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Abstract

Modern distributed services are expected to be highly available, as our soci-
eties have been growing increasingly dependent on them. The common way
to achieve high availability is through the replication of data in multiple ser-
vice replicas. In this way, the service remains operational in case of failures as
clients can be relayed to other working replicas. In distributed systems, the clas-
sic technique to implement such fault-tolerant services is called State-Machine
Replication (SMR), where a service is defined as a deterministic state-machine
and each replica keeps a local copy of the machine. To guarantee that the service
remains consistent, replicas coordinate with each other and agree on the order
of transitions to be applied to their copies of the state-machine.

The replication performed by modern Internet services spans across several
geographical locations (geo-replication). This allows for increased availability
and low latency, since clients can communicate with the closest geo-graphical
replica. Due to their reliance on a leader replica, classical SMR protocols offer
limited scalability and availability under this setting. To solve this problem, re-
cent protocols follow instead a leaderless approach, in which each replica is able
to make progress using a quorum of its peers. These new leaderless protocols
are complex and each one presents an ad-hoc approach to leaderlessness.

The first contribution of this thesis is a framework that captures the essence
of Leaderless State-Machine Replication (Leaderless SMR) and the formalization
of some of its limits. Due to the increasingly sensitive nature of replicated ser-
vices, leveraging simple benign failures is no longer enough. Recent research
is headed towards developing protocols that support arbitrary behavior of some
replicas (Byzantine failures) and that also thrive in a geo-replicated environment.
An example of this new type of sensitive replicated services that has been the fo-
cus of a lot of research are blockchains. Blockchains are powered by Byzantine
replication protocols adapted to work over hundreds or even thousands of repli-
cas. When the membership control over such replicas is open, that is, anyone
can run a replica, we say the blockchain is permissionless. In the converse case,
when the membership is controlled by a set of known entities like companies, we
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say the blockchain is permissioned. When such Byzantine protocols follow the
classic leader-driven approach they suffer from scalability and availability issues,
similarly to their non-byzantine counterparts. In the second part of this thesis, we
adapt our framework to support Byzantine failures and present the first frame-
work for Byzantine Leaderless SMR. Furthermore, we show that when properly
instantiated it allows to sidestep the scalability problems in leader-driven Byzan-
tine SMR protocols for permissioned blockchains.
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Chapter 1

Introduction

Modern internet services are deployed on an ever growing infrastructure com-
prised of several data centers each with thousands of computers, often spread
all over the world. As our societies have grown increasingly dependent on such
services, their unavailability [49, 113] have wide spread consequences [128].
Once limited mostly to monetary costs to their owners, service failures now af-
fect businesses and communications world-wide. This thesis aims at advancing
the state-of-the-art on the techniques used to build highly available distributed
services by providing new abstractions and protocols that take into account this
new planet-scale paradigm.

1.1 Research Context

To achieve high availability, distributed services often replicate their critical data
in multiple replicas. In this way, if a failure occurs the service remains opera-
tional as clients can still access it through other working replicas. In distributed
systems, the classic technique to implement such fault-tolerant services is called
State-Machine Replication (SMR) [122]. It allows a set of distributed processes
(replicas) to construct a linearizable [80] shared object. In SMR a service is de-
fined as a deterministic state-machine together with a set of commands and each
process maintains its own local copy of the machine. An SMR protocol coordi-
nates the execution of commands applied to the state-machine, ensuring that the
replicas stay in sync.

At the core of SMR is a consensus protocol used by the replicas to decide
on a common application order of commands. In the past years, the most used
consensus protocol has been Paxos [88], present in well-established systems like
the lock service Chubby [35] and the distributed store Spanner [44]. Despite its
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2 1.2 Motivation and research problems

success among practitioners, Paxos has well-known limitations. Notably, its de-
sign centered around a leader replica responsible to order all clients commands.
Such leader based approach is present in a wide-range of classic SMR protocols
(e.g Raft [109]).

1.2 Motivation and research problems

The replication paradigm of modern distributed services is of geo-replication, that
is, replicas are placed across several geographical locations. Geo-replication al-
lows for increased availability and low latency, once clients can communicate
with the closest geographical replica.

Due to their reliance on a leader replica, classical SMR protocols like Paxos
and Raft offer limited scalability and availability under geo-replication (e.g. clients
geographically far from the leader replica will suffer from high latency when in-
teracting with the system). To address such an issue, recent protocols such as
EPaxos [106] and Mencius [104] follow instead a leaderless approach, in which
each replica is able to make progress as long as it can contact a subset of its peers.
Although this new class of leaderless protocols offer a promising approach to
tackle geo-replication, its wider-adoption is harmed due to their high complexity
and ad-hoc approach to leaderlessness.

In the context of geo-replication an application that has been focus of a lot
of research are blockchains. A blockchain can be seen as a distributed and repli-
cated tamper-proof ledger of transactions. Transactions between clients are gath-
ered in blocks, each block is cryptographically linked to a previous one, and a
replication protocol resilient to arbitrary failure of replicas (Byzantine failures)
is responsible to correctly replicate the chain of blocks among replicas. A char-
acteristic shared by all the aforementioned SMR protocols is that they support
only benign failure of replicas and cannot be used out-of-the-box in the context
of blockchains.

Perhaps the most famous blockchain protocol and that sparkled the interest
in the field is Bitcoin [107]. Bitcoin follows the permissionless model, where
anyone is able to join the network and run a replica. Guaranteeing the con-
sistency of the blockchain in such a model, where processes can join and leave
at any point, act maliciously for their own financial gains and fake identities is
notably complex and expensive (it relies on a computationally expensive byzan-
tine replication protocol [27]). To avoid the complexities of the previous model
and the costs associated with it, an alternative is to consider a different model
(permissioned) where the membership of the blockchain is controlled by a set of



3 1.3 Thesis Contributions

known entities like companies. In such case, the blockchains are often powered
by classic Byzantine hardened state-machine replication (Byzantine SMR). When
permissioned blockchain protocols follow the classic leader driven approach they
suffer from scalability and availability issues, similarly to their non-byzantine
counterparts.

1.3 Thesis Contributions

In this thesis we propose a framework that captures the essence of Leaderless
State-Machine Replication (Leaderless SMR) and formally state some of its limits.

Further, we adapt our framework to support Byzantine failures and present
the first framework for Byzantine Leaderless SMR. We show that when prop-
erly instantiated it allows one to sidestep the scalability issue of leader driven
Byzantine SMR protocols, which is of interest in the context of permissioned
blockchains.

1.4 Thesis Overview

Background and Motivation. In Chapter 2 we recall the principles of Classic and
Generic SMR under the fail-stop model and we also present the new approach
of leaderless state-machine replication. Further, we present the Byzantine fault-
tolerant model and a few important key notions (e.g. Byzantine Quorum Sys-
tems). We also present a collection of Byzantine SMR protocols and introduce
blockchains. Last, we present permissioned blockchains replication protocols and
argue that leaderless protocols can be of interest for new protocols in both fault
models. The experiments in §2.4 and the important observations taken from it
are the result of our work in [132, 62].

Leaderless State-Machine Replication: Specification, Properties, Limits.
In Chapter 3 we formally define Leaderless SMR and deconstruct it into basic
building blocks. We present a framework that accurately captures this new class
of protocols and show that different leaderless protocols can be cast to it. Lastly,
we state some of their limits. This chapter is derived from our work in [116].

Byzantine Leaderless SMR. In Chapter 4 we present the first framework for
Byzantine Leaderless State-Machine Replication (BLSMR) and we propose differ-
ent instantiations to it. Notably, we present: Wintermute a protocol that has over-
all lower load and message complexity than common Byzantine SMR protocols.
This protocol allows to sidestep scalability issues of permissioned blockchains.



4 1.4 Thesis Overview

The content of this chapter appeared first in [115].
Conclusion. In Chapter 5 we present our final remarks and future work.



Chapter 2

Background and Motivation

Modern Internet services commonly replicate critical data across several geo-
graphical locations using state-machine replication (SMR) [122]. Due to their
reliance on a leader replica, classical SMR protocols offer limited scalability and
availability in this setting. To solve this problem, recent protocols follow instead
a leaderless approach, in which each replica is able to make progress using a
subset of its peers. Further, due to the increasing sensitive nature of replicated
services, leveraging simple benign failures is no longer enough. Therefore, de-
veloping and adapting such promising approach for this harsher fault model is
of the essence to build new reliable protocols.

In this Chapter 2 we provide the theoretical background necessary to under-
stand this new class of leaderless protocols by first formally defining the problem
of state-machine replication under the classic scenario, that is, replicas simply
present benign failure (aka fail-stop). We also present Generic SMR, the prob-
lem from which several leaderless protocols took inspiration from and introduce
Leaderless SMR, using as example the most famous leaderless protocol: EPaxos
[106].

Later, we redefine and explain SMR under a scenario where replicas can fail
in a malicious manner (Byzantine failures). We explore this failure model more
in-depth through the introduction of key notions and analysis of classic and mod-
ern protocols. We also introduce the concept of a Blockchain, a type of Byzantine
resilient replicated service that embodies the issues that modern replication tech-
niques suffer from: scalability in the context of geo-replication.

Finally, we close the chapter by introducing a discussion that encompasses the
motivation of this thesis: To properly define and study the new class of Leaderless
SMR protocols, such that modern large-scale geo-replication protocols can be
built for the fail-stop and byzantine fault-tolerant models.

5



6 2.1 Fail-stop

2.1 Fail-stop

2.1.1 System model

We consider the standard model of wait-free computation in a distributed message-
passing system where processes 1 may fail-stop [64] (i.e. components fail by
stopping or by omitting steps). In [42], the authors extend this framework to
include failure detectors. Further details appear in Appendix A.

2.1.2 Classic SMR

State machine replication is defined over a set of n≥ 2 processes Π using a setC
of state-machine commands. Each process p holds a log, that is a totally ordered
set of entries that we assume unbounded. Initially, each entry in the log is empty
(i.e., logp[i] = ⊥ for i ∈ N), and over time it may include one state-machine
command. The operator (logp • c) appends command c to the log, assigning it to
the next free entry.

Commands are submitted by the processes that act as proxies on behalf of a
set of remote clients (not modeled). A process takes the step submit(c) to submit
command c for inclusion in the log. Command c is decided once it enters the
log at some position i. It is executed against the state machine when all the
commands at lower positions ( j < i) are already executed. When the command
is executed, its response value is sent back to the client. For simplicity, we shall
consider that two processes may submit the same command.

When the properties below hold during every execution, the above construct
ensures that the replicated state machine implements a linearizable [80] shared
object.

Validity: A command is decided once and only if it was submitted before.

Stability: If logp[i] = c holds at some point in time, it is also true at any later
time.

Consistency: For any two processes p and q, if logp[i] and logq[i] are both not
⊥, then they are equal.

Example (Paxos)

The baseline for SMR implementation is Paxos [88], a primary-backup style of a
protocol where a primary (i.e. leader) drives the decisions. For didactic purposes

1Throughout this thesis we use the term replica and process interchangeably.



7 2.1 Fail-stop

we follow the terminology of [89] to detail the protocol, this means we assume
that processes can have different roles: proposers, acceptors and learners.

Paxos processes execute multiple ballots (i.e. rounds), which are totally or-
dered by a relation <. Each ballot has a number associated with it, typically
represented as a natural number, and each ballot is coordinated by one specific
proposer. Even though there is a total order among ballot numbers, the ballot
execution doesn’t need to follow this order, and actions in different ballots may
even interleave. The common approach to implement SMR using Paxos is to con-
sider a set of ordered Paxos instances (i.e. ordered consensus instances), where
each instance is used to decide a submitted commands position in the log.

In Paxos, clients submit state-machine commands wrapped in proposal mes-
sages to proposers, but only a proposer that believes itself to be the leader (or
coordinator) of the consensus instance has the rights to propose a command to
the set of acceptors. Putting in context of the model presented in §2.1.1, this
is achieved via the proposer querying the failure detector oracle. To propose,
the coordinator must start one of its ballots, bigger than any other previously
started. Its proposal will become the decided2 value of the instance, iff a correct
and reachable majority of acceptors for that ballot exists and no other process
has the wrong idea of being the coordinator (again via querying the failure de-
tector oracle), which could lead multiple ballots being started, preventing each
other from terminating.

A ballot in Paxos is divided into two phases: the first phase, referenced in the
literature as configuration phase or prepare phase, serves the purpose of identi-
fying previously decided values and the second phase, referenced as the accept
phase, tries to get some value decided in some ballot. The first phase is comprised
of actions: Phase1a, Phase1b and the second one of actions: Phase2a, Phase2b.
One must understand that actions Phase1a, Phase2a initiate each phase, while
actions Phase1b, Phase2b may be seen as responses to the previous actions. The
set of actions can be seen in Figure 2.1 as well as the normal flow of messages
(failure-free case).

As we mentioned before, one of the proposers has the role of the coordina-
tor and is responsible for starting each phase of the ballot, by executing Phase1a
and Phase1b. The actions Propose and Learn complete the algorithm, the for-
mer is executed by the proposers to propose a value (i.e. submit state-machine
command) and the later is executed by the learners to learn the decision of a
consensus instance (i.e. assign a command to a log position).

2Note that in the context of the pure Paxos protocol the concept of Learned value is actually
the definition of decided given in the classic SMR section (§2.1.2), that is, the value will appear
in some position i of the log.
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Figure 2.1. Classic Paxos message exchange in the failure-free case. The star

marks the learning of a command.

A learner l can only learn the decision of an instance after the execution of the
two phases of some ballot m. Furthermore, a learner l can only learn a value that
has been proposed by some proposer p. It’s important to note that the Propose
action must happen before the second phase, but not necessarily before the first
one.

The algorithm works in the following way, the prepare phase is initiated by
the leader through the action Phase1a, that consists in sending a 1A message to
the acceptors, when the acceptors receive this message, they do the following:

• If the acceptor has not responded to any 1A message, he updates its ballot
to the ballot of the message 1A (we will call it ballot i) and sends a confir-
mation 1B message to the leader, through the execution of action Phase1b.
This way it is guaranteed that the acceptors that replied will not accept
values for ballots smaller than i.

• If the acceptor already responded to some 1A message in some ballot s
smaller to the current one (i), two scenarios are possible:

– The acceptor has not yet received any 2A message with a proposal,
sent during the coordinator’s accept phase. In this case, the acceptor
updates its ballot to the greatest ballot received (i) and sends a 1B

message with this ballot i as parameter to the leader;
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– The acceptor has received some 2A message in some ballot k and it
must have received a value v proposed by some proposer acting as
coordinator in ballot k (k ≤ s < i), this means that v is the accepted
value (its “vote”) by this acceptor in the last ballot k in which he ac-
cepted (voted for) something. The acceptor then sends back a 1B

message to the coordinator of i, containing as parameters (i, k, v),
which are respectively the current ballot, the latest ballot k in which
the acceptor accepted something and the value accepted in k.

The second phase accept is initiated once the coordinator receives messages
for the round i from all acceptors in a majority set Q. The coordinator then
executes action Phase2a sending a 2A message to the acceptors, the message
contains as parameter (i, v), which are respectively the current round and the
proposal value v selected by the coordinator. The picking of the value is based
on these criteria:

• If the coordinator has received one or more 1B messages with values ac-
cepted by the acceptors, he then selects the value v of the proposal with
the highest ballot number.

• If no 1B message received has any accepted value, the coordinator picks
any proposed value to be the proposal.

When an acceptor receives a 2A message with a value v for the round i, he
accepts the proposal (i.e. votes for it) if it has not responded to a ballot larger
than i. Then, the acceptor through the execution of action phase2b sends a 2B

message confirming the accepted value v to the set of learner processes. Its
important that one understands the distinction between an accepted value and a
decided value; the former only means that the acceptor “voted” for such value,
while the latter means that a majority of acceptors voted for the same value in
the same round and that the value will eventually be learned2 by the learners.
Finally, if a learner l receives 2Bmessages from a majority of acceptors containing
a value v, then it knows that v was decided and can be safely learned.

In case of failure suspicion (information given by the failure detector oracle),
the coordinator initiates a new ballot by executing the prepare phase again. Since
a coordinator sends the value to be accepted only at the beginning of the second
phase (i.e. accept phase), the first phase of the algorithm can be executed before
receiving any proposal.

The coordinator can execute the prepare phase a priori for all consensus in-
stances, thus, in the failure-free case a decision takes three message delays in
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the critical path (counting the message delay necessary for a client’s command
to reach a proposer) and O(n) message complexity.

2.1.3 Generic SMR

In their seminal works, Pedone and Schiper [112] and concurrently Lamport [90]
introduce an alternative approach to Classic SMR. They make the key observation
that if commands submitted to the state machine commute, then there is no
need to order them. Leveraging this, they replace the totally-ordered log used in
Classic SMR by a partially-ordered one. We call this approach Generic SMR.

Two commands c and d do not commute when for some state s, applying
cd to s differs from applying dc. This means that either both sequences do not
lead to the same state, or one of the two commands does not return the same
response value in the two sequences. Generic SMR relies on the notion of conflicts
which captures a safe over-approximation of the non-commutativity of two state-
machine commands. In what follows, conflicts are expressed as a binary, non-
reflexive and symmetric relation � over C .

In Generic SMR, each variable logp is a partially ordered log, i.e., a directed
acyclic graph [90]. In this graph, vertices are commands and any two conflicting
commands have a directed edge between them. We use G.V and G.E to denote
respectively the vertices of some partially ordered log G and its edges. The ap-
pend operator is defined as follows: G•c:=(G.V∪{c}, G.E∪{(d,c) : d ∈ G.V∧d�
c}. A command is decided once it is in the partially ordered log. As previously,
it gets executed once all its predecessors are executed.

For correctness, Generic SMR defines a set of properties over partially ordered
logs similar to Classic SMR. Stability is expressed in close terms, using a prefix
relation between the logs along time. Consistency requires the existence of a
common least upper bound over the partially ordered logs.

To state this precisely, consider two partially ordered logs G and H. G is prefix
of H, written G v H, when G is a subgraph of H and for every edge (a,b) ∈ H.E,
if b ∈ G.V then (a,b) ∈ G.E. Given a set G of partially ordered logs, H is an
upper bound of G iff G v H for every G in G . Two logs G and H are compatible
iff they have a common upper bound.3 By extension, a set G of partially ordered
logs is compatible iff its elements are pairwise compatible.

Based on the above definitions, we may express Generic SMR using the set of
properties below. Validity is identical to Classic SMR and thus omitted.

3In [90], compatibility is defined in terms of least upper bound between two c-structs. For
partially ordered logs, the definition provided here is equivalent.
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Stability: For any process p, at any given time logp is prefix of itself at any later
time.

Consistency: The set of all the partially ordered logs is always compatible.

2.1.4 Leaderless SMR

Classical SMR protocols such as Paxos [88] and Raft [109] rely on a leader replica
to order state-machine commands. The leader orchestrates a growing sequence
of agreements, or consensus, each defining the next command to apply on the
state-machine. As seen in §2.1.3, Generic SMR protocols like Generalized Paxos
[90] improve over classic SMR protocols by ordering only non-commuting state-
machine commands, which leads to faster decisions once agreement is only nec-
essary for conflicting commands. Nonetheless, as is the case with Classic SMR
protocols it still relies on a leader replica to order conflicting commands. The
leader based approach has clear limitations, especially in a geo-distributed set-
ting. First, it increases latency for clients that are far away from the leader.
Second, as the leader becomes a bottleneck or its network gets slower, system
performance decreases. Last, this approach harms availability, because when the
leader fails, the whole system cannot serve new requests until an election takes
place.

To sidestep the above limitations, a new class of leaderless protocols has re-
cently emerged [104, 106, 16, 62, 131, 57]. These protocols allow any replica to
make progress as long as it is able to contact enough of its peers. Mencius [104]
pioneered this idea by rotating the ownership of consensus instances. Many other
works have followed, and in particular the Egalitarian Paxos (EPaxos) protocol
[106], which takes a Generic SMR approach, leveraging commutativity between
state-machine commands, but does not rely on a single distinct replica to order
conflicting ones.

Although promising, the leaderless approach is not free of problems. We
provide evidence for such assertion in §2.4 and dedicate Chapter 3 entirely to
explore in-depth this new class of protocols.

Example (EPaxos)

As Generalized Paxos [90], EPaxos orders only non-commuting, aka. conflicting
(§2.1.3), state-machine commands. To this end, the protocol maintains at each
replica a directed graph that stores the execution constraints between commands.
Execution of a command proceeds by linearizing the graph of constraints.
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Since any process can be responsible for a command c, it can be the case that
each process observes the execution constraints for that command in a differ-
ent way, this is encapsulated in EPaxos via a set of dependencies of a c, noted:
deps(c). In EPaxos, processes need to agree on these dependency sets to achieve
linearizability [80] (first protocol invariant). To grasp this concept, let us ob-
serve the example of a failure-free execution of the protocol in Figure 2.2. In the
example, process p1 is responsible for command c1 and process p2 is responsi-
ble for command c2 (both commands conflict with each other). A command c is
committed once deps(c) is known at some process p. Command c can be executed
once the transitive closure of its dependencies is committed. To commit the com-
mands the processes p1 and p2 proceed in a two message delay communication
pattern (sending PREACCEPT messages and receiving PREACCEPTACK) where
they report each others dependencies for their commands (initially ∅ for both,
as they have seen no conflicting commands prior) and contact enough peers to
guarantee that at the end of this communication the second invariant that guar-
antees linearizability will hold, that is, that one of the two will hold: c1 ∈ deps(c2)
or c2 ∈ deps(c1) at all processes (i.e. conflicting commands will be ordered). We
can see in the example that this is the case at p1 where the process is able to
commit for c1 with deps(c1) =∅ and p5 commits c2 with deps(c2) = {c1}.

Note that the dependencies reported by p2 and p3 were equal, that is what
allows p1 to commit earlier (this is called a fast path, that is, spontaneous agree-
ment among processes). This is not the case at process p5 (dependencies re-
ported by p3 did not match the ones reported by p4), forcing p5 to go through
an agreement4 phase, a two message delay communication pattern (sending AC-
CEPT messages and receiving ACCEPTACK messages) where at the end, processes
agree on the dependencies of c2.

2.2 Byzantine Fault Tolerance

Replicated services are becoming increasingly more geo-distributed and open
(no longer operated by a single entity), this leads to systems being ran in a wider
number of platforms and programmings languages, resulting in more harmful
bugs. Coupled with this, we have the growing reliance of public, industry and
government on such systems, which makes them profitable targets for exploita-
tion by different parties. The combination of these factors require that leveraging
simple benign failures is no longer enough to build services that behave correctly.

4Hence, in the common case, EPaxos executes a command after two message delays if the
fast path was taken and four message delays otherwise.
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p1

p2

p3

p4

p5

c1

c2

deps(c1) =∅

deps(c2) = {c1}

∅→ c1 ∅→ c1

∅→ c2

c1→ c2

∅→ c1 c1→ c2

c1→ c2

Figure 2.2. EPaxos normal-case. N = 5, f = 2. Messages and their

corresponding phases are described by the following colors: PREACCEPT,
PREACCEPTACK, ACCEPT, ACCEPTACK, COMMIT (dashed lines).

A more fitting failure assumption is captured under the term Byzantine failure
[93], where processes might deviate arbitrarily from their assigned specification
or rationally misbehave in a way that causes the most damage to the system. A
Byzantine Fault-Tolerant (BFT) service is therefore a system that strives to give
correct answers to its clients despite the presence of Byzantine processes.

2.2.1 System Model

To account for Byzantine failures we consider a different system model than
§2.1.1. This new model is an adaptation of the one found in [41]. Further,
readers should be aware that the definitions found in §2.1.1 are often overwrit-
ten.

We consider the standard model of wait-free computation in a partially syn-
chronous [58] distributed system consisting of the fixed set of processes Π =
{p1, p2, . . . , pn}, with n ≥ 3 f + 1 processes where f is the maximum number of
Byzantine failures tolerated by the system. When a process is Byzantine we call
them faulty or byzantine, otherwise we call them correct (we also consider that a
correct process never crashes).

Further, we assume that processes communicate via message exchange over



14 2.2 Byzantine Fault Tolerance

authenticated and reliable channels and the existence of collision-resistant hash
functions, digital signatures and a public-key infrastructure (PKI). Any correct
replica, can authenticate messages it sends by signing them. We note that a
message m is signed by x as 〈m〉x We also assume that faulty processes are com-
putationally bound so that whp. they are unable to break the cryptographic tech-
niques mentioned. It follows that state-machine commands are non-craftable as
they are considered to be signed correctly.

2.2.2 Byzantine Fault-Tolerant State-Machine Replication (BFT
SMR)

We define Byzantine Fault-Tolerant State-Machine Replication (BFT SMR) by
adapting the definition in §2.1.2 to account for Byzantine failures. As common in
the literature [41], this means we consider that the safety properties must hold
at correct processes. Differently than §2.1.2 (but similar to [139]), we drop the
proxy model and consider that commands are submitted by clients and we don’t
consider them to be byzantine. The modified properties of the service are the
following:

Validity: A command is decided once and only if it was submitted by a correct
process before.

Stability: For any correct process p, if logp[i] = c holds at some point in time, it
is also true at any later time.

Consistency: For any two correct processes p and q, if logp[i] and logq[i] are
both non-empty, then they are equal.

2.2.3 Key Notions

In this section we introduce a series of key notions that have seen pervasive use
in both modern and classic BFT protocols.

Byzantine Quorum System

Under the fail-stop model, quorum systems are a well-known tool to improve
availability and efficiency of replicated data [8, 67, 78, 1]. Essentially, a quo-
rum system is a collection of subset of processes (i.e quorums) from the uni-
verse of processes, such that each pair of these sets have non-empty intersection.
Quorums can run independently (i.e each quorum can make progress at its own
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speed), thus increasing the system’s performance and availability while safety
properties hold by relying on the intersection property.

Byzantine quorum systems extend the classical quorum systems to cover byzan-
tine failures. The definitions that follow are taken from [101]: a quorum system
Q ⊆ 2Π is a non-empty set of subsets of Π, every pair of which intersect. Each
Q ∈Q is called a quorum. A fail-prone systemB ⊆ 2Π is a non-empty set of sub-
sets of Π such that none of its elements is contained in another and that some
B ∈ B contains all the faulty nodes. The fail-prone system characterizes all the
failure scenarios possible in any execution of the system. A Byzantine Quorum
System (BQS) is a pair of a quorum system and a fail-prone system: (Q,B).

