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que j’ai suivi en Master, a été déterminant dans mon choix de me lancer dans une thèse en
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Je remercie aussi les doctorants de Sciences Po, en particulier Pierre Cotterlaz, Pierre De-

schamps, Marcos Diaz, Etienne Fize, Arthur Guillouzouic-Le Corff (merci pour les petits cours
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Notice

The three chapters of this dissertation are self-contained research articles. Therefore, the term

“paper” or “article” are used and parts of the content may be repeated. The three chapters are

coauthored, which explains the use of the “we” pronoun.
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Three essays in applied economics

In this dissertation, I investigate several questions of interest in the fields of economics of edu-

cation and economics of teams.

In the first chapter, based on initial work with Laurent Rossignol, we focus on tracking in

education. Tracking refers to the fact that many countries’ public school systems divide students

by ability. This process can take different forms. In the United States and Canada, students

are sorted into different classrooms within a school, whereas in most European countries, stu-

dents are sorted in different schools with different curricula at the secondary level (Betts et al.

(2011)). We provide evidence of tracking gaps in the French education system: tracking does

not solely depend on academic performance but also on gender and socio-economic status. Our

main contribution is to disentangle the impact of differences in students’ aspirations from the

impact of teachers’ grading and track recommendations on these tracking gaps.

In the two following chapters, we leave the economics of education for the economics of

teams. Teamwork has become more and more prominent in organizations (Hamilton, Nicker-

son & Owan (2003)). This raises some important economic questions. Why is forming teams

economically desirable? What are the incentives associated to teamwork? How can individual

productivity be assessed in teams, when only the collective output is observed? How does the

team composition affect productivity? Are teams more productive if their members are homo-

geneous? In chapters 2 and 3 of this thesis, we use sports data to deal with some of these

questions. As sports are settings where rules are relatively simple and data are often publicly

available, they appear as a great laboratory to investigate the question of individual contribu-

tion in teams and to test economic theories of incentives and labor market behavior (Szymanski

(2003)). The second chapter, joint with Antoine Chapsal, aims at understanding some of the

incentives and psychological effects associated to teamwork, based on team squash data. We

show that players value the fact of being responsible for the success of their team, which partly

explains that team-based contests can yield higher effort than individual-based contests.

The third chapter, built upon initial work with Rodrigo Lopez-Kolkovsky, aims at developing

an estimation procedure to measure individual productivity in teams, based on European foot-

ball data. We confront this measure to players’ market value and provide evidence for racial
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discrimination on the football market.

Chapter 1 - The impact of teachers on pupils’ tracking. Empirical evidence

from France

My first chapter, based on a collaboration with Laurent Rossignol, focuses on tracking, which

can be loosely defined as ability grouping in education. Our starting point is that tracking does

not solely depend on students’ academic performance. Indeed, a vast literature has shown the

existence of tracking biases: individual characteristics such as race, gender and socio-economic

status affect the track assignment, independently of academic ability (see Duru-Bellat, Jarousse

& Mingat (1993) for an analysis of the French tracking system).

These differences in tracking can be partly explained by differences in students’ preferences

or aspirations, as emphasized by Guyon & Huillery (2016). However, as teachers take part in the

track assignment procedure, differences in aspirations might not be the only driver of differences

in tracking outcomes. In fact, teachers may have an indirect impact on tracking through their

grading because grades are supposed to reflect students’ academic potential and their chance of

succeeding in the different tracks. Teachers may also exert a direct effect on tracking through

their track recommendations if they are less prone to encourage some categories of students to

follow the high ability track. Thus, assessing the role of teachers on grading and tracking is

essential to better understand tracking gaps.

We use a very rich dataset on all ninth-graders from one of the 26 education districts in

continental France (N=16864). Our data gather information on students’ characteristics (SES,

gender, nationality), academic performance, and track assignment procedure.

Our empirical setting appears to be ideal to study teachers’ role on grading and tracking

because it exhibits two important features. First, students take both in-class tests which are

designed and corrected by their own teachers and a final exam which is common to the entire

district and corrected in a blind manner. This allows us to understand teachers’ grading prac-

tices. Second, students make an initial track choice to which teachers reply, which allows us to

disentangle the effect of students’ aspirations from the effect of teachers’ recommendations on

tracking.
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We start by investigating teachers’ grading by comparing students’ in-class score to their

final exam score. Our identifying assumption is that the in-class score reflects pupils’ ob-

served/perceived academic performance, whereas the final exam score reflects pupils’ true a-

cademic ability. This assumption can be justified by several features of the setting: (i) As the

final exam takes place at the very end of the academic year, only in-class grades are observed

over the tracking procedure; (ii) In-class tests are corrected by pupils’ own teachers and may

be subject to grading bias, whereas the final exam is corrected in a blind manner, which makes

it a purer measure of academic ability; (iii) The design of in-class tests is completely left at

teachers’ discretion so they are highly dependent on contextual specificity. On the contrary, the

final exam is a standardized test that is common to all students in our sample; (iv) In-class tests

are typically short and only cover the last lecture of the course, whereas the final exam covers

all the material of grade 9 and better reflects long-term educational achievements.

We find that at equivalent score in the final exam, girls and high-SES pupils get an in-class score

that is respectively 0.16 and 0.1 SD higher than the one of boys and low-SES pupils from the

same class. Given our identifying assumption, we interpret these results as evidence for teachers’

grading differentials.

Then, we focus on the tracking procedure. We provide evidence of strong differences in

aspirations by SES and gender. High-SES pupils and girls are respectively 10.2 pp. and 3.4 pp.

more likely to choose the high-ability track than low-SES pupils and boys from the same class

with the same in-class score.

Integrating our analysis on grading differentials into our model of pupils’ initial track choice

allows us to identify the indirect effect of teachers’ grading on pupils’ track choice. Indeed,

when we use the final exam score instead of the in-class score, the socio-economic and gender

gaps in initial track choice increase to respectively 12.3 pp and 6.7 pp. This is evidence that

teachers’ grading indirectly affect tracking.

Turning to the analysis of teachers’ track recommendations allows us to estimate the direct im-

pact of teachers on tracking. Comparing the coefficients associated to SES and gender with the

initial track choice and the teachers’ track recommendation, at equivalent in-class score, allows

us to identify whether teachers use their recommendations to reduce gaps in the initial track

choice. We show that teachers’ recommendations do not “correct” the gender gap in aspirations

but slightly reduce the socio-economic gap in aspirations (the effect goes from 10.2 pp to 5.4

pp).
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Plugging our analysis on grading in our model of teachers’ recommendations allows us to mea-

sure directly the overall impact of teachers on tracking, i.e. both the indirect effect of their

grading on tracking and the direct effect of their track recommendations. We show that, overall,

teachers widens the initial gender gap in aspirations. This is coherent with our previous find-

ings: girls get higher in-class grades than equally achieving boys and teachers do not use their

track recommendations to lower the gender gap in initial choice. The total impact of teachers

on tracking with regards to pupils’ SES is more contrasted. On one hand, their grading disad-

vantages low-SES pupils which indirectly affect pupils’ initial track choice and teachers’ track

recommendations. On the other hand, teachers use their track recommendations to slightly

reduce the initial gap in aspirations between high-SES and low-SES pupils. Our results show

that these two opposite effects cancel out and that globally, teachers do neither accentuate nor

reduce the initial socio-economic gap in aspirations.

Overall, the main contribution of this chapter is to build a bridge between grading and

tracking in education, which are usually treated as two separate questions. This allows us, not

only to estimate teachers’ grading differentials, but also their indirect impact on pupils’ tracking.

Chapter 2 - Individual contribution in team contests

The starting point of my second chapter, joint with Antoine Chapsal, is that despite the free-

riding incentives that are inherent to teamwork (Alchian & Demsetz (1972)), organizing work in

teams has become the linchpin in most organizations. Hence, the negative effect of free-riding

incentives must be offset by positive effects associated to teamwork. Kandel & Lazear (1992)

show in a theoretical paper that peer-pressure, guilt and shame are effects that mitigate the

free-riding incentives. In this paper, we focus on another potential incentive that may arise in

teams and counterbalance free-riding: the “individual contribution effect”, according to which

workers value the fact of being (at least partly) responsible for their team’s success. Indeed,

such an effect could explain why efforts may be higher in teams than in individual settings and

partly explain why teamwork has become so prevalent.

As discussed in the last chapter of this dissertation, assessing individual contributions to

the team output is very challenging. Therefore, we need to focus on a controlled team setting

in which individual contribution is observable. We concentrate on multiple pairwise battles,
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which refer to extremely common situations where players from two rival teams compete in

individual battles (see Fu, Lu & Pan (2015) for a benchmark theoretical analysis of this kind

of contests). As every player is responsible for his own individual battle, the assessment of

individual contributions to the team output is straightforward.

Squash team championships exactly correspond to a best-of-three multiple pairwise battles

setting. In a team squash contest, three distinctive pairs of players from two rival national teams

are matched in three individual matches. Individual matches are played sequentially and a team

needs two individual wins in order to win the contest. In this setting, the individual contribution

is observed, since a player brings one point to his team if he wins and zero if he loses.

Figure 1: Squash team confrontations - a perfect example of contest with multiple pairwise

battles

Furthermore, team squash contests exhibit an important random feature that makes them

an ideal laboratory to study multiple-pairwise battles. In the beginning of the championship,

every team has to rank its players by descending order of strength. Then, before each team

contest, the order of individual games is randomly drawn from four possibilities: 1-2-3, meaning

that players ranked first play the first game, players ranked second play the second game, and

players ranked third play the third game, 1-3-2, 2-1-3 and 3-1-2. This ex-ante randomly-drawn

order of play ensures that teams cannot manipulate the sequence of games to be played.

We collected from a specialized website data on World Team Championships, European

Team Championships and Asian Team Championships, along with the monthly world rankings
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of participating players based on their performance in individual tournaments.

According to the individual contribution effect, a player gets an extra payoff when he con-

tributes to the success of his team (i.e. when he wins his individual match and his team wins

the contest). In order to test for this effect in the squash data, we assess whether a player is

more likely to win the second individual match when his teammate won the first match. The

intuition behind this test is that in the second match, there is an asymmetry between the two

players. The player in the leading team knows that winning his individual match implies that

his team wins the contest and that he will get the “contribution reward”. On the other hand,

the player in the lagging team will get the contribution reward if he wins only if his teammate

also wins the third individual match. Thus, the two players do not face the same contribution

incentives, which makes the player in the leading team more likely to win. To test this effect

empirically, we start by focusing on a subsample of players who have very similar rankings.

We find that the player in the leading team wins about 60% of the time, which confirms the

individual contribution effect. In another specification, we use the whole sample and we include

the ratio of rankings or rankings modalities to control for players’ relative ability. With these

specifications, we find that the player in the leading team is more likely to win than the player in

the lagging team by about 10 percentage points. These findings argue in favour of the individual

contribution effect.

As an additional test, we check whether the expected outcome of the third individual match

has an impact on the second individual match. Indeed, in the second match, if the player in the

lagging team is sure that his teammate will lose the third match, the asymmetry of contribution

incentives reaches its maximum as he will not get the contribution reward, whatever happens in

his individual match. On the contrary, if he is sure that his teammate will win the third match,

there is no asymmetry anymore as the second match becomes decisive for the two opposing

players. Hence, according to the individual contribution effect, the probability of winning the

second match increases with the expected probability of winning the third match. We provide

empirical evidence showing that a player is more likely to win the second match when his

teammate in the third match has a better ranking than his opponent.

In our last test, we focus on trivial third individual matches (i.e. third matches for which the

winning team has already been determined over the two previous matches). One might argue

that the individual contribution effect is also at play, to a lesser extent, in these battles. The

player in the team that won the two first matches has more incentives to win than his opponent
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because he can contribute to the success of his team. On the other hand, the player in the team

that lost the two first matches, cannot participate to his team’s success. We provide evidence

that the player in the team that won the first two individual matches is more likely to win the

third match than his opponent, controlling for the two players’ relative ability. This confirms

the individual contribution effect. As robustness checks, we rule out other possible mechanisms

that could explain that winning the first match increases the probability of winning the second

match: guilt-aversion, altruism, choking under pressure and psychological momentum.

Overall, we use team squash data to provide evidence of a dynamic linkage between individ-

ual matches in a multiple-pairwise battle setting. We provide evidence that this team dynamic

is driven by an individual contribution effect: players value the fact of contributing to their

team’s success. This effect could mitigate free-riding incentives in teams, and be one of the

explanations of the widespread use of teamwork in most organizations.

Chapter 3 - Estimating individual productivity in football

My third chapter, based on initial work with with Rodrigo Lopez-Kolkovsky, aims at measuring

football players’ individual productivity. Our contribution is two-fold. First, from a method-

ological point of view, we develop an estimation procedure that could be applied to other team

settings. Second, getting a reliable measure of individual productivity allows us to study the

functioning of the labor market. Indeed, we can compare our measure of productivity to play-

ers’ market value in order to test whether there is discrimination on the players’ market. This

approach is appealing for it allows us to test for discrimination directly at the player’s level. We

provide evidence of racial discrimination towards black players.

Football appears as an ideal laboratory to explore the question of assessing individual pro-

ductivity in teams for three main reasons. First, it is a typical example of setting where only

the collective production is directly observable. While the number of goals or points of the team

is known, it is difficult to assess to what extent every player contributes to it. Second, rules

are clearly defined, which makes it a controlled environment. Third, the recent explosion of

available field data on football makes the analysis of the “beautiful game” possible.

Two approaches can be considered in order to assess players’ individual productivity. The
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first approach is based on players’ individual statistics such as passes and shots. After identifying

the variables that make a team successful, players’ performance is assessed according to their

participation to these variables (see for instance Berri & Schmidt (2010)). The second approach,

on which our estimation procedure relies, is based on players’ fixed-effects related to dummy

variables indicating whether they are on the field. It is completely agnostic regarding what

makes a player productive. The idea is to assess players’ performance by comparing their team’s

performance when they are on the field and when they are not, controlling for their teammates

and their opponents. It draws on the plus-minus statistic developed in ice-hockey in the US in

the 1960s and on its adjusted versions (Rosenbaum (2004) and Ilardi & Barzilai (2008)). This

approach is very low data-demanding as only the line-ups and the final scores are needed in the

estimation. It also has the advantage of considering individual productivity in all its dimensions,

including the ones that are not available in the data such as players’ charisma.

We collected data on line-ups and final scores on four different websites in order to con-

struct an extensive dataset of all the games opposing two teams from the five main European

championships between 2007/2008 and 2014/2015.

The identification of players’ fixed effects is possible thanks to the variability in the line-

ups over time, due to coaching strategies, transfers and injuries. However, the estimation is

challenging as the number of coefficients to be estimated is very large: in our setting the ratio

between the number of observations and the number of variables is only 8. Furthermore, there

is a strong colinearity issue since players often play with the same teammates. These two

characteristics of the setting imply that a standard estimation of players’ fixed effects will suffer

from overfitting: if players A and B are always together on the field except during one game in

which only player A is in the line-up and their team is very successful, a standard estimation

will lead to a much higher coefficient for player A than for player B. This is not desirable, as

the performance differential between the two players will be based on one game only. In other

words, standard estimation techniques will lead to a very large variance of coefficients and poor

out of sample predictions. Therefore, we need to adjust the estimation procedure, so that it

yields different coefficients to two teammates if and only if there are enough games in which the

two players are not together on the field.

Ridge is a penalization method that is particularly well-suited to do that. The intuition be-

hind the Ridge is that the estimation trades off between the goodness of fit (just as in a standard

estimation) and the variance of the coefficients, by adding a penalization term corresponding to
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the sum of the squared estimated coefficients. Hence, it will yield large coefficients to players

only if it has enough observations and variations to be sure that these players are high-achieving

players. The Ridge solves the overfitting problem. We choose the optimal degree of penalization

λ by 10-fold cross-validation.

We obtain results that are coherent with football specialists’ point of view. Lionel Messi

and Cristiano Ronaldo, who are largely recognized as the best players over the period, top our

ranking of players’ fixed effects. All other players in our top 30 are world class players. This

is very satisfactory given that the model is completely agnostic regarding what makes a player

productive. As a robustness check, we use several in-sample and out-of sample tests at the team

level. The intuition behind these tests is that players are often transferred from one club to

another. Therefore, if the aggregate level of teams is well predicted, then the level of individual

players is also well predicted because compensation of players’ coefficients is unlikely.

Table 1: Overall ranking of players : top 10

Ranking Player Total Offensive Defensive

1 Lionel Messi .351 .351
2 Cristiano Ronaldo .333 .333
3 Cesc Fabregas .302 .243 .059
4 Frank Lampard .274 .205 .069
5 Yaya Toure .255 .138 .117
6 Karim Benzema .253 .253
7 Bastian Schweinsteiger .246 .171 .075
8 Xavi .241 .175 .066
9 Arturo Vidal .238 .128 .11
10 Franck Ribery .237 .237

Seasons 2007/2008 to 2014/2015.

Our measure of players’ performance suffers from several limitations. First, the Ridge penal-

ization implies that the estimation only provides points estimates, and not the standard errors

of players’ fixed effects. This prevents us from testing whether two players have a significantly

different productivity. Second, the coefficients are difficult to interpret. To remedy that, we

convert them into marginal effects, but this transformation ignores the bias introduced by the

Ridge. Third, in order to get enough variability in the data, we need to impose restrictions

on the coefficient dynamics: players’ productivity is considered fixed over the entire time-span;
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players’ productivities do not depend on their teammates; defenders do not have offensive fixed

effects and forwards do not have defensive fixed effects.

Despite these limitations, the fact that we obtain results that make so much sense shows that

combining a fixed-effect approach with a Ridge penalization is an estimation strategy that is

very well-suited to the estimation of individual productivity in teams. The fixed-effect approach

allows us to consider productivity in all its dimensions (including the unobservable ones) while

the Ridge allows us to overcome the problem of isolating individual productivity when players

often play with the same teammates. Thus, our estimation procedure could be adapted to other

team settings where assessing individual productivity is important. The only requirements are

that workers stay long enough in the firm (number of observations) and that shifts in the teams’

compositions are frequent (variability).

Once our productivity metrics obtained, we use it in order to test for racial discrimination on

the football market. We compare our measure of productivity to players’ market value according

to the German website Transfermarkt. The two measures are strongly correlated, which confirms

that our estimation procedure leads to results that are globally in line with the market. Howev-

er, the fit is not perfect and we can identify undervalued and overvalued players. We compare

the share of black players in the two groups and we show that they are over-represented among

undervalued players. Our approach complements the existing literature on discrimination in

sports, which is based on empirical tests for discrimination at the team level (see in particular

Szymanski (2000)).

Appendix - applied statistics in cardiology

During my PhD, I also participated in a research project with cardiologists from the CHU

Nancy1 and the French football league2. Our aim was to establish the cardiac profile of highly

trained football players.

I was in charge of the data management and the statistical analysis. I coauthored a paper

about the electrocardiographic profile of football players which was published in the Archives of

1Service de cardiologie, institut Lorrain du cœur et des vaisseaux Louis-Mathieu, centre hospitalier universi-
taire de Nancy, 4, rue du Morvan, 54500 Vandœuvre-lès-Nancy, France

2Ligue de Football Professionnel, 6 rue Léo Delibes, 75116 Paris
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Cardiovascular Diseases.3 We are currently working on other articles that should be published

in 2019.

3Huttin, O., Selton-Suty, C., Venner, C., Vilain, J. B., Rochecongar, P., & Aliot, E. (2017). Electrocar-
diographic patterns and long-term training-induced time changes in 2484 elite football players. Archives of
cardiovascular diseases.
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Chapter 1

The impact of teachers on pupils’
tracking. Empirical evidence from
France

Jean-Baptiste Vilain & Laurent Rossignol
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Abstract

In education, grading and tracking are two interconnected questions as grades are supposed

to reflect students’ academic ability and their chance of succeeding in the different tracks. Using

a very rich data set on French ninth graders in which we have information on (i) both blind and

non-blind test scores and (ii) both the initial track choice of students and the teacher conference’s

track recommendation, we show that teachers play an important role in pupils’ track assignment.

First, teachers’ grading of non-blind tests depend on students’ gender and socio-economic status,

which indirectly affect tracking. Second, teachers do not use their track recommendations to

erase the socio-economic and gender gaps in the initial track choice.

JEL Classification I24, I21, J16, J15.

Keywords Education, Tracking, Grading, Teachers, Discrimination.
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1.1 Introduction

Tracking refers to “the tendency in many countries’ public school systems to divide students

by ability in some way. Students might be sorted into different classrooms within a school, or

sorted into different schools” (Betts et al. (2011)). Within-school tracking is common in the US,

the UK, Canada and Japan while most European countries track students into different schools

with either an academic or a vocational curriculum.

In a purely meritocratic world where students have homogeneous preferences, tracking should

only be affected by students’ academic ability. However, an extensive literature has shown

the existence of tracking biases: some individual characteristics such as gender, race or socio-

economic status (henceforth SES) affect tracking, independently of academic performance. Most

of the literature focuses on students’ aspirations to explain these tracking biases. For example,

Hoxby & Avery (2013) show that among top US students, low-income students are less likely to

apply to top universities than high-income students, despite the fact that top universities would

not cost them more money. Guyon & Huillery (2016) use data on French 9th graders to show

that at equivalent academic potential, low-SES students have lower aspirations than high-SES

students.1

However, students’ track choice may not be the only determinant of tracking biases, as

other actors take part in the track assignment procedure. In particular, teachers may play an

active role on tracking through two different channels. First, teachers may be more severe when

they grade some categories of students. Tracking then heavily depends on students’ grades as

they are the main source of information regarding pupils’ ability. Second, teachers’ tracking

recommendations may depend on students’ characteristics. At equivalent academic potential,

teachers may be less prone to recommend some categories of students the “high-ability” track.

This paper aims at understanding some of the mechanisms that cause tracking biases. We

disentangle the impact of students’ preferences (or aspirations) from the impact of schools and

teachers on tracking. To do so, we use a very rich dataset on French students in grade 9 in which

we have information on (i) both blind and non-blind test scores, which allows us to understand

teachers’ grading practices and (ii) both the initial track choice of students and the teacher

conference’s opinion on this track choice, which allows us to distinguish the impact of teachers’

1The content of their dataset is similar to ours but they focus on different French education districts and their
sample only includes part of the students from the districts under consideration.
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recommendations from the impact of students’ choices on the track assignment.

The main results are as follows:

1. Evidence of grading differentials: at equivalent score in the final standardized blind exam,

girls and high-SES pupils get higher in-class grades than boys and low-SES pupils from

the same classroom.

2. Independently of grading differentials, aspirations are gender and socially determined: girls

and high-SES apply much more often to the high-ability track than equally-achieving boys

and low-SES students. This result is consistent with the existing literature on tracking

and aspirations (see Guyon & Huillery (2016)).

3. Independently of grading differentials, teachers’ recommendations do not correct the gen-

der gap in aspirations, but they slightly reduce the socio-economic gap in aspirations.

4. Teacher’s grading aggravates tracking gaps. As in-class grades are the only available source

of information regarding students’ performance, the “true” academic ability of boys and

low-SES pupils is under-estimated. This affects tracking through both students’ initial

track choice (low-SES and boys under-estimate their ability, which makes them less likely

to apply to the high-ability track) and teachers’ track recommendation (teachers also

underestimate the academic ability of these students, which makes them less likely to

recommend them the high-ability track).

The remainder of this paper is organized as follows. Section 1.2 presents the related literature

on grading and tracking. Section 1.3 presents the empirical setting under scrutiny and the

available field data. Section 1.4 presents our key identifying assumption and provides evidence

of grading differentials. In section 1.5, we disentangle the impact of students’ choice from the

impact of teachers on the track assignment. We discuss the limits of our identifying assumption

in section 1.6 and we conclude in section 1.7.

1.2 Related literature

Teacher expectations might depend on students’ characteristics. Tenenbaum & Ruck (2007)

show that teachers in the US have different expectations regarding the performance of pupils

according to their ethnic background. Darley & Gross (1983) find experimental evidence that
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teachers have lower expectations for low-SES students. If teachers have low expectations con-

cerning some groups of students, they might look more carefully for errors or weaknesses when

evaluating their work. This expectation confirmation bias may in turn affect the way teachers

evaluate students’ academic potential and motivates us to study the role of teachers on grading

and tracking.

Grading From an empirical point of view, testing whether discrimination exists is difficult for

disadvantaged groups come from disadvantaged backgrounds with characteristics that are cor-

related with poor academic performance. Therefore, it is hard to disentangle the discrimination

effect from the characteristics effect. Studies on discrimination in grading have used two main

identification strategies to solve this issue.

The first approach is experimental: teachers are asked to evaluate academic tests for which

the researcher has manipulated the characteristics of student to whom the work is attributed.

For example, Hanna & Linden (2012) test for the existence of grading discrimination in India

by randomly assigning child characteristics (age, gender and caste) to the front page of the

exams. They find evidence of grading discrimination against lower caste children. Sprietsma

(2013) randomly assigns typical German or Turkish names to identical sets of essays to test

whether teachers’ expectations are different for migrant children in Germany. She finds that

essays bearing Turkish names receive significantly worse grades. Van Ewijk (2011) conducted a

similar experiment in the Netherlands but did not find any effect of names on grades.

The second approach is empirical and based on observational data: it compares the academic

performance in class tests (“non-blind” grading) to the academic performance in anonymous

tests (“blind” grading). Based on Israeli data, Lavy (2008) finds that male students face grading

discrimination in humanities and sciences. Breda & Ly (2015) use a similar identification strategy

to show that evaluation is biased in favor of females in more male-dominated subjects (e.g. math)

and in favor of males in more female dominated subjects such as literature and biology. On a

much broader sample, Breda & Hillion (2016) show that evaluation is biased in favor of women

in all subjects and that the magnitude of this bias increases with the degree of subject’s male-

domination. We adopt a similar approach to these studies in order to understand teachers’

grading. Then, we integrate this analysis on grading in a tracking model. This allows us to

identify, not only grading differentials, but also their indirect effect on students’ tracking.
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Tracking At equivalent academic potential, teachers’ track recommendations might not be

the same with every student. Teachers might be less prone to encourage some categories of

students to engage in the high-ability track. Elhoweris, Mutua, Alsheikh & Holloway (2005)

show that the children’s ethnicity affect US teachers’ referral and placement decisions in gifted

and talented programs. Glock, Krolak-Schwerdt, Klapproth & Böhmer (2013) also investigate

the question of ethnic tracking biases and find evidence of less favorable teacher judgments of

students with immigrant backgrounds than of students without immigrant background. Frey

(2002) find that SES affects special education teachers’ placement recommendations: children

from low SES backgrounds are more likely to be referred for restrictive placements.

These studies analyze teachers’ tracking recommendations independently from pupils’ aspira-

tions and teachers’ grading practices. Our empirical setting allows us to take into account

these two factors. First, as we observe both pupils’ initial track choice and teachers’ track

recommendation, we can disentangle the effect of pupils’ aspirations from the effect of teach-

ers’ recommendation on tracking. Second, integrating our analysis on grading into our model

of tracking allows us to disentangle the direct influence of teachers on tracking (through their

track recommendations) from their indirect influence (through their grading practices).

Overall, our main contribution in regards to the existing literature is to build a bridge

between grading and tracking in education, which are usually treated as two separate questions.

1.3 Empirical setting and Data

This section describes the grading and tracking system in France along with the available data

and descriptive statistics.2

1.3.1 Description of the French education system

Tracking In France, students follow the same curriculum across schools from kindergarten

to the end of junior high school. Junior high school runs from grades 6 to 9. After junior

high school, pupils are tracked either in a vocational track or in the academic track. Most of

senior high schools are specialized in either academic training (Lycée général et technologique)

or vocational training (Lycée professionnel) while some of them offer both (Lycée polyvalent).

In the end of a vocational track, students get a professional degree allowing them to find a job

2Note that the French education system has changed very recently, in particular in regards grading. The
description provided in this paper applies to the academic year for which we have data (2013/2014).
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with no further education while students enrolled in the academic track get a general degree

and are expected to get higher education. Students enrolled in the academic track tend to have

much better academic performances in junior high school than students enrolled in a vocational

track. In our sample, the average final exam score at the end of grade 9 is 11.1/20 (0.5 SD)3 for

those in the academic track and 6.6/20 (-0.8 SD) for those in a vocational track.

The track assignment procedure is a process in which pupils, families and schools are in-

volved. In January-February, pupils and their families indicate their track choice among four

possibilities: the academic track (2nde générale et technologique), a 3-year vocational track

(Brevet d’études professionnelles), a 2-year vocational track (Certificat d’aptitude profession-

nelle) or grade repetition (which is quite common in France, contrary to other countries4). In

March, the teacher conference5 gives its opinion on this initial choice, either encouraging it or

suggesting another track. In May, pupils and their families make their final track choice, which

is then validated or invalidated by the teacher conference’s decision in June. An “academic

track decision” grants access to both the academic track and any vocational track whereas a

“vocational track decision” only grants access to a vocational track.6 This asymmetry is justified

by the implicit norm that a student who is expected to succeed in the academic track is also

expected to succeed in the vocational track, while the reverse is not true. Figure 1.1 summarizes

the tracking procedure over grade 9 in France.

3As usual in the literature, we standardize students’ test scores to distributions with zero mean and a unit
standard deviation. Accordingly, a final exam score of 11.1/20 corresponds to a standardized final exam score of
0.5 SD. This standardization makes results easier to interpret across different education systems.

