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“Imagination is more important than knowledge.
Knowledge is limited.

Imagination encircles the world.”

———–

Albert Einstein1

1The Saturday Evening Post, October 26, 1929, interview by George S. Viereck, p. 117
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Abstract

Doctoral thesis in Physics

The B+
c meson in heavy-ion collisions with the CMS detector.

by Guillaume Falmagne

This thesis addresses how heavy-quark hadronisation and high-energy partons are affected by
the quark-gluon plasma (QGP), a hot and dense medium created in lead-lead (PbPb) collisions
at the LHC. Data from the CMS detector are analysed to achieve the first observation of B+

c

mesons in heavy-ion collisions. Building on an existing scaling law from a model of radiative
energy loss in the QGP, a second scaling law is also brought to light.

The analysis of CMS data from 2017 proton-proton and 2018 PbPb collisions at a centre-of-
mass energy of 5.02TeV per nucleon pair leads to the observation of B+

c → (J/ψ → µ
+

µ
−) µ

+
νµ

decays, and to the measurement of the B+
c nuclear modification factor in two bins of the trimuon

transverse momentum (pµµµ

T ) or of the PbPb collision centrality. It is presented in this thesis
and summarised in Ref. [1]. Three main backgrounds are described either with simulation or
with specifically-designed data-driven samples. A boosted decision tree (BDT) is trained on
the selected background and simulated signal candidates. A likelihood fit is run on signal and
background templates, binned in BDT, trimuon invariant mass, and p

µµµ

T or centrality. The
acceptance and efficiency of the selection chain are evaluated iteratively in each pµµµ

T or centrality
bin with the simulated signal, whose pµµµ

T spectrum is first corrected with the one measured in a
preliminary analysis. The B+

c meson is found to be less suppressed than all measured open and
hidden heavy flavour mesons, except the B0

s meson. The results also hint at a softening of the pT

spectrum in PbPb collisions. These may indicate that heavy-quark recombination is a significant
B+

c production mechanism. As an amuse-gueule for this analysis, Fig. 1 shows a PbPb collision
in CMS that has a very high probability of containing a Bc meson.

https://llr.in2p3.fr
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At high pT (& 10−15GeV), radiative energy loss should be the dominant source of suppres-
sion of hadrons in the QGP. An existing model for the radiative energy loss of partons, based on
the BDMPS medium-induced gluon spectrum, predicts a universal pT -dependence of the nuclear
modification factor [2]. This fits collected measurements in systems of various geometric config-
urations and energies, from which the corresponding mean energy losses are determined [3]. A
new scaling law is found consistent with the gathered measurements: it links the extracted mean
energy loss with the average path length in the medium and the charged particle multiplicity.
This leads to the extraction of medium expansion and diffusion properties, and could allow for
a prediction of the azimuthal asymmetry coefficient v2 at high pT.

Figure 1: Display of the PbPb 2018 collision event #209030061 (run #327004, LS #497)
in the CMS detector. This PbPb collision (at a 5% centrality) has a very high probability to
contain a Bc meson decaying to three muons, shown in red. This is the selected PbPb event
with the fourth-highest BDT value, whereas less than 0.1 background events are expected at
or above this BDT value. The 3D (left) and transverse to the beam (right) views are shown.
The trimuon from this Bc decay has (mµµµ , p

µµµ

T , yµµµ) = (5.5GeV, 9.8GeV, 1.7); the high
trimuon mass means the energy taken by the neutrino of the decay is small. One opposite-sign
dimuon (that with largest opening angle) has a mass of 3.07GeV, close to the J/ψ mass. The
trimuon vertex is displaced by about 1 mm from the primary vertex, to which most charged
tracks (shown in green when pT > 1.2GeV) point. The yellow and blue histograms show
the transverse energy deposited in the calorimeters. The S-shape trajectory of the muons,

inspiring the CMS logo, is due to the magnetic field changing sign in the return yoke.
——–

This thesis is structured with an introduction (chapter 1) travelling from general physics
considerations to concepts needed in the following, then a first part concerning the Bc analysis,
and a second part concerning my work on the phenomenology of energy loss. Chapter 2 motivates
the experimental search for Bc mesons in heavy ion collisions. Chapter 3 presents the LHC and
the CMS detector, and the overall analysis strategy (section 3.3). Chapter 4 deals with the
backgrounds blurring the Bc signal, and chapter 5 details the candidate selection established to
discriminate against them. Chapter 6 shows the extraction of the signal yields from a template fit
of the trimuon mass distributions. Chapter 7 computes the correction of the observed yields for
the acceptance and efficiency of the signal reconstruction and selection. Chapter 8 summarises
the sources of uncertainties and how they are estimated. Chapter 9 shows the results and
their interpretation, including the Bc nuclear modification factor. In the phenomenology part,
chapter 10 describes the energy loss model I start from, and chapter 11 shows two scaling
laws it results in. Chapter 12 shows some improvements and additions to the model. Lists of
abbreviations, acronyms, and some numerical values, can be found at the end of the document.
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Cette thèse traite de l’hadronisation des quarks lourds et des partons de haute énergie, et de
leur modification par le plasma de quarks et gluons (QGP), un milieu chaud et dense créé dans
les collisions plomb-plomb (PbPb) au LHC. La première observation de mésons B+

c en collisions
d’ions lourds est menée en analysant des données du détecteur CMS. Partant d’une loi d’échelle
existante dans un modèle de pertes d’énergie radiatives dans le QGP, une seconde loi d’échelle
est mise en évidence.

L’analyse de données CMS en collisions proton-proton (2017) et PbPb (2018) à une énergie
au centre de masse de 5.02TeV par paire de nucléons mène à l’observation de désintégrations
B+

c → (J/ψ → µ
+

µ
−) µ

+
νµ , et à la mesure du facteur de modification nucléaire du méson B+

c en
deux intervalles d’impulsion transverse du trimuon (pµµµ

T ) ou de la centralité de la collision PbPb.
L’analyse est présentée dans cette thèse et résumée en Ref. [1]. Trois bruits de fond principaux
sont décrits, soit par simulation, soit par des méthodes fondées sur les données. Une de ces
méthodes est spécifique à cette analyse, et décrit les J/ψ combinés avec des muons ne venant
pas du même processus: elle pivote le dimuon J/ψ par différents angles avant de l’associer avec
un troisième muon du même événement. Un arbre de décision amélioré (boosted decision tree,
BDT) est entraîné sur les candidats sélectionnés du signal et des bruits de fond. Un ajustement
d’histogrammes en probabilités (likelihood template fit) est opéré pour ajuster sur les données les
modèles de signal et de bruits de fonds, séparés en intervalles de BDT, de masse invariante du
trimuon, et de pµµµ

T ou de centralité. Des paramètres de nuisance dans le fit prennent en compte
les incertitudes sur les formes des bruits de fond.

L’acceptance et l’efficacité du déclenchement, de la reconstruction et de la sélection, sont
évaluées de manière itérative, dans chaque bin de pµµµ

T ou de centralité, avec le signal simulé dont
le spectre en pµµµ

T est préalablement corrigé par le spectre mesuré dans une analyse préliminaire.
L’efficacité des muons dans la simulation est corrigée par une méthode de tag-and-probe utilisant
la résonance en masse du J/ψ, dont l’étude en collisions proton-proton est présentée en détail.
L’incertitude sur la correction d’acceptance et efficacité appliquée au signal observé propage les
autres sources d’incertitude à la correction du spectre en pµµµ

T de la simulation. Ce dernier est
en effet varié dans les incertitudes de la mesure de l’analyse préliminaire, résultant en autant
de variations de la correction d’acceptance et d’efficacité, qui représentent alors l’incertitude
associée à cette correction.

Moins de suppression est observée pour le méson B+
c que pour toutes les autres saveurs

lourdes ouvertes et fermées, à l’exception du méson B0
s . Un probable adoucissement du spectre

en pT est mis en évidence. Ces résultats pourraient indiquer que la recombinaison de quarks
lourds contribue significativement à la production de mésons B+

c dans le QGP.

À haut pT (& 10− 15GeV), la perte d’énergie radiative devrait dominer la suppression des
hadrons dans le QGP. Un modèle de perte d’énergie radiative partonique existant, fondé sur
le spectre gluonique BDMPS induit par le milieu, prédit une dépendence universelle en pT du
facteur de modification nucléaire [2]. Cette forme est confirmée par des mesures dans des systèmes
de différentes géométries et énergies; elles sont collectées et ajustées à ce modèle, pour extraire
la perte d’énergie moyenne correspondante [3]. Cette dernière est incluse dans une nouvelle loi
d’échelle, qui la décrit comme dépendant uniquement de la taille et la géométrie du milieu et
de la multiplicité en particules chargées. Différentes approches de la longueur de parcours du
parton dans le milieu sont comparées. L’ajustement à des données de suppression hadronique
en collisions plomb-plomb et xenon-xenon permet d’extraire des propriétés d’expansion et de
diffusion du milieu. Le coefficient d’asymmétrie azimuthale v2 à haut pT pourrait aussi être
prédit.
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Editorial choices

Here are presented a few editorial shortcuts, choices, and conventions, that are adopted in
this document, for clarity or to lighten the text. This list might not be exhaustive.

• The particle names might or might not be followed by a noun like ‘particle’, ‘candidate’,
or ‘meson’. A general rule applied in this document is to always have some noun following
the particle names, but not necessarily an equivalent of ‘particle’; for example, I could say
‘the Bc production is scarce. . . ’ instead of ‘the Bc meson is produced scarcely. . . ’.

• I will always consider a (+,−,−,−) Minkowski metric in relativistic calculations.

• I will use natural units in most of the text. This means that the values of c and ~ are fixed
to 1. The mass, momentum, and energy quantities can hence all be quantified in units of
energy (typically GeV), while length and sometimes time will be in units of femtometers
(fm), dropping the c factors that are transparent for the values given to these quantities.
However, I will feel free to explicitly mention the factors of c and ~ or to leave them implicit,
depending on the context – I will typically include them only in introductory parts.

• The momentum transverse to the beam will be denoted as pT or p⊥ in the first or second
part of this thesis, respectively.

• I might, in some places where it lightens the text, personify accelerator names, e.g. ‘LHC
is a great machine’ instead of ‘the LHC is a great machine’ which would be grammati-
cally more correct. Similarly, to designate collaborations or experiments, I might use their
names as subject, such as ‘observed by CMS’ instead of ‘observed by the CMS Collabora-
tion/detector/experiment’.

• Similarly, I will often omit the word ‘collisions’ in the expression ‘in pp/PbPb collisions’,
or use ‘pp/PbPb’ as an defining adjective, e.g. in ‘the pp distribution is shown ...’.

• I will sometimes write only ‘MC’ (or ‘MC sample’) instead of ‘MC simulation’ (or ‘MC
simulated sample’).

• In general, the new (technical) terms that are introduced are italicised, or emboldened if
it helps the readability of the current section.

• The inclusion of charge-conjugated processes (in particular the decay channels) is always
implicit, unless explicitly mentioned. I will also freely mention or omit the charge of the
considered particles: for example ‘Bc mesons’ or ‘B+

c mesons’ should both be understood
as including both charges (B±c ), and ‘D mesons’ as comprising D0, D+ and D− mesons.





Preamble

Why do we seek knowledge?

I will present my work about the B+
c meson in chapters 2 to 9 (it is also described in a public

summary [1]) and about energy loss in chapters 10 to 12 (it is also partially shown in Ref. [3]).
Before discussing it, let me share some thoughts concerning the root motivations for me – and,
I believe, for many of my fellow humans – to understand the essence of our surrounding world,
without stopping at bare appearances, nor contenting ourselves with appeasing our physical
needs. ‘Motivations’ is not a light word: it means that the work I did for more than three years,
the ensuing results, and this thesis would not exist without the state of mind I explain here.

Why don’t I fall through my chair, which would prevent me from writing these words?
Because chairs are solid. But what does ‘solid’ mean? It means I do not pass through it. And
if I try to avoid circular logic: the nature of its material is tight enough not to let through
the material of my body. What is ‘tight enough’? What is the material really ‘made of’?
Sentient beings like me, the reader, and their ancestors are and were faced with a daily choice.
I could live without questions, acting on sole impulses and instincts, giving in my body to the
maximum entropy it longs for or, at best, to my animal instincts pushing me to simply survive
and reproduce. Or I could wonder – why am I here? – how do I know I am here? – and what
does this stream of information from the outside to my consciousness mean? Without moral
judgments (yet) about what is preferable, the second attitude, curiosity-driven, has led us to
build civilisation, thanks to the progressive and cumulative understanding of our environment.
But more importantly, as human beings are self-conscious, they have an inevitable thirst for
understanding: wondering is not a choice. It is a self-imposed demand for purpose – or, in less
finalist terms, a quest for the reason of our existence.

Who better than I. Kant can describe our insatiable thirst for knowledge? “Human reason
has the particular fate in one aspect of its cognitions: that it is harassed by questions, that
it cannot brush off; for they are posed for it by the nature of reason itself, but that it cannot
answer; since they transcend all capacity of human reason.”1 It is mainly because we are gifted
with the capacity of reason and self-awareness that we harass ourselves with so many existential
questions. It is not a useless tautology to notice that, without reason, we would not realise that
we are gifted (or not) with reason. This resembles much the anthropic argument so famous in
modern physics: B. Carter [4], R. Dicke (for the age of the Universe [5]), S. Weinberg (for
the cosmological constant [6]), and others have hypothesised that the very fine tuning of the
physical constants of our Universe, necessary for its stability given the current theories2, would

1“Die menschliche Vernunft hat das besondere Schicksal in einer Gattung ihrer Erkenntnisse: dass sie durch
Fragen belästigt wird, die sie nicht abweisen kann; denn sie sind ihr durch die Natur der Vernunft selbst aufgegeben,
die sie aber auch nicht beantworten kann, denn sie übersteigen alles Vermögen der menschlichen Vernunft.”,
I. Kant in Kritik der reinen Vernunft (Critique of Pure Reason), 1781.

2A dire example of this in contemporary physics, relatively far from the main topic of this thesis, being the
naturalness of the Higgs boson interactions: the hierarchy problem asks why the observed Higgs mass is so small,
given that its bare mass is renormalised with corrections that could reach up to the Planck mass – if no other
theory than the Standard Model is found at lower scales.
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be possible because of an enormous multitude (maybe of order 10500) of ‘parallel’ universes where
other sets of physical constants are tried. Most of these universes die down quasi-instantaneously
because these physical constants cannot yield stable matter, and among the tiny fraction of stable
universes, a tiny fraction could present conditions favourable for the emergence of life – and maybe
of an intelligent one. Only in such universes could some beings wonder why they exist, why they
are ‘lucky’ enough to live at the right time, in the right place, in a stable Universe. I propose
that it is mainly because we can reason (with such immense luck) that we should have a moral
obligation to do so.

Coming back to my chair, wondering why I do not fall through it (and why I do fall when no
chair supports me) rapidly led me to interrogate the nature of matter itself and its interactions.
It brought to life topics and objects of study that are not of direct interest to my survival, for
which I became curious and at which I started to marvel. Questioning the very basics of our
existence leads to hidden unknowns, things we did not even suspect to be a matter of interest.
This mindset is pure self-awareness; human beings would only be pretty weak animals if it was
not for their ability to consider themselves as only a part of the world and not the centre of it.
Being the sole subject of our sensitive relation to the surrounding world does not mean that we
are the centre of it. Understanding this leads to a knowledge that is not directly linked to our
mechanical body – even if it might be found later to be of great use to us. Civilisation is based
on building things (such as scientific knowledge) that are not a direct answer to our physiological
needs. The uncertainty about the potential application of some research topics to improve human
comfort is what makes fundamental science one genuine specificity of human beings compared to
other moving animals. This sheer curiosity ‘for the sake of it’ brings us higher than our physical
condition, or at least maintains us in this illusion. This tentative escape from being trapped in
a body helps – myself, at least – to fight the anxiety of the unanswerable question of the reason
for our existence.

Now we have questions, but what answers are we able to reach? Are there answers that are
not themselves other questions? Is there a consummation to the search for knowledge? I like to
see the understanding of matter itself as what all other problems concerning objects made from
this matter are based on; despite its naivety, this idea is what principally drove me to study this
field. The resulting chain of ‘why’ questions naturally leads to long for universal phenomena
acting on elementary objects. But are there really fundamental symmetries or pieces of matter
that are ‘atomic’ in the etymological sense (i.e. indivisible) from which all known matter is made?
It is not guaranteed that this ontological reductionism will satisfy our thirst for understanding –
though travelling this way is how we can keep trying to answer our existential questions. As the
circle of knowledge grows, its frontier with the things we ignore grows as well – and the space
of all there is to know might be infinite. The most disappointing aspect of the gift of reason is
to realise that it does not make us gods: Nature is probably infinitely complicated. Whatever
stratagem we use to understand it with building blocks, we only extend the regime beyond which
our theories cannot be tested – for example the LHC (see section 3.1) is a tool that pushes back
this frontier, would it be only through its record energy density.

Nature is also extremely simple if taken as how it ‘looks’ to us: a sequence of interactions
of the outside world with our living envelopes. In other words, a sequence of observations
performed with our imperfect detectors – our eyes or the tools we invent. However, quantum
physics historically made clear that Nature is more than what we see and that the outside world
must be theorised to be understood better: purely mathematical tools were applied to physical
systems never conceived of before and predicted their behaviour with great accuracy. Quantum
physics, contrarily to, e.g., the understanding that the Earth is round or that the passing of time
depends on the observer, demonstrated an ‘invisible’ phenomenon only by using mathematical
concepts. Phenomena call for theories, which can, in turn, predict phenomena that were not
suspected before because they were too far from the regimes and scales we interact with daily
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or through current experiments. Therefore, theories must be tightly linked to experiments and
existing phenomena; and the observation of phenomena cannot be an actual quest for knowledge
if it is not accompanied by models trying to understand them by progressive simplifications.

Around the end of the XIXth century, all the fundamental laws of Physics were thought to
be discovered and soon to be archived knowledge – except for ‘minor’ remaining problems, as the
threshold in the wavelength of the light absorbed in the photoelectric effect, or the blackbody
radiation spectrum. The circle of knowledge was believed to be almost complete, except for
some corridors leading to the unknown. This unknown happened to be modern physics based
on quanta and probabilities. The situation could be compared to that of the Standard Model
of particle physics (see section 1.2) that currently describes so well all current observations, but
shows global inconsistencies and shortcomings, including the link of particle physics with the
regimes where gravity is relevant. Particle physics and gravity are important in dramatically
different regimes, as explained in section 1.1, so it is a central challenge of XXIst century Physics
to gather them in a global theory. But is this a necessity or a vain attempt to seek simple
explanations to literally everything? I do not think this can be answered, so let me stop here
the chain of questions. Something we can rely on is that one goal of science consists in seeking
generality or universality (could this be called ‘truth’?) in observed phenomena, to ultimately
try to predict the future. This is based on the paradigm that similar initial conditions will
yield similar consequences (excluding the chaotic systems for which initial conditions are never
measured precisely enough to allow for predictions).

However, as K. Popper made abundantly clear in his work [7], this quest is properly scientific
only if it claims theories and models that are falsifiable. So any good theory, describing an object
adequately in a specific regime, is made to be falsified in the future by a theory that will manage
to encompass it and describe phenomena in a broader regime. In Ref. [8], C. Rovelli notes
that the ideas of Aristotle can be understood as an approximation, in a certain regime, of the
theory of gravitation of I. Newton, which is itself an approximation of the general relativity of
A. Einstein. Similarly, the chemistry of elements, keeping atomic nuclei intact, is a low-energy
approximation of sub-atomic physics, though emerging phenomena in chemistry could hardly be
guessed from first principles, as the collective phenomena in statistical physics. H. G. Wells
said that “The search for divine truth is like gold washing; nothing is of any value until most
has been swept away”1. The Renaissance era progressively gave birth to the scientific method
because it was based on the idea that we are “dwarves sitting on the shoulders of giants” in our
efforts towards knowledge and seeing far away. Let me humbly try here to add a tiny ingredient
to this knowledge recipe, along with I. Newton’s falling apple and the hot soup of the quark-
gluon plasma (QGP, see section 1.4). Let me hope it will be removed in the future only for a
more broadly-applicable ingredient to replace it, giving future dwarves a better taste of their
Universe. I will observe a particle, the Bc meson, to try setting forth new phenomena that can
produce it or melt it in the QGP medium it evolves in. I will also try to demonstrate a universal
behaviour of the energy loss acting on particles in this medium.

1Herbert George Wells in God The Invisible King, 1917.





“Pure logical thinking cannot yield us any knowledge of
the empirical world; all knowledge of reality starts

from experience and ends in it.”

———–

Albert Einstein1

Chapter 1

Where do we start?
From apples to soup

1.1 What interactions at what scale?

I justified in the preamble, with the support of brilliant minds of the last centuries, that
physical phenomena should be studied by progressive approximations, starting with understand-
ing what is closest to our range of observations. A pragmatic goal of modern Physics is to find
models that fit the reality such as it is observed with the experimental precision available in our
epoch. To this end, it is important to clarify what phenomena are important in what regimes,
which is illustrated in this section. The following sections of this chapter will gradually introduce
the reader to the field that frames this thesis: section 1.2 briefly presents the ingredients of the
Standard Model of particle physics, sections 1.3 and 1.4 respectively introduce the strong force
and the quark-gluon plasma, and section 1.5 defines terms and concepts essential to this thesis.

The scales (of time, energy, or mass) at which objects are looked at are paramount to
theorising their behaviour well enough to be predictive. This is related to the concept that any
structure can be detected only with probes that have a wavelength smaller than the typical size
of the structure, i.e. that have a high-enough energy. For example, visible light can only probe
structures at length scales & 0.5 µm. This is also a basic explanation of why searching for ever
smaller elementary structures in matter calls for machines that break energy records (as the LHC
presented in section 3.1.2). Another example of the importance of scales within particle physics,
detailed in section 1.3.2, is how the perturbative and non-perturbative processes are separated
in the cross section calculations at hadron colliders.

The interactions of particles and, by extension, of living beings, is what make them non-inert
(in Galileo’s sense), or alive. Let us illustrate here that the interactions relevant to the physics
of small objects include the electromagnetic, weak and strong forces, but exclude gravity, by
many orders of magnitude.

1The Herbert Spencer lecture, delivered at Oxford, June 10, 1933; reproduced in Ideas and Opinions by Albert
Einstein (Alvin Redman Limited, London, 1954), p. 270. Published in Mein Weltbild. From this quote was
probably derived this one, attributed to Einstein on the Internet: “Information is not knowledge. The only source
of knowledge is experience”.
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Gravity vs electromagnetic force

It would be tempting to see the atom (let us consider the simple hydrogen atom, assuming a
classical view of the electron rotating around the proton) as a system bound by gravitation like
orbiting planets. However, the associated gravitational attraction is

G
memp

a2
0

= 3.6× 10−47 N

where a0 is the Bohr radius, i.e. the approximate radius of a ground state hydrogen atom. The
Coulomb law gives the electromagnetic attraction between the proton and the electron as:

e2

4πε0 a
2
0

= 8.2× 10−8 N

which is similar to a weight of 10 micrograms (on Earth) pushing together the electron and the
proton. It does not seem much, but is 2× 1039 times stronger than the gravitational force!

Gravity vs residual strong force

The gravitational force between a proton and a neutron (typically in the deuteron) is

G
mnmp

d2 = 1.8× 10−35 N

where the distance between the proton and neutron centres of mass is taken to be d = 2rd−rp =
3.2 fm, where rd is the measured charge radius of the deuteron and rp = rn ' 1 fm is the
approximate size of the proton or neutron.

The modern formulation of the strong force will be properly introduced in section 1.3.1.
However, let us take here a historical perspective on the residual strong force binding nucleons
in the atomic nuclei. It was modelled in the 1940’s by Yukawa [9]. He actually predicted the
existence of the pion (discovered in 1947), which he thought was the strong force carrier. It
indeed transmits a remainder of the strong force between nucleons. Considering a finite lifetime
for the exchanged pion, he multiplied the Coulomb quadratic force by a decreasing exponential,
such that the force between the proton and neutron would be:

Fstrong(d) = −fstrong
e−d/d0

d2 (1.1)

where d is here the distance between the nucleons, and fstrong is the strong force magnitude to be
determined. The Coulomb potential is linked to applying a Poisson equation of the di-nucleon
system. A pion mass term can be added in the latter, making the solution deviate from the
Coulomb potential, similarly to a drag term1; this yields d0 ∼ 1/m, where m is the mass of the
actual exchanged meson2, leading to d0 = 1.54 fm. A detailed meson exchange modelling shows
that the force becomes repulsive when d . 1 fm, which is why the nucleons have a so-called hard
core. So Eq. 1.1 empirical expression is only qualitatively valid at somewhat larger distances.

The binding energy of the deuteron was measured, via the energy of the photon needed to
disintegrate it, to be 2.2MeV. One can interpret this as the scale of the first energy level of the
orbital angular momentum, hence equal to l~ with l = 1. Considering that the centrifugal force
2mv2/d (where m is the proton or neutron mass and v is the relative speed between the proton

1As I aim for orders of magnitude here, I neglect the subtlety that the decreasing exponential can be added
to the potential or to the force depending on the phenomenological approaches, which lead to somewhat different
expressions.

2Detailed calculations say it is mainly a pair of pions or one heavier σ meson.
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and the neutron)1 must compensate the strong force of Eq. 1.1, we find that at equilibrium

v =

√
fstrong

e
−d/d0
2md . Using the angular momentum mvd = ~, we obtain:

fstronge
−d/d0md/2 = ~2 (1.2)

This results in fstrong = 3.3× 10−26 kg m3 s−2, if we take d = 3.2 fm as the distance between
the centres of the two nucleons. Now we finally get the magnitude of the residual strong force
between the two nucleons of the deuteron: |Fstrong| = 4.0× 102 N. The weight of a child in Earth
gravitation, at the scale of atomic nuclei, what an incredibly strong force indeed! The relative
importance of the gravitational and residual strong force is about 5× 10−38, justifying by all
means that it should be neglected when studying systems at nuclear length scales.

As a check of the order of magnitude of this force, one can compute the work needed to
bring the two nucleons from a null distance (ignoring that the force is actually repulsive at small
distances) to the equilibrium distance. It is of the order of the force times the distance, i.e.
about 1.3× 10−12 J. Converting this into natural units indeed gives 8MeV, of the same order of
magnitude than the deuteron binding energy.

Gravity vs strong force

It was possible to keep a perspective from classical physics in the above paragraph, with the
phenomenological model of Yukawa. However, within nucleons themselves where the strong
force is the strongest, colour confinement rules, which is purely non-classical. There is however
a simple model, considering that the strong force increases with distance, similar to an elastic
string – that is, until this string breaks, when the potential energy is sufficient to create an
particle-antiparticle pair (by the mass-energy equivalence E = mc2). This is fundamentally
different than the residual strong force with a form close to a Coulomb force decreasing with
distance, that is acting between uncoloured objects, the nucleons. This is intimately linked to
the non-abelian nature of QCD (see section 1.3.1): the force carriers (the gluons) interact with
themselves, and their number increases towards large distances.

Such a string carries a potential energy proportional to the distance between the two quarks:
V = 1

2kd
2. The string breaks when it carries enough energy to create a light hadron, so typically

Vbreak ∼ 140MeV. This happens at distances close to the size of mesons, around 0.5 fm. From
these values of V and d, one estimates that k ' 2× 1020 N m−1. The equivalent classical force of
a spring is F = kd ' 1× 105 N. A spring constant this high is quite hard to conceive of: a force
equivalent to a weight of 2 tons should be applied to extend this string by 10−16 m, i.e. about
20% of its assumed length. The weight of a large car in Earth gravitation is hidden within each
nucleon of our bodies! All this so we are able to live from stable matter, to reflect about what
we are composed of.

Now, comparing again this force to the gravitational force between two quarks, I need to
estimate the quark masses. It is warned here that only toy mass values are used, because
measuring the gravitational mass of quarks would imply that they can travel freely, which is not
the case. Quark masses are usually quoted ‘naked’ or ‘bare’ in a given renormalisation scheme,
but I choose here to quote rough masses that include the ‘dressing’ of the gluon interactions
that surround them within hadrons. This way, the ‘dressed’ mass of a light quark (u or d) is
about half of the pion mass. One deduces a gravitational force between two light quarks at a
distance d = 0.5 fm to be G (mπ/2)

2

d
2 ' 4× 10−36 N, whose magnitude is hence 4× 10−41 that of

the strong force!
1Relativistic effects are neglected, as they are found a posteriori to be small, with v ' 0.1c.
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Strong vs electromagnetic forces

No wonder now that gravity can be fully ignored when looking at elementary constituents
of matter – except if the energy experimentally available today was risen immensely so that the
mass/energy of the system became relevant. But among the electromagnetic, weak, and strong
forces, which dominates?

Their names are a good hint, but let us rather check the values of the coupling constants.
Those drive the amplitude of the interaction from a given Feynman diagram. These ‘constants’
actually slightly depend on the energy scale of the process at hand. At the typical scales of
processes studied at the LHC (1 − 100GeV), αQED ∼ 7× 10−3 for the electromagnetic force,
αS ∼ 0.1 − 1 for the strong force, and αw ∼ 10−6 − 10−7 for the weak force. The low coupling
for the weak force is linked to the high mass of the W and Z bosons that carry it. Its order of
magnitude is obtained here through the ratio of lifetimes of decays that do or do not change the
quark flavours. As the coming section explains, the weak force is indeed the only one that can
affect the quark flavour and that is why it is not ignored despite its low coupling.

1.2 The Standard Model

The Standard Model (SM) is describing incredibly well the behaviour of objects from scales
of the inside of atoms (. 10−11 m) to the highest energy scales ever reached in a human
laboratory, at LHC (13TeV, i.e. & 10−20 − 10−19 m, see section 3.1.2). A historical per-
spective on how CERN experiments were essential in building this theory is given in sec-
tion 3.1.1. It is based on three gauge symmetry groups associated to the modelled interactions:
SU(2)left×U(1)hypercharge×SU(3)colour. Fig. 1.1 is a schematic overview of the elementary par-
ticles whose behaviour it describes. All currently known objects are made of these particles.1

The behaviour and interactions of the SM particles are described by a Lagrangian. Let us give
here a condensed form of it, the one printed on CERN’s merchandising2:

L = −1

4
FµνF

µν + iψ̄ /Dψ + h.c.+ ψiyijψjφ+ h.c.+ |Dµφ|2 − V (φ) (1.3)

where h.c. designates the hermitian conjugate of the preceding term, and each term will be asso-
ciated to particles and interactions in the following. If the action associated to this Lagrangian
could be exactly minimised with perfectly known initial conditions, it would yield us the average
behaviour3 of all the particles of the Universe – up to the elements and regimes, of unknown
nature yet, that the Standard Model fails to describe.

