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Résumé

Un graphe est une structure mathématique (V, E), où V est un ensemble fini (non
vide) d’éléments appelés sommets (ou nœuds), et E est un ensemble fini d’éléments
appelés arêtes, dont chacun a deux sommets associés. Les graphes sont utilisés pour
modéliser toutes sortes d’objets interconnectées, comme les réseaux. Chaque objet
du réseau est représenté par un sommet dans le graphe et les arêtes représentent la
relation par paire entre ces objets. Il existe de nombreux problèmes pratiques qui
peuvent être modélisés par des graphes, et les graphes ont été appliqués dans de
nombreux domaines, tels que l’informatique, les réseaux informatiques, les sciences
sociales, la physique et la chimie, ou même la linguistique.

FIGURE 1: Un exemple de graphe

Au cours des dernières années, l’étude des graphes s’est considérablement
développée. De nombreux sujets ont été explorés par de nombreux chercheurs du
monde entier. L’un d’eux est la “théorie des stucturelle des graphes”. Ce domaine
de recherche établit des résultats qui décrivent finement les adjacences dans cer-
taines classes de graphes. L’objectif principal est la conception d’algorithmes ef-
ficaces, ainsi que d’autres applications. Dans cette thèse, nous étudions un sujet
particulier en théorie structurelle des graphes, qui est appelée “classes héréditaires
de graphes”. La principale préoccupation dans ce domaine est d’étudier comment
l’exclusion de certaines configurations affecte la structure globale des graphes et
quels types de structure permettent des algorithmes efficaces pour les classes de
graphes. De nombreuses classes de graphes héréditaires sont étudiées, et dans cette
thèse, nous étudions spécifiquement la classe des “graphes sans trous pairs”. Nous
allons maintenant la définir formellement.

Graphes sans trous pairs

Un graphe H est appelé un sous-graphe induit d’un graphe G si H peut être obtenu
à partir de G en supprimant des sommets (la suppression d’un sommet v signifie
que nous supprimons v et toutes les arêtes incidentes à v). Un graphe G est appelé
sans H s’il ne contient pas H comme sous-graphe induit. Un trou dans un graphe G
est un sous-graphe composé d’un nombre n ≥ 4 de sommets v1, v2, . . . , vn, tel que
vivi+1 ∈ E(G) pour i ∈ {1, 2, . . . , n − 1} et v1vn ∈ E(G), et il n’y a pas d’autres
arêtes dans le graphe entre ces sommets. Un trou est pair ou impair selon la parité
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de n. Par conséquent, les graphes sans trou pair sont simplement les graphes qui ne
contiennent pas de trou pair comme sous-graphe induit.

L’étude des graphes sans trous pairs est initialement motivée par l’étude de la
classe des graphes de Berge, dans une tentative de prouver la conjecture forte des
graphe parfaits de Claude Berge en 1961. Il s’avère que la technique qui a été
développée pour décomposer des graphes sans trous pairs a effectivement été ap-
pliquée sur les graphes de Berge, ce qui a ensuite conduit au théorème fort des
graphes parfaits de Maria Chudnovsky, Neil Robertson, Paul Seymour et Robin
Thomas, prouvé en 2002. Nous remarquons qu’il existe une sorte de relation de
dichotomie entre la classe des graphes de Berge (ou de manière équivalente, appelés
graphes parfaits1) et la classe des graphes sans trous pairs. La classe des graphes
de Berge ne contient pas de trous impairs et pas d’anti-trou impairs (un anti-trou
est le complément d’un trou, et le complément d’un graphe est obtenu à partir du
graphe original en remplaçant les arêtes par des non-arêtes et des non-arêtes par des
arêtes). En plus d’exclure les trous pairs, la classe des graphes sans trous pairs exclut
implicitement tous les anti-trous de longueur au moins 6, car chacun d’eux contient
toujours un trou de longueur 4. Cependant, alors que les problèmes d’optimisation
tels que la coloration optimale, la clique maximale, l’ensemble indépendant maximal et la
couverture de clique sont résolubles en temps polynomial pour les graphes graphes
de Berge, ce n’est pas le cas pour les graphes sans trous pairs. Ces problèmes (sauf
la clique maximale) sont encore ouverts de nos jours dans la classe des graphes sans
trous pairs, et la résolution de cette question est devenue l’objectif principal dans ce
domaine de recherche.

Paramètres de largeur

Les notions de “largeur de graphe”, telles que tree-width (ou largeur d’arbre, désigné
par tw), rank-width (ou largeur de rang, désigné par rw), path-width (ou largeur
de chemin, désigné par pw), clique-width (ou largeur de clique, désigné par cw), et
quelques autres largeurs ont reçu grande attention ces dernières années. Ces no-
tions sont des paramètres mesurant la simplicité/complexité de la structure d’un
graphe. Ils sont vraiment importants dans l’étude de la structure des graphes et
ils ont de nombreuses applications algorithmiques. Le tree-width, par exemple, est
un paramètre mesurant à quel point un graphe est proche d’être un arbre (un ar-
bre est un graphe connexe sans cycle), et avoir une petite largeur d’arbre signifie
que le graphe est proche de être un arbre. Comme nous le savons, presque tous
les problèmes d’optimisation de graphes sont résolubles en temps polynomial pour
les arbres, et le théorème de Courcelle (par Bruno Courcelle, 1990) indique que de
nombreux problèmes d’optimisation de graphes (y compris les quatre problèmes
que nous mentionnons dans la Section précédente) peuvent être décidés en linéaire
temps sur des graphes de tree-width bornée. Il est donc intéressant d’étudier la tree-
width des graphes lorsque l’on essaie de développer un algorithme pour les prob-
lèmes d’optimisation des graphes. Dans cette thèse, notre objectif est d’analyser le
tree-width. Cependant, les paramètres de largeur mentionnés ci-dessus dans la liste
ci-dessus sont liés les uns aux autres. Pour chaque graphe G, les éléments suivants
sont valables [CR05; OS06]:

• rw(G) ≤ cw(G) ≤ 2rw(G)+1;

1Un graphe G est appelé parfait si pour chaque sous-graphe induit H de G, le nombre chromatique
de H est égal à la taille du plus grand sous-graphe complet de H. Le théorème fort des graphes parfaits
affirme qu’un graphe est parfait si et seulement s’il s’agit de Berge.
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• cw(G) ≤ 3 · 2tw(G) − 1;

• tw(G) ≤ pw(G).

En termes de paramètres de largeur, nous remarquons que les graphes sans trous
pairs en général ont une tree-width non bornée, car les graphes complets (c’est-à-dire
les graphes dont tous les sommets deux à deux sont adjacents) sont sans trous pairs,
et ils ont une tree-width arbitrairement grande. Par conséquent, le théorème de
Courcelle n’est pas applicable dans ce cas. La question est maintenant de savoir
ce qui permet structurellement des graphes sans trous pairs ayant une tree-width
bornée (ou petite). Cameron et al. [Cam+18] prouvent qu’en excluant les trian-
gles (c’est-à-dire graphes complets sur 3 sommets), les graphes sans trous pairs ont
une tree-width au plus 5. La preuve est basée sur les résultats structurels complets
obtenus par Conforti et al. [Con+00] ce qui montre que la structure des graphes sans
trous pairs ni le triangle est “simple” dans un certain sens, ce qui conduit à une
largeur d’arbre bornée. Il est alors naturel de se demander si cela est vrai en général,
c’est-à-dire si l’exclusion de graphes complets sur n sommets donne une tree-width
bornée. Cette question est formellement proposée par Cameron et al. [CCH18].

Le but de cette thèse est d’explorer certains paramètres de largeur sur plusieurs
sous-classes de graphes sans trous pairs. Nous commençons par étudier la question
posée par Cameron et al. mentionnée ci-dessus. Plus de détails sur le contenu de
cette thèse, y compris les résultats que nous obtenons au cours de notre étude sont
décrits ci-dessous.

Les grandes lignes de la thèse

• Dans le Chapitre 1, nous donnons une introduction générale aux problèmes
que nous étudions dans cette thèse. Dans la Section 1.1 nous donnons une
introduction générale sur ce qu’est un graphe et de ce qu’est la théorie des
graphes. Dans la Section 1.2, nous donnons une revue de la littérature sur
le domaine de la théorie strucutrelle des graphes. Dans la Section 1.3, nous
introduisons la terminologie de base, et enfin nous décrivons nos contributions
dans la Section 1.4.

• Dans le Chapitre 2, nous fournissons un aperçu de certains résultats an-
térieurs liés aux graphes sans trous pairs. Dans la Section 2.1, nous expliquons
quelques théorèmes de décomposition connus des graphes sans trous pairs.
Dans la Section 2.2, nous expliquons l’algorithme de reconnaissance pour les
graphes sans trous pairs, et nous examinons les ensembles de coupes qui sont
utilisés dans la décomposition des graphes sans trous pairs. Dans la Sec-
tion 2.3, nous passons en revue quelques résultats sur les paramètres de largeur
de plusieurs sous-classes de graphes sans trous pairs.

• Dans le Chapitre 3, nous présentons une construction de quelques familles
de graphes sans trous pairs qui ont une tree-width arbitrairement grande.
En particulier, nous prouvons que les graphes sans trou pair ni K4 ont une
tree-width non-bornée. Nous établissons une construction d’une famille de
graphes que nous nommons “roues étagées” dont la tree-width croit avec le
nombre d’étages. Nos résultats sont fortement basés sur l’étude d’une autre
classe de graphes, à savoir la classe des graphes sans thêta ni triangle, qui
est fortement liée à la classe des graphes sans trou pair ni K4. La classe des
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graphes sans thêta est une superclasse de graphes sans trous pairs, donc la
classe des graphes sans thêta ni triangle intersecte la classe des graphes sans
trou pair ni K4. Nous prouvons que cette classe a une tree-width illimitée. En
effet, notre construction de roues étagées pour les graphes sans trou pair ni K4
est inspirée par la construction pour cette classe. La Section 3.1 présente un ré-
sumé de ce chapitre. Les principaux résultats de ce chapitre sont traités dans la
Section 3.2. Pour les deux classes, nous donnons un résultat plus fort, en mon-
trant que la largeur de rang des deux classes est également non-bornée, ce qui
est expliqué dans la Section 3.3. De plus, nous donnons une borne supérieure
sur la tree-width des roues étagées dans la Section 3.4.

• Dans le Chapitre 4, nous expliquons comment majorer la tree-width de cer-
taines sous-classes de graphes sans trous pairs, ainsi que des sous-classes de
graphes sans thêta ni triangle. Dans la Section 4.1, nous mentionnons quelques
résultats connus sur les largeurs d’arbres de certaines classes de graphes qui
sont liées à notre étude. Nous prouvons alors qu’en excluant certaines struc-
tures (à savoir une subdivision d’une griffe), nous pouvons limiter la tree-
width des graphes sans trous pairs, ainsi que des graphes sans thêta ni tri-
angle. Pour la preuve, nous établissons une nouvelle méthode pour majorer
la tree-width sur des classes de graphes avec petit nombre de clique et petit
nombre de séparation. C’est le cœur de la Section 4.2. Certaines propriétés des
classes étudiées qui conduisent à la majoration de la tree-width sont traitées
dans la Section 4.3. Enfin, dans la Section 4.4, nous donnons la preuve de la
borne supérieure sur la tree-width.

• Dans le Chapitre 5, nous discutons de la tree-width des graphes sans trous
pairs avec un degré maximum borné, en particulier pour un degré maximum 3.
Nous fournissons un théorème de structure complet pour les graphes de cette
classe, ce qui conduit à la majoration de la tree-width. Ces résultats sont traités
dans la Section 5.1. Nous présentons également le théorème de structure des
graphes sans trous pairs de degré maximum 4, pour le cas sans pyramide, qui
est donné dans la Section 5.2.

• Dans le Chapitre 6, nous donnons une conclusion et mentionnons quelques
problèmes ouverts.
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Summary

A graph is a mathematical data structure that is defined as a pair of sets (V, E),
where V is a finite (non-empty) set of elements called vertices (or nodes), and E is a
finite set of elements called edges, each of which has two associated vertices. Graphs
are used to model all sorts of interconnected things, such as networks. Every object
in the network is represented by a vertex in the graph, and the edges represent a
pairwise relation between those objects. There are many practical problems that can
be modeled using graphs, and graphs have been applied in many areas of real-world
systems, such as Computer Science, Computer Networks, Social Science, Physics
and Chemistry, even Linguistics.

FIGURE 2: An example of graph

Since its introduction in the 1800s, the study of graphs has grown considerably.
Many topics have been explored by many researchers all over the world. Among
those topics, one that attracts many researchers is “Structural Graph Theory”. This
area of research deals with establishing results that describe various properties of
graphs. The aim is mostly to utilize them in the design of efficient algorithms, as well
as in other applications. In this thesis, we investigate a particular subject in struc-
tural graph theory, which is called “hereditary classes of graphs”. The main concern
in this field is to study how excluding certain configurations affects the overall struc-
ture of the graphs and what types of structure allows efficient algorithms for graph
classes. There are many hereditary graph classes that are studied, and in this thesis,
we specifically study the class of “even-hole-free graphs”. We will now formally
define it.

Even-hole-free graphs

A graph H is called an induced subgraph of some graph G if H can be obtained from
G by deleting vertices (deleting a vertex v means that we delete v and all edges that
are adjacent to v). A graph G is called H-free if it does not contain H as an induced
subgraph. A hole is a graph that is made of a number n ≥ 4 of vertices v1, v2, . . . , vn,
such that vivi+1 ∈ E(G) for i ∈ {1, 2, . . . , n− 1} and v1vn ∈ E(G), and no other edge
between those vertices is in the graph. A hole is even or odd depending on the parity
of n. Hence, even-hole-free graphs are simply the graphs that do not contain an even
hole as an induced subgraph.
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The study of even-hole-free graphs was initially motivated by the study of the
so-called class of Berge graphs, in an attempt to prove the Claude Berge’s famous
Strong Perfect Graph Conjecture. It turns out that the technique that was developed
to decompose even-hole-free graphs was succesfully applied on Berge graphs, which
then led to the Strong Perfect Graph Theorem by Maria Chudnovsky, Neil Robert-
son, Paul Seymour, and Robin Thomas, proved in 2002. We remark that there is a sort
of dichotomy relation between the class of Berge graphs (or equivalently, known as
perfect graphs2) and the class of even-hole-free graphs. The class of Berge graphs does
not contain odd holes or odd antiholes (an antihole is the complement of a hole, and
complement of a graph is obtained from the original graph by replacing edges with
non-edges, and replacing non-edges with edges). Besides excluding even holes, the
class of even-hole-free graphs implicitly excludes all antiholes of length at least 6,
because every such antihole always contains a hole of length 4. However, while op-
timization problems such as optimal coloring, maximum clique, maximum independent
set, and clique cover are solvable in polynomial time on perfect graphs, it is not the
case for even-hole-free graphs. These problems (except maximum clique) are still
open nowadays in the class of even-hole-free graphs, and solving these problems
has become the main objective in this area of research.

Width parameters

The notions of “graph widths”, such as tree-width (tw), rank-width (rw), path-width
(pw), clique-width (cw), and some other widths have received high attention in the
recent years. These notions are parameters measuring how simple/complex the
structure of a graph is. They are really important in the study of graph structure
and they have many algorithmic applications. Tree-width, for instance, is a parame-
ter measuring how close is a graph from being a tree (a tree is a connected graph that
does not contain any cycle), and having a small tree-width means that the graph is
close to being a tree. As we know, many graph optimization problems are solvable
in polynomial time for trees, and Courcelle’s theorem (by Bruno Courcelle, 1990)
states that many graph optimization problems (including the four problems that we
mention in the previous section) can be decided in linear time on graphs of bounded
tree-width. It is therefore intriguing to study the tree-width of graphs when trying
to develop an algorithm for graph optimization problems. In this thesis, our focus is
to analyze tree-width. However, the width parameters mentioned above are related
to each other. For every graph G, the followings hold [CR05; OS06]:

• rw(G) ≤ cw(G) ≤ 2rw(G)+1;

• cw(G) ≤ 3 · 2tw(G) − 1;

• tw(G) ≤ pw(G).

In terms of width parameters, we remark that even-hole-free graphs in general
have unbounded tree-width, because complete graphs (that are graphs whose set of
vertices are pairwise adjacent) are even-hole-free, and they have arbitrarily large
tree-width. Hence, Courcelle’s theorem is not applicable in this case. The question
now is what structurally allows even-hole-free graphs having bounded (or small)

2A graph G is called perfect if for every induced subgraph H of G, the chromatic number of H equals
the size of the largest complete subgraph of H. The Strong Perfect Graph Theorem asserts that a graph
is perfect if and only if it is Berge.
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tree-width. Cameron et al. [Cam+18] proves that when excluding triangles (i.e. com-
plete graphs on 3 vertices), even-hole-free graphs have tree-width at most 5. The
proof is based on the full structural results obtained by Conforti et al. [Con+00],
which shows that the structure of (even hole, triangle)-free graphs is “nice” in some
sense, that leads to the boundedness on the tree-width. It is then natural to ask
whether this holds in general, i.e. whether excluding complete graphs on n ver-
tices yields bounded tree-width. This question is formally proposed by Cameron
et al. [CCH18].

The goal of this thesis is to explore some width parameters on several subclasses
of even-hole-free graphs. We begin by studying the question asked by Cameron et
al. that is mentioned above. More details about the content of this thesis, including
the results that we obtain during our study are described below. We postpone the
definitions used throughout this outline into the next chapters.

Outline of the thesis

• In Chapter 1, we give a general introduction to the problems that we study in
this thesis. In Section 1.1, we provide a general introduction to what graphs
are and what Graph Theory is. In Section 1.2, we give a literature review on
the area of structural graph theory. In Section 1.3, we introduce some basic
terminology, and finally we outline our contributions in Section 1.4.

• In Chapter 2, we provide a survey of some prior results related to even-hole-
free graphs. In Section 2.1, we explain some known decomposition theorems
of even-hole-free graphs. In Section 2.2, we explain a recognition algorithm for
even-hole-free graphs, and we examine the cutsets that are used in the decom-
position of even-hole-free graphs. In Section 2.3, we survey some results on
the width parameters of several subclasses of even-hole-free graphs.

• In Chapter 3, we present a construction of some families of even-hole-free
graphs that have arbitrarily large tree-width. In particular, we prove that (even
hole, K4)-free graphs are of unbounded tree-width. We establish a construc-
tion of a family of graphs that we name “layered wheels”, which provides
graphs of increasing arbitrarily high tree-width. Our results are heavily based
on the study of another class of graphs, namely the class of (theta, triangle)-
free graphs, which is highly related to the class of (even hole, K4)-free graphs.
The class of theta-free graphs is a superclass of even-hole-free graphs, so the
class of (theta, triangle)-free graphs intersects the class of (even hole, K4)-free
graphs. We prove that this class is of unbounded tree-width. Indeed, our con-
struction of layered wheels for (even hole, K4)-free graphs is inspired by the
construction of layered wheels in the class of (theta, triangle)-free graphs. Sec-
tion 3.1 provides a summary of this chapter. The main results of this chapter
are covered in Section 3.2. For the two classes, we give a stronger result, by
showing that the rank-width of both classes are also unbounded, which is ex-
plained in Section 3.3. We moreover give an upper-bound on the tree-width of
layered wheels in Section 3.4.

• In Chapter 4, we explain how to bound the tree-width of some subclasses of
even-hole-free graphs, as well as subclasses of (theta, triangle)-free graphs. In
Section 4.1, we mention some known results on the tree-widths of some classes
of graphs that are related to our study. We then prove that by excluding some
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structures (namely a subdivision of claw graph), we can bound the tree-width
of even-hole-free graphs (parameterized by the clique number of the graph), as
well as (theta, triangle)-free graphs. For the proof, we establish a new method
to bound the tree-width on classes of graphs with small clique number and
small separation number. This is the core of Section 4.2. Some properties of
the classes being studied which lead to the boundedness of the tree-width are
covered in Section 4.3. Finally, in Section 4.4, we give the proof of the upper-
bound on the tree-width.

• In Chapter 5, we discuss the tree-width of even-hole-free graphs with bounded
maximum degree, in particular for maximum degree 3. We provide a full
structure theorem for graphs in this class, which leads to the boundedness
of the tree-width. These results are covered in Section 5.1. We also present
the structure theorem of even-hole-free graphs with maximum degree 4 for
the pyramid-free case, which also leads to the boundedness of the tree-width.
This is explained in Section 5.2.

• In Chapter 6, we give a conclusion and mention some open problems which
are related to our discussion in this thesis.
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Chapter 1

Introduction

1.1 What is Graph Theory

Explaining the idea of Graph Theory with just a few sentences could be a somewhat
challenging task. In particular, when our interlocutors do not work in a field related
to Mathematics or Computer Science. I still sometimes struggle to find a simple yet
elegant answer whenever somebody posed this question:

What is your research domain?

Despite its name, the word “graph” that we use here is unrelated to the pictures
of equations drawn in high school algebra courses (which is one of the most com-
mon usages of the word), and does not refer to any figures that we often find from
statistics (like pie charts) as shown below.

(A) (B)

FIGURE 1.1: Graph of a function (A) and graph of a statistic (B) that
we do not refer to (pictures are taken from google)

The notion of graphs that we are going to talk about in this thesis is an object as
shown in Figure 1.2. To have some intuition, let us think of a problem. To organize
our thinking and guide us to a solution, we often draw a connect-the-dots picture.
We symbolize the objects related to the problem by “dots”, and we connect them
with “lines” to represent the relationship between the dots. Such connect-the-dot
structures are called graphs (we will soon see a formal definition of graphs).

Graphs might seem to be a very abstract and theoretical structure at first and
might not seem like anything valuable that we could apply to the “real world” —
which could be a reason why it evokes skepticism. We use the word “skepticism”
because one might be curious, why would anybody spend years studying such a



10 Chapter 1. Introduction

thing? What is Graph Theory, and why does it matter? I believe that Graph Theory
is one of the most beautiful of all human inventions. Many graph theorists would
agree if I say that the mathematical beauty of graphs gives us pleasure once we start
diving into it. Its abstractness, purity, simplicity, and depth are just beautiful. Never-
theless, graphs are everywhere and are indeed really useful. Let me try to convince
the readers about some important aspects of Graph Theory by discussing it from
scratch. We will later discuss more deeply some specific topics that we worked on
during my doctoral program. A good start, perhaps, is to answer the fundamental
question, that is taken as the title of this section: What is Graph Theory?

A

C

B

E

F
G

H

D

(A) (B)

FIGURE 1.2: (A) Representation of a problem with a graph, which can
be huge depending on the problem (B) Co-authorship network map

of physicians publishing on hepatitis C by Andy Lamb 1

In mathematics, Graph Theory refers to the study of graphs. In this context,
graphs are mathematical structures that are widely used to model pairwise relations
between objects. As has been written in the previous paragraph, a graph is made
up of dots that are called vertices (or sometimes called nodes) which are connected by
lines (not necessarily straight) that are called edges (or links).

1.1.1 A history of Graph Theory

The history of graphs takes us back in time to the 18th century, when Swiss math-
ematician Leonhard Euler was trying to solve a problem known as “The Seven
Bridges of Königsberg”, which was a notable problem in Mathematics. The town
of Königsberg in Prussia (now Kaliningrad, Russia) was set on both sides of the
Pregel River, which flowed through the town, creating two islands. Geographically,
the layout of the town is composed of four parts of the land, which are connected by
a total of seven bridges as shown in Figure 1.3 (A). The inhabitants of the town were
intrigued by the following question: is it possible to take a walk through the town by vis-
iting each area of the town and crossing each bridge only once? In this context, reaching an
island or mainland bank other than via one of the bridges, or accessing any bridge
without crossing to its other end, are not allowed. The walk itself does not have to
start and end at the same spot 2.

1Taken from: https://www.flickr.com/photos/speedoflife/8273922515
2However, another version of the problem states that the trip must end in the same place it began.

https://www.flickr.com/photos/speedoflife/8273922515
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In 1735, Leonhard Euler proved that the problem has no solution. He recognized
that the relevant constraints were the four parts of the land and the seven bridges.
Euler represented the object as a structure that we now acknowledge as a “modern
graph” (cf. Figure 1.3 (B)). Euler eventually extrapolated a general rule: to be able
to walk in without repeating an edge (which is later known as an Eulerian walk), a
graph can have none or two vertices of an odd degree 3; and in this case, the Königs-
berg bridge’s graph representation does not have such property. This problem leads
to the concept of “Eulerian Graph”. Since then, the field of Graph Theory has un-
dergone remarkable growth over the past centuries. Nowadays, many researchers
from all over the world explore various topics of study in Graph Theory, and its
application is finally exploding.

(A)

A

B

C

D

(B)

FIGURE 1.3: Königsberg bridge illustration 4

Another insightful example. In our previous example, Euler drew a graph where
the vertices represent different bodies of the town of Königsberg, and each edge
linking two vertices represents whether there exists or not a bridge connecting the
corresponding two cities. This shows how graphs can be used to model a problem.
Now let us look at a different scenario.

During my stay in Lyon city, I lived in the 9th district, where the closest subway
station to my flat is the station “Gare de Vaise”. Every day I had to commute by
subway to LIP, the laboratory where I was working. The closest subway station to
LIP is the station “Debourg”. Hence for efficiency, I had to find the shortest way
to reach Debourg station from Gare de Vaise station. In the following figure, you
can see a subway map containing all necessary information about the metro lines in
Lyon (see Figure 1.4).

As you can observe from the figure, the subway map is represented as a graph
where every vertex represents a subway stop, and edges represent connections be-
tween stops. On my first day in Lyon, I did not have any information about the time
needed to go from one station to another one, so I just decided to take the route that
passes through the minimum number of stops and connections. Later as I got used
to the city, I knew exactly the amount of time that it took between two stops, and the
amount of time needed to change a subway line (so in this case, to optimize the total
time to travel, I took into account the time between stops).

In Graph Theory, the problem we are dealing with is related to what is known
as the shortest path problem — which in the latter case, the edges are given a certain

3For the version where the walk starts and ends in the same place, all vertices must of even degrees.
4Taken from: https://www.maa.org/sites/default/files/images/cms_upload/Konigsberg_

colour37936.jpg

https://www.maa.org/sites/default/files/images/cms_upload/Konigsberg_colour37936.jpg
https://www.maa.org/sites/default/files/images/cms_upload/Konigsberg_colour37936.jpg
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FIGURE 1.4: The graph representing Lyon subway network

weight. And hurrah! This problem is solvable in polynomial time, and several al-
gorithms to solve it are known (even though in our case, we do not need to care too
much because the graph we are dealing with is of “small” size).

1.1.2 Graph Theory is everywhere

Graphs are helpful because they can be used to model many different situations.
In the examples that we have seen so far, the “underlying graphs” of the problems
we are investigating are pretty simple (it contains only a few vertices and edges).
However, we may go further. Instead of dealing with the Lyon subway network,
we may deal with the European railway network (consisting of all cities in Europe
that have a railway station), which yields a bigger underlying graph. Even further, in
some situations, our graph can be tremendously huge. The internet, for example, is a
vast graph, where every vertex is an individual webpage and edges telling us which
websites are linked to which others. It results in a gigantic graph (there are not just
tens or hundreds of websites out there, there are billions of them). Another example
is social media, such as Facebook or Instagram; Graph Theory is also behind them.
Graphs can easily model the friendship relation on Facebook: each person is a vertex,
and an edge connects two people if they are friends (and there are over 1.6 billion
users of Facebook, so the graph will be huge). Much research has been conducted
related to those social media, and many of them lie on Graph Theory.

A roadmap, the internet, and social media are examples of networks. A network is
a system of connected objects, and we have seen that it can be nicely visualized using
a graph: the objects in your network can be represented as vertices and the connections
represented by edges. This way, graphs can model all sorts of interconnected things.
Graph Theory is everywhere because networks are used everywhere. Graphs enable
us to model numerous problems that occur in everyday life. It is widely used in
many areas: from links between web pages to friendships in social networks, even
to connections between neurons in our brains. Graph Theory is used to model and
study all kinds of things that affect our daily lives. Wouldn’t the reader agree that
graphs have tremendous impacts on our world?
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(A) (B)

FIGURE 1.5: A friend wheel on Facebook, an example of graphs rep-
resenting social network 5

A link to algorithm. Within this deluge of interconnected data, graphs often span
billions of nodes and interactions between them. Hence, we may end up with all
kinds of drawings of graphs, even huge, messy ones. Graph Theory involves the
study concerning some specific graphs to understand their structures, including
how we can find the most important structures and summarize them. Despite its
wide applications in many real-world problems, as a mathematical field, Graph The-
ory leads us from the concrete to the abstract scenario. The motivation behind the
study of some of the graph properties goes beyond its relevance to some real-world
applications. Their natural relation to other mathematical preexisting concepts, or
their mathematical beauty, is sometimes more fascinating to explore. Hence, our
study is not limited to types of graphs actually arising in the real-world situation,
but we could go far beyond that.

Furthermore, as an integral part of Computer Science topics, Graph Theory also
concerns with algorithms. In this context, the area of Structural Graph Theory deals
with establishing results that characterize various properties of graphs and utilizing
them in the design of efficient algorithms and other applications. Graph optimiza-
tion, for instance, deals with the problem of maximizing or minimizing some function
relative to some set (such as the set of vertices, or edges, or a combination of the two),
which allows comparison of the different choices for determining which could be the
“best” solution. There are much interesting decision and optimization problems that
people encounter while exploring Graph Theory. Among all topics studied in this
area, some of them can be solved efficiently, i.e. in polynomial time (for instance,
the shortest path problem that we discussed in the beginning). Nevertheless, many
challenging problems are not polynomial-time solvable for the general graphs. Some
known and well-studied problems of that kind are coloring, maximum independent set,
maximum clique, and minimum clique cover problems (we will explain them hereafter).
These problems play an important role in Graph Theory. However, they are NP-hard
in general [Kar72], which means that it is unlikely that efficient/polynomial-time al-
gorithms exist for these problems. Even worse, they are not approximable within
O(n1−ε) for any ε > 0 unless P = NP [Zuc06].

5Taken from: http://www.visualcomplexity.com/vc/project.cfm?id=501)

http://www.visualcomplexity.com/vc/project.cfm?id=501)
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1.2 Literature review

We first of all remark that we postpone the definition of some basic terminology and
notations that are used in this section to Section 1.3.

In some classes where the graphs are “well-structured”, the optimization prob-
lems mentioned above (namely coloring, maximum independent set, maximum
clique, and minimum clique cover) become polynomial-time solvable. Some exam-
ples of the classes for which those problems are polynomial time solvable are the
class of forests (i.e. graphs with no cycle), the class of chordal graphs (i.e. graphs that
do not contain any hole), and the famous class of perfect graphs (that forbids odd
holes and odd antiholes; we will discuss it a bit later). On the other hand, the col-
oring problem remains “difficult” when the graphs do not contain the triangle (i.e.
clique on three vertices, cf. Figure 1.11), even though excluding the triangle seems
to impose a lot of structure on the input graph. For example, determining whether a
graph is 3-colorable remains NP-complete for triangle-free graphs with a maximum
degree of 4 [MP96]. Therefore, one main concern in the area of Structural Graph
Theory typically addresses the following question: what structurally yields efficiency
optimization algorithms for graph classes? In these circumstances, we examine how for-
bidding certain substructures as an induced subgraph affects the overall structure of
graphs in the class.

(A) (B)

FIGURE 1.6: A tree and a forest, graph classes in which many opti-
mization problems are efficiently solvable

Let us now explain in more detail the four optimization problems that we men-
tioned earlier. Along with it, we introduce three graph parameters that are related
to those optimization problems. Computing any of them for general graphs is well-
known to be NP-hard [Kar72].

• Recall that a clique in graph G is a set of pairwise adjacent vertices. The clique
number of G, denoted by ω(G), is the size of the largest (in terms of cardinality)
clique in G. The maximum clique problem asks for a maximum clique of the
given input graph.

• An independent set or stable set of a graph G is a subset of vertices of G that
are pairwise non-adjacent. The independence number (or stability number) of G,
denoted by α(G), is the size of the largest independent set in G. In the maxi-
mum independent set problem, the input is a graph, and we want to find an
independent set of the maximum cardinality in the graph.

• Coloring (our concern here is vertex coloring) is an assignment of labels called
“colors” to the vertices of a graph so that no two adjacent vertices receive the
same color (such a coloring is often called proper). The objective is to minimize
the number of colors in a coloring of a graph. The chromatic number of G, de-
noted by χ(G), is the smallest number of colors needed to color the vertices
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of G properly. Equivalently, one can define the chromatic number of G that is
the smallest k such that V(G) can be partitioned into k independent sets. A
coloring of G with χ(G) colors is called an optimal coloring of G.

• A clique cover is a partition of the vertices of a graph into cliques. A minimum
clique cover is a clique cover that uses as few cliques as possible. The minimum
size of the clique cover of graph G is denoted by θ(G). A clique cover of a
graph G may be seen as a coloring of the complement graph of G. Note that
colorings are partitions of the set of vertices but into independent sets (instead
of cliques).

Another interesting yet very important combinatorial problem is graph recogni-
tion. We aim to find out if there exists an efficient algorithm to recognize certain
graph classes (for example, whether the input graph belongs to some class, e.g. bi-
partite, perfect, etc.). For that purpose, we often need to detect the existence of some
specific structures of the input graph, so it is crucial to understand what structure
exists or not in the graphs of the class being studied.

1.2.1 Hereditary classes of graphs

In graph theory, a graph property or graph invariant is a property of graphs that de-
pends only on the abstract structure, not on the graph representations such as par-
ticular labelings or drawings of the graph. A graph property P is hereditary if it is
“inherited” by its induced subgraphs, that is, if every induced subgraph of a graph
with property P also has property P. Hereditary properties provide a general per-
spective to study many graph properties, which can be a tool to understand what
structural properties enable efficient recognition and optimization algorithms. In
this section, we discuss a particular hereditary property of graphs.

Let H be a graph. A graph G is H-free if it does not contain H (as an induced
subgraph). For a family of graphs H, G is H-free if for every H ∈ H, G is H-free.
A class of graphs that is H-free for some H is hereditary, or equivalently, the class
is closed under taking induced subgraphs. For instance, a class of graphs that do not
contain any even hole, or even-hole-free graphs (which is in the title of this thesis)
is hereditary, because if G does not contain any even hole, then neither does any
induced subgraph of G. The converse of the statement also holds: every hereditary
class I is defined by a set of (minimal) forbidden structures, i.e. there is a set of graphs
H such that I is H-free for every H ∈ H.

In recent years, many classes of graphs defined by excluding a family of induced
subgraphs have been studied, perhaps initially motivated by the study of perfect
graphs (will be explained in more detail in Section 1.2.4). Typical questions in this
field were whether excluding induced subgraphs affects the global structure of the
particular class in a way that allows us to bound some parameters such as χ and
ω, or to construct combinatorial algorithms for problems such as maximum clique,
maximum independent set, coloring, minimum clique cover, or the graph recogni-
tion problem.

A motivating example. An example of classical hereditary graph classes that have
interesting properties is the class of chordal graphs, namely the class of graphs that do
not contain holes (i.e. chordless cycles of length at least 4). It turns out that excluding
holes yields a graph class possessing some nice structure, that are useful to solve al-
gorithmic problems such as coloring, maximum independent set, maximum clique,
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and minimum clique cover in polynomial time. If a connected graph is chordal,
then either the graph is complete or it contains a complete subgraph whose removal
disconnects the graph into two smaller pieces. Furthermore, chordal graphs can be
characterized by the so-called perfect elimination ordering, namely an ordering of the
vertices of the graph such that, for each vertex v, v and the neighbors of v that occur
after v in the order form a clique. This characterization is helpful, for instance, to
solve the maximum clique problem in linear time. Indeed, a chordal graph can have
only linearly many maximal cliques (while non-chordal graphs may have exponen-
tially many). We can list all maximal cliques of a chordal graph by finding a perfect
elimination ordering of the graph, form a clique for each vertex v together with the
neighbors of v that appear later than v in the perfect elimination ordering, and test
whether each of the resulting cliques is maximal.

Are all hereditary families friendly with algorithmic purposes? Naturally, one
might think that excluding “small” graphs would impose some structure on the
class of graphs from where they being excluded. This often works, for instance,
in the class of chordal graphs that we have just discussed: excluding all holes im-
plies the graphs to have a simple structure that is suitable for algorithmic purposes.
However, this does not always hold in general. As we have discussed earlier, exclud-
ing the triangle (i.e. K3 or C3) produces graphs that do not contain a large clique,
which might be an indication that the graphs have a constant bound on the num-
ber of colors needed to (vertex) color the graphs. However, it is not the case be-
cause, in 1955, Jan Mycielski developed graphs that preserve the property of being
triangle-free and increments the chromatic numbers. These are known as Mycielski
graphs, they are triangle-free but may have an arbitrarily large chromatic number,
i.e. χ(G) ≤ f (ω(G)) does not hold for this family of graphs. Another example is the
class of graphs that do not contain an independent set of size three. Graphs in this
class are highly connected, but it turns out that computing ω(G) for some graph G
cannot be done in polynomial time, unless P = NP [Pol74]. We are interested in the
hereditary families of graphs with properties that are easy to handle structurally and
algorithmically.

1.2.2 Dealing with large graphs: graph decomposition

When working with “small” graphs, we can easily understand the structure of the
graphs. Hence solving computational problems is straightforward. One then would
ask: what if we are dealing with massive and complex graphs? An approach that has been
proved to be robust for this purpose, especially on hereditary classes of graphs, is
by applying the graph decomposition techniques. Roughly speaking, decomposing a
graph means “cutting” the graphs along the so-called cutsets until they cannot be
decomposed anymore.

Definition 1.2.1 (Separator or cutset). Given a connected graph G, a separator or a cutset
of G is a set of vertices S ⊆ V(G) such that removing S from G disconnects G; that is, the
graph induced by V(G) \ S contains at least two connected components.

By decomposing a graph, we obtain a set of simpler graphs called basic graphs
and a list L of graph compositions. In this context, a decomposition theorem tells us
that every graph in some class C of graphs can be “broken down” in a tree-like fashion:
internal nodes correspond to decompositions inL and leaves correspond to the basic
graphs. A decomposition theorem can be formulated as follows.
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Theorem 1.2.2 (Structure theorem)

If G belongs to class C, then either G is basic or G has a “special” cutset, meaning
that it can be built from smaller graphs G′ and G′′ that are also in C using a
prescribed composition operation in L.

Decomposition is a general concept that plays a vital role for theoretical purposes
and algorithms for many classes of graphs. As pointed out by Vušković ([Vuš13]),
decomposition allows us to understand complex structures of the graphs by break-
ing them down into simpler pieces of graphs that are easier to study. Once these
more superficial structures are understood, this knowledge is propagated back to
the original structure by understanding how their composition behaves. The proof
of decomposition theorem usually consists of a sequence of structures present in the
graph to be decomposed in a specific order. Once a structure is decomposed, one
may assume that the graph does not contain the structure for the rest of the proof.
The key of every decomposition theorem is to find such sequence/order.

Decomposition techniques have been widely used in the study of graph struc-
ture, for instance in the study of the celebrated perfect graphs that we discussed ear-
lier. It is also used in the design of algorithms (such as answering decision problems
or designing recognition algorithms) in a divide-and-conquer approach or dynamic pro-
gramming. With this approach, the graph is recursively decomposed into a hierarchy
of components, so that we obtain a set of simple enough graphs for which the prob-
lem we want to solve is “easy” to handle. The solutions of each of the components is
then gradually pieced into larger components in a recursive way to give a solution
to the problem on the original graph.

The key attribute that a problem must have in order this approach to be appli-
cable is an optimal substructure, that is, when decomposing the graph, the result
of the decomposition should be “easy” to handle. It is then essential to derive the
best decomposition theorem (if any) that supports this goal. In this case, the choice
of separators used to decompose the graph is crucial. Depending on class C and
the aim of the study, the basic graphs and separators must have some properties
that fit our goal when using the decomposition theorem. In many cases, such as for
detection algorithm, we sometimes require that the decomposition theorem is class-
preserving, meaning that the graphs obtained from the decomposition are still in the
class. Moreover, to support the divide-and-conquer approach, it is also necessary
that the separators used to decompose the graph are of small size. Hence, there are
two main concerns on choosing a separator: the structure and the size of the separa-
tor.

A classical decomposition. Let us now describe an example of a classical decom-
position that has been widely studied and is often chosen as the first step to decom-
pose the graph being studied. This is called clique cutset decomposition. Recall that a
clique is a set of pairwise adjacent vertices in a graph, so a clique separator or a clique
cutset is simply a separator that induces a clique. The clique cutset decomposition
was first introduced by Tarjan in [Tar85].

Definition 1.2.3 (Clique cutset decomposition, [Tar85]). Given a connected graph G
that has a clique separator C. Decomposing G using C partition V(G) into three vertex sets
A, B, C such that no edges from A to B present in the graph. The graphs GA = G[A ∪ C]
and GB = G[B ∪ C] are called blocks of the clique decomposition.

Note that removing a clique from a graph may give several connected compo-
nents (at least two of them) — so there are possibly several options of the blocks of
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decomposition when we decompose a graph using some particular clique separator.
We can repeat the decomposition process for every block of the decomposition as
long as a clique separator exists, until no further clique decomposition is possible.
We obtain a collection of subgraphs of G, each of which does not contain a clique
separator — these are called atoms. Those atoms are joined together in a hierarchy
that forms the entire graph G, and such a hierarchy can be represented using a bi-
nary tree that is called binary decomposition tree (cf. Figure 1.7). The leaves of the tree
form a set of atoms, and the internal nodes form a set of separators used to decom-
pose the graph. The binary decomposition tree that corresponds to the given graph
is not unique (see the example in Figure 1.7).

{a, c, e}

{a, e}

{a, e}

{a, b, c, e} {a, d, e} {a, b, c, e}

{a, c, e} {a, d, e}

b

a

dc

e

FIGURE 1.7: An example of graph and its corresponding binary de-
composition trees (from the paper of Tarjan [Tar85])

In the paper of Tarjan [Tar85], an algorithm to find a decomposition by clique
separators in time O(nm) is presented, where n and m respectively denote the size
of the vertex-set and the size of the edge-set of the input graph. Note that graph
combinatorial problems such as coloring, maximum independent set, and maximum
clique can be solved efficiently using a divide-and-conquer approach by combining
the solutions on the atoms to obtain a solution for the entire input graph.

We note that many other types of decompositions exist; each of them has its ad-
vantages and drawbacks that may not be suitable for our purpose. We have seen that
clique cutset decomposition can be applied for solving graph problems in a divide-
and-conquer fashion. However, we should note that having no clique separator does
not mean that the graph has a “nice” structure that is easy to deal with. Moreover,
clique separators (as well as other type of separators) are better when it has a small
size. Indeed, if the overlap is large, then the divide-and-conquer approach is not so
promising, because the graphs obtained by decomposing the original graph might
be not significantly simpler than the original graph, i.e. they might be as complex
as the original graph. Therefore, when decomposing a graph, we often need to use
several types of separators and to be able to combine them systemically — this has
also been one of the main concerns when one applies the graph decomposition tech-
niques.

1.2.3 Parameters for graph complexity

Many combinatorial problems (such as coloring, maximum independent set, max-
imum clique, or minimum clique cover) which are NP-hard in general become
polynomial-time solvable when the graph classes are pretty restricted (in the sense
that they forbid many configurations as induced subgraphs). One question that
might be of interest is the following: is there a characterization of graph classes for which
those aforementioned algorithmic problems are polynomial-time solvable? Furthermore, it
is known that many NP-hard problems can be solved efficiently on trees. Therefore,
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it seems natural to ask the following question: could it be true that if our graph re-
sembles a tree, then some (if not all) graph problems are efficiently solvable for the graph?.
Throughout this section, we will investigate these questions.

