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Résumé Introduction

Les polymères sont de larges molécules faites de la répétition de petites sous-unités appelées monomères [START_REF] Ferry | Viscoelastic properties of polymers[END_REF][START_REF] De Gennes | Introduction to Polymer Dynamics[END_REF][START_REF] Doi | The Theory of Polymer Dynamics[END_REF][START_REF] Graessley | Polymeric Liquids & Networks: Dynamics and Rheology[END_REF][START_REF]Polymer Viscoelasticity -Basics, Molecular Theories, Experiments and Simulations, 2nd edn[END_REF][START_REF] Rubinstein | Polymer physics[END_REF]. Le nombre d unités répétées N par chaine définit le degré de polymérisation d un polymère. Si N n est pas très grand, il est communément référé sous l appellation oligomère. Tous les systèmes polymériques synthétiques ou d origines naturelles sont constitués de plusieurs chaines de polymère M , de même nature chimique mais avec une certaine variabilité de longueur de chaine et de masse moléculaire. La longueur, la masse moléculaire, la nature chimique et la morphologie des différentes unités induisent la structure et les propriétés mécaniques du matériau finalement formé.

Les matériaux polymères doivent souvent être capable d être mis en forme sous forme de couches minces de différentes épaisseurs, en fonction de leurs applications et de leurs finalités. En fonction de l épaisseur H, les couches minces sont connues pour présenter de grandes différences par rapport à leur température de transition vitreuse T g [START_REF] De Gennes | Introduction to Polymer Dynamics[END_REF], particulièrement à l échelle nanoscopique [START_REF] O'connell | Rheological measurements of the thermoviscoelastic response of ultrathin polymer films[END_REF][START_REF] Alcoutlabi | Effects of confinement on material behaviour at the nanometre size scale[END_REF][START_REF] O'connell | Novel nanobubble inflation method for determining the viscoelastic properties of ultrathin polymer films[END_REF][START_REF] O'connell | Dramatic stiffening of ultrathin polymer films in the rubbery regime[END_REF][START_REF] Paul | Creep behavior of ultra-thin polymer films[END_REF][START_REF] Chapuis | A novel interferometric method for the study of the viscoelastic properties of ultra-thin polymer films determined from nanobubble inflation[END_REF][START_REF] Mckenna | 50th anniversary perspective: Challenges in the dynamics and kinetics of glass-forming polymers[END_REF].

Mettre en forme un matériau polymère sous forme de couche mince demande à ce qu il subisse différents régimes de températures ou même un procédé de trempe, soit en milieu confiné, soit sous la forme d un film autoportant, en fonction du procédé de fabrication mise en oeuvre. Les films minces autoportants de polymère exhibent de nombreuses propriétés physiques intéressantes, particulièrement quand elles sont couplées à la température ou à la topologie des polymères (linéaires, brosses, réticulés, etc.) [START_REF] Gaillard | Stable Freestanding Thin Films of Copolymer Melts Far from the Glass Transition[END_REF]. Sous l'action d'une trempe, les liquides complexes vitrifiables comme les polymères ne montrent que de faibles évolutions structurales, mais l'évolution de leurs propriétés physiques [START_REF] Ferry | Viscoelastic properties of polymers[END_REF][START_REF] De Gennes | Introduction to Polymer Dynamics[END_REF][START_REF] Doi | The Theory of Polymer Dynamics[END_REF][START_REF] Graessley | Polymeric Liquids & Networks: Dynamics and Rheology[END_REF][START_REF]Polymer Viscoelasticity -Basics, Molecular Theories, Experiments and Simulations, 2nd edn[END_REF][START_REF] Rubinstein | Polymer physics[END_REF] est bien plus prononcée.

Ceci donne lieu à un débat intéressant sur les phénomènes physiques intervenants dans les vii polymères vitreux. Le terme de dynamique vitreuse, qui englobe la dynamique des systèmes extrêmement lents observée dans les systèmes désordonnés autour de leur température T g, n est pas complétement compris [7-9, 15, 19, 22, 47, 49, 51-56]. C'est pour ces raisons que qu'il est important de caractériser ces phénomènes aussi bien expérimentalement que par le biais de la simulation numérique. Malgré l'importance technologique de ce type de système, de nombreuses propriétés mécaniques ou rhéologiques n'ont pas été étudiées en détails pour les couches minces de polymères [START_REF] Vogt | Mechanical and viscoelastic properties of confined amorphous polymers[END_REF].

Le but de cette thèse a été de simuler numériquement les couches minces de polymères et d'identifier leurs propriétés mécaniques ou rhéologiques de manières globales et locales.

Le moyen principal utilisé dans cette étude est la méthode numérique de simulation de dynamique moléculaire (DM) [START_REF] Allen | Computer Simulation of Liquids[END_REF][START_REF] Plimpton | Fast Parallel Algorithms for Short-Range Molecular Dynamics[END_REF]. De manière simplifiée, les simulations de dynamique moléculaire fonctionnent en résolvant les équations du mouvement pour un système de particules qui interagissent au travers d un potentiel bien défini. Notre modèle de représentation de polymères est bien connu [START_REF] Paul | Molecular dynamics simulations of the glass transition in polymer melts[END_REF][START_REF] Baschnagel | Computer simulations of supercooled polymer melts in the bulk and in confined geometry[END_REF][START_REF] Baschnagel | Glass transition and relaxation behavior of supercooled polymer melts: An introduction to modeling approaches by molecular dynamics simulations and to comparisons with mode-coupling theory[END_REF] et référencé sous l appellation coarse-grained bead-spring model [START_REF] Kremer | Dynamics of entangled linear polymer melts: A molecular dynamics simulation[END_REF]. Nous avons simulé les films mince autoportant (Fig. 0-1(a)) pour différentes épaisseurs en utilisant le logiciel de dynamique moléculaire LAMMPS (Largescale Atomic Molecular Massively Parallel Simulator) [START_REF] Plimpton | Fast Parallel Algorithms for Short-Range Molecular Dynamics[END_REF].

Résultats

Une des propriétés les plus basique des polymères qui puisse être mesurée expérimentalement et numériquement est la caractérisation de leur température de transition vitreuse T g . En mesurant l épaisseur des couches minces (ou de manière équivalente leur volume car dans notre cas L est une constante pour l ensemble de nos couches minces) en fonction de la température, nous permet via une expérience de tes de polymères ( car leur rayon de giration R G ≪ H) en considérant une description phénoménologique simple utilisant la superposition linéaire

A ≈ 1 H [A 0 (H -W ) + A s W ] = A 0 1 - (1 -A s /A 0 )W H
d un terme de volume A 0 avec un poids H -W ≈ H et un terme de surface A s avec un poids proportionnel à la largeur de la surface W ≪ H. De manière plus générale, A peut être écrit comme une moyenne (possiblement avec des poids non-triviaux [START_REF] Mangalara | The relationship between dynamic and pseudo-thermodynamic measures of the glass transition temperature in nanostructured materials[END_REF]) en fonction d une dépendance selon z de la contribution A(z) [START_REF] Mirigian | Influence of chemistry, interfacial width, and nonisothermal conditions on spatially heterogeneous activated relaxation and elasticity in glass-forming free standing films[END_REF][START_REF] Peter | Slow dynamics and glass transition in simulated free-standing polymer films: a possible relation between global and local glass transition temperatures[END_REF][START_REF] Yoshimoto | Local dynamic mechnical properties in model free-standing polymer thin films[END_REF][START_REF] Mangalara | The relationship between dynamic and pseudo-thermodynamic measures of the glass transition temperature in nanostructured materials[END_REF].

L affirmation de le correction en 1/H dans l équation précédente à l avantage de se baser sur une explication simple et transparente. Ceci peut être vu comme la contribution principale à une expansion plus générale en 1/H. Mon Travail se focalise principalement sur une propriété mécanique importante des polymères, le module de relaxation du stress de cisaillement G t . Expérimentalement, G t est mesuré, hors équilibre, par une expérience de réponse stresse-cisaillement. En restant dans les limites de la réponse linéaire et en utilisant les méthodes classiques d analyse statistique [START_REF] Wittmer | Shear modulus of simulated glass-forming model systems: Effects of boundary condition, temperature, and sampling time[END_REF][START_REF] Barrat | Elastic Response of a Simple Amorphous Binary Alloy Near the Glass Transition[END_REF][START_REF] Kriuchevskyi | Shearstress fluctuations and relaxation in polymer glasses[END_REF][START_REF] Kriuchevskyi | Shear Modulus and Shear-Stress Fluctuations in Polymer Glasses[END_REF][START_REF] Kriuchevskyi | Numerical determination of shear stress relaxation modulus of polymer glasses[END_REF][START_REF] George | Shear-stress relaxation in free-standing polymer films[END_REF] il est possible de calculer ix tient pour nos couches minces à toutes les températures [START_REF] Kriuchevskyi | Shear Modulus and Shear-Stress Fluctuations in Polymer Glasses[END_REF][START_REF] Kriuchevskyi | Numerical determination of shear stress relaxation modulus of polymer glasses[END_REF][START_REF] George | Shear-stress relaxation in free-standing polymer films[END_REF], ce qui implique que les valeurs attendues pour µ(∆t) et G(t) sont numériquement équivalents. En étant une dérivée seconde sur G(t), µ(∆t) agit une comme une fonction de lissage avec de bien meilleures propriétés statistiques que G(t) (i.e. δµ ≪ δG). Le paragraphe suivant discutera des observations clés de notre travail.

1) La fonction de réponse G t et le module de stresse généralisé µ(∆t): Nous avons calculé la valeur moyenne de la fonction de relaxation du stresse de cisaillement G t

x (Fig. 0-3(a)) et la moyenne du module de stresse généralisé µ(∆t) pour une large gamme de températures et d épaisseurs de couches minces [START_REF] Wittmer | Shear modulus of simulated glass-forming model systems: Effects of boundary condition, temperature, and sampling time[END_REF][START_REF] Barrat | Elastic Response of a Simple Amorphous Binary Alloy Near the Glass Transition[END_REF][START_REF] Kriuchevskyi | Shearstress fluctuations and relaxation in polymer glasses[END_REF][START_REF] Kriuchevskyi | Shear Modulus and Shear-Stress Fluctuations in Polymer Glasses[END_REF][START_REF] Kriuchevskyi | Numerical determination of shear stress relaxation modulus of polymer glasses[END_REF][START_REF] George | Shear-stress relaxation in free-standing polymer films[END_REF][START_REF] George | Ensemble fluctuations matter for variances of macroscopic variables[END_REF][START_REF] George | Fluctuations of non-ergodic stochastic processes[END_REF] en utilisant la formule de fluctuation du stresse. En utilisant le principe de superposition temps-température, Time Temperature Superposition (TTS) [START_REF] Ferry | Viscoelastic properties of polymers[END_REF], nous avons aussi démontré une loi d échelle valide de type TTS pour µ(∆t) (Fig. 0-3(b)). En utilisant des facteurs de déplacement horizontaux utilisés pour obtenir la loi d échelle TTS, nous avons estimé la viscosité de cisaillement η et le temps de relaxation relatif alpha pour l ensembles des couches minces. En accord avec de nombreux résultats expérimentaux qui ont été publiés [7-10, 12, 13, 27-33, 35, 36, 39-41, 45, 47-49], nous avons montré que de nombreuses propriétés intensives de nos couches minces, dépendent linéairement comme l inverse de l épaisseur de la couche 1/H. Ceci indique qu il y a une superposition linéaire des propriétés de volume et de surface [START_REF] Keddie | Size-dependent depression of the glass transition temperature in polymer films[END_REF][START_REF] Herminghaus | The glass transition of thin polymer films: Some questions, and a possible answer[END_REF], ceci peut être résolu par une analyse effectué plan par plan de ces propriétés dans l épaisseur de la couche mince.

2) Transformation numérique de G t : Le module de relaxation du cisaillement G t a été transformé [START_REF] Ferry | Viscoelastic properties of polymers[END_REF][START_REF]Polymer Viscoelasticity -Basics, Molecular Theories, Experiments and Simulations, 2nd edn[END_REF][START_REF] Cooley | An algorithm for the machine calculation of complex Fourier series[END_REF][START_REF] Hopkins | On Creep and Relaxation[END_REF] en des composants de stockage G ′ (ω) et de perte G ′′ (ω) du module dynamique G ⋆ (ω) en utilisant des techniques classiques. A partir des asymptotes à basse fréquence de G ′ (ω) et G ′′ (ω), comme présenté dans la figure 0-4(b), nous obtenons pour les températures les plus hautes la viscosité de cisaillement η et l état stationnaire du fluage J 0 e . Ceci donne une nouvelle voie pour mesurer le temps de relaxation alpha τ α,1 = J 0 e η. Ceci a été utilisé pour fixer la valeur absolue de l échelle de temps de la relaxation terminale τ α (T ) obtenue par le moyen de la renormalisation TTS. Le temps de croisement τ × (λ = 3) obtenu à partir du premier croisement de λG ′ (ω) et G ′′ (ω) donne une voie plus directe et numériquement solide (La statistique étant meilleur au valeur intermédiaire -ω) pour l estimation de τ α au dessus de T g .

Comme montré dans la figure. 0-4(a), nous avons de manière additionnelle vérifié l équivalence entre la viscosité de cisaillementη obtenu par plusieurs méthodes de calcul indépendantes -relation de Green-Kubo, relation de Einstein-Helfand, Superposition TTS et l asymptote de G ′′ (ω) à faible valeur de ω -pour le film1. Nous avons aussi vérifié que pour nos couches minces le comportement de type Vogel-Fulcher-Tammann (VFT) était maintenu.

Finalement nous avons effectué un transformation direct [START_REF]Polymer Viscoelasticity -Basics, Molecular Theories, Experiments and Simulations, 2nd edn[END_REF][START_REF] Hopkins | On Creep and Relaxation[END_REF] fluage J t , qui a été ensuite comparé avec le fluage mesuré dans l expérience d expansion de micro-bulles [START_REF] Paul | Creep behavior of ultra-thin polymer films[END_REF]. Il a été montré que notre modèle est en agrément avec les résultats expérimentaux obtenus dans le régime du domaine vitreux. Dans le régime du fluide, nos chaines courtes de notre modèle sont bien sur incapable de révéler un plateau caoutchouteux.

3) Module local de cisaillement dans le formalisme de fluctuation du stresse:

Basé sur l hypothèse simple d un modèle à deux couches [START_REF] Keddie | Size-dependent depression of the glass transition temperature in polymer films[END_REF][START_REF] Herminghaus | The glass transition of thin polymer films: Some questions, and a possible answer[END_REF], il suggère une couche pseudo-liquide au niveau l interface libre des couches minces [START_REF] Herminghaus | Polymer surface melting mediated by capillary waves[END_REF], nous avons calculé le module local de cisaillement µ(z) pour notre couche mince la plus épaisse. En nous focalisant sur la distribution en fonction de la position en z, dont la contribution est supposée linéairement additive à la somme des propriétés de nos couches minces, nous avons vérifié par nos résultats que cette assomption est valide. En accord avec d autres résultats de travaux expérimentaux et numériques [START_REF] Yang | Glass transition dynamics and surface layer mobility in unentangled polystyrene films[END_REF][START_REF] Yoshimoto | Local dynamic mechnical properties in model free-standing polymer thin films[END_REF][START_REF] Keddie | Size-dependent depression of the glass transition temperature in polymer films[END_REF][START_REF] Fukao | Glass transitions and dynamics in thin polymer films: Dielectric relaxation of thin films of polystyrene[END_REF][START_REF] Ellison | Sensing the glass transition in thin and ultrathin polymer films via fluorescence probes and labels[END_REF], nous avons observé une décroissance du module de cisaillement à la surface de nos couches minces (représenté par les flèches de la Fig. 012345). Il semble aussi que l épaisseur de l interface souple, croit en foncxii 

Conclusion

Nous avons réussi à démontrer que de nombreuses propriétés mécaniques et rhéologiques peuvent être estimées numériquement pour les couches minces de polymères linéaires, tel que le module de relaxation du cisaillement G t la viscosité dynamique η grâce au formalisme de la réponse linéaire des fluctuations du stresse.

De manière additionnelle, Nous avons montré qu il existe une dépendance linéaire en fonction de 1/H pour de nombreuses propriétés suggérant que les effets de surface jouent un rôle important. L analyse résolue en couche de µ montre que le module est plus faible à l interface en comparaison du centre des couches minces. Cette soft interface clarifie pour nous les nombreuses dépendance en 1/H observées dans nos travaux. Nous avons aussi défini l échelle pour le relatif temps de relaxation alpha τ α obtenu à partir de l approche TTS de µ(∆t). De plus, nous avons comparé nos résultats avec les travaux expérimentaux de Ref. [START_REF] Paul | Creep behavior of ultra-thin polymer films[END_REF] et noté que la correspondance ne vaut que pour le régime vitreux. Finalement, nous avons caractérisé les fluctuation de notre fonction de réponse linéaire G t dans des termes généraux en assumant un processus gaussien stationnaire (à l équilibre) xv et stochastique. Nous ne sommes pas au courant de travaux systématiques expérimentaux ou numériques de caractérisation de la réponse step-strain δG ou δµ, spécialement pour les liquides vitrifiables ou les solides amorphes. Nos affirmations que δG/G ou δµ/µ doivent généralement devenir larges (de l ordre de l unité) pour des temps où G t décroit fortement, peut être source d erreurs pour la compréhension des propriétés mécaniques et rhéologiques des vrai matériaux macroscopiques. Du point de vu théorique il est actuellement mal définis comment généraliser les relations de fluctuation-dissipation connectant la moyenne de la réponse linéaire hors équilibre à la moyenne de la relaxation à l équilibre pour décrire les fluctuations entre différents échantillons.

Perspectives

Il y a différentes pistes qui peuvent être poursuivis comme continuation de nos travaux. Tout d'abord, des simulations numériques avec N ≫ N e peuvent être réalisées. Les processus dynamiques discutés dans ce manuscrits de thèse sont supposés se comporter de manières proches aux résultats expérimentaux [START_REF] Paul | Creep behavior of ultra-thin polymer films[END_REF] pour les valeurs larges de N . Le ralentissement induit de la relaxation par l enchevêtrement va nous confirmer si la présence d un plateau caoutchouteux pour la réponse de fluage J t . D autres structures de polymères peuvent être explorées [START_REF] Gaillard | Stable Freestanding Thin Films of Copolymer Melts Far from the Glass Transition[END_REF] 

Introduction

Polus meros

We know that polymers are macromolecules [START_REF] Ferry | Viscoelastic properties of polymers[END_REF][START_REF] De Gennes | Introduction to Polymer Dynamics[END_REF][START_REF] Doi | The Theory of Polymer Dynamics[END_REF][START_REF] Graessley | Polymeric Liquids & Networks: Dynamics and Rheology[END_REF][START_REF]Polymer Viscoelasticity -Basics, Molecular Theories, Experiments and Simulations, 2nd edn[END_REF][START_REF] Rubinstein | Polymer physics[END_REF] composed of small repetitive sub-units, called monomers [START_REF] Rubinstein | Polymer physics[END_REF]. The number of repeating units N per chain defines the degree of polymerization of the polymer. If N is not very large, it is also quite common to refer to it as an oligomer. All systems of synthetic and naturally occurring polymers are composed of several polymer chains M of the same chemical type with variable lengths and molecular weights. The length, molecular weight, chemical nature, and the morphology of the units impart specific structure and mechanical property to the material that is finally formed.

Polymers also demonstrate characteristically different properties based on whether we are above/below their glass transition temperature (T g ) [7-9, 15, 22, 47, 49, 51-54]. Above T g , they are unstable melts, which means a low modulus; whereas below T g , they form amorphous (glassy) solids, with a finite modulus. Polymers can be made into films of varying thicknesses. Based on the thickness H, they are known to show characteristically different T g [START_REF] De Gennes | Introduction to Polymer Dynamics[END_REF]. This effect is especially dramatic in the nanometric scale [START_REF] O'connell | Rheological measurements of the thermoviscoelastic response of ultrathin polymer films[END_REF][START_REF] Alcoutlabi | Effects of confinement on material behaviour at the nanometre size scale[END_REF][START_REF] O'connell | Novel nanobubble inflation method for determining the viscoelastic properties of ultrathin polymer films[END_REF][START_REF] O'connell | Dramatic stiffening of ultrathin polymer films in the rubbery regime[END_REF][START_REF] Paul | Creep behavior of ultra-thin polymer films[END_REF][START_REF] Chapuis | A novel interferometric method for the study of the viscoelastic properties of ultra-thin polymer films determined from nanobubble inflation[END_REF][START_REF] Mckenna | 50th anniversary perspective: Challenges in the dynamics and kinetics of glass-forming polymers[END_REF].

Distinguishing the temperature and thickness dependencies of polymer films are therefore of interest. For instance, in the processing of polymers to manufacture LEGO bricks, it is crucial to know how and when a thick/thin extrudate flows/freezes, before being injection molded into their final forms. The central theme of this thesis is thus to investigate mechanical and rheological properties of freestanding polymer films using general theoretical arguments and molecular dynamics (MD) simulations [START_REF] Allen | Computer Simulation of Liquids[END_REF][START_REF] Frenkel | Understanding Molecular Simulation[END_REF].

1

In the following section we will summarize relevant advancements in measuring mechanical properties of polymer films over the past couple of decades. We will then briefly discuss our approach (Sec. 1.3) and summarize a few of our central findings in Sec. 1.4. Finally, in Sec. 1.5, we will provide an outline of this thesis.

Status quo

A general understanding is that the large surface to volume ratio of polymer films [START_REF] Forrest | Interface and chain confinement effects on the glass transition temperature of thin polymer films[END_REF] impart attractive structural and dynamical properties in comparison to the bulk polymer -therefore finding its use in varied applications. The case of lab-on-a-chip (microfluidics) technology which has global health implications [START_REF] Dittrich | Lab-on-a-chip: Microfluidics in drug discovery[END_REF][START_REF] Stone | Engineering flows in small devices[END_REF][START_REF] Figeys | Lab-on-a-chip: A revolution in biological and medical sciences[END_REF] is a great example that illustrates the need to study thin polymer films. Polystyrene (PS), polycarbonate (PC), and polymethyl methacrylate (PMMA) are some common thermoplastics that are used in this domain. These microelectromechanical chips are constantly undergoing miniaturization (with nanoscale features) to add various functionalities to the end product [START_REF] Paul | Creep behavior of ultra-thin polymer films[END_REF][START_REF] Rezvantalab | Microfluidic assisted synthesis of PLGA drug delivery systems[END_REF][START_REF] Moreddu | Integration of Paper Microfluidic Sensors into Contact Lens for Tear Fluid Analysis[END_REF][START_REF] Da-Han Kuan | Recent advancements in microfluidics that integrate electrical sensors for whole blood analysis[END_REF]. Polymers, being a vital component in this technology, specifically in their thin-film geometry, has been a topic of discussion ever since. This interest is mainly due to the anomalous properties exhibited by such a geometry [START_REF] De Gennes | Introduction to Polymer Dynamics[END_REF][START_REF] Tanaka | Ultrathinning-Induced Surface Phase Separation of Polystyrene/Poly(vinyl methyl ether) Blend Film[END_REF][START_REF] Forrest | Effect of free surfaces on the glass transition temperature of thin polymer films[END_REF][START_REF] Mattson | Quantifying glass transition behavior in ultrathin free-standing polymer films[END_REF][START_REF] Forrest | The glass transition in thin polymer films[END_REF][START_REF] Dalnoki-Veress | Molecular weight dependence of reductions in the glass transition temperature of thin, freely standing polymer films[END_REF][START_REF] Bäumchen | Reduced glass transition temperatures in thin polymer films: Surface effect or artifact?[END_REF][START_REF] Forrest | When does a glass transition temperature not signify a glass transition?[END_REF][START_REF] Napolitano | Influence of a reduced mobility layer on the structural relaxation dynamics of aluminium capped ultrthin films of poly(ethylene terephthalate)[END_REF][START_REF] O'connell | Rheological measurements of the thermoviscoelastic response of ultrathin polymer films[END_REF][START_REF] Alcoutlabi | Effects of confinement on material behaviour at the nanometre size scale[END_REF]. Firstly, there is no clear consensus on the thickness (H) dependence of the T g for thin polymer films. Secondly, based on whether the film is freestanding or supported, the H-dependence seems to vary. Finally, the type of measurement used to determine T g also seem to give different results. It is important to understand T g better as it dictates the processability, performance and properties of the final product. For these reasons, the glass transition emerges as one of the most interesting problems of our times.

As stated previously, the overall physics of the polymer changes near the glass transition temperature. It is a common approach to study the viscoelasticity (or mechanical response) to characterize the T g [START_REF] Merabia | Heterogeneous nature of the dynamics and glass transition in thin polymer films[END_REF][START_REF] Long | Heterogeneous dynamics at the glass transition in van der Waals liquids , in the bulk and in thin films[END_REF]. Some of the well-known experimental techniques1 that have been employed to understand the viscoelasticity of polymer films are as follows:

• nanobubble inflation method that measures the biaxial stretching [START_REF] Ferry | Viscoelastic properties of polymers[END_REF] of a bubble formed by ultra thin polymer films by applying constant pressure through nanopores to calculate the biaxial creep compliance [START_REF] O'connell | Novel nanobubble inflation method for determining the viscoelastic properties of ultrathin polymer films[END_REF][START_REF] O'connell | Dramatic stiffening of ultrathin polymer films in the rubbery regime[END_REF][START_REF] Paul | Creep behavior of ultra-thin polymer films[END_REF];

• spontaneous particle embedment method, where a submicron particle is embedded into the thin film, the viscoelastic nature of the film allows for embedment of the particle with time. Using the JKR (Johnson, Kendall, and Roberts) model [START_REF] Johnson | Surface energy and the contact of elastic solids[END_REF], the force on the particle is related to the work of adhesion, and is used to calculate the modulus of the surface [START_REF] Teichroeb | Direct Imaging of Nanoparticle Embedding to Probe Viscoelasticity of Polymer Surfaces[END_REF][START_REF] Taskin | Evidence of surface softening in polymers and their nanocomposites as determined by spontaneous particle embedment[END_REF];

• film dewetting method, where the surface energy difference between film and supporting liquid causes the film to uniformly shrink (homothetic deformation), while the thickness remains uniform. Creep compliance is then directly measured after verifying that the strain is linear with the surface tension induced stress [START_REF] Bodiguel | Viscoelastic dewetting of a polymer film on a liquid substrate[END_REF];

• AFM based nanoindentation method, where the indentation probe is brought in contact with the free surface of the film to determine the elastic moduli [START_REF] Tweedie | Enhanced stiffness of amorphous polymer surfaces under confinement of localized contact loads[END_REF];

• analyzing the wrinkling pattern (number, length of wrinkles, contact angle and bending modulus) formed on a free floating film placed on the water surface by the water droplet (of varying volumes in µl) on the film surface also gives a measure of the modulus [START_REF] Chang | Thickness Dependence of the Young's Modulus of Polymer Thin Films[END_REF]. While these methods do not point to a unique conclusion, reported trends from the extensive viscoelastic characterization of polymer films are that:

• below 100nm, for freestanding and supported PS films, T g is seen to decrease with 1/H. Note that this effect is not universal and that it will depend on the material and its interaction with the substrate;

• experiments performed on glassy (T ≪ T g ) PS films tells that there exists a 3 -4nm soft layer at the surface of the film, where a reduction of T g in comparison to the center of the film is seen;

• supported films show an enhanced surface stiffness (up to 200%) at the free interface in comparison to the bulk.

From the vast number of experimental and numerical studies, it has been possible to understand the above effects to a certain extent [7-10, 12, 13, 27-33, 35, 36, 39-41, 45, 47, 48]:

• the dramatic depression in T g for freestanding films implies that there is an increased mobility of chains at the free interfaces. The magnitude of decrease in T g is reduced for supported films (in comparison to freestanding films) due to strong interactions with the substrate [17-19, 53, 56, 91];

• the increased mobility at the interface causes a reduction in the surface modulus, creating a liquid-like surface [START_REF] Keddie | Size-dependent depression of the glass transition temperature in polymer films[END_REF], and vice versa [START_REF] Yoshimoto | Local dynamic mechnical properties in model free-standing polymer thin films[END_REF][START_REF] Taskin | Evidence of surface softening in polymers and their nanocomposites as determined by spontaneous particle embedment[END_REF];

• the low energy of activation (measured via lateral force microscopy) at the surface increases the mobility of the chains at the surface [START_REF] Kajiyama | Surface relaxation process of monodisperse polystyrene film based on lateral force microscopic measurements[END_REF]; Globally, the energy barriers in freestanding films is lower than in bulk polymers [START_REF] Forrest | Relaxation dynamics in ultrathin polymer films[END_REF][START_REF] Tushar | Investigation of transition states in bulk and freestanding film polymer glasses[END_REF].

• there exists a heterogeneity in the dynamics of aggregates creating a mobility gradient within the film [START_REF] Fukao | Glass transitions and dynamics in thin polymer films: Dielectric relaxation of thin films of polystyrene[END_REF][START_REF] Tushar | Investigation of transition states in bulk and freestanding film polymer glasses[END_REF][START_REF] Adam | On the temperature dependence of cooperative relaxation properties in glass-forming liquids[END_REF]. These cooperatively rearranging regions (CRR) diffuse from the surface into the bulk, coupling the relaxation at the mobile surface to the bulk of the film. Below T g , slow-dynamics aggregates dominate contributing to the macroscopic viscosity and above T g the segmental diffusion is dominated by fastdynamics aggregates [START_REF] Merabia | Heterogeneous nature of the dynamics and glass transition in thin polymer films[END_REF][START_REF] Long | Heterogeneous dynamics at the glass transition in van der Waals liquids , in the bulk and in thin films[END_REF].