The elementary particles composing the SM can be categorised in multiple ways. First, the
gauge bosons (light blue corona in Fig. 1.1) are the mediators of forces, while the Higgs boson
holds a special role (centre of Fig. 1.1). The fermions (outer circle red particles) are the basic
components of matter, and are subject to the Pauli exclusion principle (two fermions can never
have the exact same state and quantum numbers). The elementary bosons of the SM are:

• The gluon, mediator of the strong interaction. It carries and interacts with the colour
charge, associated to the SU(3)colour sub-group of the SM.

• The photon, transmitting the electromagnetic force. It interacts with particles that carry
electromagnetic charge.

1Except for the dark matter, that constitutes a large part of the mass of our Universe, but whose nature is
still unknown.

2Developing explicitly each part of this symbolic form would be out of place in this thesis.
3By ‘average behaviour’, I mean here the average over many Universes with exactly similar initial conditions

and physical constants. Particle physics indeed yields only probability distributions for the positions and momenta
of particles. Knowing this, ‘Is the Lagrangian deterministic?’ is a philosophical question.
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Figure 1.1: The particles composing the Standard Model of particle physics.
——–

• The weak bosons W± and Z0 carry the weak force. The weak force is unified with the
electromagnetic force within the SU(2)left×U(1)hypercharge symmetry group. They interact
with all particles (except the gluon). However, fermions interact with the W± bosons only
through their left-handed fields – the weak interaction indeed violates the charge-parity
symmetry. The W± charged bosons are the only particles that can change the flavour of
quarks; the Z0 neutral bosons cannot.

• The Higgs boson (of field φ and kinetic term |Dµφ|2 in Eq. 1.3) has a peculiar role. The
spontaneous breaking of the symmetry of its potential (V (φ) in Eq. 1.3) allows for the
weak bosons to have mass. This allows, in turn, for the Yukawa interaction (ψiyijψjφ in
Eq. 1.3) to give mass to all fermions (of fields ψi). The Higgs boson interacts with all
massive particles.

All elementary bosons have spin 1, except for the scalar (spin 0) Higgs boson.1 The photon,
gluon, and weak bosons are the gauge bosons of the U(1), SU(2) and SU(3) symmetries of the
SM. The term −1

4FµνF
µν of Eq. 1.3 describes the kinetic energy and the self-interactions of these

gauge bosons.

The fermions are all of spin 1/2. Their kinetic energies and interactions with other fermions
and bosons are encoded in the term iψ̄ /Dψ in Eq. 1.3. Among the elementary SM fermions, there
are first the leptons. They consist in three doublets composed of a neutrino and an electron
or one of its heavier sisters, the muon and the tau. Their left-handed component interact with
the weak force. Electrons, muons, and taus interact with the electromagnetic force, but not
neutrinos. The mass of neutrinos has not been measured, but the observed oscillations between
their flavours imply that at least two out of the three neutrinos have a finite mass.2 They interact

1This excludes the graviton, that would be of spin 2. The graviton will be properly included in this microscopic
framework only when a unified description of particle physics and gravitation is found.

2It is interesting to note that this phenomenon and the finite mass of neutrinos was not predicted in the original
Standard Model – though it was not excluded either.
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very feebly with matter (only through the weak interaction), such that they are detected only
in specialised very large detectors, and pass unobserved through the CMS detector used in this
thesis. Leptons do not interact with the strong force.

Next come the quarks, of most interest to this thesis. There are three generations of them,
each composed of an up-type (of electromagnetic charge +2

3) and a down-type quark (of charge
−1

3). The u, d (up and down) quarks are very light, the c, s (charm and strange) quarks are of
intermediate mass, and the t,b (top and beauty – also called bottom) quarks are the heaviest.
The top quark is the heaviest particle of the SM (173GeV). Quarks undergo all SM interactions,
but their nature (a.k.a. their flavour) can only be modified through the weak W± bosons.
This flavour mixing is encoded in the Cabibbo-Kobayashi-Maskawa matrix that acts between
the down-type and up-type quark triplets [10]. It favours the mixing between quarks of the same
generation (e.g. between u and d or between t and b), and strongly disfavours mixing the first
and third generations.

Quarks carry a colour charge (whose three states are conventionally called red, blue and
green) that make them sensitive to the strong force. Their behaviour is hence described by
quantum chromo-dynamics (QCD), which is the topic of the coming subsection. Each quark
flavour exists in three different colour states, while there are eight gluons because they combine a
colour and an anti-colour. Coloured states cannot travel long distances due to colour confinement.
This means that the quarks must bind with partners that compensate their colour to form stable
particles. Those quark composites are called hadrons. Existing hadrons are composed of quarks
of any of the five lightest flavours, while the top quark decays before the typical time scale for
hadronisation.

The original quark model described essentially hadrons that gather two quarks (a quark and
an anti-quark of the associated anti-colour charge), called mesons, and hadrons binding three
quarks (one of each colour), called baryons. Mesons that gather a quark and an antiquark of the
same nature have no net flavour quantum number – they are hidden flavour mesons, contrarily
to the open flavour mesons that contain quarks of different natures.

There are multiple hints that the Standard Model is only an excellent approximation of
particle physics in the regime accessible in our experiments, of which some were suggested above.
Let me non-exhaustively quote the mysteries of the nature of dark matter and dark energy (which
accelerates the expansion of the Universe), the naturalness of the Higgs properties (linked to the
hierarchy problem), and most importantly the inadequacy of this theory with the cosmological
scales where gravity is relevant.

1.3 The strong interaction

1.3.1 Quantum Chromodynamics

The mediator of the strong force (the gluon) also carries the colour charge it is sensitive to.
This is also the case for the weak force (though with a much smaller coupling), but not for the
electromagnetic force as the photon is neutral. In other words, the QCD gauge group is non-
abelian, and the associated Lagrangian contains vertices of three and four gluons. Each gluon
carries a colour and an anti-colour, and hence combines the symmetry groups 3 and 3̄. This
results in a group of eight elements, so there are eight types of gluons – plus one arrangement
that cancels the colour. This is why any arrangement of two colour-charged particles can be
colour-octets interacting with the strong force, or colour-singlets that do not interact with it.
The quarks carry only one colour charge, so they are part of colour-triplets. The elementary
particles that carry a colour charge (quarks and gluons) are called partons.

The gluon self-interactions lead to another specificity of QCD: the strength of its coupling
αS , despite being much larger than that of other interactions, decreases towards higher energy
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scales (i.e. towards smaller distances). This is the asymptotic freedom of QCD1, illustrated in
Fig. 1.2. This can be understood in analogy to the screening of the electric charge in a plasma at
large distances, that makes the electromagnetic coupling decrease. Many e+e− pairs are indeed
created close to a negative test charge. These pairs orient the positive part of their dipole towards
the probe charge, which is hence attenuated at large distances; at small distances, some pairs
are too far away to contribute to the screening. On the contrary, in QCD, the colour charge
is anti-screened (higher coupling and effective charge) at large distances: the colour charge is
spatially diluted by the gluons that, at small distances, are numerous and carry the colour away
from the probe charge.

Figure 1.2: Asymptotic freedom in QCD, from various measurements of the strong coupling.
——–

This running of the coupling can be calculated with the vacuum polarisation diagrams (re-
sponsible for the pair creation) and the renormalisation group equations, yielding, at scale Q
(this was first done, independently, by Gross and Wilczek [11], and by Politzer [12]):

αS(Q) =
2πNc

(11Nc − 2Nf ) ln(Q/ΛQCD)
(1.4)

where Nc = 3 and Nf = 3 to 6 (depending if Q is higher than the mass of the heavier quarks)
are the number of colours and quark flavours, and (11Nc − 2Nf ) < 0 is responsible for the
asymptotic freedom. Lowering the energy towards the hadronisation scale ΛQCD ∼ 0.2GeV,
the energy scales are associated to non-perturbative processes. There, the coupling, relevant for
interactions of individual partons and perturbative QCD, and the associated formula in Eq. 1.4
start to be ill-defined.

Finally, the phenomenon of colour confinement, meaning that coloured particles cannot
travel long distances without binding with particles that neutralise their colour, is not well
understood yet – despite it being paramount for the stability of all atomic nuclei! At energy
scales smaller than ΛQCD (i.e. at large distances), quarks must hadronise (i.e. form hadrons)
through low-energy processes that cannot be described with perturbative techniques. The latter
indeed assume a small coupling, which is not the case at small energies. The confinement is not
directly linked to extrapolating the asymptotic freedom towards large αS : it can exist without a
divergence of the coupling. Supposing confinement, there cannot be particle-antiparticle creation
at distances larger than hadrons, so the αS increase towards large distances resulting from these

1As the electroweak coupling increases towards higher energy scales, this schematically supports the idea that
all forces can unify at very high energy scales – similarly to the unification of the electromagnetic and weak forces
at the scale of the weak boson masses. In practice, close to the Planck scale, where gravity becomes relevant and
the forces should be unified, the extrapolated running couplings do not coincide, suggesting that other physical
phenomena should intervene at scales lower than the Planck ones to modify these couplings.
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pairs shall stop [13]. This illustrates why the separation of soft (non-perturbative, linked to
hadronisation) and hard (linked to interactions of single partons at small distances) scales is
necessary to understand QCD processes, in particular in the collisions of hadrons performed at
the LHC. This separation of scales is detailed in section 1.3.2. Colour confinement is a very active
research topic; current investigations address the ladder (a.k.a. ‘H’) graphs that are infrared-
divergent – rather than the vacuum polarisation graphs responsible for the running coupling [13].
Another way to understand better the colour confinement is to study an extreme state of matter
where it is not active: the quark-gluon plasma (QGP), introduced in section 1.4.

1.3.2 Parton distribution functions

The LHC (see section 3.1) accelerates and collides protons and lead nuclei. However, it can
be argued that such a hadron collider actually collides partons, i.e. quarks or gluons contained
in the nucleons, because those are the input particles of the initial hard processes taking place
in the non-diffractive hadronic events (defined in section 1.5.5).

The proton is a composite of elementary particles. This was discovered experimentally by
probing the proton structure with electrons of high enough energy to resolve its constituents.
The energy and angular distributions of the final states of electron-proton scatterings were not
consistent with elastic scatterings of point-like particles, and structure functions associated with
point-like constituents of the proton were extracted. The time scale of the many interactions
between the proton constituents is much larger than that associated with the high-energy elec-
tron, meaning that the electron probes a quasi-static proton content. These deep inelastic
scatterings (DIS) measurements culminated with the HERA (Hadron-Electron Ring Acceler-
ator) experiments at DESY. The kinematic framework of DIS scatterings is not detailed here;
Ref. [14] gives a good description of its application to LHC. The proton structure probed by
DIS is a great experimental discovery of a theoretical prediction – the quark model. It also
confirmed the Bjorken scaling predicted in 1969 [15]: the structure functions depend on the
longitudinal momentum fraction x that the parton takes from the proton, but only marginally
on the momentum transfer Q from the electron probe to the proton. This scale Q is the typical
scale of the considered hard process (e.g. the dijet mass if this is the studied final state).

From the DIS form factors are extracted the parton distribution functions (PDF), which
is a measure of the probability to find a parton of a given nature, at a given longitudinal mo-
mentum fraction x, when the proton is probed at a scale Q. The fraction x is usually identified
with the full momentum fraction at high Q2, where the partons from the protons have a negligi-
ble momentum transverse to the beam (the generalised PDFs include contributions from parton
transverse momenta). The PDFs are non-perturbative functions that cannot be evaluated from
first principles at a fixed order in αS , so they must be measured by DIS. Sets of PDFs are
extracted from global fits to the available data, probing the proton content at multiple scales.
Various theoretical collaborations perform these fits with subtle differences. Fig. 1.3 shows, for
all parton natures, the most recent PDFs deduced from the fits of the NNPDF3.1 collaboration,
that performs most calculations at NNLO [16].

A few characteristics of these curves are to be noticed. First, the ‘probability’ of finding
valence quarks (the quark constituents in the initial quark model) peaks at x values of 0.1−0.2,
and is higher for the u than the d quark. This is reminiscent of the proton quark content uud,
but already signifies that the momentum of the valence quarks is diluted and reduced (from the
naive 1/3 value) by interactions with other proton constituents. Then there are so-called sea
quarks, other quark flavours that are created in the many QCD interactions taking place within
a nucleon. They are more numerous at low x, as they are easier to produce at small momenta.
Finally, the gluons (scaled by 0.1 in Fig. 1.3) are the most numerous partons, especially at low
x due to the low cost of radiating soft gluons from any parton. Gluons actually carry about
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Figure 1.3: Parton distribution functions versus their momentum fraction x in the proton,
at two different probing scales corresponding to typical energies of the final states of 3 or

100GeV. Figure from Ref. [17].
——–

half of the momentum of the proton.1 In effect, mostly gluons are collided at LHC, except for
processes of energy close to the centre-of-mass energy of the pp collision

√
s, so that the LHC

might rather be called the Large Gluon Collider. Protons at the LHC are therefore far from the
quark model vision, and resemble more a soup of gluons having low-energy interactions.

When multiple protons (and neutrons) are gathered in a nucleus, residuals of the strong
force have an impact on the parton content of the nucleons, and modify their PDFs to so-called
nuclear PDFs (nPDF). The latter are measured experimentally as well (and displayed as ratios
to the PDFs of the proton), but with much larger uncertainties.

When hadrons collide at a centre-of-mass energy
√
s, the participants to the studied hard

scattering (such as the production of a J/ψ meson or a high-pT jet) are in general one parton
from each hadron. The key assumption of the results extracted from hadron colliders is the
factorisation (i.e. the separation of scales) between the non-perturbative processes determining
which partons from the protons will interact, and the hard scattering of partons whose cross
section is calculated with perturbative methods. I denote x1 and x2 the momentum fractions
of the interacting partons within the protons they come from, such that the (squared) energy
available for the partonic hard process is ŝ = x1x2s. Then the cross section for producing a final
state H of characteristic scale Q in pp collisions is given by:

σpp→HX(s) =

∫
dx1dx2

∑
i,j

fi/1(x1, Q) fj/2(x2, Q) σ̂ij→H(ŝ) (1.5)

where X can contain additional produced final states, σ̂ is the cross section of the partonic
hard scattering at energy ŝ, and fi/k(xk, Q) is the PDF for a parton of type i to be found
with momentum fraction xk in the proton k. The part carrying the interesting hard-scattering
information is the partonic cross section σ̂ij→X(ŝ). No interference is assumed between the soft
PDF processes and the hard scatterings. This hypothesis can break when considering energy
loss of partons, typically that in cold nuclear matter [18], but discussing the consequences of the
breakdown of factorisation goes beyond the scope of this thesis.

1Summing the integrals
∫ 1

0
dxfi(x) for the parton distribution functions fi(x,Q

2
) (defined in this section) of

all quark types i indeed yields only about 0.5 at the energy scales of processes studied at LHC, leaving 50% of
the total momentum for gluons.
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The Bjorken scaling is not exactly true: the PDFs depend logarithmically on the scale Q
of the process at hand, due to the splitting of partons interfering with the hard process. This
dependence is encoded in the evolution equations that were determined by Dokshitzer [19],
Gribov and Lipatov [20], and Altarelli and Parisi [21], and that allow to determine fi(x,Q

2)
at all scales Q when it is known at some scale Q0:

dfi(x,Q
2)

d log(Q2)
=
αS(Q2)

2π

∑
j

∫ 1

x

dx′

x′
Pij

(
x

x′

)
fj(x

′, Q2) . (1.6)

The sum runs over all parton types j that can produce a parton of type i, and Pij(x) are the
splitting functions from Altarelli and Parisi. They determine the probability for a parton
of type i to split into a final state containing a parton of type j. These splitting functions also
lead the dynamics of parton showers, meaning how the partons created in hard processes split
multiple times until the daughter partons reach the energy scale of hadronisation. At this point,
the daughter partons hadronise into the many collimated hadrons observed in the experiments,
reconstructed as a jet.

1.4 The quark-gluon plasma

1.4.1 A state of matter

At the densities and temperatures present in most of the current Universe, the coloured
particles are confined into hadrons. However, at the very high energy density and temperature
created in heavy ion collisions at the LHC, quarks and gluons move freely in a deconfined state of
matter called quark-gluon plasma (QGP) [22]. It is a close-to-perfect fluid of partons1 produced
at the LHC at temperatures higher than any current astrophysical process (T � 1012 K, i.e.
T � 100MeV). All matter in the Universe, during the first microseconds after the Big Bang,
was in this state (at high temperature). It is also thought to constitute the core of neutron stars
today (at high density).

A rapid transition takes places when QGP is formed or freezes out. The current under-
standing of the phase diagram of nuclear matter, including the QGP, is presented in Fig. 1.4.
In the heavy ions collisions at LHC and RHIC, the baryon chemical potential (linked to the net
density of baryons) is close to null and QGP is formed only due to the increase in temperature.
In this case, there is no actual phase transition, but rather an analytical cross-over (without
discontinuity in any derivative of the order parameter).

The cross over was observed with lattice QCD calculations, that implement QCD first prin-
ciples on a space-time lattice, and then run computationally-expensive simulations. The order
parameter of the QGP-hadron gas transition is the Wilson line parameter ∝ e−V t, where V is
the interaction energy of a sole quark in the medium, and t is the temporal length of the Wilson
line [23]. Wilson lines are quantum field theory objects that schematically form the sides of the
lattice elements. For the hadronic phase, V ∼ ∞, so the order parameter is zero. It is non-zero
(finite interaction energy V ) in the QGP.

During a heavy ion collision, nuclear matter visits a rich variety of states. First, the gluon
density saturates in a colour-glass condensate; then, a pre-equilibrium glasma forms similarly to a
disordered glass state; finally, the QGP is formed, on time scales of 0.2−1 fm. In the QGP, quarks
and gluons thermalise and roam freely. When the medium temperature goes below the critical
QGP temperature, a gas of hadrons forms. In the QGP, the number of degrees of freedom of the
original QCD gauge theory is restored: partons, versus the hadrons in cold QCD. This change

1Contrarily to the weakly-interacting gas (coupling αS � 1) that was initially expected, at the time of SPS
discovery.



1.4. The quark-gluon plasma 15

Figure 1.4: Phase diagram of nuclear matter, as a function of temperature and of the baryon
chemical potential.

——–

in degrees of freedom is observed with lattice QCD as well. It modifies the thermodynamical
quantities (such as temperature, pressure, and internal energy) characterising the thermalised
medium. This is illustrated with the temperature dependence of the energy density in Fig. 1.5:
accounting for the number of colours, gluons, light quark flavours (including the strange quark
when the temperature is high enough), and spins provides an order of magnitude more degrees
of freedom above the critical temperature than below it.

Figure 1.5: Energy density of QCD matter as a function of temperature. The energy density
is proportional to the number of degrees of freedom of the medium, rising from that of hadrons

to that of partons at high temperature. Fig. from Ref. [24].
——–

1.4.2 Categories of experimental signatures

The proof of the creation of a QGP in heavy ion collisions depends strongly on the defi-
nition of QGP. However, its formation is today widely admitted in the community, because a
broad range of processes in principle associated to the QGP have been observed experimentally.
Sections 3.1.1.3 and 3.1.3.3 will present a historical perspective of the discovery of the QGP at
SPS, and of the experimental discoveries of some QGP signatures at the LHC, respectively. On
the other hand, experiments at RHIC (Relativistic Heavy-Ion Collider) have already shown that
the QGP is a near perfect liquid, with a viscosity over entropy ratio lower than any other known
fluid [25]. Experimental discoveries due to RHIC are hence underlined here.

Elliptic flow

A typical signature of the QGP is the strong observed elliptic flow, which is linked to the
azimuthal asymmetry of the distribution of particles, mostly encoded in its second Fourier co-
efficient v2. The elliptic flow is due to the pressure gradient arising from the initial azimuthal
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asymmetry of the collisions of large nuclei, and from the hydrodynamics of the QGP fluid. In
2000, RHIC measured a strong elliptic flow of charged hadrons [26].

Jet quenching

Partons lose energy when passing through the coloured medium, which is the topic of sec-
tion 2.3 (mainly for heavy quarks) and the second part of this thesis (mainly for high-energy
partons). I discuss here only the effect of in-medium energy loss on jets (defined in section 1.5.1).
It significantly modifies the parton showers constituting the jets observed in the detectors – the
cone containing their energy becomes wider and part of their total energy is transferred to the
medium. This jet quenching was first observed at RHIC in 2001 through the suppression of high-
pT hadrons [27]. It was confirmed with the observation of the disappearance of (the highest-pT

hadron of) away-side jets by RHIC in 2002 [28]: the di-jets produced close to the frontier of the
QGP lose their momentum balance because only one jet is suppressed by the medium.

Strangeness enhancement

The critical temperature to form a QGP is above the threshold for forming a strange quark-
antiquark pair. These additional strange (anti)quarks can form final-state hadrons that would
not be produced in the vacuum. Hints of the resulting strangeness enhancement (denoting an
increase of the number of quarks carrying strangeness, and not only a different arrangement of
quarks in hadrons) were seen already at SPS [29].

Quarkonia

How the quarkonia and heavy quark interactions are affected by the QGP will be reviewed
in chapter 2: the main effects are partonic energy loss, dissociation of the heavy quark bound
states, and recombination of the heavy quarks freed in the QGP.

1.5 Definitions and notations

1.5.1 Detector and accelerator notions

A particle beam in a particle collider such as the LHC (see section 3.1) is actually composed
of separated bunches of particles, of limited longitudinal size, so that collisions of beam particles
happen only at regular time intervals. This delimits clearly the moments at which the detectors
around the collision points can record a collision. Each bunch at the LHC contains about 1× 1011

protons, or 7× 107 Pb nuclei. The colliding nuclei are composed of nucleons, namely protons
and neutrons. The energy of a colliding nucleus is in general quoted normalised by the number
of nucleons it contains, for comparison with proton collisions.

An event loosely designates all the activity recorded by a detector within a given bunch
crossing. In PbPb collisions in CMS, this is often assimilated to the one (and usually only)
PbPb collision that takes place in a given bunch crossing. In pp collisions however, multiple pp
collisions take place in the same bunch crossing (due to pile-up, see section 5.2), and an event
comprises all these collisions.

A track is the experimental estimate of the trajectory of a particle through a detector. It
is in general a fit of discrete hits (i.e. points where the particle interacted visibly with a sub-
detector) that are consistent with the passage of a charged particle (considering the possible
magnetic field). It is more rare, but possible, to talk about tracks for neutral particles, for they
can be detected only by absorbing their energy in calorimeters, which give a much less precise
estimate of the direction than tracker detectors.

A vertex is a point in space from where multiple particles (or tracks, from the point of view
of the detector) originate. During the vertex reconstruction, this common origin is generally
inferred if the tracks spatially intersect within their fit uncertainties. The primary vertex
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(PV) of a collision event is where the first hard interaction happened (between two partons from
two protons or lead nuclei, in this thesis) and produced the majority of the particles in the event.
It is hence experimentally reconstructed as a point through which many tracks of the event are
passing. There can be multiple PVs in a pp event, due to multiple pp collisions in the same bunch
crossing; this is called pile-up. A secondary vertex (SV) or displaced vertex is the decay
vertex of a long-lived b- or c- hadron (typically 0.2 − 10 mm away from the PV). Separating it
from the PV is an important experimental challenge. Detecting tracks that do not come from a
given vertex can be done by measuring the impact parameter (IP), which is the distance of
closest approach of this track to the vertex.

A jet is the experimental manifestation of the showering of a high-pT parton created in
a hard scattering. Via various possible methods, jets reconstruct the history of each parton
branching in the shower. They gather in a cone (that can have various opening angles, called
the distance parameter R) all final-states hadrons that are thought to originate from this initial
hard parton, to estimate its energy.

In data analysis, one needs to simulate the processes of interest, as a help to understand
better the data and estimate physical quantities. In particle physics,Monte Carlo simulations
(MC) are used to generate events [30]. It is a method to draw events randomly from the true
probability distributions implemented in the program. Those distributions consider both the
physics one is interested in (i.e. the hard process generating the probe of interest), the softer
underlying event activity of the collision, the particle decays, and the interaction of all resulting
particles with the detector. The parameters of these programs are often tuned so that they
describe better the available measurements of many different processes.

1.5.2 Coordinates

The cartesian coordinates x, y, and z in the LHC detectors studied here are defined such that
they form a direct basis, with the z-axis defined as the beam direction and the y-axis pointing to
the sky. The z-axis points anti-clockwise in the LHC ring. I will denote as p the 3-momentum
of a particle (not to confused with the symbol p for the proton). Its component transverse to
the beam is pT = p2

x + p2
y.

The rapidity y (distinguished from the cartesian coordinate from context) of a particle is
linked to the angle θ between the positive z-axis (i.e. the beam direction) and the particle’s
momentum. It is defined as

y =
1

2
ln

(
E + pz
E − pz

)
= tanh−1

(pz
E

)
= tanh−1(βz) (1.7)

where E is the total energy and pz the longitudinal momentum. This is the equivalent of the
standard rapidity in special relativity, except that it considers only longitudinal boosts. When

a particle is close to the beam (at positive z), E ∼
√
p2
z +m2. This means that at relativistic

energies y → 1
2 ln((2pz/m)2) ' ln

(
2E
m

)
; this equals ln

(√
s

mp

)
for the beam particles, about 8 to 9

at LHC energies. On the other hand, if a particle is nearly perpendicular to the beam, its pz is
small, so y → 0.

The rapidity is interesting, because it is additive under longitudinal Lorentz transformations,
i.e. a particle of rapidity y1 in a given frame has rapidity y1−yβ in a frame that is longitudinally
boosted with velocity β. This implies that the difference between the rapidities of two particles
is invariant under a longitudinal boost, and that histograms of this variable (and of the angle φ
introduced below) are not distorted by such boosts. In addition, away from the beam direction
there is a roughly similar number of particles produced in each unit of rapidity in a collision, i.e.
the rapidity distribution is only smoothly varying, contrarily to the angle distribution.
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It is however more convenient in experiments to use only the beam-momentum angle θ,
through the pseudorapidity η. This angle is estimated with the momentum as cos θ = pz/p.
The pseudorapidity is then defined as

η = − ln tan

(
θ

2

)
(1.8)

Pseudo-rapidity is an approximation of y that is exact in the ultra-relativistic limit (E � mc2).
Forward and backward (for momenta, particles, detectors, etc.) mean at positive z and ra-
pidity, or at negative z and rapidity, respectively.

The azimuthal angle φ around the z-axis (from the x-axis direction) is generally the third
dimension associated to a track, with the momentum p and the pseudorapidity η.

A useful quantity is the pseudo-angle between two particles, which is their distance
evaluated in the (η, φ) plane. For two particles of angle coordinates (η1, φ1) and (η2, φ2), it is
defined as

∆R =

√
(η1 − η2)2 + (φ1 − φ2)2 (1.9)

where (φ1 − φ2) is taken in the interval [−π, π].

1.5.3 Luminosity and cross sections

The cross section σ of an interaction is the probability of it to happen in a given experiment,
converted in units of area via the luminosity of this experiment, defined below. It is a universal
property of the input and final particles of the studied process. An easy way to understand the
cross section is with a (not so misleading) classical approach: considering the two initial particles
as hard spheres of transverse sections equal to the cross section, the interaction will take place
if the two hard spheres ‘touch’ in the classical sense.

The instantaneous luminosity L of a collider (or fixed target) experiment is characterised
through the cross section σ of the beam particles (proportional to their probability to interact
with each other) and the rate of these interactions (i.e. their number per second) N :

N = Lσ. (1.10)

Using the luminosity defined this way, one can then apply Eq. 1.10 with the cross section and
rate of any physical process one wants to study. The cross section is a property of the studied
particles that one generally quotes as a result, while the properties of the used beams only show
in the luminosity. The luminosity can be understood as the flux of initial particles from one
beam, taking into account the properties of the other beam or the target it collides with. If the
effective transverse section shared by the colliding beams Ashared is known, then the instantaneous
luminosity can be calculated from the number of particles in each bunch N and the frequency of
the bunch crossings (f = 40 MHz for the design LHC bunch separation of 25 ns):

L =
f N2

Ashared
. (1.11)

The effective shared area depends only on the angle at which the beams cross, and on the beam
quality parameters: the emittance ε and the amplitude function β, not detailed further in
this thesis. L is expressed in units of cm−2s−1, or its equivalent using the inverse barn unit
(1 b−1 = 1024 cm−2). In the following, what will be simply called ‘luminosity’ is actually the
time-integrated luminosity:

L =

∫
run
L(t)dt (1.12)
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which is usually expressed in fb−1 = 103 pb−1 = 106 nb−1. It is proportional to the number of
collisions accumulated during a given run (i.e. a period during which the accelerator provides
colliding beams).

The differential cross section element dσ2→n for a process with 2 initial and n final
particles yields the cross section after being integrated over the 4-momenta of the n output
particles. It can be decomposed in three terms:

dσ2→n =
|M|2
4F

dΦ. (1.13)

The matrix elementM contains the theoretical knowledge from the Standard Model or other
theories of elementary particles. It is what one seeks to extract from the experiment. In the
Standard Model, it is calculated from the Lagrangian of section 1.2 – at least in principle,
considering that some of those calculations have kept physicists busy for decades! The flux factor

F =

√
(p.p′)2 − (mm′)2 contains the kinematic (relativistic) information about the conditions

of the encounter of the two initial particles, of respective 4-momenta p and p′, and of masses m
and m′. Finally, dΦ is the Lorentz-invariant phase space element, containing the differential 4-
momenta elements of the final particles and ensuring the conservation of energy and momentum.
When partially integrated over a range of the 4-momenta of the final particles, for instance within
the limits of the momenta accessible in a detector, it is simply called ‘(available) phase space’.

1.5.4 Lifetime

In radioactivity, the half lifetime τ1/2 is the time it takes for half a set of radioactive isotopes
to decay into other states, based on the time evolution of the remaining initial isotopes N =

N0

(
1
2

)−t/τ1/2 . In particle physics one rather uses the average lifetime of a particle τ =
τ1/2
ln(2) ,

such that the number of particles that did not yet decay into other states evolves as

N = N0e
−t/τ . (1.14)

Relating this to the cross section formalism above, the lifetime is actually

τ =
~

Γtot
(1.15)

where the transition rate Γtot can be seen as the cross section for a 1→ n process, or rather the
sum of the transition rates Γ1→n for all possible final states of the decays of this particle.