The simplest BQS is the masking quorum system. A masking quorum system
satisfies the following properties:

M-Consistency ∀Q1,Q2 ∈Q.∀B1, B2 ∈B : (Q1 ∩Q2) \ B1 6⊆ B2

M-Availability ∀B ∈B .∃Q ∈Q : B ∩Q =∅

Informally, M-Consistency guarantees that any two quorums intersect in 2 f +
1 processes and therefore in f + 1 correct process. M-Availability ensures the
existence of a quorum containing only correct processes.

A masking quorum system can be used to mask the arbitrarily faulty behavior
of data repositories. This means that, for instance, it can be used to build a service
that offers read and write operations to a replicated variable x and guarantees
safe variable semantics [13] despite the presence of B faulty replicas. From the
example in [101], consider that Q1 is the quorum used to write to variable x
and Q2 the one used to read it, then a client that uses Q2 observes the following:
the correct value for x is obtained from each replica (Q1 ∩Q2) \ B, possible by
M-Consistency.

Now, if we want to implement a service that will be used as a repository for
information that only clients can produce and to which they can detect attempts
of modification by a faulty process (e.g. clients signing messages via digital sig-
natures), the cost of accessing the replicated data is decreased (i.e. the quorums
intersection size decrease by a factor of f ). The dissemination quorum system,
captures such notions and is defined through the following properties:

D-Consistency ∀Q1,Q2 ∈Q.∀B ∈B : Q1 ∩Q2 6⊆ B

D-Availability ∀B ∈B .∃Q ∈Q : B ∩Q =∅

Informally, D-Consistency ensures that any two quorums must intersect in a
correct process. D-Availability ensures the existence of a quorum containing only
correct processes.
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To measure the performance of a quorum system we borrow the definition
of load from [101]. Load of a quorum system can be informally defined as the
minimal access probability of the busiest server in the system, minimizing over
all strategies for picking quorums.

Threshold Signatures

A classical digital signature scheme [76] consists of a collection of algorithms:
key generation, signing and verification. The input for key generation is a secu-
rity parameter and the output is a pair of public key and private key. The input
for signing is a private-key and a message m and the output is a signature σ.

The idea of a threshold signature scheme was introduced in [51, 52] with the
intent of distributing trust among parties in the production of digital signatures.
A (k, n)-threshold digital signature scheme consists of a protocol for n processes
from which k can cooperate to generate valid signatures. The scheme works by
dividing a private key through the n processes such that any set of k process can
contribute a partial signature to a message m. The partial signatures are then
sent to a combining process, which combines the partial signatures into a valid
threshold signature on m. The scheme guarantees whp. that any set of processes
with size smaller than k is unable to generate a valid threshold signature on m.

This type of schema has been present in a vast number of modern BFT algo-
rithms and systems [10, 139, 38, 74]. Such a non-interactive scheme is used in
protocol like HotStuff [139] and SBFT [74] to allow a process to justify its vote
for a specific value by using a single threshold signature generated from k partial
signatures, which saves a factor of k in terms of communication complexity.

Veri�able Random Functions (VRFs)

Verifiable Random Functions [105] are pseudo-random functions [75] typically
defined through a collection of polynomial-time algorithms and a set of require-
ments (formally defined in [105]).

Adapted from [25], we say that VRF = (VRF.Gen,VRF.Eval,VRF.P,VRF.V )
consists of the following:

• a probabilistic key sampler VRF.Gen(seed), that takes a seed as input and
outputs a secret key SK and public verification key V K

• an evaluator VRF.EvalSK(x) that takes as a parameter the secret key SK
and x and outputs y
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• a prover VRF.PSK(x) that takes as a parameter the secret key SK and out-
puts a proof π that y is consistent with the verification key V K

• a verifier VRF.VV K(π, x , y) that verifies the proof.

Informally, it is possible to verify that an output y from a VRF corresponds
to a correct evaluation of the function on any given input x . The secret key
allows anyone to compute the function y = VRF.EvalSK(x) at any point x , and
also to compute a proof πx ,y that y was computed correctly. VRFs requirements
guarantee that an adversary has negligible probability to distinguish the output
y of the function at any point x, from a pseudo-random value.

VRF is a type of primitive that has seen recent use in a variety of BFT protocols
[70, 95], it allows for example to select in a pseudo-random, verifiable and non-
interactive manner (i.e. no message exchange) a subset of processes responsible
for important protocol roles (e.g. a proposer).

2.2.4 Historical Solutions

The term Byzantine failures is presented in [93] where the authors formulate
the problem of reaching consensus under these types of failures through the
Byzantine Generals Problem. A synchronous solution can be found in [55], an
improvement over the first solution for the problem found in [111]. This im-
proved version has O(n3) communication complexity (optimal as seen in [54]).
A leader driven synchronous protocol using randomness is presented in [84]with
expected constant-round solution and resilience of (n− 1)/2.

Considering an asynchronous model we know by [64] that there is no deter-
ministic solution for consensus in the possibility of a single failure. A circumven-
tion of the result can be found in [21] where randomness is used for processes
to eventually converge to consensus (through independent random coin flips).
These ideas are enhanced in [38] where the authors present a protocol that uses
cryptographic methods to share an unpredictable coin, this allows for a total
communication complexity of O(n3).

Another approach to circumvent the impossibility result is to consider a par-
tially synchronous model. The first work to go in this direction can be found in
[58], where the authors present a protocol that remains safe while the system
behaves asynchronously and guarantees termination after the system reaches
synchrony. During synchronous periods the protocol displays a communication
complexity of O(n4) and O(n) rounds per agreement.
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Figure 2.3. PBFT phases in the normal-case.

2.2.5 Practical Byzantine Fault-Tolerance (PBFT)

In the BFT SMR realm of protocols, PBFT [41] is the baseline work for all pro-
tocols that came after it. It presents a very pragmatic way of doing Byzantine
fault-tolerance replication, in the sense that it does not rely on synchrony as-
sumptions for safety, only liveness and it does not rely on randomization either.
Assuming that up to f replicas can be Byzantine, PBFT optimally requires 3 f +1
replicas to ensure safety and progress.

It achieves this through an algorithm that combines a primary-backup schema
and quorum replication techniques [69] to order clients commands and opti-
mizations, such as the use of symmetric cryptography to authenticate messages.
Processes take part in a series of views (i.e. configurations) each coordinated by
a leader that after 2 round-trips orders a command. In PBFT, quorums are simply
defined as sets of 2 f + 1 processes, nonetheless they still abide to the properties
of a dissemination quorum system (§2.2.3), hence it enables the use of quorums
as a reliable memory for protocol information. The information is written to quo-
rums and replicas collect quorum certificates, which are sets with one message
from each quorum participant saying that it logged the information.

In the normal-case the protocol roughly works as follows: Once the primary
(i.e. leader) receives a client’s request m, it attaches a sequence number n to
it and broadcasts a PRE-PREPARE message to all replicas. This message also
contains the view v in which the message is being set. A replica will only accept
the message if it is in the same view v, if it can verify the message’s authenticity,
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if the sequence number n is valid (to prevent a byzantine leader exhausting the
space for sequence numbers by picking a very large one) and if it hasn’t accepted
a PRE-PREPARE message for v and sequence number n containing a different
client request.

Once the PRE-PREPARE message is accepted the replicas broadcast to all
replicas a PREPARE message (this messages indicates that the replicas have agreed
to assign n to m in view v). Once a replica collected 2 f + 1 matching PREPARE
messages for sequence number n, view v and request m we say that a prepared
certificate is done. It indicates that replicas have agreed on an order for requests
that are in the same view.

Now the protocol proceeds with an extra phase to guarantee a total order for
requests across views, as it could have been the case that a view change occurred
and replicas could have collected prepared certificates in another view with the
same n and different m. Replicas broadcast to all others a COMMIT message and
again collect 2 f + 1 of these messages (to form a commit certificate), by which
afterwards we can say that the request is committed.

Each replica then executes the requested operation m (if it has executed all
requests with lower sequence number than n) and replies to the client. Once a
client receives f + 1 matching replies it commits the request.

In terms of performance, when the leader of a view is correct, the message
complexity of the protocol is of O(n2), when a view-change (i.e. reconfiguration)
occurs, the message complexity is of O(n3).

Understanding the 3 f + 1 bound

To understand why PBFT optimally requires 3 f +1 replicas to ensure safety and
liveness let us start by looking at an example (based on [123]) that does not
consider byzantine failures (modeled in §2.1.1).

Consider a non-Byzantine replicated service consisting of n replicas from
which f may fail-stop and that maintains mutual exclusion on Read (R) and
Write (W) operations to a mutable variable. Let us consider that such service
is implemented via Paxos, this means that only 2 f + 1 replicas are required for
safety and liveness [88]. To guarantee liveness the service may have to return
a reply to an operation before the operation is received by all replicas, since f
replicas might not respond. So if we consider that an operation W is done, the
client that issued the operation must wait for no more than n− f replies. Now
consider that a read operation followed, the client waits for n− f replies, but this
time the replies might come from another set of replicas. Thus, the number of
replicas in the intersection used for the operations W and R is of n−2 f . So that
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safety holds (e.g. the operation R doesn’t miss W ), there must be at least one
non-faulty replica in such intersection (i.e. n−2 f > 0), thus at least 2 f +1 repli-
cas are necessary in order for safety and liveness to hold. An attentive reader
might recall that this ties back to the Paxos explanation given in §2.1.2 that a
necessary condition to decide a proposal in an instance of the protocol was that
a reachable majority (i.e. a quorum of size f + 1) of acceptors exists.

Now if we try to cast such a service to tolerate Byzantine failures using the
previous n = 2 f + 1 bound, we will reach the following problem: We cannot
distinguish if the f unresponsive replicas that did not reply for the operations R
and W are slow or Byzantine. If we consider that they were slow, then it might
be the case that f Byzantine replicas are still present in the replicas used to reply
to the operations R or W . It follows that we can have f Byzantine replicas among
the n − 2 f ones, choosing arbitrarily to which operation to reply and to which
not to reply. To fix this issue the intersection needs to be increased by a factor
of f (i.e. n − 2 f > f ), leading us to n > 3 f and thus at least 3 f + 1 replicas
are required in the Byzantine case to guarantee safety and liveness if we assume
that up to f are Byzantine.

2.2.6 700BFT

PBFT is notably a complex protocol, properly implementing the view-change
mechanism [4] and proving its correctness is a non-trivial task. Recent works
have been taking the direction of exploring the modularization and composabil-
ity in BFT SMR, for less complex designs and/or performance gain [17, 33, 136]

In [17], the authors decompose BFT SMR in a series of composible modules.
One of these modules is Quorum, a client-based BFT protocol that allows for the
abortion of commands. It achieves the optimal minimum latency in contention-
free cases by using a simple message pattern: clients broadcasts their requests to
3 f +1 replicas, each replica executes the request and replies back to the clients.
If all the replies match, the clients completes; otherwise it aborts and another
BFT protocol is launched (e.g. PBFT).

2.2.7 Query/Update (Q/U) and Hybrid Quorum (HQ)

In [2] the authors present Q/U a byzantine fault-tolerant protocol that is quorum
based. This means that differently than agreement based protocols like PBFT
where replicas are required to process all requests, in a quorum based approach
this is not the case. This allows Q/U to have better fault scalability and latency
when compared to the agreement approach of likes of PBFT, since a client can
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communicate exclusively to a quorum. A trade-off can be observed though, once
Q/U requires 5 f +1 replicas to tolerate f byzantine ones, not optimal as seen in
§2.2.5. The Q/U protocol provides an interface based on the operations: query
that do not modify the replicated objects and updates that do. Such interface
allows byzantine-fault tolerant services to be built on top of it similarly to BFT
SMR. Q/U works in a simple message pattern, where a client sends operations
exclusively to a preferred quorum of size 4 f + 1 and the quorum replies back
to the client. Consistency on the replicated objects hold without the need of
a leader process because the protocol maintain versions of the objects. Such
versions are created once an update operation is invoked and the history of the
most up-to-date object versions is exchanged among replicas and clients, that is,
processes return histories to clients in response to requests to guarantee that the
last version of an object is being queried.

Since a client can communicate exclusively to a preferred quorum, it might be
the case that some replicas have an outdated history of an object, which requires
that outdated replicas query f +1 other replicas for the most up-to-date history of
an object. If a client detects that different versions of an object exist in different
replicas (concurrent updates may lead to different object versions), it initiates a
repair phase to bring outdated copies of an object to the most up-to-date version.
Such phase is expensive and highlights the problems of the protocol to deal with
contention.

The protocol Hybrid Quorum (HQ) [45] works similarly to Q/U but uses a
protocol similar to PBFT to resolve the contention issue and requires optimally
n = 3 f + 1. In the case that no contention occurs, HQ relies on a byzantine
quorum system where quorums have size of 2 f + 1. It allows for write opera-
tions to take two round trips between clients and replicas and reads to take only
one. When contention between operations occur it orders them via a variation
of PBFT.

2.3 Blockchain

Blockchain has been the focus of a lot of hype and news since its inception in 2008
with Bitcoin [107]. Even though a lot of research [14, 110, 66, 11] exists on the
theme, scientific consensus hasn’t been reached on a single formal abstraction
of these objects. Thus, let us consider first an informal definition based on the
one found in [14], where we can say that a blockchain is a replicated tamper-
proof append-only ledger, that is, an indelible log of transactions that takes place
between various entities, where transactions are stored in blocks and each block
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is cryptographically linked to a previous one.
The first critical idea for making sense of the blockchain landscape lie in un-

derstanding how a blockchain deals with membership management. Initially all
blockchains were permissionless (i.e public), where the parties participating in
the protocol cannot be identified reliably and anyone can join the network. Re-
cently there has been the rise of a new wave of protocols aimed at providing the
same abstraction but under an environment that resembles more the classical
BFT system model, these are permissioned (i.e. private) blockchains, where the
parties taking place in the protocol have reliable identities and have been vetted
to participate.

The second critical idea to make sense of blockchains lie in understanding
the consistency guarantees provided by them. Ideally a replication scheme is im-
plemented by keeping all replicas synchronized after each update to the shared
object. This ideal model is called strong consistency, or linearizability [80]. Typi-
cally, permissionless blockchains offer some kind of weaker consistency guaran-
tee whereas in permissioned ones linearizability is the ruling consistency criteria.

Understanding the ’why’ behind this relation allows one to grasp the actual
difficulty of the problem at hand. We explore this idea more in-depth in the
following section where we present the different types of blockchains and their
protocols.

Permissionless Protocols

Perhaps the best way to understand the abstraction provided with a blockchain
consists in understanding how it differs (a similar approach is taken in [83]) from
the classic BFT SMR abstraction presented in §2.2.2. Permissionless blockchains
distinguish themselves primarily from classical BFT SMR by having an open mem-
bership, this affects the difficulty of doing replication through classical means.
The reason for this is that behind any SMR protocol is a consensus protocol, this
is also the case for blockchains. In the context of blockchains, processes propose
transactions to be added to the ledger and from these proposals one is chosen.

As is the case with classic BFT SMR, processes repeatedly run a consensus
protocol, in this case to append a batch of transactions to the ledger. If one
just runs a byzantine fault-tolerant consensus algorithm as PBFT, out-of-the box
in an open membership model, its system would be vulnerable to a wide-range
of attacks, as for example: Sybil [56] attacks, that is, with unreliable identities
an attacker can flood the consensus protocols with proposals made by puppet
processes controlled exclusively by himself. In [18] the authors prove that such
type of attack is fundamentally related to the permissionless model.



23 2.3 Blockchain

Viewing it from another angle, in classical BFT SMR protocols, consensus is
reached once a quorum of participants agree on the same decision, the size of
a quorum and thus their intersection size is typically based on the amount of
failures the system is supposed to support, therefore in an open membership
model is harder to guarantee what size of quorum is enough to guarantee that
safety properties will not break.

To deal with open membership and the sybil attack mentioned above, per-
missionless blockchains often abstract what a failure means in classic BFT to a
different adversary model [110] where the adversary is typically bounded by
computational power or economic means.

Although it is out of the scope of this thesis to formalize blockchains, in the
interest of the reader we provide a sketch (based on the works in [110, 83, 11])
of how to redefine BFT SMR (§2.2.2) to permissionless blockchains. Consider
that each log position holds a batch of transactions (i.e. commands) let us call
it a block. Clients submit blocks to be appended to the log but only blocks that
satisfy some validity predicate P can be appended. Predicate P is dependent on
the application and it abstracts the creation process of a block. An example of
definition of such predicate could be the following: A block abides to predicate
P iff it can be connected to a previous block currently in the log and it does not
contain duplicate transactions. Differently than classic BFT SMR, in permission-
less blockchains typically safety properties require that correct processes agree
only on a prefix (that exists whp.) of the log. It allows for the existence of a suffix
of the log of size T consisting of “unconfirmed” blocks. The properties required
to implement a permissionless blockchain are then the following:

Validity: A block is decided once and only if it satisfies predicate P.

Stability: For any correct process p, at any given time logp is prefix of itself at
any later time, whp. and when ignoring a suffix of size T .

Consistency For any two correct process p and q, at a certain time and whp.
logp and logq are compatible when ignoring a suffix of size T .

2.3.1 Bitcoin

One of the primary goals of Bitcoin [107] was to implement a decentralized cur-
rency, that is, a currency that wouldn’t depend on a single entity (like a bank)
or be vulnerable to censorship by any government, very much in the vein of the
the cypherpunk manifesto [48]. The solution found by the anonymous author
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(or authors) Nakamoto, to implement such large scale geo-replicated service re-
lies on integrating Proof-of-Work (PoW) [59] (a technique originally created for
spam control) to a large-scale consensus protocol. Such idea spawned the en-
tire blockchain field by providing a mitigation mechanism to the aforementioned
Sybil attack.

In more detail the Bitcoin protocol works as follows: Processes communicate
via reliable FIFO authenticated channels (implemented with TCP), thus modeling
a partially synchronous system [58]. When a transaction is sent by a client it
is placed in a shared pool, processes called miners collectively run a repeated
consensus protocol to select which transaction will be appended to the ledger.
In this consensus protocol, miners solve a cryptographic puzzle (proof-of-work)
to produce a valid block of transactions (i.e. miners are basically going through
a voting process, where they vote with their CPU power for valid blocks). This
proof-of-work procedure is computationally expensive (therefore, economically
expensive as well) to curb the effectiveness of Sybil attacks.

The advantage of using this approach is that it scales well with the numbers
of miners if one consider the system’s safety, since the more miners there are, the
more secure the service becomes (i.e. it gets increasingly more expensive to do
attacks). The downside is that Nakamoto’s consensus it is not strictly speaking
consensus. It can be the case that two miners concurrently solve the puzzle and
then append blocks to the blockchain in a way that neither block precedes the
other. This is called in the Bitcoin community as a fork. Typically, processes
continue to build on the block with the longest chain, that is, the one which has
more work done.

Dealing with forks highlight the disadvantages of the protocol, for instance: it
takes a waiting time of about 10 minutes to grow the chain by one block and from
an application point of view, waiting a few blocks is required (6 are recommended
in Bitcoin [26]) to guarantee that the transaction remains in the authoritative
chain. Therefore, the possibility of forks affects the consistency guarantees and
throughput of transactions (about 3 to 10 transactions per second in Bitcoin).

Many papers [11, 66, 110, 73] have been published with the intent of formal-
izing PoW protocols like Bitcoin and studying its consistency guarantees. In [66]
the authors provide one of the first formalizations of the Bitcoin protocol and
show that under synchronous environment assumptions the protocol guarantees
whp. an eventual consistent prefix. More broadly, in [11] the authors intro-
duce the notion of Eventual Prefix and show that Bitcoin and other permission-
less protocols abide to it. In [73, 72] the authors argue that Bitcoin implements
Monotonic Prefix Consistency whp.

Consistency issues aside, abandoning PoW is a necessity since Bitcoin alone
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was estimated to consume 59TWh [27] in 2019. Such fact represents why the
PoW approach is not scalable/sustainable and why the most recent permission-
less protocols do not follow such approach.

2.3.2 Algorand

To address the problems of power consumption and low-throughput that PoW
based consensus protocols face, new types of consensus protocols [36] aimed
at the permissionless model have been under development that rely on specific
cryptographic methods and assumptions.

This is the case with Algorand [70], where the combination of Verifiable
Random Functions [105, 25](VRFs) and a new mechanism called Proof-of-Stake
(PoS) [22] allows to alleviate some issues with PoW consensus. In a PoS schema,
the voting power of processes is proportional to their money (i.e. stake) in the
system and not their computational power. Nonetheless, such mechanism brings
its own shortcomings [135].

The Algorand protocol works in rounds where each round has two phases.
In the first phase processes elect a leader via cryptographic sortition, this leader
is responsible for proposing a new block to be appended to the ledger. During
the second phase, a subset of processes is picked in a pseudo-random fashion
to become part of a committee that will run a modified version of PBFT [41].
The cryptographic sortition mechanism guarantees that leader and committee
members are elected proportionally to their weights (i.e. money in the system or
stake), therefore the higher their weights the higher the odds to propose a block
(as a leader) and as committee member to be able to vote and influence the final
decision.

Algorand allows for faster confirmation times and lower energy consump-
tion when compared to PoW protocols, nonetheless the consistency guarantees
provided are still probabilistic [11]. Scalability wise, the protocol supports thou-
sands of nodes but in a real world scenario it makes distinction between them,
notably relay nodes that by default hold the entire history of the ledger and are
primarily used to route the network traffic to a set of non-relay nodes. In [94]
the authors mention that although both types of nodes participate in consensus,
Algorand recommends that only non-relay nodes participate in consensus. In-
terestingly enough in the Algorand FAQ [28] is possible to note that the control
over relay nodes is highly centralized and as of January 2021, there is just over
100 relay nodes.
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2.3.3 Stellar

Differently from the Bitcoin and its PoW consensus and Algorand with its con-
sensus powered by VRFs and PoS, Stellar [98] takes a more classic approach by
relying on a special case of byzantine quorum system modified to support open
membership. Stellar’s assumptions are specified using a Federated Byzantine
Quorum System (FBQS) [68], where each participant in the Stellar Consensus
Protocol (SCP) declares its own set of processes that is trusting on.

The original Stellar whitepaper has no mentions of former work on Byzan-
tine quorum systems. The relation between SCP, Bracha’s Byzantine reliable
broadcast [32] and Byzantine quorum systems was only studied in-depth in [68],
where the authors try to shine a light into SCP by showing that the intricate fed-
erated voting procedure of the protocol is equivalent to using Bracha’s Byzantine
reliable broadcast in a dissemination quorum system. The lack of formalization
of the system as a whole is evidence that the task of safely porting classic ap-
proaches to an open membership setting is challenging and a recurring issue in
the realm of new permissionless blockchains.

Permissioned Protocols

The main idea behind permissioned blockchains is that the application is run
by reasonably trustworthy parties (e.g. companies) that don’t fully trust each
other and that desire that no specific party completely takes over the process of
adding new blocks to the blockchain. Under the permissioned setting, processes
identities are known and membership control is strict (e.g. via accountability
[79, 114]), thus the model assumptions favors the use of classical BFT protocols,
that differently than PoW or protocols from the permissionless setting, generally
provide stronger consistency guarantees and better throughput.

Nonetheless, permissioned blockchains envision a scale that surpasses the
expectations of classical protocols (a typical deployment would be five or seven
replicas for PBFT). A quadratic message complexity and/or a leader-driven ap-
proach are basically prohibitive when considering hundreds or thousands of repli-
cas. Hence, permissioned protocols are essentially BFT SMR protocols optimized
to deal with such problems.

In what follows, we describe some modern BFT SMR protocols that aim pri-
marily at blockchains, highlighting their core mechanism, advantages, disadvan-
tages and message complexity (fundamental to analyze a protocols scalability).
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2.3.4 HotStu�

HotStuff [139] builds upon PBFT two-phase core but adds an extra protocol
phase (PRE-COMMIT) to each view and relies on threshold signature scheme
to generate a representation of (n− f ) signed votes (i.e. quorum certificate) as
a single signature (PBFT’s generate similar certificates but via an all-to-all com-
munication). In detail this is achieved by a protocol that reaches consensus after
four phases, where each phase is a back and forth between the leader and the
replicas.

The protocol starts with a PREPARE phase, where the leader initiates a view
by broadcasting a value to all processes and collecting 2 f + 1 signatures on this
value (PREPARE certificate), this indicates to the leader that replicas have vali-
dated and accepted the value it has proposed. The PREPARE phase is followed
by the PRE-COMMIT phase, where the leader broadcasts the PREPARE certificate
and collects signatures from the processes, if the leader is able to collect 2 f + 1
votes it generates a PRE-COMMIT certificate, it indicates that even if a view-
change (i.e. reconfiguration) occurs the value will not change. Followed by the
COMMIT phase, the leader broadcasts the PRE-COMMIT certificate and collects
enough votes to be able to generate a COMMIT certificate, if this is the case the
value is considered decided. In the last phase (DECIDE) the leader broadcasts
the COMMIT certificate and processes verify it and decide accordingly.

HotStuff has O(n) message complexity (during view-changes as well). By
choosing to trade-off latency for scalability it is able to avoid using a synchronous
core (i.e. a leader doesn’t need to wait for a fixed delay in order to propose new
values), which is the case with Tendermint [34] and Casper [36].

As is the case with PBFT and other modern BFT SMR protocols, HotStuff is
leader-based which in this case poses extra problems. Besides being responsible
for ordering all commands a leader is also responsible for generating quorum
certificates (by combining threshold signatures), which poses availability and
scalability issues for modern permissioned blockchains.

2.3.5 SBFT

SBFT [74] (Scalable Decentralized Trust Infrastructure for Blockchains) as Hot-
Stuff, lowers the message complexity caused by the all-to-all communication
(typical of PBFT-like protocols) by relying on combined signatures generated via
threshold cryptography as well as lowering the message complexity in case of
view-changes. This is achieved by sharing the burden of collecting and combin-
ing threshold signatures by assigning this task to processes that have different
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roles in the protocol (commit collectors and/or execution collectors).
The protocol works as follows in the fast path (default mode of execution):

After receiving clients requests, a leader creates a decision block with the re-
quests and broadcasts it to the processes (PRE-PREPARE phase). When replicas
receive such a message they partially sign the decision block using their thresh-
old signature and send it to the set of collectors (c + 1 non-leader processes are
selected for this task for each view), this corresponds to the SIGN-SHARE phase.
Each collector combines the partial signatures and creates a full-commit-proof
that is sent back to the processes (FULL-COMMIT-PROOF phase), this certificate
is enough for the processes to commit. Afterwards the execution protocol begins,
this protocol is divided in two phases: SIGN-STATE and EXECUTE-PROOF. In the
SIGN-STATE processes sign blocks using f +1 threshold signatures and send it to
a set of execution collectors. In the EXECUTE-PROOF phase the execution col-
lectors generate a succinct execution certificate and send it to the other processes
and to the clients (it indicates to these that the requests were executed). When
the fast path cannot progress, a variation of PBFT using threshold signatures is
used as fallback.

