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Introduction

This habilitation thesis gives an overview and some details of most of my research roughly
since my PhD in 2013. When I write “roughly” this is because there is no clear cut-off
date: since the transition from my PhD studies to my postdoc was rather smooth, for
some of my research it is not clear even to myself when the main work was done. Also, I
followed some lines of work, in particular that with Hubie Chen on counting for (unions
of) conjunctive queries, both during and after my PhD. So the choice of the cut-off for
this thesis is rather arbitrary. In the end, I was conservative and decided to only present
work here that was not even started before my postdoc at École Polytechnique. As a
consequence, the trichotomy from [35] is presented neither in my PhD thesis nor here,
and the same is true for my work on the arithmetic complexity of tensor contractions [36].

Since in the time period under consideration I have written quite a few papers and
some of them are rather technical, I will not present all of my research in detail here.
For most papers, I will only give an overview what they are about, give some context
and leave the technicalities to the actual papers. Only for some contributions I also give
technical details to give the reader a feeling for the type of work I have been doing and
the tools and techniques I am using in my research. This keeps this thesis shorter and
manageable for both the reader and the author. The interested reader is of course invited
to find all the gory technical details of the results they would like to see in the papers, all
of which should readily be found freely. If there is an arXiv version of papers, it should
be seen as the authoritative version; in particular, the reader should not waste their time
with versions offered by closed access publishers.

This thesis is written in two main parts: in Part I, I give an overview of my work by
presenting the context and the main results of my publications. I also try to point out
how they are connected and build on each other. Part II of this thesis gives the technical
details of some of my work. The contributions I present there are chosen based on
different criteria: I chose some of my work that I found the most “important”—whatever
this means in the context of purely theoretical work—and at the same time I wanted to
present a certain diversity in what I am doing. That is why I chose papers from different
areas, using different techniques to yield different types of results. The hope is that the
reader will thus find a certain breadth in my work.

Most of the research presented here deals with counting complexity and knowledge
compilation, two intimately related areas whose different facets appear in diverse areas
of computer science. Since these two areas cover the bulk of my work, I have decided to
restrict myself to them to make this thesis at least somewhat coherent.

Counting complexity is certainly a more well-known area than knowledge compilation:
the main idea is that, in contrast to complexity classes of decision problems like NP,
one does not only want to decide if there is a solution to a given problem instance but
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Introduction

wants to count how many such solutions there are. This was pioneered in classical work
by Valiant [Val79a], who defined the complexity class #P generalizing the definition of
the class NP. Essentially, instead of asking if there exists a certificate for an instance
accepted by a polynomial time verifier, one asks how many such certificates there are.
This question is often very natural. For example, standard practical database query
languages have a language construct that allows counting answers to queries—which
are the certificates of a query being true on a given database. But apart from being
a natural question in itself, there are many applications of counting in areas that deal
with probabilities, such as probabilistic reasoning in artificial intelligence or probabilistic
databases. In these settings, the certificates are states of a system that satisfy a desired
property. Since most of the time counting all possible states is easy, knowing the number
of states satisfying the property directly yields the probability of the property being
satisfied. 1

I have contributed to counting complexity in two areas: propositional model counting,
i.e., the question of counting models of a given propositional formula, and counting
the answers to database queries, given a query and a database instance. Both of
these problems are well known to be intractable in general, even though in practice
they are sometimes solvable efficiently. For example there has been a certain progress
practical in propositional model counting, see e.g. the results of the recent model counting
competition [FHH20]. My work focused on ways of refining the general hardness results
by getting an understanding of tractable fragments which in some cases even leads to
complete dichotomy theorems. The general idea—which is pervasive in much of my work
also beyond counting complexity—is that there is often a natural way of assigning graphs
to problem instances. Now when those graphs are “simple”, their structure can often be
used to solve the problem at hand, in this case to count certificates for an instance, more
efficiently than for general instances. Sometimes one can even completely determine for
which kinds of graphs this approach can work. I will discuss my work on counting in
Chapter 1.

The other main area of my research is knowledge compilation, a field that was originally
introduced in artificial intelligence as a preprocessing regime to deal with hard reasoning
problems as they appear in abundance in that area. The idea was that one could in
certain settings use costly preprocessing on an offline knowledge base that could then be
queried more efficiently in a second, online phase. We will not go into more detail here
and refer the interested reader to the survey [Mar15] since almost none of the original
motivation for knowledge compilation will play any role in this thesis. This is because
knowledge compilation quickly after its inception turned towards the systematic study of
data structures that knowledge could be translated, or as it is called compiled, into. This
study of data structures, or languages as they are often called, is what we will mostly
consider. In particular, we will almost exclusively deal with circuits in decomposable
negation normal form (DNNF) which since their introduction by Adnan Darwiche now

1The attentive reader might remark that this assumes that the possible states are uniformly distributed.
We will not go into this in detail here but only remark that other settings can often be reduced to
this. Moreover, it is known that many counting algorithms also work for weighted counting which
allows natively expressing probabilities even for non-uniform distributions.
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roughly 20 years ago [Dar01a] have been one of the main objects of study in knowledge
compilation.

The substantial amount of research that was done on DNNF over the years is mostly
explained by the fact that they form a superclass of many other representation languages
such as OBDD, FBDD, DNF and SDD. Thus they are a useful abstraction of all those.
Moreover, there are systematic ways of getting useful subclasses of DNNF by requiring
properties such as “determinism” or “structure” which we will explain later. Somewhat
unexpectedly, (subclasses of) DNNF have also found a life beyond the original knowledge
compilation setting that they were originally thought for. Essentially, they tend to
come up often when knowledge/constraints/data/. . . have to be encoded in a concise
but usable way. For example, they have been used for uncertain data in databases, to
encode and decompose constraints in constraint programming, or to represent Bayesian
classifiers; see e.g. [Mon20, JBKW08, KS19, CD03] and the references therein for an
entry point into these directions of research. It is also understood now that DNNF can be
seen as the traces of different algorithms, solving problems such as propositional model
counting [HD07, 33] or runs of automata on words or trees [25, FRU+18, 20]. There is
also a whole range of practical compilers creating DNNF from functions represented in
other formats, mostly CNF formulas [Dar04, Dar11, MMBH12, CD13, OD15, LM17a].

Here we will mostly ignore all practical considerations of DNNF and their construction
and instead focus exclusively on theoretical aspects. We will first survey my contribu-
tions to what I consider core knowledge compilation questions in Chapter 2: there are
some contributions to the so-called knowledge compilation map. Moreover, there is a
compilation algorithm that allows using underlying graph structure of CNF-formulas,
as discussed above for counting. Then I will present an overview of techniques to show
lower bounds for DNNF that we introduced in [27] and which have since then found wide
application by myself and others. These lower bound techniques will play a central role
in the rest of this thesis.

After the chapter on core knowledge compilation questions, I will present in Chapter 3
applications of knowledge compilation, in fact mostly (subclasses of) DNNF, to other
areas. We will see uses of DNNF for solving quantified Boolean formulas, for the proof
complexity of propositional formulas and quantified Boolean formulas, and for bounds for
width measures of CNF-encodings. Finally, there will be a section on so-called constant
delay enumeration algorithms in database theory for which we used variants of DNNF as a
crucial data structure to conceive efficient algorithms. DNNF were originally not invented
for any of the above applications and some of them might be surprising. However, it
turns out that in all these settings DNNF provide a good framework to reason about
succinctly represented knowledge that can still be used efficiently.

References. Throughout this thesis, to make it easy to differentiate between my work
and that of others, I am using two different citation styles: on the one hand, all works
which I have contributed to as an author, are cited numerically such as [27]. These
references can be found in my CV in Appendix A. On the other hand, all works which I
have not contributed to are referenced alphabetically, such as [DM02] and can be found
in the reference section at the end of this thesis.
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The authors list of all papers I have contributed to is ordered alphabetically, as it is
common in all areas I have worked in. In particular, from the position of the authors
the reader cannot infer any information on the contribution of any author. It is safe to
assume that all authors have contributed roughly equally. While this might not always
be correct for each individual paper, on average it is probably close to being true.
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Overview
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This part of this thesis is a survey of most of my work since my PhD. I try to keep
this relatively concise. In particular, I leave out all technical details and focus instead
of the context and the contribution of the individual works. Technical details of some
contributions can be found in Part II. Here, I will first discuss my results on counting
complexity in Chapter 1 and then turn to knowledge compilation in Chapter 2 and
Chapter 3.
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1. Counting

Counting complexity was a central part of my PhD thesis and it is still an area that
I have a particular interest in. I have worked in two different areas which I will treat
independently in the following: propositional model counting and counting for (unions
of) conjunctive queries in database theory.

1.1. Propositional Model Counting

The propositional model counting problem #SAT is the problem of counting the models
of a given propositional formula, generally assumed to be in CNF. #SAT is the generic
complete problem for #P and as such plays a role similar to that of SAT for NP. However,
in general #SAT is far harder. For example, thanks to the classical work of Toda [Tod91],
it is known that for every problem in the polynomial hierarchy there is a polynomial time
algorithm with one oracle call to a #SAT-oracle. That is, if we allow an algorithm to get
the answer of a single #SAT-instance “for free”, then the rest of the computation can be
performed in polynomial time. Since the polynomial hierarchy contains many important
problems presumably far harder than NP, this shows that solving #SAT must in fact be
very hard. It is also known that #SAT is hard to approximate: unless P = NP, there is
no polynomial-time approximation algorithm for #SAT with a guaranteed approximation
factor of 2n

1−ε
where ε > 0 and n is the number of variables of the input [Rot96]. This

remains even true if the input is restricted to classes like 2-CNF or Horn-CNF for which
the decision problem is easy.

As a reaction to these general hardness results for #SAT, there has been intensive
research on the question of finding restrictions which make the problem tractable. One
of these directions is restricting the individual conjuncts of the input. This leads to the
problems #CSP[Γ] for every set of Boolean relations Γ which is, given a conjunction F of
atomic formulas in relations from Γ, to count the satisfying assignments of F . As already
said above, for some sets of relations Γ, e.g. those defined by clauses in two variables,
#CSP[Γ] is hard. On the other hand, there are some sets of relations, say all unary
relations, for which #CSP[Γ] is easy. Creignou and Hermann [CH96] showed that in the
Boolean case there is in fact a dichotomy theorem that determines which sets Γ lead
to hard #CSP[Γ] and for which Γ the problem becomes easy. This was generalized to
non-Boolean domains by Bulatov [Bul13] and Dyer and Richerby [DR13].

A different approach to finding tractable fragments for #SAT is instead of restricting
the individual constraints of instances, so in a sense the “building blocks”, to restrict
the structure of the instances, so how the building blocks can be put together. The
most common approach is assigning a graph to every CNF-formula and then developing

13



1. Counting

algorithms that rely on the structure of these graphs. For example, it is known that if
the associated graphs are of bounded treewidth, then there are efficient model counting
algorithms, see e.g. [SS10a], but there are many more general width measures for CNF
which lead to tractable #SAT. A hierarchy of such results is shown in Figure 1.1.

I wrote two papers that are related to this approach and which are motivated by
notions from database theory. Popular width measures for graphs like treewidth are often
generalizations of being a tree—or more precisely, being acyclic because connectivity is
often secondary—and measure how close to being acyclic a graph is. However, instead
of a graph, one can also assign a hypergraph to a CNF-formula in a natural way: the
vertices are the variables of the formula and for every clause there is an edge containing
the variables of the clause. When one now wants to generalize algorithms for acyclic
graphs to hypergraphs, one is faced with the problem that it is not clear what acyclicity
is even supposed to be for hypergraphs. In fact, there are several notions of acyclicity
that have been studied for a long time in database theory and that are useful in different
settings [Fag83, Bra16]. So which of these acyclicity notions are useful to give tractable
fragments for #SAT?

On the one hand, it was known from [SS10a] that α-acyclicity, the most general
hypergraph acyclicity notion from the literature, is not restrictive enough to make #SAT
tractable. On the other hand, from [SS13, GP04] it follows that #SAT for so-called
γ-acyclic CNF-formulas is tractable. This left the open question for the intermediate case
of so-called β-acyclicity. This case was not only particularly interesting because it was
the main acyclicity notion not understood in the setting. Beyond this, it was also the
only known structural restriction where there was an efficient algorithm for SAT that did
not directly generalize to give a counting algorithm. This was because because the known
algorithm from [OPS13] was unlike all other algorithms in the area not based on dynamic
programming but on resolution. Since there are classes of CNF-formulas which allow
efficient decision by resolution but which are hard for counting, e.g. 2-CNF, this hinted
towards the fact that something interesting should happen for β-acyclic #SAT: either it
would the only known structurally restricted class of CNF-formulas for which counting
was hard but decision easy or there might be a new counting algorithm generalizing
resolution proofs.

In a first paper in this direction with Arnaud Durand and Florent Capelli [36], we
considered hypergraphs with disjoint branches decompositions which are a class of
hypergraphs that lies strictly between γ-acyclic and β-acyclic hypergraphs. We showed
that the propositional model counting problem #SAT for CNF-formulas with hypergraphs
that allow a disjoint branches decomposition can be solved in polynomial time. We
also showed that this class of hypergraphs which was introduced by Duris in [Dur12] is
incomparable to hypergraphs of bounded incidence cliquewidth which were the biggest
class of hypergraphs for which #SAT was known to be solvable in polynomial time at the
time. Furthermore, we presented a polynomial time algorithm that computes a disjoint
branches decomposition of a given hypergraph if it exists and rejects otherwise. Finally,
we showed that some slight extensions of the class of hypergraphs with disjoint branches
decompositions lead to intractable #SAT, leaving open how to generalize the counting
result of this paper.

14



1.1. Propositional Model Counting

γ-acyclicity

disjoint
branches [36]

β-acyclicity [34]

α-acyclicity [OPS13]

PS-width [STV15]

Incidence mim-
width [STV15]

Incidence clique-
width [SS13]

Modular incident
treewidth [PSS13]

Neighborhood
diversity

Signed inci-
dence clique-

width [FMR08]

Incidence
treewidth [SS10a,

FMR08]

Primal
treewidth [SS13,

FMR08]

β-hypertreewidth

Hypertreewidth

PTIME or FPT XP and W[1]-hard

Intractable

W[1]-hard

Figure 1.1.: Several restrictions of graphs, resp. hypergraphs, assigned to CNF-formulas
that make the problem #SAT tractable. On the left, several different hy-
pergraph acyclicity notions are given while the rest of the restrictions are
restrictions of graphs associated to formulas. Arrows go from more restrictive
to more general notions. The restrictions in the red bubble leave #SAT
#P-hard. Parameters on the dark-green background allow FPT-algorithms,
more specifically algorithms with runtime 2O(k)poly(n) where k is the param-
eter and n the instance size. The parameters on the light-green background
allow runtimes with runtimes of roughly nO(k) which cannot be significantly
improved under standard complexity assumptions.
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1. Counting

In [34], a joint paper with Johann Brault-Baron and Florent Capelli, we finally solved
the case of β-acyclic formulas by showing that #SAT on them can be solved in polynomial
time. In contrast to previous algorithms for other structurally restricted classes of formulas,
our algorithm does not proceed by dynamic programming. Instead, it works along an
elimination order, solving a weighted version of constraint satisfaction by a resolution-like
process. We also give evidence that this deviation from more standard algorithms is no
coincidence by showing that β-acyclic formulas are outside of the framework that was
(previously to our paper) proposed by Saether et al. [STV15] and which subsumes all
other structural tractability results for #SAT known so far.

Some of the ideas used in [34] have been further developed in [6], a paper studying
some questions purely in structural graph theory: to show that the counting algorithm
of [34] lies outside of the framework of [STV15], one technical ingredient is showing that
there are so-called chordal bipartite graphs have unbounded mim-width. Here mim-width
is a relatively recent graph width measure that was introduced in [Vat12] and that has
seen applications mostly in graph algorithms. In [STV15], it was used in the context of
propositional satisfiability, generalizing many previous results for more restrictive width
measures. In [6], I showed how to lift the lower bounds on mim-width from [34] to lower
bounds for the mim-width of strongly chordal split graphs, co-comparability graphs and
circle graphs. This improved and refined lower bounds that were known before, some of
them only conditionally, and answered several questions of Vatshelle [Vat12]. In the case
of strongly chordal graphs not even a conditional lower bound was known before. All of
the bounds given are optimal up to constant factors.

1.2. Unions of Conjunctive Queries

The computational problem of evaluating a formula (of some logic) on a finite relational
structure is central in database theory and logic. In the context of database theory, this
problem is often referred to as query evaluation, as it models the posing of a query to a
database: the formula is the query, and the structure represents the database. The results
of such an evaluation are called answers ; logically, these are the satisfying assignments of
the formula on the structure. The particular case of this problem where the formula is a
sentence, i.e., when it has no free variables, is often referred to as model checking, and
even in just the case of first-order sentences, can capture a variety of well-known decision
problems from all throughout computer science [FG06].

I wrote several papers on the counting version of this problem, namely, given a formula
and a structure, output the number of answers. This problem of counting query answers
generalizes model checking, which can be viewed as the particular case thereof where one
is given a sentence and a structure, and wants to decide if the number of answers is 1
or 0, corresponding to whether or not the empty assignment is satisfying. In addition
to the counting problem’s basic and fundamental interest, all practical query languages
supported by database management systems have a counting operator.

A typical situation in the database setting is the evaluation of a relatively short formula
on a relatively large structure. Consequently, it has been argued that, in measuring
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the time complexity of query evaluation tasks, one could reasonably allow a slow (non-
polynomial-time) preprocessing of the formula, so long as the desired evaluation can
be performed in polynomial time following the preprocessing [PY99, FG06]. Relaxing
polynomial-time computation to allow arbitrary preprocessing of a parameter of a problem
instance yields, in essence, the notion of fixed-parameter tractability. This notion of
tractability is at the core of parameterized complexity theory, which provides a taxonomy
for classifying problems where each instance has an associated parameter. In my work, I
made use of this paradigm using the formula as the parameter.

During my time as a PhD-student, I had worked extensively on the counting complexity
of conjunctive queries, a foundational and practically very important class of conjunctive
queries, see [Men13] for an overview. After my PhD, I extended this line of work in two
joint papers with Hubie Chen [28, 26].

Existential positive queries are the first-order formulas built from the two binary
connectives (∧,∨) and existential quantification. They include and are semantically
equivalent to the so-called unions of conjunctive queries, also known as select-project-join-
union queries ; these have been argued to be the most common database queries [AHV95].
Indeed, each union of conjunctive queries can be viewed as an existential positive query
having a particular form, namely, a disjunction of primitive positive formulas; recall that
a primitive positive query is an existential positive query that does not use disjunction.

In [28, 26], we study the complexity of counting query answers on existential positive
queries. An established way to understand which types of queries are computationally
well-behaved and exhibit desirable, tractable behavior is to consider this problem relative
to a set of queries, and to attempt to understand on which sets this problem is tractable.
Precisely, each set Φ of existential positive queries yields a restricted version of the general
problem, namely: count the number of answers of a given formula φ ∈ Φ on a given finite
structure B. There is thus a family of problems, one problem for each such set Φ. Our
study focuses on formula sets that have bounded arity (by which is meant that there is a
constant that upper bounds the arity of all relation symbols used in formulas); we will
assume this property of all formula sets throughout this section.1

In [28], we prove a trichotomy theorem on the parameterized complexity of the discussed
family of problems, which describes the complexity of every such problem. In particular,
our trichotomy theorem shows that—in a sense made precise—each such problem is
fixed-parameter tractable, equivalent to the clique problem, or as hard as the counting
clique problem (which generalizes the clique problem). Note that the hypothesis that the
clique problem is not fixed-parameter tractable is an established one in parameterized
complexity;2 under this hypothesis, our trichotomy theorem yields a precise description
of the problems that are fixed-parameter tractable. Our trichotomy theorem is in fact
derived by invoking two theorems:

• A new theorem showing that, for each set of existential positive queries, there
exists a set of primitive positive queries such that the two sets exhibit the same

1Note that in the case of unbounded arity, complexity may depend on the choice of representation of
relations [CG10].

2It can be phrased in terms of complexity classes as FPT 6= W[1].
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complexity behavior. This new theorem, which we call the equivalence theorem,
can be conceived of as the primary technical contribution of this article.

• A previously presented trichotomy on primitive positive queries from our previous
work [35].

The statement of our new trichotomy theorem generalizes, unifies, and strengthens a
number of existing parameterized complexity classification results in the literature [Gro07,
GSS01, Che14a, DJ04a, 35, 38].

The techniques used to prove our equivalence theorem are algebraic and combinatorial,
and are quite different in nature from and contrast with those used to prove the previous
classifications, which were more graph-theoretic and logical in flavor. Indeed, while the
graph-theoretic measure of treewidth played a key role in the statement and proof of the
previous trichotomy as well as of the previous dichotomies on primitive positive queries,
it is not at all needed to prove our equivalence theorem. To establish the equivalence
theorem, we make a key application of the inclusion-exclusion counting principle to
translate an existential positive formula to a finite set of primitive positive formulas,
which, in the setup considered by the article, is crucial to handling and understanding
disjunction. We remark that a very similar technique was independently developed by
Curticapean, Dell and Marx [CDM17] in the setting of subgraph counting.

In [26], we give a syntactic version of the trichotomy in [28]. The motivation is that
with a first-order formula φ in hand, if one is interested in counting the number of
answers to φ on given structures, it is natural to inquire if there is a language or logic in
which one can directly express the mapping that provides, for each structure, the number
of answers to φ. Such a logic could serve as a target language into which first-order
formulas of interest (in the mentioned sense) could be compiled, and then optimized,
rewritten, and evaluated. The paper [26] presents and studies such a logic, ]-logic, in
which the evaluation of a sentence on a structure yields an integer value. From the
database-theoretic viewpoint, our presentation of ]-logic amounts to the introduction of
a query language designed particularly for counting answers. We show that ]-logic enjoys
and balances the following properties:

• Expressiveness. In a sense made precise, ]-logic allows for the expression of
known efficient algorithms for tractable cases of the counting query answers problem.
Moreover, this expression is (in our view) direct and clean, and illustrates that ]-logic
captures precisely the key computational primitives required by these algorithms.

• Optimizability. Minimizing a crucial measure known as width can be performed
computably in an expressive fragment of ]-logic; this amounts to the fragment
supporting an optimal form of query optimization, relative to this quantity.

We show that width measure that we associate to ]-logic characterizes exactly the
frontier of tractability for existential positive formulas: on the one hand, if a class of
existential positive formulas Φ can be translated into bounded width ]-formulas, then
they can be evaluated efficiently. The other way round, let Φ be any class of existential
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positive queries having bounded arity. If counting answers to formulas in Φ is tractable,
then the formulas in Φ can be translated into formulas in ]-logic that evaluate to the
correct output on all finite structures. That is, having bounded width ]-formulas is the
exclusive explanation for the tractability of counting answers to formulas in Φ in this
existential positive setting. On a conceptual level, we view this result as strong evidence
that, for the problem of counting query answers, ]-logic is a useful, expressive model
of computation in which relevant, efficient algorithms can be presented. This result is
obtained as an immediate consequence of two theorems:

• We show that when the counting problem for Φ is tractable, then there exists a
bounded width class Ψ of ]-sentences such that each φ ∈ Φ has a representation
in Ψ.

• We prove that there is a minimization algorithm that, given an existential positive
formula, computes a representation of minimum width.

The latter theorem, which we view as a key contribution in and of itself, can be read
as demonstrating that ]-logic is well-characterized and well-understood as a model of
computation: conceiving of a ]-sentence representation of an existential positive formula
as a computational procedure for counting query answers, this theorem provides a
minimization algorithm that always outputs an optimal procedure for a given existential
positive formula, where optimality here is measured using width.
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My contribution to the field of knowledge compilation has been rather wide. I have
contributed to extensions of the knowledge compilation map, proposed compilation
algorithms, and shown lower bounds. Besides this work inside knowledge compilation,
one focus of my work has been applying knowledge compilation in contexts that it was
not originally thought for. To give all this a little structure, I will present all contributions
that are on core questions in knowledge compilation in this chapter. In Chapter 3, I will
then present the applications outside of this core area.

2.1. Contributions to the Knowledge Compilation Map

One of the classical objects of study of knowledge compilation is classifying representation
languages along the criteria of the so-called knowledge compilation map. This framework,
introduced in the ground-breaking work of Darwiche and Marquis [DM02] gives a list
of standard properties which should be analyzed for languages used in the area of
knowledge compilation along different axes: succinctness, queries and transformations.
Here succinctness measures the relative size of knowledge representations in different
languages. When considering queries, one asks which standard problems on encoded
knowledge—e.g. consistency and validity checks, counting but also enumeration—can
be performed efficiently when the knowledge is encoded in the representation language
considered. Here it is important to note that the runtime is measured relative to the
size of the encoding. As a consequence, the same query on the same knowledge must
be solved in less time on succinct representations than on verbose ones to be considered
efficiently solvable. This puts succinct datastructures at a disadvantage for efficient query
evaluation and as one consequence it has been observed that there is generally a trade-off
between succinctness and queries: succinct representation languages allow less queries to
be performed on them efficiently while more verbose data structures allow more efficient
queries. The third axis of the knowledge compilation map finally are transformations.
Here the question is in which way knowledge in a given representation can be transformed
efficiently, for example by conditioning or forgetting variables, conjoining or negating
knowledge. These standard transformations are often useful when using knowledge
compilation as a building block in some larger problem but also in compilation itself when
conjoining is used for bottom-up compilation as this is often the case for representations
such as OBDD [Bry86, Som09] and SDD [Dar11, CD13].

The idea of the knowledge compilation map has had a huge influence and the approach
of [DM02] is widely applied in knowledge compilation, see e.g. [PD08, FM14, FMN13]
for a very small sample. I contributed some work in this direction which I will discuss in
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this section.

In joint work with my student Romain Wallon and his other two PhD supervisors Daniel
Le Berre and Pierre Marquis [23], we study pseudo-Boolean constraints (PBC), i.e. integer
inequalities over {0, 1}, and their special case cardinality constraints (CARD) along the
criteria of the knowledge compilation map. To this end, we compare the succinctness of
PBC and CARD to that of many standard propositional languages studied in [DM02].
Moreover, we determine which queries and transformations are feasible in polynomial time
when knowledge is represented by PBC or CARD, and which are not (unconditionally or
unless P = NP). In particular, the advantages and disadvantages compared to CNF are
discussed.

The idea of this work was less to propose PBC and CARD as new languages useful
for knowledge compilation—they are not because consistency checks for them are NP-
complete—but to use the framework of the knowledge compilation map as a systematic
way to better understand their properties. In fact, both cardinality and pseudo-Boolean
constraints have been used in the field of pseudo-Boolean solving for a long time. However,
some of their properties had not been well understood before our work. Since Romain’s
thesis project dealt with pseudo-Boolean constraints in general, the understanding of
their basic properties that we gained through [23] gave valuable insights for the remainder
of his work. In particular, it lead to the discovery of irrelevant literals [16] which were
crucial for Romain’s thesis and are discussed succinctly in Section 4.1.

A second small contribution to the knowledge compilation map is about so-called
switch-lists. These are a representation language for Boolean functions introduced
in [ČH17] as a generalization of interval representations [SGZ05]. The idea is to write
the values of a Boolean function f on all lexicographically ordered inputs in a value table.
Then, to encode f , it suffices to remember the value of f on the first input and the inputs
at which the value of f changes from that of its predecessor. The resulting data structure
is called a switch-list representation of f . Clearly, switch list representations can be far
more succinct than value tables, e.g. for constant functions.

Čepek and Cromý [ČC20] analyzed switch-lists along the criteria of the knowledge
compilation map and got a nearly complete picture. It turns out that switch-lists have
many of the good properties of value tables while at the same time being generally
much more succinct. The only questions [ČC20] leaves open is if switch-lists are closed
under bounded disjunction and bounded conjunction, i.e., given two Boolean functions
f1 and f2 represented by switch-lists, can one in polynomial time compute a switch-list
representation of f1 ∨ f2, resp. f1 ∧ f2. In [42] I show that this is not the case: there are
Boolean functions f1, f2 such that any switch list representation of f1∨f2 is exponentially
larger than those of f1 and f2. An analogous blow-up can also be shown for conjunction.
This completes the analysis of switch-lists along the criteria of the knowledge compilation
map.
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Figure 2.1.: A DNNF.

2.2. Background: Decomposable Negation Normal Form

Before continuing with more contributions in knowledge compilation, let us introduce some
important data structures that will be central for essentially everything to come in the
remainder of this thesis. The most important data structure in knowledge compilation are
certainly circuits in decomposable negation normal form (DNNF) which were introduced
by Darwiche in the groundbreaking work [Dar01a]. As the name suggests, a DNNF
is a circuit over {∧,∨,¬} in negation normal form (NNF), i.e., negation appear only
in input gates. It is easy to see that, applying DeMorgan rules systematically, every
Boolean circuit over {∧,∨,¬} can be turned into NNF without much size increase, so this
form alone is no restriction. The additional property that makes DNNF an interesting
fragment of NNF is decomposability : all ∧-gates have to be decomposable in the sense
that the different subcircuits that feed into a ∧-gate must all be on disjoint variables.
See Figure 2.1 for an illustration. Note that concepts analogous to decomposability
have been introduced as syntactic multilinearity in arithmetic circuit complexity, see
e.g. [RY08, SY10], and for factorized representations in the context of databases [OZ15].

The main benefit of decomposability is that it makes consistency checks easy: given a
Boolean function encoded as a DNNF, one can efficiently decide if it has a model, compute
one if it exists and in fact even enumerate all models with polynomial delay [Dar01a,
DM02]. Beyond this, DNNF generalize—and in fact are more succinct than—several well-
known representations for Boolean functions like OBDD [Bry86] and DNF, see [DM02]
for details. This combination of usefulness and succinctness makes DNNF arguably
the central data structure in knowledge compilation. In Chapter 3, we will see many
applications to different fields.

One additional useful property of DNNF is that one can define many useful fragments
by putting restrictions on them. We will next introduce several such restrictions that
will play crucial roles in the remainder of this thesis.

One canonical area where the representation languages introduced in knowledge
compilation are applied is probabilistic reasoning. For example, one can translate,
or compile, classifiers based on graphical models, e.g. Bayesian networks, into DNNF and
then reason about the classifiers by querying the compiled representation [CD03]. In
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this context, it is often crucial to efficiently count the (weighted) models of a Boolean
function which for general DNNF is #P-hard. The underlying problem is that different
inputs of ∨-gates may share models which makes counting the models for ∨-gates
hard even if the model counts of their inputs are known; note that this difficulty
already appears for DNF for which model-counting is well known to be #P-hard. To
avoid this hardness result, Darwiche introduced the notion of determinism for DNNF
which simply disallows this problematic behavior by requiring that for each ∨-gate the
inputs have disjoint sets of models [Dar01b]. Weighted model counting for deterministic
DNNF (short d-DNNF) is tractable which makes them well suited for probabilistic
reasoning tasks [CD03, CKD13, SCD19]. Due to their importance, essentially all practical
implementations of knowledge compilers create d-DNNFs or sub-classes thereof [Dar04,
Dar11, MMBH12, CD13, OD15, LM17a].

It is often useful in applications of DNNF if one can compute conjunctions, disjunctions
or negations of knowledge that is encoded by them; in knowledge compilation, this is
called an apply-function. Unfortunately, for most fragments of DNNF such Boolean
combinations generally blow up the representation size [DM02, 43]. One example of a
class that allows an efficient apply-function are OBDD, assuming that the two OBDD one
wants to combine have the same underlying variable order [Bry86]. This was generalized
by Pipatsrisawat and Darwiche [PD08] to DNNF by imposing so-called v-trees to DNNF
which play roughly the same role for DNNF as variable orders for OBDD: by definition,
in DNNF at every ∧-gate the variables below are split into two sets. A v-tree then
is a tree-structure on the variables that prescribes in which way the variables have to
be split. We spare the reader the technical details of the definition and just remark
that when two Boolean functions are given as DNNF respecting the same v-tree, then
one can in polynomial time compute a DNNF with the same v-tree computing their
conjunction. This is the basis of so-called bottom-up compilation algorithms such as that
for SDD [CD13], a restricted form of structured DNNF.

Finally, another property that is sometimes desirable in DNNF is smoothness: a DNNF
is called smooth (sometimes also complete) if for every ∨-gate all inputs feeding into the
gate have the same variables in their subtrees. See [SdBBA19] for more background and
bounds.

2.3. Compiling

One of the major lines of practical knowledge compilation is compiling CNF-formulas
into different representation languages, generally fragments of DNNF, see e.g. [Dar04,
Dar11, MMBH12, CD13, OD15, LM17a] for work on implementations of this. However,
as we will discuss in Section 2.4, this is generally not possible without an exponential
blow-up in the representation size. Thus, a relevant theoretical question becomes for
which classes of CNF-formulas, efficient compilation into DNNF is possible.

Work on this question concentrated mostly on the structure of such CNF-formulas
as discussed in Chapter 1.1 for counting. The idea is again to assign a graph to every
CNF-formula and then to determine classes of graphs that guarantee efficient compilation.
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For example, it was known since the pioneering paper of Darwiche [Dar01a] introducing
DNNF that if the treewidth of the so-called primal graph of the considered CNF-formulas
is bounded, then there is a linear-time algorithm to compute DNNF representations.

Extending this result, I wrote a paper with Simone Bova, Florent Capelli, and Friedrich
Slivovsky [33]. The underlying idea is that many of the graph width measures in
Figure 1.1 generalize treewidth while still having some of its good algorithmic properties.
We analyze these width measures for knowledge compilation and show that most of them
allow efficient compilation algorithms. More precisely, we show that the traces of dynamic
programming algorithms for #SAT can be used to construct structured deterministic
DNNF representations of CNF-formulas. This is conceptually similar to the known fact
that different subclasses of DNNF are essentially traces of DPLL-style algorithms [HD07],
even thought the techniques are very different in our case. Our approach allowed us
prove new upper bounds on the complexity of compiling CNF-formulas into structured
deterministic DNNFs in terms of parameters such as the treewidth and the clique-width
of the so-called incidence graph. In particular, we showed that every class of CNF-
formulas of bounded clique-width has polynomial size structured deterministic DNNF
representations. The degree of the corresponding polynomial is linear in the bound on
the clique-width.

2.4. Lower Bounds for DNNF

One question of particular interest to me are lower bounds in knowledge compilation.
It is not hard to see that under standard assumptions from complexity theory, no
representation of Boolean functions that allows checking satisfiability efficiently can have
small size, see e.g. [DM02]. Showing unconditional lower bounds on Boolean circuits is
often far harder, even for relatively weak classes of circuits. In fact, this is a major line
of complexity theory, see e.g. [Juk12] for a textbook presentation.

For the languages commonly studied in knowledge compilation, even a few years
ago, lower bounds techniques were arguably not very developed. For various forms of
binary decision diagrams like OBDDs and FBDDs there was a wealth of knowledge,
see [Weg00]. For more general languages of the DNNF family, there was essentially one
approach: for monotone functions, it is not hard to see that one can w.l.o.g. assume that
all DNNF encodings are monotone as well, i.e., the DNNF representation contains no
negative literals [43]. Then one can directly apply lower bounds on monotone circuits,
see e.g. [Juk12], to get lower bounds for DNNF.

While this technique gives lower bounds for DNNF, it is unsatisfying in several respects:
at a philosophical level, it is unsatisfying that one learns nearly nothing about DNNF
themselves since the approach is exclusively using the properties of monotone circuits
and lower bounds for them. More pragmatically, the approach by monotone circuit lower
bounds is very coarse and there is no obvious way of extending it to understand the
relationships between different sub-classes of DNNF, e.g. deterministic and/or structured
DNNF. Also, since some interesting classes of functions for which one would like to have
lower bounds in fact have small monotone DNFs, e.g. so-called lineages in the area of

25



2. Knowledge Compilation

probabilistic databases [JS13], the approach sketched above is inherently not useful there.
The only lower bound that I am aware of that explicitly uses the properties of DNNF

are bounds for certain functions in the master’s thesis of Krieger [Kri06]. However, the
techniques in that work were very specifically tailored to the functions considered there
and there is no apparent way of generalizing them to more general classes of functions.

2.4.1. The general framework

With Simone Bova, Florent Capelli, and Friedrich Slivovsky [27], we proposed a more
general and flexible framework to show lower bounds for (subclasses of) DNNF and
related languages that is based on so-called multi-partition communication complexity. I
will first discuss the case of general DNNF in this section before showing several extensions
and adaptions in the following sections.

The basic idea of the lower bound framework is is as follows: we show that every
function f in variables X computed by a DNNF of size s can be written as

f(X) =
∨
i∈[s]

f ′i(X
′
i) ∧ f ′′i (X ′′i ) (2.1)

where for every i we have that (X ′i, X
′′
i ) is a partition of X such that min(|X ′i|, |X ′′i |) ≥

|X|/3. Functions of the form

f ′i(X
′
i) ∧ f ′′i (X ′′i )

are called combinatorial rectangles and are studied extensively in communication com-
plexity, a well-established subarea of complexity theory. Representations of Boolean
functions in the form of (2.1) are called rectangle covers. Rectangle covers are a central
object in communication complexity, but most of the time in that area one assumes that
the partition (X ′i, X

′′
i ) is the same for all rectangles in a cover. In this setting, one takes

the variables X ′i and X ′′i as the variables respectively known to two players who want to
compute a function together which naturally leads to rectangle covers, see e.g. [KN97].
The setting for DNNF is more general than this usual setting from communication
complexity and is called multi-partition communication complexity [DHJ+04].

With Equation 2.1, one can prove lower bounds for DNNF representations of functions:
if one can show for function f that the number of disjuncts necessary in a rectangle
cover, called the size of a rectangle cover, is at least s, then any DNNF representation
of f must have size s as well. Thus one can apply known lower bounds on the size of
rectangle covers from the literature to show lower bounds for DNNF representations. So
in [27], besides proving the representation of Equation 2.1, we showed how to apply it by
using results from [JS02, DHJ+04] to give DNNF lower bounds.

Since we did not know [JS02, DHJ+04] when first working in this direction, we also
showed our own lower bounds on sizes of rectangle covers in the paper [43] which was
written by the same authors. The functions we studied there were as follows: fix a
graph G = (V,E), then one defines

FG :=
∧
uv∈E

(xu ∨ xv)
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as a CNF-formula in the variables var(FG) := {xv | v ∈ V }. We remark that the
formulas of the form FG were already used by Razgon [Raz16, Raz14] before to give
lower bounds for certain (nondeterministic) decision diagrams. Later they have also been
used in [ACMS20].

The intuition behind the formulas FG is that if G is “sufficiently complicated”, then FG
should be hard to represent. In [43], we showed that this is indeed the case: if G is a
so-called expander graph, then any DNNF representation of FG must be of size exponential
in |V (G)|, see also Florent Capelli’s thesis [Cap16] for an improved presentation of this
result. [ACMS20] makes our result more quantitative by showing that for bounded degree
graphs, the representation size of FG is exponential in the treewidth of G (note that the
corresponding upper bound is clear by the results of [Dar01a, 33]). We remark that these
results of [ACMS20] crucially build on our results in [43, 27].

2.4.2. Deterministic DNNF

Remember that deterministic DNNF, short d-DNNF, are DNNF in which for all ∨-gates
no two inputs share any models. It is now known that representations of knowledge in
d-DNNF are generally large. From [DM02], it had been known under standard complexity
theoretical assumptions that d-DNNF for certain function must be large [DM02]. In [27]
we make this result unconditional by giving an explicit connection between d-DNNF
lower bounds and communication complexity: if a function is represented by a d-DNNF
of size s, one gets a representation as in Equation 2.1 with the additional property that
all rectangles f ′i(X

′
i) ∧ f ′′i (X ′′i ) are disjoint, i.e., whenever i 6= j, then f ′i(X

′
i) ∧ f ′′i (X ′′i )

and f ′j(X
′
j) ∧ f ′′j (X ′′j ) have no common models. We use this and a result by Sauerhoff

on multi-partition communication complexity from [Sau03] to unconditionally show an
exponential separation between general DNNF and their subclass d-DNNF, i.e., there
are Boolean functions with polynomial-size DNNF representations such that all d-DNNF
representations are of exponential size.

2.4.3. Structured DNNF

As discussed in Section 2.2, it is sometimes desirable to have, instead of general DNNF,
structured DNNF, i.e., such that respect a v-tree, since this allows to perform more
transformations on the encoded functions, in particular efficient conjunctions of two
functions [PD08]. Interestingly, Pipatsrisawat and Darwiche show already in [PD10] that
there are functions for which any structured DNNF representation is exponentially bigger
than general DNNF. They do so by showing essentially a version of Equation 2.1, however
with the crucial difference that all disjuncts have the same variable partition (X ′i, X

′′
i ).

In [27], we show that this version of Equation 2.1 embeds seamlessly into the framework
for DNNF lower bounds which allows us to explicitly make the connection to commu-
nication complexity. Since communication complexity in this setting is far easier and
better understood than that for the multi-partition case, this allows us to use a wealth of
techniques from the literature and in particular answer an open question from [PD10]
rather easily.
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2.5. Lower Bounds for Approximate Knowledge Compilation

As explained in the previous section, the tools of [27] allow showing strong lower bounds
for d-DNNF representations. This is of course bad news for application areas such as
probabilistic reasoning that use d-DNNF as a data structure to reason on: if already
the compilation of the knowledge at hand into d-DNNF is infeasible, then the whole
approach might already fail at this compilation step.