The above-aforementioned questions are both answered affirmatively. One can
define a parameter that measures how close a graph from being a tree (in some sense
that we will explain later); and when our graph is “close” to being a tree, then many
graph problems are polynomial-time solvable. Such a parameter is known as tree-
width. Intuitively, a graph with low tree-width is “simple” and admits a tree-like
structure (which we usually hope for). Robertson and Seymour popularized the no-
tion of tree-width through their analysis of Graph Minor Theory6. Tree-width is an
important graph parameter that is applicable for solving many algorithmic prob-
lems. Many results show that NP-hard problems can be solved in polynomial time
on classes of graphs with bounded tree-width (see a survey given by Bodlaender
[Bod93b]). For instance, Courcelle et al. [Cou90] described a unified approach to the
efficient solution of many combinatorial problems on graph classes of bounded tree-
width via the expressibility of the problems in terms of specific logical expression
that is called monadic second-order logic.

Theorem 1.2.4 (Courcelle et al. [Cou90])

Every graph property definable in the monadic second-order logic of graphs can
be decided in linear time on graphs of bounded tree-width.

However, it is NP-complete to determine whether a given graph G has tree-width
at most a given variable k [ACP87]. Nevertheless, when k is any fixed constant,
graphs with tree-width at most k can be recognized, and a width k tree decomposi-
tion can be constructed in linear time [Bod93a]. It is therefore of interest to bound the
tree-width of certain classes of graphs. There are several other parameters to mea-
sure graph complexity that are closely related to tree-width, such as path-width, rank-
width, and clique-width (there are many other parameters that are not in the scope
of our discussion, see [HW17] for a list of them), and they are all bounded one by
another.

Similar to tree-width, clique-width of a graph G is a parameter that describes the
structural complexity of the graph. Courcelle, Engelfriet, and Rozenberg [CER93]
formulated the concept in 1990. It turns out to be fruitful because it allows
many hard problems to become tractable on graph classes of bounded clique-width
[CMR00] (including coloring and maximum independent set). While bounded tree-
width implies bounded clique-width, the converse is not true in general. Clique-
width is closely related to tree-width, but unlike tree-width (for which boundedness
requires graph classes to be sparse), clique-width can be bounded even for dense
graphs (for instance, n-vertex complete graphs have clique-width 2 but tree-width
n − 1). Hence, clique-width is particularly interesting in the study of algorithmic
properties of hereditary graph classes.

A graph parameter that is equivalent to clique-width (in the sense that one is
bounded if and only if the other is bounded) is called rank-width, where the following
bound holds: rw(G) ≤ cw(G) ≤ 2rw(G)+1. Oum and Seymour first introduced this
notion in [OS06], where they use it to obtain an approximation algorithm for clique-
width. They also show that rank-width and clique-width are equivalent, in the sense
that a graph class has bounded rank-width if and only if it has bounded clique-width

6It is believed that the concept had been previously used by Halin in 1976, under a different name.
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(see [HW17; DJP19] for surveys about them). Let us now define the three notions
mentioned above formally.

Tree-width. We begin by defining the so-called tree decomposition of a graph G, that
is, a pair (T, {Xt}t∈V(T)), where T is a tree where every node t is assigned a vertex
subset Xt ⊆ V(G), called a bag, such that the following three conditions hold:

(i)
⋃

t∈V(T) Xt = V(G), i.e., every vertex of G is in at least one bag.

(ii) For every uv ∈ E(G), there exists a node t of T such that bag Xt contains both
u and v.

(iii) For every u ∈ V(G), the set Tu = {t ∈ V(T) : u ∈ Xt}, i.e., the set of nodes
whose corresponding bags contain u, induces a connected subtree of T.

Example of graphs and their tree decompositions are given in Figure 1.8. The
width of tree decomposition (T, {Xt}t∈V(T)) equals maxt∈V(T) |Xt| − 1, that is, one
less from the maximum size of its bags. The tree-width of a graph G, denoted by
tw(G), is the minimum possible width of a tree decomposition of G. Note that a
tree itself is a tree decomposition that has tree-width 1 (this is also the reason for the
existence of minus 1 in the definition of tree-width; we want that the tree-width of
trees to be 1).
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FIGURE 1.8: A tree graph (top), a cycle (bottom), and their corre-
sponding optimal tree decompositions

To compute the tree-width of a graph, one can compute the chordalization of the
graph. We say that a graph H is a chordalization of graph G, if H contains G as a
subgraph, and H is chordal. The tree-width of G is defined as one less from the min-
imum over the clique number of the chordal graphs that contain G, i.e. the following
holds:

tw(G) = min
H is a chordalization of G

ω(H)− 1

Despite its algorithmic implications, the motivation behind tree-width was not
initially related to algorithms. The notion was invented when Robertson and Sey-
mour were trying to solve Wagner’s conjecture, which says that, in an infinite set
of graphs, one of them is a minor of another. Tree-width has been effective for
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profound hypothetical investigation of graph minor structure and algorithmic ap-
plications. Specifically, numerous NP-hard issues can be tackled productively if the
input graph belongs to a class of graphs of bounded tree-width. However, graphs of
bounded tree-width are usually limited to “sparse” graph classes. For dense graphs,
a parameter similar to tree-width does exist, as we explain below.

Clique-width. The clique-width of a graph G (denoted by cw(G)) is defined as the
minimum number of labels required to construct G by means of the following four
operations: (i) creation of a new vertex v with label i; (ii) joining by an edge every
vertex labeled i to every vertex labeled j, where i 6= j; (iii) renaming label i to label j;
and (iv) taking disjoint union of two labeled graphs G and H. A sequence of these
operations that constructs the graph using at most k labels is called a k-expression.
In this thesis, however, we will never compute the clique-width of the graph classes
being discussed (we define it to make sure that we are in total agreement). Having
bounded clique-width is a weaker property than having bounded tree-width (re-
call the following inequality: cw(G) ≤ 3 · 2tw(G)−1), but it still has nice algorithmic
applications.

Rank-width. Generally speaking, the rank-width of a graph is the minimum inte-
ger k such that the graph can be decomposed into a tree-like structure with leaves
correspond to the vertices of the original graph, by recursively splitting its vertex
set so that each cut induces a matrix of rank at most k. Let us present some useful
notion and definition about rank-width.

For a set X, let 2X denote the set of all subsets of X. For sets R and C, an (R, C)-
matrix is a matrix where the rows are indexed by elements in R and columns are
indexed by elements in C. For an (R, C)-matrix M, if X ( R and Y ( C, we let
M[X, Y] be the submatrix of M where the rows and the columns are indexed by X
and Y respectively. For a graph G = (V, E), let AG denote the adjacency matrix of G
over the binary field (i.e., AG is the (V, V)-matrix, where an entry is 1 if the column-
vertex is adjacent to the row-vertex, and 0 otherwise). The cutrank function of G is
the function cutrkG : 2V →N, given by

cutrkG(X) = rank(AG[X, V \ X]),

where the rank is taken over the binary field.
A tree is a connected, acyclic graph. A leaf of a tree is a vertex incident to exactly

one edge. For a tree T, we let L(T) denote the set of all leaves of T. A tree vertex that
is not a leaf is called internal. A tree is cubic, if it has at least two vertices and every
internal vertex has degree 3.

A rank decomposition of a graph G is a pair (T, λ), where T is a cubic tree and
λ : V(G) → L(T) is a bijection. If |V(G)| ≤ 1, then G has no rank decomposi-
tion. For every edge e ∈ E(T), the connected components of T \ e induce a partition
(Ae, Be) of L(T). The width of an edge e is defined as cutrkG(λ

−1(Ae)). The width of
(T, λ), denoted by width(T, λ), is the maximum width over all edges of T. The rank-
width of G, denoted by rw(G), is the minimum integer k, such that there is a rank
decomposition of G of width k. (If |V(G)| ≤ 1, we let rw(G) = 0.)

The following remark will be used several times.

Remark 1. When computing the tree-width of a graph G, we may always assume that
G has no clique cutset. Indeed, if G contains a clique cutset S, which partition the
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graph induced by V(G) \ S into a set of connected components G1, G2, . . . , Gk, then

tw(G) = max
1≤i≤k

tw(G[Gi ∪ S])

Let Ti be an optimal tree decomposition of the graph Gi ∪ S, and let Bi be a bag of
Ti which contains the vertices of S (note that such a bag exists because S is a clique).
Then it is possible to obtain an optimal tree decomposition of G by “gluing” each Ti
along Bi. For instance, such a gluing can be done by adding a bag B containing S,
and adding an edge from the node B to the node Bi for every 1 ≤ i ≤ k. Note that
identifying two trees at a vertex yields a tree.

1.2.4 Why even-hole-free graphs?

Recall that a graph is called even-hole-free7 if it does not contain even hole (as an
induced subgraph). At this point, one might wonder, among many hereditary graph
classes, why do we choose to study the class of even-hole-free graphs? The reason why
“even-hole-free graphs” is written on the title of this thesis is not just an arbitrary
choice because nobody has examined it yet. This last section of this chapter is de-
voted to answering this principal question.

So, why is the class of even-hole-free graphs intriguing? To begin with, let us
bring our attention back to the class of perfect graphs. The class of perfect graphs
seems to be the hereditary class of graphs which drawn the most attention and has
been widely studied over the past years. Recall the four graph parameters (χ, α,
ω, and θ) that we mention at the beginning of this chapter. Note that the relation:
χ(G) ≥ ω(G) holds for any graph G, since a clique of size k needs at least k different
colors in any proper coloring of G (since the vertices of the clique have to be colored
differently). Hence, the clique number gives a natural lower bound for the chromatic
number of a graph. However, for which graphs does the equality hold? When the
chromatic number of every induced subgraph equals the order of the largest clique
of that subgraph, i.e. χ(H) = ω(H) for every induced subgraph H of G, we say that
the graph G is perfect. Obviously, not all graphs are perfect, because every odd hole
C2k+1 satisfies ω(C2k+1) = 2, but χ(C2k+1) = 3, and by similar reasoning one can
show that every odd antihole is also not perfect. Hence, odd holes and odd antiholes
are obstructions8 to a graph being perfect. Are there any other obstructions?

A long-standing conjecture by Claude Berge in 1961 asserted that a graph is per-
fect whenever the graph does not contain odd holes and odd antiholes. This conjecture
was known as the Strong Perfect Graph Conjecture, and any graph that forbids such
configurations is called Berge graph. A long-term study of this class finally proved
the conjecture, yielding an essential theorem in Structural Graph Theory, namely the
celebrated Strong Perfect Graph Theorem that was proved by Chudnovsky, Robert-
son, Seymour, and Thomas in 2002 (the result was published in 2006, see [Chu+06]).
The proof of the Strong Perfect Graph Theorem is long and technical, and is based
on a deep structural decomposition of Berge graphs. They show that every Berge
graph with the chromatic number k contains a clique on k vertices, which yields the
following.

Theorem 1.2.5 (Strong Perfect Graph Theorem [Chu+06])

A graph is perfect if and only if it is a Berge graph.

7We will sometimes abbreviate it as ehf.
8An obstruction is a structure that is forbidden from belonging to a given graph family.
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Recognizing perfect graphs can be done in polynomial-time [CLV03]. Also, in all
perfect graphs, the optimal coloring, maximum clique, maximum independent set,
and minimum clique cover problems are all known to be polynomial-time solvable
[GLS88]. However, the proof relies on the so-called ellipsoid method from linear pro-
gramming (which is impractical), and in some sense, uses less combinatorial struc-
ture of the class. Surprisingly, the structural description of perfect graphs does not
seem to help much to obtain a purely combinatorial polynomial-time algorithm to
solve any of the optimization problems. This is one of the fundamental questions in
this area that remains open. Nevertheless, the decomposition technique used to prove
the theorem has been successfully applied in other graph classes, and in particular
for claw-free graphs (see Figure 1.11 for claw). There is a nice survey on the class of
perfect graphs written by Trotignon (see [Tro13]). In Table 1.1, we give a summary
of the complexity results of the five problems we mentioned above.

However for the class of odd-hole-free graphs (which is a superclass of the class
of Berge graphs), most of those problems are NP-complete. The NP-completeness of
computing ω follows from the result of Poljak [Pol74]. In the paper, Poljak proves
that for a given graph G, and a graph G′ obtained from G by subdividing twice
every edge of G, we have the following relation: α(G′) = α(G) + |E(G)|. Since
computing α for any graph is NP-complete, computing α is also NP-complete for
(C4, C5)-free graphs, because given any graph, one can obtain a (C4, C5)-free graph
by subdividing every edge in the graph twice. A class of (C4, C5)-free graphs forms
a subclass of odd-hole-free graphs. Computing χ is also NP-complete for odd-hole-
free graphs. This is because computing θ is NP-complete for the class of planar (K4,
diamond, C4, C5)-free graphs [Krá+01] (note that the complement of this class is a
subclass of odd-hole-free graphs). Finally, computing α is also NP-complete for this
class of graphs, which follows from the fact that coloring (C3, C4, C5)-free graphs
is NP-complete [LM17] (and again, the complement of this class forms a subclass
of odd-hole-free graphs). Finally, recognition problem can be done in polynomial-
time [Chu+20].

From perfect graphs to even-hole-free graphs

Knowing perfect graphs, out of curiosity one might think of the following di-
chotomy: if excluding odd holes and odd antiholes enforces some structure, what can
we say about the class excluding even holes or even antiholes?

The study of even-hole-free graphs was initially motivated by perfect graphs
when researchers were trying to develop a technique to “decompose” Berge graphs
(that we presented in the previous subsection). The decomposition technique de-
veloped during the study of even-hole-free graphs led to proving the Strong Perfect
Graph Theorem. The study establishes that these two classes have a similar de-
composition (we postpone further discussion about the decomposition of the two
classes into Chapter 2). Observe that by excluding a hole of length 4 (i.e square, cf.
Figure 1.11), we implicitly exclude all antiholes of length at least 6 (because such
an antihole always contains a square). Hence, compared to odd-hole-free graphs
(which is a superclass of perfect graphs), there is a “closer similarity” between even-
hole-free graphs and perfect graphs.

Despite its similarity with the class of perfect graphs, the class of even-hole-free
graphs is also interesting on its own. The class has received much attention for the
past years; Vušković [Vuš10] wrote a survey on problems on this class. The study
of this topic is also motivated by their connection to β-perfect graphs introduced by
Markossian et al. [MGR96]. For a graph G, define β(G) = max{δH + 1} where H
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is an induced subgraph of G, and δG is the minimum degree of a vertex in G. Con-
sider a total ordering of vertices of G by repeatedly removing a vertex of minimum
degree in the subgraph of vertices not yet chosen and placing it after all the remain-
ing vertices but before all the vertices already removed. Coloring greedily on this
order shows that χ(G) ≤ β(G), and we say G is β-perfect if χ(H) = β(H) for every
induced subgraph H of G. It is easy to see that β-perfect graphs are even-hole-free
(note that β(C2k) = 3 and χ(C2k) = 2 for k ≥ 2). Indeed, Markossian et al. [MGR96]
show that G (and G) is β-perfect if and only if it does not contain an even hole or an
even antihole, which is an interesting analog of the Strong Perfect Graph Theorem.
This idea motivates us to ask what types of structural tools might give new insights
for even-hole-free graphs.

A decomposition theorem and a recognition algorithm are known for this class
(see Chapter 2 for further discussion). However, while the coloring, the maximum
independent set, and the clique cover problems are polynomial-time solvable for
perfect graphs, those problems are still open for even-hole-free graphs. On the
other hand, finding a maximum clique of an even-hole-free graph can be done
in polynomial time, since square-free graph has polynomial number of maximal
cliques [Far89] and one can list them all in polynomial time. However, on the posi-
tive side, it is known that even-hole-free graphs are χ-bounded (i.e. there exists a func-
tion f s.t. for every induced subgraph H of an even-hole-free graph G, we have the
relation χ(H) ≤ f (ω(H))), in particular, χ(H) ≤ 2ω(H)− 1 for every H [Add+08;
Add+20].

Perfect OHF EHF
Recognition P [Chu+05] P [Chu+20] P [Con+02b]

ω P [GLS88] NPC [Pol74] P [Far89]
α P [GLS88] ? ?
χ P [GLS88] NPC [Krá+01] ?
θ P [GLS88] NPC [LM17] ?

TABLE 1.1: Complexity of algorithmic problems on perfect graphs,
odd-hole-free graphs, and even-hole-free graphs

Truemper configurations, a link between perfect graphs and even-hole-free
graphs

How are the class of perfect graphs and even-hole-free graphs related one to the
other? In this part, we introduce some configurations that play an essential role in
the class structure of even-hole-free graphs.

A pyramid is a graph made of three chordless paths P1 = x . . . a, P2 = x . . . b,
P3 = x . . . c, each of length at least 1, two of which have length at least 2, internally
vertex-disjoint, and such that abc is a triangle and no edges exist between the paths
except those of the triangle and the three edges incident to x. The vertex x is called
the apex of the pyramid. Such a pyramid is also referred to as a 3PC(abc, x) or a
3PC(∆, ·) (3PC stands for 3-path-configuration).

A prism is a graph made of three vertex-disjoint chordless paths P1 = a . . . a′,
P2 = b . . . b′, P3 = c . . . c′ of length at least 1, such that abc and a′b′c′ are triangles and
no edges exist between the paths except those of the two triangles. Such a prism is
also referred to as a 3PC(abc, a′b′c′) or a 3PC(∆, ∆).
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A theta is a graph made of three internally vertex-disjoint chordless paths P1 =
a . . . b, P2 = a . . . b, P3 = a . . . b of length at least 2 and such that no edges exist
between the paths except the three edges incident to a and the three edges incident
to b. Such a theta is also referred to as a 3PC(a, b) or a 3PC(·, ·).

Observe that the lengths of the paths in the three definitions above are designed
so that the union of any two of the paths induces a hole. A wheel is a graph formed
from a hole H together with a vertex x that has at least three neighbors in the hole.
Such a hole H is called the rim, and such a vertex x is called the center of the wheel.
We denote by (H, x), the wheel with rim H and centered at x.

FIGURE 1.9: Prism, pyramid, theta, and wheel (solid lines represent
edges and dashed lines represent paths of length at least one)

Some authors refer to K4 (the complete graph on four vertices) as a wheel, but
in this thesis we do not. A 3-path-configuration is a graph isomorphic to a prism, a
pyramid, or a theta. A Truemper configuration is a graph isomorphic to one of the 3-
path-configurations or a wheel. They appear in a theorem of Truemper [Tru82] that
characterizes graphs whose edges can be labeled so that all chordless cycles have
prescribed parities (see [Tru82] for more details). The 3-path-configurations seem to
have first appeared in a paper of Watkins and Mesner [WM67]).

The configurations that Truemper identified in the theorem play an essential role
in understanding the structure of several objects, such as perfect graphs and even-
hole-free graphs. A study of classes of graphs forbidding Truemper configurations
has been done over these past years, a survey on research in this area is available,
written by Vušković [Vuš13]. As explained in the survey, Truemper configurations
play an essential role in analyzing several important hereditary graph classes. Note
that in each of the 3-path configurations, at least two paths must have the same
parity. Hence, pyramids always contain an odd hole, and thetas and prisms always
contain an even hole. Moreover, every wheel that has an even number of spokes
always contains an even hole. So, perfect graphs are pyramid-free while even-hole-free
graphs are (theta, prism, even wheel)-free. Many decomposition theorems for graph
classes are proved by studying how some Truemper configurations are contained in
the graph attached to the rest of the graph. In particular, attachments to a Truemper
configuration are often used to provide a contradiction when one is working with
Berge graphs or even-hole-free graphs. A famous example is in the study of the
class of perfect graphs, which is a class that excludes pyramids but may contain
prisms. By studying how graphs are structured around prisms, in the sense that how
the rest of the graph is attached to the prisms contained in the graph, one obtains
the decomposition theorem for perfect graphs, which leads to the celebrated Strong
Perfect Graph Theorem [Chu+06]. We will see that this is also the case when discussing
even-hole-free graphs in Chapter 3.

Despite its relation to perfect graphs and even-hole-free graphs, classes of graphs
that forbid some of the Truemper configurations are also intriguing. When a graph
does not contain any of the Truemper configurations, it turns out that the graph is
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structured very nicely — we call such a graph universally signable. This characteri-
zation of universally signable graphs is then used to obtain the following decompo-
sition theorem (cf. Theorem 1.2.6), from which one can derive efficient algorithms
for finding the size of the largest clique, or the largest independent set, or the small-
est clique cover, or coloring the class. Hence, along with the goal mentioned in the
previous paragraph, we would also like to understand better the classes defined by
excluding Truemper configurations.

Theorem 1.2.6 (Universally signable graphs [Con+97])

A connected (3PC(·, ·), 3PC(∆, ·), 3PC(∆, ∆), wheel)-free graph is either a clique
or a hole, or it has a clique cutset.

Among many classes that forbid Truemper configurations, the most exciting
thing for us is the class of theta-free graphs. Indeed, theta-free graphs generalize
claw-free graphs (since a theta contains claws each centered at the end of the three
paths). Hence it is natural to ask whether it shares the essential features of claw-free
graphs: a structural description (see [CS08]), a polynomial-time algorithm for the
maximum independent set (see [FOS11]), an approximation algorithm for the chro-
matic number (see [Kin09]), and a polynomial χ-bounding function (see [Hal87]).
Furthermore, note that this is a superclass of even-hole-free graphs. Chapter 3 dis-
cusses a specific subclass of theta-free graphs, that is, when the triangle are excluded.

Detecting Truemper configurations. Detecting the presence of some of the Truem-
per configurations in some given graph is of interest. Even though pyramids,
prisms, and thetas seem to have similar features, testing for their presence in some
graphs has different complexity. The table below gives a resume of the complexity
for detecting some of the Truemper configurations.

Structure Complexity Reference
Theta O(n11) [CS10]
Pyramid O(n9) [Chu+05]
Prism NPC [MT13]
Wheel NPC [DTT13]
Theta or pyramid O(n7) [MTV08]
Theta or prism O(n35) [CK08]
Theta or wheel O(n4m) [RTV20]
Pyramid or prism O(n5) [MT13]
Pyramid or wheel NPC [DTT13]
Prism or wheel NPC [DTT13]
Theta, pyramid, or prism O(n7) [MT13; MTV08]
Theta, pyramid, or wheel O(n3m) [Dio+20]
Theta, prism, or wheel O(n4m) [Dio+20]
Pyramid, prism, or wheel NPC [DTT13]
Theta, pyramid, prism, or wheel O(nm) [Con+97; Tar85]

TABLE 1.2: Complexity of detecting Truemper configurations (n and
m respectively denote the number of vertices and edges in the input

graph)
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1.3 Terminology

This section introduces some formal mathematical notions about graphs that will
be used throughout this thesis. Other advanced notions and terminology will be
defined later in the relevant sections/subsections.

Graphs. As we have seen in the previous paragraphs, a graph is a mathematical
structure consisting of vertices (singular: vertex) or nodes9 that are connected by edges.
More formally, a graph G is a pair of sets (V, E), where V is a finite non-empty set of
vertices, and E is a finite set of edges, each of which has two associated vertices, i.e.
every edge e is a set containing two vertices {u, v}. The sets V and E are the vertex-set
and the edge-set of G, and are denoted by V(G) and E(G).

Sometimes to represent our data, we need to associate a direction with the edges
to indicate a one-way relationship. For this purpose, we assign a direction to the
edges of the graphs, which naturally defines directed graph. A graph that is not
directed is called undirected. Sometimes we allow that more than one edge present
between two vertices (this is called multiple edges), or allow the existence of an edge
that ends in a single vertex (this is called loop). Graphs that do not have loops or
multiple edges are called simple graphs. In this thesis, unless stated, we always refer
to undirected simple graphs, and we will often denote a graph with the letter G. The
complement of a graph G is the graph G with vertex set V(G) = V(G) and edge set
E(G) = [V(G)]2 \ E(G), where [V(G)] denotes the set of all possible edges of G.

Connectivity. Two vertices u and v of a graph that are connected by an edge are
called adjacent. Vertex u is called a neighbor of v or is adjacent to v. In a graph G, the
neighborhood of a vertex v is the set of vertices in G adjacent to v, and we denote it by
NG(v). We also denote NG[v] = NG(v) ∪ {v}, which is called the closed neighborhood
of v. For a subset of vertices A ⊆ V(G), the set of vertices in V(G) \ A which consists
of vertices with at least one neighbor in A is denoted with NG(A) (and we denote
NG[A] = NG(A) ∪ A). When the context is clear, we write N(v), N[v], N(A), and
N[A] instead of NG(v), NG[v], NG(A), and NG[A] respectively. The degree of a vertex
v in G is defined as degG(v) := |{u ∈ V(G) | {u, v} ∈ E(G)}|. The maximum degree
of G, ∆(G), is the maximum degree over all vertices of G.

For disjoint sets A, B ⊆ V(G), we say that A is complete (resp. anticomplete) to B if
all edges (resp. no edges) are present between A and B in G. If A consists of a single
vertex a, then we say that a is complete (resp. anticomplete) to B.

Graph operations and graph drawings. Two graphs G and G′ are isomorphic if
there is a bijection f between the vertex sets of G and G′ such that any two vertices
u and v of G are adjacent in G if and only if f (u) and f (v) are adjacent in G′. Simply
put, two graphs being isomorphic means they are essentially the same but poten-
tially not represented by the same drawing. A graph is planar if it can be embedded
in the plane, i.e., it can be drawn on the plane so that its edges intersect only at its
endpoints. Such a drawing is called a planar embedding of the graph.

The edge subdivision operation for an edge uv ∈ E(G) is the deletion of uv from G
and the addition of two edges uw and wv adjacent to the new vertex w. This oper-
ation generates a new graph G′ = (V ∪ {w}, (E \ {uv}) ∪ {uw, wv}). A subdivision

9We will use the terms “vertex” and “node” interchangeably in this thesis.
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of G is a graph that can be derived from G by a sequence of edge subdivision opera-
tions. An edge contraction is an operation which removes an edge from a graph while
simultaneously merging the two vertices that it previously joined, that is, given an
edge uv ∈ E(G), replace vertices u and v with a single new vertex x adjacent to all
vertices initially adjacent to u or v.

Substructures. A graph H is a subgraph of a graph G, if V(H) ⊆ V(G) and
E(H) ⊆ E(G) (i.e., H is obtained from G by a sequence of vertex deletions and edge
deletions). For a set X ⊆ V(G), the subgraph induced by X in G is the subgraph G[X]
of G with vertex set X, such that e ∈ E(G[X]) iff e ∈ E(G) and e has both ends in X.
A graph H is an induced subgraph of G, if H = G[X] for some X ⊆ V(G) (i.e., H is ob-
tained from G by a sequence of vertex deletions). If G contains a graph isomorphic
to some graph H as an induced subgraph, we say that G contains H. In this thesis,
when we say that G contains H without specifying any particular relation, we mean
that H is an induced subgraph of G. For a set S ⊆ V(G) we let G \ S := G[V(G) \ S]
and if S = {v} is a singleton set, then we write G \ v instead of G \ {v}. A graph
H is a minor of a graph G if a graph isomorphic to H can be constructed from G by
repeated applications of vertex deletion, edge deletion, and edge contraction.

A path in G is a sequence P of distinct vertices p1 . . . pn, where pi pi+1 ∈ E(G)
for 1 ≤ i < n. A path is called chordless (or an induced) path, if for i, j ∈ {1, . . . , n},
pi pj ∈ E(G) if and only if |i− j| = 1. For two vertices pi, pj ∈ V(P) with j > i, the
path pi pi+1 . . . pj is a subpath of P that is denoted by piPpj. The subpath p2 . . . pn−1
is called the interior of P. The vertices p1, pn are the ends of the path, and the vertices
in the interior of P are called the internal vertices of P. In this thesis, unless stated, by
path we always mean a chordless path. Sometimes we still write chordless path instead
of just path to emphasize.

A cycle is defined similarly, with the additional properties that n ≥ 4 and p1 = pn.
The length of a path P is the number of edges of P. The length of a cycle is defined
similarly. As in path, we have the notion of the chordless or induced cycle. An edge
e ∈ E(G) is a chord of cycle C, if the endpoints of e are vertices of C that are not
adjacent on C. We often denote a chordless cycle on n vertices with Cn. A hole is a
chordless cycle of length at least 4. It is odd or even according to its length (that is its
number of edges). An antihole is an induced subgraph H of G, such that H is a hole
of G. Note that C3 is a chordless cycle but it is not a hole. The girth of a graph is the
length of the shortest cycle in the graph. See Figure 1.10 for an example of paths and
holes.

FIGURE 1.10: A path, a cycle with chord, and an (even) hole

Some particular graphs. Let us now present some particular graphs that will be
often mentioned throughout this thesis.

Recall that a tree is a connected graph that does not contain any cycle (also called
acyclic); trees can be considered as the simplest graphs. A disjoint union of trees is
called forest (cf. Figure 1.6).
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A clique in G is a set X ⊆ V(G) of vertices such that {v, w} ∈ E(G) for every pair
v, w ∈ X with v 6= w. A graph K is complete, if V(K) is a clique in K. We denote
complete graph on n vertices by Kn. The triangle is a graph isomorphic to K3 (or C3).
The square is a graph isomorphic to C4 (in this thesis we will use the terms square
and 4-hole interchangeably). A claw is a graph with vertex set {v, x, y, z} and edge
set {vx, vy, vz}; the vertex v is called the center of the claw. An independent set in G is
a set of pairwise non-adjacent vertices.

FIGURE 1.11: Triangle, square, and claw

A graph is bipartite if its vertex set can be partitioned into two independent sets.
It is called complete bipartite if every pair of vertices of the different partite sets are
adjacent. The complete bipartite graph whose bipartite components are of size p and
q respectively is denoted by Kp,q.

1.4 Main contributions of the thesis

In this thesis, we study the structure of even-hole-free graphs. In particular, we
study some width parameters (such as tree-width and rank-width of the graphs in
the class). We now give a summary of our contribution that will be discussed further
in Chapter 3, Chapter 4, and Chapter 5.

Even-hole-free graphs with no large cliques

In general, even-hole-free graphs have unbounded tree-width. This is because com-
plete graphs are even-hole-free and complete graphs on n vertices have tree-width
n− 1 for any integer n. However, when some configurations are excluded from the
class, the tree-width of the graphs is bounded. In the next chapter, we give a survey
about some known results on the width of some subclasses of even-hole-free graphs.

This work was initially motivated by a study that was conducted on the class
of (even hole, triangle)-free graphs (recall that the triangle is clique on 3 vertices).
Cameron, da Silva, Huang, and Vušković [Cam+18] prove that the class of even-
hole-free graphs that do not contain the triangle has tree-width bounded by some
constant (see Theorem 2.3.7). This is due to the structure theorem which exists for
graphs in this class (see Subsection 2.3.2 for more details). Moreover, when the clique
number of an even-hole-free graph G equals t, then excluding a configuration called
caps and pans (a cap is made of a hole plus one additional vertex adjacent to two
adjacent vertices in the hole, and a pan is made of a hole plus one pendant edge
incident to a vertex of the hole) yields a bound on the tree-width in terms of t (see
Section 2.3 of Chapter 2 for more detail). A natural question to ask, is that whether
the following generalization of these results holds: is the tree-width of an even-hole-free
graph bounded by some function of its clique number, i.e. whether tw(G) ≤ f (ω(G)) is true
for any graph G that is even-hole-free? Another way to see this question is that whether
bounding the size of the maximum clique yields an upper bound on the tree-width
of the graph. This question was first asked by Cameron, Chaplick, and Hoàng in
their paper [CCH18]].
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We remark that in the triangle-free case, wheels have an important role to the
existence of the structure theorem. Indeed, (even hole, triangle)-free graphs are de-
composed using the so-called star cutset, which arises from a wheel (see Subsec-
tion 2.1 for the definition). One important property of wheels in this class is that,
when applying decomposition, the choice of wheel used in the decomposition does
not matter, i.e. we can use any wheel to decompose the graph, in any order. This
method is possible because in (even hole, triangle)-free graphs, the graph is nicely
structured around every wheel in the graph. For every wheel W = (H, x), the neigh-
borhood of each connected component of G \W is contained in a unique sector of W.
In particular, for any two distinct neighbors xi and xj of x on H, {x, xi, xj} is a cutset
(see Theorem 2.3.5 of Section 2.3). When the triangle is allowed, this is no more true
because wheels in the graph interact in more complex ways. Two wheels of differ-
ent centers might share the same rim H (which is not the case in the triangle-free
case), and the neighbors of those two centers might cross in H (see an example in
Figure 1.12). Further discussion about wheels in (even hole, triangle)-free graphs
will be postponed to Chapter 4 when we discuss the class of (theta, triangle)-free
graphs, a superclass of (even hole, triangle)-free graphs.

x y

FIGURE 1.12: Two wheels in an even-hole-free graph with crossing
spokes along the rim (dashed edges represent paths of odd length)

In Chapter 3, we construct a family of even-hole-free graphs with clique num-
ber 3 (i.e. the graphs are K4-free) for which the tree-width is unbounded. We call
this family of graphs layered wheels. These constructions show that an even-hole-free
graph with no clique of size 4 may have arbitrarily large tree-width. Indeed, for any
integer l ≥ 1, we can construct a family of (even hole, K4, pyramid)-free graphs with
tree-width at least k. We furthermore explore another class of graphs for our study,
namely the class of (triangle, theta)-free graphs. Recall that theta-free graphs form a su-
perclass of even-hole-free graphs. Since we forbid the triangle in one class but allow
its presence in the other class, these two classes intersect, and the class of (even hole,
triangle)-free graphs lies in the intersection of the two (cf. Figure 1.13). The class of
(theta, triangle)-free graphs is a “tool” that we use to study the class of (even hole,
K4)-free graphs. It turns out that when trying to prove some properties for the class
of (even hole, K4)-free graphs, it is “easier” to examine the property first in the class
of (theta, triangle)-free graphs, then adapt the technique to be applied in the class
of (even hole, K4)-free graphs. The structure of wheels in the two classes of graphs
have a similarity, as stated in Lemma 4.3.1 and Lemma 4.3.3 of Chapter 4. These
inspire the construction of layered wheels in both classes of graphs which have sim-
ilar properties. Thus, we have a similar result for the class of (theta, triangle)-free
graphs.

The following theorem covers the results that we will explain further in Chap-
ter 3.
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FIGURE 1.13: An illustration of the forbidden structures in (theta,
triangle)-free graphs (left), (even hole, K4)-free graphs (right) and

(even hole, triangle)-free graphs in the intersection

Theorem 1.4.1

For every integers l ≥ 1 and k ≥ 4, there exists a graph Gl,k that is theta-free, all
cycles contained in the graph are of length at least k, and the tree-width of the
graph is at least l.

Theorem 1.4.2

For every integers l ≥ 1 and k ≥ 4, there exists a graph Gl,k that is (even hole, K4,
pyramid)-free, all holes contained in the graph are of length at least k, and the
tree-width of the graph is at least l.

Forbidding more structures and its impacts on the tree-width

We note that the family of layered wheels which provides a lower bound on the tree-
width of (even hole, K4)-free graphs needs a “huge” number of vertices to increase
such a lower bound. More specifically, to get a lower bound l on the tree-width, a
layered wheel must contain Ω(kl) vertices for some k ≥ 3. This suggests a conjecture
that the tree-width of an (even hole, K4)-free graph is of a logarithmic function of the
size of the input graph (see Conjecture 6.1.2 of Chapter 6). This conjecture holds for
the family of layered wheels (see Corollary 3.4.5 of Chapter 3).

In an attempt to answer this conjecture, we studied some subclasses of (even
hole, K4)-free graphs when some other configurations are excluded, and where the
tree-width is bounded. Let Si,j,k be the tree with a vertex v, from which start three
paths with i, j, and k edges respectively. We show that (even hole, pyramid, Si,j,k)-
free graphs have bounded tree-width, as shown in the following theorems. We study
this property for both classes mentioned earlier, namely the class of (theta, triangle)-
free graphs and the class of (even hole, K4, pyramid)-free graphs. These results will
be discussed more clearly in Chapter 4. In the following, R(·, ·) denotes the Ramsey
number.

Theorem 1.4.3

For k ≥ 1, every (theta, triangle, Sk,k,k)-free graph G has tree-width at most
2(R(3, 4k− 1))3 − 1.

Theorem 1.4.4

For k ≥ 1, every (even hole, pyramid, Kt, Sk,k,k)-free graph G has tree-width at
most (t− 1)(R(t, 4k− 1))3 − 1.

We furthermore note that, in layered wheels, the presence of a large clique minor
and high maximum degree are necessary to increase the bound on the tree-width.
This fact motivates our study on the class of even-hole-free graphs with no large
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clique minor and the class of even-hole-free graphs with bounded maximum de-
gree. Studies show that both classes have bounded tree-width [ACV20; Abo+cs]. In
Chapter 5, we present the tree-width of even-hole-free graphs of bounded degree. In
particular, we study the case when the maximum degree of the graphs is 3 (i.e. when
the graphs are subcubic). We also study the case when the maximum degree is 4 and
the graph is pyramid-free. For the proof, we establish a full structure theorem of
even-hole-free subcubic graphs, saying that every even-hole-free subcubic graph ei-
ther is a basic graph (which in some sense has a simple structure) or has a “good”
separator (cf. Theorem 5.1.2), which yields a constant bound on the tree-width. The
case for the maximum degree 4 is proved similarly. The following theorems cover
our results given in Chapter 5. The theorems are, in fact, proved for the class of
(theta, prism)-free graphs that is a superclass of even-hole-free graphs.

Theorem 1.4.5

Every (theta, prism)-free subcubic graph (and therefore every even-hole-free sub-
cubic graph) has tree-width at most 3.

Theorem 1.4.6

Every (even hole, pyramid)-free graph of maximum degree 4 has tree-width at
most 4.

Publications

The main results in this thesis are covered in the following publications:

1. N.L.D. Sintiari and N. Trotignon. (Theta, triangle)-free and (even hole, K4)-
free graphs. Part 1 : Layered wheels. ArXiv preprint, https://arxiv.org/abs/
1906.10998 (appear in Journal of Graph Theory, early view).

2. M. Pilipczuk, N.L.D. Sintiari, S. Thomassé, and N. Trotignon. (Theta, triangle)-
free and (even hole, K4)-free graphs. Part 2 : bounds on treewidth. ArXiv
preprint, https://arxiv.org/abs/2001.01607 (appear in Journal of Graph The-
ory, early view).

3. P. Aboulker, I. Adler, E.J. Kim, N.L.D. Sintiari, and N. Trotignon. On the
tree-width of even-hole-free graphs. ArXiv preprint, https://arxiv.org/abs/
2008.05504 (accepted, to appear in European Journal of Combinatorics).

We are now preparing a paper about the structure of graphs when all holes in the
graphs are of the same fixed length k ≥ 7. The goal of our study is to have a better
view on the structure of the class, in the sense of a full structure theorem of the class
(if any). Note that when k is odd, this class of graphs is a subclass of even-hole-
free graphs, hence having knowledge about this class might give an insight about
even-hole-free graphs in general. This is a joint work with Jake Horsfield, Myriam
Preissmann, Cléophée Robin, Nicolas Trotignon, and Kristina Vušković. However,
in this thesis, we do not discuss about this class of graphs.

https://arxiv.org/abs/1906.10998
https://arxiv.org/abs/1906.10998
https://arxiv.org/abs/2001.01607
https://arxiv.org/abs/2008.05504
https://arxiv.org/abs/2008.05504


33

Chapter 2

A survey on even-hole-free graphs

Recall the four combinatorial problems that we mention in Chapter 1: optimal col-
oring, maximum clique, maximum independent set, and minimum clique cover prob-
lems. For even-hole-free graphs, it is known that the maximum clique problem is
polynomial-time solvable because a graph without a hole on four vertices has a poly-
nomial number of maximal cliques [Far89], and one can list them all in polynomial
time. The three other problems, however, are still open. We are particularly inter-
ested in understanding whether the decomposition theorem can be applied in the
design of polynomial-time algorithms for all these combinatorial problems. Let us
begin this chapter by presenting decomposition theorems of even-hole-free graphs.

2.1 Decomposition of even-hole-free graphs

The decomposition technique for even-hole-free graphs was first developed in the
process of studying perfect graphs. It turned out that the tools that were used to
decompose even-hole-free graphs could also be implemented for perfect graphs. In
this section, we give a summary of the decomposition theorem of even-hole-free
graphs.

Conforti, Cornuéjols, Kapoor, and Vǔsković in [Con+02a] first studied the struc-
ture of even-hole-free graphs, where they presented a decomposition theorem for
this class using the so-called 2-joins and k-star cutsets (we explain the notions below),
that was used later to construct a polynomial-time recognition algorithm [Con+02b].
Conforti et al. [CCV04] proved the Strong Perfect Graph Conjecture for 4-hole-free
graphs, by decomposing Berge graphs using star cutsets and 2-joins into bipartite
graphs and line graphs1 of bipartite graphs. Later, Chudsnovky et al. used a similar
approach to prove the general case, i.e. when 4-holes are allowed, resulting in the
Strong Perfect Graph Theorem. Let us now present the two main ingredients of the
decomposition of even-hole-free graphs, namely the cutsets and the basic graphs.

Star cutset and 2-join

The decomposition theorem that we describe in the following uses two types of cut-
sets. A vertex cutset S ⊆ V(G) is a k-star cutset of G if S is comprised of a clique C
of size k and vertices with at least one neighbor in C, i.e. C ⊆ S ⊆ N[C]. We refer to
C as the center of S. A 1-star is also referred to as a star, a 2-star as a double star, and
3-star as a triple star.

A 2-join 2 In a graph G is a partition of the vertex set of G into (V1, V2), with special
sets (A1, A2, B1, B2), such that the following holds:

1The line graph of G is another graph L(G) that represents the adjacencies between edges of G; a
formal definition is given in the next pages, when defining basic graphs.

2In particular, a 2-join is an edge cutset.
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FIGURE 2.1: A star cutset and a block of decomposition

(i) For i = 1, 2, Ai ∪ Bi ⊆ Vi, and Ai and Bi are nonempty and disjoint.

(ii) A1 is complete to A2, B1 is complete to B2, and these are the only adjacencies
between V1 and V2.

(iii) For i = 1, 2, the graph induced by Vi, G[Vi], contains a path with one end in Ai
and the other in Bi. Furthermore, Vi does not induce a chordless path with one
end in Ai, one end in Bi, and no internal vertex in Ai ∪ Bi.

We note that slightly different definitions of 2-joins are used in different papers.
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FIGURE 2.2: 2-join decomposition into two blocks of decomposition

The notion of star cutsets was introduced by Chvátal [Chv85] and 2-join was
first introduced by Cornuéjols and Cunningham in [CC85]. The intuition behind
the use of star cutsets and 2-joins in the decomposition of even-hole-free graphs
is the necessity of “breaking” a hole of the graph (see Figure 2.3). In particular,
for even-hole-free graphs, star cutsets are used to break wheels in the graph being
decomposed.

When decomposing an even-hole-free graph G using a star cutset or a 2-join, we
obtain a set of simpler graphs which is called the blocks of decomposition, which can
be defined as follows:

• Given a graph G and a star cutset S = {x, x1, x2, . . . , xn} such that G \ S con-
tains connected components C1, C2, . . . , Ck. A block of the star cutset decom-
position is the graph induced by S ∪ Cj for j ∈ [1, n] (cf. Figure 2.1).

• Suppose that (V1, V2) is a 2-join of a graph G with special sets (A1, A2, B1, B2).
The blocks of decomposition w.r.t. the 2-join are the graphs G1 and G2 con-
structed in the following way: G1 is the subgraph of G induced by the vertex
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FIGURE 2.3: Key cutsets in the decomposition which are used to
break a hole in the graph being decomposed

set V1 plus a marker path P2 = a2 . . . b2 that is a chordless path from a vertex a2
complete to A1 to a vertex b2 complete to B1, and whose interior vertices are
all of degree two in G1. Block G2 is obtained in a similar way, by replacing V1
with a marker path P1 (cf. Figure 2.2). We note that for i ∈ {1, 2}, Pi is used to
“encode” the chordless paths from A3−i to B3−i in V3−i. Vertices a3−i and b3−i
respectively represent vertices in A3−i and B3−i. The length of Pi depends on
the class we are working with. In the case of even-hole-free graphs, note that
all chordless paths in Vi from Ai to Bi with interior in Vi \ (Ai ∪ Bi) are of the
same parity (for otherwise, one of the two paths in Vi together with a path in
V3−i from A3−i to B3−i would form an even hole). We can then assign an odd
length ki ≥ 3 (resp. an even length ki ≥ 4) to Pi if the paths in Vi are of odd
(resp. even) lengths.