The protocol has O(n) message complexity in the failure-free case and dif-
ferently from HotStuff it has a complex view-change mechanism with a message
complexity of O(n2). Sharing the burden of the tasks among multiple processes is
an advantage of the protocol but poses its own problems given that a small set of
collectors might not provide resilience enough in scenarios where an adaptative
opponent can target them.

2.3.6 Pompe

Pompe [140] tackles the problem of adapting classic BFT SMR protocols to their
use in blockchains under different optics. Its main concern is not necessarily
scalability but to diminish the influence of byzantine nodes on the order of trans-
actions recorded to the ledger. The authors argue as being of key interest in the
context of permissioned blockchains the issue that malicious processes can try
to push for ordering of commands that financially benefits them. The proposed
solution is defined via an architecture that decouples ordering from consensus.

The protocol shares the same model assumptions made in PBFT (i.e. n ≥
3 f + 1, access to PKI, etc) , requires additionally that processes have the ability
to produce monotonically increasing timestamps and uses the ideas presented in
[19].

The protocol follows a two-phase structure and orders commands based on
timestamps. In the first (ordering) phase, a process broadcasts a client’s com-
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mand wrapped in a signed request message and waits for the response of 2 f +1
processes reporting their own timestamps for that command. Afterwards, the
process wraps the 2 f + 1 timestamps received in a message and broadcasts it, a
receiving process calculates the median timestamp from the ones received and
accepts the command. If a command is accepted by a quorum of 2 f + 1 nodes,
it is guaranteed to be included in the totally-ordered logs of correct processes
and its position is determined by the median timestamp (the command is con-
sidered sequenced). The sequenced commands are not yet suitable for execution,
because it must be guaranteed that commands with lower timestamps will not
be sequenced. Thus, the protocol proceeds to the second (consensus) phase.
This phase takes two message delays for preparation of the proposal and consid-
ers that protocols like HotStuff [139] or SBFT [74] can be used as a black-box
service to reach agreement.

In Pompe a command takes takes two round-trips to be committed and an ex-
tra one round-trip before being able to run the consensus service. It is important
to notice that all processes take part in the consensus service, further limiting
scalability. Not considering the consensus service Pompe has an O(n) message
complexity.

2.4 Motivation

One may observe that most protocols described in this chapter rely on a leader
replica to establish a total order between client’s commands. This approach is
known to lead to availability and performance issues that are amplified when
considering geo-replicated services. The new class of leaderless protocols in-
troduced in §2.1.4 presents itself as a promising direction to address the afore-
mentioned problem. Unfortunately, this class of protocols hasn’t been fully for-
malized, the protocols in [104, 106, 16, 62, 131, 57] are complex (e.g. EPaxos
recovery procedure is notably complex) and each present an ad-hoc approach to
leaderless SMR.

The heterogeneity of the protocols from this class leads to a phenomena that
can be observed in practical experiments and that up to this point, remained
unexplained. To exemplify consider EPaxos, in the common case, the proto-
col executes a command after two message delays if the fast path was taken,
that is, if the replicas spontaneously agree on the constraints of a command,
and four message delays otherwise. Unfortunately the latency of EPaxos may
raise in practice well above four message delays. To illustrate this point, we ran
an experimental evaluation of EPaxos, Paxos [88] and Mencius (one of the first
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Figure 2.4. Performance comparison of EPaxos, Paxos and Mencius � 5 sites:

South Carolina (SC), Finland (FI), Canada (QC), Australia (AU), Taiwan

(TW, leader); 128 clients per site; no-op service.

leaderless protocols) [104] in Google Cloud Platform. The results are reported
in Figure 2.4a, where we plot the cumulative distribution function (CDF) of the
command latency for each protocol. In this experiment, the system spans five ge-
ographical locations distributed around the globe, and each site hosts 128 clients
that execute no-op commands in closed-loop. Figure 2.4b indicates the distance
between any two sites. The conflict rate among commands varies from 0% to
30%.5 We measure the latency from the submission of a command to its exe-
cution (at steady state). Two observations can be formulated at the light of the
results in Figure 2.4. First, the tail of the latency distribution in EPaxos is larger
than for the two other protocols and it increases with the conflict rate. Second,
despite Mencius clearly offering a lower median latency, it does not exhibit such
a problem. For a wider adoption of this class of protocols, it is necessary that the
root cause of such behaviors to be fully comprehended.

In the realm of Byzantine replication, Leaderless SMR is of particular interest
in the context of permissioned blockchains, as one can observe that most BFT
SMR protocols presented follow a leader driven approach. Since a Byzantine
leader can have more drastic effects in the performance of these applications
(i.e. view-change must be triggered and often has quadratic message complexity
as seen in [41]), modern BFT SMR protocols like HotStuff [139] and SBFT [74]
leverage the fact that leader change might happen often and focus on diminishing
the cost of it.

5Each command has a key and any two commands conflict, that is they must be totally or-
dered by the protocol, when they have the same key. When a conflict rate ρ is applied, each
client picks key 42 with probability ρ, and a unique key otherwise.
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Platform Membership Consensus Mechanism Linearizability Throughput Scalability
Bitcoin [107] Permissionless PoW (Proof-of-Work) No 3-10 tx/sec ∼11k nodes **
Algorand [70] Permissionless PoS (Proof-of-Stake) No ∼100 tx/sec 10k nodes
HotStuff [3] Permissioned BFT SMR Yes ∼15k tx/sec 128 nodes*

Table 2.1. Performance of blockchains. *: Scalability for inter-replica latency

10ms +-1.0ms, with 0/0 payload, batch size of 400. [3]. **: Counting bitcoin

full nodes [29]

Furthermore, the transition from classic BFT SMR to the domain of permis-
sioned blockchains highlight the scalability challenges that this class of protocols
faces as well. This is illustrated in Table 2.1, where permissionless platforms like
Bitcoin and Algorand tend to scale to a large number of nodes but provide poor
throughput and consistency guarantees. Meanwhile, platforms that are based on
classic BFT approaches (as is the case with HotStuff) achieve strong consistency,
good throughput but low scalability. In practical terms, tackling permissioned
blockchains would allow one to verify if Byzantine Leaderless SMR protocols can
help with the scalability issues of these applications. Moreover, positive results
in the permissioned model can present an opportunity to port this new class of
protocols to the permissionless model.
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Chapter 3

Leaderless State-Machine Replication:

Speci�cation, Properties, Limits

3.1 Introduction

In this chapter we study in-depth the new class of leaderless state-machine repli-
cation (Leaderless SMR) protocols and state some of their limits. We provide a
theoretical framework that allows one to understand the phenomena described
in §2.4 as well as express different Leaderless SMR protocols with it. We de-
fine Leaderless SMR and deconstruct it into basic building blocks (§3.2). Fur-
ther, we introduce a set of desirable properties for Leaderless SMR: (R)eliability,
(O)ptimal (L)atency and (L)oad Balancing. Protocols that match all of the ROLL
properties are subject to a trade-off between performance and reliability. More
precisely, in a system of n processes, the ROLL theorem (§3.3) states that Lead-
erless SMR protocols are subject to the inequality 2F + f − 1 ≤ n, where n− F
is the size of the fast path quorum and f is the maximal number of tolerated
failures. A protocol is ROLL-optimal when F and f cannot be improved accord-
ing to this inequality. We establish that ROLL-optimal protocols are subject to a
chaining effect that affect their performance (§3.4). As EPaxos is ROLL-optimal
and Mencius not, the chaining effect explains the performance results observed
in Figure 2.4. Finally, we discuss the implications of this result (§3.5) then put
our work in perspective (§3.6).

33
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3.2 Leaderless SMR

Some recent protocols [104, 106] further push the idea of partially ordered log,
as proposed in Generic SMR. In a leaderless state-machine replication (Leader-
less SMR) protocol, there is no primary process to arbitrate upon the ordering
of commands. Instead, any process may decide a command submitted to the
replicated service. A command is stable, and thus executable, once the transi-
tive closure of its predecessors is known locally. As this transitive closure can be
cyclic, the log is replaced with a directed graph.

This section introduces a high-level framework to better understand Leader-
less SMR. In particular, we present the notion of dependency graph and explain
how commands are decided. With this framework, we then deconstruct several
Leaderless SMR protocols into basic building blocks. Further, three key prop-
erties are introduced: Reliability, Optimal Latency and Load Balancing. These
properties serve in the follow-up to establish lower bound complexity results for
this class of protocols.

3.2.1 De�nition

Leaderless SMR relies on the notion of dependency graph instead of partially
ordered log as found in Generic SMR. A dependency graph is a directed graph
that records the constraints defining how commands are executed. For some
command c, the incoming neighbors of c in the dependency graph are its de-
pendencies. As detailed shortly, the dependencies are executed either before or
together with c.

In Leaderless SMR, a process holds two mappings: deps and phase. The map-
ping deps is a dependency graph storing a relation from C to 2C ∪ {⊥,>}. For
a command c, phase(c) can take five possible values: pending, abort, commit,
stable and execute. All the phases, except execute, correspond to a predicate
over deps.

Initially, for every command c, deps(c) is set to ⊥. This corresponds to the
pending phase. When a process decides a command c, it changes the map-
ping deps(c) to a non-⊥ value. Operation commit(c, D) assigns D taken in 2C

to deps(c). Command c gets aborted when deps(c) is set to >. In that case,
the command is removed from any deps(d) and it will not appear later on. Let
deps∗(c) be the transitive closure of the deps relation starting from {c}. Command
c is stable once it is committed and no command in deps∗(c) is pending.

Figure 3.1 depicts an example run of Leaderless SMR that illustrates the above
definitions. In this run, process p1 submits command a, while p2 submits in order
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Figure 3.1. An example run of Leaderless SMR � (left) processes p1 and p2

submit respectively the commands {a} and {b,c,d}; (right) the dependencies
graphs formed at the two processes.

c, d then b. The timeline in Figure 3.1 indicates the timing of these submissions.
It also includes events during which process p1 and p2 commits commands. For
some of these events, we depict the state of the dependency graph at the process
(on the right of Figure 3.1). As an example, the two processes obtain the graph
g4 at the end of the run. In this graph, a, b and c are all committed, while d is
still pending. We have deps(a) = {b} and deps(b) = {a,d,c}, with both deps∗(a)
and deps∗(b) equal to {a,b,c,d}. Only command c is stable in g4.

Similarly to Classic and Generic SMR, Leaderless SMR protocols requires that
validity holds. In addition, processes must agree on the value of deps for stable
commands and conflicting commands must see each other. More precisely,

Stability: For each command c, there exists D such that if c is stable then deps(c) =
D.

Consistency: If a and b are both committed and conflicting, then a ∈ deps(b) or
b ∈ deps(a).

A command c gets executed once it is stable. Algorithm 1 describes how this
happens in Leaderless SMR. To execute command c, a process first creates a set of
commands, or batch, β that execute together with c. This grouping of commands
serves to maintain the following invariant:

INVARIANT 1. Consider two conflicting commands c and d. If p executes a batch
of commands containing c before executing d, then d /∈ deps∗(c).

Satisfying Invariant 1 implies that if some command d is in batch β , then
β also contains its transitive dependencies (line 3 in Algorithm 1). Inside a
batch, commands are ordered according to the partial order → (line 4). Let
< be a canonical total order over C . Then, c→ d holds iff (i) c ∈ deps∗(d) and
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Algorithm 1 Executing command c – code at process p

1: execute(c) :=
2: pre: phase(c) = stable

3: eff: let β be the largest subset of deps∗(c) satisfying ∀d ∈ β . phase(d) =
stable

4: forall d ∈ β ordered by→
5: phase(d)← execute

d /∈ deps∗(c); or (ii) c ∈ deps∗(d), d ∈ deps∗(c) and c < d. Relation → defines
the execution order at a process. If there is a one-way dependency between two
commands, Leaderless SMR plays them in the order of their transitive depen-
dencies; otherwise the algorithm breaks the tie using the arbitrary order <. This
guarantees the following invariant.

INVARIANT 2. Consider two conflicting commands c and d. If p executes c before
d in the same batch, then c ∈ deps∗(d).

Generic and Leaderless SMR are strongly similar. In fact, one may show
that Generic SMR reduces to Leaderless SMR without requiring any message
exchange. This result is stated in Theorem 1 below, and a proof appears in Ap-
pendix A.3. Let us observe that such a reduction does not hold between Classic
and Generic SMR. Indeed, computing a total order on commuting commands
would require processes to communicate.

Â Theorem 1. Generic SMR reduces to Leaderless SMR.

However, Theorem 1 offers an incomplete picture of how the two abstractions
compare in practice. Indeed, because the dependency graph might be cyclic,
Leaderless SMR does not compute an ordering over conflicting commands. In-
stead, such commands must simply observe one another (Consistency property).
This fundamental difference explains the absence of a leader in this class of SMR
protocols, a feature that we capture in the next section.

3.2.2 Deciding commands

In Leaderless SMR, processes have to agree on the dependencies of stable com-
mands. Thus, a subsequent refinement leads to consider a family of consen-
sus objects (CONSc)c∈C for that purpose. For some command c, processes use
CONSc to decide either the dependencies of c, or the special value (>) signaling
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that the command is aborted. This agreement is driven by the command coordi-
nator (coord(c)), a process initially in charge of submitting the command to the
replicated state machine. In a run during which there is no failure and the failure
detector behaves perfectly, that is a nice run, only coord(c) calls CONSc.

To create a valid proposal for CONSc, coord(c) relies on the dependency dis-
covery service (DDS). This shared object offers a single operation announce(c)
that returns a pair (D, b), where D ∈ 2C ∪{>} and b ∈ {0,1} is a flag. When the
return value is in 2C , the service suggests to commit the command. Otherwise,
the command should be aborted. When the flag is set, the service indicates that
a spontaneous agreement occurs. In such a case, the coordinator can directly
commit c with the return value of the DDS service and bypass CONSc; this is
called a fast path. A recovery occurs when command c is announced at a process
which is not coord(c).

The DDS service ensures two safety properties. First, if two conflicting com-
mands are announced, they do not miss each other. Second, when a command
takes the fast path, processes agree on its committed dependencies.

More formally, assume that announcep(c) and announceq(c′) return respec-
tively (D, b) and (D′, b′) with D ∈ 2C . Then, the properties of the DDS service
are as follows.

Visibility: If c� c′ and D′ ∈ 2C , then c ∈ D′ or c′ ∈ D.

Weak Agreement: If c= c′ and b = true, then D′ ∈ 2C and for every d ∈ D⊕D′,
every invocation to announcer(d) returns (>,l).

To illustrate these properties, consider that no command was announced so
far. In that case (∅, true) is a valid response to announce(c). If coord(c) is slow,
then a subsequent invocation of announce(c)may either return∅, or a non-empty
set of dependencies D. However in that case, because the fast path was taken by
the coordinator, all the commands in D must eventually abort.

Based on the above decomposition of Leaderless SMR, Algorithm 2 depicts an
abstract protocol to decide a command. This algorithm uses a family of consen-
sus objects ((CONSc)c∈C ), a dependency discovery service (DDS) and a failure
detector (D) that returns a set of suspected processes. To submit a command c,
a process announces it then retrieves a set of dependencies. This set is proposed
to CONSc if the fast path was not taken (line 4). The result of the slow or the
fast path determines the value of the local mapping deps(c) to commit or abort
command c. Notice that such a step may also be taken when a process receives
a message from one of its peers (line 8).
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Algorithm 2 Deciding a command c – code at process p

1: submit(c) :=
2: pre: p = coord(c)∨ coord(c) ∈ D
3: eff: (D, b)← DDS.announce(c)
4: if b = false then D← CONSc.propose(D)
5: deps(c)← D
6: send(c, deps(c)) to Π \ {p}
7:

8: when recv(c, D)
9: eff: deps(c)← D

During a nice run, the system is failure-free and the failure detector service be-
haves perfectly. As a consequence, only coord(c) may propose a value to CONSc

and this value gets committed. In our view, this feature is the key characteristic
of Leaderless SMR.

Below, we establish the correctness of Algorithm 2. A proof appears in Ap-
pendix A.3.

Â Theorem 2. Algorithm 2 implements Leaderless SMR.

3.2.3 Examples

To illustrate the framework introduced in the previous sections, we now instan-
tiate well-known Leaderless SMR protocols using it.

Rotating coordinator. For starters, let us consider a rotating coordinator al-
gorithm (e.g., [133]). In this class of protocols, commands are ordered a priori
by some relation�. Such an ordering is usually defined by timestamping com-
mands at each coordinator and breaking ties with the process identities. When
coord(c) calls DDS.announce(c), the service returns a pair (D, false), where D are
all the commands prior to c according to �. Upon recovering a command, the
DDS service simply suggests to abort it.

Clock-RSM. This protocol [57] improves on the above schema by introducing
a fast path. It also uses physical clocks to speed-up the stabilization of commit-
ted commands. Once a command is associated to a timestamp, its coordinator
broadcasts this information to the other processes in the system. When it re-
ceives such a message, a process waits until its local clock passes the command’s
timestamp to reply. Once a majority of processes have replied, the DDS service
informs the coordinator that the fast path was taken.
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Mencius. The above two protocols require a committed command to wait all
its predecessors according to �. Clock-RSM propagates in the background the
physical clock of each process. A command gets stable once the clocks of all the
processes is higher than its timestamp. Differently, Mencius [104] aborts prior
pending commands at the time the command is submitted. In detail, announce(c)
first approximates D as all the commands prior to c according to�. Then, com-
mand c is broadcast to all the processes in the system. Upon receiving such a
message, a process q computes all the commands d smaller than c it is coordinat-
ing. If d is not already announced, q stores that d will be aborted. Then, q sends
d back to coord(c) that removes it from D. The DDS service returns (D, f ) with
f set to true if coord(c) received a message from everybody. Upon recovering
c, if the command was received the over-approximation based on� is returned
together with the flag false. In case c is unknown, the DDS service suggests to
abort it.

EPaxos. In [106], the authors present Egalitarian Paxos (EPaxos), a family
of efficient Leaderless SMR protocols. For simplicity, we next consider the varia-
tion which does not involve sequence numbers. To announce a command c, the
coordinator broadcasts it to a quorum of processes. Each process p computes
(and records) the set of commands Dp conflicting with c it has seen so far. A call
to announce(c) returns (∪pDp, b), with b set to true iff processes spontaneously
agree on dependencies (i.e., for any p, q, Dp = Dq).

When a process in the initial quorum is slow or a recovery occurs, c is broad-
cast to everybody. The caller then awaits for a majority quorum to answer and
returns (D, false) such that if at least d n+1

2 e processes answer the same set of con-
flicts for c, then D is set to this value (with n = 2 f + 1). Alternatively, if at least
one process knows c, the union of the response values is taken. Otherwise, the
DDS service suggests to abort c.

Caesar. To avoid cycles in the dependency graph, Caesar [16] orders com-
mands using logical timestamps. Upon submitting a command c, the coordinator
timestamps it with its logical clock then it executes a broadcast. As with EPaxos,
when it receives c a process p computes the conflicting commands Dp received
so far. Then, it awaits until there is no conflicting command d with a higher
timestamp than c such that c /∈ deps(d). If such a command exists, p replies
to the coordinator that the fast path cannot be taken. The DDS service returns
(∪pDp, b), where b = true iff no process disables the fast path.

The above examples show that multiple implementations are possible for
Leaderless SMR. In the next section, we introduce several properties of interest
to characterize them.
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3.2.4 Core properties

State machine replication helps to mask failures and asynchrony in a distributed
system. As a consequence, a first property of interest is the largest number of
failures (parameter f ) tolerated by a protocol. After f failures, the protocol may
not guarantee any progress.1

(Reliability) In every run, if there are at most f failures, every submitted com-
mand gets eventually decided at every correct process.

Leaderless SMR protocols exploit the absence of contention on the replicated
service to boost performance. In particular, some protocols are able to execute a
command after a single round-trip, which is clearly optimal [92]. To ensure this
property, the fast path is taken when there is no concurrent conflicting command.
Moreover, the command stabilizes right away, requiring that the DDS service
returns only submitted commands.

(Optimal Latency) During a nice run, every call to announce(c) returns a tuple
(D, b) after two message delays such that (i) if there is no concurrent con-
flicting command to c, then b is set to true, (ii) D ∈ 2C , and (iii) for every
d ∈ D, d was announced before.

The replicas that participate to the fast path vary from one protocol to another.
Mencius use all the processes. On the contrary, EPaxos solely contact b3n

4 c of them
(or equivalently, f + f +1

2 when n = 2 f + 1). For some command c, a fast path
quorum for c is any set of n− F replicas that includes the coordinator of c. Such
a set is denoted FQuorums(c) and formally defined as {Q | Q ⊆ Π∧ coord(c) ∈
Q ∧ |Q| ≥ n− F}. A protocol has the Load Balancing property when it may freely
choose fast path quorums to make progress.

(Load Balancing) During a nice run, any fast path quorum in FQuorums(c) can
be used to announce a command c.

The previous properties are formally defined in Appendix B.1. Table 3.1
indicates how they are implemented by well-known leaderless protocols. The
columns ’Reliability’ and ’Load Balancing’ detail respectively the maximum num-
ber of failures tolerated by the protocol and the size of the fast path quorum.

1When f failures occur, the system configuration must change to tolerate subsequent ones.
If data is persisted (as in Paxos [88]), the protocol simply stops when more than f failures occurs
and awaits that faulty processes are back online.
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Properties

Protocols
Load Balancing

(n− F)
Reliability

( f )
Optimal
Latency

ROLL-optimal

Rotating coord. 0 Min × ×
Clock-RSM [57] n Min × ×
Mencius [104] n Min

p
×

Caesar [16] d3n
4 e Min

p
×

EPaxos [106] LMaj Min
p

if n= 2 f + 1
Alvin [131] LMaj Min

p
if n= 2 f + 1

Atlas [62] b n
2c+ f any

p
if n ∈ 2N∪ {3} ∧ f = 1

Table 3.1. The properties of several leaderless SMR protocols � Min stands

for a minority of replicas (b n−1
2 c), Maj a majority (d n+1

2 e), and LMaj a large

majority (b3n
4 c).

Notice that by CAP [71], we have F, f ≤ b n−1
2 c when the protocol matches all

of the properties. Table 3.1 also mentions the optimality of each protocol with
respect to the ROLL theorem. This theorem is stated in the next section and
establishes a trade-off between fault-tolerance and performance in Leaderless
SMR.

3.3 The ROLL theorem

Reliability, Optimal Latency and Load Balancing are called collectively the ROLL
properties. These properties introduce the parameters f and F as key character-
istics of a Leaderless SMR protocol. Parameter f translates the reliability of the
protocol, stating that progress is guaranteed only if less than f processes crash.
Parameter F captures its scalability since, any quorum of n − F processes may
be used to order a command. An ideal protocol should strive to minimize n− F
while maximizing f .

Unfortunately, we show that there is no free-lunch and that an optimization
choice must be made. The ROLL theorem below establishes that 2F + f − 1≤ n
must hold. This inequality captures that every protocol must trade scalability
for fault-tolerance. EPaxos [106] and Atlas [62] illustrate the two ends of the
spectrum of solutions (see Table 3.1). EPaxos supports that any minority of pro-
cesses may fail, but requires large quorums. Atlas typically uses small fast path
quorums (b n

2c+ f ), but exactly handles at most f failures.
Below, we state the ROLL theorem and provide a sketch of proof illustrated
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(b) Run λ3.
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(c) Run λ4.

Figure 3.2. Illustration of Theorem 3 � slow messages are omitted.

in Figure 3.2. A formal treatment appears in Appendix B.

Â Theorem 3 (ROLL). Consider an SMR protocol that satisfies the ROLL prop-
erties. Then, it is true that 2F + f − 1≤ n.

Proof. (Sketch) Our proof goes by contradiction, using a round-based reasoning.
Let us assume a protocolP that satisfies all the ROLL properties with 2F+ f −1>
n. Then, choose two non-commuting commands c1 and c2 in C .

As depicted in Figure 3.2a, the distributed system is partitioned into three
sets: P1 and P2 are two disjoints sets of F − 1 processes, and the remaining n−
2(F−1) processes form Q. The CAP impossibility result [71] tells us that 2F < n.
As a consequence, there exist at least two distinct processes p1 and p2 in Q. We
define Q1 and Q2 as respectively P1∪Q\{p2} and P2∪Q\{p1}. The set Q∗ equals
Q \ {p1, p2}.

Let λ1 be a nice run that starts from the submission of c1 by process p1 during
which only Q1 take steps. Since Q1 contains n− F processes such a run exists by
the Load Balancing property ofP . By Optimal Latency, this run lasts two rounds
and deps(c1) is set to ∅ at process p1. Similarly, we may define λ2 a run in which
p2 announces command c2 and in which only the processes in Q2 participate.

Then, consider a run λ3 in which p1 and p2 submit concurrently commands
c1 and c2. This run is illustrated in Figure 3.2b. At the end of the first round, the
processes in P1 (respectively, P2) receive the same messages as in λ1 (resp., λ2).
At the start of the second round, they reply to respectively p1 and p2 as in λ1

and λ2. All the other messages sent in the first two rounds are arbitrarily slow.
The processes in Q crash at the end of the second round. By Reliability and as
f ≥ |Q|, the commands c1 and c2 are stable in λ3. Let k be the first round at
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which the two commands are stable at some process p ∈ P1 ∪ P2.
We now build an admissible run λ4 of P as follows. The failure pattern and

failure detector history are the same as in λ3. Commands c1 and c2 are submitted
concurrently at the start of λ4, as in λ3. In the first two rounds, P1 receives the
same messages as in λ1 while P2 receives the same messages as in λ3. The other
messages exchanged during the first two rounds are arbitrarily slow. Figure 3.2c
depicts run λ4.

