oclIsUndefined()) and
171 (self.isInputThingInSubjectRole());
172
173 helper context CyprIoT!RuleComm def : isInputThingInSubjectRole() : Boolean = thisModule.

inputThingFromBind().assignedRoles−>exists(r | r.name=self.commSubject.subjectOther.
name);

174
175 helper context CyprIoT!RuleComm def : isInputThingOwnedByUser() : Boolean = if(not(

thisModule.bindOfInputThing().bindsInstanceThing.typeThing.owner.oclIsUndefined()))
then self.isSubjectOfRuleUser() and thisModule.bindOfInputThing().bindsInstanceThing.
typeThing.owner.name=self.commSubject.subjectOther.name else false endif;

176
177 helper context CyprIoT!RuleComm def : isInputThingInObjectRole() : Boolean = thisModule.

inputThingFromBind().assignedRoles−>exists(r | r.name=self.commObject.objectOther.
name);

178
179 helper context CyprIoT!RuleComm def : isActionInBindAndRuleMatching() : Boolean =

thisModule.bindOfInputThing().actionOfBindConverted()=self.effectComm.actionComm.
toString().removeHash();

180
181 helper context CyprIoT!RuleComm def : isAnnotationPathMatchesRulePath(annotation :

ThingML!PlatformAnnotation) : Boolean = annotation.value=self.getFullPathOfRule();
182
183 helper context CyprIoT!RuleComm def : isAnnotationPathMatchesRuleChannel(annotation :

ThingML!PlatformAnnotation) : Boolean = self.commObject.objectOther.oclAsType(
CyprIoT!TypeChannel).hasPaths−>exists(p | annotation.value=thisModule.
bindOfInputThing().getFullPathName(p));

184
185 helper context CyprIoT!RuleComm def : isAnyBindMirrorActionInputThing(annotation :

ThingML!PlatformAnnotation) : Boolean = thisModule.firstNetwork().hasBinds−>exists(b
| b.typeThingOfBind().name=self.commObject.objectOther.name and b.
actionOfBindConverted().mirrorSendOrReceive()=thisModule.bindOfInputThing().
actionOfBindConverted() and b.channelToBind.paths−>exists(p | annotation.value=
thisModule.bindOfInputThing().getFullPathName(p)));

186
187 helper context CyprIoT!RuleComm def : isAnyBindMirrorActionInputInstanceThing(annotation

: ThingML!PlatformAnnotation) : Boolean = thisModule.firstNetwork().hasBinds−>exists(
b | b.getInstanceThingNameFromBind()=self.commObject.objectOther.name and b.
actionOfBindConverted().mirrorSendOrReceive()=thisModule.bindOfInputThing().
actionOfBindConverted() and b.channelToBind.paths−>exists(p | annotation.value=
thisModule.bindOfInputThing().getFullPathName(p)));

188
189 helper context CyprIoT!RuleComm def : getFullPathOfRule() : String = thisModule.

bindOfInputThing().getFullPathName(self.commObject.objectOther.oclAsType(CyprIoT!
Path));

177

190
191 helper context ThingML!ExternalConnector def : addAnnotationsAfterEnforcements() :

Sequence(ThingML!PlatformAnnotation) = self.annotations−>collect(a | if(thisModule.
enforcePlatformAnnotation(a).oclIsUndefined()) then Sequence{} else thisModule.
enforcePlatformAnnotation(a) endif)−>flatten();

192
193 helper context ThingML!PlatformAnnotation def : enforceDenyPath(rulecomm : CyprIoT!

RuleComm) : Boolean =
194 ((rulecomm.isInputThingInstanceInSubject() or rulecomm.isTypeInputThingInSubject()) or
195 rulecomm.isInputThingInSubjectRoles() or rulecomm.isInputThingOwnedByUser()) and
196 rulecomm.effectComm.deny and
197 rulecomm.isActionInBindAndRuleMatching() and
198 rulecomm.isObjectOfRulePath() and
199 rulecomm.isAnnotationPathMatchesRulePath(self)
200 ;
201
202 helper context ThingML!PlatformAnnotation def : enforceDenyChannel(rulecomm : CyprIoT!

RuleComm) : Boolean =
203 ((rulecomm.isInputThingInstanceInSubject() or rulecomm.isTypeInputThingInSubject()) or
204 rulecomm.isInputThingInSubjectRoles() or rulecomm.isInputThingOwnedByUser()) and
205 rulecomm.effectComm.deny and
206 rulecomm.isActionInBindAndRuleMatching() and
207 rulecomm.isObjectOfRuleTypeChannel() and
208 rulecomm.isAnnotationPathMatchesRuleChannel(self)
209 ;
210
211 helper context ThingML!PlatformAnnotation def : enforceSubjectAndObjectThings(rulecomm :