Fortunately, this bad news is not necessarily a fatal problem for probabilistic reasoning.
Since graphical models like Bayesian networks are almost exclusively inferred by learning
processes, they are inherently not exact representations of the world. Thus, when
reasoning about them, in most cases the results do no have to be exact but approximate
reasoning is sufficient, assuming that the approximation error can be controlled and is
small. It is thus natural in this context to consider approximate knowledge compilation:
the aim is no longer to represent knowledge exactly as one allows a small number of
errors. Recently, Chubarian and Turán [CT20] have shown, building on [GKM+11], that
this approach is feasible in some settings: it is possible to compile approximations of
so-called Tree Augmented Naive Bayes classifiers (TAN) (or more generally bounded
pathwidth Bayes classifiers) into OBDDs efficiently. Note that efficient exact compilation
is ruled out in this setting due to strong OBDD lower bounds for threshold functions
from [TNY97] which imply lower bounds for TANs.1

In the paper [15] with my student Alexis de Colnet, we complement the positive
results of [CT20] by extending lower bounds for exact representations to lower bounds
for approximations. Similar questions had been treated before for OBDDs and some
extensions such as read-k branching programs, see e.g. [KSW99, BSW02]. We extend
this line of work in two ways: we show that the techniques used in [BSW02] can be
adapted to show lower bounds for the approximation by d-DNNFs and prove that there
are functions for which any d-DNNF computing a non-trivial approximation must have
exponential size.

As a second contribution, we refine the approximation notion used in [BSW02] which
we call weak approximation. For this notion, the approximation quality is measured as the
probability of encountering an error when comparing a function and its approximation on
a random input. It follows that all families of Boolean functions for which the probability
of encountering a model on a random input is very small can be approximated trivially
by constant functions. This makes weak approximation easy for rather uninteresting
reasons for many functions, e.g. most functions given by CNF-formulas. Moreover, it
makes the approximation quality sensitive to encodings, in particular the use of auxiliary
variables that functionally depend on the input as these decrease the fraction of models
with respect to all possible inputs. In general, the space of satisfying assignments is
arguably badly described by weak approximations. In particular, the relative error for
model counting and probability evaluation is unbounded which makes that notion useless
for probabilistic reasoning.

1Note that the lower bound of [TNY97] for threshold functions has recently been extended from OBDD
to the generally exponentially more succinct DNNF by my student Alexis de Colnet using completely
different techniques [dC20].
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We remedy the situation by formalizing a new notion of approximation for knowledge
compilation which we call strong approximation. It is modeled to allow efficient counting
with approximation guarantees and is insensitive to addition of functionally dependent
auxiliary variables. While not formalized as such, it can be verified that the OBDDs
of [CT20, GKM+11] are in fact strong approximations in our sense. We then show
that weak and strong approximations differ by exhibiting a family of functions that has
trivial weak approximations but any d-DNNFs approximating it non-trivially must be of
exponential size. The hard functions for which we show these lower bounds are linear
codes used in [DHJ+04]. To show our lower bounds we adapted a discrepancy based
argument of [BSW02] to the framework of [27] sketched in Section 2.4.

We remark that approximation in knowledge compilation had been considered before—
in fact one of the earliest lines of work in the setting was approximating Boolean functions
by Horn formulas [SK96]. However, the focus was different in this setting: on the one hand,
Horn formulas are not fully expressive so the question becomes that of understanding the
formulas that are the best out of all Horn formulas approximating a function instead of
requesting error guarantees for the approximation. On the other hand, that line of work
was less concerned with the quality of the approximating formulas. Our work in [15] is
different in these respects: since we deal with a fully expressive representation language,
the main concern becomes that of a trade-off between the quality of approximation
(measured in the number of inputs in which the function at hand and its approximation
differ) and the representation size of the approximation.

2.6. Parameterized Lower Bounds

In [29], I used the results of [27] to complement the findings of [33] discussed in Section 2.3:
remember that in [33] algorithms compiling CNF-formulas with restricted underlying
graph structure were presented. This showed that popular graph width measures like
treewidth and cliquewidth can be used in knowledge compilation. More specifically,
every CNF-formula of incidence treewidth k and size n can be compiled into a DNNF of
size 2O(k)n. Moreover, if k is the incidence cliquewidth, the size bound on the encoding
becomes nO(k). As has long been observed, 2O(k)n is of course far preferable to nO(k)

for nontrivial sizes of n—in fact, this is the main premise of the field of parameterized
complexity theory, see e.g. [FG06]. Consequently, the results of [33] leave open the
question if the algorithm for clique-width based compilation of CNF-formulas can be
improved.

In fact, the paper [33] already gives a partial answer to this question, proving that there
is no compilation algorithm achieving fixed-parameter compilability, i.e., a size bound of
f(k)p(|F |) for a function f and a polynomial p. But unfortunately this result is based
on the plausible but rather non-standard complexity assumption that not all problem in
W[1] have FPT-size circuits. In [29] I show that this assumption is not necessary. I give
a lower bound of |F |Ω(k) for formulas of modular incidence treewidth k where modular
treewidth is a restriction of cliquewidth proposed in [PSS13]. It follows that the result

in [33] is essentially tight. Moreover, I give a lower bound of |F |Ω(
√
k) for formulas of
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neighborhood diversity k [Lam10]. This intuitively shows that all graph width measures
that are stable under adding modules, i.e., adding a new vertex that has exactly the
same neighborhood as an existing vertex, behave qualitatively worse than treewidth for
compilation into DNNFs.

To show these results, I use the linear codes of [DHJ+04] which by [27] were al-
ready known to be hard for DNNF encodings. However, when using them directly as
in [DHJ+04], they are actually too hard since they cannot be expressed as CNF-formulas
of bounded cliquewidth. Thus, one has to scale them to have the right complexity to
allow showing DNNF lower bounds while also having the desired encodings into CNF.
The main technical contribution of [29] is thus actually showing that the latter is possible:
it is shown that k log(n) parity constraints, each on the same n variables, can be encoded
by a polynomial size CNF-formula of cliquewidth k. The main idea for this is that,
instead of encoding individual constraints, one can bundle them into groups of log(n)
constraints each and then proceed by compiling those groups of constraints by small
formulas of cliquewidth independent of k. Doing this for all groups then yields the desired
encoding. This approach inspired a more general bundling technique in [3] where it is
used to show that any CNF-formula F in n variables and of treewidth k can be rewritten
into an encoding (with additional variables) of cliquewidth O(dk/log(n)e), see section 3.3
for more on this work.
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In this chapter, I will discuss applications of knowledge compilation, in particular DNNF
based techniques, that I have proposed in several areas. One common point of many
of these contributions is that a priori it is not clear that DNNF could be helpful in the
respective settings at all, and certainly DNNF were not invented with most of these
applications in mind.

3.1. Quantified Boolean Formulas

This section gives a survey of several of my works that are connected to quantified
Boolean formulas in different ways, ranging from solving them, to applications for other
problems, and to proof complexity.

3.1.1. Solving QBF with the Help of Knowledge Compilation

It is well known that restricting the interaction between variables and clauses in CNF-
formulas makes several hard problems on them tractable. For example the propositional
satisfiability problem SAT and its counting version #SAT can be solved in time 2O(k)|F |
when F is a CNF formula whose primal graph is of treewidth k [Sze04, SS10a]. As
discussed in Section 1.1, many extensions of this result have been shown over the years for
more general graph width measures [FMR08, PSS16, SS13, STV15]. In [19], a joint paper
with Florent Capelli, we generalize the algorithm for treewidth in a different direction by
considering decision and counting for quantified Boolean formulas (QBF) with a bounded
number of quantifier alternations, i.e., we consider problems higher up in the polynomial
hierarchy than SAT, resp. higher in the counting hierarchy than #SAT. It was already
known before that QBF as well as projected model counting, i.e., model counting for
QBF with free variables and one block of existentially quantified variables, are both fixed-
parameter tractable parameterized by treewidth [Che04, FHMW18]. In [19] we generalize
both these results by showing that counting the models of QBF with free variables
is fixed-parameter tractable parameterized by treewidth for any bounded number of
quantifier alternations. Moreover, the same is true for the strictly more general parameter
of signed cliquewidth [FMR08].

Our approach to showing these results is completely different from those used before
in the literature for treewidth restrictions of problems harder than the NP, resp. #P: we
do not perform dynamic programming as e.g. in [Che04, FHMW18, DSW10, BOW16].
Instead, we encode all models of the underlying CNF-formula of the given QBF into
complete structured d-DNNF [PD08]. Afterwards, we perform quantifier elimination on
this representation. When all quantifiers are eliminated, we can answer the query on the
input QBF by standard algorithms for d-DNNF.
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One crucial advantage of our approach is that the first step, the compilation into
d-DNNF, was already solved before: as discussed in Section 2.3, there are several
compilation algorithms for structurally restricted CNF-formulas [Dar01a, 33]. Thus we
can take these algorithms as a black box and get the compiled representations for free
without doing any additional dynamic programming.

It thus only remains to eliminate quantifiers on d-DNNF. Unfortunately, there are
unconditional, exponential lower bounds showing that in general quantifier elimination
on d-DNNF is impossible without blowing up the size of the representation [PD10]. We
avoid this problem by identifying a notion of width for complete structured d-DNNF that
is modeled after the classical width of complete OBDD. We go on to show that the size
explosion during the quantifier elimination is in fact not in the size of the input but only
in its width by giving a relatively simple algorithm inspired by determinization of finite
automata. Since several of the compilation algorithms mentioned above, in particular
that of [33]1, yield d-DNNF whose width is independent of the input size, we get an
algorithm for several restricted classes of QBF.

The resulting algorithm can be used to show that the number of models of a partially
quantified CNF-formula F of treewidth k with t blocks of quantifiers can be computed in

time 2·
··

2O(k)

|F | with t+ 1 exponentiations. This generalizes the result of [Che04] where
the fixed-parameter tractability of QBF on such formulas was shown with a comparable
complexity. Note that the tower of exponentials in the runtime is unavoidable under
standard complexity assumptions [PV06, FHP20]. Our algorithm generalizes the recent
result of [FHMW18] on model counting in the presence of a single existential variable
block. Finally, it also applies to the more general notions of incidence treewidth and
signed cliquewidth.

Note that the notion of width of a complete structured DNNF and some of the related
results in [19] turn out to be useful in other settings: they were used in [ACMS20]
to tighten some of the results of the prior conference version of that paper [AMS18].
Moreover, width plays a crucial role in my work that will be presented in Section 3.3.

3.1.2. QBF as an Alternative to Courcelle’s Theorem

Courcelle’s seminal theorem [Cou90] states that every graph property definable in monadic
second-order logic can be decided in linear time on graphs of constant treewidth. While
the statement of this theorem might sound abstract to the unsuspecting reader, the
consequences are tremendous: since a huge number of computational problems can be
encoded in monadic second-order logic, this gives automatic linear-time algorithms for a
wealth of problems in such diverse fields as combinatorial algorithms, artificial intelligence
and databases; out of the plethora of such papers let us only cite [GPW10, Dun07] that
treat problems that will reappear in this section. Courcelle’s Theorem is one of the
cornerstones of the field of parameterized algorithms, see e.g. [FG06].

Unfortunately, its strength comes with a price: while the runtime dependence on the

1In fact, since we had not defined width of structured complete DNNF yet when writing [33], this is
only implicit there. We made it explicit in the journal version that is currently under submission.
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size of the problem instance is linear, the dependence on the treewidth is unclear when
using this approach. Moreover, despite some progress (see e.g. the survey [LRRS14])
Courcelle’s Theorem is largely considered impractical due to the gigantic constants
involved in the construction. Since generally these constants are unavoidable [FG04],
showing linear time algorithms with Courcelle’s Theorem can hardly be considered as a
satisfying solution.

As a consequence, linear time algorithms conceived with the help of Courcelle’s Theorem
are sometimes followed up with more concrete algorithms with more explicit runtime
guarantees, often by dynamic programming or applications of a datalog approach [DPW12,
GPW10, JPRW08]. Unfortunately, these hand-written algorithms tend to be very
technical, in particular for decision problems outside of NP. Furthermore, even this
meticulous analysis sometimes gives algorithms with a dependence on treewidth that is a
tower of exponentials.

In [22], together with Michael Lampis and Valia Mitsou, we propose a QBF-approach in
the setting. More concretely, we propose reductions to QBF combined with the use of QBF
algorithms such at that by Chen [Che04] or that discussed in Section 3.1.1 as a simple way
of constructing linear-time algorithms for problems beyond NP parameterized by treewidth.
In particular, we use the proposed method in order to construct (alternative) algorithms
for a variety of problems stemming from artificial intelligence: abduction, circumscription,
abstract argumentation and the computation of minimal unsatisfiable sets in unsatisfiable
formulas. The advantage of this approach over Courcelle’s Theorem or tedious dynamic
programming is that the algorithms we provide are almost straightforward to produce,
while giving bounds on the treewidth that asymptotically match those of careful dynamic
programming. We also show that our algorithms are asymptotically best possible, giving
matching complexity lower bounds.

Our algorithmic approach might at first sight seem surprising: since QBF with a fixed
number of alternations is complete for the different levels of the polynomial hierarchy,
there are trivially reductions from all problems in that hierarchy to the corresponding
QBF problem. So what is new about this approach? The crucial observation is that in
general reductions to QBF guaranteed by completeness do not maintain the treewidth of
the problem. Moreover, while the QBF algorithms run in linear time, there is no reason
for the reduction to QBF to run in linear time which would result in an algorithm with
overall non-linear runtime.

The runtime bounds that we give are mostly of the form 22O(k)
n where k is the treewidth

and n the size of the input. To complement these results, starting from lower bounds for
QBF [LM17b], we also show that these runtime bounds are essentially tight as there are

no algorithms with runtime 22o(k)
2o(n) for the considered problems. Our lower bounds are

based on the Exponential Time Hypothesis (ETH) which posits that there is no algorithm
for 3SAT with runtime 2o(n) where n is the number of variables in the input. ETH is by
now widely accepted as a standard assumption in the fields of exact and parameterized
algorithms for showing tight lower bounds, see e.g., the survey [LMS11]. We remark that
our bounds confirm the observation already made in [MM16] that problems complete for
the second level of the polynomial hierarchy parameterized by treewidth tend to have
double-exponential runtime in the treewidth.
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In conclusion, [22] shows that reductions to QBF can be used as a simple technique to
show algorithms with essentially optimal runtime for a wide range of problems.

3.1.3. Proof Complexity of Symbolic QBF Solving

Unlike in practical SAT solving, which is dominated by Conflict-Driven Clause Learning
(CDCL), in QBF solving there is no single approach that is clearly dominant in prac-
tice. Instead, modern solvers are based on variety of techniques, such as (quantified)
CDCL [ZM02, LB10, PSS19], expansion of universal variables [Bie04, JKMC16, BBH+18],
and abstraction [RT15, JM15, Ten16].

In practice, these techniques turn out to be complementary, each having strengths and
weaknesses on different classes of instances [PT09, HPSS18, LE18]. This complementarity
of solvers can be analyzed theoretically by considering proof complexity. Essentially, the
different paradigms used in solvers can be formalized as proof systems for QBF, which
then can be analyzed with mathematical methods. Then, by separating the strength
of different proof systems, one can show that the corresponding solvers are unable to
solve problems efficiently that can be dealt with by other solvers. This motivation has
led to a great interest in QBF proof complexity over the last few years and resulted in a
good understanding of common QBF proof systems and how they relate to each other,
see [BCJ19, BBCP20] and the references therein.

In a joint paper with Friedrich Slivovsky [14], we focus on a symbolic approach to QBF
solving that was originally proposed by Pan and Vardi and implemented in the QBDD
system [PV04]. Its underlying idea is to use OBDDs to represent constraints inside
the solver, instead of clauses as used by most other SAT and QBF solvers. In [14], we
formalize QBDD as a proof system in which the lines are OBDDs. More specifically, we
consider QBF proof systems that are obtained from propositional OBDD-proof systems by
adding ∀-reduction, a standard way of eliminating universally quantified variables in QBF
reasoning (cf. [BBCP20]). Propositional proof systems using OBDDs as lines have been
studied intensively since the introduction of this model in [AKV04], see e.g. [BIKS18].
We thus consider lifting these systems to QBF by adding ∀-reduction as very natural.

Analyzing the strength of OBDD-refutations, we first show that, even for a weak
propositional system that allows only conjunction of previously inferred OBDDs and
forgetting of variables, the resulting QBF proof system, which we refer to as OBDD(∧,∃,∀)
and which corresponds to traces of the QBDD-system, simulates QU-resolution, a standard
QBF proof system, with only polynomial overhead. We also show that OBDD(∧,∃,∀),
and in fact also QBDD, can make use of structural properties of QBF in the sense
that instances of bounded pathwidth and bounded quantifier alternation can be solved
efficiently. We do this by using a result on variable elimination for OBDDs from [19],
see Section 3.1.1, to show that the intermediate OBDDs in QBDD are not too big in
this setting. We then observe that other QBF proof systems from the literature have
hard instances of bounded pathwidth and bounded quantifier alternation. This shows
that OBDD(∧,∃, ∀) can efficiently refute QBFs that are out of reach for many other
well-known systems. It follows that, at least in principle, QBDD can solve instances that
other, more modern solvers cannot.
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The main technical contribution of [14] is a lower bound technique for OBDD-refutations.
We consider the strongest possible propositional system, which is semantic entailment
of OBDDs. Using an approach of [BJ12, BBCP20] called strategy extraction and a
communication complexity result from [IW10] we reduce the question of showing lower
bounds for OBDD-refutations to showing that there are functions f that do not have
large monochromatic rectangles, i.e., any rectangle R with sufficiently many models must
have models that are also models of f and models that are non-models of f . To the best
of our knowledge, such bounds are only known for fixed variable partitions, so when the
variables are split in a prescribed way. The canonical example for this is the so-called
inner product function, see [KN97]. To prove lower bounds for OBDD-refutations that are
independent of the variable order chosen for the OBDDs, we lift these classical bounds on
the inner product function to a graph-based generalization which we show has essentially
the same properties as the inner product function, but for all variable partitions.

3.2. Characterizing Tseitin-formulas with short regular
resolution refutations

Resolution is one of the most studied propositional proof systems in proof complexity due
to its naturality and it connections to practical SAT solving [Nor15, BN21]. A refutation
of a CNF-formula in this system (a resolution refutation) relies uniquely on clausal
resolution: in a refutation, clauses are iteratively derived by resolutions on clauses from
the formula or previously inferred clauses, until reaching the empty clause indicating
unsatisfiability. In [13], a joint paper with my student Alexis de Colnet, we consider regular
resolution which is the restriction of resolution to proofs in which, intuitively, variables
which have been resolved away from a clause cannot be reintroduced later on by additional
resolution steps. This fragment of resolution is known to generally require exponentially
longer refutations than general resolution [Goe93, AJPU07, Urq11, VEJN20] but is still
interesting since it corresponds to DPLL-style algorithms [DLL62, DP60]. Consequently,
there is quite some work on regular resolution, see e.g. [ABdR+18, Urq87, BI13, BBI12]
for a very small sample.

Tseitin-formulas are encodings of certain systems of linear equations whose structure
is given by a graph [Tse68]. They have been studied extensively in proof complexity
essentially since the creation of the field because they are hard instances in many
settings, see e.g. [Urq87, Ben02, IO13, IRSS19, BBI12]. It is known that different
properties of the underlying graph characterize different parameters of their resolution
refutations [GTT20, AR11, IO13]. In [13], we extend this line of work by showing that
treewidth determines the length of regular resolution refutations of Tseitin-formulas:
classes of Tseitin-formulas of bounded degree have polynomial-length regular resolution
refutations if and only if the treewidth of the underlying graphs is bounded logarithmically
in their size. The upper bound for this result was already known from [AR11] where
it is shown that, for every graph G, unsatisfiable Tseitin-formulas with the underlying
graph G have regular resolution refutations of length at most 2O(tw(G))|V (G)|c where c is
a constant. We provide a matching lower bound:
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Theorem. Let T (G, c) be an unsatisfiable Tseitin-formula where G is a connected graph
with maximum degree at most ∆. The length of the smallest regular resolution refutation
of T (G, c) is at least 2Ω(tw(G)/∆)|V (G)|−1.

There were already known lower bounds for the length of resolution refutations of
Tseitin-formulas based on treewidth before. For general resolution, a 2Ω(tw(G)2)/|V (G)|

lower bound can be inferred with the classical width-length relation of [Ben02] and width
bounds of [GTT20]. This gives a tight 2Ω(tw(G)) bound when the treewidth of G is linear
in its number of vertices. For smaller treewidth, there are also bounds from [GIRS19] for
the stronger proof system of depth-d Frege proofs which for resolution translate to bounds
of size 2tw(G)Ω(1)

, but since the top exponent is significantly less than 1, these results
are incomparable to ours. Better bounds of 2Ω(tw(G))/ log |V (G)| for regular resolution that
almost match the upper bound were shown in [IRSS19] for regular resolution refutations.
Building on [IRSS19], we eliminate the division by log |V (G)| in the exponent and thus
give a tight 2Θ(tw(G)) dependence.

As in [IRSS19], our proof strategy follows two steps. First, we show that the problem
of bounding the length of regular resolution refutations of an unsatisfiable Tseitin-formula
can be reduced to lower bounding the size of certain representations of a satisfiable
Tseitin-formula. Itsykson et al. in [IRSS19] used a similar reduction of lower bounds for
regular resolution refutations to bounds on read-once branching programs (1-BP) for
satisfiable Tseitin-formulas, using the classical connection between regular resolution and
the search problem which, given an unsatisfiable CNF-formula and a truth assignment,
returns a clause of the formula it falsifies [LNNW95]. Itsykson et al. showed that there is
a transformation of a 1-BP solving the search problem for an unsatisfiable Tseitin-formula
into a 1-BP of pseudopolynomial size computing a satisfiable Tseitin-formula with the
same underlying graph. This yields lower bounds for regular resolution from lower
bounds for 1-BP computing satisfiable Tseitin-formulas which [IRSS19] also shows. Our
crucial insight in [13] is that when more succinct representations are used to present the
satisfiable formula, the transformation from the unsatisfiable instance can be changed
to have only a polynomial instead of pseudopolynomial size increase. Concretely, the
representations we use are DNNF which generalize 1-BP. We show that every refutation
of an unsatisfiable Tseitin-formula can be transformed into a DNNF-representation
of a satisfiable Tseitin-formula with the same underlying graph with only polynomial
overhead.

In a second step, we then show for every satisfiable Tseitin-formula with an underlying
graph G a lower bound of 2Ω(tw(G)) on the size of any DNNF computing the formula. To
this end, we adapt the rectangle based techniques developed in [27] and presented in
Section 2.4.1 to a parameterized setting. Our refinement takes the form of a two-player
game in which the first player tries to cover the models of a function with few rectangles
while the second player hinders this construction by adversarially choosing the variable
partitions respected by the rectangles from a certain set of partitions. We show that
this game gives lower bounds for DNNF, and consequently the aim is to show that
the adversarial player can always force 2Ω(tw(G)) rectangles in the game when playing
on a Tseitin-formula with graph G. This is done by proving that any rectangle for a
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carefully chosen variable partition splits parity constraints of the formula in a way that
bounds by a function of tw(G) the number of models that can be covered. We show that,
depending on the treewidth of G, the adversarial player can choose a partition to limit
the number of models of every rectangle constructed in the game to the point that at
least 2Ω(tw(G)) of them will be needed to cover all models of the Tseitin-formula. As a
consequence, we get the desired lower bound of 2Ω(tw(G))|V (G)|−1 for regular resolution
refutations of Tseitin-formulas.

3.3. Revisiting Graph Width Measures for CNF-Encodings

The work of [3] which is joint with my student Romain Wallon, is complementary
to the algorithmic results discussed in Section 2.3 and Sections 3.1.1 and 3.1.2. As
already seen there, graph width measures like treewidth and cliquewidth have been
studied extensively in the context of propositional satisfiability. The general idea is to
assign graphs to CNF-formulas and compute their width with respect to different width
measures. Then, if the resulting width is small, there are algorithms that solve SAT,
but also more complex problems like #SAT or MAX-SAT or even QBF efficiently, see
e.g. [SS10a, FMR08, SS13, PSS16, STV15, Che04]. There is also a considerable body of
work on reasoning problems from artificial intelligence restricted to knowledge encoded by
CNF-formulas with restricted underlying graphs: for example, treewidth restrictions have
been studied for abduction, closed world reasoning, circumscription, disjunctive logic
programming [GPW10] and answer set programming [JPW09]. There is thus by now a
large body of work on how problems can be solved on bounded width CNF-formulas for
different graph width measures.

Curiously, however, there seems to be very little work on the natural question of what
we can actually encode with these restricted CNF-formulas. This question is pertinent
because of course good algorithms for problems are less attractive if they cannot deal
with interesting instances. In [3], we make two main contributions on the expressiveness
of bounded width CNF-formulas.

As a first main contribution, we show, for a wide class of width measures, that one
can give width lower bounds of any encoding of a function by means of communication
complexity. Such lower bounds were known for treewidth [BKM11], but with our
general approach, we extend them for many different width measures, in particular
(signed and unsigned) cliquewidth [FMR08, SS13], modular treewidth [PSS16] and mim-
width [STV15]. As a consequence, in a sense, for all these measures, formulas of bounded
width can only encode simple functions.

All these lower bounds not only work for representations of functions as CNF-formulas
but also on clausal encodings, i.e., CNF-formulas using auxiliary variables. It is folklore
that adding auxiliary variables can decrease the size of an encoding: for example the
parity function has no subexponential CNF-representations but there is an easy linear
size encoding using auxiliary variables. We observe a similar effect for the example of
treewidth: we show that any CNF-representation of the AtMostOnen-function of n inputs
without auxiliary variables has primal treewidth n − 1 which is the highest possible.
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But when authorizing the use of auxiliary variables, AtMostOnen can be computed with
formulas of bounded treewidth easily. This shows that lower bounds for clausal encodings
are far stronger than those of CNF-representations. Considering that AtMostOnen is
arguably a very easy function, we feel that encodings with auxiliary variables are the
more interesting notion in our setting so we focus on them in [3].

As we have seen before, this is of course not the first time that communication
complexity has been used to show lower bounds on the size or width of representations
for Boolean functions. In fact, this is one of the motivations for the development of the
area and there is a large literature on this, see e.g. [KN97, Hro97, Juk12]. In particular,
there are many results for showing lower bounds on different forms of branching programs
by means of communication complexity, see e.g. [Weg00, DHJ+04]. More recently, as we
have seen in Section 2.4, this approach has been generalized to more general languages,
in particular DNNF [PD10, 27]. However, beyond a lower bound on treewidth already
shown in [BKM11], we are not aware of any use of communication complexity to prove
bounds on width measures of CNF-formulas prior to our work.

In a second main contribution, we consider the relative expressive power of different
graph width measures for clausal encodings. For the graph width measures studied in
the literature, it is known that without auxiliary variables the expressiveness of bounded
width CNF-formulas is different for all notions and they form a partial order with so-
called mim-width as the most general notion, see e.g. [34, Section 5] and Figure 1.1 in
Section 1.1. Somewhat surprisingly, the situation changes completely when one allows
auxiliary variables: in this setting, the commonly considered width notions are all up
to constant factors equivalent to either primal treewidth or to incidence cliquewidth.
This is true for every individual function. We remark that for the parameters primal
treewidth, dual treewidth and incidence treewidth, it was already known that the
width of encodings minimizing the respective width measures differs only by constant
factors [SS10b, BKM11, 22]. All other relationships are new.

We also show that, assuming that an optimal encoding of a function has at least
primal treewidth log(n) where n is the number of variables, incidence cliquewidth and
primal treewidth differ exactly by a factor of Θ(log(n)) for optimal encodings. So, up
to a logarithmic scaling, in fact all the commonly used width measures coincide when
allowing auxiliary variables. Note that this scaling exactly corresponds to the runtime
differences of many algorithms: while treewidth-based algorithms often have runtimes of
the form 2O(k)nc for treewidth k and a constant c, cliquewidth-based algorithms typically
give runtimes roughly nO(k′) for cliquewidth k′. These runtimes coincide exactly when
treewidth and cliquewidth differ by a logarithmic factor which, as we show here, they do
generally for encodings with auxiliary variables.

We finally use our main results for several applications. In particular, we answer an
open question of [BKM11] on the cliquewidth of the permutation function PERMn and
generalize a classical theorem on planar circuits [LT80].

Most of our results use machinery for knowledge compilation that was presented in
previous sections. In particular, we use a combination of the algorithm proposed in [33]
(Section 2.3), the width notion for DNNF developed in [19] (Section 3.1.1) and the lower
bound techniques introduced in [PD10] and [27] (Section 2.4). Relying on these building
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blocks and combining them in the right way, most of our proofs become rather simple.

3.4. Succinctness Results for Arithmetic Circuits

Arithmetic circuits (AC) are a circuit model for representing polynomials by giving the
order in which their inputs have to be combined by sums and multiplications. Thus,
AC are not only very natural representations for real-valued polynomials, but also give
programs for computing them; this can e.g. be traced back to [Val80] who called them
(+,×)-programs. Today AC play an important role in artificial intelligence because
they encompass several classes of circuits with practical applications in probabilistic
reasoning, for instance probabilistic sentential decision diagrams (PSDD) [KdBCD14]
or sum product networks (SPN) with indicator variables [PD11]. AC are also strongly
related to concepts such as AND/OR-circuits [DM07] and Cutset Networks [RKG14].
When used in probabilistic reasoning, AC always represent non-negative functions and
are therefore called (somewhat misleadingly perhaps) positive AC. Positive AC constitute
a subclass of what in the probabilistic graphical models community is called probabilistic
circuits [CVVdB20]. In the literature, positivity is is often syntactically enforced by
assuming that all constants in the computation are non-negative, see e.g. [Dar03, PD11],
in which case the AC are called monotone. Essentially, compared to their monotone
counterparts, positive AC encode programs which allow subtraction as an additional
operation. This has no impact on the tractability of most operations performed on the
AC [Den16] and it is known already since [Val80] that it can decrease the size of AC
exponentially.

While research on arithmetic circuits in complexity theory focuses almost exclusively
on trying to show lower bounds on the size of AC representing notoriously challenging
polynomials like the permanent, see e.g. [JS82, SY10, Raz09], the goals pursued in artifi-
cial intelligence are often different: on the one hand, algorithms for generating AC from
other models like Bayesian networks [CD08, CKD13, KdBCD14], or by learning from
data [LD08, RL16], are a major focus. On the other hand, it is studied how imposing
constraints on the structure of AC can render operations like computation of marginals
or of maximum a posteriori hypotheses (MAP) or more complex queries tractable on
them [HCD06, VCL+21, KCL+19]. In this latter line of work, properties analogous to
those of subclasses of DNNF discussed in Section 2.2 are considered: decomposabil-
ity (also called syntactic multilinearity), smoothness (also called completeness), and
determinism. There is a similar trade-off as for classes of DNNF: on the one hand,
more restrictive properties allow new operations, for example structured decomposabil-
ity [KdBCD14, DVVdB20] is a rather restrictive notion considered and corresponds
exactly to structuredness of DNNF. On the other hand, more general properties are
sufficient to ensure tractability of few important operations. For instance weak decom-
posability (also called consistency) is a relaxation of decomposability which, if combined
with smoothness, allows efficient marginals computation [PTPD15].

As in the setting of DNNF, the analysis of more restrictive properties is driven by
the prospect of AC to support more operations efficiently and therefore be more useful
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in practice. The quest for more generic properties is motivated by the succinctness of
resulting AC: while generally all classes of AC commonly considered can represent all
functions, more general classes should intuitively allow smaller representations. However,
there has been little work trying to show that this intuition is correct by giving lower
bounds. In complexity theory, there is a large amount of research on lower bounds
focused on classes of AC with properties such as bounded-depth, tree-like structure, or
multilinearity [GK98, Raz09, Raz10, SY10] that have deep implications in theory but
are not particularly desirable in practice—with the exception of syntactic multilinearity
which is in fact decomposability. In comparison to Boolean circuits, the succinctness
analysis for classes of arithmetic circuits of practical interest is fairly young and far from
complete [MM14, CD17].

In [12], with my student Alexis de Colnet, we initiate a systematic succinctness map
for AC modeled after that proposed in [DM02] for NNF. We focus on classes of AC
with 0/1-variables that respect decomposability or weak decomposability and possibly
determinism and/or smoothness. Most of our results deal with classes of monotone AC
and are obtained by lifting results from the existing succinctness map for NNF. To this
end, we observe that understanding the succinctness relations between different classes
of monotone AC reduces to understanding that between classes of NNF with analogous
restrictions. However, several classes of NNF obtained with the reduction, namely those
respecting weak decomposability, have only recently been introduced [AAC+19] and thus
their position in the maps has not been studied. To analyze monotone AC, we thus
prove the missing succinctness relations for these classes. From the map for NNF and
the lifting technique, we obtain the complete map linking the eight classes of monotone
AC one gets combining the different restrictions we consider. In a modest contribution
to the understanding of positive AC, we show that under particular restrictions, all
including determinism, the expressive power of classes of positive AC coincide with that
of their monotone counterparts. Thus some succinctness relations in the monotone map
easily extend to the positive map. However, for positive AC, several relations between
classes remain open. Finally, in an effort to motivate further research on the succinctness
relations left to prove, we describe a technique to show lower bounds on the size of positive
AC. We apply it to prove lower bounds for positive AC with structured decomposability,
which is the case for e.g. PSDD [KdBCD14].

3.5. Enumeration in Database Theory

When a computational problem has a great number of solutions, computing all of them
at once can take an unreasonable amount of time. Enumeration algorithms are an answer
to this challenge, and have been studied in many contexts (see [Was16] for an overview).
Such algorithms generally consist of two phases: first, in a preprocessing phase the input
is preprocessed. Second, using the results of the preprocessing, in an enumeration phase
the solutions are computed one after the other, while limiting the amount of time between
each pair of successive solutions, called the delay.

I have several publications on such enumeration algorithms in which I focused on a
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well-studied class of efficient enumeration algorithms with very strict requirements: the
preprocessing must be linear in the input data, and the delay between successive solutions
must be constant. Such algorithms have been studied in particular in database theory,
to enumerate query answers (see e.g. [DG07, Bag06, DSS14, BDFG10, BDG07, KS13b,
KS13a, OZ15, CK19, CK18, BKS18, SSV18, BKS17b, BKS17b] for some samples and
the surveys [Seg14, BGS20]).

3.5.1. An Approach Based on DNNF

One shortcoming of most existing enumeration algorithms is that they are typically shown
by constructing a custom index structure tailored to the specific problem, and designing
custom preprocessing and enumeration algorithms. This makes it difficult to generalize
these results to other problems, or to implement them efficiently. It would thus be far
preferable if enumeration for multiple problems could be performed using one generic
representation of the results to enumerate, reusing algorithms for the preprocessing
and enumeration phases. Accordingly, the paper [25] which is joint work with Antoine
Amarilli, Pierre Bourhis and Louis Jachiet, proposes a new framework for constant-
delay enumeration, inspired by knowledge compilation. Using knowledge compilation to
succinctly represent data to be enumerated is very natural: after all, the area studies how
the solutions to computational problems can be compiled to generic representations on
which reasoning tasks can then be solved using general-purpose algorithms. We show how
this approach can be implemented for constant-delay enumeration. At this point in this
thesis, it might be unsurprising for the reader that the data structure from knowledge
compilation that we use are DNNF, more precisely structured d-DNNF.

Our main technical contribution in [25] is an efficient algorithm for enumerating the
satisfying valuations of a structured d-DNNF where a valuation is an encoding of an
assignment by giving the positions of the 1-entries. Note that crucially this encoding can
be far more succinct than giving the whole assignment in the case where the Hamming
weight of an assignment is low, which is the case in the setting we consider. For our
algorithm we assume that a v-tree [PD08] of the input d-DNNF is given as part of the
input. This v-tree can easily be computed in most applications.

Our first main theorem shows that we can enumerate the satisfying valuations of a
structured d-DNNF with linear preprocessing and delay linear in the Hamming weight of
each valuation. Further, our second main theorem shows that, if we impose a constant
bound on the Hamming weight, we can enumerate the valuations with constant delay.

Our results are shown for d-DNNF under a semantics where negation is implicit, i.e.,
variables that are not tested must be set to zero. In analogy to zero-suppressed OBDD
[Weg00], we call this semantics zero-suppressed. The preprocessing phase of our algorithm
rewrites such circuits to a normal form and pre-computes a multitree reachability index
on them, which allows us to enumerate efficiently the traces of the circuit, yielding the
desired valuations. To enumerate for d-DNNF in standard semantics, we show how to
rewrite the input circuit to zero-suppressed semantics, using structuredness, and a new
notion of range gates to make the process efficient. The overall proof is very modular.

The second contribution of [25] is giving evidence that our circuit-based framework
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and enumeration results are useful in database theory. As a proof of concept, we
present two known results that we can extend, or recapture with independent proofs:
First, we re-prove with our framework that the answers to MSO queries on trees and
bounded treewidth structures can be enumerated with linear preprocessing and delay
linear in each assignment, i.e., constant-delay if the free variables are first-order. This
was previously shown by Bagan [Bag06] with a custom construction, and by Kazana
and Segoufin [KS13b] using a powerful result of Colcombet [Col07]. Our proof follows
our proposed approach: we compute a circuit representation of the output following
the provenance constructions in [ABS15], and simply apply our enumeration result to
this circuit. Second, we show how our approach by d-DNNF generalizes an enumeration
algorithm for so-called deterministic factorized representations [OZ15], making it possible
to efficiently enumerate for larger classes of such representations.

3.5.2. Enumeration Under Updates

In a follow-up paper to [25], we show how database updates can be efficiently incorporated
into certain enumeration tasks in [20] which is joint work with Antoine Amarilli and
Pierre Bourhis. Concretely, we revisit how to evaluate MSO queries with free variables
on trees, within the framework of enumeration algorithms but this time allowing certain
changes to the input. As discussed above, previous work had shown how to enumerate
answers with linear-time preprocessing and delay linear in the size of each output, i.e.,
constant-delay for free first-order variables. In [20], we extend this result to support
relabelings, a restricted kind of update operations on trees which allows us to change
the node labels. Our main result shows that we can enumerate the answers of MSO
queries on trees with linear-time preprocessing and delay linear in each answer, while
supporting node relabelings in logarithmic time. To prove this, we reuse the circuit-based
enumeration structure from [25], and develop techniques to maintain its index under node
relabelings. We also show how enumeration under relabelings can be applied to evaluate
practical query languages, such as aggregate, group-by, and parameterized queries.

3.5.3. Enumeration for Document Spanners

Information extraction from text documents is an important problem in data management.
One approach to this task has recently attracted a lot of attention: it uses document
spanners, a declarative logic-based approach first implemented by IBM in their tool
SystemT [Res18] and whose core semantics has then been formalized in [FKRV15].
The spanner approach uses variants of regular expressions (e.g. regex-formulas with
variables), compiles them to variants of finite automata (e.g., variable-set automata, for
short VAs), and evaluates them on the input document to extract the data of interest.
After this extraction phase, algebraic operations like joins, unions and projections can
be performed. The formalization of the spanner framework in [FKRV15] has led to a
thorough investigation of its properties by the theoretical database community, see
e.g. [Fre17, FKP18, MRV18, FH18, FRU+18, PFKK19, Pet21, FT20, SS21].

In a joint paper with Antoine Amarilli, Pierre Bourhis and Matthias Niewerth [20],
we consider the basic task in the spanner framework of efficiently computing the results
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of the extraction, i.e., computing without duplicates all tuples of ranges of the input
document (called mappings) that satisfy the conditions described by a VA. As many
algebraic operations can also be compiled into VAs [FKP18], this task actually solves
the whole data extraction problem for so-called regular spanners [FKRV15]. While the
extraction task is intractable for general VAs [Fre17], it is known to be tractable if we
impose that the VA is sequential [FKP18, FRU+18], which requires that all accepting
runs describe a well-formed mapping. Even then, however, it may still be unreasonable
in practice to materialize all mappings: if there are k variables to extract, then mappings
are k-tuples and there may be up to nk mappings on an input document of size n, which
is unrealistic if n is large. For this reason, recent works [MRV18, FRU+18, FKP18] have
studied the extraction task in the setting of enumeration algorithms as discussed above.
Specifically, [FKP18] has shown how to enumerate the mappings with delay linear in
the input document and quadratic in the VA, i.e., given a document d and a functional
VA A (a subclass of sequential VAs), the delay is O(|A|2 × |d|).

Although this result ensures tractability in both the size of the input document and
the automaton, the delay may still be long as |d| is generally very large. In [FRU+18] it
has been shown that constant delay could be achieved when enumerating the mappings
of VAs if we only focus on data complexity, i.e., for any fixed VA, we can enumerate its
mappings with linear preprocessing and constant delay in the input document. However,
the preprocessing and delay in [FRU+18] are exponential in the VA because they first
determinize it [FRU+18]. This is problematic because the VAs constructed from regex-
formulas [FKRV15] are generally nondeterministic.