Observe that the following claims about λ4 are true. First, (C1) for p1, λ4

is indistinguishable to λ1 up to round 2. Moreover, (C2) for the processes in
(P1 ∪ P2), λ4 is indistinguishable to λ3 up to round k. From (C1), c1 is stable
at p1 with deps(c1) = ∅. Claim (C2) implies that both c1 and c2 are stable at p
when round k is reached. By the stability property of Leaderless SMR, process p
and p1 decide the same dependencies for c1, i.e., deps(c1) =∅.

A symmetric argument can be made using run λ2 and a run λ5, showing that
p decides deps(c2) =∅ in λ3. It follows that in λ3, an empty set of dependencies
is decided for both commands at process p; a contradiction to the Consistency
property.

Theorem 3 captures an inherent trade-off between performance and reliabil-
ity for ROLL protocols. For instance, tolerating a minority of crashes, requires
accessing at least b3n

4 c processes. This is the setting under which EPaxos operates.
On the other hand, if the protocol uses a plain majority quorum in the fast path,
it tolerates at most one failure.

3.3.1 Optimality

A protocol is ROLL-optimal when the parameters F and f cannot be improved
according to Theorem 3. In other words, they belong to the skyline of solutions
[31]. As an example, when the system consists of 5 processes, there is a single
such tuple (F, f ) = (2,2). With n = 7, there are two tuples in the skyline, (2, 3)
and (3,2). The first one is attained by EPaxos, while Atlas offers the almost
optimal solution (3,1) (see Table 3.1).

For each protocol, Table 3.1 lists the conditions under which ROLL-optimality
is attained. EPaxos and Alvin are both optimal under the assumption that n =
2 f + 1. Atlas adjusts the fast path quorums to the value of f , requiring b n

2c+ f
processes to participate. This is optimal when f = 1 and either n is even or
equals to 3. In the general case, the protocol is within O( f ) of the optimal value.
As it uses classical Fast Paxos quorums, Caesar is not ROLL-optimal. This is also
the case of protocols that contact all of the replicas to make progress, such as
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Mencius and Clock-RSM. To the best of our knowledge, no protocol is optimal in
the general case.

In the next section, we show that ROLL-optimality has a price. More precisely,
we establish that by being optimal, a protocol may create an arbitrarily long chain
of commands, even during a nice run. This chaining effect may affect adversely
the performance of the protocol. We discuss measures of mitigation in §3.5.

3.4 Chaining e�ect

This section shows that a chaining effect may affect ROLL-optimal protocols. It
occurs when the chain of transitive dependencies of a command keeps growing
after it gets committed. This implies that the committed command takes time to
stabilize, thus delaying its execution and increasing the protocol latency.

At first glance, one could think that this situation arises from the asynchrony
of the distributed system. As illustrated in Figure 2.4, this is not the case. We
establish that such an effect may occur during “almost” synchronous runs.

The remaining of this section is split as follows. First, we define the notion
of chain, that is a dependency-related set of commands. A chain is live when
its last command is not stable. To measure how asynchronous a nice run is,
we then introduce the principle of k-asynchrony. A run is k-asynchronous when
some message is concurrent to both the first and last message of a sequence of k
causally-related messages.

At core, our result shows how to inductively add a new link to a live chain
during an appropriate 2-asynchronous run of a ROLL-optimal protocol.

3.4.1 Notion of chain

A chain is a sequence of commands c1 . . .cn such that for any two consecutive
commands (ci,ci+1) in the chain, ci ∈ deps(ci+1) at some process. Two consecutive
commands (c,d) in a chain form a link. For instance, in the dependency graph
g4 (see Figure 3.1), cba is a chain.

We shall say that a chain is live when its first command is not stable yet (at
any of the processes). In g4, this is the case of the chain dba, since command d is
still pending (deps(d) =⊥). When a chain is live, the last command in the chain
has to wait to ensure a sound execution order across processes. This increases
the protocol latency.
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3.4.2 A measure of asynchrony

In a synchronous system [100], processes execute rounds in lock-step. During
a round, the messages sent at the beginning are received at the end (provided
there is no failure). On the other hand, a partially synchronous system may delay
messages for an arbitrary amount of time. In this model, we propose to measure
asynchrony by looking at the overlaps between the exchanges of messages. The
larger the overlap is, the more asynchronous is the run.

To illustrate this idea, consider the run depicted in Figure 3.3. During this
run, a red message is sent from p5 to p4 (bottom left corner of the figure). In the
same amount of time p1 sends a blue message to p2 which is followed by a green
message to p4. To characterize such an asynchrony, we shall say that the run is
2-asynchronous. This notion is precisely defined below.

Definition 1 (Path). A sequence of eventρ = sendp(m1)recvq(m1)sendq(m2) . . . recvt(mk≥1)
in a run is called a path. We note ρ[i] the i-th message in the path. The number
of messages in the path, or its size, is denoted |ρ|.

Definition 2 (Overlapping). Two messages m and m′ are overlapping when their
respective events are concurrent.2 By extension, a message m overlaps with a
path ρ when it overlaps with both ρ[1] and ρ[|ρ|].

Definition 3 (k-asynchrony). A run λ is k-asynchronous when for every message
m, if m overlaps with a path ρ then |ρ| ≤ k.

3.4.3 Result statement

The theorem below establishes that a ROLL-optimal protocol may create a live
chain of arbitrary size during a 2-asynchronous nice run. The full proof appears
in Appendix B.4.

Â Theorem 4 (Chaining E�ect). Assume a ROLL-optimal protocol P . For any
k > 0, there exists a 2-asynchronous nice run ofP containing a live chain of size
k.

Proof. (Sketch) The theorem is proved by adding inductively a new link to a live
chain of commands created during a nice run. It is illustrated in Figure 3.3 for a
system of five processes when k = 7.

The proof is based on the following two key observations about ROLL-optimal
protocols. First, during a nice run, the coordinator of a command never rotates.

2That is, neither recv(m) precedes send(m′), nor recv(m′) precedes send(m) in real-time.
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p1

p2

p3

p4

p5

S1 M1 R1 Γ7 Γ ′7

Figure 3.3. Theorem 4 for n= 5 and k = 7. The chain c7c6c5c4c3c2c1 is formed

in σ7. Illustrating the steps S1, M1 and R1 for command c1, the pre�x Γ7 of

σ7, and the steps Γ ′7.

As a consequence, the return value of the DDS service at the coordinator is al-
ways the stable value of deps(c). Second, as the protocol satisfies the ROLL prop-
erties, a call to announce(c) consists of sending a set of requests to the fast path
quorum and receiving a set of replies. As a consequence, its execution can be
split into the steps Sc McRc, where (Sc) are the steps taken from announcing c
to the sending of the last request at the coordinator; (Rc) are the steps taken
by coord(c) after receiving the first reply until the announcement returns; and
(Mc) are the steps taken during the announcement of c which are neither in Sc,
nor in Rc. By Optimal Latency, this sequence of steps do not create pending mes-
sages. As an illustration, the steps S1, M1 and R1 taken to announce command
c1 are depicted in Figure 3.3.

Leveraging the above two observations, the result is built inductively using a
family of k distinct commands (ci)i∈[1,k]. Each command is associated with a nice
run (σi), a fast path quorum (Q i), a subset of f −1 processes (Pi), and a process
(qi).

Given a sequence of steps λ and a set of processes Q, let us note λ|Q the sub-
sequence of steps by Q in λ. We establish that at rank i > 0 the following property
P(i) holds: There exists a 2-asynchronous runσi of the form ΓiSi(Mi|Pi)Γ ′i (Mi|Q i\
Pi)Ri such that (1) proc(Γ ′i )∩Q i = Pi; (2) every path in Γ ′i is as most of size one;
(3) no message is pending in σi; and (4) σi contains a chain cici−1 · · ·c1. Fig-
ure 3.3 depicts the run σ7, its prefix Γ7 and the steps Γ ′7.

Starting from P(i), we establish P(i+1) as follows. First we show that σi+1

as Γi+1Si+1(Mi+1|Pi+1)Γ ′i+1(Mi+1|Q i+1 \ Pi+1)Ri+1, where Γi+1 = ΓiSi(Mi|Pi)Γ ′i , and
Γ ′i+1 = (Mi|Q i \ Pi)Ri is a nice run.

At rank i + 1, item (1) is proved with appropriate definitions of the quo-
rums (Q i and Q i+1), and the sub-quorum (Pi). For instance, in Figure 3.3, the
command c1 and c2 have respectively {p1, p2, p3} and {p3, p4, p5} for fast path



47 3.5 Discussion

quorums. The sub-quorum P2 is set to the intersection of Q1 and Q2, that is {p3}.
Item (2) follows from the definition of Γ ′i+1. The Load-Balancing property im-
plies that (3) holds. A case analysis can then show that σi+1 is 2-asynchronous.
It relies on the fact that the (SMR)i+1 steps create no pending message and the
induction property P(i).

To prove that a new link was added, we show that σi+1 is indistinguishable
to coord(ci) to a run in which ci+1 gets committed while missing ci. Going back
to Figure 3.3, observe that the coordinator of c6 does not know that the replies
of p2 for command c5 causally precedes the replies of p4 to c7. As a consequence,
it must add c7 to the return value of DDS.announce(c6).

Finally, to obtain a live chain of size k, it suffices to consider the prefix of
σi+1 which does not contain the replies of the fast path quorum. In Figure 3.3,
this corresponds to omitting the dashed messages that contain the reply to the
announcement of c7

3.5 Discussion

Leaderless SMR offers appealing properties with respect to leader-driven ap-
proaches. Protocols are faster in the best case, suffer from no downtime when
the leader fails, and distribute the load among participants. For instance, Fig-
ure 2.4 shows that EPaxos is strictly better than Paxos when there is no conflict.
However, the latency of a command is strongly related to its dependencies in this
family of SMR protocols. Going back to Figure 2.4, the bivariate correlation be-
tween the latency of a command and the size of the batch with which it executes
is greater than 0.7.

Several approaches are possible to mitigate the chaining effect established
in Theorem 4. Moraru et al. [106] propose that pure writes (i.e., commands
having no response value) return once they are committed.3 In [62], the authors
observe that as each read executes at a single process, they can be excluded
from the computation of dependencies. A third possibility is to wait until prior
commands return before announcing a new one. However, in this case, it is
possible to extend Theorem 4 by rotating the command coordinators to establish
that a chain of size n can form.

In ROLL, the Load-Balancing and Optimal-Latency properties constrain the
form of the DDS service. More precisely, in a contention-free case, executing the

3In fact, it is possible to return even earlier, at the durable signal, that is once f +1 processes
have received the command. To ensure linearizability, a later read must however wait for all the
prior (conflicting or not) preceding writes.
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service must consist in a back-and-forth between the command coordinator and
the fast path quorum. A weaker definition would allow some messages to be
pending when announce returns. In this case, it is possible to sidestep the ROLL
theorem provided that the system is synchronous:When replying to an announce-
ment a process first sends its reply to the other fast path quorum nodes. The fast
path is taken by merging all of the replies. Since the system is synchronous, a
process recovering a command will retrieve all the replies at any node in the fast
path quorum. Note that under this weaker definition, the ROLL theorem (Theo-
rem 3) still applies in a partially synchronous model. Moreover, a chaining effect
(Theorem 4) is also possible, but it requires more asynchrony during a nice run.

3.6 Related work

Protocols. Early leaderless solutions to SMR include rotating coordinators and
deterministic merge, aka. collision-fast, protocols. We cover the first class of
protocols in §3.2.3. In a collision-fast protocol [9, 121], processes replicate an
infinite array of vector consensus instances. Each vector consensus corresponds
to a round. During a round, each process proposes a command (or a batch)
to its consensus instance in the vector. If the process is in late, its peers may
take over the instance and propose an empty batch of commands. Commands
are executed according to their round numbers, applying an arbitrary ordering
per round. The size of the vector can change dynamically, adapting to network
conditions and/or the application workload. This technique is also used in Paxos
Commit [77].

When the ordering is fixed beforehand, processes must advance at the same
pace. To fix this issue, Mencius [104] includes a piggy-back mechanism that al-
lows a process to bail out its instances (i.e., proposing implicitly an empty batch).
Clock-RSM [57] follows a similar schema, using physical clocks to bypass explicit
synchronization in the good cases.

With the above protocols, commands still get delayed by slow processes.
Avoiding this so-called delayed commit problem [104] requires to dynamically
discover dependencies at runtime. This is the approach introduced in Zieliński’s
optimistic generic broadcast [141] and EPaxos [106]. Here, as well as in [62],
replicas agree on a fully-fledged dependency graph. Caesar [16] uses timestamps
to avoid cycles in the graph. However, even in contention-free cases, committing
a command can take two round trips. In our classification (see Table 3.1), this
protocol does not have Optimal Latency.

Deconstruction. In [30], the authors introduce the dependency-set and map-
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agreement algorithms. The two services allow respectively to gather dependen-
cies and agree upon them. A similar decomposition is proposed in [137]. Com-
pared to these prior works, our framework includes the notion of fast path and
distinguishes committed and stable commands. An agreement between the pro-
cesses is necessary only eventually and on the stable part of the dependency
graph. This difference allows to capture a wider spectrum of protocols. Our
dependency discovery service (DDS) is reminiscent of an adopt-commit object
[65] that allows processes to reach a weak agreement. In our case, when the fast
path flag is set, processes may disagree on at most the aborted dependencies of
a command.

Complexity. Multiple works study the complexity of consensus, the key un-
derlying building block of SMR. Lamport [92] proves several lower bounds on
the time and space complexity of this abstraction. The Hyperfast Learning theo-
rem establishes that consensus requires one round-trip in the general case. This
explains why we call optimal protocols that return after two message delays. The
Fast Learning theorem requires that n> 2F+ f . This result explains the trade-off
between fault-tolerance and performance in Fast Paxos [91]. However, it does
not readily apply to Leaderless SMR because only coordinator-centric quorums
are fast in that case. For instance, EPaxos is able to run with F = 1 and f = 1 in a
3-process system. The ROLL theorem (§3.3) accurately captures this difference.

Traditional complexity measures for SMR and consensus (e.g., the latency
degree [120]) consider contention-free and/or perfectly synchronous scenarios.
In [15], the authors study the complexity of SMR over long runs. The paper
shows that completing an SMR command can be more expensive than solving a
consensus instance. Their complexity measure is different from ours and given
in terms of synchronous rounds. In §3.4, we show that in an almost synchronous
scenario, contention may create arbitrarily long chains in Leaderless SMR. We
discuss mitigation measures in §3.5.
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Chapter 4

Byzantine Leaderless SMR

4.1 Introduction

In this chapter we present the first framework for Leaderless Byzantine State-
Machine Replication and we propose instantiations for it. The first instantiation
of interest is a Byzantine version of EPaxos [106]. The second instantiation is a
new protocol that we call Wintermute (§4.3.3). This protocol has an overall better
asymptotic behavior than traditional BFT SMR protocols. More specifically, it has
a lower load and message complexity than prior art, allowing it to side-step the
scalability problems inherent to BFT solutions as found, e.g., in the context of
permissioned blockchains.

4.1.1 Key Observations

A new observation can be made once one looks to SMR through the lenses of
the leaderless approach presented in Chapter 3. By breaking down ordering into
the DDS and CONS services, a new level of scalability can be reached, which is
unheard of in terms of state-machine replication. More specifically, as the two
services scale separately, it is possible to populate the DDS service with a large
amount of processes, while maintaining an order of magnitude less to run CONS

(ideally the bare minimum, that is 3 f + 1).
To motivate the above idea, consider for instance PBFT (§2.2.5). In this pro-

tocol, the leader continuously contacts all the replicas, waiting for a quorum of
replies. In contrast, with our approach, the coordinator of a command in the
DDS service has a one round-trip of communication and exclusively to a single
quorum of replicas. Moreover, the Leaderless SMR decomposition allows differ-
ent implementations of the DDS and CONS services, yielding to new protocols
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that that can be tailored for different use cases.
In combination with the above observation, another key observation can be

made once we analyse the adversary in the permissioned model for permissioned
blockchains. In the vein of the XFT model (shorthand for cross fault tolerance)
introduced in [97], where through real world experiments the authors argue
for the weakening of the power of Byzantine processes, we observe similarly
for permissioned blockchains that is reasonable to assume a small number of
Byzantine failures, as the adversary can be weakened too. Such assumption can
be sustained by the fact that under the permissioned model a set of arguments
and techniques can be applied to curb the power of Byzantine processes.

Notably, as the processes are not anonymous and in fact, generally controlled
by companies that have stake to lose, accountability [79, 43, 114] can be a pow-
erful tool. Further, network churn is moderate as the procedure to join and leave
the network is costly. Moreover, doing a coordinated attack to many companies is
quite hard due to their different architectures and safety mechanisms. And last,
very much in the style of permissionless blockchains, Byzantine behavior can be
curbed by the addition of a cryptocurrency on top of the blockchain to diminish
Byzantine behavior through economic incentives.

The combination of the two previous ideas make the leaderless approach ad-
vantageous for use in permissioned blockchains1. It allows one to balance, at the
same time: scalability, trust and performance.

4.1.2 Primer on the results

We present now a primer on the results by comparing our Leaderless BFT SMR
protocol Wintermute with other BFT SMR protocols considering a specific set of
metrics explained next.

We cast all protocols into the proxy model used in Chapter 3 (i.e. clients are
not modeled) and consider the best-case scenario, that is, the critical path to a
decision. Informally, the critical path to a decision of a command c consists of a
nice run λ that starts from the initial state until command c is decided. Using the
operators presented in Appendix A, we define formally that a critical path for a
command c is: (λ| ≥ submit(c))| ≤ decidecoord(p)(c).

Latency (∆) represents message delays and Message Complexity (µ) repre-
sents message complexity. Both metrics have been previously defined in Ap-
pendix B. Authenticator complexity (α) is a metric borrowed from [139] that after

1Its important to remember that the commutativity rate between transactions might be high
in blockchains which benefits the leaderless approach even further
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adaption to our means is defined as: an authenticator is a signature or a partial
signature and the complexity is the sum, over all processes p ∈ Π, of the number
of authenticators received by a process p in the critical path.

Differently from the definition of load of a Byzantine quorum system we de-
fine load (l) as follows: the worst probability of a process being part of the or-
dering of a command.

For PBFT, we consider the three-phase protocol with: PRE-PREPARE, PRE-
PARE, COMMIT and REPLY. For HotStuff, we consider the phases: PREPARE,
PRE-COMMIT, COMMIT, DECIDE, with two message delays in each phase be-
sides DECIDE with one message delay. For SBFT, assuming fast path, we count
the message delays in the phases: PRE-PREPARE, SIGN-SHARE, FULL-COMMIT-
PROOF, SIGN-STATE, EXECUTE-ACK. For Pompe, we count four message delays
during the ordering phase and two more for the consensus phase (processes still
need to run consensus though, making the final cost to reach a decision even
higher than six). We explain in §4.4 how we reach the metrics with Wintermute.

Metrics

Protocols ∆ µ α l

PBFT [41] 4 O(n2) O(n2) 1
HotStuff [139] 7 O(n) O(n) 1

SBFT [74] 5 O(n) O(n) 1
Pompe [140] 6+* O(n) O(n) 1
Wintermute 6 O(

p

f n) O(
p

f n) O(
p

f /n)

Table 4.1. Performance of a collection of BFT protocols. In the critical path,

always during nice runs, from a quiescent state (i.e. best case). ∆: Latency

(message delays), α: Authenticators complexity, µ: Message Complexity, l:
Load. * The actual message delay for a decision will be higher depending on

the byzantine consensus protocol used.

4.2 Byzantizing Leaderless SMR

In this section we show how to make Leaderless Byzantine SMR a reality and at
the same time answer the question posed in [140] about how EPaxos’ properties
can be guaranteed in a Byzantine faul-tolerant model, by casting a variation of
the protocol into our framework.

We begin with the definition of Byzantine Leaderless SMR, or BLSMR for
short. The abstraction is identical as the one described in §3.2, that is a dis-
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tributed automata with operations submit and commit. It is defined as the con-
junction of the properties below.

Validity: At a correct process, a command is decided once and only if it was
submitted.

Stability: For each command c, there exists D such that at a correct process, if
c is stable then deps(c) = D.

Consistency: At a correct process, if a and b are both conflicting and committed,
then a ∈ deps(b) or b ∈ deps(a).

One may understand these properties as a non-uniform variation of the ones
given in §3.2.1. This is similar to the re-writing of the SMR properties in the
Byzantine model by Castro and Liskov [41] (see §2.2).

Linearizable objects

Constructing a linearizable shared object atop BLSMR is achievable in a simi-
lar manner as atop LSMR. We follow the approach presented in [63, Algorithm
5], with a few changes to accommodate Byzantine failures. The algorithm is
sketched below. The interested reader may consult Appendix C for the full de-
tails.

Consider that commands are submitted by a set of client processes—that is for
each command c, client(c) denotes the client of c. Replicas execute commands
once they are stable, accordingly to Algorithm 1. Once a command is executed,
its response value is returned to cl ient(c). Due to the presence of Byzantine
replicas, a client waits f + 1 such responses before taking it into account.

This construction works because (i) the properties of BLSMR ensures that
every response value at a correct process is linearizable, and (ii) because f + 1
responses include the one of a correct process, a client only consider such values.

At first, the requirements to implement BLSMR look simple. One might think
that in order to achieve a Byzantine-safe version of Algorithm 2 one needs only
Byzantine versions of both CONS and DDS. In fact, a Byzantine-hardened con-
nection between the two services is also required for safety. Indeed, one may
observe in line 3 of Algorithm 2 that we cannot trust the process in charge of
running the DDS service. This process can misbehave and break consistency
by forwarding a malformed D to the processes running the CONS service. For
instance, consider two conflicting commands c, d and the calls announcep(c),
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announceq(d). If process p is Byzantine it may omit d from the returning of its
call, breaking consistency. Moreover, creating a Byzantine version of the DDS

service is tricky. As will be explored later, the representation of dependencies
plays an essential role in the process.

4.2.1 Notion of Trusted Service

Trust management is at the core of Byzantine SMR. Indeed, one may observe that
both in PBFT [41] and HotStuff [139], the algorithm manipulates certificates, or
quorum certificates, authenticated collections of messages which allow processes
to verify the assertions made by the leader and other processes.

In the seminal work of Cachin et al. in [37], the authors formalize how such
authenticated collections of messages can be used to create a protocol that is
Verifiable. They present for example a Verifiable Consistent Broadcast (VCBC)
protocol, a form of reliable broadcast [32] protocol modified such that it doesn’t
require that two processes deliver the payload message, but require that the con-
sistency property be kept among the actually delivered messages. The protocol is
made verifiable through the use of threshold cryptography, just like in HotStuff.
A sender broadcasts a message m to all processes and hopes for a threshold of
them to partially sign it. Once it receives the partial signatures, the sender com-
bines them in a threshold signature on m and sends such signed message to all
processes. A protocol process that was not yet in a state to deliver m, can now be
convinced by the threshold signature on m and can safely deliver the message.

In [37] as well, the authors propose the property of external validity for the
multi-valued Byzantine Agreement problem. In this multi-valued validated asyn-
chronous Byzantine Agreement, each process takes a value as input and decides
one of the values as output, as long as the decided output satisfies a global pred-
icate that is determined by the particular application and known to all processes.

The external validity property is important because it allows the connection
between protocols for VCBC and Byzantine Agreement. Such ideas are present
in the abstraction Validated and Provable Consensus (VPC) found in [125] and
based on [37]. In VPC, Validated, means that the protocol receives a predicate γ
together with a proposed value - which any decided value must satisfy. By Prov-
able it means that the protocol generates a cryptographic proof Γ that certifies
that a value v was decided in a certain consensus instance.

Fundamentally, these constructs presented bound the effects of Byzantine
nodes on the distributed system and allow the connection between different
services. We need that CONS be an abstraction like VPC and require it to be
connected to DDS. The previous works point the direction one must take but
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do not present a generic way to transform a normal service into a verifiable and
provable service.

Thus, in this section we propose to abstract the management of trust through
the notion of trusted service. Our idea is to have a generic-enough specification of
this class of service such that it can be instantiated with different cryptosystems,
or even no cryptography at all (e.g. information theory based approach). Our
definition just requires the ability to generate a certificate, or proof, of an action
taken by a process or a set of processes.

Preliminaries

To include trust in our algorithms, we need to embed it in the values they ma-
nipulate. An algorithm may use this trust to verify that the value is not crafted
by some malicious node. For starters, we shall consider that this verification is
stateless.

We say that a value x is provable if x embeds a proof, that is x .Γ ∈ E ∗, where
E ∗ is the universe of proofs. For some pair of provable values (x , y), a relation
f is verifiable if there exists a boolean function check f , called the verifier of f ,
such that check f (x , y) implies that f (x) = y . Next, given a verifiable relation
f and two provable values x and y , we define a trusted assignment operator.
This operator provides syntaxic glue to check whether the values are mapped
with relation f , before making the assignment. If this is not the case, an error is
raised. Formally,

var
f ,x
←−- y¬ if check f (x , y)

then var ← y
else error

To illustrate the above notions, consider the notion of verifiable random func-
tion, as defined in §2.2.3. We map the evaluator VRF.EvalSK(x) and the verifier
VRF.VV K(π, x , y) to respectively the notion of verifiable function and verifier de-
fined above. For the verifier, the proof π is attached to both x and y to make
them provable values, that is x .Γ = y.Γ = π.

A verifiable relation might be considered as a stateless automata, that is it
does not keep a state from one invocation to another. Thus, to define a trusted
service, we need to make several extensions. First, a service can be stateful,
which means that the checking the existence of a mapping is based on an his-
tory of the service, and not just its inputs and outputs. Second, a service is a
protocol, that is a distributed automata and not a locally computable function.
Nonetheless, its verifier is still a locally computable function. Last, as we need
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to compose services one with another, we need to introduce such a notion. All
these extensions are detailed hereafter.

In the context of this work, we consider a service to be a linearizable non-
deterministic shared object. For instance, consensus is modeled as an object
offering the operation propose at its interface. When a service S exposes a single
operation, we use the shorthand S(x) = y to indicate that S returns the output
y from input x . (The run to which we refer is omitted when appropriate.)