Results from neutron scattering, that probed the mean square displacement of supported thin films, showed that there is a retarded mobility of chains at the free interface, compared to the bulk [START_REF] Christopher | Dynamics of thin polymer films: Recent insights from incoherent neutron scattering[END_REF]. An decreased mobility means an increase in T g and mechanical stiffness, which goes against our understanding of dynamics of the free surface. Whereas, the direct measurement of T g using fluorescence methods [START_REF] Ellison | The distribution of glass-transition temperatures in nanoscopically confined glass formers[END_REF] has proven otherwise. In general, most experimental studies on freestanding thin films unanimously agree that there is a reduction in T g with reducing thickness [START_REF] Vogt | Mechanical and viscoelastic properties of confined amorphous polymers[END_REF][START_REF] Roth | Polymer Glasses[END_REF][START_REF] Schweizer | Progress towards a phenomenological picture and theoretical understanding of glassy dynamics and vitrification near interfaces and under nanoconfinement[END_REF]. However, only a small number of numerical studies exist at present focusing on the mechanical properties of freestanding films [38, 41-44, 46, 48]. Attempting to fill this gap, we focus on the characterization of various mechanical and rheological properties of freestanding polymer films.

Our approach

Using MD simulation [START_REF] Allen | Computer Simulation of Liquids[END_REF][START_REF] Frenkel | Understanding Molecular Simulation[END_REF] of a coarse-grained bead-spring model [START_REF] Plimpton | Fast Parallel Algorithms for Short-Range Molecular Dynamics[END_REF][START_REF] Schnell | Simulated glassforming polymer melts: Glass transition temperature and elastic constants of the glassy state[END_REF] we have investigated the total shear response function G t and shear moduli µ of our freestanding We study free-standing polymer films with M = 768 oligomer chains of length N = 16 monomers confined in periodic boxes with L being the imposed lateral box size in both x and y directions. The film thickness H ∼ 1/L 2 (to leading order) is operationally defined using the Gibbs dividing surface [START_REF] Allen | Computer Simulation of Liquids[END_REF] as shown in Sec. 4.2.

polymer films to understand their H-dependent behavior. In Fig. 1-1, we present our simulation setup. We note that our films are suspended parallel to the xy plane in the simulation box. To prepare films of varying thicknesses we do not directly vary H, but rather impose a lateral box width L in both x and y directions. The thickness at the glass transition temperature, H(T = T g ) = H g , of our films varies from film1 (thickest, H = 21.3 LJ units) to film4 (thinnest, H = 4.8 LJ units). More details on film preparation and film properties are given in Sec. 3.4. The thermodynamic equilibrium shear modulus µ is the long-time limit of the shear-stress relaxation modulus G t , i.e. the ratio of the measured shear stress τ (t) and the imposed (infinitesimal) simple shear strain γ. We remind that µ = 0 for simple or complex liquids T ≫ T g . Following the pioneering work of Barrat et al. [START_REF] Barrat | Elastic Response of a Simple Amorphous Binary Alloy Near the Glass Transition[END_REF] and related studies on elastic properties [START_REF] Wittmer | Shear modulus of simulated glass-forming model systems: Effects of boundary condition, temperature, and sampling time[END_REF][START_REF] Barrat | Elastic Response of a Simple Amorphous Binary Alloy Near the Glass Transition[END_REF][START_REF] Kriuchevskyi | Shearstress fluctuations and relaxation in polymer glasses[END_REF][START_REF] Kriuchevskyi | Shear Modulus and Shear-Stress Fluctuations in Polymer Glasses[END_REF][START_REF] Kriuchevskyi | Numerical determination of shear stress relaxation modulus of polymer glasses[END_REF][START_REF] Schnell | Simulated glassforming polymer melts: Glass transition temperature and elastic constants of the glassy state[END_REF][START_REF] Squire | Isothermal elastic constants for argon. theory and monte carlo calculations[END_REF][START_REF] Lutsko | Stress and elastic constants in anisotropic solids: Molecular dynamics techniques[END_REF][START_REF] Xu | Impulsive correction to the elastic moduli obtained using the stress-fluctuation formalism in systems with truncated pair potential[END_REF][START_REF] Wittmer | Shear-stress relaxation and ensemble transformation of shear-stress autocorrelation functions[END_REF][START_REF] Wittmer | Simple average expression for shear-stress relaxation modulus[END_REF][START_REF] Wittmer | Shear-stress fluctuations in self-assembled transient elastic networks[END_REF][START_REF] Li | Glass transition of two-dimensional 80-20 Kob-Andersen model at constant pressure[END_REF], we determine the shear modulus µ by means of the stress-fluctuation formula

µ ≡ µ A -µ F (1.1)
as described in detail in Appendix B. Here, µ A stands for the "affine shear modulus" (Appendix B.1) and µ F for the (rescaled) variance of the shear stresses. 

Some key findings from our study

Summarizing our key findings we present µ(T ) in Fig. 1-2 for different systems (main panel) and sampling times ∆t (inset). Primarily, we observe that, for the same ∆t, µ(T ) decays continuously from the glassy limit to the liquid limit, for all our films (and the 3D bulk system studied in Ref. [START_REF] Kriuchevskyi | Propriétés mécaniques et viscoélastiques des polymères vitrifiables en volume et en films minces : études par dynamique molèculaire de systèmes modèles[END_REF]). In addition, it is seen that µ reduces for low-T as the film gets thinner, which implies the existence of a soft surface. As H reduces, the (low) surface contribution of µ dominates, which in effect reduces the global µ of the film. As in the previous work carried out in our group [START_REF] Wittmer | Shear modulus of simulated glass-forming model systems: Effects of boundary condition, temperature, and sampling time[END_REF][START_REF] Kriuchevskyi | Shearstress fluctuations and relaxation in polymer glasses[END_REF][START_REF] Kriuchevskyi | Shear Modulus and Shear-Stress Fluctuations in Polymer Glasses[END_REF][START_REF] Kriuchevskyi | Numerical determination of shear stress relaxation modulus of polymer glasses[END_REF][START_REF] Wittmer | Shear-stress relaxation and ensemble transformation of shear-stress autocorrelation functions[END_REF][START_REF] Wittmer | Simple average expression for shear-stress relaxation modulus[END_REF][START_REF] Wittmer | Shear-stress fluctuations in self-assembled transient elastic networks[END_REF], we find that µ depends on the sampling time ∆t for our films. The ∆t-dependence of the generalized shear modulus µ(∆t) can be traced back to the stationarity relation

µ(∆t) = 2 ∆t 2 ∆t 0 dt t 0 dt ′ G(t ′ ) (1.2)
as discussed in more detail in Sec. As we shall see in Ch. 7, this is not the case for their standard deviations δµ and δG for which δµ(T ) ≪ δG(T ) holds. δµ(T ) and δG(T ) are seen to be non-monotonic with strong peaks slightly below T g . For not too low temperatures this behavior can be understood by assuming that the time series of instantaneous shear stresses τ are stationary, Gaussian and ergodic stochastic processes. Since the systems become non-ergodic at low temperatures, this leads to a qualitatively different behavior where δµ(∆t) becomes constant, δµ(∆t) → ∆ ne , even for large sampling times ∆t.

The numerical transformation of our response function G t (cf. Appendix D) to the creep compliance J t will allow a comparison with the nanobubble inflation experiment [START_REF] Paul | Creep behavior of ultra-thin polymer films[END_REF]. It will be shown in Ch. 5 that our model agrees with the experimental findings only in the glassy regime, whereas in the liquid regime our oligomer chains understandably do not reveal a rubbery plateau.

Following the two-layer model phenomenology observed in experiments [START_REF] Vogt | Mechanical and viscoelastic properties of confined amorphous polymers[END_REF][START_REF] Keddie | Size-dependent depression of the glass transition temperature in polymer films[END_REF], suggesting a liquid-like layer at the free interface of films [START_REF] Herminghaus | Polymer surface melting mediated by capillary waves[END_REF], we calculated the local shear modulus of our systems. Focusing on local z-distributions, which are linear-additive contributions of the total film properties, we verify that this assumption is indeed valid. Many intensive properties A, such as T g , µ A or µ F , are thus seen to depend linearly on the inverse film thickness H. This is expected for small chains (having a gyration radius R G ≪ H) assuming as the simplest phenomenological description the linear superposition

A ≈ 1 H [A 0 (H -W ) + A s W ] = A 0 1 - (1 -A s /A 0 )W H (1.3)
of a bulk term A 0 with a weight H -W ≈ H and a surface term A s with a weight proportional to the surface width W ≪ H. Even more generally, A may be written as an average (possibly non-trivially weighted [START_REF] Mangalara | The relationship between dynamic and pseudo-thermodynamic measures of the glass transition temperature in nanostructured materials[END_REF]) over z-dependent contributions A(z) as done, e.g., for the T g [START_REF] Mirigian | Influence of chemistry, interfacial width, and nonisothermal conditions on spatially heterogeneous activated relaxation and elasticity in glass-forming free standing films[END_REF][START_REF] Peter | Slow dynamics and glass transition in simulated free-standing polymer films: a possible relation between global and local glass transition temperatures[END_REF][START_REF] Mangalara | The relationship between dynamic and pseudo-thermodynamic measures of the glass transition temperature in nanostructured materials[END_REF] or the storage and loss moduli G ′ (ω) and G ′′ (ω) [START_REF] Yoshimoto | Local dynamic mechnical properties in model free-standing polymer thin films[END_REF].

The claimed 1/H-correction, Eq. 1.3, has merely the advantage to be based on a simple and transparent idea. It may be seen as the leading contribution of a more general 1/H- The central theme of this thesis revolves around freestanding thin polymer films in the glassy and liquid limits. We perform numerical simulations to compare our results qualitatively and quantitatively with the literature and study anomalous effects that have been reported around T g .

expansion. We remind that other H-dependencies have been suggested [START_REF] Herminghaus | Polymer thin films and surfaces: Possible effects of capillary waves[END_REF][START_REF] De Gennes | Glass transitions in thin polymer films[END_REF][START_REF] Mirigian | Influence of chemistry, interfacial width, and nonisothermal conditions on spatially heterogeneous activated relaxation and elasticity in glass-forming free standing films[END_REF][START_REF] Herminghaus | Polymer surface melting mediated by capillary waves[END_REF] and fitted with some success [START_REF] Varnik | Reduction of the glass transition temperature in polymer films: A molecular-dynamics study[END_REF][START_REF] Peter | Thickness-dependent reduction of the glass-transition temperature in thin polymer films with a free surface[END_REF][START_REF] Peter | Slow dynamics and glass transition in simulated free-standing polymer films: a possible relation between global and local glass transition temperatures[END_REF][START_REF] Torres | Molecular simulation of ultrathin polymeric films near the glass transition[END_REF].

Thesis outline

The goal of my thesis is to simulate freestanding thin polymer films and to identify their mechanical and rheological properties both globally and locally, and to also describe the fluctuations of some of these properties. As sketched in Fig. 1-3 the central aspects my thesis tries to highlight are

• to study the shear-stress relaxation modulus G t and the generalized shear modulus µ(∆t) of thin freestanding polymer films (Ch. 4);

• to determine their shear viscosity, complex modulus and the shear compliance (Ch. 5) using numerical transformation methods (Appendix D);

• to measure the local, layer-resolved modulus µ(z) of our films using the stress-fluctuation formalism so as to explain the H-dependence of µ(∆t) and η (Ch. 6);

• to understand the observed strong fluctuations of the linear response function G t and µ. This will be done by first considering quite generally the fluctuations of variances of stochastic Gaussian processes (Sec. 2.5) and by testing then some of these relations for our films (Ch. 7).

The remainder of the thesis is structured as follows: Chapter 2 introduces general theoretical considerations of sampling time dependent properties. We discuss in turn various concepts and relations related to the stationarity of stochastic processes (Sec. 

Chapter 2

General theoretical considerations

Introduction

In this chapter, we will introduce general theoretical concepts (Sec. 2.2 to Sec. 2.7) that are useful for the analysis of the time-series of stationary Gaussian processes. In Sec. 2.8, we will translate these concepts and notations into specific forms useful for the characterization of shear-stress fluctuations in liquids and amorphous solids. Most of these developments are adapted from our accepted article in Ref. [START_REF] George | Ensemble fluctuations matter for variances of macroscopic variables[END_REF]. Based on the recent work carried out in our group focusing on stress fluctuations [63, 65-68, 77, 95, 98-102, 104] we give here a systematic and uncluttered overview of three general points of relevance for a large variety of problems in condensed matter [START_REF] Ferry | Viscoelastic properties of polymers[END_REF][START_REF] Doi | The Theory of Polymer Dynamics[END_REF][START_REF] Graessley | Polymeric Liquids & Networks: Dynamics and Rheology[END_REF][START_REF] Rubinstein | Polymer physics[END_REF][START_REF] Hansen | Theory of simple liquids[END_REF][START_REF] Götze | Complex Dynamics of Glass-Forming Liquids: A Mode-Coupling Theory[END_REF][START_REF] Chaikin | Principles of condensed matter physics[END_REF], material modeling [START_REF] Tadmor | Continuum Mechanics and Thermodynamics[END_REF][START_REF] Tadmor | Modeling Materials[END_REF] and in computational physics [START_REF] Allen | Computer Simulation of Liquids[END_REF][START_REF] Landau | A Guide to Monte Carlo Simulations in Statistical Physics[END_REF].

Let us consider a general stochastic dynamical variable x(t). Ensembles of discrete time series x = {x i = x(t i ), i = 1, . . . , I} are sampled with the data sequence taken at equally spaced times t i = iδt from t 1 = δt up to the "sampling time" ∆t = t I = Iδt. We focus on the empirical variance [START_REF] William H Press | Numerical Recipes: The Art of Scientific Computing Second Edition[END_REF] v

[x] ≡ 1 I I i=1 x 2 i - 1 I 2 I i,j=1 x i x j 2 (2.1)
and its ensemble average v = v[x] and standard deviation δv. 2 We assume that x(t) is a stationary stochastic process respecting the time-translational invariance [START_REF] Van Kampen | Stochastic processes in physics and chemistry[END_REF]. Our first point is that the expectation value v for sampling times ∆t smaller than the terminal relaxation time τ α is not necessarily constant. As demonstrated in Sec. 2.3 this is a consequence of the "stationarity relation" [START_REF] Kriuchevskyi | Shearstress fluctuations and relaxation in polymer glasses[END_REF][START_REF] Kriuchevskyi | Numerical determination of shear stress relaxation modulus of polymer glasses[END_REF][START_REF] George | Shear-stress relaxation in free-standing polymer films[END_REF][START_REF] Klochko | Relaxation dynamics in supercooled oligomer liquids: From shear-stress fluctuations to shear modulus and structural correlations[END_REF][START_REF] Wittmer | Shear-stress relaxation and ensemble transformation of shear-stress autocorrelation functions[END_REF][START_REF] Wittmer | Shear-stress fluctuations in self-assembled transient elastic networks[END_REF][START_REF] Wittmer | Shear-strain and shearstress fluctuations in generalized gaussian ensemble simulations of isotropic elastic networks[END_REF] 

v = 2 I 2 I-1 i=1 (I -i) h i with h i-j = 1 2 (x i -x j ) 2 ( 

Different types of averages considered

Various functionals O[x] of x can be computed, for instance the moments 

m αβ [x] ≡ 1 I I i=1 x α i β (2.
c g s [x] ≡ 1 I -s I-s i=1 c s,i with c s,i = x i+s x i (2.6)
and similarly

h g s [x] ≡ 1 I -s I-s i=1 h s,i with h s,i = 1 2 (x i+s -x i ) 2 = x 2 i + x 2 i+s 2 -c s,i . (2.7) 
Note that c g 0 [x] = m 21 [x] and h g 0 [x] = 0. Averages over a given time series are often called here "t-averages". Since the functionals O[x] are obtained in general from correlated data entries, ensemble averages . . . of fluctuation-type functionals may depend on the sampling time ∆t. This is not the case for "simple averages" [START_REF] Allen | Computer Simulation of Liquids[END_REF][START_REF] Wittmer | Simple average expression for shear-stress relaxation modulus[END_REF][START_REF] Wittmer | Shear-stress fluctuations in self-assembled transient elastic networks[END_REF] for which the ensemble average over independent trajectories and the t-average commute. For instance, we have

m α1 ≡ m α1 [x] = 1 I I i=1 x α i = 1 I I i=1 x α i ∝ ∆t 0 (2.8)
since the ensemble average x α i is ∆t-independent. Interestingly, the commutation of both averaging-operators is not possible for m αβ with β = 1. An argument ∆t often marks in this thesis a property being not a simple average.

Stationarity

We suppose that the time series is taken from a stationary stochastic process whose unconditional joint probability distribution does not change when shifted in time [START_REF] Van Kampen | Stochastic processes in physics and chemistry[END_REF]. Correlation functions such as x i x j thus only depend on the difference s = |i -j| of the discrete indices i and j. We thus define

c s = c g s [x] and h s = c 0 -c s = h g s [x]
(2.9) with 0 ≤ s < I in terms of the gliding averages c g s [x] and h g s [x] defined in Sec. 2.2. Note that both c s and h s are simple averages, i.e. their expectation values do not depend on the sampling time ∆t of the time series [START_REF] Wittmer | Shear-stress fluctuations in self-assembled transient elastic networks[END_REF][START_REF] Wittmer | Shear-strain and shearstress fluctuations in generalized gaussian ensemble simulations of isotropic elastic networks[END_REF]. Due to the assumed stationarity, the [57, 65-68, 77, 99, 101, 110, 113] v(I) = 1

variance v = v[x] becomes
I I i=1 x 2 i - 1 I 2 I i=1 x 2 i + 2 I 2 I-1 k=1 (I -k) x k+1 x 1 = c 0 (1 -I -1 ) - 2 I 2 I-1 k=1 (I -k)c k = 2 I 2 I-1 i=1 (I -i) h i (2.10)
which demonstrates the stated Eq. 2.2. In the last step we used h s = c 0 -c s and

2 I 2 I-1 k=1 (I -k) = 1 -1/I. (2.11)
Albeit the mentioned ∆t-dependence is well known [START_REF] Allen | Computer Simulation of Liquids[END_REF][START_REF] Landau | A Guide to Monte Carlo Simulations in Statistical Physics[END_REF] it is emphasized here for systematic reasons and since ∆t-effects for such fluctuations are rarely checked [START_REF] Wittmer | Shear modulus of simulated glass-forming model systems: Effects of boundary condition, temperature, and sampling time[END_REF][START_REF] Schnell | Simulated glassforming polymer melts: Glass transition temperature and elastic constants of the glassy state[END_REF]. We also remind that in the continuum limit for large I = ∆t/δt, Eq. 2.10 reads

v(∆t) = 2 ∆t 2 ∆t 0 dt (∆t -t) h(t) (2.12)
with h(t) being the continuum limit of h s . This result may be restated equivalently using the inverse relation h(t) = [v(t)t 2 /2] ′′ with a prime denoting a derivative with respect to time [START_REF] Kriuchevskyi | Shearstress fluctuations and relaxation in polymer glasses[END_REF][START_REF] Klochko | Relaxation dynamics in supercooled oligomer liquids: From shear-stress fluctuations to shear modulus and structural correlations[END_REF]. Using that m 21 is a simple average Eq. 2.12 implies that

m 12 (∆t) = m 21 - 2 ∆t 2 ∆t 0 dt (∆t -t) h(t).
(2.13)

The ensemble averages v(∆t) and m 12 (∆t) thus depend in general on the sampling time ∆t. However, the ∆t-dependence disappears, if h(t) becomes constant. For instance, this is the case, if h(t) plateaus in an intermediate, sufficiently large, time window, i.e. h(t) ≈ h p = c(0) -c p with h p and c p being constants. We then have

v(∆t) ≈ h p = c(0) -c p = constant, m 12 (∆t) ≈ m 21 -h p = c p = constant. (2.14)
Equation 2.14 also holds, if c(t) tends to a constant for times much longer than the terminal relaxation time τ α of the system. Then, c p in Eq. 2.14 is replaced by the long-time limit

c ∞ = lim t→∞ c(t) = lim ∆t→∞ m 12 (∆t).

Linear response

Linear response function R(t)

The functions h(t) and c(t) can be related to the linear response to an external perturbation conjugate to x(t). Let R(t) denote the linear response function of the system to a weak external perturbation that is instantaneously switched on at t = 0 and held constant for t > 0. By virtue of the fluctuation-dissipation theorem one can show that [START_REF] Doi | The Theory of Polymer Dynamics[END_REF][START_REF] Wittmer | Shear-stress relaxation and ensemble transformation of shear-stress autocorrelation functions[END_REF][START_REF] Wittmer | Shear-stress fluctuations in self-assembled transient elastic networks[END_REF][START_REF] Hansen | Theory of simple liquids[END_REF]]

R(t) = R A -h(t) = (R A -c(0)) + c(t) (2.

15)

with R A = R(0) being a constant characterizing the initial response of the system after the external perturbation is applied. 3 For elastic properties, this constant is given by a Born-Lamé affine modulus (Appendix B.1). R(t) is a simple average just as h(t) and c(t).

Generalized dynamical modulus M (∆t)

It is of importance that Eq. 2.12 can be rewritten in terms of R(t) as

M (∆t) ≡ R A -v(∆t) = 2 ∆t 2 ∆t 0 dt (∆t -t)R(t) (2.16)
with M (∆t) being the generalized dynamical modulus [START_REF] Wittmer | Shear-stress fluctuations in self-assembled transient elastic networks[END_REF]. The corresponding equation for the (generalized) shear modulus M = µ and the shear relaxation function

R(t) = G(t)
was highlighted in the Introduction, Eq. 1.2. Although the generalized modulus does in general depend on ∆t, it becomes constant

M (∆t) → R ∞ ≡ R A -c(0) + c ∞ for ∆t/τ α → ∞.
(2.17)

The corresponding stress-fluctuation formula for the shear modulus, Eq. B.7, is derived

in Appendix B.2. Being a second integral over R(t) = [M (t)t 2 /2] ′′ , M (∆t) is a natural
smoothing function statistically better behaved than R(t) and containing in general information about both the reversibly stored energy and the dissipation processes.

Green-Kubo and Einstein relations

In statistical mechanics Eq. 2.10 and Eq. 2.16 are closely related to the equivalence of the Green-Kubo and the Einstein relations for transport coefficients [START_REF] Allen | Computer Simulation of Liquids[END_REF][START_REF] Kriuchevskyi | Shearstress fluctuations and relaxation in polymer glasses[END_REF][START_REF] George | Shear-stress relaxation in free-standing polymer films[END_REF][START_REF] Hansen | Theory of simple liquids[END_REF][START_REF] Landau | A Guide to Monte Carlo Simulations in Statistical Physics[END_REF]. This is seen by rewriting Eq. 2.16 as

η(t) ≡ t 0 ds (R(s) -R ∞ ) = d dt [(M (t) -R ∞ ) t 2 /2]. (2.18) 
If the integral η(t) converges to a constant η for t ≫ τ α , this implies the Einstein relation

(M (t) -R ∞ )t 2 → 2ηt for t ≫ τ α . (2.19)
We denote η without an argument for the t-independent long time limit of η(t). Since the statistics quite generally deteriorates for large t, it is for numerical reasons useful to trace and analyze η(t) or (M (t) -R ∞ )t for the determination of η. This is shown in Sec. 

Reciprocal space properties

Since we characterize a stationary process it is natural to describe the linear response function R(t) in reciprocal frequency (ω) space. Importantly, the components of the Fourier

transform R ⋆ (ω) = R ′ (ω) + iR ′′ (ω) of R(t)
may directly be measured in an oscillatory experiment varying the associated extensive variable (strain). These components are quite generally given by [START_REF] Ferry | Viscoelastic properties of polymers[END_REF][START_REF] Graessley | Polymeric Liquids & Networks: Dynamics and Rheology[END_REF][START_REF] Rubinstein | Polymer physics[END_REF]]

R ′ (ω) -R ∞ = ∞ 0 d(ωt) cos(ωt) (R(t) -R ∞ ) and (2.20) R ′′ (ω) = ∞ 0 d(ωt) sin(ωt) (R(t) -R ∞ ). (2.21) 
For (visco)elastic response functions R ′ (ω) is called the "storage modulus" and R ′′ (ω) the "loss modulus". We shall use these definitions in Ch. 5, Appendix C and Appendix D. Note for later convenience that R ′ (ω) becomes constant, R ′ (ω) → R A , in the high-ω limit while R ′′ (ω) must vanish inversely with ω [104]. 4 Quite generally, R ′ (ω) ∝ ω 2 and R ′′ (ω) ∝ ω in the low-ω limit, i.e. for ω smaller than the inverse of the largest relaxation time τ α . Using standard notations [START_REF] Ferry | Viscoelastic properties of polymers[END_REF] we write

R ′ (ω)/ω 2 → J 0 e η 2 and R ′′ (ω)/ω → η for ωτ α → 0 (2.22)
with η being the transport coefficient already seen in Eq. 2.18 and J 0 e the "steady-state creep compliance".

Terminal relaxation time τ α

We have used above the "terminal relaxation time" τ α of the stochastic process without giving an operational definition. Various definitions are stated in the literature [START_REF] Hansen | Theory of simple liquids[END_REF][START_REF] Götze | Complex Dynamics of Glass-Forming Liquids: A Mode-Coupling Theory[END_REF], especially in the standard textbooks on rheology and complex fluids [START_REF] Ferry | Viscoelastic properties of polymers[END_REF][START_REF] Graessley | Polymeric Liquids & Networks: Dynamics and Rheology[END_REF][START_REF] Rubinstein | Polymer physics[END_REF]. While all these definitions are equivalent from the scaling point view [START_REF] De Gennes | Introduction to Polymer Dynamics[END_REF], they may not be equally useful in experimental or computational studies. Several of these definitions consider ratios

of the moments m k ≡ ∞ 0 dt t k (R(t) -R ∞ ), e.g., τ α,0 ≡ m 0 R A = η R A , τ α,1 ≡ m 1 m 0 = J 0 e η or τ α,2 ≡ m 2 m 1 = m 2 J 0 e η 2 (2.23)
where we have used that η = m 0 and J 0 e = m 1 /η 2 . One problem of these definitions is that the long-time limit R ∞ must be known to high precision. 5 Even more importantly, in numerical studies the statistics for R(t) strongly deteriorates for large t. The numerically most convenient definition τ α,0 unfortunately uses R A = R(t = 0) which is experimentally often not available and, moreover, corresponds to microscopic physics which has little to do with the long-time relaxation processes one wishes to characterize. 6 The determination of moments m k with k > 1 becomes quite generally very demanding and is in practice often impossible. We thus focus below on τ α,1 = J 0 e η. Interestingly, the low-ω asymptotes of R ′ (ω) and R ′′ (ω), Eq. 2.22, cross at ω = 1/τ α,1 . This suggests to characterize both in experiments as in numerical studies the terminal relaxation time by [START_REF] Ferry | Viscoelastic properties of polymers[END_REF][START_REF] Rubinstein | Polymer physics[END_REF] 

τ × (λ) ≡ 1/ω × (λ) with λ ≡ tan(δ) = R ′′ (ω × ) R ′ (ω × ) with λ ≈ 1 (2.

R(t) h(t)=R A -R(t) c(t) M(∆) v(∆t)=R

A -M(∆t) c(0) R A -H ∞ H 1 =6, H 2 =3 , H ∞ =1 => R A =10 τ 1 =1, τ 2 =100000 H 1 H ∞ +H 2 H ∞ pseudo-plateau R(0)=R A slow convergence Figure 2-1: Illustration of properties discussed in Sec. 2.4.1 using a two-modes version of Eq. 2.25 with amplitudes R ∞ = 1, H 1 = 6, H 2 = 3, i.e. R(0) = R A = R ∞ + H 1 + H 2 =

Generalized Maxwell model

Response functions are often fitted using the generalized Maxwell model9 

R(t) = R ∞ + pmax p=1 H p exp(-t/τ p ) (2.25) 
with H p and τ p being, respectively, the amplitude and the relaxation time of the mode

p [1, 4, 6]. Note that R(0) = R ∞ + pmax p=1 H p and lim t→∞ R(t) = R ∞ .
Commonly, one considers logarithmic time scales for R(u) with u ∝ log(t) and the modes are distributed logarithmically in time [START_REF] Ferry | Viscoelastic properties of polymers[END_REF]. As summarized in Appendix C, an important example of a generalized Maxwell model is given by the Rouse model for the polymer dynamics of unentangled and non-interacting chains in the melt [START_REF] Ferry | Viscoelastic properties of polymers[END_REF][START_REF] Doi | The Theory of Polymer Dynamics[END_REF][START_REF] Graessley | Polymeric Liquids & Networks: Dynamics and Rheology[END_REF][START_REF]Polymer Viscoelasticity -Basics, Molecular Theories, Experiments and Simulations, 2nd edn[END_REF][START_REF] Rubinstein | Polymer physics[END_REF]. Being of relevance for Ch. 5 and Appendix D we also remind that [START_REF] Ferry | Viscoelastic properties of polymers[END_REF][START_REF] Rubinstein | Polymer physics[END_REF] 

R ′ (ω) = pmax p=1 H p (τ p ω) 2 1 + (τ p ω) 2 and R ′′ (ω) = pmax p=1 H p τ p ω 1 + (τ p ω) 2 .
(2.26)

Using the notations of Eq. 2.22 we obtain [START_REF] Ferry | Viscoelastic properties of polymers[END_REF] η = pmax p=1 H p τ p and J 0 e = pmax p=1

H p τ p 2 / η 2 (2.27)
which in turn determines the terminal relaxation time τ α,1 = J 0 e η. Coming back to Eq. 2.16 the generalized modulus can be rewritten as [START_REF] Wittmer | Shear-stress fluctuations in self-assembled transient elastic networks[END_REF] 

M (∆t) = R ∞ + pmax p=1 H p g Debye (∆t/τ p ) with g Debye (x) = 2 x 2 [exp(-x) -1 + x] (2.28)
being the "Debye function" well known in polymer science [START_REF] Doi | The Theory of Polymer Dynamics[END_REF][START_REF] Rubinstein | Polymer physics[END_REF]. Fig. 

h(t) ≈ v(∆t) ≈ R A -R ∞ for t ≈ ∆t ≫ τ 2 . Since v(

Gaussian stochastic processes

Gaussian variables

Let us consider a Gaussian variable y of variance σ 2 . Since (y -y ) 4 = 3σ 4 we have

z 2 -z 2 = 2σ 4 for z = (y -y ) 2 , (2.29) 
i.e. the variance of the variance z of y is twice the squared variance of y. We assume now that the time series x is a Gaussian process [START_REF] Van Kampen | Stochastic processes in physics and chemistry[END_REF]. (The main physical reason why this assumption holds for many systems is discussed in Sec. 