CyprIoT!RuleComm) : Boolean =
212 rulecomm.isTypeInputThingInSubject() and
213 rulecomm.isObjectOfRuleTypeThing() and
214 rulecomm.effectComm.deny and
215 rulecomm.isActionInBindAndRuleMatching() and
216 rulecomm.isAnyBindMirrorActionInputThing(self)
217 ;
218
219 helper context ThingML!PlatformAnnotation def : enforceSubjectAndObjectInstanceThings(

rulecomm : CyprIoT!RuleComm) : Boolean =
220 rulecomm.isInputThingInstanceInSubject() and
221 rulecomm.isObjectOfRuleInstanceThing() and
222 rulecomm.effectComm.deny and
223 rulecomm.isActionInBindAndRuleMatching() and
224 rulecomm.isAnyBindMirrorActionInputInstanceThing(self)
225 ;
226
227 helper context ThingML!PlatformAnnotation def :

178

enforceSubjectThingAndObjectInstanceThing(rulecomm : CyprIoT!RuleComm) : Boolean =
228 rulecomm.isTypeInputThingInSubject() and
229 rulecomm.isObjectOfRuleInstanceThing() and
230 rulecomm.effectComm.deny and
231 rulecomm.isActionInBindAndRuleMatching() and
232 rulecomm.isAnyBindMirrorActionInputInstanceThing(self)
233 ;
234
235 helper context ThingML!PlatformAnnotation def :

enforceSubjectInstanceThingAndObjectThing(rulecomm : CyprIoT!RuleComm) : Boolean =
236 rulecomm.isInputThingInstanceInSubject() and
237 rulecomm.isObjectOfRuleTypeThing() and
238 rulecomm.effectComm.deny and
239 rulecomm.isActionInBindAndRuleMatching() and
240 rulecomm.isAnyBindMirrorActionInputThing(self)
241 ;
242
243 helper context ThingML!PlatformAnnotation def : enforceUsers(rulecomm : CyprIoT!

RuleComm) : Boolean =
244 rulecomm.isInputThingOwnedByUser() and
245 rulecomm.isObjectOfRuleUser() and
246 rulecomm.effectComm.deny and
247 rulecomm.isActionInBindAndRuleMatching() and
248 thisModule.firstNetwork().hasBinds−>exists(b | b.actionOfBindConverted().

mirrorSendOrReceive()=thisModule.bindOfInputThing().actionOfBindConverted() and b
.bindsInstanceThing.typeThing.owner.name=rulecomm.commObject.objectOther.name
and b.channelToBind.paths−>exists(p | self.value=thisModule.bindOfInputThing().
getFullPathName(p)))

249 ;
250
251 helper context ThingML!PlatformAnnotation def : enforceRoles(rulecomm : CyprIoT!

RuleComm) : Boolean =
252 rulecomm.isSubjectOfRuleRole() and
253 rulecomm.isInputThingInSubjectRole() and
254 rulecomm.isObjectOfRuleRole() and
255 rulecomm.effectComm.deny and
256 rulecomm.isActionInBindAndRuleMatching() and
257 thisModule.firstNetwork().hasBinds−>exists(b | b.actionOfBindConverted().

mirrorSendOrReceive()=thisModule.bindOfInputThing().actionOfBindConverted() and b
.typeThingOfBind().assignedRoles−>exists(r | r.name=rulecomm.commObject.
objectOther.name) and b.channelToBind.paths−>exists(p | self.value=thisModule.
bindOfInputThing().getFullPathName(p)))

258 ;
259
260 helper context ThingML!PlatformAnnotation def : enforceRoleAndThing(rulecomm : CyprIoT!

179

RuleComm) : Boolean =
261 rulecomm.isSubjectOfRuleRole() and
262 rulecomm.isInputThingInSubjectRole() and
263 rulecomm.isObjectOfRuleTypeThing() and
264 rulecomm.effectComm.deny and
265 rulecomm.isActionInBindAndRuleMatching() and
266 thisModule.firstNetwork().hasBinds−>exists(b | b.actionOfBindConverted().

mirrorSendOrReceive()=thisModule.bindOfInputThing().actionOfBindConverted() and b
.typeThingOfBind().name=rulecomm.commObject.objectOther.name and b.
channelToBind.paths−>exists(p | self.value=thisModule.bindOfInputThing().
getFullPathName(p)))

267 ;
268
269 helper context ThingML!PlatformAnnotation def : enforceRoleAndInstanceThing(rulecomm :

CyprIoT!RuleComm) : Boolean =
270 rulecomm.isSubjectOfRuleUser() and
271 rulecomm.isInputThingInSubjectRole() and
272 rulecomm.isObjectOfRuleInstanceThing() and
273 rulecomm.effectComm.deny and
274 rulecomm.isActionInBindAndRuleMatching() and
275 thisModule.firstNetwork().hasBinds−>exists(b | b.actionOfBindConverted().

mirrorSendOrReceive()=thisModule.bindOfInputThing().actionOfBindConverted() and b
.getInstanceThingNameFromBind()=rulecomm.commObject.objectOther.name and b.
channelToBind.paths−>exists(p | self.value=thisModule.bindOfInputThing().
getFullPathName(p)))

276 ;
277
278 helper context ThingML!PlatformAnnotation def : enforceUserAndThing(rulecomm : CyprIoT!