Thus, to efficiently enumerate the results of the extraction, we would ideally want to
have the best of both worlds: ensure that the combined complexity (in the sequential VA
and in the document) remains polynomial, while ensuring that the data complexity (in the
document) is as small as possible, i.e., linear time for the preprocessing phase and constant
time for the delay of the enumeration phase. However, up until [20], there was no known
algorithm to satisfy these requirements while working on nondeterministic sequential
VAs. Further, it was conjectured that such an algorithm is unlikely to exist [FRU+18]
because the related task of counting the number of mappings is hard for such VAs.

In [20], we show that nondeterminism is in fact not an obstacle to enumerating the
results of document spanners: we present an algorithm that enumerates the mappings
of a nondeterministic sequential VA in polynomial combined complexity while ensuring
linear preprocessing and constant delay in the input document. This answers the open
question of [FRU+18], and improves on the bounds of [FKP18].

The existence of such an algorithm is surprising but in hindsight not entirely unex-
pected: remember that, in formal language theory, when we are given a word and a
nondeterministic finite automaton, then we can evaluate the automaton on the word
with tractable combined complexity by determinizing the automaton “on the fly”, i.e.,
computing at each position of the word the set of states where the automaton can be. Our
algorithm generalizes this intuition, and extends it to the task of enumerating mappings
without duplicates: our overall approach is to construct a kind of product of the input
document with the extended VA, similarly to [FRU+18]. We then use several tricks to
ensure the constant delay bound despite nondeterminism; in particular we precompute a

45



3. Applications of Knowledge Compilation

jump function that allows us to skip quickly the parts of the document where no variable
can be assigned. To avoid determinizing the input VA, our idea for this is to efficiently
enumerate at each position the possible sets of markers that can be assigned by the VA:
we do so by enumerating paths in the VA, relying on the fact that the VA is sequential
so these paths are acyclic. The challenge is that the same set of markers can be captured
by many different paths, but we explain how we can explore efficiently the set of distinct
paths with a technique known as flashlight search [MS16, RT75]: the key idea is that we
can efficiently determine which partial sets of markers can be extended to the label of a
path. The resulting algorithm is rather simple and has no large hidden constants.

Note that our enumeration algorithm does not contradict the counting hardness results
of [FRU+18]: while our algorithm enumerates mappings with constant delay and without
duplicates, we do not see a way to adapt it to count the mappings efficiently. This is
similar to the enumeration and counting problems for maximal cliques: one can enumerate
maximal cliques with polynomial delay [TIAS77], but counting them is #P-hard [Val79b].

One last contribution of [20] is to present a prototype implementation of the enumeration
algorithm sketched above which is available online as open-source software2. We evaluate
this software experimentally for different types of queries. The results show that our
approach can be implemented in practice and run efficiently. Our prototype is used in a
project called “Spanner workbench” currently under development at the Technion Data
and Knowledge (TD&K) Laboratory led by Prof. Benny Kimelfeld whose aim it is to
implement a public toolbox for document spanners. Our implementation is part of the
standard library of extraction functions provided by that project.

2https://github.com/PoDMR/enum-spanner-rs
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4. Conclusion

This chapter concludes the first part of this thesis which gave a survey of most of my
work over the last years.

In the remainder of this chapter, I will quickly survey some of the work that I have
done that does not fit the two main lines of counting and compilation and which have
thus been left out before. I will then, in Section 4.2, also give an outlook presenting some
specific questions that I think would be good continuations of the work presented in this
thesis.

4.1. Other Work

Since I restricted myself to counting complexity and knowledge compilation in this thesis,
I have left out some of my work that does not fit into these two areas. So let me give a
very quick mention of this work here; the interested reader will find the details in the
respective papers.

I have written a sequence of papers with Mike Behrisch, Miki Hermann and Gernot
Salzer during my postdoc at École Polytechnique [32, 31, 30] which was later summarized
in one journal paper [4]. In those papers, we classify certain types of minimization
problems over conjunctions of Boolean constraints with respect to their approximation
properties. This can be seen as an generalization of by now classical work of [KST97],
see also [CKS01].

There is also joint work with Daniel Le Berre, Pierre Marquis and my then student
Romain Wallon in which we study a peculiar phenomenon of solvers for pseudo-Boolean
(PB) constraints [16]. These solvers are modeled after more established conflict-driven
clause learning solvers for CNF-formulas but use the stronger proof system of cutting
planes instead of resolution. It turns out that implementations of this lead to the
creation of irrelevant literals in the learned constraints, i.e., literals whose assigned values
(whatever they are) never change the truth value of the constraint. We show that those
irrelevant literals exist and that in certain cases they slow down solvers dramatically.
In his PhD thesis [Wal20], Romain extended this line of work by proposing adapted
procedures in conflict analysis that allow avoiding irrelevant literals to a certain extent.

Together with Sebastian Skritek, we analyzed so-called well-designed pattern trees, a
formalization of an important well-behaved fragment of SPARQL, the query language
for RDF graphs, which is a data format that appears in the context of the semantic
web. The semantics of well-designed pattern trees is specifically designed to allow
accessing incomplete data sources which makes their evaluation hard and complicates
the understanding of their complexity. In [21], we study the complexity of evaluating
such well-designed pattern trees. A short time before our paper, a characterization of

49



4. Conclusion

the classes of well-designed pattern trees that can be evaluated in polynomial time was
given [Rom18]. However, projection—a central feature of many query languages—was not
considered in that work. We work towards closing this gap by giving a characterization
of all tractable classes of so-called simple well-designed pattern trees with projection
(under some common complexity theoretic assumptions). Since well-designed pattern
trees correspond to the fragment of well-designed {AND, OPTIONAL}-SPARQL queries,
this gives a complete description of the tractable classes of queries with projections in
this fragment that can be characterized by the underlying graph structures.

While at first sight, this work has no direct connection to my other papers, there
is indeed an intimate technical connection to my work on counting complexity, in
particular [35]. Indeed, many of the combinatorial objects and techniques that turn out
important to understand well-designed pattern trees are closely related to those I had
used in that work but had to be tweaked to fit the different setting.

4.2. Outlook

There are several topics that I think would be interesting continuations of the work
presented in this thesis; I will sketch some of them in this section. Generally, I am planning
to continue moving my research somewhat closer to practical applications. The idea is
not to completely change my research to become a solver writer or similar—this would
not correspond to my strengths or background—but to work on some more theoretical
questions that are directly relevant to my more practical colleagues. Note that some of
my recent work goes in this direction, e.g. our implementation of the algorithm in [20] is
used by the group of Benny Kimelfeld, and the paper [14] gives a theoretical analysis of
an implemented system. Below, I give a mix of such more applied and purely theoretical
questions.

Generally, I believe that there are still more areas in which a knowledge compilation
perspective is useful. Therefore, I will continue looking out for such opportunities in the
future. However, since this is of course inherently not predictable, let me present some
more concrete plans for the future here.

Determinism. One important task in core knowledge compilation is certainly better
understanding determinism in DNNF, both for algorithmic upper bounds and lower
bounds. On the one hand, there are no algorithms that allow to use the full power of
deterministic DNNF; in particular, all implementations compile to restricted fragments
like so-called decision-DNNF or SDD [Dar11]. It would be interesting to see if there are
good algorithms to compile into the larger fragment of d-DNNF without such restrictions.
On the other hand, it would be good to improve our theoretical understanding of ways
to show lower bounds for d-DNNF. Note that the only lower bound separating general
DNNF from d-DNNF is by a function introduced by Sauerhoff [Sau03] and it is unclear
how to generalize Sauerhoff’s technique to other, more interesting functions. In particular,
it would be intriguing to show that there are monotone DNF that do not have small
d-DNNF in the hope that this might lead to lower bounds for so-called lineages in

50



4.2. Outlook

database theory, see e.g. [JS13, Mon20] for background in this direction.

Note that there is also a relation between the power of determinism and the question
if structured d-DNNF can be complemented efficiently: in [BF21] it is shown that a
function f can represented by a small SDD if and only if f and ¬f can both be represented
by small d-DNNF respecting the same v-tree. So separating SDD and structured d-DNNF
requires in a sense showing that there is a function f such that f is represented by a small
structured d-DNNF while ¬f does not have a small d-DNNF representation respecting
the same v-tree.

Finally, one question around determinism is if there are good algorithms that compile
into DNNF that are not deterministic. Since, as discussed in Section 2.4.1, determinism
generally forces DNNF to be exponentially more verbose, for some applications that do
not require efficient counting it would be good to be able to compile into nondeterministic
DNNF to hopefully get smaller representations. However, besides [OD17] there seems
to be no work on that direction whatsoever. The main problem is that it would require
to leave the well-understood paradigms of DPLL-style compilation and also the known
bottom-up approaches which all compile to deterministic DNNF. Thus, it is at the same
time challenging but also highly interesting to understand how in theory but also practical
applications nondeterminism can be used in DNNF compilation.

Approximation. There are several questions regarding approximate knowledge compila-
tion that should be explored. First, as discussed in Section 2.5, one can show good lower
bounds for d-DNNF that approximate functions. It would be good to develop techniques
that allow showing lower bounds for general nondeterministic DNNF. Note that the
technique from [15] inherently does not work in this setting because we crucially use the
fact that a d-DNNF leads to a version of Equation 2.1 in which the rectangles share no
models. As a consequence, when each individual rectangle contains false positives, then
we know that the false positives must be disjoint for the different rectangles and thus
there must be many false positives in total. This then leads to the desired lower bound.
For general DNNF however, the false positives in all rectangles could be the same, which
makes the argument break down. It is an intriguing question to see how this problem
can be avoided.

Another question is finding problems for which approximation can improve the efficiency
of knowledge compilation. Besides the algorithm from [CT20] on bounded pathwidth
Bayes classifiers, there seem to be no positive results in this direction. Finding more
use cases where approximation helps to compile efficiently and in particular also giving
efficient algorithms for this, could be very interesting.

Related to the lower bound results on arithmetic circuits in Section 3.4, it is very
natural to apply approximation there. For example, instead of compiling a classifier
for a Bayesian network, it might be useful to approximately compile the probability
distribution of the network itself. Note that in this setting, it is not even obvious which
distance measure between the original distribution and the approximating circuit to use.
So one would first have to define this quality criterion to make the approximation useful
and then see in which settings one can approximate efficiently.
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Fine-grained complexity. The lower bound techniques of Section 2.4 are inherently
such that they lose a polynomial factor with respect to the real lower bound. Intuitively,
this is because in that setting we are only counting the rectangles computed in the circuit
which only gives a bound on the number of gates in a “middle” layer of the circuit.
However, each rectangle has to also be computed in the circuit which requires additional
gates. This leads to the observation that the techniques of Section 2.4 can inherently not
show tight bounds for functions that have DNNF representations of polynomial size. In
this setting all lower bounds will be off by a polynomial factor in the number of variables.
For example, with this approach, it appears impossible to separate functions having
representations with linear size DNNF from such where all DNNF representations are
of superlinear size. However, such bounds would be desirable, in particular from the
perspective of database theory, an area in which often linear instead of mere polynomial
time complexity is seen as a yardstick for efficient computation. So can the lower bound
techniques be refined?

Very recently, I have used classical techniques on partial derivatives from arithmetic
circuit complexity to show tight cubic bounds for a function. The underlying idea is
that this technique allows to reduce lower bound questions on a single function to lower
bounds for several functions that have to be computed in the same circuit. This makes
tight lower bounds potentially easier. However, the approach so far is quite specialized
for the function I considered, and it remains to be seen how it can be generalized.

I am also currently working on fine-grained questions in query answering in database
theory using techniques from so-called fine-grained complexity theory. This area mostly
deals with lower bounds for problems which are known to be solvable in polynomial time
and tries to determine the exact exponent of optimal algorithms, see e.g. [Wil18] for
a recent survey on this currently very dynamic field. In database theory, fine-grained
complexity has been taken up over the last few years in order to show for which problems
one can hope to improve on current algorithms, see e.g. the survey [BGS20]. I expect
that fine-grained complexity will have a great and lasting impact in the area. With Nofar
Carmeli, I am currently working on ordered enumeration for query answers where we
make connections to fine-grained complexity and I have some other ideas in this direction.

Proof complexity. In the medium turn, I am also planning to extend my research more
in the direction of proof complexity. I think that the lower bound questions studied there
are sufficiently close to similar questions in knowledge compilation such that I think I can
make contributions in that field. Here are two concrete questions I am planning to work
on: first, I would like to understand how general the link between knowledge compilation
and proof complexity is on a technical level. Remember that in [13], building on [IRSS19],
we made an explicit connection between DNNF size for satisfiable Tseitin-formulas and
regular resolution refutations of unsatisfiable Tseitin-formulas. It is an intriguing question
if there are similar links for other classes of CNF-formulas. Can this lead to a better
understanding of both regular resolution and compilation bounds? Note that in a similar
direction, the PERMnformulas studied in [18] are in a sense maximal satisfiable versions
of pigeonhole formulas which are classical hard instances in proof complexity. For these
formulas lower bounds have long been known to be hard for resolution, see e.g. [BN21].
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Are there deeper connections between these two lower bounds? Can one of them be used
to prove the other?

Another question in proof complexity that I would like to better understand is the
complexity of FBDD decision lists which are a generalization of a technical tool in [14].
Decision lists are representations of Boolean functions that are evaluated by working
along a list until a certain evaluation criterion is met and the value can be read off
directly. Such decision lists have long been studied in pure theoretical computer science
and have over the last years become important in the study of QBF proof complexity.
This is because lower bounds on them can be lifted to lower bounds in different QBF
proof systems. In this direction, a better understanding of FBDD decision lists would
lead to lower bounds for a stronger QBF proof system than that in [14] which corresponds
to solvers that change the variable order of OBDDs while refuting an input. Beyond
this, showing lower bounds for such decision lists is also a compelling theoretical question
from a communication complexity perspective.
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In this part of this thesis, we will see some of the technical details of the papers
described in Part I. The aim is not to be exhaustive—this would take far too much
space—but to sample some of the techniques I have used and some of the areas I have
worked in over the years. The chapters in this part are essentially the papers in which
the results appeared, sometimes with some details changed. For example, proofs that
were delegated to an appendix in the publications were often integrated in the main text,
or there are slight typographic changes or similar.

The results that are presented here were chosen using different criteria. A first aim
was to present a certain breadth of topics and techniques. Instead of presenting several
similar papers in the same direction, there is mostly just one result per direction. I have
also prioritized work that was more “important”1 in the sense that it presented insights
or techniques that later were of use for other work by me or others. Finally, there is also
the criterion of which papers I personally like the most and which techniques I find the
most interesting. Note that this leads to a slight preference for newer papers; I always
tend to be most excited about my newest work.

Concretely, I will present work from the following papers:

• In Chapter 5, we will see the proof of the dichotomy result of [28] that was discussed
in Chapter 1.2. In contrast to most of my other work, the underlying techniques in
that work are not combinatorial, in particular there is essentially no graph theory
involved. Instead, the crucial arguments are algebraic and argue by properties of
polynomials, which I think makes the paper quite interesting to read. At least I
enjoyed revisiting it while preparing this thesis.

• Chapter 6 gives the technical details of [27] on the connection between DNNF lower
bounds and communication complexity. As we have seen in Part I, this result is
a crucial building block for much of my work afterwards, which is why I chose to
present it here. As the reader will see, the technical argument is actually quite
simple, so I tend to think that the main contribution of [27] is not technical but
conceptual. Making the connection to communication complexity explicit allowed
solving some open questions rather easily by using results from the literature.

• In Chapter 7, we will see the application of [27] to approximate knowledge compila-
tion, showing the results from [15] discussed in Section 2.5. There we will see that
even though the lower bound framework by communication complexity is rather
simple, actually using it sometimes requires quite nontrivial—and in this case quite
pretty—combinatorial arguments.

• The application of knowledge compilation in proof complexity from [13] that
was sketched in Section 3.2 will be presented in Section 8. The main technical
contribution in that paper is a fine understanding of edge sets whose deletion leaves
a graph connected and how their size is connected to treewidth. The proofs in
that part felt to me like a return to my roots in structural graph theory during my
undergraduate degree.

1As a theorist, I am using this term very loosely.
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• Finally, in Chapter 9, we will see in more detail the enumeration algorithm for
document spanners presented in Section 3.5.3. The connection to knowledge
compilation is a little more hidden in this, but there is an important part played by
what we call mapping DAGs there that are essentially a form of nondeterministic
multi-valued decision diagrams.

All these chapters are largely independent from each other—in particular, they all
contain all necessary preliminaries, even though this means that several concepts are
introduced in more than one chapter—, so the reader can choose freely which subjects
interest them most and should not feel obliged to read them all. That said, the different
chapters present different facets of my work, so to get a feeling for what I am doing in
my research, it might be useful to skim several of them.
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5. Counting Answers to Existential Positive
Queries: A Complexity Classification

In this chapter, we will see the details of the trichotomy result for counting satisfying
assignments of existential positive queries which was introduced in Section 1.2 and which
originally appeared in [28].

5.1. Preliminaries

5.1.1. Basic definitions and notions

Note that · is sometimes used for multiplication of real numbers.

Polynomials. We remind the reader of some basic facts about polynomials which we will
use throughout the paper. Here, a univariate polynomial p in a variable x is a function
p(x) =

∑d
i=0 aix

i where d ≥ 0, each ai ∈ R and ad 6= 0, or the zero polynomial p(x) = 0.
The ai are called coefficients of p. The degree of a polynomial is defined as −∞ in the
case of the zero polynomial, and as d otherwise. Let (x0, y0), . . . , (xn, yn) be n+ 1 pairs
of real numbers. Then there is a uniquely determined polynomial of degree at most n
such that p(xi) = yi for each i; consequently, a polynomial p of degree n that has at least
n+ 1 zeroes (where a zero is a value x such that p(x) = 0) is the zero polynomial. If all
xi and yi are rational numbers, then the coefficients ai of this polynomial are rational
numbers as well; moreover, the ai can be computed in polynomial time.

Logic. We assume basic familiarity with the syntax and semantics of first-order logic.
In this article, we focus on relational first-order logic where equality is not built-in to
the logic. Hence, each vocabulary/signature under discussion consists only of relation
symbols. We assume structures under discussion to be finite (that is, have finite universe);
nonetheless, we sometimes describe structures as finite for emphasis. We assume that
the relations of structures are represented as lists of tuples. We use the letters A, B, . . .
to denote structures, and the corresponding letters A, B, . . . to denote their respective
universes. When τ is a signature, we use Iτ to denote the τ -structure with universe
{a} and where each relation symbol R ∈ τ has RI = {(a, . . . , a)}. When A,B are
structures over the same signature τ , a homomorphism from A to B is a mapping
h : A → B such that, for each R ∈ τ and each tuple (a1, . . . , ak) ∈ RA, it holds that
(h(a1), . . . , h(ak)) ∈ RB.

We use the term fo-formula to refer to a first-order formula. An ep-formula (short
for existential positive formula) is a fo-formula built from atoms (by which we refer to
predicate applications of the form R(v1, . . . , vk), where R is a relation symbol and the
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vi are variables), conjunction (∧), disjunction (∨), and existential quantification (∃).
A pp-formula (short for primitive positive formula) is defined as an ep-formula where
disjunction does not occur. An fo-formula is prenex if it has the form Q1v1 . . . Qnvnθ
where θ is quantifier-free, that is, if all quantifiers occur in the front of the formula. The
set of free variables of a formula φ is denoted by free(φ) and is defined as usual; a formula
φ is a sentence if free(φ) = ∅.

We now present some definitions and conventions that are not totally standard. A
primary concern in this article is in counting satisfying assignments of fo-formulas on
a finite structure. The count is sensitive to the set of variables over which assignments
are considered; and, we will sometimes (but not always) want to count relative to a set
of variables that is strictly larger than the set of free variables. Hence, we will often
associate with each fo-formula φ a set V of variables called the liberal variables, denoted
by lib(φ), which is required to be a superset of free(φ), that is, we require lib(φ) ⊇ free(φ).
Note that lib(φ) may contain variables that do not occur at all in atoms of φ. To indicate
that V is the set of liberal variables of φ, we often use the notation φ(V ); we also use
φ(v1, . . . , vn), where the vi are a listing of the elements of V . Relative to a formula φ(V ),
when B is a structure, we will use φ(B) to denote the set of assignments f : V → B
such that B, f |= φ. We assume that, in each prenex formula with liberal variables
associated with it, no variable is both liberal and quantified. We call an fo-formula φ free
if free(φ) 6= ∅, and liberal if lib(φ) is defined and lib(φ) 6= ∅.

Example 5.1. Let us consider the formula φ(x, y, z) = R(x, y) ∨ S(y, z). As indicated
above, the notation φ(x, y, z) is used to indicate that lib(φ) = {x, y, z}. As free(φ) =
{x, y, z}, we have lib(φ) = free(φ). Define ψ(x, y, z) = R(x, y) and ψ′(x, y, z) = S(y, z).
By the notation ψ(x, y, z), we indicate that lib(ψ) = {x, y, z}; likewise, it holds that
lib(ψ′) = {x, y, z}. Notice that free(ψ) = {x, y}, so we have that lib(ψ) is a proper
superset of free(ψ); in fact, the variable z ∈ lib(ψ) does not occur at all in an atom of ψ.
Define also θ(x, y) = R(x, y); by the notation θ(x, y), we indicate that lib(θ) = {x, y}.

Observe that, for any structure B, we have φ(B) = ψ(B)∪ ψ′(B) (and hence |φ(B)| =
|ψ(B) ∪ ψ′(B)|). Observe, however, that for any structure B where θ(B) is non-empty,
it does not hold that φ(B) = θ(B) ∪ ψ′(B), since φ(B) contains only assignments defined
on lib(φ) = {x, y, z}, whereas θ(B) contains only assignments defined on lib(θ) = {x, y}.

pp-formulas. It is well-known [CM77] that there is a correspondence between prenex
pp-formulas and relational structures. In particular, each prenex pp-formula φ(S) (on
signature τ) with lib(φ) = S may be viewed as a pair (A, S) consisting of a structure A
(on τ) and a set S; the universe A of A is the union of S with the variables appearing
in φ, and the following condition defines the relations of A: for each R ∈ τ , a tuple
(a1, . . . , ak) ∈ Ak is in RA if and only if R(a1, . . . , ak) appears in φ. In the other direction,
such a pair (A, S) can be viewed as a prenex pp-formula φ(S) where all variables in A \S
are quantified and the atoms of φ are defined according to the above condition. A basic
known fact [CM77] that we will use is that when φ(S) is a pp-formula corresponding to
the pair (A, S), B is an arbitrary structure, and f : S → B is an arbitrary map, it holds
that B, f |= φ(S) if and only if there is an extension f ′ of f that is a homomorphism
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from A to B. We will freely interchange between the structure view and the usual notion
of a prenex pp-formula. For a pp-formula specified as a pair (A, S), we typically assume
that S ⊆ A.

Example 5.2. Consider the pp-formula φ(x, x′, y, z) = ∃y′∃u∃v∃w(E(x, x′) ∧E(y, y′) ∧
F (u, v) ∧G(u,w)). The notation φ(x, x′, y, z) indicates that lib(φ) = {x, x′, y, z}. Note
that free(φ) = {x, x′, y}. To convert φ to a structure A, we take the universe A of A to be
the union of lib(φ) with all variables appearing in φ, so A = {x, x′, y, z, y′, u, v, w}. Then,
we define the relations as just described above, so EA = {(x, x′), (y, y′)}, FA = {(u, v)},
and GA = {(u,w)}. The resulting pair representation of φ is (A, {x, x′, y, z}).

Two structures are homomorphically equivalent if each has a homomorphism to the
other. A structure is a core if it is not homomorphically equivalent to a proper substructure
of itself. A structure B is a core of a structure A if B is a substructure of A that is a
core and is homomorphically equivalent to A. It is known that all cores of a structure
are isomorphic and hence one sometimes speaks of the core of a structure.

For a prenex pp-formula (A, S) on signature τ , we define its augmented structure,
denoted by aug(A, S), to be the structure over the expanded vocabulary τ ∪{Ra | a ∈ S}
(understood to be a disjoint union) where R

aug(A,S)
a = {a}; we define the core of the

pp-formula (A, S) to be the core of aug(A, S).

The following fundamental facts on pp-formulas will be used throughout.

Theorem 5.3 (follows from [CM77]). Suppose that each of the pairs (A, V ), (B, V ) is a
prenex pp-formula. The formula (B, V ) logically entails the formula (A, V ) if and only
if there exists a homomorphism from the structure aug(A, V ) to the structure aug(B, V ).
The formulas (A, V ), (B, V ) are logically equivalent if and only if they have isomorphic
cores, or equivalently, when aug(A, V ) and aug(B, V ) are homomorphically equivalent.

ep-formulas. In order to discuss ep-formulas, we will employ the following terminology.
An ep-formula is disjunctive if it is the disjunction of prenex pp-formulas; when φ is
a disjunctive ep-formula with lib(φ) defined, we typically assume that each of the pp-
formulas ψ that appear as disjuncts of φ has lib(ψ) defined as lib(φ). (In this way, for an
arbitrary finite structure B, it holds that |φ(B)| = |

⋃
ψ ψ(B)|, where the union is over

all such disjuncts ψ.) An ep-formula is all-free if it is disjunctive and each pp-formula
appearing as a disjunct is free. An ep-formula φ(S) is normalized if it is disjunctive and for
each sentence disjunct (A, S) and any other disjunct (A′, S), there is no homomorphism
from aug(A, S) to aug(A′, S) (equivalently, there is no homomorphism from A to A′). It
is straightforward to verify that there is an algorithm that, given an ep-formula, outputs
a logically equivalent normalized ep-formula.

Graphs. To every prenex pp-formula (A, S) we assign a graph whose vertex set is A∪S
and where two vertices are connected by an edge if they appear together in a tuple of a
relation of A. A prenex pp-formula (A, S) is called connected if its graph is connected. A
prenex pp-formula (A′, S′) is a component of a prenex pp-formula (A, S) over the same
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signature τ if there exists a set C that forms a connected component of the graph of
(A, S), where:

• S′ = S ∩ C.

• For each relation R ∈ τ , a tuple (a1, . . . , ak) is in RA′ if and only if (a1, . . . , ak) ∈
RA ∩ Ck.

Note that when this holds, the graph of (A′, S′) is the connected component of the graph
of (A, S) on vertices C. We will use the fact that, if φ(V ) is a prenex pp-formula and
φ1(V1), . . . , φc(Vc) is a list of its components, then for any finite structure B, it holds
that |φ(B)| =

∏c
i=1 |φi(B)|.

Example 5.4. Let φ be the free prenex pp-formula from Example 5.2, and let (A, S) be
the pair representation given there. The connected components of the graph of (A, S) are
{x, x′}, {y, y′}, {z}, and {u, v, w}. There are thus four components of the formula (A, S);
they are (A′{x,x′}, {x, x

′}), (A′{y,y′}, {y}), (A′{z}, {z}), and (A′{u,v,w}, ∅) (respectively),

where each A′C is the structure A′ defined above, with respect to the set C.

Written logically, these four components are ψ1(x, x′) = E(x, x′), ψ2(y) = ∃y′E(y, y′),
ψ3(z) = >, and ψ4(∅) = ∃u∃v∃w(F (u, v) ∧G(u,w)), respectively. Here, > denotes the
empty conjunction (considered to be true).

5.1.2. Counting complexity

Throughout, we use Σ to denote an alphabet over which strings are formed. All problems
to be considered are viewed as counting problems. So, a problem is a mapping Q : Σ∗ → N.
We view decision problems as problems where, for each x ∈ Σ∗, it holds that Q(x) is
equal to 0 or 1. A parameterization is a mapping κ : Σ∗ → Σ∗. A parameterized problem
is a pair (Q, κ) consisting of a problem Q and a parameterization κ. Throughout, by πi
we denote the operator that projects a tuple onto its ith coordinate.

A partial function T : Σ∗ → N is polynomial-multiplied with respect to a parameteri-
zation κ if there exists a computable function f : Σ∗ → N and a polynomial p : N→ N
such that, for each x ∈ dom(T ), it holds that T (x) ≤ f(κ(x))p(|x|).

We now give a definition of FPT-computability for partial mappings.

Definition 5.5. Let κ : Σ∗ → Σ∗ be a parameterization. A partial mapping r : Σ∗ → Σ∗

is FPT-computable with respect to κ if there exist a polynomial-multiplied function
T : Σ∗ → N (with respect to κ) with dom(T ) = dom(r) and an algorithm A such that,
for each string x ∈ dom(r), the algorithm A computes r(x) within time T (x); when this
holds, we also say that r is FPT-computable with respect to κ via A.

As is standard, we may and do freely interchange among elements of Σ∗, Σ∗ ×Σ∗, and
N. We define FPT to be the class that contains a parameterized problem (Q, κ) if and
only if Q is FPT-computable with respect to κ.

We now introduce a notion of reduction for counting problems, which is a form of
Turing reduction. We use ℘fin(A) to denote the set containing all finite subsets of A.
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Definition 5.6. A counting FPT-reduction from a parameterized problem (Q, κ) to
another (Q′, κ′) consists of a computable function h : Σ∗ → ℘fin(Σ∗), and an algorithm A
such that:

• on an input x, A may make oracle queries of the form Q′(y) with κ′(y) ∈ h(κ(x)),
and

• Q is FPT-computable with respect to κ via A.

We use clique to denote the decision problem where (k,G) is a yes-instance when G is a
graph that contains a clique of size k ∈ N. By #clique we denote the problem of counting,
given (k,G), the number of k-cliques in the graph G. The parameterized versions of
these problems, denoted by p-clique and p-#clique, are defined via the parameterization
π1(k,G) = k.

5.1.3. Counting case complexity

We employ the framework of case complexity to develop some of our complexity results.
We present the needed elements of this framework for counting problems. The definitions
and results here are due to [35], are based on the theory of [Che14b], and are presented here
for the sake of self-containment; see those articles for further discussion and motivation
of the framework.

The case complexity framework was developed to prove results on restricted versions
of parameterized problems where not all values of the parameter are permitted. This
type of restricted problem arises naturally in query answering problems, where one
often restricts the queries that are admissible, as is done here (for other examples,
see [DJ04b, Gro07, Che14b]).

The case complexity framework provides a notion of case problem and a notion of
reduction between case problem. A case problem was originally [Che14b] defined as a
language Q of pairs (that is, a subset of Σ∗ × Σ∗) where the first element of each pair is
ultimately viewed as the parameter, along with a set S ⊆ Σ∗ restricting the permitted
parameter values. In this article, as we are dealing with counting complexity, in lieu of
considering languages, we will consider mappings Σ∗ × Σ∗ → N. (Of course, a language
of pairs can be naturally viewed as such a mapping by taking its characteristic function.)

One benefit of the framework is that the notion of reduction does not rely on any form
of computability assumption on the sets S involved. Thus, in comparing case problems
using this notion of reduction, one does not need to discuss the computability status of
these sets S, even though in general, it is usual that authors ultimately assume some form
of computability on these sets (typically computable enumerability or computability).

Let us turn to the formal presentation of the framework. A case problem consists
of a problem Q : Σ∗ × Σ∗ → N and a subset S ⊆ Σ∗, and is denoted Q[S]. Note that,
although a problem above is defined as a mapping from Σ∗ to N, here we work with a
problem that is a mapping from Σ∗×Σ∗ to N; this is natural in the current paper, where
an input to the studied problem consists of two parts, a formula and a structure. Note
that a mapping Σ∗ × Σ∗ → N can be naturally viewed as a mapping Σ∗ → N, as there
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are natural and well-known ways to encode the elements of Σ∗ × Σ∗ as elements of Σ∗.
For each case problem Q[S], we define param-Q[S] as the parameterized problem (P, π1)
where P (s, x) is defined as equal to Q(s, x) if s ∈ S, and as 0 otherwise.

We have the following reduction notion for case problems.

Definition 5.7. A counting slice reduction from a case problem Q[S] to a second case
problem Q′[S′] consists of

• a computably enumerable language U ⊆ Σ∗ × ℘fin(Σ∗), and

• a partial function r : Σ∗ × ℘fin(Σ∗) × Σ∗ → Σ∗ that has domain U × Σ∗ and is
FPT-computable with respect to (π1, π2) via an algorithm A that, on input (s, T, y),
may make queries of the form Q′(t, z) where t ∈ T ,

such that the following conditions hold:

• (coverage) for each s ∈ S, there exists T ⊆ S′ such that (s, T ) ∈ U , and

• (correctness) for each (s, T ) ∈ U , it holds (for each y ∈ Σ∗) that Q(s, y) = r(s, T, y).

Let us provide some intuition for this definition. Here, when discussing an instance
(s, y) of a case problem, we refer to the first part s as the parameter. The role of U is to
provide all pairs (s, T ) such that instances (of the first problem) with parameter s can be
reduced to instances (of the second problem) whose parameters lie in T . Correspondingly,
the coverage condition posits that each s ∈ S is covered by the second set S′ in the
sense that there exists a pair (s, T ) ∈ U with T ⊆ S′. The partial function r is the
actual reduction; given a pair (s, T ) ∈ U along with a string y, it computes the value
Q(s, y)—this is what the correctness condition asserts. As here in this article we are
dealing with counting complexity, we permit a form of Turing reduction; so, the algorithm
A of the partial function r, upon being given a triple (s, T, y), may make (possibly
multiple) queries to the second problem, so long as the queries are about instances whose
parameter falls into T .

We have the following key property of counting slice reducibility.

Theorem 5.8. [35] Counting slice reducibility is transitive.

The following theorem shows that, from a counting slice reduction, one can obtain
complexity results for the corresponding parameterized problems.

Theorem 5.9. [35] Let Q[S] and Q′[S′] be case problems. Suppose that Q[S] counting
slice reduces to Q′[S′], and that both S and S′ are computable. Then param-Q[S] counting
FPT-reduces to param-Q′[S′].

5.1.4. Classification of pp-formulas

We present the complexity classification of pp-formulas previously presented in [35]. The
following definitions are adapted from that article. Let (A, S) be a prenex pp-formula,
let D be the core thereof, and let G = (D,E) be the graph of D. An ∃-component of
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(A, S) is a graph of the form G[V ′] where there exists V ⊆ D that is the vertex set of a
component of G[D \ S] and V ′ is the union of V with all vertices in S having an edge to
V . Define contract(A, S) to be the graph on vertex set S obtained by starting from G[S]
and adding an edge between any two vertices that appear together in an ∃-component of
(A, S).

Let Φ be a set of prenex pp-formulas. Let us say that Φ satisfies the contraction
condition if the graphs in the set contract(Φ) := {contract(φ) | φ ∈ Φ} are of bounded
treewidth. Let us say that Φ satisfies the tractability condition if it satisfies the contraction
condition and, in addition, the cores of Φ are of bounded treewidth; here, the treewidth of
a prenex pp-formula is defined as that of its graph. We omit the definition of treewidth,
as it is both well-known and not needed to understand the main technical proof of this
article (which is in Section 5.4).

Definition 5.10. We define count to be the problem that maps a pair (φ(V ),B) consisting
of a fo-formula and a finite structure to the value |φ(B)|.

Theorem 5.11. [35] Let Φ be a set of prenex pp-formulas that satisfies the tractability
condition. Then, the restriction of param-count[Φ] to Φ × Σ∗ is an FPT-computable
partial function.

Theorem 5.12. [35] Let Φ be a set of prenex pp-formulas of bounded arity that does not
satisfy the tractability condition.

1. If Φ satisfies the contraction condition, then it holds that count[Φ] and clique[N]
are interreducible, under counting slice reductions.

2. Otherwise, there exists a counting slice reduction from #clique[N] to count[Φ].

We say that a set of formulas Φ has bounded arity if there exists a constant k ≥ 1 that
upper bounds the arity of each relation symbol appearing in a formula in Φ.

5.2. Main theorems

The following theorem, which we call the equivalence theorem and which is proved
in Section 5.4, is our primary technical result; it is used to derive our complexity
trichotomy on ep-formulas from the known complexity trichotomy on pp-formulas (which
was presented in Section 5.1.4).

Theorem 5.13. (Equivalence theorem) Let Φ be a set of ep-formulas. There exists a set
Φ+ of prenex pp-formulas with the following property: the two counting case problems
count[Φ] and count[Φ+] are interreducible under counting slice reductions. In particular,
there exists an algorithm that computes, given an ep-formula φ, a finite set φ+ of prenex
pp-formulas such that for any set Φ of ep-formulas, the set Φ+ defined as

⋃
{φ+ | φ ∈ Φ}

has the presented property.

We now state our trichotomy theorem on the complexity of counting answers to
ep-formulas, and show how to prove it using the equivalence theorem.
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Theorem 5.14. (Trichotomy theorem) Let Φ be a computable set of ep-formulas of
bounded arity, and let Φ+ be the set of pp-formulas given by Theorem 5.13.

1. If Φ+ satisfies the tractability condition, then it holds that param-count[Φ] is in
FPT.

2. If Φ+ does not satisfy the tractability condition but satisfies the contraction condition,
then it holds that param-count[Φ] is interreducible with p-clique under counting FPT-
reduction.

3. Otherwise, there is a counting FPT-reduction from the problem p-#clique to
param-count[Φ].

Proof. For (1), we use the counting slice reduction (U, r) from count[Φ] to count[Φ+]
given by Theorem 5.13. In particular, given as input (φ,B), it is first checked if φ ∈ Φ; if
not, 0 is output. Otherwise, the algorithm for r is invoked on (φ, φ+,B), where φ+ is
as defined in the statement of Theorem 5.13; queries to count(ψ,B) where ψ ∈ Φ+ are
resolved according to the algorithm of Theorem 5.11.

For (2) and (3), we make use of the result (Theorem 5.13) that the problems count[Φ]
and count[Φ+] are interreducible under counting slice reductions. For (2), we have
from Theorem 5.12 that count[Φ+] and clique[N] are interreducible under counting slice
reductions. Hence, we obtain that the problems clique[N] and count[Φ] are interreducible
under counting slice reductions, and the result follows from Theorem 5.9. For (3), we have
from Theorem 5.12 that there is a counting slice reduction from #clique[N] to count[Φ+],
and hence from #clique[N] to count[Φ]; the result then follows from Theorem 5.9.

Let us remark that when case (2) applies, a consequence of this theorem is that the
problem param-count[Φ] is not in FPT unless W[1] is in FPT, since p-clique is W[1]-
complete; in a similar fashion, when case (3) applies, the problem param-count[Φ] is not
in FPT unless ]W[1] is in FPT, since p-#clique is ]W[1]-complete.

5.3. Examples

Before proving the equivalence theorem in full generality, we discuss some example
ep-formulas to illustrate and preview some of the issues and difficulties with which the
argument needs to cope.

Example 5.15. Consider the formula

φ(w, x, y, z) := E(x, y) ∧ (E(w, x) ∨ (E(y, z) ∧ E(z, z))).

As a first simplification step, we bring disjunction to the outermost level in φ:

φ(w, x, y, z)

≡ (E(x, y) ∧ E(w, x)) ∨ (E(x, y) ∧ E(y, z) ∧ E(z, z)).
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Now let us set φ1(w, x, y, z) ≡ E(x, y) ∧ E(w, x) and also set φ2(w, x, y, z) ≡ E(x, y) ∧
E(y, z) ∧ E(z, z). We can use inclusion-exclusion to count the number of satisfying
assignments of φ on a structure B by

|φ(B)| = |φ1(B)|+ |φ2(B)| − |(φ1 ∧ φ2)(B)|.

One point to observe is that, in this last expression, the count |φ1(B)| needs to be
determined with respect to its set of liberal variabes lib(φ1) = {w, x, y, z}, even though z
does not appear in any atom of φ1. If the count |φ1(B)| is not computed in this way, the
above expression for |φ(B)| fails to hold in general. The situation is analogous for the
formula φ2, where w does not appear in any atom.

Example 5.16. In general, if we are given an ep-formula φ = φ1 ∨ . . . ∨ φn where the
φi are pp-formulas, then to compute the count |φ(B)| of φ relative to B, it suffices to
know the count for each of the 2n − 1 pp-formulas obtained by taking a conjunction of a
non-empty subset of the φi. In this example, we will see that, in fact, one does not always
need to consider all of these conjunctions. To this end, set V = {w, x, y, z} and set

φ(V ) = φ1(V ) ∨ φ2(V ) ∨ φ3(V )

where φ1(V ) = E(x, y) ∧ E(y, z), φ2(V ) = E(z, w) ∧ E(w, x) and φ3(V ) = E(w, x) ∧
E(x, y). Applying inclusion-exclusion, we obtain

|φ(B)| =|φ1(B)|+ |φ2(B)|+ |φ3(B)|
− |(φ1 ∧ φ2)(B)| − |(φ1 ∧ φ3)(B)|
− |(φ2 ∧ φ3)(B)|+ |(φ1 ∧ φ2 ∧ φ3)(B)|.

Now observe that the formulas φ1, φ2 and φ3 are actually equivalent to each other
up to renaming variables; consequently, these formulas are equivalent in that, for any
structure B, they yield the same count: |φ1(B)| = |φ2(B)| = |φ3(B)|. In Section 5.4.1,
we formalize and give a characterization of this notion of equivalence (on pp-formulas).
The formulas φ1 ∧ φ3 and φ2 ∧ φ3 are also equivalent in this sense. We may thus obtain
the following expression for |φ(B)|.

|φ(B)| =3 · |φ1(B)| − |(φ1 ∧ φ2)(B)|
− 2 · |(φ1 ∧ φ3)(B)|+ |(φ1 ∧ φ2 ∧ φ3)(B)|.