δm 2 12 = m 14 -m 2 12 = 2(δm 2 11 ) 2 = 2m 2 12 , (2.30) 
i.e. the variance δm 2 12 (∆t) is given by m 12 (∆t).

δh 2 for Gaussian processes

Let us next discuss the typical fluctuations of the ACFs c s and h s defined in Sec. 2.3. There are two meaningful ways to define the variances. One may characterize the fluctuations of

c g s [x] and h g s [x] by δc g s 2 = c g s [x] 2 -c g s [x] 2 and δh g s 2 = h g s [x] 2 -h g s [x] 2 . (2.31)
This allows to get the variances and the error bars for the numerical most accurate way to compute c s and h s . The trouble with this definition is that, since the gliding averages are preformed first and since the data entries x i are correlated in time, Eq. 2.31 depends on these correlations in an intricate way. 10 This may mask the fact that the data have a Gaussian distribution. A second way to characterize the fluctuations is to measure in a first step c s,i and h s,i (Sec. 2.2), to take then the ensemble averages

δc 2 s,i = c 2 s,i -c s,i 2 and δh 2 s,i = h 2 s,i -h s,i 2 (2.32)
and only as the last step (last loop) to take the arithmetic average over all I -s possible indices i

δc 2 s = 1 I -s I-s i=1 δc 2 s,i , δh 2 s = 1 I -s I-s i=1 δh 2 s,i . (2.33) Assuming x to be Gaussian, y = (x i+s -x i )/ √ 2 is a Gaussian variable of zero mean.
According to Eq. 2.29 this implies the important relation

δh 2 s = y 4 -y 2 2 = 2 y 2 2 = 2h 2 s .
(2.34) 10 The variances increase with s since the number of data entries decreases linearly with s.

In a similar way we find: δc 2 s = c 2 0 + c 2 s . We shall put Eq. 2.34 to the test in Sec. 7.3 for our polymer films. For the fluctuations of R s = R A -h s with R A being constant Eq. 2.34 yields in turn δR 2 s = 2h 2 s . The latter relation may even hold if R A is not strictly constant. This is relevant for the fluctuations of the shear-stress relaxation function G(t) and the shear modulus µ(∆t) considered in Ch. 7.

δv G for Gaussian processes

We turn now to the derivation of Eq. 2.3 for the variance

δv 2 ≡ v[x] 2 -v[x] 2 . Using
Eq. 2.1 this may be written as

δv 2 = T 2 + T 4 -T 3 with (2.35) T 2 ≡ δm 2 21 = m 21 [x] 2 -m 21 [x] 2 = 1 I 2 ij x 2 i x 2 j - 1 I 2 ij x 2 i x 2 j T 4 ≡ δm 2 12 = m 12 [x] 2 -m 12 [x] 2 = 1 I 4 ijkl x i x j x k x l - 1 I 4 ijkl x i x j x k x l T 3 ≡ 2 cov(m 21 , m 12 ) ≡ 2 ( m 21 [x]m 12 [x] -m 21 [x] m 12 [x] ) = 2 I 3 ikl x 2 i x k x l - 2 I 3 kl x 2 i x k x l
where the sums run over all I data entries. As we have assumed that the stochastic process is stationary and Gaussian, Wick's theorem must hold [START_REF] Doi | The Theory of Polymer Dynamics[END_REF][START_REF] Van Kampen | Stochastic processes in physics and chemistry[END_REF]:

x i x j x k x l = x i x j x k x l + x i x k x j x l + x i x l x j x k . (2.36)
Setting in addition c i-j = x i x j the three terms in Eq. 2.35 can be rewritten as

T 2 (∆t) = 2 I 2 ij x i x j 2 = 2 I 2 ij c 2 i-j
(2.37)

T 4 (∆t) = 2 I 4   ij x i x j   2 = 2 I 4   ij c i-j   2 (2.38) T 3 (∆t) = 4 I 3 s i x i x s j x j x s = 4 I 3 s,i,j c i-s c j-s . (2.39)
Note that T 4 = δm 2 12 = 2m 2 12 in agreement with Eq. 2.30. Importantly, Eqs. 2.35, 2.37, 2.38, 2.39 are equivalent to the more compact formula [START_REF] Klochko | Relaxation dynamics in supercooled oligomer liquids: From shear-stress fluctuations to shear modulus and structural correlations[END_REF],

δv 2 G = 1 2I 4 i,j,k,l g 2 ijkl with g ijkl = (c i-j + c k-l ) -(c i-l + c j-k ) (2.40)
which looks already rather similar as Eq. 2. 

δv G [a] = 0 and δv G [b(f -a)] = |b| δv G [f ] (2.41) for any function f (t). Specifically, δv G [c] = δv G [h].

Non-ergodic stochastic processes

Our key relation Eq. 2.3 and its various reformulations may obviously fail if one of the stated or implicit assumptions does not apply for the particular ensemble of time series. For instance, strong non-Gaussian contributions may be present in a specific time or frequency range leading to the failure of Wick's theorem, Eq. 2.36. We will address here an important

assumption not yet explicitly stated. In fact it was assumed that the stochastic process under consideration is ergodic, i.e. all independently created trajectories, called here configurations, are able to explore given enough time the complete (generalized) phase space.

The averages which appear in Wick's theorem, Eq. 2.36, can thus be either obtained by averaging over independent configurations c or by averaging over subsets of one extremely long trajectory. To see that this condition matters let us consider a strictly non-ergodic system where the configurations c are trapped in subspaces of the total phase space (since the terminal relaxation time τ α of the system diverges). If t and ∆t exceed the typical relaxation time τ b of these basins, h(t) and v(∆t) must become constant. As shown in Appendix A.5 and Appendix A.6, δv G ∝ 1/ √ ∆t for ∆t ≫ τ b . At variance to this δv → ∆ ne becomes constant with,

∆ 2 ne ≡ var(v c ) = 1 N c Nc c=1 v 2 c - 1 N c Nc c=1 v c 2 (2.42)
being the variance of the N c quenched variances v c = lim ∆t→∞ v[x c ] of the independent configurations. Obviously, ∆ ne vanishes for identical v c . This holds indeed for ergodic systems for ∆t ≫ τ α with the finite terminal relaxation time τ α replacing τ b , but in general not for non-ergodic systems. On the other side, for small ∆t the non-ergodicity constraint should not matter much and one expects δv ≈ δv G to approximately hold. Interpolating between both ∆t-limits a useful approximation for non-ergodic systems may be written as,

δv 2 (∆t) ≈ δv 2 G (∆t) + ∆ 2 ne for τ b ≪ ∆t ≪ τ (2.43)
motivated by the idea that δv 2 is the sum of two variances describing the independent fluctuations within each configuration and between the different configurations. Moreover, Eq. 2.43 suggests the operational definition,

δv G (∆t ! = τ ne ) = ∆ ne (2.44)
identifying τ ne as the crossover time between both limits. Quite generally, τ ne ≫ τ b holds.

As shown in the Appendix A.6, to understand the discrepancy between δv and δv G for and its two contributions δv 2 int , the typical internal variance within each meta-basin, and δv 2 ext , characterizing the dispersion between the different basins. Importantly, if the trajectory of each confined configuration c remains essentially Gaussian, Wick's theorem can be applied to δv int as before (see Appendix A.6). This implies δv int ≈ δv G according to Eq. A.32. Moreover, since δv ext (∆t) ≈ ∆ ne for τ b ≪ ∆t ≪ τ α , this leads finally to Eq. 2.43.

Variances due to independent physical causes are naturally additive. We remind that the variance of the blackbody radiation is thus the sum of a variance describing the Rayleigh-Jeans part of the spectrum (wave aspect) and of a variance describing the Wien part (discrete particle aspect) [START_REF] Einstein | On the present status of the radiation problem[END_REF]. Interestingly, as in the blackbody radiation analogy the two contributions δv int (internal fluctuations within each basin) and δv ext (fluctuations between the different basins) to δv tot have also in general different statistics. This is manifested by their different system size dependencies as will be shown now.

Microscopic variables and system-size effects

Due to the central limit theorem [START_REF] Van Kampen | Stochastic processes in physics and chemistry[END_REF] the stochastic process of many systems is to a good approximation Gaussian since the data entries x i are averages over N m ≫ 1 microscopic contributions x im . These contributions are often not known or accessible. Specifically, we shall consider in this thesis the instantaneous shear stress τi = dr τi,r /V being the volume average over the local shear stress τi,r . For such intensive field averages N m corresponds to the number of local volume elements dV computed, i.e. N m ≈ V /dV . Albeit these microscopic contributions x im may be correlated, i.e. they may not all fluctuate independently, the fluctuations of the x i commonly decrease with increasing N m . Since v ∝ 1/N m for uncorrelated variables x im , it is often useful to incorporate this reference in the definition of the data entries by rescaling x i ⇒ √ N m x i . Summarizing the scaling for the trivial case of perfectly uncorrelated variables x im we thus have

v ∝ h ∝ δv G ∝ N 0 m and ∆ ne ∝ 1/N γext m with γ ext = 1/2 (2.46)
if the microscopic states are subject to an uncorrelated quenched random field. That this holds is shown in Appendix A.7. Due to Eq. 2.3 the N m -independence of δv G is implied by the N m -independence of h. Equation 2.46 also holds for fluctuating density fields with a finite V -independent correlation length ξ for sufficiently large systems (V ≫ ξ d ). In this case N m in Eq. 2.46 is simply replaced by the number of independent subvolumes V /ξ d . A smaller exponent γ ext < 1/2 is expected for long-range and scale-free spatial correlations.

The important point here is that ∆ ne must decrease with the system size if γ ext > 0 and thus δv → δv G for N m → ∞ according to Eq. 2.43.

Shear-stress fluctuations

The notions and results presented in this chapter should be useful for the analysis of general time series x. We apply them in the following to the shear-stress fluctuations in film systems 

v(∆t) → µ F (∆t) ≡ µ 0 -µ 1 (∆t) with (2.47) m 21 → µ 0 ≡ βV τ 2 and
(2.48)

m 12 (∆t) → µ 1 (∆t) ≡ βV τ 2 .
(2.49)

The linear response function R(t) and the modulus M (∆t) are written now as [65-67, 77, 101]

R(t) → G(t) = µ A -h(t) = (µ A -c(0)) + c(t) (2.50) M (∆t) → µ(∆t) = µ A -µ F (∆t) = (µ A -µ 0 ) + µ 1 (∆t) (2.51)
with the single averages c(0) = µ 0 and µ A = G(0) = µ(0). Eq. 2.50 is the fluctuation dissipation relation [START_REF] Doi | The Theory of Polymer Dynamics[END_REF] for the shear-stress relaxation after an infinitesimal change of the shear strain, Eq. 2.51 the corresponding relation for the shear modulus (Appendix B.2).

The additional assumption µ A = µ 0 implies

G(t) = c(t) and µ(∆t) = µ 1 (∆t). (2.52)
Unfortunately, while µ A = µ 0 = c(0) holds indeed under liquid equilibrium conditions, 11this may become incorrect in general [START_REF] Wittmer | Shear modulus of simulated glass-forming model systems: Effects of boundary condition, temperature, and sampling time[END_REF][START_REF] Wittmer | Shear-stress fluctuations in self-assembled transient elastic networks[END_REF]. Eq. 2.50 and Eq. 2.51 must thus be used in the more general case.

As discussed in Sec. 2.6 and Appendix A.5, three different types of standard deviations will be distinguished in Ch. 7:

• δv tot → δµ F,tot by lumping all N c × N k time series together (Eq. A.24);

• δv int → δµ F,int by "c-averaging" the "k-averaged variances" δµ 2 F,c (Eq. A.25); Chapter 3

• δv G → δµ F,
Computational model and some technical details

Introduction

The preceding chapter has summarized useful general theoretical relations. These relations can of course be tested computationally once we identify a suitable computational model system. The primary computational tool that we use in our study is molecular dynamics (MD) simulations [START_REF] Allen | Computer Simulation of Liquids[END_REF][START_REF] Plimpton | Fast Parallel Algorithms for Short-Range Molecular Dynamics[END_REF]. Molecular dynamics works by solving classical equations of motion for a system of particles that interact with a well defined potential. One of the most modern programs that can perform this job using task parallelism is the Large-scale Atomic Molecular Massively Parallel Simulator, also known as LAMMPS [START_REF] Plimpton | Fast Parallel Algorithms for Short-Range Molecular Dynamics[END_REF]. We describe in this chapter the specific features of our polymer model (Sec. 3.3), the configuration ensembles used (Sec. 3.4), the quench protocol (Sec. 3.5) and the data handling (Sec. 3.6).

How the layer-resolved film properties discussed in Ch. 6 are computed is shown in Sec. 3.7.

Lennard-Jones particles

As in a huge number of similar numerical studies of coarse-grained model systems [36, 37, 40, 47, 63-70, 93, 95, 98, 102, 104, 115-119] we use the 12 -6 Lennard-Jones (LJ) pair potential [START_REF] Allen | Computer Simulation of Liquids[END_REF][START_REF] Frenkel | Understanding Molecular Simulation[END_REF] u

LJ (r) = ǫ LJ (σ LJ /r) 12 -(σ LJ /r) 6 (3.1)
to characterize the monomers of our polymer chains. 12 Here, r is the distance between the interacting beads, σ LJ and ǫ LJ are the characteristic LJ distance and energy units. Please note that the LJ potential is usually truncated for computational efficiency at r cut = 2.3 ≈ 2r min , with r min = 2 1/6 being the potential minimum, and shifted to make it continuous:

u LJ (r) ⇒ u LJ,trunc (r) = u LJ (r) -u LJ (r cut ) for r ≤ r cut . (3.2)
Unfortunately, the truncated and shifted potential is not continuous with respect to its first derivative. 13 Therefore, impulsive truncation corrections are required for the determination of the affine shear modulus µ A (Appendix B.1) [START_REF] Wittmer | Shear modulus of simulated glass-forming model systems: Effects of boundary condition, temperature, and sampling time[END_REF][START_REF] Frenkel | Understanding Molecular Simulation[END_REF][START_REF] Xu | Impulsive correction to the elastic moduli obtained using the stress-fluctuation formalism in systems with truncated pair potential[END_REF]. 14 All quantities reported are in LJ units, i.e. the parameters of the LJ potential are set to unity,

ǫ LJ = 1, σ LJ = 1, m = 1, and k B = 1.
It is implied that they are also non-dimensional (denoted with a star superscript ⋆ ), for instance the reduced distance r ⋆ = r/σ LJ , the reduced time t ⋆ = t/τ LJ with τ LJ = (mσ 2 LJ /ǫ LJ ) 1/2 and the reduced temperature T ⋆ = T /(ǫ LJ /k B ). In the following, we will drop the star in order to simplify the notation.

Coarse-grained polymer chains

As already mentioned in Ch. 1, we are primarily interested in freestanding polymer films.

Computationally it is not trivial to simulate an all-atom polymer model to prepare such films. We thus work with a variant of a widely-used coarse-grained bead-spring model [START_REF] Plimpton | Fast Parallel Algorithms for Short-Range Molecular Dynamics[END_REF][START_REF] Kremer | Dynamics of entangled linear polymer melts: A molecular dynamics simulation[END_REF]. In this model variant the interaction potential between permanently bonded neighboring monomers of the chain is a spring potential:

u bond (r) = k bond 2 (r -l bond ) 2 . (3.3)
Here, r is the distance between the permanently connected beads, k bond = 1110 the spring constant, and l bond = 0.967 the bond length. All inter -chain monomers interact via the 12-6 LJ potential [START_REF] Allen | Computer Simulation of Liquids[END_REF] defined in Eq. 3.1. All intra-chain monomers that are not connected 12 Naturally, LJ beads are of interest for an enormously large class of models in statistical mechanics far beyond the polymer model they are used for in the present thesis. In fact, our group recently studied [START_REF] George | Ensemble fluctuations matter for variances of macroscopic variables[END_REF][START_REF] George | Fluctuations of non-ergodic stochastic processes[END_REF] a glass former composed of polydisperse LJ beads to verify many properties discussed in Ch. 2.

13 This is problem is nicely resolved in Procaccia's work [START_REF] Procaccia | Breakdown of nonlinear elasticity in amorphous solids at finite temperatures[END_REF]. 14 The additive correction ∆µA due to this truncation effect can be estimated using the methods developed in Ref. [START_REF] Xu | Impulsive correction to the elastic moduli obtained using the stress-fluctuation formalism in systems with truncated pair potential[END_REF] as ∆µA ≈ -0.2. Temperature effects are negligible. Intra-chain monomers that are not connected by permanent bonds interact via the 12-6 LJ potential but with a weight specified in LAMMPS [START_REF] Plimpton | Fast Parallel Algorithms for Short-Range Molecular Dynamics[END_REF]. By doing so, the interaction to the nearest bead in the same chain is turned off (as it is handled by Eq. 3.3) permanently also interact via the same potential but with a weight 15 (cf. Fig. 3-1) using the special_bonds lj 0 1 1 command in LAMMPS [START_REF] Plimpton | Fast Parallel Algorithms for Short-Range Molecular Dynamics[END_REF]. These model parameters make the chains flexible in nature. This coarse-grained model was not only chosen due to its simplicity, but also due to its good correspondence (mapping) to experimental results [START_REF] Paul | Molecular dynamics simulations of the glass transition in polymer melts[END_REF][START_REF] Baschnagel | Computer simulations of supercooled polymer melts in the bulk and in confined geometry[END_REF][START_REF] Baschnagel | Glass transition and relaxation behavior of supercooled polymer melts: An introduction to modeling approaches by molecular dynamics simulations and to comparisons with mode-coupling theory[END_REF]. Moreover, the present model has been used in several other recent publications of the Strasbourg polymer theory and simulation group (ETSP-ICS) [START_REF] Peter | Thickness-dependent reduction of the glass-transition temperature in thin polymer films with a free surface[END_REF][START_REF] Peter | Slow dynamics and glass transition in simulated free-standing polymer films: a possible relation between global and local glass transition temperatures[END_REF][START_REF] Baschnagel | Glass transition and relaxation behavior of supercooled polymer melts: An introduction to modeling approaches by molecular dynamics simulations and to comparisons with mode-coupling theory[END_REF][START_REF] Kriuchevskyi | Shearstress fluctuations and relaxation in polymer glasses[END_REF][START_REF] Kriuchevskyi | Shear Modulus and Shear-Stress Fluctuations in Polymer Glasses[END_REF][START_REF] Kriuchevskyi | Numerical determination of shear stress relaxation modulus of polymer glasses[END_REF][START_REF] George | Shear-stress relaxation in free-standing polymer films[END_REF][START_REF] George | Ensemble fluctuations matter for variances of macroscopic variables[END_REF][START_REF] George | Fluctuations of non-ergodic stochastic processes[END_REF][START_REF] Schnell | Simulated glassforming polymer melts: Glass transition temperature and elastic constants of the glassy state[END_REF].

Importantly, the model parameters are chosen such that the crossing of chains is in practice impossible in our model. Hence, reptational chain dynamics [START_REF] De Gennes | Introduction to Polymer Dynamics[END_REF][START_REF] Doi | The Theory of Polymer Dynamics[END_REF][START_REF] Rubinstein | Polymer physics[END_REF] would become important for long chains with N ≫ N e . However, since the entanglement length N e ≈ 100 [START_REF] Kremer | Dynamics of entangled linear polymer melts: A molecular dynamics simulation[END_REF][START_REF] Sirk | An enhanced entangled polymer model for dissipative particle dynamics[END_REF][START_REF] Meyer | On the dynamics and disentanglement in thin and two-dimensional polymer films[END_REF][START_REF] Likhtman | Viscoelasticity and Molecular Rheology[END_REF] is much larger than the chain length N = 16 used in the present study, Rousetype dynamics (Appendix C) [START_REF] Rubinstein | Polymer physics[END_REF] is observed at high temperatures. All results presented in this thesis have been obtained by means of MD simulation performed using LAMMPS [START_REF] Plimpton | Fast Parallel Algorithms for Short-Range Molecular Dynamics[END_REF]. We use a velocity-Verlet scheme [START_REF] Allen | Computer Simulation of Liquids[END_REF] with a time step δt MD = 0.005. Temperature is imposed by means of the Nosé-Hoover algorithm also provided by LAMMPS.

Film and bulk ensembles

In Fig. 1-1 we showed the general setup of our free-standing polymer films. As visualized from an actual simulation, the snapshot Fig. 3-2 shows a film suspended parallel in the As shown in Fig. 3-2 the vertical box size L z is chosen sufficiently large (L z ≫ H) to avoid any interaction in this direction arising from the periodic boundary conditions. The instantaneous stress tensor [START_REF] Allen | Computer Simulation of Liquids[END_REF] thus vanishes rigorously outside the films. While this implies for all z-planes within the films that the average vertical normal stress σ zz (z) must vanish [START_REF] Varnik | Molecular dynamics results on the pressure tensor of polymer films[END_REF], some of the (average) tangential normal stresses σ xx (z) and σ yy (z) must be finite. The surface tension Γ [START_REF] Varnik | Molecular dynamics results on the pressure tensor of polymer films[END_REF][START_REF] Allen | Computer Simulation of Liquids[END_REF] would otherwise vanish and the films become unstable. Note that Γ is of order unity for temperatures close to the glass transition as indicated in Table 3 [START_REF] Shavit | Influence of backbone rigidity on nanoscale confinement effects in model glass-forming polymers[END_REF].
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For comparison we also look at three-dimensional (3D) bulk systems with same chain length N and chain number M . These bulk systems have been computed in the NPTensemble using cubic periodic boxes and imposing an average pressure P = 0.17 The ensembles used for bulk and film systems are in-effect similar, but not exactly identical as it would have been the case by imposing a vanishing normal stress σ zz in the z-direction at a constant linear box length L in x-and y-directions. Fortunately, as will be shown in Ch. 4, this difference appears irrelevant since the film data properly extrapolate to the bulk data if plotted as a function of 1/H, i.e. the bulk data corresponds formally to the limit 1/H → 0. Table 3.1 summarizes some static properties and relevant information regarding all ensembles taken at the glass transition temperature T g .

Quench protocol

Starting with an equilibrated three-dimensional polymer melt at P = 0 and T = 0.7 independent configurations for film2, film3 and film4 (Table 3.1). We then quench each of the independent configurations at a fixed lateral box size L, i.e. at an imposed film area A = L 2 , using a constant cooling rate, T (t) = 0.7 -2 × 10 -5 t. See Fig. 3-3 for an illustration. Note that L z is always sufficiently large to be irrelevant for all films. While we impose the total box volume L 2 L z and the film area A = L 2 , the film volume V = L 2 H is a freely fluctuating observable which needs to be determined as discussed in Sec. 4.2. From each cooling run, configurations at several temperatures 18 (from T = 0.55 → 0.05, with 0.05 spacing) are picked and stored. Imposing then a constant temperature, each stored configuration is tempered (∆t temp = 10 5 ) and then sampled (∆t max = ∆t = 10 5 ). The quench and production protocols are the same for all films and 3D bulk systems. σαβ (z) of the stresses σ αβ (Sec. 6.4), μA (z) of the affine shear modulus μA (Sec. 6.5) and µ F (z) of the stress fluctuation term µ F (Sec. 6.6). All these distributions are computed following the Irving-Kirkwood convention [START_REF] Varnik | Molecular dynamics results on the pressure tensor of polymer films[END_REF][START_REF] Allen | Computer Simulation of Liquids[END_REF][START_REF] Frenkel | Understanding Molecular Simulation[END_REF]]:

simulated
• The ideal contributions for each bin are due to the particles located in the bin.

• The excess contributions due to the bonded and non-bonded pair potentials are distributed equally with a weight 1/n ij to the n ij = |z bi -z bj |/δz b + 1 bins containing the line that connects a particle i at z i , located in a bin at z bi , with a particle j at z j , located in a bin at z bj .

It is useful to write the Irving-Kirkwood convention compactly in terms of two normalized weighting functions. With z b and z i being, respectively, the z-coordinates of a bin and a particle the weighting function w id (z b ; z i ) of the ideal contributions is given by

V b w id (z b ; z i ) =    1 if |z b -z i | < δz b /2 0 otherwise. (3.4)
The weighting function w ex (z b ; z i , z j ) used for the excess contributions is defined by

V b w ex (z b ; z i , z j ) =          0 if max(z bi , z bj ) < z b 0 if min(z bi , z bj ) > z b 1/n ij otherwise. (3.5)
Note that the two weighting functions are normalized as

V b n b b=1 w id (z b ; z i ) = 1 (3.6) V b n b b=1 w ex (z b ; z i , z j ) = 1 (3.7)
with n b being the number of bins (slabs). The implementation used for the calculation of σ αβ (z) and µ F z is available on GitLab. 21 Note that by using these normalized weighting functions the distributions are the linear-additive contributions to the total film properties following the (exact) sum rule

â ! = δz b H n b b=1 â(z b ) ≈ 1 H dz â(z) (3.8)
with â being the (instantaneous) total intensive film property and â(z b ) its contribution in bin b. Note also that using this convention the total film property â has the same dimension as its z-distribution â(z).

Chapter 4

Total properties of polymer films

Introduction

We now discuss some global static and dynamical properties of our free-standing films.

The outline of this chapter is as follows: In Sec. 

Film thickness and glass transition temperature

A central (geometric) parameter describing our films is its thickness H (cf. Fig. 1-1). We determine H using a Gibbs dividing surface construction [START_REF] Peter | Thickness-dependent reduction of the glass-transition temperature in thin polymer films with a free surface[END_REF][START_REF] Torres | Molecular simulation of ultrathin polymeric films near the glass transition[END_REF][START_REF] Plischke | Equilibrium Statistical Physics[END_REF]. With ρ 0 ≡ ρ(z ≈ 0)

being the midplane density of the density profile ρ(z), this implies is always uniform and smooth around the midplane in agreement with the data presented in previous studies [START_REF] Böhme | Evidence for size-dependent mechanical properties from simulations of nanoscopic polymeric structures[END_REF]. 22 The plateau density ρ 0 can thus be fitted to high precision and, hence, also H. Since ρ 0 is always very close to unity, varying only little with L, Eq. 4.1 implies that (to leading order) H ∼ 1/L 2 changes strongly with L. We present in the main panel of Fig. 4-1 the film thickness as a function of temperature. As emphasized by the dashed and the solid lines, H decreases monotonically upon cooling with the two linear branches fitting reasonably the glass (dashed line) and the liquid (solid line) limits. The intercept (horizontal and vertical dashed lines) of both asymptotes allows to define the pseudo-thermodynamic T g and the film thickness H g at the transition (given in Table 3.1) [START_REF] Peter | Thickness-dependent reduction of the glass-transition temperature in thin polymer films with a free surface[END_REF][START_REF] Böhme | Evidence for size-dependent mechanical properties from simulations of nanoscopic polymeric structures[END_REF][START_REF] Mangalara | The relationship between dynamic and pseudo-thermodynamic measures of the glass transition temperature in nanostructured materials[END_REF]. (See Ref. [START_REF] Kriuchevskyi | Shearstress fluctuations and relaxation in polymer glasses[END_REF] for bulk systems.)

H ≡ n/ρ 0 L 2 with n = N M ( 4 
As expected from a wealth of literature [8-10, 12, 13, 35-37, 39, 41, 45], inverse film thickness to the thick-film limit. The value T g = 0.395 indicated at 1/H g = 0 stems from our bulk simulations.) This is consistent with the linear superposition, Eq. 1.3, of a thickness-independent bulk glass transition temperature T g0 and an effective surface temperature T gs . 23 The negative sign of the correction implies T gs < T g0 , i.e. surface relaxation processes are faster than processes around the film midplane. This finding is also consistent with the higher monomer mobilities observed at the film surfaces in previous studies [START_REF] Tanaka | Ultrathinning-Induced Surface Phase Separation of Polystyrene/Poly(vinyl methyl ether) Blend Film[END_REF][START_REF] Yang | Glass transition dynamics and surface layer mobility in unentangled polystyrene films[END_REF][START_REF] Lam | Crossover to surface flow in supercooled unentangled polymer films[END_REF][START_REF] Peter | Thickness-dependent reduction of the glass-transition temperature in thin polymer films with a free surface[END_REF][START_REF] Torres | Molecular simulation of ultrathin polymeric films near the glass transition[END_REF][START_REF] Chowdhury | Spatially distributed rheological properties in confined polymers by noncontact shear[END_REF]. We emphasize finally that many more data points covering a much broader range of orders of magnitude in 1/H are required to find or to rule out numerically higher orders of a systematic 1/H-expansion of T g .

T

Stress-fluctuation formula at fixed sampling time

Instantaneous values of the shear stress τ and of the affine shear modulus μA have been computed as described in Appendix B.1. The time and ensemble averaged affine shear modulus µ A ≡ μA is presented in the main panel of Fig. 4-2 as a function of temperature using half-logarithmic coordinates. The averaged shear stress τ ≡ τ is not indicated since it vanishes rapidly due to symmetry with increasing ensemble size N c and sampling time 23 As we shall demonstrate in Sec. 5.5 the linear superposition is also seen for real experimental data. 