RuleComm) : Boolean =
279 rulecomm.isSubjectOfRuleUser() and
280 rulecomm.isInputThingOwnedByUser() and
281 rulecomm.isObjectOfRuleTypeThing() and
282 rulecomm.effectComm.deny and
283 rulecomm.isActionInBindAndRuleMatching() and
284 thisModule.firstNetwork().hasBinds−>exists(b | b.actionOfBindConverted().

mirrorSendOrReceive()=thisModule.bindOfInputThing().actionOfBindConverted() and b
.typeThingOfBind().name=rulecomm.commObject.objectOther.name and b.
channelToBind.paths−>exists(p | self.value=thisModule.bindOfInputThing().
getFullPathName(p)))

285 ;
286
287 helper context ThingML!PlatformAnnotation def : enforceUserAndInstanceThing(rulecomm :

CyprIoT!RuleComm) : Boolean =
288 rulecomm.isSubjectOfRuleUser() and
289 rulecomm.isInputThingOwnedByUser() and

180

290 rulecomm.isObjectOfRuleInstanceThing() and
291 rulecomm.effectComm.deny and
292 rulecomm.isActionInBindAndRuleMatching() and
293 thisModule.firstNetwork().hasBinds−>exists(b | b.actionOfBindConverted().

mirrorSendOrReceive()=thisModule.bindOfInputThing().actionOfBindConverted() and b
.getInstanceThingNameFromBind()=rulecomm.commObject.objectOther.name and b.
channelToBind.paths−>exists(p | self.value=thisModule.bindOfInputThing().
getFullPathName(p)))

294 ;
295
296 helper context ThingML!PlatformAnnotation def : enforceThingAndRole(rulecomm : CyprIoT!

RuleComm) : Boolean =
297 rulecomm.isTypeInputThingInSubject() and
298 rulecomm.isObjectOfRuleRole() and
299 rulecomm.effectComm.deny and
300 rulecomm.isActionInBindAndRuleMatching() and
301 thisModule.firstNetwork().hasBinds−>exists(b | b.actionOfBindConverted().

mirrorSendOrReceive()=thisModule.bindOfInputThing().actionOfBindConverted() and b
.typeThingOfBind().assignedRoles−>exists(r | r.name=rulecomm.commObject.
objectOther.name) and thisModule.bindOfInputThing().isThingInBind() and b.
channelToBind.paths−>exists(p | self.value=thisModule.bindOfInputThing().
getFullPathName(p)))

302 ;
303
304 helper context ThingML!PlatformAnnotation def : enforceUserAndRole(rulecomm : CyprIoT!

RuleComm) : Boolean =
305 rulecomm.isInputThingOwnedByUser() and
306 rulecomm.isObjectOfRuleRole() and
307 rulecomm.effectComm.deny and
308 rulecomm.isActionInBindAndRuleMatching() and
309 thisModule.firstNetwork().hasBinds−>exists(b | b.actionOfBindConverted().

mirrorSendOrReceive()=thisModule.bindOfInputThing().actionOfBindConverted() and b
.typeThingOfBind().assignedRoles−>exists(r | r.name=rulecomm.commObject.
objectOther.name) and thisModule.bindOfInputThing().isThingInBind() and b.
channelToBind.paths−>exists(p | self.value=thisModule.bindOfInputThing().
getFullPathName(p)))

310 ;
311
312
313 helper context ThingML!PlatformAnnotation def : enforceInstanceThingAndRole(rulecomm :

CyprIoT!RuleComm) : Boolean =
314 rulecomm.isInputThingInstanceInSubject() and
315 rulecomm.isObjectOfRuleRole() and
316 rulecomm.effectComm.deny and
317 rulecomm.isActionInBindAndRuleMatching() and

181

318 thisModule.firstNetwork().hasBinds−>exists(b | b.actionOfBindConverted().
mirrorSendOrReceive()=thisModule.bindOfInputThing().actionOfBindConverted() and b
.typeThingOfBind().assignedRoles−>exists(r | r.name=rulecomm.commObject.
objectOther.name) and thisModule.bindOfInputThing().isThingInBind() and b.
channelToBind.paths−>exists(p | self.value=thisModule.bindOfInputThing().
getFullPathName(p)))

319 ;
320
321 helper context ThingML!PlatformAnnotation def : enforceThingAndUser(rulecomm : CyprIoT!

RuleComm) : Boolean =
322 rulecomm.isTypeInputThingInSubject() and
323 rulecomm.isObjectOfRuleUser() and
324 rulecomm.effectComm.deny and
325 rulecomm.isActionInBindAndRuleMatching() and
326 thisModule.firstNetwork().hasBinds−>exists(b | b.actionOfBindConverted().

mirrorSendOrReceive()=thisModule.bindOfInputThing().actionOfBindConverted() and b
.bindsInstanceThing.typeThing.owner.name=rulecomm.commObject.objectOther.name
and thisModule.bindOfInputThing().isThingInBind() and b.channelToBind.paths−>
exists(p | self.value=thisModule.bindOfInputThing().getFullPathName(p)))

327 ;
328
329 helper context ThingML!PlatformAnnotation def : enforceRoleAndUser(rulecomm : CyprIoT!