De�nitions

Consider a provable value y and a service S. Service S is verifiable when there
exists a boolean function checkS(x , y) with x and y two provable values, called
the verifier of S, such that if checkS(x , y) holds then S(x) = y is true. Let x
be a provable value and H be a verifiable service. A service S is verifying wrt.
(H, x̂) when S(x) = y implies that checkH( x̂ , x) holds. A service S is trusted wrt.
some verifiable service H and provable input x when S is verifiable and verifying
wrt. (H, x). We extend naturally the trusted assignment operator to work with
services. In detail, for S verifiable,

var
S,x
←−- y¬ if checkS(x , y)

then var ← y
else error

To illustrate the above definitions, we can consider how to modify PBFT to
make it a trusted service. The service is trusted if we bound the protocol to only
work on correctly signed commands (its verifying in relation to the PKI service)
and verifiable because we can provide the verifying function checkPBF T (x , y),
where x contains a signed state-machine command c and a view i and y con-
tains the set of 2 f + 1 signed COMMIT messages that triggered the decision of
command c in view i.

4.2.2 Algorithm

Building upon the previous definitions, Algorithm 3 depicts a construction to de-
cide commands in a leaderless manner when processes are Byzantine. This algo-
rithm uses trusted variations of the dependency discovery (DDS) and consensus
(CONSc) services. In detail, Algorithm 3 relies on the following two services:

Trust: DDS is a trusted service wrt. to (idC ,l), where idC returns true iff its
input is a command. For every command c, CONSc is a trusted service
wrt. (DDS,c)
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Any Byzantine consensus service that provides primitives to agree on a value
can be used to implement CONSc, as long as this service ensures that its (prov-
able) input values are verified. In practice this is usually already the case, since
protocols like HotStuff sign state-machine commands and produce quorum cer-
tificates and famous implementations like BFT-SMaRt [24] are built on top of
abstractions like VPC [125] (matching our definitions).

Interestingly, the fact that CONSc is verifying DDS is only required to ensure
progress. This prevents Byzantine nodes to push erroneous values to CONSc,
preventing a decision on c.

In Algorithm 3, the text in blue correspond to the differences with Algo-
rithm 2. Notably, Algorithm 3 relies on the trusted assignment operator which
was defined in the previous section. This encapsulates in a precise and well-
defined manner the necessity to use a Byzantine versions of DDS and CONSc, as
well as the connection between these two services.

When it receives a message indicating a decision for some command, Algo-
rithm 3 makes use of a verifiable function f to check this decision. This function
takes as input a command (c), a set of dependencies (D) and a flag (b), and it
returns the dependencies D. Its verifier is defined below:

check f ((c, D, b), D)¬ return if checkDDS(c, (D, b))
then b ∨ checkCONSc(D, D)
else false

Algorithm 3 Deciding a command c – code at process p

1: submit(c) :=
2: pre: p = coord(c)∨ coord(c) ∈ D
3: eff: (D, b)

DDS,c
←−−−-DDS.announce(c)

4: if b = false then D
CONSc,D
←−−−−−-CONSc.propose(D)

5: broadcast(c, D, b) to Π
6:

7: when recv(c, D, b)
8: pre: deps(c) =⊥

9: eff: deps(c)
f ,(c,D,b)
←−−−−-D

In the propositions that follow, we prove the correctness of Algorithm 3. To
this end, let us denote with λ a run of this algorithm. We first characterize the
necessary trust to execute successfully the assignment at line 9.
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Proposition 1. If checkidC (a, true) returns true at process p, then a is a submitted
command in λ.

Proof. As checkidC (a, true) returns true, we have a ∈ C . In §2.2.2, we require
that p does not have access to C at the start of λ and that commands are not
craftable. Thus, since clients are correct, a was necessarily submitted.

Proposition 2. During λ, consider that a correct process p executes the trusted

assignment at line 9 in Algorithm 3, that is deps(c)
f ,(c,D,b)
←−−−−- D. If this assignment

does not raise an error then (i) command a was submitted, and (ii) DDS is called
with input a in λ and returns (D, b).

Proof. If the trusted assignment does not return an error, then check f ((c, D, b), D)
returns true at p. At the light of the definition of check f , checkDDS(c, (D, b)) equals

true. Service DDS is trusted with respect to (idC ,l). As a consequence, (i) DDS
is verifiable. Hence, as checkDDS(c, (D, b)) returns true at process p, DDS is called
with input c in λ and returns a tuple (D, b). (ii) DDS is verifying with respect to
(idC ,l). Applying Proposition 1, command a was submitted.

Â Theorem 5. Algorithm 3 implements a reliable Byzantine Leaderless SMR.

Proof. We consider in order all the properties of BLSMR. Again, let λ be a run of
Algorithm 3.

(Validity) If command a is decided at a correct process p, then deps(a) 6=⊥ holds
at p. Necessarily p executes line 9. Due to the precondition at line 8, this
happens at most once. Applying Proposition 2, a is submitted.

(Consistency) Let a and b be two conflicting committed commands at some
correct process p. By definition, the two commands are decided when
D = deps(a), D′ = deps(b) ∈ 2C holds at p. Applying Proposition 2, we
know that DDS returns D and D′ when calls respectively with command
a and b in λ. By the Visibility property, necessarily either a ∈ deps(b), or
b ∈ deps(a), as required.

(Stability) Consider a command a and two correct processes p and q. A decision
about a takes place at line 9. It uses the pair (D, b) extracted from an
incoming message at line 7. Let respectively (E, f ) and (E′, f ′) be the value
of these variables at p and q when this happens. Observe that deps(a) may
only decrease, over time. Name E∞ and E′∞ respectively the asymptotical
value of deps(a) at p and q.
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For starters, we show that p and q agree on aborted commands. Assume
that (say) p aborts a in λ, that is E = abort. Applying Proposition 2,
DDS.announce(a) returns (abort, f ) in λ. Similarly, from the fact that q
decides value E′ for deps(a), DDS.announce(a) returns (E′, f ′) in λ. As E /∈
2C , the Weak Agreement property of DDS implies that f = f ′ = false. Ac-
cording to the definition of check f , checkCONSb(E, E) and checkCONSa(E

′, E′)
are true at respectively p and q. SinceCONSa is verifiable, checkCONSa(E, E)
implies that CONSa returns E in λ. Similarly, we know that CONSa returns
E′ in λ. From the Agreement property of consensus, E = E′ = abort.

The above reasoning tells us that Stability holds if a is aborted at any correct
process. Now, pick b ∈ E∞ \ E′∞.

• (Case b was aborted at q.) Necessarily b is aborted at p. Contradic-
tion.

• (Case b is not in E′.) Applying Proposition 2, DDS.announce(a) re-
turns both (E, f ) and (E′, f ′) in λ. We follow the same case analysis
as in the crash-prone case—given in the proof of Theorem 2. Namely,

– (Case f = true.) In that case, by the Weak Agreement property,
E = E′. Contradiction.

– (Case f ′ = true.) Symmetrical to the previous one.
– (Case f = f ′ = false.) According to the definition of check f ,

checkCONSb(E, E) and checkCONSa(E
′, E′) are true at respectively p

and q. Since CONSa is verifiable, checkCONSb(E, E) implies that
CONSa returns E in λ. Similarly, CONSb returns E′ in λ. By the
Agreement property of consensus, E = E′ Contradiction.

(Reliability) It remains to prove that once submitted, a command c always ends-
up being decided at every correct process q. In other words, that the pro-
tocol attains the Reliability property defined in §3.2.4. A client is correct
and upon submitting command c propagates it to f +1 processes. Let p be
a correct process among them. If p is the coordinator of c then it executes
the submit handler immediately (line 1). Otherwise, either eventually c is
decided at p, or its coordinator is considered as slow (line 2). Both CONS

and DDS are wait-free services. It follows that the call at lines 3 and 4
return. Thus, p eventually executes line 5. Since links are reliable, pro-
cess q eventually receives a tuple (c, D, b) from p (line 7). (D, b) is the
value p returned from calling DDS.announce(c) (line 3). As DDS is trusted
wrt. (idC ,l), checkDDS(c, D, b) holds. Similarly, as CONSc is trusted wrt.
(c,DDS), checkCONSc

(D, D) is true. Thus, the verifier check f ((c, D, b), D)
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returns true and the assignment at line 9 occurs. It follows that c is even-
tually decided at p, as required.

4.3 Implementations

In this section, we present several BLSMR protocols, each focusing on the opti-
mization of a specific metric to implement Byzantine state-machine replication.

4.3.1 Preliminaries

In what follows, we assume that each process p holds a log that stores the com-
mands it has received so far. This object provides a unique operation conflicts(c).
It adds c to the log then returns all the commands b present in the log and con-
flicting with c (i.e., b� c).

As usual [41], we assume that correct recipients of a message that carries an
incorrect signature do not process it. Similarly, we consider that commands and
dependencies are signed and that signatures are verified (§2.2.1).

About Progress

Algorithm 3 assumes a wait-free implementation of the DDS service. This means
that each call to announce(c)made by a correct process eventually returns. Achiev-
ing this despite failures and asynchrony, while offering low complexity, requires
to retry transmitting command c to a quorum of replicas if the command was
stucked previously. Hereafter, we detail instead best-effort implementations of
the DDS service. This means that such constructions satisfy the following prop-
erty:

Best effort If a correct process calls DDS.announce(c) infinitely often then the
service eventually returns.

Transforming a best-effort implementation into a wait-free one is fairly sim-
ple. The process repetitively calls the service until it answers. Once this occurs,
the response value is returned to the upper layer.
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Stronger Byzantine Quorum System

For reasons that will be clear in later sections, we propose a special case of mask-
ing Byzantine Quorum System [101], called Strong Byzantine Quorum System
(S-BQS). To this end, recall that Q denotes the quorum system and B all the
possible sets of faulty Byzantine processes. S-BQS is defined in terms of the
properties below.

S-Consistency ∀Q1,Q2 ∈Q.∀B1, B2, B3 ∈B : (Q1 ∩Q2) \ (B1 ∪ B2) 6⊆ B3

S-Availability ∀B ∈B .∃Q ∈Q : B ∩Q =∅

S-Consistency guarantees that any two quorums intersect in 3 f +1 processes
and thus in 2 f +1 correct ones. S-Availability ensures that there exists a quorum
containing only correct nodes.

4.3.2 À la EPaxos

Using our framework to create a Byzantine-hardened LSMR protocol boils down
to providing concrete implementations of the services described in Algorithm 3
and showing that they abide by the expected properties, e.g., (Byzantine) agree-
ment for consensus. In this section, we do such an exercise for the EPaxos pro-
tocol [106].

For simplicity, we consider a variation of EPaxos which does not involve se-
quence numbers and without fast path. We discuss the impact of adding a fast
path later in the section. We begin by presenting and explaining the DDS service
of EPaxos in the Byzantine case.

Byzantine DDS

Algorithm 4 depicts a Byzantine best-effort DDS service. Internally Algorithm 4
relies on a service which returns for a given command a Byzantine quorum (vari-
able BQS). BQS can be implemented using any kind of dissemination quorum
system (DQS for short) presented in §2.2.3. For instance, quorums may simply
be sets of 2 f + 1 processes among 3 f + 1.

Using a DQS is important because when queried a Byzantine processes may
lie, omitting certain (or all) dependencies of a command. The D-Consistency
property of DQS guarantees that any two quorums have at least one correct pro-
cess in common. Indeed, this property requires that the intersection between
any two quorums is of size f + 1. Thus, at least one process behaves correctly
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Algorithm 4 Acquiring dependencies of a command c à la EPaxos – code at pro-
cess p

1: announce(c) :=
2: eff: Q

BQS,c
←−−- BQS.getQuorum(c)

3: broadcast(c) to Q
4: wait until recv(c, deps j(c)) from all j ∈Q
5: D←

⋃

j∈Q deps j(c)
6: D.Γ ← (c, (deps j(c)) j∈Q,Q)
7: return (D, false)
8:

9: when recv(c) from p
10: pre: checkidC (c, true)
11: eff: deps(c)← log.conflicts(c)
12: send(c, deps(c)) to p

13:

14: checkDDS(c, (D, b)) :=
15: f ←∧ checkBQS(c, D.Γ .Q)
16: ∧ b = false
17: ∧ |D.Γ .deps|= |D.Γ .Q|
18: ∧ D =

⋃

d∈D.Γ .deps d
19: return f

and reports all the conflicting commands it has seen so far, ensuring that two
conflicting commands see each other (the Visibility property of LSMR).

In detail, BQS is a verifiable wait-free service that provides a single opera-
tion getQuorum. For a given quorum system Q satisfying the DQS properties,
getQuorum(c) returns some element of Q. The service ensures (Exhaustivity)
for each quorum Q ∈ Q, if called infinitely often with input c, BQS eventually
returns Q. Such a property can be implemented easily using a seed s and a VRF
f (see §2.2.3). The seed s is included in Q.Γ . This allows running checkBQS(c,Q)
to verify that Q is the actual output of f for c and s.

To announce a command c, at line 3 in Algorithm 4, the coordinator broad-
casts it to a quorum obtained through BQS (at line 2). When a process in the
quorum receives the command c (at line 9) it computes (and stores) the set of
commands conflicting with c it has seen so far (line 11). The reply is sent at
line 12. Note that the process returns a tuple with the command and its set of
dependencies signed (implicit as we have mentioned in §4.3.1).
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After receiving the replies from all the processes in quorum Q, process p cal-
culates the union of all the dependencies it received (line 5). Then, p generates
and embeds the proof Γ (at line 6), necessary to make the service verifiable. The
proof Γ needs to provide enough evidences so that other processes can confirm
that the process in charge of the announce call did not misbehave during its ac-
tions. The algorithm returns the tuple (D, false) at line 7. The hardcoded value
false indicates that there is no fast path in this implementation.

Function checkDDS(c, (D, b)) defined at line 15 ensures that Algorithm 4 is a
trusted service. In particular, it makes sure that it is verifying wrt. (idC ,l), only
processing commands actually submitted by clients. Notice that for efficiency
purposes, it would be possible to trim commands that are not conflicting with c

at line 5. This would require in checkDDS(c, (D, b)) to also do such a verification.
This improvement is omitted for clarity.

Â Theorem 6. Algorithm 4 implements a best-effort trusted DDS service.

Proof. Consider some run λ of Algorithm 4.

(Visibility) Let a,b be two conflicting commands. Assume D, D′ are respectively
the return values to announcep(a) and announceq(b) during λ. These two
values are returned at the correct process p and q, respectively.

The set of dependencies of a command is returned at line 7, yet calculated
at line 5 through the execution of the union operator. Consider the execu-
tion of this line by process p. The union operator is parameterized with a
quorum Q1, obtained through the execution of line 2. Let Q2 be the quo-
rum obtained by process q when it executes line 2. By the D-Consistency
property of the DQS service the quorums Q1 and Q2 intersect in at least
f +1 correct processes and thus, at least 1 correct process executed line 11
and line 12 . This implies that it exists at least a correct process where
b ∈ deps(a) and therefore b ∈ D. An analogous reasoning can be used for
process q, there will be at least 1 correct process that will report a ∈ deps(b)
at line 11 and send it at line 12 and thus a ∈ D′ at line 5.

(Weak agreement) Trivial as the service returns (l, false) at a correct process.

(Trust) Next, we explain how checkDDS ensures that Algorithm 4 performs cor-
rectly on the input c. This function consists of a series of safety verifications
in order to bound the damage a Byzantine coordinator would made on the
service. At line 15, we first check that Q is a proper quorum. Further, at
line 16, we verify that there is no fast path. At line 18 the function re-
calculates the union of dependencies to guarantee that the coordinator did
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not omit anything. If all of the above checks are passed, the function re-
turns true. Finally, as a correct replica verifies that c is an actual command
at line 10, this ensures that Algorithm 4 is verifying wrt. (idC ,l).

(Best-effort) Consider that a correct process p calls infinitely often announce(c).
At line 2, p returns a Byzantine quorum from the verifiable service BQS.
This service ensures the Exhaustivity property, that is for each quorum Q ∈
Q, if called infinitely often with input c, BQS eventually returns Q. Let
B be the failure pattern of λ. By the D-Availability property of Q, there
exists a Q0 such that B ∩ Q0 = ∅. Consider the first time t at which p
retrieves Q0 from BQS at line 2. As BQS is wait-free the assignment at
line 2 happens. Thus p broadcasts a message (c) to all the processes in
Q0. As links are correct and these processes are not in B, they eventually
deliver this message and each returns a set of dependencies to p. Thus,
there exists a time t ′ > t after which line 4 holds. It follows that p returns
a value at line 7.

Consensus

To finish building BLSMR à la EPaxos, we need CONSc to be a trusted service
wrt. (DDS,c). As mentioned earlier in §4.2.2, to achieve this we can use any
BFT SMR protocol that provides a primitive to agree on a value. For our use
case, we consider HotStuff [139] and expect it to be modified such that correct
processes decide iff checkDDS(c, (D, b)) holds.

To make the service verifiable, we also need a function checkCONSc(D, D).
This function is implemented by using the COMMIT certificates (see §2.3.4)
generated by HotStuff: the COMMIT certificates are the proof Γ and function
checkCONSc(D, D) verifies their correctness exactly as detailed in [139]. Finally,
we require the existence of a procedure to select 3 f + 1 replicas in Π to run
CONSc. This construction follows the one we used for the BQS service in Algo-
rithm 4.

Adding a fast path

In Algorithm 4, we are always returning false for the flag that indicates if the fast
path is taken. If we want to add a fast path to the service, we need to consider
bigger intersection sizes in the BQS service. More precisely, we need a strong
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Byzantine quorum system (introduced earlier in §4.3.1), that is an intersection
size of 3 f + 1 across quorums.

To understand why this is required, consider that the fast path was taken for
some command c and that its initial coordinator is slow, therefore a recovery is
triggered. The new coordinator queries the initial quorum used for command
c (say, Qc) and waits for |Qc| − f replies. Concurrently, an analogous recovery
procedure is taking place for command d, conflicting with c, with quorum Qd.
The coordinator also awaits |Qd | − f replies. In this scenario, we basically ran
out of replicas to maintain the consistency property of BLSMR. Hence, the fast
path requires an extra 2 f replicas in the intersection between quorums.

If we consider that we have such an intersection property necessary, we can
then add a fast path to Algorithm 4 using the usual mechanism of EPaxos, that
is dependencies must match. In this case, we may also provide the following
refinement to make the verification procedure in checkDDS more lightweight: If
a coordinator claims that the fast path was taken, a process needs to verify that
such a criterion is met. For performance, this can be implemented using thresh-
old signatures (§2.2.3). In detail, at line 12 in Algorithm 4, we require that a
process applies an extra signature (in this case a partial one) to (c, deps(c)). In
this way, once a coordinator receives all the replies (each one partially signed)
and verifies that they are all equal (i.e. the fast path condition is met), it signs the
resulting message with a combined signature stored in Γ at line 6. This signature
is then checked appropriately in the verifier checkDDS.

4.3.3 Wintermute

We present now an instantiation of the services such that the resulting protocol
has better load and message complexity than common BFT SMR protocols. The
protocol can be seen as an improved and more practical version of Algorithm 4.
We call this protocol Wintermute and begin its construction by addressing a well-
known problem that has implications on the underlying abstractions.

4.3.4 E�ciently representing dependencies

In Algorithm 4, dependencies monotonically grow over the course of execu-
tion. To be practical, protocols must compact them, over-approximating the com-
mands included in each set if required. Such a problem is common to all generic
and leaderless SMR protocols (e.g., [90, 112, 106, 62]. For instance, without
compaction, c-structs in Generalized Paxos can get arbitrarily large during a bal-
lot. In what follows, we examine this problem and present various solutions.
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Checkpointing

A first solution consists in the use of checkpoints. In the case of Generalized
Paxos, such an approach is detailed in one of our previous works [117]. The
key idea is that commands that are stable at a quorum of replicas are trimmed
from the dependencies (or c-structs). Trimming occurs when a special checkpoint
command that conflicts with everything else is learned.

Checkpointing has been used in practice previously. In particular, the authors
of [127] report that they need to checkpoint every few thousands of commands
to keep the system stable. As a consequence, such a technique has clear limita-
tions at large scale. Therefore, to solve this issue we instead consider a compact
representation of the dependencies, as presented next.

Compaction

Upon submission, each command c gets assigned a sequence number, or times-
tamp, denoted c.ts. Dependencies are represented as a vector of timestamps. For
instance, consider the example below, where the clients are {a, b, c}, using Al-
gorithm 4 for reference. A compacted representation of a deps(c) received from
some process j in the quorum at line 4 could be the following:

deps j(c) = {a 7→ 2, b 7→ 7, c 7→ 4}

This is interpreted as follows: command c depends on all the commands of
client a up to timestamp 2, up to timestamp 7 for client b and up to timestamp
4 for client c. Note that such a representation is an over-approximation. Indeed,
it might be the case that the command with timestamp 1 by a is in fact com-
muting with c. The representation is made exact when using version vectors with
exceptions, an approach detailed in [103].

The above technique has a few issues. First, in a system where clients can
enter and leave the system, the dimensions of the vector can grow arbitrarily. To
solve this problem, one may again resort to the use of checkpoint and a special
epoch entry. Once executed, a checkpoint clear the vector from all its entries
except the epoch one that is incremented.

The second issue is that even if one assumes that clients are always correct
there is still the possibility that a Byzantine replica once queried for the depen-
dencies of a command reports back false dependencies by faking timestamps
when calculating conflicts (Algorithm 4 at line 11). A correct process once re-
ceiving such dependencies would have to spend time checking which entries are
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signed and the ones that are not (fake ones crafted by a malicious process). We
provide a solution to this problem in §4.3.5.

Further compaction

For performance, we aim at further compacting dependencies, using instead vec-
tors of the size of the replica set. Extra care must be taken in this case, as Byzan-
tine replicas can exhaust timestamps on purpose, or assign twice the same times-
tamp. This problem also occurs in a system where clients are Byzantine.

To deal with these issues we propose that timestamps are generated by a
verifiable timestamping service, TS. Given some command c, this service offers
a single operation next(c) returning a timestamp, that is an element t from some
totally ordered set (T ,<). It ensures the following properties:

Uniqueness If TS returns t and t ′ then t 6= t ′.

Monotonicity If TS returns t then t ′, necessarily t < t ′.

Gap-free If TS returns t and immediately after t ′, then there is no t ′′ such that
t < t ′′ < t ′.

Below, we present two possible implementations of the timestamping service,
one relying on dedicated hardware and the other being distributed.

• To implement a verifiable timestamping service, we can use trusted hard-
ware, following the mechanism in [134]. Here, the authors present a
non-interactive solution based on a service they name Unique Sequential
Identifier Generator (USIG). This service is capable of generating unique,
monotonic and sequential (thus gap-free) identifiers.

• Another mechanism is to use the non-skipping timestamps proposed in
[19]. Based on it, we propose the following instantiation for TS: For each
replica p, we define a set of 4 f + 1 processes in charge of maintaining the
service. To this end, they use a clock variable initially equal to 0. When
executing next(c), p queries the processes and await for 3 f +1 replies con-
taining the clock value of the service processes. Process p then takes the
( f +1)st largest timestamp from the replies and adds 1 to it. The resulting
timestamp t̂ is the output of the TS service. To make the service verifi-
able we store in t̂.Γ the replies received. The implementation of function
checkTS is trivial: one needs to require that replied the timestamps are
signed and then re-calculate the ( f + 1)st largest timestamp from them.
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To guarantee the properties of the service, before returning t̂, process p
sends it to the service processes. Upon receiving such a message, a service
process updates its clock to the maximum value between t̂ and the local
clock, then acknowledges p. Process p returns once it has received 3 f + 1
such acknowledgments. Notice that this last phase can be piggyback on
the first phase of the previous inquiry to the TS service, saving a message
round-trip. A proof of correctness of the schema is available in [19].

The above two implementation relies both on integers. In practice, it may
overflow leading to common problems [138]. Some prior works investigate the
question of bounding timestamps [82]. However to the best of our knowledge,
there is no existing solution in the case of Byzantine systems.

Before closing this section, we note that when the representation of depen-
dencies is of the size of the replica set, two key problems must be solved. First,
it is not possible to over-approximate the dependencies and version vectors with
exceptions are necessary [103]. Second, due to recovery, a command might get
assigned different timestamps by different coordinators. In that case, its times-
tamp is simply the union of these values (as proposed in [130]). To ease pre-
sentation, and avoid such subtleties, the description of Wintermute that follows
assumes that timestamp are assigned by clients and that dependencies are of the
size of the number of clients.

4.3.5 Protecting the dependencies representation

When dependencies are compacted they need to be protected. Indeed, a Byzan-
tine replica may simply report non existing commands as dependencies. To solve
this problem, a first solution is to sign each entry in the vector and check them
where necessary. This approach is however expensive, as lines 5 and 18 in Algo-
rithm 4 now costs O(n2) verifications, where n is the size of the replica set. We
propose instead the use of the special Strong Masking Byzantine Quorum Sys-
tem (S-BQS) defined in §4.3.1 in conjunction with a technique called threshold
union, initially introduced in our previous work on the Atlas protocol [62].

Threshold union

By the S-Consistency property of the S-BQS we know that 2 f +1 correct processes
exist in the intersection between any two quorums. Thus, when calculating the
union of dependencies received from a quorum we are safe from the attack men-
tioned above by including only commands that were reported by at least f + 1
processes. This is the very purpose of threshold union operator.
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Formally, consider a command c and a quorum Q obtained through a call to
some quorum system service. The through union operator is defined as follows:

⋃

f + 1

j∈Q deps j(c) = {c | count(c)≥ f + 1}
count(c) = |{ j ∈Q | c ∈ deps j}|.

To illustrate the above equation, consider that the set of clients consists of
{a, . . . , d}, and that f = 1. The following (compacted) dependencies are received
from three replicas in the DQS quorum Q (e.g., line 4 in Algorithm 4).

deps(c) = {a 7→ 2, b 7→ 7, c 7→ 0, d 7→ 0}
deps(c) = {a 7→ 1, b 7→ 4, c 7→ 0, d 7→ 0}
deps(c) = {a 7→ 1, b 7→ 99, c 7→ 0, d 7→ 0}

The result after applying the threshold operator is as follows:

D = {(a, 0), (a, 1), (b, 0), . . . , (b, 7)}

Due to compaction, a replica might know that d depends on c, yet without
knowing d itself. The threshold union operator ensures that if d ∈ deps(c), then
necessarily d is known at f +1 replicas. Thus, if a command is unknown at some
replica, it can be fetched remotely without having to wait recovery.

Building the quorum system

In what follows, we explain how we construct the S-BQS quorum system. We
also analyze its load and availability.