Basic graphs

Recall that a graph is basic if it does not contain any cutset that is used in the decom-
position.

Nontrivial basic graph. The following definition of the first basic graphs in the
decomposition theorem of even-hole-free graphs was introduced by Conforti, Cor-
nuéjols, Kapoor, and Vušković [Con+02a].

Given a graph G, the line graph of G is a graph L(G) that represents the adjacen-
cies between edges of G, i.e. there is a one-to-one correspondence between the edge
set of G and the vertex set of L(G), where two vertices of L(G) are adjacent if and
only if the corresponding edges are adjacent in G. Let L be the line graph of a tree (cf.
Figure 2.4 for an example). Note that every edge of L belongs to exactly one maximal
clique, and every node of L belongs to at most two maximal cliques. The nodes of
L that belong to exactly one maximal clique are called leaf nodes. A clique of L is big
if it is of size at least 3. In the graph obtained from L by removing all edges in big
cliques, the connected components are chordless paths (possibly of length 0). Such
a path P is an internal segment if it has its endnodes in distinct big cliques (when P
is of length 0, it is called an internal segment when the node of P belongs to two big
cliques). The other paths are called leaf segments. Note that one of the endnodes of a
leaf segment is a leaf node.

A nontrivial basic graph R is defined as follows: R contains two adjacent nodes
x and y, that are called the special nodes. The graph L induced by R \ {x, y} is the
line graph of a tree and contains at least two big cliques. In R, each leaf node of L is
adjacent to exactly one of the two special nodes, and no other node of L is adjacent
to any of the special nodes. The last condition for R is that no two leaf segments
of L with leaf nodes adjacent to the same special node have their other endnode in
the same big clique. The internal segments of R are the internal segments of L, and
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FIGURE 2.4: A tree (in black) and its line graph (in red) — which is a
clique tree and is claw-free

the leaf segments of R are the leaf segments of L together with the node in {x, y} to
which the leaf segment is adjacent.

x

y

FIGURE 2.5: A nontrivial basic graph; blue dashed lines represent
leaf segments which are of length at least 2 and black dashed lines

represent internal segments which are of length at least 1

The first decomposition theorem obtained for even-hole-free graphs is, in fact,
proved for a more general class. A graph is called odd-signable 3 if it is (theta, prism,
even wheel)-free. The class of odd-signable graphs forms a superclass of even-hole-
free graphs. Many results regarding even-hole-free graphs were proved for the class
of 4-hole-free odd-signable graphs. Call a 4-hole-free odd-signable graph basic if it
is isomorphic to a clique, a hole, a long pyramid (a long pyramid is a pyramid in
which three paths composing it are all non-edges), or a nontrivial basic graph. The
following was the first decomposition theorem obtained for even-hole-free graphs,
due to Conforti, Cornuéjols, Kapoor, and Vušković.

Theorem 2.1.1 (Decomposition of ehf graphs [Con+02a])

A connected 4-hole-free odd-signable graph is either basic, or it has a 2-join or
k-star cutset, for k ≤ 3.

A similar decomposition technique used in the decomposition theorem above
was then applied for Berge graphs. The Strong Perfect Graph Conjecture was
proved for 4-hole-free graphs by decomposing 4-hole-free Berge graphs using star

3The original term was defined differently in [Con+99], but they are essentially equivalent.
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cutsets and 2-joins into bipartite graphs and line graphs of bipartite graphs (Con-
forti, Cornuéjols, and Vušković [CCV04]). The general case was finally proved by
Chudnovsky, Robertson, Seymour, and Thomas in [Chu+06], where they decom-
pose Berge graphs using skew cutsets 4, 2-joins, and their complements. In 4-hole-
free graphs, a skew cutset reduces to a star cutset 5 and a 2-join in the complement
implies a star cutset. It is therefore natural to believe that a similar decomposition
would work for even-hole-free graphs.

In [SV13], da Silva and Vušković implemented this idea to obtain a strengthening
of the decomposition theorem (cf. Theorem 2.1.2). The basic graphs for this new de-
composition are cliques, holes, long pyramids, and extended nontrivial basic graphs,
where an extended nontrivial basic graph of G is a graph R′ consisting of a nontrivial
basic graph R and all nodes v ∈ V(G) \ V(R) such that for some big clique K of
R and for some z ∈ {x, y}, N(v) ∩ V(R) = V(K) ∪ {z}. In Figure 2.6, we give an
example of an extended nontrivial basic graph.

x

y

v

K

FIGURE 2.6: An extended nontrivial basic graph with special nodes
{x, y}, v ∈ V(G) \ V(R) with N(v) ∩ V(R) = V(K) ∪ {x}; dashed
lines represent paths of length at least 1 which are the segments of R

Theorem 2.1.2 (Decomposition of EHF graphs strengthening [SV13])

A connected 4-hole-free odd-signable graph is either basic or it has a 2-join or a
star cutset.

Theorem 2.1.2 was proved for a superclass of even-hole-free graphs. A simplified
decomposition is obtained when the class is restricted to even-hole-free graphs. A
graph is a clique tree if each of its maximal 2-connected components is a clique. A
graph is an extended clique tree if it can be obtained from a clique tree by adding at
most two vertices.

Corollary 2.1.3 ([SV13])

A connected even-hole-free graph is either an extended clique tree, or it has a
2-join or a star cutset.

2.2 The use of cutsets for algorithms

2.2.1 Recognition algorithm

Conforti, Cornuéjols, Kapoor, and Vušković [Con+02b] presented the first
polynomial-time recognition algorithm for the class of even-hole-free graphs. This

4A skew partition (first defined by Chvátal [Chv85]) of a graph G is a partition (A, B) of V(G) such
that G[A] is not connected, and G[B] is not anticonnected. In this case, we say that B is a skew cutset.

5From the definition, it is clear that S is a skew cutset if S can be partitioned into (S1, S2) such that
S1 is complete to S2, and in the case of even-hole-free graphs, this yields that S1 or S2 must be a clique
(for otherwise, there would exist a square).
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algorithm was built based on the decomposition algorithm that is presented
in [Con+02a] (see again Section 2.1), and it runs in time O(n40) where n is the size
of the input graph. This recognition algorithm was later improved by da Silva and
Vušković [SV13] into O(n19). Chang and Lu [CL15] improved this to O(n11) time.
The best currently known algorithm is given by Lai, Lu, and Thorup [LLT20] which
runs in O(n9) time.

Let us now explain the ideas behind the decomposition-based recognition algo-
rithm. As explained in [Con+02b], standard conditions which have to be satisfied in
order to create a polynomial-time algorithm based on a decomposition theorem are
the following:

(i) checking whether a decomposition of G exists can be done in polynomial time;

(ii) G is in the class if and only if all the decomposition blocks are (i.e. the decom-
position is class-preserving);

(iii) when the decomposition is applied recursively to the decomposition blocks,
the total number of blocks created is polynomial.

To recognize a class of graphs C based on a decomposition theorem, basic graphs
need to be recognizable easily (in our case, in polynomial time). For even-hole-free
graphs, this works for all basic graphs of the decomposition theorem explained in
Section 2.1. A recognition algorithm takes a graph G as input and decomposes it us-
ing C-preserving decomposition into a polynomial number of basic “blocks”, which
are then checked, in polynomial time, whether they belong to C. The property (ii)
ensures that the original input graph is also in C if all the blocks are in C, and the
polynomial-time complexity result then follows from the property (iii).

The recognition algorithm in [Con+02b] is based on the decomposition theorem
explained in [Con+02a] (also explained in Section 2.1), where graphs in the class are
decomposed using 2-join, and star, double-star, and triple-star cutsets. Whenever
a 2-join or a k-star cutset is present in a graph G, the graph is decomposed into
two or more simpler graphs, that are the blocks of the decomposition. For even-hole-
free graphs, the decomposition using star cutsets and 2-joins which we describe in
Section 2.1 satisfies (i). However, neither (ii) nor (iii) holds, so this scenario does not
work for obtaining a recognition algorithm for even-hole-free graphs. The problem
is that our current definition of blocks of star cutsets is not class-preserving. The
2-joins, on the other hand, are still class-preserving. We will explain more about the
fact that star cutsets are not always class-preserving in the next section.

To handle the problem in item (ii), Conforti, Cornuéjols, Kapoor, and
Vušković [Con+02b] implemented the so-called cleaning procedure. This technique
was developed by Conforti and Rao [CR93], which was also the key to obtain a
polynomial-time recognition algorithm for Berge graphs [Chu+05]. Given an input
graph G, the cleaning procedure produces, in polynomial time, a clean graph G′,
such that G is even-hole-free if and only if G′ is even-hole-free, and if G contains
an even hole then G′ contains a (so-called) clean even hole (namely an even hole for
which there are no vertices outside the hole that have problematic neighbors on the
hole, which can be used as clique centers of star cutsets to break the hole). A clean
graph G can be decomposed recursively into a family of blocks that have no k-star
cutsets and satisfy the following property: (i) either G is identified as containing an
even hole during the decomposition process or (ii) when the decomposition process
is completed, all blocks in the family are even-hole-free graphs if and only if G is
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even-hole-free. Hence, once the graph is clean, decomposition can be applied safely
since the graph is now class-preserving.

To resolve the problem in item (iii), they take care of the order of cutsets used
to decompose the graph. As was first observed by Chvátal [Chv85], a graph has
a star cutset if and only if it has a dominated node or a full star cutset (a vertex
u is dominated by v if u is adjacent to v and N(u) ⊆ N[v], and a star cutset S is
full if S is comprised of a clique and all vertices with at least one neighbor in the
clique). Indeed, when u is dominated by v, the set {v} ∪ N(u) forms a star cutset (it
separates u from the rest of the graph). For the complexity to be polynomial, Conforti
et al. [Con+02b] noted that when applying decomposition using k-star cutset, it is
important to handle dominated vertices properly. In this case, dominated vertices
are removed before applying the decomposition. They proved that the total number
of blocks generated by the recursive decomposition with k-star cutsets is polynomial
if one first remove dominated vertices and use full star cutsets. For the recognition
algorithm to work in polynomial, this problem is handled by first decomposing the
graph with star cutsets, then decomposing it with 2-joins, and later dealing with the
dominated vertices in a particular way. Indeed, when the graph is clean, removing
dominated vertices preserves the graph being even-hole-free. Each of the details in
this paragraph can be found in [Con+02b].

Finally as pointed out in [Con+02b] their recognition algorithm can be used to
find an even hole in graph G, if one exists, in the following way. Let v1, . . . , vn denote
the nodes of G and let H = G. In iteration i, test whether H \ vi contains an even
hole. If the answer is yes, set H = H \ vi and otherwise keep H unchanged. By
performing n iterations, when the algorithm terminates, the graph H is the desired
even hole.

2.2.2 The good and the bad cutsets in the decomposition of even-hole-
free graphs

Decomposition theorems are often used for proving theorems. For instance, the
proof of “The Strong Perfect Graph Conjecture (SPGC)” is based on the decomposi-
tion of Berge graphs. This method is done by ensuring that being “perfect” can be
proved easily for basic graphs. The cutsets used in the decomposition have proper-
ties that cannot occur in a minimum counter-example6 to the SPGC. Decomposition
theorems can also be used for algorithms, such as for the recognition algorithms
discussed in the previous section. In some cases, the graph decomposition approach
can be a helpful tool for solving optimization problems. Nevertheless, does it always
work?

This question cannot be answered surely, since there are some kinds of decom-
position that do not seem to be friendly with optimization problems such as optimal
coloring, maximum clique, maximum independent set, and minimum clique cover
problems. For instance, in perfect graphs, this method has not worked so far. The
proof that the aforementioned optimization problems are polynomial-time solvable
for perfect graphs actually uses the ellipsoid method and is far from using the de-
composition of perfect graphs. Similarly, the proof for the maximum clique problem
on even-hole-free graphs is not based on the decomposition theorem of even-hole-
free graphs. The proof follows from the fact that excluding the 4-hole causes the
graphs to have a polynomial number of maximal cliques and that one can list them
in polynomial time. Let us now explain why cutsets are crucial.

6A minimum counter-example to SPGC is a Berge graph, non perfect, and of minimum size.
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Let S be a node cutset of a graph G, and let C1, . . . , Ck be the connected compo-
nents of G \ S. A standard way to construct blocks of decomposition w.r.t. a node
cutset would be to define blocks to be graphs G1, . . . , Gk, where Gi = G[Ci ∪ S]
for i = 1, . . . , k (see again Section 2.1 for the definition of blocks of the star-cutset
decomposition and the 2-join decomposition). We have seen the clique cutset de-
composition in Chapter 1 Section 1.2.2. In the context of item (ii) of the three main
requirements for using a decomposition theorem to construct a polynomial-time al-
gorithm (explained in Subsection 2.2.1), clique cutset is an example of a cutset that
works well when it comes to algorithms. Note that when S is a clique cutset, G con-
tains an even (or odd) hole if and only if there exists an i such that Gi contains an
even (or odd) hole, i.e. G is class-preserving. However, such a definition of blocks
is not always class-preserving for the class of odd-hole-free graphs or even-hole-free
graphs.

We note that the decomposition theorem of perfect graphs uses skew cutsets,
and the decomposition of even-hole-free graphs uses star cutsets. We have seen that
the problem with star cutsets is that we do not know how to construct the blocks
of decomposition that are class-preserving while guaranteeing the polynomial com-
plexity of the decomposition tree (see Figure 2.7). Therefore, skew cutsets and star
cutsets fail, for instance, when one tries to implement them for recognition algorithm
(because we want it to be class-preserving). A graph that is not even-hole-free might
yield blocks of decomposition that are even-hole-free, so this is not applicable when
one wants to implement the decomposition algorithm for constructing a recognition
algorithm. Furthermore, a star cutset can be very big (as big as all of the vertex set
except for two vertices). Hence, on even-hole-free graphs, we might end up with an
exponential number of blocks even when decomposing only with star cutsets (which
is bad since we hope to build a polynomial-time algorithm). An example is when
in the recursive process, the star cutset used to decompose is always of size n− 2,
where n is the size of the current block of decomposition 7.

x x

x x

FIGURE 2.7: Star cutsets are not class-preserving; G contains an
even/odd hole (left) but its block of decomposition does not (right)

On the contrary, 2-joins seem to be more applicable. Trotignon and
Vušković [TV12] constructed combinatorial polynomial-time algorithms for solving
the weighted version 8 of the maximum clique, maximum independent set, and opti-
mal coloring problems for a class of perfect graphs decomposable by 2-joins. They

7Nevertheless, this example is artificial, we have not yet succeeded in creating an example of a
graph with this property.

8In the weighted version, the vertices of the input graph is assigned a certain weight (non-negative
real or integer numbers).
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also show that the techniques can also be applied to finding a maximum weighted
independent set for another class of graphs known to be decomposable by 2-joins,
namely the class of even-hole-free graphs that do not have a star cutset. However, as
shown in [TV12], there is a class of graphs that is fully decomposable by 2-joins into
bipartite graphs and line graphs, and for which finding a maximum independent
set is NP-hard (note that the complexity of computing maximum independent set
in the basic graphs is polynomial). This fact could indicate that having holes all of
the same parity might give essential properties for the use of 2-joins in computing
maximum independent sets.

For algorithmic purposes, we furthermore require that the set of cutsets used
to decompose the graphs to be non-crossing. Two cutsets S1 and S2 that partition
the graph into (A1, B1) and (A2, B2) with A1 ∩ B1 = S1 and A2 ∩ B2 = S2 are non-
crossing if one of the following holds: A1 ⊆ A2 and B2 ⊆ B1, or A1 ⊆ B2 and
A2 ⊆ B1, or B1 ⊆ A2 and B2 ⊆ A1, or B1 ⊆ B2 and A2 ⊆ A1. However, star
cutsets are very far from being non-crossing. On the other hand, a non-crossing 2-
join decomposition exists when no star cutset is present in the graph [TV12]. In the
case of 2-joins, the marker path used in the process of the decomposition always lies
entirely in one side of every subsequent 2-join, that is, when G is decomposed into
2-join (V1, V2), the edges between V1 and V2 do not belong to any marker path.

Recall that the decomposition of a graph is done recursively. When we finish de-
composing the graph using clique cutsets, then for the rest of the proof we assume
that the graph does not contain a clique cutset. Similarly, after finishing the decom-
position using star cutsets, we will never see a star cutset again in the next step. So, at
some point, we will end up with a graph having no star cutset, and it turns out that
when this happens, the structure of the graph is less complex. Even-hole-free graphs
satisfy this property when they do not contain star cutsets. In [TV12], Trotignon and
Vušković constructed polynomial algorithms to find a maximum clique and maxi-
mum independent set in the subclasses of even-hole-free graphs and Berge graphs,
which are fully decomposable by only 2-joins.

In [Chu+15], Chudnovsky et al. gave a generalization of such results, namely
a polynomial algorithm to compute a maximum independent set on Berge graphs
with no balanced skew-partitions 9, and a polynomial algorithm to color them.
In [Le18], it is proved that the structure of even-hole-free graphs with no star cut-
sets is simple in the sense that they have small rank-width, which yields a bound on
the chromatic number in terms of clique number and the existence of a polynomial-
time algorithm to color any graph in this class. We now explain more about this
result of Le.

2.2.3 Even-hole-free graphs with no star cutset

The critical property of even-hole-free graphs with no star cutset is that they are
fully decomposable using only 2-joins as shown by Trotignon and Vušković [TV12].
Even further, they admit 2-joins with the following property: one of its blocks of
decomposition is a basic graph called an extreme 2-join in [TV12]. Moreover, the 2-
join decomposition is class-preserving, meaning that the blocks of decomposition
w.r.t. the 2-join are even-hole-free graphs with no star cutset.

9For a graph G, a partition (A, B) of V(G) is balanced if every path of length at least 3, with ends in
B and interior in A, and every antipath of length at least 3, with ends in A and interior in B has even
length.
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Lemma 2.2.1 ([TV12])

Let G be a connected even-hole-free graph with no star cutset and (V1, V2) a 2-
join of G. Let G1 and G2 be blocks of decomposition w.r.t. this 2-join. Then G1
and G2 are connected even-hole-free graphs with no star cutset.

Lemma 2.2.2 ([TV12])

A connected even-hole-free graph with no star cutset is either basic or it has an
extreme 2-join.

Furthermore, Le [Le18] showed that in the decomposition of even-hole-free
graphs with no star cutset, it is possible to use non-crossing 2-joins. The sequence
of the 2-join decomposition satisfying those properties can be represented using a
2-join decomposition tree. In the following definition, we call a path P in G flat if all the
internal vertices of P have degree 2 in G. We use the following notation for the 2-join
decomposition, keeping the notation used by Le in his paper: when G is decom-
posed into 2-join (X1, X2), the corresponding blocks of decomposition are denoted
by G1 and G2 respectively, and the corresponding marker paths are denoted by P2
and P1 respectively (so, G1 = G[X1 ∪V(P2)] and G2 = G[X2 ∪V(P1)]).

Definition 2.2.3. Let C be a class of graphs and B ⊆ C be the set of basic graphs in C. For a
given graph G ∈ C, a tree TG is a 2-join decomposition tree for G if the following properties
hold.

(i) Every node of TG is a pair (H, S), where H is a graph in C, and S is a set of disjoint
flat paths of H.

(ii) The root of TG is (G, ∅).

(iii) Every non-leaf node of TG is a pair (G′, S′), where G′ has a 2-join (X1, X2) such that
the edges between X1 and X2 do not belong to any flat path in S′. Let S1, S2 ⊆ S′ be
the set of the flat paths of S′ in G′[X1], G′[X2] respectively. The node (G′, S′) has two
children, namely (G1, S1 ∪ {P2}) and (G2, S2 ∪ {P1}).

(iv) Every leaf node of TG is (G′, S′) where G′ ∈ B.

Even-hole-free graphs with no star cutset have a simple structure in the following
sense:

Theorem 2.2.4 ([Le18])

Every even-hole-free graph G with no star cutset has rank-width at most 3.

For a given graph G and a rank-decomposition (T, L) which corresponds to G, a
subset X ⊆ V(G) is said to be separated in (T, L) if there exists an edge eX of T which
corresponds to the partition (X, V(G) \ X) of V(G). Let d be an integer, we say that
graph G has property P(d) if for every set S of disjoint flat paths of length at least 3
in G, there is a rank-decomposition (T, L) of G such that the width of (T, L) is at
most d and every flat path P ∈ S is separated in (T, L).

Lemma 2.2.5 ([Le18])

Let C be a class of graphs and B ⊆ C be the set of its basic graphs such that
every graph G ∈ C has a 2-join decomposition tree. Furthermore, there exists an
integer d ≥ 2 such that every basic graph in B has a property P(d). Then for
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every graph G ∈ C, we have rw(G) ≤ d.

The lemma is proved by showing that in a 2 join decomposition tree TG of G, ev-
ery node (G′, S′) of TG admits a rank-decomposition (T, L) such that width(T, L) ≤
d and every flat path P ∈ S′ is separated in (T, L). The lemma then follows because
having the property for the root of TG implies rw(G) ≤ d. Such a property is satis-
fied for every leaf of the tree decomposition which corresponds to the basic graphs.
It then can be propagated along the tree in a bottom-up fashion, up to the root of the
tree. In each step, a non-leaf node (G′, S′) having child nodes (G1, S1) and (G2, S2)
(which actually correspond to the two blocks of decomposition of (G′, S′)) is consid-
ered. From the rank-decomposition of (G1, S1) and (G2, S2) (call them (T1, L1) and
(T2, L2) respectively), it is possible to obtain a tree decomposition (T, L) of (G′, S′)
by “merging” the two trees while maintaining the rank being at most d, and the flat
paths are separated.

To do so, let P2 and P1 be the corresponding marker paths of the decomposition
corresponding to the blocks G1 and G2 respectively. So, P2 ∈ S1 and P1 ∈ S2 because
they are flat paths. By assumption, the path P2 is separated in (T1, L1) by some edge
e1 = u1v1 of T1. So, T1 \ e1 is composed by two subtrees U1 and V1 rooted at u1 and v1
respectively, and without loss of generality the leaves of V1 corresponds to the ver-
tices of P2. The same holds for the tree decomposition (T2, L2) of G2 (see Figure 2.8).
The tree T is built from the two subtrees T1[V(U1) ∪ {v1}] and T2[V(U2) ∪ {v2}] at
vertices by identifying the vertices u1 with v2 and u2 with v1, and taking the mapping
L as the union of two mappings restricted to the partition of the 2-join decomposi-
tion. Clearly T is a subcubic tree and the leaves of T correspond to V(G′). Every
path of S′ is separated in (T, L) because a flat path of G′ is a flat path of G1 or G2.
Moreover, width((T, L)) ≤ d because the width of the identified edge of T is 2 (as
it corresponds to the partition of the 2-join decomposition), and for the other edges,
the rank is maintained, because it corresponds to a cut of G′ separating a subset Z of
Xi from V(G′) \ Z, and we have cutrkG′(Z) = cutrkGi(Z).

u1

v1

U1

V1

v2

u2

V2

U2

(T1, L1) (T2, L2)

u1

v1

U1

U2

(T, L)

FIGURE 2.8: Rank-decomposition of the two blocks G1 and G2 and a
rank-decomposition of G′ obtained by identifying u1v1 and v2u2

Le pointed out that the Definition 2.2.3 and Lemma 2.2.5 are not restricted only
to even-hole-free graphs with no star cutset but also applicable to a more general
class of graphs. So, this technique might apply to some other classes of graphs with
similar properties.
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Because of Lemma 2.2.5, to prove Theorem 2.2.4, it is enough to prove that every
basic graph of the class of even-hole-free graphs with no star cutset admits property
P(d) for some integer d, which is indeed the case as shown by the following lemma.

Lemma 2.2.6 ([Le18])

Every basic even-hole-free graph with no star cutset satisfies the followings:

(i) For every set S of disjoint flat paths of length at least 3 in G, there is a rank-
decomposition (T, L) of G such that the width of (T, L) is at most d; and

(ii) Every flat path P ∈ S is separated in (T, L).

Note that a basic even-hole-free graph with no star cutset is either a clique, a
hole, a long pyramid, or an extended nontrivial basic graph (see Figure 2.6 again).
The lemma holds for cliques and holes because the rank-width of every clique is at
most 1, and the rank-width of every hole is at most 2. The case for a long pyramid
follows easily from the case where it is an extended nontrivial basic graph. How-
ever, the proof for an extended nontrivial basic graph is more involved. More details
about computing the rank-width of this class of graphs can be found in [Le18]. Fig-
ure 2.9 shows an example of the tree decomposition of an extended nontrivial basic
graph.
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FIGURE 2.9: An extended nontrivial basic graph and its rank-
decomposition of width 3 as explained in [Le18]

2.3 Widths of several subclasses of even-hole-free graphs

In general, even-hole-free graphs have unbounded tree-width (as well as clique-
width or rank-width) because chordal graphs are even-hole-free, and those widths
are unbounded for chordal graphs. Nonetheless, the tree-width and the rank-width
become bounded when we restrict to some subclasses of even-hole-free graphs. This
subject has been widely studied, and in this section, we will review some known
results. For each subclass, we explain the known results on some width parameters.
We also give a sketch of the idea of how such a result is obtained.

2.3.1 Planar case

The first known result regarding tree-width on subclasses of even-hole-free graphs
was proved for the planar case. Silva, da Silva, and Sales prove that even-hole-free
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planar graphs have tree-width at most 49 by showing that every graph in the class
does not contain the so-called 9× 9-grid minor [SSS10]. Let us give an overview of
this result.

Theorem 2.3.1 ([SSS10])

Every planar even-hole-free graph has tree-width at most 49.

The proof of Theorem 2.3.1 follows from the fact that when a planar graph con-
tains a large grid minor, then it must contain an even hole.

Model of minor. Let G be a graph and H ⊆ G be a minimal induced subgraph of
G containing a graph M as a minor. Since H is minimal, M can be obtained from
H only by edge contractions or deletions (so, no vertex deletions). Every vertex vi
of M was derived from a subset of vertices of H, denoted by Vi, which induces a
connected subgraph of H. The pair (H,V) where V is the partition of V(H) formed
by the sets Vi is called a model of M in G, and Vi is called a node of the model. Note
that vertices vi and vj of M are adjacent if there exists at least one edge of H whose
one end in Vi and the other in Vj. Note that, however, the presence of such an edge
between two nodes in H does not mean that the corresponding vertices are adjacent
in M.

In the case of even-hole-free graphs, we are particularly interested in the exis-
tence of a grid-minor in the graphs. The k× l grid is the graph Gk×l = (V, E) where
V = {vi,j : 1 ≤ i ≤ k, 1 ≤ j ≤ l, i, n ∈ N} and E = {(vi,j, vi′,j′) : |i− i′|+ |j− j′| =
1}. The following theorem guarantees that planar even-hole-free graphs do not con-
tain a Gk×l minor model for large k, l. The non-existence of a grid minor of big size
is enough to guarantee that a graph has small tree-width.

Theorem 2.3.2 ([RST94])

If G is planar and does not contain a (k× k)-grid as a minor, then tw(G) ≤ 6k− 5.

It turns out that when a planar even-hole-free graph contains a grid minor of
some specific size, then it must contain a forbidden structure. So, graphs in the class
cannot contain a big grid-minor. Hence the result follows from Theorem 2.3.2 below.

Theorem 2.3.3 ([SSS10])

Let (H,V) be a G9×9 model, then H contains a theta or a prism. In particular, if
G is a planar even-hole-free graph, then G has no (9× 9)-grid minor.

2.3.2 Triangle-free case

The study of the structure of triangle-free even-hole-free graphs was initiated by
Conforti, Cornuéjols, Kapoor, and Vušković [Con+00]. In their paper, they gave
a decomposition theorem for triangle-free even-hole-free graphs. They proved
the theorem for a more general class, namely the class of (triangle, theta, even
wheel)-free graphs10. This decomposition theorem was then applied to construct a
polynomial-time algorithm to recognize whether a given input triangle-free graph is
odd-signable, in particular, to detect whether a triangle-free graph contains an even

10In the paper, the proof is indeed for odd-signable graphs, because being triangle-free implies
prism-free, see Theorem 2.3.5.
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hole. Triangle-free odd-signable graphs are decomposed using clique-cutset (as de-
fined in Chapter 1) and a typical star cutset that arises from a wheel in the graph (this
is what they call as wheel decomposition). We now discuss the wheel decomposition
in more detail.

Definition 2.3.4. Let G be a connected triangle-free graph that contains a wheel (H, v) and
let v1, . . . , vn be the neighbors of v in H, appearing in this order when traversing H. Then
G can be decomposed with wheel (H, v) if the following holds:

• G \ {v, v1, . . . , vn} contains exactly n connected components Q1, . . . , Qn.

• The intermediate nodes of the sector with endnodes vi and vi+1 belong to Qi and no
node of Qi is adjacent to vj, j 6= i, i + 1.

Informally speaking, every connected component obtained from G by removing
{v, v1, . . . , vn} attaches to a sector. Moreover, such a component is the only connected
component attaching to that sector, and every sector occupies a connected compo-
nent. The blocks of such a wheel decomposition is a set of graphs that are induced
by V(Qi) ∪ {x, xi, xi+1} for every 1 ≤ i ≤ n. Furthermore, note that it follows from
the definition, that given a wheel (H, x) in a triangle-free graph G, one can check
in polynomial time whether G can be decomposed with (H, x). The key property
of the wheel decomposition for graphs in this class is that, any wheel in the graph
can be used to decompose the graph (which is not the case in general for the class of
even-hole-free graphs).

Cube is the graph formed from a hole of length 6, say h1h2 · · · h6h1 together with
a vertex u adjacent to h1, h3, h5 and a vertex v non-adjacent to u and adjacent to h2,
h4, h6. A (triangle, theta, even wheel)-free graph has a substantial property related
to containment of the cube as shown in [Con+00]: if it contains the cube, then the
entire graph itself is the cube. The following is a decomposition theorem of graphs
in this class.

Theorem 2.3.5 (Decomposition of triangle-free ehf graphs [Con+00])

For any (triangle, theta, even wheel)-free graph G, one of the following holds.

• G is either a K1, K2, a hole, or the cube.

• G has a clique cutset.

• G contains a wheel, and it can be decomposed with any arbitrarily chosen
wheel.

It turns out that under certain circumstances, one can construct (triangle, theta,
even wheel)-free graphs by “gluing” smaller (triangle, theta, even wheel)-free
graphs along some particular 3-vertex path (see Theorem 3.1 of [Con+00] for more
details). Based on this fruitful composition theorem, Conforti et al. give a procedure
to construct all (triangle, theta, even wheel)-free graphs. The structure theorem says
that, every (triangle, theta, even wheel)-free graph that is not isomorphic to the cube
and has no clique separators can be built starting from a hole by iteratively gluing
a path to the currently constructed graph along some particular 3-vertex path of the
graph (under some particular conditions). Let us define them formally.

A chordless (x, z)-path P is an ear of the hole H if the internal vertices of P belong
to V(G)\V(H), vertices x, z have a common neighbor y in H, and (H\y)∪ P induces
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a hole H′. A graph G is said to be obtained from a graph G′ by an ear addition if the
vertices of G\G′ are the internal vertices of an ear of some hole H in G′. Let G be
obtained from G′ by adding an (x, z)-ear P with x, z ∈ V(G′). Such ear addition is
good if y has an odd number of neighbors in P, and the following holds.

(i) G′ contains no wheel (H, v) s.t. x, y, z ∈ V(H) and vy ∈ E(G);

(ii) G′ contains no wheel (H, y) s.t. x, z ∈ V(H).

Theorem 2.3.6 (Structure theorem of (triangle, theta, even wheel)-free graphs, [Con+00])

Let G be a connected triangle-free graph that contains at least three vertices, such
that G is not the cube, and it has no K1 or K2 separator. Then, G is (theta, even
wheel)-free if and only if G can be obtained, starting from a hole, by a sequence
of good ear additions.
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FIGURE 2.10: An illustration of ear addition

A bound on the tree-width

Applying the aforementioned structure theorem, Cameron et al. [Cam+18] proved
that the tree-width of triangle-free even-hole-free graphs is bounded by some con-
stant (it is in fact proved for a superclass, namely (triangle, theta, even wheel)-free
graphs). The result of Corneil and Rotics [CR05] which says that the clique-width of
a graph G is at most 3× 2tw(G)−1, gives an immediate implication of Theorem 2.3.7
to the clique-width of graphs in the class (cf. Corollary 2.3.8).

Theorem 2.3.7 (Bounded tree-width, [Cam+18])

Every (triangle, theta, even wheel)-free graph G satisfies tw(G) ≤ 5.

Corollary 2.3.8 (Bounded clique-width, [Cam+18])

Every (triangle, theta, even wheel)-free graph G satisfies cw(G) ≤ 48.



48 Chapter 2. A survey on even-hole-free graphs

Proof. [Sketch of proof of Theorem 2.3.7]
We now sketch the proof of Theorem 2.3.7 based on the proof explained

in [Cam+18]. Note that it is enough to bound the tree-width for graphs that contains
no clique cutset because gluing along the clique cutsets that are used to decompose
G preserves the tree-width (see Remark 1). One then can show that every (trian-
gle, theta, even wheel)-free graph is contained in a chordal graph that has a clique
number at most 6. This holds when the graph is the cube or it contains at most two
vertices. So, we may assume that the graph is cube-free and contains at least three
vertices. Hence, Theorem 2.3.6 holds, i.e. it admits the "ear-addition construction" as
described in the previous paragraph. In particular, let P1, . . . , Pq be the sequence of
ears in the construction, with Pq being the last ear added. For each i, let Hi be the
hole Pi is attached to, let xi and zi be the attachments of Pi in Hi, and let yi be the
common neighbor of xi and zi in Hi.

From G, it is possible to obtain a triangulation whose clique number is at most 6.
Such a triangulated graph T of G can be constructed as follows. For each ear Pi, make
xi, yi and zi complete to Pi \ {xi, zi}, and add the edge xizi. Let H = v1v2 . . . vkv1,
then choose any edge, say v1v2 of H, and join {v1, v2} to all vertices of H \ {v1, v2}. It
can be shown that for 1 ≤ i ≤ q, Si = {xi, yi, zi} is a clique cutset in T that separates
Hi \ Si from Pi \ Si. From this observation, it suffices to show that T[H], and for
1 ≤ i ≤ q, T[V(Pi) ∪ {yi}] are all chordal and have clique number at most 6.

To show that T[H] is chordal, note that the edges that are present in H are either
the edges of H itself or edges of type xizi (i.e. it is a short chord of H). If there were
a hole C in T[H], then because the two vertices v1, v2 ∈ V(H) cannot be in any hole
(they are indeed adjacent to all other vertices of H), the vertex vi of C that are the
closest to {v1, v2} must be adjacent to vi+1 and vi+2, hence creating a chord in the
hole C, a contradiction. So, T[H] is chordal, and clearly, ω(T[H]) ≤ 5 (since ω(T[H \
{v1, v2}]) = 3 and {v1, v2} is complete to V(H) \ {v1, v2}). We now consider an ear
Pi. Define Gi = G[V(H) ∪ V(P1) ∪ · · · ∪ V(Pi)], and G0 = G[H]. If T[V(Pi) ∪ {yi}]
contains a hole C, then since {x1, yi, zi} forms a clique, V(C) ⊆ V(Pi) \ {xi, zi}. Since
Pi is a chordless path, then by the rule of the triangulation, T[Pi \ {xi, zi}] contains an
edge xjzj. If yj ∈ Pi, then {xj, yj, zj} forms a triangle in C, a contradiction. Moreover,
by the ear-addition construction, yj /∈ Pk for every k > i. So, yj is a vertex of Gi−1,
and it follows that yj = yi (because yi is the only vertex of Gi−1 which can have a
neighbor in the interior of Pi. Let H′ be the hole obtained by augmenting Hi with Pi.
Then the wheel (H′, yj) is contained in Gj−1 and contradicts Pj being a good ear.

2.3.3 Cap-free case

A cap is a graph made of a hole together with a vertex, which is adjacent to exactly
two adjacent vertices of the hole. (cf. Figure 2.11). In the same paper where a con-
stant upper bound on tree-width of the triangle-free even-hole-free graphs is given,
Cameron et al. [Cam+18] also come up with an upper bound on the clique-width
and the tree-width for a more general subclass, where triangles are allowed, but
caps are excluded. They give a structure theorem for the class of (even hole, cap)-
free graphs, which yields that graphs in the class have clique-width bounded by a
constant (and hence bounded rank-width), and tree-width bounded by a function of
clique number of the graphs. The proof of the boundedness on the clique-width and
tree-width relies heavily on the decomposition theorem of (cap, 4-hole)-free odd-
signable graphs. Let us now explain this in more detail.

We say that the graph G′ is obtained from a graph G by blowing up vertices of G
into cliques if G′ consists of the disjoint union of cliques Ku, for every u ∈ V(G), and



2.3. Widths of several subclasses of even-hole-free graphs 49

FIGURE 2.11: A cap

all edges between cliques Ku and Kv if and only if uv ∈ E(G). This is also referred
to as substituting clique Ku for vertex u (for all u). The graph G′ is obtained from a
graph G by adding a universal clique if G′ consists of G together with a (possibly
empty) clique K, and all edges between vertices of K and vertices of G. Note that
both of these operations preserve being (cap, 4-hole)-free, i.e., G is (cap, 4-hole)-free
if and only if G′ is (cap, 4-hole)-free. The following is a decomposition theorem of
(even hole, cap)-free graphs in [Cam+18].

Theorem 2.3.9 (A structure theorem, Theorem 3.6 of [Cam+18])

Let G be a (cap, 4-hole)-free graph that contains a hole and has no clique cut-
set. Let F be any maximal induced subgraph of G with at least 3 vertices that is
triangle-free and has no clique cutset. Then G is obtained from F by first blowing
up vertices of F into cliques, and then adding a universal clique. Furthermore,
any graph obtained by this sequence of operations starting from a (triangle, 4-
hole)-free graph with at least 3 vertices and no clique cutset is (cap, 4-hole)-free
and has no clique cutset.

Theorem 2.3.9 tells us that every (cap, 4-hole)-free odd-signable graph with no
clique cutset can be obtained starting from a (triangle, 4-hole)-free odd-signable
graph F by first blowing up the vertices into cliques, then sequentially adding uni-
versal vertices. From Corollary 2.3.8, we know that the clique-width of F is at
most 48. We remark that substituting a clique K for a vertex of a graph F gives a
graph with clique-width at most the maximum of the clique-widths of K and F (we
simply blow each pair of adjacent vertices into cliques, and make them complete).
Since the clique-width of a clique on at least two vertices is 2, the blow-up of F has
clique-width at most 48. Adding a universal vertex to a graph with at least one edge
does not change the clique-width, so the theorem below follows.

Theorem 2.3.10 (Theorem 5.3 of [Cam+18])

If G is (cap, 4-hole)-free odd-signable graph with no clique cutset, then G has
clique-width at most 48.

Applying the structure theorem and following a similar reasoning for the clique-
width, we can prove that the tree-width of (cap, 4-hole)-free odd-signable graphs
is also bounded by some function of the clique number of the graph. We consider
the graph G constructed as stated in Theorem 2.3.9. We note that Theorem 2.3.7
tells us that the graph F of the structure theorem above has tree-width at most 5. In
particular, there is a triangulation T of F with maximum clique size at most 6. We
can obtain a triangulation T′ of the blow-up F′ of F by substituting the cliques Kv
for the vertices v of T, which yields that the size of a largest clique in T′ is at most
6 maxv |Kv|. Adding a set U of universal vertices, we obtain a triangulation T′′ of
G by adding to T′ the clique induced by U and joining every vertex of U to every
vertex of T′. Since the size of every clique Kv that was substituted cannot be larger
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than ω(G) − |U|, the largest clique in T′′ has size at most 6(ω(G) − |U|) + |U| =
6ω(G)− 5|U| ≤ 6ω(G). Thus G has tree-width at most 6ω(G)− 1.

Theorem 2.3.11 (Theorem 5.4 of [Cam+18])

If G is a (cap, 4-hole)-free odd-signable graph with no clique cutset, then G has
tree-width at most 6ω(G)− 1.

2.3.4 Diamond-free case

Diamond is the graph made of a clique on four vertices by removing one edge from
the clique. In contrast to the other structures that we exclude above, excluding di-
amond does not have much effect on the structure of even-hole-free graphs, since
[Adl+17], Adler et al. show that there exists a family of (even hole, diamond)-free
graphs whose rank-width can be arbitrarily large. We remark that this class clearly
has unbounded tree-width because complete graphs are (even hole, diamond)-free.

We now describe a construction of a family of (even hole, diamond)-free graphs
(Gd)d≥1 for which the rank-width is unbounded, as explained in the paper of Adler
et al. [Adl+17]. For some integers d ≥ 1 and 1 ≤ k ≤ d, let Sd =

⋃d
k=1 Sk, where:

Sk = {(a1, a2, . . . , ak−1, ak) : a1, a2, . . . , ak−1 ∈ {1, 3}, ak ∈ {1, 2, 3, 4}}.

If u ∈ Sk, then we denote l(u) = k, and say that the length of u is k.
In Sd, let � denote the lexicographical order defined as follows. For a =

(a1, a2, . . . , ak) ∈ Sd and b = (b1, b2, . . . , bl) ∈ Sd, a � b if and only if k ≤ l and
ai = bi for 1 ≤ i ≤ k, or t = min{i : ai 6= bi} is well-defined and at < bt.

Let P′d denote the path on vertex set Sd connecting the vertices according to
the lexicographic order, and let Pd be the path obtained from P′d by subdividing
every edge uv ∈ E(P′d) twice if l(u) = l(v) and once, otherwise. Finally, let
Wd = {v1, v2, . . . , vd} be a set of (new) vertices, such that vk, for 1 ≤ k ≤ d, is adja-
cent to all vertices of Sk and all other vertices of Wd. Then, Gd is the graph induced
by the set Wd ∪V(Pd). Figure 2.12 shows G4.

As proved in the paper [Adl+17], the graph Gd is (even hole, diamond)-free for
all d ≥ 1 and Gd has no clique cutset for all d ≥ 2. Moreover, Gd contains a d-
vertex clique, that is formed by the set Wd. It is also important to remark that the set
Sd contains at least 2d+1 vertices, in particular, the size of the graph is exponential
in d. The rank-width of Gd is bounded below by d

3 for every d ≥ 22. Hence, the
rank-width of Gd grows at least logarithmically with |V(Gd)|, since if d ≥ 22 then
rw(Gd) >

d
3 ≥ (log 2|V(Gd)| − 4)/3.

Theorem 2.3.12 ([Adl+17])

The family of (even hole, diamond)-free graphs Gd, d ≥ 2, without clique cutsets
has unbounded rank-width.

Theorem 2.3.12 shows that excluding clique cutsets does not guarantee bound-
edness of the rank-width. Note that clique cutset is a particular case of star cutset,
and this result is in contrast to the case when star cutsets are excluded because even-
hole-free graphs with no star cutset have bounded rank-width [Le18] (see Subsec-
tion 2.2.2). However, rw(Gd) ≤ d + 1 for all d ∈ N, because there exists a rank-
decomposition of Gd with width at most d + 1 (see Figure 2 of [Adl+17] for further
explanation). We furthermore remark that the construction can be easily extended
to (even hole, pyramid, diamond)-free graphs as explained in [Chu+19].
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FIGURE 2.12: A diamond-free ehf graph that has arbitrarily large
rank-width [Adl+17]

2.3.5 Pan-free case

A pan is a graph that consists of a hole and a single vertex with precisely one
neighbor on the hole (cf. Figure 2.13). Cameron, Chaplick, and Hoáng [CCH18]
showed that excluding pans yields boundedness on the tree-width of even-hole-free
graphs. They proved that an (even hole, pan)-free graph can be decomposed by
clique cutsets into essentially unit circular-arc graphs. Using this structure theorem,
they showed that the tree-width of an (even hole, pan)-free graph is bounded by a
linear function of its clique number. Let us now explain the structure theorem in
more detail.