RuleComm) : Boolean =
330 rulecomm.isInputThingInSubjectRoles() and
331 rulecomm.isObjectOfRuleUser() and
332 rulecomm.effectComm.deny and
333 rulecomm.isActionInBindAndRuleMatching() and
334 thisModule.firstNetwork().hasBinds−>exists(b | b.actionOfBindConverted().

mirrorSendOrReceive()=thisModule.bindOfInputThing().actionOfBindConverted() and b
.bindsInstanceThing.typeThing.owner.name=rulecomm.commObject.objectOther.name
and thisModule.bindOfInputThing().isThingInBind() and b.channelToBind.paths−>
exists(p | self.value=thisModule.bindOfInputThing().getFullPathName(p)))

335 ;
336
337 helper context ThingML!PlatformAnnotation def : enforceInstanceThingAndUser(rulecomm :

CyprIoT!RuleComm) : Boolean =
338 rulecomm.isInputThingInstanceInSubject() and
339 rulecomm.isObjectOfRuleUser() and
340 rulecomm.effectComm.deny and
341 rulecomm.isActionInBindAndRuleMatching() and
342 thisModule.firstNetwork().hasBinds−>exists(b | b.actionOfBindConverted().

mirrorSendOrReceive()=thisModule.bindOfInputThing().actionOfBindConverted() and b
.bindsInstanceThing.typeThing.owner.name=rulecomm.commObject.objectOther.name
and thisModule.bindOfInputThing().isThingInBind() and b.channelToBind.paths−>
exists(p | self.value=thisModule.bindOfInputThing().getFullPathName(p)))

182

343 ;
344
345 helper context ThingML!PlatformAnnotation def : enforceAnyCommRule() : Boolean =
346 not(thisModule.firstNetwork().collectEnforcedPoliciesInNetwork()
347 −>forAll(p | p.collectRuleCommFromPolicy()
348 −>exists(r |
349 self.enforceDenyPath(r) or
350 self.enforceDenyChannel(r) or
351 self.enforceSubjectAndObjectThings(r) or
352 self.enforceSubjectAndObjectInstanceThings(r) or
353 self.enforceRoles(r) or
354 self.enforceRoleAndThing(r) or
355 self.enforceRoleAndInstanceThing(r) or
356 self.enforceThingAndRole(r) or
357 self.enforceInstanceThingAndRole(r) or
358 self.enforceSubjectInstanceThingAndObjectThing(r) or
359 self.enforceSubjectThingAndObjectInstanceThing(r) or
360 self.enforceThingAndUser(r) or
361 self.enforceInstanceThingAndUser(r) or
362 self.enforceUserAndThing(r) or
363 self.enforceUserAndInstanceThing(r) or
364 self.enforceUsers(r) or
365 self.enforceUserAndRole(r) or
366 self.enforceRoleAndUser(r)
367)))
368 ;

183

Appendix E

ATL RULES FOR SMART RULES
TRANSFORMATIONS

Listing E.1 – The ATL rules for smart rules

1 module RuleTrigger;
2
3 create OUT: ThingML from TH: ThingML, CY : CyprIoT;
4
5 uses HelpersTrigger;
6
7 rule copyThingMLModel {
8 from s : ThingML!ThingMLModel
9 to t : ThingML!ThingMLModel(

10 configs <− s.configs,
11 imports <− s.imports,
12 protocols <− s.protocols,
13 types <− s.types
14)
15 }
16
17
18 rule copyCompositeState {
19 from s : ThingML!CompositeState
20 to t : ThingML!CompositeState(
21 name <− s.name,
22 annotations <− s.annotations,
23 entry <− s.entry,
24 exit <− s.exit,
25 history <− s.history,
26 initial <− s.initial,
27 internal <− s.internal,
28 outgoing <− s.outgoing,

184

29 properties <− s.properties,
30 region <− s.region,
31 session <− s.session,
32 substate <− s.substate
33)
34 }
35
36 rule copyExternalConnector {
37 from s : ThingML!ExternalConnector
38 to t : ThingML!ExternalConnector(
39 annotations <− s.annotations,
40 inst <− s.inst,
41 name <− s.name,
42 port <− s.port,
43 protocol <− s.protocol
44)
45 }
46
47 rule copyThing {
48 from s : ThingML!Thing
49 to t : ThingML!Thing(
50 name <− s.name,
51 ports <− s.ports,
52 annotations <− s.annotations,
53 assign <− s.assign,
54 behaviour <− s.behaviour,
55 fragment <− s.fragment,
56 functions <− s.functions,
57 messages <− s.messages−>union(CyprIoT!RuleTrigger.allInstances()),
58 includes <− s.includes,
59 properties <− s.properties
60)
61 }
62
63 rule copyProvidedPort {
64 from s : ThingML!ProvidedPort
65 to t : ThingML!ProvidedPort(
66 name <− s.name,
67 receives <− s.receives−>union(CyprIoT!RuleTrigger.allInstances()),
68 sends <− s.sends−>union(CyprIoT!RuleTrigger.allInstances()),
69 annotations <− s.annotations
70)
71 }
72
73 rule copyRequiredPort {