µ 0 ≡ βV τ 2 , µ 1 ≡ βV τ 2 and µ F ≡ µ 0 -µ 1 . (4.2) 
Note that µ F , µ 0 and µ A depend only weakly on T and are all similar on the logarithmic scale used in Fig. 4-2. As stressed by Eq. 2.52 and footnote 11, µ A = µ 0 for an equilibrium liquid. Frozen-in out-of-equilibrium stresses are observed upon cooling below T g as made manifest by the dramatic increase of the dimensionless ratio µ 0 /µ A -1. The β-prefactor of µ 0 , Eq. 4.2, implies that due to the frozen stresses,

µ 0 /µ A -1 ∼ 1/T for T ≪ T g (4.3)
to leading order. This is consistent with the data presented in the inset of Fig. 4-2. Similar behavior has been reported for 3D polymer bulks [START_REF] Kriuchevskyi | Shearstress fluctuations and relaxation in polymer glasses[END_REF].

Using a linear representation, the main panel of considered and no indication of a jump singularity is observed [START_REF] Szamel | Emergence of long-range correlations and rigidity at the dynamic glass transition[END_REF][START_REF] Ozawa | Jamming transition and inherent structures of hard spheres and disks[END_REF][START_REF] Yoshino | Shear modulus of glasses: Results from the full replica-symmetry-breaking solution[END_REF][START_REF] Klix | Glass elasticity from particle trajectories[END_REF][START_REF] Klix | Discontinuous shear modulus determines the glass transition temperature[END_REF]. In the high-T limit, µ vanishes µ ≈ 0. In the low-T limit, the shear modulus becomes finite as expected.

For our thinner films, as a consequence of reduced T g and associated increase in mobility, µ vanishes for a wider range of temperatures. As shown in the main panel of Fig. 4-5, the shear moduli µ for films of different thickness can be brought to collapse on the H-independent mastercurves. (All data for the same fixed ∆t.) The horizontal axis is rescaled with the reduced temperature T /T g using the apparent glass transition temperature T g defined in Sec. 4.2. The values µ g ≡ µ(T g ) used to make the vertical axes dimensionless are indicated in Table 3.1 and plotted in the inset of Fig. 45. Consistently with the linear superposition relation, Eq. 1.3, µ g is a linear function of 1/H g . Similar scaling plots could be given for the contributions µ A (T ), µ 0 (T ), µ 1 (T ) and µ F (T ).

Effective time-translational invariance

All data presented in the previous section have been obtained for one sampling time ∆t = 10 4 . We turn now to the characterization of the ∆t-effects observed for µ in the inset of Fig. 12. Focusing on one temperature (T = 0.30) in the glass limit, we compare in Only the simple averages µ A and µ 0 are strictly ∆t-independent. µ 1 and (hence) µ decrease monotonically. The solid and dashes lines have been obtained using Eq. 1.2.

Fig. 4-6 the ∆t-dependencies of µ A , µ 0 , µ 1 , µ F and µ. As expected from Eq. 2.8, the simple averages µ A and µ 0 are found to be strictly ∆t-independent. Importantly, time and ensemble averages do not commute for µ 1 since 0 = βV τ 2 < βV τ 2 ≡ µ 1 (∆t), i.e. µ 1 is not a simple average, but a fluctuation. As seen in Fig. 456, µ 1 (∆t) decays in fact monotonically and, as a consequence, µ F (∆t) = µ 0 -µ 1 (∆t) increases and µ(∆t) = (µ A -µ 0 ) + µ 1 (∆t)

decreases monotonically. Interestingly, as indicated by the thin solid line, the stationarity relation Eq. 1.2 holds, i.e. µ(∆t) can be traced back from the independently determined shear-stress relaxation modulus G t discussed below. (The visible minor differences are due to numerical difficulties related to the finite time step and the inaccurate integration of the strongly oscillatory G t at short times.) Since µ A and µ 0 are ∆t-independent simple averages, one can rewrite Eq. 1.2 to also describe µ 1 (∆t) and µ F (∆t). This is indicated by the two dashed lines. Note that Eq. 1.2 has been shown to hold for all temperatures and ensembles. The observed ∆t-dependence of the shear modulus µ is thus not due to aging effects, but arises naturally from the effective time translational invariance of our systems.

This does, of course, not mean that no aging occurs in our glassy systems, but just that this is irrelevant for the time scales and the properties considered here. We shall now use the decay of µ(∆t) ≈ µ 1 (∆t) for large T and ∆t to characterize the shear viscosity η(T ). 

Plateau modulus µ p and shear viscosity η

In the main panel of Fig. 4567, we see that µ decreases monotonically with ∆t for a broad range of temperatures (double-logarithmic representation). As already pointed out above (Fig. 1-2), it also decreases continuously with T and no indication of a jump singularity is observed. We emphasize that the same qualitative behavior is found for all systems we have investigated. (Similar plots have been obtained for glass-forming colloids in 2D [START_REF] Wittmer | Shear modulus of simulated glass-forming model systems: Effects of boundary condition, temperature, and sampling time[END_REF] and for 3D polymers [START_REF] Kriuchevskyi | Shearstress fluctuations and relaxation in polymer glasses[END_REF].) As one expects, the ∆t-dependence of µ becomes extremely weak in the solid limit, i.e. a plateau (shoulder) µ(∆t) ≈ µ p = const appears for a broad ∆t-window. Since the plateau value µ p depends somewhat on T and on the ∆t-window fitted, it is convenient for the dimensionless scaling plots presented in the next two sections to define µ p (H) ≡ µ(T = 0.10, ∆t = 10 4 , H). The value for film1 is indicated by the horizontal dashed line. As may be seen from the inset of Fig. 45,

µ p (H) ≈ 16.1 (1 -0.65/H) ≈ 1.85µ g (H) (4.4)
in agreement with Eq. 1.3. As emphasized by the bold solid line in the main panel of Fig. 4567, µ(∆t) decreases inversely with ∆t in the high-T limit. This is expected from the Einstein or "Einstein-Helfand" (EH) relation, Eq. 2.19, which may be rewritten as µ(∆t) → 2η/∆t for ∆t ≫ τ α (4.5)

with η being the shear viscosity and τ α the terminal shear stress relaxation time [START_REF] Allen | Computer Simulation of Liquids[END_REF][START_REF] Kriuchevskyi | Shearstress fluctuations and relaxation in polymer glasses[END_REF].

A technical point must be mentioned here. We remind that µ A = µ 0 in the liquid limit implies µ(∆t) = µ 1 (∆t). Since the impulsive corrections needed for the calculation of µ A (cf. Sec. 3.2) and, hence, of µ are not sufficiently precise for the logarithmic scale used here, it is for numerically reasons best to simply replace µ by µ 1 to avoid an artificial curvature of the data for large ∆t. Using the EH relation it is then possible to fit η(T ) above T ≈ 0.50.

For smaller temperatures this method only allows the estimation of lower bounds. As shown in the inset of Fig. 4-7 for T = 0.55, the shear viscosity decreases systematically for thinner films and the linear superposition relation (solid line) describes reasonably all available data. We now show how η(T ) may be extrapolated to much smaller temperatures by means of the "time-temperature-superposition" (TTS) scaling of µ(∆t).

Time-temperature superposition of µ(∆t)

The TTS scaling of µ(∆t) is presented in the main panel of zontal axis by means of the terminal relaxation time τ α (T, H) which depends strongly on both temperature and film thickness. Note that the strong H-dependence is masked by the rescaling of the horizontal axis using x = T g (H)/T in the inset of Fig. 45678.

Some remarks are in order to explain how the scaling plot was achieved. We have in fact followed in a first step the standard prescription [START_REF] Ferry | Viscoelastic properties of polymers[END_REF][START_REF] Rubinstein | Polymer physics[END_REF] 

τ α (T ≈ T g ) = c η(T ≈ T g )/µ p (H) ≈ 10 5 (4.7)
for all our ensembles as shown by the horizontal and vertical dashed lines. In other words, the dilatometric criterion (Sec. 4.2) and the rheological criterion, fixing a characteristic viscosity for defining T g [START_REF] Ferry | Viscoelastic properties of polymers[END_REF], are numerically consistent on the logarithmic scales considered here. Anticipating better statistics and longer production runs (improving thus the precision of the TTS scaling), this suggests that Eq. 4.7 may be used in the future to define T g . We finally note that an Arrhenius behavior τ α ∼ exp(45x) is observed for x ≈ 1 (bold solid line) and that for x ≪ 1 a Vogel-Fulcher-Tammann (VFT) behavior holds (cf. Sec. 5.2) as expected [START_REF] Ferry | Viscoelastic properties of polymers[END_REF].

Shear-stress relaxation modulus G t

While the (shear strain) creep compliance J(t) [START_REF] Ferry | Viscoelastic properties of polymers[END_REF] of polymer films has been obtained experimentally (by means of a biaxial strain experiment using effectively the reasonable approximation of a time-independent Poisson ratio ν near 1/2) [START_REF] O'connell | Rheological measurements of the thermoviscoelastic response of ultrathin polymer films[END_REF][START_REF] Paul | Creep behavior of ultra-thin polymer films[END_REF][START_REF] Chapuis | A novel interferometric method for the study of the viscoelastic properties of ultra-thin polymer films determined from nanobubble inflation[END_REF][START_REF] Bodiguel | Viscoelastic dewetting of a polymer film on a liquid substrate[END_REF], this seems not to be the case for the shear-stress relaxation modulus G t . This could in principle be done by suddenly tilting the frame on which a free-standing film is suspended and by measuring the shear stress τ (t) needed to keep constant the tilt angle γ. The direct numerical computation of G t by means of an out-of-equilibrium simulation tilting the simulation box in a similar manner, is a feasible procedure in principle as shown in Ref. [START_REF] Yoshimoto | Local dynamic mechnical properties in model free-standing polymer thin films[END_REF].

However, for general technical reasons [START_REF] Allen | Computer Simulation of Liquids[END_REF] this procedure remains tedious. 24 Fortunately, G t can be computed using the stored time-series of τ and μA by means of the appropriate linear-response fluctuation-dissipation relation G(t) = µ A -h(t), Eq. 2.50. Note that G(t = 0) = µ A as it should if an affine strain is applied at t = 0.

Focusing on our thickest films and using a half-logarithmic representation, Fig. 456789presents G t for all temperatures T ≤ 0.45. Please note that albeit we ensemble-average over N c independent configurations it was necessary for the clarity of the presentation to use in addition gliding averages over the total production runs, i.e. the statistics becomes worse for t → ∆t max = 10 5 , and, in addition, to strongly bin the data logarithmically.

Without this strong averaging the data would appear too noisy for temperatures around T g . (See Sec. 7.2 for a discussion of the standard deviation δG(t) of G t .) However, it is clearly seen that G t increases continuously with decreasing T without any indication of the suggested jump-singularity [START_REF] Szamel | Emergence of long-range correlations and rigidity at the dynamic glass transition[END_REF][START_REF] Ozawa | Jamming transition and inherent structures of hard spheres and disks[END_REF][START_REF] Yoshino | Shear modulus of glasses: Results from the full replica-symmetry-breaking solution[END_REF][START_REF] Klix | Glass elasticity from particle trajectories[END_REF][START_REF] Klix | Discontinuous shear modulus determines the glass transition temperature[END_REF]. This is consistent with the continuous decay of the storage modulus G ′ (ω = const, T ) as a function of temperature T shown in Fig. 6 of Ref. [START_REF] Yoshimoto | Local dynamic mechnical properties in model free-standing polymer thin films[END_REF]. Similar continuous behavior has also been reported for the Young modulus of polymer films [START_REF] Shavit | Influence of backbone rigidity on nanoscale confinement effects in model glass-forming polymers[END_REF].

Using a similar double-logarithmic representation as in Fig. 4-8, we demonstrate in Fig. 4-10 that a successful TTS scaling can be achieved for G t just as for µ(∆t). While 

Monomer mean square displacement

Up to now we have only considered static and quasi-static properties and the response function G(t). It was shown that that thinner films appear to be softer in agreement with a two layer model with (more) fluid surfaces and a more rigid bulk in the center of the films. We verify now whether this idea also holds for a simple straightforward dynamical property, the monomer mean-square displacement (MSD) averaged over all monomers of the film [START_REF] Doi | The Theory of Polymer Dynamics[END_REF][START_REF] Rubinstein | Polymer physics[END_REF]. As shown in Fig. 4-11 we focus on the MSD g x (t) along the x-axis of the films. As can be seen by the dashed lines in the main panel for film1, g x (t) systematically decreases upon lowering the temperature. While for high temperatures g x (t) → 2Dt in the large time limit for t ≫ τ α , a plateau (shoulder) appears below T ≈ 0.30 when the monomers get confined within "local cages" [START_REF] Götze | Complex Dynamics of Glass-Forming Liquids: A Mode-Coupling Theory[END_REF]. That we are able to easily extract the diffusion constant D in the free-diffusion limit for high temperatures is shown by the solid line for T = 0.55. 26 As shown in the inset of Fig. 4-11 for one temperature (T = 0.55)

we have compared the diffusion coefficients of the different films. Using linear coordinates we trace D(T ) as a function of the inverse film thickness H(T ). In agreement with other findings presented in this chapter, especially the relaxation time τ α (T ) and the viscosity η(T ), it is seen that the the general linear superposition assumption, Eq. 1.3, again holds as emphasized by the solid line.

Major results

As suggested from a large number of experimental and computational studies, many (intensive) properties, such as T g , µ or g x (t), were shown to depend linearly on the inverse film thickness H [START_REF] George | Shear-stress relaxation in free-standing polymer films[END_REF]. This agrees with the two-layer model [START_REF] Vogt | Mechanical and viscoelastic properties of confined amorphous polymers[END_REF][START_REF] Keddie | Size-dependent depression of the glass transition temperature in polymer films[END_REF]] assumption that we made in the Introduction, Eq. 1.3. Building up on our methods applied to 3D polymer melts [START_REF] Kriuchevskyi | Shearstress fluctuations and relaxation in polymer glasses[END_REF][START_REF] Kriuchevskyi | Shear Modulus and Shear-Stress Fluctuations in Polymer Glasses[END_REF],

we observed that µ(T ) decays continuously for our free standing films. As emphasized in Sec. 4.3, µ systematically depends on ∆t, i.e. larger ∆t implies a sharper glass transition at smaller temperatures. In addition it is seen in the main panel of Fig. 1-2 that µ becomes finite at lower temperatures for thinner films. The sampling time ∆t dependence of µ can be traced back to the stationarity relation in Eq. 1.2 [START_REF] Allen | Computer Simulation of Liquids[END_REF][START_REF] Kriuchevskyi | Shear Modulus and Shear-Stress Fluctuations in Polymer Glasses[END_REF]. We demonstrated in Sec. 4.6

that time translational invariance is applicable for general viscoelastic fluids and that it fits our model systems perfectly. Using the accurate TTS scaling of µ (Fig. 45678) we are able to estimate η(T ) ∼ τ α (T ) for an even broader temperature range down to around T g . The TTS scaling of G t is then possible (Fig. 4-10) using the same rescaling parameters.

Chapter 5

Various rheological properties and comparison to experiments

Introduction

Assuming linear response, we calculated in Ch. 4 µ(∆t) and G t for our polymer films.

Using these quantities and the TTS scaling, we obtained for T > T g (H) the absolute values of the shear viscosity η(T, H) and the relative scale of the terminal relaxation time τ α (T, H). As shown in Fig. 4-10 the problem with the latter quantity is that our G tdata does not allow, even for the highest temperatures, its direct determination using the moments m k of G(t) for k ≥ 1 according to Eq. 2.23 [START_REF] Ferry | Viscoelastic properties of polymers[END_REF][START_REF] Rubinstein | Polymer physics[END_REF]. In Sec. 5.2 we discuss first the shear viscosity η comparing values obtained by different techniques. We turn then in Sec. 5.3 to the calculation of the storage and loss moduli G ′ (ω) and G ′′ (ω). An attempt is made to estimate the steady-state creep compliance J 0 e in the high temperature limit and thus using τ α,1 = J 0 e η to give an absolute scale for the relaxation time τ α . In addition, we compare our data with real experiments. This is done for the glass transition temperature T g (H) in Sec. 5.5 and for the creep compliance J(t) in Sec. 5.6. A summary is given in Sec. 5.7. Dynamic shear viscosity η(t) calculated using Eq. 5.1 for film1 (T g = 0.37). We compare the results obtained for two sampling runs, t = 10 6 (open symbols) and t = 10 7 (filled symbols). A reasonable estimate of η (dashed lines) can only be obtained for large T .

Shear viscosity

The shear viscosity η measures the resistance of a viscoelastic fluid to an imposed shear rate γ [START_REF] Ferry | Viscoelastic properties of polymers[END_REF][START_REF] Graessley | Polymeric Liquids & Networks: Dynamics and Rheology[END_REF][START_REF] Rubinstein | Polymer physics[END_REF]. Panel (a) of Fig. 5-1 presents a summary of the shear viscosities obtained by different methods for film1. Importantly, a good agreement between all methods is observed, down to around the glass transition temperature T g . The data obtained using the EH relation and the TTS scaling have already been discussed in, respectively, Sec. 4.5

and Sec. 4.6. As expected [START_REF] Ferry | Viscoelastic properties of polymers[END_REF][START_REF] Graessley | Polymeric Liquids & Networks: Dynamics and Rheology[END_REF][START_REF] Rubinstein | Polymer physics[END_REF], the TTS scaling allows a reliable estimation of η over a much broader range of temperatures than all other methods. We also include viscosities obtained using the GK relation, Eq. 2.18, and from the low-frequency limit of the loss modulus G ′′ (ω) ≈ ηω described in more detail below in Sec. 5.3. 27 The use of the GK relation is illustrated in panel (b) of Fig. 5-1 where we plot the "dynamical viscosity" for a broad range of temperatures. As already stated in Sec. 2.4.3, the GK method, using a first integral over G t is expected to have poorer statistics than the EH method, computed by means of a second integral over G t , Eq. 2.19. For sufficiently long times t ≫ τ α , the dynamical viscosity η(t) must reach a plateau value, the viscosity η, as indicated by the dashed horizontal lines for the higher temperatures. These values are included in panel (a).

η(t) ≡ m k=0 (t) ≡ t 0 ds G(s) ≈
Since the relaxation function G t becomes increasingly constant, G t ≈ µ p , for T → T g , one naturally observes a linear increase with η(t) ≈ µ p t in this limit.

We analyze now in Fig. 5 

η(T, H) = η ∞ • exp B T -T ∞ (H) (5.2)
in the high temperature limit with T ∞ (H) being the Vogel temperature [START_REF] Ferry | Viscoelastic properties of polymers[END_REF]. 28 Consistently with the inset of Fig. 45678, the data presented in panel (b) scales and an Arrhenius behavior The crossing frequencies ω × (λ) = 1/τ × (λ) for the ratios λ = 1, λ = 2, and λ = 3 are indicated by dashed vertical lines. Note that ω × (λ = 3) corresponds nicely to the crossing frequency 1/τ α,1 of the two low-ω asymptotes for G ′ (ω) and G ′′ (ω) for all temperatures T ≫ T g . with η ∼ exp(45x) is observed for x ≈ 1 (bold solid line).

G′(ω) and G′′(ω)
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G′(ω) and G′′(ω)

G 1 ′(ω) G 1 ′′(ω) G 2 ′(ω) G 2 ′′(ω)

Complex modulus of polymer films

In this section, we perform the numerical transformation [START_REF] Ferry | Viscoelastic properties of polymers[END_REF][START_REF] Gross | Mathematical Structure of the Theories of Viscoelasticity[END_REF][START_REF] Knoff | An improved numerical interconversion for creep compliance and relaxation modulus[END_REF] of G t calculated for film1 to the corresponding complex modulus G ⋆ (ω) = G ′ (ω) + iG ′′ (ω) by means of Eq. 2.20 and Eq. 2.21. This can be done using the Spectral Mode Decomposition (SMD) method [START_REF] Ferry | Viscoelastic properties of polymers[END_REF] and the Fast Fourier Transformation (FFT) [START_REF] William H Press | Numerical Recipes: The Art of Scientific Computing Second Edition[END_REF]. Details and analytical tests for these methods are provided in Appendix D.2 and Appendix D.3. In the following, we use the notations G ′ 1 (ω) and G ′′ 1 (ω) for FFT and G ′ 2 (ω) and G ′′ 2 (ω) for SMD.

We focus on the high temperature limit well above the glass transition. and Appendix D.3 three main frequency regimes can be distinguished. We focus here on the low-ω limit 29 where the SMD data exhibit the expected asymptotic behavior, Eq. 2.22, emphasized by dashed lines for G ′ (ω) and by solid lines for G ′′ (ω). (Much larger production times are required to show this limit directly with the FFT method.) As noted in the caption of Fig. 5-3, viscosities η may be obtained from the linear ω-dependence of G ′′ (ω). These values, also indicated in Fig. 5-1, compare well with η from other methods. Using these η we determine in turn the steady-state creep compliances J 0 e from the limit G ′ (ω) → J 0 e η 2 ω 2 . (The latter limit is less reliable since G ′ (ω) ≪ G ′′ (ω) in this regime.) Importantly, using η and J 0 e this implies the indicated terminal relaxation times τ α,1 = J 0 e η corresponding to the crossing of the two low-ω asymptotes (Sec. 2.4.5). We thus obtain by setting

τ α ! = τ α,1 for T = 0.55 (5.3)
for the highest temperature with the most reliable data an absolute scale for the terminal relaxation times τ α (T ) obtained in Sec. 4.6 from the directly measured viscosities and the TTS scaling. This finally fixes the coefficient c introduced in Eq. 4.6 as c = J 0 e (T = 0.55) µ p (H) ≈ 286.

(5.4)

Unfortunately, J 0 e is not very precise even for T = 0.55 due to the extrapolation of G ′ (ω) with the SMD method. It would thus be nice to have an independent means to characterize the terminal relaxation time for other temperatures using the more restricted FFT data for ω ≫ 2π/∆t without using the asymptotic low-ω behavior. As shown by the dashed vertical lines in Fig. 5-3 we attempt this by determining the crossover frequency ω × (λ) as defined by Eq. 2.24 marking the (first) crossing of λG ′ (ω) and G ′′ (ω). We use the values λ = 1, 2 and 3. As can be seen this corresponds to frequencies ω × (λ) where similar values of G ′ (ω) and G ′′ (ω) have be obtained with both methods to a reasonably good precision.

As can be seen ω × (λ) = 1/τ × (λ) systematically decreases with increasing λ. As discussed in Appendix C ω × (λ = 2) ≈ 1/τ α,1 for the Rouse model. This suggests to use a λ larger unity. Consistently, we find empirically that τ × (λ ≈ 3) ≈ τ α,1 for the highest temperatures.

Moreover, after rescaling with the constant c of Eq. 5.4 the terminal relaxation times τ α obtained by means of the TTS scaling, Fig. 45678, we obtain that τ × (λ = 3) ≈ τ α holds for all temperatures above the glass transition (not shown). Albeit the value λ = 3 may be specific for our numerical system, we believe that this procedure might be generally useful.

Comparison with the nanobubble inflation method

Experimentally, only a few methods have attempted to directly measure the creep compliance of freestanding polymer films [START_REF] Paul | Creep behavior of ultra-thin polymer films[END_REF][START_REF] Chapuis | A novel interferometric method for the study of the viscoelastic properties of ultra-thin polymer films determined from nanobubble inflation[END_REF]. Of particular interest is the novel nanobubble inflation method developed by O'Connell and McKenna [19] for the measurement of viscoelastic properties of freestanding polymer films and associated developments [START_REF] O'connell | Rheological measurements of the thermoviscoelastic response of ultrathin polymer films[END_REF][START_REF] Chapuis | A novel interferometric method for the study of the viscoelastic properties of ultra-thin polymer films determined from nanobubble inflation[END_REF].

In brief, the nanobubble inflation experiment characterizes thin films that are subjected to constant pressure from below via nanometer sized perforations, causing the formation and growth of bubbles that creep with time. Using interferometry [START_REF] Chapuis | A novel interferometric method for the study of the viscoelastic properties of ultra-thin polymer films determined from nanobubble inflation[END_REF] or near-contact AFM method [START_REF] Paul | Creep behavior of ultra-thin polymer films[END_REF], measurements of the bubble profile as a function of time are taken. The biaxial compliance D t of the material is then calculated by measuring the time-dependent strain as a function of constant stress. In this method, the radius of curvature of the bubble changes as it grows, and the stress acting on the bubble is not kept a constant. The above experiment is interesting for us since it characterizes the mechanical properties of freestanding polystyrene (PS) thin films. Furthermore, our bead-spring model has historically shown good correspondence with experimental studies of PS films [START_REF] Roth | Polymer Glasses[END_REF][START_REF] Baschnagel | Computer simulations of supercooled polymer melts in the bulk and in confined geometry[END_REF][START_REF] Baschnagel | Glass transition and relaxation behavior of supercooled polymer melts: An introduction to modeling approaches by molecular dynamics simulations and to comparisons with mode-coupling theory[END_REF].

Interestingly, a different protocol for analyzing the data was developed in Ref. [START_REF] Paul | Creep behavior of ultra-thin polymer films[END_REF].

From the set of creep compliance curves measured at different temperatures and a given thickness, a TTS mastercurve can be obtained along with its horizontal shift factors a T . These shift factors can be fit to a VFT (or equivalently WLF) law. The change in T g of a film from the T g of the bulk, ∆T g = T g -T g B , can be calculated as the shift in the VFT curves from that of the thickest sample. 30 This can be repeated for all thicknesses to get ∆T g as a function of film thickness [START_REF] Paul | Creep behavior of ultra-thin polymer films[END_REF]. This study also matches with our finding concerning the reduction in T g with decreasing H [START_REF] Dalnoki-Veress | Molecular weight dependence of reductions in the glass transition temperature of thin, freely standing polymer films[END_REF][START_REF] Alcoutlabi | Effects of confinement on material behaviour at the nanometre size scale[END_REF][START_REF] O'connell | Dramatic stiffening of ultrathin polymer films in the rubbery regime[END_REF][START_REF] Paul | Creep behavior of ultra-thin polymer films[END_REF][START_REF] Ellison | Sensing the glass transition in thin and ultrathin polymer films via fluorescence probes and labels[END_REF][START_REF] Sharp | Thickness dependence of the dynamics in thin films of isotactic poly (methylmethacrylate)[END_REF]. 

Creep compliance of polymer films

The creep compliance for our films can be obtained via two routes: (short route) Direct application of the HH transformation to G t (Sec. D.4) and (long route) conversion of the complex modulus obtained by FFT/SMD to the complex compliance (J ′ (ω) and J ′′ (ω) in Eq. C.7) and then calculating the J t [START_REF] Ferry | Viscoelastic properties of polymers[END_REF]. In Fig. 5-5, we compare the two approaches. It can be seen that there is good correspondence between the two methods especially in the high-T limit. In this limit, J t reaches flow without any sign of rubbery plateau. The terminal slope corresponds to the shear viscosity η = 130 calculated from the EH relation for T = 0.55 verifies the validity of both methods. The steady-state creep compliance J 0 e ≈ 4 for T = 0.45 is observed yet again by taking the limiting value of J t -t/η [START_REF] Ferry | Viscoelastic properties of polymers[END_REF] with η = 986 (open triangles). This is in agreement with the result from panel (b) of Fig. 5-3.

The more direct HH method is able to calculate the J t for low-T as well. In addition, it also captures the short-time dynamics corresponding to the crossover from microscopic From the time series of J t , we can extract for two arbitrarily chosen times, t = 5 × 10 4 and t = 10 5 , the creep compliance as a function of temperature and film thickness (Fig. 56)). The resulting plots can be interpreted by assuming a simple Maxwell model, J t = J g + t/η. Here, it is readily seen that the elastic and viscous parts are additive. We also verified in Fig. 5-5 for high-T that our data corresponds to the long time behavior J t → t/η predicted by the Maxwell model. In Fig. 5-6(a-b), for low-T , the creep compliance is very small, and of the order J g ≈ 1/µ p (H). Due to high viscosity, 1/η(H) term is negligible relative to 1/µ p (H) in this limit. In the (liquid) high-T limit, the reverse scenario occurs 1/η(H) ≫ 1/µ p (H). It is also clear from Fig. 5-6(c) that there x / 2

Figure 5-7: TTS of the the bi-axial compliance D t = J t /6 obtained from our simulations for T > 0.32, superimposed with the results from the nanobubble inflation method (crosses) [START_REF] Paul | Creep behavior of ultra-thin polymer films[END_REF]. Data points below t < 1 were removed. In the short-time limit

D g ≈ 1/6µ p ≈ 0.0115 is observed.
is a H-dependency for our J(t) seen to increase with the inverse thickness 1/H. This is consistent with the H-dependence of our viscosities, Sec. 5.2, and experimental studies [17-19, 53, 56, 91]. The creep compliances for all our films can also be brought to scale by setting x = T /T g as shown in Fig. 56).

We will be focusing solely on the J t calculated from the HH method for our experimental comparisons. As a reminder, the experiment mentioned in Sec. 5.4 measures the bi-axial compliance, D t , of a freestanding PS film. For comparison with the experiment, we have to convert our J t to D t by applying the constitutive equations of linear elasticity. By assuming a Poisson ratio ν = 0.5 for isotropic systems, we have D t = J t /6 [START_REF] Tschoegl | The Phenomenological Theory of Linear Viscoelastic Behavior[END_REF]. By setting x = t/τ α , we obtain the scaling of D t for all T > 0.32 as shown in Fig. 567. We also see that a good approximation of the glass-like compliance D g ≈ J g /6 ≈ 1/6µ p ≈ 0.0115 is obtained for very short times. We then shift the D t reported in Ref. [START_REF] Paul | Creep behavior of ultra-thin polymer films[END_REF] on top our curves using shift factors (x, y) = (6.184•10 -8 , 2.256•10 8 ). We are able to demonstrate that in the glassy regime (short times), the simulation and experiments superimpose perfectly.

As for the viscoelastic regime (intermediate-long time limit), it is seen that they diverge as our films do not exhibit any rubbery plateau. Instead, our films reach the flow regime (for high-T ). The missing plateau can be attributed to the absence of chain entanglements, which can greatly affect the polymer dynamics [START_REF] Kremer | Dynamics of entangled linear polymer melts: A molecular dynamics simulation[END_REF][START_REF] Meyer | On the dynamics and disentanglement in thin and two-dimensional polymer films[END_REF][START_REF] Likhtman | Viscoelasticity and Molecular Rheology[END_REF]. Unfortunately for us the chain length of N = 16 is too short to observe this phenomenon N ≪ N e ≈ 100.