Another point of view on the transition rate [31] is that the energy of the unstable particle is
E0 − iΓtot/2 and its wave function is ψ(t) = ψ(0)e−it(E0−iΓtot/2). This is justified by computing
the resulting probability density |ψ(t)|2 = |ψ(0)|2e−Γtott ∝ e−t/τ , which fits to Eq. 1.14 defining
the lifetime. Now if a Fourier transform is applied to the wave function to obtain its momentum-
space equivalent:

ψ̃(E) =
ψ(0)

2π

∫
dt e−it(E0−iΓtot/2) =

iψ(0)

2π

1

(E − E0) + iΓtot/2
(1.16)

from which one obtains the Breit-Wigner function, giving the probability of finding this
particle at energy E:

|ψ̃(E)|2 ∝ 1

(E − E0)2 + Γ
2
tot
4

. (1.17)

This means that the energy of the decay products (i.e. their invariant mass) is spread around
the nominal energy with a typical decay width Γtot, inversely proportional to its lifetime.
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The spread of mass or energy of a supposedly resonant particle can be linked to the Heisen-
berg principle. If the particle lives only for a short time ∼ τ , then the energy is allowed to
vary within a range ∆E = Γtot, such that Γtotτ ∼ ~. The factor ~ is the same than the
one I kept explicit in Eq. 1.15. The smallest lifetimes directly detectable with the current de-
tectors are of order ∼ 10−13 s, corresponding to distances ∼ 100 µm travelled in the detector,
before decaying typically through the weak interaction. The intrinsic width of these particles
is hence of order 10−8 MeV, completely undetectable experimentally. Even the J/ψ resonance
widely used in this thesis, despite its much smaller lifetime τJ/ψ = 7.1× 10−21 s, has an in-
trinsic width 0.93MeV that is smeared by the experimental resolution on the reconstructed
invariant mass of its decay products. Strong decays, on the contrary, happen at a time scale
of ∼ 1

ΛQCD
∼ 1

200 MeV ∼ 10−24 − 10−23 s, meaning the associated widths are often visible (e.g.
145MeV for the ρ mesons). The lifetime of the weak bosons W and Z is even smaller, of order
10−25 s, giving widths in the GeV range that are observed experimentally.

The branching fraction of an unstable particle for a decay to some final state is the
probability that it will decay in this given final state. It is the ratio of the partial width Γpart
(for decaying into this final state) to the total width (for decaying into any final state).

It must be noted that the transition rate is not Lorentz-invariant, so it must be defined in a
reference frame. The proper lifetime τ0 is the lifetime defined in the rest frame of the particle,
and is often simply called ‘lifetime’. When secondary vertices need to be distinguished from
the PV in a detector, what is of interest is the lifetime in the frame of the detector, in which
the particle is boosted by a Lorentz factor γ = p/m, where m and p are the particle mass and
momentum in the lab frame. So the lifetime in the detector is γτ0 > τ0, and the Lorentz boost
makes it easier for experiments to distinguish small lifetimes.

1.5.5 Types of pp or PbPb collisions

The protons (but all the following concepts are valid for lead nuclei too) in the beams colliding
in the LHC pipe (described in section 3.1) can interact in various ways. The less destructive
one is the elastic interaction, where the particles come close enough to modify their momenta,
but however keep their nature and integrity and do not generate other final state particles. At
LHC at

√
s = 13TeV, about a quarter of the total pp cross section σtot,pp = (111± 3)mb arises

from elastic scatterings [32]. The total pp cross section at
√
s = 5.02TeV is about 90 mb. Elastic

scatterings lead only to very low momentum transfers between the protons, pT ' 0.2GeV in
average [32]. Therefore, the final state protons have a very small angle with the beam (θ '
0.2/13000 = 1.5× 10−5 rad in average), which are detected only in very forward calorimeters a
few hundred meters from the LHC interaction points.

Three quarters of all pp interactions at LHC are inelastic scatterings where one or both
protons are broken, yielding particles of a different nature in the final state. 25% of these
interactions are diffractive, which is defined experimentally by observing rapidity zones in the
detector that do not contain any particles. This name is an analogy to optics; in the context
of pp collisions, it can be understood as elastic collisions with point-like constituents of the
protons. A so-called pomeron is exchanged between the protons, which then continue close to
their initial direction. Zero, one, or the two protons might be dissociated and give showers of
particles close to the beam; those cases respectively correspond to elastic, single-diffractive,
or double-diffractive interactions. If two pomerons are exchanged, then they can interact and
produce particles (only) at central rapidities, leaving the protons unbroken and close to the beam;
these events are called central-diffractive.

The nature of the pomeron is still very debated (see Ref. [33] for a short summary of the
current understanding of pomerons at high energy colliders); what is certain is that it is an
exchange of a (maybe-composite) particle that is non-resonant in mass and carries the quantum
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numbers of the vacuum, i.e. it does not carry a colour charge; this was historically understood as
necessary to explain the logarithmically rising hadronic cross sections at high energy. Depending
on the scale of the interaction, the pomeron could be understood perturbatively with a colourless
set of gluons (close to the hypothesised gluon ball), or non-perturbatively with an interacting sea
of gluons between the two protons. The colourlessness of the pomeron means that it does not
break the coherence of the partonic components of the proton it is emitted from, so that even
if the proton is dissociated, its decay products acquire only a small transverse momentum and
rapidity gaps are observed in the detector.

The single-diffractive events, featuring high-rapidity particles from only one of the protons,
are usually rejected by detecting activity in only one of the forward detectors. The double-
diffractive, central-diffractive, and non-diffractive events are those selected by the event-level
cuts of most analyses (detailed in section 5.2). The non-diffractive events, composing 75% of
the inelastic interactions, are those of interest to this work; they involve direct interactions of the
partons from the protons. What partons are interacting depends on their probability to exist in
the proton or lead nucleus at given momentum fraction x and energy scale Q2 (see section 1.3.2
on the PDFs).

An experimental approach to this classification of events is the minimum-bias (MB) data.
It consists in applying very minimal event trigger requirements (the CMS trigger is explained in
section 3.2.4) to obtain a sample containing close to all inelastic hadronic collisions, except the
single-diffractive ones. This excludes elastic hadronic interactions and electromagnetic interac-
tions. The associated trigger mostly looks for deposited energy on both sides of the beam.

1.5.6 The geometry and observables of heavy ion collisions

Colliding heavy nuclei are not point-like, and the geometric configuration of a collision has
important consequences, for example on the size and shape of the QGP volume they create, on
the particle multiplicity, and on the transverse energy deposited in the detector.

This calls for the notion of centrality: when nuclei (both containing A nucleons) collide
‘head-on’, meaning when the overlap of the nuclei in the plane transverse to the beam is large,
the collision is called central. On the contrary, when the overlap of nuclei is small, the col-
lision is peripheral. When there is no spatial overlap but the nuclei still interact (typically
electromagnetically), the collision is ultra-peripheral. The centrality of a collision is quoted
as the fraction of the hadronic inelastic AA (nucleus-nucleus) interactions that have equal or
larger overlap of the nuclei than this collision; for instance a 10% centrality means a close to
full overlap, whereas an 80% centrality means a small geometric overlap. Fig. 1.6 illustrates
the densities in the transverse plane for two centrality values, assuming that the nuclei are hard
spheres with constant nucleonic density.

Centrality is theoretically associated to the impact parameter b, the distance between the
two nucleus centres. However, it is experimentally estimated by assuming that this quantity
fully correlates with the multiplicity of produced particles, or to the transverse energy deposited
in the detector – mostly at high rapidities, which is why it mostly is evaluated using forward
calorimeters (see section 3.2.1). Fig. 1.6 illustrates this relation between the theoretical and
experimental definitions of centrality, as the number of participants (correlated with the number
of final state particles of the collision) decreases with centrality. Fig. 1.7 shows how centrality is
determined in PbPb collisions in the CMS detector, via the fraction of the total number of PbPb
collisions, sorted according to the energy they deposited in the forward hadronic calorimeters
(HF).

Let us review some important variables associated to the geometry of heavy ion collisions, of
which a good review is performed in Ref. [34]. Npart is the number of nucleons participating in
the collisions (which underwent hadronic interactions with other nucleons), and Ncoll the number
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is large.
——–

Figure 1.7: Determination of the centrality in 2011 PbPb data from CMS, using the sum
of transverse energy depositions in the HF.

——–

of binary nucleon-nucleon (NN) collisions. The maximal Npart and Ncoll (at centrality 0%)
equal respectively 2A and A2.

Another important quantity is the nuclear thickness

TA(s) =

∫
dz ρA(s, z) (1.18)

giving the number of nucleons per unit area in nucleus A, along the beam direction z, at a
transverse distance s from the nucleus centre, for a nucleus of nucleonic density ρA (either a
constant density or a Woods-Saxons profile, see section 11.2.3). The normalisation of the nuclear
thickness is

∫
d2s TA(s) = A.
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Then one can define the nuclear overlap function of a AB collision as the convolution of
the thicknesses of the two nuclei:

TAB(~b) =

∫
d2~s TA(~s)TB(~b− ~s) (1.19)

where ~s is the transverse position in the first nucleus, and ~b the transverse separation between
the nuclei centres. It is normalised such that

∫
d2~b TAB(~b) = A × B. This can be seen as a

nucleon-nucleon (NN) luminosity per PbPb collision, as it is, roughly speaking, the number of
NN pairs that could collide, per unit area. It results that the average number of NN collisions
at impact parameter b is:

Ncoll(b) = σNN TAB(b) (1.20)

Knowledge of σgeom
AB , the total hadronic cross section (including elastic interactions) of two

nuclei A and B, is important in order to calculate the centrality, and is estimated to 7.66±0.03 b
in Ref. [35]. It is related to the NN inelastic cross section σNN, estimated to 67.6± 0.6 mb (and
assumed to be similar for protons and neutrons) in Ref. [35]. The probability of having at least
one hadronic NN interaction in a AB collision at impact parameter b is

phadr = 1−
(

1− σNNTAB(b)

AB

)AB
(1.21)

as the probability of a nucleon from nucleus A to interact with any nucleon from nucleus B is
σNN

TAB(b)
AB . With the approximation AB � 1, it is equivalent to 1 − e−σNNTAB(b), so that the

total AB cross section is ∫
d2b
(

1− e−σNNTAB(b)
)

(1.22)

which is close to the geometric AB cross section (but not equal to it, especially at large b
when TAB is small):

σgeom
AB =

∫
d2b (1.23)

Glauber models calculate the above variables, making some assumptions on the nuclear
density profile and the distribution of nucleons. They can be optical, considering analytical
averaged densities of nucleons, or based on Monte Carlo, simulating many collisions in which
the separate nucleons are randomly placed on a grid according to the chosen nuclear profile.
The above variables will be more extensively discussed in the last part of this thesis, where I
implemented Glauber models with varying assumptions.

Two broad types of processes can be studied in heavy ion collisions. First, soft processes
associated to the bulk of low-energy particles whose collective behaviour due to the QGP is
studied; the associated quantities typically scale with Npart, which is proportional to the
density of the QGP. An example of roughly Npart-scaling quantity is the total multiplicity of
charged particles. The second type is the production of hard probes of relatively high energies,
which are of most interest to this thesis. They scale with Ncoll, as each additional NN collision
can be seen as an additional probability to produce a given hard probe, neglecting the fact that
this nucleon might have interacted (in general in a soft interaction) already in a previous NN
collision. This is consistent with the hard probes being generated in interactions of partons
rather than of nucleons that kept their integrity.

Therefore, the effect of the QGP on the production of a hard probe X can be quantified
by the nuclear modification factor RAA (considering now a symmetric collision). It is the
ratio between the production of X in AA collisions per NN collision and its production in pp
collisions, where no QGP is expected to be formed. It can be written in two simple ways, when



24 Chapter 1. Where do we start? From apples to soup

integrated over all minimum-bias AA hadronic collisions. First:

RAA =
NX

AA/〈Ncoll〉MB

NX
pp

(1.24)

where NX
pp = σXpp/σNN is the pp per-event yield of X, i.e. the average number of X produced

per pp collision, and NX
AA = σXAA/σ

geom
AA is the AA per-event yield of X. Or RAA is expressed

as:

RAA =
σXAA/A

2

σXpp
(1.25)

Eq. 1.24 and 1.25 respectively state that the AA yield should be normalised (to be comparable
to the pp ones) by the effective number of NN collisions, or that the AA cross section should be
normalised by the number of possible NN collisions.

Eq. 1.24 and 1.25 relate by

1

〈Ncoll〉MB
=
σgeom

AA /A2

σNN
(1.26)

which is consistent with the integration of Eq. 1.20 over AA collisions of all centralities. The
minimum bias nuclear overlap function is indeed:

〈TAA〉MB =

∫
d2b TAA(b)∫

d2b
=

A2

σgeom
AA

(1.27)

Now, when RAA is calculated for a given centrality class C (for example 10−20%), associated
to impact parameters in the range [b1, b2], more care is needed. The integration over a class is
〈·〉C =

∫
C(b1−b2) d

2b. Making the per-event yield more explicit, averaged over class C:

〈NX
AA〉C =

〈NX
AA〉C

〈NAA〉C
=

〈NX
AA〉C

w(C)×NMB,AA
(1.28)

where 〈NX
AA〉C is the raw number of X probes observed in an experiment, w(C) is the width of

the centrality range (0.1 for C = 10 − 20%), and NMB,AA is the minimum-bias number of all
(non-single-diffractive) hadronic AA collisions counted in the same experiment.

In centrality class C, the equivalents of σgeom
AA and of the nuclear overlap function in Eq. 1.27

are:

〈σgeom
AA 〉C =

(∫ b2

b1

d2b

)
A2∫ b2

b1
d2b TAA(b)

=
A2

〈TAA〉C
(1.29)

Then, in Eq. 1.25, one can replace

〈σXAA〉C/A2 = 〈NX
AA〉C × 〈σgeom

AA 〉C/A
2 = 〈NX

AA〉C/〈TAA〉C (1.30)

which gives the RAA in the main form used in this thesis:

〈RAA〉C =

1
w(C)×NMB,AA×〈TAA〉C

〈NX
AA〉C

σXpp
(1.31)

The yields and cross sections NX and σX can be differential, often in pT and rapidity.
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“Three quarks for Muster Mark!
Sure he hasn’t got much of a bark

And sure any he has it’s all beside the mark.
[...]

Hohohoho, moulty Mark!
You’re the rummest old rooster ever flopped out of a Noah’s ark

And you think you’re cock of the wark.”

———–

James Joyce, Finnegans Wake, Book II, Chapter 4.1

Chapter 2

Why?
Heavy quarks in the QGP

Heavy ion collisions create a hot and dense matter, the quark-gluon plasma, in which colour
confinement fades down so that partons behave as free particles – for a few femtometers. No
external tool is at our disposal, considering the space-time scales over which it evolves, to seize
the produced QGP before ‘looking’ at it. Therefore, we need to measure its properties with
internal probes, produced and evolving on similar time scales. This chapter exposes how heavy
quarks (i.e. charm and beauty), and the hadrons they form, are excellent probes of the formation,
evolution, and other properties of the QGP.

Section 2.1 justifies why heavy quarks, and in particular heavy quarkonia, have been privi-
leged probes of the QGP since its early studies. Section 2.2 presents properties and some past
measurements of the Bc states. The subsequent sections motivate the experimental observation
of Bc mesons in heavy ion collisions achieved in this thesis. They show the main effects of the
QGP on heavy quarks and their bound states, and what light the Bc meson can shed on these
topics: the energy loss of heavy quarks (section 2.3), the dissociation of quarkonia through the
colour screening of their potential (section 2.4), and last but not least, the recombination of
uncorrelated heavy quarks enhancing the production of heavy quark bound states (section 2.5).

2.1 Heavy quarks and quarkonia

Heavy quarks are interesting probes of the QGP, because in general, they exist through
the whole history of the QGP. They are indeed mostly produced at time scales 1/mQ (where

1In this satiric novel mocking King Mark, the cuckolded husband in the Tristan legend, James Joyce uses many
neologisms and puns that evoke the cries that birds throw at Mark. Murray Gell-Man, when he thought of three
fractionally charged nuclear constituents to explain the hadron zoo emerging at the time [36]. He initially named
them ‘quorks’ with an ‘o’ sound, but he probably did not write this name down yet, as he testified that this was
the way he called peculiar things/objects in his daily life. He realised only a few months later that this novel
mentioning ‘three quarks’ was spot-on to describe this triplet of awkward fundamental constituents of matter.
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mQ = mb ∼ 5GeV or mc ∼ 1.5GeV), whereas the QGP is formed at time scales 0.2 − 1 fm
(corresponding to energy scales from 0.2GeV to 1GeV). As explained later, their production in
jet fragmentation can however blur this simple time scale ordering. The bound states formed
by heavy quarks, when they survive the interaction with the medium, decay much later than
the cool-down of the QGP, on time scales of weak decays (100− 500 µm) for open heavy flavour
mesons, and about 7× 10−21 s ∼ 1/(10MeV) for charmonium and bottomonium decays.

Heavy quarks can bind with light, strange, or charm quarks to form open heavy flavour
hadrons (such as D and B mesons). Conversely, the quark colour can be neutralised by binding
a quark and an antiquark of the same flavour, resulting in quarkonia: either charmonia composed
of cc quarks (e.g. the J/ψ meson, and its radially excited state ψ(2S)), or bottomonia composed
of bb quarks (e.g. the Υ(1S) meson, and the excited states Υ(2S) and Υ(3S)).

Heavy quarkonia have been much studied because of the natural separation of scales they
provide: the relative velocity v between the two heavy quarks is small due to the high bound
state mass m (as the additional mass in the excited states is small compared to the ground
state mass), hence the hierarchy m� mv � mv2 on which the non-relativistic QCD (NRQCD)
theory is based [37]. The potential describing the interaction of the two quarks can be expressed
through an effective field theory: the hard scales are integrated out (m for NRQCD, or even mv
for potential-NRQCD [pNRQCD]), and an approximate potential can be obtained by matching
the lowest-order terms of a 1/m or 1/mv power expansion to measurements. This is an advantage
compared to the full QCD theory, in which hadronisation is a non-perturbative process, hence
hard to calculate. NRQCD also includes all possible cc colour states, contrarily to, e.g., the
colour-singlet model [38]. However, a still-standing difficulty is for NRQCD (even at NLO)
and other models to describe both the pT spectrum and the close-to-null polarisation of J/ψ
mesons [39–41], as shows Fig. 2.1.

Figure 2.1: Comparisons of NRQCD and colour-singlet models to LHCb pp collision data.
Left: pT spectrum (from Ref. [40]). Right: polarisation (from Ref. [41]).

——–
Despite these difficulties, quarkonia are of great interest as probes of the QGP. They interact

with the medium via the strong force, possibly resulting in dissociation, one of the first proposed
signatures of the QGP (see section 2.4). In the NRQCD framework, the modification of the
heavy quark potential due to the presence of QGP can be quantified [42], including its imaginary
part contributing to shorten the lifetime of the state in the medium.

The limitation of the NRQCD separation of scales in the context of QGP is that some
quarkonia, or the heavy quarks they are composed of, might be produced at larger times than
that of the formation of QGP. In that case, the parton parents of the quarkonium can be affected
by the medium, and the effective time that the quarkonia spend in the QGP is reduced. The
heavy quarks and the quarkonia they might form are produced on proper time scales 1

m and
1
mv , respectively. This scale can be dilated and exceed that of QGP formation when the partons
are very boosted in the QGP frame: the typical quarkonium (or heavy quark) production scale
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must then be pT
m × 1

mv = pT
m

2
v
(or pT

m
2 ). This delay can also take place when the heavy quarks

are produced later than the initial hard scattering, during the fragmentation of parton showers.
CMS recently observed a high fraction of J/ψ mesons being generated in jets [43], suggesting an
important role of fragmentation in the production of J/ψ mesons, that is not fully considered
in the current simulations (notably pythia). Therefore, high-pT quarkonia might not all be
generated earlier than the timescale of the QGP evolution.

As a consequence, part of the very high-pT J/ψ mesons undergo effects of the QGP while
they still are the gluons (or simply colour-octet states) they originate from. They then endure
medium-induced energy losses similar to the light hadrons, which mostly originate from gluons.
Heavy quarks also endure energy loss, but with a different colour factor, and with a possible
dependence on their mass. This energy loss reflects scattering properties of the QGP, and causes
the jet quenching phenomenon observed experimentally; it is a historical signature of QGP,
proposed by Bjorken in 1982 [44]. The energy loss of single partons is discussed in section 2.3,
and is the context of the phenomenological studies of the second part of this thesis.

Lastly, the b and c quarks are too heavy to be thermally produced in the medium, so their
total multiplicity is roughly conserved over the lifetime of the QGP in a heavy ion collision
(considering the above caveat about fragmentation and boosted production). The relative pro-
portions of the hadrons they form are however affected by the medium. The open heavy flavour
(D and B) mesons constitute the majority of the hadrons produced by heavy quarks, so their to-
tal production should be roughly conserved as is the number of heavy quarks. This is noticeable
in the RAA of D mesons, which rises above 1 towards null pT, to compensate for the suppres-
sion at mid- and high-pT [45] – though the shadowing from cold nuclear matter, not discussed
here, could modify the integrated RAA. On the contrary, the low rate of heavy quarks that find
another heavy quark to bind with can be modified by the QGP. Beyond suppression effects, the
production can also be enhanced, thanks to heavy quarks roaming freely and recombining in the
medium, as explained in section 2.5. This signature of the QGP can only be observed in bound
states of multiple heavy quarks, benefiting from the abundance of heavy quarks in the QGP that
contrasts with their rareness in pp collisions. A sole heavy quark can hadronise with a light
quark to form open heavy flavour mesons; as light quarks are easily produced both in the QGP
or in the vacuum, these states cannot probe recombination effects.

The effects of QGP on heavy quark bound states are sketched in Fig. 2.2. In this context,
the Bc meson, a hybrid charm-beauty state that shares properties both with quarkonia and with
open heavy flavour, is a connecting piece between the physics of charmonia, bottomonia, open
charm and open beauty hadrons. Before demonstrating it can shed a new light on the above
QGP phenomena, let us explain some of its properties and experimental history.

2.2 Bc meson properties and past measurements

Let us review here some properties of the Bc meson states, along with the main observations
and measurements that were performed on these states. Some measurements referenced here will
be used in other sections.

2.2.1 Production and spectroscopy

The B+
c meson contains a b and a c quarks, making it (and its excited states) the only

hadron observed so far that contains heavy quarks of two different flavours. Baryons containing
net bottom and charm quantum numbers, e.g. Ξbc baryons, have indeed not been observed yet.
The Bc meson has a net flavour number, which in principle secludes it from the quarkonium
family. However, one could support that the proximity of its quark content to the charmonium
and bottomonium states (‘hidden’ heavy flavour mesons) makes it an exotic heavy quarkonium.
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Figure 2.2: Mechanisms affecting charmonium and Bc production in the presence of QGP.
The parton parents of the hadrons undergo medium-induced energy loss. The screening of
the colour potential can dissociate or prevent the formation of the cc or cb bound states.
Uncorrelated c and c or b can also bind after travelling in the deconfined medium, both if
they come from different nucleon-nucleon scatterings or from a previously dissociated state.
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The current estimation of the Bc ground state mass is mPDG
Bc

= 6274.9 ± 0.8MeV [46], making
it heavier than any other open heavy flavour meson.

The Bc meson has a particularly low production cross-section in pp collisions, because
two heavy quark pairs (bb and cc) need to be produced in the same hard-process. This means
that additional production mechanisms in other conditions could easily dominate over this direct
production, such as the possible quark recombination in heavy ion collisions (see section 2.5). In
hadronic collisions, the dominant production mode of the Bc meson is a gluon fusion producing
the two heavy quark pairs: gg → B+

c + b + c .

The Bc family has a rich spectroscopy of excited states. Fig. 2.3 shows the predictions of
Ref. [47] of the masses of the various excited states, using the spectroscopic notation n2S+1LJ .
S is the spin, equal to 0 in the ground state, and 1 in some excited states. L is the azimuthal
quantum number, indicating in principle the shape of the wave functions; L = 0, 1, 2, or 3
states are designated as S-wave (symmetric), P , D, or F -wave functions. J is the total angular
momentum, i.e. the vector sum of quantum numbers L and S. In this case where S = 0 or 1,
J can take any positive value among L − 1, L, and L + 1. On Fig. 2.3, the principal quantum
number n (indicating the radial excitation of the system) is kept implicit: it limits from above
the values of L ≤ n−1, and higher n states have higher masses. In particular, the P -wave states
of lowest mass have n = 2.

The first (n = 1) excited state 3S1 decays with almost 100% branching fraction into the
ground state and a photon of about 50MeV energy that takes away its S = 1 spin. Experimen-
tally, this state directly contributes to the observed ground state cross section, as the low-energy
photon is not reconstructed and barely affects the kinematic properties of its ground-state daugh-
ter. All other excited states feature decays to the ground-state Bc and other particles, with
branching fractions that are in general unknown. These unknown feed-down fractions from
the excited states to the observed ground state are problematic for all quarkonia studies, as
an observed modification (e.g. from passing through QGP) of the ground state can reflect the
modification of the ground state and of the excited states that decay into it. In particular, when
interpreting the modification of the observed ground-state Bc using theoretical predictions of the
effect of QGP on Bc, this effect should be applied to all ground and excited states.
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Figure 2.3: Spectroscopy of the bc states, from Ref. [47]. The mass threshold for D + B
meson production is at 7140MeV.

——–

As other quarkonia, the Bc is composed of a quark and an anti-quark, meaning its QCD
colour state must be determined from summing a 3 (quark SU(3)c) group with a 3̄ (anti-quark
SU(3)c) group. This results in a group containing 1 element, the colour-singlet state (in which
the colours of the two quarks cancel each other), or 8 elements, the colour-octet states. The
colour-singlet states need partons whose colour charges cancel. Colour-octet states must emit a
gluon to get rid of their colour charge before propagating at large distances (in the vacuum).

2.2.2 Past measurements

The Bc meson has been first detected in 1998 by the CDF experiment at TeVatron, in proton-
antiproton collisions at

√
s = 1.8TeV [48], through the (semi-)leptonic channel B+

c → J/ψ l+ νl

(see Fig. 2.4, left) – the one studied in this thesis. The channel B+
c → J/ψ π

+ (named ‘hadronic
channel’ in this document) was then observed by CDF (4σ evidence in 2005 [49]) and D0 (in
2006 [50]) Collaborations. The latter channel is preferentially studied when high luminosities are
available, as all decay products can be reconstructed by the detectors.

The Bc meson has then been studied in pp collisions at the LHC, especially by the LHCb
Collaboration: it observed in 2012 the hadronic channel [51], and measured in 2014 its ratio to
the leptonic channel [52], both at

√
s = 7TeV. The latter branching fraction ratio was extensively

used in preliminary studies for this work (see sections 3.3.1.1 and 3.5.4.2). CMS also contributed,
notably comparing at

√
s = 7TeV the hadronic channel to the B±c → J/ψ π

±
π
±

π
∓ branching

fraction, and to the B± → J/ψ K± branching fraction times cross section [53]. The latter B+
c /B

±

ratio was also measured by the ATLAS [54] and LHCb [55] Collaborations at
√
s = 8TeV.

Many other decay channels have been observed in the LHCb detector, so only a few are cited
here. The B+

c → B0
s π

+ decay has been observed already in 2013 with 7 and 8TeV data [56].
More recently, the χc0 π

+ [57] and D0 K+ [58] final states have also been studied. Bc meson
studies also contribute to look for processes beyond the Standard Model, notably with the ratio
of the B+

c → J/ψ τ
+

ντ to B+
c → J/ψ µ

+
νµ branching fractions measured by LHCb in 2018 [59].

As a side-comment, a discrepancy between the measurement of this ratio and its Standard Model
expectation would indicate a violation of the lepton flavour universality, commanding that the
tau and the muon in the two decays should have the same interactions with the Standard Model
particles. The 2σ discrepancy found by LHCb adds to the other promising hints of lepton flavour
universality violation recently observed by the BELLE and LHCb Collaborations.
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LHCb also has measured Bc meson properties, such as its lifetime in 8TeV data [60]. The
world-average value of the Bc lifetime is cτBc = (153 ± 3)µm [46], which is about three times
smaller than that of other B mesons. This small lifetime will make the selection challenging
in this analysis (chapter 5). The Bc charge production asymmetry has also been measured in
2019 from LHCb 7 and 13TeV data, and it is found consistent with 0 within a few percent
uncertainty [61].

All the above measurements concern the ‘ground’ states 1S0 and 3S1, which are not distin-
guished experimentally. However, n = 2 states were also measured. First, ATLAS observed in
2014, from 7 and 8TeV data, a peak comprising the two 2S states (21S0 and 23S1), but did not
distinguish their separate mass peaks [62]. Then, in 2019, CMS [63] (and LHCb [64], but with
much lower yields) achieved, with 13TeV data, the separation of the 21S0 and 23S1 states, re-
spectively decaying to Bc(

1S0)π
+

π
− and Bc(

3S1)π
+

π
−. As the mass difference between 1S0 and

3S1 states is about 30MeV larger for the n = 1 than for the n = 2 states, and as 1S0 and 3S1 are
not experimentally distinguished, the Bc(1S)π

+
π
− invariant mass shows two excited Bc peaks

separated by 30MeV (shown in Fig. 2.4, right), the lower peak corresponding to the heavier 23S1

state. These measurements owe to an impressive mass resolution, partly due to the subtraction
of the invariant mass of the Bc decay products and the associated experimental resolution, but
also to the excellent performance of the pion and muon reconstruction of these detectors. CMS
also measured more recently the ratio of cross sections of the two excited states [65].

Figure 2.4: From the first to the most recent Bc experimental discovery. Left: Bc discovery
with CDF in 1998 [48]. Right: Discovery of two Bc(2S) states with CMS in 2019 [63].

——–
Fig. 2.4 is a snapshot of the journey between the first observation of the ground state with

CDF, and the observation of two 2S states by CMS. This thesis intends to make the next step
of this experimental journey, namely the observation of (ground-state) Bc mesons in the much
more challenging environment of heavy ion collisions. In this context, new Bc production (and
dissociation) modes may arise, bringing new perspectives on the dynamics and hadronisation of
heavy quarks in a QCD medium.