185

74 from s : ThingML!RequiredPort
75 to t : ThingML!RequiredPort(
76 name <− s.name,
77 receives <− s.setReceivesPort(),
78 sends <− s.setSendsPort(),
79 annotations <− s.annotations
80)
81 }
82
83 rule triggerMess {
84 from s : CyprIoT!RuleTrigger
85 to triggerMessage : ThingML!Message(
86 name <− if(s.isGoToState())
87 then s.triggerObjectStateName()
88 else if(s.isExecuteFunction())
89 then s.triggerObjectFunctionName()
90 else ’perfomTransition’
91 endif endif
92)
93 }
94
95 rule copyState {
96 from s : ThingML!State(not(s.oclIsTypeOf(ThingML!CompositeState) or s.oclIsTypeOf(

ThingML!FinalState)))
97 to
98 t : ThingML!State(
99 annotations <− s.annotations,

100 entry <− s.setOnEntry(),
101 exit <− s.exit,
102 internal <− s.setInternals(),
103 name <− s.name,
104 outgoing <− s.setOutgoing(),
105 properties <− s.properties
106)
107 }
108
109 lazy rule getTransition {
110 from s : ThingML!State , k : CyprIoT!RuleTrigger
111 to
112 transition : ThingML!Transition(
113 target <− k.setTransitionTarget(),
114 event <− receive
115),
116 receive : ThingML!ReceiveMessage(
117 port <− ThingML!Thing.allInstances().first().ports.first(),

186

118 message <− thisModule.resolveTemp(k, ’triggerMessage’),
119 name <− ’trigger’
120),
121 action2 : ThingML!FunctionCallStatement(
122 function <− if(not(k.isInputThingInRuleTriggerSubject()) and k.isExecuteFunction())

then k.getFunctionToExecute() else OclUndefined endif,
123 parameters <− if(k.isExecuteFunction() and not(k.effectTrigger.actionTrigger.

thingWithFunction.getFunction.parameters.oclIsUndefined())) then k.effectTrigger.
actionTrigger.thingWithFunction.getFunction.parameters−>collect(p | thisModule.
multipleParameters(p))

124 else Sequence{} endif
125)
126 }
127
128 lazy rule getInternalTransition {
129 from s : ThingML!State , k : CyprIoT!RuleTrigger
130 to
131 transitionInternal : ThingML!InternalTransition(
132 event <− receive2,
133 action <− action
134),
135 receive2 : ThingML!ReceiveMessage(
136 port <− ThingML!Thing.allInstances().first().ports.first(),
137 message <− thisModule.resolveTemp(k, ’triggerMessage’),
138 name <− ’trigger’
139),
140 action : ThingML!FunctionCallStatement(
141 function <− if(not(k.isInputThingInRuleTriggerSubject()) and k.isExecuteFunction())

then k.getFunctionToExecute() else OclUndefined endif,
142 parameters <− if(k.isExecuteFunction() and not(k.effectTrigger.actionTrigger.

thingWithFunction.getFunction.parameters.oclIsUndefined())) then k.effectTrigger.
actionTrigger.thingWithFunction.getFunction.parameters−>collect(p | thisModule.
multipleParameters(p))

143 else Sequence{} endif
144)
145 }
146
147 lazy rule multipleParameters {
148 from s: String
149 to
150 expression : ThingML!IntegerLiteral(
151 intValue <− s.toInteger().refInvokeOperation(’longValue’, Sequence{}) −− bug : use

of reflexivity to convert integer to long
152)
153 }

187

154
155 lazy rule multipleTransition {
156 from s: ThingML!Transition , k : CyprIoT!RuleTrigger
157 to
158 performTransition : ThingML!Transition(
159 target <− s.target,
160 event <− receive
161),
162 receive : ThingML!ReceiveMessage(
163 port <− ThingML!Thing.allInstances().first().ports.first(),
164 message <− thisModule.resolveTemp(k, ’triggerMessage’),
165 name <− ’trigger’
166)
167 }
168
169 lazy rule groupActionOnEntry {
170 from s : ThingML!Action , k : CyprIoT!RuleTrigger
171 to
172 groupAction : ThingML!ActionBlock(
173 actions <− if(not(s.oclIsUndefined())) then Sequence{action,s} else Sequence{

action} endif
174),
175 action : ThingML!SendAction(
176 message <− thisModule.resolveTemp(k, ’triggerMessage’),
177 port <− ThingML!Port.allInstances().first()
178)
179
180 }

Listing E.2 – The ATL helpers for smart rules

1 module HelpersTrigger;
2
3 create OUT: ThingML from TH: ThingML, CY : CyprIoT;
4
5 uses Copier;
6 uses Helpers;
7

188

8 −− Get the network to make (support for the first network only)
9 helper def : firstNetwork() : CyprIoT!Network = CyprIoT!Network.allInstances().first();

10
11 helper context CyprIoT!Network def : collectEnforcedPoliciesInNetwork() : Sequence(CyprIoT!