4See Goux & Maurin (2007)

5The teacher conference gathers the provost, teachers of every subject, two class representatives and two
parent representatives. It takes place three times a year for every class and it aims at discussing students’
quarterly academic performance.

6Note that the family can request an appeal committee in case of disagreement.
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Figure 1.1: Summary of the tracking procedure

The sequential nature of the process between students’ choices and teacher conference’s re-

sponses is a key feature of our identification strategy because it allows us to distinguish the

impact of students’ preferences and expectations from the impact of teachers and schools on

tracking. Though, an important limitation of our study regarding the sequence of the tracking

procedure is that we only have data on pupils’ average in-class score over the entire academ-

ic year, and not disaggregated data by academic quarters. Hence, we cannot consider pupils’

progress over the year and we implicitly assume that academic progress over grade 9 is indepen-

dent from gender and SES.

Grading In grade 9, pupils take two different types of tests. From September to June, they

take many in-class tests which are corrected by their own teachers in a non-blind manner (con-

trôle continu). In-class tests are taken in all the subjects of grade 9 curriculum: Mathematics,

French, History/Geography, Physics/Chemistry, Biology/Geology, Foreign language 1, Foreign

language 2, Physical education, Information and Technology, Art and Music. Every subject

gets the same weight in the contrôle continu. The design of in-class tests is completely left at

teachers’ discretion. Teachers decide on the number of in-class tests to be taken, their format

and their difficulty. They are also free to adjust the severity of their grading. The fact that

teachers can organize in-class tests as they want implies that in-class scores of students from

different classes are difficult to compare. Most of the time, in-class tests are short and only cover

the last lecture of the course.

In the end of June, students take a final exam which is anonymously and externally graded
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in July (contrôle final). This exam covers the three main subjects, i.e. the three subjects with

the highest course load: Mathematics, French and History/Geography. The three subjects get

the same weight in the contrôle final. The final exam is the same for all ninth-graders, which

guarantees the comparability of the final exam score from one class to the other and the absence

of contextual effects (e.g. easier tests in classes with weaker students). The final exam covers

all the material of grade 9 and is supposed to reflect the overall academic achievement of pupils

over junior high-school.

Our identification strategy to estimate grading differentials relies on the comparison of stu-

dents’ score in the in-class tests to their score in the final exam. Of course, we need to compare

students’ academic performance in subjects that are evaluated both in the final exam and in

class. Therefore, in the remainder of the paper, by in-class test score we mean the average test

score in class in Mathematics, French and History/Geography. In order to ensure that our re-

sults are not driven by heterogeneity in performances in minor subjects, we compare the relative

performance of students in the three major subjects and in minor subjects by gender and SES.

Table 1.1 represents the average ratio of the in-class score in minor subjects on the in-class score

in the three major subjects by SES and gender. Low-SES pupils and boys perform relatively

better in minor subjects than high-SES students and girls, so the tracking gaps are not likely to

be driven by unobserved differences in performances in minor subjects.

Table 1.1: Average ratio of in-class scores

Average in-class score in minor subjects
Average in-class score in the three major subjects

Students’ characteristics

High SES 1.11
Intermediate SES 1.18
Low SES 1.21

Girl 1.17
Boy 1.2

Students’ global in-class score is combined with their final exam score to determine whether

they obtain the junior high school degree (Diplôme national du brevet).7 Note that the final

exam takes place after the track assignment procedure. Hence, getting the junior high school

degree is not a necessary condition to enroll in the different tracks and grades obtained in the

7In our sample (2013/2014), the weight of in-class tests in the overall grading is 60%.
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final exam are not observed during the track assignment procedure. Pupils and schools can only

use in-class grades to assess pupils’ academic potential and their likelihood of succeeding in the

different tracks.

1.3.2 Data description

Our sample includes data on all ninth-graders in public schools from the district of Amiens,

one of the 26 education districts in continental France, over the academic year 2013/2014. As

we have data on all the students from the district, our sample is large and we do not face any

selection issue regarding junior high-schools in the sample.

In order to construct our datasetset, we merged information from different sources:8

- Data from the Amiens district (Base élève académique): pupils’ date of birth, gender,

nationality, SES, place of residence, along with information on the junior high-school and

the class in which they are enrolled9.

- Data on the tracking procedure (Base INTORI ): pupils’ initial track choice, teacher con-

ference’s recommendation, pupils’ final choice and teacher conference’s final decision.

- Data on grades and actual track enrollment the next year (Base Affelnet): average grades

obtained in the in-class tests over the academic year and final exam score in the different

subjects.

- Data on junior high schools (Base APAE ): address, urban/rural school, ZEP status (zones

of educational priority), ZUS status (sensitive urban zone).

Overall our sample provides information on pupils’ characteristics, academic performance

and tracking for a population of 16864 students.10 Table 1.2 presents a few summary statistics

and compares our sample to the entire population of the 596053 ninth-graders in France in

2013/2014.11 The comparison calls for the following remarks. Only 1.9% of pupils do not have

the French nationality in our sample, which is twice lower than in the entire population. We

8The merge between datasets was made possible thanks to students’ unique identifier.

9Having data on students’ classes is crucial for it enables us to control for neighborhood, teacher and peer
effects.

10We kept in our sample all initial observations for which we had information on gender, nationality, SES, class
and the tracking process.

11Aggregate data on French ninth-graders and on French junior high-schools were provided to us by the DEPP
(Direction de l’évaluation, de la prospective et de la performance).
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define pupils’ SES according to the INSEE classification of the two parents (see the precise

description in the Appendix). When at least one parent is high-SES, the pupil is considered as

high-SES. When none of the parents is high-SES and at least one of them is intermediate SES,

the kid is considered as intermediate SES. In other cases, the pupil is considered low-SES. The

proportion of high-SES students is 7 percentage points lower in our sample than in the French

population.

Even though students’ performance is slightly lower in our sample than in the entire pop-

ulation, we can identify very similar patterns. In-class test scores are lower in the three main

subjects than in other subjects and the final exam score is much lower than the in-class score.

Junior high-schools in our sample are very representative of junior high-schools in France,

as the proportion of schools labeled Zone of educational priority and the proportion of schools

located in very disadvantaged urban neighborhood are almost the same (respectively 22% against

20.4% and 7.5% against 7.8%).

Table 1.2: Summary statistics and representativeness of the sample

Variable Sample mean Population mean

Students’ characteristics
Boy 0.486 0.497
Girl 0.514 0.503
French 0.981 0.962
Foreign 0.019 0.038
High SES 0.186 0.256
Intermediate SES 0.286 0.258
Low SES 0.528 0.486
N 16864 596053

Academic performance
In-class tests (all topics) 12.1/20 13/20
In-class tests (Mathematics/French/History-Geography) 11.1/20 11.4/20
Final exam (Mathematics/French/History-Geography) 9.4/20 9.8/20
N 16864 596053

Junior High-Schools’ characteristics
Zone of educational priority (ZEP) 0.220 0.204
Not in a zone of educational priority 0.780 0.796
Sensitive urban zone (ZUS ) 0.075 0.078
Not in a sensitive urban zone 0.925 0.922
N 173 5273
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1.4 Teachers’ grading

In-class grades have an effect on tracking because they are used by pupils, parents and teachers

to evaluate the pupils’ chances of succeeding in the different tracks. Indeed, only in-class grades

are observed during the tracking procedure since the final exam takes place after the track

assignment. Teachers may have an indirect impact on students’ tracking through their grading

of in-class tests. Studying whether teachers’ grading depends on students’ characteristics is thus

essential to understand the role of teachers in tracking.

1.4.1 Descriptive statistics on students’ test scores

Academic performance We standardize in-class test scores and the final exam score to

distributions with zero mean and a unit standard deviation, so as to make the statistics easier

to interpret. This procedure is applied within subjects.

Figure 1.2 displays the distribution of standardized test scores in the final exam and in

class by SES. The Kolmogorov-Smirnov test shows that the three distributions are significantly

different at the 1% level for both the final exam and in-class tests. On average, high-SES students

outperform low-SES students by 0.88 SD in the final exam and 0.80 SD in class.

Figure 1.2: Distribution of academic performance by SES

Academic performance also depends on gender. Figure 1.3 displays the distributions of

standardized test scores for boys and girls. The Kolmogorov-Smirnov test shows that the two

distributions are significantly different at the 1% level for both the final exam and in-class tests.

Though, the difference is much larger in in-class tests than in the final exam (the D value of the

KS test is 0.085 in class against 0.036 in the final exam). On average girls outperform boys by
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0.07 SD in the final exam and 0.23 SD in class.

Figure 1.3: Academic performance by Gender

The need for class fixed effects As the design of in-class tests is left at teachers’ discretion,

the in-class score might be difficult to compare for students who are in different classes. As

an illustration, figure 1.4 represents the final exam score and the in-class score of pupils in two

different classes from the sample. Pupils from class B clearly outperform pupils from class A in

the final exam but have similar grades in class, so we can conjecture that teachers in class B are

much more demanding than teachers in class A. This example emphasizes the need to include

class fixed-effects in our analysis of grading to account for such class specificity.
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Figure 1.4: Example of two classes with different grading practices

1.4.2 Empirical evidence for grading differentials

As teachers are completely free in the design and organization of in-class tests, pupils’ observed

academic performance may not exactly correspond to their true academic potential.

Model We assume that the observed/perceived academic performance of student i in class j

is common to the student and her teachers12 and we denote it by θ̃ij .

θ̃ij is of course related to the “true” academic ability of student i, that we denote θi and that

is unobserved during the academic year. θ̃ij may also be affected by student i’s individual

characteristics, in particular gender, SES and nationality. Indeed, students with different char-

acteristics may be graded differently by teachers. θ̃ij is also strongly impacted by the contextual

effects associated to class j, as the perceived academic ability of students is in large part relative

to the level of other students in the classroom. Finally, θ̃ij depends on a random shock εij that

12We discuss this assumption further in section 1.6.

36



follows a standard normal distribution.

θ̃ij = α0 + α1θi + αgirlGirli + αintSESIntermediate SESi + αlowSESLow SESi

+ αforeignForeigni + αFEFEj + εij (1.1)

Identifying assumption Given the respective characteristics of the in-class tests and of the

final exam presented in section 1.3, we assume that the in-class score reflects the perceived aca-

demic ability θ̃ij while the final exam score reflects the true academic ability θi. This identifying

assumption seems relevant for several reasons.

First, pupils and teachers only observe scores obtained in in-class tests. As the final exam is

taken at the very end of the academic year after the track assignment, the final exam score is

unobserved and cannot be used as a basis for perceptions of academic ability. The in-class score

is the only available source of information about students’ academic potential.

Second, in-class tests are not blind, so they are subject to potential grading biases. On the

contrary, the final exam is corrected in a blind and anonymous way, which makes it a “purer”

measure of the true academic ability.

Third, the design and the grading severity of in-class tests strongly vary from one class to an-

other, whereas the final exam is the same for every student. Therefore, the final exam score is

a good measure of the true academic ability because it is independent of contextual specificity.

Fourth, the scope of material covered in in-class tests is usually very limited. Most of the time,

during in-class tests students are evaluated on content from the very last weeks of the course.

Hence, the in-class score, which corresponds to the average performance in these small-scope

tests, may not reflect long-term educational achievements. In contrast, the different exercises

in the final exam are supposed to cover most of the topics of the program. Hence, performance

in the final exam better reflects long-term achievements and the ability to mobilize a wide

knowledge. In that sense, it better approximates true academic ability.

Thus, in the remainder of our analysis, we consider that the final exam score is a measure of

the true academic ability θi and that the in-class score is a measure of the perceived academic

ability θ̃ij . This assumption allows us to disentangle grading effects from tracking effects and is

a key ingredient of our empirical strategy. We discuss and question this assumption further in

section 1.6.
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Estimation In order to estimate the α parameters from equation 1.1, we regress the in-class

score on the final exam score13, on student’s main characteristics (SES, gender, nationality) and

on class fixed-effects to control for neighborhood, teacher and peer effects. As unobservables of

pupils belonging to the same classroom might be correlated, we cluster standard errors at the

class level.

Results Results of the OLS estimation are reported in the first column of table 1.3.

Table 1.3: Grading differentials

Dep. var: In-class score (in SD)

Final exam score (in SD) 0.907∗∗∗

(0.004)

Final exam score (in pctiles) Yes

Girl 0.163∗∗∗ 0.162∗∗∗

(0.008) (0.008)

Intermediate SES -0.086∗∗∗ -0.088∗∗∗

(0.011) (0.011)

Low SES -0.097∗∗∗ -0.099∗∗∗

(0.010) (0.010)

Foreign 0.060∗ 0.061∗

(0.030) (0.030)

Constant -0.003 -1.906∗∗∗

(0.009) (0.038)

Class fixed-effects Yes Yes

Observations 16864 16864
R2 0.82 0.82

Standard errors are clustered at the class level and are reported in parentheses
∗ p < 0.05, ∗∗ p < 0.01, ∗∗∗ p < 0.001

Student’s SES and gender are significant at the 0.1% level. A girl gets an in-class score that

is 0.163 SD higher than the one obtained by a boy from the same class who gets the same score

in the final exam. Low-SES and intermediate SES students get lower in-class grades than high-

SES students (respectively -0.097 SD and -0.086 SD). Foreign students get higher in-class grades

than their equally achieving French classmates (+0.06 SD). In specification (2), we replace the

13As mentioned previously, the in-class score and the final exam score refer to the average grades obtained in
the three main subjects (Mathematics, French, History/Geography).
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continuous final exam score by dummies corresponding to the final score’s percentile. This does

not change the significance of the results and the magnitude of the effects remain in the same

range, which shows that our results are not sensitive to the functional form used for the final

exam score.

The analysis of class fixed-effects confirms that teachers’ grading severity greatly varies

from one class to another. Figure 1.5 plots the estimated in-class grades’ fixed-effects from

specification (1), distinguishing classes located in disadvantaged schools from others. Class

fixed-effects are very strong in magnitude as there is a span of about 2 SD between the least

severe and the most severe classes. This shows that teachers’ in-class grading is far from being

uniform in all school environments and justifies the need for a within-class identification strategy.

Class fixed-effects tend to be much higher in disadvantaged neighborhood, which suggests that

teachers’ grading is less strict in classes where there are a lot of low-SES students.

Note: demeaned class-fixed effects estimated in specification (1) from table 1.3.

Figure 1.5: Distribution of estimated class fixed-effects in grading

As a robustness check, we run the same estimations subject by subject (instead of considering

the average performance in the three subjects). The coefficients associated to gender and SES

remain significant at the 0.1% level for the three subjects (see table 1.11 in the Appendix).

Overall, our results show that (i) teachers’ grading greatly depends on the schools’ context

(between-class effect) and (ii) girls, high-SES students and foreign students get higher in-class

grades than their classmates with the same final exam score (within-class effect). These grading
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differentials might in turn affect tracking.

1.5 Tracking

As described in section 1.3, the tracking procedure is a process in which pupils’ and their families

make track choices that are validated or invalidated by the teacher conference. This institution-

al feature allows us to disentangle pupils’ preferences and expectations from the influence of

teachers and schools on tracking. Furthermore, by combining our analysis of tracking with our

results on grading, we can identify the indirect effect of teachers’ grading on tracking.

1.5.1 Descriptive statistics on tracking

Tracking The track assignment heavily depends on students’ SES. In our sample, 87% of high

SES ninth-graders are recommended the academic track the next year, against only 56.7% of

low SES students. Girls are also more often recommended the academic track than boys (69%

against 59.5%).

Share of students who are recommended the academic track after grade 9

High SES 87%
Intermediate SES 64%
Low SES 56.7%

Girls 69%
Boys 59.5%

Total 64.4%

Table 1.4: Tracking by SES and Gender

These tracking differences may be partly driven by differences in academic performance, as

high-SES students and girls tend to get higher test scores (see figures 1.2 and 1.3). However,

even when we control for academic potential, the track assignment varies with pupils’ SES and

gender. In figure 1.6, we divide students in four groups based on their performance in the final

exam (Group 1: top 25%, Group 2: 25-50%, Group 3: 50-75%, Group 4: bottom 25%). For each

group, we report the share of students who are recommended the academic track the next year by

SES. Among high-achieving students (top 25%), the vast majority of students are recommended

the academic track, independently of their SES. When academic performance decreases, socio-

economic differences in tracking increase: in groups 2, 3 and 4, the share of high-SES students

who are recommended the academic track is respectively 12 percentage points (pp.), 12 pp. and
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16 pp. higher than the one of low-SES students.

Figure 1.6: Track recommendations by performance in the final exam and SES

Figure 1.7 plots a similar graph for boys and girls. High-achieving boys and girls are almost

always enrolled in the academic track. Though, at lower level of academic performance, the

academic track recommendation rate is much higher for girls than for boys: in groups 2, 3 and

4, the share of girls who are recommended the academic track is respectively 9 pp., 11 pp. and

12 pp. higher than the one of boys.
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Figure 1.7: Track recommendations by performance in the final exam and Gender

1.5.2 Students’ track choice independently of grading

In January, pupils indicate whether they intend to choose the academic track or a vocational

track. We start by investigating whether this initial track choice depend on pupils’ individual

characteristics, independently of grading differentials.

Model Academic performance is the key factor that intervenes in the track choice because

pupils choose a track that is in line with their potential. However, students do not observe

their true academic ability. The best information they have about their ability is their score in

in-class tests, which corresponds to their perceived ability θ̃ij .

Other factors, that are not directly related to pupils’ academic ability, might also affect their

track choice. Duru-Bellat (1990) argues that schools transmit stereotypes on genders (i.e. some

occupations are reserved to men). Boys and girls internalize these stereotypes and make track

choices accordingly.

The SES may also play an important role on the initial track choice. As argued by Guyon &

Huillery (2014), low-SES pupils might face more credit and liquidity constraints, which discour-

ages them to choose the academic track because it involves a longer education period. They

might also rationally anticipate that they have lower chance of succeeding in the academic track

because their social and cultural environment is an handicap. They may be less informed about
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the existing tracks, which could restrict their choice set. Their academic self-esteem may be

lower if they do not have role models in their environment and if they internalize prejudices

(stereotype susceptibility). Finally, peers may play an important role on the track choice: as

low-SES pupils tend to be enrolled in disadvantaged schools, they may choose more often a

vocational track if this is the social norm.

Pupils’ track choice may also depend on their nationality, as students with immigrant back-

grounds may have different aspirations (Caille (2007)).

We also need to include class fixed-effects in our model to account for neighborhood and peer

effects. In order to simplify our results’ interpretation, we define the track choice as a dummy

variable that is equal to 1 when the student chooses the academic track and to 0 otherwise.14

Our model is summarized in equation 1.2.

Academic track in initial choice∗ij = β0 + β1θ̃ij + βgirlGirli + βintSESIntermediate SESi

+ βlowSESLow SESi + βforeignForeigni + βFEFEj + uij (1.2)

where Academic track in initial choice∗ij is the latent variable associated to the propensity of

student i in class j to choose the academic track and uij is random shock that follows a standard

normal distribution.

Estimation 1 Our aim is to estimate the β parameters from equation 1.2. We cannot estimate

these parameters directly because the perceived academic ability θ̃ij may be correlated with the

error term uij . If a teacher likes a student, he might both grade him more favorably and

support him more. This encouragement could boost the student’s self-confidence and increase

his likelihood of choosing the high-ability track. Such a mechanism would induce a correlation

between θ̃ij and uij .

Hence, we instrument θ̃ij (the in-class score) by θi (the final exam score) and we use our analysis

of grading from equation 1.1 as the first stage of our IV estimation.

As the final exam score has a strong effect on the in-class score after partialling out the effect

of all other regressors, the relevance condition of our instrument is satisfied (see table 1.3).

The exclusion condition of our instrument (cov(θi, uij) = 0) is also satisfied under our identifying

14Grouping together vocational tracks and grade repetition is not an issue in our setting for two reasons. First,
grade repetition only represents 0.5% of the track choices so it should not alter the results. Second, at equivalent
test scores, high-SES students and girls choose more often grade repetition. Hence our estimates of the effect of
gender and SES on the probability of choosing the academic track should be a lower bound.
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assumption. As θi corresponds to pupils’ true academic ability, it is orthogonal to teachers’ biases

and we can rule out the endogenous mechanism presented before.

We use a probit model to account for the fact that the effect of students’ characteristics on the

probability of choosing the academic track is larger for average achievers than for very low and

very high achievers. We cluster standard errors at the class level to take into account potential

correlation between unobservables of students in the same classroom.15

Results Average marginal effects of the IV probit estimation and their 95% confidence inter-

vals16 are reported in column (1) of table 1.5.

Table 1.5: Tracking (1/4) - average marginal effects from the probit estimation

Dep. var: Initial choice

In class score (in SD) 0.193∗∗∗

instrumented [0.185,0.201]

In class score (in SD) 0.246∗∗∗

non-instrumented [0.239,0.252]

Girl 0.034∗∗∗ 0.025∗∗∗

[0.021,0.046] [0.013,0.037]

Intermediate SES -0.085∗∗∗ -0.088∗∗∗

[-0.105,-0.066] [-0.107,-0.069]

Low SES -0.102∗∗∗ -0.106∗∗∗

[-0.120,-0.084] [-0.124,-0.089]

Foreign 0.065∗∗ 0.057∗∗

[0.025,0.104] [0.016,0.097]

Class fixed-effects Yes Yes

Observations 16864 16864

Standard errors are clustered at the class level

95% confidence intervals in brackets
∗ p < 0.05, ∗∗ p < 0.01, ∗∗∗ p < 0.001

Reading: the coefficient associated to Girl corresponds to βgirl in the model (in a loose sense).

15We use the Stata command ivprobit.

16In our setting, reporting the average marginal effects makes more sense than reporting the marginal effect at
the means because the effects of students’ characteristics will be much greater at the average academic performance
than at very high or very low level of academic performance. Hence, marginal effects at the means would not be
representative of the overall effect.
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The in-class score (instrumented) is significant at the 0.1% level and the magnitude of the

effect is strong: when the in-class score increases by 1 SD, the probability of choosing the

academic track increases by 19.3 percentage points (pp). This result shows that pupils make

track choice that are (at least to some extent) coherent with their academic performance.

Students’ characteristics included in the estimation are all statistically significant at the 1%

level. Controlling for academic performance in class, an intermediate SES pupil and a low-SES

pupil are respectively 8.5 and 10.2 pp. less likely to choose the academic track than a high-

SES pupil. This finding is consistent with the existing literature on tracking in France, which

provides evidence of lower aspirations for low-SES pupils when using teachers’ grades (Davaillon

& Nauze-Fichet (2004)). Gender and nationality also affects the initial track choice: girls apply

more often than boys to the academic track (+ 3.4 pp), as already pointed out in the literature

on tracking (see for example Vrignaud (2016)). Pupils with foreign nationality choose more

often the academic track than French pupils with equivalent in-class score (+6.5 pp).

In column (2) of table 1.5, we report the average marginal effects obtained when we use the

in-class score as a covariate without instrumenting it. The coefficients associated to gender, SES

and nationality are not statistically different from those in the IV estimation. This suggests that

the correlation between θ̃ij and uij is very weak.

As a robustness check, we use a linear model instead of a probit (see table 1.12 in the

Appendix). Gender, SES and nationality remain significant at the 1% level and the coefficients’

signs do not change. Overall, our results show that these characteristics strongly affect pupils’

track choice, independently of teachers’ grading.

1.5.3 Impact of grading differentials on the track choice

Integrating our analysis on grading into our model of initial track choice allows us to understand

how grading differentials indirectly impact pupils’ track choice.

Model By combining equations 1.1 and 1.2, we get:

Academic track in initial choice∗ij = β0 + β1α0 + β1α1θi + (βgirl + β1αgirl)Girli

+ (βintSES + β1αintSES)Intermediate SESi + (βlowSES + β1αlowSES)Low SESi

+ (βforeign + β1αforeign)Foreigni + (βFE + β1αFE)FEj + (uij + β1εij) (1.3)
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When considering pupils’ initial track choice along with the final exam score, the coefficients

associated to pupils’ characteristics can be interpreted as the sum of the direct effect of the

gap in initial track choice (βX), and the indirect effect of grading differentials on the initial

track choice (β1αX). Thus, by comparing our results with the instrumented in-class score to

our results with the final exam score, we can identify the indirect effect of grading differentials

on the track choice.

Estimation 2 We use a probit model to estimate parameters from equation 1.3. Our depen-

dent variable is the pupil’s initial track choice. Explanatory variables are the final exam score,

dummy variables for pupils’ characteristics and class fixed-effects. Standard errors are clustered

at the classroom level.

Results Average marginal effects with the instrumented in-class score17 and the final exam

score are reported in table 1.6. We can interpret the difference between coefficients in column

(2) and column (1) as the indirect effect of grading differentials on pupils’ initial track choice.18

17This estimation corresponds to our previous analysis in column (1) of table 1.5

18Though, it is important to note that we report average marginal effects in this table. Hence, the coefficients
in columns (1) and (2) do not exactly correspond to βX and βX + β1αX . For the ease of interpretation, we do
as if average marginal effects were equivalent to the model parameters in all our analysis on tracking. As all our
conclusions remain valid when we use linear models - where the estimated coefficients exactly correspond to the
models’ parameters - this shortcut does not appear to be problematic (see table 1.14 in the Appendix for results
with linear estimations).
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Table 1.6: Tracking (2/4) - average marginal effects from probit estimations

Dep. var: Initial choice

In class score (in SD) 0.193∗∗∗

instrumented [0.185,0.201]

Final exam score (in SD) 0.247∗∗∗

[0.239,0.255]

Girl 0.034∗∗∗ 0.067∗∗∗

[0.021,0.046] [0.054,0.080]

Intermediate SES -0.085∗∗∗ -0.103∗∗∗

[-0.105,-0.066] [-0.122,-0.083]

Low SES -0.102∗∗∗ -0.122∗∗∗

[-0.120,-0.084] [-0.140,-0.103]

Foreign 0.065∗∗ 0.083∗∗∗

[0.025,0.104] [0.043,0.122]

Class fixed-effects Yes Yes

Observations 16864 16864

Standard errors are clustered at the class level

95% confidence intervals in brackets
∗ p < 0.05, ∗∗ p < 0.01, ∗∗∗ p < 0.001

Reading: the coefficient associated to Girl in column (1) corresponds to βgirl in the model (in a loose sense).

Reading: the coefficient associated to Girl in column (2) corresponds to βgirl + β1αgirl in the model (in a loose sense).

The average marginal effect of gender on the initial track choice doubles when we consider

the final exam score instead of the in-class score (from 3.4 pp to 6.7 pp). This means that about

half of the gender gap in aspirations can be explained by the gender grading differential.

Marginal effects associated to SES and nationality increase when we consider the final exam

score. However, confidence intervals in the two estimations overlap, which suggests that grad-

ing effects have a lower impact on the SES and nationality aspirations gap than on the gender

aspirations gap. This outcome is coherent with the fact that we observe larger grading differen-

tials between boys and girls than between low-SES and high-SES pupils or between French and

foreign pupils (see table 1.3).

1.5.4 Teachers’ track recommendation independently of grading

In March, the teacher conference responds to the pupil’s track choice (Recommandations), by

either encouraging it or suggesting another track. Observing both pupils’ initial track choice
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and the teachers’ track recommendation allows us to identify the direct influence of teachers on

tracking.

Model Teachers take into account pupils’ initial choice to make their track recommendations.

Though, they do not systematically confirm the initial choice and they may play a corrective

role. We define the latent variable associated to the propensity of student i in class j to be

recommended the academic track as follows:

Academic track recommended∗ij = Academic track in initial choice∗ij + Teachers’ adjustmentij

where according to equation 1.2:

Academic track in initial choice∗ij = β0 + β1θ̃ij + βgirlGirli + βintSESIntermediate SESi

+ βlowSESLow SESi + βforeignForeigni + βFEFEj + uij

and Teachers’ adjustmentij is defined as follows:

Teachers’ adjustmentij = γ0 + γ1θ̃ij + γgirlGirli + γintSESIntermediate SESi

+ γlowSESLow SESi + γforeignForeigni + γFEFEj + ηij

We assume that, controlling for pupil’s initial track choice, the teachers’ track recommendation

depends on observed academic performance θ̃ij . Indeed, if a very high achieving student applies

to a vocational track, teachers may recommend her the academic track instead. On the contrary,

if a very low achieving student applies to the academic track, teachers may recommend her a

vocational track instead.

Teachers’ recommendation could also depend on pupils’ characteristics. At equivalent initial

choice and perceived academic performance, they might have prejudices towards certain cate-

gories of students and be less prone to recommend them the high-ability track. Another possible

mechanism would be that teachers use their recommendations to “correct” the gender and SES

gaps in initial track choice. In our setting, this would imply γgirl < 0 and γlowSES > 0.

Contextual specificity may also affect teachers’ track recommendation. Like in our analysis on

grading, we can conjecture that the degree of severity in track recommendations strongly de-

pends on the class. Teachers in high-performing classes are likely to be more demanding than

teachers in low-performing classes. Finally, the track recommendation depends on a random

shock ηij .