2.3 Energy loss

Quarks lose energy when they traverse the QGP, so large-pT hadrons appear suppressed by
the QGP – they still leave the medium, but with a lower momentum. Jet quenching designates
how this affects the production of jets [44]; it was first observed through the imbalance of the two
jets in dijet events [66], when one jet is produced close to the medium boundary, and the other
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crosses the whole QGP, hence losing significant energy. I rather concentrate here on the energy
loss measured on single hadrons. At low-pT, there can be collisional energy loss, meaning the
probe parton collides elastically with other partons in the medium. This is however negligible
towards higher pT (see its calculation for high-pT heavy quarks in Ref. [67]) compared to the
radiative energy loss, in which partons emit gluons when traversing the QGP or of a parton
shower in the vacuum, similarly as the Brehmsstrahlung of electrons when accelerated. The
second part of this thesis will develop on a model of radiative energy loss at high pT.

The emission of gluons from a quark is thought to be lesser along the (downstream) flight
direction for high quark masses. The original dead-cone effect [68] claimed that there is
no gluon emission in a forward cone of angular size m/E around the direction of a quark of
mass m. However this concerns the emission in the vacuum, whereas medium-induced radiation
was found to partially fill this cone [69]. In practice, this cone is filled by the decay products of the
heavy hadron, making the experimental observation of the angular dependence of radiation very
challenging. The sheer existence of suppressed radiation for heavy quarks was also questioned,
as quantum oscillations in a finite-size medium might cause an opposite effect [70]. Despite these
caveats, a partial dead-cone effect could manifest as a lower suppression (integrated over angles)
of heavy flavour hadrons compared to light hadrons [71].

The experimental evidence of the mass dependence of energy loss in heavy ion collisions is still
ambiguous. As the dead-cone width decreases with pT, its effect should be larger at low- and mid-
pT, but collisional energy loss and non-perturbative hadronisation effects (such as recombination,
see 2.5) also play a role in this regime. A relatively small effect is expected for D mesons in the
range 10 . pT . 20GeV at LHC [71]. It should be more important for the heavier b quark,
but B mesons are either measured with the limited statistics of exclusive decays, or inclusively
through non-prompt D or J/ψ mesons. The latter implies that the kinematic distributions are
smeared by the unreconstructed B decay products: the suppression of non-prompt J/ψ mesons
at a given pT does not represent the suppression of their B parents at this exact pT.

The slope of the initial production momentum spectrum also affects the comparison of the
suppression of heavy and light hadrons: for the same absolute energy loss, particles with a
steeper (i.e. softer) spectrum will show more pT-dependent suppression (at mid- to high-pT), as
the sketch of Fig. 2.5 illustrates. The light quark spectra are softer than the heavy quark ones, so
this can enhance the ratio of heavy to light hadrons, as the dead-cone effect. The colour charge
of the parent parton of the observed hadron also changes this heavy-to-light ratio: gluons (the
dominant parent partons of light hadrons) interact more with the QCD medium than quarks
(dominant parents of heavy hadrons), leading again to less suppression for heavy hadrons. One
effect compensating the above effects and the dead-cone could come from the fragmentation
fraction of heavy quarks to heavy hadrons being higher than that of gluons or light quarks to
light hadrons; this fraction multiplies the partonic energy loss, causing more observed suppression
for the final-state heavy hadrons [72].

Disentangling these contributions to extract the dependence of energy loss on the
colour charge and the mass of the partons traversing the QGP is challenging. However,
comparing the modification of open heavy flavour hadrons to that of light hadrons stays the best
tool to evaluate experimentally those dependences – though new ideas emerge to probe angularly
the dead-cone effect using jet substructure, even in heavy ion collisions, e.g. in Ref. [73].

Figure 2.6 shows a summary of CMS measurements, using 2015 PbPb data, of the nuclear
modification factor of B mesons and hadrons they decay into compared to that of light hadrons.
For the reasons evoked earlier, no strong conclusions on the mass dependence of energy loss can
be drawn. The production of Bs mesons in PbPb collisions has also been measured [74, 75], but
is excluded from this discussion, because the strangeness enhancement possibly contributing to
its production blurs the energy loss picture (and because the uncertainties are larger).
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Figure 2.5: Harder pT spectra lead to larger pT-dependent nuclear modification factors, for
the same energy loss ∆pT. Both axes are in logarithmic scales (assuming power law spectra).
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The Bc meson studied at mid- or high-pT (where the energy loss starts to dominate the
modification, but the dead-cone effect is still significant) can provide a new perspective on this
mass dependence, as it might cumulate the dead-cone effects from both its charm and beauty
component quarks. At high-pT, the Bc mesons should however mostly be produced through the
fragmentation of a b quark (radiating a cc pair at late times). This is to be compared to the J/ψ
mesons that, in this range, are mostly produced by gluon fragmentation, and to other open heavy
flavour hadrons, that are mostly produced by heavy quark fragmentation. The Bc meson might
therefore also probe the colour charge dependence of energy loss, though this would still need a
better understanding of the heavy flavour production mechanisms. Finally, at very high-pT (not
accessible yet, considering the size of the available datasets), the Bc meson can be an additional
probe of the universal pT dependence of radiative energy loss (see chapter 10).
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2.4 Colour screening

The QCD potential between two quarks at distance r (with a non-relativistic relative speed)
is schematically, in the vacuum:

V = −αSCF
1

r
+ σr (2.1)

where only the first term matters at short distances, as the second term encodes the colour
confinement at large distances through a tension σ of the colour strings. In the QGP, this colour
potential is screened exponentially, such that:

V (r) = −αSCF
e−mDr

r
(2.2)

wheremD is the Debye mass. This means the attracting potential between two quarks at distance
r decreases rapidly when r > 1

mD
≡ rD, the Debye radius. In an electromagnetic plasma, the

mobile charges (electrons) are repelled by a given probe electron, creating an effective region
of opposite charge around this probe that partially cancels the probe charge. This probe has a
significant interaction potential only with charges that are closer than the Debye radius:

rD = 1/

√
βne2 (2.3)

where β = 1/(kBT ), e is the electron charge, and n is the number density of electrons (originally
in Ref. [80] from Hückel and Debye).

Similarly, in the QGP, the free partons screen the colour potential between heavy quarks
with larger separation than rD, in the non-relativistic approximation valid for heavy quarkonia
(see section 2.1). The quarkonia of large-enough size hence dissociate into two open flavour
mesons in the QGP, making their production directly suppressed; this is a historical signature
of the QGP, proposed by Matsui and Satz [81], predicting lower quarkonia yields than in the
vacuum. Let us find the equivalent of Eq. 2.3 in a plasma of colour charges. First, in analogy
to an ideal gas, the number density in the QGP is n ∝ P/T . Then, by conservation of the
energy-momentum tensor, and considering the number of degrees of freedom, the pressure P is
proportional to the energy density ε (P = ε/3 in an ultra-relativistic gas, which is not exactly
the case of QGP). By analogy to the Stefan-Boltzmann law stating that the energy emitted
by a thermal body per unit of its area and per time unit is proportional to T 4, one finds ε ∝ T 4

(where the three space dimensions in the denominator of ε are analogous to the area and time
of the blackbody law). This results in

n ∝ T 3 ∝ ε
3
4 . (2.4)

Now, from Eq. 2.3 and using the strong constant gS =
√

4παS , analogous to the electric charge,
the Debye radius for a medium containing free color charges is:

rD =
1

mD
∝ 1

gST
. (2.5)

Therefore, when the temperature of the medium rises, the Debye radius decreases, and states
of smaller size start to dissociate. This sequential suppression of the excited states of heavy
quarkonia has long been considered to provide a ‘thermometer’ of the QGP, in so that the most
excited states are larger and hence dissociate at a smaller temperature than the less excited states.
Considering the progressive dilution of the medium, this also means that the most excited states
need to be produced further from the centre of the medium not to be dissociated. Sequential
suppression has been observed in bottomonium states, first by CMS [82, 83]: Υ(nS) states are
less suppressed for higher n. Fig. 2.7 shows the mass fits of the first two Υ(nS) states in PbPb
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2015 CMS data, where Υ(2S) is more suppressed than Υ(1S) compared to pp collisions. Let us
here underline the excellent muon momentum resolution of CMS (giving the good separation of
mass states in Fig. 2.7), important for this analysis and detailed in section 3.2.3. At the time
of writing, a CMS analysis aims at observing the Υ(3S) state. It is already known to be very
suppressed (RAA < 0.2), but if it is measured to be non-zero whereas its loose binding should
make it dissociate completely in the medium, it could elucidate the importance of the medium
geometry (as states produced in the corona of the medium and directed away from it would not
be dissociated) and of potential beauty quark recombination (see section 2.5).
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The historical Debye screening approach however neglects the dynamics of the medium, as

it considers the heavy quarks to be static. Many more approaches have since included dynamical
processes [84]. When solving, on the lattice, a Schrödinger-like equation with the quarkonium
potential, an imaginary part of the potential of Eq. 2.2 appears. The imaginary potential rep-
resents the Landau damping of gauge fields, according to the hard thermal loop formalism [85],
and leads to a thermal increase of the width of the quarkonium peak. Gluo-dissociation (the
dissociation of a quarkonium by absorption of a soft thermal gluon) also increases the quarko-
nium thermal width, and can be calculated e.g. in a pNRQCD framework [86]. Non-adiabatic
and out-of-equilibrium effects might also blur the simple sequential suppression picture – see
e.g. the open quantum systems approach [87]. Corrections from viscous QGP hydrodynamics
have also been implemented [88]. Most recent approaches, such as the ‘heavy quarkonium quan-
tum dynamics’ [89], aim at a realistic combination of these effects – also including the medium
geometry and dynamics – to be compared to measurements, and also predict elliptic flow val-
ues. The quoted approaches mostly address bottomonium states, for which the non-relativistic
approximation is solid and the three states are experimentally easy to study in parallel – but
more importantly, because the recombination of charm quarks significantly counterbalances the
charmonium suppression in some regimes, see section 2.5. Transport models [90] intend to dy-
namically include both opposing effects by calculating a detailed balance of states. They can be
based on Boltzmann equations [91], or on Langevin processes, i.e. Brownian motion to describe
the diffusion in a non-static medium [92].

The Bc meson has a peculiar nature of asymmetric bound state of heavy quarks, yielding
an intermediate size and binding energy, so its dissociation temperature is expected to be above
that of J/ψ and below that of Υ mesons. It hence provides a new perspective on this rich topic.
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2.5 Recombination and predictions of the Bc modification

Central PbPb collisions at 5.02TeV can produce up to 200 charm quark pairs1 – this can be
compared to about 8 beauty quark pairs produced per PbPb collision of centrality 0−5%2. As the
deconfined medium allows quarks to move further than the scale of a nucleon (1 fm), this could
lead to low-pT charm quarks that, despite coming from different uncorrelated hard processes,
would recombine into charmonium cc states. This is sketched in Fig. 2.2. It is expected to act
mostly on low-pT heavy quarks, as they are more numerous (increasing the combinatorics) and
have in general a smaller relative speed (the proximity in phase space facilitates the binding of
the quarks into a hadron). This recombination3 is the common understanding of the puzzles that
emerged from comparing measurements of the J/ψ modification factor at the different energies
of LHC and RHIC and from the non-null J/ψ elliptic flow measured at LHC.

Charm recombination: clues and models

The existence of recombination of charm quarks in the medium is indeed almost a consensus
today, mainly thanks to the combination of three observations, all made possible by the LHC
heavy ion program. The most striking one was the RAA of inclusive J/ψ mesons (both prompt
and non-prompt, and mostly at low-pT) measured with ALICE [93, 94] to be undoubtedly higher
than in the PHENIX experiment at RHIC [95, 96] towards central collisions. And this despite
the 10-fold increase in energy resulting in a significant increase of the QGP temperature from
RHIC to LHC! This was difficult to interpret without a high-temperature process that enhanced
J/ψ production rather than diminishing it. The fact that ALICE also showed a much higher
RAA than PHENIX at low pT (and not particularly at high pT) gave a solid sign that this
enhancement was consistent with a charm recombination mechanism, that is more important at
low-pT. The last clue was the large positive J/ψ elliptic flow observed with ALICE [97], that can
be interpreted as J/ψ mesons inheriting the flow from the charm quarks, which were themselves
‘pushed’ by the pressure gradient of the medium (this being possible because the quarks are
deconfined). As explained in section 2.1, neglecting the Lorentz boost and fragmentation, charm
quarks are produced on a time scale of order 1/mJ/ψ , meaning typically before the medium
formation. Though some primordial J/ψ mesons could be produced somewhat later (on scales
1/mv) and traverse the medium as color-octet states, a large fraction of them will traverse it
as color-singlet states. These states do not thermalise, so they must obtain their flow from
recombining charm quarks, whose elliptic flow came from being partially thermalised. Fig. 2.8
gathers this impressive beam of signs, where the whole is more than the sum of the parts.

Many models nevertheless compete to quantitatively describe the J/ψ data with various im-
plementations of recombination processes. I will only shortly describe them here. Let us start
with the statistical hadronisation model, which describes impressively well the abundance of
many particle species through Fermi-Dirac (for fermions) and Bose-Einstein (for bosons) dis-
tributions depending on the ratio of the particle mass to the medium temperature – see the
comparison to ALICE measurements of the cross sections of hadrons composed of u, d, and s
quarks over a wide mass range in Ref. [98]. Contrarily to the light quarks that have a mass

1A first order estimation can be obtained from the cc cross section in pp at 5 TeV, σpp
cc
' 7 mb, and the

average nuclear overlap function in a centrality class (for example 〈TPbPb〉0−5% ' 26 mb−1) that can be seen as a
luminosity of nucleon binary collisions per PbPb collision. There are hence in average σpp

cc
× 〈TPbPb〉0−5% ' 180

cc pairs produced in a single PbPb collision of 0− 5% centrality class at 5TeV.
2With the same value of TPbPb, and a total bb cross section in pp at 5TeV of σpp

bb
' 0.3 mb, there are in

average 8 beauty quark pairs produced per 0− 5% centrality PbPb collision.
3Concerning semantics, the production of heavy quark bound states that do not come from primary produc-

tion in hard scatterings is sometimes rather called regeneration. I do not distinguish here the agnostic term of
regeneration with the term of recombination, designating the major process thought to lead to regeneration. The
term of coalescence is more often used to designate quarks that form bound states simply for being close in phase
space.
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Figure 2.8: Signs of charm recombination from ALICE measurements of inclusive J/ψ
mesons. Top left: comparison of the Npart dependence of RAA(J/ψ) between RHIC
(PHENIX [96]) and LHC (ALICE [94]) energies. RAA is higher in ALICE than in PHENIX to-
wards central events. Top right: same comparison, but for the pT dependence. RAA is higher
at low-pT in ALICE than in PHENIX. Bottom: J/ψ elliptic flow measured by ALICE [97],

compared to a transport model.
——–

smaller than the QGP temperature, charm quarks are too heavy to be significantly produced
thermally to satisfy this statistical model. However, assuming a full thermalisation of the charm
quarks produced in the primary hard scatterings, and that the bound states form close to the
freezing of the medium, the statistical hadronisation predicts an enhancement of charmonia via
recombination of the charm quarks at hadronisation time [99]. The comovers model [100] solves
a rate equation using a cross section of final state interactions with surrounding particles (the
comovers) fitted on measurements. It stays agnostic with regard to the nature of the particles
that trigger J/ψ dissociations or recombinations. Finally, as mentioned in section 2.4, transport
models [90–92, 101] also solve a rate equation including dissociation and recombination processes,
implementing the diffusion properties of the QGP through Boltzmann or Langevin equations.
The typical form of the time-dependent rate (from Zhao and Rapp in Ref. [91]) is:

dNψ

dτ
= −Γψ(T )[Nψ −N eq

ψ (T )] (2.6)

where the equilibrium yield N eq
ψ (T ) is dampened (from the purely statistical expectation) with

a relaxation time implementing a partial charm thermalisation, and the dissociation/formation
rate Γψ(T ) considers all the processes g + ψ ↔ g + c + c , where g can be a gluon or any light
(anti)quark.
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Beauty recombination

The bb cross section is much smaller, so the recombination of beauty quarks, even at the
high LHC temperature and energy, would be small if any. However, the primary production of
the most excited bottomonium states is very suppressed, and recombination is more efficient for
states of larger size (in which quarks that are less close in phase space can bind). Therefore,
recombination might produce a significant part of the observed excited bottomonium states –
especially when considering the recombination of beauty quarks that were previously dissociated
by QGP interactions, as does Ref. [102]. Most of the models quoted above for charmonia also
computed the expected modification (and elliptic flow) of bottomonia, including its possible
regeneration – e.g. the Du, Rapp, and He transport model [103], or the heavy quark quantum
dynamics from Islam and Strickland [89].

Charm-beauty recombination

The cross section for direct production of Bc mesons in pp collisions is small compared
to other B mesons and to charmonia (see section 2.2). But in PbPb collisions, heavy quark
recombination could be a significant Bc production mechanism. A b quark produced in a given
hard scattering could recombine with one of the numerous c quark from another nucleon-nucleon
collision (see the sketch of Fig. 2.2). In terms of purely statistical hadronisation, this process
scales linearly with the number of charm quarks, contrarily to the recombination of J/ψ mesons
that scales quadratically with it. However, if this is a significant mechanism, the Bc yields
might be dramatically augmented compared to the expectations from Ncoll-scaling, considering
the small primary production expected from the pp cross section. Schroedter, Thews and
Rafelski [104] predicted already in 2000 (not long after the discovery of the Bc meson) an
enhancement of up to 103 − 104. They used a simple kinetic model for the recombination and a
generic QGP expansion model; an important caveat is that they neglected final state interaction
with the medium that could suppress these produced states. Liu, Greiner and Kostyuk [105]
predicted in 2013, both with a statistical coalescence model and with a transport model, a
modification factor reaching 2 to 18 in the most central collisions, depending on how much heat
exchange between the heavy quarks and the medium is considered in the potential. The authors
do not provide a pT dependence of the predicted Bc yields. Fig. 2.9 shows these two predictions.

Figure 2.9: Left: Number of Bc produced per bb pair predicted for RHIC by Ref. [104],
versus the initial QGP temperature, and for various QGP volume and relative quark speed
assumptions. The values of order 0.05 should be compared to the values 10−5−10−4 expected
at RHIC in the vacuum. Right: RPbPb(B+

c ) versus Npart predicted at LHC at σNN = 2.76TeV
by Ref. [105], for two hypotheses (V = U or V = F ) on the heavy quark potential inputted

in the Schrödinger equation solved to provide the dissociation temperature.
——–

Rapp et al. provided, upon request, a prediction of the inclusive RPbPb(B+
c ), based on a

transport model already applied to the modification of charmonia [91] and bottomonia [103] in
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the QGP. Their paper is in preparation, along with the pT dependence that would be needed for
a comparison to the results of this thesis. As they predict a large fraction of the produced yield to
come from regenerated Bc mesons rather than from primary production in hard scatterings, the
shown results depend a lot on the assumed Bc cross section in pp in the denominator of the RAA.
Two different cross sections were hence considered, based on existing measurements. I provided
the pp measurement of this thesis to the authors for more consistent future estimates. Fig. 2.10
shows that both assumed pp cross sections lead to RPbPb of the order of unity, without strong
dependence on Npart. Yao also provided a set of predictions, based on Ref. [102]; it includes a
pT dependence which makes it comparable to the results of chapter 9, so it is discussed there.
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Figure 2.10: RPbPb(B+
c ) versus Npart, predicted by Rapp et al. (unpublished work from the

authors of Refs. [91, 103]) at √s
NN

= 5.02TeV, for two assumptions on the Bc cross section in
pp. Most Bc mesons escaping the QGP originate from recombination processes in this model.

——–

A central caveat for all these predictions is that recombination processes are relevant mostly
at pT . mBc

: first because most of the charm quarks present in the QGP have low pT, and
second because the recombining quarks need to have a small relative momentum (typically not
larger than the binding energy) to be able to recombine. However, as explained in section 5.3,
the acceptance of the CMS detector only allows to detect Bc mesons of relatively high transverse
momentum, typically pT > 6 GeV. Therefore, a majority of the Bc mesons produced by recombi-
nation should have a pT lower than the acceptance threshold of CMS. Some remnant recombined
Bc mesons can though be hoped for in the lowest reachable pT region. The possible resulting en-
hancement shall be partly compensated by all suppression mechanisms mentioned earlier. Most
models predict that the majority of Bc mesons produced in the primary hard scatterings are
dissociated in the medium; however this study [106], considering no regeneration and only the
gluon fusion production mechanism, still shows substantial expected yields in PbPb collisions.

Let us summarise what motivates the experimental study of Bc mesons in heavy ion collisions.
At high-pT, it can bridge the gap between charm and beauty energy loss. At lower pT, it
can provide a unique insight into the recombination mechanism. It also connects the physics
of charmonia and bottomonia, notably in terms of the colour screening of the heavy quark
potential. The measurement of the modification of the Bc meson in PbPb collisions performed
in this thesis will thus help understanding both energy loss and hadronisation dynamics of
heavy quarks in the QGP. The PbPb nuclear modification factor of the Bc is measured here
both as a function of the (partially reconstructed) pT and of the collision centrality. The QGP
mechanisms discussed in this chapter are indeed expected to depend on these two variables.



“Neuf l’outil n’est pas fait, il faut que s’établisse entre
lui et les doigts qui le tiennent cet accord né d’une
possession progressive de gestes légers et combinés,

d’habitudes mutuelles et même d’une certaine usure.”

———–

Henri Focillon, Vie des formes, éloge de la main,
1934, p. 34.1

Chapter 3

How?
Analysis strategy with CMS

As shown in chapter 2, studying the Bc meson in heavy ion collisions sheds light on heavy
quark hadronisation and energy loss. However, measuring its production in heavy ion collisions
has never been achieved, notably because of the lower available luminosities and the important
underlying event activity in these collisions. This thesis demonstrates the first observation of Bc

mesons in PbPb and pp collisions at a centre-of-mass energy per nucleon pair of√s
NN

= 5.02TeV,
and the measurement of the corresponding cross sections and nuclear modification factor. This
chapter shows the means used for this accomplishment, starting with the context of CERN
and its main accelerator, the LHC, in section 3.1, and the apparatus of the CMS detector in
section 3.2. The global analysis workflow is reviewed in section 3.3.3, referencing each part of
the coming analysis. In section 3.4, I explain the partial blinding used for the PbPb dataset.
Finally, section 3.5 details the extraction and generation of the data and simulated samples used
in the analysis, along with their normalisations.

3.1 CERN and the LHC

CERN, the European Council for Nuclear Research (Conseil Européen pour la Recherche
Nucléaire), was founded at the French-Swiss border close to Geneva in June 1953, when the
CERN Convention was signed by 12 member states. Its missions and principles were then
declared, including a policy of open access, a budget shared among member states, and more
importantly peaceful and world-class fundamental research in nuclear physics. Most of its current
research now deals with sub-nuclear physics, justifying the less used but more appropriate CERN
name of European Laboratory for Particle Physics. Nowadays, 23 countries are member states,
and 10 are associate member states. CERN has 2500 employees, but about 12 000 researchers of
110 nationalities participate in its activities, operating the experiments or analysing their results.
In this section, I first present a brief history of CERN and its achievements (section 3.1.1), then

1Translation by Luc Deitz: “When new, a tool is not ready; between itself and the fingers that hold it, that
kind of agreement must come about which is the result of a progressive mastery of gestures both gentle and
combined, of mutual habits, and even of a certain wear.”
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I describe CERN headliner: the LHC (section 3.1.2), that manages to host both the largest
cryogenic system of the world – below the temperature of interstellar space – and the hottest
place of today’s Universe, in heavy ion collisions! Section 3.1.3 describes the main experiments
at the LHC and the discoveries they have carried out.

3.1.1 Brief history of CERN facilities and discoveries

3.1.1.1 First generation accelerators

After Felix Bloch laid the first stone of CERN in July 1955, the international collaboration
kept up to its stated mission of pushing the boundaries of human knowledge by building and
maintaining unique facilities for unparalleled research. For most of its history, CERN provided
the research field with accelerators at the highest energy in the world, as shown in Fig. 3.1.

Figure 3.1: Center-of-mass energy of lepton and hadron accelerators versus the time they
began to operate. The tribute goes to CERN for the following accelerators: ISR, Spp̄S, LEP

and LHC. Figure from Ref. [107].
——–

The Synchro-cyclotron (SC) was the first accelerator built, and started to accelerate protons
to 600MeV in 1957 thanks to magnets of 5 m diameter. It soon started discoveries, observing
the rare electron decay of the pion [108], for which a few previous experiments had wrongly
claimed an upper limit of its branching fraction lower than the theoretical prediction. Its fo-
cus shifted to nuclear physics from 1964, including the production of rare isotopes, and it was
decommissioned only in 1990.

The Proton Synchroton (PS) was the second CERN project, using more modern technologies
compared to the SC, in a ring of 230 m circumference. Contrarily to a cyclotron where the
accelerated particles spiral out as they are accelerated, a synchrotron increases progressively its
electromagnetic field to match the energy of the particles, allowing them to circulate in a circular
beam of constant radius. The PS started accelerating a beam of protons to an energy of 24GeV
in 1959. In its first years, it provided beams for a neutrino experiment, a muon storage ring, and
multiple bubble chamber experiments, including Gargamelle that was receiving neutrinos from a
target hit by the PS beam. It then served as pre-accelerator successively for the ISR, SPS, LEP,
and LHC accelerators, and still functions nowadays after more than 60 years of service.

The Gargamelle bubble chamber, containing 12 m3 of liquid Freon, detected neutrinos from
the PS beam hitting a fixed beryllium target, from 1971 to 1979. It discovered in 1973 both
leptonic (νµ + e → νµ + e, with a yet-undiscovered Z0 boson mediator) [109] and hadronic (such
as ν + p/n → ν + p/n) [110] neutral currents, by comparing the candidate events with the
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equivalent charged current candidates mediated by the then-hypothesised W± boson. The elec-
troweak unification in the Standard Model, evoked in section 1.2, was conceived in the preceding
years by Salam and Ward [111], Glashow [112], and Weinberg [113], notably to explain the
observed charged currents (now interpreted as the exchange of a W± boson). Its credibility was
increased by the proposition of the Higgs mechanism (in three papers in 1964 by Higgs [114],
Englert and Brout [115], and Guralnik et al. [116]) that allows for the electroweak gauge
bosons to be massive through the spontaneous breaking of the electroweak symmetry, and by
the proof of renormalisability of the resulting gauge interactions by t’Hooft [117]. However, a
neutral weak boson was needed to complete the SU(2)× U(1) group assumed to unify the elec-
troweak interactions.1 The discovery of neutral currents by Gargamelle was hence the central
experimental evidence for the Standard Model.

3.1.1.2 The collider era

The Intersecting Storage Rings (ISR), consisting of two rings of 942 m circumference, was
the world’s first hadron collider. It ran from 1971 to 1984 at a center-of-mass (c.o.m.) energy
of 62GeV, this high energy being allowed by colliding beams.2 It demonstrated many collider
technologies, particularly directed to increase or monitor the beam luminosity. For example,
stochastic cooling damps the betatron oscillations of the beam to increase the beam quality [118],
and is used at the LHC as well in CERN decelerators such as the AD; and the Van der Meer
scan for luminosity measurement, still used at the LHC, was conceived for the ISR [119]. The ISR
also established large magnets and 4π geometric acceptances as the central features of detectors
at a particle collider.

The 6.9 km-circumference ring of the Super Proton Synchrotron (SPS) accelerated proton
beams to a 300GeV energy from 1976, and now serves as a pre-accelerator for the LHC, acceler-
ating protons to 450GeV. It nowadays also provides proton beams for fixed target experiments
as COMPASS, NA61, and NA62. It also accelerated electrons and positrons to be injected in
the LEP (1989–2000, cf section 3.1.1.3). During the 1981–1991 period, it was called the Super
Proton–Antiproton Synchrotron (Spp̄S) and also accelerated antiprotons, to collide them with
protons up to a c.o.m. energy of 630GeV. Carlo Rubbia, Peter McIntyre and David Cline
had the idea of this transformation, suggesting this new machine would be able to produce the W
and Z bosons, so long awaited since the Standard Model was conceived and arguably confirmed
by the observation of neutral currents in Gargamelle. The experiments UA1 and UA2 placed at
the interaction points of the Spp̄S beams achieved the observation of the W [120, 121] and
Z [122, 123] bosons, unequivocally proving that the Standard Model was the best available
understanding of the electromagnetic and weak forces. In parallel to the theoretical advances
on the electroweak unification, the quark model was developed by Gell-Mann [36] to explain
the zoo of ‘strange’ hadrons discovered in the 1950’s. The original three quarks were based
on an approximate flavour-SU(3) group, broken by the mass differences of the u, d, and s
quarks [124]. But to understand the existence of the newly-discovered Ω

−(sss) baryon with
1I warmly recommend reading this excellent review from Glashow on the emergence of the Standard Model:

https://inference-review.com/article/the-standard-model.
2Let us show the potential of colliding two accelerated beams of particles of respective energies E, compared to

sending a beam of energy Ebeam = 2E−m2 of particles of mass m1 onto a fixed target of particles of mass m2. In
the first case, the laboratory frame coincides with the centre-of-mass frame, so the c.o.m. energy is simply

√
s =

2E. In the second case,
√
s is obtained via a Lorentz transformation from the lab to the c.o.m. frame. The c.o.m.
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= 32 or 83, for proton beams at E = 980GeV

(TeVatron) or E = 6.5GeV (LHC Run II).

https://inference-review.com/article/the-standard-model
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regard to the Pauli exclusion principle, the three strange quarks needed to have different quan-
tum numbers. The colour charge was therefore introduced, resulting in the QCD theory (see
section 1.3.1) based on the colour-SU(3) group [125]. With this last piece, the Standard Model
group SU(2)left ×U(1)hypercharge × SU(3)colour as we still know it today was finally formed; it is
further explained in section 1.2.