Policy) =
12 self.hasPolicyEnforcement.hasEnforcedPolicies;
13
14 helper context CyprIoT!Policy def : collectRuleTriggerFromPolicy() : Sequence(CyprIoT!

RuleTrigger) =
15 self.hasRules−>select(r | r.oclIsTypeOf(CyprIoT!RuleTrigger))
16 ;
17
18 helper def : bindOfInputThing() : CyprIoT!Bind = thisModule.firstNetwork().

bindsContainingThingInNetwork().first();
19
20 helper context CyprIoT!Network def : bindsContainingThingInNetwork() : Sequence(CyprIoT!

Bind) =
21 self.hasBinds−>select(b | b.isBindMatchesInputThing())
22 ;
23
24 helper context CyprIoT!Network def : collectEnforcedEnforcedTriggerRulesInNetwork() :

Sequence(CyprIoT!RuleTrigger) =
25 self.collectEnforcedPoliciesInNetwork()−>collect(p | p.collectRuleTriggerFromPolicy())−>

flatten()
26 ;
27
28 helper def : collectTriggerRulesInMyNetwork() : Sequence(CyprIoT!RuleTrigger) =
29 thisModule.firstNetwork().collectEnforcedEnforcedTriggerRulesInNetwork()
30 ;
31
32 helper context CyprIoT!RuleTrigger def : isInputThingInRuleTriggerFunctionObject() :

Boolean = self.effectTrigger.actionTrigger.thingWithFunction.thing.name=thisModule.
bindOfInputThing().bindsInstanceThing.typeThing.thingToInstantiate.name;

33
34
35 helper context CyprIoT!RuleTrigger def : isInputThingInRuleTriggerObject() : Boolean = self.

effectTrigger.actionTrigger.thingWithState.thing.name=thisModule.bindOfInputThing().
bindsInstanceThing.typeThing.thingToInstantiate.name;

36
37 helper context CyprIoT!RuleTrigger def : isInputThingInRuleTriggerSubject() : Boolean = self.

thingWithState.thing.name=thisModule.bindOfInputThing().bindsInstanceThing.typeThing.
thingToInstantiate.name;

38
39 helper context ThingML!State def : isStateNameEqualToRuleTriggerObjectState(k : CyprIoT!

RuleTrigger) : Boolean = self.name=k.effectTrigger.actionTrigger.thingWithState.getState.

189

state.name;
40
41 helper context ThingML!State def : isStateNameEqualToRuleTriggerSubjectState(k : CyprIoT!

RuleTrigger) : Boolean = self.name=k.thingWithState.getState.state.name;
42
43 helper context CyprIoT!RuleTrigger def : getFunctionToExecute() : ThingML!Function =

ThingML!Function.allInstances()−>select(f | f.name=self.effectTrigger.actionTrigger.
thingWithFunction.getFunction.function.name).first();

44
45 helper context CyprIoT!RuleTrigger def : isGoToState() : Boolean = not(self.effectTrigger.

actionTrigger.goToState.oclIsUndefined());
46
47 helper context CyprIoT!RuleTrigger def : isExecuteFunction() : Boolean = not(self.

effectTrigger.actionTrigger.executeFunction.oclIsUndefined());
48
49 helper context CyprIoT!RuleTrigger def : isPerformTransition() : Boolean = not(self.

effectTrigger.actionTrigger.performTransition.oclIsUndefined());
50
51 helper context CyprIoT!RuleTrigger def : triggerObjectStateName() : String = self.

effectTrigger.actionTrigger.thingWithState.getState.state.name;
52
53 helper context CyprIoT!RuleTrigger def : triggerObjectFunctionName() : String = self.

effectTrigger.actionTrigger.thingWithFunction.getFunction.function.name;
54
55 helper context ThingML!RequiredPort def : setReceivesPort() : Sequence(ThingML!Message)

=
56 thisModule.collectTriggerRulesInMyNetwork()−>iterate(r ; receives : Sequence(ThingML!

Message) = self.receives |
57 if(r.isGoToState() and r.isInputThingInRuleTriggerObject())
58 then receives−>union(CyprIoT!RuleTrigger.allInstances()) else receives endif
59)
60 ;
61
62 helper context ThingML!RequiredPort def : setSendsPort() : Sequence(ThingML!Message) =
63 thisModule.collectTriggerRulesInMyNetwork()−>iterate(r ; sends : Sequence(ThingML!Message

) = self.sends |
64 if(r.isGoToState() and r.isInputThingInRuleTriggerObject())
65 then sends else sends−>union(CyprIoT!RuleTrigger.allInstances()) endif
66)
67 ;
68
69 helper context ThingML!State def : setInternals() : Sequence(ThingML!InternalTransition) =
70 thisModule.collectTriggerRulesInMyNetwork()−>iterate(r ; internals : Sequence(ThingML!