So far, we have only unified formulas that are equivalent up to renaming variables.
In our parameterized complexity setting where φ is the parameter, this does not yield a
significant decrease in the complexity of computing |φ(B)|. However, we will now observe
a simplification that is more substantial in this sense. Namely, one can verify that the
formulas φ1 ∧ φ2 and φ1 ∧ φ2 ∧ φ3 are identical. So, if we identify their terms in this last
expression for |φ(B)|, we obtain a cancellation and arrive to the following expression:

|φ(B)| = 3 · |φ1(B)| − 2 · |(φ1 ∧ φ3)(B)|.
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The savings obtained by observing this cancellation are significant, in the following
sense. The pp-formulas φ1 ∧ φ2 and φ1 ∧ φ2 ∧ φ3, which were cancelled, were the only
formulas in the expression for |φ(B)| which did not have treewidth 1; they had treewidth 2.
As it is known that the runtime of evaluation algorithms for quantifier-free pp-formulas
scales with their treewidth [Mar10a], this reduction in treewidth yields a superior runtime
for evaluating |φ(B)|.

As we have seen in the above examples, counting on an ep-formula can, via inclusion-
exclusion, reduce to counting on a finite set of pp-formulas. (This is carried out in our
argument; see Section 5.4.3). As just seen in Example 5.16, there can be some subtlety in
choosing a desirable set of pp-formulas to reduce to. One question not addressed so far is
how one can reduce from counting on a such obtained set of pp-formulas to counting on
the original ep-formula. To this end, let us revisit our first example.

Example 5.17. Let us consider again the formulas of Example 5.15. Assume that we
are given access to an oracle that lets us compute |φ(D)|, for any structure D of our
choice. We will see that, given a structure B, we can compute |φ1(B)|, |φ2(B)|, and
|(φ1 ∧ φ2)(B)| efficiently using this oracle.

To see this, consider the structure C with universe C = {1, 2, 3, 4} and EC =
{(1, 2), (2, 3), (3, 4), (4, 4)}. It is easy to check that the formulas φ1, φ2 and φ1 ∧ φ2

all have a different number of answers with respect to C. Now note that for every pp-
formula ψ and every pair of structures D1, D2 we have |ψ(D1×D2)| = |ψ(D1)| · |ψ(D2)|.
Querying the oracle for |φ(·)| on B×Ci for the values i = 0, 1, 2, we obtain the linear
system

A

 |φ1(B)|
|φ2(B)|

−|(φ1 ∧ φ2)(B)|

 =

 (φ(B)
φ(B×C)
φ(B×C2)


with

A =

 1 1 1
|φ1(C)| |φ2(C)| |(φ1 ∧ φ2)(C)|
|φ1(C)|2 |φ2(C)|2 |(φ1 ∧ φ2)(C)|2

 .

Note that the entries of A can be computed efficiently, and the vector on the right-hand-
side of the equation can be provided by our oracle. The matrix A is a Vandermonde
matrix, as a consequence of the choice of C. Thus, the system has a unique solution and
can be solved to determine |φ1(B)|, |φ2(B)|, and |(φ1 ∧ φ2)(B)|, as desired.

In Example 5.17 we have seen that, for the particular ep-formula φ discussed, counting
on φ is in a certain sense interreducible with counting on the pp-formulas

{φ1, φ2, φ1 ∧ φ2}.

The statement of the equivalence theorem (Theorem 5.13) asserts that for any ep-formula
φ, there exists a finite set φ+ of pp-formulas such that one has this interreducibility.
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5.4. Proof of equivalence theorem

In this section, we give a decidable characterization of counting equivalence (Section 5.4.1);
we then study a relaxation thereof which we call semi-counting equivalence (Section 5.4.2);
we prove the equivalence theorem in the particular case of all-free ep-formulas (Sec-
tion 5.4.3); and, we end by proving the equivalence theorem in its full generality (Sec-
tion 5.4.4). Throughout this section, we generally assume pp-formulas to be prenex.

5.4.1. Counting equivalence

As we have seen in the examples of Section 5.3, it will be important to see when two
different pp-formulas give same number of answers for every structure, because it will
allow us to make simplifications in formulas we get by inclusion-exclusion. To this end,
we make the following definition.

Definition 5.18. Define two fo-formulas φ(V ), φ′(V ′) to be counting equivalent if they are
over the same vocabulary τ and for each finite τ -structure B it holds that |φ(B)| = |φ′(B)|.

In this subsection, we characterize counting equivalence for pp-formulas. To approach
the characterization, we start off with an example.

Example 5.19. It is apparent that logically equivalent formulas are counting equivalent,
but the converse direction is not true. To see this, consider the pp-formulas φ1(x, y) =
E(x, y) and φ2(w, z) = E(w, z). Obviously, φ1 and φ2 are counting equivalent (they just
count the number of tuples in the relation E of a structure B). But φ1 and φ2 are not
logically equivalent; indeed, the assignments in φ1(B) and φ2(B) assign values to different
variables.

Note that one way of witnessing the counting equivalence of φ1 and φ2 is simply
renaming the variable w to x and z to y to get equivalent formulas. Since this syntactic
renaming obviously does not change the number of satisfying assignments, one can
conclude that φ1 and φ2 are counting equivalent.

Example 5.19 motivates the following definition.

Definition 5.20. We say that two pp-formulas

(A, S), (A′, S′)

over the same signature are renaming equivalent if there exist surjections h : S → S′

and h′ : S′ → S that can be extended to homomorphisms h̄ : A→ A′ and h̄′ : A′ → A,
respectively.

Informally speaking, on pp-formulas, two formulas are renaming equivalent if they
become logically equivalent after a renaming of variables, as occurred in Example 5.19.
Hence, renaming equivalence is a relaxation of logical equivalence. Recall that logical
equivalence of pp-formulas was characterized, in Theorem 5.3.

The main theorem of this subsection is that renaming equivalence does not only imply
counting equivalence but is actually equivalent to it.
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Theorem 5.21. Two pp-formulas

φ1(S1), φ2(S2)

are counting equivalent if and only if they are renaming equivalent.

Note that Theorem 5.21 gives a syntactic/algebraic characterization of counting equiv-
alence which makes counting equivalence decidable by a straightforward algorithm and
in fact even puts it into NP.

Before we prove Theorem 5.21, we start off with an simple observation that will be
helpful in the proof.

Observation 5.22. Let φ and φ′ be counting equivalent pp-formulas. Then |lib(φ)| =
|lib(φ′)|.

Proof. Let C be a structure that interprets every relation symbol in R of φ by RC :=
{0, 1}arity(R). Then |φ(C)| = 2|lib(φ)| and |φ′(C)| = 2|lib(φ′)| and the claim follows directly.

Proof. (Theorem 5.21) We begin with the backward direction; let h1 : S1 → S2 and
h2 : S2 → S1 be the surjections from the definition of renaming equivalence. The existence
of these surjections implies that |S1| = |S2| and that each of h1, h2 is a bijection. Let
B be an arbitrary structure. For each f : S2 → B in φ2(B), it is straightforward to
verify that the composition f(h1) is in φ1(B). Since the mapping that takes each such
f to f(h1) is injective (due to h1 being a bijection), we obtain that |φ1(B)| ≥ |φ2(B)|.
By symmetric reasoning, we can obtain that |φ1(B)| ≤ |φ2(B)|, and we conclude that
|φ1(B)| = |φ2(B)|.

For the other direction, let φ1(S1) and φ2(S2) be two pp-formulas over a common
vocabulary τ that are not renaming equivalent; let (A1, S1) and (A2, S2) be the cor-
responding structures. By way of contradiction, assume that φ1 and φ2 are counting
equivalent. If it holds that |lib(φ1)| 6= |lib(φ2)|, we are done by Observation 5.22. So we
may assume, after potentially renaming some variables, that lib(φ1) = lib(φ2) =: S.

When C, D are structures with S ⊆ C ∩D, let us define hom(C,D, S) to be the set of
mappings from S to D that can be extended to a homomorphism from C to D; denote
by surj(C,D, S) the surjections h : S → S that lie in hom(C,D, S).

As (A1, S1) and (A2, S2) are by hypothesis not renaming equivalent, we may assume,
without loss of generality, that surj(A1,A2, S) = ∅. For T ⊆ S let us use homT (A1,A2, S)
to denote the set of mappings h ∈ hom(A1,A2, S) such that h(S) ⊆ T . By inclusion-
exclusion we get

|surj(φ1, φ2, S)| =
∑
T⊆S

(−1)|S|−|T || homT (A1,A2, S)|.

For i ≥ 0 let homi,T (A1,A2, S) be the set of mappings h ∈ hom(A1,A2, S) such that
h maps exactly i variables from S into T . Now for each j = 1, . . . , |S| we construct a new
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structure Dj,T over the domain Dj,T . To this end, let a(1), . . . , a(j) be copies of a ∈ T
that are not in A2. Then we set

Dj,T := {a(k) | a ∈ A2, a ∈ T, k ∈ [j]} ∪ (A2 \ T ).

We define a mapping B : A2 → P(Dj,T ), where P(Dj,T ) is the power set of Dj,T , by

B(a) :=

{
{a(k) | k ∈ [j]}}, if a ∈ T
{a}, otherwise.

For every relation symbol R ∈ τ we define

RDT,j :=
⋃

(d1,...,ds)∈RA2

B(d1)× . . .×B(ds).

Then every h ∈ homi,T (A1,A2, S) corresponds to ji mappings in hom(A1,Dj,T , S).
Thus for each j we get

|S|∑
i=1

ji|homi,T (A1,A2, S)| = | hom(A1,Dj,T , S)|.

This is a linear system of equations and the corresponding matrix is a Vandermonde
matrix; consequently, the value homT (A1,A2, S) = hom|S|,T (A1,A2, S) can efficiently
be computed from |hom(A1,D, S)| = |φ1(D)| for some structures D. We can similarly
determine |homT (A2,D, S)| as a function of |φ2(D)| for the same structures D. Since
|φ1(D)| = |φ2(D)| for every structure D by assumption, it follows that for every subset
T ⊆ S we have

|homT (A1,A2, S)| = |homT (A2,A2, S)|.

But then we have
|surj(A1,A2, S)| = |surj(A2,A2, S)|.

Since surj(A1,A2, S) = ∅ and id ∈ surj(A2,A2, S), this is a contradiction. Consequently,
we obtain that φ1 and φ2 are not counting equivalent.

5.4.2. Semi-counting equivalence

In this subsection, we study a relaxation of the notion of counting equivalence. This
notion will be necessary when we emulate the approach of Example 5.17 in the proof
of the Equivalence theorem: we will again construct a system of linear equations that
we want to solve. In order to ensure solvability, we will make sure that the matrix of
the system is again a Vandermonde matrix which in particular means that all its entries
must be positive. Consequently, since the entries are of the form |φ(C)|k for pp-formulas
φ some carefully chosen structure C and integers k, it will be necessary to understand
counting equivalence in the case where φ(C) is non-empty. The necessary notion is
formalized by the following definition.
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Definition 5.23. Call two prenex pp-formulas

φ1(V1), φ2(V2)

on the same vocabulary semi-counting equivalent if for each finite structure B such that
|φ1(B)| > 0 and |φ2(B)| > 0, it holds that |φ1(B)| = |φ2(B)|.

Example 5.24. The pp-formulas φ1(x, y) = E(x, y) and φ2(x, y) = ∃z(E(x, y) ∧ F (z))
are not counting equivalent, because for every structure B for which FB = ∅, we have
|φ2(B)| = 0 while |φ1(B)| may be non-zero if EB is non-empty. But if we have for a
structure B such that |φ2(B)| > 0, then FB 6= ∅ and it is straightforward to verify that
|φ1(B)| = |φ2(B)|. Consequently, we have that φ1 and φ2 are semi-counting equivalent.

For each free prenex pp-formula φ(V ), define φ̂(V ) to be the pp-formula obtained from
φ by removing each atom that occurs in a non-liberal component of φ (a component of φ
not having liberal variables).

Example 5.25. Consider the pp-formula φ discussed in Examples 5.2 and 5.4. This
pp-formula has 4 components, namely, the pp-formulas ψ1(x, x′), ψ2(y), ψ3(z), and ψ4(∅)
defined in Example 5.4. The formulas ψ1, ψ2, and ψ3 are liberal, but the formula ψ4 is
not liberal. Recall that the formula φ(x, x′, y, z) is equal to

∃y′∃u∃v∃w(E(x, x′) ∧ E(y, y′) ∧ F (u, v) ∧G(u,w))

and that we have ψ4(∅) = ∃u∃v∃w(F (u, v) ∧G(u,w)). We hence have that φ̂(x, x′, y, z)
is the formula

∃y′∃u∃v∃w(E(x, x′) ∧ E(y, y′)).

The following characterization of semi-counting equivalence is the main theorem of
this subsection.

Theorem 5.26. Let φ1(V1), φ2(V2) be two free prenex pp-formulas. It holds that φ1(V1)

and φ2(V2) are semi-counting equivalent if and only if φ̂1(V1) and φ̂2(V2) are counting
equivalent.

We will use the following proposition in the proof of Theorem 5.26.

Proposition 5.27. Let φ(V ) be a free prenex pp-formula. Then for every structure B
we have φ(B) = ∅ or φ(B) = φ̂(B).

Proof. Let B be a structure. Let ψ be the conjunction of the components deleted from φ
to obtain φ̂. If ψ is false on B, then obviously φ(B) = ∅. Otherwise, ψ is true on B, and
for any assignment f : V → B, it holds that B, f |= φ if and only if B, f |= φ̂.

Proof. (Theorem 5.26) Assume first that φ̂1 and φ̂2 are counting equivalent. Let B be
a structure. Then if |φ1(B)| > 0 and |φ2(B)| > 0, we have by Proposition 5.27 and

counting equivalence of φ̂1 and φ̂2 that |φ1(B)| = |φ̂1(B)| = |φ̂2(B)| = |φ2(B)|, so φ1 and
φ2 are semi-counting equivalent.
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For the other direction let now φ1 and φ2 be semi-counting equivalent. By way of
contradiction, we assume that φ̂1 and φ̂2 are not counting equivalent. Then by definition
there is a structure B such that |φ̂1(B)| 6= |φ̂2(B)|. Note that each component of φ̂1 and

φ̂2 has a liberal variable.

Let I = Iτ , where τ is the vocabulary of φ1 and φ2. For each k ∈ N we denote by
B + kI the structure we get from B by disjoint union with k copies of I. Note that for
k > 0 we have |φ(B + kI)| > 0 for every pp-formula φ. Consequently, for every k > 0 we

have |φ1(B + kI)| = |φ̂1(B + kI)| and |φ2(B + kI)| = |φ̂2(B + kI)| by Proposition 5.27.
By the semi-counting equivalence of φ1 and φ2 we also have |φ1(B + kI)| = |φ2(B + kI)|
for all k > 0. It follows that |φ̂1(B + kI)| = |φ̂2(B + kI)| for k > 0.

Let φ1,1, . . . , φ1,n denote the components of φ̂1, and let φ2,1, . . . , φ2,m denote the

components of φ̂2. Because every component of φ̂1 has a liberal variable, we have

|φ̂1(B + kI)| =
∑
J⊆[n]

kn−|J |
∏
j∈J
|φ1,j(B)|

=
n∑
`=0

kn−`
∑

J⊆[n],|J |=`

∏
j∈J
|φ1,j(B)|.

We can express |φ̂2(B + kI)| analogously. The expressions are polynomials in k and they
are equal for every positive integer k by the observations above; thus the coefficients of
the polynomials must coincide. The coefficients of k0, namely the values

∏
j∈[n] |φ1,j(B)|

and
∏
j∈[m] |φ2,j(B)|, are thus equal. But then we get

|φ̂1(B)| =
∏
j∈[n]

|φ1,j(B)| =
∏
j∈[m]

|φ2,j(B)| = |φ̂2(B)|,

which is a contradiction to our assumption.

Corollary 5.28. Semi-counting equivalence is an equivalence relation (on pp-formulas).

We now present a lemma that will be of utility; it is proved by induction.

Lemma 5.29. Let φ1(S1), . . . , φn(Sn) be pp-formulas over the same vocabulary τ , which
are liberal (that is, with each |Si| > 0). Then there is a structure C (over τ) such that

• for all pp-formulas φ (over τ) it holds that |φ(C)| > 0, and

• for all i, j ∈ [n] such that φi and φj are not semi-counting equivalent, it holds that
|φi(C)| 6= |φj(C)|.

In order to establish this lemma, we first prove the following lemma.

Lemma 5.30. Let φ1(S1) and φ2(S2) be two pp-formulas over a vocabulary τ that are
not semi-counting equivalent. Then there is a structure D such that for every primitive
positive formula φ over τ we have |φ(D)| > 0 and |φ1(D)| 6= |φ2(D)|.

75



5. Counting Answers to Existential Positive Queries: A Complexity Classification

Proof. Let B be any structure on which φ1 and φ2 have a non-zero but different number
of solutions. Such a structure exists by definition of semi-counting equivalence. We claim
that we can choose D = B + kI for some k ∈ N, k > 0 where B + kI is defined as in the
proof of Theorem 5.26. By way of contradiction, assume that |φ1(B + kI)| = |φ2(B + kI)|
for all k ∈ N, k > 0. Then with the same argument as in the proof of Theorem 5.26 we
get the contradiction that |φ1(B)| = |φ2(B)|.

Proof. (Lemma 5.29) We prove this by induction on n; the case n = 2 is implied by
Lemma 5.30.

When n > 2, we first observe that it suffices to prove the result when the φi are pairwise
not semi-counting equivalent, so we assume that this holds. Let D be the structure that
we get by induction for φ1, . . . , φn−1. We may assume w.l.o.g. that

|φ1(D)| < |φ2(D)| < . . . < |φn−1(D)|.

If it holds that |φn(D)| 6= |φi(D)| for every i ∈ [n− 1], then we are done. So we assume
that there is an index i ∈ [n− 1] such that |φn(D)| = |φi(D)|.

Let D′ be the structure we get by applying Lemma 5.30 to φn and φi.
Now choose k such that for every j with 1 < j ≤ i we have

|φj−1(D)|k

|φj(D)|k
<

1

|lib(φj−1)||D′|
.

Then we have for every ` ≥ k and 1 < j < i

|φj−1(D` ×D′)| = |φj−1(D`)| · |φj−1(D′)|

≤ |φj−1(D`)| · |lib(φj−1)||D′|

< |φj(D`)|
≤ |φj(D`)| · |φj(D′)|
= |φj(D` ×D′)|.

Analogously, we get for every ` > k that

|φi−1(D` ×D′)| < |φn(D` ×D′)|.

Now choose k′ such that for every j with i ≤ j < n we have

|φj+1(D)|k′

|φj(D)|k′
> |lib(φj)||D

′|.

Then we have for every ` > k′ and every i ≤ j < n

|φj(D` ×D′)| = |φj(D`)| · |φj(D′)|

≤ |φj(D`)| · |lib(φj)||D
′|

< |φj+1(D`)|
≤ |φj+1(D`)| · |φj(D′)|
= |φj+1(D` ×D′)|.
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Similarly, we get for every ` > k that

|φi+1(D` ×D′)| > |φn(D` ×D′)|.

Now choosing ` = max(k, k′) and noting that

|φi(D` ×D′)| = |φi(D`)| · |φi(D′)|
6= |φn(D`)| · |φn(D′)|
= |φn(D` ×D′)|

completes the proof with C = D` ×D′.

The following is a consequence of this lemma.

Lemma 5.31. Let φ1(S1), . . . , φn(Sn) be connected, liberal pp-formulas over the same
vocabulary τ that are pairwise not counting equivalent. Then there exists a structure C
(over τ) such that

• for all pp-formulas φ (over τ) it holds that |φ(C)| > 0, and

• for all distinct i, j ∈ [n], it holds that |φi(C)| 6= |φj(C)|.

Proof. By Lemma 5.29, it suffices to show that the pp-formulas φi are pairwise not
semi-counting equivalent. Since each φi is connected and liberal, we have φi = φ̂i. Thus,
by the hypothesis that the φi are pairwise not counting equivalent in combination with
Theorem 5.26, we obtain that the φi are pairwise not semi-counting equivalent.

5.4.3. The all-free case

The aim of this subsection is the proof of Theorem 5.13 in the special case of all-free
ep-formulas. Recall that an ep-formula is all-free if it is the disjunction of prenex pp-
formulas, each of which is free in that it has a non-empty set of free variables. We will
later in Section 5.4.4 use the result on all-free formulas to prove the general version of
Theorem 5.13.

For every φ(V ) ∈ Φ we define a set φ∗ of free pp-formulas; then, we define Φ∗ =⋃
φ∈Φ φ

∗(V ). Let φ(V ) = φ1(V ) ∨ . . . ∨ φs(V ) where the φi(V ) are free pp-formulas. By
inclusion-exclusion we have for every structure B that

|φ(B)| =
∑
J∈[s]

(−1)|J |+1|(
∧
j∈J

φj)(B)|

=
∑
J∈[s]

(−1)|J |+1|φJ(B)|, (5.1)

where the φJ(V ) =
∧
j∈J φj(V ) are pp-formulas. Now iteratively do the following: If

there are two summands c|φJ(B)| and c′|φJ ′(B)| such that φJ and φJ ′ are counting
equivalent, delete both summands and add (c+ c′)|φJ | to the sum. When this operation
can no longer be applied, delete all summands with coefficient zero. The pp-formulas
that remain in the sum form the set φ∗.
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Example 5.32. It shall be advantageous to again consider Example 5.16. There we
started off with

φ(V ) = φ1(V ) ∨ φ2(V ) ∨ φ3(V ).

Inclusion-exclusion yields

|φ(B)| =|φ1(B)|+ |φ2(B)|+ |φ3(B)|
− |(φ1 ∧ φ2)(B)| − |(φ1 ∧ φ3)(B)|
− |(φ2 ∧ φ3)(B)|+ |(φ1 ∧ φ2 ∧ φ3)(B)|.

Now we simplify as described above and get

|φ(B)| = 3 · |φ1(B)| − 2 · |(φ1 ∧ φ3)(B)|.

Consequently, for this example we have

φ∗ = {φ1, φ1 ∧ φ3}.

The algorithm discussed above directly yields the following proposition.

Proposition 5.33. There exists an algorithm that, when an all-free ep-formula φ is given
as input, outputs a set φ∗ := {φ∗1, . . . , φ∗`} of free pp-formulas, which are pairwise not
counting equivalent, and coefficients c1, . . . , c` ∈ Z \ {0} such that for every structure B,

|φ(B)| =
∑̀
i=1

ci|φ∗i (B)|.

We will also require the following two facts for our proof.

Proposition 5.34. Let us presume that φ(S) and φ′(S′) are two semi-counting equivalent
free pp-formulas that are not counting equivalent and let (A, S) and (A′, S′) be the
structures of φ and φ′, respectively. Then A and A′ are not homomorphically equivalent.

Proof. φ(S) and φ′(S′) are semi-counting equivalent, so we have by Theorem 5.26 and

Theorem 5.21 that φ̂(S) and φ̂′(S′) are renaming equivalent. It follows that A and A′

are homomorphically equivalent via homomorphisms h : A→ A′, h′ : A′ → A that act as
bijections between S and S′.

If there exists a homomorphism g from A to A′, then we can extend h (using the
definition of g) to be defined on the components of φ deleted in the construction of φ̂, to
obtain a homomorphism from A to A′ extending h. If there exists a homomorphism g′

from A′ to A, we can extend h′ in an analogous way. However, the existence of both
such extensions would imply by definition that φ(S) and φ′(S′) are counting equivalent.
We may thus conclude that either there is no homomorphism A → A′ or there is no
homomorphism A′ → A.
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Lemma 5.35. There is an oracle FPT-algorithm that performs the following: given a
set φ1, . . . , φs of semi-counting equivalent free pp-formulas that are pairwise not counting
equivalent, a sequence c1, . . . , cs ∈ Z \ {0}, and a structure B, the algorithm computes
|φi(B)| for every i ∈ [s]; it may make calls to an oracle that provides

∑s
i=1 ci · |φi(B′)|

upon being given a structure B′. Here, the φi with the ci constitute the parameter.

To establish this lemma, we first demonstrate the following proposition.

Proposition 5.36. Let φ1, . . . , φs be a sequence of semi-counting equivalent pp-formulas
that are pairwise not counting equivalent. Then there is a structure C and i ∈ [s] such
that C |= φi but C��|=φj for all j ∈ [s] \ {i}.

Proof. Let A1, . . . ,An be the structures of the queries φ1, . . . , φn. By Proposition 5.34
the structures Ai are pairwise not homomorphically equivalent. For i, j ∈ [n], we write
φi < φj if there is a homomorphism from Ai to Aj . It is easy to check that < induces a
partial order on the φi. Let φi be a minimal element of this partial order, then there is no
homomorphism from any Aj to φi with i 6= j. Setting C = Ai completes the proof.

Proof. (Lemma 5.35) We give and algorithm that recursively computes the |φi(B)| one
after the other. So let the parameter and the input be given as in the statement of the
lemma. By Proposition 5.36, there is an i ∈ [n] and a structure C such that C |= φi
but C��|=φj for all j ∈ [s] \ {i}. W.l.o.g. assume i = s. Then |φi(B ×C)| = 0 for i < s.
Consequently, we have that the oracle lets us compute cs·|φn(B×C)| = cs·|φn(B)|·|φn(C)|.
Computing |φn(C)| by brute force then yields |φs(B)|.

Now note that for every structure B′ we can also compute
∑s−1

i=1 ci · |φi(B′)| by this
approach with one subtraction. So we can apply the algorithm again for φ1, . . . , φs−1,
answering oracle queries for the smaller sum

∑s−1
i=1 ci · |φi(B′)| with the help of the oracle

for
∑s

i=1 ci · |φi(B′)|.

We can now prove Theorem 5.13 for all-free ep-formulas.

Theorem 5.37. Let Φ be a set of all-free ep-formulas. There exists a set Φ∗ of free
prenex pp-formulas such that the counting case problems count[Φ] and count[Φ∗] are
equivalent under counting slice reductions.

Before giving the technical details of the proof of Theorem 5.37, let us first describe
the ideas. The proof follows the approach presented in the examples of Section 5.3. In
particular, the less straightforward reduction from count[Φ∗] to count[Φ] proceeds as we
did in Example 5.17. Given φ and φ∗, we can evaluate |φ′(B)| for φ′ ∈ φ∗ with an oracle
for |φ(B×C`)| for a suitable structure C as in that example. The main difference is that,
instead of having C explicitly as in Example 5.17, we here know from Lemma 5.29 that
a structure C exists for which all formulas in φ∗ have a different number of satisfying
assignments. We can then compute C by brute force as it depends only on φ. This then
allows to compute φ′(B) by solving a system of linear equations.

We now give the technical detail of the proof.
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Proof. Let us first specify the reduction from count[Φ] to count[Φ∗], which is quite straight-
forward. The relation U is the set of pairs (φ, φ∗) such that φ is an all-free ep-formula and
φ∗ is the output of the algorithm of Proposition 5.33 on input φ. Obviously, this satisfies
the coverage condition. Then the oracle-FPT-algorithm to compute φ(B) given φ, φ∗

and B first computes all of the |φ∗i (B)| by oracle calls and then uses Proposition 5.33.
This completes the reduction.

For the other direction, let φ′ ∈ Φ∗. We set U to be the set of all pairs (φ′, {φ})
such that φ is an all-free ep-formula and φ′ ∈ φ∗. Given φ′, φ and B, we compute
|φ′(B)| := r(φ′, {φ},B) as follows: Let φ∗1, . . . , φ

∗
s be the equivalence classes of φ∗ with

respect to semi-counting equivalence. Now choose a strucuture C as in Lemma 5.29. Then
for ψ,ψ′ ∈ φ∗ we have |ψ(C)| 6= |ψ′(C)| if ψ and ψ′ are from different equivalence classes
with respect to semi-counting equivalence, and otherwise |ψ(C)| = |ψ′(C)| > 0. Fix for
each j ∈ [s] a formula in φ∗j and call it ψj . Moreover, denote by cψ the coefficiencent of ψ
in Proposition 5.33. Using this notation and Proposition 5.33 we obtain, for every ` ∈ N,
that

|φ(B×C`)| =
s∑
j=1

|ψj(C)|`(
∑
ψ∈φ∗j

cψ|ψ(B)|).

Note that this is a linear equation where the coefficients have the form |ψj(C)|`; these
can be computed by brute force. Letting ` range from 0 to s− 1 thus yields a system of
linear equations whose coefficient matrix is a Vandermonde matrix. Consequently, with s
oracle calls we can compute

∑
ψ∈φ∗j

cψ|ψ(B)| for each j. We use Lemma 5.35 to compute

φ′(B).

5.4.4. The general case

We now indicate how to prove Theorem 5.13 in its full generality.
We may assume that each ep-formula φ ∈ Φ is normalized. For each ep-formula φ,

define φaf to be the all-free part of φ, that is, the disjunction of the φ-disjuncts that are
free; define Φaf to be {φaf | φ ∈ Φ}; and, define φ−af to be the set of formulas in φ∗af that
do not logically entail a sentence disjunct of φ. We define φ+ to be the union of φ−af and
the set containing each pp-sentence disjunct of φ; and, we define Φ+ to be

⋃
φ∈Φ φ

+.

Example 5.38. Set V = {w, x, y, z}; we consider the formulas φ(V ) = φ1(V )∨ φ2(V )∨
φ3(V ) defined in Example 5.16. Define

θ1(V ) = ∃a∃b∃c∃dE(a, b) ∧ E(b, c) ∧ E(c, d),

and define
θ(V ) = φ1(V ) ∨ φ2(V ) ∨ φ3(V ) ∨ θ1(V ).

The all-free part of θ is θaf = φ1(V ) ∨ φ2(V ) ∨ φ3(V ), since each of these three disjuncts
has a non-empty set of free variables, whereas θ1 has an empty set of free variables.
According to Example 5.32, we have

θ∗af = {φ1, φ1 ∧ φ3}.
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Now, observe that φ1 ∧ φ3 logically entails the sentence disjunct θ1 of θ; on the other
hand, φ1 does not logically entail θ1. Hence, we have that θ−af = {φ1}. We have θ+ to be
the union of θ−af and {θ1}, so

θ+ = {φ1, θ1}.

The idea of the proof of Theorem 5.13 is as follows. The counting slice reduction
from count[Φ] to count[Φ+] has U as the set of pairs (φ, φ+) where φ is a normalized
ep-formula; r on (φ(V ), φ+,B) behaves as follows. First, it checks if there is a sentence
disjunct θ of φ that is true on B; if so, it outputs |B||V |; otherwise, it makes use of
the counting slice reduction from count[Φaf ] to count[Φ∗af ]. The counting slice reduction
from count[Φ+] to count[Φ] has U as the set {(ψ, {φ}) | ψ ∈ φ+}; r on (ψ(V ), φ(V ),B)
is defined as follows. When ψ ∈ φ−af , the counting slice reduction (U ′, r′) from count[Φ∗af ]
to count[Φaf ] is used to determine |ψ(B)|; this is performed by passing to r′ a treated
version of B, on which no sentence disjunct of φ may hold. When ψ is a sentence disjunct
of φ, an oracle query is made to obtain the count of φ on a treated version of B; on this
treated version, it is proved that all assignments satisfy φ if and only if B |= ψ.

5.5. Conclusion

We have shown a trichotomy for the parameterized complexity of counting satisfying
assignments to existential positive formulas of bounded arity. To this end, the main
technical contribution was the equivalence theorem (Theorem 5.13) stating that for every
set of existential positive formulas there is a set of primitive positive formulas that is
computationally equivalent with respect to the counting problem studied. After showing
this equivalence theorem, we could derive our trichotomy in a rather straightforward
fashion by invoking a previous trichotomy for primitive positive formulas as a black-box.

In order to prove the equivalence theorem, we gave a syntactic characterization for
when two pp-formulas are counting equivalent, that is, have the same number of satisfying
assignments with respect to every finite structure. This result can be seen as an adaption,
to the counting setting, of classical work of Chandra and Merlin [CM77] that characterizes
logical equivalence of primitive positive formulas.

Let us note that the assumption of bounded arity is not needed in the proof of
the equivalence theorem. It only appears in our trichotomy theorem because it is
already present in the previous trichotomy on primitive positive formulas that we use.
Consequently, if one could adapt the work of Marx [Mar10b] on model checking unbounded
arity primitive positive formulas to counting to show a dichotomy or trichotomy for
counting, this would directly give the corresponding result for existential positive formulas
by applying our equivalence theorem.

Finally, let us remark that we are not aware of any fragment of first-order logic
extending existential positive queries for which even model checking is understood, from
the viewpoint of classifying the complexity of all sets of queries (for more information, see
the discussion in the introduction of the article [Che14b]). Hence, the research project
of extending our complexity classification beyond existential positive queries would first
require an advance in the study of model checking in first-order logic.
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6. DNNF Lower Bounds

This chapter presents the results of [27] on how to prove lower bounds for DNNF and
their subclasses by making the connection to multi-partition communication complexity.
See Chapter 2 for a longer introduction giving context and related work.

After some preliminaries in Section 6.1, we will first introduce the technique for the
basic framework for general DNNF in Section 6.2. Then we will show in Section 6.3
how to use it to show some separations left open in the original knowledge compilation
map paper [DM02]. Finally, in Section 6.4 we show how the lower bound techniques
for structured DNNF in [PD10] fit into our framework as a special case and prove a
conjecture from that paper.

6.1. Preliminaries

In this section, we introduce the notions of decomposable circuits (from knowledge
compilation) and rectangle covers (from communication complexity).

Decomposable NNFs (DNNFs). We consider circuits in negation normal form, in
short NNFs, which are (Boolean) circuits over fanin 2 conjunction and disjunction gates,
labelled with ∧ and ∨, whose inputs are labeled by literals.1 The size of an NNF C,
denoted by |C|, is the number of its gates.2

Let X be a finite set of variables. An NNF C over X is an NNF whose input gates are
labelled with literals over variables in X. The (Boolean) function fC : {0, 1}X → {0, 1}
computed by an NNF C over X is defined in the usual way. We let sat(C) = sat(fC) =
f−1
C (1) denote the set of satisfying assignments of C and fC . Two NNFs C and C ′ over
X are equivalent if sat(C) = sat(C ′); if C and C ′ are equivalent, we write C ≡ C ′. We
also write C ≡ f if fC = f .

For a gate g in an NNF C over X, we let Cg denote the subcircuit of C rooted at g.
In particular, Cg = C if g is the output gate of C. For an NNF C over variables X and
a gate g ∈ C, we let var(Cg) ⊆ X denote the variables appearing at input gates of Cg.

Let g be an ∧-gate in an NNF C, and let h and h′ be two distinct gates wiring g in C.
Then g is called decomposable if var(Ch) ∩ var(Ch′) = ∅. The decomposability of g in C
implies that the two subcircuits Ch and Ch′ are “independent”, in the sense that

|sat(Ch ∧ Ch′)| = |sat(Ch)| · |sat(Ch′)|,
1For technical convenience we admit circuits formed by a single gate labelled with 0 or 1, but assume

that circuits with at least two gates do not contain constants.
2|C| > 0, as C contains at least the output gate. Circuits over unbounded fanin conjunctions and

disjunctions can be quadratically simulated by fanin 2 circuits.
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Figure 6.1.: A DNNF (left) and a vtree (right). The DNNF is structured (it respects the
vtree), but not deterministic.

when viewing each circuit involved in the equation as an NNF over its own variables. An
NNF whose ∧-gates are decomposable is called a decomposable NNF (short, DNNF ).

Let g be an ∨-gate in an NNF C, and let h and h′ be two distinct gates wiring g in C.
Then g is called deterministic if sat(Ch) ∩ sat(Ch′) = ∅, viewing each circuit involved in
the equation as an NNF over var(C). The determinism of g in C implies that the two
subcircuits Ch and Ch′ are “independent”, in the sense that

|sat(Ch ∨ Ch′)| = |sat(Ch)|+ |sat(Ch′)|,

when viewing each circuit involved in the equation as an NNF over var(Ch) ∪ var(Ch′).
An NNF whose ∨-gates are all deterministic is called a deterministic NNF.

Let Y be a finite nonempty set of variables. A variable tree (in short, a vtree) for the
variable set Y is a rooted, full, ordered, binary tree T whose leaves correspond bijectively
to Y ; for simplicity, we identify each leaf in T with the variable in Y it corresponds to.

For every internal node v of the vtree T , we let vl and vr denote respectively the left
and right child of v. Moreover, we denote by Tv the subtree of T rooted at v. We also
let Yv ⊆ Y denote (the variables corresponding to) the leaves of Tv.

Let C be a DNNF over variables X, and let T be a vtree for the variable set Y . Let g
be an ∧-gate in C having wires from gates h and h′. We say that g respects the node v of
T if var(Ch) ⊆ Yvl and var(Ch′) ⊆ Yvr . We say that C respects the vtree T if each ∧-gate
in C respects some node in T . A DNNF C is called structured if it respects some vtree.

We introduce the notion of rectangle, the combinatorial core of communication com-
plexity.

Rectangles and Covers. Let X be a finite set of variables. A partition of X is
a sequence of pairwise disjoint subsets (blocks) of X whose union is X. A partition
(X1, X2) of X into two blocks is called balanced if |X|/3 ≤ min(|X1|, |X2|); clearly, this
is equivalent to max(|X1|, |X2|) ≤ 2|X|/3.

Let (X1, X2) be a partition of X. For b1 : X1 → {0, 1} and b2 : X2 → {0, 1}, we let
b1 ∪ b2 : X1 ∪X2 → {0, 1} denote the assignment whose restriction to Xi equals bi for
i = 1, 2. Also, for B1 ⊆ {0, 1}X1 and B2 ⊆ {0, 1}X2 , we let B1 × B2 = {b1 ∪ b2 | b1 ∈
B1, b2 ∈ B2}.

A (combinatorial) rectangle over X is a function r : {0, 1}X → {0, 1} such that there
exist an underlying partition (X1, X2) of X and functions ri : {0, 1}Xi → {0, 1} for
i = 1, 2 such that sat(r) = sat(r1) × sat(r2). A rectangle is called balanced if its
underlying partition is balanced.
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We also call a subset R of {0, 1}X a rectangle overX, with underlying partition (X1, X2),
if there exists a rectangle r : {0, 1}X → {0, 1}, with underlying partition (X1, X2), such
that R = sat(r).

Let f : {0, 1}X → {0, 1} be a function. A finite set {ri} of rectangles over X is called
a rectangle cover of f if

sat(f) =
⋃
i

sat(ri); (6.1)

the rectangle cover is called disjoint if the union in (6.1) is disjoint. A rectangle cover is
called balanced if each rectangle in the cover is balanced.

Note that, if f has a rectangle cover as in (6.1), thenf ≡
∨
i

(
C1
i ∧ C2

i

)
, where C1

i

(respectively, C2
i ) is an NNF over the first (respectively, second) block of the partition

underlying the ith rectangle in the cover; the outermost ∨-gate is deterministic if the
cover is disjoint, and the ith ∧-gate displayed is decomposable (by the partition of the
ith rectangle).

6.2. Knowledge Compilation Meets Communication
Complexity

In this section we show how to construct, given a (deterministic) DNNF C, a (disjoint)
rectangle cover of size at most |C| for fC (Theorem 6.7), thus establishing a fundamental
connection between knowledge compilation and communication complexity.

The construction is based on basic but crucial combinatorial properties of (deterministic)
DNNFs, notably on the notion of certificate for a DNNF, and an operation eliminating
gates in DNNFs, which we now define and study.

Let C be a DNNF on variables X. A certificate of C is a DNNF T on variables X
such that: T contains the output gate of C; if T contains an ∧-gate v of C, then T also
contains every gate of C having an output wire to v; if T contains an ∨-gate v of C, then
T also contains exactly one gate of C having an output wire to v. The output gate of T
coincides with the output gate of C, and the gates of T inherit their labels and wires
from C.

We let cert(C) denote the set of certificates of C. It is readily verified that

sat(C) =
⋃

T∈cert(C)

sat(T ). (6.2)

The following fact is an easy consequence of decomposability (and constant freeness).

Fact 6.1. Let C be a DNNF and let T ∈ cert(C). The graph underlying T is a binary
tree. Moreover, no two leaves of T are labeled by the same variable.

For a gate g of a DNNF C, we let cert(C, g) denote the set of certificates of C containing
the gate g and let

sat(C, g) =
⋃

T∈cert(C,g)

sat(T ); (6.3)
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in words, sat(C, g) contains those satisfying assignments of C that satisfy the subcircuit
rooted at gate g.

The crucial combinatorial property of DNNFs is that sat(C, g) is a rectangle separating
the variables in the subcircuit of C rooted at g. Formally,

Theorem 6.2. Let C be a DNNF on variables X and let g be a gate of C. Then sat(C, g)
is a rectangle over X with underlying partition (var(Cg), X \ var(Cg)).

In view of proving Theorem 6.2, we prepare the following.