48



By combining equations on the initial track choice and on teachers’ adjustment, we get the

following expression:

Academic track recommended∗ij = β0 + γ0 + (β1 + γ1)θ̃ij + (βgirl + γgirl)Girli

+ (βintSES + γintSES)Intermediate SESi + (βlowSES + γlowSES)Low SESi

+ (βforeign + γforeign)Foreigni + (βFE + γFE)FEj + uij + ηij (1.4)

Thus, when considering teachers’ track recommendation along with the in-class score, the coef-

ficients associated to pupils’ characteristics can be interpreted as the sum of the gap in initial

track choice (βX) and the teachers’ recommendation adjustment (γX).

Estimation 3 Our aim is to recover the β + γ parameters from equation 1.4. As mentioned

previously, cov(θ̃ij , uij) 6= 0. Furthermore, if a teacher likes a student, he might be less se-

vere towards him through both grading and the track recommendation, which implies that

cov(θ̃ij , ηij) 6= 0.

As θ̃ij may be endogenous, we instrument it by θi, as we did in our analysis of pupils’ initial

track choice. The exclusion condition is satisfied by the fact that θi is independent of teachers’

biases. We use a probit model and we cluster standard errors at the class level.

Results According to equations 1.2 and 1.4, we can identify the direct influence of teachers on

tracking (i.e. the γ parameters) by comparing our coefficients in estimations 1 and 3. Obtaining

the same coefficients means that teachers tend to simply confirm students’ initial track choice

whereas a statistical difference implies that teachers either accentuate or reduce gaps in the

initial track choice. We report average marginal effects of the two estimations in columns (1)

and (3) of table 1.7.
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Table 1.7: Tracking (3/4) - average marginal effects from probit estimations

Dep. var: Initial choice Recommendation

In class score (in SD) 0.193∗∗∗ 0.297∗∗∗

instrumented [0.185,0.201] [0.288,0.305]

In class score (in SD) 0.246∗∗∗ 0.315∗∗∗

non-instrumented [0.239,0.252] [0.307,0.324]

Girl 0.034∗∗∗ 0.025∗∗∗ 0.026∗∗∗ 0.023∗∗∗

[0.021,0.046] [0.013,0.037] [0.016,0.037] [0.013,0.033]

Intermediate SES -0.085∗∗∗ -0.088∗∗∗ -0.044∗∗∗ -0.045∗∗∗

[-0.105,-0.066] [-0.107,-0.069] [-0.061,-0.027] [-0.062,-0.028]

Low SES -0.102∗∗∗ -0.106∗∗∗ -0.054∗∗∗ -0.056∗∗∗

[-0.120,-0.084] [-0.124,-0.089] [-0.071,-0.038] [-0.072,-0.040]

Foreign 0.065∗∗ 0.057∗∗ 0.049∗∗ 0.046∗∗

[0.025,0.104] [0.016,0.097] [0.017,0.082] [0.014,0.079]

Class fixed-effects Yes Yes Yes Yes

Observations 16864 16864 16864 16864

Standard errors are clustered at the class level

95% confidence intervals in brackets
∗ p < 0.05, ∗∗ p < 0.01, ∗∗∗ p < 0.001

Reading: the coefficient associated to Girl in columns 1-2 corresponds to βgirl in the model (in a loose sense).

Reading: the coefficient associated to Girl in columns 3-4 corresponds to βgirl + γgirl in the model (in a loose sense).

The average marginal effect associated to the in-class score is larger when we consider the

track recommendation than when we consider the initial track choice. An increase of 1 SD of the

in-class score makes a pupil 19.3 pp more likely to apply to the academic track while it makes

teachers 29.7 pp more likely to recommend the academic track. This result shows that teachers

adjust the track recommendation according to pupils’ observed academic performance (γ1 > 0).

Pupils with bad in-class grades who apply to the academic track are recommended a vocational

track (and vice-versa).

The coefficients associated to gender and nationality slightly change in the two estimations but

the difference is not significant. Hence, teachers do not “correct” the gender and nationality

gaps in initial track choice (γgirl = 0 and γforeign = 0).

The coefficients associated to SES decrease by about 50% in the estimation of the track rec-

ommendation. An intermediate-SES (respectively low-SES) pupil is 8.5 pp (resp. 10.2 pp) less
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likely to apply to the academic track whereas she is only 4.4 pp (resp 5.4 pp) less likely to be

recommended the academic track. This result shows that teachers slightly reduce the initial

social gap in aspirations by encouraging more low˙SES pupils to pursue the academic track

(γintSES > 0 and γlowSES > 0).

In column (4) of table 1.7, we report the marginal effects obtained when we use the in-class

score as a covariate without instrumenting it in our analysis of teachers’ recommendations. The

coefficients associated to pupils’ characteristics are almost the same as in the IV estimation.

This suggests that the correlation between θ̃ij and (uij + ηij) is very weak.

As a robustness check, we use a linear model instead of a probit model. All our conclusions

remain valid (see table 1.13 in the Appendix).

1.5.5 Direct measures of teachers’ impact on tracking

Integrating our analysis on grading into our model of teachers’ track recommendation allows us

to measure directly two effects: (i) the indirect effect of grading differentials on tracking through

both pupil’s initial track choice and teachers’ track recommendation and (ii) the overall impact

of teachers on tracking through both grading differentials and their track recommendations.

Model By combining equations 1.1 and 1.4, we get:

Academic track recommended∗ij = β0+γ0+(β1+γ1)α0+(β1+γ1)α1θi+[βgirl+γgirl+(β1+γ1)αgirl]Girli

+[βintSES+γintSES+(β1+γ1)αintSES)]Intermediate SESi+[βlowSES+γlowSES+(β1+γ1)αlowSES)]Low SESi

+[βforeign+γforeign+(β1+γ1)αforeign)]Foreigni+[βFE+γFE+(β1+γ1)αFE)]FEj+uij+ηij+(β1+γ1)εij

(1.5)

Thus, when considering the track recommendation along with the final exam score, the coeffi-

cients associated to pupils’ characteristics can be interpreted as the sum of the gap in initial

track choice (βX), the teachers’ recommendation adjustment (γX) and the indirect effect of

grading differentials on tracking ((β1 + γ1)αX).

Estimation 4 We estimate parameters of equation 1.5 with a probit model. The dependent

variable is the recommended track. Explanatory variables are the final exam score, dummy

variables for pupil’s characteristics and class fixed-effects. Standard errors are clustered at the
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class level.19

Results According to equations 1.4 and 1.5, we can directly measure the indirect effect of

grading differentials on tracking (i.e. the (β1 +γ1)αX parameters) by comparing our coefficients

in estimations 3 and 4.

Furthermore, according to equations 1.2 and 1.5, we can directly measure the overall impact

of teachers on tracking (i.e the γX + (β1 + γ1)αX parameters) by comparing our coefficients in

estimations 1 and 4.

Average marginal effects from estimation 4 are reported in table 1.8 along with the three previous

estimations.

19Note that we already estimated independently the different parameters of equation 1.5 in our previous
analyses. Estimation 4 only allows us to measure directly the sum of the different effects, in a much more direct
way than if we summed “manually” the different effects.
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Table 1.8: Tracking (4/4) - average marginal effects from probit estimations

Dep. var: Initial choice Recommendation

In class score (in SD) 0.193∗∗∗ 0.297∗∗∗

instrumented [0.185,0.201] [0.288,0.305]

Final exam score (in SD) 0.247∗∗∗ 0.308∗∗∗

[0.239,0.255] [0.299,0.316]

Girl 0.034∗∗∗ 0.067∗∗∗ 0.026∗∗∗ 0.079∗∗∗

[0.021,0.046] [0.054,0.080] [0.016,0.037] [0.067,0.091]

Intermediate SES -0.085∗∗∗ -0.103∗∗∗ -0.044∗∗∗ -0.077∗∗∗

[-0.105,-0.066] [-0.122,-0.083] [-0.061,-0.027] [-0.096,-0.058]

Low SES -0.102∗∗∗ -0.122∗∗∗ -0.054∗∗∗ -0.088∗∗∗

[-0.120,-0.084] [-0.140,-0.103] [-0.071,-0.038] [-0.106,-0.070]

Foreign 0.065∗∗ 0.083∗∗∗ 0.049∗∗ 0.078∗∗∗

[0.025,0.104] [0.043,0.122] [0.017,0.082] [0.040,0.115]

Class fixed-effects Yes Yes Yes Yes

Observations 16864 16864 16864 16864

Standard errors are clustered at the class level

95% confidence intervals in brackets
∗ p < 0.05, ∗∗ p < 0.01, ∗∗∗ p < 0.001

Reading: the coefficient associated to Girl in column (1) corresponds to βgirl in the model (in a loose sense).

Reading: the coefficient associated to Girl in column (2) corresponds to βgirl + β1αgirl in the model (in a loose sense).

Reading: the coefficient associated to Girl in column (3) corresponds to βgirl + γgirl in the model (in a loose sense).

Reading: the coefficient associated to Girl in column (4) corresponds to βgirl + γgirl + (β1 + γ1)αgirl in the model

(in a loose sense).

Comparing columns (3) and (4) allows us to measure directly the effect of grading differentials

on tracking. The average marginal effect associated to girl increases from 2.6 pp to 7.9 pp and

the average marginal effect associated to low-SES goes from -5.4 pp to -8.8 pp. These results

show that the gender and socio-economic tracking gaps are partly driven by teachers’ grading

differentials. Therefore, as postulated in the beginning of this paper, it is essential to investigate

teachers’ grading in any analysis on tracking.

Comparing columns (1) and (4) allows us to measure directly the overall impact of teachers

on tracking through both their grading and their track recommendations. Teachers widens

the initial gender gap in aspirations (the effect goes from 3.4 pp in estimation 1 to 7.9 pp in

estimation 4). This is coherent with our previous findings: girls get higher in-class grades than
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boys which indirectly affect tracking, and teachers do not use their recommendation to “correct

downwards” the gender gap in the initial track choice. The impact of teachers on tracking with

regards to pupils’ SES is more contrasted. Average marginal effects associated to SES are not

statistically different in estimations 1 and 4. It means that globally, teachers do not widen nor

reduce the socio-economic gap in aspirations. On one hand, their grading disadvantages low

SES pupils, which indirectly widens the tracking gap. On the other hand, they use their track

recommendations to slightly reduce the socio-economic gap in the initial track choice. These

two antagonist effects seem to cancel each other.

When we use a linear model instead of a probit model, we obtain very similar results and

all our conclusions are confirmed (see table 1.14 in the Appendix).

1.6 Discussion

In order to identify grading differentials, we assumed that the in-class-score reflects the perceived

academic ability and that the final exam score reflects the true academic ability. In this section,

we question further this identifying assumption and discuss its limits.

1.6.1 Interpreting the in-class score as the perceived academic ability

Students and teachers only observe in-class grades over the academic year, so it makes sense

to consider that they reflect student’s observable or perceived academic ability. Nevertheless,

data limitations regarding the in-class score and the assumption of common perceived academic

ability by the student and her teachers need to be further discussed.

Data limitations on the in-class score A limit of our analysis is that we only have data on

average in-class grades obtained over the entire academic year. As the initial track choice takes

place in the end of the first quarter, ideally we should only consider the in-class score in the first

quarter in our analysis of students’ aspirations. Similarly, as the track recommendation takes

place in the end of the second quarter, ideally we should not take into account in-class grades

from the third quarter in our analysis of teachers’ recommendations.

However, pupils’ academic performance is strongly correlated from one quarter to the next, so

considering the in-class score over the entire year instead of the in-class score on more accurate

periods should not strongly affect our results.
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Common perceived academic ability We assume that the perceived academic performance

of student i in class j is common to the student and her teachers and corresponds to the in-class

score. Though, we could imagine that a student’s assessment of her own individual academic

performance differs from the one of her teachers (and therefore does not correspond to her in-

class score). For example, a student might consider that her in-class score under-estimates her

performance. If such deviations between teachers’ and students’ perceptions were correlated to

students’ individual characteristics, they could affect our results on tracking.

We cannot test empirically for the existence of such deviations, but from a theoretical viewpoint

they seem very unlikely given the importance of grades in the French education system. Indeed,

pupils and their parents tend to be obsessed by grades obtained at school (Merle (2014)). This

obsession suggests that they think that grades reflect academic potential. Otherwise, they would

not give them so much importance.

1.6.2 Interpreting the final exam score as the true academic ability

We now investigate two mechanisms according to which the final exam score would not neces-

sarily reflect students’ true academic ability.

The final exam is “one-shot” The final exam score is based on academic performance in a

one shot exam, so one concern might be that performance in this test varies at the individual

level due to random variations around average ability (for example if the student is sick during

the exam day). Considering these random variations are orthogonal to pupils’ individual char-

acteristics, our results are not biased. Only the variance of our estimates could be affected. As

most of our results are significant at the 0.1% level, this should not affect any of our conclusions.

The final exam is a high-stake situation The final exam is more stressful than in-class

tests because it is weighted much more than an in class test in the overall score. Moreover, the

final test is the first official exam that students take in their life, so pressure might be pretty

high for them. If students respond differently to pressure depending on their gender or social

background, their final exam score may not only reflect their true academic ability, but also a

“choking under pressure” component that is correlated to gender and SES. Azmat, Calsamiglia

& Iriberri (2016) test for such an effect by gender and show that female students outperform

male students relatively more when the stakes are low.
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In order to ensure that our results on grading differentials are not driven by choking under

pressure, we focus on a subsample of students who do not face pressure in the final exam. As

in-class tests account for 60% of the total number of points required to get the DNB degree,

some very high-performing pupils do not need any point in the final exam to pass.20 Hence, we

can assume that for these top students, different responses to pressure cannot explain grading

differentials by gender and SES.

We perform the same estimations as in section 1.4 on this subsample of pupils. Results are

reported in table 1.9. Grading differentials associated to gender and low-SES remain significant

at the 5% level. This is evidence that choking under pressure does not (at least not fully) explain

grading differentials.

Table 1.9: Grading differentials (subsample of top students with no pressure)

Dep. var: In-class score (in SD)

Final exam score (in SD) 0.423∗∗∗

(0.023)

Final exam score (in pctiles) Yes

Girl 0.045∗ 0.043∗

(0.020) (0.021)

Intermediate SES -0.023 -0.030
(0.020) (0.021)

Low SES -0.047∗ -0.049∗

(0.021) (0.022)

Foreign -0.186∗∗ -0.212∗∗∗

(0.070) (0.058)

Constant 1.355∗∗∗ 2.430∗∗∗

(0.044) (0.036)

Class fixed-effects Yes Yes

Observations 1523 1523
R2 0.70 0.72

Standard errors are clustered at the class level and are reported in parentheses
∗ p < 0.05, ∗∗ p < 0.01, ∗∗∗ p < 0.001

20In our setting, 1523 students have enough points in-class to get the DNB degree without getting any point
in the final exam. They represent 9.2% of the overall sample.
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1.7 Conclusion

This paper provides compelling evidence that grading and tracking are two interconnected ques-

tions in education. As grades are supposed to reflect pupils’ academic potential and their chance

of succeeding in the different tracks, teachers’ grading indirectly affect tracking.

We investigate teachers’ grading practices by comparing students’ performance in a blind

standardized final exam that reflects pretty well their true academic potential to their perfor-

mance in non-blind class tests that are left at teachers’ discretion. At equivalent score in the

final exam, boys and low-SES students get lower grades in class.

This analysis on grading allows us to isolate direct tracking effects from indirect grading

effects. We show that boys and low-SES pupils apply much less often to the academic track

than their equally achieving classmates and that teachers’ grading differentials amplify these

gender and socio-economic gaps in aspirations.
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Appendices

Appendix A: defining students’ SES

In our dataset, we have detailed information on parents’ SES according to the French education

classificiation, which builds on the National Statistics Institute (INSEE ) classification. Each

category of occupation is assigned a 2-digit code. We follow the same methodology as Guyon &

Huillery (2014) to classify occupations in three categories:

- High-SES occupations correspond to codes 23, 31, 33, 34, 35, 37 and 38.

- Intermediate-SES occupations are referred to codes 42, 43, 44, 45, 46, 47, 48 and 73.

- Low-SES occupations correspond to codes 10, 21, 22, 52, 53, 54, 55, 56, 61, 66, 69, 71, 72,

76, 81, and 82.

The student SES is then defined according to her parents’ occupations:

• If at least one of her parent has a high-SES occupation, the student is assigned to the

category “high-SES”.

• If her two parents have low-SES occupations, the student is assigned to the category

“low-SES”.

• In all other cases (except when information is missing for both parents, in which case we

exclude the student from the sample), the student is assigned to the category “intermedi-

ate SES”.

Parent 1
High-SES Intermediate SES Low-SES Missing data

Parent 2

High-SES H H H H
Intermediate SES H I I I

Low-SES H I L L
Missing data H I L

H = high-SES student, I = intermediate SES student, L = low-SES student

Table 1.10: Defining students’ SES
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Appendix B: Additional tables

Table 1.11: Grading differentials by subject

Dep. var: In-class score (in SD) (1) (2) (3) (4) (5) (6)

Mathematics History/Geography French

Final exam score (in SD) 0.846∗∗∗ 0.784∗∗∗ 0.753∗∗∗

(0.006) (0.006) (0.006)

Final exam score (in pctiles) Yes Yes Yes

Girl 0.173∗∗∗ 0.170∗∗∗ 0.137∗∗∗ 0.135∗∗∗ 0.172∗∗∗ 0.172∗∗∗

(0.010) (0.010) (0.011) (0.011) (0.011) (0.011)

Intermediate SES -0.102∗∗∗ -0.104∗∗∗ -0.145∗∗∗ -0.146∗∗∗ -0.196∗∗∗ -0.197∗∗∗

(0.013) (0.013) (0.014) (0.014) (0.015) (0.015)

Low SES -0.126∗∗∗ -0.128∗∗∗ -0.169∗∗∗ -0.169∗∗∗ -0.246∗∗∗ -0.246∗∗∗

(0.012) (0.012) (0.013) (0.013) (0.014) (0.014)

Foreign 0.032 0.035 0.020 0.017 0.023 0.027
(0.035) (0.035) (0.037) (0.037) (0.042) (0.042)

Constant -0.107∗∗∗ -1.721∗∗∗ 0.213∗∗∗ -1.513∗∗∗ -0.002 -1.714∗∗∗

(0.011) (0.037) (0.012) (0.046) (0.012) (0.048)

Class fixed-effects Yes Yes Yes Yes Yes Yes

Observations 16864 16864 16864 16864 16864 16864
R2 0.74 0.74 0.72 0.72 0.68 0.68

Standard errors are clustered at the class level and are reported in parentheses
∗ p < 0.05, ∗∗ p < 0.01, ∗∗∗ p < 0.001
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Table 1.12: Tracking - pupils’ initial track choice - linear estimations

Dep. var: Initial choice

In class score (in SD) 0.261∗∗∗

instrumented [0.254,0.269]

In class score (SD) 0.252∗∗∗

non-instrumented [0.245,0.259]

Girl 0.021∗∗ 0.023∗∗∗

[0.008,0.034] [0.010,0.036]

Intermediate SES -0.035∗∗∗ -0.040∗∗∗

[-0.051,-0.019] [-0.057,-0.023]

Low SES -0.055∗∗∗ -0.061∗∗∗

[-0.070,-0.040] [-0.077,-0.046]

Foreign 0.071∗∗ 0.069∗∗

[0.026,0.116] [0.024,0.115]

Constant 1.093∗∗∗ 1.095∗∗∗

[1.080,1.106] [1.081,1.108]

Class fixed-effects Yes Yes

Observations 16864 16864
R2 0.39 0.40

Standard errors are clustered at the class level

95% confidence intervals in brackets
∗ p < 0.05, ∗∗ p < 0.01, ∗∗∗ p < 0.001

Reading: the coefficient associated to Girl corresponds to βgirl in the model.
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Table 1.13: Tracking - pupils’ initial track choice vs. teachers’ track recommendation - linear
estimations

Dep. var: Initial choice Recommendation

In class score (in SD) 0.261∗∗∗ 0.323∗∗∗

instrumented [0.254,0.269] [0.316,0.330]

In class score (in SD) 0.252∗∗∗ 0.331∗∗∗

non-instrumented [0.245,0.259] [0.324,0.337]

Girl 0.021∗∗ 0.023∗∗∗ 0.019∗∗∗ 0.017∗∗

[0.008,0.034] [0.010,0.036] [0.008,0.030] [0.006,0.029]

Intermediate SES -0.035∗∗∗ -0.040∗∗∗ -0.012 -0.008
[-0.051,-0.019] [-0.057,-0.023] [-0.028,0.003] [-0.024,0.008]

Low SES -0.055∗∗∗ -0.061∗∗∗ -0.023∗∗ -0.017∗

[-0.070,-0.040] [-0.077,-0.046] [-0.037,-0.008] [-0.032,-0.003]

Foreign 0.071∗∗ 0.069∗∗ 0.057∗∗ 0.058∗∗

[0.026,0.116] [0.024,0.115] [0.016,0.098] [0.016,0.100]

Constant 1.093∗∗∗ 1.095∗∗∗ 0.721∗∗∗ 0.720∗∗∗

[1.080,1.106] [1.081,1.108] [0.709,0.734] [0.707,0.733]

Class fixed-effects Yes Yes Yes Yes

Observations 16864 16864 16864 16864
R2 0.39 0.40 0.53 0.53

Standard errors are clustered at the class level

95% confidence intervals in brackets
∗ p < 0.05, ∗∗ p < 0.01, ∗∗∗ p < 0.001

Reading: the coefficient associated to Girl in columns 1-2 corresponds to βgirl in the model.

Reading: the coefficient associated to Girl in columns 3-4 corresponds to βgirl + γgirl in the model.
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Table 1.14: Tracking - summary table - linear estimations

Dep. var: Initial choice Recommendation

In class score (in SD) 0.261∗∗∗ 0.323∗∗∗

instrumented [0.254,0.269] [0.316,0.330]

Final exam score (in SD) 0.237∗∗∗ 0.293∗∗∗

[0.230,0.245] [0.286,0.300]

Girl 0.021∗∗ 0.064∗∗∗ 0.019∗∗∗ 0.072∗∗∗

[0.008,0.034] [0.050,0.077] [0.008,0.030] [0.059,0.085]

Intermediate SES -0.035∗∗∗ -0.057∗∗∗ -0.012 -0.040∗∗∗

[-0.051,-0.019] [-0.074,-0.040] [-0.028,0.003] [-0.057,-0.023]

Low SES -0.055∗∗∗ -0.080∗∗∗ -0.023∗∗ -0.054∗∗∗

[-0.070,-0.040] [-0.096,-0.064] [-0.037,-0.008] [-0.070,-0.038]

Foreign 0.071∗∗ 0.086∗∗∗ 0.057∗∗ 0.076∗∗

[0.026,0.116] [0.039,0.133] [0.016,0.098] [0.029,0.124]

Constant 1.093∗∗∗ 1.092∗∗∗ 0.721∗∗∗ 0.721∗∗∗

[1.080,1.106] [1.078,1.106] [0.709,0.734] [0.707,0.734]

Class fixed-effects Yes Yes Yes Yes

Observations 16864 16864 16864 16864
R2 0.39 0.35 0.53 0.43

Standard errors are clustered at the class level

95% confidence intervals in brackets
∗ p < 0.05, ∗∗ p < 0.01, ∗∗∗ p < 0.001

Reading: the coefficient associated to Girl in column (1) corresponds to βgirl in the model.

Reading: the coefficient associated to Girl in column (2) corresponds to βgirl + β1αgirl in the model.

Reading: the coefficient associated to Girl in column (3) corresponds to βgirl + γgirl in the model.

Reading: the coefficient associated to Girl in column (4) corresponds to βgirl + γgirl + (β1 + γ1)αgirl in the model.
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Chapter 2

Individual contribution in team
contests

Antoine Chapsal & Jean-Baptiste Vilain

63



Abstract

This paper empirically analyzes team effects in multiple pairwise battles, where players from

two rival teams compete sequentially. Using squash team contests as a randomized natural ex-

periment, we show that winning the first battle significantly increases the probability of winning

the subsequent one. We derive testable predictions from a theoretical model in order to identify

the effect driving this dependence on past outcomes. We provide compelling evidence of an

individual contribution effect : players not only benefit from their team’s win, but also value the

fact of being individually – even partly – responsible for their team’s collective success. Such

an effect is of prime importance to understanding why individuals can make a significant effort

when offered collective-based incentives.

JEL classification: C72, D79, L83, M54.

Keywords Teams; Multiple Pairwise Battles; Individual Contribution.
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2.1 Introduction

Many economic achievements are produced by groups, such as teams or partnerships, in which

each individual outcome mainly depends on other teammates’ effort decisions. This is why there

is an extensive body of economic literature devoted to understanding individuals’ behavior in

teams and exploring the design of team-based incentives. The conventional economic wisdom is

that team-based incentives induce individuals to exert less effort than individual-based contracts,

simply because rational and self-interested individuals free ride and do not internalize their

teammates’ utility when making effort decisions.1 However, recent literature has found that

individuals could make a significant effort for their team, not only when they react to peer

pressure, but also in order to avoid feeling guilty, i.e., living up to the expectations of others

(Kandel & Lazear (1992), Charness & Dufwenberg (2006), Chen & Lim (2013)). In this paper,

we provide compelling evidence that individuals value being at least partly responsible for their

team’s success. Teammates make a significant effort in teams because they want to take part

in the group’s success. We refer to this important team effect as individual contribution: when

involved within a team, individuals positively take into account the role they can play to achieve

collective success.

Assessing individual contribution to team output is extremely challenging, especially when

teammates’ efforts interact in a subtle manner (Alchian & Demsetz (1972)).2 We focus on a

special kind of team setting, “multiple pairwise battles,” where individual production is fully

observable, thereby allowing us to test whether individuals value contributing to their team’s

victory. Multiple pairwise battles3 refer to collective contests where players from two rival teams

compete in individual battles and the winning team is the one that wins the majority of battles.

Such contests correspond to many economic and social phenomena. For instance, in the House

of Representatives and Senate elections in the United States, rival political parties compete for

legislative seats in each electoral district, and a party can form a government or set political

agenda in the legislature if it acquires majority status. An R&D race for a new product can also

be seen as multiple pairwise battles: it implies competition on a series of component technologies

1See Prendergast (1999) and Sheremeta (2017) for surveys on this topic.

2The econometric estimation of individual productivity in team settings is investigated in the third chapter
of this dissertation.

3The expression “multiple pairwise battles” is used by Fu, Lu & Pan (2015). The alternative expression
“multi-battle team contest” is also used by some authors. In this paper, we refer to each component of a contest
as a battle, a match or a confrontation.
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and the winning firm is the one that gets ahead of its competitors in the majority of technologies.

Some sports events also correspond to this kind of contest. A famous example is the Davis Cup

tennis tournament, where the players from two national teams compete sequentially in a best-

of-five contest.

Fu, Lu & Pan (2015) present a benchmark theoretical analysis of multiple pairwise battles.

They show, under standard assumptions, that the outcome of a battle is independent from the

outcome of previous and subsequent confrontations. Such a result, which they refer to as “neu-

trality,” implies that confrontations can be considered independent. There is not any “dynamic

linkage” between subsequent battles and the order of play does not affect the final result. Neu-

trality is derived from the fact that players do not internalize the cost of effort of upcoming

battles, for the simple reason that it is borne by their teammates.

From a theoretical viewpoint, one can draw a contrast with the “discouragement” effect, which

arises in individual multi-battle contests in which the same players square off against one another

sequentially.4 In individual contests (e.g., a two-set tennis match), winning the first confronta-

tion (or the first set) positively affects the probability of winning the next one: the remaining

effort required to win the contest is lower for the frontrunner than for the laggard. The former is

therefore more likely to win than the latter. The discouragement effect, which has been studied

extensively,5 cannot occur in multiple pairwise battles, as the remaining effort required to obtain

the final payoff after a non-definitive battle is not to be borne by the current player.

As Fu, Lu & Pan (2015) stress, the neutrality result contrasts sharply with conventional

wisdom, which holds that battles are not independent in a team contest. From a theoretical

perspective, two kinds of effects would explain why winning the first battle should affect the

outcome of the subsequent one in multiple pairwise battles: (i) effects that endogenously alter

4See Dechenaux, Kovenock & Sheremeta (2015) for a survey.

5There is an abundant literature on individual contests, which finds evidence of the dependence of outcomes
in subsequent individual confrontations and confirms the discouragement effect. For instance, Klumpp & Polborn
(2006) model U.S. presidential primaries as a best-of-N contest between two candidates and show that winning
the early districts strongly affects the probability of winning later districts. Malueg & Yates (2010) find empirical
evidence of strategic effects in individual tennis matches. Taking a sample of equally skilled players, they show
that the winner of the first set exerts more effort in the second set than the loser. Mago, Sheremeta & Yates (2013)
provide experimental evidence of a discouragement effect in a best-of-three Tullock contest. They also show that
this effect is strategic, not psychological. Harris & Vickers (1987) show that in a two-firm R&D race model, an
early lead yields easy wins in subsequent battles because of the discouragement effect on the lagging opponent.
Konrad & Kovenock (2009) show in a theoretical framework that the introduction of intermediate prizes for
component battles (i.e., payoff from winning a single battle even if the match is lost) reduces discouragement.
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players’ ability; and (ii) effects that endogenously affect players’ incentives.