FIGURE 2.13: A pan

In order to analyze the width of graphs in this class, let us first present some
useful notions. A graph G is a circular-arc graph if there exists a bijection between its
vertices and a set A of arcs on a circle such that two vertices of G are adjacent if and
only if the two corresponding arcs of A intersect (see Figure 2.14 for an example).
A circular-arc graph is proper if no arc contains another. Additionally, G is a unit
circular-arc graph if every arc of A has the same length. It is easy to see that unit
circular-arc graphs are proper and that proper circular-arc graphs are claw-free and
hence pan-free. Let G1 and G2 be two vertex-disjoint graphs. The join of G1 and G2
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is the graph G obtained from G1 and G2 by adding every edge between the vertices
of G1 and those of G2.

d
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FIGURE 2.14: A (non-proper) circular-arc graph and a corresponding
arc model

Definition 2.3.13. For l ≥ 5, an l-buoy B is a collection of sets B0, B1, . . . , Bl−1 of vertices
of G such that each Bi induces a clique, each vertex in Bi has a neighbor in Bi+1 and one in
Bi−1, and there are no edges between Bi and B \ (Bi−1 ∪ Bi ∪ Bi+1), with subscripts taken
modulo l (cf. Figure 2.15 for an example); the sets Bi are called the bags of the buoy; a buoy
is odd or even depending on whether the number of bags (l) is odd or even. We also refer to
G[B] as a buoy. A buoy B in a graph G is said to be full when it includes every vertex of G.
Due to the cyclic structure of l-buoys, bag Bi of an l-buoy is referred to as the bag Bi(mod l).

As explained in the paper, in an (even hole, pan)-free graph, the structure of l-
buoys are quite restricted. For every bag Bi of a buoy B, the vertices of Bi admit
domination ordering both on Bi−1 and Bi+1, i.e. for every vertex u, v ∈ Bi, one of the
following holds.

• NBi−1(u) ⊆ NBi−1(v) and NBi+1(u) ⊆ NBi+1(v); or

• NBi−1(v) ⊆ NBi−1(u) and NBi+1(v) ⊆ NBi+1(u).

On Bi−1 (and similarly on Bi+1), if neither u dominates v nor v dominates u
hold, then there would exist two vertices u′, v′ ∈ Bi−1 such that uu′, vv′ ∈ E(B) and
uv′, u′v /∈ E(B), creating a C4 because uv, u′v′ ∈ E(B). Hence, the first item listed
above holds, and in particular, B is a so-called ring (see Subsection 2.3.6 for the defi-
nition). Moreover, if for some vertices u, v ∈ Bi, u dominates v in Bi−1 but not in Bi+1,
then there would exist vertices u′ ∈ Bi−1, and v′′ ∈ Bi+1 such that uu′, vv′′ ∈ E(B)
and vu′, uv′′ /∈ E(B). This yields a chordless path u′uv′′, and together with a path
from u′ to v′′ in B \ Bi, it creates an even hole.

Furthermore, for every buoy B with bags B0, B1, . . . , Bl−1, either Bi−1 ∪ Bi or Bi ∪
Bi+1 is a clique. For otherwise, if both Bi−1 ∪ Bi and Bi ∪ Bi+1 are not cliques, then
there would exist a vertex v ∈ Bi such that v has non-neighbors v′ in Bi−1 and v′′ in
Bi+1. Such a vertex v exists by the domination ordering of Bi in Bi−1 ∪ Bi+1. Now
consider a hole in B that goes through v′, v′′, and some vertex u ∈ Bi (such a hole
exists by the definition of buoy). Note that the hole uses exactly one vertex of each
bag of the buoy, and vertex v has exactly one neighbor in the hole (namely vertex u),
hence creating a pan.

Theorem 2.3.14 ([CCH18])

An l-buoy in an (even hole, pan)-free graph is a unit circular-arc graph.
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B0 B1 B2 B3 B4

FIGURE 2.15: An example of 5-buoy

We give a sketch of the unit circular-arc representation of (even hole, pan)-free
graphs as explained in the proof of Theorem 2.3.14 in [CCH18] (see Theorem 5 and
Theorem 6 of [CCH18] for more details).

To represent an l-buoy B as a circular arc graph, a circle can be partitioned
into l arcs where each of them corresponds to a bag of B. The vertices of ev-
ery buoy Bi admit a domination ordering, so we can write Bi =

⋃ti
j=1 Bi,j, that is

Bi can be partitioned into ti subsets Bi,1, . . . , Bi,ti , such that for every v, v′ ∈ Bi,j,
NBi+1(v) = NBi+1(v

′), and for u ∈ Bi,j and v ∈ Bi,j+1, NBi+1(u) ( NBi+1(v). For every
i ∈ {0, 1, . . . , l− 1}, the arc from i to i+ 1 is equally partitioned into ti arcs by putting
ti equally spaced points {(i, 1), . . . , (i, ti)}, where:

• for each vertex bj ∈ Bi,j, we use the arc from (i) to (i, j); and

• for each vertex b′j ∈ Bi+1,j, we use the arc from (i, j) to (i + 1)

In order to obtain a unit circular-arc representation, the following additional con-
dition is needed:

• for each bag Bi, an arc Ai of length ε > 0 is assigned;

• for each i ∈ {0, 1, . . . , l− 1}, an arc Ai+ is assigned in the following way: when
Bi ∪ Bi+1 is a clique, the length of Ai+ is two units, and otherwise, it has length
one unit;

• when the arc between (i) and (i + 1) has length 2, only a half of the arc is
equally partitioned into ti partitions;

• these arcs are arranged as A0, A0+, A1, A1+, . . . , Al−1, Al−1+ around the cir-
cle so that the circle is covered and consecutive arcs intersect in precisely one
point.

An illustration corresponds to this setting is depicted in Figure 2.16. The top
figure illustrates the case when Bi ∪ Bi+1 does not induce a clique, which means that
each of Bi−1 ∪ Bi and Bi+1 ∪ Bi+2 induces a clique. The bottom figure shows the case
when Bi ∪ Bi+1 induces a clique. Every arc in the circular-arc graph has length 2 + ε.

Theorem 2.3.15 ([CCH18])

If G is a connected (even hole, pan)-free graph with. Then either:

(i) G is a clique;

(ii) G contains a clique cutset; or

(iii) for every maximal buoy B of G, either B is a full buoy of G, or G is the join
of B and a clique.
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FIGURE 2.16: Unit circular-arc representation of buoy

From the structure theorem, the following theorem of the tree-width of (even
hole, pan)-free graphs is derived.

Theorem 2.3.16 ([CCH18])

Every (even hole, pan)-free graph G has tw(G) ≤ 1.5ω(G)− 1.

Proof. First of all, note that for any graph G that is the join of a graph B and a
clique K, tw(G) = tw(B) + |V(K)|. Moreover, recall that the tree-width of G is the
maximum of the tree-width of every block of the clique decomposition of G. Now
consider an (even hole, pan)-free graph G. By our previous observation, we may
assume that G has no clique cutset. By Theorem 2.3.15, it is then enough to show
that tw(B) ≤ 1.5ω(B) for any buoy in G.

Recall that for every bag Bi of a buoy B, either Bi ∪ Bi+1 is a clique or Bi−1 ∪
Bi is a clique. Consider the unit circular arc representation U of B (as shown in
Figure 2.16). Construct a path representation P of B based on its unit circular-arc
representation U as follows: each node v ∈ ⋃i∈[0,l−1]{(i, 1), . . . , (i, ti), (i)} of P is a
bag containing vertices which intersect at point v in U; two nodes of P are adjacent
if the points corresponding to those nodes are consecutive in U; the extremities of
T both correspond to point (i) such that Bi is the bag of the buoy B which is of
the smallest size (so the two extremities of P are bags containing the same set of
vertices). Now by adding all vertices of Bi to the internal nodes of P, we obtain a tree
decomposition of B. Note that every bag node of P contains at most ω(B) ≤ ω(G)
vertices. Moreover |Bi| ≤ 1

2 ω(G) because Bi is the smallest bag in B. Hence the
largest bag in this tree decomposition has size ω(G) + |Bi| ≤ 1.5ω(G).
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2.3.6 Rings

For an integer n ≥ 3, a ring on n sets is a graph G whose vertex set can be partitioned
into n cliques X1, . . . , Xn, with the following additional properties:

• for all i ∈ {1, . . . , n} and all x, x′ ∈ Xi, either N(x) ⊆ N(x′) or N(x′) ⊆ N(x);

• for all i ∈ {1, . . . , n} and all x ∈ Xi, N(x) ⊆ Xi−1 ∪ Xi ∪ Xi+1 (where the
addition of subscripts is modulo n); and

• for all i ∈ {1, . . . , n}, there exists a vertex x ∈ Xi that is adjacent to all vertices
of Xi−1 ∪ Xi+1.

We remark that in a ring, every hole is of same length. In particular, for n odd,
rings are even-hole-free.

It is shown by Hoàng and Trotignon in [HT20] that for some fixed integer n ≥ 3,
there exist rings on n sets with arbitrarily large rank-width (or equivalently, clique-
width). In fact, their result is not restricted only to rings. For the proof, they construct
the so-called carousels, which are more general than rings, but in some specific cases
are rings. We do not include the details of the construction here, and interested
readers may refer to Section 4 of [HT20] for further explanation. Furthermore, as
noted in [HT20], when n ≥ 5 is an odd integer, rings provides a new construction of
even-hole- free graphs with arbitrarily large rank-width. The following theorem is a
more restricted formulation of Theorem 4.1 of [HT20].

Theorem 2.3.17 ([HT20])

For all integers n ≥ 3 and r ≥ 1, there exists rings on n sets with rank-width at
least r.

We furthermore remark that rings on n sets can be colored in polynomial
time [MPV20].
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Chapter 3

Layered wheels

The main motivation of this chapter is a better understanding of even-hole-free
graphs. We note that there are some classical perfect graphs which have arbitrarily
large tree-width (or even rank-width), such as bipartite graphs, or their line graphs.
On the other hand, for even-hole-free graphs, apart from complete graphs, it is not
trivial to find classical graphs of large tree-width (or other widths). We have seen
in Chapter 2, Section 2.3, that there exists a family of (even hole, diamond)-free
graphs with unbounded rank-width [Adl+17]. However, every existing construc-
tion of even-hole-free graphs of arbitrarily large tree-width (or rank-width) contains
large cliques. As explained in Chapter 2, excluding the triangle (i.e. the clique on 3
vertices, which means that we exclude all the large cliques) yields bounded tree-
width on even-hole-free graphs [Cam+18]. Recall also that when pans and the clique
on t vertices are excluded, even-hole-free graphs have bounded tree-width [CCH18].

As mentioned in the end of Chapter 2, the work presented in this chapter
was originally motivated by a question asked by Cameron, Chaplick, and Hoàng
in [CCH18]: is the tree-width (or clique-width) of an even-hole-free graph bounded by a
function of its clique number?. In this chapter, we give a negative answer to the afore-
mentioned question. In particular, we describe a construction called layered wheel
which is a family of even-hole-free graphs with no clique of size four which may
have arbitrarily large tree-width. Later, we prove a stronger result that under cer-
tain conditions, one might obtain layered wheels with arbitrarily large rank-width
(or equivalently, clique-width).

We note that (even hole, pyramid)-free graphs received some attention lately
(see [Chu+19]). It is therefore worth noting that even-hole-free layered wheels are
pyramid-free (see Theorems 3.2.10 and 3.2.11). We note that it is also possible to
obtain a variant of even-hole-free layered wheel that does contain pyramids. We
omit giving the details of this construction, it is of interest because it might give
some ideas of how an even-hole-free graph can be decomposed (or not) around a
pyramid.

We note that for the classes where we prove unbounded tree-width, the clique-
width (and therefore the rank-width) is also large (see Theorems 3.2.15 and 3.3.16).

We postpone the formal definition of layered wheels to Section 3.2 although we
use the term several times before then. Other sources of motivation for this chapter
are the following:

• When considering the induced subgraph relation (instead of the minor rela-
tion), is there a theorem similar to the celebrated grid-minor theorem of Robert-
son and Seymour?

• A better understanding of the classes defined by excluding Truemper configu-
rations, particularly the class of theta-free graphs.
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FIGURE 3.1: A grid and a wall

FIGURE 3.2: A subdivision of a grid, of a wall, and the line graphs of
the former

In the following, we give more details on each of the two items listed above.

The grid-minor theorem

The (k× k)-grid is the graph on the set of vertices {(i, j) : 1 ≤ i, j ≤ k}where two dis-
tinct ordered pairs (i, j) and (i′, j′) are adjacent whenever exactly one of the following
holds: |i − i′| = 1 and j = j′, or i = i′ and |j− j′| = 1 (see Figure 3.1). Robertson
and Seymour [RS86] proved that there exists a function f such that every graph with
tree-width at least f (k) contains a (k× k)-grid as a minor (see Theorem 4.2.2 given
by Chuzhoy [Chu16] for the best function known so far). This is called the grid-minor
theorem. The (k× k)-wall is the graph obtained from the (k× k)-grid by deleting all
edges with form (2i + 1, 2j)− (2i + 1, 2j + 1) and (2i, 2j + 1)− (2i, 2j + 2).

Let G be a graph. Subdividing an edge e = uv of G k times, where k ≥ 1, means
deleting e from G and adding a path uw1 . . . wkv. The k-subdivision of a graph G is the
graph obtained from G by subdividing all its edges k-times (simultaneously). Note
that replacing “grid” by a more specific graph in the grid-minor theorem, such as k-
subdivision of a (k× k)-grid, (k× k)-wall, or k-subdivision of a (k× k)-wall provides
statements that are formally weaker (at the expense of a larger function), because a
large grid contains a large subdivision of a grid, a large wall, and a large subdivision
of a wall. However, these trivial corollaries are in some sense stronger, because
walls, subdivisions of walls, and subdivision of grids are graphs of large tree-width
that are more sparse than grids. So they somehow certify a large tree-width with less
information. Since one can always subdivide more, there is no “ultimate” theorem
in this direction.

One big open question is whether a theorem similar to the celebrated grid-minor
theorem exists in terms of “induced subgraph” instead of “minor”. Simply replacing
“minor” with “induced subgraph” in the statement is trivially false, and here is a list
of known counter-examples: the complete graph Kk, the complete bipartite graph
Kk,k, subdivisions of walls, line graphs of subdivisions of walls (see Figure 3.2). Each
of those graphs has a large tree-width, yet does not contain a grid of big size. One
of our results implicitly show that the previously-given list is not complete. Layered
wheels have large tree-width and do not contain long holes, which implies that they
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contain no K4, no K2,2, and no line graphs of subdivisions of walls. Moreover, layered
wheels contain no subdivisions of (3, 5)-grids (this is explained after Lemma 3.2.3).
In this direction, our objective is to find a complete list to be in the “grid-minor-like
theorem”.

Theta-free graphs

We have pointed out that among the classes forbidding Truemper configuration, the
one which has drawn our attention the most is the class of theta-free graphs, because
it generalizes the class of even-hole-free graphs. In the attempt of finding a struc-
tural description of theta-free graphs, a seemingly easy case is when triangles are
also excluded, because then, every vertex of degree at least 3 is the center of a claw
(therefore a possible start for a theta), so excluding thetas and triangles should force
some structure. Supporting this idea, Radovanović and Vušković [RV13] proved that
every (theta, triangle)-free is 3-colorable. They gave a structural characterization of
this class of graphs, from which a coloring algorithm with time complexityO(nm) is
derived (where n denotes the number of vertices and m the number of edges of the
input graph). Hence, we believed when starting this work that (theta, triangle)-free
graphs have bounded tree-width. But this turned out to be false: layered wheels are
(theta, triangle)-free graphs of arbitrarily large tree-width.

Outline of the chapter

In Section 3.1, we give a summary of the main results in this chapter. In Section 3.2,
we describe the construction of layered wheels for two classes of graphs: (theta,
triangle)-free graphs and (even hole, K4)-free graphs (in fact, we prove it for a more
restricted class namely (even hole, K4, pyramid)-free graphs). We prove that the
constructions actually yield graphs in the corresponding classes (this is non-trivial,
see Theorems 3.2.5, 3.2.10, and 3.2.11). We then prove that layered wheels have
unbounded tree-width (see Theorem 3.2.12) and unbounded clique-width (see The-
orem 3.2.15).

In Section 3.3, we recall the definition of rank-width. We exhibit (theta, triangle)-
free graphs and (even hole, K4)-free graphs with large rank-width. Having un-
bounded rank-width trivially follows from Theorem 3.2.15. However, in this sec-
tion, we give a more rigorous computation of the lower bound of the rank-width
(see Theorem 3.3.16).

In Section 3.4, we give an upper bound on the tree-width of layered wheels. We
prove a stronger result: the so-called path-width of layered wheels is bounded by
some linear function of the number of its layers (see Theorem 3.4.4).

3.1 Summary of the main results

The tree-width, clique-width, rank-width, and path-width of a graph G are denoted
by tw(G), cw(G), rw(G), and pw(G) respectively. The following lemma is well-
known.

Lemma 3.1.1 (See [CR05] and [OS06])

For every graph G, the followings hold:

• rw(G) ≤ cw(G) ≤ 2rw(G)+1;

• cw(G) ≤ 3 · 2tw(G)−1;
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• tw(G) ≤ pw(G).

The first item of the lemma is proved in [CR05], and the second item is proved
in [OS06]. The third item follows because path-width is a special case of tree-width
(see Section 3.4). All results presented in this chapter can be summarized in the next
two theorems.

Theorem 3.1.2

For all integers l ≥ 1 and k ≥ 4, there exists a graph Gl,k such that the followings
hold:

• Gl,k is theta-free and has girth at least k (in particular, Gl,k is triangle-free);

• l ≤ tw(Gl,k) ≤ pw(Gl,k) ≤ 2l;

• l ≤ rw(Gl,k) ≤ cw(Gl,k) ≤ 3 · 2tw(G)−1 ≤ 3 · 22l−1 ≤ |V(Gl,k)|.

Theorem 3.1.3

For all integers l ≥ 1 and k ≥ 4, there exists a graph Gl,k such that the followings
hold:

• Gl,k is (even hole, K4, pyramid)-free and every hole in Gl,k has length at
least k;

• l ≤ tw(Gl,k) ≤ pw(Gl,k) ≤ 2l;

• l ≤ rw(Gl,k) ≤ cw(Gl,k) ≤ 3 · 2tw(G)−1 ≤ 3 · 22l−1 ≤ |V(Gl,k)|.

3.2 Construction and tree-width

In this section, we describe the construction of layered wheels for two classes of
graphs, namely the class of (theta, triangle)-free graphs and the class of (even hole,
K4)-free graphs. We also give a lower bound on their tree-width.

(Theta, triangle)-free layered wheels

We now present ttf-layered-wheels which are theta-free graphs of girth at least k, con-
taining Kl+1 as a minor, for all integers l ≥ 1, k ≥ 4 (see Figure 3.3).

Construction 3.2.1. Let l ≥ 0 and k ≥ 4 be integers. An (l, k)-ttf-layered-wheel, denoted
by Gl,k, is a graph consisting of l + 1 layers, which are paths P0, P1, . . . , Pl . The graph is
constructed as follows.

(A1) V(Gl,k) is partitioned into l + 1 vertex-disjoint paths P0, P1, . . . , Pl . So, V(Gl,k) =
V(P0) ∪ · · · ∪V(Pl). The paths are constructed in an inductive way.

(A2) The path P0 consists of a single vertex.

(A3) For every 0 ≤ i ≤ l and every vertex u in Pi, we call ancestor of u any neighbor of u in
V(P0)∪ · · · ∪V(Pi−1). The type of u is the number of its ancestors (as we will see, the
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construction implies that every vertex has type 0 or 1). Observe that the unique vertex
of P0 has type 0. We will see that the construction implies that for every 1 ≤ i ≤ l, the
ends of Pi are vertices of type 1.

(A4) Suppose inductively that l ≥ 1 and layers P0, P1, . . . , Pl−1 are constructed. The lth-
layer Pl is built as follows.

For any u ∈ Pl−1 we define a path BOXu (which will be a subpath of Pl), in the
following way (here, for some indexes i and j, ui . . . uj denotes a path with ends ui and
uj):

• if u is of type 0, BOXu contains three neighbors of u, namely u1, u2, u3, in such
way that BOXu = u1 . . . u2 . . . u3.

• if u is of type 1, let v be its unique ancestor. BOXu contains six neighbors of
u, namely u1, . . . , u6, and three neighbors of v, namely v1, v2, v3, in such a way
that

BOXu = u1 . . . u2 . . . u3 . . . v1 . . . v2 . . . v3 . . . u4 . . . u5 . . . u6.

The neighbors of u and the neighbors of v in BOXu are of type 1, the other vertices of
BOXu are of type 0. We now specify the lengths of the boxes and how they are connected
to form Pl .

(A5) The path Pl goes through the boxes of Pl in the same order as vertices in Pl−1. For
instance, if uvw is a subpath of Pl−1, then Pl goes through BOXu, BOXv, and BOXw,
in this order along Pl . Note that the vertices of Pl that are in none of the boxes are of
type 0. Note that for u 6= v, we have BOXu ∩ BOXv = ∅.

(A6) Let w, w′ be vertices of type 1 in Pl (so vertices from the boxes), and consecutive in the
sense that the interior of wPlw′ contains no vertex of type 1. Then wPlw′ is a path of
length at least k− 2.

(A7) Observe that every vertex in Pl has type 0 or 1.

(A8) There are no other vertices or edges apart from the ones specified above.

FIGURE 3.3: A ttf-layered-wheel G2,4

Observe that the construction is not fully deterministic because in (A6), we just
indicate a lower bound on the length of wPlw′, so there may exist different ttf-
layered-wheels Gl,k for different values of l and k. This flexibility will be convenient
below to exhibit ttf-layered-wheels of arbitrarily large rank-width.

Lemma 3.2.2

For 0 ≤ i ≤ l − 1 and i + 1 ≤ j ≤ l, every vertex u ∈ V(Pi) has at least 3j−i

neighbors in Pj.
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Proof. We prove the lemma by induction on j. If j = i + 1, then (A4) implies that
for every 0 ≤ i ≤ l− 1 and every vertex u in Pi, u has three or six neighbors in Pi+1. If
j > i + 1, then by the induction hypothesis, every vertex u ∈ V(Pi) has at least 3j−1−i

neighbors in Pj−1. Hence by (A4), it has at least 3 · 3j−1−i = 3j−i neighbors in Pj.

Lemma 3.2.2 implies in particular that every vertex of layer i has neighbors in
all layers i + 1, . . . , l. Construction 3.2.1 is in fact the description of an inductive
algorithm that constructs Gl,k. So, the next lemma is clear.

Lemma 3.2.3

For all integers l ≥ 0 and k ≥ 4, there exists an (l, k)-ttf-layered-wheel.

We now prove that Construction 3.2.1 produces a theta-free graph with arbitrar-
ily large girth and tree-width. Observe that any subdivision of the (3,5)-grid contains
a theta. Thus, Theorem 3.2.5 implies that a ttf-layered-wheel does not contain any
subdivision of (3,5)-grid as mentioned in the introduction.

The next lemma is useful to prove Theorem 3.2.5. For a theta consisting of three
paths P1, P2, P3, the common ends of those paths are called the apexes of the theta. Let
G be graph containing a path P. The path P is special if

• there exists a vertex v ∈ V(G \ P) such that |NP(v)| ≥ 3; and

• in G \ v, every vertex of P has degree at most 2.

Note that in the next lemma, we make no assumption on G, which in particular
may contain triangles.

Lemma 3.2.4

Let G be a graph containing a special path P. For any theta that is contained in
G (if any), every apex of the theta is not in P.

Proof. Let v be a vertex satisfying the properties as in the definition of special
path. For a contradiction, suppose that P contains some vertex u which is an apex
of some theta Θ in G. Note that u must have degree 3, and is therefore a neighbor of
v. Consider two subpaths of P, u1Pu2 and u2Pu3 such that u ∈ {u1, u2, u3} ⊆ N(v)
and both u1Pu2, u2Pu3 have no neighbors of v in their interior. This exists since
|NP(v)| ≥ 3. Since u is an apex, either H1 = vu1Pu2v or H2 = vu2Pu3v is a hole
of Θ. Without loss of generality suppose that V(H1) ⊆ V(Θ). Hence the other
apex of Θ must be also contained in H1. Since u1v, u2v ∈ E(G) and all vertices of
H1 \ {u1, v, u2} have degree 2, u1, u2 must be the two apexes of Θ. Since d(u2) = 3,
V(u2Pu3) ⊆ Θ. But then v has degree 3 in Θ while not being an apex, a contradiction.
This completes the proof.

Theorem 3.2.5

For all integers l ≥ 0 and k ≥ 4, every (l, k)-ttf-layered-wheel Gl,k is theta-free
graph with girth at least k.

Proof. We first show by induction on l that Gl,k has girth at least k. This is clear
for l ≤ 1, so suppose that l ≥ 2 and let H be a cycle in Gl,k whose length is less than k.
We may assume that layer Pl contains some vertex of H, for otherwise H is a cycle
in Gl−1,k, so it has length at least k by the induction hypothesis. Let P = u . . . v be
a path such that V(P) ⊆ V(H) ∩ V(Pl) and with the maximum length among such
possible paths. Note that P contains at least two vertices. Indeed, if P contains a
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single vertex, then such a vertex must have at least two ancestors, since it has degree
2 in H, which is impossible by the construction of Gl,k. So u 6= v. Moreover, note
that as P is contained in a cycle, both u and v must have an ancestor. Let u′ and v′

be the ancestor of u and v respectively. By (A6) of Construction 3.2.1 P has length
at least k − 2. Hence u′uPvv′ has length at least k, so H has length at least k. This
completes the proof.

Now we show that Gl,k is theta-free. For a contradiction, suppose that it contains
a theta. Let Θ be a theta with minimum number of vertices, and having u and v as
apexes. As above, without loss of generality, we may assume that Pl contains some
vertex of Θ. Note that every vertex of Pl is contained in a special path of Gl,k. Hence,
by Lemma 3.2.4, u, v /∈ V(Pl). In particular, every vertex of V(Pl)∩V(Θ) has degree
2 in Θ.

Let P = x . . . y for some x, y ∈ Pl , be a path such that V(P) ⊆ V(Θ) ∩ V(Pl)
and it is inclusion-wise maximal w.r.t. this property. Since every vertex of Pl has at
most one ancestor, x 6= y. Moreover, both x and y must have an ancestor, because
every vertex of Θ has degree 2 or 3 in Θ. Let x′ and y′ be the ancestor of x and
y respectively. By the maximality of P, both x′ and y′ are also in Θ. Note that no
vertex in the interior of P is adjacent to x′ or y′, since otherwise such a vertex would
have degree 3 in Θ, meaning that it is an apex, a contradiction.

Claim 1. We have x′ 6= y′, x′y′ /∈ E(Gl,k), and some internal vertex of P is of type 1.

Proof of Claim 1. Otherwise, x′ = y′ or x′y′ ∈ E(Gl,k), or every internal vertex of P
is of type 0. In the last case, we also have x′ = y′ ∈ V(Pl−1) or x′y′ ∈ E(Gl,k) by
the construction of Gl,k. Hence, in all cases, V(P) ∪ {x′, y′} induces a hole in Θ, that
must contain both u and v. Since u, v /∈ V(Pl), we have u, v ∈ {x′, y′}. But this is not
possible as x′ = y′ or x′y′ ∈ E(Gl,k). This proves Claim 1.

We now set P′ = x′xPlyy′ (which is a path by Claim 1).

Claim 2. There exists no vertex of type 0 in Pl−1 that has a neighbor in the interior
of P.

Proof of Claim 2. For a contradiction, let t ∈ V(Pl−1) be of type 0 that has neighbors in
the interior of P. Note that t /∈ V(Θ) because internal vertices of P have degree 2 in
Θ. Let Q be the shortest path from x′ to y′ in Gl,k[V(P′)∪ {t}]. Note that Q is shorter
than P′, because it does not go through one vertex of NP(t). So, P′ can be substituted
for Q in Θ, which provides a theta from u to v with fewer vertices, a contradiction to
the minimality of Θ. This proves Claim 2.

Claim 3. We may assume that:

• x′ ∈ V(Pl−1) and x′ has type 0.

• y′ /∈ V(Pl−1).

• y′ has a neighbor w in Pl−1 and x′w ∈ E(Gl,k).

• Every vertex in P has type 0, except x, y, and three neighbors of w. Observe
that w has type 1 and has three more neighbors in Pl that are not in P.

Proof of Claim 3. Suppose first that x′, y′ are both in Pl−1. Then by Claim 1, the path
x′Pl−1y′ has length at least two. Moreover, by Claim 2, all its internal vertices are of
type 1, because they all have neighbors in the interior of P. It follows that x′Pl−1y′ has
length exactly two. We denote by z its unique internal vertex. Substituting x′zy′ for
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P′, we obtain a theta that contradicts the minimality of Θ. Observe that the ancestor
of z is not in V(Θ), because it has three neighbors in P. This proves that x′, y′ are not
both in Pl−1.

So up to symmetry, we may assume that y′ /∈ V(Pl−1). Since y′ has neighbor
in Pl , it must be that y′ has a neighbor w ∈ V(Pl−1), and that along Pl , one visits
in order three neighbors of w, then y and two other neighbors of y′, and then three
other neighbors of w.

Let w′ be a neighbor of w in Pl−1, chosen so that w′ has neighbors in P. Since
w′ has type 0, by Claim 2, we have w′ = x′. Hence, as claimed, x′ ∈ V(Pl−1) and
x′w ∈ E(G). This proves Claim 3.

Let a, b, c, a′, b′, c′ be the six neighbors of w in Pl appearing in this order along Pl ,
in such a way that a, b, c ∈ V(P) and a′, b′, c′ /∈ V(P). We have {a′, b′, c′} ∩ V(Θ) 6=
∅, since otherwise we obtain a shorter theta from u to v by replacing P′ with x′wy′,
a contradiction to the minimality of Θ. Let y′′ be the neighbor of y′ in yPla′ closest to
a′ along yPla′. Since w /∈ V(Θ), V(y′y′′Plc′) ⊆ V(Θ).

If y′ /∈ {u, v}, then by replacing x′P′y′y′′Plc′ with x′wc′, we obtain a theta, a
contradiction to the minimality of Θ. So, y′ ∈ {u, v}. Without loss of generality, we
may assume that y′ = v.

If u 6= x′, then by replacing V(x′P′y′y′′Plc′) with {x′, w, y′, c′} in Θ, we obtain
a theta from w to u which contains fewer vertices than Θ, a contradiction to the
minimality of Θ. So, u = x′.

Recall that x′ has type 0. Let z 6= w be the neighbor of x′ in Pl−1. Moreover,
let z′ and z′′ be the neighbor of z and x′ in Pl respectively, such that all vertices in
the interior of z′Plz′′ have degree 2. Since Θ goes through P, w /∈ V(Θ). Therefore
z, z′, z′′ ∈ V(Θ). This implies the hole zx′z′′Plz′z is a hole of Θ, a contradiction
because the other apex v = y′ is not in the hole. This completes the proof that Gl,k is
theta-free.

Even-hole-free layered wheels

Recall that (even hole, triangle)-free graphs have tree-width at most 5
(see [Cam+18]), and as we will see, ttf-layered-wheels of arbitrarily large tree-width
exist. Hence, some ttf-layered-wheels contain even holes (in fact, it can be checked
that they contain even wheels). We now provide a construction of layered wheels
that are (even hole, K4)-free, but contain triangles (see Figure 3.5). Its structure is
similar to ttf-layered-wheels, but slightly more complicated.

The construction of ehf-layered-wheels that we are going to discuss emerges
from the structure of wheels that may exist in a graph of the studied class (namely,
even-hole-free graphs with no K4). In the class of even-hole-free graphs, wheels with
the same rim may have different centers. Those centers may be adjacent or not. In
Figure 3.4, we give examples of wheels that may exist in an even-hole-free graph.
Formally, we do not need to prove that these wheels are even-hole-free, and there-
fore we omit the (straightforward) proof.

Now we are ready to describe the construction of ehf-layered-wheel.

Construction 3.2.6. Let l ≥ 1 and k ≥ 4 be integers. An (l, k)-ehf-layered-wheel, denoted
by Gl,k, consists of l + 1 layers, which are paths P0, P1, . . . , Pl . We view these paths as
oriented from left to right. The graph is constructed as follows.

(B1) V(Gl,k) is partitioned into l + 1 vertex-disjoint paths P0, P1, . . . , Pl . So, V(Gl,k) =
V(P0) ∪ · · · ∪V(Pl). The paths are constructed in an inductive way.
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FIGURE 3.4: Wheels in an even-hole-free graph whose centers induce
an edge or a triangle, with the corresponding zones as described in
Construction 3.2.6 (dashed lines between two vertices represent paths

of odd length)

(B2) The first layer P0 consists of a single vertex r. The second layer P1 is a path such that
P1 = r1P1r2P1r3, where {r1, r2, r3} = NP1(r) and for j = 1, 2, rjP1rj+1 is of odd
length at least k− 2.

(B3) For every 0 ≤ i ≤ l and every vertex u in Pi, we call ancestor of u any neighbor of u
in Gl,k [P0 ∪ · · · ∪ Pi−1]. The type of u is the number of its ancestors (as we will see,
the construction implies that every vertex has type 0, 1, or 2). Observe that the unique
vertex of P0 has type 0, and P1 consists only of vertices of type 0 or type 1. Moreover,
we will see that if u is of type 2, then its ancestors are adjacent. Also, the construction
implies that for every 1 ≤ i ≤ l, the ends of Pi are vertices of type 1.

(B4) Suppose inductively that l ≥ 2 and P0, P1, . . . , Pl−1 are constructed. The lth-layer Pl
is built as follows.

For all 0 ≤ i ≤ l − 1, any vertex u ∈ V(Pi) has an odd number of neighbors in Pl ,
that are into subpaths of Pl that we call zones. These zones are labeled by Eu or Ou
according to their parity: a zone labeled Eu contains four neighbors of u, and a zone
labeled Ou contains three neighbors of u. All these four or three neighbors are of type 1,
and all the other vertices of the zone are of type 0.

There are also zones that contain common neighbors of two vertices u, v. We label them
Eu,v (or Ou,v). A zone Eu,v (resp. Ou,v) contains four (resp. three) common neighbors
of u and v. All these four or three neighbors are of type 2, and all the other vertices of
the zone are of type 0.

The ends of a zone Eu (resp. Ou) are neighbors of u. The ends of a zone Eu,v (resp.
Ou,v) are common neighbors of u and v. Distinct zones are disjoint.

(B5) For any u ∈ Pl−1, we define the box BOXu, which is a subpath of Pl , as follows:

• If u is of type 0 (so it is an internal vertex of Pl−1), then let u′ and u′′ be the
neighbors of u in Pl−1, so that u′uu′′ is a subpath of Pl−1. In this case, BOXu
goes through three zones Eu′,u, Ou, Eu,u′′ that appear in this order along Pl (see
Figure 3.5).

• If u is of type 1, then let v ∈ Pi, i < l − 1 be its ancestor.
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If u is an internal vertex of Pl−1, then let u′ and u′′ be the neighbors of u in Pl−1,
so that u′uu′′ is a subpath of Pl−1. In this case, BOXu is made of five zones Eu′,u,
Ou, Ou,v, Ou, Eu,u′′ (see Figure 3.5).
If u is the left end of Pl−1, then let u′′ be the neighbor of u in Pl−1. In this case,
BOXu is made of four zones Ou, Ou,v, Ou, Eu,u′′ .
If u is the right end of Pl−1, then let u′ be the neighbor of u in Pl−1. In this case,
BOXu is made of four zones Eu′,u, Ou, Ou,v, Ou.

• If u is of type 2 (so it is an internal vertex of Pl−1), then let v ∈ Pi and w ∈ Pj,
j ≤ i be its ancestors. If i = j, we suppose that v and w appear in this order
along Pi (viewed from left to right). It turns out that either w is an ancestor of v,
or v, w are consecutive along some path Pi (because as one can check, all vertices
of type 2 that we create satisfy this statement). In this case, BOXu is made of 11
zones, namely Eu′,u, Eu, Ev,w, Ou, Ou,v, Ou, Ou,w, Ou, Ev,w, Eu, and Eu,u′′ (see
Figure 3.5).

Note that for any two adjacent vertices u, v ∈ Pl−1, BOXu and BOXv are not disjoint.

(B6) The path Pl visits all the boxes BOX− of Pl in the same order as vertices in Pl−1. For
instance, if uvw is a subpath of Pl−1, then BOXu, BOXv, and BOXw appear in this
order along Pl .

(B7) Let u and v be two vertices of Pl , both of type 1 or 2, and consecutive in the sense that
every vertex in the interior of uPlv is of type 0. If u and v have a common ancestor,
then uPlv has odd length, at least k − 2. If u and v have no common ancestor, then
uPlv has even length, at least k− 2.

(B8) Observe that every vertex in Pl has type 0, 1, or 2. Moreover, as stated, every vertex of
type 2 has two adjacent ancestors.

(B9) There are no other vertices or edges apart from the ones specified above.

For the same reason as for ttf-layered-wheels, we allow flexibility in Construc-
tion 3.2.6, by just giving lower bounds for the lengths of paths described in (B7). So
there may exist different ehf-layered-wheels Gl,k for the same value of l and k.

Lemma 3.2.7

For 0 ≤ i ≤ l − 1 and i + 1 ≤ j ≤ l, every vertex u ∈ V(Pi) has at least 3j−i

neighbors in Pj.

Proof. We omit the proof since it is similar to the proof of Lemma 3.2.2.

Lemma 3.2.7 implies that every vertex of layer i has neighbors in all layers i +
1, . . . , l. The next lemma is clear.

Lemma 3.2.8

For all integers l ≥ 1 and k ≥ 4, there exists an (l, k)-ehf-layered-wheel.

We need some properties of lengths of some paths in ehf-layered-wheel. It is
convenient to name specific subpaths of boxes first (see Figure 3.5).

• Suppose that u is a vertex in Pl−1 (of any type).

If u is not an end of Pl−1, then a subpath of BOXu is a shared part of BOXu if it is
either the zone Eu′,u or the zone Eu,u′′ . The private part of BOXu is the path from
the rightmost vertex of Eu′,u to the leftmost vertex of Eu,u′′ .
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FIGURE 3.5: The neighborhood of a type 0, type 1, or type 2 vertex
u ∈ V(Pl−1) in Pl (dashed lines between two vertices in Pl represent
paths of odd length, and red edges represent non-internal edges as in

the proof of Theorem 3.2.10)

Otherwise, if u is the left end of Pl−1 (and therefore of type 1), then u has only
one shared part, that is the zone Eu,u′′ , where u′′ ∈ NPl−1(u). The private part
of u is the path from the leftmost vertex of the leftmost zone Ou to the leftmost
vertex of Eu,u′′ .

Similarly, if u is the right end of Pl−1, then u has only one shared part, that is
the zone Eu′,u, where u′ ∈ NPl−1(u). The private part of u is the path from the
rightmost vertex of Eu′,u to the rightmost vertex of the rightmost zone Ou.

Observe that BOXu is edgewise partitioned into a private part and some shared
parts (namely zero if l = 1 and u is the unique vertex of layer P0, one if l > 1
and u is an end of Pl−1, two otherwise).

• Suppose that u is of type 1 and v is its ancestor.

If u is not the left end of Pl−1, then the left escape of v in BOXu is the subpath of
BOXu from the rightmost vertex of Eu′,u to the leftmost vertex of Ou,v.

If u is not the right end of Pl−1, then the right escape of v in BOXu is the subpath
of BOXu from the rightmost vertex of Ou,v to the leftmost vertex of Eu,u′′ .

• Suppose that u is of type 2 and v, w are its ancestors as in Construction 3.2.6.
Note that u is not an end of Pl−1.
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The left escape of v (resp. of w) in BOXu is the subpath of BOXu from the rightmost
vertex of Eu′,u to the leftmost vertex of the zone Ev,w that is the closest to Eu′,u.

The right escape of v (resp. of w) in BOXu is the subpath of BOXu from the right-
most vertex of the zone Ev,w that is the closest to Eu,u′′ , to the leftmost vertex of
Eu,u′′ .

Lemma 3.2.9

Let Gl,k be an ehf-layered-wheel with l ≥ 1 and u be a vertex in the layer Pl−1.
Then the following hold:

• Shared parts of BOXu are paths of odd length.

• The private part of BOXu is a path of even length if u is not an end of Pl−1;
and it is of odd length otherwise.

• If u has type 1 or 2, then all the left and right escapes of its ancestors in
BOXu are paths of even length.

Proof. To check the lemma, it is convenient to follow the path BOXu in Figure 3.5
from left to right. In this proof, we refer to Construction 3.2.6, and we follow the
notation given in Figure 3.5.

By (B7), shared parts of BOXu have obviously odd length.
If u has type 0, then along the private part of BOXu, one meets 1 common neigh-

bor of u and u′, then 3 private neighbors of u, and then 1 common neighbor of u
and u′′. In total, from the leftmost neighbor of u to its rightmost neighbor, one goes
through 4 subpaths of BOXu, each of odd length by (B7) (2 of the paths are in zones,
while 2 of them are between zones). The private part of BOXu has therefore even
length.

If u has type 1, then the proof is similar. If it is not an end of Pl−1, then along the
private part of BOXu, one visits 10 subpaths (6 in zones, 4 between zones), each of
odd length by (B7). Otherwise, one visits 9 subpaths (6 in zones, 3 between zones),
each of odd length by (B7).

If u has type 2 then u is not an end of Pl−1. Now there are more details to check.
Along the private part of BOXu, one visits 32 subpaths. Among them, 22 are in zones
and have odd length by (B7), and 10 are between zones. But 4 of the subpaths be-
tween zones have even length by (B7), namely, the paths linking Eu to Ev,w (because
{u} ∩ {v, w} = ∅), Ev,w to Ou,Ou to Ev,w, and Ev,w to Eu. The 6 remaining subpaths
between zones have odd length by (B7).In total, the private part of BOXu has even
length as claimed.

For the left and right escapes, the proof is similar. If u is of type 1, then the escape
is made of 4 paths each of odd length. If u is of type 2, then the escape is made ofthe
path between zones Ev,w and Eu that is of even length, three paths in zone Eu each of
an odd length, and the path between zone Eu and Eu′,u or Eu,u′′ that is of odd length.
So, every left and every right escape is of even length.

Theorem 3.2.10

For all integers l ≥ 1 and k ≥ 4, every (l, k)-ehf-layered-wheel Gl,k is (even hole,
K4)-free and every hole in Gl,k has length at least k.

Proof. It is clear from the construction that Gl,k does not contain K4. Moreover, it
follows from (B7) that apart from triangles, any chordless cycle in Gl,k is of length at
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least k (we omit the formal proof that is similar to the proof that ttf-layered-wheels
have girth at least k).

For a contradiction, consider an ehf-layered-wheel Gl,k that contains an even hole
H. Suppose that l is minimal, and under this assumption that H has minimum
length. Hence, layer Pl contains some vertex of H, for otherwise Gl,k[P0 ∪ · · · ∪ Pl−1]
would be a counterexample. Let us start by the following claim.

Let x be a vertex in Pi where 0 ≤ i < l, and y be a neighbor of x in Pl . We say that
xy is an internal edge (see Figure 3.5) if one of the following holds:

• i = l − 1 and y is an internal vertex of BOXx.