3.1.1.3 Towards modern machines

Of more direct interest to this thesis is that the SPS accelerated heavy ion beams from 1986
to 2003. In a first phase (until 1993), existing facilities were used to accelerate oxygen (16O) and
sulphur (32S) beams to 60 and 200GeV per nucleon, collided on fixed targets (of sulphur, oxygen,
and others) in multiple experiments.1 Theoretical predictions of the consequences of the existence
of QGP were flourishing in the 1980’s, including a central rapidity plateau of hadron production
(due to the longitudinal expansion of the medium foreseen by Bjorken [126]), and the enhanced
production of hadrons containing strange quarks [127]. Evidence for the latter was one of the
first experimental signals of the existence of QGP: the ratio of Ξ baryons (containing two strange
quarks) and Λ baryons (containing only one) was found (with a relatively high probability)
to be larger in sulphur-tungsten collisions than in pp collisions by the WA85 experiment [29].
In a second period, from 1994 to 2002, SPS accelerated lead (207Pb) beams to 158GeV per
nucleon, which collided on lead fixed targets in seven experiments specifically conceived for
heavy ion physics. Other signatures of the QGP were then brought to light, such as a strong
elliptic flow, and the suppression of J/ψ mesons in central collisions (see Fig. 9 of Ref. [128]
that shows a ratio of J/ψ to Drell-Yan events, indeed decreasing from peripheral to central
collisions). This finally lead to the CERN announcement of the discovery of a “new state of
matter” in February 2000.2 The SPS still provides today proton and ion beams for many fixed-
target experiments as COMPASS (notably studying the nucleon spin and the parton transverse
momentum distributions in the proton) or AWAKE (studying the feasibility of plasma wakefield
acceleration for future accelerators).

CERN also worked at decelerating particles for antimatter studies. The Low Energy Antipro-
ton Ring (LEAR) ran from 1982 to 1996, decelerating antiprotons coming from the Antiproton
Accumulator Complex (AAC), that stored antiprotons produced by the PS beam. The LEAR
allowed the PS210 experiment to create the first antihydrogen atoms in 1995 [129]. The
LEAR and the AAC decelerating functions were taken by the Antiproton Decelerator (AD) in
2000, which, still today, brings antiprotons down to a kinetic energy of 5.3MeV. Its experiments
are now dedicated to studying the spectra of small antimatter atoms, and to find out if gravity
acts the same on antimatter than on matter. The LEAR machine was converted in 2005 to the
Low Energy Ion Ring (LEIR), used to accelerate the ions that are then injected into the PS, and
ultimately into the LHC.

The large and ever-increasing number of staff, users, projects, and experiments, could be a
reason why CERN was the stage of the creation of one of the most revolutionary technology for
information management and sharing: theWorldWideWeb. It was invented by Tim Berners-
Lee in 1989 as a “wide-area hypermedia information retrieval initiative aiming to give universal
access to a large universe of documents”, according to the first ever website created in 1991, that
CERN has recreated3. The first project proposal can also be found there.4

Getting now closer to the LHC era, the next large accelerator at CERN was the Large
Electron–Positron Collider (LEP), colliding electrons with positrons at c.o.m. energies of 91 to

1A beam of energy 200GeV per nucleon on a fixed target corresponds to a c.o.m. energy per nucleon pair of
√
s
NN

= 19.5GeV, hence one (two) orders of magnitude smaller than at RHIC (LHC).
2https://home.cern/news/press-release/cern/new-state-matter-created-cern
3http://info.cern.ch/hypertext/WWW/TheProject.html
4http://info.cern.ch/hypertext/WWW/Proposal.html

https://home.cern/news/press-release/cern/new-state-matter-created-cern
http://info.cern.ch/hypertext/WWW/TheProject.html
http://info.cern.ch/hypertext/WWW/Proposal.html
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209GeV, from 1989 to 2000. Its tunnel accommodates today the LHC. LEP still holds the high-
energy record for lepton colliders, the potential future competitors being the linear International
Linear Collider (ILC) project in Japan or the circular FCC-ee (Future Circular Collider) at
CERN. Beyond the precise measurement of many electroweak boson properties, one of its main
accomplishment was to measure the number of light neutrinos (with mν < mZ/2) thanks
to the measurement of the mass width of the Z boson production, via the Z cross section as a
function of the c.o.m. energy. The legacy measurement [130] of Nlight ν = 2.9840± 0.0082 leaves
no doubt for other values than 3, hence strongly constraining models that add a fourth fermion
generation to the SM. The high precision of various Z observables also allowed for the prediction
of the mass of the top quark with a Standard Model fit (172+22

−24 GeV in 1994, p.137 in Ref. [131])
just one month before the first indication of its production at TeVatron [132]. LEP was also
on the verge of finding the Higgs boson, the accessible phase space giving 95% confidence lower
limits to the Higgs mass of 114GeV; false hopes even emerged from a 1.7σ statistical fluctuation
at 115GeV. It almost called for an upgrade of the LEP magnets to slightly rise the centre-of-mass
energy, which was abandoned not to delay the construction of the LHC.

3.1.2 The Large Hadron Collider

3.1.2.1 The LHC injection system

Fig. 3.2 shows the current complex of accelerators at CERN. Many pre-accelerators aim
at progressively rising the energy of protons or ions before injecting them in the Large Hadron
Collider (LHC). This is the largest machine ever built by humans, in a 26.7 km tunnel lying from
50 to 175 m underground in the Geneva area, both in France and Switzerland. It accelerates both
protons (hydrogen nuclei), and lead (208Pb) and xenon (129Xe) nuclei, to unparalleled energies
(up to 6.5TeV per nucleon).

Figure 3.2: The CERN accelerator complex.
——–

Let us follow the acceleration path of protons or ions until the LHC beam. It all starts with
a bottle of gaseous H2 or a from a solid block of lead that is heated into a vapour, transformed
into a plasma by microwaves before being accelerated. Only half a gram of lead is used in two
weeks of running heavy ion collisions!
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Chain of accelerators

In proton runs from 1978 to 2018, the hydrogen was stripped off its electron with an electric
field, leaving only H+ ions to be accelerated to 50MeV in the 36 m long linear accelerator Linac2.
The latter has been replaced for the future runs by Linac4 (a 86 m long line, 12 m under the
surface), which rather accelerates H− ions to 160MeV before stripping away its two electrons.
The protons are then injected in the Proton Synchrotron Booster (PSB) to be accelerated to
1.4GeV (or 2GeV when coming from Linac4), before injection in the PS. The Linac4 upgrade will
allow to inject more protons in the subsequent accelerators, in view of the coming high-luminosity
phase of LHC. The PSB can also direct its beam to fixed-target experiments as ISOLDE, which
produces many different radioactive isotopes for later study by 90 associated experiments.

In lead (or xenon, but it is ignored in the numbers given in this paragraph) runs from 1994
until now, the ions are partially stripped, mostly to 208Pb29+, thanks to collisions with heated
electrons in the plasma of the Electron Cyclotron Resonance ion source. Then, they enter Linac3
with an energy of 2.5 keV per nucleon, and are accelerated to 4.2MeV per nucleon. Before being
injected into the LEIR, they need to be stripped down to Pb53+ by passing through a carbon foil
about 0.5 µm thick. Before the construction of LEIR in 2005, Linac3 injected ions in the PSB.

LEIR takes in from Linac3 bunches (defined in section 1.5.1) of ions long of hundreds of
microseconds, and shapes them into four much shorter (about 200 ns) and denser bunches for
future injection in the PS [133]. This increase of beam quality (i.e. the decrease of emittance, that
describes the beam transverse size and momentum spread) uses electron cooling, in which a beam
of electrons is coupled to the ion beam, and the lower-momentum electrons take momentum from
the ions to reach thermal equilibrium. The increase of beam intensity comes from accumulating
pulses (i.e. bunches from Linac3) during many turns of the beam. Each 2.5 seconds, two bunches
of 2.2× 108 ions are formed, then accelerated to 72MeV per nucleon, and then stored in the PS.

The PS takes in bunches of protons or ions, combines them into trains of bunches and
accelerates them to 26GeV for protons, or to 5.9GeV per nucleon for Pb nuclei, thanks to about
300 magnets at room temperature for beam deflection and focusing, and straight sections with
radiofrequency cavities for acceleration (section 3.1.2.2 will give some explanations on beam
deflection and acceleration). The SPS then brings the protons to 450GeV or the Pb nuclei to
177GeV per nucleon, before finally injecting them in the LHC where they are accelerated to
their final energy: 5.02TeV per nucleon pair (2.51TeV per nucleon for each beam) for the data
studied in this analysis, but protons were accelerated up to 13TeV in other runs. The design
c.o.m. proton collision energy is 14TeV, which is aimed for in future runs. Two beams are
actually extracted from SPS and sent in opposite directions in two parallel beam pipes of the
LHC. The PS and SPS beams are also distributed to many fixed-target experiments (such as
AWAKE or COMPASS) or to the AD (for antimatter studies).

Bunch schemes

The LHC beam is actually composed of bunches of particles (see section 1.5.1), clearly
delimiting the periods in which collisions take place in the detectors. Each bunch contains about
1× 1011 protons, or 7× 107 Pb nuclei [133]. The bunches are about 2 ns (60 cm) long, and about
200 µm large (this transverse width depends on the machine performance, and is strongly reduced
at the collision points). Depending on the performance of the machine, running conditions, and
target luminosity, the scheme of trains of bunches during the injections in each (pre-)accelerator
vary [134].

In optimal pp running conditions, the bunches are separated by 25 ns in the LHC – with some
spots along the whole circumference being kept empty for various security reasons (including a
secure time to dump the beam in case of urgent failure). In this optimal case, the PS forms trains
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of 72 bunches1, and groups of two to four trains (or batches) are then sent into the SPS. They are
then injected in the LHC, which constitutes one SPS cycle. After 12 cycles (each finishing with
the insertion of the batches), of 22 seconds each, the LHC length (equivalent to 89 µs at speed
c) is fully filled (except for security gaps) with about 2800 bunches. In the 2017 pp run studied
in this thesis, the number of bunches was somewhat smaller than in these optimal conditions.

In PbPb conditions, the filling scheme is different, following the constraints of the output
of LEIR. The two bunches inserted from LEIR are shaped into four bunches in the PS. Those
bunches of Pb53+ are then extracted and passed through a 0.8 mm thick aluminium foil to strip
the remaining electrons and obtain lead nuclei 208Pb53+. Successive injections into the SPS
progressively fills it with a train of 8 to 13 sets of 4 bunches separated by 100 ns. Sending this
train in the LHC ends the 54 s SPS cycle – this time being limited by the injection time of the
two LEIR bunches in the PS. It hence takes 10 minutes to fill the LHC with the 592 bunches
needed in the nominal ion runs. At the end of the 2018 PbPb run, a 75 ns bunch spacing could
be used to increase the luminosity, thanks to the smooth operations of the machine.

3.1.2.2 The LHC apparatus

The two main functions of the LHC, as well as of the PS and SPS, are to accelerate and
focus the beams, using magnets and radiofrequency cavities, respectively. The beam also needs
to circulate in a very high vacuum. Many superlatives can be used for each of these systems, as
suggests the large size of the whole apparatus.

Electromagnets

The beam first needs to be bent – the whole idea of a circular accelerator! To this goal, the
LHC uses 1232 dipole magnets of 15 m length and weighing about 25 tons each. They apply a
8.3 T magnetic field to the nuclei, not so far from the current world records of the order of 40 T
despite the fact that they were conceived twenty years ago. The two beams circulate close to each
other, and are both contained in parallel tunnels within the one-piece stainless steel container of
the ‘2-in-1’ dipoles.

The beam also needs to keep a small transverse section to obtain high luminosities at the
collision points. Mainly 392 quadrupole magnets handle this focusing task, but there are also
smaller hexapole, octupole and decapole magnets close to the dipoles to correct the imperfections
of their field. To reduce even more the beam section at the point where the two beams collide
head-on, sets of three quadrupole magnets are used. Two such inner triplets are placed around
each collision point, and reduce the beam width from 200 to a few micrometers. Additional
dipoles separate again the beams after they collided.

All these electromagnets provide a magnetic field produced by the passage of electric current
in coils made of niobium-titanium (NbTi) wires. To transport the 100 MW of electricity needed
to run the accelerator (about a fifth of the electricity consumption of Geneva), it is wise to
avoid losses by Joule heating, using superconducting coils. This is possible thanks to 120 tons of
superfluid helium bringing them at a temperature of 1.9 K (colder than outer space!). This is not
so heavy compared to the 36,000 tons of magnets that need to be cooled; the helium superfluidity
indeed gives it a very high thermal conductivity.

Radiofrequency cavities

Almost all the acceleration steps of the presented accelerator chain use the technology of
radiofrequency (RF) cavities. Their main characteristic is that they amplify electromagnetic
standing waves, which accelerate the (positively charged) particles that are positioned in the

1The 72 bunches are separated by 25 ns at close to the speed of light, meaning they total a length of 540 m,
slightly less than the PS circumference.
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half cycle of the wave that shows a positive electric field, and decelerate particles that are in the
other half cycle, where the field is negative. This conveniently creates the bunches of particles
mentioned above, and smooths out their longitudinal momentum and position dispersion. The
‘late’ particles are indeed more accelerated than the ‘in-time’ particles, and the particles ‘in
advance’ are less accelerated.

The frequency and position of the wave is tuned so that the bunches are positioned in the
accelerating half of the wave cycle. The potential energy of the RF waves is hence converted
into kinetic energy of the beam particles: the beam accelerates. The LHC cavities oscillate at
400 MHz, so their wavelength is ten times smaller than a 25 ns separation between two bunches.
As a consequence, the bunches are made about ten times smaller than the bunch separation.

A klystron attached to a hole in the cavity generates these RF waves. It holds a high-power
electron beam that passes through (relatively low-power) input RF waves, in which electrons are
bunched as in the main cavities. Then an output cavity of the same resonant frequency is placed
in the half cycle where the wave decelerates the electrons; in other words the electrons excite the
RF waves of the output cavity by yielding them their kinetic energy. These excited high-power
RF waves are transmitted to the main RF cavities through waveguides, that are rectangular
metal pipes.

The peculiar cavity shape makes the electric field resonate to a maximum intensity, with a
high quality factor. The latter is notably possible thanks to a superconducting regime at 4.5 K
for the niobium coating of the copper structure; it makes the losses in the currents of the cavity
walls negligible compared to the power transferred to the beam. On the LHC ring, there is one
straight section with 16 such cavities (8 per beam). With a voltage of 2 MV each (that is however
not fully transferred to the particles), they accelerate the beams from the SPS energy to the final
energy in about 20 minutes, corresponding to more than ten million turns in the tunnel.

Vacuum system

There are three vacuum systems along the LHC, totalling 104 km of pipes and a volume of
15.000 m3. 50 km of those pipes maintain a 10−9 bar vacuum to thermally insulate the cooling
system of the superconducting magnets, and the helium line that distributes the coolant to them.

The other 54 km of pipes (27 km per beam line) welcome a 10−13 to 10−14 bar vacuum around
the beams so that they do not collide with gas particles; this would lower the luminosity available
for the experiments and possibly damage the beam pipes. This pressure, as low as the one on
surface of the Moon, is maintained through cryogenic pumping in the 24 km of the ring that
welcome superconducting bending magnets: the gases condense on the refrigerated walls and
adhere to their surface. The vacuum system in the remaining 3 km of the ring that are at room
temperature is ‘baked’ at 300 ◦C. This pumps out residual gas, thanks to a special coating,
developed at CERN, covering the beam pipe.

3.1.2.3 LHC pre-history: path to the first collisions

The idea of LHC existed 30 years before its first physics runs: in 1977, John Adams, as
technical director of CERN, initially pushing for building a hadron collider rather than LEP,
pointed out [135] that the LEP tunnel should be large enough to welcome magnets for a hadron
collider at a few TeV. In 1984, as the construction of LEP was beginning, the seminal Lausanne
ECFA (European Committee for Future Accelerators) workshop [136] was held. It aimed at kick-
starting the necessary R&D efforts on magnets, and solidifying the LHC physics case, which
was already centred on the Higgs boson and mentioning supersymmetry. The project was then
competing with the Superconducting Super Collider (SSC), a USA project approved in 1987 but
abandoned in 1993 after 23 km of tunnel were already dug (out of the 87 km of planned tunnel).
The SSC was aiming at

√
s = 40TeV pp collisions, but with a lower luminosity than LHC; it
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was also lacking international support, as it was politically presented as a US-centered project
rather than an international one as the LHC.1

In 1987, the possibility of pp̄ collisions was set aside, for pp collisions at 13 to 15TeV with an
instantaneous luminosity of 1033 cm−2s−1 (multiple interactions per bunch crossing were initially
not considered). In the LHC Conceptual Design Report in 1995, the original idea of installing
LHC on top of LEP to run both simultaneously was also abandoned, because the settings of the
necessary magnets would have been too complicated. The machine design, construction, and
budget were approved in 1994. Letters of intent for possible detectors were written in 1992, and
the ATLAS and CMS detectors were approved in 1997. Approval for the LHCb and ALICE
experiments followed a few years later.

The on-site construction started after LEP stopped taking data in 2000. The first beam
circulated in the LHC ring on September 10th, 2008. The joy was short, as on September 19th,
a fault in an electrical bus joining two magnets caused local resistive heat losses, which caused
in turn a quenching of the neighbour magnet – when the magnet regime (here the temperature)
is changed too fast, making it lose superconductivity. The electric discharge also produced an
electric arc that pierced the helium cryogenic system, due to which a total of 6 tons of helium
were lost, and many magnets heated up and quenched. The chain of events lead to quite dramatic
damage, and operations have been stopped for more than a year to repair or replace dozens of
dipole magnets, repair the cooling system, and install safety procedures to avoid such events
in the future. Finally, the first collisions unrolled in November 2009, and the first pp collisions
at 7TeV happened in March 2010, without significant incident. It was chosen to run at half
the nominal energy, because the full energy would have needed more preparation time for the
machine. The first PbPb collisions took place soon after, in November 2010.

3.1.2.4 Past and future runs

The running schedule of the LHC depends on the needed technical stops, and on the end-of-
year stops, traditionally happening in the heart of winter when electricity is more expensive. At
the restart each year, the machine needs to be warmed up and tuned, so that the first physics
collisions generally take place in April. Between each run of two or three years, a long shutdown
of similar duration serves to repair or upgrade the LHC and its detectors. Each year, 6 to
7 months are dedicated to pp collisions at the highest possible luminosities, and typically one
month at the end of the year concerns heavy ion collisions or pp reference runs at low pile-up (see
section 5.2 for explanations on pile-up). Fig. 3.3 details the integrated luminosities accumulated
in most of the runs that LHC performed. The definition of luminosity is given in section 1.5.3.
The given luminosity numbers correspond to the one delivered by the beam, but due to minor
detector failures, the one recorded by the experiment is often a few percent smaller.

The first run (Run I) saw data collection in pp collisions from April to November 2010 and
2011 at a c.o.m. energy

√
s = 7TeV, then from April to December 2012 at

√
s = 8TeV. About

75% of the 1034 cm−2s−1 nominal instantaneous luminosity was reached steadily in 2012. There
were also two 1-month PbPb runs in 2010 and 2011, of respective luminosities 9 and 184 µb−1,
at a c.o.m. energy per nucleon pair of √s

NN
= 2.76TeV. pPb and pp collisions at

√
s = 5.02TeV

were also recorded during respectively three weeks and three days in February 2013.

A two-year shutdown (LS1) followed, during which magnets were trained to reach the field
needed to increase the beam energy, and the wear and tear damage of Run I was repaired. Some
sub-detectors were also upgraded. The pixel tracker and endcap RPC of CMS got a fourth
layer – see section 3.2 for a description of the CMS detector. The ATLAS detector benefited
from an additional innermost tracker layer (IBL) and a new luminosity detector (LUCID)– see

1This is, to me, a bright example of the importance of international peaceful collaborations (such as the CERN
ones) in carrying out breakthrough scientific experiments.
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Figure 3.3: Luminosity delivered by LHC to the CMS detector in the high-luminosity pp
runs from 2010 to 2018 (top left), in the 2017 pp reference run at 5.02TeV (top right), and in
the heavy ion runs of Run II (bottom; here the proton-equivalent luminosities are given, to be
divided by A = 208 for pPb and A2 for PbPb). The luminosity increased significantly from

year to year. Figures from Ref. [137].
——–

section 3.1.3.1 for a short description of ATLAS, ALICE, and LHCb detectors. The ALICE
detector installed an extended electromagnetic calorimeter for larger acceptance and got most of
its electronics replaced. LHCb will undergo a major upgrade in the second long shutdown (LS2).

In the second run (Run II) from 2015 to 2018, five times more pp luminosity was collected
than in Run I.1 The bunch separation improved to 25 ns, compared to the 50 ns used in Run I.
The energy was risen to

√
s = 13TeV – and not to 14TeV due to the magnet training being slower

than expected. In 2017 and 2018, the typical instantaneous luminosity was double the design
one (i.e. 2× 1034 cm−2s−1). This run was also very rich for heavy ion physics, as there were two
3-week PbPb runs in December 2015 (0.55 nb−1) and 2018 (1.8 nb−1) at √s

NN
= 5.02TeV,2 but

also two pp reference runs at the same energy in 2015 (28 pb−1) and 2017 (340 pb−1). A pPb
1A weasel tried to stop this successful operation on April 29th, 2016: it had sneaked in a 66 kV to 18 kV

transformer of the LHC electric network, and sacrificed to cause a short circuit to ground in the transformer. The
LHC started back normal operations ten days later, after the repairs of the local damage caused by the electrical arc
of the short circuit. See https://home.cern/news/news/accelerators/lhc-report-stoat-ally-back-track.

2The reachable c.o.m. energy in heavy ion collisions per nucleon pair depends on the ratio of the number A of
nucleons in the nucleus to its accelerating power proportional to its charge Z. So with the same magnet bending
power than for pp 13TeV collisions, PbPb collisions can reach √s

NN
= Z=82

A=208
×13TeV ∼ 5TeV. In pPb collisions,

only the energy of one of the two beams must be multiplied by Z/A, but the c.o.m. energy is boosted (in the
lab) towards the Pb nucleus, which has less energy than the more efficiently accelerated proton. This slightly
diminishes the energy per nucleon that would be available with a symmetric pPb collision.

https://home.cern/news/news/accelerators/lhc-report-stoat-ally-back-track
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run also collected data at
√
s = 8.16TeV per nucleon for three weeks in 2016. An original xenon-

xenon (XeXe) run of 8 hours also took place in 2017, recording 3 µb−1 of luminosity (equivalent
to 50 pb−1 of pp luminosity). The data used in the Bc analysis presented in this thesis was
collected in the 2017 pp reference run and in the 2018 PbPb run. I had the chance to participate
in the 2018 PbPb data-taking, from the CMS control room.

The current LS2 started in 2019. Magnets are being trained in order to slightly rise the
LHC energy (probably to 13.6TeV rather than 14TeV). Detectors are also undergoing major
upgrades, notably to start preparing them for the approaching High-Luminosity LHC phase (HL-
LHC). LS2 was extended by one year (mainly due to the delays from the Covid-19 pandemic), so
that Run III physics collisions will start in March 2022. ALICE mainly aims at running without
trigger, necessitating an upgrade of the DAQ (Data AcQuisition system), in order to enlarge
by a factor 100 the recorded minimum bias samples; it also renews its silicon tracker and inner
tracker. LHCb increases its readout capacity by a factor 40, to install a software-only trigger
system. It also renews with upgraded technologies all its silicon-based tracking systems and the
RICH particle identification detector. ATLAS installs new muon small wheels at its endcaps and
upgrades its liquid-argon-based ECAL to sustain the higher pile-up (definition in section 5.2)
foreseen in future runs. Finally, CMS changes the photo-detectors in the hadronic calorimeter, as
well as the material of the beam pipe; its major upgrade will take place in LS3 (planned in 2025-
2027), when a highly-granular calorimeter (HGCAL) will replace both the electromagnetic and
hadronic calorimeters in the endcaps, the silicon tracker will be upgraded with trigger capabilities,
and a MIP (minimum-ionisation particle) timing detector will be installed for better pile-up
discrimination and particle identification.

Now what is next? The Higgs boson being discovered, and all searches for phenomena beyond
the Standard Model being inconclusive, future projects at higher luminosities and energies seem
to be the most promising to make a discovery. The luminosity will sharply increase from Run IV,
intended to start in 2027. This upgraded machine, baptised High-Luminosity LHC (or Phase II),
aims at progressively increasing the instantaneous luminosity to 5−7× 1034 cm−2s−1. Heavy ion
runs will continue with a similar pattern, except that a short oxygen-oxygen run is also planned
in Run III. The schedules of Run V and VI are unclear yet, and depend on the approval and
timelines of the future projects. A supposed end-date is 2038, at which point the total recorded
pp luminosity will be about 3000 − 4000 fb−1, which is 10 to 20 times what has been collected
until 2021!

The successor of HL-LHC, not yet approved nor funded, is thought to be the Future Circular
Collider (FCC), first as a lepton collider version (FCC-ee), then as a hadron collider (FCC-hh).
A 100 km tunnel would be excavated and ultimately welcome pp collisions at 100TeV. The
main competitors of FCC-ee are the ILC or the Circular Electron Positron Collider (CEPC) in
China, that would have similar capabilities for precise measurements of Higgs boson properties.
The Compact LInear Collider (CLIC) is also another option at CERN. The main competitor of
the FCC-hh would be the Super proton-proton Collider (SppC), the continuation of the CEPC
project, using the same 100 km tunnel.

3.1.3 Main LHC experiments and results

3.1.3.1 The Big Four (detectors)

The LHC beams cross paths at four interaction points along the ring (see Fig. 3.2), where
four large complementary detectors are placed. The CMS detector [138] is the heaviest one, and
its 14000 tonnes are disposed in concentric cylindrical layers around the beam, with a close to 4π
solid angle geometric coverage. A more detailed description of this general-purpose experiment
is given in section 3.2, along with some explanations of the technologies of the sub-detectors
(some of them being also used in the other experiments). As a spoiler and to compare to the
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numbers given in this section, the low-pT muon threshold goes from 1.2 to 3.5GeV depending on
η. In Run I data, the resolution on charged track transverse impact parameter to the PV was
80 µm (160 µm) at pT = 1GeV and 22 µm (30 µm) at pT = 10GeV in the barrel (endcaps) region.
The transverse momentum resolution was 1% in the barrel and 2.5% in the encaps region, for
pT = 1− 10GeV (worsening to 4 and 20% at pT = 100GeV).

The largest LHC detector is ATLAS (A Toroidal LHC ApparatuS ). Its layout is shown
in Fig. 3.4. It is also a general-purpose cylindrical detector, of 46m length and 25m diameter,
weighting 7000 tonnes. It has a similar physics reach than CMS, but with many differences
in design. This redundancy, although with different experimental methods, was fundamental
to have confidence in the Higgs boson discovery, and will be as important in case of a future
discovery.

Figure 3.4: Layout of the ATLAS detector at the LHC.
——–

ATLAS tracking system contains three sub-systems based on silicon technologies as in the
CMS tracker, and an outermost Transition Radiation Tracker based on transition radiation (to
differentiate electrons from pions) and on straws of ionising gas. In the EM calorimeter, the
accordion-shaped cells sample with liquid argon the energy that was deposited in the interspersed
lead and steel absorbers. The steel of the huge hadronic calorimeter absorbs energy, that is then
measured with scintillating tiles. There are two magnet systems to measure the momentum of
particles: first a 2 T superconducting solenoid only 5 cm thick is placed between the tracking
system and the calorimeters. Then the huge toroidal field, created by the eight 25 m long
superconducting coils so emblematic of the experiment, surrounds the whole detector with a
non-constant field reaching up to 3.5 T. The two endcap toroidal magnets (also each made
of 8 coils) extend the toroidal field lines at forward rapidities. The muon detection system
is composed of sub-detectors placed both inside and outside of the toroidal magnet; they use
four different technologies, including the three used by CMS (RPC, CSC, and drift tubes, see
section 3.2.3). Small muon wheels are currently added (during LS2) to the endcap muon system.
Four sub-detectors close to the beamline help monitoring the luminosity and measuring forward
processes. The resolution of the transverse impact parameter for tracks is typically from 60 µm at
pT = 1GeV to 25 µm at pT = 10GeV, in 2015 pp collisions at 13TeV [139]. The muon transverse
momentum resolution was about 4% at pT = 10GeV and 10% at pT = 4GeV in Run I [140].
ATLAS covers roughly the pseudorapidity range |η| < 2.5 for all detected particles, but also
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measures the energy of forward particles, to be close to hermetic as CMS. The low-pT threshold
for detecting muons is about 3GeV.

The LHCb detector is a forward single-arm spectrometer covering the pseudo-rapidity range
2 < η < 5 (where the Lorentz boost helps the measurement of the displacement of B mesons,
hence the detector name), dedicated to heavy flavour physics, including asymmetry measure-
ments for CP (charge-parity symmetry) violation studies. To this purpose, it has the interesting
feature of reversing its magnet polarity to cancel most systematic uncertainties in asymmetry
measurements. It also has excellent momentum and vertex resolutions, better than ATLAS and
CMS, and can differentiate protons, kaons, and pions, which is impossible with ATLAS and CMS
(until Run III). However the clear disadvantages of LHCb compared to these general-purpose
detectors are the limited η acceptance (notably preventing any missing energy measurement)
and the high sensitivity of the sub-detectors to radiation and occupancy. This is the main reason
why the luminosity delivered to the interaction point is at least ten times smaller than to ATLAS
and CMS, and why only the most peripheral PbPb collisions have been studied (only in Run II),
with centrality> 50%. This limit might be improved to centrality> 30% in Run III thanks to
detector upgrades. A transverse view of this detector is shown in Fig. 3.6.

Figure 3.5: Layout of the LHCb detector at the LHC in Run I.
——–

The most upstream (closest to the interaction point) LHCb sub-detector is the mobile Vertex
Locator composed of silicon strips set in perpendicular directions. Then the first Ring Imaging
CHerenkov (RICH) detector identifies particles at low momentum through Cherenkov cones.
Other silicon strips are then placed right before the superconducting magnet of integrated mag-
netic field 4 Tm. Then come three 4-layer T-stations, composed of silicon strips, and straw tubes
for those further from the interaction point. Then the second RICH identifies particles at higher
momentum than RICH1. Muon stations (one before the calorimeters, and four downstream of
them) use iron absorbers and multi-wire proportional chambers. The calorimeters alternate lead
and iron absorbers with scintillating material. In Run I, the momentum resolution of long tracks
(reconstructed using all tracking-related sub-detectors) was about 0.5% for p < 20GeV and < 1%
at all momenta; and the resolution of the track transverse impact parameter went from 50 µm
at pT = 1GeV to 20 µm at pT = 10GeV [141]. It also has an average misidentification rate of
pions into kaons of 3% for a kaon efficiency of 90%, over a large pT range.