First, two effects, “choking under pressure” and “psychological momentum,” may explain the

absence of neutrality as they alter players’ ability. Choking under pressure may occur if a player

in the lagging team faces more pressure than a player in the leading team because the former has

to win in order to keep his team in the contest. This pressure might have a detrimental effect

on performance and might thus explain why winning the first battle would affect the probability

of winning the next one. Psychological momentum, which has been mainly documented in

individual settings, denotes the idea that winning a battle boosts players’ confidence and helps

them win the next one. In other words, initial success in a contest produces momentum that

leads to future success.

Second, outcome dependence in multiple pairwise battles may be explained by asymmetric

incentives among players, which may be caused by three potential phenomena. Altruism, i.e.,

the fact that players internalize their teammates’ costs of effort, would generate a linkage between

subsequent battles. If individuals were altruistic, bearing part of their teammates’ costs, the

player in the leading team would have more incentives to win than the player in the lagging

team because he could avoid one of his teammate to make a costly effort in the upcoming battle.

Another effect that may distort players’ incentives and generate outcome dependence is “guilt

aversion”: a player may dread being (partly) responsible for his team’s defeat. In this case, the

player in the lagging team has more incentives to win than his opponent because he is more likely

to be responsible for his team’s defeat than his opponent if he loses his individual battle. Note

that contrary to other effects, guilt aversion implies that being in the lagging team increases

the probability of winning the battle. Finally, one may also consider another kind of effect,

which we refer to as “individual contribution”: players may value being partly responsible for

collective success. In such a case, a player on the leading team has a higher probability of being

(partly) responsible for collective success than his opponent. This higher probability increases

his incentive to make a more costly effort, thereby increasing his probability of winning. It

would follow, then, that winning the first battle endogenously creates asymmetry in incentives

and may therefore lead to outcome dependence with subsequent battles.

These potentially strong effects are grounds to empirically test for neutrality, which consists

in analyzing whether winning the first battle affects the probability of winning the second one.

International team squash contests appear as an ideal laboratory to answer this question. They

exactly correspond to best-of-three multiple pairwise battles: three players from two rival teams
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compete sequentially, with each player playing only once and a team needs to win two individual

battles in order to win the contest. Furthermore, the sequence of individual battles in a team

contest is randomly drawn and cannot be manipulated.

We use this unique randomized empirical setting in order to test for the neutrality result on

field data and identify the effects at stake. Our contribution is twofold. First, we find evidence

of a dynamic linkage between subsequent battles. More precisely, we show that, ceteris paribus,

winning the first battle significantly increases the probability of winning the second battle. This

team effect contradicts neutrality. Second, we derive testable predictions from a theoretical

model to further explain outcome dependence in this team setting and identify the effect at

play. We provide compelling evidence that the predictions of the individual contribution effect

are all validated in the data: (i) Winning battle 1 increases the probability of winning battle 2

(non-neutrality). This is coherent with the fact that the player in the leading team has more

incentives to win battle 2 than his opponent because he is sure to contribute to the success of

his team if he wins whereas the player in the lagging team will get the contribution reward if

he wins only if his teammate also wins battle 3. Hence, there is an asymmetry of contribution

incentives ; (ii) The probability of winning battle 2 increases with the probability of winning

battle 3. The intuition behind this prediction is that the asymmetry of contribution incentives

in battle 2 depends on the expected outcome of battle 3. For example, if the player in the

lagging team in battle 2 knows that his teammate will lose battle 3, he knows that his team will

lose the contest and that he will not get the contribution reward, whatever the outcome of his

individual battle. In this case, the asymmetry of contribution incentives reaches its maximum

; (iii) Winning battle 1 and battle 2 increases the probability of winning trivial battle 3. This

prediction is based on the idea that the individual contribution effect should also be at play in a

trivial battle 3 - where, by definition, the winning team has already been determined. A player

involved in a trivial battle 3 whose team has already won the contest should also value winning

his match, so as to take part, albeit less directly than his teammates, in the success of his team.

Hence he has more incentives to win than his opponent.

These three empirical findings support the fact that players value being (at least partly) respon-

sible for collective success. On the contrary, theoretical predictions from the other potential

effects at stake (choking under pressure, psychological momentum, altruism and guilt aversion)

are not supported by the data.

Our results are robust to several specifications and alternative tests. To the best of our
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knowledge, this is the first paper to provide field evidence that teammates individually value

contributing to their team’s success. The implications of our results extend beyond contest

designs. Indeed, the individual contribution effect is of prime importance to understanding why

team-based incentives induce individuals to make a significant effort. It appears to be one of

the factor explaining why forming teams is economically desirable.

The remainder of this paper is organized as follows. Section 2.2 presents the related literature.

Section 2.3 provides empirical evidence against neutrality in multiple pairwise battles: winning

the first battle significantly increases the probability of winning the second battle. Section 2.4

pinpoints the mechanism driving non-neutrality: outcome dependence is consistent with the fact

that players value not only the final reward yielded by their team’s win, but also playing an

active part in collective success. We also present robustness tests that confirm the existence

of individual contribution in multiple pairwise battles and rule out alternative explanations.

Section 2.5 concludes the paper with a discussion of the main implications of the individual

contribution effect.

2.2 Related literature

A few papers directly test for neutrality. Fu, Ke & Tan (2015) conduct a simple best-of-three

team contest experiment, in which players from two rival teams are pairwise matched and com-

pete by counting the number of zeros in a series of 10-digit number strings composed of 0s and

1s. They find evidence that players from both teams remain equally motivated after observing

the outcome of the first component contest, and therefore a team tournament is equally likely to

end after two or three component contests. Huang (2016) uses team squash data and does not

find evidence against neutrality. His findings are based on a limited number of matches. Huang

& Murad (2017) develop an experiment to test for neutrality in a sequential best-of-three team

contest. In their experiment, subjects have a fixed amount of time to catch balls that fall from

the top of a computer screen by using mouse clicks. In a benchmark environnement where there

is no communication amongst teammates, who only share the same fate in terms of financial

incentives, they find that second movers in lagging positions drop out of competition more often

than second movers in leading positions. This result contradicts neutrality and can be supported

by a psychological momentum. However, when teammates chat at the beginning of contests,

the outcomes of the first two battles are independent. Huang & Murad (2017)’s interpretation
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is that guilt aversion compensates the psychological effect observed in the benchmark situation.

Most of these studies rely on experimental data from controlled settings. Testing for neu-

trality on field data poses two additional empirical challenges.

First, failure to account for peer effects would generate a spurious correlation between the out-

comes of subsequent battles. Being in a more stimulating environment might increase each

teammate’s probability of winning, thereby generating some spurious correlation between the

probabilities of victory in the first two battles. The existence of peer effects continues to be

debated in the literature. For instance, Mas & Moretti (2009) show, using high-frequency data

from a field experiment, that the introduction of highly productive personnel into a team has a

positive effect on worker productivity. On the contrary, Guryan, Kroft & Notowidigdo (2009)

find no evidence of peer effects in a highly skilled professional labor market: neither the ability

nor the current performance of playing partners affects the performance of professional golfers.

In our setting, we can account for potential peer effects by including teams’ rankings as control

variables in our estimation. Teams’ rankings actually encompass most of the environment effects

that may be at play, including peer effects.

Second, belonging to the lagging team should not induce the player involved in the second

battle to adopt a particular strategy that would affect the outcome of his match. The literature

has focused on the fact that players could adopt riskier strategies when facing critical situations.

Knoeber & Thurman (1994) compare tournament and linear payment schemes using data from

a sample of U.S. broiler producers. They examine the impact of prizes on performance level

and variability, concluding that less able producers adopt riskier strategies. On the contrary,

Brown (2011), who shows that professional golfers underperform when they are paired with

a superstar, concludes that this reduced performance is not attributable to the adoption of

risky strategies. In our setting, we can test whether players adopt riskier strategies in critical

situations by comparing the characteristics of battle 1 and battle 2 matches such as duration.

We do not find statistical difference between the two periods, which suggest that players do not

adopt risky strategies (see section 2.3.2).
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2.3 Testing for neutrality in multiple pairwise battles

2.3.1 Theoretical framework

This section theoretically analyzes individual behaviors in multiple pairwise battles and presents

the equilibrium probability of winning a component battle in a tractable form, which allows us to

(i) show that the neutrality result from Fu, Lu & Pan (2015) leans on two important assumptions,

and (ii) derive predictions for the empirical analysis (see section 2.4).

Setting

We consider a best-of-three team contest with complete information. A team X is opposed to

a team Y . The contest presents the following features: (i) there are 3 risk-neutral players in

each team. Each player only plays one battle. Xi (respectively Yi) is the player from team X

(respectively Y ) that plays the ith battle, i = {1, 2, 3}; (ii) team X wins as soon as it wins two

battles and loses as soon at it loses two battles; and (iii) the third battle is non-trivial only if

team X and team Y have both won one of the two previous battles.

Let UXi and UYi be the respective utilities of players Xi and Yi.

Let pi be the probability that Xi wins his battle against Yi,

pi =
xi

xi + yi
,

where xi is the level of effort of Xi and yi is the level of effort of Yi. This function is the simplest

version of the Tullock contest success function,6 also referred to as a lottery contest. Players do

not have the same ability. This is reflected in a linear cost function, given by

CXi =
xi
θXi

,

where θXi is the innate ability of Xi. The cost of effort is thus a decreasing function of the innate

ability of a player. The payoff associated with the collective win (denoted V ) is the same for

every player. Players also get a battle reward v when they win their own battle (independently

of their team’s outcome). V and v are strictly positive.

Theoretical result

Result 1. Equilibrium probability of winning. In a multiple pairwise battle, players choose
their optimal level of effort such that the probability that player Xi wins battle i (i being any of

6See Buchanan, Tollison & Tullock (1980).
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the three individual battles in the team contest) is given by

p∗i =
θXi∆UXi

θXi∆UXi
+ θY i∆UY i

,

where ∆UXi
= (UXi |WinXi) − (UXi |LossXi), respectively ∆UY i

= (UYi |LossXi)− (UYi |WinXi),
is the prize spread of player Xi, respectively Yi.

Proof. Let UJi |WinKi (respectively UJi |LossKi) be the utility of player Ji, Ji = {Xi, Yi}, when
Ki wins (respectively loses) battle i, Ki = {Xi, Yi}.

Both players choose their level of effort to maximize their expected utility:

max
xi

(
xi

xi + yi
(UXi |WinXi) +

yi
xi + yi

(UXi |LossXi)−
xi
θXi

)
,

max
yi

(
yi

xi + yi
(UYi |LossXi) +

xi
xi + yi

(UYi |WinXi)−
yi
θYi

)
.

Assuming that Us are independent of xi and yi, the first order conditions yield the following
optimal levels of effort and equilibrium probability of winning p∗i :

x∗i =
(θXi∆UXi

)2θY i∆UY i

(θXi∆UXi
+ θY i∆UY i

)2
,

y∗i =
θXi∆UXi

(θY i∆UY i
)2

(θXi∆UXi
+ θY i∆UY i

)2
.

Finally,

p∗i =
θXi∆UXi

θXi∆UXi
+ θY i∆UY i

.

where ∆UXi
= (UXi |WinXi)−(UXi |LossXi) – respectively, ∆UY i

= (UYi |LossXi)−(UYi |WinXi),
denotes player Xi’s – respectively, player Yi’s prize spread.

This result shows that the outcome of a battle depends on two parameters only, which are

(i) players’ relative prize spreads, and (ii) players’ relative ability (or cost of effort).

Therefore, if players have the same prize spreads (i.e., ∆UXi
= ∆UY i

) and a cost of effort

that does not depend on the circumstances of the battle (i.e., θXi and θYi are not affected by the

state of the contest), the equilibrium probability of winning only depends on players’ relative

ability:

p∗iNeutrality =
θXi

θXi + θY i
.

In this case, the team contest boils down to a series of independent lotteries, yielding Fu, Lu

& Pan (2015)’s neutrality result according to which the outcome of a battle does not affect the

outcome of the subsequent ones (i.e., leading or lagging behind has no effect).
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Neutrality is thus based on two crucial assumptions, which are (i) common prize spreads,

and (ii) the absence of phenomena altering players’ effort cost or ability.

(i) Common prize spreads We observe neutrality (i.e., p∗i = θXi
θXi+θY i

) if and only if players

have common prize spreads (i.e., ∆UXi
= ∆UY i

). This condition is satisfied in the case

where players only value the collective win (payoff V ) and the battle reward (payoff v). In a

decisive battle 3,7 both players have a prize spread of V +v, as they get both the collective

and the battle rewards if they win and a payoff of 0 if they lose. In battle 2, both players

also have the same prize spread: the player in the leading team gets V + v if he wins, and

p∗3V if he loses (as he can still get the collective reward V if his teammate wins battle 3,

which occurs with a probability p∗3), so his prize spread is V + v − p∗3V = v + (1 − p∗3)V .

The player in the lagging team gets v+ (1− p∗3)V if he wins, as he is certain to receive the

battle reward and he also gets the collective reward if his teammate wins battle 3, which

occurs with a probability (1− p∗3). If he loses, the contest ends and he gets a payoff 0, so

his prize spread is also v + (1− p∗3)V . A similar logic applies to battle 1.

A necessary condition for players to have common prize spreads is that they do not take

into account their teammates’ costs of effort. A situation where players would, for any

reason, act in an altruistic way and internalize part of their teammates’ effort cost would

generate asymmetric prize spreads in battle 2. This would explain why there could exist

a dynamic linkage between subsequent battles.

Furthermore, players might not only value the team win and the battle reward but also

being individually (partly) responsible for collective success. If such motivation exists, the

prize spreads become asymmetric in battle 2: the player in the leading team has more

incentive to win than his opponent because he is sure to contribute to the success of his

team if he wins his battle, while his opponent will be “success-responsible” if and only if his

teammate also wins in period 3. Thus, an individual contribution effect would invalidate

the assumption of common prize spreads and explain the absence of neutrality.

(ii) Absence of effects altering players’ effort cost or ability The second assumption un-

derpinning neutrality is that players’ cost of effort is not affected by the circumstances of

7A decisive – or non-trivial battle is a battle for which the winning team has not been determined yet. In a
best-of-three team contest, battle 3 is decisive if and only if each team has won one battle in the two previous
rounds.
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the contest: the outcome of a battle only depends on players’ relative abilities (θXi and

θY i), which remain fixed.

However, players’ effort cost may be affected by psychological factors related to the situ-

ation at hand. A player might have psychological momentum following the victory of his

teammate, which would be equivalent to a decrease in his effort cost. Conversely, players’

cost of effort could increase when they are under pressure. This choking under pressure

phenomenon could occur when the stakes of the battle are particularly high for one of the

players, such as the player from the lagging team involved in battle 2, whose defeat would

lead to collective failure. Incorporating such effects in the cost function of players would

also lead to non-neutrality.

These are the phenomena that might explain why these two crucial assumptions do not

necessarily hold. The next section presents an empirical strategy to test for neutrality.

2.3.2 Empirical setting and data

International squash championships as a randomized natural experiment

Professional squash team data are particularly well suited to analysis of multiple pairwise bat-

tles. The structure of international squash competitions mirrors a theoretical best-of-three team

contest with complete information: both the identity of the six players (three in each rival team)

taking part and the order in which they play are determined before the beginning of the contest.8

Battles are played sequentially; each player only plays one battle. A team wins as soon as two

of its players win.

Before a team championship starts, each National Squash Association has to rank its players

by descending order of strength and has to declare this order truthfully: opponents or orga-

nizers may object to a within-team ranking that does not reflect the actual hierarchy amongst

teammates. This within-team ranking applies to all the contests disputed by the team during

the championship. In each team contest, the order of the three individual battles is randomly

drawn from four possibilities: 1-2-3, meaning that players ranked first play the first game, players

ranked second play the second game and players ranked third play the third game, 1-3-2, 2-1-3,

8Given the high stakes of international team championships, only the best players from each participating
country are selected to compete. Selection in the national team is based on each player’s performance in the
various individual championships before the team event. Performance in the national team has no bearing on
players’ individual ranking.

74



and 3-1-2. This ex-ante randomly-drawn order of play ensures that teams cannot manipulate

the sequence of games to be played in any way.9 Thanks to this unique feature, we can use team

squash contests as a randomized natural experiment to analyze team effects in multiple pairwise

battles.

Data

We construct a comprehensive dataset of international squash team confrontations from 1998 to

201610 that includes 2,039 national team matches. We consider 55 international team tourna-

ments, including Men’s and Women’s World Team Championships, Men’s and Women’s Asian

Team Championships and Women’s European Team Championships.11 The World Team Cham-

pionships are organized by the World Squash Federation (WSF). The competition is held once

every two years, each time in a different venue. The men’s and women’s events are held sepa-

rately in different years.12 The Asian Team Championships are organized by the Asian Squash

Federation (ASF) and take place every two years. Finally, the European Squash Federation

(ESF) holds the European Team Championships annually.

We have also recorded additional information: match durations (for most entries), locations

and exact scores. The official scoring system for all levels of professional and amateur squash is

called “point-a-rally scoring” (PARS). In PARS, the winner of a rally always receives a point,

regardless of whether he served or returned. Sets are now played to 11, but were played to 9

until 2007 at Men’s World Team Championships, 2008 at Women’s World Team Championships,

2009 at Women’s European Team Championships, and 2010 at Men’s and Women’s Asian Team

Championships. Players win a set by two clear points, i.e., if the score reaches 10–10, play

continues until one player wins two consecutive points. Battles are the best-of-five sets, and the

contest is a best-of-three battle.

Our data also encompass professional players’ monthly world rankings, which are published

by the Professional Squash Association (PSA).13 These rankings are based solely on players’

performance in individual tournaments and, as such, are not correlated with their performance

9See Section S1 of the WSF Regulations, Section L1 of the ESF Regulations and Section T1 of the ASF
Regulations for more details.

10The data were gathered from the website http://www.squashinfo.com.

11We do not include Men’s European Team Championships in our sample because the tournament uses a
best-of-four structure with ties broken by points count back.

12The 2015 Men’s World Team Championship, which was to be held in Cairo, Egypt, has been canceled.

13Note that amateur squash players that might be involved in team championships have no PSA ranking.
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in past team tournaments. We use the PSA rankings as a proxy for players’ ability.

Finally, we also collected data on teams’ rankings as teams are seeded before the beginning

of each championship. Teams’ rankings reflect the extent to which they are favorites and are

determined before the beginning of the competition by specialists, who base their judgment on

all available information. As such, teams’ rankings encompass most of the environment effects

that may be at play, including the quality of teams’ management, the cohesiveness between

players and their current physical condition.

Descriptive statistics

This section provides a series of descriptive statistics on international squash team confrontations

from 1998 to 2016.

We first compare the rankings of the players involved in battle 1, battle 2 and battle 3.

This allows us to ensure that (i) PSA rankings reflect correctly players’ ability and (ii) the

professional squash events comply with World Squash Championship Regulations. According to

these regulations, each National Squash Association has to rank its players by descending order

of strength. We do not identify each player’s position (i.e., first, second or third) within his team,

but this should be correlated with PSA rankings. Moreover, these regulations impose that the

order of the three battles is randomly drawn from the following four possibilities: 1-2-3, 1-3-2,

2-1-3, and 3-1-2. Therefore, the corresponding theoretical probabilities that battle i involves a

player ranked first, second or third are as follows (see table 2.1).

Table 2.1: Within-team rankings of players involved in each battle according to WSF regulation

Battle 1 Battle 2 Battle 3

Probability that battle i involves players ranked
First 50% 50% 0%

Second 25% 25% 50%
Third 25% 25% 50%

Total 100% 100% 100%

Accordingly, the distribution of the PSA rankings of the players involved in battle 1 and

battle 2 should be similar: the first two confrontations involve players who are ranked first with

a 50% probability and ranked second or third with a 25% probability. On average, the PSA

rankings of the players involved in battle 3 should be higher than that of those competing in

battle 1 and battle 2. In battle 3, there are no top-ranked players, and players ranked second and
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third are equally distributed. Figure 2.1 provides the distribution of the rankings of the players

involved in battle 1, battle 2 and battle 3 in our dataset. As expected, ranking distributions

are similar for the first two rounds and players involved in battle 3 have a higher PSA ranking

than teammates involved in previous confrontations. These findings are perfectly consistent

with team squash regulations and show that PSA rankings correctly reflect players’ ability.

Figure 2.1: Distribution of players’ monthly PSA rankings, per round – 1998-2016

Furthermore, we compare the characteristics of the matches that take place in battle 1,

battle 2, and battle 3. We do so to check if there are any significant differences between these

confrontations to ensure that, in battle 2, the player in the lagging team does not adopt a risky

strategy, as he must win to keep his team in the contest. If this were the case, one would

expect to observe significant differences amongst the main characteristics of battle 1 and battle

2 matches. In particular, risky strategies should reduce the duration of a match: a player who

gambles effectively tries to shorten each rally by attempting winning shots.

Table 2.2 displays, for each round (i.e., battle 1, battle 2 and battle 3), the average number

of sets per match; the proportion of three-set matches (whose final score is necessarily 3-0),

four-set matches (3-1) and five-set matches (3-2); the average number of points per match and

per set; the average proportion of points won by the winner; and the average match duration.
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Table 2.2: Characteristics of international squash team matches, per round – 1998-2016

Battle 1 Battle 2 Battle 3 Total

Average number of sets per match 3.5 3.5 3.5 3.5

% of matches with a final score of
3-0 60.7% 61.2% 64.9% 61.8%
3-1 26.2% 23.4% 23.7% 24.6%
3-2 13.1% 15.3% 11.4% 13.6%

Average number of points per match 52.2 53.6 52.8 52.9

Average number of points per set 14.9 15.3 15.1 15.1

Average duration (minutes) 38.2 38.8 33.7 37.3

These descriptive statistics show that battle 1 and battle 2 matches have similar characteris-

tics. In addition, figure 2.2 shows the distribution of the average duration of a point in matches

that take place in battle 1, battle 2 and battle 3. For each confrontation, we compute the ratio

of the total duration of the match and the number of points played. If the players who belong to

the lagging team gambled in battle 2, the average duration of a rally in battle 2 would be shorter

than in battle 1, where none of the players has reason to adopt a particularly risky strategy.

This is not what is observed in our data: Figure 2.2 shows that the distribution of the average

duration of points played in battle 2 matches is the same as in battle 1 games.

Figure 2.2: Distribution of the average duration of points played in squash matches, per round
– 1998-2016

The descriptive statistics confirm that players do not adopt a risky strategy based on the

result of the first confrontation. Battle 1 and battle 2 matches display similar observable char-
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acteristics.

Measures of players’ relative ability

In this paper, we want to estimate how past battles may affect the current battle outcome, in

order to further analyze individual behaviors in teams. The outcome of a given battle mainly

depends on the relative ability of both competing players. As mentioned in section 2.3.2, P-

SA rankings correctly reflect players’ ability. In our empirical analysis, we use three different

measures of players’ ability based on PSA rankings as control variables.

First, we use rankings as a categorical variable with seven modalities: Top 5; 6-15; 16-30;

31-50; 51-75; 76-105; and 106-450. These specific modalities are constructed by increasing the

size of the ranking range by 5 from one category to the next (except for the last one). This

accounts for the fact that a small gap between two top players reflects a significant difference in

their respective ability compared to a similar ranking gap between two second-tier professional

players. These categories allow us to strike a good balance between an accurate measure of

players’ ability and a sufficient number of observations in each modality.

Second, we introduce each possible interaction between the aforementioned categories into

our empirical models (e.g. Top 5 vs 16-30). We therefore generate 49 variables, which correspond

to the couple of ranking categories for each pair of competing players.

Finally, we consider the ratio of players’ rankings in order to show that our results are not

dependent on the choice of ranking categories. We consider the ratio of the ranking of the best

player, with the lowest ranking, against the ranking of the worst, so that the ratio always lies

between 0 and 1.

All the results presented in the remainder of this paper are robust to these three different

measures of players’ relative ability.

2.3.3 Testing for neutrality in multiple pairwise battles

According to Fu, Lu & Pan (2015)’s model, the probability of winning a battle is not affected by

the outcome of previous battles – all that matters is the relative ability of the players involved

in a given battle. Neutrality is derived from the fact that both players have the same incentive

to win because they have the same prize spread (i.e., the same utility gap between winning and

losing).

Test 1. There is evidence in support of neutrality if winning battle 1 does not affect the probability
of winning battle 2.
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The absence of neutrality: statistical evidence

The most direct way to assess whether winning the first battle affects the probability of winning

the second is to construct a sample in which players from both teams involved in the second

battle have similar rankings. Based on this sample of equally skilled players, one would expect,

if there were neutrality, half of the contests to be won by the player who belongs to the leading

team.14

We use two different methods to restrict our sample of equally skilled players. The first

method is based on the ratio of the rankings of both players involved in the second battle, and

we restrict our sample to observations where this ratio is lower than certain thresholds: (i)

ratio < 1.5 – variant 1, (ii) ratio < 1.4 – variant 2, (iii) ratio < 1.3 – variant 3 and finally (iv)

ratio < 1.2 – variant 4. According to this definition, a match between a player ranked 15 and

a player ranked 25 will not be included in any variant (the ratio of these rankings being 1.66),

while a match between a player ranked 15 and a player ranked 17 will be included in the four

variants (the ratio of these rankings being 1.13). The second approach consists in considering

only battle 2 matches in which both players’ rankings belong to the same category (Top 5; 6-15;

16-30; 31-5; 51-75; 76-105; and 106-450). Therefore, we only take into account a confrontation

that involves a player ranked e.g. 6-15 if his opponent’s ranking lies within the same category.

We note X1 the player who won the first battle against Y1, and X2 the player who belongs

to the leading team involved in battle 2 against Y2. Table 2.3 reports the empirical probability

that X2 wins the second battle for each of the variants considered.

Table 2.3: Satistical evidence against neutrality

Ratio of rankings lower than
Same category

1.5 1.4 1.3 1.2

X2 wins battle 2 59.7%∗∗∗ 59.1%∗∗ 60.4%∗∗ 60.4%∗∗ 56.7%∗

Number of observations 211 181 139 91 203

Statistically different from 50% at ∗ p < 0.1, ∗∗ p < 0.05, ∗∗∗ p < 0.01.

The results presented in table 2.3 show that the probability that the player on the leading

team wins is greater than 50%. In other terms, the figures suggest the absence of neutrality:

winning the first battle increases the probability of winning the second one.

14This type of identification strategy is implemented by Malueg & Yates (2010), who construct a sample of
tennis matches with equally skilled players.
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Evidence against neutrality: main specification

Restricting the sample to players who have similar rankings is a simple way to control for players’

relative ability but it considerably reduces the number of observations. We therefore integrate

our measures of players’ relative ability as a control variable in order to use our entire sample.

To do so, we label the two opposing teams as “Team A” and “Team B”15 and their players

as A1, A2, A3, B1, B2 and B3, where the subscript indicates the battle in which the player is

engaged. We can test for neutrality by assessing whether the probability that A2 defeats B2

is higher when A1 won against B1 in the previous battle, controlling for A2’s and B2’s ability.

Thus we regress the dummy variable indicating whether A2 wins or loses battle 2 on a dummy

variable indicating whether A1 won or lost battle 1 and on a measure of A2 and B2’s relative

ability based on their rankings. The tested econometric specification is as follows.

A2 wins battle 2 = β0+βNon−neutrality×A1 won battle 1+f(RankingA2 , RankingB2)+εAB2,

where f(RankingA2 , RankingB2) refers to one of the three measures of players’ relative ability

described in the previous section: i) ranking modalities, (ii) interacted ranking modalities, (iii)

the ratio of rankings. We integrate these measures of players’ ability taking into account the

symmetric structure of the dataset: the outcome of a battle depends on the characteristics of the

two players. Hence, when we use ranking modalities and interacted modalities, we break down

every battle into two observations and weight each observation by 1
2 so as to adjust standard

errors correctly. When we use the ratio of rankings as a proxy for relative ability, we define

player Ai as the player who has the better ranking, so that the ratio of rankings always lies

between 0 and 1.

We use a linear probability model as it makes the interpretation of the coefficients of interest

easy.16 The results are displayed in columns (1), (3), (5) of table 2.4. The coefficient associated

with A1 won battle 1 is significant at the 0.1% level using any of the measures of players’ ability.

The magnitude of the effect is very strong (from 9.8 to 14.2 percentage points depending on the

ability measure used). This means that in a battle involving two players with similar rankings,

the player on the leading team wins with a probability that lies between 54.9% and 57.1%.

15In the remainder of this paper, we label “Team A” and “Team B” each of the opposing teams in a given
confrontation, with no further conditions on the outcome of the first battle. When we deliberately choose the
team that won the first battle, we refer to it as “Team X”, or “X”.

16We obtain very similar results when we use a probit estimation (see tables 2.12 and 2.13 in Appendix B).
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This series of results suggests the absence of neutrality. However, as explained before, we

need to account for potential peer effects. Being on a team with high-performing teammates

may increase a player’s productivity, as a more stimulating environment may boost performance.

Since high-performing players tend to win their battle, the player on the leading team is likely

to be surrounded by more talented teammates than the player on the lagging team. Therefore,

peer effects might be a confounding factor for sequence dependence. We take into account

environment effects and other unobservables, such as the relative quality of the teams’ managers

and the cohesiveness between players, by including the teams’ rankings as additional continuous

control variables in specifications (2), (4) and (6). We also add controls regarding the location

of the confrontation, as playing at home can affect the outcome. Accordingly, we add dummies

indicating whether team A is playing at home or away (the reference being the neutral field).