InternalTransition) = self.internal |
71 if(r.isExecuteFunction()

190

72 and r.isInputThingInRuleTriggerFunctionObject())
73 then internals−>union(Sequence{thisModule.getInternalTransition(self,r)

})
74 else internals endif
75)
76 ;
77 helper context ThingML!State def : setOutgoing() : Sequence(ThingML!Transition) =
78 thisModule.collectTriggerRulesInMyNetwork()−>iterate(r ; transitions : Sequence(ThingML

!Transition) = self.outgoing |
79
80 if(r.isGoToState() and
81 r.isInputThingInRuleTriggerObject() and
82 not(self.isStateNameEqualToRuleTriggerObjectState(r)))
83 then if(transitions−>exists(tr | tr.guard.oclIsUndefined() and tr.event.oclIsUndefined())

) then transitions else transitions−>union(Sequence{thisModule.getTransition(self
,r)}) endif

84 else if(r.isPerformTransition() and not(r.isInputThingInRuleTriggerSubject())) then
85 transitions−>union(if(ThingML!Transition.allInstances()−>select(i | self.name=i.

refImmediateComposite().oclAsType(ThingML!State).name)−>collect(a | thisModule.
multipleTransition(a,r)).asOrderedSet().size()>0 and r.effectTrigger.actionTrigger.
transitionRank=0)

86 then
87 Sequence{ThingML!Transition.allInstances()−>select(i | self.name=i.

refImmediateComposite().oclAsType(ThingML!State).name)−>collect(a |
thisModule.multipleTransition(a,r)).asOrderedSet().at(1)}

88 else if(ThingML!Transition.allInstances()−>select(i | self.name=i.
refImmediateComposite().oclAsType(ThingML!State).name)−>collect(a |
thisModule.multipleTransition(a,r)).asOrderedSet().size()>0 and not(r.effectTrigger
.actionTrigger.transitionRank=0) and ThingML!Transition.allInstances()−>select(i
| self.name=i.refImmediateComposite().oclAsType(ThingML!State).name)−>collect
(a | thisModule.multipleTransition(a,r)).asOrderedSet().size()<=r.effectTrigger.
actionTrigger.transitionRank)

89 then
90 Sequence{ThingML!Transition.allInstances()−>select(i | self.name=i.

refImmediateComposite().oclAsType(ThingML!State).name)−>collect(a |
thisModule.multipleTransition(a,r)).asOrderedSet().at(r.effectTrigger.actionTrigger.
transitionRank)}

91 else Sequence{} endif endif
92)
93 else transitions endif endif
94)
95 ;
96
97 helper context ThingML!State def : setOnEntry() : ThingML!Action =
98 thisModule.collectTriggerRulesInMyNetwork()−>iterate(r ; action : ThingML!Action = self.entry

191

|
99 if(r.isInputThingInRuleTriggerSubject() and self.

isStateNameEqualToRuleTriggerSubjectState(r))
100 then thisModule.groupActionOnEntry(action, r)
101 else action endif
102)
103 ;
104
105 helper context CyprIoT!RuleTrigger def : setTransitionTarget() : ThingML!State =
106
107 if(self.isGoToState()
108 and self.isInputThingInRuleTriggerObject())
109 then ThingML!State.allInstances()−>select(t | t.

isStateNameEqualToRuleTriggerObjectState(self)).first()
110 else ThingML!State.allInstances().first() endif
111 ;

192

Titre : Une méthodologie fondée sur les modèles pour unifier l’ingénierie logicielle dans l’Internet
des objets

Mot clés : Internet des objets, Génie logiciel, Ingénierie dirigée par les modèles, Transformation des

modèles, Politiques de contrôle, Génération de code

Résumé : L’Internet des objets (IdO) vise à
connecter tout objet, partout, en tout temps
(TTT). Cette hypothèse entraîne de nombreux
défis en matière de génie logiciel. Ces défis
constituent un sérieux obstacle à son adoption à
grande échelle. L’une des principales caractéris-
tiques de l’IdO est la généricité, c’est-à-dire per-
mettre aux objets de se connecter de manière
transparente, quelles que soient la technologie
qu’ils utilisent. L’Ingénierie Dirigée par les Mo-
dèles (IDM) est un paradigme qui préconise l’uti-
lisation de modèles pour résoudre les problèmes
de génie logiciel. L’IDM pourrait aider à répondre
au besoin de généricité de l’IdO du point de vue
du génie logiciel. Les approches d’IDM existantes
se focalisent essentiellement sur la modélisation
du comportement des objets. Peu d’attention a
été accordée à la modélisation liée à leur réseau-
tage. La présente thèse présente une méthodo-