Lastly, the ALICE (A Large Ion Collider Experiment) detector is dedicated to heavy ion
studies, though it also studies pp collisions, notably for topics concerning low-pT behaviour, total
cross sections, or particle multiplicity. A global view of this detector is shown in Fig. 3.6. The
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strongest advantage it has over heavy ion analyses at CMS and ATLAS is its ability to recon-
struct low-pT particles and to identify them (including pion, kaon, and proton discrimination).
This allows one to measure for instance D and J/ψ mesons down to null pT, e.g. with muons
reconstructed with reasonably high efficiency down to pT = 1GeV. ALICE mainly reconstructs
the bulk of charged particles and electromagnetic probes in the central rapidity region (typically
|η| < 1), and muons in the forward region −4 < η < −2.5 to measure heavy-quark resonances
with a good momentum resolution.

Figure 3.6: Layout of the ALICE detector at the LHC in Run I.
——–

In ALICE, the forward muons first pass through composite absorbers, then through a dipole
magnet of 3 Tm integrated field and ten cathode strip tracking stations placed before and after the
magnet. After a second absorber in iron, RPCs are used for muon identification and triggering. In
the central barrel, the Inner Tracking System (ITS) contributes to a good momentum resolution
and has good vertex reconstruction capabilities. It also identifies non-relativistic particles, thanks
to six silicon pixel and drift layers. The Time Projection Chamber (TPC) covering the barrel
region is emblematic of ALICE; it is designed to track and identify (with dE/dx measurements,
effective up to pT = 50GeV) particles in environments of a few thousand tracks, thanks to
electrons from ionised gas drifting towards the readout endcap plates. The outermost layer is a
large solenoid magnet of 0.5 T field, bending the particles for the tracking system to measure their
momentum. The TPC and the ITS are very lightweight, which limits the multiple scattering
with detector material, hence improving the tracking (see section 3.2.2). However, it is a slow
detector as the electrons take about 100 µs to drift to the readout system. Even if there are
electrons from tracks from a few (about 5) collisions drifting at the same time in the TPC, this
is to be compared with the bunch separation of 75 ns in 2018 PbPb collisions. It is hence the
limiting factor for the frequency of collisions (proportional to the luminosity) ALICE can record.
Three other particle identification systems are placed in the barrel, based on time-of-flight,
transition radiation, and Cherenkov radiation techniques. Scintillating crystals (PHOS) and a
Pb-scintillator sampling calorimeter help detect electromagnetic probes and jets, and contribute
to triggering the events. A set of sub-systems at forward rapidities helps trigger the events and
gives multiplicity information on uncovered parts of the solid angle. In Run I data [142], the
charged track resolution of the transverse impact parameter was 70 µm at pT = 1GeV and 20 µm
at pT = 10GeV in the ITS+TPC system in PbPb collisions, slightly worsening in pp collisions
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due to pile-up. Displacement from the PV cannot be measured for forward muons. The charged
track momentum resolution is 0.8% at pT = 1GeV and 1.5% at pT = 10GeV in the ITS+TPC
system. The mass resolution of dimuons from J/ψ mesons in the forward muon system is about
70MeV.

3.1.3.2 Outstanding discoveries in pp collisions

The most famous accomplishment of the LHC was to discover the long-awaitedHiggs boson,
whose mechanism was predicted in 1964 in three different papers from six different authors [114–
116]. On July 4th, 2012, two seminars from the ATLAS and CMS collaborations followed by a
press conference announced the discovery of a boson at 125-126GeV with properties similar to the
predicted Higgs boson, soon resulting in publications [143, 144]. This discovery came from only
one and a half years of data-taking for physics. Along the history of modern physics, the 48 years
lapse between the theoretical prediction and its experimental proof has probably been only beaten
by the discovery of gravitational waves in 2015 by the LIGO and Virgo collaborations [145], a
century after their prediction by Albert Einstein! Those two discoveries made the headlines of
newspapers worldwide, more than any other in fundamental physics. With the still-accumulating
data, the Higgs boson properties, in particular its couplings to other Standard Model particles,
were measured with increasing precision. All of its properties were found consistent with the
Standard Model predictions. François Englert and Peter Higgs did not wait much longer for
their Nobel Prize, in 2013 – it was already too late for their collaborator Robert Brout, who
passed away in 2011.

Tetraquarks and pentaquarks are arrangements of quarks into bound states that were
in principle allowed by the original quark model, but never actually observed until the efforts
from the Belle collaboration at KEKB accelerator and the LHCb collaboration at LHC, which
discovered and studied many of these exotic hadrons. The first pentaquark state was observed
in the LHCb detector [146], as well as the first tetraquark containing two charm quarks, with
quark content ccud [147]. The observation of these states is a great step for the understanding of
the strong force; it remains to be understood if these bound states are compact states of tightly
bound quarks or simply two mesons (or a meson and a baryon) weakly bound by a remainder of
the strong force, as Van der Waals forces bind neutral atoms into molecules. As mentioned
in the coming section, the nature of tetraquarks might be understood via heavy ion collisions.

3.1.3.3 Main feats in heavy ion collisions

Somewhat less publicised to the large public than the Higgs boson were the discoveries in
heavy ion collisions at the LHC. The main ones are presented in this section – whose perspective
is the first observations of some phenomena, so the reader should be warned that the given
references (intentionally) mostly correspond to the results that were published the earliest.

Flow

The strong positive elliptic flow (see section 1.4.2) is a typical signature of the QGP. Another
azimuthal anisotropy, called triangular flow (the Fourier coefficient v3 of the φ distribution of
particles), was initially thought not to be significant because it does not respect a φ → φ + π
symmetry as the even coefficients do (v2, v4, . . . ). However, it has later been understood as
a sign of fluctuations in the initial distribution of nucleons. It has been observed first in 2011
in the ALICE detector [148]. The correlations from vn coefficients are most easily measured
on two particles, but measuring e.g. the v2 coefficient from correlations of 4, 6, or even
8 particles can help reject contributions that do not come from the flow of the medium, but
rather from 2-particle effects such as remainders of jet correlations. This was measured by many
analyses at LHC, notably with the ALICE detector; they confirmed that the observed azimuthal
asymmetries are indeed partly due to pure flow effects.
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Elliptic flow can be understood as the correlation of particles such that pairs of particles of
an event are preferentially separated by ∆φ = π (with respect to the segment joining the two
nuclei centres) in the azimuthal angle. In addition, there can be long-range correlations along
pseudo-rapidity, at ∆φ = π, and even at ∆φ = 0, compared to a jet of the event. This so-called
ridge in the 2D (∆η,∆φ) correlations plane was measured in heavy ion collisions before the LHC,
and was thought to be associated with final-state effects in the QGP, linked to radial collective
motion – though initial-state correlations could also be responsible [149]. What a surprise it
then was for the CMS Collaboration to observe a similar phenomenon in pp collisions with high
track multiplicity [150]! Even if it concerns only a fraction 10−4–10−3 of the highest-multiplicity
pp events, it is still a puzzle today in the community. It actually opened a new approach of the
field, that aims at finding continuity of the heavy ion observables between systems of all sizes;
typically in pp, pPb, and PbPb collisions, but also in symmetric systems with smaller nuclei as
XeXe or the OO collisions that are considered for future LHC runs. Since then, the strangeness
enhancement, also initially thought to signify the presence of QGP, have also been observed in
high-multiplicity pp collisions by ALICE [151].

New probes

The LHC has also set forth new probes in PbPb collisions, allowing for new heavy ion
observables to be tested. Let us start with those that were clearly made accessible by the jump
in energy from RHIC to LHC. The electroweak probes are particularly interesting to study the
initial state of the collision, and provide a reference modification (compared to pp collisions) that
cannot be caused by strong interactions with the medium. They are in that sense the standard
candles of QGP studies. The modification in PbPb collisions of isolated photons [152] and W
bosons [153] was measured very early from the first CMS heavy ion data, as was the one of Z
bosons with ATLAS and CMS [154, 155]. This excludes the low-pT photons, which were studied
at RHIC [156], and also more precisely with ALICE [157]. In this regime, it is not a standard
candle any more, but gives a hold on the average temperature of the medium (only slightly
higher at LHC, T ∼ 300MeV, than at RHIC, T ∼ 240MeV): the low-pT excess of photons in
PbPb collisions can indeed be interpreted as its thermal radiation. Concerning the initial state
of the collision, the distribution of partons in the nucleus before the first partonic interactions is
encompassed in the nuclear parton distribution functions (nPDF, see section 1.3.2). Data
at the LHC constrained them in previously unexplored parts of the (Q2, xBjorken) phase space,
mainly with measurements of the charge and forward-backward asymmetries of the W boson in
pPb collisions [158]. W bosons at backward or forward rapidities come from either the proton
or the lead nucleus, which gives a way to compare PDFs and nPDFs.

In LHC experiments, the first jets were reconstructed in heavy ion collisions. The jet studies
first addressed jet quenching through the momentum imbalance of dijets [159, 160]. Then the
jet shapes were studied, showing that jets get wider in the QGP due to the redistribution of the
momenta of the jet constituents interacting with the medium [161]. The nuclear modification
factor of jets was then measured [162, 163]. The jet substructure studies are now flourishing
(see e.g. Ref. [164]), to understand details of the first parton splittings in the QGP. These
jet-level measurements provide more information on the partonic energy loss processes than the
previous measurements of single high-pT hadrons (in experiments that had no jet reconstruction
capabilities), which are notably affected by fragmentation functions (the probabilities for partons
to hadronise in a given hadron).

The LHC has also brought to light new heavy flavour probes, that are of most interest to
this thesis. D0 mesons have been measured at RHIC [45], though at much lower pT than what
LHC experiments can reach; and the latter were already showing D results at the time of this
measurement. The low-pT shape of the D0 nuclear modification factor still tells a lot about
the expansion of the medium, as it rises above 1 at very low pT from collective effects, and then
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decreases at medium pT because of energy loss processes.1 However, b-hadrons at RHIC were only
indirectly seen through a mix of charm and beauty hadrons (typically with displaced leptons),
dominated by charm at low-pT. The b- and c-hadrons were hence differentiated only at LHC,
in particular thanks to the CMS detector; first inclusively with non-prompt J/ψ mesons (coming
from b-hadrons) [78] and b-tagged jets [165], then in exclusive decays with the D0,± [77, 166]
and the B± [76] mesons. These probes shed light on many hypothesised phenomena, as the
dependence of the radiated energy loss on the mass (a.k.a. the dead-cone effect) and colour
charge of the parton parent of the observed hadron (see section 2.3). The mass dependence of
the flow, linked to how heavy quarks inherit collective flow from light quarks in the expanding
medium, has also been studied via the azimuthal anisotropy of open charm mesons [167]. Going
further, LHC experiments were able to investigate how the medium modifies the hadronisation
of heavy quarks by studying more exotic mesons, that mix non-valence quarks. Ds mesons were
first observed by ALICE [168], the Bs modification factor was first measured by CMS [74], and
last but not least, the Bc mesons were studied in this thesis with the CMS detector [1]. CMS
even observed the X(3872) [169], whose nature could be elucidated in heavy ion collisions: a
more loosely-bound state (close to a D0−D̄∗0 molecule, compared to a compact tetraquark state)
would mean that it dissociates more easily in the medium due to its larger size (though it might
also be associated to a higher coalescence rate or lower the equilibrium limit in transport models,
which have opposite consequences).

Standard quarkonia

The suppression of the excited states of heavy quarkonia can constitute a ‘thermometer’
of the QGP, as section 2.4 explains. This sequential suppression has been first observed in
bottomonium states by CMS [82]: the suppression of Υ(nS) states is smaller for higher n.

The recombination of uncorrelated charm quarks in the medium is a central phenomenon
motivating the Bc analysis carried out in this thesis, as explained in section 2.5 including a
historical perspective. The set of evidences for recombination can be summarised in three obser-
vations: the comparison of the RPbPb of inclusive J/ψ mesons in ALICE [93, 94] and in PHENIX
at RHIC [96] both at high Npart and at low-pT, and the large positive J/ψ elliptic flow observed
with ALICE [97].

QED

Advances in particle physics thanks to the LHC concern mainly the strong and weak forces;
however heavy ion collisions allowed to observe for the first time a phenomenon purely concern-
ing QED: the elastic light-by-light scattering, consisting in two photons scattering into two
photons. This quantum effect breaks the linearity of Maxwell equations yielding the superposi-
tion principle, and is rare because it contains four QED vertices at leading order. It is therefore
proportional to α4

QED ∼ 3× 10−9, but is also enhanced by Z4 (Z being the lead nucleus charge),
making heavy ion collisions the right place to look for it. It has been observed by ATLAS and
CMS (first evidence in Ref. [170]).

3.2 The Compact Muon Solenoid

3.2.1 Global view

The Compact Muon Solenoid (CMS) is a multi-purpose cylindrical detector placed 100 m
underground, opposite to ATLAS (which is on the Meyrin site of CERN) on the LHC ring. CMS
has a broad scope of physics goals. It is quasi-hermetic (covering almost a 4π solid angle), is
structured in layers of subsystems aiming at detecting different particles or particle properties,

1The total number of charm quarks is actually conserved, and a large majority of them hadronise into open
charm, therefore the inclusive modification factor of D mesons (integrated on phase space) should be close to 1.
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and has similar capabilities as ATLAS but with a much more compact design: 14,000 tonnes1

are contained in a cylinder of 21 m length and 15 m diameter. Most subsystems are configured
in a cylindrical layer in the barrel region, covering roughly |η| < 1.2, or an endcap disk, covering
typically 0.9 < |η| < 2.4 − 3.0. The 0.9 < |η| < 1.2 is hence called the transition region. CMS
was built in fifteen longitudinal ‘slices’, to facilitate assembly; they can also be moved during
shutdown to access the inside of the detector. Fig. 3.7 shows a longitudinal and a transverse
section of CMS, as well as a sector of a transverse slice of the barrel where the different sub-
systems are broken down. Listing the main subsystems starting from those closest to the beam,
CMS features a silicon inner tracker, an electromagnetic calorimeter, a hadronic calorimeter, a
surrounding superconducting solenoid, and muon chambers interspersed with the return yoke of
the solenoid. This section reviews the characteristics of each subsystem. The muons used in
this analysis are reconstructed from the inner tracker and muon chamber subsystems, which are
hence more extensively discussed in sections 3.2.2 and 3.2.3, respectively. Section 3.2.4 describes
the event triggering system. Ref. [138] provides a full description of CMS.

  

4T

Figure 3.7: Various views of the CMS detector. Top left : Longitudinal section. Bottom left :
Transverse slice in the barrel region. Right : Focus on a disk sector of the slice. The paths

through each sub-detector of various detectable particles are also shown.
——–

The cartesian coordinates are taken as an orthonormal direct basis (x, y, z), where the lon-
gitudinal z direction follows the LHC beam, and the x-axis is directed towards the centre of
the LHC ring. In this thesis, variables are called transverse when projected on the (x, y) plane.
The directions of detected particles will be described with the pseudorapidity η and azimuthal
angle φ defined in section 1.5.2; φ ∈ [−π, π] and φ = 0 on the positive x-axis, rising towards the
positive y-axis.

CMS owes part of its name to the 6 m-diameter superconducting solenoid, which surrounds
all subsystems of the barrel except the muon chambers. It provides a quasi-uniform magnetic
field of 3.8 T along the beam direction, that bends charged particle so that their momentum
can be measured. The winding is composed of four layers of niobium-titanium NbTi conductor,
amounting to only 31 cm in radial thickness. The winding is maintained at about 7 K by liquid
helium, to keep it superconducting for the 18 kA current it endures. CMS is compact notably
because the layers of the iron yoke (red in Fig. 3.7) that return and close the magnetic field are

1Twice the weight of the metal structure of the 324 m-high Eiffel Tower!
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spaced so that the muon detection chambers can be inserted between them. The magnet cold
mass weighs 220 tons, but the 10,000-ton yoke makes most of the total CMS weight.

All long-lived particles of the Standard Model are detected by CMS, except the neutrinos
whose presence is only noticed in pp collisions, through missing energy in the total energy
balance, i.e. the energy of the incoming protons minus the one of all particles reconstructed in
the quasi-hermetic detector and assumed to come from this pp collision. This quantity is only
significant when neutrinos (or other unknown and undetected particles) carry a pT of a few tens
of GeV, as in decays of electroweak bosons; so it will be irrelevant for this thesis dealing with
objects of pT of a few GeV.

The detector part closest to the beam is the inner tracker. Section 3.2.2 describes it
and how the amount of material of the detector affects the reconstruction of tracks (defined
in section 1.5.1). All particles carrying electromagnetic charge (as the muons of interest to
this thesis) can ionise the silicon atoms of the tracker components. The inner tracker hence
reconstructs the tracks of all charged particles, and their curvature (due to the magnetic
field) provides a measurement of their momentum.

The tracks that are not associated to electrons or muons (which can be identified through
other subsystems) are either pions, kaons, or protons, the only remaining long-lived charged
particles of the Standard Model. About 80 − 90% of the tracks are pions, as they have the
smallest mass and are produced abundantly by strong interactions (contrarily to the electrons),
and there are more kaons than protons, as the latter are heavier and are subject to baryon number
conservation, contrarily to mesons as the kaon.1 Therefore, by default, unidentified tracks are
attributed the charged pion mass. At variance with other types of tracker, the CMS tracker does
not discriminate kaons, protons, and pions; except through energy loss in the tracker material
dE/dx for pT . 2GeV (corresponding to velocities significantly lower than c), but it is rarely
used and of low discrimination power in the busy PbPb environment.

To continue, I need to define the radiation length X0, characteristic of a material. It
is the distance for which a high-energy electron looses a fraction 1 − 1/e of its energy by
Brehmsstrahlung. Brehmsstrahlung is the photon radiation due to the acceleration (i.e. the
deviation) induced by Coulomb interactions with the atomic nuclei of charge ±Z of the material,
and it is the dominant energy loss process for electron energies relevant in CMS. X0 is also a
fraction 9/7 of the mean path length of an electron before emitting a photon (or equivalently
the mean path length of a photon before converting in a e+e− pair). Finally, X0 is also used
as a reference distance for multiple Coulomb (elastic) scatterings of any charged particle with
the detector material. Most of the electromagnetic interactions of charged particles with the
detector material is due to nuclei, with which the cross section is higher than with the electrons
of the material.

Electrons interacting with matter of the detector emit photons, which themselves can ‘decay’
(thanks to a kick given to a nucleus of the detector) into a e+e− pair. Such conversions happen
on a length scale 9

7X0, leading to final states that each carry about half of the energy of the
parent particle, with slightly modified directions compared to the parent particle. Photons and
electrons of high energy E hence undergo multiple such scatterings until daughter photons are
not energetic enough to produce a e+e− pair, at Emin ' 1MeV. The length of the resulting
electromagnetic shower is hence roughly proportional to ln(E/Emin), and the transverse spread
of the shower is reasonably small, meaning the direction of the incoming electron or photon
is reconstructed. Electromagnetic calorimeters (ECAL) intend to trigger this shower with

1It can be underlined here that at LHC energies, the baryon number carried by the initial protons is firmly
dragged by the beams towards high rapidities, such that the net baryon density at CMS typical rapidities |η| . 2.5
is close to null. This is also why the baryonic density µB , a parameter of the phase diagram of the QGP, is close
to null at LHC.
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absorbing material until only low-energy photons and electrons remain, and to measure the total
energy of these numerous secondary particles with detecting material. Part of the neutral
pions can also be detected in electromagnetic calorimeters, as they decay with 99% branching
fraction into two photons.

The CMS ECAL is homogeneous, in the sense that the absorbing and detecting functions are
carried by the same material, namely lead-tungstate PbWO4 crystal. It is mostly transparent to
light (so that low-energy photons can reach the sensitive material), has high-density (important
for X0 to be small and for the shower to end within the depth of the ECAL), and is resistant
to accumulated radiation. The ECAL is a 92-ton hermetic layer covering |η| < 3.0. It is mostly
composed of 61,200 quasi-rectangular crystals of length 220−230 mm pointing to the interaction
point (corresponding to 25−26X0) and section 22×22 mm to 30×30 mm. The smallest sections
are closer to the beam (about 1.3 m from it in the barrel) so that a given crystal covers a fixed
solid angle. The crystals absorb the shower energy and re-emit it in the form of visible light.
This light is detected by photomultipliers (avalanche photodiodes in the barrel and phototriodes
in the endcaps) attached downstream of each crystal. The response of the crystals depends on
temperature, so the crystals are cooled to 18 ◦C. The response also depends on the radiation
damage endured during a run; this is continuously monitored and corrected for by a laser. A
20 cm deep preshower, alternating lead radiators and silicon strips, is placed before the endcap
ECAL to help determining the position of electron and photons and identifying neutral pion
decays. The relative resolution on the energy of a showering photon or electron decreases with
the energy; in pp collisions at 7TeV [171], it was in the range 1− 5% for a transverse energy of
about 50GeV, with worse resolution in the endcaps.

Last before the magnet comes the hadronic calorimeter (HCAL), between radii 1.8 and
3.0 m from the beam. It is essential to measure the energy from hadrons, especially the neutral
hadrons that cannot be detected in the other subsystems. This energy completes the estimation
from other subsystems, notably to estimate the missing energy from neutrinos (or unknown
particles). However, hadronic calorimetry is notoriously difficult and imprecise, mostly because
the fraction of the electromagnetic and hadronic components of the showers fluctuates a lot, as
does the part of the absorbed energy that is undetectable, coming from nuclear recoil or late
nuclear de-excitation. The shower is initiated by an inelastic interaction with a nucleus of the
material, and its development is driven by the nuclear interaction length λI (the typical length
for one nuclear interaction to occur). The latter equals 16 cm in brass. About a third of the
secondary particles of the shower are neutral pions, which decay into two photons that give rise
to the electromagnetic part of the shower. The hadronic part, mostly charged pions and nuclear
fragments, has a much larger transverse spread compared to the electromagnetic shower.

The barrel and endcap parts of CMS HCAL are composed of a brass absorber, of thickness
6λI at η = 0 and about 10λI for η > 1, and plastic scintillating plates of 4 to 9 mm thickness,
whose emitted light is brought to photodiodes through external optic fibres. The upstream
ECAL adds about 1λI to the total thickness. To fully contain the showers at mid-rapidity, an
outer calorimeter (HO) covers the range |η| < 1.3, just outside of the magnet which takes the
role of absorber. It is composed of one or two layers of scintillator tiles. The total thickness
is consequently larger than 12λI on the whole covered range |η| < 3.0. As the fraction of
undetectable energy intrinsically limits the energy resolution, the constraints on the HCAL design
are mostly the mechanical stress of the heavy structure and the long-term resistance to radiation.

The forward calorimeters (HF) complete the covered pseudorapidity range, covering 3 <
|η| < 5. They are placed at larger z than the endcap disks. The active material is made of
quartz fibres, chosen for their resistance to the very high radiation rates near the beam, and the
steel absorber is 165 cm deep and has a 1.3 m radius. The fibres, placed parallel to the beam,
collect part of the light from the Cherenkov radiation emitted by the charged particles – meaning
that mostly the electromagnetic part of the showers is detected. The fibres are read-out in groups
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called towers, directed towards the interaction point. The HF is surrounded by a steel, concrete,
and polyethylene shielding. The transverse energy deposited in the HFs serves to monitor the
luminosity, and to evaluate the global activity of the event which determines the centrality
in PbPb collisions (see section 1.5.6).

The muon chambers constitute the outermost subdetector. They are described in sec-
tion 3.2.3 along with the different algorithms for identifying muons. The advantage of CMS
is its excellent muon reconstruction, giving it part of its name. The four muon stations are
embedded in the flux-return yoke of the magnet. Muons are the detected particles that interact
least with the detector material, and the great majority of particles are stopped by upstream
subsystems, so that hits in the muon chambers strongly indicate the passage of a muon.

In pp collisions, the rate of bunch crossings reaches 40 MHz, meaning that events take place
every 25 ns (and up to every 75 ns in PbPb). However, the data writing speed (5 to 8 Gb/s to
the CERN storage facility called Tier0), the computing resources needed for its reconstruction,
and the storage capacity, do not allow to record each bunch crossing. During the run, fast
decisions (online) must hence be taken as to which events are stored and deserve their full data
to be extracted for later (offline) analysis. This is the role of the trigger system, described in
section 3.2.4.

3.2.2 Inner tracker and material budget

Tracking principles

Tracking systems are composed of many sensitive channels. Each channel can have its atoms
ionised by charged particles and is connected to a separate electronic output, and its position
in the detector is well-known. In a given event, a channel ionised by a crossing particle is
called a hit. A global fit is performed on all hits of the tracker, to gather into tracks the hits
that are consistent with the passage of one particle through the known magnetic field. Such a
reconstructed track is the estimate of the true trajectory of the particle in the detector, built
from consecutive discrete hits.

The fit of tracks is imperfect. Due to the finite size of the channels, some hits might be
shared by multiple particles and a hit from a given track can be attributed to another close-by
track, deteriorating the quality of both tracks. Fake tracks can be reconstructed from combining
uncorrelated hits that are aligned by chance. This combinatorial background increases with the
multiplicity of particles in the event, getting especially high in central PbPb collisions – as well
as increases the duration of track reconstruction. Those fake tracks are mostly rejected thanks
to the high-purity variable (defined in Ref. [172]), that combines low-level information from the
tracking subdetectors and is optimised for the majority of CMS analyses. The positions of each
channel and subdetector are also not perfectly known, so they must be corrected at software-level.
This is done using particles reconstructed with high confidence in a clean environment, typically
with tag-and-probe methods with Z boson decays into high-pT muons (similarly to section 7.1.1).
The positions of the channels hit by these clean particles are corrected in the software to the
fitted particle trajectory. How these difficulties are dealt with in the CMS tracking algorithm
will not be detailed here.

CMS tracking system

The inner tracker of CMS [172] is composed of two technologies: a silicon pixel detector
placed very close to the beam (covering radii from 3 to 16 cm around the beam axis), and
silicon strip modules (from 16 to 110 cm from the beam axis). In Run I, it achieved a track
reconstruction efficiency above 90% (80%) for pions of pT > 0.4GeV in the barrel (endcap)
region, and above 98% for muons of pT > 0.8GeV, in the range |η| < 2.4. The resolution on
charged track transverse impact parameter to the PV was 80 µm (160 µm) at pT = 1GeV and
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22 µm (30 µm) at pT = 10GeV in the barrel region (endcaps region). The transverse momentum
resolution was 1% in the barrel and 2.5% in the encaps region, for pT = 1− 10GeV (worsening
to 4 and 20% at pT = 100GeV). These two resolutions are shown as a function of pT for isolated
muons in Fig. 3.8.

Figure 3.8: Resolution in the transverse impact parameter (left) and relative pT resolution
(right) for isolated muons in the barrel, transition, and endcap regions, as a function of pT.
Solid (open) symbols correspond to 68% (90%) confidence intervals. Both figures are from

Ref. [172].
——–

The pixel detector is composed of 4 barrel cylindrical layers (covering |z| < 27 cm) and
3 endcaps disks (covering 30 < |z| < 51 cm), containing a total of 120 million pixels of size
100× 150 µm in the φ× z directions. This is a 2017 upgrade [173] from the initial tracker, that
had only 3 barrel layers and 2 endcap disks; this upgrade slightly improved the performance
numbers given above. The pixels have a transverse and longitudinal hit position resolution of 10
and 20−40 µm, respectively. A pixel is hit when a charged particle gives it enough energy for an
electron-hole pair to be created. The freed electron is collected by a small electric field towards
the readout chips, laid out in a layer on top of the silicon layer.

The silicon strips are composed of the tracker inner barrel and disks (TIB and TID) covering
16 < r < 55 cm and |z| < 118 cm, the tracker outer barrel (TOB) covering 55 < r < 110 cm
and |z| < 118 cm, and the tracker endcaps (TEC) covering 124 < |z| < 282 cm. Each of these
subsystems contains from 3 to 9 cylindrical or disk layers. Contrarily to pixels, the silicon strips
only collect the ionised charge in one dimension. The known position of the strip gives a second
direction, but to get the third spatial dimension, a second layer of strips is placed close to a given
layer, with a small angle between the directions of the two sets of strips. This is the case for
part of the strip layers. Within a layer, the pitch (i.e. the separation between two strips) goes
from 80 to 180 µm, depending on the subsystem.

The track reconstruction algorithm starts from seeds composed of two or three hits in the
pixel detector, which has less channel occupancy than the strip tracker and misses less low-
momentum tracks. Then hits from successive detector layers are added to the track when con-
sistent with the propagated trajectory of the seeds, and track parameters are updated at each
layer. The algorithm is based on the Kalman filter method [174], but is quite sophisticated and
detailed in Ref. [172].
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Material budget

It is important for a tracking detector to contain as few material as possible, to limit:

• The electromagnetic scatterings of charged tracks with material from the detector, which
deviate the track and complicate its reconstruction. The multiple Coulomb interactions
of a charged particle of momentum p with atomic nuclei of the detector material add up
to deviate the track by a typical angle

θ0 ∼
13.6MeV/c

p

√
x/X0, (3.1)

considering velocities close to c and neglecting a term logarithmic in x/X0 (in [46], sec-
tion 33 derives this from the Bethe-Heitler formula for the energy loss of charged parti-
cles in a material). The distance travelled in the detector x must hence be reduced to limit
this angle, and the radiation length X0 of the detector material should be maximised. The
radiation length is higher for atoms with lower charge Z|e|; Beryllium is for example used
for the LHC beam pipe. The spread in angle reduces with the momentum of particles,
because the energy loss in the material is only logarithmically dependent on the incident
momentum. For hadrons, the elastic nuclear interactions also contribute to the spread in
angle.

• The inelastic nuclear interactions with the detector, that can stop hadrons before they
cross the full tracker, reducing the probability of reconstructing them. The total nuclear
interaction length λI is the typical distance on which these interactions (and the elastic
ones mentioned above) take place. The hadrons that interacted before the end of the
tracker are less efficiently reconstructed because they left less hits in the detector.

• The loss of energy of particles (from the two effects above) before the calorimeters, which
will therefore measure only part of the energy those particles were produced with. This
is less important to the analysis of this thesis, but paramount for all analyses related to
electrons, photons, and jets – even if these losses are somewhat corrected for. Concerning
muons, the loss of momentum before reaching the muon chambers can slightly affect the
momentum estimate of standalone muons, which has limited consequences because the
momentum estimation relies on the inner tracker except at very high pT (see section 3.2.3).