• i < l − 1, x is an ancestor of x′ ∈ V(Pl−1), x′ has type 1 or 2, y is in BOXx′ and
y is neither the leftmost neighbor of x in BOXx′ nor the rightmost neighbor of x
in BOXx′ .

Claim 1. H contains no internal edge.

Proof of Claim 1. Let xy be an internal edge as in the definition and suppose for
a contradiction that xy is an edge of H. Let Q = y . . . z be the path of H that is
included in Pl and that is maximal w.r.t. this property. Let z′ be the ancestor of z that
is in H (it exists by the maximality of Q).

Suppose first that x is in Pl−1. We then set x = u and observe that u has type 0, 1
or 2 (see Figure 3.5). If u has type 0, then since uy is internal edge, y is either in the
zone Ou, or is among the three rightmost vertices of zone Eu′,u, or is among the three
leftmost vertices of zone Eu,u′′ (where u′ and u′′ are the left and the right neighbors
of u respectively in Pl−1 as shown in Figure 3.5). Since no internal vertex of Q is
adjacent to u because H is a hole, we have zu ∈ E(G) and z′ = u. So, H = uyQzu
and H has odd length by the axiom (B7), a contradiction. If u has type 1 (and ancestor
v as represented in Figure 3.5), the proof is similar (note in this case that z′ 6= v for
otherwise the triangle uvy would be in H, a contradiction).

If u has type 2 (and ancestors v, w as represented in Figure 3.5) the proof is similar
with some other possibilities. For instance, it can be that y is the rightmost vertex
of the leftmost zone Z = Eu. In this case, z can be either the leftmost vertex of the
zone Ev,w that is next to Z, or the leftmost vertex of the zone Ou that is closest to Z.
In the first case, z′ = v or z′ = w (say z′ = v up to symmetry), so H = uyQzvu
and H has odd length by (B7); in the second case, H = uyQzu and H has again odd
length by (B7), a contradiction. Similar situations are when y is the leftmost vertex
of the leftmost zone Ou, when y is the rightmost vertex of the rightmost zone Ou and
when y is the leftmost vertex of the rightmost zone Eu. We omit the details of each
situation.

Suppose now that x is not in Pl−1. Since x has neighbor in Pl , x is the ancestor of
some vertex u from Pl−1. If u is of type 1 with ancestor v, then x = v. We observe
that y must be the middle vertex of the zone Ou,v. Hence, H = vyQzv and H has odd
length by (B7), a contradiction.

So, u has type 2 and ancestors v, w. Up to symmetry, we may assume that x = v.
As in the previous cases, regardless of the position of y in BOXu, we must have either
H = vyQzv, or H = vyQzuv, or H = vyQzwv (when y is the rightmost vertex of Ou,v
and z is the leftmost vertex of Ou,w). In all cases, H has odd length, a contradiction.
This proves Claim 1.

Now let P = s . . . t be a subpath of H in Pl such that P is inclusion-wise maximal.
So both s and t have an ancestor that is in H. If P contains a single vertex (i.e.,
s = t), then s must have two ancestors, say, s1 and s2, which are adjacent by (B3)
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of Construction 3.2.6. Thus {s, s1, s2} forms a triangle in H, which is not possible.
So P contains at least two vertices and s 6= t. Let u and v be ancestors of s and t
respectively, such that u, v ∈ V(H) (possibly u = v, or uv ∈ E(G)).

Recall that all layers are viewed as oriented from left to right. We suppose that s
and t appear in this order, from left to right, along Pl .

Claim 2. For every vertex p ∈ V(Pl−1), N(p) ∩V(Pl) 6⊆ V(P).

Proof of Claim 2. Suppose that p ∈ V(Pl−1) and N(p) ∩V(Pl) ⊆ V(P). So, p /∈ V(H).
Note that p is an internal vertex of Pl−1, for otherwise, s or t is an end of Pl and has
degree 2, while having two neighbors in V(H) ∩V(Gl,k \ p), a contradiction.

By (B5), ancestors of p (if any) and the neighbors of p in Pl−1 must also have
neighbors in P. Thus, all of such vertices do not belong to H because P is a sub-
path of H. By Lemma 3.2.9, the path BOXp = p′ . . . p′′ has an even length. Indeed
BOXp consists of two shared parts (each of odd length) and one private part (of even
length). It follows that BOXp and p′pp′′ have the same parity, and hence replacing
BOXp in H with p′pp′′ yields an even hole with length strictly less than the length of
H, a contradiction to the minimality of H. This proves Claim 2.

Claim 3. Exactly one of u and v is in Pl−1.

Proof of Claim 3. Suppose that both u and v are not in Pl−1. Since u and v have
neighbors in P, each of them has a neighbor in Pl−1 (where such neighbors also have
some neighbor in P). Let u′ and v′ be the respective neighbors of u and v in Pl−1.

If u′ = v′, then u′ is a type 2 vertex in Pl−1. So, H is a hole of form usPtvu, and
it has odd length by construction. So u′ 6= v′, and by construction, the interior of
u′Pl−1v′ must contain a vertex w of type 0. It follows that NPl (w) is all contained in
P, a contradiction to Claim 2.

Suppose now that both u and v are in Pl−1. By Claim 2, no vertex of Pl−1 has all
its neighbors in P. So the interior of uPl−1v contains at most two vertices.

If u = v, then by (B7) P is of odd length, and since V(H) = {u} ∪ V(P), H is
also of odd length, a contradiction. Similarly if uv ∈ E(G), then by (B7), P is of even
length, V(H) = {u, v} ∪V(P), and H has odd length, again a contradiction.

If the interior of uPl−1v contains a single vertex, then let w be this vertex. Let w1
(resp. w2) be the neighbor of w in P that is closest to s (resp. t). Note that by (B5),
s = w1, t = w2 because both u and v are adjacent to w in Pl−1. So, sPt is the private
part of BOXw, and by Lemma 3.2.9, it has even length (the parity of the length is
the same as uwv, a subpath of Pl−1). Moreover, by Claim 1, {s} = V(Eu,w) ∩ V(H)
and {t} = V(Ew,v) ∩ V(H). Also, if w has an ancestor, then such an ancestor must
have neighbors in P, and hence it does not belong to H. Altogether, we see that
NH(w) ⊆ V(usPtv). So, replacing usPtv in H with uwv gives an even hole with
length strictly less than the length of H, a contradiction to the minimality of H.

So the interior of uPl−1v contains two vertices. We let uPl−1v = uww′v, and w1
(resp. w′2) be the neighbor of w (resp. w′) in P that is closest to s (resp. t). By (B5), s =
w1, t = w′2. So, sPt is edgewise partitioned into the private part of w, the part shared
between w and w′, and the private part of w′. By Lemma 3.2.9, sPt has therefore
odd length. In particular, the length of usPtv has the same parity as the length of
uww′v. Moreover, by Claim 1, {s} = V(Eu,w) ∩ V(H) and {t} = V(Ew′,v) ∩ V(H).
Also, if w or w′ has an ancestor, then such an ancestor must have neighbors in P, and
hence it does not belong to H. Altogether, we see that NH({w, w′}) ⊆ V(usPtv). So,
replacing usPtv in H with uww′v gives an even hole that is shorter than H, again a
contradiction to the minimality of H. This proves Claim 3.
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By Claim 3 and up to symmetry, we may assume that u ∈ V(Pl−1) and v /∈
V(Pl−1). So, v has a neighbor v′ in Pl−1 such that t ∈ BOXv′ . Note that v′ /∈ H,
because by construction v′ has some neighbor in P. Hence, v′ 6= u (because u ∈ H).
If the path uPl−1v′ has length at least three, then some vertex in the interior of uPl−1v′

contradicts Claim 2.
If uPl−1v′ has length two, so uPl−1v′ = uwv′ for some vertex w ∈ V(Pl−1), then

w is of type 0 because v′ is not of type 0. Hence, P is edgewise partitioned into the
private part of w, the part of BOXv′ shared between w and v′ and the left escape of
v in BOXv′ . Let w′ be the rightmost vertex of the shared zone Ew,v′ . By Lemma 3.2.9,
usPw′ has even length, as uww′. Moreover, by Claim 1, {s} = V(Eu,w) ∩V(H), and
since w has type 0, we see that NH(w) ⊆ V(usPw′). So, replacing usPw′ in H with
uww′ gives an even hole with length strictly less than the length of H, a contradiction
to the minimality of H.

Hence, uPl−1v′ has length one: uPl−1v′ = uv′. So, P is the left escape of v in BOXv′ .
By Lemma 3.2.9, P has even length. By Claim 1, {s} = V(Eu,v′) ∩V(H). Recall that
v′ /∈ H. If NH(v′) ⊆ V(usPtv), then replacing usPtv in H with uv′v gives an even
hole with length strictly less than the length of H, a contradiction to the minimality
of H.

So, v′ has neighbors in H that are not in usPtv. Note that if v′ is of type 2, the
ancestor of v′ that is different from v is not in H (because it is adjacent to t and to v).
Also, by Claim 1, the neighbors of v′ in Eu,v′ \ s are not in H.

We denote by v′′ the right neighbor of v′ in Pl−1. Note that v′′ has type 0, since
v′ has type 1 or 2. Let s′ and t′ be vertices such that t′Pls′ is the right escape of v in
BOXv′ , t′ is adjacent to v, and s′ is adjacent to v′′. Note that s′ is the leftmost vertex
of Ev′,v′′ and t′ is the rightmost vertex of the zone Ov′,v (when v′ is of type 1) or of the
rightmost zone Ev,w (when v′ is of type 2, and w is the other ancestor of v′).

Let us see which vertex can be a neighbor of v′ in H \ usPtv. We already know it
cannot be an ancestor of v′ or be in Eu,v′ \ s. Suppose it is v′′. Then, H must contain
two edges incident to v′′, and none of them can be an internal edge by Claim 1.
Note that s′v′′ must be an edge of H, for otherwise, the two only available edges are
v′′v′′′ and v′′s′′ (where v′′′ is the right neighbor of v′′ in Pl−1 and s′′ is the rightmost
neighbor of v′′ in Pl), and this yields a contradiction because v′′′s′′ ∈ E(G). Since
s′v′′ ∈ E(H), H goes through the path R = usPtvt′Pls′v′′. This path has even length,
and contains all vertices of NH(v′). So, we may replace R by uv′v′′ in H, to obtain an
even hole that contradicts the minimality of H. Now we know that v′′ /∈ V(H).

Since v′ has a neighbor in H \ usPtv, and since this neighbor is not an ancestor
of v′, is not v′′, and is not in Eu,v′ , it must be in BOXv′ \ (V(P) ∪ Eu,v′). By Claim 1,
the only way that H can contain some vertex of BOXv′ \ (V(P) ∪ Eu,v′) is if H goes
through the edge vt′, in particular through the right escape of v in BOXv′ . Let t′′ be
the rightmost vertex of Ev′,v′′ . Hence, H must go through the path S = usPtvt′Plt′′

(see Figure 3.6). This path has even length, and contains all vertices of NH(v′). So, we
may replace S by uv′t′′ in H, to obtain an even hole that contradicts the minimality
of H.

Let us now prove that every ehf-layered-wheel is pyramid-free.

Theorem 3.2.11

For all integers l ≥ 1, k ≥ 4, every (l, k)-ehf-layered-wheel Gl,k is pyramid-free.

Proof. Recall that all layers are viewed as oriented from left to right. For a contra-
diction, suppose that an ehf-layered-wheel Gl,k contains a pyramid Π = 3PC(∆, x).
(Here we denote by ∆ the triangle of Π, and call the apex the only vertex of degree 3
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FIGURE 3.6: The proof of Theorem 3.2.10: in blue is the path S =
usPtvt′Plt′′, when v′ is of type 1 (top) and when v′ is of type 2 (bottom)

in Π \ ∆ which in this case is the vertex x.) Suppose that l is minimal, and under
this assumption that Π contains the minimum number of vertices among all pyra-
mids in Gl,k. Clearly l ≥ 3, and layer Pl contains some vertex of Π, for otherwise
Gl,k[P0 ∪ · · · ∪ Pl−1] would be a counterexample.

The next claim is trivially correct, so we omit the proof.

Claim 1. Any hole in Π contains the apex and two vertices of ∆.

Claim 2. If a vertex of ∆ is in Pl , then it is not in the interior of some zone.

Proof of Claim 2. Suppose that some vertex a of ∆ is in Pl and is in the interior of some
zone Z. Then a is of type 2. If Z = Eu′,u for some u′, u ∈ Pl−1, then ∆ = auu′, and we
see that the left or the right neighbor of a in Pl is in Π. Let Q = a . . . b be the subpath
of Pl that contains a, that is included in Π, and that is maximal w.r.t. these properties.
We see that b is adjacent to u and u′, so that Π contains a diamond, a contradiction.
The proof is the same for all other kinds of zones (namely Eu,u′′ , Ev,w, Ou,v, or Ou,w).
This proves Claim 2.

Claim 3. The apex x is not in Pl .

Proof of Claim 3. Let us see that x ∈ Pl yields a contradiction. Since x has degree 3 in
Π, it is a vertex of type 1 or 2, so it belongs to some zone.

Suppose first that x is in the interior of some zone Z. If Z = Eu,u′ for some
u, u′ ∈ Pl−1, then since x has degree 3 in Π and is not in a triangle of Π, we see that
the two neighbors of x in Pl are in Π. Also, exactly one ancestor y of x must be in Π.
Let Q be the subpath of Pl that contains x, that is included in Π, and that is maximal
w.r.t. these properties. We see that the ends of Q are adjacent to y, so that Q and y
form a cycle with a unique chord in a pyramid, while not containing a triangle, a
contradiction. When Z is another zone, say Eu,u′′ , Ou, Ou,v, etc, the proof is exactly
the same.

Suppose now that x is an end of some zone Z. Again, the two neighbors of x in
Pl and an ancestor u of x are in Π. So, Π contains the path Q from x to the vertex y
with ancestor u that is next to x along Z. Note that y is in the interior of Z. So, Q and
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u form a hole of Π. Apart from x, y, and u, every vertex of H has degree 2, so uy is
an edge of ∆, a contradiction to Claim 2. This proves Claim 3.

Claim 4. If u ∈ Pl−1 has type 0 or 1 and is in Π, then no internal vertex of BOXu is in
Π.

Proof of Claim 4. Suppose a ∈ Π is an internal vertex of BOXu. Let Q be the subpath
of Pl that contains a, is included in Π, and maximal w.r.t. this property. Since a is
an internal vertex of BOXu and u has type 0 or 1, Q and u form a hole H, that must
contain the apex. Since by Claim 3, the apex is not in Pl , it must be u, and since
every internal vertex of Q has degree 2, the two neighbors of u in H are in ∆, a
contradiction since they are non-adjacent. This proves Claim 4.

Claim 5. No vertex of ∆ is in Pl .

Proof of Claim 5. Suppose for a contradiction that a is a vertex of ∆ in Pl . So a has
type 2, and in particular, it is not an end of Pl . As every internal vertex of Pl , a is
in the interior of some box BOXu. If u is of type 0 or 1, it must be part of ∆, so a
contradicts Claim 4. Hence, u is of type 2.

We denote by P = a . . . p a subpath of Π included in BOXu and maximal with
this property. We will now analyze every possible zone where a belongs to, and we
will see that each of the cases yields a contradiction.

Suppose first that a is in a shared zone Z. If Z = Eu′,u, and therefore, ∆ = au′u,
then by Claim 2, a is the rightmost vertex of Eu′,u (since it is in the interior of BOXu).
Since u′ is of type 0 (because u is of type 2), Claim 4 applied to BOXu′ implies that a
is the only vertex of Π in Eu′,u, so p must be the leftmost vertex of the zone Eu that is
next to Eu′,u. So P and u form a hole H of Π, and since u is in ∆, the apex x must be
in Pl , a contradiction to Claim 3. The proof is similar when Z = Eu,u′′ .

If Z = Ou,v, then ∆ = auv, and by Claim 2, a is either the leftmost or the rightmost
vertex of Ou,v. If a is the leftmost vertex of Ou,v, then p is either the rightmost vertex
of the zone Ou (that is on the left of Ou,v) or p is the vertex of type 2 next to a along
Ou,v. In either case, P and u form a hole H of Π, and since u is in the triangle of
Π, the apex x must be in Pl , a contradiction to Claim 3. If a is the rightmost vertex
of Ou,v, the proof is similar. By symmetry, the case when Z = Ou,w yields a similar
contradiction.

When a is the rightmost vertex of the leftmost zone Ev,w (that is between Eu and
Ou when oriented from left), we have ∆ = avw and so u /∈ Π. The proof is again the
same, with a hole H that goes through v. The case when a is the leftmost vertex of
the rightmost zone Ev,w (that is between Ou and Eu when oriented from left) can be
done in the similar way.

We are left with the case when a is the leftmost vertex of the leftmost zone Ev,w,
or the rightmost vertex of the rightmost zone Ev,w. These two cases are symmetric,
so we may assume that a is the leftmost vertex of the leftmost zone Ev,w.

It then follows that ∆ = avw. Note that u /∈ Π because a pyramid has only one
triangle. If P goes in the interior of the zone Ev,w, then Π contains a diamond, a
contradiction. So, P goes through the zone Eu that is left to Ev,w and contains the
rightmost vertex of Eu′,u. There are two cases: P contains the zone Eu′,u (so p is
the leftmost vertex of Eu′,u and u′ /∈ Π), or P contains only the rightmost vertex or
Eu′,u (so p is the rightmost vertex of Eu′,u and u′ ∈ Π). In the first case, we remove
P \ p from Π and put instead the edge up; in the second case, we remove P from Π
completely and put the edge uu′. We obtain a pyramid (with triangle uvw) that is
of smaller size than Π — a contradiction, unless u has some neighbor in Π \ (P ∪
{u′, v, w}). Hence, we now suppose such a neighbor z exists.
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Let q be the leftmost vertex of the leftmost zone Ou (that is first met when travers-
ing the layer from left to right), and r be the rightmost vertex of Eu,u′′ . Consider the
path Q = qPlr. Observe that z is in Q ∪ {u′′} because Q ∪ {u′′} contains all possible
neighbors of u in Π \ (P ∪ {u′, v, w}).

Suppose that some vertex of Q is in Π. Let z′ be the vertex of Π in Q that is the
closest to q along Q. Note that by Claim 3, z′ has degree 2 in Π. Since z′ is the closest
vertex to q, it has a neighbor in Π \ Q. In particular, z′ is a type 1 or type 2 vertex,
and exactly one of its ancestor is in Π. Since u /∈ Π, such an ancestor is v or w, or
possibly u′′ if u′′ ∈ Π (and only one of them). If z′ ∈ Ou,v, or z′ ∈ Ou,w, or z′ ∈ Ev,w,
then there exists a vertex z′′ ∈ Q such that vz′Plz′′v, or wz′Plz′′w, or vz′Plz′′wv is a
hole of Π, which in each case contradicts Claim 3. So z′ ∈ Eu,u′′ and the ancestor of
z′ in Π must be u′′ (in particular u′′ ∈ Π). But then, the right neighbor of z′ in Pl is
an internal vertex of BOXu′′ that belongs to Π, a contradiction to Claim 4. Therefore,
Π ∩Q = ∅.

This means that z = u′′. Note that the neighbors of u′′ in Π cannot contain u
(because u /∈ Π), cannot be in Eu,u′′ (because Eu,u′′ is subpath of Q), cannot be in the
interior of BOXu′′ (because u′′ has type 0 and by Claim 4), so they are precisely the
right neighbor u′′′ of u′′ in Pl−1 and the rightmost vertex b of Eu′′,u′′′ . But then, u′′u′′′b
is a triangle in Π, a contradiction. This proves Claim 5.

The rest of the proof is quite similar to the proof of Theorem 3.2.10, that ehf-
layered-wheel contains no even hole.

Let P = s . . . t be a subpath of Π in Pl such that P is inclusion-wise maximal (and
s, t appear in this order from left to right). By Claims 3 and 5, every vertex of P has
degree 2 in Π. Moreover by the maximality of P, each of s and t has an ancestor
which is also in Π. Note that s 6= t, for otherwise s would be of type 2, and together
with its ancestors, it forms a triangle, which contradicts Claim 5. Let u and v be the
ancestors of s and t respectively, such that u, v ∈ V(Π). By Claims 1, 3, and 5, u 6= v
and uv /∈ E(G).

Claim 6. For every vertex p ∈ V(Pl−1), N(p) ∩V(Pl) 6⊆ V(P).

Proof of Claim 6. Suppose that p ∈ V(Pl−1) and N(p) ∩V(Pl) ⊆ V(P). So, p /∈ V(Π).
Note that p is an internal vertex of Pl−1, for otherwise, s or t is an end of Pl and has
degree 2, while having two neighbors in V(Π) ∩V(Gl,k \ p), a contradiction.

By (B5), the ancestors of p (if any) and the neighbors of p in Pl−1 must also have
neighbors in P. Thus, no such vertices belong to Π because P is a subpath of Π.
Hence, replacing BOXp = p′ . . . p′′ in Π with p′pp′′ yields a pyramid with strictly
fewer vertices than Π, a contradiction to the minimality of Π. This proves Claim 6.

Let a be a vertex in Pi for some 0 ≤ i < l, and p be a neighbor of a in Pl . We say
that ap is an internal edge if one of the following holds:

• i = l − 1 and p is an internal vertex of BOXa.

• i < l − 1, a is an ancestor of some a′ ∈ V(Pl−1), a′ has type 1 or 2, p is in BOXa′

and p is neither the leftmost neighbor of a in BOXa′ nor the rightmost neighbor
of a in BOXa′ .

Claim 7. No internal edge is an edge of Π.

Proof of Claim 7. Suppose that p ∈ Pl is the end of an internal edge e that is also an
edge of Π. If the other end of e is in Pl−1, we set e = pu and observe that p is in the
interior of BOXu. Otherwise, the other end of e is in Pi, with i < l − 1, we set e = px
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and observe that x has a neighbor u in Pl−1. Again, p is an internal vertex of BOXu.
Observe that x is either v or w as represented in Figure 3.5.

By Claims 3 and 5, p has degree 2 in Π, so p has a unique neighbor in Π ∩ Pl .
Let P = p . . . p′ be the subpath of Pl included in Π, containing p, and maximal with
respect to this property.

It can be checked in Figure 3.5 that P together with u, v, w, uv, uw, or vw forms
a hole, that contains the apex and two vertices of ∆ (by Claim 1), a contradiction to
Claims 3 and 5. This proves Claim 7.

Claim 8. Exactly one of u and v is in Pl−1.
Proof of Claim 8. Suppose that both u and v are not in Pl−1. Since u and v have
neighbors in P, each of them has a neighbor u′ and v′ respectively in Pl−1, such that
s ∈ BOXu′ and t ∈ BOXv′ .

If u′ = v′, then u′ is a type 2 vertex in Pl−1. By construction, usPtvu is then a
hole of Σ, so it must contains the apex and two vertices of ∆, contradicting Claim 3
or Claim 5, since u and v are the only vertices of the hole that are not in Pl .

Since u′ and v′ are vertices with ancestors, by construction, the interior of u′Pl−1v′

contains a vertex w of type 0. It yields that NPl (w) is all contained in P, a contradic-
tion to Claim 6.

Suppose now that both u and v are in Pl−1. By Claim 6, no vertex of Pl−1 has all
its neighbors in P. So the interior of uPl−1v contains at most two vertices.

If u = v, then usPtu is a hole of Π. Since u is the only vertex in the hole that is not
in Pl , by Claim 1, P contains the apex or a vertex of ∆, a contradiction to Claims 3 or 5.
Similarly if uv ∈ E(G), then usPtvu is a hole of Π, this again yields a contradiction.

If the interior of uPl−1v contains a single vertex, then let w be this vertex. Let
w1 (resp. w2) be the neighbor of w in P that is closest to s (resp. t). It follows by
construction, that s = w1, t = w2 (because both u and v are adjacent to w in Pl−1).
By Claim 7, {s} = V(Eu,w) ∩ V(Π) and {t} = V(Ew,v) ∩ V(Π). Also, if w has
an ancestor, then such an ancestor must have neighbors in P, and hence it does
not belong to Π. Altogether, we see that NΠ(w) ⊆ V(usPtv). So, replacing usPtv
in Π with uwv gives a pyramid with fewer vertices than Π, a contradiction to the
minimality of Π.

So the interior of uPl−1v contains two vertices. We let uPl−1v = uww′v, and w1
(resp. w′2) be the neighbor of w (resp. w′) in P that is closest to s (resp. t). Similar to
in the previous case, we know that s = w1, t = w′2; and by Claim 7, {s} = V(Eu,w) ∩
V(Π) and {t} = V(Ew′,v) ∩ V(Π). Also, if w or w′ has an ancestor, then such an
ancestor must have neighbors in P, and hence it does not belong to Π. Altogether,
we see that NΠ({w, w′}) ⊆ V(usPtv). So, replacing usPtv in Π with uww′v gives a
pyramid with fewer vertices than Π, again a contradiction to the minimality of Π.
This proves Claim 8.

By Claim 8 and up to symmetry, we may assume that u ∈ V(Pl−1) and v /∈
V(Pl−1). So, v has a neighbor v′ in Pl−1 such that t ∈ BOXv′ . Note that v′ 6= u,
for otherwise usPtvu is a hole of Σ, so it contains the apex and two vertices of ∆,
a contradiction to Claim 3 or Claim 5. Furthermore, note that the path uPl−1v′ has
length at most two, for otherwise some vertex in the interior of uPl−1v′ contradicts
Claim 6.

Suppose that uPl−1v′ has length two, so uPl−1v′ = uwv′ for some vertex w ∈
V(Pl−1). Then w is of type 0 because v′ is not of type 0. Let w′ be the rightmost
vertex of the shared zone Ew,v′ . By Claim 7, {s} = V(Eu,w) ∩V(Π), and since w has
type 0, we see that NΠ(w) ⊆ V(usPw′). So, replacing usPw′ in Π with uww′ gives a
pyramid with fewer vertices than Π, a contradiction to the minimality of Π.
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Hence, uPl−1v′ has length one, i.e. uPl−1v′ = uv′. By Claim 7, {s} = V(Eu,v′) ∩
V(Π). Observe that P is the left escape of v in BOXv′ . So, P goes through the zone
Ov′ (when v′ has type 1) or through the zone Ev′ (when v′ has type 2). In particular
v′ /∈ Π.

If NΠ(v′) ⊆ V(usPtv), then replacing usPtv in Π with uv′v gives a pyramid with
fewer vertices than Π, a contradiction to the minimality of Π. So, v′ has neighbors in
Π that are not in usPtv. Note that if v′ is of type 2, the ancestor of v′ that is different
from v is not in Π (because it is adjacent to t and to v, but t /∈ ∆ by Claim 5).

We denote by v′′ the right neighbor of v′ in Pl−1. Note that v′′ has type 0, since
v′ has type 1 or 2. Let s′ and t′ be vertices such that t′Pls′ is the right escape of v in
BOXv′ , t′ is adjacent to v and s′ is adjacent to v′′. Note that s′ is the leftmost vertex of
Ev′,v′′ and t′ is the rightmost vertex of the zone Ov′,v (when v′ is of type 1) or of the
rightmost zone Ev,w (when v′ is of type 2, and w is the other ancestor of v′).

Let us see which vertex can be a neighbor of v′ in Π \ usPtv. We already know
it cannot be an ancestor of v′ or be a vertex of Eu,v′ \ s. Suppose it is v′′. Then, Π
must contain two edges incident to v′′, and none of them can be an internal edge by
Claim 7. Note that s′v′′ must be an edge of Π, for otherwise, the two only available
edges are v′′v′′′ and v′′s′′ (where v′′′ is the right neighbor of v′′ in Pl−1 and s′′ is the
rightmost neighbor of v′′ in Pl), and this is a contradiction because v′′′s′′ ∈ E(G).
Since s′v′′ ∈ E(Π), Π goes through the path R = usPtvt′Pls′v′′. This path contains
all vertices of NΠ(v′). Note that v /∈ ∆, because if so, one of t or t′ should be in ∆, a
contradiction to Claim 5. But v can be the apex. If v is not the apex, we may replace
R by uv′v′′ in Π, to obtain a pyramid that contradicts the minimality of Π. If v is the
apex, then we may replace R \ v by uv′v′′ in Π, to obtain a pyramid with apex v′ that
contradicts the minimality of Π. Now we know that v′′ /∈ V(Π).

Since v′ has a neighbor in Π \ usPtv, and since this neighbor is not an ancestor
of v′, is not v′′, and is not in Eu,v′ , it must be in BOXv′ \ (V(P) ∪ Eu,v′). By Claim 7,
the only way that Π can contain some vertex of BOXv′ \ (V(P) ∪ Eu,v′) is that Π goes
through the edge vt′, in particular through the right escape of v in BOXv′ and through
the zone Ev′,v′′ . Let t′′ be the rightmost vertex of Ev′,v′′ . Hence, Π must go through
the path S = usPtvt′Plt′′. This path contains all vertices of NΠ(v′). Note that v /∈ ∆,
because if so, one of t or t′ should be in ∆, a contradiction to Claim 5. But v can be the
apex. If v is not the apex, we may replace S by uv′t′′ in Π, to obtain a pyramid that
contradicts the minimality of Π. If v is the apex, then we may replace S \ v by uv′t′′

in Π, to obtain a pyramid with apex v′ that contradicts the minimality of Π.

Tree-width and clique-width

For any l ≥ 0, ttf-layered-wheels and ehf-layered-wheels on l + 1 layers contain Kl+1
as a minor. To see this, note that each vertex in layer Pi, i < l, has neighbors in all
layers i + 1, . . . , l (see Lemma 3.2.2 and Lemma 3.2.7). Hence, by contracting each
layer into a single vertex, a complete graph on l + 1 vertices is obtained. Since when
H is a minor of G we have tw(H) ≤ tw(G), and since for l ≥ 1, a complete graph on
l vertices has tree-width l − 1, we obtain the following.

Theorem 3.2.12

For any l ≥ 0, ttf-layered-wheels and ehf-layered-wheels on l + 1 layers have
tree-width at least l.
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Gurski and Wanke [GW00] proved that the tree-width is in some sense equiva-
lent to the clique-width when some complete bipartite graph is excluded as a sub-
graph. Let us state and apply this formally (thanks to Sang-il Oum for pointing this
out to us).

Theorem 3.2.13 (Gurski and Wanke [GW00])

If a graph G contains no K3,3 as a subgraph, then tw(G) ≤ 6 cw(G)− 1.

Lemma 3.2.14

A layered wheel (ttf or ehf) contains no K3,3 as a subgraph.

Proof. Suppose that a ttf-layered-wheel G contains K3,3 as a subgraph. Then,
either it contains a theta (if K3,3 is an induced subgraph of G) or it contains a triangle
(if K3,3 is not an induced subgraph of G). In each case, there is a contradiction.

Suppose that an ehf-layered-wheel G contains K3,3 as a subgraph. If one side
of the K3,3 is a clique, then G contains a K4. Otherwise, each side of K3,3 contains
a non-edge, so G contains K2,2, that is isomorphic to a C4. In both cases, there is
contradiction.

Theorem 3.2.15

For any integers l ≥ 2, k ≥ 4, the clique-width of a layered wheel Gl,k is at
least l+1

6 .

Proof. Follows from Lemma 3.2.14 and Theorems 3.2.13 and 3.2.12.

Observations and open questions

It should be pointed out that by carefully subdividing, one may obtain bipartite ttf-
layered-wheels on any number l of layers. This is easy to prove by induction on l.
We just sketch the main step of the proof: when building the last layer, assuming
that the previous layers induce a bipartite graph, only the vertices with ancestors
are assigned to one side of the bipartition (and only to one side, since a vertex has
at most one ancestor in a ttf-layered-wheel). The parity of the paths linking vertices
with ancestors can be adjusted to produce a bipartite graph.

It is easy to see that every prism, every theta, and every even wheel contains an
even hole. Therefore, by Theorem 3.2.10 and Theorem 3.2.11, ehf-layered-wheels are
(prism, pyramid, theta, even wheel)-free, which is not obvious from their definitions.
Note that ehf-layered-wheels contain diamonds (see Conjecture 6.1.4).

However, we note that it is possible to modify Construction 3.2.6 in such a way
that we obtain a layered wheel that is even-hole-free but contains a pyramid. Such a
construction might be of interest to see what structure one can get in a even-hole-free
graphs by studying how the graph attaches to a pyramid. The construction is done
by modifying axiom (B5) where the two zones Eu’s are deleted. More specifically,
if u is of type 2 (so it is an internal vertex of Pl−1), then let v ∈ Pi and w ∈ Pj,
j ≤ i be its ancestors. In this case, BOXu is made of only 9 zones, namely Eu′,u, Ev,w,
Ou, Ou,v, Ou, Ou,w, Ou, Ev,w, and Eu,u′′ (see Figure 3.7). The fact that this modified
construction keeps the property of the layered wheel being even-hole-free can be
proved similarly to Theorem 3.2.10. Notice that Lemma 3.2.9 also remains true for
this modified construction. We remark that a corresponding wheel that is even-
hole-free (similar to the one in Figure 3.4) exists considering this modified pattern of
zones.
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FIGURE 3.7: A modified construction of ehf-layered-wheel Gl,k which
contain pyramids (dashed lines between two vertices in Pl represent

paths of odd length)
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FIGURE 3.8: A pyramid (in blue) that is contained in a modified ehf-
layered-wheel Gl,k, for some integers l, k

An example of a pyramid that may be found in such a modified ehf-layered-
wheel is given in Figure 3.8. In the figure, u ∈ Pl−1 is a type 2 vertex with ancestors
v ∈ Pi and w ∈ Pj, j < i, u∗ is a common neighbor of v and w in Pl−1 such that u
and u∗ are consecutive common neighbors of v and w in some vw-zone in Pl−1, s is
the rightmost vertex of a zone labeled Ev,w ⊆ BOXu in Pl ; and t is the leftmost vertex
of the zone labeled Eu,u′′ ⊆ BOXu in Pl where u′′ 6= u′ is adjacent to u in Pl−1. The
pyramid has triangle utu′′ and apex v.

3.3 Lower bound on rank-width

In this section, we prove that there exist ttf-layered-wheels and ehf-layered-wheels
with arbitrarily large rank-width. This follows directly from Theorem 3.2.15 and
Lemma 3.1.1, but by a direct computation, we provide a better bound. The next
lemma follows directly from the definition of the rank-width defined in Chapter 1
Section 1.2.3.

Lemma 3.3.1

Let G be a graph and H be an induced subgraph of G. Then rw(H) ≤ rw(G).

A class C of graphs has bounded rank-width if there exists a constant k ∈ N, such
that every G ∈ C satisfies rw(G) ≤ k. If such a constant does not exist, then C has
unbounded rank-width. In the following lemmas, we present some basic properties
related to rank-width. Let T be a tree, we call an edge e ∈ E(T) balanced, if the
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partition (Ae, Be) of L(T) satisfies 1
3 |L(T)| ≤ |Ae| and 1

3 |L(T)| ≤ |Be|. The following
is well-known (we include a proof for the sake of completeness).

Lemma 3.3.2

Every cubic tree has a balanced edge.

Proof. Let T be a cubic tree with n leaves. We may assume that n ≥ 3, for
otherwise, T is a path of length 1, and the only edge of T is balanced.

Let e = ab be an edge of T such that the set of leaves Ae of the connected com-
ponent of T \ e that contains a, satisfies |Ae| ≥ |L(T)|/3. Suppose that a and b are
chosen subject to the minimality of |Ae|. If |Ae| ≤ 2|L(T)|/3, then e is balanced.
Otherwise, |Ae| > 2|L(T)|/3 ≥ 2 so a has two neighbors a′, a′′ different from b.
Let A′ (resp. A′′) be the set of leaves of the connected component of T \ aa′ (resp.
T \ aa′′) that contains a′ (resp. a′′). Since |Ae| > 2|L(T)|/3 and Ae = A′ ∪ A′′, ei-
ther |A′| > |L(T)|/3 or |A′′| > |L(T)|/3. Hence, one of A′ or A′′ contradicts the
minimality of |Ae|.

Let us now introduce a notion that is useful to describe how we can represent
the structure of layered wheels into a matrix. An n× n matrix M is fuzzy triangular if
m1,1 = 1 and for every i ∈ {2, . . . , n}, mi,i = 1 and either m1,i = m2,i = · · · = mi−1,i =
0 or mi,1 = mi,2 = · · · = mi,i−1 = 0.

Lemma 3.3.3

Every n× n fuzzy triangular matrix has rank n.

Proof. Let M be an n× n fuzzy triangular matrix. We prove by induction on n,
that rank(M) = n. For n = 1, this trivially holds. Suppose that n ≥ 2. If m1,n =
m2,n = · · · = mn−1,n = 0, we show that rows r1, . . . , rn of M are linearly independent.
Let λ1, . . . , λn ∈ [0, 1] be such that Σn

i=1λiri = 0 (where 0 is the zero vector of length
n). Since mn,n = 1, we have λn = 0. This implies that Σn−1

i=1 λir′i = 0, where r′i is
the row obtained from ri by deleting its last entry. Since r′1, . . . , r′n−1 are the rows of
an (n − 1) × (n − 1) fuzzy triangular matrix, they are linearly independent by the
induction hypothesis, so λ1 = · · · = λn−1 = 0.

We can prove in the same way that, if mn,1 = mn,2 = · · · = mn,n−1 = 0, then the
set of n columns of M is linearly independent. This shows that rank(M) = n.

Let G be a graph and (X, Y) be a partition of V(G). A path P in G is separated by
(X, Y) if V(P)∩ X and V(P)∩Y are both non-empty. Note that when P is separated
by (X, Y), there exists a separating edge xy of P whose end-vertices are x ∈ X and
y ∈ Y.

Lemma 3.3.4

Let (T, λ) be a rank decomposition of width at most r of a layered wheel with
layers P0, P1, . . . , Pl . Let e be an edge of T, and (X, Y) be the partition of V(G)
induced by T \ e. Then there are at most r paths among {P0, P1, . . . , Pl} that are
separated by (X, Y).

Proof. Suppose for a contradiction that Pi1 , . . . , Pir+1 are layers that are all sepa-
rated by (X, Y), where 1 ≤ i1 < · · · < ir+1 ≤ l. For each integer ij, consider a
separating edge xij yij of Pij such that xij ∈ X and yij ∈ Y. Set SX = {xi1 , . . . , xir+1}
and SY = {yi1 , . . . , yir+1}.

Consider M[SX, SY], the adjacency matrix whose rows are indexed by SX and
columns are indexed by SY. The definition of layered wheels (see (A6) and (B7)) says
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that when two vertices in a layer are adjacent, at most one of them has ancestors. It
follows that M[SX, SY] is fuzzy triangular. By Lemma 3.3.3, M[SX, SY] has rank r + 1,
a contradiction, because

width(T, λ) ≥ cutrkG(X) = rank(M[X, Y]) ≥ rank(M[SX, SY]) = r + 1.

We need the following lemma in our proof.

Lemma 3.3.5 (See [Adl+17])

Let G be a graph and (T, λ) be a rank decomposition of G whose width is at
most r. Let P be an induced path of G and (X, Y) be the partition of V(G) induced
by T \ e where e ∈ E(T). Then each of P[X] and P[Y] contains at most r + 1
connected components.

Now we are ready to describe layered wheels for which we can prove that the
rank-width is unbounded. Let us first define some terminology that is used in the
proof. Recall Construction 3.2.1 of ttf-layered-wheels. Let u and v be two vertices
that are adjacent in a layer Pi for some i ∈ {1, . . . , l − 1}, and they appear in this
order (from left to right) along Pi. Let a be the rightmost vertex of BOXu and b be
the leftmost vertex of BOXv in Pi+1. Let a′ (resp. b′) be the neighbor of a (resp. b) in
Pi+1 \ BOXu (resp. Pi+1 \ BOXv). The path a′Pi+1b′ is called the uv-bridge. An edge pq
in a′Pi+1b′ is called the middle edge of the bridge if the length of the paths a′Pi+1 p and
qPi+1b′ are equal.

We have a similar definition for ehf-layered-wheel. For adjacent vertices u and v
in Pi+1, the uv-bridge in Pi+1 is the zone labelled Eu,v ⊆ BOXu ∩ BOXv (that we called
in the previous section a shared part). Observe that in both layered wheels, every
internal vertex of some layer yields two bridges, and each end of a layer yields one
bridge. We say that a layered wheel is special if every bridge in all layers has odd
length (and therefore admits a middle edge). The following lemmas are a direct
consequence of Construction 3.2.1 and Construction 3.2.6.

Lemma 3.3.6

For all integers l ≥ 1 and k ≥ 4, there exists a special (l, k)-ttf-layered-wheel.

Proof. The result follows because by (A6) of Construction 3.2.1, the path between
BOXu and BOXv is of length at least k− 2. So for any two adjacent vertices in a layer,
the uv-bridge can have any odd length, at least k− 4.

Lemma 3.3.7

For all integers l ≥ 1 and k ≥ 4, any (l, k)-ehf-layered-wheel is special.

Proof. The result follows from the fact that the shared parts have odd length (see
Lemma 3.2.9).

Let Gl,k be a layered wheel that is special. Let uv be an edge of some layer Pi,
where 1 ≤ i < l, such that u and v appear in this order (from left to right) along Pi.
Then we denote by rulv the middle edge of the uv-bridge (again, ru and lv appear in
this order from left to right).

For any vertex v ∈ Pi, 1 ≤ i < l, the domain of v (or the v-domain), denoted by
DOM(v) is defined as follows:
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• if v ∈ V(P0), then DOM(v) = V(P1);

• if v is an internal vertex of Pi, then DOM(v) = V(lvPi+1rv);

• if v is the left end of Pi, then DOM(v) = V(pPi+1rv), where p is the leftmost
vertex of BOXv; and

• if v is the right end of Pi, then DOM(v) = V(lvPi+1q), where q is the rightmost
vertex of BOXv.

Note that for ttf-layered-wheels, BOXv is completely contained in the v-domain,
which is not the case for ehf-layered-wheels. We are now ready to describe the lay-
ered wheels that we need.

Definition 3.3.8. For some integer m, a special layered wheel Gl,k is m-uniform, if for every
vertex v ∈ V(Pi), 0 ≤ i ≤ l − 1, DOM(v) contains exactly m vertices.

Observe that by definition, any m-uniform layered wheel is special.

Lemma 3.3.9

For all integers l ≥ 1 and k ≥ 4 and M, there exists an integer m ≥ M and an
(l, k)-ttf-layered-wheel that is m-uniform.

Proof. We construct an m-uniform ttf-layered-wheel Gl,k by adjusting the length
obtained in step (A6) of Construction 3.2.1.

Lemma 3.3.10

For all integers l ≥ 1 and k ≥ 4 and M, there exists an integer m ≥ M and an
(l, k)-ehf-layered-wheel that is m-uniform.

Proof. We construct an m-uniform ehf-layered-wheel Gl,k by adjusting the length
obtained in step (B7) of Construction 3.2.6.

For a vertex v ∈ Pi, 0 ≤ i ≤ l and an integer 0 ≤ d ≤ l− i, the v-domain of depth d,
denoted by DOMd(v) is defined as follows.

• DOM0(v) = {v} and DOM1(v) = DOM(v);

• DOMd(v) =
⋃

x∈DOM(v) DOMd−1(x) for d ≥ 1.

Observation 3.3.11. For every v ∈ Pi with 0 ≤ i ≤ l, and for any 0 ≤ d ≤ l − i, we have
DOMd(v) ⊆ V(Pi+d), where the equality holds when i = 0.

Lemma 3.3.12

For every 0 ≤ i ≤ l and 0 ≤ d ≤ i, V(Pi) =
⋃

v∈Pi−d
DOMd(v). Moreover, for any

distinct u, v ∈ V(Pi−d), DOMd(u) ∩DOMd(v) = ∅.

Proof. The statement simply follows by induction on d.

Lemma 3.3.13

For some integers l, k, m, let Gl,k be an m-uniform layered wheel. For every
0 ≤ i ≤ l − 1, v ∈ Pi, and 1 ≤ d ≤ l − i, we have |DOMd(v)| = md.