Lemma 6.3. Let g be a gate of a DNNF C and let T ∈ cert(C, g). Then

var(T ) \ var(Tg) ⊆ var(C) \ var(Cg).

Proof of Lemma 6.3. Otherwise, let x be a variable contained in both var(T ) \ var(Tg)
and var(Cg). Then there exists a certificate T ′ ∈ cert(C, g) such that x ∈ var(T ′g). By
Fact 6.1, T and T ′ are trees. By replacing Tg in T by T ′g, we obtain a certificate T of C
where x occurs twice, contradicting Fact 6.1.

Proof of Theorem 6.2. Let Y = var(Cg) and Y ′ = X \ Y . Let b and b′ be in sat(C, g). It
is sufficient to show that b|Y ∪ b′|Y ′ is in sat(C, g), where b|Y , denotes the restriction of b
to Y and b′|Y ′ denotes the restriction of b′ to Y ′.

By (6.3), there exist certificates T and T ′ in cert(C, g) such that b ∈ sat(T ) and
b′ ∈ sat(T ′). Then b satisfies all literals in Tg. Since var(Tg) ⊆ Y , it follows that b|Y
satisfies all literals in Tg. Similarly, b′ satisfies all literals in T ′ \ T ′g; and, by Lemma 6.3,
it holds that var(T ′) \ var(T ′g) ⊆ Y ′. Hence b′|Y ′ satisfies all literals in T ′ \ T ′g.

By Fact 6.1, T and T ′ are trees. By replacing T ′g in T ′ by Tg, we obtain a certificate S
of C containing g, that is, S ∈ cert(C, g). By the above observations, b|Y ∪ b′|Y ′ satisfies
all literals in S, that is, b|Y ∪ b′|Y ′ is in sat(S). It follows by (6.3) that b|Y ∪ b′|Y ′ is in
sat(C, g).

As cert(C) =
⋃
g∈C cert(C, g), it trivially follows by (6.2) and (6.3) that

sat(C) =
⋃
g∈C

sat(C, g). (6.4)

In words, C is covered by the rectangles induced by its gates (recall Theorem 6.2).
However, in view of reusing known lower bounds on the size of rectangle covers (see
Section 6.3), we need to find a subset of gates of C generating a balanced rectangle cover
for C.

To this aim, we first introduce and study an operation on DNNFs that boils down to
relabelling a non-input gate by 0 and propagating the information in the circuit.

Let C be a DNNF on variables X. We define an operation (0-propagation) that, given
a DNNF C with some gates labelled with 0, returns either a single gate labelled with a 0
or a DNNF where no gates are labelled with 0. The operation iterates the following step
until all 0s disappear (or the DNNF reduces to a single gate labelled 0). Let g be a gate
in C labelled with 0. Then: delete all input wires of g; delete all output wires of g to
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∨-gates; relabel all ∧-gates wired by g and all fanin 0 ∨-gates by 0; delete all gates with
no directed paths to the output gate.

Now we define the DNNF on variables X obtained by eliminating the non-input gate g
in C, denoted by C − g, as the result of relabelling g by 0 and performing 0-propagation.

The impact of passing from C to C − g is dropping all certificates containing g in (6.2),
as formalized by the following proposition.

Proposition 6.4. Let C be a DNNF and let g be a non-input gate of C. Then

sat(C − g) =
⋃

T∈cert(C)\cert(C,g)

sat(T ).

Proof. Let first b ∈ sat(C − g). Then there must be a certificate T in C − g with
b ∈ sat(T ). Since g is not in T , it follows that T ∈ cert(C) \ cert(C, g). Thus b ∈⋃
T∈cert(C)\cert(C,g) sat(T ) and thus sat(C − g) ⊆

⋃
T∈cert(C)\cert(C,g) sat(T ).

For the other direction, assume that b ∈
⋃
T∈cert(C)\cert(C,g) sat(T ). Then there is a

certificate T ∈ cert(C) \ cert(C, g) with b ∈ sat(T ). Since g is not in T and 0-propagation
does not affect any certificates that do not contain g, we get that T ∈ cert(C − g). It
follows that b ∈ sat(C − g) and thus

⋃
T∈cert(C)\cert(C,g) sat(T ) ⊆ sat(C − g).

The following lemma states a property of gate elimination crucial to our construction:
in passing from C to C−g we only forget satisfying assignments in the rectangle sat(C, g).

Lemma 6.5. Let C be a DNNF and let g be a non-input gate of C. Then C − g is a
DNNF and

sat(C) \ sat(C, g) ⊆ sat(C − g) ⊆ sat(C).

Proof. Note that gate elimination preserves decomposability. The inclusions follow
directly from Proposition 6.4, recalling (6.2) and (6.3).

In general, an assignment can satisfy more than one certificate. In this case, the left
inclusion in Lemma 6.5 is strict. For instance, let D be a DNNF and let C = D∨D. Let g
be the output gate of one copy of D in C. Then sat(C) = sat(D) and sat(C, g) = sat(D),
so that sat(C) \ sat(C, g) = ∅, but sat(C − g) = sat(D).

By contrast, the left inclusion in Lemma 6.5 becomes an equality in the deterministic
case; in other words, eliminating a gate g in a deterministic DNNF C removes exactly
the assignments in the rectangle sat(C, g). Formally,

Lemma 6.6. Let C be a deterministic DNNF and let g be a non-input gate of C. Then
C − g is a deterministic DNNF and

sat(C) \ sat(C, g) = sat(C − g).

Proof. We show that gate elimination preserves determinism. Assume that C−g contains
a nondeterministic ∨-gate h, wired by gates k and k′ such that b ∈ sat((C − g)k) and
b ∈ sat((C − g)k′). It follows by Proposition 6.4 that there exist certificates T and T ′

in cert(C) \ cert(C, g) such that b ∈ sat(Tk) and b ∈ sat(T ′k). Then b ∈ sat(Ck) and
b ∈ sat(Ck′), that is, h is nondeterministic in C, a contradiction.
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For the equality, by Lemma 6.5 it suffices to prove that sat(C − g) is contained in
sat(C) \ sat(C, g). Assume b ∈ sat(C − g) so that, by Proposition 6.4, it holds that
b ∈ sat(T ′) for some T ′ ∈ cert(C) \ cert(C, g). In particular, b ∈ sat(C). It suffices to
show that b 6∈ sat(C, g).

Otherwise, by (6.3), b ∈ sat(T ) for some T ∈ cert(C, g). Since T ′ 6∈ cert(C, g), we have
T 6= T ′. It follows that there exist two distinct gates k and k′ in C, wiring an ∨-gate h in
C, such that T contains k and T ′ contains k′. Then b ∈ sat(Tk) and b ∈ sat(Tk′), so that
b ∈ sat(Ck) and b ∈ sat(Ck′). Again, h is nondeterministic in C, a contradiction.

It follows from Lemma 6.5 that the process of iteratively eliminating gates in a DNNF
(until it becomes unsatisfiable) yields a rectangle cover; moreover, by Lemma 6.6, the
rectangle cover is disjoint if the DNNF is deterministic.

We strengthen the above remark by proving that a suitable elimination sequence in a
(deterministic) DNNF C yields not just a (disjoint) rectangle cover of C, but indeed a
balanced one, a crucial feature for the intended application (Section 6.3).

Theorem 6.7. Let C be a (deterministic) DNNF computing a function f . Then f has
a balanced (disjoint) rectangle cover of size at most |C|.

Proof. Let C = C0 be a (deterministic) DNNF over variables X = var(C) computing f .
For i = 0, 1, . . ., we find a suitable gate gi ∈ Ci and construct the (deterministic) DNNF
Ci+1 = Ci − gi by eliminating gi in Ci, until we hit l ≤ |C| such that C l ≡ 0. Along the
way, we construct a set

{Ri | i = 0, . . . , l − 1} (6.5)

that, we claim, is the desired rectangle cover of f .

For i = 0, 1, . . ., we choose the gate gi as follows. We distinguish two cases. If
2|X|/3 < |var(Ci)| then, by a descent from the output gate of Ci, we find a gate gi ∈ Ci
such that |X|/3 ≤ |var(Cigi)| ≤ 2|X|/3. By Theorem 6.2 we have that sat(Ci, gi) is a
rectangle over X with underlying partition (var(Cigi), X \ var(C

i
gi)). Then Ri = sat(Ci, gi)

is a balanced rectangle over X.

If |var(Ci)| < 2|X|/3 then we let gi be the root of Ci. We obtain the desired rectangle
as follows. Let var(Ci) ⊆ X ′ ⊆ X be obtained by adding to var(Ci) enough variables
from X \ var(Ci) so that (X ′, X \X ′) is a balanced partition of X. We put

Ri = (sat(Ci)× {0, 1}X′\var(Ci))× {0, 1}X\X′ ,

where we view Ci as a DNNF over var(Ci). Then Ri is trivially a balanced rectangle
over X.

It follows from the above construction and Lemma 6.5 that the set in (6.5) is a balanced
rectangle cover of C. Moreover, if C is deterministic, then such rectangle cover is disjoint,
because sat(Ci, gi) ∩ sat(Ci+1) = ∅ by Lemma 6.6.
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NNF DNNF DNF CNF PI IP

DNNF 6≤∗∗ ≤ ≤ 6≤∗∗ 6≤∗∗ ≤
d-DNNF 6≤∗∗ 6≤∗ ? 6≤∗∗ 6≤∗∗ ?

Table 6.1.: Relative succinctness of knowledge compilation languages, taking into account
the results of Section 6.3.1 (∗) and Section 6.3.2 (∗∗).

6.3. Separating Knowledge Representation Languages via
Communication Complexity

In this section, we combine the connection between (deterministic) DNNFs and (disjoint)
rectangle covers established in Section 6.2 with deep combinatorial lower bounds on
the size of (disjoint) rectangle covers from the communication complexity literature to
obtain exponential separations of DNNFs from deterministic DNNFs (Section 6.3.1) and
of prime implicates (PI) from DNNFs (Section 6.3.2).

As illustrated in Table 6.1, these results allow us to answer several questions regarding
the relative succinctness of languages left open in the “knowledge compilation map” (cf.
Table 3 of [DM02]).

6.3.1. DNNFs Versus Deterministic DNNFs

We first prove an exponential separation of DNNFs from deterministic DNNFs. The two
classes are separated by a function introduced and studied by Sauerhoff [Sau03].

Let gn : {0, 1}n → {0, 1} be the function evaluating to 1 if and only if the sum of its
inputs is divisible by 3. The Sauerhoff function Sn : {0, 1}n2 → {0, 1} is defined on the
n× n matrix X = (xij)1≤i,j≤n of variables by

Sn(X) = Rn(X) ∨ Cn(X) (6.6)

where Rn, Cn : {0, 1}n2 → {0, 1} are defined by

Rn(X) =
n⊕
i=1

gn(xi1, xi2, . . . , xin)

and Cn(X) = Rn(X>), where X> denotes the transpose of X, and ⊕ denotes addition
modulo 2.

The Sauerhoff function has polynomial DNNF size.

Proposition 6.8. Sn in (6.6) has DNNF size O(n2).

Proof (Sketch). The functions Rn and Cn have OBDDs of size O(n2), ordering the
variables by rows and columns, respectively; their disjunction has size O(n2).

We use a highly nontrivial exponential lower bound on the size of balanced disjoint
rectangle covers for Sn [Sau03, Theorem 4.10].
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Theorem 6.9 (Sauerhoff). Any balanced disjoint rectangle cover of the Sauerhoff function
Sn in (6.6) has size 2Ω(n).

We remark that Sauerhoff actually proves the above lower bound only for rectangles
whose underlying partitions have blocks of the same size ±1, but a careful inspection of
the proof reveals that the same argument can be lifted to our more relaxed notion of
balancedness.

By putting together Theorem 6.7 and Theorem 6.9, we get the following lower bound,
which, in combination with Proposition 6.8, yields an explicit, unconditional, exponential
separation of DNNFs from deterministic DNNFs:

Theorem 6.10. Sn in (6.6) has deterministic DNNF size 2Ω(n).

Proof. Let C be a deterministic DNNF computing Sn. By Theorem 6.7, the size of a
balanced disjoint rectangle cover of Sn bounds below the size of C; but the size of this
cover is 2Ω(n) by Theorem 6.9.

6.3.2. Prime Implicates Versus DNNFs

Next, we show a (strongly) exponential separation of prime implicates (PIs) from DNNFs.
In recent (unpublished) work [43], we established this separation by means of an involved
combinatorial proof; here, we obtain the same result by leveraging a lower bound on the
multi-partition communication complexity of a function studied by Jukna and Schnitger
[JS02], which is defined as follows.

For n ≥ 2, let Kn be the set of all 2-element subsets (edges) of {1, . . . , n}. We view
every subset of Kn as the edge set of a graph G whose vertex set is {1, . . . , n}. We
identify edges in Kn with Boolean variables, so that the graph G ⊆ Kn is encoded by
the {0, 1}-assignment of Kn mapping a variable (edge) to 1 if and only if it is in the edge
set of G.

A triangle T on n vertices is a graph with vertices {1, . . . , n} and an edge set
{{i, j}, {i, k}, {j, k}}, where |{i, j, k}| = 3; it corresponds to the assignment of Kn

mapping {i, j}, {i, k}, {j, k} to 1 and the other edges to 0.
We let Tn be the set of all triangles on n vertices. For a set A ⊆ Tn, we let

JSAn : {0, 1}Kn → {0, 1} (6.7)

denote the function accepting exactly those graphs over {1, . . . , n} that avoid all triangles
in A (the edge set of no triangle in A is contained in the edge set of the input graph).

Jukna and Schnitger [JS02, Theorem 3.1] show an exponential lower bound on the size
of balanced rectangle covers for functions as in (6.7).

Theorem 6.11 (Jukna and Schnitger). For every n there exists An ⊆ Tn of size O(n2)
such that any balanced rectangle cover of JSAn

n in (6.7) has size 2Ω(n2).

The Jukna-Schnitger function JSn : {0, 1}Kn → {0, 1} is defined by

JSn = JSAn
n (6.8)
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where An is chosen by Theorem 6.11 (n ≥ 2).

It is readily verified that the Jukna-Schnitger function has polynomial PI size. Recall
that a CNF F is in prime implicate (PI ) form if every clause entailed by F is already
entailed by a clause of F , and no clause of F entails another clause of F .

Proposition 6.12. JSn in (6.8) has PI size O(n2).

Proof (Sketch). Let JSn = JSAn
n . Take the CNF Fn stating that every triangle in An

has an edge that is not in the input graph; it computes JSn and it is in PI. Also, Fn has
size O(n2), since |An| = O(n2) by Theorem 6.11.

By combining Theorem 6.7 and Theorem 6.11, we obtain the following lower bound.

Theorem 6.13. JSn in (6.8) has DNNF size 2Ω(n2).

Proof. Let C be a DNNF computing JSn. The size of a balanced rectangle cover of JSn
is at most |C| by Theorem 6.7 and at least 2Ω(n2) by Theorem 6.11.

Jointly, Proposition 6.12 and Theorem 6.13 yield an unconditional, strongly exponential
separation of PIs from DNNFs. As already observed in [43], since PI ⊆ CNF ⊆ NNF and
d-DNNF ⊆ DNNF, the remaining separations in Table 6.1 marked with ∗∗ follow from
this result.

6.4. Structured Knowledge Representation Languages and
Communication Complexity

The lower bound techniques for structured DNNFs introduced by Pipatsrisawat and
Darwiche [PD10] have a natural interpretation in terms of communication complexity.
Their main result can be paraphrased thus:

Theorem 6.14 (Pipatsrisawat and Darwiche). Let D be a (deterministic) structured
DNNF on variables X computing a function f and respecting a vtree T . For every node
v ∈ T , f has a (disjoint) rectangle cover of size at most |D| where each rectangle has
underlying partition (Xv, X \Xv).

Proof (Sketch). Let v be a node in T . We can find a gate g of D such that, for every
certificate C of D containing g, it holds that var(Cg) ⊆ Xv and var(C \ Cg) ⊆ X \Xv.
We can show as in Theorem 6.2 that sat(D, g) is thus a rectangle with underlying
partition (Xv, X \Xv). We then apply a similar elimination process as in the proof of
Theorem 6.7.

In contrast to Theorem 6.7, the above statement speaks about rectangle covers whose
rectangles share the same underlying partition. Such covers are closely related to a measure
known as the best-partition communication complexity [LS81], and Theorem 6.14 allows
us to transfer lower bounds on the best-partition communication complexity and prove a
conjecture by Pipatsrisawat and Darwiche [PD10].
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Let Xn = {x1, . . . , xn} and Yn = {y1, . . . , yn}. Let T be a vtree for Xn ∪ Yn where
the subtree rooted at the left (respectively, right) child of the root is a right-linear
vtree for Xn (respectively, Yn). Pipatsrisawat and Darwiche [PD10] conjecture that any
deterministic DNNF computing

fn = (x1 ∧ y1) ∨ · · · ∨ (xn ∧ yn) (6.9)

and respecting T has size exponential in n. We appeal to a nice piece of communication
complexity theory to prove the following statement (thus confirming the conjecture).

Proposition 6.15. Let T be any vtree for Xn∪Yn containing a vtree for Xn as a subtree.
Then any deterministic DNNF computing fn in (6.9) and respecting T has size at least
2n − 1.

Let f : {0, 1}Z → {0, 1} be a function, and let (Z1, Z2) be a partition of X where
|Z1| = |Z2| = n. The communication matrix of f relative to (Z1, Z2), denoted by
M(f, Z1, Z2) is a (Boolean) matrix whose rows and columns are indexed by assignments
of Z1 and Z2, respectively, and whose (b1, b2)th entry equals f(b1 ∪ b2).3

A basic fact in communication complexity is that the rank of the communication matrix
is a lower bound on the size of disjoint rectangle covers of a function [Juk12, Section 4.1].

Theorem 6.16. Let (Z1, Z2) be a partition of the variables of a function f , where
|Z1| = |Z2| = n. Then every disjoint rectangle cover of f into rectangles with underlying
partition (Z1, Z2) has size at least rank(M(f, Z1, Z2)).

The complement of the function fn in (6.9), called the disjointness function,

dn = ¬fn = (¬x1 ∨ ¬y1) ∧ · · · ∧ (¬xn ∨ ¬yn), (6.10)

is a well studied object in communication complexity; we denote by Dn = M(dn, Xn, Yn)
its communication matrix. The following fact is folklore [Juk12, Exercise 7.1].

Proposition 6.17. rank(Dn) = 2n.

Proof (Sketch). Note that

Dn =

(
Dn−1 Dn−1

Dn−1 0

)
and that rank(D1) = 2. The statement follows by induction on n since rank(Dn) =
rank(Dn−1) · rank(D1).

Proof of Proposition 6.15. Let C be any deterministic DNNF computing fn in (6.9) and
respecting a vtree T as in the hypothesis. By Theorem 6.14, fn has a disjoint rectangle
cover of size at most |C| where each rectangle has underlying partition (Xn, Yn). Let
En = M(fn, Xn, Yn). By Theorem 6.16, |C| ≥ rank(En). Since Dn = 1− En by (6.10),
we have 2n = rank(Dn) = rank(1 − En) ≤ rank(1) + rank(En) = 1 + rank(En) by
Proposition 6.17 and basic linear algebra, hence rank(En) ≥ 2n − 1. We conclude that
|C| ≥ 2n − 1.

3We regard communication matrices as matrices over the reals.
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We conclude by noting that the same general strategy used for obtaining the lower
bounds in Section 6.3 works for structured DNNFs. For instance, the exponential lower
bound on the structured DNNF size of the circular bit shift (CBS) function [PD10],
follows directly by Theorem 6.14 and known exponential lower bounds on the size of
rectangle covers for CBS in the best-partition model [KN97, Chapter 7.2].

6.5. Conclusion

We established a connection between the DNNF size and the multi-partition communi-
cation complexity of Boolean functions. This connection allowed us to translate lower
bounds from communication complexity into lower bounds on the (deterministic) DNNF
size and prove exponential separations of DNNFs from d-DNNFs and of PIs from DNNFs.

We are confident that the applicability of our approach goes beyond the specific lower
bound results proved here. In particular, we hope that it can help resolve a few questions
from the “knowledge compilation map” that remain open [DM02].
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7. Lower Bounds for Approximate
Compilation

In this chapter, we give most of the details of the results on approximate knowledge
compilation from [15] which were discussed in Section 2.5. The proofs show how the
framework of [27] can be used to show results beyond its initial scope in exact compilation.

We start with some preliminaries in Section 7.1 before introducing the notion of weak
approximation and giving our lower bound for it in Section 7.2. Afterwards, we introduce
and discuss strong approximations next in Section 7.3 and show that weak and strong
approximations differ in Section 7.4. To keep this chapter relatively light, most of the
details of Section 7.2 are not presented, since they are essentially only a minimally
changed version of a similar proof in [KSW99]; the interested reader finds them in the
arXiv version of [15].

7.1. Preliminaries

We describe some conventions of notation for Boolean algebra. In our framework, a
Boolean variable takes value 0 (false) or 1 (true), we see it as a variable over F2, the
field with two elements. Assignments of n Boolean variables are vectors from Fn2 and
operations on vectors and matrices are considered in this field. We use the notation 0n

to denote the 0-vector from Fn2 . For clarity we also use the operators ¬, ∨ and ∧ for
negation, disjunction and conjunction in F2. The conjunction of Boolean variables and
the product in F2 are equivalent and used interchangeably. Single variables are written
in plain style “x” while assignments of n > 1 variables use bold style “x”. A Boolean
function on n variables is a mapping f : Fn2 → F2 and its models are given by f -1(1).
Given a set of assignments S, we sometimes denote 1S the Boolean function whose set of
models is exactly S. We write f ≤ g when f -1(1) ⊆ g -1(1), which corresponds to logical
entailment. A distribution on truth assignments is a probabilistic distribution D on Fn2 .
We write Prx∼D [·] to denote the probability measure when sampling an assignment x
according to D. For clarity, the uniform distribution on Fn2 is denoted U (regardless of
n), x ∼ U means that any assignment is sampled with probability 1/2n.

Deterministic decomposable NNF. Let X be a finite set of Boolean variables. A circuit
in negation normal form (NNF) over X is a single output Boolean circuit whose inputs
gates are labeled with Boolean variables x from X and their negations ¬x and whose
internal gates are fanin-2 ∧- and ∨-gates. The size of a circuit is the number of its gates.
A circuit over X is said to accept a truth assignment x of the variables if it outputs 1
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(true) when its inputs are set as in x. In this case x is a model of the function represented
by the circuit. An NNF is decomposable if, for any ∧-gate g, the two sub-circuits rooted
at g share no input variable, i.e., if x or ¬x is an input gate of the circuit rooted at the
left input of g, then neither x nor ¬x is an input gate of the subcircuit rooted at the
right input, and vice versa. An NNF is deterministic if, for any ∨-gate g, the sets of
assignments accepted by the two subcircuits rooted at the children of g are disjoint. A
decomposable NNF is called a DNNF; if in addition it is deterministic, then it is called a
d-DNNF.

Rectangle covers. Let X be a finite set of Boolean variables. A combinatorial rectangle
over X (more succinctly a rectangle) is a Boolean function r defined as the conjunction
of two Boolean functions ρ1 and ρ2 over disjoints variables of X. That is, there is a
partition (X1, X2) of X such that ρ1 and ρ2 are defined over X1 and X2, respectively,
and r = ρ1 ∧ ρ2. We call (X1, X2) the partition of r. The rectangle is balanced if
|X|/3 ≤ |X1| ≤ 2|X|/3 (the same bounds hold for |X2|). A rectangle cover of a Boolean
function f is any disjunction of rectangles over X (possibly for different partitions of
X) equivalent to f , i.e., f =

∨K
i=1 ri where the ri are rectangles. The size of a cover is

the number K of its rectangles. A rectangle cover is called balanced if its rectangles are
balanced and it is said disjoint if no two rectangles share a model. Note that any function
f has at least one balanced disjoint rectangle cover, because it can be written as a DNF
in which every term contains all variables. There is a tight link between the smallest
size of a balanced disjoint rectangle cover of a function and the size of any equivalent
d-DNNF.

Theorem 7.1. [27] Let D be a d-DNNF encoding a function f . Then f has a balanced
disjoint rectangle cover of size at most the size of D.

Theorem 7.1 implies that, to show a lower bound on the size of any d-DNNF encoding f ,
it is sufficient to find a lower bound on the size of any balanced disjoint rectangle cover
of f .

7.2. Large d-DNNFs for Weak Approximations

In this section, we start by considering the notion of approximation that has been
studied for different forms of branching programs before, see e.g. [KSW99, BSW02]. To
differentiate it from other notions, we give it the name weak approximation.

Definition 7.2 (Weak approximation). Let D be a distribution on the truth assignments
to X and ε > 0. We say that f̃ is a weak ε-approximation of f (or weakly ε-approximates
f) with respect to D if

Pr
x∼D

[
f(x) 6= f̃(x)

]
≤ ε.

When D is the uniform distribution U , then the condition of weak ε-approximability is
equivalent to |{x : f(x) 6= f̃(x)}| ≤ ε2n.
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Note that weak ε-approximation is only useful when ε < 1/2. This is because every
function has a trivial (1/2)-approximation: if Prx∼D [f(x) = 1] > 1/2, then the constant
1-function is a (1/2)-approximation, otherwise this is the case for the constant 0-function.
Note that it might be hard to decide which case is true, but in any case we know that
the approximation ratio of one of the constants is good.

Bollig et al. [BSW02] used a discrepancy argument to show that there are classes of
functions such that any ε-approximation w.r.t. U requires exponential OBDD size. We lift
their techniques to d-DNNF showing that the same functions are also hard for d-DNNF.

Theorem 7.3. Let 0 ≤ ε < 1/2, there is a class of Boolean functions C such that, for
any f ∈ C on n variables, any d-DNNF encoding a weak ε-approximation of f w.r.t. U
has size 2Ω(n).

Since d-DNNFs are strictly more succinct than OBDDs [DM02], Theorem 7.3 is a
generalization of the result on OBDDs in [BSW02]. However, since the proof is quite
long and almost identical, differing near the end only, we defer the technical details to the
arXiv version of [15]. We here only introduce the notion of discrepancy that is central to
the proof and will be useful later.

The discrepancy method. We want to use Theorem 7.1 to bound the size of a d-DNNF
encoding f̃ a weak ε-approximation of f w.r.t. some distribution. To this end we study
disjoint balanced rectangle covers of f̃ . Let r be a rectangle from such a cover. r can
make false positives on f , i.e., have models that are not models of f . Similarly, true
positives are models shared by r and f . The discrepancy Disc (f, r) of f on r is the
difference between the number of false positives and true positives, normalized by the
total number of assignments: Disc (f, r) := 1

2n

∣∣|r -1(1) ∩ f -1(1)| − |r -1(1) ∩ f -1(0)|
∣∣. A

small discrepancy indicates that r has few models or that it makes roughly as many false
positives as true positives on f . Discrepancy bounds have been used before to prove
results in distributional communication complexity [KN97, Chapter 3.5]. Here we show
that when there is an upper bound on Disc (f, r) for any rectangle r from a cover of f̃ ,
one can obtain a lower bound on the size of the cover of f̃ .

Lemma 7.4. Let f be a Boolean function on n variables and let f̃ be a weak ε-
approximation of f w.r.t. U . Let f̃ =

∨K
k=1 rk be a disjoint balanced rectangle cover

of f̃ and assume that there is an integer ∆ > 0 such that Disc (f, rk) ≤ ∆/2n for all rk.
Then K ≥ (|f -1(1)| − ε2n)/∆.

Proof. We have |f 6= f̃ | = |{x : f(x) 6= f̃(x)}|

= |f -1(1) ∩ f̃ -1(0)|+ |f -1(0) ∩ f̃ -1(1)|

=
∣∣f -1(1) ∩

⋂K

k=1
r -1
k (0)

∣∣+
∣∣f -1(0) ∩

⋃K

k=1
r -1
k (1)

∣∣
= |f -1(1)| −

K∑
k=1

(|r -1
k (1) ∩ f -1(1)| − |r -1

k (1) ∩ f -1(0)|)

≥ |f -1(1)| − 2n
∑K

k=1
Disc (f, rk) ≥ |f -1(1)| −K∆
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where the last equality is due to the rectangles being disjoint. The weak ε-approximation
w.r.t. the uniform distribution U gives that |f̃ 6= f | ≤ ε2n, which we use to conclude.

Combining Lemma 7.4 with Theorem 7.1, the proof of Theorem 7.3 boils down to
showing that there are functions such that for every balanced rectangle r, the discrepancy
Disc (f, r) can be suitably bounded, as shown in [BSW02].

7.3. Strong Approximations

In this section, we discuss some shortcomings of weak approximation and propose a
stronger notion of approximation that avoids them. Let f0 be the constant 0-function.
We say that a function is trivially weakly ε-approximable (w.r.t. some distribution) if f0

is a weak ε-approximation. Considering approximations w.r.t. the uniform distribution,
it is easy to find classes of functions that are trivially weakly approximable.

Lemma 7.5. Let ε > 0 and 0 ≤ α < 1. Let C be a class of functions such that every
function in C on n variables has at most 2αn models. Then there exists a constant n0,
such that any function from C on more than n0 variables is trivially weakly ε-approximable
w.r.t. the uniform distribution.

Proof. Take n0 = 1
1−α log(1

ε ) and choose f any function from C on n > n0 variables. Then

|{x : f(x) 6= f0(x)}| = |f -1(1)| ≤ 2αn < ε2n. Therefore f0 is a weak ε-approximation
(w.r.t. the uniform distribution) of any function of C on sufficiently many variables.

We remark that similar trivial approximation results can be shown for other distribu-
tions if the probability of a random assignment w.r.t. this distribution being a model is
very small.

As a consequence, weak approximation makes no sense for functions with “few” (or
“improbable”) models. However such functions are often encountered, for example, random
k-CNF with sufficiently many clauses are expected to have few models. Furthermore,
even for functions with “many” models, one often studies encodings over larger sets of
variables. For instance, when using Tseitin encoding to transform Boolean circuits into
CNF, one introduces auxiliary variables that compute the value of sub-circuits under
a given assignment. Generally, auxiliary variables are often used in practice since they
reduce the representation size of functions, see e.g. [BHvMW09, Chapter 2]. The resulting
encodings have more variables but most of the time the same number of models as the
initial function. Consequently, they are likely to be trivially weakly approximable from
Lemma 7.5. For these reasons we define a stronger notion of approximation.

Definition 7.6 (Strong approximation). Let D be a distribution of the truth assignments
toX and ε > 0. We say that f̃ is a strong ε-approximation of f (or strongly ε-approximates
f) with respect to D if

Pr
x∼D

[
f(x) 6= f̃(x)

]
≤ ε Pr

x∼D
[f(x) = 1] .
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When D is the uniform distribution U , then the condition of strong approximability is
equivalent to |{x : f(x) 6= f̃(x)}| ≤ ε|f -1(1)|. It is easy to see that strong approximation
does not have the problem described in Lemma 7.5 for weak approximation. We also
remark that strong approximation has been modeled to allow for efficient counting. In
fact, a d-DNNF computing a strong ε-approximation of a function f allows approximate
model counting for f with approximation factor ε.

Strong approximation has implicitly already been used in knowledge compilation.
For instance it has been shown in [GKM+11] – although the authors use a different
terminology – that for ε > 0, any Knapsack functions on n variables has a strong ε-
approximation w.r.t. U that can be encoded by an OBDD of size polynomial in n and 1/ε.
The generalization to TAN [CT20] is also for strong approximations. These results are
all the more significant since we know from [TNY97] that there exist threshold functions
for which exact encodings by OBDD require size exponential in n.

Obviously, a strong approximation of f w.r.t. some distribution is also a weak approxi-
mation. Thus the statement of Theorem 7.3 can trivially be lifted to strong approximation.
However the hard functions from Theorem 7.3 necessarily have sufficiently many models:
if we are to consider only functions with few models, then they all are trivially weakly
approximable. Yet we prove in the next section that there exist such functions whose
exact encoding and strong ε-approximation encodings by d-DNNF require size exponential
in n. Our proof follows the discrepancy method but relies on the following variant of
Lemma 7.4 for strong approximation.

Lemma 7.7. Let f be a Boolean function on n variables and let f̃ be a strong ε-
approximation of f w.r.t. U . Let f̃ =

∨K
k=1 rk be a disjoint balanced rectangle cover of f̃

and assume that there is an integer ∆ > 0 such that Disc (f, rk) ≤ ∆/2n for all rk. Then
K ≥ (1− ε)|f -1(1)|/∆.

Proof. The proof is essentially the same as for Lemma 7.4, differing only in the last lines
where we use |f̃ 6= f | ≤ ε|f -1(1)| rather than |f̃ 6= f | ≤ ε2n.

7.4. Large d-DNNFs for Strong Approximations

In this section, we show a lower bound for strong approximations of some functions
that have weak approximations by small d-DNNFs. The functions we consider are
characteristic functions of linear codes which we introduce now: a linear code of length n
is a linear subspace of the vector space Fn2 . Vectors from this subspace are called code
words. A linear code is characterized by a parity check matrix H from Fm×n2 as follows:
a vector x ∈ Fn2 is a code word if and only if Hx = 0m (operations are modulo 2 in
Fn2 ). The characteristic function of a linear code is a Boolean function which accepts
exactly the code words. Note that the characteristic function of a length n linear code
of check matrix H has 2n−rk(H) models, where rk(H) denotes the rank of H. Following
ideas developed in [DHJ+04], we focus on linear codes whose check matrices H have
the following property: H is called s-good for some integer s if any submatrix obtained

99



7. Lower Bounds for Approximate Compilation

by taking at least n/3 columns1 from H has rank at least s. The existence of s-good
matrices for s = m− 1 is guaranteed by the next lemma.

Lemma 7.8. [DHJ+04] Let m = n/100 and sample a parity check matrix H uniformly
at random from Fm×n2 . Then H is (m− 1)-good with probability 1− 2−Ω(n).

Our interest in linear codes characterized by s-good matrices is motivated by another
result from [DHJ+04] which states that the maximal size of any rectangle entailing the
characteristic function of such a code decreases as s increases.

Lemma 7.9. [DHJ+04] Let f be the characteristic function of a linear code of length
n characterized by the s-good matrix H. Let r be a balanced rectangle such that r ≤ f .
Then |r -1(1)| ≤ 2n−2s.

Combining Lemmas 7.8 and 7.9 with Theorem 7.1, one gets the following result that
was already observed in [29]:

Theorem 7.10. There exists a class of linear codes C such that, for any code from C of
length n, any d-DNNF encoding its characteristic function has size 2Ω(n).

Proof. Let m = n/100. Lemma 7.8 ensures the existence of (m − 1)-good matrices in
Fm×n2 for n large enough. Let C be the class of linear codes characterized by these matrices.
Choose a code in C for the (m−1)-good matrix H and denote f its characteristic function,
it has 2n−rk(H) ≥ 2n−m models. Let

∨
r∈R r be a disjoint balanced rectangle cover of f .

It holds that |f -1(1)| =
∑

r∈R |r -1(1)| and we know from Lemma 7.9 that any r has
≤ 2n−2s = 4 × 2n−2m models so |f -1(1)| ≤ 4|R| × 2n−2m. Using the lower bound on
the number of models of f we obtain |R| ≥ 1

42m. Applying Theorem 7.1 finishes the
proof.

In the following, we will show that not only are characteristic functions hard to represent
exactly as d-DNNF, they are even hard to strongly approximate.

Given the characteristic function f of a length n linear code of check matrix H, f has
exactly 2n−rk(H) models. When rk(H) is at least a constant fraction of n, f satisfies the
condition of Lemma 7.5, so for every ε > 0 and n large enough, f is trivially weakly
ε-approximable (w.r.t. the uniform distribution). However we will show that any strong
ε-approximation f̃ of f (w.r.t. the uniform distribution) only has d-DNNF encodings of
size exponential in n.

To show this result, we will use the discrepancy method: we are going to find a bound
on the discrepancy of f on any rectangle from a balanced disjoint rectangle cover of f̃ .
Then we will use the bound in Lemma 7.7 and combine the result with Theorem 7.1 to
finish the proof.

Note that it is possible that a rectangle from a disjoint rectangle cover of f̃ makes no
false positives on f . In fact, if this is the case for all rectangles in the cover, then f̃ ≤ f .
In this case, lower bounds can be shown essentially as in the proof of Theorem 7.10. The

1Duris et al. [DHJ+04] limit to submatrices built from at least n/2 columns rather than n/3; however
their result can easily be adapted.
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more interesting case is thus that in which rectangles make false positives. In this case,
we assume that no rectangle makes more false positives on f than it accepts models of f ,
because if such a rectangle r exists in a disjoint cover of f̃ , then deleting r leads to a
better approximation of f than f̃ . Thus it is sufficient to consider approximations and
rectangle covers in which all rectangles verify |r -1(1) ∩ f -1(1)| ≥ |r -1(1) ∩ f -1(0)|.

Definition 7.11. Let r be a rectangle. A core rectangle (more succinctly a core) of r
w.r.t. f is a rectangle rcore with the same partition as r such that

a) rcore ≤ f and rcore ≤ r,

b) rcore is maximal in the sense that there is no r′ satisfying a) such that |r′ -1(1)| >
|r -1
core(1)|.

Note that if r ≤ f , then the only core rectangle of r is r itself. Otherwise r may have
several core rectangles. We next state a crucial lemma on the relation of discrepancy and
cores whose proof we defer to later parts of this section.

Lemma 7.12. Let f be the characteristic function of some length n linear code, let r
be a rectangle with more true positives than false positives on f , and let rcore be a core
rectangle of r with respect to f , then

Disc (f, r) ≤ 1

2n
|r -1
core(1)|.

Lemma 7.12 says the following: consider a rectangle rcore ≤ f which is a core of a
rectangle r. If r accepts more models of f than rcore, then for each additional such model
r accepts at least one false positive. With Lemma 7.12, it is straightforward to show the
main result of this section.

Theorem 7.13. Let 0 ≤ ε < 1. There is a class of Boolean functions C such that any
f ∈ C on n variables is trivially weakly ε-approximable w.r.t. U but any d-DNNF encoding
a strong ε-approximation w.r.t. U has size 2Ω(n).

Proof. Choose C to be the class of characteristic functions for length n linear codes
characterized by (m − 1)-good check matrices with m = n/100. Existence of these
functions as n increases is guaranteed by Lemma 7.8. Let f̃ be a strong ε-approximation
of f ∈ C w.r.t. U and let

∨K
k=1 rk be a rectangle cover of f̃ . Combining Lemma 7.12

with Lemma 7.9, we obtain Disc (f, rk) ≤ 2−n2n−2(m−1). We then use Lemma 7.7 to
get K ≥ (1 − ε)22m−n|f -1(1)|/4. The rank of the check matrix of f is at most m
so |f -1(1)| ≥ 2n−m and K ≥ (1 − ε)2m/4 = (1 − ε)2Ω(n). We use Theorem 7.1 to
conclude.

Note that Theorem 7.13 is optimal w.r.t. ε since for ε = 1 there is always the trivial
approximation by the constant 0-function.

It remains to show Lemma 7.12 in the remainder of this section to complete the proof
of Theorem 7.13. To this end, we make another definition.
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Definition 7.14. Let (X1, X2) be a partition of the variables of f . A core extraction
operator w.r.t. f is a mapping Cf that maps every pair (S1, S2) of sets of assignments
over X1 and X2, respectively, to a pair (S′1, S

′
2) with

a) S′1 ⊆ S1 and S′2 ⊆ S2,

b) assignments from S′1 × S′2 are models of f ,

c) if f has no model in S1 × S2, then S′1 = S′2 = ∅,

d) S′1 and S′2 are maximal in the sense that for every S′′1 ⊆ S1 and every S′′2 ⊆ S2

respecting the properties a), b) and c), we have |S′1||S′2| ≥ |S′′1 ||S′′2 |.

Intuitively S′1 and S′2 are the largest subsets one can extract from S1 and S2 such that
assignments from S′1 × S′2 are models of f . Note that, similarly to rectangle cores, the
sets S′1 and S′2 are not necessarily uniquely defined. In this case, we assume that Cf
returns an arbitrary pair with the required properties. One can show that core extraction
operators yield core rectangles, as their name suggests.

Claim 7.15. Let r = ρ1 ∧ ρ2 be a rectangle w.r.t. the partition (X1, X2) and denote
(A,B) = Cf (ρ -1

1 (1), ρ -1
2 (1)). Then the rectangle 1A ∧ 1B is a core rectangle of r w.r.t. f .

Proof. The rectangle r0 = 1A ∧ 1B is defined w.r.t. the same partition as r. We know
justify that it is core rectangle for f , as defined in Definition 7.11:

a) A ⊆ ρ -1
1 (1) and B ⊆ ρ -1

2 (1) so r0 ≤ r and all assignments from A×B are models
of f so r0 ≤ f .

b) Assume r0 is not maximal, that is, there exist A′ ⊆ ρ -1
1 (1) and B′ ⊆ ρ -1

2 (1) such
that r′ = 1A′ ∧ 1B′ ≤ f and |r′ -1(1)| > |r -1

0 (1)|. Then |A′||B′| > |A||B|, which
contradicts the properties of Cf .

At this point, recall that f is the characteristic function of a linear code for a m× n
check matrix H.