Winning the first battle remains significant at the 0.1% level once teams’ rankings are in-

troduced. The magnitude of the effect decreases slightly but remains substantial (from 8.7 to

11.4 percentage points depending on the specification). This is clear evidence that sequence

dependence is not caused by confounding peer effects.

82



T
ab

le
2.

4:
E

v
id

en
ce

ag
ai

n
st

n
eu

tr
al

it
y

D
ep

.
va

r:
A

2
w

in
s

b
at

tl
e

2
(1

)
(2

)
(3

)
(4

)
(5

)
(6

)

A
1

w
o
n

b
a
tt

le
1

0.
14

2∗
∗∗

(0
.0

29
)

0.
11

4
∗∗
∗

(0
.0

31
)

0.
12

8
∗∗
∗

(0
.0

29
)

0.
09

7∗
∗

(0
.0

3
1
)

0
.0

9
8∗
∗∗

(0
.0

2
8
)

0
.0

8
7∗
∗

(0
.0

3
0
)

A
2
’s

ra
n

k
in

g:
T

op
5

0.
72

1
∗∗
∗

(0
.0

57
)

0.
64

6
∗∗
∗

(0
.0

70
)

A
2
’s

ra
n

k
in

g:
6-

15
0.

57
6∗
∗∗

(0
.0

46
)

0.
51

8
∗∗
∗

(0
.0

56
)

A
2
’s

ra
n

k
in

g:
16

-3
0

0.
46

6∗
∗∗

(0
.0

43
)

0.
41

7
∗∗
∗

(0
.0

50
)

A
2
’s

ra
n

k
in

g:
31

-5
0

0.
29

3∗
∗∗

(0
.0

43
)

0.
26

0
∗∗
∗

(0
.0

47
)

A
2
’s

ra
n

k
in

g:
51

-7
5

0.
18

4∗
∗∗

(0
.0

46
)

0.
15

4
∗∗

(0
.0

49
)

A
2
’s

ra
n

k
in

g:
76

-1
05

0.
09

3
∗

(0
.0

47
)

0.
07

3
(0

.0
49

)

B
2
’s

ra
n

k
in

g:
T

op
5

-0
.7

21
∗∗
∗

(0
.0

57
)

-0
.6

46
∗∗
∗

(0
.0

70
)

B
2
’s

ra
n

k
in

g:
6-

15
-0

.5
76
∗∗
∗

(0
.0

46
)

-0
.5

18
∗∗
∗

(0
.0

56
)

B
2
’s

ra
n

k
in

g:
16

-3
0

-0
.4

66
∗∗
∗

(0
.0

43
)

-0
.4

17
∗∗
∗

(0
.0

50
)

B
2
’s

ra
n

k
in

g:
31

-5
0

-0
.2

93
∗∗
∗

(0
.0

43
)

-0
.2

60
∗∗
∗

(0
.0

47
)

B
2
’s

ra
n

k
in

g:
51

-7
5

-0
.1

84
∗∗
∗

(0
.0

46
)

-0
.1

54
∗∗

(0
.0

49
)

B
2
’s

ra
n

k
in

g:
76

-1
05

-0
.0

93
∗

(0
.0

47
)

-0
.0

73
(0

.0
49

)

A
2
’s

ra
n

k
in

g
v
s
B

2
’s

ra
n

k
in

g
X

X
R
a
n
k
in
g
A
2

R
a
n
k
in
g
B
2

(<
1)

-0
.5

3
5
∗∗
∗

(0
.0

4
6
)

-0
.5

2
2
∗∗
∗

(0
.0

5
4
)

A
2

at
h

om
e

0.
00

9
(0

.0
52

)
0.

01
0

(0
.0

52
)

0
.0

8
5

(0
.0

4
9
)

B
2

at
h

om
e

-0
.0

09
(0

.0
52

)
-0

.0
10

(0
.0

52
)

0
.0

4
8

(0
.0

5
0
)

A
2
’s

te
am

ra
n

k
in

g
-0

.0
07
∗

(0
.0

04
)

-0
.0

08
∗

(0
.0

0
4
)

-0
.0

0
8∗

(0
.0

0
4
)

B
2
’s

te
am

ra
n

k
in

g
0.

00
7∗

(0
.0

04
)

0.
00

8
∗

(0
.0

04
)

0
.0

0
4

(0
.0

0
3
)

C
on

st
an

t
0.

42
9∗
∗∗

(0
.0

37
)

0.
44

3
∗∗
∗

(0
.0

58
)

0.
43

6
∗∗
∗

(0
.0

48
)

0.
45

1∗
∗∗

(0
.0

6
9
)

0
.4

3
6∗
∗∗

(0
.0

4
8
)

0
.4

5
1∗
∗∗

(0
.0

6
9
)

C
o
n
tr

o
ls

fo
r

p
la

y
e
rs

’
a
b

il
it

y
R

an
k
in

g
ca

te
go

ry
Y

E
S

Y
E

S
N

O
N

O
N

O
N

O
In

te
ra

ct
io

n
of

rk
g

ca
te

go
ri

es
N

O
N

O
Y

E
S

Y
E

S
N

O
N

O
R

at
io

of
ra

n
k
in

gs
N

O
N

O
N

O
N

O
Y

E
S

Y
E

S

O
b

se
rv

at
io

n
s

93
4

89
6

93
4

89
6

9
3
4

8
9
6

R
2

0.
42

0.
42

0.
45

0.
46

0
.1

7
0
.1

7

S
ta

n
d

a
rd

er
ro

rs
in

p
a
re

n
th

es
es

:
∗
p
<

0
.0

5
,
∗∗
p
<

0
.0

1
,
∗∗
∗
p
<

0
.0

0
1
.

R
ea

d
in

g
n

o
te

(c
o
lu

m
n

1
):

th
e

p
ro

b
a
b

il
it

y
th

a
t
A

2
w

in
s

in
cr

ea
se

s
b
y

0
.1

4
2

w
h

en
h

is
te

a
m

m
a
te
A

1
w

o
n

b
a
tt

le
1
.

R
ea

d
in

g
n

o
te

(c
o
lu

m
n

1
):

th
e

p
ro

b
a
b

il
it

y
o
f

w
in

n
in

g
o
f

a
p

la
y
er

ra
n

k
ed

in
th

e
T

o
p

5
is

0
.7

2
1

h
ig

h
er

th
a
n

th
e

p
ro

b
a
b

il
it

y
o
f

w
in

n
in

g
o
f

a
p

la
y
er

ra
n

k
ed

1
0
6
-4

5
0

(r
ef

er
en

ce
ca

te
g
o
ry

).

N
o
te

:
th

e
n
u

m
b

er
o
f

o
b

se
rv

a
ti

o
n

s
d

ec
re

a
se

s
fr

o
m

9
3
4

in
sp

ec
ifi

ca
ti

o
n

s
(1

),
(3

),
(5

)
to

8
9
6

in
sp

ec
ifi

ca
ti

o
n

s
(2

),
(4

),
(6

)
b

ec
a
u

se
th

er
e

a
re

3
8

co
n
te

st
s

fo
r

w
h

ic
h

te
a
m

s’
ra

n
k
in

g
s

a
re

m
is

si
n

g
.

83



We find strong evidence that winning the first battle increases the probability of winning the

second one. This contradicts neutrality.

2.4 The role of individual contribution to team success

In this section, we explain the absence of neutrality by providing compelling evidence, based on

the predictions of the model developed in section 2.3.1, that individuals are willing to contribute

to the success of their team. The outcomes of subsequent battles are dependent because players

value being responsible for their team’s success. Outcome dependence is driven by what we refer

to as “individual contribution.” Furthermore, we perform robustness checks, which confirm

the existence of individual contribution in multiple pairwise battles and rule out alternative

explanations developed in the existing literature on other team settings.

2.4.1 Evidence for individual contribution

Players might value being partly responsible for the success of their team. If players individu-

ally value their contribution to the team, they get an additional reward c (c > 0) when their

victory leads their team to success. Table 2.5 displays players’ payoffs when there is individual

contribution.

Table 2.5: Payoffs in the individual contribution scenario

Player’s team wins Player’s team loses

Player wins v + V + c v

Player loses V 0

In such a case, the main intuition is that the player on the leading team would have more

incentive to win the second battle than the player on the lagging team because the former is

sure to contribute to his team’s success if he wins while the player on the lagging team will be

“success-responsible” if and only if his teammate also wins the third battle. This asymmetry of

incentives between the two players depends on the expected outcome of battle 3. For example,

if X1 wins battle 1 and X3 has a extremely low probability of winning the third match (i.e., p∗3

falls to 0), both players can contribute to their team’s victory by winning battle 2, and both

players would make a symmetrical positive effort to get the additional reward. In this extreme

case, winning the first battle should have no effect on the probability of winning the second
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one. Conversely, in the extreme case where X1 wins battle 1 and X3 has an extremely high

probability of winning the third match (i.e., p∗3 increases to 1), the asymmetry between the two

players reaches its maximum: X2 is certain to receive the contribution reward if he wins while

Y2 has no chance of getting it.

Main test Formally, we obtain the following predictions, which confirm the role played by

p∗3 in the individual contribution scenario:17

p∗2IC =
θX2(v + (1− p∗3)V + c)

θX2(v + (1− p∗3)V + c) + θY2(v + (1− p∗3)(V + c))
,

where team X won battle 1.

This gives the two following results: first, p∗2IC >
θX2

θX2
+θY2

, so winning battle 1 increases the

probability of winning battle 2. Second,
∂p∗2IC
∂p∗3

> 0 and
∂(1−p∗2IC)

∂(1−p∗3) > 0, so the probability of

winning battle 2 increases with the teammate’s probability of winning battle 3. This allows us

to derive the following empirical test for individual contribution.

Test 2. There is evidence in support of an “individual contribution” effect if

• Winning battle 1 increases the probability of winning battle 2.

• The probability of winning battle 2 increases with the probability of winning battle 3.

The first condition given by test 2 is satisfied, as the results of test 1 show. We can test

for the second condition of test 2 by assessing whether the probability that A2 wins against

B2 increases with the extent to which A3 is the favorite in battle 3. We use the gap between

A3’s and B3’s ranking modalities, labelled RMA3 − RMB3 , as a proxy for the probability of

winning of A3. For example, when A3 ranks in the Top 5 and B3 ranks between 16 and 30,

RMA3 −RMB3 = 2.18

We regress the dummy variable indicating whether A2 wins battle 2 on RMA3 − RMB3 , on

a measure of A2’s and B2’s relative ability and on the control variables used previously (playing

home/away and teams’ rankings). The tested econometric specification is therefore as follows.

A2 wins battle 2 = β0 + βIC × (RMA3 −RMB3) + f(RankingA2 , RankingB2)

+βhome×HomeA+βaway×AwayA+βtA×Team′srankingA−βtB×Team′srankingB+εAB2.

17See Appendix for detailed computations.

18In order to perform the estimation on the same sample as the one used to test for neutrality (table 2.4), we
create an additional ranking modality for amateur squash players involved in battle 3, whose level is too low to
have a PSA ranking. Hence, if a player A3 ranked 51-75 is opposed to an amateur player B3, RMA3 −RMB3 = 2.
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The results obtained with the three measures of players’ relative ability are reported in columns

(1), (3) and (5) of table 2.6. As predicted in the individual contribution scenario, the variable

RMA3 − RMB3 is positive and significant at the 1% level in the three specifications, showing

that the probability of winning battle 2 increases with the probability of winning battle 3. When

the difference in ranking modalities between the two players involved in battle 3 increases by 1,

the probability of winning battle 2 increases by about 2 percentage points. Hence, a gap of 5

ranking modalities – which comes very close to the extreme case where p∗3 goes to 1 – increases

the probability of winning battle 2 by 0.1. This effect is about as strong as the estimated

effect of winning battle 1 (see table 2.4). This finding is perfectly consistent with the individual

contribution effect, according to which winning battle 1 has no effect on battle 2 when the

opposing team is expected to win battle 3.

One potential concern with specifications (1), (3) and (5) is confounding peer effects: being

the favorite in battle 3 might be significant because it might imply that the player is in a

more stimulating environment with more able teammates. If such an effect were at play, being

the favorite in battle 1 should have the same effect, as there is no reason to believe that the

influence of the teammate involved in battle 1 would be different from the influence of the

teammate playing battle 3. In specifications (2), (4) and (6), we include the gap between A1’s

and B1’s ranking modalities (labelled RMA1 −RMB1) as a control to test for peer effects. The

variable RMA1 −RMB1 is not significant in any of the specifications and its inclusion does not

affect the coefficient associated with our variable of interest, RMA3−RMB3 . This confirms that

peer effects are not at play and provides compelling evidence that individual contribution drives

the observed linkage between subsequent battles.
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Additional test One may argue that the individual contribution effect should also be at

play in a trivial battle 3 – where, by definition, the winning team has already been determined.

In a best-of-three team contest, battle 3 is trivial if one team has already won the two previous

confrontations. A player involved in a trivial battle 3 whose team has already won the contest

should also value winning his match, so as to take part, albeit less directly than his teammates,

in the success of his team. Winning allows him to be part of his team’s victory even if he was

randomly assigned to the third battle, which happens to be trivial. Therefore, if individual

contribution is at play, we should observe that his probability of winning the last trivial battle

is ceteris paribus higher than his opponent’s. Formally, we obtain the following prediction:19

p∗3ICtrivial =
θX3(v + c)

θX3(v + c) + θY3v
,

where team X won battle 1 and battle 2. As p∗3ICtrivial >
θX3

θX3
+θY3

, we can derive the following

empirical test for individual contribution.

Test 3. There is evidence in support of an “individual contribution” effect if winning battle 1
and battle 2 increases the probability of winning trivial battle 3.

We implement this additional test by restricting our sample to trivial battles 320 and assessing

whether being in the team that won the first two battles increases the probability of winning

the last. The tested econometric specification is as follows.

A3 wins battle 3 = β0+βIC×A1 won battle 1 and A2 won battle 2+f(RankingA3 , RankingB3)

+βhome×HomeA+βaway×AwayA+βtA×Team′srankingA−βtB×Team′srankingB+εAB3.

The results are reported in table 2.7 for the three measures of the relative ability of players

involved in trivial battles 3. The coefficient of interest is statistically significant and positive in

the three specifications. This confirms that a player – whatever the stake of the battle he has

been randomly assigned to – is motivated to participate in his team’s success.

19See Appendix for detailed computations.

20This is why the number of observations drops to 378 in table 2.7.
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Table 2.7: Individual contribution – Additional test

Dep. var: A3 wins battle 3 (1) (2) (3)

A1 won battle 1 and A2 won battle 2 0.273∗∗∗ (0.055) 0.176∗∗ (0.060) 0.133∗ (0.055)

A3’s ranking: Top 5 0.417∗∗∗ (0.111)

A3’s ranking: 6-15 0.326∗∗∗ (0.077)

A3’s ranking: 16-30 0.318∗∗∗ (0.068)

A3’s ranking: 31-50 0.191∗∗ (0.062)

A3’s ranking: 51-75 0.059 (0.061)

A3’s ranking: 76-105 0.122∗ (0.058)

B3’s ranking: Top 5 -0.417∗∗∗ (0.111)

B3’s ranking: 6-15 -0.326∗∗∗ (0.077)

B3’s ranking: 16-30 -0.318∗∗∗ (0.068)

B3’s ranking: 31-50 -0.191∗∗ (0.062)

B3’s ranking: 51-75 -0.059 (0.061)

B3’s ranking: 76-105 -0.122∗ (0.058)

A3’s ranking vs B3’s ranking X
RankingA3
RankingB3

(< 1) -0.241∗∗ (0.076)

A3 at home 0.064 (0.071) 0.042 (0.072) 0.124∗ (0.058)

B3 at home -0.064 (0.071) -0.042 (0.072) 0.075 (0.079)

A3’s team ranking -0.012∗∗ (0.004) -0.014∗∗ (0.005) -0.012∗ (0.005)

B3’s team ranking 0.012∗∗ (0.004) 0.014∗∗ (0.005) 0.008∗ (0.004)

Constant 0.364∗∗∗ (0.075) 0.412∗∗∗ (0.088) 0.823∗∗∗ (0.068)

Controls for players’ ability
Ranking category YES NO NO
Interaction of rkg categories NO YES NO
Ratio of rankings NO NO YES

Observations 378 378 378
R2 0.59 0.64 0.17

Standard errors in parentheses
∗ p < 0.05, ∗∗ p < 0.01, ∗∗∗ p < 0.001

2.4.2 Robustness checks and alternative explanations

The empirical strategy based on our theoretical predictions shows that the dynamic linkage

between subsequent battles observed in our data is in line with the individual contribution

effect, according to which players value being responsible for their team’s success.

We confirm the existence of individual contribution by testing for alternative effects, which

could also explain the observed dependence of the outcomes of the first two battles. The theo-

retical model presented in section 2.3.1 shows that the dynamic linkage observed between two

subsequent battles can either result from effects that endogenously generate a gap in players’
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prize spreads, or from effects that alter players’ ability.

These effects are summarized in table 2.8.

Table 2.8: Individual contribution and alternative explanations

Type Effect Description

Asymmetry in
prize spreads

Individual contribution Individuals value being responsible for collective success
Guilt aversion Individuals dread being responsible for collective failure
Altruism Individuals internalize their teammates’ costs of effort

Alteration of
players’ ability

Choking under pressure Pressure has a detrimental effect on performance
Momentum Recent success increases confidence

Other effects that generate a gap in prize spreads: Guilt aversion and altruism

Guilt aversion Players might suffer from being (partly) responsible for the failure of their

team. Charness & Dufwenberg (2006) provide experimental evidence consistent with people

striving to live up to others’ expectations so as to avoid guilt. Chen & Lim (2013) analyze

whether managers should organize employees to compete in teams or as individuals. Their main

conclusion according to which team-based contests yield greater effort than individual-based

contests, is rooted in contestants’ aversion to letting their team down.

In our setting, guilt aversion implies that a player who loses his battle bears an additional

loss (−s, s > 0) if his team loses the contest. This additional loss asymmetrically affects players’

prize spreads and therefore may explain the absence of neutrality (see table 2.9).

Table 2.9: Payoffs in the guilt aversion scenario

Player’s team wins Player’s team loses

Player wins v + V v

Player loses V −s

Under this scenario, we derive the following predictions:21

p∗2GA =
θX2(v + (1− p∗3)(V + s))

θX2(v + (1− p∗3)(V + s)) + θY2(v + (1− p∗3)V + s)
,

where team X is defined as the team that won battle 1. p∗2GA <
θX2

θX2
+θY2

, which yields the

following empirical test.

21See Appendix for detailed computations.
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Test 4. There is evidence in support of guilt aversion if winning battle 1 decreases the probability
of winning battle 2.

In our setting, winning battle 1 increases the probability of winning battle 2 (see table 2.4).

Non-neutrality is not driven by guilt aversion.

Altruism Our results up to this point have been based on the assumption that players

do not take into account their teammates’ costs of effort. However, the observed link between

the first two battles of the contest could be driven by the fact that individuals internalize their

teammates’ effort costs. This effect could be referred to as “altruism,” signifying that each

player on a team maximizes his utility function, taking into account not only his own effort

cost but also his teammates’. For instance, the player on the leading team involved in battle 2

could make an additional effort in order to win, thereby preventing his teammate from playing

a decisive battle 3 and incurring the corresponding effort cost.

The idea that individuals internalize their teammates’ costs calls for the following two re-

marks. First, we refer to this phenomenon as “altruism,” but one may argue that a player

might internalize the effort cost of teammates involved in battle 3 in order to prevent them

from playing a high-stake match because it is in his interest to preserve their stamina for the

next rounds. This interpretation would not affect the empirical test presented below. Second,

players could internalize not only their partners’ effort costs, but also the various benefits they

derive from playing a match. If the benefits from playing are greater than the afferent costs, an

altruistic player would behave in a way that enables his teammate to play. This would imply

that winning battle 1 has a negative impact on the probability of winning battle 2, which is not

supported by our data (see table 2.4).

We develop a test to address the fact that individuals may internalize their teammates’ costs.

This test allows us to distinguish between individual contribution and altruism. Intuitively, our

identification strategy is based on the fact that, in a best-of-three contest, altruistic players

involved in the first battle cannot prevent their teammates from playing a high-stake second

match, and can only internalize the cost of effort of the players involved in the third (potentially

trivial) battle. Accordingly, we focus on battle 1 and limit our sample to contests where the

favorites in battles 2 and 322 do not belong to the same team. Hence, there are only two possible

scenarios regarding future battles: either i) A2 is the favorite and A3 is the underdog or ii) A2 is

22A player is defined as the favorite when he has a better ranking than his opponent.
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the underdog and A3 is the favorite. According to the individual contribution effect, these two

scenarios are equivalent, as player A1 is equally likely to get the contribution reward in either

setting. On the contrary, if players were altruistic, the scenario A2 favorite, A3 underdog would

be much more motivating for player A1. Indeed, when A2 is favorite, A1 knows that winning

battle 1 implies that his teammate A3 will probably not have to play a decisive battle 3 and

thereby make a significant effort. On the other hand, when A2 is underdog, A1 knows that

winning battle 1 implies that his teammate A3 is very likely to play a decisive battle 3 and to

exert a significant effort. Thus, altruism implies that A1 has more incentive to win when A2 is

the favorite and A3 is the underdog than in the symmetric situation.23

Test 5. There is evidence in support of

• Altruism if the probability that A1 wins battle 1 is larger ceteris paribus in the scenario
“A2 favorite, A3 underdog” than in the scenario “A2 underdog, A3 favorite.”

• Individual contribution if the probability that A1 wins battle 1 is the same in both scenarii.

Accordingly, we regress A1’s victory on a dummy variable indicating the situation regarding

battles 2 and 3 (which equals 1 when A2 is favorite and A3 is underdog, and 0 when A2 is the

underdog and A3 is the favorite), on a measure of A1’s and B1’s relative ability as well as the

usual control variables (playing home/away and teams’ rankings).

A1 wins battle 1 = β0 + βaltruism ×A2 favorite, A3 underdog + f(RankingA1 , RankingB1)

+βhome×HomeA+βaway×AwayA+βtA×Team′srankingA−βtB×Team′srankingB+εAB1.

Individual contribution predicts that the variable A2 favorite, A3 underdog has no significant

effect on the probability that A1 wins battle 1. On the contrary, if players were altruistic,

our model would predict that the variable A2 favorite, A3 underdog should have a statistically

significant positive on the probability that A1 wins battle 1. Results are reported in table 2.10.

The coefficient associated with the variable of interest is negative and not statistically significant

using any of the three measures of players’ ability. This confirms the individual contribution

effect and rules out altruism: players do not internalize their teammates’ effort costs in our

setting.

23See Appendix for more formal details on this test.
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Table 2.10: Evidence against altruism

Dep. var: A1 wins battle 1 (1) (2) (3)

A2 favorite, A3 underdog -0.086 (0.065) -0.086 (0.071) -0.106 (0.061)

A1’s ranking: Top 5 0.837∗∗∗ (0.188)

A1’s ranking: 6-15 0.695∗∗∗ (0.153)

A1’s ranking: 16-30 0.462∗∗∗ (0.134)

A1’s ranking: 31-50 0.361∗ (0.141)

A1’s ranking: 51-75 0.301∗ (0.124)

A1’s ranking: 76-105 0.167 (0.128)

B1’s ranking: Top 5 -0.837∗∗∗ (0.188)

B1’s ranking: 6-15 -0.695∗∗∗ (0.153)

B1’s ranking: 16-30 -0.462∗∗∗ (0.134)

B1’s ranking: 31-50 -0.361∗ (0.141)

B1’s ranking: 51-75 -0.301∗ (0.124)

B1’s ranking: 76-105 -0.167 (0.128)

A1’s ranking vs B1’s ranking X
RankingA1
RankingB1

(< 1) -0.522∗∗∗ (0.129)

A1 at home 0.080 (0.130) 0.082 (0.144) 0.137 (0.125)

B1 at home -0.080 (0.130) -0.082 (0.144) 0.002 (0.121)

A1’s team ranking -0.007 (0.010) -0.005 (0.011) -0.001 (0.010)

B1’s team ranking 0.007 (0.010) 0.005 (0.011) 0.002 (0.009)

Constant 0.543∗∗∗ (0.159) 0.543∗∗ (0.189) 1.027∗∗∗ (0.102)

Controls for players’ ability
Ranking category YES NO NO
Interaction of rkg categories NO YES NO
Ratio of rankings NO NO YES

Observations 208 208 208
R2 0.25 0.28 0.11

Standard errors in parentheses
∗ p < 0.05, ∗∗ p < 0.01, ∗∗∗ p < 0.001

Effects that alter players’ ability: Choking under pressure and psychological mo-

mentum

Choking under pressure Dynamic competitive settings may exert psychological pressure

on competitors, thereby affecting their performance. The player who belongs to the lagging team

might – all other things being equal – face more pressure than the player in the leading team,

as the former needs to win to ensure that his team remains in the contest. Such a phenomenon

might explain why we observe a positive effect of a win in the first game on the probability of
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winning the next. Apesteguia & Palacios-Huerta (2010) use the random nature of the order of

soccer penalty shoot-outs to provide evidence of such psychological pressure. Teams that take

the first kick in the sequence win the penalty shoot-out 60.5 percent of the time. Taking into

account the characteristics of the setting, they attribute this significant difference in performance

to psychological effects resulting from the consequences of the kicking order.24 Ariely, Gneezy,

Loewenstein & Mazar (2009) show, based on experimental data, that choking under pressure

has a stronger deterrent effect on performance when the task is publicly observable.

We incorporate choking under pressure into our theoretical setting by multiplying by η

(0 < η < 1) the ability of players who must win their individual battle to ensure that their

team remains in the contest. In T=2, the player in the leading team (X2) does not face pressure

because losing his battle does not imply that his team loses. On the contrary, the player in the

lagging team (Y2) might choke under pressure because losing his battle induces that his team

loses. Hence, the choking-under-pressure effect yields the following prediction in battle 2:25

p∗2CUP =
θX2

θX2 + θY2η
>

θX2

θX2 + θY2

where team X is defined as the team that won battle 1.

In a trivial battle 3 (i.e. one team has already won two battles), none of the players face

pressure because the outcome of their individual battle does not affect the collective outcome.

Therefore, we obtain the following prediction:26

p∗3CUPtrivial = p∗3 =
θX3

θX3 + θY3
.

where team X is defined as the team that won battles 1 and 2.

As p∗2CUP >
θX2

θX2
+θY2

and p∗3CUPtrivial =
θX3

θX3
+θY3

, the following empirical test can be derived

from our theoretical setting.

Test 6. There is evidence in support of a “choking-under-pressure” effect if:

1. Winning battle 1 increases the probability of winning battle 2.

2. Winning battle 1 and battle 2 does not affect the probability of winning a trivial battle 3.

24Kocher, Lenz & Sutter (2012) find different results using a larger sample of penalty shoot-outs.

25See Appendix for detailed computations.

26See Appendix for detailed computations.
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The first condition is met (see table 2.4) while the second condition is not. Indeed, our

additional test on the individual contribution effect shows that winning battles 1 and 2 has a

statistically significant effect on the probability of winning a trivial battle 3. Depending on the

measure of relative ability that is used, the effect ranges from 13 to 27 percentage points (see

table 2.7). This allows us to reject choking under pressure and to put forward the individual

contribution effect.

Psychological momentum Psychological momentum implies that winning a battle in-

creases a player’s confidence and makes him more likely to win the next one (“success breeds

success”). Rosenqvist & Skans (2015) provide field evidence of this phenomenon. They use data

from European golf tournaments to show that players who (marginally) succeeded in making

the cut substantially increased their performance in subsequent tournaments relative to players

who (marginally) failed to make the cut.

Psychological momentum might also occur at the team level in multiple pairwise battles. We

incorporate this effect into our theoretical setting by multiplying by ψ (ψ > 1) the ability of the

player whose team won the last battle. This changes the probability that player X2 and player

X3 win. In this case,27

p∗3PM =
θX3

θX3 + θY3ψ
,

where team X is defined as the team that won battle 1 and lost battle 2.

p∗2PM =
θX2ψ

θX2ψ + θY2
,

where team X is defined as the team that won battle 1.

As p∗2PM >
θX2

θX2
+θY2

and p∗3PM <
θX3

θX3
+θY3

, the following empirical test can be derived from

our theoretical setting.

Test 7. There is evidence in support of psychological momentum if:

1. Winning battle 1 increases the probability of winning battle 2.

2. In a non-trivial battle 3, the player in the team that won battle 2 is more likely to win than
the player in the team that won battle 1.28

27See Appendix for detailed computations.