Proof. The statement simply follows from Lemma 3.3.12 and the m-uniformity:
for any vertex v, |DOM1(v)| = m and |DOMd(v)| = m · |DOMd−1(v)|.
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Lemma 3.3.14

For some integers l, k, m, let Gl,k be an m-uniform layered wheel. Denote by
Gi,k, the subgraph induced by the first i + 1 layers P0, P1, . . . , Pi of Gl,k. Then
|V(Gi,k)| < 1

m−1 |V(Pi+1)| for 0 ≤ i ≤ l − 1.

Proof. Recall that V(Pi) = DOMi(r) for every 1 ≤ i ≤ l, with r ∈ V(P0). So by
Lemma 3.3.13, |V(Pi)| = mi. Moreover, |V(Gi,k)| = Σi

d=0|DOMd(r)| = mi+1−1
m−1 . Hence,

the result follows directly.

Lemma 3.3.15

Let l ≥ 2, k ≥ 4, and m ≥ 15 be integers, and (T, λ) be a rank decomposition
of an m-uniform layered wheel Gl,k of width at most r. Let e be a balanced edge
in T, and (X, Y) be the partition of V(Gl,k) induced by e. Then Pl is separated by
(X, Y), and each of X and Y contains an induced subpath of Pl , namely PX and
PY where:

|V(PX)|, |V(PY)| ≥
⌊
|V(Pl)|

3.5(r + 1)

⌋
.

Proof. Let first prove that Pl is separated by (X, Y). By Lemma 3.3.14, we know
that |V(Pl)| > (m− 1)|V(Gl−1,k)|where Gl−1,k = Gl,k \ Pl . Since m− 1 ≥ 14, we have
|V(Pl)| > 14

15 |V(Gl,k)|. Hence, Pl cannot be fully contained in X, for otherwise |Y| <
1

15 |V(Gl,k)| that would contradict the fact that (X, Y) is a balanced decomposition.
By the same reason, Pl is not fully contained in Y. This proves the first statement.

For the second statement, we will only prove the existence of PX (for PY, the proof
is similar). Since e is a balanced edge of T, we have |X| ≥ 1

3 |V(Gl,k)|. Clearly,

|V(Pl) ∩ X| ≥ 1
3
|V(Gl,k)| − |V(Gl−1,k)| =

1
3
(|V(Pl)− 2|V(Gl−1,k)|) .

By Lemma 3.3.5, X contains at most r + 1 connected components of Pl . Hence:

|V(PX)| ≥
|V(Pl) ∩ X|

r + 1

>
|V(Pl)| − 2

m−1 |V(Pl)|
3(r + 1)

(1)

=
m− 3

3(m− 1)(r + 1)
|V(Pl)|

≥ 2
7(r + 1)

|V(Pl)| (2)

Inequality (1) is obtained from Lemma 3.3.14, and (2) follows because m ≥ 15.

The following theorem is the main result of this section.

Theorem 3.3.16

For l ≥ 2, k ≥ 4, there exists an integer m such that the rank-width of an m-
uniform layered wheel Gl,k is at least l.

Proof. Set M = 15 and consider an integer m as in Lemma 3.3.9 (or Lemma 3.3.10),
and let Gl,k be m-uniform.
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Suppose for a contradiction that rw(Gl,k) = r for some integer r ≤ l − 1. Let
(T, λ) be a rank decomposition of Gl,k of width r, and e be a balanced edge of T
that partitions V(Gl,k) into (X, Y). Let P = {P0, P1, . . . , Pl} be the set of layers in
the layered wheel, and S be the set of paths in P that are separated by (X, Y). By
Lemma 3.3.4, |S| ≤ r.

Note that P0 /∈ S because it contains a single vertex. So, P \ S 6= ∅. Let Pj ∈
P \ S , i.e., the vertices of Pj are completely contained either in X or Y. Without loss
of generality, we may assume that V(Pj) ⊆ X.

Claim 1. There exists some j such that 1 ≤ j < l.

Proof of Claim 1. Note that l − r ≥ 1, because r ≤ l − 1. So it is enough to prove that
such a j ≥ l − r exists. We know that |S| ≤ r ≤ l − 1. If every path Pj ∈ P \ S has
index j < l − r, then |P \ S| ≤ l − r. This implies |S| ≥ (l + 1)− (l − r) = r + 1, a
contradiction, so the left inequality of the statement holds (the bound is tight when
S =

⋃
l−r+1≤i≤l{Pi}). Furthermore, by Lemma 3.3.15, Pl ∈ S , so for every Pj that

satisfies the left inequality, we know that j < l. This proves Claim 1.

Now by Lemma 3.3.15, there exists a subpath PY of Pl , such that V(PY) ⊆ Y and
|V(PY)| ≥

⌊
|V(Pl)|

3.5(r+1)

⌋
, with |V(Pl)| = ml (because |V(Pl)| = DOMl(r) where r ∈ P0).

Let P′ be the set of vertices in Pj such that N(v) ∩ V(PY) 6= ∅ for every v ∈ P′.
Note that the order (left to right) of the domains of V(Pj) in layer Pl appear in the
same order as the order of V(Pj) in Pj, and by Lemma 3.3.12, for every v 6= v′ ∈ Pj,
we have DOMl−j(v) ∩ DOMl−j(v′) = ∅. So P′ induces a path. Moreover, for each
vertex v ∈ P′, we can fix a vertex yv ∈ V(PY) ∩ DOMl−j(v), such that vyv ∈ E(G).
Thus for any v 6= v′ ∈ P′, we have yv 6= yv′ , and in particular, vyv, v′yv′ ∈ E(G)
and v′yv, vyv′ /∈ E(G). Let us denote SX = V(P′) and SY = {yv | v ∈ SX}. Observe
that there is a bijection between SX and SY, so M[SX, SY] is the identity matrix of size
|SX|.

Furthermore, by Lemmas 3.3.12 and 3.3.13, we have |SX| ≥
⌊
|V(PY)|

|DOMl−j(v)|

⌋
=⌊

|V(PY)|
ml−j

⌋
. By Claim 1, Lemma 3.3.15, and taking m ≥ 4l2, the following holds.

|SX| ≥
⌊

ml

3.5(r + 1)ml−j

⌋
≥
⌊

mj

3.5(r + 1)

⌋
≥
⌊ m

3.5l

⌋
≥
⌊

3.5l2

3.5l

⌋
≥ l

which yields a contradiction, because

r ≥ width(T, λ) ≥ cutrkGl,k(X) = rank(M[X, Y]) ≥ rank(M[SX, SY]) = |SX| ≥ l.

3.4 Upper bound

Layered wheels have an exponential number of vertices in terms of the number of
layers l. In Section 3.2, we have seen that the tree-width of layered wheels is lower-
bounded by l. In this section, we give an upper bound of the tree-width of layered
wheels. As mentioned in the introduction, we indeed prove a stronger result: the so-
called path-width of layered wheels is upper-bounded by some linear function of l.
Since layered wheels Gl,k contain an exponential number of vertices in terms of the
number of layers, this implies that tw(Gl,k) = O (log |V(Gl,k)|). Beforehand, let us
state some useful notions.
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Path-width

A path decomposition of a graph G is defined similarly to a tree decomposition except
that the underlying tree is required to be a path. Similarly, the width of the path
decomposition is the size of a largest bag minus one, and the path-width is the min-
imum width of a path decomposition of G. The path-width of a graph G is denoted
by pw(G). As outlined in the introduction, path decomposition is a special case of
tree decomposition. We restate the following lemma that was already mentioned in
Lemma 3.1.1.

Lemma 3.4.1

For any graph G, tw(G) ≤ pw(G).

Let P be a path, and P1, . . . , Pk be subpaths of P. The interval graph associated to
P1, . . . , Pk is the graph whose vertex set is {P1, . . . , Pk}with an edge between any pair
of paths sharing at least one vertex. So, interval graphs are intersection graphs of a
set of subpaths of a path.

Lemma 3.4.2 (See Theorem 7.14 of [Cyg+15])

Let G be a graph, and I be an interval graph that contains G as a subgraph
(possibly not induced). Then pw(G) ≤ ω(I)− 1, where ω(I) is the size of the
maximum clique of I.

Now, for every layered wheel Gl,k, we describe an interval graph I(Gl,k) such
that Gl,k is a subgraph of I(Gl,k). We define the scope of a vertex. This is similar to its
domain, but slightly different (the main difference is that scopes may overlap while
domains do not). For v ∈ V(Pi), where 0 ≤ i ≤ l − 1, the scope of v, denoted by
SCP(v), is defined as follows.

For a ttf-layered-wheel:

• if v ∈ P0, SCP(v) = V(P1);

• if v is in the interior of Pi, then SCP(v) = V(L) ∪ BOXv ∪V(R), where u and w
are the left and the right neighbors of v in Pi respectively, and L is the uv-bridge
and R is the vw-bridge;

• if v is the left end of Pi, then SCP(v) = BOXv ∪ V(R) where w is the right
neighbor of v in Pi and R is the vw-bridge;

• if v is the right end of Pi, then SCP(v) = V(L) ∪ BOXv, where u is the left
neighbor of v in Pi and L is the uv-bridge.

For an ehf-layered-wheel:

• SCP(v) = BOXv for every v ∈ Pi, 0 ≤ i ≤ l − 1.

For d ≥ 0, we also define the depth-d scope of each vertex in the layered wheel,
which will be denoted by SCPd(v). We define SCP0(v) = {v}, and

SCPd(v) =
⋃

x∈SCP(v)

SCPd−1(x) for 1 ≤ d ≤ l − i.

For a layered wheel Gl,k, we define the interval graph I(Gl,k). For every vertex
v ∈ Gl,k, define path P(v) associated to v as follows:
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• if v ∈ Pl is not the right end of Pl , then P(v) = vw where w is the right neighbor
of v;

• if v is the right end of Pl , then P(v) = {v};

• if v ∈ Pi with i < l, then P(v) = Pl

[
SCPl−i(v)

]
.

Note that P(v) is a subpath of Pl . The graph I(Gl,k) is the interval graph associated
to {P(v) | v ∈ V(Gl,k)}.

Lemma 3.4.3

For any layered wheel Gl,k and the corresponding interval graph I(Gl,k), Gl,k is
a subgraph (possibly not induced) of I(Gl,k).

Proof. It is clear by definition that there is a bijection between V(I(Gl,k)) and
V(Gl,k). We show that E(Gl,k) ⊆ E(I(Gl,k)): for any two vertices u, v ∈ Gl,k, if
uv ∈ E(Gl,k) then the corresponding paths P(u) and P(v) share at least one vertex
(i.e. V(P(u)) ∩V(P(v)) 6= ∅).

For u, v ∈ Pl where u is on the left of v, this property trivially holds, because by
definition, P(u) and P(v) both contain v.

If u ∈ Pi for some i < l and v ∈ Pl , then V(P(v)) ⊆ V(P(u)) = SCPl−i(u). The
argument is similar when v ∈ Pi for some i < l and u ∈ Pl .

If u, v ∈ Pi for some i < l, then by definition, SCP(u) ∩ SCP(v) 6= ∅ (they both
contain the uv-bridge). Let x ∈ SCP(u)∩ SCP(v). Note that for 1 ≤ d ≤ l− i, SCPd(u)
and SCPd(v) both contain SCPd−1(x). If u ∈ Pi and v ∈ Pj where 1 ≤ i < j < l,
then SCP(v) ⊆ SCPj−i+1(u). So SCPd(v) ⊆ SCPd+j−i(u) for every 1 ≤ d ≤ l − j.
The argument is similar when u ∈ Pj and v ∈ Pi where 1 ≤ i < j < l. Hence,
V(P(u)) ∩V(P(v)) 6= ∅.

Theorem 3.4.4

For all integers l ≥ 2 and k ≥ 4, we have tw(Gl,k) ≤ pw(Gl,k) ≤ 2l.

Proof. By Lemmas 3.4.1 (third item), 3.4.2 and 3.4.3, it is enough to show that
ω(I(Gl,k)) ≤ 2l + 1.

Claim 1. Let u and v be non-adjacent vertices in Pi for some 1 ≤ i ≤ l − 1. Then for
any 1 ≤ d ≤ l − i, we have SCPd(u) ∩ SCPd(v) = ∅.

Proof of Claim 1. Let u and v be non-adjacent vertices in Pi, where 1 ≤ i ≤ l − 1 and
without loss of generality, they appear in this order (from left to right) along Pi. We
prove the statement by induction on d.

For d = 1, it follows from the definition that SCP1(u) ∩ SCP1(v) = ∅ for every
possible i. Suppose for induction that SCPd(u) ∩ SCPd(v) = ∅ for some 1 ≤ d ≤
l − i− 1. Note that SCPd(u) and SCPd(v) appear in this order along Pi+d. Moreover,
the right end of SCP(u) and the left end of SCP(v) are also non-adjacent (because
they both are vertices with an ancestor). So for any x ∈ SCP(u) and y ∈ SCP(v), we
have xy /∈ E(Gl,k). It then follows by construction, that for every d ≥ 2, for any x ∈
SCPd(u) and y ∈ SCPd(v), we have xy /∈ E(Gl,k), so the induction hypothesis holds
for the pair x and y. We need to show that SCPd+1(u) ∩ SCPd+1(v) = ∅. Indeed:

SCPd+1(u) ∩ SCPd+1(v) =
⋃

x∈SCP(u)

SCPd(x) ∩
⋃

y∈SCP(v)

SCPd(y) = ∅,
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which completes our induction. This proves Claim 1.

Let K be a maximum clique in I(Gl,k). By definition, for every u, v ∈ Pl that are
non-adjacent, we have V(P(u)) ∩ V(P(v)) = ∅. So no edge exists between Pu and
Pv in I(Gl,k). Similarly for non-adjacent vertices u, v ∈ Pi where 1 ≤ i ≤ l − 1, it
follows from Claim 1, that V(P(u)) ∩ V(P(v)) = ∅. Therefore, K contains at most
two vertices of every layer Pi, with 1 ≤ i ≤ l. Since K may also contain the unique
vertex in P0, then ω(I(Gl,k)) ≤ 2l + 1 as desired.

The following is immediate.

Corollary 3.4.5

For any integers l ≥ 2 and k ≥ 4, we have tw(Gl,k) = O (log |V(Gl,k)|).

Proof. By Lemma 3.2.2 and Lemma 3.2.7, we know that Gl,k contains at least c · 3l

vertices for some integer c ≥ 3. Hence by Theorem 3.4.4, we have tw(Gl,k) ≤ 2l ≤
c′ · log |V(Gl,k)| for some constant c′ > 0.

3.5 Discussion and open problems

High lower bound on the tree-width of layered wheels requires the presence of large
clique minor. Moreover, the existence of a large clique minor in a layered wheel
forces the graph to contain a vertex of high degree. These facts arise the following
two principal questions:

• Do bounds on the tree-width of even-hole-free graphs exist when the graphs
have no large clique minor?

• Do bounds on the tree-width of even-hole-free graphs exist when the maxi-
mum degree is bounded?

Those two questions are both answered positively [Abo+cs; ACV20]. We give an
overview of the theorem answering the first question.

Excluding big clique minor. Recall that even-hole-free graphs with no clique of
size 4 may have arbitrarily large tree-width, and the construction of layered wheels
that we presented in Chapter 3 must contain a clique minor of big size in order to
increase the bound on the tree-width. It is known that planar even-hole-free graphs
have bounded tree-width [SSS10], and planar graphs do not contain K` as a minor
for ` ≥ 5. It is then natural to ask if this condition is necessary, i.e. does excluding
large clique minor imply bounded tree-width on even-hole-free graphs? A positive answer
to the aforementioned question is given in a paper I wrote jointly with Aboulker,
Adler, Kim, and Trotignon [Abo+cs], where the following theorem is proved. In this
thesis, we do not explain the details of this result. Interested readers should refer
to [Abo+cs] for further explanation.

Theorem 3.5.1 ([Abo+cs])

There is a function f : N→N such that every even-hole-free graph not contain-
ing K` as a minor has tree-width at most f (`).

In [ACV20] it is proved that even-hole-free graphs with maximum degree t have
bounded tree-width. A discussion related to the class of even-hole-free graphs with
bounded maximum degree will be given in Chapter 5.
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Chapter 4

A bound on the tree-width

In the previous chapter, we have seen a construction that we call layered wheel, show-
ing that the rank-width and the tree-width of (theta, triangle)-free graphs and (even
hole, K4)-free graphs are unbounded. We have also seen that the family of layered
wheels for both classes share a similar characteristic in some sense. Our main con-
cerns in this chapter are the following:

• What are the structures that enforce the unboundedness of the tree-width (as
well as the rank-width) of graphs in the two classes, in the sense that excluding
them bounds the tree-width?

• Understanding the structure of even-hole-free graphs and theta-free graphs.

In this chapter, we prove that when excluding more induced subgraphs, there
is an upper bound on the tree-width. Our results imply that the maximum inde-
pendent set problem can be solved in polynomial time for some classes of graphs
that are possibly of interest because they are related to several well known open
questions in the field.

Notation

Let us give some definitions that will be used throughout the chapter.
For two vertices s, t ∈ V(G), a set X ⊆ V(G) is an st-separator if s, t /∈ X, and s

and t lie in different connected components of G \ X. An st-separator X is a minimal
st-separator if it is an inclusion-wise minimal st-separator. A set X ⊆ V(G) is a
separator if there exist s, t ∈ V(G) such that X is an st-separator in G. A set X ⊆ V(G)
is a minimal separator if there exist s, t ∈ V(G) such that X is a minimal st-separator
in G.

When A, B ⊆ V(G), we denote by NB(A) the set of vertices of B \ A that have at
least one neighbor in A. Note that NB(A) is disjoint from A. We write N(a) instead
of N({a}) and N[a] for {a}∪N(a). To avoid too heavy notation, since there is no risk
of confusion, when H is an induced subgraph of G, we write NH instead of NV(H).

A vertex x is complete (resp. anticomplete) to A if x /∈ A and x is adjacent to all
vertices of A (resp. to no vertex of A). We say that A is complete (resp. anticomplete)
to B if every vertex of A is complete (resp. anticomplete) to B (note that this means
in particular that A and B are disjoint).

Outline of the chapter

In Section 4.1, we address some known results on the clique-widths of some heredi-
tary graph classes related to the classes that we study, and we state the main results
of our work. In Section 4.2, we explain our method to bound the tree-width. In
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FIGURE 4.1: A subdivision of a wall and its line graph

Section 4.3, we give two technical lemmas that highlight structural similarities be-
tween (theta, triangle)-free graphs and (even hole, pyramid)-free graphs. These will
be used in Section 4.4 where we prove that graphs in our classes do not contain
minimal separators of large cardinality, implying that their tree-width is bounded.

4.1 Known results and summary of the main results

We denote by Pk the path on k vertices. For three non-negative integers i ≤ j ≤ k, let
Si,j,k be the tree with a vertex v, from which start three paths with i, j, and k edges
respectively. Note that S0,0,k is a path of length k (so, is equivalent to Pk+1) and that
S0,i,j = S0,0,i+j, and the claw is the graph S1,1,1. Note that {Si,j,k; 1 ≤ i ≤ j ≤ k} is the
set of all the subdivided claws and {Si,j,k; 0 ≤ i ≤ j ≤ k} is the set of all subdivided
claws and paths.

The following results are extracted from [DP16] (but some of them were first
proved in other works). Let HU = {P7, S1,1,4, S2,2,2} and HB = {P6, S1,1,3}. If H
contains a graph fromHU as an induced subgraph, then the class of (triangle, H)-free
graph has unbounded clique-width (see Theorem 7.ii.6 in [DP16]). If H is contained
in a graph from HB, then the class of (triangle, H)-free graphs has bounded clique-
width (see Theorem 7.i.3 in [DP16]). Moreover, the clique-width of (triangle, S1,2,2)-
free graphs is bounded, see [BMM16] or [DDP17].

It is easy to provide (theta, K4, S1,1,1)-free graphs (or equivalently (claw, K4)-free
graphs) of unbounded clique-width. To do so, consider a wall W, subdivide all edges
to obtain W ′, and take the line graph L(W ′) (see Figure 4.1).

Our main result states that for all fixed non-negative integers i, j, k, t, the follow-
ing graph classes have bounded tree-width:

• (theta, triangle, Si,j,k)-free graphs;

• (even hole, pyramid, Kt, Si,j,k)-free graphs.

The exact bounds and the proofs are given in Section 4.4 (Theorems 4.4.6
and 4.4.7). In fact, the class on which we actually work is larger. It is a common gen-
eralization C of the graphs that we have to handle in the proofs for the two bounds
above. Also, we do not exclude Si,j,k, but some graphs that contain it, namely the
so-called l-span-wheels for sufficiently large l. We postpone the definitions of C and
of span wheels to Section 4.4. To bound the tree-width, we prove that every graph
of large tree-width must contain a large clique or a minimal separator of large cardi-
nality, which were defined above.

Our graphs have no large cliques by definition, and by studying their structure,
we prove that they cannot contain large minimal separators, implying that their tree-
width is bounded. Note that from the celebrated grid-minor theorem, it is easy to
see that every graph of large tree-width contains a subgraph with a large minimal
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separator (a column in the middle of the grid contains such a separator). But since
we are interested in the induced subgraph containment relation, we cannot delete
edges, so the aforementioned separator does not always work. In this case, we have
to rely on our reinforcement to obtain a large minimal separator (see Theorems 4.2.3
and 4.2.4).

Algorithmic consequences

It is proved in [Cou90] that in every class of graphs with bounded tree-width, many
algorithmic problems (such as the optimal coloring or the maximum independent
set problems) can be solved in polynomial time. Therefore, our result has applica-
tions to several problems, but we here focus on one because the induced subgraphs
that are excluded in the most classical results and open questions about it seem to be
related to our classes. Our results imply that computing an independent set of maxi-
mum cardinality can be performed in polynomial time for (theta, triangle, Si,j,k)-free
graphs and (even hole, pyramid, Kt, Si,j,k)-free graphs.

Finding an independent set of maximum cardinality is polynomial-time solv-
able for (even hole, triangle)-free graphs [Cam+18] and (even hole, pyramid)-free
graphs [Chu+19]. The complexity of this problem is not known for (even hole, K4)-
free graphs and for (theta, triangle)-free graphs. Determining its complexity is also a
well known question for Si,j,k-free graphs. It is NP-hard for the class of H-free graphs
whenever H is not an induced subgraph of some Si,j,k [Ale83]. It is solvable in poly-
nomial time for H-free graphs whenever H is contained in Pk for k = 6 (for H = P5
see [LVV14] and for H = P6 see [Grz+19]) or contained in Si,j,k with (i, j, k) ≤ (1, 1, 2)
(see [Ale04] and [LM08] for the weighted version). It is solvable in polynomial time
for (P7, triangle)-free graphs [BM18a] and for (S1,2,4, triangle)-free graphs [BM18b].
The complexity is not known for H-free graphs whenever H is some Si,j,k that con-
tains either P7, S1,1,3, or S1,2,2.

4.2 Tree-width and minimal separators

If a graph has large tree-width, then it contains some sub-structure that is highly
connected in some sense (grid minor, bramble, tangle, see [HW17]). Theorem 4.2.4
seems to be a new statement of that kind. It says that graphs of large tree-width
must contain either a large clique or a minimal separator of large size. However, its
converse is false, as shown by K2,t that has tree-width 2 (it is a series-parallel graph)
and contains a minimal separator of size t.

The main theorem in this section was suggested by Stéphan Thomassé and im-
proved by Marcin Pilipczuk. We will give the proof of both variants. The first vari-
ant of the theorem is obtained from the celebrated excluded grid minor theorem of
Robertson and Seymour. The idea is to use a large grid to obtain a large minimal
separator. However, there are technicalities because we are not allowed to delete
edges, so the grid might contain many crossing edges. To find two vertices that can-
not be separated by a small separator, one needs to clean the grid. In the following,
we give a proof of such a theorem (cf. Theorem 4.2.3). To support the proof, we first
need to mention the following variant of Menger’s theorem.

Lemma 4.2.1

If A, B ⊆ V(G) are two disjoint sets which are anticomplete to each other, G[A],
G[B] are connected, and there exist k internally vertex disjoint A− B paths, then
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there exists an induced subgraph H of G admitting a minimal separator of size
at least k.

Proof. Let C be a cutset in G such that one connected component A′ of G \ C
contains A, and another one B′ contains B, and suppose C is minimal w.r.t. this
property. Note that C exists since V(G) \ (A ∪ B) is such a cutset. Every vertex in C
has a neighbor in both A′, B′, for otherwise, a vertex from C with no neighbor in A′

or B′ could be removed from C, contradicting its minimality.
We now set H = G[A′ ∪ C ∪ B′], and we observe that C is a minimal separator

that separates A′ and B′ in H. Since C must contain at least one vertex in each of the
internally vertex disjoint paths from A to B, we have |C| ≥ k.

As stated above, we furthermore rely on the grid-minor theorem. The best func-
tion for the grid-minor theorem known so far is the following, given by Chuzhoy.

Theorem 4.2.2 ([Chu16])

If G has tree-width at least f (k) with f (k) = Ω
(
(k poly log k)19), then G contains

a (k× k)-grid as a minor.

Theorem 4.2.3

Let G be a graph and k be a positive integer. If G does not contain a clique on 2k
vertices or an induced subgraph that admits a minimal separator of size k, then
the tree-width of G is O

(
(2k poly log 2k)19).

Proof. Suppose that tw(G) = Ω
(
(2k poly log 2k)19). By Theorem 4.2.2, G con-

tains a k × 2k grid minor. So, G contains model for it, namely k × 2k induced sub-
graphs Hi,j, for i ∈ {1, . . . , k} and j ∈ {1, . . . , k}, and there exists an edge between
Hi,j and Hi′,j′ when (i, j) and (i′, j′) are adjacent points in the integer grid.

Consider two distinct columns A and B of the grid. So, A =
⋃k

j=1 V(Ha,j) and
B =

⋃k
j=1 V(Hb,j). If there are no edges between A and B, then they form disjoint

connected induced subgraphs of G, and obviously, there exist k internally disjoint
paths linking them (each of these paths go across the k rows of the grid). So, we
are done by Lemma 4.2.1. Therefore, we may assume there exists an edge between
every pair of columns of the grid. Hence, G contains K2k as a minor.

Let Hi =
⋃k

j=1 V(Hi,j) for i = 1, . . . , 2k. Note that, H1, . . . , H2k is a model of K2k
in G. Suppose that H1∪ · · · ∪H2k is minimal w.r.t. this property. If for all i = 1, . . . , 2k
we have |V(Hi)| = 1, then G contains a clique of size 2k as a subgraph, so suppose up
to symmetry that |V(H2k)| ≥ 2. Let u, v ∈ V(H2k) be two leaves of some spanning
tree of H2k. It follows that H2k \ u and H2k \ v are both connected. By the minimality
of H1 ∪ · · · ∪ H2k, H2k \ v is anticomplete to Hi for some i ∈ {1, . . . , 2k − 1}. Also,
H2k \ u is anticomplete to Hi′ for some i′ ∈ {1, . . . , 2k}. Since NG(H2k) ∩V(Hj) 6= ∅
for all j ∈ {1, . . . , 2k − 1}, we know that one of H2k \ u or H2k \ v contains vertices
with neighbors in at least k sets among V(H1), . . . , V(H2k−1). Up to a relabelling, we
may assume that N(H2k \ v) has a non-empty intersection with each of H1, . . . , Hk.
Moreover, we suppose i = k + 1, that is, N(H2k \ v) has an empty intersection with
Hk+1.

Now, A = V(H2k \ v) and B = V(Hk+1) are two connected subsets, and they can
be linked by k internally vertex-disjoint paths (one through each Hj, j = 1, . . . , k). By
Lemma 4.2.1, G contains an induced subgraph with a minimal separator of size at
least k. This completes the proof.
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Thanks to Marcin Pilipczuk, we have a better bound than the one given in The-
orem 4.2.3. The proof lies heavily on the so-called “potential maximum clique”. Let
us define it and explain the proof in more detail.

Theorem 4.2.4

Let G be a graph and let k ≥ 2 and s ≥ 1 be positive integers. If G does not
contain a clique on k vertices or a minimal separator of size larger than s, then
the tree-width of G is at most (k− 1)s3 − 1.

Before proving Theorem 4.2.4, let us introduce some terminology and state re-
sults due to Bouchitté and Todinca [BT01]. For a graph G we denote by CC(G)
the set of all connected components of G (viewed as subsets of V(G)). A set
F ⊆ [V(G)]2 \ E(G) is a fill-in or chordal completion if G + F = (V(G), E(G) ∪ F)
is a chordal graph. A fill-in F is minimal if it is inclusion-wise minimal. If X ⊆ V(G),
then every connected component D ∈ CC(G \ X) with N(D) = X is called a com-
ponent full to X. Observe that a set X ⊆ V(G) is a minimal separator if and only if
there exist at least two connected components of G \ X that are full to X. An impor-
tant property of minimal separators is that no new minimal separator appears when
applying a minimal fill-in.

Lemma 4.2.5 (see [BT01])

For every graph G, minimal fill-in F, and minimal separator X in G + F, X
is a minimal separator in G as well. Furthermore, the families of components
CC((G + F) \ X) and CC(G \ X) are equal (as families of subsets of V(G)).

A set Ω ⊆ V(G) is a potential maximal clique (PMC) if there exists a minimal fill-
in F such that Ω is a maximal clique of G + F. A PMC is surrounded by minimal
separators.

Lemma 4.2.6 (see [BT01])

For every PMC Ω in G and every component D ∈ CC(G \Ω), the set N(D) is a
minimal separator in G with D being a full component.

The following characterizes PMCs.

Theorem 4.2.7 (see [BT01])

A set Ω ⊆ V(G) is a PMC in G if and only if the following two conditions hold:

(i) for every D ∈ CC(G \Ω) we have N(D) ( Ω;

(ii) for every x, y ∈ Ω either x = y, xy ∈ E(G), or there exists D ∈ CC(G \Ω)
with x, y ∈ N(D).

In the second condition of Theorem 4.2.7, we say that a component D covers the
nonedge xy.

Lemma 4.2.8

Let G be a graph, k ≥ 2 and s ≥ 1 be integers, and let Ω be a PMC in G with
|Ω| > (k − 1)s3. Then there exists in G either a clique of size k or a minimal
separator of size larger than s.
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Proof. By Lemma 4.2.6, we may assume that for every D ∈ CC(G \Ω) we have
|N(D)| ≤ s.

Assume first that for every x ∈ Ω the set of non-neighbors of x in Ω (i.e.,
Ω \ N[x]) is of size less than s3. Let A0 = Ω and consider the following iterative
process. Given Ai for i ≥ 0, pick xi ∈ Ai, and set Ai+1 = Ai ∩ N(xi). The process
terminates when Ai becomes empty. Clearly, the vertices x0, x1, . . . induce a clique.
Furthermore, by our assumption, |Ai \ Ai+1| ≤ s3. Therefore this process continues
for at least k steps, giving a clique of size k in G.

Thus we are left with the case when there exists x ∈ Ω with the set Ω \ N[x] of
size at least s3. Let Y = {x} ∪ (Ω \ N[x]); we have |Y| > s3, Y ⊆ Ω, and G[Y] is
disconnected.

Consider the following iterative process. At step i, we will maintain a partition
Ai of Y into at least two parts and for every A ∈ Ai a set Di(A) ⊆ CC(G \ Ω)
with the following property: the sets {A ∪ ⋃D∈Di(A) D | A ∈ Ai} is the partition of
G[Y∪⋃A∈Ai

⋃
D∈Di(A) D] into vertex sets of connected components. In particular, for

every A ∈ Ai and D ∈ Di(A) we have N(D)∩Y ⊆ A. We start withA0 = CC(G[Y])
and D0(A) = ∅ for every A ∈ A0.

The process terminates when there exists A ∈ Ai of size larger than s2. Oth-
erwise, we perform a step as follows. Pick two distinct A, B ∈ Ai and vertices
a ∈ A, b ∈ B. By the properties of Ai, ab /∈ E(G). By Theorem 4.2.7, there exists
D ∈ CC(G \Ω) with a, b ∈ N(D). Let A = {C ∈ Ai | N(D) ∩ C 6= ∅}. Note that
A, B ∈ A. Furthermore, since |N(D)| ≤ s, we have 2 ≤ |A| ≤ s.

We define Ai+1 = (Ai \ A) ∪ {
⋃

C∈A C}. For every C ∈ Ai+1 ∩ Ai we keep
Di+1(C) = Di(C). Furthermore, we set Di+1(

⋃
C∈A C) = {D} ∪ ⋃C∈ADi(C). It is

straightforward to verify the invariant for Ai+1 and Di+1.
Furthermore, since every set C ∈ Ai is of size at most s2 while |Y| > s3 we have

that |Ai| > s. Since 2 ≤ |A| ≤ s, we have 2 ≤ |Ai+1| < |Ai|. Consequently, the
process terminates after a finite number of steps with Ai of size at least 2, Di, and
some A ∈ Ai of size greater than s2.

Let X = A ∪ ⋃D∈Di(A) D and let y ∈ Y \ A. Note that G[X] is connected by
the invariant on Ai and Di, y exists as |Ai| ≥ 2, and y is anticomplete to X. We
use Theorem 4.2.7: for every a ∈ A fix a component Da ∈ CC(G \Ω) covering the
nonedge ya. Since |N(Da)| ≤ s while |A| > s2, the set D = {Da | a ∈ A} is of
size greater than s. Since G[X] is connected and y is anticomplete to X, there exists
a minimal separator S with y in one full side and X in the other full side. However,
then S ∩ D 6= ∅ for every D ∈ D. Hence, |S| ≥ |D| > s. This finishes the proof of
the lemma.

Proof. [Proof of Theorem 4.2.4]
Let G be a graph such that it does not contain a clique on k vertices and a minimal

separator of size larger than s. Let F be a minimal chordal completion of G. By
Lemma 4.2.8, every maximal clique of G + F is of size at most (k− 1)s3. Therefore
a clique tree of G + F is a tree decomposition of G of width at most (k− 1)s3 − 1, as
desired.

4.3 Nested 2-wheels

Let k ≥ 0 be an integer. A k-wheel is a graph formed by a hole H called the rim to-
gether with a set C of k vertices that are not in V(H) called the centers, such that each
center has at least three neighbors in the rim. We denote such a k-wheel by (H, C).
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Observe that a 0-wheel is a hole. A 1-wheel is precisely a wheel (see Figure 1.9). We
often write (H, u) instead of (H, {u}).

A 2-wheel (H, {u, v}) is nested if H contains two vertices a and b such that all
neighbors of u in H are in one path of H from a to b, while all the neighbors of v
are in the other path of H from a to b. Observe that a and b may be adjacent to both
u and v. As we will see in this section, the properties of 2-wheels highlight struc-
tural similarities between (theta, triangle)-free graphs and (even hole, pyramid)-free
graphs, in the sense that in both classes, apart from few exceptions, every 2-wheel
with non-adjacent centers is nested.

For a center u of a k-wheel (H, C), a u-sector of H is a subpath of H of length at
least 1 whose ends are adjacent to u and whose internal vertices are not. However,
a u-sector may contain internal vertices that are adjacent to v for some center v 6= u.
Observe that for every center u, the rim of a wheel is edgewise partitioned into its
u-sectors.

In (theta, triangle)-free graphs

Recall that the cube is the graph formed from a hole of length 6, say h1h2 · · · h6h1
together with a vertex u adjacent to h1, h3, h5, and a vertex v non-adjacent to u and
adjacent to h2, h4, h6. Note that the cube is a non-nested 2-wheel with non-adjacent
centers.

Lemma 4.3.1

Let G be a (theta, triangle)-free graph. If W = (H, {u, v}) is a 2-wheel in G such
that uv /∈ E(G), then W is either a nested wheel or the cube.

Proof. Suppose that W is not a nested wheel. We will prove that W is the cube.

Claim 1. Every u-sector of H contains at most one neighbor of v and every v-sector
of H contains at most one neighbor of u.

Proof of Claim 1. For otherwise, without loss of generality, some u-sector P = x . . . y
of H contains at least two neighbors of v. Let x′, y′ be neighbors of v closest to x, y
respectively along P. Note that x′y′ /∈ E(G) because G is triangle-free. Since W is
not nested, H \ P contains some neighbors of v. Note also that H \ P contains some
neighbors of u.

So, let Q = z . . . z′ be the path of H \ P that is minimal length and such that
uz ∈ E(G) and vz′ ∈ E(G). Note that z′ is adjacent to either x or y, for otherwise
uzQz′v, uxPx′v, and uyPy′v form a theta from u to v. So suppose up to symmetry
that z′ is adjacent to y. So, v is not adjacent to y since G is triangle-free. It then
follows that the three paths vz′y, vy′Py, and vx′Pxuy form a theta, a contradiction.
This proves Claim 1.

Claim 2. u and v have no common neighbors in H.

Proof of Claim 2. Otherwise, let x be such a common neighbor. Consider a subpath
x . . . y of H of maximum length with the property of being a u-sector or a v-sector,
and suppose up to symmetry that it is a u-sector. By its maximality, it contains a
neighbor of v different from x. So in total it contains at least two neighbors of v, a
contradiction to Claim 1. This proves Claim 2.

Claims 1 and 2 prove that |NH(u)| = |NH(v)| and the neighbors of u and v
alternate along H. So, let x, y, z ∈ NH(u) and x′, y′, z′ ∈ NH(v) be distinct vertices in
H with x, x′, y, y′, z, z′ appearing in this order along H. If V(H) = {x, y, z, x′, y′, z′},
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then V(H) ∪ {u, v} induces the cube, so suppose {x, y, z, x′, y′, z′} ( V(H). Hence,
up to symmetry, we may assume that x, x′, y, y′, z and z′ are chosen such that: xz′ /∈
E(G). Note that by the argument mentioned in the beginning of this paragraph, u
and v have no other neighbor in the interior of x′(H \ y)x, y′(H \ y)z, and z(H \
x)z′. So the three paths vz′(H \ x)z, vy′(H \ y)z, and vx′(H \ y)xuz form a theta, a
contradiction.

The following lemma of Radovanović and Vušković shows that the presence of
the cube in a (theta, triangle)-free graph entails some structure.

Lemma 4.3.2 (see [RV13])

Let G be a (theta, triangle)-free graph. If G contains the cube, then either it is the
cube, or it has a clique separator of size at most 2.

In even-hole-free graphs

Let us consider a classical generalization of even-hole-free graphs. Recall that all
thetas, prisms, even wheels, and square contain even holes. The class of (theta,
prism, even wheel, square)-free graphs is therefore a generalization of even-hole-
free graphs that captures the structural properties that we need here.

A proof of the following lemma can be found in [Chu+19] (where it relies on
many lemmas). We include here our self-contained proof for the sake of com-
pleteness. Call a wheel proper if it is not a pyramid. A cousin wheel is a 2-wheel
made of a hole H = h1h2 . . . hnh1 and two non-adjacent centers u and v, such that
NH(u) = {h1, h2, h3} and NH(v) = {h2, h3, h4}.

Lemma 4.3.3

Let G be a (theta, prism, pyramid, even wheel, square)-free graph. If W =
(H, {u, v}) is a 2-wheel in G such that uv /∈ E(G), then W is either a nested or a
cousin wheel. Moreover, if W is nested then |NH(u) ∩ NH(v)| ≤ 1.

Proof. In the case where W = (H, {u, v}) is nested, it must be that |NH(u) ∩
NH(v)| ≤ 1, for otherwise G would contain a square. Since G contains no even
wheel, it is sufficient to consider the following cases.

Case 1: NH(u) = 3 or NH(v) = 3.
Assume that W is not a nested wheel. We will prove that W is a cousin wheel.

Without loss of generality, we may assume that |NH(u)| = 3, and let NH(u) =
{x, y, z}. We denote by Px = y . . . z, Py = x . . . z and Pz = x . . . y the three u-sectors
of H.

Suppose xyz is a path of H. Then v must be adjacent to y, for otherwise W is
nested, a contradiction. Since V(H) ∪ {u} and V(H \ y) ∪ {u, v} do not induce an
even wheel, v has exactly two neighbors in Py. Moreover, the two neighbors of v
in Py are adjacent, for otherwise H \ y, u, and v form a theta. Since (H, v) is not a
pyramid, this means that one of x or z is a neighbor of v. Therefore, W is a cousin
wheel.

Now suppose that {x, y, z} does not induce a path. So xy, yz, and zx are non-
edges. Note that v is adjacent to at most one of x, y, or z, because G contains no
square. Up to symmetry, assume that vx /∈ E(G). Let R be the v-sector of H which
contains x (in its interior). Since (H, {u, v}) is not a nested wheel, the ends of R are
not both in Px, or both in Py, or both in Pz. So assume that R = y′ . . . z′ with z′ is in
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the interior of Pz and y′ is not in Pz. If y′ is in Px, then R, u, and v form a theta from
x to z, a contradiction. Hence, y′ is not in Px, so y′ is in the interior of Py.

Call x′ the neighbor of v in H different from y′ and z′. If x′ is not in the interior
of Px, then Px is contained in the v-sector x′Hz′. Thus, there exists a v-sector S which
contains Px. In particular, the hole made of S and v contains two non adjacent neigh-
bors of u, namely y and z. Hence, S, u, and v form a theta from y to z. So, x′ is in the
interior of Px.

This means x, y′, z, x′, y, z′ appear in this order along H. If x′z /∈ E(G), then
the paths x′(H \ y)z, x′(H \ z)yuz, and x′vy′(H \ x)z form a theta from x′ to z, a
contradiction. So, x′z ∈ E(G). By symmetry, x′y ∈ E(G). But then, {u, y, x′z}
induces a square, a contradiction.

Case 2: NH(u) ≥ 5 and NH(v) ≥ 5

For a contradiction, suppose that (H, {u, v}) is not a nested wheel. First of all, we
have NH(u) 6= NH(v), for otherwise u, v, and two non-adjacent vertices of NH(u)
would form a square. So in H, there exists a neighbor of v that is not adjacent to u.
It is therefore well defined to consider the u-sector P = x . . . y of H whose interior
contains k ≥ 1 neighbors of v, and to choose such a sector with k minimum. We
denote by x′ the neighbor of x in H \ P, by y′ the neighbor of y in H \ P and by
Q = x′ . . . y′ the path H \ P.

Note that u has some neighbor in the interior of Q, because u has at least 5 neigh-
bors in H. We now show that v also has some neighbor in the interior of Q. Suppose
that this is not the case. Then, the neighborhood of v in H is completely contained
in V(P) ∪ {x′, y′}. Since (H, {u, v}) is not a nested wheel, v is adjacent to x′ or y′

— and in fact to both of them, for otherwise the hole uxPyu would contain an even
number (at least 4) of neighbors of v, thus inducing an even wheel, a contradiction.
Now since {u, v, x, y} does not induce a square, up to symmetry we may assume
that vx /∈ E(G). Since |NH(v)| ≥ 5, v has at least 2 neighbors in the interior of P,
and so k ≥ 2. Note that u is adjacent to x′, for otherwise, x′ would be the unique
neighbor of v in the interior of a u-sector, contradicting the minimality of k. Since
{u, v, x′, y′} does not induce a square, we know that u is not adjacent to y′. But then,
y′ is the unique neighbor of v in the interior of some u sector, a contradiction to the
minimality of k. This proves that v has some neighbor in the interior of Q.

By the fact that each of u and v has some neighbor in the interior of Q, a path
S from u to v whose interior is in the interior of Q exists. Let x′′ (resp. y′′) be the
neighbor of v in P closest to x (resp. y) along P. If x′′ = y′′, then x′′ is an internal
vertex of P, and so S and P form a theta from u to x′′. If x′′y′′ ∈ E(G), then S
and P form a pyramid. If x′′ 6= y′′ and x′′y′′ /∈ E(G), then S, uxPx′′v, and uyPy′′v
form a theta from u to v. Each of the cases yields a contradiction; this completes the
proof.