Our Byzantine quorum system is built as a variation of the M-grid quorum
system proposed in [102]. Let us assume |Π|= n,B = {B ⊆ Π : |B|= f } and f ≤
(
p

n−2)/3. We arrange the set of replicas into a
p

n×
p

n grid. Let (Ri)i and (C j) j

be the rows and columns of the grid, respectively, with 1 ≤ i, j ≤
p

n. The key
idea is that a quorum consists in ζ rows and ζ columns, with ζ = d

p

3 f /2+ 1e.
In other words, the quorum system is defined as:

Q =
§

⋃

j∈J

C j ∪
⋃

i∈I

Ri : J , I ⊆ {1, . . .
p

n}, |J |= |I |= ζ
ª

We illustrate this construction in Figure 4.1, with n = 92 and f = 1. In this
figure, as ζ= 2, a quorum consists of two rows and two columns.

Â Theorem 7. Q is a Strong Byzantine Quorum system for f ≤ (
p

n− 2)/3.
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Figure 4.1. Example of quorums in the S-BQS quorum system, with f ≤ 2,
n = 92 and thus ζ = 2. Each quorum (in green and purple) consists of two

rows and two columns. Their intersection is shaded.

Proof. Consider Q1,Q2 ∈ Q. We first establish that S-Consistency holds, that
is every intersection contains at least 3 f + 1 processes. If Q1 and Q2 have in
common either a column or row, then |Q1 ∩ Q2| ≥

p
n ≥ 3 f + 2. Otherwise,

[columns(Q2) ∩ rows(Q1)] ∩ [columns(Q1) ∩ (rows(Q2)] = ∅. In such a case,
the ζ columns of Q1 intersect once with the ζ rows of Q2; and vice-versa. It
follows that |Q1 ∩Q2| ≥ 2ζ2 > 3 f + 1. To establish S-Availability, observe thatp

n − f ≥ 3 f + 2 − f ≥ 2 f ≥ ζ. As a consequence, for any B ⊆ Π such that
|B| = f , we may pick ζ rows and ζ columns whose union does not contain any
element in B.

Â Theorem 8. The load of Q belongs to O(
p

f /n) when quorums are picked
uniformly at random.

Proof. Let c(Q) be the size of the smallest quorum in the S-BQS quorum system
Q. From [101], we know that the load of Q is c(Q)/n. All the quorums in Q
system are of the same size, that is 2×ζ×

p
n−ζ2. Hence, the load ofQ is given

by: (2× ζ×
p

n− ζ2)/n ∈ O(
p

f /n)

Discovering dependencies

Algorithm 5 depicts the DDS service of Wintermute. Its structure is similar to
Algorithm 4. The key differences are highlighted in blue. They consist in the
compact representation of dependencies, the use of a S-BQS quorum system in-
stead of a DQS one and the application of the threshold union operator to trim
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potentially misleading dependencies from Byzantine replicas. The correctness of
this construction is established below.

Algorithm 5 Wintermute – Acquiring dependencies of a command c – code at
process p

1: announce(c) :=
2: eff: Q

BQS,c
←−−- BQS.getQuorum(c)

3: broadcast(c) to Q
4: wait until recv(c, deps j(c)) from all j ∈Q

5: D←
⋃

f + 1

j∈Q deps j(c)
6: D.Γ ← (c, (deps j(c)) j∈Q,Q)
7: return (D, false)
8:

9: when recv(c, t) from p
10: pre: checkidC (c, true)
11: eff: deps(c)← logp.conflicts(c)
12: send(c, deps(c)) to p

13:

14: checkDDS(c, (D, b)) :=
15: f ←∧ checkBQS(c, D.Γ .Q)
16: ∧ b = false
17: ∧ |D.Γ .deps|= |D.Γ .Q|

18: ∧ D =
⋃

f + 1

d∈D.Γ .depsd
19: return f

Â Theorem 9. Algorithm 5 implements a best-effort trusted DDS service.

Proof. Consider some run λ of Algorithm 5.

(Visibility) Let a and b be two conflicting commands. Assume that two cor-
rect processes p and q return (D,l) and (D′,l) from calling respectively
announce(a) and announce(b) during λ.

The set of dependencies of a command is returned at line 7, but calculated
at line 5 through the execution of the threshold union operator. Consider
the execution of this line by process p. The threshold union operator is
parameterized with a quorum Qa, obtained through the execution of line 2.
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Similarly, let Qb be the quorum obtained by process q when it executes
line 2.

By the S-Consistency property of the S-BQS service the quorums Qa and Qb

intersect in at least 2 f + 1 correct processes. These processes all execute
lines 9 to 12. The handler is atomic. Hence, either f + 1 such processes
execute these lines for a before b, or vice-versa. Without lack of general-
ity, consider that this is the later case that happens during λ. For each of
these processes j, b ∈ deps j(a) holds. Hence, b is reported f + 1 times in
(deps j) j∈Qa

. Thus, applying the definition of the threshold union operator,
we have b ∈ D, as required.

(Weak agreement) Immediate as a call to announce always return (l, false) at a
correct process.

(Trust) This is analogous to the proof provided in Theorem 6. The main differ-
ence is that now at line 19, the verifier calculates the threshold union of
dependencies instead of base union.

(Best-effort) The proof is similar to the one above for Theorem 6. It relies on
the S-Availability property of the S-BQS quorum system (instead of the D-
Availability of the DQS quorum system earlier).

Consensus

As mentioned in §4.1.1, a typical deployment of Wintermute runs CONSc over a
few nodes, whereas order of magnitude more are running the DDS service. As
a consequence, for the consensus service, we make use of a protocol that favors
high performance (that is, low latency and low authenticators complexity) over
scalability. Namely„ we use the Quorum algorithm [17], to drive the decisions in
CONSc. This protocol is modified so that correct processes decide over D only if
checkDDS(c, (D, b)) returns true.

To lower the amount of signatures sent to all processes in Algorithm 3 at
line 5, we modify Quorum to work with threshold signatures in the following
way: The coordinator sends D to a pseudo-randomly selected set of 3 f +1 repli-
cas (again using VRFs). The replicas apply a partial signature to this message
and reply. If the coordinator in CONSc receives 2 f + 1 matching replies where
all replies are properly partially signed, then D is committed. Otherwise, D is
aborted and PBFT is run (as explained in §2.2.6). Once in possession of the
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matching replies, the coordinator proceeds to combine the signatures received
into a single threshold signature on D (this will be embed as D.Γ to be used in
checkCONS(D, D)) and broadcast the result to Π. Each process in Π receives only
D with a single threshold signature after this step. As a consequence, the authen-
ticators complexity of Wintermute is bounded by the DDS service. We detail this
point in the next section.

The above modification makes sense because we do not have a fast path.
The processes in CONSc only decide if the expensive call to checkDDS(c, (D, b)) is
evaluated to true. Other processes in Π, once receiving D, just need to evaluate
checkCONS(D, D).

4.4 Complexity Analysis

Wintermute is the result of instantiating our framework with the following ser-
vices: (i) the timestamping service TS (§4.3.5), (ii) the S-BQS quorum system
built via the M-grid approach presented in §4.3.5, (iii) the Quorum consensus
algorithm [17] as CONS. We consider that the processes in a quorum of the
BQS and processes in CONS are pseudo-randomly and uniformly selected via
VRFs. In what follows, we explain the values reported in Table 4.1 regarding the
complexity of the Wintermute protocol. As motivated in §4.1.1, we are under
the assumption that f is small over n ( f � n).

Latency. The latency of the DDS service in the critical path is of 4 message
delays. The first 2 come from the use of the TS service and the other 2 from
the execution of lines 3 and 4 in Algorithm 5. As mentioned earlier Quorum is
used to instantiate CONS, which in the critical path gives us an extra 2 message
delays. Thus, the total latency (∆) of Wintermute in the critical path is 6.

Message Complexity. Since BQS is instantiated as S-BQS via the M-grid ap-
proach, the size of a quorum has a complexity in O(

p

f n). In Algorithm 5, a
process p sends a single message (line 3) exclusively to |Q| processes and at
line 12 a process replies exclusively to p. Hence, we have a message complexity
µ of O(

p

f n).
Authenticator Complexity. Wintermute’s authenticator complexity is bound

by the DDS service. In Algorithm 5 at line 4 a process p receives |Q| signed
messages from a quorum Q. This is also the maximal amount of signatures a
process receives later on in the algorithm. Hence, we have α belongs to O(

p

f n).
Load. In the case of Wintermute, the load of the protocol is the sum of the

probabilities of a process being picked in the DDS service or CONS service. Un-
der the assumption f � m, the load of CONS is negligible. Thus, the load of the
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protocol is bound exclusively by the load of the DDS, which is O(
p

f /n) (that
is, the load of the BQS service).

4.4.1 Possible Extensions

Leveraging the modular nature of our framework allows one to propose differ-
ent instantiations of Wintermute that use techniques that have recently been
explored in BFT replication.

Fast Path. As with EPaxos (§4.3.2) adding a fast path in Wintermute is possi-
ble. However, this requires an additional 2 f replicas in the intersection between
quorums (for a total of 5 f + 1 replicas).

Trusted Hardware. As mentioned in §4.3.4, we can use trusted hardware
in the vein of [134] to implement the TS service. This lower the latency of the
protocol, saving two message delays in the critical path.

Tree Aggregation. Further development can be done to implement DDS
using a tree topology with dependencies being gathered along the tree. A simi-
lar approach is taken in [108] where the authors provide an implementation of
HotStuff using trees, which avoids the one-to-all communication pattern of the
original protocol.

Gossip. As Wintermute is aimed towards scenario where the system has hun-
dreds to a thousand of replicas, relying on a base broadcast protocol at that scale
is not feasible. Tackling the issue by relying on propagating messages through
gossiping is a possible solution and is the approach taken in some modern BFT
protocols like Gosig [95] and Tendermint [34]. We believe that such an adap-
tation is possible for our protocol—that is using a gossip protocol to implement
the broadcast abstraction in Algorithm 3 and Algorithm 5.

4.5 Related Work

As mentioned earlier, the work of Cachin et al. [37] formalizes the idea of a
validated protocol and proposes the external validity property for Multi-Valued
Byzantine Agreement. Optimizing the communication cost in both bits and mes-
sage delays of Multi-valued Byzantine Agreement is further studied in [99, 5]
and can be of interest to analyse the cost of the proofs our trusted services rely
on.

The Verifiable and Provable Consensus abstraction inspired by [37] and pre-
sented in [125] is used in BFT-SMaRt [24]. Later on, the work in [126] describes
how BFT-SMaRt is used in the permissioned blockchain platform Hyperledger
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[12]. In this chapter we have mainly focused on scaling the underlying protocol
to be used in a permissioned blockchain. From a practitioners point of view the
work in [23] addresses other challenging subtleties (e.g. decentralized reconfig-
uration) that one might encounter during real implementations of a blockchain.

Modern BFT. The revamped interest in BFT replication and its application to
blockchains has led researchers to revisit protocols that have asymptotic behav-
ior similar to PBFT (for instance, this is the case with BFT-SMaRt) to develop
improved versions that offer better scalability features such as non-quadratic
message complexity and lower authenticators complexity. This is the case with
HotStuff [139] and SBFT [74].

In terms of message delay, new protocols try to avoid the three-round latency
of PBFT to commit a value in the good-case (when the leader is honest but the
other replicas may be faulty and the network is synchronous). This the case with
the work in [6] where the authors propose a two-round authenticated BFT SMR
protocol that requires n≥ 5 f −1. Interestingly, the recent work in [86] show that
5 f −1 is the tight lower bound for fast Byzantine consensus, that is, the (optimal)
two-round latency comes with the cost of lower resilience. Such bound should
also apply to Byzantine leaderless protocols.

Other modern approaches to scale BFT replication that have been recently
studied are related to gossip-based message propagation, collective signing [129],
sharding [119] (i.e. partial replication) and exploiting the topology of the net-
work [39]. Gossip-based consensus protocols have been recently studied [40] to
confront the challenges faced by SMR in large geographically distributed systems.
In the context of permissioned blockchains a notable example of such approach
is Tendermint [34]. A tree communication strategy is adopted by ByzCoin [85]
which employs such a communication tree in combination with collective signa-
tures. Recently, similar approach is taken in [108], where the authors propose a
BFT communication abstraction that organizes participants in a tree which allows
vote aggregation to be performed. Most protocols though rely on a combination
of techniques, as for example Gosig [95] that relies on gossip propagation, VRFs
for proposer election (as in Algorand [70]) and a multi-signature schema.

Leaderless. Byblos [20] is based on the non-skipping timestamps technique
[19], requires n > 4 f + 1 replicas and has O(n2) message complexity. More re-
cently, the protocol ISOS [60]was proposed and can be seen as Byzantine version
of EPaxos [60], it includes a fast path but has a O(n2) message complexity. In
terms of application to permissioned blockchains a notable byzantine leaderless
protocol is DBFT [46], used to power the RedBelly [47] blockchain. The work
in [118] present a family of leaderless byzantine consensus protocols that seem
to be scalable but are aimed at permissionless blockchains, thus the resulting
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protocols offer probabilistic guarantees.
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Chapter 5

Conclusion

5.1 Summary

In this thesis we proposed a framework that captures the essence of leaderless
state-machine replication (Leaderless SMR). We introduced a set of desirable
properties for Leaderless SMR: (R)eliability, (O)ptimal (L)atency and (L)oad bal-
ancing, and we showed that protocols matching all of the ROLL properties are
subject to a trade-off between performance and reliability. We established a lower
bound on the message delay to execute a command in protocols optimal for the
ROLL properties. This lower bound explains the persistent chaining effect ob-
served in experimental results. Further, we extended our framework to support
Byzantine failures and provided an instantiation of it that can be used to imple-
ment more scalable permissioned blockchains.

5.2 Future Work

In relation to the content of Chapter 3, a journal version of [116] is planned and
will address questions regarding liveness more explicitly.

In terms of Chapter 4, we have an ongoing implementation1 of Wintermute
built upon the framework used in the evaluation of Tempo [61]. The framework
allows for the prototyping of leaderless protocols to be created rather quickly.
The variations we want to cover rely on the techniques mentioned earlier: gos-
sip propagation, fast path, use of trusted hardware and different instantiations
of Byzantine quorum systems. We envision an evaluation in the the style of [74]
where one is able to run a real blockchain workload. Moreover, we conjecture

1Available at https://github.com/tuanir/fantoch/tree/byzantine
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that such type of workload is mainly composed of highly commutative opera-
tions, which would strengthen the case for the use of BLSMR protocols. In a
theoretical side, we plan on presenting an information theoretic protocol in the
vein of Information Theoretic HotStuff [7], as well as a Byzantine version of
Tempo [61].

Permissionless setting. Perhaps the most interesting and challenging contin-
uation to our work lies in its adaptation to use in permissionless blockchains. The
first idea we want to pursue and that would have less impact in the underlying
abstractions is to bound the churn in the system via specially scheduled epochs
in which new replicas can join. The second idea relies on exploring Byzantine
quorum systems that are resilient to Sybil attacks (as in [124]) to build aDDS ser-
vice resilient to such type of exploitation. Taking this route most likely requires
to abstract what a failure means in the system. An example could be to build
a byzantine quorum system in a proof-of-stake schema, where the intersection
between quorums takes into account the economical powers of the adversary.



Appendix A

System Model

We formulate our results for an asynchronous distributed system augmented with
failure detectors [42]. This section recalls the fundamentals of this common
model of computation then present some technical lemmas. These lemmas are
used in the follow-up to establish our complexity results regarding Leaderless
SMR.

A.1 Model

We consider an asynchronous distributed system consisting of a finite set of pro-
cesses Π = {p1, p2, . . . , pn}. Processes may fail-stop, or crash, and halt their com-
putations. A failure pattern is a function F : N→ 2Π that captures how processes
crash over time. Processes that crash never recover from crashes, that is, for all
time t, F(t) ⊆ F(t+1). If a process fails, we shall say that it is faulty. Otherwise,
if the process never fails, it is said correct.

Failure detectors. A failure detector is an oracle D that processes may query
locally during an execution. This oracle abstracts information, regarding syn-
chrony and failures, available to the processes. More precisely, a failure detector
D is a mapping that assign to a failure pattern F , one or more histories D(F).
Each history H ∈ D(F) defines for each process p in the system, the local informa-
tion H(p, t) obtained by querying D at time t. The co-domain of H : Π×N→ R
is named the range of the failure detector. An environment, denoted E, is a set
of failure patterns.

In the vein in [50], we only consider realistic failure detectors. This class
of failure detectors cannot forecast the future. This means that if two failure
patterns F and F ′ are identical up to time t, then for any history H ∈ D(F), there
exists H ′ ∈ D(F ′) identical up to time t to H.
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Message buffer. Processes communicate with the help of messages taken
from some set Msg. A message m is sent by some sender (sender(m)) and ad-
dressed to some recipient (dst(m)). The sender may define some content (payload(m))
before sending the message. A message buffer, denoted buff , contains all the
messages that were sent but not yet received. More precisely, buff is a mapping
from Π to 2Msg. When a process p attempts to receive a message, it either re-
moves some message from buff[p], or returns a special null message. Note that
p may receive the null message even if the message buffer contains a message m
addressed to p.

Protocol. A protocol P consists of a family of n deterministic automata, one
per process inΠ. Computation proceeds in steps of these automata. At each step,
a process p executes atomically one of the following instructions: receive some
message m; fetch some value d from the local failure detector module; change
its local state according to P ; or send some message m to another process. A
configuration of algorithm P specifies the local state of each process as well as
the messages in transit (variable buff). In some initial configuration of P , no
message is in transit and each process p is in some initial state as defined by P .

Runs. A run of algorithm P using failure detector D in environment E is a
tuple λ = (F, H, I , S, T ) where F is a failure pattern in E, H is a failure detector
history in D(F), I is an initial configuration of P , S is a sequence of steps of P ,
and T is a growing sequence of times (intuitively, T[i] is the time at which step
S[i] is taken). A run whose sequence of steps is finite (respectively, infinite) is
called a finite (respectively, infinite) run. Every run λ must satisfy the following
standard (well-formedness) conditions: (i) No process take steps after crashing;
(ii) The sequences S and T are either both infinite, or they are both finite and
have the same length; and (iii) The sequence of steps S taken in the run conforms
to the algorithm P , the timing T and the failure detector history H. A run λ is
admissible forP , or simply is a run of P , when it is well-formed and in addition:
(fairness) If λ is infinite, every correct process takes an infinite number of steps
in λ. (reliable links) Every process that infinitely often retrieves a message from
buff eventually receives every message addressed to it. We shall write RP the
runs of algorithm P . The superscript is omitted when the algorithm we refer to
is unambiguous.

Our results mostly concern nice runs [81], that is failure-free runs during
which the failure detector behave “perfectly”. More specifically, we consider that
a run is nice when there is no failure and the failure detector returns a constant
value to the local process. RPn denote the nice runs of algorithm P .

Additional notations. When the context is clear, we do not distinguish a



83 A.2 Technical Lemmas

run from its sequence of steps.1 Below, we introduce a handful of operators and
shorthands that leverage this simplification.

Consider two sequence of steps λ and λ′. We note (λ|P) the sub-sequence of
steps taken by the processes P ⊆ Π in λ. Function proc(λ) returns the processes
that take steps in λ. We say that λ is indistinguishable from λ′ to P ⊆ Π when
λ|P = λ′|P. As usual, if λ ∈ R , λ′ is indistinguishable from λ to Π and λ′ is
well-formed, then λ′ ∈ R . If λ= λ[0] . . . s . . .λ[n], then (λ| ≤ s) is the sequence
λ[0] . . . s, and (λ| ≥ s) equals s . . .λ[n]. The empty sequence is written ε. We
notev andw respectively the prefix and suffix relations over the set of sequences.

Assume that an operation op is invoked in λ then later returns some response
r to the local process. This corresponds respectively to the steps inv(op) and
resp(op, r) in λ. We note (λ|op) the sub-sequence of steps (λ| � inv(op)| �
resp(op, r)), where � and � are respectively the reflexive closure of the happen-
before relation (≺) and the reflexive closure of the converse of ≺. For instance,
(λ|announce(c)) refers to the steps taken in λ to announce command c.

A.2 Technical Lemmas

Below, we state a few results that concern nice runs of a protocol. As pointed
out previously, in a nice run there is no failure and the failure detector always
returns the same value. In this context, our first lemma is similar to Lemma 1 in
FLP [64].

Lemma 3. Consider two finite nice runs λλ′ and λλ′′. If proc(λ′)∩ proc(λ′′) =∅,
then λλ′λ′′ is a nice run.

Proof. Follow from the model definition.

Lemma 4. Consider a nice run λ = λ′ss′λ′′. If proc(s) 6= proc(s′) and there is no
message m such that s = send(m) and s′ = recv(m), then λ̂= λ′s′sλ′′ is a nice run.

Proof. First, we establish the well-formedness of λ̂. Consider some receive step
recv(m) in λ̂. As λ is well-formed, send(m) <λ recv(m). By hypothesis, s 6=
send(m), thus send(m)<λ̂ recv(m).

Then choose some process p. We have, (λ̂|p) = (λ′|p)(s′s|p)(λ′′|p), by dis-
tributivity of the projection operator. It remains to show that (s′s|p) = (ss′|p).
There are three cases to consider: (Case proc(s) = p). As proc(s) 6= proc(s′), we
have (s′s|p) = s = (ss′|p). (Case proc(s′) = p). This case is symmetrical to the

1This is particularly true for a nice run, since the failure detector history is constant.
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previous one. (Otherwise). We have (s′s|p) = ε = (ss′|p). It follows that λ̂ is
indistinguishable from λ to Π.

Since λ̂ is well-formed and λ̂ is indistinguishable from λ to Π, then λ̂ is a
run. This run has the same failure pattern as λ, i.e., it is failure-free. Moreover,
the failure detector behave perfectly. As a consequence, λ̂ ∈ Rn.

In the above lemma s′ left-move with s [96], written s Ã s′. By extension, we
may deduce that for some run λλ′ and some set of processes P,

Corollary 5. If none of the messages received in S = (λ′|P) was sent in (λ′ \ S),
then λS(λ′ \ S) is a nice run

Corollary 6. If none of the messages sent in S = (λ′|P) is received in λ′, then
λ(λ′ \ S)S is a nice run.

When A and B are sequences of steps, AÃ B denotes that B left-moves with
A, that is ∀(s, s′) ∈ A× B. s Ã s′.

Lemma 7. ∀λ ∈ Rn.∀λ′ v λ.λ′ ∈ Rn

Proof. Choose some run λ and some prefix λ′ v λ. By construction λ′ is a run.
Moreover as the failure detector behave perfectly in λ, it also behaves perfectly
in λ′. From which it follows that λ′ is a run.

A.3 Proofs of Theorems 1 and 2

This section contains the proofs of the theorems stated in §3.2 which we deferred
for readability.

Â Theorem 1. Generic SMR reduces to Leaderless SMR.

Proof. We build a Generic SMR protocol A atop a Leaderless SMR protocol B as
follows. Each node running protocol B holds a local copy of a partially ordered
log L. This log is initially empty. Operation submit(c) in A is mapped to operation
B.submit(c). When command c gets executed in B, we apply the following update
to L: L← L • c. Clearly, this construction maintains that L is a partially ordered
graph over time. Furthermore, at the light of the definition of the operator •, it
is easy to see that any two conflicting commands gets ordered. In addition, this
construction satisfies the three properties that define Generic SMR, as shown
below.
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(Non-triviality) In algorithm B, a command c appears in some process depen-
dency graph only if it was submitted before. Hence, in algorithm A, c is in
L only if it was submitted before.

(Stability) Recall that this property holds when, for any partially ordered log
L, at any point in time t, Lt v Lt+1. The • operator does not remove
edges or nodes, thus Lt is a subgraph of Lt+1. Now assume, for the sake
of contradiction, that Lt does not prefix Lt+1. There must exist c in Lt .V
such that (d,c) ∈ Lt+1.E and (d,c) /∈ Lt .E. If (d,c) /∈ Lt then d ∈ Lt .V , as d
cannot be added between time t and t +1 by definition of •. This leads to
(d,c) /∈ Lt+1; a contradiction.

(Consistency) We prove that for any two processes p and p′, the set {Lp, Lp′}
is compatible. To achieve this, we show that L = (Lp ∪ Lp′) is a partially
ordered log that suffixes both Lp and Lp′ . To this end, let us consider two
conflicting commands c and d in L.

Â Claim 8. Commands c and d cannot be in Lp.V ⊕ Lq.V .

Proof. By contradiction, assume c and d belong to different logs (wlog. say
respectively Lp and Lp′). Applying Invariant 1 to p leads to the fact that
d /∈ deps∗(c). Symmetrically from process p′, we have that c /∈ deps∗(d). A
contradiction to the Consistency property of Leaderless SMR.

Â Claim 9. For any process q ∈ {p, p′}, if (c,d) is in L.E and d is in Lq.V
then (c,d) is in Lq.E.

Proof. Since (c,d) ∈ L.E, (c,d) belongs to (say) Lp.E. This leads to c→ d at
p By Invariants 1 and 2, c ∈ deps∗(d) at p. Now, if d ∈ Lq.V , q executes d. It
follows that d was stable at q. By the Stability property of Leaderless SMR,
c ∈ deps∗(d) at q. As a consequence, c→ d at q and (c,d) is in Lq.E.

The end of the proof goes as follows.

1. Lp v L ∧ Lp′ v L
From Claim 9.

2. L is a partially ordered log.

(a) ∀c,d ∈ L.V.c� d⇒ ((c,d) ∈ L.E ∨ (d,c) ∈ L.E)
From Claim 8.
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(b) L is a directed acyclic graph.
If L is cyclic, by Claim 9, either Lp or Lp′ is cyclic. Contradiction.

Â Theorem 2. Algorithm 2 implements Leaderless SMR.

Proof. Assume a run λ of Algorithm 2.

(Validity) Let c be a decided command at some process p in λ. By definition,
deps(c) 6= ⊥ at process p. This is only possible through the execution of
line 5 or line 9. If line 5 gets executed, then p took step submit(c) previ-
ously. Otherwise, line 9 is executed. To execute line 9 it is necessary to
receive a message (c, D) at line 8. Such a message is sent at line 6 by some
process q. Executing line 6 implies that line 5 was executed by q before,
which boils down to the previously analyzed case.