28This identification strategy is also used by Malueg & Yates (2010) and Mago et al. (2013).
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To test for the second condition, we focus on the subsample of non-trivial battle 3s (i.e., the

matches in which the winning team had not been determined after the first two battles). For

these matches, there are only two possible scenarios regarding the outcome of the two previous

battles: either A1 won battle 1 and A2 lost battle 2, or A1 lost battle 1 and A2 won battle

2. We create a dummy variable that is equal to 0 in the first scenario and to 1 in the second

scenario. Psychological momentum would imply that this variable has a positive and statistically

significant effect on A3 wins battle 3. On the contrary, individual contribution predicts that this

variable should not have any effect, as both players face symmetric incentives in a decisive battle

3. The model is therefore given by:

A3 wins battle 3 = β0+βPM×A1 lost battle 1 and A2 won battle 2+f(RankingA3 , RankingB3)

+βhome×HomeA+βaway×AwayA+βtA×Team′srankingA−βtB×Team′srankingB +εAB3

Table 2.11 reports the results obtained with the three measures of players’ ability. The effect

of the sequence variable A1 lost battle 1 and A2 won battle 2 is not statistically significant in

any of the three specifications. This is evidence in favor of individual contribution and against

psychological momentum.
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Table 2.11: Evidence against psychological momentum

Dep. var: A3 wins battle 3 (1) (2) (3)

A1 lost battle 1 and A2 won battle 2 -0.026 (0.067) -0.027 (0.072) -0.002 (0.063)

A3’s ranking: Top 5 0.765∗∗ (0.261)

A3’s ranking: 6-15 0.548∗∗∗ (0.153)

A3’s ranking: 16-30 0.376∗∗ (0.141)

A3’s ranking: 31-50 0.261∗ (0.127)

A3’s ranking: 51-75 0.185 (0.114)

A3’s ranking: 76-105 0.006 (0.116)

B3’s ranking: Top 5 -0.765∗∗ (0.261)

B3’s ranking: 6-15 -0.548∗∗∗ (0.153)

B3’s ranking: 16-30 -0.376∗∗ (0.141)

B3’s ranking: 31-50 -0.261∗ (0.127)

B3’s ranking: 51-75 -0.185 (0.114)

B3’s ranking: 76-105 -0.006 (0.116)

A3’s ranking vs B3’s ranking X
RankingA3
RankingB3

(< 1) -0.364∗∗ (0.134)

A3 at home -0.018 (0.127) -0.039 (0.143) -0.126 (0.114)

B3 at home 0.018 (0.127) 0.039 (0.143) -0.071 (0.123)

A3’s team ranking -0.020 (0.011) -0.019 (0.012) -0.021∗ (0.011)

B3’s team ranking 0.020 (0.011) 0.019 (0.012) 0.015 (0.010)

Constant 0.513∗∗∗ (0.142) 0.514∗∗ (0.161) 0.971∗∗∗ (0.106)

Controls for players’ ability
Ranking category YES NO NO
Interaction of rkg categories NO YES NO
Ratio of rankings NO NO YES

Observations 191 191 191
R2 0.26 0.29 0.10

Standard errors in parentheses
∗ p < 0.05, ∗∗ p < 0.01, ∗∗∗ p < 0.001

2.5 Conclusion

Using team squash championships as a randomized natural experiment, we provide compelling

empirical evidence against neutrality in multiple pairwise battles: in a best-of-three team contest,

winning the first battle increases, ceteris paribus, the probability of winning the second battle.

We show that this team dynamic is not driven by effects that would alter players’ ability such

as choking under pressure or psychological momentum. We further show that altruism and

guilt aversion, two effects that affect players’ prize spread, also fail to explain the absence of
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neutrality.

The observed dynamic linkage is driven by another incentive effect, which we refer to as

individual contribution: people derive utility from contributing to their team’s success. To the

best of our knowledge, this is the first paper providing empirical field evidence that individuals

value contributing to their team’s success. These findings cast new light on the way individuals

behave in teams and open several potential avenues for future research.

While this effect should exist in other settings and in other kinds of contests outside the ones

studied here, the subject merits further scrutiny. One important pending question is whether

individual contribution depends on the observability of each teammate’s performance. This

has crucial implications with regard to management practices and contest design. If individual

contribution only comes into play when performance is observable – as it is in the setting under

scrutiny – organizations should design contests and team-based contracts in such a way that

each teammate’s performance is made public and the link between individual outcomes and team

success is easily appreciable. For instance, the temporal structure of contests could play a major

role in enabling organizations to reap the benefits of individual contribution, and sequential

rounds could be much more efficient than simultaneous contests in inducing individuals to make

a significant effort.

In any case, this effect is of prime importance to understanding team-based contests and

contracts. Economic models of teams predict that individuals have an incentive to free ride, as

they do not internalize the benefits accrued by other members of the team when making effort

decisions.29 Hence, the optimal level of effort exerted in individual contests should be higher

than the effort observed in team-based incentive contests when the individual reward is based

on team production. However, this theoretical result seems to contradict both experimental and

behavioral literature on teams.30 Individual contribution is a mechanism that mitigates free-

riding behaviors. Each teammate values being responsible for collective success and therefore

makes a significant effort, which could be higher than the effort that he would make in an

individual contest. Individual contribution appears to be one of the reasons why so many firms

use collective incentive and profit-sharing plans.

29See Lazear & Rosen (1981) for a seminal analysis of the relation between compensation and incentives in
the presence of costly monitoring of worker’s effort and output; and Prendergast (1999) for a survey of team
production.

30See, for instance, Kandel & Lazear (1992). Chen & Lim (2013) show, using an experiment, that guilt is at
play in teams and can explain why team-based incentives are more efficient that individual-based contracts.
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Appendices

Appendix A - theoretical predictions

Neutrality

T=3 (decisive battle) Both teams won one individual battle. Players X3 and Y3 are now

facing off in a decisive game. If X3 wins, which occurs with a probability x3
x3+y3

, he gets both the

individual battle reward v and the collective reward V . If he loses, he gets a payoff 0. Whatever

the result, he has to pay the cost of effort x3
θX3

. X3’s maximization problem is therefore given by

max
x3

(
x3

x3 + y3
(v + V )− x3

θX3

)
.

Symmetrically, for player Y3:

max
y3

(
y3

x3 + y3
(v + V )− y3

θY 3

)
.

First-order conditions give the optimal levels of effort and p∗3:

x∗3 = (v + V )
θ2
X3
θY3

(θX3 + θY3)2
,

y∗3 = (v + V )
θX3θ

2
Y3

(θX3 + θY3)2
,

p∗3 =
θX3

θX3 + θY3
.

This yields the following prediction:

Prediction The outcome of a decisive battle 3 depends solely on the relative ability of the

players involved in battle 3.

T=2 Team X won the first battle (X1 won against Y1).

X2 chooses his level of effort x2 to maximize his utility. If he wins, which occurs with a

probability x2
x2+y2

, he gets both the battle reward and the collective reward (v + V ). If he loses,

which occurs with a probability y2
x2+y2

, he can still get the collective reward V if his teammate

X3 wins the third battle (which occurs with a probability p∗3). Finally, whatever the outcome
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of the battle, he has to pay the cost of his effort x2
θX2

. X2’s maximization problem is therefore

given by:

max
x2

(
x2

x2 + y2
(v + V ) +

y2

x2 + y2
p∗3V −

x2

θX2

)
.

Y2 chooses his level of effort y2 to maximize his utility. If he wins, which occurs with a

probability y2
x2+y2

, he will get a payoff v + (1− p∗3)V . If he loses, the match ends and he gets a

payoff 0. He has to pay the cost of effort y2
θY2

, whatever the outcome of the battle. Note that in

the neutrality model, the two players have the same prize spread (difference of utility between

winning and losing): v + (1− p∗3)V . Y2’s maximization problem is

max
y2

(
y2

x2 + y2
(v + (1− p∗3)V )− y2

θY2

)
.

First-order conditions yield the optimal levels of effort and p∗2:

x∗2 = (v + (1− p∗3)V )
θ2
X2
θY2

(θX2 + θY2)2
;

y∗2 = (v + (1− p∗3)V )
θX2θ

2
Y2

(θX2 + θY2)2
;

p∗2 =
θX2

θX2 + θY2
.

This yields the two following predictions.

Prediction 1 Winning battle 1 does not affect the probability of winning battle 2.

Prediction 2 The outcome of battle 2 only depends on the two players involved in battle 2.

Individual contribution

When a player wins and his team wins, he gets an additional payoff of individual contribution

c.

Player’s team wins Player’s team loses

Player wins v + V + c v

Player loses V 0
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T=3 (trivial battle) Team X won battle 1 and battle 2, so battle 3 is trivial. If X3 wins,

which occurs with a probability x3
x3+y3

, he gets a payoff v + V + c corresponding to the battle

reward, the collective reward and the individual contribution effect. If he loses, he gets a payoff

V (his team wins but he does not get the battle reward nor the individual contribution reward).

Whatever the result, he has to pay the cost of effort x3
θX3

.

max
x3

(
x3

x3 + y3
(v + V + c) +

y3

x3 + y3
V − x3

θX3

)
.

For player Y3, the only stake is the battle reward v. As his team already lost, he is sure he

will not get the collective reward, nor the individual contribution reward:

max
y3

(
y3

x3 + y3
v − y3

θY 3

)
.

The first-order conditions give the optimal levels of effort and p∗3ICtrivial:

x∗3ICtrivial =
(θX3(v + c))2θY3v

(θX3(v + c) + θY3v)2
,

y∗3ICtrivial =
θX3(v + c)(θY3v)2

(θX3(v + c) + θY3v)2
,

p∗3ICtrivial =
θX3(v + c)

θX3(v + c) + θY3v
.

This yields the following prediction.

Prediction Winning battle 1 and battle 2 increases the probability of winning a trivial battle

3.

T=3 (decisive battle) Both teams won one individual battle. Players X3 and Y3 are now

facing off in a decisive game. If X3 wins, which occurs with a probability x3
x3+y3

, his team wins

and he gets a payoff v + V + c. If he loses, he gets a payoff 0. Whatever the result, he has to

pay the cost of effort x3
θX3

.

max
x3

(
x3

x3 + y3
(v + V + c)− x3

θX3

)
.

Symmetrically for player Y3:

max
y3

(
y3

x3 + y3
(v + V + c)− y3

θY 3

)
.
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The first-order conditions give the optimal levels of effort and p∗3ICdecisive:

x∗3ICdecisive = (v + V + c)
θY3θ

2
X3

(θX3 + θY3)2
;

y∗3ICdecisive = (v + V + c)
θX3θ

2
Y3

(θX3 + θY3)2
;

p∗3ICdecisive = p∗3 =
θX3

θX3 + θY3
.

This yields the following prediction.

Prediction The outcome of a decisive battle 3 depends solely on the relative ability of the

players involved in this battle.

T=2 Team X won the first battle (X1 won against Y1). Contrary to T=3 (decisive battle),

the two players do not face the same optimization problem. X2 chooses his level of effort x2

to maximize his utility. If he wins, he gets a payoff of v + V + c. If he loses, he gets a payoff

of p∗3V (he will get neither the private reward nor the “contribution reward” but he will get

the collective reward if his teammate wins in T=3, which will occur with a probability p∗3).

Therefore, X2’s maximization problem is given by:

max
x2

(
x2

x2 + y2
(v + V + c) +

y2

x2 + y2
p∗3V −

x2

θX2

)
.

Y2 chooses his level of effort y2 to maximize his utility. If he wins he gets a payoff of

v + (1− p∗3)(V + c) because he will get the battle reward for sure and the collective reward and

the individual contribution reward if his teammate wins, which will occur with a probability

(1− p∗3). If he loses he does not get any reward and ends up with a payoff 0.

max
y2

(
y2

x2 + y2
(v + (1− p∗3)(V + c))− y2

θY2

)
.

Thus, X2 has more incentive to win than Y2 because X2 is sure to get the “contribution

reward” if he wins his battle while Y2 will get the “responsibility reward” if and only if his

teammate also wins in T=3.

The first-order conditions yield the optimal levels of effort and p∗2IC :
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x∗2IC =
θ2
X2

(v + (1− p∗3)V + c)2θY2(v + (1− p∗3)(V + c))

[θX2(v + (1− p∗3)V + c) + θY2(v + (1− p∗3)(V + c))]2
,

y∗2IC =
θX2(v + (1− p∗3)V + c)θ2

Y2
(v + (1− p∗3)(V + c))2

[θX2(v + (1− p∗3)V + c) + θY2(v + (1− p∗3)(V + c))]2
,

p∗2IC =
θX2(v + (1− p∗3)V + c)

θX2(v + (1− p∗3)V + c) + θY2(v + (1− p∗3)(V + c))
.

As p∗2IC >
θX2

θX2
+θY2

and ∂p2IC
∂p∗3

> 0, this yields the two following predictions.

Prediction 1 Winning battle 1 increases the probability of winning battle 2.

Prediction 2 The probability of winning battle 2 increases with the probability of winning

battle 3.

Guilt aversion

When a player loses and his team loses, he gets a negative payoff payoff −s.

Player’s team wins Player’s team loses

Player wins v + V v

Player loses V −s

T=3 (decisive battle) Both teams won one individual battle. Players X3 and Y3 are now

facing off in a decisive game. If X3 wins, which occurs with a probability x3
x3+y3

, his team wins

and he gets a payoff v + V . If he loses, he gets a payoff −s because he is “guilt-averse:” being

partly responsible for the failure of his team is costly for him. Whatever the result, he has to

pay the cost of effort x3
θX3

and faces the following maximization problem:

max
x3

(
x3

x3 + y3
(v + V ) +

y3

x3 + y3
(−s)− x3

θX3

)
.

Symmetrically for player Y3:

max
y3

(
y3

x3 + y3
(v + V ) +

x3

x3 + y3
(−s)− y3

θY 3

)
.

The optimal levels of effort and p∗3GA are given by:
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x∗3GA = (v + V + s)
θ2
X3
θY3

(θX3 + θY3)2
,

y∗3GA = (v + V + s)
θX3θ

2
Y3

(θX3 + θY3)2
,

p∗3GA = p∗3 =
θX3

θX3 + θY3
.

This yields the following prediction.

Prediction The outcome of a decisive battle 3 depends solely on the relative ability of the

players involved in this battle.

T=2 Team X won the first battle (X1 won against Y1). X2 chooses his level of effort x2 to

maximize his utility. If he wins, which occurs with a probability x2
x2+y2

, he gets a payoff v + V .

If he loses, which occurs with a probability y2
x2+y2

, he gets a payoff V with a probability p∗3 and

−s with a probability (1 − p∗3). Finally, whatever the outcome of the battle, he has to pay the

cost of his effort x2
θX2

. His maximization problem is:

max
x2

(
x2

x2 + y2
(v + V ) +

y2

x2 + y2
(p∗3V + (1− p∗3)(−s))− x2

θX2

)
.

Y2 chooses his level of effort y2 to maximize his utility. If he wins, which occurs with a

probability y2
x2+y2

, he will get a payoff v + (1− p∗3)V . If Y2 loses, the match ends and he gets a

payoff −s. He has to pay the cost of effort y2
θY2

, whatever the outcome of the battle.

max
y2

(
y2

x2 + y2
(v + (1− p∗3)V ) +

x2

x2 + y2
(−s)− y2

θY2

)
Thus, Y2 has more incentive to win than X2 because Y2 is sure to be “defeat-responsible” if

he loses his battle while X2 will be “defeat-responsible” if and only if his teammate also loses

in T=3.

Deriving the first-order conditions yield the optimal levels of effort and p∗2GA:

x∗2GA =
θ2
X2

(v + (1− p∗3)(V + s))2θY2(v + (1− p∗3)V + s)

[θX2(v + (1− p∗3)(V + s)) + θY2(v + (1− p∗3)V + s)]2
,

y∗2GA =
θX2(v + (1− p∗3)(V + s))θ2

Y2
(v + (1− p∗3)V + s)2

[θX2(v + (1− p∗3)(V + s)) + θY2(v + (1− p∗3)V + s)]2
,
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p∗2GA =
θX2(v + (1− p∗3)(V + s))

θX2(v + (1− p∗3)(V + s)) + θY2(v + (1− p∗3)V + s)
.

As p∗2GA <
θX2

θX2
+θY2

and ∂p2GA
∂p∗3

< 0, this yields the two following predictions:

Prediction 1 Winning battle 1 decreases the probability of winning battle 2.

Prediction 2 The probability of winning battle 2 decreases with the probability of winning

battle 3.

Disentangling individual contribution and altruism

We compare the predictions of individual contribution and altruism in battle 1 in the case where

the favorites for battles 2 and 3 do not belong to the same team. Let X denote the team whose

players are favorites in battle 2 and underdogs in battle 3. For simplicity, we furthermore assume

that X2 will win with certainty and X3 will lose with certainty.31

Individual contribution Player X1 gets the battle reward v, the collective reward V , and

the individual contribution reward c if he wins (as his teammate X2 will win battle 2 and end

the contest) and he gets a payoff 0 if he loses. Player Y1 faces the same prize spread as he also

gets V + v + c if he wins and 0 if he loses:

∆UX1
= ∆UY 1

= v + V + c.

Altruism If players X1 and Y1 were altruistic, their incentives would no longer be symmetric.

If X1 wins, he will get both the battle reward v and the collective reward V and he will prevent

his teammate X3 from making a high effort in a decisive battle 3 (as the contest will be won

after battle 2 thanks to the victory of X2). On the contrary, if X1 loses, he will get neither the

battle reward nor the collective reward and he will force his teammate X3 to play, which induces

a negative payoff −αC(X3) where C(X3) is the cost of effort of X3 in a decisive battle 3 and α

reflects the degree to which X1 internalizes this cost (0 < α < 1). Hence the prize spread of X1

will be v + V + αC(X3). His opponent Y1 faces a different problem. If he wins, he gets both v

and V as his team will win the contest but he forces his teammate Y3 to play a decisive battle

31Note that the logic would be the same with a more general framework where X2 is “as much of a favorite as
X3 is an underdog”.
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3, which is partly internalized by him (−αC(Y3)). If Y1 loses, he gets neither v nor V but he

prevents Y3 from playing. Hence his prize spread is v + V − αC(Y3).

∆UX1
= v + V + αC(X3) > ∆UY 1

= v + V − αC(Y3)

Different predictions Thus, individual contribution predicts that X1 and Y1 have the same

prize spread while altruism predicts that X1 has a higher prize spread than Y1. Since p∗1 =
θX1∆UX1

θX1∆UX1
+θY 1∆UY 1

, individual contribution predicts that being the favorite in battle 2 is equiva-

lent to being the favorite in battle 3 whereas altruism predicts that being the favorite in battle

2 is preferable to being the favorite in battle 3. This finding is the basis for our empirical test

in section 2.4.2.

Choking under pressure

T=3 (trivial battle) Team X already won battles 1 and 2, so battle 3 becomes stakeless

(except for the battle reward) and neither of the two players faces pressure. Hence their cost of

effort are not affected.

Player X3 is sure to get the collective reward V whatever the outcome of battle 3 but he will

get the battle reward v only if he wins battle 3.

max
x3

(
V +

x3

x3 + y3
v − x3

θX3

)
Player Y3 will not get the collective reward but he can get the battle reward v if he wins.

max
x3

(
y3

x3 + y3
v − y3

θY 3

)
First-order conditions give the optimal levels of effort and p∗3CUPtrivial:

x∗3CUPtrivial = v
θ2
X3
θY3

(θX3 + θY3)2
,

y∗3CUPtrivial = v
θX3θ

2
Y3

(θX3 + θY3)2
,

p∗3CUPtrivial = p∗3 =
θX3

θX3 + θY3
.

This yields the following prediction.
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Prediction Winning battle 1 and battle 2 does not affect the probability of winning a trivial

battle 3.

T=3 (decisive battle) Both team won one individual battle. Players X3 and Y3 are now

opposed in a decisive game. Since battle 3 is pivotal, players X3 and Y3 might both choke under

pressure as losing the battle implies the defeat of their team. This is conceptually equivalent to

multiplying their ability by η with 0 < η < 1.

max
x3

(
x3

x3 + y3
(v + V )− x3

θX3η

)
Symmetrically for player Y3:

max
y3

(
y3

x3 + y3
(v + V )− y3

θY 3η

)
Deriving the FOCs yield the optimal levels of effort and p∗3:

x∗3CUPdecisive = (v + V )η
θ2
X3
θY3

(θX3 + θY3)2

y∗3CUPdecisive = (v + V )η
θX3θ

2
Y3

(θX3 + θY3)2

p∗3CUPdecisive = p∗3 =
θX3

θX3 + θY3

This yields the following prediction.

Prediction The outcome of a decisive battle 3 depends solely on the relative ability of the

players involved in this battle.

T=2 Team X won the first battle (X1 won against Y1). There is an asymmetry between the

two players. Player X2 has no reason to choke under pressure because his team will remain in

the contest if he loses battle 2. On the contrary, player Y2 knows that losing battle 2 implies

that his team loses the contest. Thus, he may choke under pressure, which can be modelled by

multiplying his ability by a factor η (0 < η < 1).

max
x2

(
x2

x2 + y2
(v + V ) +

y2

x2 + y2
p∗3V −

x2

θX2

)
.
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max
y2

(
y2

x2 + y2
(v + (1− p∗3)V )− y2

θY2η

)
.

First-order conditions yield the optimal levels of effort and p∗2:

x∗2CUP = (v + (1− p∗3)V )
θ2
X2
θY2η

(θX2 + θY2η)2
;

y∗2CUP = (v + (1− p∗3)V )
θX2(θY2η)2

(θX2 + θY2η)2
;

p∗2CUP =
θX2

θX2 + θY2η

As p∗2CUP >
θX2

θX2
+θY2

, this yields the following prediction.

Prediction Winning battle 1 increases the probability of winning battle 2.

Psychological momentum

T=3 (decisive battle) Team X won the first battle and lost the second battle (X1 won

against Y1 and X2 lost against Y2). Y3 has psychological momentum because his teammate won

the previous battle. This is conceptually equivalent to multiplying his ability by a factor ψ (with

ψ > 1). The maximization problem is:

max
x3

(
x3

x3 + y3
(v + V )− x3

θX3

)
,

max
y3

(
y3

x3 + y3
(v + V )− y3

θY 3ψ

)
.

Optimal levels of effort and p∗3PM are therefore given by:

x∗3PM = (v + V )
θ2
X3

(θY3ψ)

(θX3 + θY3ψ)2
,

y∗3PM = (v + V )
θX3(θY3ψ)2

(θX3 + θY3ψ)2
,

p∗3PM =
θX3

θX3 + θY3ψ
.

As p∗3PM <
θX3

θX3
+θY3

, this yields the following prediction.
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Prediction In a decisive battle 3, the player in the team that won battle 2 is more likely to

win than the player in the team that won battle 1.

T=2 Team X won the first battle (X1 won against Y1). X2 has psychological momentum

because his teammate won the previous battle. This is conceptually equivalent to multiplying

his ability by a factor ψ (with ψ > 1). We therefore have the following maximization problems:

max
x2

(
x2

x2 + y2
(v + V ) +

y2

x2 + y2
p∗3PMV −

x2

θX2ψ

)
,

max
y2

(
y2

x2 + y2
(v + (1− p∗3PM )V )− y2

θY2

)
.

Deriving the first order conditions yield the optimal levels of effort and p∗2PM :

x∗2PM = (v + (1− p∗3PM )V )
(θX2ψ)2θY2

(θX2ψ + θY2)2
;

y∗2PM = (v + (1− p∗3PM )V )
(θX2ψ)θ2

Y2

(θX2ψ + θY2)2
;

p∗2PM =
θX2ψ

θX2ψ + θY2
.

As p∗2PM >
θX2

θX2
+θY2

, this yields the following prediction.

Prediction Winning battle 1 increases the probability of winning battle 2.
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Appendix B - probit estimation

Table 2.12: Evidence against neutrality (probit estimation - average marginal effects)

(1) (2) (3) (4) (5) (6)

A1 won battle 1 0.105∗∗∗ 0.073∗∗ 0.117∗∗∗ 0.081∗∗ 0.083∗∗∗ 0.063∗

(0.025) (0.027) (0.027) (0.029) (0.024) (0.026)

Controls for players’ ability
Ranking category YES YES NO NO NO NO
Interaction of rkg categories NO NO YES YES NO NO
Ratio of rankings NO NO NO NO YES YES

Other controls
Playing home + teams’ rankings NO YES NO YES NO YES

Observations 934 896 934 896 934 896

Standard errors in parentheses: ∗ p < 0.05, ∗∗ p < 0.01, ∗∗∗ p < 0.001.

Reading note (column 1): the average marginal effect of winning battle 1 on the probability of winning battle 2 is 10.5 pp.

Note: the number of observations decreases from 934 in specifications (1), (3), (5) to 896 in specifications (2), (4),(6)

because there are 38 contests for which teams’ rankings are missing.
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Chapter 3

Estimating individual productivity
in football

Jean-Baptiste Vilain & Rodrigo Lopez Kolkovsky
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Abstract

In most production settings, the collective output is observed while the individual produc-

tivity of team members is difficult to assess. We develop an estimation procedure based on

fixed-effects and a Ridge penalization in order to address this issue. We focus on football be-

cause it represents an ideal laboratory: the rules of the game are clearly defined and data are

publicly available. Once our productivity metrics obtained, we confront it to players’ market

value in order to identify undervalued and overvalued players on the market. We find significant

statistical evidence that the proportion of black players is greater in the group of undervalued

players than in the group of overvalued players.

JEL Classification C81, Z20, Z22.

Keywords Team Economics, Individual Productivity, Sports Analytics, Ridge, Discrimina-

tion.
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3.1 Introduction

Assessing individual productivity in teamwork is very complex because only the collective output

can be directly observed. The marginal productivity of team members is difficult to measure,

especially when teammates’ efforts interact in a subtle manner (Alchian & Demsetz (1972)).

Team sports are no exception: sportsmen are a special type of workers that are associated

together on the field to produce a collective output. This collective output is easily observed

through the games’ outcomes (goals, points, etc) but it is difficult to know precisely to what

extent players contribute to the success of their team. Of course team sports offer more informa-

tion on individual performance than most other team settings because games can be watched.

Therefore players’ actions are observable and it is possible to have a vague idea about play-

ers’ individual performance. However, subjective assessment on players’ performance tends to

be systematically biased by the scoring illusion: the impact of offensive and spectacular tasks

tend to be overstated while defensive and unspectacular tasks like marking, that are equally

important for the team, tend to be largely understated (Kuper (2014)).

Estimating the individual level of a sportsman in a team is a challenging exercise because

the level of the opponents and the level of the teammates need to be taken into account. As it

is more difficult for a player to make a difference against a high performing team, an excellent

performance against a strong team must be weighted more than an excellent performance against

a weak team. Similarly, a player is likely to better play if he is surrounded by teammates who

place him in good playing conditions. Therefore, the individual productivity of a player must

be netted out of his teammates’ productivity.

Two different approaches have been considered in the literature to estimate individual pro-

ductivity in team sports. The first approach is based on individual ”box-score” statistics such

as dribbles, passes or shots. It is a two-stage procedure. First, actions that make the team

successful are identified by regressing the team output1 on the different box-score statistics.

Each action gets a coefficient according to its contribution to the the success of the team. Then,

individual productivity is obtained by multiplying these coefficients by the number of actions

of each player. This method has the advantage of giving a lot of information on the aspect-

s of the game where players contribute the most, so that it is possible to understand why a

player is productive. However, the box-score approach might fail to take into account all the

1The winning percentage is an example of a team output that might be considered in the box-score approach.
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dimensions of players’ contribution to the team’s success. Some key individual statistics might

not be identified and might not appear in the box-score. For example, some defensive statistics

like the marking ability are difficult to record. Furthermore, personality traits like charisma or

leadership, that are strongly related to productivity, cannot be measured.

The second approach used in the literature does not rely on any in-game statistics other than

players’ participation. It corresponds to a fixed-effet estimation: a players’ productivity is es-

timated according to his participation to different games. The better the results obtained by

a team when a player is on the field, the higher his productivity is.2 Thus the fixed effect ap-

proach captures all the dimensions of players’ productivity. It also has the advantage of being

very low data-demanding as only the final scores and the line-ups for every game are needed in

the estimation. The main limit of this method is that, contrary to the box-score approach, it

is completely agnostic about how a player contributes to the success of his team. Hence it does

not provide any insight on what makes a player productive.

Among team sports, football3 is particularly difficult to analyze. Contrary to baseball which

can be decomposed into discrete sequences where a batter is opposed to a pitcher, football is

continuous due to the nearly uninterrupted flow of the ball during the game. Moreover, relevant

performance statistics are not clearly identified in football, contrary to other sports such as bas-

ketball where statistics on points, rebounds, steals, assists, blocks, turnovers or fouls are very

informative on players’ performance. Finally, scoring events are very rare in football (on average

there are less than 3 goals scored during a game), so considering simple statistics such as the

number of goals or assists is not very representative of the level of a player. These aspects make

football analytics particularly challenging. It also explains why measures of individual produc-

tivity developed in other team sports cannot be directly transposed to football (see section 3.2).

The inherent complexity of football makes this setting similar to most work environments.

Indeed, in most firms: (i) it is often difficult to decompose a work flow in different discrete

sequences; (ii) relevant performance variables at the individual level may be hard to identify;

(iii) variability in global performance of the team may be limited. Hence, football exhibits the

same characteristics as the majority of team settings and appears as an ideal laboratory. Our

2That is why we term it a fixed-effect approach even if it is not necessary a fixed-effect approach in the usual
econometric sense.

3From now on, when we use the word football, we mean European football (soccer) and not American football.
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first contribution is to use football data in order to develop an estimation procedure of individ-

ual productivity in teams. Our methodology combines fixed-effects with a Ridge penalization.

Fixed-effects allow us to consider individual productivity in all its dimensions while the Ridge

penalization prevents overfitting as it imposes a constraint on the sum of squared estimated

coefficients. It also allows us to overcome the colinearity issue due to the fact that players often

play with the same teammates.