Major results

We compared in Sec. 5.2 the shear viscosities η calculated using different methods and demonstrated that these data are consistent with the Vogel-Fulcher-Tammann (VFT) law.

We presented in Sec. 5.3 the storage and loss moduli G ′ (ω) and G ′′ (ω) from which we obtained η and J 0 e and thus τ α,1 = J 0 e η in the high temperature limit. This allowed us to determine an absolute scale for the terminal relaxation time τ α , Eq. 5.3. We suggested that the crossing time τ × (λ ≈ 3) may be a numerically interesting alternative for the determination of τ α . Rheological properties of freestanding films have been widely studied through experiments and it was of significance for us to compare the experimental results with our computational experiments. As shown in Fig. 5-4 the experimental and the computational data for the glass transition temperatures T g (H) can be collapsed on one mastercurve consistent with the linear superposition, Eq. 1.3. We transformed in Sec. 5.6 G t to J t and compared these J t -data with the shifted experimental data obtained from Ref. [START_REF] Paul | Creep behavior of ultra-thin polymer films[END_REF]. As expected for our too short chains (N ≪ N e ) no rubbery plateau is observed for our data.

Chapter 6

Layer resolved film properties

Introduction

We have seen in the previous chapters that our films follow an experimentally validated trend of decrease in the apparent glass transition temperature T g with decreasing H [START_REF] Dalnoki-Veress | Molecular weight dependence of reductions in the glass transition temperature of thin, freely standing polymer films[END_REF][START_REF] Alcoutlabi | Effects of confinement on material behaviour at the nanometre size scale[END_REF][START_REF] Keddie | Size-dependent depression of the glass transition temperature in polymer films[END_REF][START_REF] Ellison | Sensing the glass transition in thin and ultrathin polymer films via fluorescence probes and labels[END_REF][START_REF] Sharp | Thickness dependence of the dynamics in thin films of isotactic poly (methylmethacrylate)[END_REF]. Although this behavior is not universal [START_REF] O'connell | Rheological measurements of the thermoviscoelastic response of ultrathin polymer films[END_REF][START_REF] O'connell | Novel nanobubble inflation method for determining the viscoelastic properties of ultrathin polymer films[END_REF][START_REF] O'connell | Dramatic stiffening of ultrathin polymer films in the rubbery regime[END_REF][START_REF] Mckenna | A novel nano-bubble inflation method for determining the viscoelastic properties of ultrathin polymer films[END_REF], it has been proposed that the H-dependence may arise from the presence of a liquid-like (soft) surface [START_REF] O'connell | Rheological measurements of the thermoviscoelastic response of ultrathin polymer films[END_REF][START_REF] Paul | Creep behavior of ultra-thin polymer films[END_REF][START_REF] Ellison | The distribution of glass-transition temperatures in nanoscopically confined glass formers[END_REF][START_REF] Keddie | Size-dependent depression of the glass transition temperature in polymer films[END_REF][START_REF] Ellison | Sensing the glass transition in thin and ultrathin polymer films via fluorescence probes and labels[END_REF]. Layer models assuming the coexistence of interfacial layers and an inner layer with distinct mobilities are an often invoked interpretation for the relaxation of general confined glass-forming liquids [START_REF] Mattson | Quantifying glass transition behavior in ultrathin free-standing polymer films[END_REF][START_REF] Forrest | When does a glass transition temperature not signify a glass transition?[END_REF][START_REF] Napolitano | Influence of a reduced mobility layer on the structural relaxation dynamics of aluminium capped ultrthin films of poly(ethylene terephthalate)[END_REF][START_REF] Yang | Glass transition dynamics and surface layer mobility in unentangled polystyrene films[END_REF][START_REF] Lam | Crossover to surface flow in supercooled unentangled polymer films[END_REF]. Experimental techniques focusing on the characterization of T g at different depths within freestanding PS films using florescence have provided enough evidence on the reduction of T g at the free interface (and as a function of H) [START_REF] Ellison | The distribution of glass-transition temperatures in nanoscopically confined glass formers[END_REF][START_REF] Ellison | Sensing the glass transition in thin and ultrathin polymer films via fluorescence probes and labels[END_REF][START_REF] Ge | Shear modulation force microscopy study of near surface glass transition temperatures[END_REF]. Moreover, many other intensive properties, such as µ A , µ F and thus µ, have been seen in Ch. 4 to depend nontrivially on H. To understand these findings we have to take a closer look at the (linear-additive) local contributions of µ A z , µ F z and µ(z).

This will allow us to verify the presence of bulk values µ

A0 = µ A (z ≈ 0), µ F0 = µ F (z ≈ 0)
and µ 0 = µ(z ≈ 0) in the middle of the film which are to leading order independent of H as implied by the linear superposition relation, Eq. 1.3. In this chapter, we will first describe simple layer resolved properties (density in Sec. 6.2, energies in Sec. 6.3, stresses in Sec. 6.4). We will then discuss the distributions µ A z and µ F z in Sec. 6.5 and Sec. 6.6 that contribute to the (linear-additive) local shear-stress modulus µ(z) (Sec. 6.7). We summarize our results in Sec. 6.8. 

Density profile ρ(z)

We have already touched upon the density profile ρ(z) for the characterization of H in Sec. 4.2. The ensemble and time averaged number density distribution is given by ρ(z) = ρ(z) with ρ(z) = N i=1 w id (z; z i ) being the instantaneous distribution using the weighting function w id (z; z i ) defined in Sec. 3.7, Eq. 3.4. The density profile for film1 at T = 0.50 in the liquid limit is shown in Fig. 6-1(a). z = 0 corresponds to the center of mass of our films.

As emphasized by the dashed horizontal line the midplane number density ρ 0 ≡ ρ(z ≈ 0) can be fitted to high precision and we can, thus, determine the film thickness H using Eq. 4.1 [START_REF] George | Shear-stress relaxation in free-standing polymer films[END_REF]. The interface width W shown in Fig. 6-1(b) is obtained by fitting the ρ(z)-data at the two surfaces with the mean-field prediction [START_REF] Plischke | Equilibrium Statistical Physics[END_REF] 

ρ(z) = ρ 0 2 1 -erf |2z -H| W (6.1)
which is indicated by the solid line in Fig. 6-1(a). W decreases weakly upon cooling becoming roughly constant in the low-T limit. The small value of W is a consequence of the large surface tension Γ of order unity (Sec. 6.4).

The midplane number density ρ 0 is shown in Fig. 6-2 for all our films. Albeit ρ 0 increases slightly upon cooling, still being ≈ 1 which implies H ∼ 1/L 2 to leading order. While this Midplane density ρ 0 (T ) for all our films. While ρ 0 does not depend on H in the liquid limit, it decreases with increasing H in the glassy limit. This allows to determine the glass transition temperature T g and the midplane density ρ 0g ∼ 1/H g at the glass transition. Inset: Scaling of ρ 0 /ρ 0g vs T /T g using ρ 0g and T g as indicated in Table 3.1. also holds to higher order in the liquid regime, i.e. ρ 0 is strictly H-independent, ρ 0 is seen to decrease with increasing H in the glass limit. Apparently, the thicker films do not manage to get as compact as the thinner films for T ≪ T g . As discussed in Ch. 4, this may be used to define the quasi-thermodynamic glass transition temperature T g , the midplane number density ρ 0g and film thickness H g at the transition from the intercept of the linear glass and liquid asymptotes. The values for T g , H g and ρ 0g are given in Table 3.1. This allows to collapse the midplane densities ρ 0 (T ) of all films as shown in the inset of Fig. 6-2.

Energy profile e(z)

We compute the energy contribution ê(z) to the total instantaneous energy ê using the weighting functions w id (z; z i ) and w ex (z; z i , z j ) defined in Sec. in the same plot. Note that e 0 < e and that both e 0 and e decrease upon cooling. It is also seen that e 0 is H-independent above T g and only weakly H-dependent in the glassy limit. This higher order effect is expected in the glassy regime where ρ 0 weakly depends on H. The average energy density e decreases more strongly with increasing H. This can be attributed to the broad bulk regime (more negative) for thicker films. For thinner films, the interface contribution (less negative) dominates the bulk contribution. By focusing on the filled symbols in Fig. 6-3(b), it becomes clear that as the film shrinks, the spread of the values of e is reduced. This is also readily seen from Fig. 6-3(a).

Normal tangential stresses

Following the Irving-Kirkwood convention, Sec. 3.7, we also computed the layer-resolved distribution σαβ (z) of the total instantaneous stress tensor σαβ taking into account both the ideal and the excess stress contributions. We remind that the Irving-Kirkwood convention implies the linear sum rule (Eq. 3.8) Figure 6-4: The total tangential stress σ t (z) ≡ (σ xx (z) + σ yy (z))/2 for various temperatures for (a) film1 and (b) film3. σ t (z) is always bimodal with maxima at the free interfaces of the film. While the midplane tangential stress σ t0 ≡ σ t (z ≈ 0) vanishes above the glass transition, it becomes finite for temperatures below T g . This must be taken into account for the determination of the surface tension.

σαβ = δz b H n b b=1 σαβ (z b ) (6.2) 
for all instantaneous stress tensor components. The average off-diagonal elements of the stress tensor, such as the shear stress σ xy (z), all vanish by symmetry. Since the vertical box size L z is sufficiently large that all components of the stress tensor σ αβ (z) [START_REF] Allen | Computer Simulation of Liquids[END_REF] strictly vanish outside the films, the average vertical normal stress σ zz (z) must also vanish for all z-planes [START_REF] Varnik | Molecular dynamics results on the pressure tensor of polymer films[END_REF]. At variance to this, the average tangential normal stresses σ xx (z) and σ yy (z) may be finite. 31 Since the x-and the y-directions are equivalent we consider here the average tangential stress σ t ≡ (σ xx + σ yy )/2 and its distribution σ t (z) ≡ (σ xx (z) + σ yy (z))/2. σ t (z) is presented in Fig. 6-4 for film1 and film3 for several temperatures. (Unfortunately, only N c = 10 configurations are available for film3.) As for all our films studied, σ t (z) is seen to be bimodal with strong and sharp maxima at the film surfaces. Since for liquids all average normal stress components must be equal [START_REF] Rubinstein | Polymer physics[END_REF][START_REF] Alexander | Amorphous solids: their structure, lattice dynamics and elasticity[END_REF] and since σ zz (z) = 0 everywhere, σ t (z ≈ 0) vanishes rigorously for film1, film2 and film3 for high temperatures.

Interestingly, upon further decreasing the temperature below the glass transition σ t (z) is observed to become finite around z = 0. This makes manifest that the film center is no longer a liquid. The bulk tangential stress σ t0 for all our films are taken as the mean value 

1x low-T artifact for low-H?

Figure 6-5: Tangential stress σ t0 at the film midplane (main panel) and surface tension Γ ≡ (σ t -σ t0 )H/2 (inset) as functions of x = T /T g for all our films. The vertical axis of the inset is made dimensionless using Γ g ≡ Γ(T = T g ).

across a certain number of bins around the film midplane at z = 0. σ t0 is presented in the main panel of Fig. 6-5 as a function of the reduced temperature x = T /T g . The finite σ t0 -value is not a computational artifact but caused by the tendency of the film to reduce its thickness H at a fixed lateral box length L. While at high temperature an initial finite tension σ t0 > 0 can relax by the vertical flow of the particles reducing H, this gets increasingly difficult and ultimately impossible around and below T g . The observed σ t0 > 0 is hence a direct consequence of the broken permutation symmetry, i.e. the neighborhood of each particle becomes frozen [START_REF] Alexander | Amorphous solids: their structure, lattice dynamics and elasticity[END_REF]. 32 Please note also that σ t0 does not rigorously vanish for our thinnest films even for T ≫ T g . As can be seen from the two examples given in Fig. 6-4, this is due to the fact that as the films becomes thinner the surface peaks of σ t (z) increasingly overlap. The clear separation of surface and bulk behavior becomes spurious.

To make this point clear let us give an additional characterization of the surface width.

As shown in the inset of Fig. 6-6 we first determine the maximum σ max of the peak and define then peak width W t = z + -z -with σ t (z ± ) -σ t0 = (σ max -σ t0 )/2, i.e. we take the bulk normal stress σ t0 as the reference and determine then the peak width at half the (shifted) peak height. As presented in the main panel of Fig. 6-6, the peak width W t becomes narrower upon cooling and upon increasing the film thickness. It is roughly similar to the width W from the density profile, Fig. 6-1(b). Since the ratio H/2W t is about 3 for film4, the two-layer model should be used with care for these ultrathin films.

The normal tangential stress σ t and its distribution σ t (z) are, obviously, related to the surface tension Γ. We remind that for a liquid film with σ t0 = 0 [57, 78]:

2Γ = δz b i σ t (z i ) = H σ t . (6.3) 
However, as noted above, σ t0 ≈ 0 does not hold below the glass transition. Since there is thus no true liquid phase in the film center, Eq. 6.3 cannot be used. Using a Gibbs dividing plane construction, the total tangential stress σ t H has now the two contributions σ t0 H and Γ. The finite tangential midplane stress σ t0 has to be subtracted [START_REF] Liang | Surface stress and surface tension in polymeric networks[END_REF] and we define 33

2Γ ≡ (σ t -σ t0 ) H (6.4)
if the surface tension is computed through and below T g . The surface tension Γ is presented in the inset of Fig. 6-5. Interestingly, Γ(T ) is non-monotonic: it increases first upon cooling in the liquid regime and decreases then in the glass regime. The vertical axis is made dimensionless using Γ g ≡ Γ(T = T g ) (cf. Table 3.1). The scaling attempt is not successful. 33 See the general comment at the end of this section.

weight ∝ (H -W ), this implies that the average µ A must decrease as

µ A = δz b H b µ A (z b ) ≈ µ A0 1 + µ As /µ A0 H (6.5)
where the fit parameter µ As characterizes the contributions from the film surfaces. This is consistent with data presented in Fig. 4-3. Interestingly, µ A z is seen in Fig. 6-7 to drop suddenly in the glass regime. The surface contribution µ As is thus negligible. This explains why µ A (≈ µ A0 ) was found to barely depend on H at low temperatures (Fig. 4-3).

Local shear-stress fluctuations µ F z

We turn now to the characterization of the shear-stress fluctuations. As already noted above, the average shear stress τ (z) vanishes for all z. As may be seen from Fig. 678, this is not the case for the higher moment

µ F z ≡ βV (τ (z) -τ (z)) (τ -τ ) (6.6) 
characterizing the correlation of the local shear stress τ z and the total shear stress τ .

Importantly, the total film volume V = HL 2 is used as prefactor and not the slab volume

V b = δz b L 2 .
The above definition is thus consistent with the linear sum rule, Eq. 3.8, i.e.

µ F ≡ βV (τ -τ ) 2 = δz b H b µ F (z b ). (6.7) 
This is also consistent with the general stress-fluctuation formalism for the local contributions to the elastic moduli used in the literature [START_REF] Van Workum | Computer simulation of the mechanical properties of amorphous polymer nanostructures[END_REF][START_REF] Lutsko | Stress and elastic constants in anisotropic solids: Molecular dynamics techniques[END_REF][START_REF] Yoshimoto | Mechanical heterogeneities in model polymer glasses at small length scales[END_REF][START_REF] Lips | Stress-stress fluctuation formula for elastic constants in the npt ensemble[END_REF]. We emphasize that µ F z depends not only on τ z , but also on the total shear stress τ . It is thus not a completely local observable as it would have been the case using instead:

µ loc F z ≡ βV b τ z 2 -τ z 2 . (6.8) 
Importantly, the linear sum Eq. 6.7 does not hold for µ loc F z in general. However, it is expected that µ F z and µ loc F z become equivalent assuming that the stresses of different z-planes decorrelate, i.e., τ z τ (z ′ ) ∼ δ z,z ′ . µ F0 (T)

Figure 6-8: Distributions µ F z and µ loc F z of the stress fluctuations. The midplane plateau µ F0 ≡ µ F (z ≈ 0) is again to leading order H-independent. It decreases upon cooling. While µ F z is similar to µ A z for all z in the high-T limit, it becomes bimodal for T ≪ T g with maxima at the free surfaces (arrows). The characterization of µ loc F z remains similar to µ F z and µ A z around the interfaces, but in the bulk they differ (see footnote [START_REF] Varnik | Reduction of the glass transition temperature in polymer films: A molecular-dynamics study[END_REF].

The linear-additive distribution µ F z is presented in Fig. 678. 34 Let us first consider the high-T limit shown for T = 0.55. As one expects from the equality µ A = µ F of the overall film averages, it is seen from the comparison of Fig. 67and Fig. 6-8 that µ A z = µ F z holds for T ≫ T g . This also explains why the same 1/H-correction has been obtained for µ A and µ F . 35 In the low-T limit, qualitatively different distributions are observed.

Upon cooling µ F z decreases in the inner parts of the film while is remains similar to µ A z around the surfaces. The arrows in Fig. 6-8 point to the peaks at T = 0.20 near the interface that were already seen for µ A z . In addition, the distribution is somewhat bimodal as seen in Fig. 678. The contribution from the surfaces is more important for thin films, this explains why the overall µ F increases for thinner films below T g as shown in Fig. 4-4. 34 The presented data for film1 is shown for Nc = 10 with δttrj = 2.5. Whereas the data for film2 is shown for Nc = 10 but with a lower sampling rate δttrj = 500. As a result noise grows into the data for film2. For clarity the data for film2 was smoothed. 35 As a remark on µ loc F z , please note that µ loc F z remains similar to µA z ≈ µF z around the interfaces (|z| ≈ H/2) while we observed µ loc F z ≪ µF z in the bulk of the film for all T (Fig. 678). In addition, the local definition µ loc F z fails for our thinner films as the local stress-fluctuations of different z-slabs are still correlated. Apparently, the shear stresses are correlated over a correlation length ξ with ξ ≫ δz b . This questions the validity of a true "local" µ loc F z as in Eq. 6.8. Overall, µ loc F z will not predict a reasonable µ(z) due to its peculiar nature. For this reason we focus on the linear-additive distribution µF z , Eq. 6.6. 

Local shear modulus µ(z)

The shear modulus µ(z) ≡ µ A z -µ F z computed according the linear-additive local stress-fluctuation formula is presented for two temperatures in Fig. 6-9 for film1. As one expects, µ(z) ≈ 0 for all z in the liquid limit T = 0.55 (red dots). µ(z) becomes finite below for T = 0.20 (blue dots in Fig. 6789) with a broad maximum at the midplane. For T = 0.20, the interface peaks seen in Fig. 6-7 and Fig. 6-8 cancel each other, leading to the finite surface regime of several bead diameters emphasized by the arrows. µ(z) is presented for additional temperatures in Fig. 6-10 for film1. Of prominence is the behavior at T ≈ T g = 0.37 (green dots), where, although noisy, the contribution to the global µ is seen to come from the bulk of the film. Our results reveal that there is a transition from a high modulus in the bulk to a low modulus at the surface. The reduction in the shear modulus µ(z) in the surface region implies the existence of a soft, liquid-like interface, which has been proposed in many experimental and theoretical studies [START_REF] Mattson | Quantifying glass transition behavior in ultrathin free-standing polymer films[END_REF][START_REF] Paul | Creep behavior of ultra-thin polymer films[END_REF][START_REF] Ellison | The distribution of glass-transition temperatures in nanoscopically confined glass formers[END_REF][START_REF] Yoshimoto | Local dynamic mechnical properties in model free-standing polymer thin films[END_REF][START_REF] Forrest | The glass transition in thin polymer films[END_REF][START_REF] Ellison | Sensing the glass transition in thin and ultrathin polymer films via fluorescence probes and labels[END_REF][START_REF] Teichroeb | Direct Imaging of Nanoparticle Embedding to Probe Viscoelasticity of Polymer Surfaces[END_REF][START_REF] Roth | Mobility on Different Length Scales in Thin Polymer Films[END_REF][START_REF] Kawana | Character of the glass transition in thin supported polymer films[END_REF].

From the layer analysis of film1, we confirm this effect for the first time using the local stress-fluctuation formalism. The shear modulus µ(z) (dots), the affine term µ A z (lines) and the fluctuation term µ F z (circles) computed for film1 according the z-linear stress-fluctuation formula is presented for selected temperatures. Presented results are smoothed over a window = 5. The reduction in shear modulus µ(z) near the surface implies the existence of a soft interface, which has been proposed in the literature. From our layer analysis, we confirm this effect for film1 using the stress fluctuation formalism for the first time.

Major results

In this chapter we have investigated the z-distributions of various mechanical and rheological properties such as the density ρ(z), the energy e(z) and the different components of the stress tensor σ αβ (z). We determined the surface tension Γ from the normal tangential stress components (Sec. 6.4). We then focused on the affine shear-modulus µ A z (Fig. 67), the shear-stress fluctuations µ F z (Fig. 678), and the shear modulus µ(z) = µ A z -µ F z (Fig. 6789). While in the high-T limit µ F z ≈ µ A z and µ(z) thus vanishes for all z, µ(z)

becomes finite around and below the glass transition. Most importantly, in agreement with Eq. 1.3 and confirming the proposed two-layer model [START_REF] Mattson | Quantifying glass transition behavior in ultrathin free-standing polymer films[END_REF][START_REF] Paul | Creep behavior of ultra-thin polymer films[END_REF][START_REF] Ellison | The distribution of glass-transition temperatures in nanoscopically confined glass formers[END_REF][START_REF] Yoshimoto | Local dynamic mechnical properties in model free-standing polymer thin films[END_REF][START_REF] Forrest | The glass transition in thin polymer films[END_REF][START_REF] Ellison | Sensing the glass transition in thin and ultrathin polymer films via fluorescence probes and labels[END_REF][START_REF] Teichroeb | Direct Imaging of Nanoparticle Embedding to Probe Viscoelasticity of Polymer Surfaces[END_REF][START_REF] Roth | Mobility on Different Length Scales in Thin Polymer Films[END_REF][START_REF] Kawana | Character of the glass transition in thin supported polymer films[END_REF] µ(z) is monomodal with a broad, essentially H-independent maximum in the bulk phase of the films and surface layers of finite width W t ≈ 1 where µ(z) continuously vanishes.

Chapter 7

Ensemble fluctuations of shear stress fluctuations

Introduction

In the previous chapters 4-6 we have numerically characterized important, experimentally measurable properties of polymer thin films focusing on the average viscoelastic linear response. In agreement with the related recent numerical findings on self-assembled transient networks [START_REF] Wittmer | Shear-stress fluctuations in self-assembled transient elastic networks[END_REF] and three-dimensional polymer melts [START_REF] Kriuchevskyi | Shearstress fluctuations and relaxation in polymer glasses[END_REF][START_REF] Kriuchevskyi | Shear Modulus and Shear-Stress Fluctuations in Polymer Glasses[END_REF][START_REF] Kriuchevskyi | Numerical determination of shear stress relaxation modulus of polymer glasses[END_REF] it was observed that the shearstress relaxation function G t and the (generalized) shear modulus µ strongly fluctuate and this especially at temperatures around the glass transition temperature T g . This prompted the theoretical work outlined in Ch. 2 and in Appendix A. This work suggests that it may be possible to describe the observed fluctuations assuming that the time series x of (rescaled) shear stresses τ used for calculating G t and µ are stationary Gaussian processes [START_REF] George | Ensemble fluctuations matter for variances of macroscopic variables[END_REF][START_REF] Klochko | Relaxation dynamics in supercooled oligomer liquids: From shear-stress fluctuations to shear modulus and structural correlations[END_REF].

As we have emphasized in Sec. 2.6, it is important to distinguish stochastic processes which are ergodic from those which are effectively non-ergodic. The latter case should matter for films at low temperatures T ≪ T g . Taking advantage from the abundance of independently prepared configurations N c for film1, we test here some of the predictions presented in Ch. 2. The presented chapter is adapted from our recent publications [START_REF] George | Ensemble fluctuations matter for variances of macroscopic variables[END_REF][START_REF] George | Fluctuations of non-ergodic stochastic processes[END_REF] where, in addition to polymer films, systems of self-assembled transient networks and polydisperse LJ particles were studied. 

Standard deviations δG and δµ

As already pointed out in Ch. 4, the data for G t is quite noisy, especially around T g , and we had to use gliding averages and a strong logarithmic binning for the clarity of the presentation. We now describe this qualitative observation in quantitative terms. In √ 2 as a function of T . h ≈ µ F is non-monotonic with a maximum slightly below T g . Since Eq. 2.34 holds, δh is also nonmonotonic. Inset: Absolute value of the non-Gaussianity parameter α 2 as a function of T demonstrating, |α 2 | ≪ 0.0007, the high accuracy of the Gaussian assumption. maxima slightly below the glass transition temperature T g . While δµ ≪ µ and δG ≪ G in the solid limit, δµ > µ and δG > G at high and intermediate temperatures. Importantly, the presented data is characterized by strong ensemble fluctuations with δµ/µ and δG/G of order of unity, similar to what has been observed for 3D bulk systems [START_REF] Kriuchevskyi | Shearstress fluctuations and relaxation in polymer glasses[END_REF][START_REF] Kriuchevskyi | Shear Modulus and Shear-Stress Fluctuations in Polymer Glasses[END_REF]. The inequalities δµ ≪ δG and δµ/µ ≪ δG/G are the strongest slightly below T g . Therefore, the prediction of G(T ) or µ(T ) for T ≈ T g becomes thus meaningless for a single configuration. This suggests that numerical studies of the elastic shear strain response around the glass transition should focus on µ rather than of G as δµ ≪ δG. As already noted at the end of Sec. 2.5, we have verified that δG ≈ δh(t) and δµ ≈ δµ F holds. This is expected since the simple average µ A barely fluctuates.

Standard deviation δh(t)

In order to explain the non-monotonic behavior of δG, Fig. 7-1, we address now the standard deviation δh of the autocorrelation function h. As explained in Sec. 2.5 we expect δh 2 = 2h 2 , Eq. 2.34, for a Gaussian stochastic process. We compare in the main panel of Fig. 7 This shows that Gaussian processes are dominant for all T, even below the glass transition.

Obviously, this does not rule out very small sub-dominant non-Gaussian contributions. 37 

Standard deviation δµ F

We characterize now the standard deviation δµ F of µ F . We begin by comparing in Fig. 7-3 the temperature dependence of δµ F,tot , operationally defined by Eq. A.24, and the prediction δµ F,G [G(t)] for Gaussian ergodic processes, Eq. 2.3, computed using the measured relaxation function G(t). The most important feature is here that within numerical precision δµ F,tot ≈ δµ F,G for all ∆t and T ≫ T g , while both differ below T g for large ∆t. It 37 This could be investigated by considering higher order correlation functions and their variances. can also be seen that the maximum of δµ F,G (T ) becomes sharper and shifts to lower T with increasing ∆t. While δµ F,G decreases strongly on cooling for larger ∆t -this is not observed for δµ F,tot , being only weakly T -dependent. As marked by the bold dashed line, δµ F,tot → ∆ ne ≈ 1 in this limit. Apparently, Eq. 2.3 for ergodic Gaussian processes breaks down as expected from the more general relations Eq. 2.43 or Eq. 2.45.

An alternative representation of the same data is given in Fig. 7 Focusing on film1 and the lowest temperature T = 0.05 we compare µ F , δµ F,tot and δµ F,G and, in addition to this, also the internal standard deviation δµ F,int characterizing the average fluctuation within each meta-basin. In agreement with Eq. A. [START_REF] Pye | Two simultaneous mechanisms causing glass transition temperature reductions in high molecular weight freestanding polymer films as measured by transmission ellipsometry[END_REF] shown. Importantly, it is seen that δµ F,int ≈ δµ F,G for all ∆t in agreement with Eq. A. 32. This confirms that the stochastic process within each basin is stationary and Gaussian. As shown by the crosses, the shifting of δµ F,int or δµ F,G by the plateau value ∆ ne according to Eq. 2.53 leads to a reasonable approximation of δµ F,tot .

Major results

The relaxation function G t and the generalized shear modulus µ(∆t) are characterized by strong fluctuations, especially around the T g . We showed that these fluctuation can be understood assuming stationary Gaussian stochastic processes [START_REF] George | Ensemble fluctuations matter for variances of macroscopic variables[END_REF][START_REF] George | Fluctuations of non-ergodic stochastic processes[END_REF][START_REF] Klochko | Relaxation dynamics in supercooled oligomer liquids: From shear-stress fluctuations to shear modulus and structural correlations[END_REF]. Specifically,

• δh(t) 2 ≈ 2h(t) 2 holds to high precision as expected for Gaussian processes (Eq. 2.34);

• δµ F,int ≈ δµ F,G for all ∆t and T confirming Eq. A.32;

• δµ F,tot ≈ δµ F,G for low ∆t and not too small T showing that the non-monotonic behavior of δµ F,tot (T ) can be traced back to the behavior of h(T ).

• δµ F,tot and δµ F,G differ in the non-ergodic limit for low temperatures. For large ∆t, δµ F,tot becomes a constant ∆ ne > 0 and δµ F,G ∼ 1/ √ ∆t (Eq. 2.44);

• deviations from the 1/ √ ∆t-decay for δµ F,G ≈ δµ F,int are observed which are traced back to the creep-like decay of G t as discussed in Appendix A.3.