4.4 Bounding the tree-width

In this section, we prove that the tree-width is bounded in (theta, triangle, Si,j,k)-free
graphs and in (even hole, pyramid, Kt, Si,j,k)-free graphs.

For (theta, triangle)-free graphs, by Lemma 4.3.2, we may assume that the graphs
we work on are cube-free since the cube itself has small tree-width, and clique sepa-
rators of size at most 2 in some sense preserve the tree-width (this will be formalized
in the proofs). For (even hole, pyramid)-free graphs, recall that we first work in a
superclass, namely (theta, prism, pyramid, even wheel, square)-free graphs.
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Since our proof is the same for (theta, triangle, Si,j,k)-free graphs and (even hole,
pyramid, Kt, Si,j,k)-free graphs, to avoid duplicating it, we introduce a class C that
contains all the graphs that we need to consider while entailing the structural prop-
erties that we need.

Call butterfly a wheel (H, v) such that NH(v) = {a, b, c, d} with ab ∈ E(G), bc /∈
E(G), cd ∈ E(G) and da /∈ E(G). Let C be the class of all (theta, prism, pyramid,
butterfly)-free graphs such that every 2-wheel with non-adjacent centers is either a
nested or a cousin wheel.

Lemma 4.4.1

If G is a (theta, triangle, cube)-free graph or a (theta, prism, pyramid, even wheel,
square)-free graph, then G ∈ C.

Proof. If G is a (theta, triangle, cube)-free graph, then G is theta-free and (prism,
pyramid, butterfly)-free (because prisms, pyramids, and butterflies contain trian-
gles). Furthermore, every 2-wheel with non-adjacent centers is a nested wheel by
Lemma 4.3.1.

If G is a (theta, prism, pyramid, even wheel, square)-free graph, then G is (theta,
prism, pyramid)-free and butterfly-free (because a butterfly is an even wheel). Fur-
thermore, every 2-wheel with non-adjacent centers is either a nested or a cousin
wheel by Lemma 4.3.3.

Hence G ∈ C as claimed.

6 proof, we need a special type of k-wheel. A k-span-wheel is a k-wheel (H, C)
that satisfies the following properties.

• There exist two non-adjacent vertices x, y in H and we denote by PA = a1 . . . aα

and PB = b1 . . . bβ the two paths of H from x to y, with x = a1 = b1 and
y = aα = bβ.

• C ∪ {x, y} is an independent set.

• There exists an ordering of vertices in C, namely v1, v2, · · · , vk.

• Every vertex of C has neighbors in the interiors of both PA and PB (and at least
3 neighbors in H since (H, C) is a k-wheel).

• For every 1 ≤ i < j ≤ k and 1 ≤ i′, j′ ≤ α, if viai′ ∈ E(G) and vjaj′ ∈ E(G) then
i′ ≤ j′.

• For every 1 ≤ i < j ≤ k and 1 ≤ i′, j′ ≤ β, if vibi′ ∈ E(G) and vjbj′ ∈ E(G) then
i′ ≤ j′.

Informally, a k-span-wheel is such that, walking from x to y along both PA and
PB, one first meets all the neighbors of v1, then all neighbors of v2, and so on until
vk. Observe that a 1-span-wheel is a wheel, 2-span-wheel is a nested 2-wheel. Note
that distinct vi and vj may share common neighbors on H (it is even possible that
NPA(v1) = · · · = NPA(vk) = {ai}).

Observe that in the following theorem, thetas, pyramids, prisms, and butterflies
have to be excluded, since they do not satisfy the conclusion.

Lemma 4.4.2

Let G be a connected graph in C. Let C be a minimal separator in G of size
at least 2 that is furthermore an independent set, and A and B be connected
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components of G \ C that are full to C. Then:

1. There exist two vertices x and y in C, a path PA from x to y with interior
in A, and a path PB from x to y with interior in B such that all vertices
in C \ {x, y} have neighbors in the interior of both PA and PB. Note that
V(PA) ∪V(PB) induces a hole that we denote by H.

2. (H, C \ {x, y}) is a (|C| − 2)-span-wheel.

Proof. We first prove 1, by induction on k = |C|. If k = 2, then x, y, PA, and PB
exist from the connectivity of A and B, and the conditions on C \ {x, y} vacuously
hold. So suppose the result holds for some k ≥ 2, and let us prove it for k + 1. Let
z be any vertex from C, and apply the induction hypothesis to C \ z in G \ z. This
provides two vertices x, y in C \ z and two paths PA and PB. We denote by H the hole
formed by PA and PB.

Claim 1. Every vertex in C \ {x, y, z} has neighbors in the interior of both PA and PB.

Proof of Claim 1. Follows directly from the induction hypothesis. This proves Claim 1.

Since z has a neighbor in A and A is connected, there exists a path QA = z . . . zA
in A ∪ {z}, such that zA has a neighbor in the interior of PA. A similar path QB
exists. We set Q = zAQAzQBzB. We suppose that x, y, PA, PB, QA, and QB are chosen
subject to the minimality of Q.

Observe that Q is a chordless path by its minimality and the fact that A and B
are anticomplete. The minimality of Q implies that the interior of Q is anticomplete
to the interior of PA and to the interior of PB.

Claim 2. We may assume that Q has length at least 1.

Proof of Claim 2. Otherwise, z = zA = zB, so z has neighbors in the interior of both
PA and PB. Hence, by Claim 1, x, y, PA, and PB satisfy 1. This proves Claim 2.

Let a (resp. a′) be the neighbor of zA in PA closest to x (resp. to y) along PA. Let b
(resp. b′) be the neighbor of zB in PB closest to x (resp. to y) along PB.

Claim 3. If a 6= a′ and aa′ /∈ E(G), then z = zA. If b 6= b′ and bb′ /∈ E(G), then z = zB.

Proof of Claim 3. We give a proof only for the statement of a, since the proof for b is
similar.

For suppose a 6= a′, aa′ /∈ E(G), and z 6= zA, let z′ be the neighbor of zA in Q. Set
P′A = xPAazaa′PAy and Q′ = z′QzB. Let us prove that x, y, P′A, PB, and Q′ contradict
the minimality of Q. Obviously, Q′ is shorter than Q, so we only have to prove that
every vertex in C \ {z} has neighbors in the interior of both P′A and PB. For PB, it
follows from Claim 1. So suppose for a contradiction that a vertex c ∈ C \ {z} has
no neighbor in the interior of P′A. Since by Claim 1 c has a neighbor c′ in the interior
of PA, c′ is an internal vertex of aPAa′. Since G is theta-free, (H, zA) is a wheel. Note
that (H, {c, zA}) is not nested because of c′ and some neighbor of c in the interior
of PB (i.e. the neighborhood of c in H is not contained in a unique zA-sector). Since
G ∈ C, by Lemma 4.3.3, (H, {c, zA}) is a cousin wheel. Since c has neighbors in the
interiors of both PA and PB, this means that x or y is a common neighbor of c and
zA, a contradiction to C being an independent set. The proof for the latter statement
(with b) is similar. This proves Claim 3.

Claim 4. We may assume that x has neighbors in the interior of Q and y has no
neighbor in the interior of Q.
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Proof of Claim 4. We show that if it is not the case, then there is a contradiction. For
suppose both x and y have a neighbor in the interior of Q, then a path of minimal
length from x to y with interior in the interior of Q forms a theta together with PA
and PB, a contradiction.

Now suppose that neither x nor y has a neighbor in the interior of Q. Recall that
Claim 2 tells us that zA 6= zB. So either z 6= zA or z 6= zB. Up to symmetry, we may
assume that z 6= zA. Hence by Claim 3, either a = a or aa′ ∈ E(G).

Suppose a = a′. This implies that a is in the interior of PA. If b = b′, then b is in
the interior of PB, so H and Q form a theta from a to b; if bb′ ∈ E(G), then H and Q
form a pyramid; and if b 6= b′ and bb′ /∈ E(G), then aPAxPBbzB, aPAyPBb′zB, azAQzB
form a theta from a to zB (note that azAQzB has length at least 2 because zA 6= zB), a
contradiction. So, aa′ ∈ E(G).

Suppose that bb′ ∈ E(G). Note that |{a, a′} ∩ {b, b′} ∩ {x, y}| 6= 2, because x and
y are not adjacent. Moreover, |{a, a′} ∩ {b, b′} ∩ {x, y}| 6= ∅, for otherwise H and
Q form a prism. So, |{a, a′} ∩ {b, b′} ∩ {x, y}| = 1. In this last case, we suppose up
to symmetry that x = a = b. So, z is in the interior of Q since it is non-adjacent to
x — in particular Q has length at least 2. Hence, H and Q form a butterfly (with
x = a = b being the center), a contradiction.

So, bb′ /∈ E(G). If b = b′, then b is in the interior of PB; thus PA, PB, and Q form
a pyramid (i.e. 3PC(azAa′, b), a contradiction. So, b 6= b′, and hence by Claim 3,
zB = z. This means that b 6= x and b′ 6= y (because C is an independent set).
Therefore, aPAxPBbz, a′PAyPBb′z, and zAQz form a pyramid (i.e. 3PC(aa′zA, z)), a
contradiction.

So, each case leads to a contradiction. Hence, exactly one of x or y has neighbors
in the interior of Q, and up to symmetry we may assume it is x. This proves Claim 4.

Claim 5. a′x ∈ E(G) and b′x ∈ E(G).

Proof of Claim 5. First, suppose zA is adjacent to x, i.e. a = x. Then, zA 6= z since C
is an independent set. Note that a = a′ is impossible since zA has neighbors in the
interior of PA. So, by Claim 3, a′x ∈ E(G).

Now suppose zA is not adjacent to x. By Claim 4, x has a neighbor in the inte-
rior of Q, so we choose such a neighbor x′ closest to zA along Q. Note that by the
minimality of Q, no vertex in the interior of Q has neighbor in the interior of PA and
in the interior of PB. Since y is not adjacent to x′ (by Claim 4), x′ has no neighbors
in (PA ∪ PB) \ {x}. We set R = xx′QzA and observe that R has length at least 2.
If a 6= a′ and aa′ /∈ E(G), then xPAazA, xPByPAa′zA, and R form a theta from x to
zA. If aa′ ∈ E(G), then PA, PB, and R form a pyramid. Therefore a = a′. Note that
xa ∈ E(G), for otherwise, PA, PB, and R form a theta. Hence, a′x ∈ E(G).

The proof for b′x ∈ E(G) is similar. This proves Claim 5.

To conclude the proof of 1, set P′A = zQzAa′PAy and P′B = zQzBb′PBy. By Claim 5,
x has neighbors in the interior of both P′A and P′B (these neighbors are a′ and b′). Note
that since a′x, b′x ∈ E(G), the interiors of PA and PB are included in the interiors of
P′A and P′B respectively. Hence, by Claim 1, every vertex of C \ z has neighbors in the
interior of both P′A and P′B.

Hence, the vertices z, y and the paths P′A and P′B show that 1 is satisfied.

Let us now prove 2. Note that (H, C \ {x, y}) is (|C| − 2)-wheel (this follows
because G is theta-free, every vertex in C \ {x, y} has at least three neighbors in H).
It remains to prove that it is a (|C| − 2)-span-wheel. Note that it is clearly true if
|C| ≤ 3. We set PA = a1 . . . aα and PB = b1 . . . bβ with x = a1 = b1 and y = aα = bβ,
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as in the definition of a k-span-wheel. We just have to exhibit an ordering of the
vertices of C \ {x, y} that satisfies the rest of the definition.

We first define v1, the smallest vertex in the order we aim to construct. Note that
no vertex v ∈ C \ {x, y} is adjacent to x or y, because C is an independent set. We let
v1 be a vertex of C that is adjacent to ai with i minimum. Let j be the smallest integer
such that v1 is adjacent to bj. We suppose that v1 is chosen subject to the minimality
of j. Let i′, j′ be the greatest integers such that v1 is adjacent to ai′ and bj′ . Note that
1 < i ≤ i′ < α and 1 < j ≤ j′ < β.

Claim 6. For every w ∈ C \ {x, y, v1}, we have NH(w) ⊆ V(ai′PAyPBbj′).

Proof of Claim 6. We first note that the 2-wheel (H, {v1, w}) is not a cousin wheel,
because this may happen only when x ∈ N(v1) or y ∈ N(v1) (recall that if it was a
cousin wheel, NH(v1) would induce a 3-vertex path in H).

Hence, (H, {v1, w}) is a nested wheel. Suppose that NH(w) 6⊆ V(ai′PAaα) ∪
V(bj′PBbβ). This means that w has a neighbor z in ai′−1PAxPBbj′−1. Since (H, {v1, w})
is a nested wheel, NH(w) is contained in a v1-sector Q of (H, v1). Moreover, since
w has a neighbor in the interior of both PA and PB, we have Q = aiPAxPBbj. Since
H and w form a wheel, w has neighbor in the interior of Q. This contradicts the
minimality of i or j. This proves Claim 6.

The order of C \ {x, y} is now constructed as follows: we remove v1 from C,
define v2 as we defined v1 (minimizing i, and then minimizing j), then remove v2,
define v3, and so on. This iteratively constructs an ordering of C \ {x, y} showing
that (H, C \ {x, y}) is a (|C| − 2)-span-wheel.

For integers t, k ≥ 1, the Ramsey number R(t, k) is the smallest integer n such
that any graph on n vertices contains either a clique of size t, or an independent set
of size k.

Theorem 4.4.3

An (l-span-wheel, Kt)-free graph G ∈ C has tree-width at most (t− 1)(R(t, l +
2)− 1)3 − 1.

Proof. Suppose for a contradiction that the tree-width of G is at least
(t − 1)(R(t, l + 2) − 1)3. Since G is Kt-free, by Theorem 4.2.4, G admits a minimal
separator D of size at least R(t, l + 2). Let A and B be two connected components
of G \ D that are full to D. By the definition of Ramsey number, G[D] contains an
independent set C of size l + 2. We define G′ = G[A ∪ C ∪ B], and observe that C is
a minimal separator of G′. Hence by Lemma 4.4.2 applied to G′, the graph contains
an l-span-wheel, a contradiction.

The following shows that in C, an l-span-wheel with large l contains Si,j,k with
large i, j, k.

Lemma 4.4.4

If a butterfly-free graph G contains a (4k + 1)-span-wheel with k ≥ 0, then it
contains Sk+1,k+1,k+1.

Proof. Consider a (4k+ 1)-span-wheel in G, with x, y, PA, and PB be as in the def-
inition of span-wheel given in the beginning of the current section. Let v1, . . . , v4k+1
be the centers of the span wheel. For each i = 1, . . . , 4k + 1, let ai (resp. a′i) be
the neighbor of vi in PA closest to x (resp. to y) along PA. Let bi (resp. b′i) be the
neighbor of vi in PB closest to x (resp. to y) along PB. We set Pi = aiPAxPBbi and
Qi = a′iPAyPBb′i .
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Claim 1. Pi has length at least i + 1 and Qi has length at least 4k + 3− i.

Proof of Claim 1. We prove this by induction on i for Pi. It is clear that P1 has length
at least 2 since x is not adjacent to v1. Suppose the claim holds for some fixed i ≥ 1,
and let us prove it for i + 1. From the induction hypothesis, Pi has length at least
i + 1, and since vi has a neighbor in the interior of Pi+1 (because it has at least three
neighbors in H), the length of Pi+1 is greater than the length of Pi, so Pi+1 has length
at least i + 2.

The proof for Qi is similar, except we start by proving that Q4k+1 has length at
least 2, and that the induction goes backward down to Q1. This proves Claim 1.

We set l = 2k + 1. So, by Claim 1, Pl and Ql both have length at least 2k + 2.
We set v = vl , P = Pl , Q = Ql , a = al , a′ = a′l , b = bl and b′ = b′l . Since G is
butterfly-free, we do not have aa′ ∈ E(G) and bb′ ∈ E(G) simultaneously. So, up to
symmetry we may assume that either a = a′; or a 6= a′ and aa′ /∈ E(G).

If a = a′, let u, u′, and u′′ be three distinct vertices in P such that a, u, u′, and u′′

appear in this order along P, aPu has length k + 1 and bPu′′ has length k− 1 (which
is possible because P has length at least 2k + 1). Let w be in Q and such that aQw has
length k + 1 (which is possible because Q has length at least 2k + 1). The three paths
aPu, avbPu′′, and aQw form an Sk+1,k+1,k+1.

If a 6= a′ and aa′ /∈ E(G), then let u, u′, and u′′ be three distinct vertices in P
such that a, u, u′, and u′′ appear in this order along P, aPu has length k and bPu′′

has length k. Let w be in Q and such that a′Qw has length k. The three paths vaPu,
vbPu′′ and va′Qw form an Sk+1,k+1,k+1.

Recall the following classical result on tree-width that is given in Chapter 1 (cf.
Remark 1).

Lemma 4.4.5

The tree-width of a graph G is the maximum tree-width of an induced subgraph
of G that has no clique separator.

Theorem 4.4.6

For k ≥ 1, every (theta, triangle, Sk,k,k)-free graph G has tree-width at most
2(R(3, 4k− 1))3 − 1.

Proof. By Lemma 4.4.5, it is enough to consider a graph G that does not have a
clique separator. If G contains the cube, then Lemma 4.3.2 tells us that G itself is the
cube. By classical results on tree-width, the tree-width of the cube is 3 (but the trivial
bound 8 would be enough for our purpose), which in particular achieves the given
bound. We may therefore assume that G is cube-free. Moreover, by Lemma 4.4.1,
G is in C. Since G is Sk,k,k-free, by Lemma 4.4.4, G contains no (4k− 3)-span-wheel.
Moreover, G contains no K3 by assumption. Hence, by Theorem 4.4.3, G has tree-
width at most 2(R(3, 4k− 1))3 − 1.

Theorem 4.4.7

For k ≥ 1, every (even hole, pyramid, Kt, Sk,k,k)-free graph G has tree-width at
most (t− 1)(R(t, 4k− 1))3 − 1.

Proof. Since all thetas, prisms, even wheels, and square contain even holes, G
is (theta, prism, pyramid, even wheel, square)-free. So, by Lemma 4.4.1, G is in C.
Since G is Sk,k,k-free, by Lemma 4.4.4, G contains no (4k− 3)-span-wheel. Moreover,
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FIGURE 4.2: k-turtle and k-ladder (dashed lines represent paths)

G contains no Kt by assumption. Hence, by Theorem 4.4.3, G has tree-width at most
(t− 1)(R(t, 4k− 1))3 − 1.

4.5 Discussion and open problems

One possible method to find a maximum weight independent set for a class of
graphs is by proving that every graph in the class has polynomially many minimal
separators (where the polynomial is in the number of vertices of the graph). This was
for instance successfully applied to (even hole, pyramid)-free graphs in [Chu+19].
Therefore, our result on (even hole, pyramid, Kt, Si,j,k)-free graphs does not settle a
new complexity result for the maximum independent set problem (but it might still
be applicable to other problems).

Note that bounding the number of minimal separators cannot be applied to (even
hole, K4)-free graphs and to (theta, triangle)-free graphs since there exist graphs in
both classes that contain exponentially many minimal separators. These graphs are
called k-turtle and k-ladder, see Fig 4.2. It is straightforward to check that they have
exponentially many minimal separators (the idea is that a separator can be built by
making a choice in each edge between two centers of wheel (drawn as “horizontal”
edges in Figure 4.2), and there are k of them). Moreover, k-turtles are (theta, triangle)-
free (provided that the outer cycle is sufficiently subdivided) and k-ladders are (even
hole, K4)-free.
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Chapter 5

Even-hole-free graphs of bounded
degree

From the construction of layered wheels explained in Chapter 3, we observe that to
obtain a large bound on the tree-width, a layered wheel must contain a large clique
minor. Moreover, the existence of a large clique minor forces the layered wheel to
contain vertices of high degree — this can be observed for instance from the unique
vertex on the layer 0 (i.e. the topmost layer, see again Figure 3.5). These results
suggest the following conjecture.

Conjecture 5.0.1. There is a function f : N → N such that every even-hole-free graph of
degree at most d has tree-width at most f (d).

Outline of the chapter

In Section 5.1, we discuss a special case of Conjecture 5.0.1, that is when d = 3, which
is covered in [Abo+cs]. We present subcubic (even hole, K4)-free graphs, where we
give a structure theorem of the class and prove a constant upper bound on the tree-
width of graphs in the class. In Section 5.2, we present (even hole, K4,)-free graphs
with maximum degree 4 and where pyramids are excluded. As for the subcubic
case, we also give a structure theorem of the graphs in the class and prove that they
have bounded tree-width. In Section 5.3, we give conclusion and discuss some open
problems.

5.1 Subcubic case

In this section, we prove that even-hole-free subcubic graphs can be described by
a structure theorem, that implies tree-width at most 3. In fact, our result is for a
more general class: (theta, prism)-free subcubic graphs. Let us now present the basic
graphs and the separators for the decomposition of graphs in the class.

A wheel that is not a pyramid is a proper wheel. A sector of a wheel (H, x) is a
subpath of H whose endnodes are adjacent to x, and whose internal vertices are not.

An extended prism is a graph made of five vertex-disjoint chordless paths of length
at least one, namely A = a . . . x, A′ = x . . . a′, B = b . . . y, B′ = y . . . b′, C = c . . . c′

such that abc is a triangle, a′b′c′ is a triangle, xy is an edge and no edges exist between
the paths except xy and those of the two triangles (see Figure 5.1).

Recall that a subset (possibly empty) of vertices S ⊆ V(G) is a separator of G if
G \ S contains at least two connected components. A clique separator is a separator S
that is a clique.

A proper separation in a graph G is a triple ({a, b}, X, Y) satisfying the following.
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FIGURE 5.1: Two different drawings of an extended prism

(i) {a, b}, X, Y are disjoint, non-empty and V(G) = {a, b} ∪ X ∪Y.

(ii) There are no edges from X to Y.

(iii) a and b are non-adjacent.

(iv) a and b have exactly two neighbors in X.

(v) a and b have exactly one neighbor in Y.

(vi) There exists a path from a to b with interior in X, and there exists a path from
a to b with interior in Y.

(vii) G[Y ∪ {a, b}] is not a chordless path from a to b.

A proper separator of G is a pair {a, b} ⊆ V(G) such that there exists a proper
separation ({a, b}, X, Y).

Let C be the class of (theta, prism)-free subcubic graphs. The cube is the graph
made of a hole v1v2 . . . v6v1 and two non-adjacent vertices x and y such that NH(x) =
{v1, v3, v5} and NH(y) = {v2, v4, v6}. Call a graph in C basic if it is isomorphic to a
chordless cycle, a clique of size at most 4, the cube, a proper wheel, a pyramid, or an
extended prism. An example of graph in C that is not basic is given in Figure 5.2.
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FIGURE 5.2: An example of non-basic graph in C

We need the following lemma.
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Lemma 5.1.1

Let G be a theta-free subcubic graph, let H be a hole in G, and v ∈ G \ H. Then
v has at most three neighbors in H, and if v has exactly two neighbors in H, then
they are adjacent.

Proof. Let v ∈ G \ H. Since G is subcubic, dH(v) ≤ 3. If v has exactly two
neighbors in H, but they are non-adjacent then G[H ∪ {v}] would induce a theta, a
contradiction.

Recall that a clique separator in a graph is a separator of the graph that induces a
clique. The main theorem of this section is the following.

Theorem 5.1.2

Let G be a (theta, prism)-free subcubic graph. Then one of the following holds:

• G is a basic graph;

• G has a clique separator of size at most 2;

• G has a proper separator.

Proof. Let G be a (theta, prism)-free subcubic graph. We may assume that G has
no clique separator (and is in particular connected for otherwise the empty set is a
clique separator).

Claim 1. We may assume that G is (K4, cube)-free.

Proof of Claim 1. If G contains K4, then since G is a subcubic connected graph, G = K4,
so G is basic. The proof is similar when G contains the cube. This proves Claim 1.

Claim 2. We may assume that G does not contain a proper wheel.

Proof of Claim 2. Let W = (H, x) be a proper wheel in G. Let a, b, c, be the three
neighbors of x. We call A (B, C, resp.) the path of H from b to c (from a to c, from a
to b, resp.) that does not contain a (b, c, resp.). Observe that, since G is subcubic, no
vertex of G \W has a neighbor in {x, a, b, c}.

Suppose that some vertex y of G \W has neighbors in the three sectors of W, say
a′ in A, b′ in B, and c′ in C. Hence, a, c′, b, a′, c, and b′ appear in this order along
H. If ac′ /∈ E(G), then xaBb′, xcBb′, and xbCc′yb′ induce a theta, so ac′ ∈ E(G).
Symmetrically, c′b, ba′, a′c, b′c, and b′a are all in E(G), so H, x, and y induce the
cube, a contradiction to (1). It follows that every vertex has neighbors in at most two
sectors of W.

If G = W, then G is basic, so suppose that G 6= W. If every component of G \W
attaches to a unique sector or a clique, then G contains a proper separator, that is the
ends of some sector. So, we may assume that G \W contains a connected component
L whose neighbors in W intersects at least two sectors of W.

Since L is connected, it contains a path P = u . . . v such that u has neighbors in
a sector of W (say C up to symmetry), and v has neighbors in another sector of W
(say A up to symmetry). Suppose that P is minimal w.r.t. this property. Then either
u = v and by the second paragraph of this proof, u has no neighbor in B; or u 6= v
and, by minimality of P, u has neighbors only in C, v has neighbors only in A, and
the interior of P is anticomplete to W. In each case, we let u′ be the neighbor of u
in C closest to a along C and we let v′ be the neighbor of v in A closest to c along A.
Note that u′ 6= a, b and v′ 6= b, c because a, b, and c have degree 3 in W. Moreover,
because u′ and v′ exist, ab /∈ E(G) and bc /∈ E(G). This implies, ac /∈ E(G) for
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otherwise, (W, x) would form a pyramid and be a non-proper wheel. Now, the three
paths axc, B, and aCu′uPvv′Ac form a theta, a contradiction. This proves Claim 2.

Claim 3. We may assume that G does not contain an extended prism.

Proof of Claim 3. Let W be an extended prism in G, with notation as in the definition.
Suppose that some vertex z of G \W has neighbors in three distinct paths among
A, A′, B, B′, and C, and call Q, R, S these three paths (so {Q, R, S} ⊆ {A, A′, B, B′, C}).
Since G is subcubic, it follows that z has exactly one neighbor in each of Q, R, S, and
these neighbors are in interiors of these paths. It is easy to check that some hole H
of W contains Q and R. By Lemma 5.1.1, z must have three neighbors in H, so H and
z form a proper wheel, a contradiction to (2).

If G = W, then G is basic, so suppose that G 6= W. If every component of G \W is
contained in only V(A), V(A′), V(B), V(B′), or V(C), then G contains a proper sep-
arator, that is the ends the path. So, we may assume that G \W contains a connected
component L whose neighbors in W intersects at least two paths of {A, A′, B, B′, C}.

Since L is connected, it contains a path P = u . . . v such that u has neighbors in a
path Q ∈ {A, A′, B, B′, C} and v has neighbors in another path R ∈ {A, A′, B, B′, C}.
Suppose that P is minimal w.r.t. this property. So by the minimality of P, either
u = v and by the second paragraph of this proof, u = v has no neighbor in
{A, A′, B, B′, C} \ {Q, R}; or u 6= v and u has neighbors only in Q, v has neighbor
only in R and the interior of P is anticomplete to W.

Note that each of NQ(u) and NR(v) is a vertex or an edge, because u and v have
maximum degree 3 in G. For otherwise, suppose that u has two non-adjacent neigh-
bors in Q (resp. in R). Since G is subcubic and Q (resp. R) can be completed to a
hole J of W, by Lemma 5.1.1, u has three pairwise non-adjacent neighbors in J, so G
contains a proper wheel, a contradiction to (2). We may now break into four cases.

Case 1: {Q, R} = {A, A′} or {Q, R} = {B, B′}. Up to symmetry, we suppose Q = A
and R = A′. Then, P can be used to find a path from a to a′ that does not contain x,
and that together with B, B′ and C form a prism, a contradiction.

Case 2: {Q, R} = {A, B} or {Q, R} = {A′, B′}. Up to symmetry, we suppose Q = A
and R = B. If u has two adjacent neighbors in A, then A, A′, C, a subpath of B, and P
form a prism. So, u has exactly one neighbor in A, and symmetrically, v has exactly
one neighbor in B. So, A, B, and P form a theta.

Case 3: {Q, R} = {A, B′} or {Q, R} = {B, A′}. Up to symmetry, we suppose Q = A
and R = B′. If u has two adjacent neighbors in A, then A, A′, C, a subpath of B′,
and P form a prism. So, u has exactly one neighbor in A, and symmetrically, v has
exactly one neighbor in B′. So, A, B′, C, and P form a theta.

Case 4: {Q, R} is one of {A, C}, {A′, C}, {B, C} or {B′, C}. Up to symmetry, we
suppose Q = A and R = C. If v has two adjacent neighbors in C, then C, B, B′, a
subpath of A and P form a prism. So, v has exactly one neighbor in C. So, C, B, A′,
a subpath of A, and P form a theta. This proves Claim 3.

Claim 4. We may assume that G does not contain a pyramid.

Proof of Claim 4. Let W be a pyramid with notation as in the definition (so, abc is
the triangle, and x is the apex). First note that a vertex v ∈ V(G \W) cannot have
neighbors in the three paths P1, P2, and P3, for otherwise there exists a theta from v
to x.

If G = W, then G is basic, so suppose that G 6= W. If every component of G \W
attaches to a unique sector, then G contains a proper separator, that is the ends of
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some sector. We may therefore assume that G \W contains a connected component
L whose neighbors in W intersects at least two paths among P1, P2, and P3.

Since L is connected, it contains a path P = u . . . v such that u has neighbors in
a path Pi (say P1 up to symmetry), and v has neighbors in another path Pj (say P2
up to symmetry). Suppose that P is minimal w.r.t. this property. So by minimality,
either u = v and by the first paragraph of this proof, u = v has no neighbor in P3; or
u 6= v and u has neighbors only in P1, v has neighbor only in P2, and the interior of
P is anticomplete to W.

Note that each of NP1(u) and NP2(v) is a vertex or an edge. If u = v, this is
because G contains no proper wheel by (2). If u 6= v, this is because u and v have
degree at most 3 and we apply Lemma 5.1.1.

If NP1(u) and NP2(v) are both edges, then u 6= v (because G is subcubic), so P1, P2,
and P form a prism. If each of NP1(u) and NP2(v) is a vertex, then P1, P2, and P form a
theta. So, up to symmetry, NP1(u) is a vertex u′, NP2(v) is an edge yz (where x, y, z, b
appear in this order along P2). If u′x is not an edge, then V(P) ∪ V(W) \ V(zP2b)
induces a theta from u′ to x, so u′x is an edge. Hence, W and P form an extended
prism, a contradiction to (3) This proves Claim 4.

Claim 5. We may assume that G does not contain a hole.

Proof of Claim 5. Let W be a hole in G. First note that a vertex v ∈ V(G \W) cannot
have three neighbors in W, for otherwise v and W would form a proper wheel or a
pyramid, contradicting 2 or 4. So, by Lemma 5.1.1, every vertex of G \W has at most
one neighbor in W, or exactly two neighbors in W that are adjacent.

If G = W, then G is basic, so suppose that G 6= W. If for every component of
G \W, its neighborhood is included in some edge of W, then G has a clique separator,
so suppose that for some connected component L of G \W, there exist a, b ∈ V(W)
that are non-adjacent and that both have neighbors in L. Since L is connected, there
exists a path P = u . . . v, such that u is adjacent to a and v is adjacent to b. We suppose
that a, b, u, v and P are chosen subject to the minimality of P. Note that u 6= v since a
vertex in G \W cannot have two non-adjacent neighbors in W.

Suppose that some internal vertex of P has a neighbor x in W. So x must be
adjacent to a, for otherwise a subpath of P from u to a neighbor of x in P contradicts
the minimality of P. Similarly, x is adjacent to b. If a and b have two common
neighbors in W, say x and y (so W = axbya), and x and y both have neighbors in the
interior of P, then the vertices x and y together with a subpath of P contradict the
minimality of P. Hence, x is the unique vertex of W with neighbors in the interior
of P. If u and v each has exactly two adjacent neighbors in W, then W and P form
an extended prism, a contradiction to (3). If exactly one of u or v has exactly two
neighbors in W, then W and a subpath of P form a pyramid, a contradiction to (4).
So, u and v both have a unique neighbor in W. Now, P and W form a proper wheel,
a contradiction to (2).

So, the interior of P is anticomplete to W. Hence, P and W form a theta, a prism
or a pyramid, in every case a contradiction to G ∈ C, or to (4). This proves Claim 5.

Claim 6. We may assume that G does not contain a triangle.

Proof of Claim 6. Let W = abc be a triangle in G. If G = W, then G is basic, so
suppose that L is a connected component of G \W. If |N(L)| ≤ 2, then G has a
clique separator of size at most 2, so suppose that N(L) = {a, b, c}.

Let P = u . . . v be a path in L such that u is adjacent to a, v is adjacent to b, and
suppose P is minimal. If u 6= v, then P, a, and b form a hole, a contradiction to (5),
so u = v. By (1), u is non-adjacent to c. Hence, a path in L from u to a neighbor of c,
together with a, would form a hole, a contradiction to (5). This proves Claim 6.
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FIGURE 5.3: Two chordal graphs with clique number 4

Now, by (5) and (6), G has no cycle. So, G is a tree. It is therefore a complete
graph on at most two vertices (that is basic) or it a has clique separator of size 1.

Let us point out that Theorem 5.1.2 is a full structural description of the class of
subcubic (theta, prism)-free graphs, in the sense that every graph in the class can be
obtained from basic graphs by repeatedly applying some operations: gluing along
a (possibly empty) clique, and an operation called proper gluing that we describe
now.

Consider two graphs G1 and G2. Suppose that G1 contains two non-adjacent
vertices a1 and b1 of degree 3, and such that a path P1 from a1 to b1 with internal
vertices all of degree 2 exists in G1. Suppose that G2 contains two non-adjacent
vertices a2 and b2 of degree 2, and such that a path P2 from a2 to b2 with internal
vertices all of degree 2 exists in G2. Let G be the graph obtained from the disjoint
union of G1 and G2 by removing the internal vertices of P1 and P2, by identifying a1
and a2, and by identifying b1 and b2. We say that G is obtained from G1 and G2 by a
proper gluing.

We omit the details of the proof and just sketch it. We apply Theorem 5.1.2. If
G is basic, there is nothing to prove. If G has a clique separator, it is obtained by
two smaller graphs by gluing along a clique. If G has a proper separation, then it is
obtained from smaller graphs by a proper gluing. The example of non-basic graph
given in Figure 5.2 for instance, can be obtained by properly gluing pyramids, proper
wheels, and extended prisms.

Corollary 5.1.3

Every subcubic (theta, prism)-free graph (and therefore every even-hole-free sub-
cubic graph) has tree-width at most 3.

Proof. The proof is by induction. Let us first prove that all basic graphs have tree-
width at most 3. First observe that contracting an edge with one vertex of degree 2
preserves the tree-width. It follows that all basic graphs, except the cube and the
extended prisms, have tree-width at most the tree-width of K4, that is 3. In Figure 5.3,
we show a chordal graph J with ω(J) = 4 that contains the cube or the smallest
extended prism as a subgraph, showing that here again the tree-width is at most 3.

Now we explain that the two operations namely gluing along a clique and proper
gluing do not increase the tree-width. The fact that gluing along a clique preserves
the tree-width directly follows from Remark 1. The explanation for proper gluing
is similar. If G is a graph obtained by proper gluing two graphs G1 and G2 along
some paths P1 of G1 and P2 of G2, then we can obtain an optimal tree decomposi-
tion of G by combining an optimal tree decomposition of G1 and G2. Indeed, it is
straightforward to see that an optimal tree decomposition T1 containing a path de-
composition of P1 (formed by bags of edges of P1) exists for G1. Similarly, such a tree
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decomposition T2 exists for G2. It is also straightforward to see that we can make
the path decomposition of P1 in T1 and the path decomposition of P2 in T2 to be of
the same length (simply by copying one bag in the shorter path several times until
the lengths are equal). Now, gluing those optimal tree decompositions yields a tree
decomposition T of G, and the width of T is the maximum of the widths of T1 an T2
(we may even delete the bags in the interior of the path and preserves the width).
This shows that proper gluing does not increase the tree-width.

Since all basic graphs have tree-width at most 3, the result trivially follows.

Note also that all graphs in C can be proved to be planar easily by induction. All
basic graphs are planar, and gluing along clique separator of size at most 2 or along
proper separator preserves the planarity of the graph. As example, we present in
Figure 5.4 a planar representation of the graph shown in Figure 5.2.
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FIGURE 5.4: A planar representation of the graph shown in Figure 5.2

5.2 (Even hole, pyramid)-free graphs of maximum degree 4

In this section, we investigate a possible structure theorem describing even-hole-free
graphs with maximum degree at most 4. We call patterns, the graphs that are rep-
resented on Figure 5.5 and Figure 5.8. Say that a graph is basic if it is a complete
graph or a chordless cycle, or it can be obtained from one of the patterns, by replac-
ing dashed lines with paths of length at least two. We believe that an even-hole-free
graph with maximum degree 4 must be either basic or decomposable with a clique
separator or a 2-join that we define below. In the end of this chapter we propose a
conjecture about the decomposition of graphs in this class.

Recall that a 2-join in a graph G is a partition of V(G) into two sets V1, V2 each of
size at least 3, such that for i = 1, 2, Vi contains two non-empty disjoint sets Ai, Bi,
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A1 is complete to A2, B1 is complete to B2, and there are no other edges between V1
and V2. Moreover, for i = 1, 2, Vi does not consist of a path with one end in Ai, one
end in Bi and no internal vertex in Ai ∪ Bi.

We now study the structure of even-hole-free graphs of maximum degree 4 when
pyramids are excluded. Let us denote by C, the class of (even hole, pyramid)-free
graphs with ∆(G) ≤ 4. A basic graph in C is one of the following: a chordless cycle,
a clique of size at most 5, or one of the graphs shown in Figure 5.5 that we refer to
as wheel family. In this section, we will prove that every graph in the class C either is
basic, or has a clique separator, or admits the so-called proper separator for C that we
now define.

For a graph G in the class C, a proper separation for C in G is defined as in the sub-
cubic case explained in Section 5.1, except that the items (iv) and (v) in the definition
are replaced by the following condition:

• a and b have at least one neighbor in X, and in Y.

If ({a, b}, X, Y) is a proper separation for C of G, then {a, b} is called a proper separator
for C. Note that proper separation for C is in particular, a 2-join.

The wheel family is a set of wheels as shown in Figure 5.5. Each graph in the figure
is made of a hole H and a vertex x that has three neighbors in H (so that, V(H)∪ {x}
forms a wheel), together with a component disjoint from the wheel that contains a
single vertex y (for figure (a) to (h)) or a chordless path P that has neighbors in the
wheel (H, x) (for figure (i)). They are called wheel of type a to type-i which correspond
to the names represented on the figures. The hole H is called the rim of the wheel,
and for wheels of type-a to type-h, vertices x and y are called the centers.
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Basic lemmas

Let us describe some lemmas that will be used in proving the structure theorem for
the class of (even hole, pyramid)-free graphs of maximum degree 4. First of all, we
recall the following lemma that appears in [Chu+19] that will be used in our proof.
Let H be a hole in a graph and let u be a vertex not in H. We say that x is major
w.r.t. H if NH(x) is not included in a 3-vertex path of H. The following theorem by
Chudnovsky et al. will be used several times.

Lemma 5.2.1 (see [Chu+19])

Let G be a (square, prism, pyramid, theta, even wheel)-free graph, H a
hole in G, and x a major vertex w.r.t. H. If Q is a connected compo-
nent of G \ N[x], then there exists an x-sector S = x′ . . . x′′ of H such that
N(Q) ⊆ {x′, x′′} ∪ (N(x) \V(H)).

Lemma 5.2.2

Let G ∈ C, H be a hole in G, and v be a vertex in G \ H. Then v has at most three
neighbors in H. Moreover, the following holds:

(i) If v has two neighbors, then its neighbors induce an edge.

(ii) If v has three neighbors, then V(H) ∪ {v} induces a wheel of type-a or
type-b.

Proof. Since G contains no even wheel, v has at most three neighbors in H. If v
has exactly two neighbors in H but they are non-adjacent, then V(H) ∪ {v} induces
a theta, a contradiction. If v has three neighbors, then V(H) ∪ {v} induces a proper
wheel (i.e. type-a or type-b), because G contains no pyramid.

Lemma 5.2.3

Let G ∈ C, H be a hole in G, and P = u . . . v be a path of length at least one
in G \ H, such that both u and v have neighbors in H, and NH(u) ∩ NH(v) = ∅.
If P∗ is anticomplete to H, then NH(P) induces a clique.

Proof. Suppose that P = u . . . v is a path in G \ H that satisfies the premise of the
lemma. Suppose that NH(P) does not induce a clique.

Suppose that u has one neighbor in H, say u′. If v has one (resp. two neighbors),
then V(H) ∪ {u, v} induces a theta (resp. a pyramid). If v has three neighbors, then
G[H ∪ P] contains a theta from u′ to v.

Now suppose that u has two neighbors in H, say u′ and u′′. Note that u′u′′ ∈
E(G), because G is theta-free. By the symmetric case of the previous paragraph, v
has two or three neighbors in H. If v has two neighbors, then V(H) ∪V(P) induces
a prism (when NH(u) ∩ NH(v) = ∅) or an even wheel (when NH(u) ∩ NH(v) 6= ∅).
If v has three neighbors, then V(H) ∪ {v} induces a wheel, and NH(u) is contained
in a long sector of the wheel (H, v), so G[H ∪ P] contains a 3PC(uu′u′′, v).

So by symmetry, u and v have three neighbors in H. We may assume that all
neighbors of v are in a unique u-sector of H. Indeed, if u is not major, this is obvi-
ous, and if u is major, this follows from Lemma 5.2.1 (applied to the component of
G \ N[v] that contains v). Hence, either G[W ∪ P] contains a theta from u to v (when
uv /∈ E(G)) or an even wheel (when uv ∈ E(G)).



112 Chapter 5. Even-hole-free graphs of bounded degree

Lemma 5.2.4

Let G ∈ C, W = (H, x) be a wheel of type-b in G, and v be a vertex in G \W be
such that NW(v) 6= ∅. Then one of the following holds:

(i) NW(v) induces a clique.

(ii) vx /∈ E(G) and NW(v) ⊆ S for some sector S of W.

(iii) vx ∈ E(G) and W ∪ {v} induces either a wheel of type-f, type-g, or type-h.

Proof. Let W = (H, x) be a wheel of type-b in G. Let a, b, c be the three neighbors
of x, appearing in this order along H. We call A (resp. B, C) the path of H from b to c
(resp. from a to c, from a to b) that does not contain a (resp. b, c). Let v be a vertex in
G \W. Suppose that NW(v) does not induce a clique.

If v has neighbors in the interior of three sectors of W, say a′ in A, b′ in B, and
c′ in C, then a, c′, b, a′, c, and b′ appear in this order along H. If ac′ /∈ E(G), then
xaBb′, xcBb′, and xbCc′vb′ induce a theta (when vx /∈ E(G)), or xaBb′, xcBb′, and
xvb′ induce a theta (when vx ∈ E(G)). So ac′ ∈ E(G). Symmetrically, c′b ∈ E(G),
so {x, a, c′, b} induces a square, a contradiction. So up to symmetry, we may assume
that v has no neighbor in the interior of A.

Suppose that v has no neighbor in the interior of B and in the interior of C. If
v is adjacent to a, b, and c, then then V(H) ∪ {x, v} induces wheel of type-h. If v
is adjacent to only two vertices among {a, b, c}, then V(H) ∪ {v} induces a theta, a
contradiction. If v is adjacent to only a, b, or c, then NW(v) induces a clique. So, we
may assume that v has neighbors in the interior of C.