What matters most for the reconstruction of muons in this analysis is the multiple scattering
in the inner tracker that limits the resolution of the muon momentum. It depends directly on
the thickness of the detector, expressed in units of X0, the characteristic length of Coulomb
interactions with the nuclei of the traversed material. The inner tracker material budget is
shown in Fig. 3.9. Contributions from each sub-system are separated. The thickness in units of
the total nuclear interaction length λI is also shown, and adds to the electromagnetic interactions
that hadrons undergo.

3.2.3 Muon system

3.2.3.1 The apparatus

As most other subsystems, the muon system is shaped as a cylindrical barrel, and two endcap
disks. The return yoke in which it is embedded closes the magnetic field lines. In the barrel yoke,
where the field lines are simply parallel to the beam but opposite to the field inside the solenoid,
there is a field of about 2 T that gives muon trajectories the ‘S’ shape shown in Fig. 3.7 and in
the CMS logo. In the endcaps, the fields lines are more complicated and not fully contained by
the yoke, so a more robust technology is needed for the muon detectors used therein. The whole
system contains 25.000 m2 of detection planes, which hence have to be robust and inexpensive.
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Figure 3.9: Total thickness t of the tracker material for a particle produced in the centre
of the detector, as a function its pseudorapidity, and expressed in units of X0 (left) and λI
(right). Contributions from each of the tracker subsystems, from the beam pipe, and from the
support tube that surrounds the tracker are shown. Figure from Ref. [172]. The contribution
from the pixel detector has been slightly reduced in the endcaps since the 2017 upgrade [173].

——–

In between the plates of the yoke (red in Fig. 3.7) are four slots for four muon stations.
Each station in the barrel (|η| < 1.2) is composed of two or three groups of four drift tube (DT)
chambers. They contain 172,000 sensitive wires in total, each of length 2.4 m (corresponding to
the longitudinal size of a CMS slice) and width 21 mm. The latter means that an electron ejected
from the Ar+CO2 gas mixture of the tube by a passing muon takes up to 380 ns to drift to the
collecting cathode. The drift time is measured to estimate where the muon traversed the wire.
As for the strip tracker, drift tubes gives one-dimensional position information, complemented
by their known position in the detector. One or two groups of DT measure the muon coordinates
in the transverse plane (r with the position of the chamber, and φ with the position of the hit
drift tube) whereas the other group provides the longitudinal position of the hit. The chambers
are offset so that they slightly overlap, avoiding dead spots.

Each endcap contains four Cathode Strip Chambers (CSC) each of which contains six stag-
gered layers. The CSC layers are multi-wire proportional chambers. The longitudinal position
of the hit is given by the position of the hit chamber. The collecting strip cathodes run radially,
so their segmentation measures the φ coordinates, whereas the multiple anode wires per cham-
ber run along the φ direction, hence providing a radial position. The CSC chambers use a gas
mixture of CO2, argon, and CF4. The DT and CSC stations provide muon tracking information,
with a position resolution of the order of 100 µm.

The muon system is central to the first-level trigger of CMS (see section 3.2.4). The infor-
mation given to the L1 system must be attached to the right bunch crossing. The main goal
of the Resistive Plate Chambers (RPC) is to complement the determination of the bunch cross-
ing associated to detected activity, and to add redundancy in the muon tracking. The RPC
double-gap chambers indeed have a timing resolution better than the bunch crossing time, 25 ns,
contrarily to the DT and CSC. They cover the range |η| < 1.9. Six cylindrical plates are placed
in between the DT barrel chambers, and five concentric disks are placed in each endcap. Each
plate is composed of two 2 mm gas gaps (mostly freon, with isobutane and SF6), each framed
by two 2 mm bakelite plates coated with conductive graphite. When a muon ionises the gas, an
electron rapidly triggers an avalanche due to the electric field applied in the plates.
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3.2.3.2 Identification and reconstruction

The performance of muon reconstruction in Run II is detailed in Ref. [175]. In the offline
reconstruction, muon tracks are first reconstructed separately in the inner tracker and in the
muon chambers. The inner tracker reconstruction is mentioned in the previous section. In the
muon chambers, a Kalman filter technique [174] is used with input from the complete DT, CSC,
and RPC information to reconstruct standalone muons.

The reconstruction of tracker muons starts from a track in the inner tracker and propagates
it to the muon stations. It is identified as tracker muon if at least one segment (a tracklet in
one muon station) matches with the extrapolated track, with a difference of position of less than
3 cm or 4 standard deviations in the better-measured transverse coordinate. Tracker muons can
be reconstructed at lower pT than with other identification methods, as they include muons that
only reach the first muon station. However, they often represent a misidentified hadron rather
than a true muon (see section 4.3.2), especially in events containing many inner tracks, each
being a potential seed for a reconstructed tracker muon.

A global muon is reconstructed starting from a standalone muon, which is propagated to the
inner tracker where a matching track is looked for. If matched, the two tracks are refitted into
a global track.

Reconstructed muons are passed to the Particle-Flow (PF) algorithm, that uses combined
information from all subsystems to identify all types of particles [176]. This particle-flow muon
identification includes criteria such as isolation (from calorimeter information). It is used mostly
for high-pT muons. Only tracker and global muons will be relevant to the Bc analysis.

The best track of a muon is the one yielding the best momentum resolution. It is usually
the inner track (or the global track when the muon is reconstructed as global), that dominates
the determination of the momentum because of the much higher spatial resolution of the inner
tracker components. However, the momentum estimation of muons with pT & 100 − 200GeV
starts to benefit from the standalone track in the muon chambers, thanks to the size of these
detectors that make the curvature of the high-pT muon observable – contrarily to the shorter
inner track, that appears too straight.

The muons identified in the muon chambers might not come from the beam collisions, but
from cosmic sources. Muons interact feebly with matter, so they can cross the 100 m of rock
between CMS and the atmosphere. Cosmic muons are relatively easy to reject, with cuts on the
proximity of the muon to the primary vertex (see section 5.3.1). The reconstructed muons might
also not represent true muons; the three types of misidentification are explained in section 4.3.2.

3.2.4 Trigger

The goal of the trigger system is to keep as high an efficiency as possible for the interesting
physics probes while keeping the rate of triggered events below the maximum allowed by the
computing installations. The trigger system is composed of a first level, L1, based on hardware
processors using basic information from the calorimeters and muon stations, and a High Level
Trigger (HLT) running a fast version of the offline event reconstruction. Only if an event passes
L1 and HLT, the complete data from the detector subsystems is extracted; even HLT uses mostly
local detector information, that is close to areas identified as active in L1.

L1 reduces the 10− 40 MHz bunch crossing rate to 100 kHz and takes decisions in less than
4 µs, the time that events are pipelined before being discarded or sent to the HLT. The L1 trigger
system was upgraded before Run II [177]. To be passed to HLT, the event must fulfil at least one
of many possible conditions – those conditions being aimed at various physics programs. The
decisions are taken by FPGA boards, that analyse coarse information collected by specifically-
designed front-end electronics in the calorimeters (typically the deposited transverse energy in
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a group of ECAL crystals and HCAL towers) and in the muon chambers (typically tracks built
only in the muon system).

The HLT further reduces the rate to 1 kHz, with a latency of a few hundred milliseconds for
the dedicated computing farm (32,000 CPU cores) to run a simplified version of the reconstruction
algorithm and deduce the final trigger decision. The HLT tests, for each event, hundreds of paths
corresponding to various physics goals, and an event is stored if it respects the requirements of
at least one path. As an example, the trigger paths used in the Bc analysis (see section 3.5.1)
primarily require two muons identified at L1 or during HLT reconstruction. The tests of the
paths and the production of high-level objects (such as muons) are however sequential, with the
fastest tasks ran first; a path is dropped as soon as one of the requirement fails.

In average, each decision should take no more than about 300 ms, but there is a large tail
of high-activity events that take up to a few seconds. In the PbPb 2018 run, about 100 µb−1

of luminosity were lost for muon-dedicated physics because some extreme events made the re-
construction slower than expected. The HLT muon reconstruction algorithm started from track
seeds in the inner tracker, and extrapolated them to the muon chambers to find a compatible
muon track. This was very slow for PbPb events with large inner track combinatorics; the
solution was to start rather from muon tracks to find matching tracks in the inner tracker.

Once the event is selected, it is stored in the Tier0 infrastructure of CERN, in a dataset
specific to the trigger path it fired, and undergoes a prompt offline reconstruction. The datasets
are often reconstructed again later, e.g. to include better calibrations of physics objects.

3.3 The Bc analysis strategy

Let us dive now into how the first observation of Bc mesons in heavy ion collisions is reached.
Section 3.3.1 presents a global view of the adopted strategy, notably which decay channel is the
most promising to reach an observation. Section 3.3.2 is a short feasibility study of the hadronic
fully reconstructed decay B+

c → J/ψ π
+. This thesis actually studies the partially reconstructed

leptonic channel B+
c → J/ψ µ

+
νµ , using 2017 and 2018 data from the CMS detector. Section 3.3.3

presents the full global workflow of this analysis, and points to the explanations of each analysis
block.

The complete code used for the Bc analysis presented in this thesis is available in this github
repository: https://github.com/gfalmagn/Bc-HeavyIons.

3.3.1 Global approach

3.3.1.1 Chosen decay channel

As was made clear in section 2.2.2, mostly two Bc decay channels were studied experimen-
tally: the leptonic channel B+

c → J/ψ l+ νl and the hadronic channel B+
c → J/ψ π

+. At LHC, as
muons are easier to measure than electrons, the leptonic channel was only studied with a muon
as the charged lepton – and what we call ‘the leptonic channel’ in the following actually refers to
the muonic channel B+

c → J/ψ µ
+

νµ ; similarly ‘the hadronic channel’ refers to B+
c → J/ψ π

+, the
fully reconstructable channel with the highest known branching fraction. The leptonic branch-
ing fraction has been measured by LHCb to be about 20 times higher than that of the hadronic
channel [52]. This is why it was the discovery channel at Tevatron [48]; it also justifies the use of
the leptonic channel in this analysis, considering the relatively low luminosity in PbPb compared
to that in pp collisions. As it would be significantly easier to analyse, the hadronic channel
was however investigated, as reported in section 3.3.2. This rapid study in pp collisions reveals
a small signal with large statistical uncertainties, however consistent with the pp cross section
obtained in chapter 9 via the leptonic channel. This provides a satisfying check of the overall

https://github.com/gfalmagn/Bc-HeavyIons
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analysis method. The PbPb luminosity is however too low to see the signal peak emerge above
the large background.

In the leptonic channel, the neutrino is not reconstructed. Other Bc decays could contain
the same visible final state, for example featuring excited charmonia decaying into a J/ψ and
unreconstructed products. A systematic uncertainty arising from such decays is calculated in
section 4.3.3, such that the cross section time branching fraction results that will be quoted
correspond to the exclusive B+

c → J/ψ µ
+

νµ decay, and not to B+
c → J/ψ µ

+ X decays where
X designates any set of unreconstructed particles, even if the latter is mostly what the CMS
experiment is sensitive to. In addition, the Bc lifetime (about 150 µm) is three times smaller
than that of other B mesons, but is detectable in CMS.

Therefore, the experimental signature to look for is a displaced vertex made of three muons of
total charge ±1 and whose invariant mass is a broad distribution betweenmJ/ψ +mµ = 3.203 GeV
and mPDG

Bc
= 6.275 GeV [46], the mass lacking from the true Bc mass being carried by the

neutrino. Fig. 3.10 shows the diagram of this channel, as well as the shape of the sought-after
signal in the invariant mass of the trimuon final state. The partial reconstruction also implies that
the pT-dependent measurements are performed as a function of pµµµ

T (the pT of the reconstructed
trimuon), which is on average lower than the true pT of the Bc. A possible average correction of
p

µµµ

T to the full pT(Bc) is presented in section 8.3; it is not applied in this analysis. The rapidity
cuts on the Bc are also performed using yµµµ , the rapidity of the visible trimuon.

b c c µ
+

c c c µ
−

νµ

µ
+W+

γ
∗

B+
c J/ψ

mJ/ψ +mµ
mBc

Figure 3.10: The Bc leptonic decay channel. Left: Feynman diagram of the B+
c leptonic

decay. The three detected final states muons are in red. Right: Simulated mass of the trimuon
from the B+

c → (J/ψ → µ
+

µ
−) µ

+
νµ decay. Only the generated Bc mesons in the trimuon

kinematic region studied in this analysis, including pµµµ

T > 6GeV and detailed in section 5.6,
are plotted. See section 3.5.2 for details on the Bc generation.

——–

3.3.1.2 Finding Bc mesons with CMS

CMS has many advantages for this measurement, see section 3.2. It is specialized in detecting
muons, with muon chambers providing excellent muon identification and triggering. Its silicon
tracker also demonstrates excellent pT resolution, as well as secondary vertex reconstruction –
the latter being essential given the finite but small Bc lifetime. It also collected a high luminosity
with efficient dimuon triggers for J/ψ studies (accepting 100% of the triggering events), providing
the data sample for this analysis. However, CMS has a quite high pT threshold for the muon
acceptance (around 1.5 GeV in the forward region, and 3.5 GeV for muons of pseudo-rapidity
|η| < 1.2, see section 5.3.2). This translates into a low acceptance for signal trimuons of pT .
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6 GeV (see section 7.4 for maps of the acceptance and efficiency), whereas a large majority of
the produced Bc mesons lie in this kinematic region.

In this analysis, the cross sections are determined from CMS data in 2017 pp collisions at a
center-of-mass energy per nucleon pair of √sNN = 5.02 TeV, and in 2018 PbPb collisions at the
same energy in the 0-90% centrality range. The mean pile-up (defined in section 5.2) during data
taking was 3.5 for pp collisions, and negligible for PbPb collisions. The runs associated to these
datasets collected respective luminosities of 302 pb−1 and 1605µb−1, for the trigger requirements
used in this analysis. The latter is equivalent to about 70 pb−1 of Ncoll-scaled pp collisions, so
about 4.3 times more Bc candidates are expected in the pp data sample than in the PbPb one,
if they are not modified by the medium and the pp and PbPb efficiencies are similar.

Let us first present a short feasibility study on the hadronic channel, before detailing the
global workflow of the main leptonic channel analysis (section 3.3.3).

3.3.2 Hadronic channel feasibility

The hadronic channel B+
c → (J/ψ → µ

+
µ
−) π

+ is rapidly studied, mainly in pp, to:

• independently cross-check the cross section measured in the leptonic channel;

• check that there is not a dramatic enhancement in the RPbPb(B+
c ) that would give a visible

peak in the hadronic channel in PbPb.

• and hence confirm that the extrapolated yields in PbPb are insufficient for this channel to
be worth a full analysis;

This feasibility study performs similar first analysis steps than the leptonic channel Bc analysis:
essentially a preselection followed by a BDT selection. I will hence refer to the sections of the main
analysis description where these steps are detailed. I thank Natalie Blot for her contribution
to this study.

The OniaTree procedure (that extracts to a tractable format preliminary dimuon or trimuon
candidates, see section 3.5.3) is adapted to reconstruct dimuon+track Bc candidates. Similar
cuts than for the main pp preselection (shown in section 5.4 and Table 5.1) are used, except of
course all cuts related to the muon identification of the third muon (not coming from the J/ψ
decay). Instead, the track combined with the J/ψ is required to pass the high-purity requirement
(see section 3.2.2), and the part of the muon identification (detailed in section 5.3.1) that is
related to the inner track. This track is attributed the pion mass. In addition, we require this
track to have pT > 0.5GeV in pp and pT > 0.7GeV in PbPb (the cut being tighter in PbPb
due to the higher track background). Another difference in the selection is that all variables
related to the secondary vertex (vertex probability, pointing angle α, lifetime significance; see
section 5.4) use a vertex fitted with a kinematic constraint that forces the dimuon to have the
nominal J/ψ PDG mass. This improves the resolution on the candidate mass, and on the vertex-
related variables. The last differences are that the 3D lifetime significance is required > 1, and
the 2D and 3D pointing angles are required to be < 0.6 rad (tighter than the leptonic channel
cut, because there is no unreconstructed neutrino taking energy from the decay).

A signal Bc MC sample is produced with the hadronic decay, in pp (similarly to the MC
simulation of the main analysis, see section 3.5.2). A MC simulation was not produced in
PbPb, to limit the resources taken for this rapid study. The pp signal MC distributions will
hence be used as approximate PbPb distributions. The pp simulation and the PbPb data are
though expected to differ, due to the smaller reconstruction efficiencies in PbPb and the potential
medium modification; this makes the PbPb study only a coarse first look. The MC sample is
scaled as in section 3.5.4, using the branching fraction of the hadronic channel. In PbPb, it is
scaled to the PbPb luminosity, assuming there is no modification of Bc in the QGP.
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Signal and sideband regions are defined with respect to the dimuon+track invariant mass,
considering an expected peak around the Bc mass mBc,PDG

= 6.275GeV. The signal region
is |mJ/ψ+π − mBc,PDG

| < 0.13GeV, and the background sideband region is 0.17 < |mJ/ψ+π −
mBc,PDG

| < 0.30GeV. A J/ψ mass constraint is included in the vertex fit, so the dimuon mass is
close to the J/ψ mass due to the used vertex fit probability cut. In pp, there are 219k preselected
candidates in the data signal region, and 125 expected signal candidates from MC. In PbPb, there
are 417k preselected candidates in data, and 27 expected signal candidates from MC (assuming
RPbPb(B+

c ) =1 and that the PbPb efficiencies are similar to the pp ones).

A BDT is trained both in pp and PbPb, similarly to the main analysis BDT of section 5.7.
The signal is taken from the pp MC sample, and the background is the dimuon+track mass
sidebands in data, defined above. The eight variables used in the BDT training are the pion pT,
the dimuon+track vertex probability, the distance of closest approach between the two muons,
the 3D pointing angle α between the candidate momentum and its displacement vector, the
significance of the 3D displacement, the sum (over the three daughters) of the significances of
the transverse displacements from the PV, the ∆R between the J/ψ and the pion, and finally the
ratio ∆R(J/ψ)

∆R(µ
+

π)+∆R(µ
−

π)
. These variables are further explained in sections 5.4 and 5.7. The BDT

output value in data does not significantly depend on the candidate mass. In addition, if there is
a dependence, it is monotonous, such that it cannot affect the finding of a peak; in other words,
there cannot be artificial peaks created by the BDT selection. The BDT distributions are shown
for pp and PbPb in Fig. 3.11 for the signal MC and for the data in the mass signal region.
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Figure 3.11: BDT distribution of the mass signal region in data and in the signal MC in pp
(left) and in PbPb (right). The distributions are normalised to 1.

——–

Finally, a cut on the BDT output value is applied to obtain a signal-enriched sample. This
cut is chosen by optimising S√

S+B
, where S and B are respectively the number of MC events

and data sidebands events in the mass signal region passing the BDT cut. In pp (resp. PbPb)
we obtain S√

S+B
= 3.7 (resp. 0.56), which is to be interpreted as an approximate significance

expected for the observation of Bc mesons in this channel. It is reminded here that the expected
PbPb significance depends directly on the assumption of no modification in PbPb: a very large
RPbPb(B+

c ) might give a significance high enough for an observation. Fig. 3.12 compares the
mass distributions for data and MC in pp and PbPb collisions.

In pp, we obtain a peak that has a significance close to 4σ. In the mass signal region, 25
signal events (from MC) and 21 ± 4.6 background events (from data sidebands) are expected,
and 50 are observed. No acceptance and efficiency study is performed here, but this still means
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Figure 3.12: Dimuon+track mass of the data and the signal MC after a cut BDT > 0.045
in pp (left) and BDT > 0.055 in PbPb (right)
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the observed signal is consistent, within uncertainties of the order of 30%, with the a priori
normalisation of the Bc MC (calculated from previous measurements, see section 3.5.4). In
chapter 9, I will show that the pp cross section measured in the leptonic channel is less than 30%
different from the a priori signal normalisation. By transitivity, this means that the leptonic
and hadronic channels give consistent pp cross sections, within large uncertainties.

In PbPb, no signal shows, with even a probable background underfluctuation: in the mass
signal region, 3.3 signal events are expected (from MC, assuming RPbPb(B+

c ) = 1) and 25 back-
ground events (from sidebands), but only 9 events are observed in data. This underfluctuation
could be due to the simple sidebands background estimate that assumes a linear background; this
might be solved with a fit. To be conservative, let us consider a lower limit on the background
of 14± 5.3, from doubling the content of the upper sideband that only shows 7 events. Now, one
can set a rough upper limit on RPbPb(B+

c ) in the kinematic range favoured by the acceptance
and efficiency of CMS (typically pT > 5 GeV and 1 < |y| < 2.3).

This limit is computed using the Feldman-Cousins procedure [178], with 14 expected
background events and 9 observed events. It gives a number of observed Bc < 3.8 at 95%
confidence level, resulting in RPbPb(B+

c ) < 1.2. However, this limit depends on the background
estimation that has a large statistical uncertainty (if we shift down the expected background
by 1σ, to 9 expected events, the limit becomes RPbPb(B+

c ) < 2.3). It also depends on the
estimation of the signal yield from MC, which was calculated here using a pp efficiency for
a rapid study. The PbPb efficiency is expected to be lower, meaning the expected yield for
a given PbPb modification is lower, and this upper limit shall have a larger value. However,
the drop in efficiency from pp to PbPb is expected to be less than an order of magnitude (see
their comparisons for the leptonic channel in section 7.4), so a strong conclusion is that, in this
kinematic range, the Bc modification factor in PbPb does not exceed 10 to 20 (depending if the
number of background events is shifted from 14 to the more conservative estimate of 9).

To conclude, this coarse result is consistent with the leptonic channel result in pp, which is
a satisfying check of the overall analysis method. The hadronic channel gives a too small signal
significance in PbPb to be worth a full analysis, though it is useful to check in an independent
manner that the nuclear modification factor of the Bc in PbPb is less than an order of magnitude
higher than 1 for pT & 5GeV.
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3.3.3 Leptonic channel analysis workflow

A flowchart showing the multiple steps of the analysis is shown in Fig. 3.13. Subsequent
to the preselection of the sample, the core of the analysis flow features the training of a BDT
discriminant, a template fit, variations of the fit method, and corrections for the acceptance
and efficiency of the selection. This core analysis is performed twice, where in the second run,
the pµµµ

T distribution of the signal MC is corrected thanks to a first version of the cross section
measurement obtained in the first analysis run (see section 7.6). This correction has an impact
mostly on the calculation of acceptance and efficiency estimations, but also on the training of
the BDT and the check of its distribution. The analysis modules run after this correction are
tagged as ‘second-step’ in the whole text (and are red in Fig. 3.13). Some second-step modules
are ran separately in centrality bins and in pµµµ

T bins.

The data used in this analysis is triggered through a double muon requirement (detailed
in section 3.5.1). Then, the necessary MC simulated samples are generated, for the signal
Bc and for the prompt and non-prompt J/ψ processes used in background estimations. This is
detailed in section 3.5.2. Then, the relevant data and MC samples are treated with the so-called
OniaTree analyser that produces the trimuon candidates and computes and records the relevant
variables (cf section 3.5.3). The OniaTree is also run on data in which J/ψ mesons are rotated;
this is used for background estimations (section 4.4.3). A priori normalisations for the simulated
samples are determined from previous measurements (section 3.5.4).

The understanding and modelling of the backgrounds are key to this analysis, and described
in chapter 4. These backgrounds can be split in 3 categories:

• Fake J/ψ, featuring a dimuon pair that falls accidentally in the J/ψ mass region. It is
estimated with the dimuon mass sidebands in data, and described in section 4.2.

• B-meson decays, in which a true displaced J/ψ meson associates with a (fake or true) muon
from the same displaced decay. It is estimated from simulation in section 4.3.

• True J/ψ that associate with a (fake or true) muon from another decay or from the primary
vertex. This is estimated from a data-driven method, and described in section 4.4.

A preselection (section 5.4) is first applied to these samples. To increase chances of observ-
ing the Bc, whose cross section rises strongly at low pT, emphasis is put on lowering the single
muon acceptance threshold in pT. This acceptance depends on the muon selection; in particular,
one of the three muons is not required to trigger the event and can be measured in a looser
acceptance. The chosen strategy is justified in section 5.3. The ambiguity in the choice of the
J/ψ dimuon within a trimuon candidate is treated with candidate weights explained in section
5.5. The trimuon kinematic region quoted in the results is chosen in section 5.6.

A Boosted Decision Tree (BDT) is then trained (see section 5.7) on the pre-selected sam-
ples, separately in each pµµµ

T bin, to compute a unique variable gathering the signal/background
discrimination power from discriminant variables that were or were not used in the preselection.
The samples will be binned in this BDT variable. The training is performed again in a second
analysis run, where the normalisation and weighting of the signal and background samples are
improved with the information of the first-step fit. Section 5.7.4 jumps a bit ahead of the coming
fit by describing how the BDT distribution of the sum of second-step post-fit signal and back-
grounds is then checked against data, and reweighted in the pp case, separately in each p

µµµ

T
or centrality bin. In case the BDT distribution is reweighted, a last iteration of the fit is then
performed.

We then extract trimuon mass histograms, for the signal MC and for each background,
for each analysis bin (pµµµ

T or centrality), and for each BDT bin. The used mass range is [3.5, 7.8],
keeping a 1.6GeV wide control region at high mass, to help study the backgrounds and stabilise
the fit. These histograms are the shape inputs of the template fit, that is performed with the
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combine package in chapter 6, in six categories (two analysis bins times three BDT bins). The
BDT binning provides regions with more background or more signal, to constrain separately the
first and the latter. Multiple sources of systematic uncertainty are plugged in the fit procedure,
in the form of nuisance parameters modifying the shape or normalisation of the templates;
they are listed in section 6.2. The second-step fit is improved due to a more performant BDT
discriminant than in the first step, to a more accurate pµµµ

T distribution in the signal MC, and to
a BDT distribution closer to data in case it is reweighted. Section 6.4 assesses the uncertainty
on the choice of fit methods by running alternative fits.

Once the signal yields are measured, they are corrected for the acceptance and efficiency
of the reconstruction, triggering, and selection (chapter 7). The corrections are straightforward
one-binned estimations in MC (section 7.3), except that the pµµµ

T distribution of MC is corrected
thanks to a first-step cross section estimation, as explained in section 7.6. This correction (and
the subsequent estimation of the acceptance and efficiency) is repeated after running the second-
step analysis, to benefit from the improved fit results and corrected yields. The associated
uncertainty is obtained through estimates of the acceptance and efficiency correction for many
toy pµµµ

T -differential cross section measurements, varied within the uncertainties of the nominal
measurement and resulting in varied p

µµµ

T -spectrum corrections. An event-by-event correction
procedure using acceptance times efficiency maps was also implemented, but was dropped because
it gives too large uncertainties (section 7.5).

The systematic uncertainties that are not included via nuisance parameters in the fit are
detailed in section 6.4 for the fit method, and in section 7.6.5 for the acceptance and efficiency
correction method. A summary of all uncertainties is provided in section 8.1. Finally, the yields
are normalised to obtain the cross-sections and nuclear modification factors RPbPb(B+

c ) as
a function of pµµµ

T or of centrality, and these results are interpreted (chapter 9).

3.4 PbPb data blinding

Data analysts might sometimes want (more or less consciously) to see something in the
datasets they study, e.g. to obtain a positive (statistically significant) result. This might occur
when an analysis method (in a broad sense) is preferred to another because it shows more
statistical significance; this example could lead to an overestimation of the supposedly-observed
signal. To limit the human bias linked to the choice of analysis methods, in this study, three
quarters of PbPb data were hidden to the analysts (blinded) until a late stage of the analysis,
when the great majority of methods were settled and approved by colleagues. Only the signal
region was blinded, meaning events with relatively high BDT values and having a trimuon mass
in the region where Bc mesons can be expected.

In the searches for a hypothetical signal beyond the Standard Model, with CMS or other LHC
experiments, the blinding usually affects the whole signal region in data, because this potential
bias is especially important to avoid when looking for new physical probes in many places at a
time (this is linked to the Look Elsewhere Effect [179]). In this analysis though, Bc mesons are
known states that are simply looked for in a busier environment. Only their cross sections are
unknown, though it is probable that they are not order of magnitudes different from the values
in the absence of QGP. In addition, the backgrounds were quite difficult to understand in the
early studies, so being able to check their behaviour in the signal region (with only a quarter of
the data) was relatively important – this applies mostly to the background from combinations of
a J/ψ and a muon from different processes (described by a data-driven method in section 4.4.3).
For these reasons, only three quarters of the signal region data was blinded.

In practice, a quarter of PbPb data in the signal region were given a weight 4, and the rest
was given a null weight, such that the weighted data showed yields that were representative of
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the unblinded ones, only with statistical uncertainties that are
√

4 = 2 times larger. The pp
data was not blinded in such manner, because it was used as a benchmark in early stages of the
analysis to understand the background sources in a data-driven way, and because less surprises
were expected than in PbPb. The unblinding of the whole PbPb dataset was performed on April
13th, 2021. The only significant changes to the analysis decided after this date were:

• The use of the Kaplan spectrum to fit the measured p
µµµ

T spectrum used to correct the
signal MC (see section 7.6.3). The impact on the new fitted spectrum is negligible.

• In section 7.6.5, the RMS of the ratios of PbPb/pp variations is directly used as the ac-
ceptance and efficiency uncertainty on RPbPb, instead of the quadratic sum of the separate
PbPb and pp uncertainties. The RMS is also evaluated from all toys from the three differ-
ent pµµµ

T spectrum fit functions, rather than from the set of toys based on the fit function
that gives the largest RMS. These two changes have a small but non-negligible impact on
the acceptance and efficiency uncertainty, increasing or decreasing them depending on the
correlations between pp and PbPb spectra. These changes were however motivated and
reasonable enough to be performed after unblinding.

3.5 Samples and normalisations

Though it is quite technical, for completeness, I give in Table 3.1, intended for internal use
by CMS members, the names of all the datasets used in this analysis. For data, the names are
those of the primary datasets, that receive the output of a set of triggers during data taking. The
PbPb dataset strategy for the trigger of interest was changed halfway through the run, hence
the two different datasets. The dataset names also indicates the reconstruction time: in April
2019 for PbPb, and in the ‘Ultra-Legacy’ campaign in August 2019 for pp, some time after the
run.

For MC samples, the names indicate the main MC parameters, concerning the tuning and
what tools are used for what steps. Three MC processes were generated in pp and PbPb:
signal Bc events, and prompt and non-prompt J/ψ events used for background estimations (see
sections 4.3 and 4.4).