Chapter 8

Conclusion

Summary

In this PhD work, we numerically characterized various mechanical and rheological properties of freestanding polymer films of varying thicknesses H. This was done within linear response without applying external perturbations using the internal (shear) stress fluctuations of our systems. Specifically, we have focused on the average shear-stress relaxation function G t and the average generalized modulus µ(∆t) and their respective standard deviations δG t and δµ(∆t). Interestingly, it was seen that G t and µ(∆t) increase continuously with decreasing T for all H, without any indication of the suggested jump-singularity [START_REF] Götze | Complex Dynamics of Glass-Forming Liquids: A Mode-Coupling Theory[END_REF][START_REF] Szamel | Emergence of long-range correlations and rigidity at the dynamic glass transition[END_REF][START_REF] Ozawa | Jamming transition and inherent structures of hard spheres and disks[END_REF][START_REF] Yoshino | Shear modulus of glasses: Results from the full replica-symmetry-breaking solution[END_REF][START_REF] Klix | Glass elasticity from particle trajectories[END_REF][START_REF] Klix | Discontinuous shear modulus determines the glass transition temperature[END_REF] but in perfect agreement with all published experimental [START_REF] O'connell | Rheological measurements of the thermoviscoelastic response of ultrathin polymer films[END_REF][START_REF] Paul | Creep behavior of ultra-thin polymer films[END_REF][START_REF] Chapuis | A novel interferometric method for the study of the viscoelastic properties of ultra-thin polymer films determined from nanobubble inflation[END_REF] and computational [START_REF] Yoshimoto | Local dynamic mechnical properties in model free-standing polymer thin films[END_REF][START_REF] Shavit | Influence of backbone rigidity on nanoscale confinement effects in model glass-forming polymers[END_REF] studies. We presented four main aspects concerning our films in this thesis, highlighted previously in Fig. 1-3 and summarized in the following paragraphs.

Calculation of the response function G t and a generalized shear modulus µ(∆t):

Using the stress fluctuation formalism, we calculated the shear modulus for a wide range of temperatures and thicknesses. Importantly, we noticed a clear 1/H-dependence for these properties and related observables, such as the shear viscosity η. We also obtained a successful TTS scaling and extracted from this, the τ α and η for our films (Ch. 4). This work is part of the published journal article in Ref. [START_REF] George | Shear-stress relaxation in free-standing polymer films[END_REF].

Numerical transformation of G t : We used numerical methods to obtain from G t the storage modulus G ′ (ω) and the loss modulus G ′′ (ω). We got for the highest temper-ature the shear viscosity η and steady-state creep compliance J 0 e from the low-frequency asymptotes, Eq. 2.22, of G ′ (ω) and G ′′ (ω). This determines the relaxation time τ α,1 = J 0 e η for T = 0.55 which is used as a reference (scale) for the terminal relaxation time τ α (T ) obtained by means of the TTS scaling. Interestingly, the crossing time τ × (λ = 3) obtained from the first crossing of λG ′ (ω) and G ′′ (ω) gives a direct (without TTS scaling) and numerically reliable estimate of τ α above T g (Sec. 5.3). We also performed a direct transformation of G t to obtain the creep compliance J t . This allowed for a comparison with the compliance measured in the nanobubble inflation experiment [START_REF] Paul | Creep behavior of ultra-thin polymer films[END_REF] (Ch. 5). We also saw here a limitation of our model parameter N ≪ N e and the associated absence of a rubbery plateau.

Calculation of the local shear modulus from the stress fluctuation formalism:

We calculated the layer-resolved shear modulus µ(z) and related properties in Ch. 6. Conforming with various other experimental and computational studies [START_REF] Yang | Glass transition dynamics and surface layer mobility in unentangled polystyrene films[END_REF][START_REF] Yoshimoto | Local dynamic mechnical properties in model free-standing polymer thin films[END_REF][START_REF] Keddie | Size-dependent depression of the glass transition temperature in polymer films[END_REF][START_REF] Fukao | Glass transitions and dynamics in thin polymer films: Dielectric relaxation of thin films of polystyrene[END_REF][START_REF] Ellison | Sensing the glass transition in thin and ultrathin polymer films via fluorescence probes and labels[END_REF], we verified the presence of a soft film interface, manifested by the drop in shear modulus at the surface (z ≈ H/2) relative to the center of the film. It was also seen that the width of the soft surface region at the interface grows with T . In the high-T limit, µ(z) was seen to vanish (µ(z) ≈ 0) as expected. The key results emerging from this provides compelling evidence on the linear 1/H-dependency of global film properties, arising from the local z-resolved contributions, and in support of the two-layer model [START_REF] Keddie | Size-dependent depression of the glass transition temperature in polymer films[END_REF].

Calculation of ensemble fluctuations of the response function and the shear modulus: After observing that the fluctuations of G t were of the same order as that of its means (especially around T g ), we tried to explain the origins and various contributions of these fluctuations (Ch. 7). We found that δG t ≈ δh(t) ≈ √ 2h(t) and δµ ≈ δµ F (∆t), as the affine Born-Lamé contribution δµ A ≈ 0. We also saw that a system in its internal basin is characterized by Gaussian fluctuations δµ F,G ≈ δµ F,int . We also saw that the total ensemble fluctuation δµ F,tot and δµ F,G differ in the non-ergodic limit for low-T . It was seen that for large ∆t and low-T , δµ F,tot becomes a constant ∆ ne > 0 and δµ F,G ∼ 1/ √ ∆t.

The theoretical concepts developed in this regard (Ch. 2) should be useful in general and applicable for a broad range of stationary Gaussian stochastic processes in many area of condensed matter physics. This work was part of a collaborative, group-wide study which The TSANET model at ν (frequency of switching) = 0 (circles) [START_REF] George | Ensemble fluctuations matter for variances of macroscopic variables[END_REF], for the 2DpLJ model (squares) at T = 0.20 [START_REF] Procaccia | Breakdown of nonlinear elasticity in amorphous solids at finite temperatures[END_REF], for film1 (diamonds) at T = 0.05, for 3D polymer glass (triangles) at T ≈ 0.10 [77], and for a binary LJ mixture at T = 0.05 (stars) [START_REF] Procaccia | Breakdown of nonlinear elasticity in amorphous solids at finite temperatures[END_REF]. Here, γ is the power law exponent for the ∆ ne parameter.

was recently published [START_REF] George | Ensemble fluctuations matter for variances of macroscopic variables[END_REF]. A followup article [START_REF] George | Fluctuations of non-ergodic stochastic processes[END_REF] focusing on the low-temperature nonergodic limit (as outlined in Sec. 2.6 and Sec. A.5-A.7) has also been published.

Perspectives

Our work on freestanding polymer films does not by any means provide a full picture. There are certainly areas that can be improved and there are different avenues that one can still pursue. A few of these can already be identified:

• Simulations with N ≫ N e are necessary for multiple reasons. The dynamic processes discussed here are expected to behave closer to experimental results reported in Ref. [START_REF] Paul | Creep behavior of ultra-thin polymer films[END_REF] for a larger N , allowing for more comparisons. The entanglement assisted slowdown in relaxation will also confirm for us the presence of a rubbery plateau for the creep compliance J t .

• In this thesis, we imposed the lateral box width L in an equilibrium simulation to indirectly measure the creep compliance (transformed from G t calculated using the shear-stress fluctuation formalism). Another approach to do this would be to perform an explicit out-of-equilibrium simulation where one applies a constant infinitesimal strain in the xy plane to measure G t or a constant infinitesimal stress in both x and y plane to measure the biaxial compliance D t as in experiments.

• It would be interesting to explore other polymer architectures. An experimental study by the Drenckhan group (ICS, Strasbourg) showed that a commercially available comb copolymer, DBP732 -made of a long silicon backbone (PDMS) and multiple PEG-PPG branching sites, has the potential to form extremely stable free standing thin films (10 -150nm) without the use of additional stabilizing agents [START_REF] Gaillard | Stable Freestanding Thin Films of Copolymer Melts Far from the Glass Transition[END_REF]. The working hypothesis was that this effect originated due to a stiff interface (contrary to the soft interface formed by linear chains in this thesis). A preliminary attempt was made in this direction during the course of my PhD, based on a coarse-grained bead-spring model with N = 32 and varied branch-backbone interaction parameters, but we were not able to observe the anticipated interface stiffness. Further work is required to address the intricacies of this interesting phenomenon.

• In our simulations, we focused also on the variation of ∆t and T while keeping other parameters such as the total number of particles in the system n = N × M ≈ V fixed.

Most properties discussed in this work µ A , µ F , µ or h(t) are defined as intensive properties, and their mean values should not essentially depend on the system size n or the volume V . This aspect has to be verified for our films. (Perhaps by taking 4 × M and a corresponding increase in L → 2 × L to maintain the film geometry.)

• In addition, a recent study conducted in our group on the standard deviations of the above mentioned properties for other model systems -Transient self assembled networks (TSANET) and 2D-polydispersed LJ beads (2DpLJ) -have emphasized that there is a non-trivial system size dependency for non-ergodic systems [START_REF] George | Ensemble fluctuations matter for variances of macroscopic variables[END_REF][START_REF] George | Fluctuations of non-ergodic stochastic processes[END_REF]. As readily seen from Fig. 8-1, where we compare the system-size dependency for various model systems, there is only a single data point corresponding to our freestanding film system (film1 ). Therefore, it would be interesting to verify/understand how ∆ ne (n) behaves for our films. Our working hypothesis is that it will behave similar to the 3D polymer glass system, shown in Fig. 8-1.

• As a final note, our claim that δG/G or δµ/µ must generally become large (of or-

Introduction

To illustrate some useful properties of the non-linear functional δv G [f ] we discuss now several test functions f (t). Not all presented f belong to the space of legitimate ACFs c or h of stationary stochastic processes. We remind [START_REF] Hansen | Theory of simple liquids[END_REF][START_REF] Götze | Complex Dynamics of Glass-Forming Liquids: A Mode-Coupling Theory[END_REF] that a legitimate ACF may not change too strongly (especially not discontinuously) and must not violate the Wiener-Khinchin theorem on the power spectrum of the signal stating that the Fourier transform (FT) of c(t) is given by the squared FT of x(t). A general (necessary and sufficient) criterion for a function f (t) to be a legitimate ACF 38 is thus [START_REF] Hansen | Theory of simple liquids[END_REF][START_REF] Götze | Complex Dynamics of Glass-Forming Liquids: A Mode-Coupling Theory[END_REF] 

f (ω) ≡ ∞ 0 f (t) cos(ωt)dt ≥ 0 for any real ω. (A.13) This ensures that f (0) ≥ |f (t)| ≥ 0 and f (ω = 0) = ∞ 0 dtf (t) ≥ 0.
Taking advantage of the affine transform Eq. 2.41 we often set without loss of generality f (0) = 1 and f (t) → 0 for t → ∞. If there is only one characteristic time it is also set to unity. 

Maxwell model

One of the few cases where δv G [f ] can be calculated analytically is the Maxwell model (Debye decay) f (t) = exp(-t). This model is especially of relevance for the self-assembled network systems (TSANET) [START_REF] Wittmer | Shear-stress fluctuations in self-assembled transient elastic networks[END_REF] investigated in Refs. [START_REF] George | Ensemble fluctuations matter for variances of macroscopic variables[END_REF][START_REF] George | Fluctuations of non-ergodic stochastic processes[END_REF]. Since f (ω) = 1/(1+ω 2 ) > 0 for all ω, f (t) is a legitimate ACF as expected. Note first that v(∆t) = 1 -g Debye (∆t) with 

Generalized Maxwell model

We now discuss an example for systems with two relaxation processes similar to Fig. 2 (δv G [f cusp ] can be readily calculated analytically and this exact formula is used in Fig. A-2.)

The cusp singularity is not a legitimate ACF since f = sin(ω)/ω, i.e. Eq. A.13 does not hold. As may be seen from the main panel, all δv G [f β ] have a maximum between ∆t ≈ 4 (large β) and ∆t ≈ 10 (small β). As expected from f β (t) → f cusp (t) for β → ∞, it is seen that δv G (β) becomes increasingly similar to the standard deviation of the cusp model (bold solid line), i.e. the peaks become systematically higher, sharper and more lopsided with increasing β. The power-law slopes β (thin solid lines) observed for ∆t ≪ 1 are expected from Eq. A.10. All models decrease as δv G ≈ a/∆t for large ∆t in agreement with Eq. A.11. The amplitude a of this ultimate decay is the largest for the cusp model (a = 4) and the smallest for the Maxwell model (a = 2). The inset of Fig. A-2 shows the ratio δv G /v| max taken at the maximum of δv G (∆t) for a broad range of the exponent β. This shows a monotonic increase with β approaching from below the ratio ≈ 1.21 of the cusp model (bold horizontal line). The ratio is ≈ 0.55 for the Maxwell model and ≈ 0.82 for the Gaussian (vertical arrow). Importantly, the standard deviations thus become of the same order as the average behavior for the most rapidly decaying legitimate ACFs with β ≤ 2.

Logarithmic creep

Logarithmically slow varying ACFs are expected for hopping processes in systems with a broad distribution of barriers and are generally observed in glass-forming fluids [START_REF] Ferry | Viscoelastic properties of polymers[END_REF][START_REF] Hansen | Theory of simple liquids[END_REF][START_REF] Götze | Complex Dynamics of Glass-Forming Liquids: A Mode-Coupling Theory[END_REF]. The general scaling relation Eq. A.9 suggests 

δv G [f ] ≈ 1.55|b| if f (t) ≈ a -b ln(t) (A.
E c O[x c ] ≈ E k O[x k ] and V c O[x c ] ≈ V k O[x k ] (A.20)
holds for sufficiently large N c and N k . Let us focus now on strictly non-ergodic systems.

We characterize a time series x ck by two discrete indices with 1 ≤ c ≤ N c and 1 ≤ k ≤ N k .

As shown in Fig. A-4, the index c stands for the configurations generated by completely independent preparation histories for the system probed, the index k for subsets of length N t of a much larger trajectory generated for a fixed configuration c. Crucially, which is used throughout the thesis. 39 Since for a plain shear strain at constant volume the ideal free energy contribution does not change, i.e. is irrelevant for µ, we may focus on the excess free energy contribution F ex (T, γ) = -k B T ln(Z ex (γ)) due to the conservative interaction energy of the particles. The (excess) partition function Z ex (0) of the unperturbed system at γ = 0 is the Boltzmann-weighted sum over all states s of the system which are accessible within the measurement time t. The partition function Z ex (γ) = s exp(-β Ĥ(γ)) of the sheared system is supposed to be the sum over the same states s, but with a different metric corresponding to the macroscopic strain which changes the total interaction energy Ĥ(γ) of state s and, hence, the weight of the sheared configuration for the averages computed. This is the central hypothesis made. Interestingly, it is not necessary to specify explicitly the states of the unperturbed or perturbed system, e.g., it is irrelevant whether the particles are distinguishable or not or whether they have a well-defined reference position for defining a displacement field. We note that for the derivatives of the excess partition function where a prime denotes the derivative of a function f (x) with respect to its argument x. Using Eq. B.10 and taking the limit γ → 0 one verifies that the average shear stress is indeed τ = τ with τ as defined in Eq. B.2.

O c (∆t, N k ) ≡ E k O[x ck ] and (A.21) δO 2 c (∆t, N k ) ≡ V k O[x ck ] (A.
∂ ln(Z ex (γ)) ∂γ = Z ′ ex (γ) Z ex (γ) (B.8) ∂ 2 ln(Z ex (γ)) ∂γ 2 = Z ′′ ex (γ) Z ex (γ) - Z ′ ex (γ) Z ex (γ)
Note that the average taken is defined as . . . = 1 Z ex (0) s . . . e -β Ĥ(0) (B.12) using the weights of the unperturbed system. The shear stress thus measures the average change of the total interaction energy Ĥ(γ) taken at γ = 0. The shear modulus µ is obtained using in addition Eq. B.9 and Eq. B.11 and taking finally the γ → 0 limit. This thus yields the stress fluctuation formula Eq. B.7 with µ A being the excess contribution to the affine shear modulus defined in Eq. B.5.

B.3 Discussion

We emphasize that the affine shear modulus µ A corresponds to the change (second derivative) of the total energy which would be obtained if one actually strains affinely in a computer simulation a given state s without allowing the particles to relax their position. As shown for athermal (T → 0) amorphous bodies [START_REF] Wittmer | Vibrations of amorphous, nanometric structures: When does continuum theory apply?[END_REF][START_REF] Tanguy | Continuum limit of amorphous elastic bodies: A finite-size study of low frequency harmonic vibrations[END_REF][START_REF] Barrat | Microscopic elasticity of complex systems[END_REF], the positions of the particles of such a strained configuration will in general change slightly to minimize the interaction energy relaxing thus the elastic moduli. This is also of relevance for thermalized solids where the non-affine displacements of the particles are driven by the minimization of the free energy. It is for this reason that the shear-stress fluctuation term µ F ≥ 0 must occur in Eq. B.7 correcting the overprediction. This point has been overlooked in the early literature [START_REF] Born | Dynamical Theory of Crystal Lattices[END_REF] and only appreciated much later [START_REF] Lutsko | Stress and elastic constants in anisotropic solids: Molecular dynamics techniques[END_REF][START_REF] Wittmer | Vibrations of amorphous, nanometric structures: When does continuum theory apply?[END_REF][START_REF] Tanguy | Continuum limit of amorphous elastic bodies: A finite-size study of low frequency harmonic vibrations[END_REF][START_REF] Squire | Isothermal elastic constants for argon. theory and Monte Carlo calculations[END_REF][START_REF] Lutsko | Generalized expressions for the calculation of elastic constants by computer simulation[END_REF] as discussed in Barrat's review [START_REF] Barrat | Microscopic elasticity of complex systems[END_REF]. Interestingly, as has been shown by Lutsko [START_REF] Lutsko | Generalized expressions for the calculation of elastic constants by computer simulation[END_REF], µ F and other similarly defined stress fluctuations become temperature independent and may remain finite in the harmonic ground state for T → 0. Probing the stress fluctuations in a low-temperature simulation allows thus to determine the elastic moduli of athermal solids. 

D.2 Technical notes on FFT and SMD

The computationally straightforward method to obtain G ′ (ω) and G ′′ (ω) is to Fourier transform G t using either a simple Discrete Fourier Transform, Filon's method (being particularly important for high ω) [START_REF] Wittmer | Shear-stress relaxation and ensemble transformation of shear-stress autocorrelation functions[END_REF][START_REF] William H Press | Numerical Recipes: The Art of Scientific Computing Second Edition[END_REF] or a Fast Fourier Transform for large G t -data sets [START_REF] Cooley | An algorithm for the machine calculation of complex Fourier series[END_REF]. We made use of the Python's SciPy library function scipy.fftpack.fft() which is based on the Cooley-Tukey algorithm [START_REF] Allen | Computer Simulation of Liquids[END_REF][START_REF] Cooley | An algorithm for the machine calculation of complex Fourier series[END_REF][START_REF] William H Press | Numerical Recipes: The Art of Scientific Computing Second Edition[END_REF]. The Cooley-Tukey algorithm works by exploiting the symmetries of the Discrete Fourier Transform. The obtained complex components, with an exception to low-T cases, can be back-transformed to the original time series by using either the CONTIN package [START_REF] Provencher | CONTIN: A general purpose constrained regularization program for inverting noisy linear algebraic and integral equations[END_REF] or the Python's SciPy library function scipy.fftpack.ifft() performing the inverse Laplace transform. The SMD method extracts information from a uniformly sampled time series of G t by fitting multiple exponentially decaying modes to the data set, Eq. 2.25. To avoid spurious oscillations at low frequencies one should not use too many modes p. Compared to the (completely unbiased) FFT method the SMD method has the advantage that by choosing the distribution of modes, e.g. by insisting on τ p as given by Eq. C.5 for the discrete Rouse model (Appendix C.2), or by logarithmically distributing the relaxation times [START_REF] Ferry | Viscoelastic properties of polymers[END_REF], one effectively filters the data. In our case this allows to smooth the data especially in the low-ω limit where the statistical noise becomes large. 2π/τ mon is emphasized by a solid line. Interestingly, deviations are already visible about a decade below the characteristic monomer frequency 2π/τ mon . Note that in the highfrequency limit the storage modulus G ′ (ω) must level off, G ′ (ω) → µ A ≈ 1, to the "highfrequency elastic modulus" µ A , Eq. C.3, the loss modulus G ′′ (ω) is expected to strongly decay as G ′′ (ω) ∝ 1/ω [START_REF] Wittmer | Fluctuation-dissipation relation between shear stress relaxation modulus and shear stress autocorrelation function revisited[END_REF]. These predictions are compared with the numerical results obtained by means of the FFT method and the SMD method. Both methods use G t -data computed according to Eq. 2.25 (and parameters in Appendix C.4) with a time increment δt = 0.5 and a total sampling time ∆t = 10 5 . The numerical data obtained from the SMD method (filled circles) are excellent in all frequency regimes. At variance to this the FFT method is limited to a more restricted intermediate frequency range. Naturally, only data above 2π/∆t can be obtained with this method and the Nyquist critical frequency ω c = π/δt ≈ 6.2 [START_REF] William H Press | Numerical Recipes: The Art of Scientific Computing Second Edition[END_REF] sets an upper frequency limit. Note that G ′ (ω) deviates for ω ≈ ω c due to the well-known "aliasing" of the power spectrum outside of the frequency range -ω c ≪ ω ≪ ω c [START_REF] Provencher | CONTIN: A general purpose constrained regularization program for inverting noisy linear algebraic and integral equations[END_REF]. Moreover, it is seen that the FFT method shows marked deviations for G ′′ (ω) already around 2π/τ mon from the expected 1/ω-decay. In summary, it is an advantage of the SMD method that it allows the extrapolation to much lower and higher frequencies. The backward transformation G 1 t obtained from J t and 1/J t are also shown for comparison. Note that G 1 t ≈ G t . The asymptotic large-t limit J t → t/η is indicated by the thin solids line with η = 988. of this method is that the calculated values of J t do not correspond to a specific time, but are mean values within a chosen time interval. For this reason, this method is sensitive to fluctuations in the data corresponding to those times. On the bright side, these fluctuations does not grow in the subsequent stages of the recursion procedure [START_REF] Hopkins | On Creep and Relaxation[END_REF].

D.3 Comparison of FFT and SMD for the Rouse model

D.5 Creep compliance for Rouse model

Traditionally a creep test is carried out by applying a constant infinitesimally small stress at t ≥ 0 and observing then the strain response. With the advent of precision motors and actuators, it is experimentally convenient to measure the creep compliance J t [START_REF] O'connell | Rheological measurements of the thermoviscoelastic response of ultrathin polymer films[END_REF][START_REF] Alcoutlabi | Effects of confinement on material behaviour at the nanometre size scale[END_REF][START_REF] Paul | Creep behavior of ultra-thin polymer films[END_REF].

Without the need to perform additional simulations, we transform G t into J t using the HH method described above. One important feature of HH is its backwards compatibility, i.e. it is possible to convert a transformed J t back into G t . We use again as input signal the relaxation function G t of the Rouse model described in Appendix C with parameters given in Sec. C.4 and using an equidistant data set with δt = 0.5 and ∆t = 10 5 . The results are shown in Fig. D-2. This confirms the successful transformation of G t to J t and back from J t to G 1 t ≈ G t . The backward transformation of J t to G 1 t is delicate 123 for times t below δt (corresponding to the above-mentioned Nyquist frequency ω c ) due to the interpolator function of η(t) used in the definition. In this limit the function tries to (linearly) interpolate η(t) between η(t = 0) = 0 and the next point from the transformed data. This roughly interpolated data point is then used in the back transformation which propagates the error if multiple forward and backward transformations are performed. This error can be avoided if the provided input data has an appropriate η(t = 0) condition defined. (This is the case for our freestanding films.) On the other hand, this small-t error does not propagate further into the recursion. This can be verified by looking at the large-t asymptote J t → t/η [1] using the known viscosity η = 988.
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 01 Figure 0-1: (a) Le protocole pour nos simulations implique un film mince de polymère auto-porté composé de M = 768 chaines avec chaque chaine de longueur N = 16, elles sont placées dans une boite de simulation tridimensionnel périodique dont la dimension latéral est fixé à L. L'épaisseur du film H est définie selon l'axe z en utilisant la méthode du "Gibbs dividing surface construction". (b) La température de transition vitreuse T g peut être obtenue par dilatométrie, une méthode où un échantillon est refroidi à vitesse constante et où on mesure continuellement sa densité, cherchant à observer une rupture de pente associée à une transition. La dépendance linéaire de T g en fonction de 1/H pour nos films est présentée dans le médaillon.
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 02 Figure 0-2: Les effets du temps d échantillonnage pour µ et leurs contributions en se focalisant sur le film1 et T = 0.30. La moyenne simple µ A est strictement indépendante de ∆t. µ F est observé comme croissant de manière monotonique avec ∆t, ce qui résulte dans une dépendance décroissante de µ en fonction de ∆t, comme découlant de la formule de fluctuation du stresse. Les lignes pleines ont été obtenues en utilisant la relation stationnaire vu dans le texte principale.
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 03 Figure 0-3: (a) Module de relaxation du stresse G t en utilisant une représentation semilogarithmique. Aucune indication d'un saut singulier respectivement à la température n'a été observé. G(t) croît continuellement en fonction de la décroissance de T . Pour certaines températures au dessus de T g le module de relaxation est approximativement représenté par G(t) = a -b log(t) comme indiqué pour T = 0.45 (la ligne pleine). (b) Méthode TTS pour y = µ(∆t)/µ p en fonction de x = ∆t/τ α (T ) avec µ p le plateau du module et τ α (T ) le temps de relaxation indiqué dans le médaillon. Nous imposons τ α (T = 0.55) pour obtenir l'échelle de temps absolue. Les deux asymptotes de la fonction y = f (x) pour x ≪ 1 et x ≫ 1 sont indiquées par les lignes hachurées et pleines. Nous avons une superposition des temps de relaxation terminaux τ α vs x = T g /T pour tous nos températures.
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 0405406 Figure 0-4: Viscosité de cisaillement η pour le film1 pour différentes températures T : (a) Comparaison de η obtenu par les méthodes de la relation de Einstein-Helfand (EH), la renormalisation TTS, la relation de Green-Kubo (GK) et pour la limite des faibles valeurs de -ω pour G ′′ (ω). Le données sont exprimées en fonction de vs, l inverse de la température en utilisant une représentation semi-logarithmique. La ligne pleine indique un fit de type Vogel-Fulcher-Tammann. (b) G ′ (ω) et G ′′ (ω) obtenus en utilisant une transformation numérique de G t -pour T = 0.55 et pour le film1, quand η ≈ 141, J 0 e ≈ 18.5 et τ α,1 ≈ 2604. La fréquence de croisement ω × (λ) = 1/τ × (λ) pour les ratios λ = 1, λ = 2, et λ = 3 sont indiqués par les lignes pointillées verticales. Noté que ω × (λ = 3) correspond précisément à la fréquence de croisement 1/τ α,1 des deux asymptotes pour les valeurs faibles de -ω pour G ′ (ω) et G ′′ (ω).

  et réagir de manières différentes à nos polymères linéaires. Des simulations hors-équilibres peuvent être réalisées où un cisaillement infinitésimale est appliqué dans le plan xy pour mesurer G t ou quand un stresse constant et infinitésimale est appliqué selon x et y pour mesurer la réponse bi-axial D t comme dans les protocoles expérimentaux. Dans nos simulations, nous nous sommes focalisés aussi sur les variations de ∆t and T tout en gardant les autres paramètres comme le nombre de particules dans notre système n = N × M ≈ V constants. La plupart des propriétés discutées dans ce manuscrit µ A , µ F , µ or h(t) sont définies comme des propriétés intensives, et leurs valeurs moyennes ne doivent pas essentiellement dépendre de la taille du système modélisé n ou de son volume V . Cet aspect doit être vérifié pour nos couches minces. De plus, des études récentes conduits dans notre groupe de recherche sur les déviations standards des propriétés précédemment mentionnées ont montré une dépendance non triviale à la taille du système pour les systèmes non-ergodiques [69, 70, 77], et ceci doit être vérifié. xvi Chapter 1
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 11 Figure 1-1:We study free-standing polymer films with M = 768 oligomer chains of length N = 16 monomers confined in periodic boxes with L being the imposed lateral box size in both x and y directions. The film thickness H ∼ 1/L 2 (to leading order) is operationally defined using the Gibbs dividing surface[START_REF] Allen | Computer Simulation of Liquids[END_REF] as shown in Sec. 4.2.
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 13 Figure1-3: The central theme of this thesis revolves around freestanding thin polymer films in the glassy and liquid limits. We perform numerical simulations to compare our results qualitatively and quantitatively with the literature and study anomalous effects that have been reported around T g .

5 ) with α = 1 , 2 , 3 , 4 and β = 1 , 2 .

 512312 The empirical variance of the time series x is then given byv[x] = m 21 [x] -m 12 [x]. Obviously, v[x] = 0 for I = 1.Functionals with a discrete time lag s (with s = 0, . . . , I -1) can be considered such as the "gliding average"[START_REF] Allen | Computer Simulation of Liquids[END_REF] 

  [START_REF] Yang | Glass transition dynamics and surface layer mobility in unentangled polystyrene films[END_REF] using the (first) crossing of λR ′ (ω) and R ′′ (ω). Due to the generic flattening of both R ′ (ω) and R ′′ (ω) for frequencies around the terminal relaxation time, it is normally best to chose a value slightly above unity, e.g., λ = 2, to obtain one characterization of the terminal relaxation time.7 This is illustrated in Appendix C for the Rouse model. We compare τ α,1 = m 1 /m 0 and τ × in Ch. 5 for our numerical film data and in Appendix C for the Rouse model.

  2.7.) The mean m 11 [x] is thus a Gaussian variable and Eq. 2.29 holds for y = m 11[x]. Assuming that y = m 11 = 0 by symmetry or by shifting of the data and using that m α1 [x] β = m αβ [x] this implies[START_REF] Klochko | Relaxation dynamics in supercooled oligomer liquids: From shear-stress fluctuations to shear modulus and structural correlations[END_REF] 

3 .