We obtain results that are consistent with specialists’ opinion. Lionel Messi and Cristiano Ronal-

do, who are largely recognized as the two best players over the period under consideration, top

our ranking. All other players in our top 30 are world class players. This suggests that our

estimation procedure is very well-suited to the analysis of individual productivity in teams and

could be applied to a wide scope of settings outside football. The only requirements are the ob-

servability of the collective output and frequent shifts between teammates/workers (see section

3.6.2).

Our second contribution deals with the functioning of the labor market. In most empirical

studies, labor market discrimination is measured by estimating wage functions for various groups

of workers. Discrimination is then operationally defined as differences in predicted wages for

the different groups when the prediction holds constant various productivity determinants of

wages (see Cain (1986) for a survey). However, interpreting differences in predicted wages by

groups as discrimination may be problematic for two reasons. First, as pointed out by Neal &

Johnson (1996), resulting estimates of residual wage gaps may be biased if some controls for

worker productivity are endogenous, i.e. are themselves affected by market discrimination. This

is the case of controls such as occupation, postsecondary schooling, part-time work, marital

status, geographical location, and actual labor market experience, which are all subject to

worker choice and could be contaminated by labor market discrimination.4 Second, data on

worker productivity are often limited, so controls for worker productivity may be very imprecise

measures of worker skills. Hence, it might be difficult to distinguish labor market outcomes

arising from discrimination against a group from those produced by intergroup differences in

unobserved productivity.

The impact of these problems should be limited in our setting. First, it seems reasonable to

4See Corcoran & Duncan (1979); Reimers (1983); Smith & Welch (1986); O’Neill (1990); Blau & Beller (1992);
Oaxaca & Ransom (1994).
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assume that our measure of individual productivity is not itself affected by discrimination. As

our estimation procedure is based on players’ fixed effects and only relies on data on final scores

and line-ups, it seems unlikely that the bias introduced by the Ridge penalization is correlated to

players’ race. Second, labor market outcomes of football players should be largely determined by

their on-field productivity, so intergroup differences in unobservables such as education should

not alter much the analysis. Thus, we can test for racial discrimination by simply comparing

labor market outcomes of white and black players at equivalent level of estimated productivity.

Szymanski (2000) finds evidence of lower wages for black players in English football leagues. His

identification strategy is based on the fact that if football were a competitive non-discriminatory

market for the services of players, clubs’ performance should only depend on their wage bill.

Yet, he shows that clubs fielding an above-average proportion of black players systematically

outperform clubs with a below-average proportion of black players, after controlling for the wage

bill. Confronting our productivity metrics to players’ market value is another approach to test

whether there is discrimination on the football market. It is complementary to Szymanski’s

study for two reasons. First, we consider a different labor market outcome: we focus on players’

market values on the transfer market instead of their wages. Second, and more importantly,

our test for discrimination is realized at the player’s level thanks to our individual productivity

metrics. By comparing the proportion of black players among undervalued and overvalued

players, we provide evidence of racial discrimination on the football market. The share of black

players is about three times higher in the group of undervalued players than in the group of

overvalued players.

The remainder of this paper is organized as follows. Section 3.2 presents in more details the

sports analytics literature on the box-score and fixed-effect approaches. Section 3.3 presents our

data and our estimation procedure. Our productivity rankings and our market test for racial

discrimination are exposed in section 3.4. In section 3.5, we use in-sample and out-of-sample

simulations to test the robustness of our measure of individual productivity. Section 3.6 presents

two potential extensions of our estimation procedure. Section 3.7 concludes.

3.2 Related literature

In the literature on sports analytics, two different approaches are used to evaluate individual

productivity in team sports: the box-score approach and the fixed-effect approach.
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3.2.1 The “box-score” approach

Berri (1999) and Berri & Schmidt (2010) are very illustrative of the box-score approach. First,

they identify the actions that make the success of a basketball team (points scored, rebounds

etc). Then, they measure individual productivity by looking at how many of these actions the

players make. Each action is weighted accordingly to its importance for winning. The measure

they get is extremely simple5 but it does not take into account opponents’ level. Franck &

Nüesch (2010) adapt the Berri approach to European football. They start by estimating the

impact of different actions on the winning percentage of teams. The productivity of a player

is then defined as the sum of his individual actions multiplied by their impact on the teams’

winning percentage.

Another example of the box-score approach is the use of the DEA (data envelopment anal-

ysis). Depending on some inputs and some outputs, an efficiency frontier is obtained. Players

who lie on the efficiency frontier are the most efficient, i.e. those who produce the most outputs

relatively to the inputs they use. Tiedemann, Francksen & Latacz-Lohmann (2011) use a DEA

to compare football players. They use playing time as an input and goals scored, assists, the

percentage of successful passes and the percentage of successful tackles as outputs. Hence, they

implicitly assume that the productivity of a player only depends on these four variables.

3.2.2 The fixed-effect approach

The main idea behind the fixed-effect approach is that box-score statistics cannot take into

consideration all the dimensions of a player’s contribution to his team’s success. A broader

measure, that also reflects the unobservable part of productivity, is needed.

In the fixed-effect approach, a player’s productivity is estimated according to his participation

to different games. Müller, Upmann & Prinz (2013) use a fixed-effect approach based on network

analysis. They model a team as a network and players as nodes. Edges between two players

depend on their performance when they are together on the field. For example, if player A

and player B get on average 2 points when they play together while player A gets on average

2.5 points (unconditionally on player B’s participation) and player B gets on average 1.5 points

(unconditionally on player A’s participation), the edge from player A to player B will be 0.8

(2/2.5) and the edge from player B to player A will be 1.25 (2.5/2). The stronger the edges that

5WinScore = Points+Rebound+ Steals+ 0.5Assists+ 0.5Blocks− Turnovers− FieldGoalsAttempted−
0.5Fouls− 0.5FreeThrowsattempted
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arrive to a player, the more his teammates outperform when he is on the field. The authors

define the adjacency matrix by computing these numbers for every pair of players and assess

players’ individual productivity by their eigenvector centrality in the network. Their approach

seems appealing for it measures players’ contributions to results, whether tangible or intangible.

However, as the network is defined as the team, this method does not allow to compare the

productivity of players from different teams. Altman (2013) introduces the Shapley value to

football to assess how pivotal a player is in the goal difference. Like eigenvector centrality,

Shapley values are agnostic about how the actions of players translate into performance. The

main limit of this method is that results may be sensitive to the the low variability in teams’

squads and the low number of goals scored and conceded.

A simpler example of a fixed-effect approach is the plus-minus. This measure simply com-

pares the goal difference when a player is on the field to the goal difference when he is not on

the field. The plus-minus has been progressively improved in order to be adjusted for the level

of teammates and the level of opponents. Rosenbaum (2004) proposes a version of an adjusted

plus-minus in basketball. He defines an observation as a sequence of a game in which there is no

shift. The dependent variable is the goal difference of the home team. The explanatory variables

are dummy variables for every player. A dummy is equal to 0 if a player is not on the field, to 1 if

he is on the field and plays for the home team and to -1 if he is on the field and plays for the away

team. Ilardi & Barzilai (2008) suggest another version of adjusted plus-minus in basketball that

allows to differentiate between offensive and defensive productivity of the players. Any sequence

of a game opposing team A and team B during which there is no shift is decomposed into two

observations: the attacking ability of team A’s players against the defensive ability of team B’s

players and the attacking ability of team B’s players against the defensive ability of team A’s

players. The dependent variable is the number of points scored by the attacking players and the

explanatory variables are dummies Xi for attacking players and Dj for defending players. Each

player has thus both an offensive and a defensive productivity.

In basketball, the variability of points scored during a sequence without shift is very high

and the substitutions are frequent, which gives room for estimation of the adjusted plus-minus.

However, in other sports where scoring events are much rarer like ice-hockey and football,

variability of the data does not seem sufficient for the standard adjusted plus-minus to work

well. The obtained coefficients have a very large variance and there is a problem of overfitting.

One way of overtaking this issue is to use penalization methods as in Gramacy, Jensen & Taddy
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(2013) and Thomas, Ventura, Jensen & Ma (2013) who estimate the productivity of ice-hockey

players. Penalization methods are indeed very effective in settings where the number of variables

is very high and where there is strong colinearity (see Section 3.3.3)

3.3 Data and estimation strategy

3.3.1 Data

Data used in the estimation of players’ individual productivity

We collect, clean, merge and format data from four different websites6 in order to build a

comprehensive dataset on the final scores and lineups for all the games of the seasons 2007/2008

to 2014/2015 in which two teams from the Big 57 are opposed. All the games of the five national

leagues, part of the national cups games and part of the European cups games are thus taken

into account.8 This makes a total of 16006 games over the eight seasons. For every game, we

have data on the home team, the final score, players’ positions and players’ playing time. We

do not have information about the time at which shifts occur during the game, so we consider

entire games rather than sequences of games without shift.

Since the sample consists in all the games in which two clubs from the Big 5 are opposed, all

the players that played in a Big 5 club between 2007/2008 and 2014/2015 are considered in our

analysis.9 Doing the estimation on such a broad sample rather than on one league only is a way

of making the data less unbalanced and to get more variability as players are often transferred

from one league to another. In total, 3866 players are present in our sample.

We modify the structure of the dataset. We decompose every game into two observations.

If team I plays against team J , we decompose it into one observation with the offensive players

of team I against the defensive players of team J and one observation with the offensive players

6Data on final scores can be found on the following websites: http://www.football-data.co.uk/ (national
leagues), http://fr.uefa.com/ (European games) and http://fr.soccerway.com/ (national cups games). Data on
players’ participation are publicly available on www.transfermarkt.co.uk/

7English Premier League, Spanish Liga, Italian Serie A, German Bundesliga and French Ligue 1

8The precise list of competitions considered is the following : Premier League, Liga, Serie A, Bundesliga, Ligue
1, Europa League, Champions League, Community Shield, FA Cup, League Cup, Copa del Rey, Coppa Italia,
Supercoppa Italiana, DFB-Pokal DFL-Supercup, Coupe de France, Coupe de la Ligue, Trophée des champions.

9We estimate the productivity of players whose playing time is at least 15 games over the entire period. When
their playing time is lower than 15 games, we group them into team fixed-effects. For example, in a 2014/2015
Ligue 1 game, if Guingamp has a lineup with two forwards who played less than 15 games over the period, we
put them together in θGuingamp2014/2015. The associated playing time to θGuingamp2014/2015 for this game is 180
(twice 90 minutes). By doing so, we implicitely assume that the level of different players from the same team who
have a very low playing time is the same. This assumption is necessary to get some room for estimation.
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of team J against the defensive players of team I. This transformation allows us to disentangle

players’ offensive and defensive productivity, as in the adjusted plus-minus approach of Ilardi &

Barzilai (2008). We end up with a total of 32012 observations.

Besides, we collect data on the pre-game odds (win/draw/loss) used by four betting operators

for all the games of the five domestic leagues that took place between 2007/2008 and 2014/2015.10

From the odds, we can compute the underlying probabilities used by the operators in their

forecasting models and compare them to our predictions in order to assess the robustness of our

estimation (see section 3.5).

Data used in the market test for discrimination

Two labor market outcomes can be considered for a football player: his wage and his market

value, i.e. the amount of money a club needs to pay to transfer the player. Data on individual

wages are confidential and not publicly available, so we cannot confront our measure of pro-

ductivity to players’ wages. Data on individual market values of players can be obtained on

the reputable football website Transfermarkt. The “true” market value of players who are not

transferred or who are loaned out are unobserved but the Transfermarkt values appear as a very

good proxy for them.11 We collect annual market values for all players in our sample.

In order to implement our market test for racial discrimination, we also need to collect data

on players’ skin color. Following Deschamps & De Sousa (2014), this information is coded from

an examination of players’ photographs into categories of either black or not black. This method

might sound arbitrary but it is actually a good way to model the potential for discrimination

because discriminators prejudge an individual based on appearances. We record information on

skin color for the top 150 forwards in our sample. We restrict our analysis to this subsample

of very-high achieving players because data on players’ race must be recorded manually and we

want to ensure that players’ pictures are easily accessible on different websites.

3.3.2 The structural equation

Consider a game opposing team I and team J . The number of goals scored by team I to team

J will depend positively on team I’s players’ offensive productivity, and negatively on team J

10Those are publicly available on the website http://www.football-data.co.uk/.

11Transfermarkt is a German website specialized in assessing the market value of players. Most of
the time, when a player is transferred, the actual fees are very close to the Transfermarkt value. See
http://www.transfermarkt.co.uk/
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players’ defensive productivity, weighted by their respective playing times:

y∗IJ =
∑
i∈IJ

tiIJ × θi −
∑
j∈JI

tjJI × δj + βHome ×HomeI + εIJ (3.1)

Where

y∗IJ is the latent variable associated to yIJ , the number of goals scored by team I to team J

i ∈ IJ if player i from team I is on the field during the game against team J

j ∈ JI if player j from team J is on the field during the game against team I

tiIJ is the playing time of player i during the game between team I and team J

tjJI is the playing time of player j during the game between team I and team J

θi is the offensive productivity of player i

δj is the defensive productivity of player j

HomeI is a dummy variable equal to one if team I plays at home

βHome reflects the playing home advantage

εIJ is a random shock that follows a standard normal distribution

θis, δjs and βHome are the coefficients to be estimated.

According to our model :

• The number of goals scored by team I to team J increases with the offensive productivity

of team I’s players. We observe different combinations of players associated to different

numbers of goals scored. If team I scores a lot every time player A is on the field (control-

ling for his teammates and opponents), player A will have a high θA. Therefore variations

of the lineups from one game to the next is the source of identification for the coefficients

θs. Transfers, injuries and turnover in general are sources of variations that facilitate the

identification of the coefficients θs.

• Football is a setting where there is opposition between two teams. Therefore, the number

of goals scored by team I to team J also depends on the defensive productivity of team J ’s

players, so as to weight performance according to the difficulty of scoring. In that sense,

our model is very similar to Rasch (1993) used in psychometrics where the probability

of a correct answer depends positively on the respondent’s ability and negatively on the

difficulty of the question asked.12 In our setting, variations of the lineups are again the

12In the Rasch model, the probability of a correct response is given by P (Yik = 1|θi, bk) = (1 + exp(bk − θi))−1
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source of identification for the coefficients δs. If a team concedes a really low number of

goals every time player B is on the field (controlling for his teammates and opponents),

then player B will have a high δB.

• The number of goals scored by team I to team J also depends on the playing home

advantage (that is used here as a control variable) and on a random shock.

Given its form, our model has the advantage of netting out individual productivity from the

level of the opposition and the level of teammates. Thus, good performance against very good

players will induce larger player productivity coefficients than the same performance against

weaker players. In the same spirit, good performance with weak teammates will induce larger

player productivity coefficients than the same performance with strong teammates.

The coefficients θs and δs can be interpreted as player fixed effects that reflect both the pure

technical individual ability of players and their ability to make their teammates play better.

For example, a forward may have a high θ either because he scores a lot of goals or because he

enables the other forward in his team to score a lot. This externality on teammates would be

difficult to capture if we considered only individual statistics of players such as goals and shots.

In this case, only the scorer would be rewarded.

Note that we could use other metrics such as ball possession, the number of shots or shots’

accuracy instead of the number of goals scored in our structural equation. This would give us

more information on aspects of the game where each player contributes the most. Unfortunately,

data on these metrics at the team level are not publicly available for most competitions in our

sample so we could not test this approach.

3.3.3 Estimation procedure

Generalities

The estimation of the structural equation (3.1) can be done through a variety of techniques which

include least squares, logit regression, probit regression and poisson regression. Considering that

the variable of interest, the number of goals scored per match yIJ , is a discrete nonnegative vari-

able, the prime candidates are the likelihood methods and the poisson regression. The poisson

regression, however, involves the assumption that times of arrival of goals are independent of

each other, which seems unlikely in football.

for individual i with ability level θi and item difficulty parameter bk.
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We will therefore estimate the parameters of interest via maximum likelihood, and more

particularly in the ordered probit regression. The main principle of this technique is that the

outcome is contingent of the latent continuous variable y∗IJ falling between different thresholds

{αi}ki=1, as in (3.2):

yIJ =


0 if y∗IJ ≤ α1

k if αk < y∗IJ ≤ αk+1 and k ∈ 1, ...,K − 1

K if y∗IJ > αK

(3.2)

The estimation procedure relies on the assumption that the residual terms of (3.1) follow a

standard normal distribution, thus enabling a maximum likelihood procedure.

Main challenges

One of the main difficulties of estimation is the risk of overfitting, which consists in the existence

of biases on the coefficient estimates caused by idiosyncratic patterns in the data which are

strongly influenced by chance rather than the systematic relationship of interest (Bilger, Manning

et al. (2011)). This problem is exacerbated when the model is particularly complex and the

number of observations is limited, leading to good in-sample predictions but poor performance

on external data sets. In our particular framework, overfitting poses an important risk for two

reasons:

• The number of coefficients to estimate is very high as we have one or two variables per

player. This makes a total of more than 4400 coefficients to estimate, so we are clearly in

a large p setting.

• There is a strong colinearity issue, as players often are on the field with the same team-

mates. Thus, it is hard to isolate their individual contribution from the contribution of

their teammates.

Limitations imposed to the coefficients’ dynamics

Having a very realistic model is of course desirable but it is in general not compatible with a

feasible estimation. Considering both the computational difficulties of the estimation algorithm

as well as the data size, we need to introduce limitations to the coefficients’ dynamics. Three

assumptions are necessary to reduce the number of coefficients to be estimated and to make the
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estimation tractable:

Assumption 1: players’ productivities stay constant over the observed timespan. Indeed,

allowing the player fixed effects to vary by season would dramatically increase the number of

variables to be estimated and make the estimation procedure cumbersome. Relaxations of this

assumption with the use of player specific ageing curves are discussed in section 3.6.

Besides, as productivities are fixed, we do not take into account the fact that players may

exert different levels of effort depending on the circumstances of the game (e.g. the fact that

players might make less effort when the outcome of the game is stakeless for the championship).

These kind of effects are too fine-grained to be captured here but they are investigated in a

different setting in the second chapter of this dissertation.

Assumption 2: players’ productivities do not depend on specific teammates. Interactions

terms (e.g. θ1 ∗ θ2) are not included in the model because the number of coefficients to be esti-

mated is already extremely large. Adding interactions makes the estimation untractable, even

with shrinkage. Effectively, in a framework which includes thousands of players, the inclusion of

first order interactions would potentially imply the inclusion of millions of columns to the data

matrix which renders the estimation computationally impossible.

Assumption 3: specialization of tasks by position. Forwards only have an offensive produc-

tivity, midfielders have both an offensive and a defensive productivity and defenders only have

a defensive productivity (table 3.1).13 A player’s position is considered fixed over time and is

defined as his most frequent position over the estimation time span.

Attacking productivity θ Defensive productivity δ

Forward X x

Midfielder X X
Defender x X

Table 3.1: Offensive and defensive productivity by position

Estimation of player fixed-effects with shrinkage

Even under these simplifying assumptions, traditional estimation methods lead to coefficients

13We do not take into account goalkeepers in the estimation because the turnover is way lower for this position,
which worsens the colinearity issue.
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that seem to explain the data very well but are not robust to out of sample tests, casting doubt

on the validity of the estimates in terms of statistical significance as well as in terms of prediction

properties. One of the most popular techniques to deal with the issue of high colinearity is the

Ridge Regression, introduced by Hoerl & Kennard (1970), which consists in introducing an L2-

norm penalty of the coefficients to the least squares penalisation criteria. This technique can

effectively reduce the mean square error of the predicted response at the cost of biasing the

estimates towards zero. In our case, the Ridge objective function then becomes:

L(θ, δ|y, tij) =

(∑
IJ

K∑
k=0

1yIJ=k × Pr(yIJ = k)

)
−

(
λ
∑
z

(θ2
z + δ2

z)

)
(3.3)

The function to be maximized L has two components :

• The first component
∑

IJ

∑K
k=0 1yIJ=k × Pr(yIJ = k) is a simple log-likelihood function

(ordered probit). Maximizing this part of L is equivalent to maximizing the goodness of

fit. The precise expression for Pr(yIJ = k) is given in Appendix A.

• The second component λ
∑

z(θ
2
z + δ2

z) is the penalization/shrinkage part of the function L.

Note that the coefficient βHome is not penalized in our estimation. This is justified by the

fact that it is clearly established that playing home has a big impact on teams’ success.

Thus, the optimization procedures trades off between the goodness of fit and the penalization

component. The higher λ, the more the penalization component will be important and the more

coefficients will be biased towards zero. Two extreme cases are λ = 0 and λ = ∞. In the case

λ = 0, there is no penalization and the optimization will only take into account goodness of

fit (simple ordered probit). In the case λ = ∞, all the coefficients will be equal to zero and

the goodness of fit will not matter at all. To understand the mechanism induced by the L2-

norm penalty more generally, it is useful to consider simpler frameworks. In the case of the

linear model, it can be shown that for sufficiently large λ, the optimisation problem is not

singular regardless of the explanatory variables being perfectly collinear. Furthermore, by using

a Singular Value Decomposition, it can be shown that the coefficients of variables which are

strongly associated to principal components with larger eigenvalues will be shrinked in a weaker

way and that perfectly colinear variables will be assigned the same coefficient (see Friedman,

Hastie & Tibshirani (2001)). This implies that coefficients of explanatory variables with a large

predictive power will be more impervious to shrinkage than variables that explain a small fraction
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of the variance and that grouped variables will receive a common coefficient. Therefore, players

who play often together will receive similar coefficients, which contrasts with other Shrinkage

estimators such as the Lasso.

An important question when implementing a composite objective function is the number of

critical points in its domain, and whether there exists a unique global maximum. Effectively,

the optimisation of objective functions that possess several local maxima may prove difficult as

the use of traditional methods is sensible to the choice of initial parameters. To circumvent this

issue, it is often appealing to use concave objective functions, as they assure that the algorithm

will reach a unique global maximum and avoid staying in local maxima. In particular, concave

objective functions are less dependent to the choice of starting values for the optimisation rou-

tine. In our case, the objective function is composed of an ordered probit likelihood function

minus a L2 norm of the parameters. The ordered probit likelihood function is concave as long

as the participation matrix does not have colinear columns, and the minus L2 norm is a globally

concave function, thus assuring that the optimisation problem has a unique solution and that

estimates are robust to the choice of initial search parameters.

The penalisation parameter λ plays a crucial role in both the interpretation and prediction

accuracy of the estimates. Large penalisation weights will lead to coefficients heavily shrinked

towards zero and most of the predicted values will be close to the average value of the dependent

variable. However, it can be shown that there exists some λ > 0 which will always reduce the

RMSE with respect to a model where λ = 0. λ is often chosen through a model selection

technique, such as cross-validation. Explicitly, the K-fold cross validation procedure consists

in randomly partitioning the data into K subsets of comparable size; one of the subsamples

is taken as the test set, while the rest is taken as the training set. The model’s parameters

are estimated on the training set and their prediction accuracy is tested on the test set. This

procedure is repeated for each of the K subsets and the residuals are combined to produce a

summary statistic such as the Mean Squared Error. We perform a 10-fold cross-validation and

we choose the penalisation parameter so as to minimize the mean squared difference between

the observed number of goals and the expected number of goals derived from the estimated

coefficients.

The penalisation parameter λ can be interpreted by the use of Bayesian statistics. Indeed,

including the penalisation term is equivalent to assuming that coefficients (θ, δ) have a prior
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distribution which is normal with mean zero and variance λ. Large values of lambda therefore

imply the assumption that there are strong reasons to believe that there is little differentiation

between players’ skills.

Implementation

We coded the estimation procedure on R.14

3.4 Results

3.4.1 Interpreting the coefficients

Our estimation relies on an ordered probit model. This implies that the estimated coefficients

θ̂ and δ̂ are difficult to interpret. In order to obtain a productivity measure that is easier to

interpret, we convert the estimated coefficient of a player into his marginal goal contribution

when his teammates and opponents are average players of the Big 5.15

We start by calculating the expected number of goals scored by a team of average players

that is opposed to another team of average players. Assuming that both teams play with 4

defenders, 3 midfielders and 3 forwards (4-3-3) , we get an expected number of goals of 1.32.16.

Then we look at the marginal contribution of players, i.e. the variations of the expected

number of goals scored and conceded when an average player is replaced by the player of in-

terest. For concreteness, we consider the case of Gonzalo Higuain. To obtain his marginal goal

contribution, we consider again a game opposing average players and we substistute one of them

by Higuain. This yields an expected number of goals of 1.52, so the offensive marginal contri-

bution of Higuain is 0.2 goals (1.52 - 1.32). The principle is the same for defensive marginal

effects. Substituting an average player by John Terry in a game opposing only average players

yield an expected number of goals conceded of 1.16 so the defensive marginal contribution of

Terry is 0.16 goals (1.32-1.16).

We do this operation for every player and we get a measure expressed in marginal goal

contribution per game that is easily interpretable. Since midfielders have both an offensive and

14Penalization methods are not widely used with ordered models and there is no pre-coded package on statistical
softwares for this kind of estimation. Hence, we coded the estimation procedure by ourselves.

15Note that the introduction of the L2 penalty in the optimization implies that the marginal effects are biased.
For the ease of interpretation, we do not take into consideration this issue and we assume that the bias is the
same for every player.

16The expected number of goals is given by E(yIJ) =
∑

k=0,1,2,...,K k × Pr(yIJ = k)
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a defensive contribution, their aggregate marginal effect is defined as the sum of their offensive

and defensive marginal contributions.

3.4.2 The most productive players

Table 3.2 reports the top 25 players according to our estimation. Their marginal contribution

reflects their individual productivity in Big 5 clubs from 2007/2008 to 2014/2015.

Table 3.2: Overall ranking of players: top 25 (all positions)

Ranking Player Total Offensive Defensive

1 Lionel Messi .351 .351
2 Cristiano Ronaldo .333 .333
3 Cesc Fabregas .302 .243 .059
4 Frank Lampard .274 .205 .069
5 Yaya Toure .255 .138 .117
6 Karim Benzema .253 .253
7 Bastian Schweinsteiger .246 .171 .075
8 Xavi .241 .175 .066
9 Arturo Vidal .238 .128 .11
10 Franck Ribery .237 .237
11 Gonzalo Higuain .235 .235
12 Mesut Ozil .228 .228
13 Andres Iniesta .224 .13 .094
14 Luka Modric .218 .125 .093
15 Arjen Robben .217 .217
16 Kwadwo Asamoah .194 .103 .091
17 Wayne Rooney .186 .186
18 Marco Verratti .183 .118 .065
19 Thomas Muller .182 .182
20 Zlatan Ibrahimovic .181 .181
21 Eden Hazard .181 .181
22 Luis Suarez .179 .179
23 Javier Pastore .178 .178
24 Ivan Rakitic .176 .087 .089
25 Pedro .176 .176

Seasons 2007/2008 to 2014/2015. Lambda = 200. Only midfielders have both an offensive and a defensive

contribution.

This ranking seems quite consistent with the general perception of players’ productivity.

Lionel Messi and Cristiano Ronaldo, who have both won 5 times the Ballon d’Or17 top the

17The Ballon d’Or is the most famous annual MVP award in football.
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ranking. Cesc Fabregas, Franck Lampard, Yaya Toure, Karim Benzema, Bastian Schweinsteiger,

Xavi, Arturo Vidal and Franck Ribéry complete the top 10 of our ranking. These eight players

were all world class players over the period. Other players who were generally also considered

as overachievers such as Andres Iniesta, Arjen Robben Wayne Rooney, Thomas Muller, Eden

Hazard, Zlatan Ibrahimovic or Luis Suarez rank in the top 25. Our estimation relies only on a

fixed-effects model where players’ productivity is assessed according to their team’s performance

when they are on the field, controlling for their teammates and their opponents. The model is

completely agnostic about what makes a player productive. Thus, it is very satisfying to get

a ranking with our statistical method that is very close to the “common knowledge” based on

people perceptions.

No defender appears in the overall top 25. The first defender, John Terry, ranks only 30th in

the overall ranking (see the top 100 ranking in Appendix B). This finding seems consistent with

the observed transfers fees by position. Defenders are usually much cheaper than midfielders

and forwards on the market, which might be explained by a higher substitutability.

Tables 3.4, 3.6 and 3.8 report the top 20 players by position. Karim Benzema follows Lionel

Messi and Cristiano Ronaldo in our ranking of forwards. The French striker was named UNFP

Ligue 1 Player of the Year in 2007/2008 thanks to his performance in Lyon. After another season

in Lyon, Benzema was transferred to Real Madrid where he became an essential player. He was

named French Player of the Year three times in 2011, 2012 and 2014. Franck Ribery ranks

4th. The winger has won six Bundesliga titles, five DFB-Pokal, one UEFA Champions League

and one FIFA Club World Cup with Bayern Munich. Thanks to his exceptional performance in

2012/2013, he was nominated alongside Lionel Messi and Cristiano Ronaldo on the three-man

shortlist for the 2013 FIFA Ballon d’Or. Gonzalo Higuain completes our top 5. He scored 107

goals in 190 league appearances with Real Madrid before joining Napoli where he became the

club’s star.
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Table 3.4: Forwards’ ranking: top 20

Ranking Player ME total ME offensive ME defensive

1 Lionel Messi .351 .351
2 Cristiano Ronaldo .333 .333
3 Karim Benzema .253 .253
4 Franck Ribery .237 .237
5 Gonzalo Higuain .235 .235
6 Mesut Ozil .228 .228
7 Arjen Robben .217 .217
8 Wayne Rooney .186 .186
9 Thomas Muller .182 .182
10 Zlatan Ibrahimovic .181 .181
11 Eden Hazard .181 .181
12 Luis Suarez .179 .179
13 Javier Pastore .178 .178
14 Pedro .176 .176
15 Robert Lewandowski .174 .174
16 Edin Dzeko .169 .169
17 Alexis Sanchez .164 .164
18 Sergio Aguero .159 .159
19 Mario Gotze .156 .156
20 Kaka .148 .148

Seasons 2007/2008 to 2014/2015.