(Consistency) Let a and b be two conflicting committed commands at some pro-
cess p. By definition, the two commands are committed when deps(a), deps(b) ∈
2C holds at p. Similarly to the Validity property, this is the case when line 5
or line 9 is executed. As seen in the proof of the validity property, executing
line 9 can be traced back to the execution of line 5. Wlog. we only analyze
the case where line 5 is executed hereafter.

By the Validity property of consensus, the value D assigned to deps(a) at p
was proposed before by a process q. The operation that yields D is executed
at line 3 by q through the use of the DDS service. Similarly, we may define
a process q′ such that the value of D′ = deps(b) at p is the result of a call
to announce(b) by q′.

By the Visibility property of the DDS service, we have either b ∈ D or
a ∈ D′. Hence, the Consistency property of Leaderless SMR holds.

(Stability) Assume that c is eventually stable at processes p and p′. Let E and
E′ be the value of deps(c) at respectively p and p′ when this happens. In
what follows, we prove that E′ = E.

To establish this result, we first show that processes agree over aborted
commands. Let q and q′ be two processes that decide some command a.
As with prior properties, we assume wlog. that such a decision is taken at
line 5. Assume q aborts a. The output of line 5 depends on the computation
at lines 3 and 4. Since command a is aborted, necessarily q takes the slow
path. By the Validity property of CONSa, > is proposed to CONSa by some
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process q′′. This value is the response of announce(a) at line 2 by q′′. Then,
consider the following two cases. (i) If q′ takes also the slow path, by the
Agreement property of CONSa, it should also abort a. (ii) Otherwise q′

follows the fast path. In that case, by the Validity property of CONSa, q′

returns some value (l, true) from announce(a) at line 2. Since q′′ returns
> from announce(a), this case contradicts the Weak Agreement property of
the DDS service.

Now, let F and F ′ be the value of deps(c) first assigned by respectively p
and p′. Wlog. assume that this assignment occurs at line 5. We show that
for every command a ∈ F ⊕ F ′, a, calling announce(a) returns >. If p and
p′ take the slow path, then F = F ′ by the Agreement property of CONSc.
Otherwise, one of the two processes, say p, takes the fast path. This implies
that p returns (F, true) from announce(a). If p′ takes also the fast path,
(F ′, true) is returned from announce(a). Otherwise, by the Validity property
of CONSa, some process p′′ returns (F ′, false) from announce(a). In both
cases, the claim follows from the Weak Agreement property of the DDS

service.

We now prove that F and F ′ converge toward E, the value of deps(c) when
c is stable at p. These sets are bounded and the only update operation is the
removal of an aborted command. Pick a ∈ F ⊕ F ′. (Case a ∈ F \ F ′) Since
c is stable, eventually a is decided. Thus, eventually p removes a from F .
(Otherwise) Symmetrical to the previous one.
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Appendix B

The ROLL Theorem

Below, we define formally the three properties introduced in §3.2.4. Then, we
present two technical lemmas that characterize the behavior of Leaderless SMR
protocols during nice runs. These lemmas are used to show the ROLL theorem
and the chaining effect in the next section.

B.1 The Properties

In §3.2.4, we introduce Reliability, Optimal Latency and Load Balancing as three
core properties of Leaderless SMR. Reliability guarantees that the protocol makes
progress even if up to f failures occur. This means that once a command is
submitted, the protocol must take a decision, possibly aborting it. Given a run λ,
let us write c ∈ λ when submit(c) is invoked in λ. Then, we define this property
as follows.

(Reliability) In every run, if there are at most f failures, every submitted com-
mand gets eventually decided at every correct process.

∀λ ∈ R .∀c ∈ λ.∀q ∈ correct(λ). faults(λ)≤ f ⇒ decideq(c) ∈ λ

Optimal Latency requires that in a nice run every command commits after
two message delays. Moreover, in the absence of contention the command is
immediately stable.

Message delays measure the time complexity of a sequence of steps, ne-
glecting the cost of local computations. In detail, the latency of a causal path
ρ, written ∆(ρ), is the number of consecutive send(m) then recv(m) steps in

89



90 B.2 Characterizing ROLL protocols

ρ. Denoting ≺ the happens-before relation [87] in a run λ, cpaths(λ) con-
tains all the maximal chains in (λ,≺). The latency of λ is then defined as
∆(λ) = max{∆(ρ) : ρ ∈ cpaths(λ)}.

To track contention during a run, we introduce function contended(λ,c). This
function returns true when there exists a command d conflicting with c such that
d is submitted before c, and d is not committed at coord(c) when c is submitted.
Optimal Latency is then specified as follows.

(Optimal Latency) During a nice run, every call to announce(d) returns a tuple
(D, b) after two message delays such that (i) if there is no concurrent con-
flicting command to c, then b is set to true, (ii) D ∈ 2C , and (iii) for every
d ∈ D, d was announced before.

∀λ ∈ Rn.∀c ∈ C . resp(announce(c), (D, b)) ∈ λ⇒ ∧ ∆(λ|announce(c)) = 2
∧ (b = true∨ contended(λ,c))
∧ D ∈ 2C

∧ ∀d ∈ D. invp(announce(d))
≺λ resq(announce(c))

An important property of Leaderless SMR protocols is to distribute the task of
ordering conflicting commands across processes. This characteristic is captured
by the Load Balancing property. In detail, this property requires that during a
nice run (i) progress can be made using any fast path quorum, and (ii) when
returning from the announcement of a command, no message gets undelivered.

(Load balancing) During a nice run, any fast path quorum in FQuorums(c) can
be used to announce a command c.

∀λ ∈ Rn.∀c /∈ λ.∀Q ∈ FQuorums(c).∃λ′. ∧ λ(λ′|announce(c)) ∈ Rn

∧ proc(λ′|announce(c)) =Q
∧ pending(λ′|announce(c)) =∅

B.2 Characterizing ROLL protocols

Assume a ROLL protocol P and consider some nice run λ of P during which
command c is announced. SinceP ensures Optimal Latency, announcing c takes
two message delays. This means that during the announcement of c a set of
requests is sent by the coordinator to which a set of processes replies. The
lemma below characterizes precisely this pattern, where Γ is a shorthand for
λ|announce(c).
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Lemma 10. ∀C ∈ cpaths(Γ ).∃m, m′,ρ,ρ′,ρ′′.C = invcoord(c)(announce(c)) · ρ ·
send(m) ·
recv(m) ·ρ′ · send(m′) · recv(m′) ·ρ′′ · rescoord(c)(announce(c))

Proof. Let s be the smallest element in C . Since C ∈ cpaths(Γ ) holds, we have
that s ∈ λ| � invcoord(c)(announce(c)). Therefore invcoord(c)(announce(c)) � s.
The causal path C is a maximal chain in Γ , thus s = invcoord(c)(announce(c)).
Analogously, if we define s′ as the largest element in C , we have that s′ =
rescoord(c)(announce(c)).

Then,∆(C ) = 2 by Optimal Latency. As a consequence, there exists two mes-
sages m and m′ and three sequences of steps ρ, ρ′ and ρ′′ such that (i) m is send
by coord(c) after invcoord(c)(announce(c)) ·ρ; (ii) m is received by some process q
that executes the steps ρ′ then sends a message m′ to coord(c); and (iii) coord(c)
receives m′ and executes the steps ρ′′ before the step rescoord(c)(announce(c)).

At the light of the above characterization, we call request the first message
exchanged in some causal path of Γ . Similarly, a reply is the answer received by
coord(c). We note mc and m′

c
respectively the last request sent and the first reply

processed by the coordinator. The steps Sc, Mc and Rc below define a partitioning
of Γ .

• Sc are the steps taken from announcing c to the sending of mc at the coor-
dinator. Formally, Sc = (Γ |coord(c)| ≤ send(mc)).

• Rc are the steps taken by coord(c) after receiving m′
c

until the announce-
ment returns. In other words, Rc = (Γ |coord(c)| ≥ recv(nc)).

• Mc are the steps taken during the announcement of c which are neither in
Sc, nor in Rc. That is, Mc = (Γ \ (Sc ∪ Rc)).

Based upon this partitioning, the two lemmas that follow characterize the
behavior of ROLL protocols during nice runs. They are the basic building blocks
of our two complexity results.

Lemma 11. ∀λ ∈ Rn.∀c /∈ λ.λScMcRc ∈ Rn ∧∆(Mc) = 0.

Proof. Assume a command c /∈ λ and some fast path quorum Q ∈ FQuorums(c).
By Load Balancing, we may suffix λ with λ′ such that announce(c) occurs in λ′,
only the processes in Q execute steps in λ′|announce(c), and λ(λ′|announce(c))
is a nice run. From the definitions of Sc, Mc and Rc, λ

′ and ScMcRc contain the
same steps. It remains to show that taking such steps in this order remains legal.
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Let us note Γ = λ′|announce(c). Observe that none of the messages received
in Sc was sent in Γ \ Sc. Otherwise, by Optimal Latency, c takes (at least) three
message delays. Applying Corollary 5, λSc(Γ \ Sc) ∈ Rn. In the same vein, none
of the messages sent in Rc is received in Mc = (Γ \ Sc) \ Rc. Therefore we have
that λSc((Γ \ Sc) \ Rc)Rc ∈ Rn by Corollary 6. By definition, Mc = (Γ \ Sc) \ Rc.

Now, assume by contradiction that ∆(Mc) > 0. Let m be the message ex-
changed during Mc. Since send(m) and recv(m) belongs to Γ , there exists a causal
path (C) starting with invcoord(c)(announce(c)) and ending with rescoord(c)(announce(c),)
that contains these two steps. Applying Lemma 10,C is of the form invcoord(c)(announce(c))·
ρ·send(m)·recv(m)·ρ′ ·send(m′)·recv(m′)·ρ′′ ·rescoord(c)(announce(c)). Message m
is neither a request, nor a reply, this implies that ∆(ρ′) = 1, and thus ∆(C )≥ 3,
contradicting Optimal Latency.

Lemma 12. ∀λ ∈ Rn.∀P ⊆ Π.λSc(Mc|P) ∈ Rn

Proof. We start by picking c ∈ C such that c /∈ λ. This allows us to apply
Lemma 11 to achieve the following: λScMcRc ∈ Rn. Applying Lemma 7, we
have that: λScMc ∈ Rn. Then, let X = Mc|P, we know then that none of the
messages received in X were sent in Mc \ X (by Lemma 11, ∆(Mc) = 0). There-
fore, we can apply Corollary 5 to obtain λScX (Mc \ X ) ∈ Rn. Finally, applying
Lemma 7 gives us: λSc(Mc|P) ∈ Rn.

B.3 Proof

We now proceed to proving the ROLL theorem with the above two technical
lemmas. The proof follows the sketch depicted in §3.3.

Â Theorem 3 (ROLL). Consider an SMR protocol that satisfies the ROLL prop-
erties. Then, it is true that 2F + f − 1≤ n.

Proof. By contradiction, assume a ROLL protocol that satisfies 2F + f − 1 ≤ n.
Let c1 and c2 be two conflicting commands in C .

Define a partitioning P1, P2 and Q of Π, the set of processes, such that (i) P1∩
P2 =∅; (ii) Q = Π(\P1∪P2); (iii) |P1|= |P2|= F−1; and (iv) |Q|= n−2(F−1).

The CAP impossibility result [71] tells us that 2F < n. As a consequence,
there exist at least two distinct processes p1 and p2 in Q. Let Q1 = P1 ∩Q \ {p2}
and Q2 = P2 ∪Q \ {p1}.

By applying Lemma 11 to the initial state, λ1 = S1M1R1 ∈ Rn, By Optimal
Latency, the fast path is taken in λ1 and deps(c1) = ∅ holds at p1 at the end of
the run. Symmetrically, we define λ2 = S2M2R2 ∈ Rn.
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By applying Lemma 12 to λ1, λ′ = S1(M1|P1) ∈ Rn. In a symmetrical man-
ner, λ′′ = S2(M2|P2) ∈ Rn. Observe that proc(λ′) ∩ proc(λ′′) = ∅. Thus,
by Lemma 3, we obtain S1(M1|P1)S2(M2|P2) ∈ Rn. From Corollary 5, σ =
S1S2(M2|P2)(M1|P1) ∈ Rn.

Let σ̂ be an infinite suffix of σ in which all the processes in Q are faulty.
Such a suffix exist because we consider realistic failure detectors. As |Q| ≤ f ,
c1 and c2 are eventually stable by Reliability. Let σ′ be the shortest suffix of σ̂
for which this is true at some process p. We define λ3 = σσ′. By construction,
proc(σ′) ⊆ P1 ∪ P2.

In what follows, we construct a fourth run, λ4. We will show that λ4 is indis-
tinguishable from λ3 to p2, while at the same time being indistinguishable from
λ1 to p1. This implies that the same decision about deps(c1) at p1 in λ1 is taken
by p in λ3.

By Lemma 11 applied to λ′′, S2(M2|P2)S1M1R1 ∈ Rn. Then, partitioning M1

using Lemma 12, S2(M2|P2)S1(M1|P1)(M1|Q∗∪{p1})R1 ∈ Rn. By applying Corol-
lary 5, we obtain σ(M1|Q∗ ∪ {p1})R1 ∈ Rn.

Let λ4 be a run with the same failure pattern and failure detector history as
λ3, and in which the steps σ(M1|Q∗∪{p1})R1σ

′ are taken. Since Q∩ (P1∪ P2) =
∅, λ4 is not distinguishable from σ(M1|Q∗ ∪ {p1})R1 to Q. Similarly, λ4 is not
distinguishable from σσ′ to P1 ∪ P2. Thus λ4 is well-formed and a run of the
protocol.

Â Claim 13. λ1|{p1}= λ4|{p1}

Proof. λ1|p1 = (S1M1R1)|{p1}= S1(M1|{p1})R1 = λ4|{p1}

Â Claim 14. λ4|p = λ3|p

Proof. λ4|p = (M2|p)(M1|p)(σ′|p) = λ3|p

Claim 13 implies that c1 is stable at p1 in λ4 and that deps(c1) =∅. Similarly,
Claim 14 leads to c1 stable at p in λ4. In addition, the value of deps(c1) at p in λ4

is the same as in λ3. By the Stability property of Leaderless SMR, deps(c1) = ∅
at p in λ3.

A symmetric argument to the one above can be made using run λ2 and a run
λ5. This leads to the conclusion that p decides deps(c2) =∅ in λ3.

From what precedes, run λ3 contradicts the Consistency property of Leader-
less SMR.
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B.4 Chaining e�ect

This section shows how a chaining effect may occur in ROLL-optimal protocols.
To establish this result, we construct a 2-asynchronous nice run with a pending
chain of n commands. The run is built inductively starting from a solo run during
which a single command is submitted.

At coarse grain, our construction works as follows. Let σi be a run with a
chain of size i and some pending command ci. We extend σi with the partial
announcement of a new command ci+1. Then, we take the decision for ci to
obtain σi+1. In σi+1, command ci+1 is pending, yet coord(i) does not know if it
is committed or not. We argue that in the latter case, it could have missed ci.
Thus, coord(i) must add ci+1 to the dependencies of ci, forming a new chain of
size i + 1.

B.4.1 An Inductive Reasoning

We build our result inductively using a family of k distinct commands (ci)i∈[1,k].
Each command is associated with a nice run (σi), a fast path quorum (Q i), a
subset of f −1 processes (Pi), and a process (qi). We shall establish that at rank
i the following property holds.

P(i) := ∃σi,Q i, Pi, qi, Γi, Γ
′
i .

∧ σi = ΓiSi(Mi|Pi)Γ ′i (Mi|Q i \ Pi)Ri

∧ proc(Γ ′i )∩Q i = Pi

∧ (Si(Mi|Pi)(Γ ′i |Π \ {qi}))Ã (Γ ′i |qi)
∧ σi ` cici−1 · · ·c1
∧ pending(σi) =∅
∧ ∀ρ ∈ cpaths(Γ ′i ). |ρ| ≤ 1
∧ σi ∈ 2-asynchronous

In the above definition, the first two clauses give the general form of σi.
The third clause indicates that the steps (Γ ′i |qi) left-move with Si(Mi|Pi). As we
shall see later, these steps are taken by the coordinator of the next command
(i.e., ci+1). The fourth clause requires that a chaining effect occurs with prior
commands. The fifth and sixth clause upper-bound the asynchrony in σi. They
are used to show by induction that the run is 2-asynchronous (last clause).

The remaining of this section is devoted to showing that P(k) holds. From
which we may deduce the following theorem (in §3.4).
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Â Theorem 4 (Chaining E�ect). Assume a ROLL-optimal protocol P . For any
k > 0, there exists a 2-asynchronous nice run ofP containing a live chain of size
k.

Proof. The formal statement of the theorem is: ∀k > 0.∃λ ∈ 2-asynchronous.∃(ci)i∈[1,n] ⊆
C .λ ` ckck−1 · · ·c1 ∧ cn /∈ commit. To show this, let σk be the 2-asynchronous
run given by ΓkSk(Mk|Pk)Γ ′k(Mk|Qk \ Pk)Rk, by applying P(k). Consider its prefix
ΓkSk(Mk|Pk)Γ ′k. Command ck is not committed in this run yet. Moreover, by P(k),
this run contains a chain ckck−1 · · ·c1.

B.4.2 Preliminaries

For i = 1, we chose Q1 as any set of (n − F) processes in Π. P1 is any subset
of f − 1 processes in Q1. This set is constructable since by ROLL-optimality n−
F − ( f − 1) = F − 2 and by CAP F > 1. coord(c1) is any process in Q1 \ P1.
Process q1 is chosen outside of Q1. Applying Lemma 12 then Lemma 11 leads to
S1(M1|P1)(M1|Q1 \ P1)R1. This gives us immediately P(0) where both Γ1 and Γ ′1
are empty.

Figure B.1 illustrates how we construct the quorum and process variables at
rank i+1 from the ones at rank i. Such a construction ensures the following list
of facts that are used to establish P(i > 1).

(F1) coord(ci+1) = qi

(F2) Pi+1 =Q i+1 ∩Q i

(F3) Pi+1 ∩ Pi =∅

(F4) qi+1 /∈Q i+1 ∪ {coord(ci)}.

(F5) (coord(ci−1)∪ Pi+1)∩ (coord(ci)∪ Pi) =∅

In detail, we build Q i+1 as Pi+1 ∪ P̂i+1 ∪ {coord(ci−1)}, where: (a) P̂i+1 are
n − F − f + 1 processes outside of Q i; (b) Pi+1 are f − 1 processes picked in
Q i \ (Pi ∪ coord(ci)); and (c) coord(ci+1) is set to qi. Then, process qi+1 is chosen
in Q i outside of Pi+1 ∪ {coordi}.

Let us establish the correctness of this construction. For starter, defining P̂i+1

is possible. Indeed, there are F processes outside of Q i from which we need
n − F − f + 1 of them. By ROLL-optimality, F − (n − F − f + 1) = −n + 2F +
f − 1 ≥ 0. Then, building Pi+1 requires f − 1 processes in Q i \ (Pi ∪ coord(ci)).
We have n − F = −1 + f + F by ROLL and by CAP F > 1. Thus, there are
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Q i

Q i−1
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P̂i+1
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Figure B.1. The symbol × represents coordinator placement

enough processes. The above reasoning also tells us that we may pick qi+1 outside
of Pi+1 ∪ {coordi} in in Q i. Then, (a) (F1) is true by construction; (b) Q i+1 is
defined as Pi+1 ∪ P̂i+1 ∪ {coord(ci−1)}. P̂i+1 does not intersect with Q i. At rank i,
qi /∈Q i and coord(ci+1) = qi. Thus, coord(ci+1) /∈Q i. This establishes (F2); (c) By
construction, we have (F3); and (d) qi+1 is chosen in Q i outside of Pi+1∪{coordi}.
Hence, it is not in {Q i+1 ∪ {coord(ci)}, giving us (F4). (e) (F5) follows from the
conjunction of (F3) and (F3).

B.4.3 Inductive step: P(i)⇒P(i + 1)

Construction

Let us consider the prefix ΓiSi(Mi|Pi)Γ ′i of σi. Applying Lemma 12, we obtain
the following nice run: ΓiSi(Mi|Pi)Γ ′i Si+1(Mi+1|Pi+1). As a consequence, from
ΓiSi(Mi|Pi)Γ ′i one may continue into either (Mi|Q i Pi)Ri or Si+1(Mi+1|Pi+1). By
(F5) we know that the sets proc((Mi|Q i \ Pi)Ri) and proc(Si+1(Mi+1|Pi+1)) do not
intersect. Applying Lemma 3, we obtain the run: ΓiSi(Mi|Pi)Γ ′i Si+1(Mi+1|Pi+1)(Mi|Q i\
Pi)Ri.

Next, observe that from ΓiSi(Mi|Pi)Γ ′i Si+1(Mi+1|Pi+1) both (Mi|Q i \ Pi)Ri and
(Mi+1|Q i+1 \ Pi+1)Ri+1 are possible. From (F1) and (F5), the sets (Q i \ Pi) ∪
{coord(ci)} and (Q i+1 \ Pi+1) ∪ {coord(ci+1)} are disjoint. By Lemma 3, σi+1 =
Γi+1Si+1(Mi+1|Pi+1)Γ ′i+1(Mi+1|Q i+1\Pi+1)Ri+1 is a nice run , where Γi+1 = ΓiSi(Mi|Pi)Γ ′i ,
and Γ ′i+1 = (Mi|Q i \ Pi)Ri.

Correctness

The claims that follow establish the correctness of the above construction with
respect to the properties at rank i + 1.

Â Claim 15. proc(Γ ′i+1)∩Q i+1 = Pi+1

Proof. By construction, proc(Γ ′i+1) = (Q i \ Pi) ∪ coord(ci). On the other hand by
(F2), Pi+1 =Q i ∩Q i+1. The result follows from (F5).
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Â Claim 16. (Si+1(Mi+1|Pi+1)(Γ ′i+1|Π \ {qi+1}))Ã (Γ ′i+1|qi+1)

Proof. By construction, Γ ′i+1 = (Mi|Q i \ Pi)Ri. Applying (F4), qi+1 /∈ Q i+1 ∪
{coord(ci)}. Hence, (Γ ′i+1|qi+1) = (Mi|qi+1). Moreover, these steps left-move with
(Γ ′i+1|Π \ {qi+1}) by Lemma 11 and with (Si+1(Mi+1|Pi+1) since qi+1 /∈Q i+1.

Â Claim 17. σi+1 ` ci+1→ ci

Proof. We now prove that a chaining effect occurs between the two commands
ci and ci+1 in σi+1. To this end, we first construct a nice run σ in which ci+1 is
committed with ci /∈ deps(ci+1). Then, we establish that σ is indistinguishable
from σi+1 to the coordinator of ci. This implies that coord(ci) must add ci+1 to
the dependencies of ci in σi+1.

With more details, our reasoning is as follows. First, consider ΓiSi(Mi|Pi)Γ ′i
that prefixes σi. Since coord(ci+1) = qi and Si(Mi|Pi)Ã Γ ′i |qi by our induction hy-
pothesis, this run is equivalent to Γi(Γ ′i |coord(ci+1))Si(Mi|Pi)(Γ ′i |Π \ coord(ci+1)).
From which the prefix Γi(Γ ′i |coord(ci+1)) is obtained. Applying Lemma 11 to both
ci and ci+1 leads to σ′:=Γi(Γ ′i |coord(ci+1))(SMR)i+1(SMR)i. This run clearly sat-
isfies that ci+1→ ci.

The runσ is then derived from a series of rewriting ofσ′. Applying Lemma 11
to (SMR)i then (F5) leads to Γi(Γ ′i |coord(ci+1))Si(Mi|Pi)(SMR)i+1(Mi|Q i \ Pi)Ri.
Following the same approach, Γi(Γ ′i |coord(ci+1))Si(Mi|Pi)Si+1(M |Pi+1)(Mi|Q i\Pi)Ri(M |Q i+1\
Pi+1)Ri+1. The runσ is then defined as Γi(Γ ′i |coord(ci+1))Si(Mi|Pi)Si+1(M |Pi+1)(Mi|Q i\
Pi)Ri. We observe that, since coord(ci) takes the same steps in both σ and σ′,
then ci+1→ ci holds in σ.

Let us then examine the steps of coord(ci) in the run σi+1. To this end,
consider ΓiSi(Mi|Pi)Γ ′i Si+1(M |Pi+1)(Mi|Q i \ Pi)Ri that prefixes σi+1. By the as-
sumption hypothesis P(i), the steps Γ ′i |coord(ci+1) left-move with Si(Mi|Pi)(Γ ′i |Π\
coord(ci+1)).

This leads to the run Γi(Γ ′i |coord(ci+1))Si(Mi|Pi)(Γ ′i |Π\{coord(ci+1)})Si+1(M |Pi+1)(Mi|Q i\
Pi)Ri.

Applying again the assumption hypothesis, proc(Γ ′i |Π\{coord(ci+1)})∩Q i =∅.
This leads to the following equivalent run Γi(Γ ′i |coord(ci+1))Si(Mi|Pi)Si+1(M |Pi+1)(Mi|Q i\
Pi)Ri(Γ ′i |Π\{coord(ci+1)}). We pick the prefix Γi(Γ ′i |coord(ci+1))Si(Mi|Pi)Si+1(M |Pi+1)(Mi|Q i\
Pi)Ri. In this prefix, coord(ci) takes the same steps as inσ. Hence, ci+1→ ci holds
in σi+1.

Â Claim 18. pending(σi+1) =∅

Proof. By induction, no message is pending in σi. Consider then a message sent
in (SMR)i+1. By Load-Balancing, this message is received in this sequence of
steps.
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Â Claim 19. ∀ρ ∈ cpaths(Γ ′i+1). |ρ| ≤ 1

Proof. This claims follows from the definition of Γ ′i+1.

Â Claim 20. σi+1 ∈ 2-asynchronous

Proof. Assume that a message m is sent in σi+1. From Claim 19, m is received
in σi+1. Below, we conduct a case analysis depending on the position of recv(m)
in σi+1. Our analysis shows that any path ρ concurrent to m is at most of length
two.

• (Γi+1) If ρ is concurrent to m in σi+1, it is also concurrent to m in σi. The
induction hypothesis implies that |ρ| ≤ 2.

• (Si+1(Mi+1|Pi+1) σi does not contain a pending message. Thus, m is sent by
coordi + 1 in Si+1. Applying Lemma 11, ∆(Mi+1) = 0 implies that |ρ|= 1.