 3 That this holds can be verified by straightforward expansion of Eq. 2.40. Note that the squared terms c 2 i-j + . . . with two different indices contribute to T 2 , the terms c i-j c k-l + . . . with four different indices to T 4 and the terms c i-j c i-l + . . . with three different indices to T 3 . (Numerically convenient reformulations of T 2 , T 3 , and T 4 are given in Appendix A.1.) With a and b being real constants it follows directly from Eq. 2.40 that

(

  strictly) non-ergodic systems it is necessary to introduce an extended ensemble of time series x ck where for each of the N c independent configurations c one samples N k time series k. Obviously, the time series k of the same configuration c are correlated (being all confined into the same basin) and k-averaged expectation values and variances may then depend on the configuration c. It thus becomes relevant in which order c-averages over configurations c and k-averages over time series k of a given configuration c are performed. Three variances of v[x ck ] must be distinguished. The total variance δv 2 tot = δv 2 int + δv 2 ext (2.45)

  using the more common notations in the literature[1, 3, 6, 63, 65-67, 77, 101, 105]. The entries x i of the time series thus correspond to √ βV τ with β = 1/T being the inverse temperature (setting Boltzmann's constant k B to unity), V the volume of the system and τ to the instantaneous shear stress measured at a time iδt. The relevant Born-Lamé coefficient R A is now called µ A and its instantaneous value μA . The definitions of τ and μA are detailed in Appendix B.1. The ensemble-averaged time-averaged variance v(∆t) becomes the shearstress fluctuation, the overbar denoting the t-average over time series:
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 31 Figure3-1: Intra-chain monomers that are not connected by permanent bonds interact via the 12-6 LJ potential but with a weight specified in LAMMPS[START_REF] Plimpton | Fast Parallel Algorithms for Short-Range Molecular Dynamics[END_REF]. By doing so, the interaction to the nearest bead in the same chain is turned off (as it is handled by Eq.3.3) 

  Figure 3-2: Our films consists of M = 768 coarse-grained polymer chains of length N = 16. The visualization on the left is obtained using VMD [123] for film4 with L = 49 (Sec. 3.4). The illustration on the right shows the essence of coarse-graining for a single chain where chemical details are deemed irrelevant.
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 33 Figure 3-3: Quench protocol as described in the text. The lateral and perpendicular box dimensions L and L z are imposed. While the total box volume L 2 L z and the film surface A = L 2 for each film are thus kept constant, the actual film volume V = L 2 H is an observable depending on the temperature T and the quench protocol.
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 42 we characterize the film thickness H and identify the pseudo-thermodynamic glass transition temperature T g . In Sec. 4.3 and Sec. 4.4, we discuss the (generalized) shear modulus µ as a function of temperature T and sampling time ∆t. In Sec. 4.5, we use the Einstein relation to obtain the shear viscosity ηfor T ≫ T g , which is then used to obtain a relative scale for the terminal relaxation time τ α . The TTS scaling of µ is presented in Sec. 4.6. In Sec. 4.7, we present the response function G t and use the same shift parameters as for µ to obtain a TTS scaling. The total monomer mean-square displacements (MSD) will be discussed in Sec. 4.8. A summary is given in Sec. 4.9.
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 41 Figure 4-1: Film thickness and glass transition temperature. Top inset: Number density profile ρ(z) for T = 0.50 with z = 0 corresponding to the center of mass of each film. The midplane density ρ 0 ≈ 1 is indicated by the dashed horizontal line. Main panel: H as a function of temperature T for film1. The glass transition temperature T g and the film thickness H g at the transition (bold dashed lines) are operationally defined by the intercept of the linear extrapolations of the glass (dashed line) and liquid (solid line) limits. Left inset: T g as a function of 1/H g confirming the linear superposition, Eq. 1.3.
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 42 Figure 4-2: Comparison of the different contributions to the shear modulus µ = µ A -µ F = (µ A -µ 0 ) + µ 1 as functions of T focusing on data obtained for film1 and ∆t = 10 4 . Inset: Double-logarithmic representation of µ 0 /µ A -1 vs T .
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 443 Figure 4-3: Affine shear modulus µ A . Main panel: µ A (T ) for all systems studied. Inset: As shown for T = 0.50, µ A decreases linearly with 1/H in the liquid limit.
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 4444445 Figure 4-4: Shear-stress fluctuation µ F for ∆t = 10 4 . Main panel: µ F (T ) for all systems.Right inset: µ F decreases linearly with 1/H in the liquid limit (T = 0.50). Left inset: µ F increases linearly with 1/H in the solid limit (T = 0.10).
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 46 Figure 4-6: Sampling time effects for µ and its contributions focusing on film1 and T = 0.30.Only the simple averages µ A and µ 0 are strictly ∆t-independent. µ 1 and (hence) µ decrease monotonically. The solid and dashes lines have been obtained using Eq. 1.2.

Figure 4 - 7 :

 47 Figure 4-7: Double-logarithmic representation of µ(∆t) for a broad range of temperatures T focusing on film1. µ(∆t; T ) decreases continuously with both ∆t and T . A pseudo-elastic plateau is observed in the solid limit with µ ≈ µ p ≈ 15.5 (horizontal dashed line). The 1/∆t-decay in the liquid limit (bold solid line) is expected from the Einstein-Helfand (EH) relation, Eq. 4.5. Inset: Shear viscosity η(1/H) for T = 0.55. The values are used in Sec. 4.6 to define a relative scale for τ α (T ). The line presents a linear fit according to Eq. 1.3.
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 4548 Figure 4-8: TTS scaling for y = µ(∆t)/µ p as a function of x = ∆t/τ α (T ) with µ p being the plateau modulus defined in Sec. 4.5 and τ α (T ) the relaxation time indicated in the inset.We impose τ α (T = 0.55) according to Eq. 4.6 to have an arbitrary time scale. The two asymptotics of the scaling function y = f (x) for x ≪ 1 and x ≫ 1 are indicated by dashed and solid lines. Note the broad crossover regime between these limits. Inset: Data collapse of terminal relaxation time τ α vs x = T g /T for all our ensembles. Arrhenius behavior (bold solid line) is observed around the glass transition (x ≈ 1).

  fitting the relative dimensionless factors a T and b T for the horizontal and vertical rescaling of µ(∆t, T ) for temperatures T close to certain reference temperatures T 0 . As one may expect[START_REF] Ferry | Viscoelastic properties of polymers[END_REF], b T can safely be set to unity for the entire temperature range we are interested in. In turn this justifies the temperature independent factor µ p used to rescale the vertical axis. Naturally, merely tuning a T = τ α (T )/τ α (T 0 ) only sets the relative scale of τ α (T ). In order to fix the missing prefactor we impose, τ α (T ) = c η(T )/µ p (H) with c = 1 for T = T 0 = 0.55 (4.6) using the shear viscosity η determined in the high-T limit by means of Eq. 4.5. Due to the somewhat arbitrary constant c/µ p the strongest curvature of the rescaled shear modulus y(x) coincides with x ≈ 1. (Using instead c ≈ 100 the crossover to the EH decay would occur at about x ≈ 1.) Consistency of µ(∆t) = µ p f (x) ≈ µ p τ α /∆t for x ≫ 1 and the EH relation, Eq. 4.5, implies interestingly that Eq. 4.6 must hold for all temperatures. In other words, the relaxation time τ α (T ), shown in the inset of Fig. 4-8, and the shear viscosity η(T ) are equivalent up to a trivial prefactor. We emphasize that the stated proportionality hinges on the observation that b T ≈ 1. As shown in the inset, a remarkable scaling collapse is achieved by plotting τ α or η as a function of x = T g /T . Especially, this implies that

Figure 4 - 10 :dt G t = η and m 1 ≡ ∞ 0 dt t G t = J 0 e η 2 =

 41002 Figure4-10: Successful TTS scaling plot of y = G t /µ p as a function of reduced time x = t/τ α using the same relaxation times as in Fig.4-8. The two indicated power laws (bold and dash-dotted lines) are given for comparison. Unfortunately, our production runs are too short to reveal the expected final exponential cut-off even for the highest temperatures.
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 411 Figure 4-11: Monomer mean-square displacement (MSD) g x (t) along the x-axis for film1 for various temperatures (dashed lines). g x (t)/2t (solid line) is seen to converge to a diffusion constant D ≈ 0.0004 for the highest temperature T = 0.55. Inset: Comparison of the diffusion coefficients D for T = 0.55 for our four films demonstrating D ∝ 1/H (solid line).

Figure 5 - 1 :

 51 Figure 5-1: Shear viscosity η for film1 for different temperatures T : (a) Comparison of η obtained by means of the EH relation, the TTS scaling, the GK relation and the low-ω limit of G ′′ (ω). The data is plotted vs the inverse temperature using a half-logarithmic representation. The line indicates a Vogel-Fulcher-Tammann fit according to Eq. 5.2. (b)Dynamic shear viscosity η(t) calculated using Eq. 5.1 for film1 (T g = 0.37). We compare the results obtained for two sampling runs, t = 10 6 (open symbols) and t = 10 7 (filled symbols). A reasonable estimate of η (dashed lines) can only be obtained for large T .
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 52 Figure 5-2: Scaling of η focusing on data obtained from the TTS of µ(∆t) for all films and the bulk system: (a) Vogel-Fulcher-Tammann (VFT) fits (continuous lines) for η as a function of T . (b) Scaling of η as a function of x = T g /T .

  -2 the scaling of η focusing on the data obtained using the TTS scaling. Using half-logarithmic coordinates panel (a) presents η as a function of the (unscaled) temperature T and panel (b) as a function of the reduced inverse temperature x = T g /T . The thin solid lines in panel (a) and panel (b) demonstrate that our film data are consistent with the Vogel-Fulcher-Tammann (VFT) law[START_REF] Ferry | Viscoelastic properties of polymers[END_REF] 
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 53 Figure 5-3: G ′ (ω) and G ′′ (ω) obtained using the FFT and SMD methods from the G tdata for two high temperatures for film1 : (a) T = 0.55 where η ≈ 141, J 0 e ≈ 18.5 and τ α,1 ≈ 2604 and (b) T = 0.45 where η ≈ 986, J 0 e ≈ 4 and τ α,1 ≈ 3944.The crossing frequencies ω × (λ) = 1/τ × (λ) for the ratios λ = 1, λ = 2, and λ = 3 are indicated by dashed vertical lines. Note that ω × (λ = 3) corresponds nicely to the crossing frequency 1/τ α,1 of the two low-ω asymptotes for G ′ (ω) and G ′′ (ω) for all temperatures T ≫ T g .

  G ′ (ω) and G ′′ (ω) are shown in Fig. 5-3 for film1 T = 0.55 and T = 0.45. As discussed in Appendix D.3, FFT data is only available in a frequency window between 2π/∆t (marked by the left vertical dotted lines) and the Nyquist critical frequency ω c = π/δt (marked by the vertical dotted lines on the right-hand sides of both panels) while the SMD method allows (with some care) the extrapolation to a broader frequency regime. In agreement with Appendix C
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 55 Figure5-5: J(t) calculated using the HH (dots) and SMD (lines) methods for various temperatures. For high-T , it is also seen that the system reaches flow and η = 130 for T = 0.55 is observed in the long time limit. As seen from the open triangles the same steady-state creep compliance J 0 e ≈ 4 for T = 0.45 is obtained as in Sec. 5.3.
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 56 Figure 5-6: The creep compliance J t sampled at different times (a) t = 5 × 10 4 and (b) t = 10 4 (c) Thickness dependence of J t also given for two different t as indicated in the figure. (d) Scaling plot for all films obtained by setting the horizontal axis x = T /T g .
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 61 Figure 6-1: (a) Density profile ρ(z) for film1 at T = 0.50. The film thickness H ≡ N M/ρ 0 L 2 may be obtained from the midplane density ρ 0 (horizontal dashed line). Similar values are obtained by fitting the mean-field prediction given by the solid line [124]. (b) Interface width W (T ) for different L.
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 62 Figure6-2: Midplane density ρ 0 (T ) for all our films. While ρ 0 does not depend on H in the liquid limit, it decreases with increasing H in the glassy limit. This allows to determine the glass transition temperature T g and the midplane density ρ 0g ∼ 1/H g at the glass transition. Inset: Scaling of ρ 0 /ρ 0g vs T /T g using ρ 0g and T g as indicated in Table3.1.
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 3763 Figure 6-3: (a) In-plane energy profiles e(z) for film1 (lines) and film2 (symbols) for two selected temperatures T = 0.55 and T = 0.20. The midplane energy e 0 is seen to be Hindependent for T ≫ T g . (b) Midplane energy density e 0 and global energy density e vs T for our films as indicated. Inset: e brought to scale by setting x = T /T g and y = e/e g .
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 66  In the main panel W t (T ) is presented for various L while the inset illustrates the determination of W t for film1 and T = 0.55. σ max ≈ 1 and σ t0 ≈ 0 in this case.
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 69 Figure 6-9: Distribution µ(z) ≡ µ A z -µ F z of the shear modulus for film1 and two temperatures. While µ(z) vanishes in the liquid limit (open circles), it becomes finite below T g with a plateau in the bulk phase in the middle of the films (dashed horizontal line) sandwiched by the softer surface layers marked by the arrows.

Figure 6 -

 6  The shear modulus µ(z) (dots), the affine term µ A z (lines) and the fluctuation term µ F z (circles) computed for film1 according the z-linear stress-fluctuation formula is presented for selected temperatures. Presented results are smoothed over a window = 5. The reduction in shear modulus µ(z) near the surface implies the existence of a soft interface, which has been proposed in the literature. From our layer analysis, we confirm this effect for film1 using the stress fluctuation formalism for the first time.
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 71 Figure 7-1: Shear modulus µ, shear relaxation modulus G and the corresponding standard deviations δµ and δG taken at t = ∆t = ∆t max = 10 5 as functions of T . The observed two inequalities G ≤ µ and δG ≫ δµ are both consequences of the stationarity relation Eq. 1.2. The corresponding error bars δµ/ √ N c -1 and δG/ √ N c -1 are not shown.
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 772 Fig.7-1 we compare µ and G and their respective standard deviations δµ and δG, Eq. A.24, taken at the same constant time t = ∆t = ∆t max = 10 5 and plotted as a function of the temperature T . While we still average over the N c independent configurations, we do not use any gliding averaging or logarithmic binning. As we saw in Fig.1-2, µ(T ) decreases both continuously and smoothly with T . Albeit G(T ) decreases also continuously, it reveals an erratic behavior for temperatures slightly below T g (vertical dashed line). The inequality G(T ) ≤ µ(T ) for all temperatures is expected from Eq. 1.2. More importantly, being the second integral over G t , the shear modulus µ automatically filters off the high-frequency noise. This explains the observed strong inequality δµ ≪ δG of the standard deviations. At variance to µ and G, a striking non-monotonic behavior 36 is observed for δµ and δG with
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 273 Figure 7-3: Temperature dependence of δµ F for free-standing films with open symbols indicating δµ F,G and filled symbols δµ F,tot . While δµ F,G ≈ δµ F,tot for small ∆t and all T , both differ below T g and the more the larger ∆t. The bold dashed line marks the limit ∆ ne ≈ 1 for large sampling times ∆t and low temperatures T . µ A , µ F , h and δh/ √ 2 as a function of temperature focusing on film1 (L = 23.5) and on ∆t = t = 10 4 .As can be seen the data for µ F , h and δh/ √ 2 collapse on one mastercurve with strong maximum slightly below T g . That µ F ≈ h is a consequence of the stationarity of the stochastic process, as summarized by Eq. 1.2 or Eq. 2.2, and the large time t = ∆t considered. That h ≈ δh/ √ 2 is a consequence of its Gaussianity. This latter point may be better seen from the usual non-Gaussianity parameter α 2 ≡ δh 2 /h 2 -1 presented in the inset. Apparently, the deviations from the assumed Gaussianity are always negligible.
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 74 Figure 7-4: ∆t-dependence of δµ F,G [G] (open symbols) for all indicated T and of δµ F,tot (filled symbols) for T = 0.55, 0.4, 0.2 and 0.05. The 1/ √ ∆t-decay for small ∆t is shown by the bold solid line, the plateau value ∆ ne ≈ 1 of δµ F,tot for small T and ∆t ≫ τ ne ≈ 800 by the bold dashed line and δµ F,G ≈ 1.55|b| (b = 1.4 for T = 0.4 and b = 0.11 for T = 0.05) expected for logarithmic creep by thin horizontal lines.
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 218375 Figure 7-5: ∆t-dependence for µ F , δµ F,tot , δµ F,int and δµ F,G for film1 and the low temperature T = 0.05. The bold solid line indicates the expected 1/ √ ∆t-decay δµ F,int ≈ δµ F,G , the dashed solid line the non-ergodicity parameter ∆ ne ≈ 1.1 and the vertical arrow the corresponding crossover time τ ne ≈ 800. The thin horizontal line marks the shoulder expected to matter for δµ F,int ≈ δµ F,G for much larger ∆t due the logarithmic creep of G t .

  we compute δµ F,int by first computing the variance of µ F [x ck ] over N k time series of length ∆t of a given configuration c and by taking in a second step the ensemble average over the N c configurations. As explained at the end of Sec. 3.6 N k and ∆t are related by N k = ∆t max /∆t, i.e. the precision of δµ F,int (∆t) decreases with ∆t. Only data for N k > 2 are
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 81 Figure 8-1: Logarithmic representation of ∆ ne as a function of the number of particles n ≈ V for various systems.The TSANET model at ν (frequency of switching) = 0 (circles)[START_REF] George | Ensemble fluctuations matter for variances of macroscopic variables[END_REF], for the 2DpLJ model (squares) at T = 0.20[START_REF] Procaccia | Breakdown of nonlinear elasticity in amorphous solids at finite temperatures[END_REF], for film1 (diamonds) at T = 0.05, for 3D polymer glass (triangles) at T ≈ 0.10 [77], and for a binary LJ mixture at T = 0.05 (stars)[START_REF] Procaccia | Breakdown of nonlinear elasticity in amorphous solids at finite temperatures[END_REF]. Here, γ is the power law exponent for the ∆ ne parameter.

g

  Debye (∆t) being the Debye function introduced in Sec. 2.4.6. The three contributions T 2 , T 4 and T 3 to δv 2 G [f ] = T 2 + T 4 -T 3 are: T 2 = 2g Debye (2∆t), T 4 = 2g Debye (∆t) 2 , (A.14) T 3 = 4 ∆t 3 × -e -2∆t + (2∆t + 8)e -∆t + 4∆t -7 Since g Debye (x) ≈ 2/x for large x we have δv G ≈ 2/∆t for large ∆t. The analytical solution for the Maxwell model is indicated by a bold solid line in Fig. A-1. This exact result may be used for testing the numerical determination of δv G [f ] by means of Eqs. A.4, A.5 and A.6.
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Figure A- 2 :

 2 Figure A-2: δv G [f ] vs. ∆t for f (t) = f β (t) ≡ exp(-t β ) with β = 1 corresponding to the one-mode Maxwell model, β = 2 to a Gaussian and β → ∞ to the cusp model f cusp (t) ≡ H(t)-H(t-1). Only exponents β ≤ 2 correspond to legitimate ACFs. Note that δv G ∝ ∆t β for ∆t ≪ 1 (thin solid lines for β = 0.3, 0.5 and 1) and δv G ∝ 1/ √ ∆t for ∆t ≫ 1. Inset: δv G /v| max vs. β. The vertical arrow marks the ratio ≈ 0.82 for β = 2, the horizontal line the ratio ≈ 1.21 for β → ∞.
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 3 Figure A-3: δv G [f ] vs. ∆t for logarithmic creep. The circles indicate Eq. A.16 for b = 1, the squares Eq. A.17 for H 1 = 10, τ 1 = τ 2 = 1, b = 0.1 and τ 3 = 10 10 and the dash-dotted line the 1/ √ ∆t-decay of the short-time Maxwell model. The arrows emphasize the broad crossover between the Maxwell model and the plateau expected for b = 0.1.

  )

Figure A- 4 :

 4 Figure A-4: Time series x with N t = 6 data entries x i are marked by filled circles. The first entry x i=1 is indicated by a dark filled circle. The open circles mark tempering steps between different time series k of each independently prepared configuration c. Each of the N c = 3 configurations corresponds to N k = 6 time series.The solid lines mark barriers of different height in some phase space. We assume that the system is non-ergodic, i.e. the stochastic processes of different configurations c are permanently trapped in the meta-basins marked by the thickest lines.

22 )

 22 do depend in general not only on the sampling time ∆t of the time series and the number N k of time series probed but also on c -even for arbitrarily large N t and N k -since each c-trajectory is confined in a basin. For sampling times ∆t ≫ τ b larger than the typical relaxation time τ b of the basins the ∆t-dependence of O c (∆t, N k ) must drop out and
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 292 for the derivatives of the free energy and∂Z ex (γ) ∂γ =s β Ĥ′ (γ) e -β Ĥ(γ) (B.10) ∂ 2 Z ex (γ) ∂γ 2 = s β Ĥ′ (γ) -β Ĥ(γ)s β Ĥ′′ (γ) e -β Ĥ(γ) (B.[START_REF] Dalnoki-Veress | Molecular weight dependence of reductions in the glass transition temperature of thin, freely standing polymer films[END_REF] 

Figure C- 1 :

 1 Figure C-1: Various properties of the (discrete) Rouse model for k B T = ρ = b = τ mon = 1:(a) Shear-stress relaxation function G t for a broad range of chain lengths N . Also indicated are the affine shear modulus µ A (dashed horizontal line), Eq. C.3, the power law Eq. C.14 for intermediate times (bold solid line), the Redner-des Cloizeaux formula exp(-t/τ 1 )/ √ t for N = 1000 (thin solid line) and an effective power low 1/t for N = 16 (left thin solid line). (b) Storage modulus G ′ (ω) and loss modulus G ′′ (ω) for N = 16, 100 and 10000. The intermediate power law Eq. C.15 is indicated by a bold solid line, the largeω limits of G ′ (ω) and G ′′ (ω) by, respectively, a horizontal dashed line and a thin solid line and the small-ω limits G ′ (ω) → J 0 e η 2 ω 2 and G ′′ (ω) → ηω for N = 16 by, respectively, thin dashed and thin solid lines. The vertical arrows mark 1/τ α,1 and ω × (λ = 2) for N = 16. (c) τ pmax , τ 1 , η, J 0 e , τ × (λ = 1) and τ × (λ = 2) vs N . η and J 0 e increase linearly with N (dashdotted lines). Note that τ 1 ≈ τ × (λ = 2) ∝ N 2 (solid line) while τ 1 ≫ τ × (λ = 1) ∝ N 2/3 (dashed line).

C. 2 2 τ 1 = 2 2 S 2 S 2 1 ×

 2212221 Fig.C-1.) It is useful, however, to summarize here also the corresponding relations for the large-N limit which can be computed analytically. Since c p → 1 for x = πp/2N → 0 this leads in leading order to

  We have summarized in Appendix C.[START_REF] Graessley | Polymeric Liquids & Networks: Dynamics and Rheology[END_REF] several useful predictions for an ideal Rouse model with p max = N -1 and N = 16. These predictions are indicated in Fig. D-1 by open circles. The dashed lines show the asymptotic low-frequency behavior G ′ (ω) ≈ J 0 e η 2 ω 2 and G ′′ (ω) ≈ ηω with the known values of the shear viscosity η and steady-state creep compliance J 0 e . The expected intermediate frequency regime (see Appendix C.4 and Eq. C.15) for 2π/τ R ≪ ω ≪

Figure D- 1 :

 1 Figure D-1: Comparison of storage and loss moduli G ′ (ω) and G ′′ (ω) of the ideal Rouse model (Sec. 2.4.6) obtained either exactly (open circles) or by means of the FFT method (triangles, labeled G ′ 1 (ω) and G ′′ 1 (ω)) and the SMD method (filled circles, labeled G ′ 2 (ω) and G ′′ 2 (ω)). The vertical dotted lines mark the characteristic frequencies associated to the total sampling time ∆t, the Rouse relaxation time τ R , the local monomer relaxation time τ mon and the time increment δt. The dashed lines indicate the Rouse model prediction for ω ≪ 2π/τ R , Eq. C.10, the solid line the prediction for the intermediate ω-regime, Eq. C.15.

Figure D- 2 :

 2 Figure D-2: HH transformation of G t for the ideal Rouse model, Sec. 2.4.6 using the values given in Sec. C.4.The backward transformation G 1 t obtained from J t and 1/J t are also shown for comparison. Note that G 1 t ≈ G t . The asymptotic large-t limit J t → t/η is indicated by the thin solids line with η = 988.

  

  the data entries x i . Hence, v generally depends on I or ∆t and this is especially relevant if the ACF h i = h(t i ) increases strongly for t ≈ ∆t.

	defined in Sec. 2.6 and Appendix A.6 and ∆ ne the static standard deviation of the quenched
	variances v c of the configurations c. Equation 2.4 implies that in this limit δv(∆t) must differ from δv G (∆t) ∝ 1/ √ ∆t. Fortunately, in the common case where the observables x(t)
	average over many, more or less decoupled microstates, δv → δv G [h] even for non-ergodic
	2.2) systems in the macroscopic limit as argued in Sec. 2.7. Simple test functions f (t) are used
	to demonstrate δv G [f ] in Appendix A.3. The definitions of the instantaneous shear stress
	being the autocorrelation function (ACF) characterizing the mean-square displacements and the corresponding Born-Lamé coefficient are given in Appendix B.1.
	(MSDs) of Our second point concerns the standard deviation δv of v[x]. It has been observed
	for shear-stress fluctuations [65, 67, 68, 77, 101] that δv may become rather large and of
	the order of the mean value v if h(t) varies strongly for t ≈ ∆t, i.e. the mean behavior
	standard experimental or theoretical work focuses on [1, 3, 4, 106, 108] gets masked by
	strong fluctuations. As derived in Sec. 2.5.3, this can be simply understood assuming a
	stationary Gaussian stochastic process [77] showing that δv = δv G [h] with δv G [h] being a
	functional of the MSD h defined by	
	δv 2 G [h] ≡	1 2I 4	I i,j,k,l=1	g 2 ijkl and g ijkl ≡ (h i-j + h k-l ) -(h i-l + h j-k ).	(2.3)
	We discuss numerically more convenient representations of Eq. 2.3 in Appendix A.1. By
	analyzing the functional δv G [h] it will be seen (Appendix A.2 and Appendix A.3) that while
	δv(∆t) must remain small for h(t ≈ ∆t) ≈ constant, δv(∆t) becomes generally large if ∆t
	is similar to the characteristic time of an efficient relaxation pathway corresponding to a
	strong change of h(t) for t ≈ ∆t.	
	Our third key point emphasizes one limitation of Eq. 2.3 which hinges on the ergodicity
	of the stochastic process. If the system is (strictly or in practice) non-ergodic, i.e. if inde-
	pendently created trajectories c are restricted to different meta-basins of the generalized
	phase space, this implies as shown in Sec. 2.6 and Appendix A.5 that	
		δv(∆t) → ∆ ne = constant for τ α ≫ ∆t ≫ τ ne ≫ τ b .	(2.4)
	τ b denotes here the typical relaxation time of the meta-basins, τ ne a crossover time properly

Table 3 .

 3 1: Some properties at the glass transition for the bulk and for films of different lateral box sizes L ensemble-averaged over N c independent configurations: glass transition temperature T g , film thickness H, affine shear modulus µ A , shear-stress fluctuation µ F , shear modulus µ according to Eq. 1.1, radius of gyration R G and end-to-end distance R e[START_REF] Doi | The Theory of Polymer Dynamics[END_REF][START_REF] Rubinstein | Polymer physics[END_REF], ratio H/R G , the plateau density ρ 0 and the surface tension Γ discussed in Sec. 6.4. The bulk results have been obtained at a pressure P = 0 using cubic periodic boxes. As emphasized in Sec. 4.4, µ F and µ have been obtained for a sampling time ∆t = 10 4 .

	bulk	-	10	0.395	-	93.3 84.6 8.7 1.9 4.6	-	-	-
	film1	23.5 120 0.371 21.3 93.9 85.6 8.3 1.9 4.6	11.3	1.045 0.89
	film2	37.1 10	0.334 8.5 94.2 86.1 8.1 1.9 4.6	4.5	1.054 1.58
	film3	42	10	0.318 6.6 94.3 86.5 7.8 1.9 4.6	3.5	1.057 1.57
	film4	49	10	0.290 4.8 94.9 87.4 7.5 1.8 4.4	2.6	1.063 1.61

Details on the surface tension are given in Sec. 6.4. As clarified in Appendix B.1 for µ A , it is thus generally not appropriate to neglect the surface tension contribution to the Born-Lamé coefficients of thermodynamically stable films

  Figure A-1: δv G [f ] vs. ∆t for the one-mode Maxwell model with H 1 = τ 1 = 1 (bold solid line) revealing a maximum at ∆t ≈ 5 and a final decay δv G ≈ 2/∆t. The other data refer to the two-step relaxation model Eq. A.15 with H 2 = 0.5. Also given is f (t) for τ 2 = 10000 (solid line with circles). δv G [f ] becomes bimodal with increasing τ 2 /τ 1 with a minimum slightly below τ 2 and a second separate maximum at ≈ 5τ 2 .
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  -1. Of interest is the limit where f (t) develops an intermediate plateau f (t) ≈ f p for τ 1 ≪ t ≪ τ 2 with τ 1 corresponding to a fast, local process and τ 2 to a slow, collective relaxation. One expects δv G (∆t) to become bimodal with a first maximum around τ 1 followed by a 1/ The decay from both maxima is given by δv G ≈ H p 2τ p /∆t. It can be readily checked numerically that Eq. A.13 only holds for β ≤ 2 but not for larger exponents β which do not correspond to ACF of stationary stochastic processes. To see this let us just mention two cases. Since f (ω) ∝ exp(-ω 2 /4) for β = 2, Eq. A.13 holds for the Gaussian model and it thus also does for even more gently decreasing (less compressed) functions with β < 2. On the other side f β (t) becomes for β → ∞ equivalent to the cusp singularity f cusp (t) ≡ H(t) -H(t -1).