Cesc Fabregas tops our ranking of midfielders. This is not surprising since the Spanish player

managed to become a starter in Arsenal when he was only 16 years old. Then, he broke other

club’s records, earning a reputation as one of the best players in his position. Frank Lampard,

who is second in our ranking, is the all-time leading goalscorer for Chelsea, where he played

for 13 years. He is considered by a number of journalists and football experts to be one of

the greatest midfielders of his generation. Yaya Toure, 3rd in our ranking, was voted African

Footballer of the Year for 2011, 2012, 2013 and 2014. He is followed by Bastian Schweinsteiger,

who spent 13 seasons at Bayern Munich, the best football club in Germany. His honours at the

club include eight Bundesliga titles, seven DFB-Pokal titles, a UEFA Champions League title,

a FIFA Club World Cup title and a UEFA Super Cup title. Xavi, the last player in our top 5,

has been awarded the IFFHS World’s Best Playmaker award for four years: 2008, 2009, 2010,

2011. He has also been included in the UEFA Team of the Year for five years (2008, 2009, 2010,
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2011, 2012).

Table 3.6: Midfielders’ ranking: top 20

Ranking Player ME total ME offensive ME defensive

1 Cesc Fabregas .302 .243 .059
2 Frank Lampard .274 .205 .069
3 Yaya Toure .255 .138 .117
4 Bastian Schweinsteiger .246 .171 .075
5 Xavi .241 .175 .066
6 Arturo Vidal .238 .128 .11
7 Andres Iniesta .224 .13 .094
8 Luka Modric .218 .125 .093
9 Kwadwo Asamoah .194 .103 .091
10 Marco Verratti .183 .118 .065
11 Ivan Rakitic .176 .087 .089
12 Paul Scholes .171 .125 .045
13 Dani Parejo .165 .133 .033
14 Tiago .163 .091 .071
15 Darren Fletcher .162 .108 .054
16 Asier Illarramendi .155 .112 .043
17 Sulley Muntari .155 .066 .089
18 Nuri Sahin .149 .097 .053
19 Yohan Cabaye .143 .079 .063
20 Thiago .141 .117 .023

Seasons 2007/2008 to 2014/2015.

According to our productivity measure, John Terry is the best defender over the period we

consider. This result seems consistent with the great performance of this player. He has been

Chelsea’s most successful captain, having led them to five Premier League titles, four FA Cups,

three League Cups, one UEFA Europa League and one UEFA Champions League. He was also

named UEFA Club Defender of the Year in 2008 and 2009. Rafinha was an important player

in Schalke 04, Genoa and Bayern Munich during our estimation time span. Even though he

performed very well in these three clubs, it is surprising to find him in second position in our

ranking, as he is usually not considered as one of the best defender in the world. Nemanja

Vidic completes our top 3. The Serbian player collected a host of honours in his Manchester

United career, including five Premier League titles, one UEFA Champions League and three

League Cup medals. At the individual level, he helped United to a record-breaking run of 14
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consecutive clean sheets in 2008/2009 and was awarded the Premier League Player of the Season

award. Giorgio Chiellini won six consecutive Serie A titles with Juventus Turin, as well as three

consecutive Coppa Italia titles, and three Supercoppa Italiana titles. He is considered as one of

the best defender in the world as he was ranked as the seventh-best footballer playing in Europe

by Bloomberg in 2013. The fifth player in our ranking, Medhi Benatia, performed very well in

Udinese, AS Roma and Bayern Munich over the time span.

Table 3.8: Defenders’ ranking: top 20

Ranking Player ME total ME offensive ME defensive

1 John Terry .165 .165
2 Rafinha .165 .165
3 Nemanja Vidic .153 .153
4 Giorgio Chiellini .149 .149
5 Medhi Benatia .14 .14
6 Juanfran .139 .139
7 Jeremy Toulalan .139 .139
8 Dante .132 .132
9 Xabi Alonso .121 .121
10 Gerard Pique .121 .121
11 Jerome Boateng .12 .12
12 Maxwell .118 .118
13 Alvaro Arbeloa .118 .118
14 Jamie Carragher .117 .117
15 Thiago Silva .114 .114
16 Philipp Lahm .111 .111
17 Javier Mascherano .111 .111
18 Miranda .11 .11
19 Löıc Perrin .108 .108
20 Vincent Kompany .106 .106

Seasons 2007/2008 to 2014/2015.

3.4.3 Comparing our measure of productivity to the market value of players

A simple way to test our measure of players’ individual productivity is to confront it to players’

market value over our estimation time span.18 Since individual productivity is the key variable

18As a player’s market value is different from one season to the next, we consider the average market value over
the seasons where the player plays in a Big 5 club, i.e. the seasons considered for the player in our estimation.
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that impacts players’ value,19 we should observe a strong correlation between our coefficients

and players’ market values.

The relationship between the two measures is clearly positive, which shows that our estima-

tion of individual productivity is globally aligned with the market (figure 3.1). Moreover, the

convexity of the trend indicates that marginal productivity is increasingly expensive, a finding

consistent with the economics of superstars (Rosen 1981): Lionel Messi and Cristiano Ronaldo

are only slightly more productive than other top forwards but this slight difference has a huge

impact on their market value.

Neymar and James Rodriguez are two outliers in our analysis. Their average market values

seem disproportionate compared to their productivity. This can be explained by the fact that

we only take into account the “on-field” productivity of players and not the externalities they

generate “off-field” such as sponsoring contracts or merchandising products. Since Neymar and

James are world stars, the amount of money they generate off-field may compensate the gap

between their productivity on-field and their market value.

19Players’ market values also depend on players’ age (at equivalent performance, young players are more
expensive than experienced players because they are expected to be enrolled in the team on a longer period),
contract duration (the longer a player is engaged in a club, the more expensive he is for another club) and clubs
involved in the transfer (all clubs do not have the same financial resources and the same power of negotiation).
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Figure 3.1: Productivity vs. Market value (analysis on forwards)

3.4.4 A market test for discrimination

In most empirical settings, it is very difficult to identify discrimination from observational data.

Regressing the labor market outcome under consideration (usually wage or employment status)

on productivity related variables available in the data and on individual characteristics subject

to potential discrimination (usually race or gender) may not allow to identify precisely the degree

of discrimination. As unobservables can be correlated to the characteristic subject to poten-

tial discrimination, the estimated labor market differential may not reflect discrimination. This

problem is well illustrated in the review on racial discrimination of Lang & Lehmann (2012).

They show that the magnitude and the significance of the wage differential between blacks and

whites in the US are very sensitive to the productivity related variables included in the estima-

tion. In a first study Neal & Johnson (1996) find that after controlling for age and performance

on the Armed Forces Qualifying Test (AFQT), the black–white wage differential among young

men is modest (about 7%) and statistically insignificant. However, other studies obtain different

results by controlling for additional predictors of wages. Rodgers & Spriggs (1996) and Carneiro,

Heckman & Masterov (2005) find that including years of schooling at the time the respondents
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took the AFQT leads to a substantial wage differential. When controlling for final education

attainment, Lang & Manove (2011) reach a similar conclusion because conditional on AFQT,

blacks get more education than whites. Their result can be challenged by the fact that blacks

attend lower quality schools on average. Black, Kolesnikova, Sanders & Taylor (2013) find that

controlling for location also increases the estimated wage gap between blacks and whites. These

different examples show that results are strongly affected by the productivity variables that

are accounted for. As it is usually impossible to get data sets with all the factors impacting

productivity, the estimated wage differential does not necessarily reflect discrimination.

This problem should be limited in our setting for it seems reasonable to consider that football

players’ labor market outcomes are largely determined by their productivity on-field. Unobserved

factors such as education, that could vary by groups/race, should have a very limited impact

on players’ labor market outcomes. Therefore, the magnitude of the bias should be very small

and we can test for discrimination by simply confronting our measure of on-field productivity

to players’ labor market outcomes. Figure 3.2 plots the market value against our productivity

metrics for the top 150 forwards in our sample.20 We can identify two groups of players: those

who are undervalued and those who are overvalued on the market. Our criterion to determine

to which group a player belongs is his position relative to the quadratic fit of the market value

on productivity. Players above the fit are considered overvalued, while players below the fit are

considered undervalued.

20Note that we restrict our market test for discrimination on this subsample of 150 players because data on
players’ race must be recorded manually and we want to ensure that pictures of the players are accessible on
different websites.
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Figure 3.2: Identifying overvalued and undervalued players (analysis on top 150 forwards)

Our market test for discrimination consists in assessing whether the share of black players

is greater in the group of undervalued players than in the group of overvalued players. We

perform a standard statistical test on the equality of proportions of black players in the two

groups (see table 3.10). Black players account for 24.4% of players in the group of undervalued

players whereas they represent only 9.4% of overvalued players. The difference of proportion

is statistically significant at the 5% level (p value = 0.018). This is clear evidence that black

players tend to be more often undervalued on the market than other players.

Table 3.10: Market test for discrimination: comparison of the share of black players among
undervalued and overvalued players

Group N Proportion of black players p-value

Under-valued players 86 0.244
Over-valued players 64 0.094

Difference between the two groups 0.150* 0.018

* Statistically significant at the 5% level.
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Our results are in line with Szymanski (2000), who finds evidence of lower wages for black

players in English leagues. Here, we focus on a different labor market outcome since we consider

players’ market value instead of their wages. Market values do not directly involve players’

remuneration, as they correspond to the transfer fees that should be paid by a club to another

club to engage one of its player. Therefore, the fact that black players are undervalued on

the transfer market does not directly imply that their own wages are lower and that they are

directly discriminated. However, from a theoretical viewpoint, it seems difficult to imagine a

mechanism according to which black players are undervalued on the “transfer market” without

being also undervalued on the “salary market”. The fact that clubs’ total spending in transfer

fees are strongly correlated to their total payrolls confirms empirically that such an asymmetric

mechanism is unlikely. Thus, our analysis provides indirect evidence of discrimination against

black players.

3.5 Robustness

3.5.1 In-sample predictions with simulations of seasons

One way of testing the robustness of our measure of productivity is to simulate games according

to the scoring probabilities of teams derived from the estimated coefficients. If the measure

is reliable, the predicted scoring probabilities should be reliable too and the average results

obtained in simulations should be close to the observed results.

Principle of the simulations

The probabilities of scoring can be easily derived from the coefficients θs, δs, βHome and cutt-

off values estimated in the ordered probit model (see Appendix A). From the probabilities of

scoring, we can derive the probabilities of win, draw and loss. We use the probabilities of win,

draw and loss rather than the probabilities of scoring because the aim of a team is to maximize

points rather than goals. Therefore, it makes more sense to make predictions on points.

Consider a game between team I and team J . Let yIJ be the number of goals scored by

team I to team J :

Pr(I wins) = Pr(J loses) =
∑

k=1,2,...,K

Pr(yIJ = k)× Pr(yJI < k)
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Pr(I draws) = Pr(J draws) =
∑

k=0,1,2,...,K

Pr(yIJ = k)× Pr(yJI = k)

Pr(I loses) = Pr(J wins) =
∑

k=0,1,2,...,K

Pr(yIJ = k)× Pr(yJI > k)

Then, we can simulate games according to these probabilities. In a simulation, team I will

win with a probability Pr(I wins), will draw with a probability Pr(I draws) and will lose with

a probability Pr(I loses). We agregate the results of the simulation at the season level for each

of the five domestic leagues. For example in simulation 1, if a team wins 20 games, draws 8

times and loses 10 times in its league over the period, our prediction will be 68 points. Then we

can rank teams in their championship according to the simulation. Of course, every simulation

yields a different outcome. Therefore, we do 300 different simulations and we derive an average

ranking of teams in their league. For example, if a team ranks 3rd in 100 simulations, 4th in 100

simulations and 5th in 100 simulations, our average predicted ranking will be 4th. We can assess

the goodness of fit of our estimation procedure by comparing our average predicted ranking to

the observed ranking of teams.

Results of the simulations : goodness of fit

The fit between the observed ranking and our average predicted ranking is really good as most

of the dots lie next to the 45 degree line (figures 3.3 and 3.4). This is strong evidence in favor

of our measure :

• It shows that the agregation of players’ individual productivity reflects pretty well the

collective productivity of teams.

• Given the structural equation (3.1), a statistical error in the estimation of the productivity

of a player will induce a statistical error of the opposite sign in the productivity coefficient

of his teammates. For example, if two players always play together, an upward bias in the

coefficient of one of them can be compensated with a downard bias in the coefficient of the

other one, thus leading to the same fit when aggregating by teams.21 Hence the fact that

21To see this, take the example of players A and B who always play together: the coefficients (θA, θB) acquire
the same value of the likelihood function as (θA + µ, θB − µ), meaning that we cannot identify these coefficients
in the non-shrinked model.

140



the agregation of individual productivities reflects well the collective productivity does not

necessarily mean that the coefficients of individual productivity are well estimated.

This problem is mitigated when players move frequently across teams: an error in the esti-

mated coefficient of any player would induce an error in the coefficients of his teammembers

in every club where he has played, which would result in poor prediction regarding col-

lective productivity. Considering that players are often transferred (on average, they play

in 2 different teams and in 1.2 different leagues over the eight seasons span) and that our

predictions of collective performance fit the data well, our estimates are unlikely to suffer

from this identification problem.

Figure 3.3: Goodness of fit : seasons 2007/2008 to 2010/2011
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Figure 3.4: Goodness of fit : seasons 2011/2012 to 2014/2015

3.5.2 Out of sample predictions

Another way to test our coefficients is to use out of sample predictions. Contrary to in-sample

predictions, out of sample predictions are not sensitive to overfitting (Hastie et al (2001)).

Standard out of sample predictions

We randomly split the sample of games in ten folds of equal size (K1, K2, ..., K10). Every

fold will be used successively as a test sample.

• We estimate the coefficients on the folds K2, K3, K4, K5, K6, K7, K8, K9 and K10. We

predict the probabilities of win/draw/loss (cf section 3.5.1) for the games of K1. These

probabilities are out of sample predictions, as K1 was not used in the estimation.

• We estimate the coefficients on the folds K1, K3, K4, K5, K6, K7, K8, K9 and K10. We

predict the probabilities of win/draw/loss for the games of K2. These probabilities are out

of sample predictions, as K2 was not used in the estimation.
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• ... And so on, for every fold

We end up with out of sample predictions for every game of the sample. With these proba-

bilities and the points reward system22, we can compute the expected number of points of teams

for every game :

E(pointsIJ ) = 3× Pr(I wins) + 1× Pr(I draws) + 0× Pr(I loses)

E(pointsJI ) = 3× Pr(J wins) + 1× Pr(J draws) + 0× Pr(J loses)

Then, we can compare this expected number of points to the observed number of points in

order to assess the quality of our out of sample predictions. The difference (in absolute value)

between the observed number of points and the expected number of points reflects the prediction

error and is an indicator of the quality of our out of sample predictions.

Our average prediction error is 1.07 points. Having a pretty large prediction error is inherent

to the “glorious uncertainty of sport” because any prediction system will have a hard time

in predicting the victory of underdogs against favorites. Therefore, in the case of sport, the

prediction error must not be assessed in absolute terms but rather compared accross different

forecasting systems.

Betting operators use forecasting methods in order to fix their odds. Thus we can compare

our out of sample predictions to the ones obtained according to the pre-game odds of the betting

operators. We collected data on the odds (win/draw/loss) used by four betting operators for all

the games of the five domestic leagues from 2007/2008 to 2014/2015. From the odds, we can

compute the underlying probabilities used by the operators in their forecasting models. A slight

adjustment needs to be made to take into account the operators’ margin.

Pr(I wins)operator =
1

1
odds I wins + 1

odds I draws + 1
odds I loses

× 1

odds I wins

Pr(I draws)operator =
1

1
odds I wins + 1

odds I draws + 1
odds I loses

× 1

odds I draws

Pr(I loses)operator =
1

1
odds I wins + 1

odds I draws + 1
odds I loses

× 1

odds I loses

223 points for a win, 1 point for a draw and 0 point for a loss.
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The first term of these equations is used to rescale probabilities so that they sum up to one.

With this rescaling, the probabilities are netted out of the operator’s margin.23. From these

probabilities, we can compute the expected number of points according to the different operators,

the same way we did with our estimated probabilities. The difference between the observed

number of points and the expected number of points derived from the operator’s probabilities

corresponds to the operator’s prediction error. We can compare the average prediction error of

the different operators to our average prediction error (table 3.12).

Our estimation Bet365 BetWin Interwetten Ladbrokes

1.07 pts 1.04 pts 1.04 pts 1.05 pts 1.04 pts

Table 3.12: Average prediction error (in number of points per team)

Our average prediction error is very close to the ones derived from the operators’ betting odds.

This is rather impressive given the simplicity of our structural equation. In comparison with

the massive amount of information that betting operators use to fix their odds, our probabilities

only rely on the lineups and on the home advantage.

Out of sample predictions on the last games of the sample

Comparing our out of sample prediction error to the ones derived from the betting operators’

odds on the whole sample might be unfair because we use information that was not available to

the operators when they fixed their odds. For example, our probabilities for a game in 2012/2013

will depend on games from 2014/2015 whereas the operator could not use such information when

fixing its odds. A fairer way of comparing the prediction error is to do out of sample predictions

on the last games of the season 2014/2015. We fix the 21st of May 2015 as a threshold date. The

games that took place before this date are used to estimate the coefficients (training sample)

while the game that took place after this date are not used in the estimation (test sample).

By doing so, we ensure that we do not have information on more games than the betting

operators when we make our predictions. Thus the prediction errors are perfectly comparable.

23This rescaling is very important because the average margins of the operators are about 6-7 percent.
Margin = 100 ∗ ( 1

1
odds I wins

+ 1
odds I draws

+ 1
odds I loses

− 1)
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Table 3.13 reports the average prediction error in the last games of the season 2014/2015.

Our estimation Bet365 BetWin Interwetten Ladbrokes

1.14 pts 1.08 pts 1.09 pts 1.09 pts 1.09 pts

Table 3.13: Average prediction error (in number of points per team)

The prediction error is slightly higher than when we considered the whole sample. This is

due to more surprising results in the end of the season. Our prediction error is very close to the

ones derived from the betting operators. This shows that our coefficients are very robust : with

a simple adjusted plus-minus model where players productivity do not vary over time, we end

up with a prediction accuracy close to professional forecasters.

3.6 Extensions

3.6.1 Introducing time-varying productivity

One limit of our approach is that our coefficients of individual productivity do not vary over

time. However, it is well established that productivity heavily depends on age in sports (see

Berry, Reese & Larkey (1999)). The typical ageing curve of athletes is usually thought of as an

inverted U shape: a player’s productivity rises until the player reaches his highest level and then

declines progressively. Therefore, the progression of a player could be modelled as a quadratic

function of his age. In our case:

θit = ωi + ω1i × ageit + ω2i × age2
it

δit = ψi + ψ1i × ageit + ψ2i × age2
it

We allow for player specific ageing curves through the coefficients ω1i, ω2i, ψ1i and ψ2i. We

could reestimate the model with these new parameters and use a penalization for the ageing

curve coefficients that do not have the expected sign24. This approach might yield interesting

results, but is not feasible for all players: players who are observed for one season will have both

their ω1i and ω2i set to zero and players observed for exactly two seasons will have their ω2i set

to zero. The rest of the players will be endowed with three times as many parameters, making

the estimation procedure computationally burdensome.

24Due to the inverted U shape ageing curve, we expect ω1i and ψ1i to be positive and ω2i and ψ2i to be
negative.
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3.6.2 Application of our estimation procedure to other team settings

Our approach is not circumscribed to sports analytics. It could be adapted to other team settings

where the common output is observed while individual productivity is difficult to assess. Such

settings are very common as organizing work in teams has progressively become the linchpin

in most organizations. For example, consider a fast food restaurant where workers strongly

depend on each other (e.g. the cashier can deliver the burger if and only if another worker has

prepared it) and where tasks are not fixed over time (e.g. sometimes a worker works as a cashier

and sometimes he prepares the food). In this setting, we could use our fixed-effect approach to

estimate individual productivity. Our structural equation (3.1) would simplify to :

yI =
∑
i∈I

θi + γ × Controls+ εI (3.4)

Where

An observation is a sequence during which there is no shift among workers

yI is the collective output normalized to one unit of time (e.g. number of clients served per

hour)

i ∈ I if worker i works during the sequence considered

θi is the individual productivity of worker i, i.e. the parameter we are interested in

Controls is a set of control variables (e.g. time of the day to control for customers’ attendance)

Equation (3.4) is more general than equation (3.1) because the opposition term disappeared.

Moreover, in this general framework, we do not restrict yI to be a discrete variable. It can also

be a quantitative output.

The general idea of equation (3.4) is simple. In order to recover individual productivity, we

look at the variations of the collective output with a lot of different combinations of workers. If

workers’ shifts are frequent enough and if they stay long enough in the firm25, the coefficients can

be easily estimated. In order to reduce the colinearity issue due to the fact that some workers

may often work with the same colleagues, a Ridge penalization could be very useful, just as in

our estimation of football players’ productivity. In the case where yI is a quantitative variable,

we could write the optimization problem as :

25Considering the fast-food restaurant example, the first condition is met while the second is more questionable.
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Min

(∑
I

(yI −
∑
i∈I

θi − γ × Controls)2 + λ
∑
z

θ2
z

)
(3.5)

Thus, given a sufficient variability of the workers’ lineups, it is possible to estimate individual

productivity in team settings with fixed effects and shrinkage.

3.7 Conclusion

In this paper, we estimate football players productivity by combining a fixed-effect approach

with a Ridge penalization. The fixed-effect approach allows us to consider all aspects of pro-

ductivity while the Ridge penalization allows us to overcome the problem of isolating individual

productivity when players often play with the same teammates. This estimation procedure could

be easily adapted to other team settings where workers’ shifts between teams are frequent.

Thanks to this innovative measure of individual productivity, we can test for racial discrim-

ination in the football market at the player level. We confront our measure to players’ market

value in order to identify undervalued and overvalued players and we show that the share of

black players is significantly higher among undervalued players than among overvalued players.
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Appendices

Appendix A: Ordered probit

Let α1 < α2 < ... < αK be unknown cut points to be estimated. K is the maximum number of goals scored by a
team during one game

yIJ = 0 if yIJ∗ ≤ α1

yIJ = k if αk < yIJ∗ ≤ αk+1, ∀k ∈ (1, 2, ...,K − 1)
yIJ = K if yIJ∗ > αK

Given the standard normal assumption for εij , we have:

Pr(yIJ = 0) = Pr(yIJ∗ ≤ α1)

= Pr(
∑
i∈IJ

tiIJ × θi −
∑
j∈JI

tjJI
× δj + βHome ×HomeI + εIJ ≤ α1)

= Pr(εIJ ≤ α1 −
∑
i∈IJ

tiIJ × θi +
∑
j∈JI

tjJI
× δj − βHome ×HomeI)

= Φ(α1 −
∑
i∈IJ

tiIJ × θi +
∑
j∈JI

tjJI
× δj − βHome ×HomeI)

Pr(yIJ = k) = Pr(αk < yIJ∗ ≤ αk+1)

= Pr(αk <
∑
i∈IJ

tiIJ × θi −
∑
j∈JI

tjJI
× δj + βHome ×HomeI + εIJ ≤ αk+1)

= Pr(αk −
∑
i∈IJ

tiIJ × θi +
∑
j∈JI

tjJI
× δj − βHome ×HomeI < εIJ < αk+1 −

∑
i∈IJ

tiIJ × θi +
∑
j∈JI

tjJI
× δj − βHome ×HomeI)

= Φ(αk+1 −
∑
i∈IJ

tiIJ × θi +
∑
j∈JI

tjJI
× δj − βHome ×HomeI)− Φ(αk −

∑
i∈IJ

tiIJ × θi +
∑
j∈JI

tjJI
× δj − βHome ×HomeI)

Pr(yIJ = K) = Pr(yIJ∗ > αK)

= 1− Pr(yIJ∗ ≤ αK)

= 1− Pr(
∑
i∈IJ

tiIJ × θi −
∑
j∈JI

tjJI
× δj + βHome ×HomeI + εIJ ≤ αK)

= 1− Pr(εIJ ≤ αK −
∑
i∈IJ

tiIJ × θi +
∑
j∈JI

tjJI
× δj − βHome ×HomeI)

= 1− Φ(αK −
∑
i∈IJ

tiIJ × θi +
∑
j∈JI

tjJI
× δj − βHome ×HomeI)

where Φ is the cdf of the standard Normal.
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Appendix B: Productivity ranking (top 100 - all positions)

Ranking Player ME total ME offensive ME defensive

1 Lionel Messi .351 .351
2 Cristiano Ronaldo .333 .333
3 Cesc Fabregas .302 .243 .059
4 Frank Lampard .274 .205 .069
5 Yaya Toure .255 .138 .117
6 Karim Benzema .253 .253
7 Bastian Schweinsteiger .246 .171 .075
8 Xavi .241 .175 .066
9 Arturo Vidal .238 .128 .11
10 Franck Ribery .237 .237
11 Gonzalo Higuain .235 .235
12 Mesut Ozil .228 .228
13 Andres Iniesta .224 .13 .094
14 Luka Modric .218 .125 .093
15 Arjen Robben .217 .217
16 Kwadwo Asamoah .194 .103 .091
17 Wayne Rooney .186 .186
18 Marco Verratti .183 .118 .065
19 Thomas Muller .182 .182
20 Zlatan Ibrahimovic .181 .181
21 Eden Hazard .181 .181
22 Luis Suarez .179 .179
23 Javier Pastore .178 .178
24 Ivan Rakitic .176 .087 .089
25 Pedro .176 .176
26 Robert Lewandowski .174 .174
27 Paul Scholes .171 .125 .045
28 Edin Dzeko .169 .169
29 Dani Parejo .165 .133 .033
30 John Terry .165 .165
31 Rafinha .165 .165
32 Alexis Sanchez .164 .164
33 Tiago .163 .091 .071
34 Darren Fletcher .162 .108 .054
35 Sergio Aguero .159 .159
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Ranking Player ME total ME offensive ME defensive

36 Mario Gotze .156 .156
37 Asier Illarramendi .155 .112 .043
38 Sulley Muntari .155 .066 .089
39 Nemanja Vidic .153 .153
40 Nuri Sahin .149 .097 .053
41 Giorgio Chiellini .149 .149
42 Kaka .148 .148
43 Francesco Totti .145 .145
44 Mario Gomez .145 .145
45 Yohan Cabaye .143 .079 .063
46 Thiago .141 .117 .023
47 Medhi Benatia .14 .14
48 Juanfran .139 .139
49 Jeremy Toulalan .139 .139
50 Ashley Young .139 .139
51 Gareth Bale .139 .139
52 Aaron Ramsey .136 .063 .073
53 Darron Gibson .135 .094 .041
54 Jesus Navas .134 .134
55 Angel Di Maria .134 .134
56 Gonzalo Castro .133 .134 -.002
57 Dante .132 .132
58 Dejan Stankovic .131 .101 .031
59 Nani .13 .13
60 Jakub Blaszczykowski .13 .13
61 Carlos Tevez .128 .128
62 Seydou Keita .127 .073 .055
63 Moussa Dembele .127 .078 .049
64 Rodrigo Taddei .126 .078 .048
65 David Villa .125 .125
66 Paul Pogba .125 .052 .074
67 Michael Ballack .124 .089 .035
68 Mirko Vucinic .124 .124
69 Daniel Sturridge .123 .123
70 Marek Hamsik .123 .123
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Ranking Player ME total ME offensive ME defensive

71 Claudio Marchisio .123 .077 .045
72 Alberto Aquilani .123 .085 .037
73 Robin van Persie .122 .122
74 Xabi Alonso .121 .121
75 Gerard Pique .121 .121
76 Lucho Gonzalez .12 .103 .016
77 Claudio Pizarro .12 .12
78 Samir Nasri .12 .12
79 Jerome Boateng .12 .12
80 Maxwell .118 .118
81 Alvaro Arbeloa .118 .118
82 Didier Drogba .117 .117
83 Jamie Carragher .117 .117
84 Fernando .116 .088 .028
85 Goran Pandev .116 .116
86 Ryan Giggs .115 .054 .06
87 Ezequiel Lavezzi .115 .115
88 Thiago Silva .114 .114
89 Robinho .114 .114
90 Juan Mata .113 .113
91 Theo Walcott .112 .112
92 Dimitri Payet .111 .111
93 Hernanes .111 .034 .077
94 Philipp Lahm .111 .111
95 Javier Mascherano .111 .111
96 Miranda .11 .11
97 Ever Banega .11 .081 .03
98 Gabi .11 .042 .067
99 Yossi Benayoun .108 .108
100 Löıc Perrin .108 .108

Seasons 2007/2008 to 2014/2015. Lambda = 200. Only midfielders have both an offensive and a defensive

contribution.
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