logie pour l’IdO basée sur l’IDM. Fondamentale-
ment, elle fournit une solution pour créer des ré-
seaux intelligents d’objets. Le principe que nous
utilisons consiste à contourner l’hétérogénéité in-
trinsèque de l’IdO en séparant la spécification
du réseau, c’est-à-dire les objets, le schéma de
communication et les contraintes, de son im-
plémentation concrète, c’est-à-dire les artefacts
logiciels de bas niveau (par exemple, le code
source). Techniquement, la méthodologie repose
sur un langage dédié basé sur les modèles pour
la spécification du réseau et une procédure pour
la génération du code des artefacts de bas ni-
veau à partir de cette spécification. L’adoption
de cette méthodologie rend l’ingénierie logicielle
des applications d’IdO plus rigoureuse, permet
de prévenir les bogues plus tôt et de gagner du
temps.

Title: A Model-Driven Methodology to Unify Software Engineering in the Internet of Things

Keywords: Internet of Things, Software Engineering, Model-Driven Engineering, Model Transforma-

tion, Policy Enforcement, Code Generation

Abstract: The Internet of Things (IoT) aims for
connecting Anything, Anywhere, Anytime (AAA).
This assumption brings about a good deal of soft-
ware engineering challenges. These challenges
constitute a serious obstacle to its wider adop-
tion. The main feature of the IoT is genericity, i.e.,
enabling things to connect seamlessly regardless
of their technologies. Model-Driven Engineering
(MDE) is a paradigm that advocates using mod-
els to address software engineering problems.
MDE could help to meet the genericity of the IoT
from a software engineering perspective. In that
sense, the IoT could be a requirement provider
on the one hand and MDE its solution provider
on the other. Existing MDE approaches focus on
modeling the behavior of things. But, little atten-
tion has been paid to network-related modeling.
The present thesis presents a methodology to
create smart networks of things based on MDE.

It aims to cover and leverage the network-related
aspects of an IoT application compared to the
existing work. The principle we use consists of
avoiding the intrinsic heterogeneity of the IoT by
separating the specification of the network, i.e.,
the things, the communication scheme, and the
constraints, from their concrete implementation,
i.e., the low-level artifacts (e.g., source code).
Technically, the methodology relies on a model-
based Domain-Specific Language and a code
generator. The former enables the specification
of the network, and the latter provides a proce-
dure to generate the low-level artifacts from this
specification. The adoption of this methodology
permits making software engineering of IoT ap-
plications more deterministic and saving a signif-
icant amount of lines of code compared to the
state of practice.

	Abstract
	Résumé
	Dedication
	Acknowledgements
	List of Tables
	List of Figures
	List of Abbreviations
	Synthèse en Français
	Introduction
	State of the Art & Context
	From Network of Computers to Network of Things
	The Conventional Internet
	Towards the IoT
	Software Engineering for the IoT

	Model-Driven Engineering
	Modeling
	Model Transformation
	MDE and IoT

	Summary

	Modeling a Network of Things
	Reification of IoT concepts
	Things
	Channels
	Users and Roles
	Network
	Forwarding

	Every ``thing'' is a model
	Metamodel
	Network Model
	Usability of the Model

	Domain-Specific Language
	Integrated Development Environment
	Readability and Maintainability

	Summary

	Controlling a Network of Things
	Model-based Control
	Policy
	Rule
	Control Types

	Communication Control Rules
	Structure
	Potential Applications
	Ports Communication Control
	Things Communication Control
	Users Communication Control
	Communication Control Based on Roles
	Combinations

	Smart Rules
	Structure
	Potential Applications
	Behavioral factors
	Temporal factors

	Conflict detection and resolution
	Early Detection
	Conflict Detection Algorithms
	Resolution Strategies at Enforcement

	Summary

	Generation of the Network Artifacts
	Code Generator
	Core Architecture
	Model Loading
	Extensibility

	Model Transformation
	Model-to-Model Transformation
	Model-to-Text Transformation

	Enforcement Strategies
	Enforcement of Communication Control Rules
	Enforcement of Smart Rules

	Summary

	Assessment
	Methodology
	Evaluation
	Quantitative Evaluation
	Qualitative Evaluation

	Case Study: Smart home
	Description
	Implementation

	Potential Applications
	Smart City
	Industry 4.0

	Discussion
	Research Considerations
	Threats to validity

	Conclusion & Perspectives
	Contributions of the thesis
	Contribution 1: Software Engineering Methodology
	Contribution 2: Model-Based Network Abstractions
	Contribution 3: Model-Based Control Abstractions
	Contribution 4: Code Generator

	Perspectives
	Model-Driven Reverse Engineering
	Better Artifacts Generation
	Simulation

	Bibliography
	Appendices
	Xtext Grammar for the Networking Language
	Xtext Grammar for the Policy Language
	ATL Rules for Networking and Forwarding Transformations
	ATL Rules for Communication Control Transformations
	ATL Rules for Smart Rules Transformations