Claim 7.16. Let r = ρ1 ∧ ρ2 be a rectangle w.r.t. the partition (X1, X2). Let (A,B) =
Cf (ρ -1

1 (1), ρ -1
2 (1)) and consider the core rectangle rcore = 1A ∧ 1B. Let A = ρ -1

1 (1) \A
and B = ρ -1

2 (1) \B. Then all assignments from A×B and A× B are false positives of
r on f .

Proof. Index the n columns of H with the variables in X (x1 for column 1, x2 for column
2, and so on). Let H1 (resp. H2) be the matrix obtained taking only the columns of H
whose indices are in X1 (resp. X2). Obviously all vectors in A×B and A×B are models
of r, but we will prove that they are not models of f . For every a′ ∈A there is b ∈ B such
that H(a′,b) = H1a

′ +H2b 6= 0m, otherwise the core rectangle would not be maximal.
By definition of A and B, given a ∈ A, for all b ∈ B we have H(a,b) = H1a+H2b = 0m,
so H2b is constant over B. Therefore if H1a

′ 6= H2b for some b ∈ B then H1a
′ 6= H2b

for all b ∈ B. But then no vector from {a′} ×B can be a model of f and since a′ has
been chosen arbitrarily in A, all vectors from A × B are false positives. The case for
A× B follows analogously.
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A0

A1A1

A2A2

A3∅

B0

B1 B1

B2 B2

B3 ∅

Figure 7.1.: An iterative core extraction with l = 2

For A and B defined as in Claim 7.16, we know that the assignments from A×B are
models of f , and that those from A×B and A× B are not, but we have yet to discuss
the case of A× B. There may be additional models in this last set. The key to proving
Lemma 7.12 is to iteratively extract core rectangles from 1A ∧ 1B and control how many
false positives are generated at each step of the iteration. To this end we define the
collection ((Ai, Bi))

l+1
i=0 as follows:

• A0 = ρ -1
1 (1) and B0 = ρ -1

2 (1),

• for i ≥ 1, (Ai, Bi) = Cf (A0 \
⋃i−1
j=1Aj , B0 \

⋃i−1
j=1Bj),

• Al+1 and Bl+1 are empty, but for any i < l + 1, neither Ai nor Bi is empty.

Denoting Ai := A0 \
⋃i
j=1Aj and Bi := B0 \

⋃i
j=1Bj , we can write (Ai, Bi) =

Cf (Ai−1, Bi−1) (note thatA0 = A0 and B0 = B0). Basically, we extract a core (1A1∧1B1)
from r, then we extract a core (1A2 ∧ 1B2) from (1A1

∧ 1B1
), and so on until there is no

model of f left in Al × Bl, in which case no core can be extracted from (1Al
∧ 1Bl

) and

Cf (Al, Bl) returns (∅, ∅). The construction is illustrated in Figure 7.1.

Claim 7.17. For any i > 0, all assignments from Fi := (Ai × Bi) ∪ (Ai ×Bi) are false
positives of r on f . Furthermore for every i 6= j we have Fi ∩ Fj = ∅.

Proof. For the first part, it is clear from Claim 7.16 that assignments from Ai × Bi and
Ai ×Bi are false positives of 1Ai−1

∧ 1Bi−1
on f , and since 1Ai−1

∧ 1Bi−1
≤ r, they are

indeed false positives of r on f . For the second part, let j > i > 0, Fi = (Ai×Bi)∪(Ai×Bi)
and Fj = (Aj × Bj) ∪ (Aj ×Bj) are disjoint because both Aj and Aj are disjoint from
Ai and both Bj and Bj are disjoint from Bi.

Claim 7.18. The function
∨l
i=1(1Ai ∧ 1Bi) is a disjoint rectangle cover of r ∧ f . Fur-

thermore, if r is balanced, so are the rectangles from
∨l
i=1(1Ai ∧ 1Bi).

Proof. By construction, the functions (1Ai ∧ 1Bi) are rectangles with respect to the same
partition as r. So if r is balanced, so are these rectangles.

For all i there is (Ai ×Bi) ⊆ r -1(1), so
∨l
i=1(1Ai ∧ 1Bi) ≤ r. And by definition of Cf ,

assignments from Ai ×Bi are models of f , so
∨l
i=1(1Ai ∧ 1Bi) ≤ r ∧ f .
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To prove equality, assume that there exists x a model of r and f that is not a model
of
∨l
i=1(1Ai ∧ 1Bi), that is, x does not belong to any Ai ×Bi for i > 0. Then by Claim

3, x must be in Al × Bl (figure 7.1 may help seeing this), but since Al × Bl contains no
models of f , this contradicts our assumption.

This proves that
∨l
i=1(1Ai ∧ 1Bi) is a rectangle cover of r ∧ f . The only thing left to

prove is that the rectangles are disjoint. To see this, it is sufficient to observe that, for
all i > 1, Ai ⊆ Ai−1 which is disjoint from Ai−1 and Bi ⊆ Bi−1 which is disjoint from
Bi−1.

With Claim 7.17 and Claim 7.18, we can now prove Lemma 7.12.

Proof of Lemma 7.12. Claims 7.17 and 7.18 show that
⋃l
i=1(Ai ×Bi) = r -1(1) ∩ f -1(1)

and
⋃l
i=1

(
(Ai × Bi) ∪ (Ai ×Bi)

)
⊆ r -1(1) ∩ f -1(0) and that these unions are disjoint.

First we focus on the models of f covered by r.

|r -1(1) ∩ f -1(1)| =
l∑

i=1

|Ai||Bi| = |r -1
core(1)|+

l∑
i=2

|Ai||Bi|

where rcore = 1A1 ∧ 1B1 is the first (therefore the largest) core rectangle extracted from r
w.r.t. f . Now focus on the false positives of r on f

|r -1(1) ∩ f -1(0)| ≥
∑l

i=1

(
|Ai||Bi|+ |Ai||Bi|

)
≥
∑l

i=1
(|Ai||Bi+1|+ |Ai+1||Bi|)

The maximality property of Cf implies |Ai||Bi| ≥ |Ai+1||Bi+1|, and it follows that
|Ai||Bi+1|+ |Ai+1||Bi| ≥ |Ai+1||Bi+1|. Thus

|r -1(1) ∩ f -1(0)| ≥ |r -1(1) ∩ f -1(1)| − |r -1
core(1)|.

By assumption, r accepts more models of f than false positives so Disc (f, r) = (|r -1(1)∩
f -1(1)| − |r -1(1) ∩ f -1(0)|)/2n and the lemma follows directly.

7.5. Conclusion

We have formalized and studied weak and strong approximation in knowledge compilation
and shown functions that are hard to approximate by d-DNNFs with respect to these two
notions. In particular, we have shown that strong approximations by d-DNNFs generally
require exponentially bigger d-DNNF representations than weak approximations.

Let us sketch some directions for future research. One obvious question is to find for
which classes of functions there are efficient algorithms computing approximations by
d-DNNFs. In [CT20], it is shown that this is the case for certain Bayesian networks.
It would be interesting to extend this to other settings to make approximation more
applicable in knowledge compilation. Of particular interest are in our opinion settings
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in which models are typically learned from data and thus inherently inexact, e.g. other
forms of graphical models and neural networks.

Another question is defining and analyzing more approximation notions beyond weak
and strong approximation. In fact, the latter was designed to allow approximate (weighted)
counting as needed in probabilistic reasoning. Are there ways of defining notions of
approximation that are useful for other problems, say optimization or entailment queries?

A more technical question is if one can show lower bounds for nondeterministic DNNF.
In that setting, different rectangles may share the same false positives in which case our
lower bound techniques break down. Are there approaches to avoid this problem?
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8. Characterizing Tseitin-formulas with
short regular resolution refutations

In this chapter, we give the details of [13], as discussed in Section 3.2. We remind the
reader that the aim is to prove the following main result:

Theorem 8.1. Let T (G, c) be an unsatisfiable Tseitin-formula where G is a connected
graph with maximum degree at most ∆. The length of the smallest regular resolution
refutation of T (G, c) is at least 2Ω(tw(G)/∆)|V (G)|−1.

We will start off with some preliminaries in Section 8.1. Then we will show how the
proof complexity lower bound in Theorem 8.1 reduces to bounds on DNNF in Section 8.2.
Before showing such a bound, we introduce a technique to show parameterized DNNF
lower bounds in Section 8.3 which can be seen as an adaption of the results of Chapter 6
to allow easier results in a parameterized setting. In the rather technical Section 8.4 we
will show how rectangles split the parity constraints in Tseitin-formulas in a certain sense
and how this leads to the rectangles being small. Finally, Section 8.5 puts together all
ingredients and gives the proof of Theorem 8.1.

8.1. Preliminaries

Notions on Graphs. We assume the that reader is familiar with the fundamentals of
graph theory. For a graph G, we denote by V (G) its vertices and by E(G) its edges.
For v ∈ V (G), E(v) denotes the edges incident to v and N(v) its neighbors (v is not in
N(v)). For a subset V ′ of V (G) we denote by G[V ′] the sub-graph of G induced by V ′.

A binary tree whose leaves are in bijection with the edges of G is called a branch
decomposition1. Each edge e of a branch decomposition T induces a partition of E(G)
into two parts as the edge sets that appear in the two connected components of T after
deletion of e. The number of vertices of G that are incident to edges in both parts of this
partition is the order of e, denoted by order(e, T ). The branchwidth of G, denoted by
bw(G), is defined as bw(G) = minT maxe∈E(T ) order(e, T ), where minT is over all branch
decompositions of G.

While it is convenient to work with branchwidth in our proofs, we state our main
result with the more well-known treewidth tw(G) of a graph G. This is justified by the
following well-known connection between the two measures.

Lemma 8.2. [HW17, Lemma 12] If bw(G) ≥ 2, then bw(G)− 1 ≤ tw(G) ≤ 3
2bw(G).

1We remark that often branch decompositions are defined as unrooted trees. However, it is easy to see
that our definition is equivalent, so we use it here since it is more convenient in our setting.
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A separator S in a connected graph G is defined to be a vertex set such that G \ S is
non-empty and not connected. A graph G is called 3-connected if and only if it has at
least 4 vertices and, for every S ⊆ V (G), |S| ≤ 2, the graph G \ S is connected.

Variables, assignments, v-trees. Boolean variables can have value 0 (false) or 1 (true).
The notation `x refers to a literal for a variable x, that is, x or its negation x. Given a set
X of Boolean variables, lit(X) denotes its set of literals. A truth assignment to X is a
mapping a : X → {0, 1}. If aX and aY are assignments to disjoint sets of variables X and
Y , then aX ∪ aY denotes the combined assignment to X ∪ Y . The set of assignments to
X is denoted by {0, 1}X . Let f be a Boolean function, we denote by var(f) its variables
and by sat(f) its set of models, i.e., assignments to var(f) on which f evaluates to 1.
A v-tree of X is a binary tree T whose leaves are labeled bijectively with the variables
in X. A v-tree T of X induces a set of partitions (X1, X2) of X as follows: choose a
vertex v of T , setting X1 to contain exactly the variables in T that appear below v and
X2 := X \X1.

Tseitin-Formulas. Tseitin formulas are systems of parity constraints whose structure is
determined by a graph. Let G = (V,E) be a graph and let c : V → {0, 1} be a labeling of
its vertices called a charge function. The Tseitin-formula T (G, c) has for each edge e ∈ E
a Boolean variable xe and for each vertex v ∈ V a constraint χv :

∑
e∈E(v) xe = c(v)

mod 2. The Tseitin-formula T (G, c) is then defined as T (G, c) :=
∧
v∈V χv, i.e., the

conjunction of the parity constraints for all v ∈ V . By χv we denote the negation of χv,
i.e., the parity constraint on (xe)e∈E(v) with charge 1− c(v).

Proposition 8.3. [Urq87, Lemma 4.1] The Tseitin-formula T (G, c) is satisfiable if and
only if for every connected component U of G we have

∑
v∈U c(v) = 0 mod 2.

Proposition 8.4. [GI17, Lemma 2] Let G be a graph with K connected components. If
the Tseitin-formula T (G, c) is satisfiable, then it has 2|E(G)|−|V (G)|+K models.

When conditioning the formula T (G, c) on a literal `e ∈ {xe, xe} for e = ab in E(G),
the resulting function is another Tseitin formula T (G, c)|`e = T (G′, c′) where G′ is the
graph G without the edge e (so G′ = G − e) and c′ depends on `e. If `e = xe then c′

equals c. If `e = xe then c′ = c+ 1a + 1b mod 2, where 1v denotes the charge function
that assigns 1 to v and 0 to all other variables.

Since we consider Tseitin-formulas in the setting of proof systems for CNF-formulas,
we will assume in the following that they are encoded as CNF-formulas. In this encoding,
every individual parity constraint χv is expressed as a CNF-formula Fv and T (G, c) :=∧
v∈V Fv. Since it takes 2|E(v)|−1 clauses to write the parity constraint χv, each clause

containing E(v) literals, we make the standard assumption that E(v) is bounded, i.e.,
there is a constant upper bound ∆ on the degree of all vertices in G.

DNNF. A circuit over X in negation normal form (NNF) is a directed acyclic graph
whose leaves are labeled with literals in lit(X) or 0/1-constants, and whose internal nodes
are labeled by ∨-gates or ∧-gates. We use the usual semantics for the function computed
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by (gates of) Boolean circuits. Every NNF can be turned into an equivalent NNF whose
nodes have at most two successors in polynomial time. So we assume that NNF in this
paper have only binary gates and thus define the size |D| as the number of gates, which is
then at most half the number of wires. Given a gate g, we denote by var(g) the variables
for the literals appearing under g. When g is a literal input `x, we have var(g) = {x}, and
when it is a 0/1-input, we define var(g) = ∅. A gate with two children gl and gr is called
decomposable when var(gl) ∩ var(gr) = ∅, and it is called complete (or smooth) when
var(gl) = var(gr). An NNF whose ∧-gates are all decomposable is called a decomposable
NNF (DNNF). We call a DNNF complete when all its ∨-gates are complete. Every DNNF
can be made complete in polynomial time. For every Boolean function f on finitely many
variables, there exists a DNNF computing f .

When representing Tseitin-formulas by DNNF, we will use the following:

Lemma 8.5. Let G be a graph and let c and c′ be two charge functions such that T (G, c)
and T (G, c′) are satisfiable Tseitin-formulas. Then T (G, c) can be computed by a DNNF
of size s if and only if this is true for T (G, c′).

Proof sketch. T (G, c) can be transformed into T (G, c′) by substituting some variables
by their negations, see [IRSS19, Proposition 26]. So every DNNF for T (G, c) can be
transformed into one for T (G, c′) by making the same substitutions.

Branching programs. A branching program (BP) B is a directed acyclic graph with a
single source, sinks that uniquely correspond to the values of a finite set Y , and whose
inner nodes, called decision nodes are each labeled by a Boolean variable x ∈ X and
have exactly two output wires called the 0- and 1-wire pointing to two nodes respectively
called its 0- and the 1-child. The variable x appears on a path in B if there is a decision
node v labeled by x on that path. A truth assignment a to X induces a path in B which
starts at the source and, when encountering a decision node for a variable x, follows the
0-wire (resp. the 1-wire) if a(x) = 0 (resp. a(x) = 1). The BP B is defined to compute
the value y ∈ Y on an assignment a if and only if the path of a leads to the sink labeled
with y. We denote this value y as B(a). Let f : X → Y be a function where X is a finite
set of Boolean variables and Y any finite set. Then we say that B computes f if for
every assignment a ∈ {0, 1}X we have B(a) = f(a). We say that a node v in B computes
a function g if the BP we get from B by deleting all nodes that are not reachable from v
computes g.

Let R ⊆ {0, 1}X × Y be a relation where Y is again finite. Then we say that a BP
B computes R if for every assignment a we have that (a,B(a)) ∈ R. Let T (G, c) be an
unsatisfiable Tseitin-formula for a graph G = (V,E). Then we define the two following
relations: SearchT (G,c) consists of the pairs (a,C) such that a is an assignment to T (G, c)
that does not satisfy the clause C of T (G, c). The relation SearchVertex(G, c) consists of
the pairs (a, v) such that a does not satisfy the parity constraint χv of a vertex v ∈ V .
Note that SearchT (G,c) and SearchVertex(G, c) both give a reason why an assignment a
does not satisfy T (G, c) but the latter is more coarse: SearchVertex(G, c) only gives a
constraint that is violated while SearchT (G,c) gives an exact clause that is not satisfied.
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Regular Resolution. We only introduce some minimal notions of proof complexity here;
for more details and references the reader is referred to the recent survey [BN21]. Let
C1 = x ∨D1 and C2 = x ∨D2 be two clauses such that D1, D2 contain neither x nor
x. Then the clause D1 ∨D2 is inferred by resolution of C1 and C2 on x. A resolution
refutation of length s of a CNF-formula F is defined to be a sequence C1, . . . , Cs such
that Cs is the empty clause and for every i ∈ [s] we have that Ci is a clause of F or it is
inferred by resolution of two clauses Cj , C` such that j, ` < i. It is well-known that F
has a resolution refutation if and only if F is unsatisfiable.

To every resolution refutation C1, . . . , Cs we assign a directed acyclic graph G as
follows: the vertices of G are the clauses {Ci | i ∈ [s]}. Moreover, there is an edge CjCi in
G if and only if Ci is inferred by resolution of Cj and some other clause C` on a variable
x in the refutation. We also label the edge CjCi with the variable x. Note that there
might be two pairs of clauses Cj , C` and Cj′ , C`′ such that resolution on both pairs leads
to the same clause Ci. If this is the case, we simply choose one of them to make sure
that all vertices in G have indegree at most 2. A resolution refutation is called regular if
on every directed path in G every variable x appears at most once as a label of an edge.
It is known that there is a resolution refutation of F if and only if a regular resolution
refutation of F exists [DP60], but the latter are in general longer [AJPU07, Urq11].

In this paper, we will not directly deal with regular resolution proofs thanks to the
following well-known result.

Theorem 8.6. [LNNW95] For every unsatisfiable CNF-formula F , the length of the
shortest regular resolution refutation of F is the size of the smallest 1-BP computing
SearchF .

Since in our setting, from an unsatisfied clause we can directly infer an unsatisfied
parity constraint, we can use the following simple consequence.

Corollary 8.7. For every unsatisfiable Tseitin-formula T (G, c), the length of the shortest
regular resolution refutation of T (G, c) is at least the size of the smallest 1-BP computing
SearchVertex(G, c).

8.2. Reduction From Unsatisfiable to Satisfiable Formulas

To show our main result, we give a reduction from unsatisfiable to satisfiable Tseitin-
formulas as in [IRSS19]. There it was shown that, given a 1-BP B computing the function
SearchVertex(G, c) for an unsatisfiable Tseitin-formula T (G, c), one can construct a 1-
BP B′ computing the function of a satisfiable Tseitin-formula T (G, c∗) such that |B′| is
quasipolynomial in |B|. Then good lower bounds on the size of B′ yield lower bounds
for regular refutation by Corollary 8.7. To give tighter results, we give a version of the
reduction from unsatisfiable to satisfiable Tseitin-formulas where the target representation
for T (G, c∗) is not 1-BP but the more succinct DNNF. This lets us decrease the size of
the representation from pseudopolynomial to polynomial which, with tight lower bounds
in the later parts of the paper, will yield Theorem 8.1.
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a b a b a b

Figure 8.1.: The graphs of Example 8.9. On the left the graph Gk, in the middle the
result after assigning 0 to xe, on the right after assigning 1 to xe.

Theorem 8.8. Let T (G, c) be an unsatisfiable Tseitin-formula where G is connected
and let S be the length of its smallest resolution refutation. Then there exists for every
satisfiable Tseitin-formula T (G, c∗) a DNNF of size O(S × |V (G)|) computing it.

In the proof of Theorem 8.8, we heavily rely on results from [IRSS19] in particular the
notion of well-structuredness that we present in Section 8.2.1. In Section 8.2.2 we will
then prove Theorem 8.8.

8.2.1. Well-structured branching programs for SearchVertex(G, c)

In a well-structured 1-BP computing SearchVertex(G, c), every decision node uk for
a variable xe will compute SearchVertex(Gk, ck) where Gk is a connected sub-graph
of G containing the edge e := ab, and ck is a charge function such that T (Gk, ck) is
unsatisfiable. Since uk deals with T (Gk, ck), its 0- and 1-successors uk0 and uk1 will work
on T (Gk, ck)|`e for `e = xe and `e = xe, respectively. T (Gk, ck)|`e is a Tseitin-formula
whose underlying graph is Gk − e and whose charge function is ck or ck + 1a + 1b mod 2
depending on `e. For convenience, we introduce the notation γk(xe) = ck+1a+1b mod 2
and γk(xe) = ck. Since Gk is connected, Gk − e has at most two connected components.
Let Gak and Gbk denote the components of Gk − e containing a and b, respectively. Note
that Gak = Gbk when e is not a bridge of Gk. Let γak(`e) and γbk(`e) denote the restriction of
γk(`e) to the vertices of Gak and Gbk, respectively. While the graph for T (Gk, ck)|`e has at
most two connected components, exactly one of them holds an odd total charge, so only
the Tseitin-formula corresponding to that component is unsatisfiable. Well-structuredness
states that uk0 and uk1 each deal with that unique connected component.

Example 8.9. Consider the graph Gk shown on the left in Figure 8.1. Black nodes have
charge 0 and white nodes have charge 1. The corresponding Tseitin-formula T (Gk, ck)
is unsatisfiable because there is an odd number of white nodes. Let e := ab. Then
T (Gk, ck)|xe is the Tseitin-formula for the graph Gk − e with charges as shown in the
middle of Figure 8.1. Note that T (Gk, ck)|xe is unsatisfiable because of the charges in
the triangle component Gbk. The repartition of charges for T (Gk, ck)|xe illustrated on
the right of Figure 8.1 shows that T (Gk, ck)|xe is unsatisfiable because of the charges
in the rombus component Gak. Well-structuredness will ensure that, if uk computes
SearchVertex(Gk, ck) and decides xe, then uk0 computes SearchVertex(Gbk, γ

b
k(xe)) and

uk1 computes SearchVertex(Gak, γ
a
k(xe)).

Definition 8.10. Let T (G, c) be an unsatisfiable Tseitin-formula where G is a connected
graph. A branching program B computing SearchVertex(G, c) is well-structured when,
for all nodes uk of B, there exists a connected subgraph Gk of G and a charge function
ck such that T (Gk, ck) is unsatisfiable, uk computes SearchVertex(Gk, ck) and
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1. if uk is the source, then Gk = G and ck = c,

2. if uk is a sink corresponding to v ∈ V (G), then Gk = ({v}, ∅) and ck = 1v,

3. if uk is a decision node for xab with 0- and 1- successors uk0 and uk1 , set `0 = xab
and `1 = xab, then for all i ∈ {0, 1}, (Gki , cki) = (Gak, γ

a
k(`i)) if T (Gak, γ

a
k(`i)) is

unsatisfiable, otherwise (Gki , cki) = (Gbk, γ
b
k(`i)).

We remark that our definition is a slight simplification of that given by Itsykson et
al. [IRSS19]. It can easily be seen that ours is implied by theirs (see Definition 11 and
Proposition 16 in [IRSS19]).

Lemma 8.11. [IRSS19, Lemma 17] Let T (G, c) be an unsatisfiable Tseitin-formula
where G is connected and let B be a 1-BP of minimal size2 computing the relation
SearchVertex(G, c). Then B is well-structured.

8.2.2. Constructing DNNF from Well-structured branching programs

Similarly to Theorem 14 in [IRSS19], we give a reduction from a well-structured 1-BP
for SearchVertex(G, c) to a DNNF computing a satisfiable formula T (G, c∗).

Lemma 8.12. Let G be a connected graph. Let T (G, c∗) and T (G, c) be Tseitin-formulas
where T (G, c∗) is satisfiable and T (G, c) unsatisfiable. For every well-structured 1-BP B
computing SearchVertex(G, c) there exists a DNNF of size O(|B| × |V (G)|) computing
T (G, c∗).

Proof. Let S = |B| and denote by u1, . . . , uS the nodes of B such that if uj is a successor
of ui, then j < i (thus uS is the source of B). For every i ∈ [S], the node ui computes
SearchVertex(Gi, ci). We will show how to iteratively construct DNNF D1, . . . , DS such
that, D1 ⊆ D2 ⊆ · · · ⊆ DS and, for every i ∈ [S],

for all v ∈ V (Gi), there is a gate gv in Di computing T (Gi, ci + 1v). (∗)

Observe that, since T (Gi, ci) is unsatisfiable, T (Gi, ci+1v) is satisfiable for any v ∈ V (Gi).
We show by induction on i how to construct Di by extending Di−1 while respecting (∗).

For the base case, u1 is a sink of B, so it computes SearchVertex(Gv, 1v) where
Gv := ({v}, ∅) for a vertex v ∈ V (G). Thus we define D1 as a single constant-1-node
which indeed computes T (Gv, 1v + 1v) = T (Gv, 0). So D1 is a DNNF respecting (∗).

Now for the inductive case, suppose we have the DNNF Dk−1 satisfying (∗). Consider
the node uk of B. If uk is a sink of B, then we argue as for D1 but since we already have
the constant-1-node in Dk−1 we define Dk := Dk−1.

Now assume that uk is a decision node for the variable xe with 0- and 1-successors uk0

and uk1 . Recall that uk computes SearchVertex(Gk, ck) and let e = ab. There are two
cases. If e is not a bridge in Gk then Gak = Gbk = Gk − e and, by well-structuredness, uk0

computes SearchVertex(Gk − e, ck) and uk1 computes SearchVertex(Gk − e, ck + 1a + 1b).
For every v ∈ V (Gk), since k0, k1 < k, by induction there is a gate g0

v in Dk0 computing

2[IRSS19, Lemma 17] is for locally minimal 1-BP, which encompass minimal size 1-BP.
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T (Gk − e, ck + 1v) and a gate g1
v in Dk1 computing T (Gk − e, ck + 1a + 1b + 1v). So for

every v ∈ V (Gk) we add to Dk−1 an ∨-gate gv whose left input is xe ∧ g0
v and whose

right input is xe ∧ g1
v . By construction, gv computes T (Gk, ck + 1v) and the new ∧-gates

are decomposable since e is not an edge of Gk − e and therefore xe and xe do not appear
in Dk0 and Dk1 .

Now if e = ab is a bridge in Gk, by well-structuredness, there exist i ∈ {0, 1} and
`e ∈ {xe, xe} such that uki computes SearchVertex(Gak, γ

a
k(`e)) and uk1−i

computes

SearchVertex(Gbk, γ
b
k(`e)). We construct a gate gv computing T (Gk, ck + 1v) for each

v ∈ V (Gk). Assume, without loss of generality, that v ∈ V (Gak), then

• T (Gk, ck + 1v)|`e ≡ T (Gak, γ
a
k(`e) + 1v) ∧ T (Gbk, γ

b
k(`e)) ≡ 0

(because of the second conjunct which is known to be unsatisfiable), and

• T (Gk, ck + 1v)|`e ≡ T (Gak, γ
a
k(`e) + 1v) ∧ T (Gbk, γ

b
k(`e))

For the second item, since k0, k1 < k, by induction there is a gate giv in Dki computing
T (Gak, γ

a
k(`e) + 1v) and there is a gate g1−i

b in Dk1−i
computing T (Gbk, γ

b
k(`e) + 1b). But

γk(`e) = γk(`e) + 1a + 1b mod 2, so γbk(`e) = γbk(`e) + 1b mod 2, therefore gi−1
b computes

the formula T (Gbk, γ
b
k(`e)). So we add an ∧-gate gv whose left input is `e and whose right

input is siv ∧ s1−i
b and add it to Dk−1. Note that ∧-gates are decomposable since Gak and

Gbk share no edge and therefore Dk0 and Dk1 are on disjoint sets of variables.

Let Dk be the circuit after all gv have been added to Dk−1. It is a DNNF satisfying
both Dk−1 ⊆ Dk and (∗).

It only remains to bound |DS |. To this end, observe that when constructing Dk from
Dk−1 we add at most 3×|Vk| gates, so |DS | is at most 3(|V1|+ · · ·+ |VS |) = O(S×|V (G)|).
Finally, take any root of DS and delete all gates not reached from it, the resulting circuit is
a DNNF D computing a satisfiable Tseitin formula T (G, c′). We get a DNNF computing
T (G, c∗) using Lemma 8.5.

Combining Corollary 8.7, Lemma 8.11 and Lemma 8.12 yields Theorem 8.8.

8.3. Adversarial Rectangle Bounds

In this section, we introduce the game we will use to show DNNF lower bounds for
Tseitin formulas. It is based on combinatorial rectangles, a basic object of study from
communication complexity.

Definition 8.13. A (combinatorial) rectangle for a variable partition (X1, X2) of a
variables set X is defined to be a set of assignments of the form R = A × B where
A ⊆ {0, 1}X1 and B ⊆ {0, 1}X2 . The rectangle is called balanced when |X|3 ≤ |X1|, |X2| ≤
2|X|

3 .

A rectangle on variables X may be seen as a function whose satisfying assignments are
exactly the a ∪ b for a ∈ A and b ∈ B, so we sometimes interpret rectangles as Boolean
functions whenever it is convenient.
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Definition 8.14. Let f be a Boolean function. A balanced rectangle cover of f is a
collection R = {R1, . . . , RK} of balanced rectangles on var(f), possibly for different
partitions of var(f), such that f is equivalent to

∨K
i=1Ri. The minimum number of

rectangles in a balanced cover of f is denoted by R(f).

Theorem 8.15. [27] Let D be a DNNF computing a function f , then R(f) ≤ |D|.

When trying to show parameterized lower bounds with Theorem 8.15, one often runs
into the problem that it is somewhat inflexible: the partitions of the rectangles in covers
have to be balanced, but in parameterized applications this is often undesirable. Instead,
to show good lower bounds, one wants to be able to partition in places that allow to cut in
complicated subparts of the problem. This is e.g. the underlying technique in [Raz16]. To
make this part of the lower bound proofs more explicit and the technique more reusable,
we here introduce a refinement of Theorem 8.15.

We define the adversarial multi-partition rectangle cover game for a function f on
variables X and a set S ⊆ sat(f) to be played as follows: two players, the cover player
Charlotte and her adversary Adam, construct in several rounds a set R of combinatorial
rectangles that cover the set S respecting f (that is, rectangles in R contain only models
of f). The game starts with R as the empty set. Charlotte starts a round by choosing
an input a ∈ S and a v-tree T of X. Now Adam chooses a partition (X1, X2) of X
induced by T . Charlotte ends the round by adding to R a combinatorial rectangle for
this partition and respecting f that covers a. The game is over when S is covered by R.
The adversarial multi-partition rectangle complexity of f and S, denoted by aR(f, S) is
the minimum number of rounds in which Charlotte can finish the game, whatever the
choices of Adam are. The following theorem gives the core technique for showing lower
bounds later on. Due to space constraints, the proof is given in the full version.

Theorem 8.16. Let D be a complete DNNF computing a function f and let S ⊆ sat(f).
Then aR(f, S) ≤ |D|.

Proof. The proof of Theorem 8.16 uses the notion of proof trees of DNNF. Proof trees
of a DNNF D are tree-like sub-circuits of D constructed iteratively as follows: we start
from the root gate and add it to the proof tree. Whenever an ∧-gate is met, both its
child gates are added to the proof tree. Whenever a ∨-gate is met, exactly one child
is is added to the proof tree. Each proof tree of D computes a conjunction of literals.
By distributivity, the disjunction of the conjunctions computed by all proof trees of D
computes the same function as D. When D is complete, every variable appears exactly
once per proof tree, so every proof tree of a complete DNNF encodes a single model.

Let X = var(D). We iteratively delete vertices from D and construct rectangles. The
approach is as follows: Charlotte chooses an assignment a ∈ S not yet in any rectangle
she constructed before and a proof tree T accepting a in D. By completeness of D,
all variables of X appear exactly once in T . Charlotte constructs a v-tree of X from
T by deleting negations on the leaves, contracting away nodes with a single child and
forgetting the labels of all operation gates. Now Adam chooses a partition induced by T
given by a subtree of T with root v. Note that v is a gate of C. Let sat(D, v) ⊆ sat(f) be
the assignments to X accepted by a proof tree of C passing through v, and observe that
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sat(D, v) is a combinatorial rectangle A×B with A ⊆ {0, 1}var(v) and B ⊆ {0, 1}X\var(v).
Charlotte chooses the rectangle sat(D, v), deletes it from S and the game continues.

Note that the vertex v in the above construction is different for every iteration of
the game: by construction, Charlotte never chooses an assignment a that is in any set
sat(D, v) for a vertex v that has appeared before. Thus, no such v can appear in the
proof tree of the chosen a. Consequently, a new vertex v is chosen for each assignment a
that Charlotte chooses and thus the game will never last more than |D| rounds.

8.4. Splitting Parity Constraints

In this section, we will see that rectangles split parity constraints in a certain sense
and show how this is reflected in in the underlying graph of Tseitin-formulas. This will
be crucial in proving the DNNF lower bound in the next section with the adversarial
multi-partition rectangle cover game.

8.4.1. Rectangles Induce Sub-Constraints for Tseitin-Formulas

Let R be a rectangle for the partition (E1, E2) of E(G) such that R ⊆ sat(T (G, c)).
Assume that there is a vertex v of G incident to edges in E1 and to edges in E2, i.e.,
E(v) = E1(v)∪E2(v) where neither E1(v) not E2(v) is empty. We will show that R does
not only respect χv, but it also respects a sub-constraint of χv.

Definition 8.17. Let χv be a parity constraint on (xe)e∈E(v). A sub-constraint of χv is
a parity constraint χ′v on a non-empty proper subset of the variables of χv.

Lemma 8.18. Let T (G, c) be a satisfiable Tseitin-formula and let R be a rectangle for
the partition (E1, E2) of E(G) such that R ⊆ sat(T (G, c)). If v ∈ V (G) is incident to
edges in E1 and to edges in E2, then there exists a sub-constraint χ′v of χv such that
R ⊆ sat(T (G, c) ∧ χ′v).

Proof. Let a1 ∪ a2 ∈ R where a1 is an assignment to E1 and a2 an assignment to E2. Let
a1(v) and a2(v) denote the restriction of a1 and a2 to E1(v) and E2(v), respectively. We
claim that for all a′1 ∪ a′2 ∈ R, we have that a′1(v) and a1(v) have the same parity, that
is, a1(v) assigns an odd number of variables of E1(v) to 1 if and only if it is also the case
for a′1(v). Indeed if a1(v) and a′1(v) have different parities, then so do a1(v) ∪ a2(v) and
a′1(v)∪a2(v). So either a1∪a2 or a′1∪a2 falsifies χv, but both assignments are in R, so a1(v)
and a′1(v) cannot have different parities as this contradicts R ⊆ sat(T (G, c)). Let c1 be
the parity of a1(v), then we have that assignments in R must satisfy χ′v :

∑
e∈E1(v) xe = c1

mod 2, so R ⊆ sat(T (G, c) ∧ χ′v).

Renaming χ′v as χ1
v and adopting notations from the proof, one sees that χ1

v ∧ χv ≡
χ1
v ∧χ2

v where χ2
v :
∑

e∈E2(v) xe = c(v) + c1 mod 2. So R respects the formula (T (G, c)−
χv) ∧ χ1

v ∧ χ2
v where (T (G, c) − χv) is the formula obtained by removing all clauses of

χv from T (G, c). In this sense, the rectangle is splitting the constraint χv into two
subconstraints in disjoint variables. Since χv ≡ (χ1

v ∧ χ2
v) ∨ (χ1

v ∧ χ2
v) it is plausible that

potentially many models of χv are not in R. We show that this is true in the next section.
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8.4.2. Vertex Splitting and Sub-constraints for Tseitin-Formulas

Let v ∈ V (G) and let (N1, N2) be a proper partition of N(v), that is, neither N1 nor N2

is empty. The graph G′ we get by splitting v along (N1, N2) is defined as the graph we
get by deleting v, adding two vertices v1 and v2, and connecting v1 to all vertices in N1

and v2 to all vertices in N2. We now show that splitting a vertex v in a graph G has the
same effect as adding a sub-constraint of χv.

Lemma 8.19. Let T (G, c) be a Tseitin-formula. Let v ∈ V (G) and let (N1, N2) be
a proper partition of N(v). Let c1 and c2 be such that c1 + c2 = c(v) mod 2 and let
χiv :

∑
u∈Ni

xuv = ci mod 2 for i ∈ {1, 2} be sub-constraints of χv. Call G′ the result of
splitting v along (N1, N2) and set

c′(u) :=

{
c(u), if u ∈ V (G) \ {v}
ci, if u = vi, i ∈ {1, 2}

There is a bijection ρ : var(T (G, c))→ var(T (G′, c′)) acting as a renaming of the variables
such that T (G′, c′) ≡ (T (G, c) ∧ χ1

v) ◦ ρ.

Proof. Denote by T (G, c) − χv the formula equivalent to the conjunction of all χu for
u ∈ V (G) \ {v}. Then T (G, c) ∧ χ1

v ≡ (T (G, c)− χv) ∧ χ1
v ∧ χ2

v. The constraints χu for
u ∈ V (G) \ {v} appear in both T (G′, c′) and in T (G, c) − χv and the sub-constraints
χ1
v and χ2

v are exactly the constraints for v1 and v2 in T (G′, c′) modulo the variable
renaming ρ defined by ρ(xuv) = xuv1 when u ∈ N1, ρ(xuv) = xuv2 when u ∈ N2, and
ρ(xe) = xe when v is not incident to e.

Intuitively, Lemma 8.19 says that splitting a vertex in G and adding sub-constraint
are essentially the same operation. This allows us to compute the number of models of a
Tseitin-formula to which a sub-constraint was added.

Lemma 8.20. Let T (G, c) be a satisfiable Tseitin-formula where G is connected. Define
T (G′, c′) as in Lemma 8.19. If G′ is connected then T (G′, c′) has 2|E(G)|−|V (G)| models.

Proof. By Proposition 8.3, T (G′, c′) is satisfiable since T (G, c) is satisfiable and∑
u∈V (G′)

c′(u) =
∑

u∈V (G)

c(u) = 0 mod 2.

Using Proposition 8.4 yields that T (G′, c′) has 2|E(G′)|−|V (G′)|+1 = 2|E(G)|−|V (G)| models.

Lemma 8.21. Let T (G, c) be a satisfiable Tseitin-formula where G is connected. Let
{v1, . . . , vk} be an independent set in G. For all i ∈ [k] let (N i

1, N
i
2) be a proper partition of

N(vi) and let χ′vi :
∑

u∈N i
1
xuvi = ci mod 2. If the graph obtained by splitting all vi along

(N i
1, N

i
2) is connected, then the formula T (G, c) ∧ χ′v1

∧ · · · ∧ χ′vk has 2|E(G)|−|V (G)|−k+1

models.

Proof. An easy induction based on Lemma 8.19 and Lemma 8.20. The induction works
since, {v1, . . . , vk} being an independent set, the edges to modify by splitting vi are still
in the graph where v1, . . . , vi−1 have been split.
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8.4.3. Vertex Splitting in 3-Connected Graphs

When we want to apply the results of the last sections to bound the size of rectangles, we
require that the graph G remains connected after splitting vertices. This is obviously not
true for all choices of vertex splits, but here we will see that if G is sufficiently connected,
then we can always chose a large subset of any set of potential splits such that, after
applying the split for this subset, G remains connected.

Lemma 8.22. Let G be a 3-connected graph of and let {v1, . . . , vk} be an independent
set in G. For every i ∈ [k] let (N i

1, N
i
2) be a proper partition of N(vi). Then there is a

subset S of {v1, . . . , vk} of size at least k/3 such that the graph resulting from splitting
all vi ∈ S along the corresponding (N i

1, N
i
2) is connected.

Proof. Let C1, . . . , Cr be the connected components of the graph G1 that we get by
splitting all vi. If G1 is connected, then we can set S = {v1, . . . , vk} and we are done.
So assume that r > 1 in the following. Now add for every i ∈ [k] the edge (v1

i , v
2
i ). Call

this edge set L (for links) and the resulting graph G2. Note that G2 is connected and for
every edge set E′ ⊆ L we have that G2 \ E′ is connected if and only if G is connected
after splitting the vertices corresponding to the edges in E′. Denote by Lin the edges in
L whose end points both lie in some component Cj and let Lout := L \ Lin.

We claim that for every Cj , at least three edges in Lout are incident to a vertex in Cj .
Since G2 is connected but the set Cj is a connected component of G2 \ L = G1, there
must be at least one edge in L incident to a vertex in Cj . That vertex is by construction
one of v1, . . . , vk, say it is vi. Since N i

1 6= ∅ and N i
2 6= ∅, we have that vi has a neighbor w

in Cj and, w 6∈ {v1, . . . , vk} since it is an independent set. Now let Ljout be the edges in
Lout that have an end point in Cj . Note that if we delete the vertices Sj ⊆ {v1, . . . , vk}
for which the edges in Ljout were introduced in the construction of G2, then a subset of
Cj becomes disconnected from the rest of the graph (which is non-empty because there
is at least one component different from Cj in G2 which also contains a vertex not in
{v1, . . . , vk} by the same reasoning as before). But then, because G is 3-connected, there
must be at least three edges in Ljout. Let k′ := |Lout|, then since |Lout| = 1

2

∑r
j=1 |L

j
out|,

we have that

r ≤ 2

3
k′.