If v is not adjacent to x, then by Lemma 5.2.1, the neighborhood of v in H is
contained in two vertices among {a, b, c}, and since V(H) ∪ {v} cannot induce a
theta, v is adjacent only to a, b, or c. Hence, NW(v) induces a clique.

So we may assume that v is adjacent to x. Recall that v has neighbor in the inte-
rior of C. Note that v cannot have three neighbors in C, because G contains no even
wheel, and it also cannot have only one neighbor, because G contains no theta. So
v has two neighbors in C, and in particular, V(C) ∪ {x, v} induces a wheel. Sup-
pose that it induces a wheel of type-a. If v has no neighbor in the interior of B, then
V(H) ∪ {x, v} induces a wheel of type-g. Otherwise, v has one neighbor in the in-
terior of B, and consequently, NW(v) = {x, a, b′, c′}, where b′ and c′ are respectively
the neighbor of a in B and C, hence V(H) ∪ {x, v} induces a wheel of type-f.

The proof of the structure theorem

We now ready to prove our main theorem in this section. Let us give an overview of
the proof. We consider a graph G that is in the class C. Recall that the basic graphs
are the followings: chordless cycles, cliques of size at most 5, or one of the graphs
in the wheel family (see Figure 5.5). At each step of the proof, we repeatedly pick a
basic graph H, and we prove that if G contains H, then either G is equal to H itself,
or G has a clique separator or a proper separator for C. Afterwards, we may assume
that G does not contain H. We finish the proof when all basic graphs are considered.

Theorem 5.2.5

Let G be an (even hole, pyramid)-free graph with ∆(G) ≤ 4. Then one of the
following holds:

• G is a basic graph;
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• G has a clique separator of size at most 3;

• G has a proper separator for C.

Proof. Let G be an (even hole, pyramid)-free graph with ∆(G) ≤ 4. We may
assume that G is connected, for otherwise the empty set is a clique separator. More-
over, we may assume that G is K5-free (because in K5, all vertices are of degree 4,
and so if G contains K5, G must be K5 and thus is basic).

Claim 1. We may assume that G does not contain a wheel of type-c and a wheel of
type-d.

Proof of Claim 1. Let W = (H, {x, y}) be a wheel of type-c or a wheel of type-d in G,
and S be the long sector of W. If G = W, then G is a basic graph. So, suppose that
G \W 6= ∅. Since all vertices that are not in S are of degree 4, a component of G \W
can only attach to S. So, the ends of S form a proper separator for C. This proves
Claim 1.

Claim 2. We may assume that G does not contain a wheel of type-e.

Proof of Claim 2. Let W = (H, {x, y}) be a wheel of type-e in G, with notation as in
Figure 5.5. We denote by S = x′Hy′, the long sector of W. We first study how a
vertex in G \W attaches to W. Let v be a vertex of G \W that has neighbors in W.
Note that v can only have neighbors in S ∪ {x, y}, because the other vertices of W
have degree 4. We show that v attaches to either a clique of size at most 2 of W or
only to the sector S.

Suppose that NW(v) 6⊆ V(S). So v is adjacent to x or y. Note that v cannot
be adjacent to both x and y, because G does not contain a square. Hence, without
loss of generality, we may assume that v is adjacent to x and not adjacent to y. Set
H′ = xx′Sy′y′′x. If v has exactly one neighbor in S, then by Lemma 5.2.2, the neigh-
bor of x in S is x′, so NW(x) induces a clique. So we may assume that V(H′) ∪ {v}
induces a wheel. If (H′, v) is a wheel of type-a, then NW(v) = {x, x′, x′′′}, where x′′′

is the neighbor of x′ in S. Note that xvx′′′Sy′yx′′x is a hole, and x′ has four neigh-
bors in the hole (namely, x, v, x′′′, and x′′), inducing an even wheel, a contradiction.
Hence, (H′, v) is a wheel of type-b. Let v′ and v′′ be the neighbor of v in S, note that
v′v′′ /∈ E(G). Hence, v has two neighbors in H that are non-adjacent, contradicting
Lemma 5.2.2.

Now, if G = W, then G is basic, so suppose that G 6= W. We may furthermore
assume that for every connected component Q of G \W, NW(Q) does not induce a
clique, for otherwise G has a clique separator. If every component of G \W attaches
to a unique sector, then G contains a proper separator for C, that is the ends of some
sector. We may therefore assume that G \W contains a connected component Q
whose neighborhood in W contains x or y. Since Q is connected, it contains a path
P = u . . . v such that both u and v have neighbors in W, where the union of their
neighbors is not a clique, and u is adjacent to x or y. Suppose that P is minimal w.r.t.
this property. By the second paragraph of this proof, u 6= v.

So, without loss of generality, we may assume that NW(u) ⊆ {x, x′}, and v
has some neighbor in (S \ x′) ∪ y. Suppose that P∗ is anticomplete to W. If v has
some neighbor in S \ x′, then the attachment of P in the hole xx′Sy′′x contradicts
Lemma 5.2.3. So, NW(v) = {y}. In this case, if u is adjacent to x′, then the at-
tachment of P in the hole yy′Sx′x′′y contradicts Lemma 5.2.3. So, NW(u) = {x}.
Consequently, the hole x′x′′yy′Sx′, P and x form a 3PC(xx′x′′, y), a contradiction.

Therefore, some internal vertex of P has neighbors in W. By the minimality of P,
NW(P∗) = {x′}. Hence, there exists only one vertex in P∗ that has neighbor in W,
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because dW(x′) = 3. Let us call w, such an internal vertex. By Lemma 5.2.3, the
neighborhood of the paths uPw on H, wPv on H, and wPv on the hole yx′′x′Sy′y
must induce a clique. Hence, we know that NW(u) = {x}, NW(w) = {x′}, and
NW(v) = {x′′′}, where x′′′ is the neighbor of x′ in S. Note that xuPvx′′′Sy′yx′′x is a
hole, and x′ has four neighbors in the hole (namely, x, w, x′′′, and x′′), forming an
even wheel. This proves Claim 2.

Claim 3. We may assume that G does not contain a wheel of type-f and type-h.

Proof of Claim 3. Let W = (H, {x, y}) be a wheel of type-f in G (we keep the notation
as in Figure 5.5). Note that x is a major vertex w.r.t. H, and N(x) \ V(H) = {y}.
Now, if G = W, then G is basic, so let Q be a component of G \W. By Lemma 5.2.1,
there exists an x-sector S = x′ . . . x′′ such that NW(Q) ⊆ {x′, x′′} ∪ {y}. Since y has
degree 4 in W, then NW(Q) ⊆ {x′, x′′}, so {x′, x′′} is a proper separator for C.

The proof for type-h is similar. This proves Claim 3.

Claim 4. We may assume that G does not contain a wheel of type-g.

Proof of Claim 4. Let W = (H, {x, y}) be a wheel of type-g in G, with notation as
in Figure 5.5. We denote by A = bHc, B = aHc, and C = aHb, the three sectors
of (H, x). If G = W, then G is basic, so let Q be a connected component of G \W.
If NW(Q) does not contain y, then Lemma 5.2.1 implies NW(Q) ⊆ A, NW(Q) ⊆ B,
or NW(Q) ⊆ C, implying that G has a proper separator for C. So suppose that NQ
contains y.

If NQ contains some vertex of C, then again Lemma 5.2.1 implies NW(Q) ⊆ C.
Otherwise, since G is connected, there exists a path P = u . . . v in Q such that u is
adjacent to y and v has neighbors in A∪ B. Let u and v be chosen subject to the min-
imality of P. So, the interior of P is anticomplete to W, and possibly u = v. If v has
one neighbor (say v′), then H, P, and y form a 3PC(ac′y, v′); if v has two neighbors
(say v′ and v′′), then v′v′′ ∈ E(G), thus H, P, and y form a 3PC(ac′y, vv′v′′); and if v
has three neighbors, then the graph induced by H, P, and y contains a 3PC(ac′y, v),
a contradiction. This proves Claim 4.

Claim 5. We may assume that G does not contain a wheel of type-a.

Proof of Claim 5. Let W = (H, x) be a wheel of type-a in G, and NH(x) = {a, b, c}
be such that ab, bc ∈ E(G). Denote by S = aHc, the long sector of W, and set
H′ = xaScx. Note that W can be seen as a wheel of form (H′, b), which is a wheel
of type-a. We study how a vertex in G \W attaches to W. Let v be a vertex in G \W
that has neighbor in W. We show that either v attaches to a clique of W, or the
neighbors of v in W are contained in S. We suppose that the latter does not hold, i.e.
NW(v) 6⊆ V(S). Hence, v is adjacent to x or b.

Suppose first that v is adjacent to both x and b. If v has at most one neighbor in S,
then it follows from Lemma 5.2.2, that NW(v) ⊆ {x, b, a} or NW(v) ⊆ {x, b, c}, which
yields that NW(v) induces a clique. So, we may assume that v has two neighbors
in S, hence it has three neighbors in H; so V(H) ∪ {v} induces a wheel. If (H, v)
is a wheel of type-a, then V(W) ∪ {v} induces either a wheel of type-c or type-d, a
contradiction to Claim 1. Otherwise, (H, v) is a wheel of type-b, so W ∪ {v} induces
wheel of type-f, a contradiction to Claim 3.

So, v is adjacent only to x or only to b, and by the symmetry of (H, x) and (H′, b),
we may assume that v is adjacent to x, and not adjacent to b. Note that v has at
most two neighbors in S, for otherwise (H′, v) is an even wheel. If v has at most
one neighbor in S, then by Lemma 5.2.2, NW(v) ⊆ {x, a} or NW(v) ⊆ {x, c}, which
yields that NW(v) induces a clique. So, v has two neighbors in S, yielding V(H′) ∪
{v} induces a wheel. In this case, by Lemma 5.2.2 applied to the hole H, the two
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neighbors of v in S are adjacent. So, (H, v) is a wheel of type-a; and in particular,
NW(v) = {x, a, a′}, where a′ is the neighbor of a in S. Hence, W ∪ {v} induces a
wheel of type-e (with rim H′ and centers b and v). Hence, our claim that a vertex of
G \W always attaches to a clique of W or is included in the long sector of W holds.

Now, if G = W, then G is basic, so suppose that G 6= W. We may assume that
for every connected component Q of G \W, NW(Q) does not induce a clique, for
otherwise G has a clique separator. If for every connected component of G \W is
included in S, then {a, c} is a proper separator for Cof G. We may therefore assume
that G \W contains a connected component Q whose neighborhood in W contains x
or b. Since Q is connected, it contains a path P = u . . . v such that both u and v have
neighbors in W, where the union of their neighbors is not a clique, and u is adjacent
to x or b. Suppose that P is minimal w.r.t. this property. By what we proved in the
previous paragraph, u 6= v.

Suppose that u is adjacent to both x and b. So, NW(u) ⊆ {x, a, b} or NW(u) ⊆
{x, b, c}, and NW(P \ u) ⊆ S. In particular, NW(u)∩ NW(v) = ∅ (because b and c are
of degree 3 in W). If P∗ is anticomplete to W, then by Lemma 5.2.3, NH(P) induces a
clique, which implies that NW(u) = {x, b}, and NW(v) = {a} or NW(v) = {c}. This
yields a contradiction to the assumption that NW(P) does not induce a clique.

So, some internal vertex of P has neighbors in W; and by the minimality of P,
NW(P∗) = {a} or NW(P∗) = {c}. Hence, there exists only one internal vertex of P
that has neighbor in W. Let w be such internal vertex, and up to symmetry assume
that w is adjacent to c. By Lemma 5.2.3, the neighborhood of the paths uPw and wPv
respectively on H also on H′ induces a clique. Hence, NW(u) = {x, b} and NW(v) =
{c′}, where c′ is the neighbor of c in H \ b. Consequently, V(W) ∪ V(P) induces
a wheel of type-f (with rim buPvc′Sab and centered at x and c), a contradiction to
Claim 3. So u is adjacent only to x or only to b.

Up to symmetry, we may therefore assume that u is adjacent to x and not adjacent
to b. Suppose that v is not adjacent to b. So, NW(u) ⊆ {x, a} or NW(u) ⊆ {x, c}, and
NW(v) ⊆ S. In particular, NW(u)∩NW(v) = ∅ (because a and c are of degree 3 in W).
Suppose up to symmetry, that NW(u) ⊆ {x, a}. Suppose that P∗ is anticomplete to H.
By Lemma 5.2.3, NH(P) induces a clique. Since NW(P) does not induce a clique, we
know that NH(v) 6⊆ {a}, i.e. v has some neighbor in S \ {a}. But then the attachment
of P on H′ contradicts Lemma 5.2.3.

Hence, some internal vertex of P has a neighbor in W. In this case, by the min-
imality of P, NW(P∗) ⊆ {a, b} or NW(P∗) ⊆ {b, c}. So there exists a unique vertex
w in P that has a neighbor in W (because b has degree 3 in W). By the symmetry
of a and c, we may assume that NW(P∗) ⊆ {a, b}. Note that w cannot be adja-
cent to both a and b, for otherwise, NW(u) ∪ NW(v) = {x}, which is not possible
because x already has degree 3 in W. If NW(w) = {b}, then NW(v) = {c} be-
cause NH(wPv) induces a clique by Lemma 5.2.3. Since NW(P) does not induce a
clique, NW(u) = {x, a}. But then, then attachment of the path P on H′ contradicts
Lemma 5.2.3. So, NW(w) = {a}. By Lemma 5.2.3, the paths uPw and wPv respec-
tively attach on a clique of the hole H and H′. Hence, NW(u) = {x} and NW(v) = a′,
where a′ is the neighbor of a in H \ a. Consequently, V(W) ∪V(P) induces wheel of
type-g (with rim xuPva′Scx and centers a and b), a contradiction to Claim 4.

So, v is adjacent to b. Hence, by what we proved in the beginning, NW(u) induces
a clique and NW(v) induces a clique. Up to symmetry, we may assume that {x} ⊆
NW(u) ⊆ {x, a} and {b} ⊆ NW(v) ⊆ {b, c}. Suppose that P∗ is anticomplete to W.
If a /∈ NW(u) or c /∈ NW(v), then NW(P) induces a clique, a contradiction to the
assumption. Otherwise, both a ∈ NW(u) and c ∈ NW(v), and the attachment of P
in H contradicts Lemma 5.2.3.
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Hence, some internal vertex of P has a neighbor in W. Note that in this case,
NW(P∗) = {a} or NW(P∗) = {c}. So, there is only one internal vertex of P that has
a neighbor in W. Let w ∈ P∗ be that vertex, and up to symmetry, assume that w
is adjacent to a. By Lemma 5.2.3, the neighborhood of the path uPw on the hole H′

and the neighborhood of the path wPv on H respectively induces a clique. Hence,
NW(u) = {x}, NW(w) = {a}, and NW(v) = {b}, so the definition of P is contra-
dicted (i.e. NW(P) induces a clique). This proves Claim 5.

Claim 6. We may assume that G does not contain a wheel of type-i.

Proof of Claim 6. As shown in Figure 5.5, a wheel of type-i is made of a wheel of type-
b, say (H, x), with an additional path p . . . q that attaches to the wheel, in the way
as shown in the figure. In Figure 5.6, we present two isomorphic drawings of the
wheel. We denote: A = b . . . c, B = p′ . . . c, C = c′ . . . b, L1 = p . . . z, and L2 = c′ . . . z.
Set H′ = xpL1zL2qc′Cbx.
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FIGURE 5.6: Two isomorphic drawings of wheel of type-i (with rim
H and center at x; and with rim H′ and center at a)

Now if G = W, then G is basic, so let Q be a connected component of G \W. Note
that x is a major vertex w.r.t. H, and a is a major vertex w.r.t. H′. Suppose that NW(Q)
does not induce a clique. If NW(Q) contains some vertex of A, then Q′ = Q ∪ A is a
component of G \N[x]. Hence, Lemma 5.2.1 implies that N(Q′) ⊆ {b, c, p}. Suppose
that N(Q′) contains p, which means that NW(Q) contains p. Since Q is connected,
there exists a path P = u . . . v in Q such that u is adjacent to p and v has some
neighbor v′ in A. Hence, the graph containing Q, p and v′ is a connected component
of G \ N[a] (recall that a is a major vertex w.r.t. H′), thus contradicting Lemma 5.2.1.
Hence, NW(Q′) does not contain p, so NW(Q) ⊆ A.

Similarly, we can prove that NW(Q) ⊆ B when NW(Q) contains some vertex
of B. Also, by the isomorphism of the two wheels presented in Figure 5.6, we have
a similar consequence when NW(Q) contains some vertex of L1 or L2. The remain-
ing case is therefore when NW(Q) contains only vertices of C, which implies that
NW(Q) ⊆ C.

Hence, the neighborhood of Q in W is contained in either A, B, C, L1, or L2, which
respectively yields that either {b, c}, {p′, c}, This proves Claim 6.

Claim 7. We may assume that G does not contain a wheel of type-b.

Proof of Claim 7. Let W = (H, x) be a wheel of type-b in G. Let a, b, c, be the three
neighbors of x, appearing in this order along H (see Figure 5.5). We call A (resp. B,
C) the path of H from b to c (resp. from a to c, from a to b) that does not contain a
(resp. b, c). By Lemma 5.2.4, Claim 3, and Claim 4, for any vertex v in G \W that has
neighbors in W, either NW(v) induces a clique or NW(v) are included in a unique
sector of W (particularly when v is not adjacent to x).

Now, if G = W, then G is basic, so suppose that G 6= W. We may furthermore
assume that for every connected component Q of G \W, NW(Q) does not induce a
clique, for otherwise G has a clique separator. If every component of G \W attaches
to a unique sector of W, then G contains a proper separator for C, that is the ends of
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some sector. We may therefore assume that G \W contains a connected component
Q whose neighborhood in W contains x or NW(Q) intersects at least two sectors
of W.

First suppose that NW(Q) contains x. Since Q is connected, there exists a path
P = u . . . v in Q such that u is adjacent to x, and v is adjacent to some vertex of H,
and NW(P) does not induce a clique. By the first paragraph of this proof, we know
that NW(u) induces a clique, and NW(v) is contained in a sector of W. This implies
NW(u) ∩ NW(v) = ∅, because the only vertex in W that can be a common neighbor
of u and v is a, b, or c, but they all have degree 3 in W (so each of them can only
have at most one more neighbor in G \W). Let P be chosen such that its length is
minimal. By Lemma 5.2.3, we know that some internal vertex of P has neighbors
in H. Also by the minimality of P, we know that NW(P∗) = {a}, or NW(P∗) = {b},
or NW(P∗) = {c}. Hence, there exists only one vertex in P∗ that has a neighbor
in H. Let w be the vertex, and up to symmetry, assume that NW(w) = {a}. By
Lemma 5.2.3, we know that NW(uPw) and NW(wPv) respectively induces a clique.
So, NW(u) = {x} and NW(v) = {c′}, where c′ is a neighbor of a in H. This means
that V(W) ∪V(P) induces a wheel of type-i, a contradiction to Claim 6.

So NW(Q) does not contain x. It then follows from Lemma 5.2.1, that NW(Q) is
contained in a sector of W. This proves Claim 7.

Note that now we may assume that G does not contain a theta, a prism, a pyra-
mid, or a wheel, so G is the so-called universally signable graph that was discussed
in Subsection 1.2.4 of Chapter 1. Hence, by using the characterization of universally
signable graphs (cf. Theorem 1.2.6), we may assume that G is either a hole or a clique
on 5 vertices (because otherwise, G has a clique separator and the theorem holds).
In the following, we give more rigorous proof of this characterization of graphs.

Claim 8. We may assume that G does not contain a hole.
Proof of Claim 8. Let W be a hole in G. First note that a vertex v ∈ V(G \W) cannot
have three neighbors in W, for otherwise v and W would form a wheel of type-b or a
pyramid. So, by Lemma 5.2.2, every vertex of G \W has at most one neighbor in W,
or exactly two neighbors in W that are adjacent.

If G = W, then G is basic, so suppose that Q is a component of G \W. If NW(Q)
is included in some edge of W, then G has a clique separator, so suppose that there
exist a, b ∈ V(W) that are non-adjacent and that both have neighbors in Q. Since Q is
connected, there exists a path P = u . . . v, such that u is adjacent to a and v is adjacent
to b. We suppose that a, b, u, v and P are chosen subject to the minimality of P. Note
that u 6= v since a vertex in G \W cannot have two non-adjacent neighbors in W.

If some internal vertex of P has a neighbor x in W, then x must be a common
neighbor of a and b, for otherwise a subpath of P contradicts the minimality of P. If
a and b have two common neighbors in H, say x and y (so W = axbya), and x and
y both have neighbors in the interior of P, then the vertices x and y together with
a subpath of P contradict the minimality of P. Hence, x is the unique vertex of W
with neighbors in P∗. If u has exactly two adjacent neighbors in W, then W and a
subpath of P form a pyramid. So, u has a unique neighbor in W, and symmetrically,
so does v. Now, P and H form a wheel of type-b, a contradiction to (7).

So, P∗ is anticomplete to W. Hence, P and W form a theta, a prism, or a pyramid,
in every case a contradiction to G ∈ C. This proves Claim 8.
Claim 9. We may assume that G does not contain a K4.
Proof of Claim 9. Let W = abcd be a K4 in G. If G = W, then G is basic, so suppose
that Q is a component of G \W. If |NW(Q)| ≤ 3, then G has a clique separator of
size at most 3, so suppose that NW(Q) = {a, b, c, d}.
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Let P = u . . . v be a path in Q such that u is adjacent to a, v is adjacent to b, and
suppose P is minimal. If u 6= v, then P, a, and b form a hole, a contradiction to (8),
so u = v. Since G is K5-free, u is non-adjacent either to c or d. Up to symmetry, we
may assume that uc /∈ E(G). Hence, a path in C from u to a neighbor of c, together
with a, would form a hole, a contradiction to (8). This proves Claim 9.

Claim 10. We may assume that G does not contain a triangle.

Proof of Claim 10. Let W = abc be a triangle in G. If G = W, then G is basic, so
suppose that Q is a component of G \W. If |NW(Q)| ≤ 2, then G has a clique
separator of size at most 2, so suppose that NW(Q) = {a, b, c}.

Let P = u . . . v be a path in Q such that u is adjacent to a, v is adjacent to b,
and suppose P is minimal. If u 6= v, then P, a, and b form a hole, a contradiction
to (8), so u = v. By Claim 9, u is non-adjacent to c. Hence, a path in Q from u to a
neighbor of c, together with a and c, would form a hole, a contradiction to Claim 8.
This proves Claim 10.

Now, by Claim 8 and Claim 10, G has no cycle. So, G is a tree. It is therefore a
complete graph on at most two vertices (that is basic) or it a has clique separator of
size 1.

Note that Theorem 5.2.5 implies that (even hole, pyramid)-free graphs of maxi-
mum degree 4 that contains no pyramid have tree-width bounded by some constant.
In [Abo+cs], the following theorem is given.

Theorem 5.2.6 ([Abo+cs])

There exists some constant c, such that every (even hole, pyramid)-free graph of
maximum degree 4 has tree-width less than c.

We remark that Theorem 5.2.6 is stated differently in the paper (see Theo-
rem of [Abo+cs]). The proof relies on the fact that even-hole-free graphs with no
clique minor of size n have tree-width bounded in terms of some function that de-
pends on n, and moreover, it is proved in the paper that (even hole, pyramid)-free
graphs with maximum degree 4 contain no K6-minor. The constant c here depends
on the function used in the proof of the minor-freeness of subcubic even-hole-free
graphs (Theorem 1.1 of [Abo+cs]), which is computable, and it relies heavily on the
result obtained by Fomin, Golovach, and Thilikos (see Corollary 3.3 of [Abo+cs]).

Nevertheless, we can compute the exact tree-width of graphs in the class, in a
similar way as for the subcubic case that we discuss in Section 5.1.

Corollary 5.2.7

Every (even hole, pyramid)-free graph of maximum degree 4 has tree-width at
most 4.

Proof. Note that the two operations gluing along a clique and proper gluing do
not increase the tree-width. It is then enough to show that every basic graph in the
class has tree-width at most 4. This would complete the proof.

This property is trivially satisfied when the basic graph is either a chordless cy-
cles or cliques of size at most 5. We now check that every graph in the wheel family
shown in Figure 5.5 satisfies this property. Recall that contracting an edge with one
vertex of degree 2 preserves the tree-width. So, we need to show that for every
wheel W of a certain type in the wheel family (see Figure 5.5), and W ′ be the graph
obtained by contracting all edges whose an end is of degree 2 in W, there exist a
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chordal graph of clique number at most 5 that contains W ′. In Figure 5.7, we pro-
vide a list of chordal graphs of clique number 5. The graph shown in Figure 5.7 is
a chordal graph that contains W ′ as a subgraph (the naming of each figure corre-
sponds to the type of the corresponding wheel from which W ′ is obtained). To check
that the given graphs on Figure 5.7 are chordal, we make use of a characterization of
chordal graphs, namely: every chordal graph admits a “perfect elimination order-
ing”. In the following, we give a perfect elimination ordering for every “contracted”
wheel.

• Type a or type b (a, b, c, x)

• Type c or type-h: (a, b, c, x, y)

• Type d or type e: (y′′, x′′, x′, x, y, y′)

• Type g or type-i: (c, c′, a, y, a, b)

• Type f: (x, a′, c, y, a, b, c′)

(a) (b)

x y

(c)

x x

a

b

c

a

a

b

c

c

b

x y

x′′ y′′

y′x′

(i)(h)

xx y

a
a

b

b

c

c

c′

x y

x′

x′′ y′′

y′

(g)

x

y
a

b

c

c′
z

x

y

b

a c

a′c′

(f)(e)(d)

FIGURE 5.7: Chordal graphs containing the contraction of the wheel
family

5.3 Discussion

The structure of even-hole-free graphs of maximum degree 4 when pyramids are
allowed is more complex. We now present an approach to obtain a structure theorem
for even-hole-free graphs of maximum degree 4 when pyramids are allowed. From
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our initial study, we find that there are many possibilities of “basic graphs” when
pyramids are allowed. In order to describe the structure in a more convenient way,
we need to introduce some definition.

Strip system

A graph G is an (X, X′, Y)-strip if:

(i) V(G) = Y ∪ X ∪ X′.

(ii) Y, X, and X′ are disjoint.

(iii) X and X′ are non-empty (possibly Y is empty).

(iv) For every vertex v of Y, v is in some chordless path with one end is in X, and
the other end is in X′, and no interior vertex is in X ∪X′ (such a chordless path
is called an XX′-rung).

(v) Every vertex of X (resp. X′) is contained in a chordless path of G, where one
end is in X, the other is in X′, and no interior vertex is in X ∪ X′ (possibly, this
path is an edge).

An s-graph is a triple S = (V, E, F) such that (V, E ∪ F) is a graph and E ∩ F = ∅.
We say that E is the set of non-subdivisible edges and F is the set of subdivisible edges
of S. The graph (V, E ∪ F) is the underlying graph of S and we denote it by GS. Any
graph obtained from GS by subdividing edges from F is a realization of S. A path in
the realization that is obtained by subdividing a subdivisible edge of S is also called
a rung. A strip system obtained from S is any graph Π with the following properties.

• For each vertex v ∈ V(S), there is a non-empty set Xv ⊆ V(Π) (we call it the
blob of v).

• For each edge e ∈ F(S), there is a (possibly empty) set Ye ⊆ V(Π).

• The sets Xv with v ∈ V(S) and Ye with e ∈ E(S) are disjoint, and
V(Π) =

⋃
v∈V(S) Xv ∪

⋃
e∈F(S) Ye.

• For every non-subdivisible edge uv ∈ E(S), Xu is complete to Xv.

• For every subdivisible edge uv ∈ F(S), Π[Xu ∪ Xv ∪ Yuv] is an (Xu, Xv, Yuv)-
strip.

• For every u ∈ V(S), and v ∈ V(S) such that uv /∈ E(S) ∪ F(S), Xu is anticom-
plete to Xv.

• For every v ∈ V(S), and e ∈ F(S) such that v /∈ e, Xv is anticomplete to Ye.

• For every distinct e, f ∈ F(S), Ye is anticomplete to Yf .

We remark that any realization of an s-graph S can be viewed as a strip system
(where every blob is of size 1). Let Π be a strip system that is obtained from S, and
G be a graph that is obtained from Π by the following operations:

• pick one vertex v from every blob X of Π;

• for every vertices u and v taken from some blobs X and X′, if X is complete to
X′, then uv ∈ E(G); otherwise if X ∪ X′ is in some (X, X′, Y)-strip, we pick an
XX′-rung Ruv with end-vertices u and v from the strip and include it to G.
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Then G is a subgraph of Π induced by the union of the sets
{u : Xu is a blob of Π} and {Ruv : (Xu, Xv, Yuv) is a strip of Π}. Moreover, G is
a realization of S. We say that G is extracted from S.

Note that for every strip system Π that is obtained from S, there exists a graph J
that is extracted from Π and is a realization of S. In particular, for every rung R (resp.
for every strong triangle T) of Π, there exists such a graph J such that V(R) ⊆ V(J)
(resp. V(T) ⊆ V(J)).

A pattern is a realization of one of the s-graphs. In Figure 5.5, we give a list
of some possible patterns for even-hole-free graphs with maximum degree 4 when
the graph contains a pyramid. Other patterns can be obtained from a pattern in
Figure 5.8 by contracting dashed edges. Observe that for every pattern, every vertex
in the pattern belongs to some pyramid that is contained in the pattern.
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FIGURE 5.8: Some patterns that contain pyramid, dashed edges rep-
resent paths of length at least two

However, we are not sure that our list of patterns is complete for our class, but
we believe that the real list is close to it and, above all, is finite. This should imply
that the tree-width is bounded. We conjecture that every even-hole-free graph of
maximum degree 4 is either a strip system obtained from a realization of one of
the patterns listed on Figure 5.8, or it has either a clique separator or a “variant of”
proper separator. We have made a trial to prove the conjecture, and we suspect that
the length of the proof is about 20 pages long. The proof is done by the case by case
analysis as what we did for the pyramid-free case. It is still in progress, and we do
not include it in this thesis, .

Furthermore, we wonder whether a similar approach can be extended to even-
hole-free graphs of maximum degree d for any fixed integer d. Observe that for
d = 3, this is what we actually do in Theorem 5.1.2, since the list of basic graphs
can be seen as obtained by a finite list of patterns and proper separator is a special
case of 2-join. For d ≥ 5, rings (already defined in Chapter 2) become a problem,
but an extension of the notion of 2-join might lead to a true statement. We suspect a
structure theorem of the following fashion might be true.

Conjecture 5.3.1. Let G be a (theta, prism, even wheel, square)-free graph with maximum
degree d, then one of the following holds.

(i) G is a clique on at most d vertices;
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(ii) G is a strip system obtained from some s-graph;

(iii) G has a clique separator.

However, from our study of the maximum degree 3 and 4, we observe that the
number of cases to be checked in the case analysis increase as the maximum degree d
increases. Hence we suspect that in order to prove Conjecture 5.3.1 for any possible
value of d might be difficult to be done by hand, and a computer program that can
check every possible case (in a reasonable time) as what we did in the proofs of
maximum degree 3 and 4, would be very useful. We need a computer program with
the following specification: given any graph as an input, it can check whether the
graph contains any of the forbidden configurations (i.e. theta, prism, even wheel,
square). Starting from a hole, we check what kind of attachments (attaching a vertex
or a path with internal vertices are all of degree 2) yield a strip system. If by attaching
a vertex or a path, we obtain a graph that is in the class, but it has no clique separator
and it does not belong to any of the existing strip systems, then we define a new
strip system for such a graph. This way, we obtain a list of strip systems for which
the conjecture above holds, or possibly, so many patterns are discovered that they
suggest an infinite list of patterns, hence disproving the conjecture.
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Chapter 6

Conclusion and open problems

In this last chapter, we review what we have discussed throughout the thesis, and
we state some open questions.

In Chapter 3, we discuss how excluding big clique affects the general structure of
even-hole-free graphs. Specifically, we prove that (even hole, K4)-free graphs have
unbounded tree-width. We actually prove it for a more restricted class, because
layered wheels are pyramid-free. This work was initially motivated by the result
of Cameron et al. [Cam+18] who proved that (even hole, triangle)-free graphs have
tree-width bounded by 5. We also give an upper bound on the tree-width of the
layered wheels, which is logarithmic in the size of the layered wheels. This motivates
a conjecture whether the tree-width of (even hole, K4)-free graphs are bounded by
some logarithmic function in the size of the input graphs.

In addition to (even hole, K4)-free graphs, in Chapter 3 we also study the class of
(theta, triangle)-free graphs. Note that theta-free graphs form a superclass of even-
hole-free graphs, so the class of (theta, triangle)-free graphs and the class of (even
hole, K4)-free graphs intersect. The intersection of these two classes forms the class
of (even hole, triangle)-free graphs, and for this class, the tree-width is bounded. Our
study indicates that the class of (theta, triangle)-free graphs is in some sense, similar
to the class of (even hole, K4)-free graphs. The two classes share similar properties.
The results which we prove for (even hole, K4)-free graphs are first proved for (theta,
triangle)-free graphs, and by mimicking the technique used in the proof, we prove a
similar result for (even hole, K4)-free graphs. Finally, we remark that all results that
are mentioned in the previous paragraph also hold for (theta, triangle)-free graphs.
We also propose similar conjectures for (theta, triangle)-free graphs.

In Chapter 4, we still study the class of (even hole, K4)-free graphs and the class
of (theta, triangle)-free graphs. We show that when excluding more induced sub-
graphs, there is an upper bound on the tree-width. This study was begun when we
were trying to answer the “logarithmic tree-width” conjecture mentioned above. We
prove that excluding “subdivision of claw” (which we denote by Si,j,k in the corre-
sponding chapter) yields graphs with tree-width bounded in terms of the size of the
subdivided claw. For this, we derive a new method to bound the tree-width: we
prove that every graph of large tree-width must contain a large clique or a minimal
separator of large cardinality — which was applicable in the class we studied, and
possibly for other classes of graphs.

Finally, in Chapter 5, we study the class of even-hole-free graphs when the max-
imum degree is bounded, in particular, for maximum degree equals 3. This study
was motivated by an observation made in the construction of layered wheels. In lay-
ered wheels, we observe that in order to increase the lower bound on the tree-width,
the constructed graph needs to contain a big clique minor. The existence of a large
clique minor in a layered wheel forces the graph to contain a vertex of high degree.
This raises two principal questions: the existence of bounds on the tree-width of
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even-hole-free graphs, in the first case, when the graphs have no large clique minor;
and in the second case, when the maximum degree is bounded. We have discussed
the subcubic case and the case of maximum degree 4 that contains no pyramid. For
each class, we give a full structure theorem that leads to proving that the tree-width
of the class is bounded. In the end of Chapter 5, we propose a conjecture for the
general case, namely the class of even-hole-free graphs of maximum degree 4.

In the following section, we mention more specifically some conjectures related
to the tree-width of some hereditary graph classes. We note that some other open
problems related to the three chapters we describe above are mentioned at the end
of the corresponding chapters.

6.1 What can be observed from layered wheels?

Layered wheels provide a family of even-hole-free graphs with unbounded tree-
width. However, on the positive side, we note that layered wheels need many ver-
tices to increase the tree-width. More specifically, a layered wheel G is made of l + 1
layers, where l is an integer. Every layer is a path and |V(G)| ≥ 2l (see Lemma 3.2.2),
l ≤ tw(G) ≤ 2l (see Theorems 3.2.12 and 3.4.4). So, the tree-width of a layered wheel
is “small” in the sense that it is logarithmic in the size of its vertex set. We wonder
whether such characteristic is general in the sense of the following conjecture.

Conjecture 6.1.1. There exists a constant c such that for any (theta, triangle)-free graph G,
the tree-width of G is at most c log |V(G)|.

For this class of graphs, we also need a large number of vertices to grow the
tree-width, so we propose the following conjecture.

Conjecture 6.1.2. There exists a constant c such that for any (even hole, K4)-free graph G,
the tree-width of G is at most c log |V(G)|.

If Conjecture 6.1.2 holds, then the maximum independent set problem is
polynomial-time solvable for even-hole-free graphs with no K4, due to the following
theorem. The same consequence holds for (theta, triangle)-free graphs if Conjec-
ture 6.1.1 is true.

Theorem 6.1.3 ([Bod88])

For any graph G, given a tree decomposition of width w, the Weighted Maxi-
mum Independent Set can be solved in time O(2w · n).

In an attempt to answer this conjecture, we suspect that the existence of a family
of graphs Fl with the following properties is sufficient:

• for every H ∈ Fl , we have |V(H)| ≥ rl for some r > 1; and

• every (even hole, K4, Fl)-free graph has tree-width at most t · l for some t > 0.

We also observe that even-hole-free layered wheels contain diamonds. Recall
that each of (even hole, K4)-free graphs and (even hole, diamond)-free graphs have
unbounded rank-width. We therefore propose the following conjecture.

Conjecture 6.1.4. Even-hole-free graphs with no K4 and no diamonds have bounded tree-
width.
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In Chapter 5, we have seen that even-hole-free graphs of maximum degree at
most 3 have tree-width at most 3. Abrishami, Chudnovsky, and Vušković [ACV20]
proved the following generalization of such result 1.

Theorem 6.1.5 ([ACV20])

For every d ≥ 0, there exists an integer k such that C4-free odd-signable graphs
with maximum degree at most d have tree-width at most k.

Open questions. For every fixed integer t ≥ 4, it is not known whether (theta,
triangle)-free graphs of maximum degree t have bounded tree-width. For t = 1, 2,
the tree-width is trivially bounded; and for t = 3, it follows from Corollary 4.3
in [Abo+cs], which says that every subcubic even-hole-free graph has tree-width
at most 3. Furthermore, Conjecture 5.3.1 is still open. It is now less interesting to
prove this conjecture, because even-hole-free graphs of bounded maximum degree
are known to have bounded tree-width [ACV20]. However, it is still intriguing, since
it would give another insight into how even-hole-free graphs are structured as the
maximum degree increases.

6.2 The grid-minor-like theorem

One key result in the graph-minors seminal project of Robertson and Seymour is the
celebrated “Grid-Minor Theorem”. The theorem states that for every grid H, every
graph whose tree-width is large enough in terms of the size of V(H), contains H as
a minor. The following is a theorem similar to the Grid-Minor Theorem, in terms of
subgraph containment.

Theorem 6.2.1 (Robertson and Seymour [RS86])

There is a function f : N → N such that every graph of tree-width at least f (k)
contains a (k× k)-wall as a subgraph.

One big open question in the area of classes of graphs characterized by forbidden
induced subgraphs is the relation between graphs having large tree-width with the
existence of a list of forbidden configurations, i.e. whether a theorem similar to the
grid-minor theorem exists in the context of induced subgraphs:

Does there exist a list H of graphs such that for some function f , every
graph with tree-width at least f (k) contains a graph H ∈ H as an induced
subgraph?

Theorem 6.2.1 cannot be strengthened to finding walls as induced subgraphs in
general, because the complete graph Kn has tree-width n− 1 and only contains com-
plete graphs as induced subgraphs.

A possible list of induced subgraphs that might be contained in a graph with
large tree-width, as informally proposed by Zdeněk Dvořák is the following: Kk,
Kk,k, a subdivision of the (k × k)-wall, or the line graph of some subdivision of the
(k× k)-wall. Each of those graphs is not contained in any of the other and has tree-
width which grows as a function of k. Note that the two first graphs imply the

1Recall that odd-signable graphs are equivalent to (theta, prism, even wheel)-free graphs and it
forms a superclass of even-hole-free graphs.
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existence of a big clique minor and those four graphs all imply the existence of a big
grid minor. Layered wheels are graphs for which tree-width grows logarithmically
in terms of the size of the graphs. They moreover contain none of the graphs inH as
an induced subgraph: they contain no Kk for large k because of being K4-free, and no
Kk,k, a subdivision of the (k× k)-wall, or its line graph because of being even-hole-
free. This means that the aforementioned list H given by Dvořák is not complete. A
“new” graph that could be included in the list H might be highly related to layered
wheels. In the next paragraphs, we give some variants of Dvořák’s question.

Conjecture 6.1.1 and Conjecture 6.1.2 that are given in the end of Chapter 3 re-
flect our belief that constructions similar to layered wheel must have an exponential
number of vertices (exponential in the tree-width). It suggests the following variant
of Dvořák’s question:

Is it true that for some constant c > 1 and some function f , every graph
with tree-width at least f (k) contains either Kk, Kk,k, a subdivision of the
(k × k)-wall, the line graph of some subdivision of the (k × k)-wall, or
has at least c f (k) vertices?

In the paper of Aboulker et al. [Abo+cs], where the proof of Theorem 3.5.1 is
given, the following stronger result which implies Theorem 3.5.1 is proved. Theo-
rem 6.2.2 implies that (theta, prism)-free graphs (which is a superclass of even-hole-
free graphs) excluding a fixed minor have bounded tree-width because a graph ex-
cluding a theta and a prism cannot contain a subdivision of a (k× k)-wall or the line
graph of a chordless subdivision of a (k× k)-wall as an induced subgraph, as those
two graphs respectively contain thetas and prisms. We remark that in the paper,
an “(k × k)-wall” is defined differently than the definition we use in this thesis. In
the following theorem, a subdivision of a wall is chordless if no cycle with a chord is
contained in the graph.

Theorem 6.2.2 (Induced-grid theorem for minor-free graphs [Abo+cs])

For every graph H, there is a function fH : N→N such that every H-minor-free
graph of tree-width at least fH(k) contains a subdivision of a (k× k)-wall or the
line graph of a chordless subdivision of a (k× k)-wall as an induced subgraph.

This theorem can also be seen as an advancement towards the question about
the “induced” version of the grid-minor theorem that we mention in the previous
paragraph. Recall that the construction of layered wheels requires the presence of
a high maximum degree to increase the lower bound on the tree-width and that
even-hole-free graphs of bounded degree have bounded tree-width [ACV20]. This
suggests the following conjecture:

Conjecture 6.2.3. There is a function f such that if tw(G) > f (k), either G contains a
subdivision of a (k× k)-wall, the line graph of a subdivision of a (k× k)-wall, or a vertex of
degree at least k.

Kristina Vušković observed that Kk,k is a (prism, pyramid, wheel)-free graph,
or equivalently an only-theta graph (because thetas are the only Truemper config-
uration contained in Kk,k). Moreover, walls are only-theta graphs, line graphs of
subdivisions of walls are only-prism graphs, and triangle-free layered wheels are
only-wheel graphs. Observe that complete graphs contain no Truemper configura-
tion, so they are simultaneously only-prism, only-wheel, and only-theta. One may
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wonder whether a graph with large tree-width should contain an induced subgraph
of large tree-width with a restricted list of induced subgraphs isomorphic to one of
the Truemper configurations. Hence, we propose the following stronger conjecture.

Conjecture 6.2.4. There is a function f such that if tw(G) > f (k), either G contains a Kk,
Kk,k, a subdivision of a (k× k)-wall, the line graph of a subdivision of a (k× k)-wall, or a
wheel with at least k spokes.
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recognizing perfect graphs”. In: 44th Symposium on Foundations of Com-
puter Science (FOCS 2003), 11-14 October 2003, Cambridge, MA, USA, Pro-
ceedings. IEEE Computer Society, 2003, pp. 20–27.

[CMR00] B. Courcelle, J. A. Makowsky, and U. Rotics. “Linear time solvable op-
timization problems on graphs of bounded clique-width”. In: Theory
Comput. Syst. 33.2 (2000), pp. 125–150.

[Con+00] M. Conforti, G. Cornuéjols, A. Kapoor, and K. Vušković. “Triangle-free
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free graphs part II: Recognition algorithm”. In: Journal of Graph Theory
40.4 (2002), pp. 238–266.

[Con+97] M. Conforti, G. Cornuéjols, A. Kapoor, and K. Vušković. “Universally
signable graphs”. In: Combinatorica 17.1 (1997), pp. 67–77.

[Con+99] M. Conforti, G. Cornuéjols, A. Kapoor, and K. Vušković. “Even and
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