			√	∆t-
	decay and a second maximum around τ 2 followed by a second 1/	√	∆t-decay. The minimum
	between both maxima should systematically become deeper with increasing plateau width.
	We present in Fig. A-1 numerically obtained δv G [f ]-data assuming
	f (t) = H 1 exp(-t/τ 1 ) + H 2 exp(-t/τ 2 )	(A.15)
	Stretched and compressed exponentials		

with H 1 = τ 1 = 1 and H 2 = 0.5 for the amplitude of the second mode. As for all generalized Maxwell models we have f (ω) = p H p τ p /(1 + (ωτ p ) 2 ) > 0, i.e. Eq. A.15 is a legitimate ACF. We scan τ 2 over several orders of magnitude as indicated in the figure. We indicate f (t) for the longest second relaxation time, τ 2 = 10000, at the top of the figure (solid line with circles). For large τ 2 /τ 1 one observes for δv G (∆t) two well separated maxima of same shape but different amplitudes ∝ H p . Note that the ratio of the two dashed horizontal lines is

H 1 /H 2 = 2.

Another natural generalization of the one-mode Maxwell model (β = 1) is seen in Fig.

A-2

where we present δv G [f ] for f (t) = f β (t) ≡ exp(-t β ). f β (t) is a "stretched" exponential for β < 1 and a "compressed" exponential for β > 1.

  cannot hold in these limits for both mathematical and physical grounds. To demonstrate that Eq. A.16 may hold for an intermediate time window of a legitimate ACF we are thus free to use, e.g., a generalized Maxwell model,

	Eq. 2.25, fitted (by inverse Laplace transformation [146]) to an intermediate logarithmic
	creep. (As noted above, this yields directly a legitimate ACF.) More simply we may improve
	f (t) = a-b ln(t) by adding suitable continuous cutoffs. As shown by the squares in Fig. A-3
	we use

[START_REF] Alcoutlabi | Effects of confinement on material behaviour at the nanometre size scale[END_REF] 

holds over a sufficiently broad intermediate time window. The indicated prefactor 1.55 is needed for the discussion of δv G (∆t) in Ch. 7. Obviously, this value is not given by the scaling relation but by numerically computing δv G [ln(t)] as shown by circles in Fig.

A-3

.

Due to the affinity relation Eq. 2.41, this result corresponds to an amplitude b = 1 and does not depend on the shift constant a. Obviously, a legitimate ACF cannot diverge for t → 0 and t → ∞ and f (t) = a -b ln(t) f (t) = H 1 e -t/τ 1 + a -b ln(t) (1 -e -t/τ 2 ) e -t/τ 3 (A.17

Please note that the limitations of some of these methods are described elsewhere[START_REF] Vogt | Mechanical and viscoelastic properties of confined amorphous polymers[END_REF][START_REF] Roth | Polymer Glasses[END_REF][START_REF] Schweizer | Progress towards a phenomenological picture and theoretical understanding of glassy dynamics and vitrification near interfaces and under nanoconfinement[END_REF].

The empirical variance is defined here without the usual "Bessel correction"[START_REF] William H Press | Numerical Recipes: The Art of Scientific Computing Second Edition[END_REF]. Eq. 2.1 is the formal definition of v[x] which coincides with the genuine variance of x(t) only in the limit ∆t ∝ I → ∞.

Equation (2.15) holds if the perturbation is a "deformation" (thermodynamical extensive variable). In the case of an externally applied "force" (thermodynamical intensive variable) it becomes R(t) = h(t)[START_REF] Doi | The Theory of Polymer Dynamics[END_REF].

For elastic or viscoelastic properties RA is thus often called "high frequency modulus".

Fortunately, R∞ ≡ 0 by symmetry for the shear-stress relaxation function R(t) = G(t) this thesis focuses on.

RA is thus often replaced by an intermediate plateau value of R(t).

For too low λ-values τ×(λ) ≪ τα characterizes local relaxation processes.

We note for completeness that very often τα is also estimated roughly as the time where R(t) -R∞ has decayed to a given fraction of the signal at short times. This is used in Ref.[START_REF] George | Fluctuations of non-ergodic stochastic processes[END_REF] for the computation of the basin relaxation time τ b for non-ergodic stochastic processes.

Equation 2.25 will be used in Sec. 5.3 and Appendix D to decompose R(t) = G(t) into modes.

µ = µA -µ0 + µ1 must vanish for liquids, µ ≈ 0, and since µ1 ≈ 0 by symmetry, this implies µA ≈ µ0.
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These weights are set to unity, except for the nearest bead in the same chain. The nearest bead interaction weight is set to zero, as this interaction is already handled by the bond (spring) potential.

All of the LAMMPS input scripts used to simulate our freestanding films can be found in the following University of Strasbourg (GitLab) code repository (project visibility -internal): https://git.unistra. fr/thatgeeman/nvtf

These systems have been prepared by Ivan Kriuchevskyi during his PhD at the Strasbourg polymer theory and simulation group (ETSP-ICS)[START_REF] Kriuchevskyi | Shearstress fluctuations and relaxation in polymer glasses[END_REF][START_REF] Kriuchevskyi | Shear Modulus and Shear-Stress Fluctuations in Polymer Glasses[END_REF][START_REF] Kriuchevskyi | Numerical determination of shear stress relaxation modulus of polymer glasses[END_REF][START_REF] Kriuchevskyi | Propriétés mécaniques et viscoélastiques des polymères vitrifiables en volume et en films minces : études par dynamique molèculaire de systèmes modèles[END_REF].

The temperature at a given time during the cooling run is known from the cooling rate. In addition, the log file produced during the cooling run provides the instantaneous temperature fixed by the thermostat, allowing for comparison.

Layer-resolved analysis of dynamic properties requires access to the instantaneous particle positions, i.e. δttrj → δt ideally.

All intensive properties are to be re-normalized using the effective film volume V = L 2 H with H being the film thickness defined in Sec. 4.2. This is an essential step for freestanding films as LAMMPS computes all intensive properties with respect to the simulation box volume V = L 2 Lz instead.

The following University of Strasbourg (GitLab) repository (project visibility -internal) contains the code for this method: https://git.unistra.fr/thatgeeman/elastic_layered

The shape of the density profile is discussed in more detail in Sec. 6.2.

Being limited to the high-frequency limit, it is difficult to get G t by Fourier transformation of the storage and loss moduli G ′ (ω) and G ′′ (ω)[START_REF] Ferry | Viscoelastic properties of polymers[END_REF] obtained by applying an oscillatory simple shear[START_REF] Yoshimoto | Local dynamic mechnical properties in model free-standing polymer thin films[END_REF].

As shown in Sec. 5.2 to obtain the shear viscosity η from the Green-Kubo (GK) relation one needs to investigate the time dependent viscosity η(t), Eq. 2.18.

Naturally, the determination of D becomes increasingly difficult if one approaches the glass transition, but an upper bound for D can still be estimated.

Appendix D.3 demonstrates this method for the Rouse model[START_REF] Ferry | Viscoelastic properties of polymers[END_REF][START_REF] Rubinstein | Polymer physics[END_REF].

We have fitted for T∞(H) with the WLF scaling approach using several reference temperatures T0. The fit values of T∞(H) are, as expected, slightly smaller than Tg[START_REF] Ferry | Viscoelastic properties of polymers[END_REF] and scale again according the linearsuperposition relation Eq.1.3. 

In addition there is an intermediate frequency regime where G ′ (ω) and G ′′ (ω) are similar and a highfrequency regime corresponding to times smaller that the local monomer relaxation time where G ′ (ω) becomes constant and G ′′ (ω) ∝ 1/ω for the SMD method and where the FFT method becomes inaccurate.

This is possible due to the rigid constraint imposed by the periodic boundary conditions, i.e. the simulation box balances the tensile tangential stresses along the films.

We have currently no explanation for the observed linear decay in the glass regime (dashed line).

This non-monotonic behavior and the similar findings for self-assembled networks[START_REF] Wittmer | Shear-stress fluctuations in self-assembled transient elastic networks[END_REF] and 3D polymer bulk systems[START_REF] Kriuchevskyi | Shearstress fluctuations and relaxation in polymer glasses[END_REF][START_REF] Kriuchevskyi | Shear Modulus and Shear-Stress Fluctuations in Polymer Glasses[END_REF] prompted the interest in stationary Gaussian stochastic processes, Ch. 2.

According to Bochner's theorem f (ω) ≥ 0 if and only if f (t) is a positive-definite function, i.e. all eigenvalues of the matrix gi,j = f (ti -tj) are non-negative[START_REF] Götze | Complex Dynamics of Glass-Forming Liquids: A Mode-Coupling Theory[END_REF].

This is a special case of the more general stress-fluctuation formalism for elastic moduli presented elsewhere[START_REF] Frenkel | Understanding Molecular Simulation[END_REF][START_REF] Schnell | Simulated glassforming polymer melts: Glass transition temperature and elastic constants of the glassy state[END_REF][START_REF] Tadmor | Modeling Materials[END_REF][START_REF] Barrat | Microscopic elasticity of complex systems[END_REF][START_REF] Squire | Isothermal elastic constants for argon. theory and Monte Carlo calculations[END_REF].

Note the additional factor 1/2 of the Rouse modes of the generalized Maxwell model compared to the corresponding rotational (diffusional) relaxation times[START_REF] Doi | The Theory of Polymer Dynamics[END_REF].
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Data sampling and processing

Instantaneous observables x i (for instance, stresses σαβ ) are sampled every 10δt MD with δt MD = 0.005 being the time increment of the velocity-Verlet scheme used. This corresponds to a data file with entries every δt = 0.05 step. Whereas LAMMPS trajectory files with particle coordinates are written every 10 5 × δt MD timestep (δt trj = 500 LJ timestep). An additional set of configurations N c = 10 for film1 was prepared using 500 × δt MD timestep (δt trj = 2.5 LJ timestep), so as to improve the resolution of our findings 19 in Ch. 6 for layer-resolved properties (Sec. 3.7.) Of central importance are the excess contributions of instantaneous shear stress τ and the instantaneous affine shear modulus μA defined in Appendix B.1. 20 As discussed in Sec. 2.2 and Sec. 2.8, the stored time-series x = {x i , i = 1, . . . I} for each N c configuration c are used to compute various t-averages. By averaging over the N c independent configurations, we obtain then ensemble averages or "c-averages".

In addition to this we need to compute for Ch. 7 "k-averages" and "k-variances" over N k time series x ck of each configuration c as described in detail in Appendix A.4 and Appendix A.5. Since we want to investigate the dependence of various properties on the sampling time ∆t we probe for each ∆t max -trajectory N k equally spaced subintervals k of length ∆t ≤ ∆t max with I = ∆t/δt entries. It is inessential for all properties discussed in the present work whether these subintervals do partially overlap or do not. Since overlapping subintervals probe similar information it is, however, numerically not efficient to pack them too densely. We use generally N k = ∆t max /∆t, i.e. N k and ∆t are thus coupled and the accuracy is better for small ∆t. Essentially, the same data averaging procedure is used for the bulk systems the only difference being that we average finally in addition over the three equivalent shear planes.

Calculation of layer resolved properties

We shall investigate in Ch. 6 the local z-distributions of many properties such as the distributions ρ(z) of the number density ρ (Sec. 6.2), ê(z) of the energy density ê (Sec. 

Glass transition temperature T g (H) revisited

In Fig. 5-4, we compare the glass transition temperature obtained for our freestanding films with the data reported in Refs. [START_REF] O'connell | Dramatic stiffening of ultrathin polymer films in the rubbery regime[END_REF][START_REF] Paul | Creep behavior of ultra-thin polymer films[END_REF]. We plot here the reduced glass transition temperature y = T g /T B g as a function of the rescaled inverse film thickness x = h 0 /H. This confirms that both the experimental and the numerical data follow the relation [START_REF] Peter | Thickness-dependent reduction of the glass-transition temperature in thin polymer films with a free surface[END_REF][START_REF] Herminghaus | The glass transition of thin polymer films: Some questions, and a possible answer[END_REF][START_REF] Herminghaus | Polymer surface melting mediated by capillary waves[END_REF] 

implied by the two-layer model, Eq. 1.3. The system-depending length h 0 allows to collapse all data onto y = 1 -x (solid line). Specifically, we fitted h 0 = 1.28 for the numerical data, h 0 = 7.2nm for the experimental data of Ref. [START_REF] O'connell | Dramatic stiffening of ultrathin polymer films in the rubbery regime[END_REF] and h 0 = 6.5 nm for the data from

Ref. [START_REF] Paul | Creep behavior of ultra-thin polymer films[END_REF]. Note that the thinnest PS film (11nm) studied in Ref. [START_REF] Paul | Creep behavior of ultra-thin polymer films[END_REF] is similar in thickness to our thickest film (film1, H g = 21.3 LJ units) when converted to physical units. We have made here the following choices for an approximate conversion from LJ to physical units 30 The thickest sample (H = 112nm) is assumed to show bulk behavior in this case. µ A0 (T)

Figure 6-7: Distribution µ A z of the affine shear modulus µ A for film1 and film2 for one temperature in the liquid limit (T = 0.55) and one in the glass limit (T = 0.20). The midplane plateau µ A0 (T ) is H-independent. As indicated by arrows, surface effects are only strong in the liquid limit.

We finally note that since below T g the particle positions are essentially frozen, the free energy per area to reversibly create a surface and the tangential normal surface stress, Eq. 6.4, becomes strain-dependent and may differ. Due to this well-known "Shuttleworth effect" [START_REF] Allen | Computer Simulation of Liquids[END_REF][START_REF] Liang | Surface stress and surface tension in polymeric networks[END_REF][START_REF] Shuttleworth | Surface tension of solids[END_REF][START_REF] Müeller | Simple views on surface stress and surface energy concepts[END_REF][START_REF] Schulman | Surface energy of strained amorphous solids[END_REF] the notion "surface tension" used for the property Γ defined above by Eq. 6.4, characterizing rather the "surface stress", may be misleading for our amorphous films below T g [START_REF] Liang | Surface stress and surface tension in polymeric networks[END_REF][START_REF] Schulman | Surface energy of strained amorphous solids[END_REF], as in general for solids [START_REF] Shuttleworth | Surface tension of solids[END_REF][START_REF] Müeller | Simple views on surface stress and surface energy concepts[END_REF].

Local affine shear modulus µ A z

As noted above, the average shear stress τ (z) ≡ σ xy (z) vanishes by symmetry. According to Eq. 3.8 and Appendix B.1 τ (z) is the linear-additive z-contribution to the first shear-strain derivative τ of the system Hamiltonian. The corresponding second shear-strain derivative µ A and its distribution µ A (z) do, however, not vanish. This is shown in Fig. 6-7 for film1

(circles) and film2 (triangles) focusing on one temperature in the liquid limit (T = 0.55)

and one deep in the glass (T = 0.20). Similar as for the midplane energy density e 0 , the plateau value µ A0 ≡ µ A (z ≈ 0) is in leading order H-independent. The decay of µ A z at the surface is qualitatively different in both T -limits. It decreases smoothly in the liquid limit as marked by the arrows. Since for thinner films the midplane plateau has a decreasing der unity) for times where G(t) strongly decays and that these ratios are, moreover, system-size independent may in fact be misleading for the out-of-equilibrium responses of real macroscopic materials. From the theoretical point of view it is an interesting question how to generalize the fluctuation-dissipation relations, connecting the average linear out-of-equilibrium response to the average equilibrium relaxation [START_REF] Doi | The Theory of Polymer Dynamics[END_REF][START_REF] Wittmer | Shear-stress fluctuations in self-assembled transient elastic networks[END_REF][START_REF] Hansen | Theory of simple liquids[END_REF], to describe the sample-to-sample fluctuations.

Appendices
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Appendix A

More on time series of stationary

Gaussian stochastic processes

Since for large I the sums over two, three or even four indices stated in Sec. 2.5.3 by Eqs. 2.37-2.38 rapidly become numerically unfeasible, it is of importance that the three terms T 2 , T 4 and T 3 of Eq. 2.35 can be simplified to single loops [START_REF] Klochko | Relaxation dynamics in supercooled oligomer liquids: From shear-stress fluctuations to shear modulus and structural correlations[END_REF]. The first two terms simply become

Let us define the sum S(s, I) ≡ I i=1 c i-s . Note that S(s, I) may be computed starting from S(0, I) using the recursion relation S(s + 1, I) = S(s, I) + c s -c I-s . Using this the calculation of

becomes also of order O(I). Using the symmetry S(s, I) = S(I -s + 1, I) we have assumed in the last step that I is even. In the continuum limit for large I = ∆t/δt the three terms further simplify to

for the last contribution.

A.2 Some general properties of δv G [c]

Assuming a constant ACF c(t) = a one obtains from either Eqs. 2.37, 2.38, 2.39 or using the corresponding continuum relations that

i.e. δv 2 G = T 2 + T 4 -T 3 must vanish in agreement with Eq. 2.41. This is of relevance for very short sampling times ∆t where c(t) ≈ c(0) = c 0 or if c(t) shows an intermediate plateau extending over several order of magnitudes as is the case for our low-temperature films, Ch. 4. The summand g 2 ijkl in Eq. 2.40 must remain small, if c(t) is not rigorously, but only nearly constant. The typical summand g 2 can be estimated by the typical slope on logarithmic time scales [START_REF] Klochko | Relaxation dynamics in supercooled oligomer liquids: From shear-stress fluctuations to shear modulus and structural correlations[END_REF] 

One thus expects

For instance, c(t) may decrease for t ≪ τ α as c(t) ≈ b exp(-(t/τ α ) β ) + c ∞ with constants β > 0. Equations A.8 and A.9 then lead to

In the opposite limit of very large ∆t ≫ τ α , the leading scaling dependence is obtained by replacing in Eqs. A.4-A.6 the upper integration bounds by τ α and c(t) by a ≈ c(τ α ) -c ∞ using Eq. 2.41. This implies

In other words, δv 2 G is dominated for ∆t/τ α ≫ 1 by T 2 = δm 2 21 , i.e. δv G ∝ 1/ √ ∆t as expected for ∆t/τ α uncorrelated sub-intervals. Adding heuristically the short and the long time behavior, Eq. A.9 and Eq. A.11, yields the phenomenological approximation,

which is useful for processes with one main dominant relaxation process.

A.3 δv G [f ] for some simple test functions f (t) 

A.4 Additional notations for non-ergodic systems

We give now additional details on non-ergodic stochastic processes which are relevant for our films at low temperatures T ≪ T g . This requires additional notations. The l-average operator V l is defined by

Introducing the power-law operator P α O ≡ O α , with the exponent α = 2 being here the only relevant case, and using the standard commutator [A, B] ≡ AB -BA for two operators A and B, the l-variance operator may also be written

A.5 Extended ensembles of time series x ck

We remind that for ergodic systems [START_REF] Hansen | Theory of simple liquids[END_REF][START_REF] Götze | Complex Dynamics of Glass-Forming Liquids: A Mode-Coupling Theory[END_REF] Assuming that after each measurement interval of length ∆t a spacer (tempering) step of length ∆t spac follows, this will happen for trajectories of total length

Since [E c , E k ] = 0 we may write quite generally,

i.e. the two indices c and k can be lumped together to one index l. Averages of this type also called simple averages, similar to the ones introduced in Sec. 2.2. We define now in general terms the three variances already mentioned Sec. 2.6

Note that the total variance δO 2 tot is a simple average, i.e. all time series x ck can be lumped together. Importantly, its expectation value for N c → ∞ is strictly N k -independent and may be also computed by using only one time series for each configuration (N k = 1). δO 2 tot is thus the standard commonly computed variance [65, 67-69, 77, 101, 118]. That δO int and δO ext are a quite different observables can be seen from the fact that E c and E k cannot be interchanged (commuted) if N k > 1. δO ext only vanishes if all O c are identical. Using

the total variance δO 2 tot can be decomposed as the sum of two independent variances

with δO 2 int being the typical internal variance of the meta-basins and δO 2 ext the dispersion between the basins. Details of both contributions δO int and δO ext depend on the properties of the considered stochastic process x(t) and the preaverage O[x] considered. However, the following fairly general statements can be made. While δO int and δO ext depend in principle on N k , this dependence must drop out for large N k if ∆t max ≫ τ b as already noted above.

Note also that δO int → 0 and δO ext → δO tot in the opposite limit for N k → 1. Without additional assumptions it is also clear that for ∆t ≫ τ b one expects

with the non-ergodicity parameter ∆ ne being defined by the finite large-∆t limit of δO ext .

As already noted, the first limit is a consequence of the ∆t/τ b uncorrelated subintervals for each c-trajectory while the second limit is merely a consequence of the O c (∆t) becoming constant. Equation A.29 implies that δO tot must become

Note that the crossover to the ∆ ne -dominated regime occurs at an additional time scale τ ne . Operationally, this non-ergodicity time τ ne may be defined as

We note finally that the non-ergodicity parameter ∆ ne does not dependent on N k , being equivalently the large-∆t limit of either δO ext (∆t, N k ) or δO tot (∆t), the latter simple average being strictly N k -independent (N c → ∞). We show now that the definition Eq. A.31 of the non-ergodicity time τ ne is consistent with the definition given in the main text Eq. 2.44.

A.6 Properties related to O[x] = v[x]

We shall focus from now on O 

We assume that the microscopic states m are completely decorrelated but are characterized by random properties specific and quenched for each given configuration c. We set 

where we have used that also the variances v cm are independent stochastic variables. Note that the m-averages (brackets) do not depend on N m for large N m . Hence, 

Appendix B

Shear strains, stresses and moduli

B.1 Shear stress and affine shear modulus

Let us consider a small simple shear strain [START_REF] Tadmor | Continuum Mechanics and Thermodynamics[END_REF] increment γ in the xy-plane as it would be used to measure the shear-stress relaxation function G t by means of a direct outof-equilibrium simulation [START_REF] Allen | Computer Simulation of Liquids[END_REF][START_REF] Wittmer | Shear-stress relaxation and ensemble transformation of shear-stress autocorrelation functions[END_REF][START_REF] Wittmer | Fluctuation-dissipation relation between shear stress relaxation modulus and shear stress autocorrelation function revisited[END_REF][START_REF] Wittmer | Shear-strain and shearstress fluctuations in generalized gaussian ensemble simulations of isotropic elastic networks[END_REF]. Assuming that all particle positions r follow an imposed "macroscopic" shear in an affine manner according to r x → r x + γ r y the Hamiltonian Ĥ of a given configuration changes as [START_REF] Kriuchevskyi | Shearstress fluctuations and relaxation in polymer glasses[END_REF][START_REF] Kriuchevskyi | Numerical determination of shear stress relaxation modulus of polymer glasses[END_REF][START_REF] Wittmer | Shear-stress fluctuations in self-assembled transient elastic networks[END_REF][START_REF] Wittmer | Fluctuation-dissipation relation between shear stress relaxation modulus and shear stress autocorrelation function revisited[END_REF][START_REF] Wittmer | Shear-strain and shearstress fluctuations in generalized gaussian ensemble simulations of isotropic elastic networks[END_REF]:

The instantaneous shear stress τ and the instantaneous Born-Lamé coefficient μA are thus defined as

where a prime denotes a functional derivative with respect to the affine small strain transform. All properties considered here refer to the excess contributions due to the potential part of the Hamiltonian, i.e. the ideal contributions are assumed to be integrated out. Assuming a pairwise central conservative potential l u(r l ) with r l being the distance between a pair of monomers l = (i, j) and j > i, one obtains the excess contributions [START_REF] George | Shear-stress relaxation in free-standing polymer films[END_REF][START_REF] Wittmer | Fluctuation-dissipation relation between shear stress relaxation modulus and shear stress autocorrelation function revisited[END_REF]:

with n l = r l /r l being the normalized distance vector. Note that Eq. B.4 is strictly identical to the corresponding off-diagonal term of the Kirkwood stress tensor [START_REF] Allen | Computer Simulation of Liquids[END_REF][START_REF] Frenkel | Understanding Molecular Simulation[END_REF][START_REF] Walton | The pressure tensor at the planar surface of a liquid[END_REF]. We remind that the instantaneous general Kirkwood excess stress tensor reads

with α and β denoting the spatial dimensions x, y, z. Note also that we have used a symmetric representation for the last term of Eq. B.5 exchanging x and y for the affine transform and averaging over the equivalent x and y directions. This last term automatically takes into account the finite normal pressure of the system. Due to the finite surface tension Γ of our free-standing films this term must be included. Similar relations are obtained for the xz-and the yz-plane. For an isotropic three-dimensional system the averages of all three affine shear moduli are finite and equal. See Refs. [START_REF] Klochko | Relaxation dynamics in supercooled oligomer liquids: From shear-stress fluctuations to shear modulus and structural correlations[END_REF][START_REF] Xu | Impulsive correction to the elastic moduli obtained using the stress-fluctuation formalism in systems with truncated pair potential[END_REF] for the corresponding expression of the ensemble average of μA in terms of the pair correlation functions of the bonded and the non-bonded interactions of the particles needed for our polymer chains (cf.

Ch. 3). We generally use µ A = μA for the ensemble average as in previous publications [63, 65-68, 77, 95, 98-102, 104, 113]. µ A corresponds to R A in Ch. 2.

B.2 Stress-fluctuation formula for the shear modulus µ

The affine shear modulus µ A , being the second strain derivative of the Hamiltonian, is obviously not the shear modulus µ which is the second derivative of the free energy A [START_REF] Wittmer | Shear modulus of simulated glass-forming model systems: Effects of boundary condition, temperature, and sampling time[END_REF][START_REF] Schnell | Simulated glassforming polymer melts: Glass transition temperature and elastic constants of the glassy state[END_REF][START_REF] Lutsko | Stress and elastic constants in anisotropic solids: Molecular dynamics techniques[END_REF][START_REF] Barrat | Microscopic elasticity of complex systems[END_REF][START_REF] Squire | Isothermal elastic constants for argon. theory and Monte Carlo calculations[END_REF]. We briefly remind here the demonstration of the stress fluctuation formula

Reminder of viscoelastic properties of the Rouse model

C.1 Introduction

We summarize here some useful properties of the Rouse model for the dynamics of unentangled and non-interacting polymer chains in the melt [START_REF] Ferry | Viscoelastic properties of polymers[END_REF][START_REF] Doi | The Theory of Polymer Dynamics[END_REF][START_REF]Polymer Viscoelasticity -Basics, Molecular Theories, Experiments and Simulations, 2nd edn[END_REF][START_REF] Rubinstein | Polymer physics[END_REF]. It is assumed in this model that the static properties of a polymer chain can be represented by a Gaussian chain of featureless beads connected by ideal springs [START_REF] Doi | The Theory of Polymer Dynamics[END_REF]. The typical mean-squared end-to-end distance R e 2 = (r N -r 1 ) 2 between the chain ends at r 

As can be seen from panel (b) this does indeed describe the behavior for large Rouse chains, N ≫ 50, in the intermediate wave-vector regime.

C.4 Specific Rouse model for tests

We have summarized above some important viscoelastic features of the discrete Rouse model of polymer dynamics. This is used in Appendix D to test and compare various methods for the numerical transformation between the different viscoelastic functions. Arbitrarily, we set b = k B T = ρ = 1 and τ R = 10 4 . We use the same chain length N = 16, i.e.

p max = N -1 = 15, as in our numerical simulations of polymer films. This implies τ mon ≈ 39.07 for the monomer relaxation time. η ≈ 988 for the shear viscosity, J 0 e ≈ 6.9 for the steady-state creep compliance and G t ≈ 5.5/ √ t for the intermediate time regime

√ ω for the intermediate frequency regime (2π/τ R ≪ ω ≪ 2π/τ mon ). 42 We use here that

Appendix D

Numerical transformations between linear response functions D.1 Introduction

We describe here the methods employed for the numerical transformation of the directly computed response function G t = µ A -h(t) to other experimentally relevant rheological linear response functions. Specifically, we compute the storage and loss moduli G ′ (ω) and G ′′ (ω), as defined in Eq. 2.20 and Eq. 2.21 for general response functions, and the creep compliance J(t) ≡ δγ(t)/δτ characterizing the shear-strain increment δγ(t) generated by a shear stress δτ applied at t = 0 [START_REF] Ferry | Viscoelastic properties of polymers[END_REF][START_REF] Rubinstein | Polymer physics[END_REF]. These three response functions are discussed in Ch. 5

where we compare our results with real experiments. Many numerical methods have been proposed to perform the conversions [START_REF] Ferry | Viscoelastic properties of polymers[END_REF][START_REF]Polymer Viscoelasticity -Basics, Molecular Theories, Experiments and Simulations, 2nd edn[END_REF]. As reminded in Sec. D.2 and Sec. D.3, G ′ (ω) and G ′′ (ω) can be either obtained by direct Fast Fourier Transformation (FFT) [START_REF] Allen | Computer Simulation of Liquids[END_REF][START_REF] William H Press | Numerical Recipes: The Art of Scientific Computing Second Edition[END_REF] or by fitting G t to the Generalized Maxwell model, Eq. 2.25, and using then the transformation Eq. 2.26. While it is possible to obtain J(t) from G ′ (ω) and G ′′ (ω) via Eq. C.7 [START_REF] Ferry | Viscoelastic properties of polymers[END_REF], a direct method (skipping the Fourier space) is given by the Hopkins-Hamming (HH) method [START_REF]Polymer Viscoelasticity -Basics, Molecular Theories, Experiments and Simulations, 2nd edn[END_REF][START_REF] Hopkins | On Creep and Relaxation[END_REF]. This is discussed in Sec. D.4 and Sec. D.5.

D.4 Hopkins-Hamming (HH) method

Using the Laplace transform L Separating i = n terms from Eq. D.3, using the assumption η(0) = 0, and upon rearranging, we obtain the recursive form for the discrete J t for n > 1 [START_REF]Polymer Viscoelasticity -Basics, Molecular Theories, Experiments and Simulations, 2nd edn[END_REF] J(t n-1/2 ) = t n + n-1 i=1 J(t i-1/2 )[η(t n -t i ) -η(t n -t i-1 )] η(t n -t n-1 ) .

(D.4)

The initial condition n = 1 is given by

. (D.5)

Here the dynamic viscosity η(t) for an arbitrary time in the range (t 0 , t n ) can be calculated by first integrating 43