Now contract all components Ci in G2 and call the resulting graph G3. Note that G3 is
connected and that E(G3) = Lout. Moreover, whenever G3 \ E∗ is connected for some
E∗ ⊆ Lout, then G is connected after splitting the corresponding vertices. Choose any
spanning tree T of G3. Then |E(T )| = r − 1 and deleting E∗ := Lout \ E(T ) leaves G3

connected. Thus the graph G∗ we get from G after splitting the vertices corresponding
to E∗ is connected. We have

|E∗| = |Lout| − |E(T )| = k′ − (r − 1) >
k′

3
.

Now observe that in G we can safely split all k − k′ vertices vi that correspond to edges
v1
i v

2
i such that v1

i and v2
i lie in the same component of G1 without disconnecting the
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graph. Thus, overall we can split a set of size

k − k′ + |E∗| > k − k′ + k′

3
≥ k

3

in G such that the resulting graph remains connected.

8.5. DNNF Lower Bounds for Tseitin-Formulas

In this section, we use the results of the previous sections to show our lower bounds
for DNNF computing Tseitin-formulas. To this end, we first show that we can restrict
ourselves to the case of 3-connected graphs.

8.5.1. Reduction from Connected to 3-Connected Graphs

In [BK06], Bodlaender and Koster study how separators can be used in the context
of treewidth. They call a separator S safe for treewidth if there exists a connected
component of G \ S whose vertex set V ′ is such that tw(G[S ∪ V ′] + clique(S)) = tw(G),
where G[S ∪ V ′] + clique(S) is the graph induced on S ∪ V ′ with additional edges that
pairwise connect all vertices in S.

Lemma 8.23. [BK06, Corollary 15] Every separator of size 1 is safe for treewidth.
When G has no separator of size 1, every separator of size 2 is safe for treewidth.

Remember that a topological minor H of a G is a graph that can be constructed
from G by iteratively applying the following operations:

− edge deletion,

− deletion of isolated vertices, or

− subdivision elimination: if deg(v) = 2 delete v and connect its two neighbors.

Lemma 8.24. Let H be a topological minor of G. If the satisfiable Tseitin-formula
T (G, 0) has a DNNF of size s, then so does T (H, 0).

Proof. Edge deletion corresponds to conditioning the variable by 0 so it cannot increase
the size of a DNNF. Deletion of an isolated vertex does not change the Tseitin-formula.
Finally, let e1, e2 be the edges incident to a vertex of degree 2. Since we assume that
all charges c(v) are 0, in every satisfying assignment, xe1 and xe2 take the same value.
Thus we can simply forget the variable of xe2 which does not increase the size of a
DNNF [DM02].

Lemma 8.25. Let G be a graph with treewidth at least 3. Then G has a 3-connected
topological minor H with tw(H) = tw(G).
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Proof. First we construct a topological minor of G with no separator of size 1 that
preserves treewidth. Let S = {v} be a separator of size 1 of G, then G\S has a connected
component V ′ such that G[S ∪ V ′] + clique(S) = G[S ∪ V ′] has treewidth tw(G). Let
G′ = G[S ∪ V ′], then tw(G′) = tw(G). Observe that G′ is a topological minor (remove all
edges not in G[S ∪ V ′] thus isolating all vertices not in S ∪ V ′, which are then deleted)
where S is no longer a separator. Repeat the construction until G′ has no separator of
size 1.

Now assume S = {u, v} is a separator of G′. If V ′ are the vertices of a connected
component of G′ \ S, then there is a path from u to v in G[S ∪ V ′] since otherwise
either {u} or {v} is a separator of size 1 of G′. Lemma 8.23 ensures that there is
a connected component H ′ in G′ \ S such that H := (V (H ′) ∪ S,E(H ′) ∪ {uv}) has
treewidth tw(H) = tw(G′) = tw(G). Let us prove that H is topological minor of G′.
Consider a connected component of G′ \S distinct from H ′ with vertices V ′ and let P be
a path connecting u to v in G[S ∪ V ′]. Delete all edges of G[S ∪ V ′] not in P , then delete
all isolated vertices in V ′ so that only P remains, finally use subdivision elimination
to reduce P to a single edge uv. Repeat the procedure for all connected components
of G′ \ S distinct from H ′, the resulting topological minor is G[V (H ′) ∪ S] with the
(additional) edge uv, so H.

Repeat the construction until there are no separators of size 1 or size 2 left. Note
that this process eventually terminates since the number of vertices decreases after every
separator elimination. The resulting graph H is a topological minor of G of treewidth
tw(G) without separators of size 1 or 2. Since tw(H) = tw(G) ≥ 3, we have that H has
at least 4 vertices, so H is 3-connected.

8.5.2. Proof of the DNNF Lower Bound and of the Main Result

Lemma 8.26. Let T (G, c) be a satisfiable Tseitin-formula where G is a connected graph
with maximum degree at most ∆. Any complete DNNF computing T (G, c) has size at
least 2Ω(tw(G)/∆).

Proof. By Lemma 8.5 we can set c = 0. By Lemmas 8.24 and 8.25 we can assume that
G is 3-connected. We show that the adversarial multi-partition rectangle complexity is
lower-bounded by 2k for k := 2tw(G)

9∆ . To this end, we will show that the rectangles that

Charlotte can construct after Adam’s answer are never bigger than 2|E(G)|−|V (G)|−k+1.
Since T (G, c) has 2|E(G)|−|V (G)|+1 models, the claim then follows.

So let Charlotte choose an assignment a and a v-tree T . Note that since the variables
of T (G, 0) are the edges of G, the v-tree T is also a branch decomposition of G. Now by
the definition of branchwidth, Adam can choose a cut of T inducing a partition (E1, E2)
of E(G) for which there exists a set V ′ ∈ V (G) of at least bw(G) ≥ 2

3 tw(G) vertices
incident to edges in E1 and to edges in E2.

G has maximum degree ∆ so there is an independent set V ′′ ⊂ V ′ of size at least
|V ′|
∆ . Since G is 3-connected, by Lemma 8.22 there is a subset V ∗ ⊆ V ′′ of size at least
|V ′′|

3 ≥ 2tw(G)
9∆ = k such that G remains connected after splitting of the nodes in V ∗

along the partition of their neighbors induced by the edges partition (E1, E2). Using
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Lemma 8.18, we find that any rectangle R for the partition (E1, E2) respects a sub-
constraint χ′v for each v ∈ V ∗. So R respects T (G, 0) ∧

∧
v∈V ∗ χ

′
v. Finally, Lemma 8.21

shows that |R| ≤ 2|E(G)|−|V (G)|−k+1, as required.

Theorem 8.1 is now a direct consequence of Theorem 8.8, Lemma 8.26 and Lemma 8.5

8.6. Conclusion

We have shown that the unsatisfiable Tseitin-formulas with polynomial length of regular
resolution refutations are completely determined by the treewidth of their graphs. We
did this by connecting lower bounds on these types of refutations to size bounds on
DNNF representations of Tseitin-formulas. Moreover, we introduced a new two-player
game that allowed us to show DNNF lower bounds.

Let us discuss some questions that we think are worth exploring in the future. First, it
would be interesting to see if a 2Ω(tw(G)) lower bound for the refutation of Tseitin-formulas
can also be shown for general resolution. In that case the length of resolution refutations
would essentially be the same as that regular resolution refutations for Tseitin formulas.
Note that this is somewhat plausible since other measures like space and width are known
to be the same for the two proof systems for these formulas [GTT20].

Another question is the relation between knowledge compilation and proof complexity.
As far as we are aware, our Theorem 8.8 is the first result that connects bounds on
DNNF to such in proof complexity. It would be interesting to see if this connection can
be strengthened to other classes of instances, other proof systems, representations from
knowledge compilation and measures on proofs and representations, respectively.
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9. Constant-Delay Enumeration for
Document Spanners

In this chapter, we show the constant delay enumeration result for document spanners
that was discussed in Section 3.5.3. Since constant delay algorithms have to satisfy
extreme resource constraints, they are often quite technical and require many ingredients
and tricks. Unfortunately, the same is true for the analysis of such algorithms. As a
consequence, papers presenting results on constant delay are often quite long and technical.
This is in particular true for the paper [20] which shows the result of this section: its
journal version has 29 pages in a rather dense LATEX-style; the related paper [25] has
even 44 pages in the full arXiv version. I would have liked to present both these papers
in this thesis, since both contain what I consider some very interesting technical ideas.
However, this would have increased the length of this thesis to an unreasonable extent,
so one of them had to go. After some thought, I decided to keep [20] with its result on
document spanners in.

Even only keeping [20] would have taken quite some space if I had kept all of it, and
so I decided to cut a part of it in this thesis, see Section 9.2 for details. The remaining
parts give a complete proof of a slightly weakened result which allows to present many of
the main ideas.

This chapter starts with some preliminaries before giving a formal statement of the
main enumeration result in Section 9.2. We then introduce the main data structure used
in the algorithm in Section 9.3 and show how to use it for enumeration in Section 9.4. In
Section 9.5, we add the construction of an additional part of the preprocessing that the
enumeration phase relies on. Finally, in Section 9.6 we present an implementation of our
algorithm and validate it experimentally.

9.1. Preliminaries

Document spanners. We fix a finite alphabet Σ. A document d = d0 · · · dn−1 is just
a word over Σ. A span of d is a pair [i, j〉 with 0 ≤ i ≤ j ≤ |d| which represents a
substring (contiguous subsequence) of d starting at position i and ending at position
j − 1. To describe the possible results of an information extraction task, we will use a
finite set V of variables, and define a result as a mapping from these variables to spans
of the input document. Following [FRU+18, MRV18] but in contrast to [FKRV15], we
will not require mappings to assign all variables: formally, a mapping of V on d is a
function µ from some domain V ′ ⊆ V to spans of d. We define a document spanner to
be a function assigning to every input document d a set of mappings, which denotes the
set of results of the extraction task on the document d.
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Variable-set automata. We will represent document spanners using variable-set au-
tomata (or VAs). The transitions of a VA can carry letters of Σ or variable markers,
which are either of the form x` for a variable x ∈ V (denoting the start of the span
assigned to x) or ax (denoting its end). Formally, a variable-set automaton A (or VA)
is then defined to be an automaton A = (Q, q0, F, δ) where the transition relation δ
consists of letter transitions of the form (q, a, q′) for q, q′ ∈ Q and a ∈ Σ, and of variable
transitions of the form (q, x`, q′) or (q,ax, q′) for q, q′ ∈ Q and x ∈ V. A configuration
of a VA is a pair (q, i) where q ∈ Q and i is a position of the input document d. A run σ
of A on d is then a sequence of configurations

(q0, i0)
σ1−→ (q1, i1)

σ2−→ · · · σm−−→ (qm, im)

where i0 = 0, im = |d|, and where for every 1 ≤ j ≤ m, one of the following holds:

• The label σj is a letter of Σ, we have ij = ij−1 + 1, we have dij−1 = σj , and
(qj−1, σj , qj) is a letter transition of C;

• The label σj is a variable marker, we have ij = ij−1, and (qj−1, σj , qj) is a variable
transition of C. In this case we say that the variable marker σj is read at position ij .

As usual, we say that a run is accepting if qm ∈ F . A run is valid if it is accepting,
every variable marker is read at most once, if an open marker x` is read at a position i
then the corresponding close marker ax is read at a position i′ with i ≤ i′, and if x` is
not read then ax is not read either. Each valid run defines a mapping on the domain
V ′ of the variables for which the run has read some markers: specifically, each variable
x ∈ V ′ is mapped to the span [i, i′〉 such that x` is read at position i and ax is read at
position i′. The document spanner of the VA C is then the function that assigns to every
document d the set of mappings defined by the valid runs of C on d: note that the same
mapping can be defined by multiple different runs, and note that the different runs may
have different domains. The task studied in this paper is the following: given a VA C
and a document d, enumerate without duplicates the mappings that are assigned to d
by the document spanner of C. The enumeration must write each mapping as a set of
pairs (m, i) where m is a variable marker and i is a position of d, each set being written
as a sequence in some arbitrary order. We will say that a set of pairs of markers and
positions is valid when every marker occurs at most once in the set, if an open marker
x` occurs in the set as (x`, i) then the set also contains (ax, i′) with i < i′, and if x`
does not occur in the set then neither does ax. Thus, the results of the enumeration
are always valid in this sense. Note that we will often abuse notation and identify the
function representation of mappings defined above with this representation as a set of
pairs which is valid.

Sequential VAs. We cannot hope to efficiently enumerate the mappings of arbitrary
VAs because it is already NP-complete to decide if, given a VA A and a document d,
there are any valid runs of A on d [Fre17]. For this reason, we will restrict ourselves
to so-called sequential VAs [MRV18]. A VA C is sequential if for every document d,
every accepting run of C of d is also valid: this implies that the document spanner of C
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can simply be defined following the accepting runs of C. If we are given a VA, then we
can test in NL whether it is sequential [MRV18, Proposition 5.5], and otherwise we can
convert it to an equivalent sequential VA (i.e., that defines the same document spanner)
with an unavoidable exponential blowup in the number of variables (not in the number
of states), using existing results:

Proposition 9.1. Given a VA C on variable set V, letting k := |V| and r be the number
of states of C, we can compute an equivalent sequential VA C′ with 3kr states. Conversely,
for any k ∈ N, there exists a VA Ck with 1 state on a variable set with k variables such
that any sequential VA equivalent to Ck has at least 3k states.

Proof. This can be shown exactly like [Fre17, Proposition 12] and [Fre19, Proposition 3.9].
In short, the upper bound is shown by modifying C to remember in the automaton state
which variables have been opened or closed, and by re-wiring the transitions to ensure
that the run is valid: this creates 3k copies of every state because each variable can be
either unseen, opened, or closed. For the lower bound, [Fre19, Proposition 3.9] gives a
VA for which any equivalent sequential VA must remember the status of all variables in
this way.

All VAs studied in this work will be sequential, and we will further assume that they
are trimmed in the sense that for every state q there is a document d and an accepting
run of the VA where the state q appears. This condition can be enforced in linear time
on any sequential VA: we do a graph traversal to identify the accessible states (the ones
that are reachable from the initial state), we do another graph traversal to identify the
co-accessible states (the ones from which we can reach a final state), and we remove all
states that are not accessible or not co-accessible. We will implicitly assume that all
sequential VAs have been trimmed, which implies that they cannot contain any cycle of
variable transitions (as such a cycle would otherwise appear in a run, which would not
be valid).

Extended VAs. We will first prove our results for a variant of sequential VAs introduced
by [FRU+18], called sequential extended VAs. An extended VA on alphabet Σ and
variable set V is an automaton A = (Q, q0, F, δ) where the transition relation δ consists
of letter transitions as before, and of extended variable transitions (or ev-transitions)
of the form (q,M, q′) where M is a possibly empty set of variable markers. Intuitively,
on ev-transitions, the automaton reads multiple markers at once. Formally, a run σ of
A on d = d0 · · · dn−1 is a sequence of configurations (defined like before) where letter
transitions and ev-transitions alternate:

(q0, 0)
M0−−→ (q′0, 0)

d0−→ (q1, 1)
M1−−→ (q′1, 1)

d1−→ · · · dn−1−−−→ (qn, n)
Mn−−→ (q′n, n)

where (q′i, di, qi+1) is a letter transition of C for all 0 ≤ i < n, and (qi,Mi, q
′
i) is an

ev-transition of C for all 0 ≤ i ≤ n where Mi is the set of variable markers read at
position i. Accepting and valid runs are defined like before, and the extended VA is
sequential if all accepting runs are valid, in which case its document spanner is defined
like before.
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Our definition of extended VAs is slightly different from [FRU+18] because we allow
ev-transitions that read the empty set to change the automaton state. This allows us to
make a small additional assumption to simplify our proofs: we require that the states of
extended VAs are partitioned between ev-states, from which only ev-transitions originate
(i.e., the qi above), and letter-states, from which only letter transitions originate (i.e.,
the q′i above); and we impose that the initial state is an ev-state and the final states are
all letter-states. Note that transitions reading the empty set move from an ev-state to
a letter-state, like all other ev-transitions. Our requirement can be imposed in linear
time on any extended VA, by rewriting each state to one letter-state and one ev-state,
and re-wiring the transitions and changing the initial/final status of states appropriately.
This rewriting preserves sequentiality and guarantees that any path in the rewritten
extended VA must alternate between letter transitions and ev-transitions. Hence, we
implicitly make this assumption on all extended VAs from now on.

Example 9.2. The top of Figure 9.1 represents a sequential extended VA C0 to extract
email addresses. To keep the example readable, we simply define them as words (delimited
by a space or by the beginning or end of document) which contain one at-sign “@” preceded
and followed by a non-empty sequence of non-“@” characters. In the drawing of C0, the
initial state q0 is at the left, and the states q10 and q12 are final. The transitions labeled
by Σ represent a set of transitions for each letter of Σ, and the same holds for Σ′ which
we define as Σ′ := Σ \ {@, }.

It is easy to see that, on any input document d, there is one mapping of C0 on d per
email address contained in d, which assigns the markers x` and ax to the beginning
and end of the email address, respectively. In particular, C0 is sequential, because any
accepting run is valid. Note that C0 happens to have the property that each mapping is
produced by exactly one accepting run, but our results in this paper do not rely on this
property.

Matrix multiplication. The complexity bottleneck for some of our results will be the
complexity of multiplying two Boolean matrices, which is a long-standing open problem,
see e.g. [Gal12] for a recent discussion. When stating our results, we will often denote
by 2 ≤ ω ≤ 3 an exponent for Boolean matrix multiplication: this is a constant
such that the product of two r-by-r Boolean matrices can be computed in time O(rω).
For instance, we can take ω := 3 if we use the naive algorithm for Boolean matrix
multiplication, and it is obvious that we must have ω ≥ 2. The best known upper bound
is currently ω < 2.3728639, see [Gal14].

9.2. The Main Enumeration Result

Now that we have all preliminaries and definitions in place, we can formulate the main
result of this chapter.

Theorem 9.3. Let 2 ≤ ω ≤ 3 be an exponent for Boolean matrix multiplication. Let C be
a sequential VA with variable set V and with state set Q, and let d be an input document.
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We can enumerate the mappings of C on d with preprocessing time in O((|Q|ω+1+|C|)×|d|)
and with delay O(|V| × (|Q|2 + |C| × |V|2)), i.e., linear preprocessing and constant delay
in the input document, and polynomial preprocessing and delay in the input VA.

To keep the length of this chapter manageable, we will in fact only show a simplified
version of Theorem 9.3 here. Instead of general sequential VAs, we will only show it
for extended sequential VAs. The extension to the more general model is done in [20]
following the same ideas but has one additional ingredient: we will have to navigate
certain graphs, the mapping DAGs introduced in the next section, whose paths correspond
to the outputs we want to enumerate. Unfortunately, there will be several paths that
differ locally in a certain sense which give the same output and which we are not allowed
to enumerate several times. The crucial idea is then to use a backtracking algorithm, also
called flashlight search in the enumeration literature, as a subroutine to locally enumerate
partial solutions and merge them with the algorithm for the case of extended VAs to
get an algorithm for general sequential VAs. This requires some technical care to do
correctly, and we refer the interested reader to [20, 1] for the details.

Our result Theorem 9.3 implies analogous results for all spanner formalisms that
can be translated to sequential VAs. In particular, spanners are not usually written as
automata by users, but instead given in a form of regular expressions called regex-formulas,
see [FKRV15] for exact definitions. As we can translate sequential regex-formulas to
sequential VAs in linear time [FKRV15, FKP18, MRV18], our results imply that we can
also evaluate them.

Another direct application of our result is for so-called regular spanners, which are
unions of conjunctive queries (UCQs) posed on regex-formulas, i.e., the closure of regex-
formulas under union, projection and joins. We again point the reader to [FKRV15,
FKP18] for the full definitions. As such UCQs can in fact be evaluated by VAs, our
result also implies tractability for such representations, as long as we only perform a
bounded number of joins.

9.3. Computing Mapping DAGs for Extended VAs

As discussed before, in this thesis we will restrict ourselves to studying extended VAs,
which are easier to work with because the set of markers that can be assigned at every
position is explicitly written as the label of a single transition. We accordingly show
Theorem 9.3 for the case of extended VAs in Sections 9.3–9.5. The case of non-extended
VAs is discussed in [20].

Mapping DAGs. To show Theorem 9.3 for extended VAs, we will reduce the problem of
enumerating the mappings captured by C to that of enumerating path labels in a special
kind of directed acyclic graph (DAG), called a mapping DAG. This DAG is intuitively a
variant of the product of C and of the document d, where we represent simultaneously
the position in the document and the corresponding state of C. We will no longer care in
the mapping DAG about the labels of letter transitions, so we will erase these labels and
call these transitions ε-transitions. As for the ev-transitions, we will extend their labels
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Figure 9.1.: Example sequential extended VA C0 to extract e-mail addresses (see Exam-
ple 9.2) and example mapping DAG on an example document (see Exam-
ples 9.6, 9.9, 9.10, and 9.13).
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to indicate the position in the document in addition to the variable markers. We first
give the general definition of a mapping DAG:

Definition 9.4. A mapping DAG consists of a set V of vertices, an initial vertex v0 ∈ V ,
a final vertex vf ∈ V , and a set of edges E where each edge (s, x, t) has a source vertex
s ∈ V , a target vertex t ∈ V , and a label x that may be ε (in which case we call the
edge an ε-edge) or a finite (possibly empty) set of pairs (m, i), where m is a variable
marker and i is a position. These edges are called marker edges. We require that the
graph (V,E) is acyclic. We say that a mapping DAG is normalized if every path in the
mapping DAG alternates between marker edges and ε-edges, every path starting at the
initial vertex starts with a marker edge, and every path ending at the final vertex ends
with an ε-edge.

The pre-mapping µ(π) of a path π in the mapping DAG is the union of labels of the
marker edges of π: we require of any mapping DAG that, for every path π, this union
is disjoint, and that for every path π from v0 to vf , the pre-mapping µ(π) is valid, i.e.,
it corresponds to a mapping. Given a set U of vertices of G, we write M(U) for the
set of pre-mappings of paths from a vertex of U to the final vertex; note that the same
pre-mapping may be captured by multiple different paths. The set of pre-mappings
captured by G is then M(G) :=M({v0}); all of these are mappings, i.e., they are valid.

Intuitively, the ε-edges will correspond to letter transitions of C (with the letter being
erased, i.e., replaced by ε), and marker edges will correspond to ev-transitions: their labels
are a possibly empty finite set of pairs of a variable marker and position, describing which
variables have been assigned during the transition. We now explain how we construct a
DAG from C and from a document d, which we call the product DAG of C and d, and
which we will show to be a mapping DAG:

Definition 9.5. Let C = (Q, q0, F, δ) be a sequential extended VA and let d = d0 · · · dn−1

be an input document. The product DAG of C and d is the DAG whose vertex set is
Q× {0, . . . , n} ∪ {vf} with vf := (•, n+ 1) for some fresh value •. Its edges are:

• For every letter-transition (q, a, q′) in δ, for every 0 ≤ i < |d| such that di = a,
there is an ε-edge from (q, i) to (q′, i+ 1);

• For every ev-transition (q,M, q′) in δ, for every 0 ≤ i ≤ |d|, there is a marker edge
from (q, i) to (q′, i) labeled with the (possibly empty) set {(m, i) | m ∈M}.

• For every final state q ∈ F , an ε-edge from (q, n) to vf .

The initial vertex of the product DAG is (q0, 0) and the final vertex is vf .

Note that, contrary to [FRU+18], we do not contract the ε-edges but keep them
throughout our algorithm.

Example 9.6. The product DAG of our example sequential extended VA C0 and of the
example document a a@b b@c is shown on Figure 9.1, with the document being written
at the left from top to bottom. The initial vertex of the DAG is (q0, 0) at the top left

129



9. Constant-Delay Enumeration for Document Spanners

and its final vertex is vf at the bottom. We draw marker edges horizontally, and ε-edges
diagonally. To simplify the example, we only draw the parts of the DAG that are reachable
from the initial vertex. Edges are dashed when they cannot be used to reach the final
vertex.

It is easy to see that this construction satisfies the definition:

Claim 9.7. The product DAG of C and d is a normalized mapping DAG.

Proof. It is immediate that the product DAG is indeed acyclic, because the second
component is always nondecreasing, and an edge where the second component does not
increase (corresponding to an ev-transition of the VA) must be followed by an edge
where it does (corresponding to a letter-transition of the VA). What is more, we claim
that no path in the product DAG can include two edges whose labels contain the same
pair (m, i), so that the unions used to define the mappings of the mapping DAG are
indeed disjoint. To see this, consider a path from an edge ((q1, i1),M1, (q

′
1, i1)) to an

edge ((q2, i2),M2, (q
′
2, i2)) where M1 6= ε and M2 6= ε, we have i1 < i2 and M1 and M2

are disjoint because all elements of M1 have i1 as their first component, and all elements
of M2 have i2 as their first component. Further, the product DAG is also normalized
because C is an extended VA that we have preprocessed to distinguish letter-states and
ev-states.

Further, the product DAG clearly captures what we want to enumerate. Formally:

Claim 9.8. The set of mappings of C on d is exactly the set of mappings M(G) captured
by the product DAG G.

Proof. This is immediate as there is a clear bijection between accepting runs of C on d
and paths from the initial vertex of G to its final vertex, and this bijection ensures that
the label of the path in G is the mapping corresponding to that accepting run.

Example 9.9. The set of mappings captured by the example product DAG on Figure 9.1
is

{ {(x`, 2), (ax, 5)}, {(x`, 6), (ax, 9)} }

and this is indeed the set of mappings of the example extended VA C0 on the example
document.

Connection to circuits. We remark that our mapping DAG can be seen as a kind of
Boolean circuit, and our enumeration algorithm on mapping DAGs can be connected to
earlier work by some of the present authors on enumeration for Boolean circuits [25, 24].
Specifically, a mapping DAG can be understood as describing a kind of binary decision
diagram (BDD): these are special kind of Boolean circuits where each conjunction
always involves a literal. This class is more restricted than the circuits obtained for
tree automata in [25, 24], intuitively because trees feature branching which require the
conjunction of multiple sub-runs. Our enumeration algorithm on mapping DAGs in
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the present work could then be phrased as a generic algorithm on a class of bounded-
width, nondeterministic BDDs. However, in this work, we chose to eschew the circuit
terminology, as we believe that our definitions and algorithms are simpler to present on
an ad-hoc mapping DAG data structure.

Trimming, levels, and level sets. Our task is to enumerate M(G) without duplicates,
and this is still non-obvious: because of nondeterminism, the same mapping in the product
DAG may be witnessed by exponentially many paths, corresponding to exponentially
many runs of the nondeterministic extended VA C. We will present in the next section
our algorithm to perform this task on the product DAG G. To do this, we will need
to preprocess G by trimming it, and introduce the notion of levels to reason about its
structure.

First, we present how to trim G. We say that G is trimmed if every vertex v is both
accessible (there is a path from the initial vertex to v) and co-accessible (there is a path
from v to the final vertex). Given a mapping DAG, we can clearly trim in linear time
by two linear-time graph traversals. Hence, we will always implicitly assume that the
mapping DAG is trimmed. If the mapping DAG may be empty once trimmed, then there
are no mappings to enumerate, so our task is trivial. Hence, we assume in the sequel
that the mapping DAG is non-empty after trimming. Further, if V = ∅ then the only
possible mapping is the empty mapping and we can produce it at that stage, so in the
sequel we assume that V is non-empty.

Example 9.10. For the mapping DAG of Figure 9.1, trimming eliminates the non-
accessible vertices (which are not depicted) and the non-co-accessible vertices (i.e., those
with incoming dashed edges). Note that trimming the mapping DAG has an effect even
though the example sequential extended VA C0 was already trimmed.

Second, we present an invariant on the structure of G by introducing the notion of
levels:

Definition 9.11. A mapping DAG G is leveled if its vertices v = (q, i) are pairs whose
second component i is a nonnegative integer called the level of the vertex and written
level(v), and where the following conditions hold:

• For the initial vertex v0 (which has no incoming edges), the level is 0;

• For every ε-edge from u to v, we have level(v) = level(u) + 1;

• For every marker edge from u to v, we have level(v) = level(u). Furthermore, all
pairs (m, i) in the label of the edge have i = level(v).

The depth D of G is the maximal level. The width W of G is the maximal number of
vertices that have the same level.

The following is then immediate by construction:

Claim 9.12. The product DAG of C and d is leveled, and we have W ≤ |Q| and
D = |d|+ 1.
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Proof. It is clear by construction that the product DAG satisfies the first three points in
the definition of a leveled mapping DAG. To see why the last point holds, observe that
for every edge of the product DAG, for every pair (m, i) that occurs in the label of that
edge, the second component i of the pair indicates how many letters of d have been read
so far, so the source vertex must have level i.

To see why the width and depth bounds hold, observe that each level of the product
DAG corresponds to a copy of C, so it has at most |Q| vertices; and that the number of
levels corresponds to the number of letters of the document, plus one level for the final
vertex.

Example 9.13. The example mapping DAG on Figure 9.1 is leveled, and the levels are
represented as horizontal layers separated by dotted lines: the topmost level is level 0 and
the bottommost level is level 10.

In addition to levels, we will need the notion of a level set :

Definition 9.14. A level set Λ is a non-empty set of vertices in a leveled normalized
mapping DAG that all have the same level (written level(Λ)) and which are all the source
of some marker edge. The singleton {vf} of the final vertex is also considered as a level
set.

In particular, letting v0 be the initial vertex, the singleton {v0} is a level set. Further,
if we consider a level set Λ which is not the final vertex, then we can follow marker
edges from all vertices of Λ (and only such edges) to get to other vertices, and follow
ε-edges from these vertices (and only such edges) to get to a new level set Λ′ with
level(Λ′) = level(Λ) + 1.

9.4. Enumeration for Mapping DAGs

In the previous section, we have reduced our enumeration problem for extended VAs
on documents to an enumeration problem on normalized leveled mapping DAGs. In
this section, we describe our main enumeration algorithm on such DAGs and show the
following:

Theorem 9.15. Let 2 ≤ ω ≤ 3 be an exponent for Boolean matrix multiplication. Given
a normalized leveled mapping DAG G of depth D and width W , we can enumerate M(G)
(without duplicates) with preprocessing O(|G|+D ×Wω+1) and delay O(W 2 × (r + 1))
where r is the size of each produced mapping.

Remember that, as part of our preprocessing, we have ensured that the leveled
normalized mapping DAG G has been trimmed. We will also preprocess G to ensure
that, given any vertex, we can access its adjacency list (i.e., the list of its outgoing edges)
in some sorted order on the labels, where we assume that ∅-edges come last. This sorting
can be done in linear time on the RAM model [Gra96, Theorem 3.1], so the preprocessing
is in O(|G|).
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Our general enumeration algorithm is then presented as Algorithm 1. We explain the
missing pieces next. The function Enum is initially called with Λ = {v0}, the level set
containing only the initial vertex, and with Mapping being the empty set.

Algorithm 1 Main enumeration algorithm

1: procedure enum(Λ,Mapping)
2: Λ′ :=Jump(Λ)
3: if Λ′ is the singleton {vf} of the final vertex then
4: Output(Mapping)
5: else
6: for (LocMark,Λ′′) in NextLevel(Λ′) do
7: enum(Λ′′, LocMark ∪Mapping)

For simplicity, let us assume for now that the Jump function just computes the identity,
i.e., Λ′ := Λ. As for the call NextLevel(Λ′), it returns the pairs (LocMark,Λ′′) where:

• The label set LocMark is an edge label such that there is a marker edge e labeled
with LocMark that starts at some vertex of Λ′

• The level set Λ′′ is formed of all the vertices w at level level(Λ′) + 1 that can be
reached by first following a marker edge e like in the bullet point above, and then
following some ε-edge. Formally, a vertex w is in Λ′′ if and only if there is an edge
labeled LocMark from some vertex v ∈ Λ′ to some vertex v′, and there is an ε-edge
from v′ to w.

Remember that, as the mapping DAG is normalized, we know that all edges starting at
vertices of the level set Λ′ are marker edges (several of which may have the same label);
and for any target v′ of these edges, all edges that leave v′ are ε-edges whose targets w
are at the level level(Λ′) + 1.

It is easy to see that the NextLevel function can be computed efficiently:

Proposition 9.16. Given a leveled trimmed normalized mapping DAG G with width
W , and a level set Λ′, we can enumerate without duplicates all the pairs (LocMark,Λ′′) ∈
NextLevel(Λ′) with delay O(W 2×|LocMark|) in an order such that LocMark = ∅ comes
last if it is returned.

Proof. The algorithm is outlined as Algorithm 2. Intuitively, we simultaneously go over
the sorted lists of the outgoing edges of each vertex of Λ′, of which there are at most W ,
and we merge them. Specifically, as long as we are not done traversing all lists, we
consider the smallest value of LocMark (according to the order) that occurs at the current
position of one of the lists. Then, we move forward in each list until the list is empty
or the edge label at the current position is no longer equal to LocMark, and we consider
the set Λ′2 of all vertices v′ that are the targets of the edges that we have seen. This
considers at most W 2 edges and reaches at most W vertices (which are at the same level
as Λ′), and the total time spent reading edge labels is in O(|LocMark|), so the process is
in O(W 2 × |LocMark|) so far. Now, we consider the outgoing edges of all vertices v′ ∈ Λ′2
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Algorithm 2 Enumeration algorithm for Proposition 9.16

1: input: Level set Λ′ = {v1, . . . , vn}
2: for j ∈ {1, . . . , n} do
3: Ej ← outgoing edges of vj
4: pj ← 0

5: while there is 1 ≤ j ≤ n such that pj < |Ej | do
6: LocMark← min(j:pj<|Ej |)Ej [pj ].label
7: Λ′2 ← ∅
8: for j ∈ {1, . . . , n} do
9: while pj < |Ej | and Ej [pj ].label = LocMark do

10: Λ′2 ← Λ′2 ∪ {Ej [pj ].target}
11: pj ← pj + 1

12: Λ′′ ← ∅
13: for v′ ∈ Λ′2 do
14: for e outgoing edge of v′ do
15: Λ′′ ← Λ′′ ∪ {e.target}
16: Output(LocMark,Λ′′)

(all are ε-edges) and return the set Λ′′ of the vertices w to which they lead: this only adds
O(W 2) to the running time because we consider at most W vertices v′ with at most W
outgoing edges each. Last, LocMark = ∅ comes last because of our assumption on the
order of adjacency lists.

The design of Algorithm 1 is justified by the fact that, for any level set Λ′, the set
M(Λ′) can be partitioned based on the value of LocMark. Formally:

Claim 9.17. For any level set Λ of G which is not the final vertex, we have:

M(Λ) =
⋃

(LocMark,Λ′′)∈NextLevel(Λ)

{LocMark ∪ α | α ∈M(Λ′′)} . (9.1)

Furthermore, this union is disjoint, non-empty, and none of its terms is empty.

Proof. The definition of a level set and of a normalized mapping DAG ensures that we
can decompose any path π from Λ to vf as a marker edge e from Λ to some vertex v′, an
ε-edge from v′ to some vertex w, and a path π′ from w to vf . Further, the set of such
w is clearly a level set. Hence, the left-hand side of Equation (9.1) is included in the
right-hand side. Conversely, given such v, v′, w, and π′, we can combine them into a path
π, so the right-hand side is included in the left-hand side. This proves Equation (9.1).

We show that the union is disjoint. Recall that the definition of a leveled mapping
DAG (Definition 9.11) implies that LocMark is a set of pairs whose second component is
level(Λ), and that each mapping in M(Λ′′) is a set of pairs whose second components are
values strictly greater than level(Λ). Thus, each mapping in M(Λ) can only be obtained
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for the value of LocMark which is equal to the subset of the pairs of the mapping whose
second component is level(Λ).

We show that the union is non-empty. This is because Λ is non-empty and its vertices
must be co-accessible so they must have some outgoing marker edge, which implies that
NextLevel(Λ) is non-empty.

We last show that none of the terms of the union is empty. This is because, for each
(LocMark,Λ′′) ∈ NextLevel(Λ), we know that Λ′′ is non-empty because the mapping
DAG is trimmed so all vertices are co-accessible.

Thanks to this claim, we could easily prove by induction that Algorithm 1 correctly
enumerates M(G) when Jump is the identity function. However, this algorithm would
not achieve the desired delay bounds: indeed, it may be the case that NextLevel(Λ′)
only contains LocMark = ∅, and then the recursive call to Enum would not make progress
in constructing the mapping, so the delay would not generally be linear in the size of the
mapping. To avoid this issue, we use the Jump function to directly “jump” to a place
in the mapping DAG where we can read a label different from ∅. Let us first give the
relevant definitions:

Definition 9.18. Given a level set Λ in a leveled mapping DAG G, the jump level JL(Λ)
of Λ is the first level j ≥ level(Λ) containing a vertex v′ such that some v ∈ Λ has a path
to v′ and such that v′ is either the final vertex or has an outgoing edge with a label which
is 6= ε and 6= ∅. In particular we have JL(Λ) = level(Λ) if some vertex in Λ already has
an outgoing edge with such a label, or if Λ is the singleton set containing only the final
vertex.

The jump set of Λ is then Jump(Λ) := Λ if JL(Λ) = level(Λ), and otherwise Jump(Λ)
is formed of all vertices at level JL(Λ) to which some v ∈ Λ have a directed path whose
last edge is labeled ε. This ensures that Jump(Λ) is always a level set.

Example 9.19. In the mapping DAG in Figure 9.1, we have JL({(q2, 3), (q5, 3)}) = 5,
as the reachable node (q9, 5) has an outgoing edge labeled {(ax, 5)}. The jump set
Jump({(q2, 3), q5, 3)}) is {(q2, 5), (q9, 5)}, as (q2, 5) is reachable from (q2, 3) and (q9, 5)
is reachable from (q5, 3).

The definition of Jump ensures that we can jump from Λ to Jump(Λ) when enumerating
mappings, and it will not change the result because we only jump over ε-edges and ∅-edges:

Claim 9.20. For any level set Λ of G, we have M(Λ) =M(Jump(Λ)).

Proof. As Jump(Λ) contains all vertices from level JL(Λ) that can be reached from Λ,
any path π from a vertex u ∈ Λ to the final vertex can be decomposed into a path πuw
from u to a vertex w ∈ Jump(Λ) and a path πwv from w to v. By definition of Jump(Λ),
we know that all edges in πuw are labeled with ε or ∅, so µ(π) = µ(πwv). Hence, we have
M(Λ) ⊆M(Jump(Λ)).

Conversely, given a path πwv from a vertex w ∈ Jump(Λ) to the final vertex, the
definition of Jump(Λ) ensures that there is a vertex u ∈ Λ and a path πuw from u to w,
which again consists only of ε-edges or ∅-edges. Hence, letting π be the concatenation of
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πuw and πwv, we have µ(πwv) = µ(π) and π is a path from Λ to the final vertex. Thus,
we have M(Jump(Λ)) ⊆M(Λ), concluding the proof.

Claims 9.17 and 9.20 imply that Algorithm 1 is correct with this implementation
of Jump:

Proposition 9.21. Enum({v0}, ε) correctly enumerates M(G) (without duplicates).

Proof. We show the stronger claim that for every level set Λ, and for every sequence of
labels Mapping, we have that Enum(Λ,Mapping) enumerates (without duplicates) the
set Mapping ]M(Λ) := {Mapping ∪ α | α ∈M(Λ)}. The base case is when Λ is the final
vertex, and then M(Λ) = {{}} and the algorithm correctly returns {Mapping}.

For the induction case, let us consider a level set Λ which is not the final vertex,
and some sequence of labels Mapping. We let Λ′ := Jump(Λ), and by Claim 9.20
we have that M(Λ′) = M(Λ). Now we know by Claim 9.17 that M(Λ′) can be
written as in Equation (9.1) and that the union is disjoint; the algorithm evaluates
this union. So it suffices to show that, for each (LocMark,Λ′′) ∈ NextLevel(Λ′), the
corresponding iteration of the for loop enumerates (without duplicates) the set (Mapping∪
LocMark) ] M(Λ′′). By induction hypothesis, the call Enum(Jump(Λ′),Mapping ∪
LocMark) enumerates (without duplicates) the set (Mapping∪ LocMark)]M(Jump(Λ′′)).
So this establishes that the algorithm is correct.

What is more, Algorithm 1 now achieves the desired delay bounds, as we will show.
Of course, this relies on the fact that the Jump function can be efficiently precomputed
and evaluated. We only state this fact for now, and prove it in the next section:

Proposition 9.22. Given a leveled mapping DAG G with width W and depth D, we
can preprocess G in time O(D ×Wω+1) such that, given any level set Λ of G, we can
compute the jump set Jump(Λ) of Λ in time O(W 2).

We can now conclude the proof of Theorem 9.15 by showing that the preprocessing and
delay bounds are as claimed. For the preprocessing, this is clear: we do the preprocessing
in O(|G|) presented at the beginning of the section (i.e., trimming, and computing the
sorted adjacency lists), followed by that of Proposition 9.22. For the delay, we claim:

Claim 9.23. Algorithm 1 has delay O(W 2 × (r+ 1)), where r is the size of the mapping
of each produced path. In particular, the delay is independent of the size of G.