• (Γ ′i+1) By Load-Balancing, m is sent in (SMR)i. If ρ ends in Γ ′i , then by
the induction hypothesis ρ is at most of size 2. Otherwise, the last mes-
sage in ρ is sent in Si+1(Mi+1|Pi+1) by the coordinator of ci+1. In that case,
(Γ ′i |coordi + 1)Ã Si(Mi|Pi)(Γ ′i |Π \ coordi + 1) implies that |ρ|= 1.

• ((Mi+1|Q i+1 \ Pi+1)Ri+1) send(m) occurs during the same sequence of steps,
or it happens in Si+1(Mi+1|Pi+1). The former case leads to |ρ| = 1. In
the later, as no message sent in Γ ′i+1 is pending, ρ is fully included in
Si+1(Mi+1|Pi+1)Γi+1. By Claim 19, every such path in is (at most) of size
2.



Appendix C

Linearizable objects with BLSMR

In what follows, we first introduce some preliminary notions. Then, we explain
how to implement any linearizable data type atop BLSMR. Our construction fol-
lows closely the one in [63], with a twist to accomodate byzantine processes.

C.1 Preliminaries

We base our reasoning and algorithms upon the notion of trace [53]. Two words
in a class contain the same commands and sort non-commuting ones in the same
order. A trace can be seen as as special case of the notion of c-struct used to
define the generalized consensus problem [90].

State machine.. We assume a sequential object specified by the follow-
ing components: (i) a set of states S ; (ii) an initial state s0 ∈ S ; (iii) a set
of commands C that can be performed on the object; (iv) a set of their re-
sponse values V ; and (v) a transition function τ : S × C → S × V . In the
following, we use special symbols ⊥ and > that do not belong to V . When
applying a command, we use .st and .val selectors to respectively extract the
state and the response value, i.e., given a state s and a command c, we let
τ(s, c) = (τ(s, c).st,τ(s, c).val). Without lack of generality, we consider that com-
mands are applicable to every state. A command c is a read if it does not change
the object state: ∀s.τ(s, c).st= s; otherwise, c is a write. We denote by Read and
Write the set of read and write commands.

Command words.. A command word x is a sequence of commands. The
empty word is denoted 1 and C ∗ is the set of all command words. We use the
following notations for a word x: |x | is the length of x; x[i ≥ 1] is the i-th
element in x; |x |c is the number of occurrences of command c in x . We write
c i ∈ x when c occurs at least i > 0 times in x . pos(c i, x) is the position of
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the i-th occurrence of command c in x , with pos(c i, x) = 0 when c i /∈ x . The
shorthand c i <x d j stands for pos(c i, x) < pos(d j, x). The set cmd(x) is defined
as {(c, i) : c i ∈ x}. The operator x \ c deletes the last occurrence of c in x (if such
an occurrence exists). By extension, for some word y , x \ y applies x \c for every
(c, i) ∈ cmd(y). We let v be the prefix relation induced by the append operator
over C ∗. The prefix of x up to some occurrence c i is the command word x |≤c i .
If c i /∈ x , then by convention x |≤c i equals 1. In case c appears once in x , x |≤c is
a shorthand for x |≤c1 .

Lemma 21. Consider a command c and two words x and y. Then, |x y|c equals
|x |c + |y|c. Moreover, if ck ∈ x y then pos(ck, x y) equals pos(ck, x), if k ≤ |x |c and
|x |+ pos(ck−|x |c , y) otherwise.

Proof. Follows from the definitions.

Equivalence of command words.. We define function τ∗ by the repeated
application of τ. In detail, for a state s we define τ∗(s, 1) = (s, nil), for some
symbol nil ∈ V , and if x is non-empty then we have:

τ∗(s, x) =

�

τ(s, x[1]), if |x |= 1;
τ∗(τ(s, x[1]).st, x[2] . . . x[n]), otherwise.

Two commands c and d commute, written c 6� d, if in every state s we have:

τ∗(s, cd).st= τ∗(s, dc).st;
τ∗(s, dc).val= τ∗(s, c).val;
τ∗(s, cd).val= τ∗(s, d).val.

Relation 6� is an equivalence relation overC . We write c ∦ d the fact that c and d
do no commute. Two words x , y ∈ C ∗ are equivalent, written x s y , when there
exist words z1, . . . , zk≥1 such that z1 = x , zk = y and for all i, 1 ≤ i < k, there
exist words z′, z′′ and commands c 6� d satisfying zi = z′cdz′′, zi+1 = z′dcz′′. This
means that a word can be obtained from another by successive transpositions of
neighboring commuting commands. One may show that us v holds when u and
v contain the same commands and order non-commuting ones the same way. In
such a case, commands have the same effects.

Lemma 22 ([53]). Relation x s y holds iff cmd(x) = cmd(y) and for any c ∦ d,
c i <x d j ⇔ c i <y d j.

Lemma 23. If x s y then for every command c, τ∗(s0, x |≤c i).val= τ∗(s0, y|≤c i).val.
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Proof. We show that the proposition holds if x = z′abz′′ and y = z′baz′′, for
a 6� b and words z′ and z′′. Obviously, this is true for any command c in z′. Now,
if a = c i, then the proposition holds by definition of relation 6�. A symmetric
argument holds for b = c i. Then, because a and b are commuting, we may
observe that τ∗(s0, z′ab).st = τ∗(s0, z′ba).st. From which, we deduce that the
result also holds if c i ∈ z′′. Now, applying the above claim to the definition of
x s y , we deduce that the proposition holds in the general case.

Command traces.. The equivalence class of x for the relation s is denoted
[x]. This is the set of words that order non-commuting commands in the same
way as x . Hereafter, we note Traces the quotient set of C ∗ by relation s. An
element in Traces is named a command trace. For any x , y, z ∈ C ∗, it is easy
to observe that if x s y holds, then both (zx s z y) and (xz s yz) are true.
As a consequence, s is a congruence relation over C ∗. It follows that Traces
together with the append operator defined as [x][y] = [x y] forms a monoid1.
Now, consider the natural ordering induced by the append operator on Traces.
In other words, [x]v [y] holds iff [x][z] = [y] for some [z]. One can show that
relation v is a partial order over Traces [53].

Lemma 24. If [x]v [y], then [x][y \ x] = [y].

Proof. From [x]v [y], there exists some z such that [x][z] = [y]. We show that
[y \ x] = [z]. If c i ∈ y and c i /∈ x , by Lemma 22, c i ∈ z. Conversely, if c i ∈ z then
c i /∈ x and by Lemma 22, c i ∈ y . Then, by applying again Lemma 22, we deduce
that c i <z d j ⇔ c i <y\x d j.

Lemma 25. If cmd(x) ⊆ cmd(y) and for any c ∦ d, c i <y d j ∧ d j ∈ x ⇒ c i <x d j,
then [x]v [y].

Proof. By Lemma 21, cmd(x(y \ x)) = cmd(y). Then, choose c, d ∈ C with
c ∦ d and c i <y d j. We show that c i <x(y\x) d j. Let k = |x |c and l = |x |d . (Case
l = j) By assumption. (Otherwise) If k = i then c i ∈ x and d j−l ∈ (y \ x). In the
converse case, c i−k and d j−l are both in (y \ x). We then conclude by applying
Lemma 21.

Lemma 26. If [x]v [y], then for every command c with c i ∈ x, τ∗(s0, x |≤c i).val=
τ∗(s0, y|≤c i).val.

Proof. From Lemma 24, x(y \ x)s y . Choose c i ∈ x . By Lemma 23, τ∗(s0, x(y \
x)|≤c i).val = τ∗(s0, y|≤c i).val. Since c i ∈ x , c i /∈ (y \ x) and x(y \ x)|≤c i = x |≤c i .

1Gerard Lallement. Semigroups and Combinatorial Applications. John Wiley & Sons, Inc.,
1979.
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Histories.. A history is a sequence of events of the form invi(c) or resi(c, v),
where i ∈ Π, c ∈ C and v ∈ V . The two kinds of events denote respectively an
invocation of command c by process i, and a response to this command returning
some value v. We write c ≺h d the fact that the response of c precedes the invo-
cation of command d in history h. For a process i, we let h|i be the projection of
history h onto the events by i. The following classes of histories are of particular
interest:

– A history h is sequential if it is a non-interleaved sequence of invocations
and matching responses, possibly terminated by a non-returning invoca-
tion.

– A history h is well-formed if (i) h|i is sequential for every i ∈ Π; (ii) each
command c is invoked at most once in h; and (iii) for every response
resi(c, v), an invocation invi(c) occurs before in h.

– A well-formed history h is complete if every invocation has a matching re-
sponse. We shall write complete(h) the largest complete prefix of h.

– A well-formed history h is legal if h is complete and sequential and for any
command c, if a response value appears in h, then it equals τ∗(s0, h|≤c).val.

Linearizability.. Two histories h and h′ are equivalent, written h s h′, if
they contain the same set of events. History h is linearizable [80] when it can
be extended (by appending zero or more responses) into some history h′ such
that complete(h′) is equivalent to a legal and sequential history l preserving the
real-time order in h, i.e., ≺h⊆≺l .

C.2 Algorithm

Algorithm 6 presents the pseudo-code of our construction atop BLSMR. Each
line of this algorithm is atomic. To execute a command c on the shared object,
a client process executes invoke(c). This sends a message to f + 1 replicas.
Upon receiving such a message, a process submits command c to BLSMR. Once
executed, the result of the command is then sent back to the client. The client
considers such a value once it has been received from f + 1 replicas.

Algorithm 6 employs the following variables:
– B is an instance of BLSMR abstraction together with the execution algo-

rithm depicted in Algorithm 1. The� relation is set to an over-approximation
of the non-commutativity relation among commands (∦).

– S is a local copy of the state of the sequential object under concern. Initially,
it equals s0.

– Variable λ stores the log of commands applied to the local copy.
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Algorithm 6 Linearizable objects with BLSMR – code at process i.

1: Local Variables:
2: L // An instance of BLSMR-E, with c ∦ d ⇒ c � d.
3: S← s0 // A local copy of the sequential object.
4: λ← 1 // A command word.
5:

6: invoke(c) := // Client
7: eff: choose Q ⊆ Π such that |Q|= f + 1
8: send(c) to Q
9:

10: respond(c) :=
11: pre: ∃v ∈ V ,Q ⊆ Π. |Q|= f + 1∧∀q ∈Q. recv(c, v) from q
12: eff: return v
13:

14: invoke(c) := // Replica
15: pre: recv(c) from client(c)
16: eff: B.submit(c)
17:

18: respond(c) :=
19: pre: B.execute(c)
20: eff: λ← λ • c; (S, v)← τ(S, c)
21: send(c, v) to client(c)

C.3 Correctness

In what follows, λ is a run of Algorithm 6 and h the corresponding history. For
some variable var, we denote by vari the value of var at process i. The notation
varλi refers to the value of vari at the end of the execution λ. For starters, we
prove that at any point in time a single occurrence of a command may appear in
λi.

Proposition 27. ∀i ∈ Correct. �(∀c ∈ C . |λi|c ≤ 1).

Proof. (by induction) λi is initially empty. Then, assume that a correct process
i appends c to λi at line 20. Command c is thus executed by BLSMR at line 19.
From the pseudo-code of Algorithm 1, this happens at most once. Hence, (|λi|c =
1) is true from that point in time.

The execution mechanism at line 20 applies in order the commands of λi to
update Si. Such an approach maintains the following two invariants:
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Proposition 28. ∀i ∈ Correct. �(Si = τ∗(s0,λi).st).

Proof. (by induction.) Initially λi = 1, leading to τ∗(s0,λi).st = s0. This co-
incides with the value of Si at start time. At line 20, variable Si is changed to
Si
′ = τ∗(Si,λ

′
i).st, with λ′i = λi • c. By induction, Si = τ∗(s0,λi).st. It follows

that:

Si
′ = τ∗(Si,λi • c).st

= τ∗(τ∗(s0,λi).st, c).st

= τ∗(s0,λ′i).st

Proposition 29. ∀resclient(c)(c, v) ∈ h,∃i ∈ Correct. v = τ∗(s0,λλi |≤c).val.

Proof. From line 11, client(c) received f + 1 times the response value v. This
implies that it received such a value from a correct process, say i. From the code
at line 21, v is the result of the computation at lines 19 to 21. Let λ be the value
of λi before this execution. Applying Proposition 28 leads to Si = τ∗(s0,λ).st.
Thus, we have v = τ∗(s0,λ • c).val. By Proposition 27, λλi |≤c = λ • c. Thus, the
claim holds.

The above proposition explains how the response values of h are computed.
We now construct a linearization of the commands submitted to BLSMR that is
consistent with these return values.

To this end, we first establish that commands are executed at the correct
processes in a sound order, similarly to [63]. Consider that c 7→i d holds if some
correct process i executes c before d. We define 7→ as the order in which the
correct replicas execute commands in Algorithm 6, that is 7→=

⋃

j∈Correct 7→ j.

Proposition 30. The transitive closure of 7→ forms an order over C .

Proof. By Invariants 1 and 2 of BLSMR and Proposition 28.

Then, we linearize the commands executed during history h as explained
below. Hereafter, we shall note this linearization δ.

Â CONSTRUCTION 1. Initially, δ is set to 1. Let E be the set
⋃

j∈Correct cmd(λ
λ
j ).

We append each command c ∈ E to δ following some linear extension of the 7→
relation over E.

Proposition 31. ∀i ∈ Correct. [λλi ]v [δ].
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Proof. For any λλi , we have cmd(λλi ) ⊆ cmd(δ). Now consider a pair of non-
commuting command (c, d) in δ, with c <δ d and d ∈ λλi . Observe that if c /∈ λλi
or d <λλi c, then d 7→i c holds; thus, we have necessarily c <λλi d. Applying
Lemma 25, [λλi ]v [δ].

Consider the complete, sequential and legal history l produced by applying
the commands in δ to s0 following the order <δ. For every pending command c
in h, if c has no response v in h, we append resi(c, v) to h, where i is the caller of
c and v the response of c in l. Name h′ the resulting history that by construction
completes h.

Proposition 32. l s h′

Proof. By applying Proposition 29, Proposition 31 and Lemma 26.

Proposition 33. ≺h⊆≺l

Proof. By construction of l and the fact that ≺h⊆<λ.

At the light of the last two propositions, we may conclude the result that
follows.

Theorem 34. For every run λ of Algorithm 6, the history h induced by λ is lin-
earizable.
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Résumé en Français

Les services internet modernes sont déployés sur une infrastructure en constante
expansion composée de plusieurs centres de données comprenant chacun des
milliers d’ordinateurs, souvent répartis dans le monde entier. Nos sociétés étant
de plus en plus dépendantes de ces services, leur indisponibilité a des conséquences
très étendues. Autrefois limitées aux coûts monétaires pour leurs propriétaires,
les défaillances de services affectent maintenant les entreprises et les commu-
nications dans le monde entier. Cette thèse vise à faire avancer l’état de l’art
sur les techniques utilisées pour construire des services distribués hautement
disponibles en fournissant de nouvelles abstractions et protocoles qui prennent
en compte ce nouveau paradigme à l’échelle planétaire.

Contexte

Pour atteindre une haute disponibilité, les services distribués répliquent souvent
leurs données critiques dans plusieurs répliques. Ainsi, en cas de panne, le ser-
vice reste opérationnel car les clients peuvent toujours y accéder par le biais
d’autres répliques en état de marche. Dans les systèmes distribués, la technique
classique pour mettre en œuvre de tels services tolérants aux pannes est appelée
State-Machine Replication (SMR) [122]. Elle permet à un ensemble de proces-
sus distribués (répliques) de construire un objet partagé linéarisable [80]. Dans
SMR, un service est défini comme une machine d’état déterministe avec un en-
semble de commandes et chaque processus maintient sa propre copie locale de la
machine. Un protocole SMR coordonne l’exécution des commandes appliquées
à la machine d’état, garantissant que les répliques restent synchronisées.

Au cœur du protocole SMR se trouve un protocole de consensus utilisé par
les répliques pour décider d’un ordre commun d’application des commandes.
Ces dernières années, le protocole de consensus le plus utilisé a été Paxos [88],
présent dans des systèmes bien établis comme le service de verrouillage Chubby
[35] et le magasin distribué Spanner [44]. Malgré son succès auprès des prati-
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ciens, Paxos présente des limites bien connues. Notamment, sa conception est
centrée sur une réplique leader responsable d’ordonner les commandes de tous
les clients. Une telle approche basée sur le leader est présente dans un large
éventail de protocoles SMR classiques (par exemple Raft [109]).

Motivation et problèmes de recherche

Le paradigme de réplication des services distribués modernes est de type géo-
réplication, c’est-à-dire que les répliques sont placées sur plusieurs sites géo-
graphiques. La géo-réplication permet une disponibilité accrue et une faible
latence, dès lors que les clients peuvent communiquer avec la réplique géo-
graphique la plus proche.

En raison de leur dépendance à l’égard d’une réplique leader, les protocoles
SMR classiques tels que Paxos et Raft offrent une évolutivité et une disponibilité
limitées en cas de géo-réplication (par exemple, les clients géographiquement
éloignés de la réplique leader souffriront d’une latence élevée lorsqu’ils inter-
agiront avec le système). Pour résoudre ce problème, des protocoles récents
tels que EPaxos [106] et Mencius [104] suivent plutôt une approche leaderless,
dans laquelle chaque réplique est capable de progresser tant qu’elle peut contac-
ter un sous-ensemble de ses pairs. Bien que cette nouvelle classe de protocoles
sans leader offre une approche prometteuse pour aborder la géo-réplication, leur
adoption à grande échelle est entravée par leur grande complexité et leur ap-
proche ad-hoc de l’absence de leader.

Dans le contexte de la géo-réplication, les blockchains sont une application
qui a fait l’objet de nombreuses recherches. Une blockchain peut être consid-
érée comme un registre de transactions inviolable, distribué et répliqué. Les
transactions entre les clients sont regroupées en blocs, chaque bloc est lié cryp-
tographiquement à un bloc précédent et un protocole de réplication résistant aux
panne arbitraires des répliques (panne Byzantine) est responsable de la réplica-
tion correcte de la chaîne de blocs entre les répliques. Tous les protocoles SMR
susmentionnés ont pour caractéristique commune de ne prendre en charge que
les panne bénignes des répliques et ne peuvent être utilisés tels quels dans le
contexte des blockchains.

Le protocole de chaîne de blocs le plus célèbre et qui a suscité l’intérêt dans
ce domaine est sans doute Bitcoin [107]. Le bitcoin suit le modèle permissionless,
où n’importe qui peut rejoindre le réseau et exécuter une réplique. Garantir la
cohérence de la blockchain dans un tel modèle, où les processus peuvent rejoin-
dre et quitter le réseau à tout moment, agir de manière malveillante pour leurs
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propres gains financiers et falsifier des identités, est particulièrement complexe
et coûteux (il s’appuie sur un protocole de réplication byzantin coûteux en cal-
cul [27]). Pour éviter les complexités du modèle précédent et les coûts qui y
sont associés, une alternative consiste à considérer un modèle différent (permis-
sioned) où l’appartenance à la blockchain est contrôlée par un ensemble d’entités
connues comme des entreprises. Dans ce cas, les blockchains sont souvent ali-
mentées par une réplication byzantine classique (SMR byzantine). Lorsque les
protocoles de blockchain avec permission suivent l’approche classique basée sur
les leaders, ils souffrent de problèmes d’évolutivité et de disponibilité, de la même
manière que leurs homologues non byzantins.

Contributions

Dans cette thèse, nous proposons un framework qui capture l’essence de la Ré-
plication de Machine D’état sans leader(Leaderless State-Machine Replication -
Leaderless SMR) et nous énonçons formellement certaines de ses limites.

Nous définissons la SMR sans leader et la décomposons en éléments de base
(§3.2). De plus, nous introduisons un ensemble de propriétés souhaitables pour
le SMR sans leader: (R)eliability, (O)ptimal (L)atency et (L)oad Balancing. Les
protocoles qui répondent à toutes les propriétés ROLL sont soumis à un com-
promis entre performance et fiabilité. Plus précisément, dans un système de n
processus, le théorème ROLL (§3.3) stipule que les protocoles SMR sans leader
sont soumis à l’inégalité 2F + f − 1 ≤ n, où n − F est la taille du quorum du
chemin rapide (fast path) et f est le nombre maximal de panne tolérées. Un
protocole est ROLL-optimal lorsque F et f ne peuvent pas être améliorés selon
cette inégalité. Nous établissons que les protocoles ROLL-optimaux sont soumis
à un effet de chaînage qui affecte leurs performances (§3.4). Comme EPaxos est
ROLL-optimal et Mencius non, l’effet de chaînage explique les résultats de per-
formance observés dans Figure 2.4. Enfin, nous discutons des implications de ce
résultat (§3.5) puis mettons notre travail en perspective (§3.6).

De plus, nous adaptons notre framework pour supporter les panne byzan-
tines et présentons le premier framework pour la SMR byzantine sans leader.
Nous montrons que, lorsqu’il est correctement instancié, il permet de contourner
le problème de scalabilité des protocoles SMR byzantins dirigés par des leaders.
La première instanciation d’intérêt est une version byzantine d’EPaxos [106]. La
seconde instanciation est un nouveau protocole que nous appelons Wintermute
(§4.3.3). Ce protocole a un comportement asymptotique globalement meilleur
que les protocoles SMR BFT traditionnels. Plus précisément, il présente une
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charge et une complexité de message inférieures à celles de l’art antérieur, ce
qui lui permet de contourner les problèmes d’évolutivité inhérents aux solutions
BFT, tels qu’ils se présentent, par exemple, dans le contexte des permissioned
blockchains.



Titre : Réplication de Machines à états sans leader: des fautes franches aux fautes byzantines
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Résumé :
Les services distribués modernes doivent être hautement
disponibles, car nos sociétés en sont de plus en plus
dépendantes. La manière la plus courante d’obtenir une
haute disponibilité est de répliquer les données dans plu-
sieurs répliques du service. De cette façon, le service reste
opérationnel en cas de pannes, car les clients peuvent être
relayés vers d’autres répliques qui fonctionnent. Dans les
systèmes distribués, la technique classique pour mettre en
œuvre de tels services tolérants aux pannes est appelée
réplication de machine d’état (State-Machine Replication,
SMR), où un service est défini comme une machine d’état
déterministe et chaque réplique conserve une copie locale
de la machine. Pour garantir la cohérence du service, les
répliques se coordonnent entre elles et conviennent de l’ordre
des transitions à appliquer à leurs copies de la machine d’état.
La réplication effectuée par les services Internet modernes
s’étend sur plusieurs lieux géographiques (géo-réplication).
Cela permet une disponibilité accrue et une faible latence,
puisque les clients peuvent communiquer avec la réplique
géographique la plus proche.
En raison de leur dépendance avec une réplique leader, co-
ordonnant les changements de transition, les protocoles SMR
classiques offrent une évolutivité et une disponibilité limitées
dans ce contexte. Pour résoudre ce problème, les protocoles
récents suivent plutôt une approche sans leader, dans la-
quelle chaque réplique est capable de progresser en utilisant

un quorum de ses pairs. Ces nouveaux protocoles sans lea-
der sont complexes et chacun d’entre eux présente une ap-
proche ad-hoc de l’absence de leader. La première contribu-
tion de cette thèse est un framework qui capture l’essence
de SMR sans leader (Leaderless SMR) et la formalisation de
certaines de ses limites.
En raison de la nature de plus en plus sensible des ser-
vices répliqués, l’utilisation de simples pannes bénignes n’est
plus suffisante. Les recherches récentes se dirigent vers le
développement de protocoles qui supportent le comporte-
ment arbitraire de certaines répliques (pannes Byzantines)
et qui prospèrent également dans un environnement géo-
répliqué. Les blockchains sont un exemple de ce nouveau
type de services répliqués sensibles qui a fait l’objet de nom-
breuses recherches.
Les blockchains permissioned utilisent des protocoles SMR
byzantins. Comme ces protocoles utilisent un leader, ils
souffrent de problèmes d’évolutivité et de disponibilité, de la
même manière que leurs homologues non byzantins. Dans
la deuxième partie de cette thèse, nous adaptons notre fra-
mework pour supporter les pannes byzantines et présentons
le premier framework pour le SMR byzantin sans leader. De
plus, nous montrons que lorsqu’il est correctement instancié,
il permet de contourner les problèmes de scalabilité dans les
protocoles SMR byzantins dirigés par des leaders pour les
permissioned blockchains.
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Abstract :
Modern distributed services are expected to be highly avai-
lable, as our societies have been growing increasingly de-
pendent on them. The common way to achieve high availa-
bility is through the replication of data in multiple service re-
plicas. In this way, the service remains operational in case of
failures as clients can be relayed to other working replicas.
In distributed systems, the classic technique to implement
such fault-tolerant services is called State-Machine Repli-
cation (SMR), where a service is defined as a deterministic
state-machine and each replica keeps a local copy of the
machine. To guarantee that the service remains consistent,
replicas coordinate with each other and agree on the or-
der of transitions to be applied to their copies of the state-
machine.
The replication performed by modern Internet ser-
vices spans across several geographical locations (geo-
replication). This allows for increased availability and low
latency, since clients can communicate with the closest geo-
graphical replica. Due to their reliance on a leader replica,
classical SMR protocols offer limited scalability and availa-
bility under this setting. To solve this problem, recent pro-
tocols follow instead a leaderless approach, in which each

replica is able to make progress using a quorum of its peers.
These new leaderless protocols are complex and each one
presents an ad-hoc approach to leaderlessness.
The first contribution of this thesis is a framework that cap-
tures the essence of Leaderless State-Machine Replication
(Leaderless SMR) and the formalization of some of its li-
mits. Due to the increasingly sensitive nature of replicated
services, leveraging simple benign failures is no longer en-
ough. Recent research is headed towards developing pro-
tocols that support arbitrary behavior of some replicas (By-
zantine failures) and that also thrive in a geo-replicated envi-
ronment. An example of this new type of sensitive replicated
services that has been the focus of a lot of research are blo-
ckchains. When such Byzantine protocols follow the classic
leader-driven approach they suffer from scalability and avai-
lability issues, similarly to their non-byzantine counterparts.
In the second part of this thesis, we adapt our framework to
support Byzantine failures and present the first framework
for Byzantine Leaderless SMR. Furthermore, we show that
when properly instantiated it allows to sidestep the scalabi-
lity problems in leader-driven Byzantine SMR protocols for
permissioned blockchains.
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