Proof. Let us first bound the delay to produce the first solution. When we enter the Enum
function, we call the Jump function to produce Λ′ in time O(W 2) by Proposition 9.22, and
either Λ′ is the final vertex or some vertex in Λ′ must have an outgoing edge with a label
different from ∅. Then we enumerate NextLevel(Λ′) with delay O(W 2× |LocMark|) for
each LocMark using Proposition 9.16. Remember that Proposition 9.16 ensures that the
label ∅ comes last; so by definition of Jump the first value of LocMark that we consider is
different from ∅. At each round of the for loop, we recurse in constant time: in particular,
we do not copy Mapping when writing LocMark ∪Mapping, as we can represent the set
simply as a linked list. Eventually, after r + 1 calls, by definition of a leveled mapping
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DAG, Λ must be the final vertex, and then we output a mapping of size r in time O(r):
the delay is indeed in O(W 2 × (r + 1)) because the sizes of the values of LocMark seen
along the path sum up to r, and the unions of LocMark and Mapping are always disjoint
by definition of a mapping DAG.

Let us now bound the delay to produce the next solution. To do so, we will first observe
that when enumerating a mapping of cardinality r, then the size of the recursion stack is
always ≤ r + 1. This is because Proposition 9.16 ensures that the value LocMark = ∅ is
always considered last in the for loop on NextLevel(Λ′). Thanks to this, every call to
Enum where LocMark = ∅ is actually a tail recursion, and we can avoid putting another
call frame on the call stack using tail recursion elimination. This ensures that each call
frame on the stack (except possibly the last one) contributes to the size of the currently
produced mapping, so that indeed when we reach the final vertex of G then the call stack
is no greater than the size of the mapping that we produce.

Now, let us use this fact to bound the delay between consecutive solutions. When we
move from one solution to another, it means that some for loop has moved to the next
iteration somewhere in the call stack. To identify this, we must unwind the stack: when
we produce a mapping of size r, we unwind the stack until we find the next for loop that
can move forward. By our observation on the size of the stack, the unwinding takes time
O(r) with r is the size of the previously produced mapping; so we simply account for
this unwinding time as part of the computation of the previous mapping. Now, to move
to the next iteration of the for loop and do the computations inside the loop, we spend
a delay O(W 2 × |LocMark|) by Proposition 9.16. Let r′ be the current size of Mapping,
including the current LocMark. The for loop iteration finishes with a recursive call to
Enum, and we can re-apply our argument about the first solution above to argue that
this call identifies a mapping of some size r′′ in delay O(W 2× (r′′+1)). However, because
the argument Mapping to the recursive call had size r′, the mapping which is enumerated
actually has size r′ + r′′ and it is produced in delay O(W 2 × (r′′ + 1) + r′). This means
that the overall delay to produce the next solution is indeed in O(W 2 × (r + 1)) where r
is the size of the mapping that is produced, which concludes the proof.

Memory usage. We briefly discuss the memory usage of the enumeration phase, i.e., the
maximal amount of working memory that we need to keep throughout the enumeration
phase, not counting the precomputation phase. Indeed, in enumeration algorithms the
memory usage can generally grow to be very large even if one adds only a constant
amount of information at every step. We will show that this does not happen here,
and that the memory usage throughout the enumeration remains polynomial in C and
constant in the input document size.

All our memory usage during enumeration is in the call stack, and thanks to tail
recursion elimination (see the proof of Claim 9.23) we know that the stack depth is
at most r + 1, where r is the size of the produced mapping as in the statement of
Theorem 9.15. The local space in each stack frame must store Λ′ and Λ′′, which have
size O(W ), and the status of the enumeration of NextLevel in Proposition 9.16, i.e.,
for every vertex v ∈ Λ′, the current position in its adjacency list: this also has total
size O(W ), so the total memory usage of these structures over the whole stack is in
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O((r + 1)×W ). Last, we must also store the variables Mapping and LocMark, but their
total size of the variables LocMark across the stack is clearly r, and the same holds of
Mapping because each occurrence is stored as a linked list (with a pointer to the previous
stack frame). Hence, the total memory usage is O((r + 1)×W ), i.e., O((|V|+ 1)× |Q|)
in terms of the extended VA.

9.5. Jump Function

The only missing piece in the enumeration scheme of Section 9.4 is the proof of Propo-
sition 9.22. We first explain the preprocessing for the Jump function, and then the
computation scheme.

Preprocessing scheme. Recall the definition of the jump level JL(Λ) and jump set
Jump(Λ) of a level set Λ (Definition 9.18). We assume that we have precomputed in
O(|G|) the mapping level associating each vertex v to its level level(v), as well as, for
each level i, the list of the vertices v such that level(v) = i.

The first part of the preprocessing is then to compute, for every individual vertex v,
the jump level JL(v) := JL({v}), i.e., the minimal level containing a vertex v′ such that
v′ is reachable from v and v′ is either the final vertex or has an outgoing edge which is
neither an ε-edge nor an ∅-edge. We claim:

Claim 9.24. We can precompute in O(D ×W 2) the jump level JL(v) of all vertices v
of G.

Proof. This construction can be performed iteratively from the final vertex vf to the initial
vertex v0: we have JL(vf) := level(vf) for the final vertex vf , we have JL(v) := level(v)
if v has an outgoing edge which is not an ε-edge or an ∅-edge, and otherwise we have
JL(v) := minv→w JL(w).

This computation can be performed along a reverse topological order, which by [CLRS09,
Section 22.4] takes linear time in G. However, note that G has at most D ×W vertices,
and we only traverse ε-edges and ∅-edges: we just check the existence of edges with other
labels but we do not traverse them. Now, as each vertex has at most W outgoing edges
labeled ∅ and at most W outgoing edges labeled ε, the number of edges in the DAG
that we actually traverse is only O(D ×W 2), which shows our complexity bound and
concludes the proof.

The second part of the preprocessing is to compute, for each level i of G, the reachable
levels Rlevel(i) := {JL(v) | level(v) = i}, which we can clearly do in linear time in the
number of vertices of G, i.e., in O(D ×W ). Note that the definition clearly ensures that
we have |Rlevel(i)| ≤W .

Example 9.25. In Figure 9.1, the jumping level for nodes (q1, 3) and (q2, 3) is 6 and the
jumping level for nodes (q5, 3) and (q6, 3) is 5. Hence, the set of reachable levels Rlevel(3)
for level 3 is {5, 6}.
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Last, the third step of the preprocessing is to compute a reachability matrix from each
level to its reachable levels. Specifically, for any two levels i < j of G, let Reach(i, j)
be the Boolean matrix of size at most W ×W which describes, for each (u, v) with
level(u) = i and level(v) = j, whether there is a path from u to v whose last edge is
labeled ε. We can’t afford to compute all these matrices, but we claim that we can
efficiently compute a subset of them, which will be enough for our purposes:

Claim 9.26. We can precompute in time O(D ×Wω+1) the matrices Reach(i, j) for all
pairs of levels i < j such that j ∈ Rlevel(i).

Proof. We compute the matrices in decreasing order on i, then for each fixed i in arbitrary
order on j:

• if j = i, then Reach(i, j) is the identity matrix;

• if j = i+ 1, then Reach(i, j) can be computed from the edge relation of G in time
O(W ×W ), because it suffices to consider the edges labeled ∅ and ε between levels i
and j;

• if j > i+ 1, then Reach(i, j) is the product of Reach(i, i+ 1) and Reach(i+ 1, j),
which can be computed in time O(Wω).

In the last case, the crucial point is that Reach(i+ 1, j) has already been precomputed,
because we are computing Reach in decreasing order on i, and because we must have
j ∈ Rlevel(i+ 1). Indeed, if j ∈ Rlevel(i), then there is a vertex v with level(v) = i such
that JL(v) = j, and the inductive definition of JL implies that v has an edge to a vertex w
such that level(w) = i+ 1 and JL(v) = JL(w) = j, which witnesses that j ∈ Rlevel(i+ 1).

The total running time of this scheme is in O(D ×Wω+1): indeed we consider each of
the D levels of G, we compute at most W matrices for each level of G because we have
|Rlevel(i)| ≤W for any i, and each matrix is computed in time at most O(Wω).

Evaluation scheme. We can now describe our evaluation scheme for the jump function.
Given a level set Λ, we wish to compute Jump(Λ). Let i be the level of Λ, and let j be
JL(Λ) which we compute as minv∈Λ JL(v) in O(W ) time. If j = i, then Jump(Λ) = Λ
and there is nothing to do. Otherwise, by definition there must be v ∈ Λ such that
JL(v) = j, so v witnesses that j ∈ Rlevel(i), and we know that we have precomputed
the matrix Reach(i, j). Now Jump(Λ) are the vertices at level j to which the vertices
of Λ (at level i) have a directed path whose last edge is labeled ε, which we can simply
compute in time O(W 2) by unioning the lines that correspond to the vertices of Λ in the
matrix Reach(i, j).

This concludes the proof of Proposition 9.22 and completes the presentation of our
scheme to enumerate the set captured by mapping DAGs (Theorem 9.15). Together with
Section 9.3, this proves Theorem 9.3 in the case of extended sequential VAs.
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9.6. Experimental Validation

Having concluded the proof of our main result, we move on in this section to an experi-
mental study of a prototype implementation of our method. A first direct implementation
of our algorithm was developed by Rémi Dupré during his master thesis, which we
further optimized to achieve better results, in particular to improve the handling of the
reachability matrices and the space usage. In this section, we present this optimized
implementation and show how it performs on several benchmarks. Our software is written
in Rust and is freely available online1 under the BSD 3-clause license.

Overall design. Our implementation enumerates the solutions of the evaluation of a
nondeterministic sequential VA over a word. The nondeterministic sequential VA is given
in the input as a regex-formula. This regex-formula is translated into a nondeterministic
sequential VA using a variant of Glushkov’s algorithm. Note that our implementation
uses variable-set automata so the underlying algorithm could work with any regular
spanner, and not only with hierarchical regular spanners [FKRV15, Theorem 4.6]. As for
the input document, it is provided as a text file.

Our implementation follows the different parts of the algorithm presented in the paper.
The preprocessing phase comprises (i) the construction of the mapping DAG as described
in Section 9.3 and modified for non-extended VAs as described in [20]; and (ii) the
construction of the jump function described in Section 9.5 and all necessary matrices.
The enumeration phase explores the DAG as described in Section 9.4 and modified for
non-extended VAs in [20]. In particular, we use the flashlight search approach described
in [20].

9.6.1. Optimizations

Our optimizations focus on three main problems: efficiently managing the mapping DAG
during the preprocessing phase, managing the reachability matrices that we build at the
end of the preprocessing phase, and optimizing the enumeration phase.

Efficient representation of the mapping DAG and efficient exploration. The first
stage of the preprocessing phase is to compute the mapping DAG. This DAG is efficiently
represented as a bitmap2 in which we store which states are reachable at each position
of the input document. To save space, the implementation does not actually store any
edges of the DAG, as the edges can be reconstructed on the fly from the automaton and
input string.

The second stage is to make this DAG trimmed by exploring it to remove the vertices
that are not co-accessible, i.e., those that have no path to the final vertex.

1https://github.com/PoDMR/enum-spanner-rs
2The bitmap contains a single bit for each pair (q, i) ∈ Q× {0, . . . , |d|} that says whether the node is

part of the trimmed mapping DAG or not. Padding is applied to ensure that each level starts at a
machine word boundary.
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Implementation of the matrices. The third stage of the preprocessing is to compute
the reachability matrices that are necessary for the jump function, which requires many
Boolean matrix multiplications. We considered using optimized implementations of
matrix multiplication, but these are generally designed for floating-point numbers rather
than Boolean values, so using them would significantly increase the memory usage. As
memory space tends out to be an important bottleneck in our implementation, we instead
implemented our own matrix multiplication code: it uses the naive matrix multiplication
algorithm with three nested loops, but we optimized it for Boolean matrices as follows.
We store matrices as bitvectors and pad their width to 8, 16, 32, or a multiple of 64,
which reduces their memory usage. Further, we use fast bitwise operations in the inner
loop of the matrix multiplication algorithm, which speeds up the multiplication of large
matrices by a factor of up to 64. With this vectorized implementation, the multiplication
time grows roughly like n2 for matrices with width up to 64.

Enumeration phase. After these optimizations to the three stages of the preprocessing
phase, our implementation performs the enumeration phase by traversing the mapping
DAG in reverse, i.e., we explore it backwards from the final vertex to the initial vertices.
Following this reverse order, we then enumerate the mappings seen along the traversed
paths as we previously described in the paper. One advantage of doing enumeration
backwards is that it allows us to skip the trimming step (second stage of the preprocessing
phase): if some vertices of the mapping DAG are not co-accessible, the enumeration
phase will never reach them and the delay bounds are not affected. However, as we will
later show, in practice the time spent on trimming (second preprocessing stage) is often
recouped during the third preprocessing stage (because it runs faster when the mapping
DAG is smaller).

A more distant benefit of processing the DAG backwards is to later extend our
implementation to support updates, i.e., modifications to the underlying document. A
common case of updates is appending characters at the end, which we believe would
be easier to handle when enumeration starts at the end. Nevertheless, the question of
extending the algorithm and implementation to handle updates is left for future work
(see also the discussion in the conclusion).

9.6.2. Experiments

Experimental setup and delay measurement. The tests were run in a virtual machine
that had exclusive access to two Xeon E5-2630 CPU cores. The algorithm is single-
threaded, but the additional core was added to minimize the effects of background activity
of the operating system.

Measuring the delays of the algorithm is challenging, because the timescale for the delays
is so tiny that unavoidable hardware interrupts can make a big difference. To eliminate
outliers resulting from such interrupts, we exploited the fact that our enumeration
algorithm is fully deterministic. We ran the algorithm ten times and recorded all delays.
Afterwards, for each produced result, we took the median of the ten delays we collected.
All measurements related to delays use this approach, e.g., if we compute the maximum
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delay for a query, it is actually the maximum over these medians.

We benchmarked our implementation on two data sets: one based on genetic data
and another one based on blog posts using the corpus from [SKAP06] and compar-
ing against [Mor17]. We first describe the experiments on DNA data, and then the
experiments on blog posts.

DNA data. For our experiments on DNA data, the input document is the first chromo-
some of the human genome reference sequence GRCh38. It contains roughly 250 million
base pairs3, where each base pair is encoded as a single character. We also use prefixes
of this data in the experiments, when we need to benchmark against input documents of
various sizes.

In most queries, there are no named capture variables, but there is an implicit capture
variable which captures each possible match of the regex as a subword of the input
document. Formally, when we write a query in the sequel as a regular expression
e without capture variables, the corresponding spanner is the one described by the
regex-formula Σ∗x{e}Σ∗, where Σ is the alphabet and x is the implicit capture variable.

Close-fragments queries. Our experiments on DNA data use so-called close-fragment
queries, where we search for two DNA fragments w1 and w2 that occur close to each
other. Specifically, we used the query TTAC.{0,k}CACC, with various values of k, for
several different tests which we list below and then present in more detail.

1. We first verified that the delay is independent from the document length, while the
preprocessing time and memory usage depends linearly on the document length.
This is presented in Figure 9.2.

2. We then tested how the preprocessing time, the index structure size and the delay
depends on the automaton size. This is depicted in Figure 9.3, where we used a 10
MB prefix of the DNA string and used values of k between 10 and 10 000.

3. Last, we compared the total enumeration time with the naive approach that starts
one run of the NFA at every position of the document.4 We also investigated the
effect of skipping the second stage of the preprocessing. The results are depicted in
Figure 9.4.

For (1), we fixed k = 1 000 and used prefixes of different length of the DNA string.
The results are depicted in Figure 9.2, where in Figure 9.2a, we depicted the maximal
and average delay encountered during enumeration, while in Figure 9.2b, we depicted the
preprocessing time and size of the index structure divided by the input length. One can
see that the average delay is constant (around five microseconds allowing to enumerate
200 000 results per second), while the maximum delay is roughly four times larger. The

3https://www.ncbi.nlm.nih.gov/genome/guide/human/
4Note that this naive approach only works for the special case where there is exactly one capture variable

that surrounds the whole expression. Our implementation has the added advantage of handling
regular spanners with arbitrarily many capture variables.
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preprocessing speed is roughly 300 to 350 kilobytes per second and the index structure
twice as large as the input document.

Towards (2), we fixed the length of the input to 10 MB and made k vary between
10 and 10 000. The results are shown in Figures 9.3a and 9.3b. The most interesting
outcome is that the preprocessing is much faster than the worst case bound of O(k4).
Analyzing the numbers from Figure 9.3a shows that the preprocessing time grows roughly
like Θ(k2). A closer look into the index structure used in the algorithm suggests an
explanation: the width of the mapping DAG seems to grow sublinearly as a function of k
for this query.

As for the delay in Figure 9.3b, remember that our experiment is about changing
the query, so the delay bound is not supposed to be constant with respect k. The
theoretical bounds suggest that the delay should be O(k2), which matches what we
obtain experimentally for the maximum delay. The average delay is much lower.

We also measured the size of our index structure for the queries TTAC.{0,k}CACC after
completing the preprocessing and depicted the results in Figure 9.3c. The index structure
consists of three parts, with the total size being the sum of these three parts:

• DAG: The bitmap storing the states that exist in the (trimmed) DAG. We remove
the levels to which the algorithm will never jump.

• Jump function: The jump function, as explained in Section 9.5.

• Matrices: All necessary reachability matrices, as explained in the same section.

For small automata, the size is dominated by the administrative overhead of the vectors
used to store the jump functions and matrices, while the DAG is represented in a very
compact way as a bitmap. For larger automata, one can see that the DAG representation
uses more space, but the memory footprint is still dominated by the matrices. Notice
that the size of each level of the DAG is padded to a multiple of 32, hence the bumps of
the DAG curve around the sizes 32 and 64.

A question related to the close-fragment queries TTAC.{0,k}CACC is to understand if
the change in performance across different values of k is only caused by the change in the
number of results. To experiment with this, we fixed k = 1000 and benchmarked queries
w1.{0,1 000}w2, where w1 was a prefix of TTACGG and w2 was a prefix of CACCTG, so
as to make the number of results vary without changing the size of the automaton too
much. The results are depicted in Figure 9.3d. The resulting index structure size for
these queries indeed depends a lot on the number of results. This is expected as the index
structure only contains information for levels that are used as the boundary of at least
one span in the results. Specifically, the size grows slightly sublinearly. The preprocessing
speed (and thus the preprocessing time) is almost constant until the number of results
becomes sufficiently large to be comparable to the input size. This is because, before
that point, the dominating term in the preprocessing time is the processing of the input
and not the computations performed on the DAG.

For (3), we implemented a naive enumeration algorithm that works without any
preprocessing, to serve as a baseline. It evaluates the NFA starting from each position
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i in the input document and outputs a pair (i, j) for each position j where the NFA
reaches an accepting state using the standard algorithm that computes for each position
the set of possible states. We do the easy optimization of stopping the run for a starting
position i if we reach an ending position j with no more reachable states. We depicted the
total time used for enumeration of our approach and the naive algorithm in Figure 9.4,
where we ran the query TTAC.{0,k}CACC for various sizes of k on the 10MB prefix of the
DNA sequence (Figure 9.4a) and additionally the query TTAC.*CACC for various prefixes
of the input DNA sequence (Figure 9.4b). For small k in Figure 9.4a, the naive algorithm
has a clear advantage, as it does not need to compute any index structure. Also, for
these queries the runtime is bounded by O(nk), as all runs of the NFA have a length
bounded by at most k + 8 because we optimized the baseline algorithms to stop the run
early. For larger k, the naive algorithm is much slower than our approach. For the query
TTAC.*CACC in Figure 9.4b, the naive approach exhibits its Θ(n2) worst-case behavior,
and is much slower than our approach, even for small input documents.

In Figure 9.4a, we also have a look on the effect of trimming the DAG (second stage of
the preprocessing). Indeed, while skipping this trimming stage saves a small amount of
time, this is usually overcompensated by the third preprocessing stage, where we need to
compute more and larger matrices because the unpruned DAG is larger. This can be seen
for the query TTAC.{0,k}CACC even for small values for k. Trimming saves more time for
larger values of k, as more nodes of the DAG can be pruned. For the query TTAC.*CACC

in Figure 9.4b, where trimming can only remove a few nodes from the DAG, the runtime
effect of disabling trimming was negligible, i.e., the time savings from the second stage
where almost exactly compensated by the additional work in the third stage.

Querying blog posts. We also evaluated our algorithm on roughly 800 megabytes of blog
posts using the corpus from [SKAP06]. To apply our implementation, we concatenated
all blog posts to get a single file and stripped all characters that did not have a valid
UTF-8 encoding. We ran the same queries used in the master thesis of Morciano [Mor17,
Chapter 6]. These queries try to extract reviews for movies from blog posts. They are
built over simple dictionaries that contain, e.g., synonyms for “movie”, synonyms for
“actor”, or a list of genres. These basic spanners are combined to more complex queries
using the union operator and joins of the following form: “spanner B matches at most k
characters after spanner A matches”. For instance, the queries Q1 to Q4 are of the form:
find a word in the dictionary d1, and then a word in the dictionary d2 matching at most
k characters after the first word.

In Table 9.1, we give some statistical data over these queries, and give the running time
of our algorithm, its memory usage, and the approximate times of the implementation
of [Mor17]. We only report the time for the preprocessing phase of our algorithm, because
the time taken by the enumeration phase is always less than one second. We stress
that the running times of [Mor17] and our running times are not comparable, because
the experimental setup is very different, the hardware in use is not the same, and the
algorithm of [Mor17] is not an enumeration algorithm but simply produces all results.
The point of our comparison is not to claim an improvement in running times relative
to [Mor17], but to show that, on this existing dataset, the total running time of our
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Query #states #variables #results preprocess memory time of
(s) (MB) [Mor17](s)

Q1 40 2 4 975 772 2.72 ≈ 780
Q2 211 2 6 099 1 057 3.70 ≈ 1 100
Q3 246 2 5 915 1 090 3.63 ≈ 1 200
Q4 52 2 2 232 771 1.22 ≈ 810
Q5 343 6 12 020 1 254 8.04 ≈ 2 780
Q′6 661 8 19 561 1 704 16.00 ≈ 4 330
Q′7 805 10 62 103 1 948 53.36 ≈ 5 100
Q′8 813 10 70 509 1 956 60.02 ≈ 6 000

Table 9.1.: Querying blog data
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Figure 9.5.: Histogram for delays between two outputs

approach is comparable to that of their implementation.

Looking into our running times, we notice that the dependency of the preprocessing
time on the automaton size is again much less than the O(|C|4) worst-case bound. Again,
this is probably because the matches are sparse, i.e., there are only very few nodes per
level and therefore the matrices are of almost constant size. Similarly to our experiments
on DNA data, the preprocessing time and index structure size show a dependency on
the number of matches, as we need to compute matrices for all levels where a variable is
opened or closed for some match. Of course, as our preprocessing is linear in the input
document, this dependency can only hold when the number of results is at most linear in
the document.

Detailed analysis of delay. We did a more detailed analysis of the various delays that
we obtain while running the enumeration phase of our algorithm. We show a histogram
of the delays for the query TTAC.{0,1000}CACC on DNA data in Figure 9.5 (a), and for
the query Q′8 from [Mor17] on the blog post corpus in Figure 9.5 (b).

One can see that the delay varies, which is expected: our algorithm is constant-delay
in the sense of enforcing a constant upper bound on the delay, but the effective delay
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can vary from one output to the next. Specifically, the number of jumps that need to
be performed between two outputs can be any number between one and the maximal
number of variable markers encountered in a single match. Also the time needed for the
flashlight search can vary within given limits.

In Figure 9.5 (a), as the DNA query has only one implicit capture variable covering the
whole match and thus two variable markers, we have two spikes in the histogram. The
first spike corresponds to the case where the next matching is found by just changing the
end marker, while the second spike corresponds to the case where the two markers are
changed, so that the flashlight search and jump functions have to be executed twice. In
Figure 9.5 (b), as the query Q′8 has ten variables, we notice that the maximal delay is
larger and there are more spikes in the histogram.

9.7. Conclusion

We have shown that we can efficiently enumerate the mappings of sequential variable-set
automata on input documents, achieving linear-time preprocessing and constant-delay
in data complexity, while ensuring that preprocessing and delay are polynomial in the
input VA even if it is not deterministic. This result was previously considered as unlikely
by [FRU+18], and it improves on the algorithms in [FKP18]: with our algorithm, the
delay between outputs does not depend on the input document, whereas it had a linear
dependency on the size of the input document in [FKP18].

In Section 9.6, we did a thorough practical evaluation of our approach. The most
encouraging result is, that for several classes of queries, the algorithm runs much faster
than the theoretical worst case analysis would suggest. An interesting open question
raised by the experimental validation is whether it is possible to adapt our algorithm
to NFAs with counters. We believe that queries that use a join condition of the form
pattern A should be matched near pattern B are important in practice. These kind of
queries intrinsically depend on the use of counters. As the efficiency of our algorithm
crucially depends on the size of the underlying automata, a more efficient representation
of counters that does not depend on encoding the counter value in the state of the
automaton could allow for big improvements in the runtime.

We will consider different directions for future works. A first question is how to
cope with changes to the input document without recomputing our enumeration index
structure from scratch. This question has been recently studied for other enumeration
algorithms, see e.g. [24, BKS17a, BKS17b, BKS18, LM14, Nie18, NS18], but for atomic
update operations: insertion, deletion, and relabelings of single nodes. However, as
spanners operate on text, we would like to use bulk update operations that modify
large parts of the text at once: cut and paste operations, splitting or joining strings, or
appending at the end of a file and removing from the beginning, e.g., in the case of log
files with rotation. It may be possible to show better bounds for these operations than
the ones obtained by modifying each individual letter [NS18, LM14], and we believe our
implementation could be modified to do so, at least when appending new content at the
end of the document.
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Lens, title Raisonnement à partir de contraintes pseudo-booléennes et
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[CK19] Nofar Carmeli and Markus Kröll. On the enumeration complexity of unions
of conjunctive queries. In 38th ACM SIGMOD-SIGACT-SIGAI Symposium
on Principles of Database Systems, PODS 2019, pages 134–148, 2019. 43

[CKD13] Arthur Choi, Doga Kisa, and Adnan Darwiche. Compiling Probabilistic
Graphical Models Using Sentential Decision Diagrams. In Symbolic and
Quantitative Approaches to Reasoning with Uncertainty, ECSQARU, pages
121–132, 2013. 24, 41

[CKS01] N. Creignou, S. Khanna, and M. Sudan. Complexity Classifications of
Boolean Constraint Satisfaction Problems, volume 7 of SIAM Monographs
on Discrete Mathematics and Applications. SIAM, 2001. 49

[CLRS09] Thomas H. Cormen, Charles E. Leiserson, Ronald L. Rivest, and Clifford
Stein. Introduction to Algorithms. The MIT Press, 3rd edition, 2009. 138

[CM77] Ashok K. Chandra and Philip M. Merlin. Optimal implementation of
conjunctive queries in relational data bases. In Proceddings of STOC’77,
pages 77–90, 1977. 62, 63, 81

[Col07] Thomas Colcombet. A combinatorial theorem for trees. In 34th Interna-
tional ColloquiumAutomata, Languages and Programming, ICALP 2007,
pages 901–912, 2007. 44

[Cou90] Bruno Courcelle. The monadic second-order logic of graphs. i. recognizable
sets of finite graphs. Inf. Comput., 85(1):12–75, 1990. 34

[CT20] Karine Chubarian and György Turán. Interpretability of Bayesian Network
Classifiers: OBDD Approximation and Polynomial Threshold Functions.
In International Symposium on Artificial Intelligence and Mathematics,
ISAIM, 2020. 28, 29, 51, 99, 104

[CVVdB20] YooJung Choi, Antonio Vergari, and Guy Van den Broeck. Probabilistic
circuits: A unifying framework for tractable probabilistic models. Technical
report, Technical report, oct 2020. 41

[Dar01a] Adnan Darwiche. Decomposable negation normal form. J. ACM, 48(4):608–
647, 2001. 5, 23, 25, 27, 34

[Dar01b] Adnan Darwiche. On the Tractable Counting of Theory Models and its
Application to Truth Maintenance and Belief Revision. Journal of Applied
Non-Classical Logics, 11(1-2):11–34, 2001. 24

[Dar03] Adnan Darwiche. A differential approach to inference in bayesian networks.
J. ACM, 50(3):280–305, 2003. 41

[Dar04] Adnan Darwiche. New Advances in Compiling CNF into Decomposable
Negation Normal Form. In European Conference on Artificial Intelligence,
ECAI, pages 328–332, 2004. 5, 24

167



REFERENCES

[Dar11] Adnan Darwiche. SDD: A new canonical representation of propositional
knowledge bases. In 22nd International Joint Conference on Artificial
Intelligence, IJCAI 2011, pages 819–826, 2011. 5, 21, 24, 50

[dC20] Alexis de Colnet. A lower bound on DNNF encodings of pseudo-boolean
constraints. In 23rd International Conference Theory and Applications of
Satisfiability Testing, SAT 2020, pages 312–321, 2020. 28

[Den16] Aaron W. Dennis. Algorithms for Learning the Structure of Monotone
and Nonmonotone Sum-Product Networks. PhD thesis, Brigham Young
University, 2016. 41

[DG07] Arnaud Durand and Etienne Grandjean. First-order queries on structures
of bounded degree are computable with constant delay. TOCL, 8(4), 2007.
43

[DHJ+04] Pavol Duris, Juraj Hromkovic, Stasys Jukna, Martin Sauerhoff, and Georg
Schnitger. On multi-partition communication complexity. Inf. Comput.,
194(1):49–75, 2004. 26, 29, 30, 40, 99, 100

[DJ04a] V. Dalmau and P. Jonsson. The complexity of counting homomorphisms
seen from the other side. Theor. Comput. Sci., 329(1-3):315–323, 2004. 18

[DJ04b] Vı́ctor Dalmau and Peter Jonsson. The complexity of counting homomor-
phisms seen from the other side. Theor. Comput. Sci., 329(1-3):315–323,
2004. 65

[DLL62] Martin Davis, George Logemann, and Donald W. Loveland. A machine
program for theorem-proving. Commun. ACM, 5(7):394–397, 1962. 37

[DM02] Adnan Darwiche and Pierre Marquis. A Knowledge Compilation Map. J.
Artif. Intell. Res. (JAIR), 17:229–264, 2002. 5, 21, 22, 23, 24, 25, 27, 42,
83, 89, 93, 97, 118

[DM07] Rina Dechter and Robert Mateescu. AND/OR search spaces for graphical
models. Artif. Intell., 171(2-3):73–106, 2007. 41

[DP60] Martin Davis and Hilary Putnam. A computing procedure for quantification
theory. J. ACM, 7(3):201–215, 1960. 37, 110

[DPW12] Wolfgang Dvorák, Reinhard Pichler, and Stefan Woltran. Towards fixed-
parameter tractable algorithms for abstract argumentation. Artif. Intell.,
186:1–37, 2012. 35

[DR13] Martin E. Dyer and David Richerby. An effective dichotomy for the counting
constraint satisfaction problem. SIAM J. Comput., 42(3):1245–1274, 2013.
13

168



REFERENCES

[DSS14] Arnaud Durand, Nicole Schweikardt, and Luc Segoufin. Enumerating
answers to first-order queries over databases of low degree. In ACM
SIGMOD-SIGACT-SIGAI Symposium on Principles of Database Systems,
PODS 2014, pages 121–131, 2014. 43

[DSW10] Wolfgang Dvorák, Stefan Szeider, and Stefan Woltran. Reasoning in
argumentation frameworks of bounded clique-width. In Computational
Models of Argument, COMMA, pages 219–230, 2010. 33

[Dun07] Paul E. Dunne. Computational properties of argument systems satisfying
graph-theoretic constraints. Artif. Intell., 171(10-15):701–729, 2007. 34

[Dur12] David Duris. Some characterizations of γ and β-acyclicity of hypergraphs.
Inf. Process. Lett., 112(16):617–620, 2012. 14

[DVVdB20] Meihua Dang, Antonio Vergari, and Guy Van den Broeck. Strudel: Learn-
ing structured-decomposable probabilistic circuits. In 10th International
Conference on Probabilistic Graphical Models, pages 137–148, 2020. 41

[Fag83] Ronald Fagin. Degrees of acyclicity for hypergraphs and relational database
schemes. J. ACM, 30(3):514–550, 1983. 14

[FG04] Markus Frick and Martin Grohe. The complexity of first-order and monadic
second-order logic revisited. Ann. Pure Appl. Logic, 130(1-3):3–31, 2004.
35

[FG06] Jörg Flum and Martin Grohe. Parameterized Complexity Theory. Texts in
Theoretical Computer Science. An EATCS Series. Springer, 2006. 16, 17,
29, 34

[FH18] Dominik D. Freydenberger and Mario Holldack. Document spanners: From
expressive power to decision problems. Theory Comput. Syst., 62(4), 2018.
44

[FHH20] Johannes Klaus Fichte, Markus Hecher, and Florim Hamiti. The model
counting competition 2020. CoRR, abs/2012.01323, 2020. 4

[FHMW18] Johannes Klaus Fichte, Markus Hecher, Michael Morak, and Stefan Woltran.
Exploiting treewidth for projected model counting and its limits. In 21st
International Conference Theory and Applications of Satisfiability Testing,
SAT 2018, pages 165–184, 2018. 33, 34

[FHP20] Johannes Klaus Fichte, Markus Hecher, and Andreas Pfandler. Lower
bounds for qbfs of bounded treewidth. In 35th Annual ACM/IEEE Sym-
posium on Logic in Computer Science, LICS ’20, pages 410–424, 2020.
34

169



REFERENCES

[FKP18] Dominik D. Freydenberger, Benny Kimelfeld, and Liat Peterfreund. Joining
extractions of regular expressions. In SIGMOD-SIGACT-SIGAI Symposium
on Principles of Database Systems, PODS 2018, 2018. 44, 45, 127, 147

[FKRV15] Ronald Fagin, Benny Kimelfeld, Frederick Reiss, and Stijn Vansummeren.
Document spanners: A formal approach to information extraction. J. ACM,
62(2), 2015. 44, 45, 123, 127, 140

[FM14] Hélène Fargier and Pierre Marquis. Disjunctive closures for knowledge
compilation. Artif. Intell., 216:129–162, 2014. 21

[FMN13] Hélène Fargier, Pierre Marquis, and Alexandre Niveau. Towards a knowledge
compilation map for heterogeneous representation languages. In 23rd
International Joint Conference on Artificial Intelligence, IJCAI 2013, pages
877–883, 2013. 21

[FMR08] E. Fischer, J.A. Makowsky, and E.V. Ravve. Counting truth assignments
of formulas of bounded tree-width or clique-width. Discrete Applied Math-
ematics, 156(4):511–529, 2008. 15, 33, 39

[Fre17] Dominik D. Freydenberger. A logic for document spanners. In ICDT, 2017.
44, 45, 124, 125

[Fre19] Dominik D. Freydenberger. A logic for document spanners. Theory of
Computing Systems, 63(7), 2019. 125

[FRU+18] Fernando Florenzano, Cristian Riveros, Mart́ın Ugarte, Stijn Vansummeren,
and Domagoj Vrgoc. Constant delay algorithms for regular document span-
ners. In SIGMOD-SIGACT-SIGAI Symposium on Principles of Database
Systems, PODS 2018, 2018. 5, 44, 45, 46, 123, 125, 126, 129, 147

[FT20] Dominik D. Freydenberger and Sam M. Thompson. Dynamic complexity of
document spanners. In 23rd International Conference on Database Theory,
ICDT 2020, pages 11:1–11:21, 2020. 44

[Gal12] François Le Gall. Improved output-sensitive quantum algorithms for boolean
matrix multiplication. In Twenty-Third Annual ACM-SIAM Symposium
on Discrete Algorithms, SODA 2012, pages 1464–1476, 2012. 126

[Gal14] François Le Gall. Powers of tensors and fast matrix multiplication. In
International Symposium on Symbolic and Algebraic Computation, ISSAC
2014, pages 296–303, 2014. 126

[GI17] Ludmila Glinskih and Dmitry Itsykson. Satisfiable tseitin formulas are hard
for nondeterministic read-once branching programs. In 42nd International
Symposium on Mathematical Foundations of Computer Science, MFCS
2017, pages 26:1–26:12, 2017. 108

170



REFERENCES

[GIRS19] Nicola Galesi, Dmitry Itsykson, Artur Riazanov, and Anastasia Sofronova.
Bounded-depth frege complexity of tseitin formulas for all graphs. In
44th International Symposium on Mathematical Foundations of Computer
Science, MFCS 2019, pages 49:1–49:15, 2019. 38

[GK98] Dima Grigoriev and Marek Karpinski. An exponential lower bound for
depth 3 arithmetic circuits. In Thirtieth Annual ACM Symposium on the
Theory of Computing, STOC 1998, pages 577–582, 1998. 42

[GKM+11] Parikshit Gopalan, Adam R. Klivans, Raghu Meka, Daniel Stefankovic,
Santosh S. Vempala, and Eric Vigoda. An FPTAS for #Knapsack and
Related Counting Problems. In IEEE Symposium on Foundations of
Computer Science, FOCS 2011, pages 817–826, 2011. 28, 29, 99

[Goe93] Andreas Goerdt. Regular resolution versus unrestricted resolution. SIAM
J. Comput., 22(4):661–683, 1993. 37

[GP04] Georg Gottlob and Reinhard Pichler. Hypergraphs in model checking:
Acyclicity and hypertree-width versus clique-width. SIAM J. Comput.,
33(2):351–378, 2004. 14

[GPW10] Georg Gottlob, Reinhard Pichler, and Fang Wei. Bounded treewidth as a
key to tractability of knowledge representation and reasoning. Artif. Intell.,
174(1):105–132, 2010. 34, 35, 39

[Gra96] Étienne Grandjean. Sorting, linear time and the satisfiability problem.
Annals of Mathematics and Artificial Intelligence, 16(1), 1996. 132

[Gro07] Martin Grohe. The complexity of homomorphism and constraint satisfaction
problems seen from the other side. Journal of the ACM, 54(1), 2007. 18, 65

[GSS01] Martin Grohe, Thomas Schwentick, and Luc Segoufin. When is the evalua-
tion of conjunctive queries tractable? In ACM Symposium on Theory of
Computing, STOC 2001, 2001. 18

[GTT20] Nicola Galesi, Navid Talebanfard, and Jacobo Torán. Cops-robber games
and the resolution of tseitin formulas. ACM Trans. Comput. Theory,
12(2):9:1–9:22, 2020. 37, 38, 120

[HCD06] Jinbo Huang, Mark Chavira, and Adnan Darwiche. Solving MAP exactly
by searching on compiled arithmetic circuits. In Twenty-First National Con-
ference on Artificial Intelligence and the Eighteenth Innovative Applications
of Artificial Intelligence Conference, pages 1143–1148, 2006. 41

[HD07] Jinbo Huang and Adnan Darwiche. The language of search. J. Artif. Intell.
Res., 29:191–219, 2007. 5, 25

171



REFERENCES

[HPSS18] Holger H. Hoos, Tomás Peitl, Friedrich Slivovsky, and Stefan Szeider.
Portfolio-based algorithm selection for circuit qbfs. In 24th International
ConferencePrinciples and Practice of Constraint Programming, CP 2018,
pages 195–209, 2018. 36

[Hro97] Juraj Hromkovic. Communication Complexity and Parallel Computing.
Texts in Theoretical Computer Science. An EATCS Series. Springer, 1997.
40

[HW17] Daniel J. Harvey and David R. Wood. Parameters tied to treewidth. J.
Graph Theory, 84(4):364–385, 2017. 107

[IO13] Dmitry Itsykson and Vsevolod Oparin. Graph expansion, tseitin formulas
and resolution proofs for CSP. In 8th International Computer Science
Symposium in Russia, CSR 2013, pages 162–173, 2013. 37

[IRSS19] Dmitry Itsykson, Artur Riazanov, Danil Sagunov, and Petr Smirnov. Almost
tight lower bounds on regular resolution refutations of tseitin formulas for
all constant-degree graphs. Electron. Colloquium Comput. Complex., 26:178,
2019. 37, 38, 52, 109, 110, 111, 112

[IW10] Russell Impagliazzo and Ryan Williams. Communication complexity with
synchronized clocks. In 25th Annual IEEE Conference on Computational
Complexity, CCC 2010, pages 259–269, 2010. 37

[JBKW08] Jean Christoph Jung, Pedro Barahona, George Katsirelos, and Toby Walsh.
Two encodings of DNNF theories. In ECAI workshop on Inference methods
based on Graphical Structures of Knowledge, pages 1891–1897, 2008. 5

[JKMC16] Mikolás Janota, William Klieber, João Marques-Silva, and Edmund M.
Clarke. Solving QBF with counterexample guided refinement. Artif. Intell.,
234:1–25, 2016. 36

[JM15] Mikolás Janota and João Marques-Silva. Solving QBF by clause selection.
In Proceedings of the Twenty-Fourth International Joint Conference on
Artificial Intelligence, IJCAI 2015, pages 325–331, 2015. 36

[JPRW08] Michael Jakl, Reinhard Pichler, Stefan Rümmele, and Stefan Woltran. Fast
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