Table 3.1: All used data and MC samples in this analysis

category description dataset path

PbPb 2018
5.02 TeV

data
/HIDoubleMuon/HIRun2018A-04Apr2019-v1/AOD for runs 326295-327122
/HIDoubleMuonPsiPeri/HIRun2018A-04Apr2019-v1/AOD for runs 327123-327564

MC signal B
+
c

/BcToJpsiMuNu_TuneCP5_5p02TeV_BCVEGPY_pythia8-evtgen/
HINPbPbAutumn18DR-FixL1CaloGT_103X_upgrade2018_realistic_HI_v13-v2/AODSIM

MC non-prompt J/ψ
/BToJpsi_pThat-2_TuneCP5-EvtGen_HydjetDrumMB_5p02TeV_pythia8/

HINPbPbAutumn18DR-mva98_103X_upgrade2018_realistic_HI_v11-v1/AODSIM

MC prompt J/ψ
/JPsi_pThat-2_TuneCP5_HydjetDrumMB_5p02TeV_Pythia8/

HINPbPbAutumn18DR-mva98_103X_upgrade2018_realistic_HI_v11-v1/AODSIM

pp 2017
5.02 TeV

data /DoubleMuon/Run2017G-09Aug2019_UL2017-v1/AOD

MC signal B
+
c

/BcToJpsiMuNu_BCVEGPY_pythia8/
RunIIpp5Spring18DR-94X_mc2017_realistic_forppRef5TeV_v1-v2/AODSIM

MC non-prompt J/ψ
/BJPsiMM_TuneCUETP8M1_5p02TeV_pythia8/

RunIIpp5Spring18DR-94X_mc2017_realistic_forppRef5TeV_v1_ext1-v1/AODSIM
/BJpsiMM/gfalmagn-BJPsiMM_TuneCUETP8M1_5p02TeV_pythia8_

16052018_withLambdab_ptHatMin10_reco-679d0c7a470a830e53fe749c4e83e359/USER

MC prompt J/ψ
/JPsiMMXXXTuneCUETP8M1_5p02TeV_pythia8/

RunIIpp5Spring18DR-94X_mc2017_realistic_forppRef5TeV-v2/AODSIM
where XXX = _, _pThat-15_, _pThat-25_, _pThat-35_, and _pThat-45_

acceptance
(pp 2017 conditions)

MC B
+
c acceptance

no kinematic cuts
/BcToJpsiMuNu_BCVEGPY_TuneCP5_Pythia8-EvtGen

/RunIIpp5Spring18DR-94X_mc2017_realistic_forppRef5TeV_v1-v2/AODSIM
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3.5.1 Data samples

The used datasets contain events triggered with a double muon criterion aimed at J/ψ mesons:
HLT_HIL1DoubleMu0 in pp, and HLT_HIL3Mu0NHitQ10_L2Mu0_MAXdR3p5_M1to5 in PbPb. All
triggered events were stored. The pp trigger only requires two muons reconstructed at L1
(see section 3.2.4 about L1 and HLT), of basic quality and without pT cuts. In PbPb, the rate
of triggered events needed to be lowered, so the trigger requires a L2 (HLT) muon, plus another
L3 muon (of higher quality than in L2) with hit quality requirements, both without pT cuts.
Very loose criteria on the dimuon mass (1 < m < 5GeV) and opening angle (∆R < 3.5) are also
applied. It is reminded that only two of the three muons from the Bc selected candidates are
required to fire this trigger, these two muons not necessarily coming from the J/ψ decay.

When extracting events from these datasets, a JSON file masks the parts of the run in
which the subdetectors used for muon physics were not fully functional. There were also short
periods in which the trigger of interest was not active, so these periods are removed as well. For
example, section 3.2.4 explains the loss of 100 µb−1 of PbPb due to HLT timing problems; about
15 µb−1 could be recovered using an additional trigger, but this low luminosity is not worth
the complications. Taking into account these removed events, the luminosities are 302.3 pb−1 in
pp and 1.605 nb−1 in PbPb. The latter can be compared to the 1.8 nb−1 of PbPb luminosity
delivered by the LHC.

This luminosity will be used to normalise the corrected yields (obtained in chapter 7) in pp.
In PbPb however, the corrected yield will rather be normalised with the nuclear overlap function
TPbPb and the total number of hadronic PbPb collisions events (see section 3.5.5.2).

3.5.2 MC generation

The simulated sample are generated with a Monte Carlo (MC) method (defined in sec-
tion 1.5.1), primarily with the pythia8 program using the CP5 tune to CMS data [180]. The
MC samples are produced ‘centrally’, meaning within the CMS-wide MC generation frame-
work, except for one private complementary sample for the non-prompt J/ψ MC in pp (see
section 3.5.2.2). For the prompt and non-prompt J/ψ MC in pp or PbPb, 40 to 60 million events
are generated. For the signal Bc MC, about 3.5 to 4.0 million events are generated, which are
reduced to about 500k after applying generator-level loose kinematic cuts. However, in the ac-
ceptance sample used to evaluate the fraction of generated Bc events whose muons fall in the
CMS kinematic acceptance (see chapter 7), all generated events, without any cuts, are kept –
but their detection and reconstruction does not need to be simulated.

To provide high-enough statistics at high pT, some samples are biased towards generating
harder processes (with higher p̂T , that represent the typical energy scale of a process). The PbPb
samples use a continuous p̂T biasing, while in pp, multiple samples are produced with a different
p̂T threshold (see Table 3.1). Event weights are later used to unbias the sample (in PbPb) and
produce a smooth pT spectrum (in pp1).

3.5.2.1 The Bc hard process

As explained in section 2.2, gluon fusion gg → B+
c + b + c is the dominant production mode

in pp collisions. This process is computed via an optimised specific Monte Carlo (MC) generator
bcvegpy2.2 [181], simulating the Bc production hard process in pp collisions at 5.02TeV. As
the production of Bc mesons is rare in pythia events, it is more efficient to use a generator
specialised for this process.

1In the pp case, discrete weights are applied: indexing with j the samples of crescent minimal p̂T ,j , the weight
applied to sample j is (σj − σj+1)/Nj , where Nj is the total number of events between p̂T ,j and p̂T ,j+1, and σj
is the cross section (from pythia) for generating events above p̂T ,j .
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Multiple states are generated, mostly colour-singlet:

• the ground state 1S0, the first excited state 3S1, with spin 1 (decaying to the ground state
and an unreconstructed low-energy photon);

• the four n = 2 (lowest-mass) P-wave states 1P1,
3P0,

3P1,
3P2;

• the colour-octet 1S0 and 3S1 (with n = 1);

• the (colour-singlet) n = 2 and L = 0 states 21S0 and 23S1 (of significantly higher mass).

These are the eight states with lowest masses in Fig. 2.3 of section 2.2.1, plus the colour-octet for
the two lowest-energy states. The excited states are considered to decay with 100% branching
fraction to the ground state, and the energy-momentum carried by the by-products X of the
decays Bc

∗ → BcX is ignored: in practice, the mass of the quarks forming the excited Bc are
set to mb = 5GeV and mc = 1.2749GeV, and they are considered to be of the same nature as
the ground state. This amounts to considering that the excited states have similar kinematic
distributions as the ground state. This was decided after a discussion with the authors.

Only the hard subprocess is generated, and the kinematics of the outgoing Bc, b, and c are
stored in a LHE (Les Houches Event) file. The latter is handed to the rest of the MC generation
chain, including the softer part of the collision dealt with pythia (see section 3.5.2.3). The initial
and final state radiation effects are disabled in bcvegpy, and rather generated with pythia.

3.5.2.2 The J/ψ hard process

In the prompt J/ψ MC, pythia8 simulates the whole hard process of a J/ψ produced in the
primary nucleon-nucleon collision. In the non-prompt J/ψ MC, a bb pair is produced, and one
of the quarks hadronizes into a B0, B+, or B0

s ; then only decays that contain a J/ψ are allowed
for this B meson. It was found that including the Λb → J/ψ X decays in the simulation did not
change significantly the properties of the generated J/ψ (in terms of lifetime and multiplicity), so
they are not included. In pp we however produce a small (2M events) private MC sample, with
the same parameters as the central non-prompt J/ψ MC, except that the Λb → J/ψ X decays are
considered too, and the minimal p̂T is set to 10GeV. This covers the case of the Λb unexpectedly
giving a trimuon background with different properties than from B mesons, and adds statistics
at high pT.

3.5.2.3 Following generation steps

For the MC used in this analysis, the generation chain starts with pythia8, except for the
signal Bc MC where a LHE file is used as input. It first simulates the hard process (typically
outputting a J/ψ or a B meson along with a few hard partons). Then these partons are show-
ering and hadronise with the Lund string fragmentation model. The underlying event is also
simulated (multiple parton interaction, and various soft processes). The particles with typical
decay length smaller than the closest detector parts are in general decayed by pythia. However,
in the non-prompt J/ψ sample, the B decays to J/ψ X and other final states are performed with
evtgen1.3 [182]; and in the Bc signal MC, evtgen1.3 computes the Bc decays with the latest
lifetime estimation (5.10± 0.09)× 10−13 s [46].

Concerning the used Bc decay model in evtgen, three models are tested in Ref. [60], and
checked to cause variations in the trimuon mass shape that are negligible for this analysis; the
model from Ebert et al. [183] is chosen here, because it is the most recent and specific to
semileptonic decays.

In pp, the simulated nucleon-nucleon collision then needs to be embedded in other pp colli-
sions taking place in the same event (to simulate the pile-up explained in section 5.2); minimum-
bias collisions (i.e. any collision containing a hadronic interaction) simulated by pythia colli-
sions are used for these accompanying collisions. In PbPb, the nucleon-nucleon interaction is
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then embedded in the other nucleon-nucleon interactions of a PbPb collision, simulated with
hydjet1.8 [184].

The generated particles then propagate and interact with the detector, and this is simulated
with GEANT4 [185]. The hits left in the detector are then digitised, simulating the response of
the electronics to the deposited energy. Then the same CMS software reconstruction algorithms
as in data are applied to build tracks and other objects usable in analysis, stored in the same
format as actual data.

3.5.3 The Oniatree analyser

The OniaTree analyser is conceived and mainly used for dimuon (quarkonium) analyses in
the CMS heavy ion group, but I adapted it to build trimuon candidates containing a J/ψ. The
core of the analyser builds a list of muons with loose selection and kinematic acceptance cuts, and
then runs over all possible pairs of muons to build J/ψ candidates. I implemented an additional
loop, combining each such J/ψ candidate with a third muon (called µW in the rest of the text,
because it comes from the W decay), to form trimuon candidates.

In addition, some variables concerning the dimuon or trimuon candidates are computed at
this stage, and only the information relevant for this analysis is kept. Part of the preselection
(detailed in section 5.4) is already applied at this level to reduce the computing time. For the
primary datasets, the data reduction thanks to the OniaTree procedure is dramatic (> 104),
from tens of TB to a few GB. For the MC samples, the cuts, if any, are much looser, typically
to allow for acceptance and efficiency estimations from uncut events.

I was responsible of developing and maintaining the OniaTree code during my thesis. This
code constitutes modules that are plugged in the standard CMS software. These modules
can be found on github (https://github.com/CMS-HIN-dilepton/cmssw, packages HiSkim and
HiAnalysis), in the branches corresponding to the CMS software releases used in this analysis
(Onia_pp_9_4_X for pp and Onia_AA_10_3_X for PbPb). All above samples are treated with this
analyser.

3.5.4 A priori MC normalisation and weighting

An a priori normalisation of the MC samples is needed, notably to form input samples for
the BDT training (section 5.7), but also to guide the choice of initial values of the normalisation
parameters in the template fit (chapter 6). Early in the analysis, this also provided a coarse
sanity check of the measured pp cross section. Previous measurements are exploited to provide
these a priori MC normalisations.

3.5.4.1 Prompt and non-prompt J/ψ

CMS measured the prompt and non-prompt J/ψ cross sections in pp and PbPb in a similar
phase space as the J/ψ mesons of this analysis (|y(J/ψ)| < 2.4 and pT(J/ψ) > 6.5 GeV) [78]. With
this measurement, the MC can be normalised accurately for both pp and PbPb, and prompt and
non-prompt J/ψ samples. For each of these four samples, the pT-dependent J/ψ cross section
measurement in data and the distribution of MC events are plotted (see Figs. 3.14 and 3.15). The
a priori normalisation is derived from the data/MC ratio (scaled by the appropriate luminosity
and J/ψ branching fraction). One sees that this ratio is not constant (except maybe for the non-
prompt PbPb sample), so it is fitted with a function defined as a constant above a certain pT

(about 20-30 GeV), and a power law below this threshold, requiring continuity at the threshold.
The fitted function is extrapolated to pT(J/ψ) < 6.5 GeV, and taken as a pT(J/ψ)-dependent
weight applied on the MC – which is hence weighted rather than simply normalised.

https://github.com/CMS-HIN-dilepton/cmssw
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Figure 3.14: Weighting of the prompt (left) and non-prompt (right) J/ψ MC in pp. Top:
Branching fraction times cross section for data and MC, versus pT(J/ψ). Bottom: ratio of the
data and MC cross sections. The fit function (red line), is extrapolated to pT < 6.5GeV and

used to weight the MC. Power laws show as straight lines in the log-log canvas.
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Figure 3.15: Weighting of the prompt (left) and non-prompt (right) J/ψ MC in PbPb. Top:
Branching fraction times cross section for data and MC, versus pT(J/ψ). Bottom: ratio of the
data and MC cross sections. The fit function (red line), is extrapolated to pT < 6.5GeV and

used to weight the MC. Power laws show as straight lines in the log-log canvas.
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The ratio of the PbPb non-prompt J/ψ MC to data might not be flat as considered in its
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nominal fit (Fig. 3.15, right). An alternative fit with a decreasing power law below 10.5GeV (and
a constant above) is tried, and the resulting weighting of MC is used in an alternative template
fit (only the first-step fit, see chapter 6). The post-fit signal normalisation from the alternative
MC weighting is only 3.5% (resp. 0.1%) different from the nominal template fit result for the
first (resp. second) pµµµ

T bin. These deviations are at least an order of magnitude smaller than
the total uncertainties, so they are not considered in systematic uncertainties.

3.5.4.2 Simulated Bc

We also extract an a priori normalisation for the signal MC in pp and PbPb that comes from
previous pp measurements of the Bc cross section (meaning that this normalisation assumes no
modification of the Bc production in PbPb). The signal cross section to which the MC is scaled
is the weighted average of a CMS measurement at

√
s = 7 TeV [186] and a LHCb measurement

at
√
s = 8 TeV [55, 187]. This normalisation does not enter directly in the final result: it is only

used to normalise the input signal sample of the BDT training and to give an initial value to the
signal normalisation parameter in the fit. In early stages, it was also used to assess the feasibility
of an observation of Bc mesons in PbPb.

The Bc cross section to which the signal Bc MC is scaled is the weighted average of a CMS
measurement at

√
s = 7 TeV [186] and a LHCb measurement at

√
s = 8 TeV [55, 187].

As these measurements are quoted in different kinematic regions, the cross section is extrap-
olated to the whole phase space using bcvegpy samples without any cuts. These measurements
are done in the hadronic channel B+

c → J/ψ π
+, so I first compare the two cross section times

branching fraction measurements for this channel. Then I multiply their weighted average by
the ratio of the leptonic and hadronic channels, measured by LHCb [52], to get a cross section
times branching fraction for the leptonic channel.

CMS measured σ×BF
B

+
c → J/ψ π

+ = (8.16± 1.09)× 10-2 nb at 7TeV [186]. The fiducial cuts
of this cross section are pT > 10 GeV and |y| < 1.5, so I get the inclusive (in the full phase
space) cross section by dividing by the fraction of all bcvegpy-generated Bc mesons that lie in
this kinematic region, which gives

σ
B
±
c
×BF

B
+
c → J/ψ π

+ = (2.47± 0.32) nb (3.2)

where the error only comes from the original measurement: the uncertainty from rescaling to the
inclusive cross section is neglected.

The LHCb measurement at
√
s = 8TeV [55] is:

σ
B
±
c
BF

B
+
c → J/ψ π

+

σ
B
±BFB→J/ψK

= (6.83± 0.20)× 10−3 (3.3)

which is measured in the region pT < 20 GeV and 2 < y < 4.5. This is multiplied by the
measurement of Ref. [187]:

σ
B
± ×BFB→ J/ψ K = (4.30± 0.30)× 104 nb (3.4)

which is measured at 7 TeV, in the same kinematic region (except that pT < 40 GeV instead
of pT < 20GeV, but the associated difference in cross section is negligible). The variation of
the Bc to B ratio from

√
s = 8TeV to 7TeV is neglected. The product of the quantities in

Eqs. 3.3 and 3.4 is the Bc cross section times branching fraction in the mentioned phase space,
to be divided by the fraction of Bc generated in this kinematic region as for CMS measurement.
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This assumes that the B and Bc have similar kinematics. The inclusive result is then:

σ ×BF
B

+
c → J/ψ π

+ = (1.90± 0.16) nb (3.5)

The results from Eqs. 3.2 and 3.5 are only 1.6 standard deviations away, which is acceptable
considering that I neglected some uncertainties. The integrated cross section is then a weighted
average of LHCb and CMS results:

σ
B
±
c ,tot

×BF
B

+
c → J/ψ π

+ = (2.01± 0.14) nb (3.6)

at 7TeV in pp collisions.

However, the centre-of-mass energy per nucleon-nucleon collision is 5.02 TeV in the data
studied here, which shall yield a lower cross section than at 7 TeV. This is corrected with
bcvegpy, by generating two Bc samples at 5.02 and 7 TeV, resulting in σ(

√
s=5.02 TeV)

σ(
√
s=7 TeV)

= 0.668.

Finally, I divide by the ratio of the hadronic to leptonic channels (4.69± 0.56)× 10−2 from
LHCb [52] (whose uncertainty is included), and multiply by BFJ/ψ→µµ = (5.93±0.06)×10−2 [46],
to get the integrated pp production cross section times branching fraction for the leptonic channel
for both charges:

σ
pp,B±c

×BF
B

+
c → (J/ψ→µ

+
µ
−

) µ
+

νµ

= (1.70± 0.23) nb (3.7)

The signal MC is hence multiplied by

Leff × (σpp ×BF )/Ngen (3.8)

where Ngen is the number of generated Bc in the MC sample before any cuts. Leff is simply Lpp
in pp, and is given in PbPb in Eq. 3.10.

3.5.5 Normalisation of PbPb yields

3.5.5.1 MC

In PbPb collisions, the centrality of the collisions and a normalisation of the yields to pp-
equivalent cross sections are needed for comparison to the numerator of the RPbPb of Eq. 1.31.
This is done using the concepts explained in section 1.5.6 (straightforwardly adapted to PbPb
collisions). As hard probe cross sections are studied, Ncoll-scaling must be reflected in the pp-
equivalent cross section, which is not the case in MC where the centrality distribution is flat.
For the signal MC, this is taken into account by using the effective luminosity of Eq. 3.10. The
J/ψ MC was normalised directly to PbPb yields, but the Ncoll-scaling must still be implemented,
through a weight Ncoll

〈Ncoll〉MB
. The quantities Ncoll, Npart, TPbPb, σNN and their relationships, are

explained in section 1.5.6, and their values are taken from the MC Glauber model of Ref. [35]
(which is the model used in the standard centrality estimations in CMS).

As a reminder of Eq. 1.31, and considering a trimuon pT and rapidity dependence, the RPbPb
quoted in the results will be:

RPbPb(B+
c )(p

µµµ

T , yµµµ) =

1
〈TPbPb〉C×w(C)×NPbPb,MB

d2
N

Bc
PbPb

dp
µµµ

T dyµµµ

d2
σ
Bc
pp

d2
p

µµµ

T dyµµµ

(3.9)
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The pp-equivalent PbPb cross section in a centrality class C is hence the total yield divided by
〈TPbPb〉C×w(C)×NPbPb,MB: the nucleonic luminosity per PbPb collision for the studied centrality
range C, times the number of (minimum-bias) hadronic PbPb collisions in this centrality class.

The considered centrality class for TPbPb and w(C) is 0 − 90%, except when the centrality
dependence is studied (in the ranges 0 − 20% and 20 − 90%, cf section 5.6). The MC in PbPb
is normalised assuming that there is no QGP modification (RPbPb = 1). The total expected
signal yield in MC is the ratio of the pp Bc cross section from previous measurements (from
section 3.5.4.2), and the pp-equivalent of the minimum-bias luminosity in PbPb collisions:

Leff = 〈NPbPb,MB TPbPb〉C = 〈(LPbPb × σgeomPbPb)× TPbPb〉C = LPbPb ×
σgeomPbPb
σNN

× 〈Ncoll〉C (3.10)

where Eq. 1.20 is used to replace TPbPb, and LPbPb is given in section 3.5.1. This effective
luminosity, to be used in Eq. 3.8, indeed incorporates a Ncoll weight (function of centrality) in
the simulated signal samples.

3.5.5.2 Data

Section 3.5.5.1 concerns the normalisation of the (signal) MC samples, but let us now consider
how the signal yields extracted from data will be normalised, to obtain the equivalent cross
sections entering the RPbPb in Eq. 3.9. In pp, the corrected yield is divided by the luminosity
given in section 3.5.1, for the used dimuon trigger and run periods. The uncertainty on the pp
luminosity is 1.9% [188].

The luminosity is determined with a LHC run dedicated to a Van der Meer scan [119]. The
beams are progressively deviated to modify their transverse intersection area, and the associated
change in the rate of the L1 trigger (defined in section 3.2.4) allows for a luminosity measurement,
as explained in Ref. [189].

Only events in the 0 − 90% centrality range are considered in this analysis (see the event
selection in section 5.2). So in PbPb, the corrected signal yield is normalised by 〈NPbPb,MB ×
TPbPb〉0−90%. The number of minimum bias events (defined in section 1.5.5) in the 0 − 90%
centrality range is calculated as:

〈NPbPb,MB〉0−90% = 0.9×NPbPb,MB = N ref
MB(0− 90%)× L

µµ trigger

Lref
= 1.1194× 1010 (3.11)

The quantities Lref and N ref
MB correspond to the luminosities and number of minimum bias for

the reference set of run periods that consists in all the runs where the subdetectors used for
muons were operational. N ref

MB(0 − 90%) = 1.1968 × 1010 was calculated for all muon analyses,
and its uncertainty is 1.26%, due to the removal of electromagnetic or beam scraping events and
the centrality calibration.1

The nuclear overlap function TPbPb(0−90%) = 6.27±0.14mb−1 is taken from [35], where the
2.2% error is from the Glauber modelling. Including the N ref

MB uncertainty, this amounts to a 2.6%
uncertainty on the global normalisation of the PbPb signal yields. In the two centrality ranges
0− 20% and 20− 90%, the TPbPb factors are respectively 18.79± 0.36 and 2.700± 0.098mb−1,
which give total PbPb normalisation uncertainties of 2.3% and 3.8%. These factors are similarly
multiplied by NPbPb,MB times the width of the centrality range.

1For NMB and its error, see https://indico.cern.ch/event/935265/contributions/3930641/
attachments/2068596/3472117/PAG_200703_NMB.pdf or https://twiki.cern.ch/twiki/bin/view/CMSPublic/
SWGuideHeavyIonCentrality#PbPb_Data_2018 (limited access).

https://indico.cern.ch/event/935265/contributions/3930641/attachments/2068596/3472117/PAG_200703_NMB.pdf
https://indico.cern.ch/event/935265/contributions/3930641/attachments/2068596/3472117/PAG_200703_NMB.pdf
https://twiki.cern.ch/twiki/bin/view/CMSPublic/SWGuideHeavyIonCentrality#PbPb_Data_2018
https://twiki.cern.ch/twiki/bin/view/CMSPublic/SWGuideHeavyIonCentrality#PbPb_Data_2018




“Je vous le dis, mes frères, l’ère de la peur est
terminée. Ce que l’homme craint, c’est ce qu’il ne

connaît pas. Je sais qu’il y a tant de choses que nous
ignorons, tant de choses que la machine savait pour
nous. Je sais que depuis toujours, vous vivez dans la

crainte, la crainte du Virus, la crainte de l’extérieur, la
crainte de ne pas survivre. Pourquoi? Parce que vous
ne savez pas ce que veulent vraiment dire ces mots.”

———–

Raphaël Granier de Cassagnac,
Eternity Incorporated1

Chapter 4

Whom do we fight?
Backgrounds

The leptonic channel B+
c → (J/ψ → µ

+
µ
−) µ

+
νµ we aim to study is partially reconstructed,

meaning the signal is spread over a wide mass range. Therefore, its signal extraction will be
done with a template fit of the trimuon mass (mµµµ) distribution, in chapter 6. The trimuon
mass distribution is studied in the [3.5, 7.8] GeV region: the sum of the shapes of the simulated
signal and the different background sources is fitted to the data. This means the background
trimuon mass shapes must be well understood, which is the key challenge of this analysis
– along with the consideration of the true signal kinematics in the acceptance and efficiency
estimation (see chapter 7.6). The signal normalisation is fitted alongside the normalisations of
some of the backgrounds, and alongside nuisance parameters to account for the uncertainties
on the background shapes (see section 6.2). This chapter aims at determining the background
shapes, their normalisations for some of them, and the uncertainties on these shapes that will be
considered in the fit. Section 4.1 explains how the backgrounds are categorised into three sources,
and the three following sections detail how reliable trimuon mass distributions are extracted for
each of these backgrounds.

4.1 Categorisation

The various backgrounds are categorised with respect to these sequential criteria:

1. Is there a true J/ψ among the two opposite-sign muon pairs of the trimuon? Or a pair only
accidentally has a mass close enough to the J/ψ mass?

2. If yes, do the true J/ψ and (fake or true) µ come from the same B-meson decay vertex?
1“I tell you, brothers, the era of fear is over. What humans dread is what they don’t know. I know there are so

many things we ignore, so many things the machine knew for us. I know that you’ve always lived in fear, fear of
the Virus, fear of the outside, fear not to survive. Why? Because you don’t know what those words really mean.”.
Personal note: I do not assert that those words relate to any current worldwide situation.
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As a side note, it is warned here that ‘from the same B-decay vertex’ includes the case where
the µ is displaced compared to the B-decay vertex, e.g. if the B decay products contain a J/ψ
and a long-lived particle that itself decays in a muon. It is however a very small contribution if
any (no obvious B decay, excluding the Bc, having been thought of with such characteristics),
justifying the use of the expression ‘from the same B-decay vertex’.

This leads to three categories of backgrounds, that are described in the following sections.
A flowchart with the categorisation strategy is shown in Fig. 4.1. The fake J/ψ background
is the most straightforward, and described with the dimuon mass sidebands, in section 4.2. The
background from B mesons decaying to a J/ψ and a (fake or true) muon is described
with the non-prompt J/ψ MC, which is reliable for these well-known decays. This association
of a displaced J/ψ with a charged particle from the same parent decay is described in 4.3. The
case of Bc mesons decaying to a J/ψ, a muon, and other particles, is taken into account with a
global systematic uncertainty, detailed in section 4.3.3. The rest of the backgrounds, described
in section 4.4, comprises prompt or non-prompt J/ψ mesons combining with a muon from
the PV or from a different secondary vertex (typically from the decay of the ‘companion’
B meson). It is estimated by a data-driven method in section 4.4.3, as the J/ψ MC samples were
found not to be able to describe it for pp collisions.

All plots shown in this section contain the events passing the preselection of section 5.4, but
are not required to pass the fiducial cuts of section 5.6.
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Figure 4.1: Flowchart showing the categorisation of backgrounds.
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4.2 Fake J/ψ

The fake J/ψ background is described with trimuon candidates from the sidebands of the
dimuon mass spectrum. These trimuons are estimated to have similar properties as the fake
J/ψ events under the J/ψ peak. The width of the sidebands region is such that this background
has the same normalisation as the background under the J/ψ peak, therefore it does not require
a fitted normalisation parameter in the template fit.

Considering the relatively low statistics, one can reasonably assume that the dimuon mass
spectrum close to the J/ψ peak is linear. Therefore, one should get an equivalent number of fake
J/ψ in the sidebands than under the peak, by simply choosing the lower and upper sidebands
each of a size equal to half the width of the signal mass region. The peak and sideband regions
are also defined tighter when the muons are closer to the central barrel, because the muon pT

(hence dimuon mass) resolution is better in this region [175]. Due to final state radiation, the J/ψ
dimuon mass can be dragged to lower values, resulting in an asymmetric peak, so I also slightly
shift down the mass window of the lower-mass sideband. One needs to limit the contamination
of signal into the sidebands background sample, while keeping the sidebands close enough to
the nominal J/ψ mass mJ/ψ

PDG = 3.096GeV [46] so that their properties (especially the kinematic
distributions) stay similar; I hence choose a 50MeV (resp. 40MeV) gap between the signal region
and the lower (resp. higher) sideband.

Finally, the signal and sideband regions are respectively:

• mµµ −mJ/ψ
PDG ∈ [−100, 80] MeV and mµµ −mJ/ψ

PDG ∈ [−240,−150] ∪ [120, 210] MeV, when
all three muons have |η| < 1.5;

• mµµ −mJ/ψ
PDG ∈ [−150, 110] MeV and mµµ −mJ/ψ

PDG ∈ [−330,−200] ∪ [150, 280] MeV other-
wise.

Selecting events in such a mass peak region has an overall 95.7% (resp. 96.3%)1 efficiency on the
signal MC in pp (resp. in PbPb) with other preselection cuts applied (listed in section 5.4). On
the other hand, only 1.2% (resp. 1.8%) of the preselected signal MC falls in the sidebands in pp
(resp. in PbPb), which is a negligible signal contamination considering the amount of fake J/ψ
it will be mixed with.

Care has been taken not to bias the J/ψ candidate mass shape, by using no mass criteria to
select the J/ψ dimuon among the two possible opposite-sign muon pairs of the candidate trimuon.
This is necessary to keep the correct fraction of fake J/ψ events in the signal and sideband regions
and ensure their cancellation. Section 5.5 explains how a weight is attributed to the candidates
whose J/ψ choice is ambiguous. This strategy also removes artificial structures in the trimuon
mass shapes due to excessive kinematic constraints. The dimuon mass spectra of preselected
data are shown in Fig. 4.2, taking into account this weighting.

Differences in the two sidebands

When using the trimuon mass distribution of this background, one would like to reduce
the effect of the displaced dimuon mass that makes the kinematic properties of sideband events
slightly different than under the J/ψ peak. This is partially accomplished by fixing the dimuon
mass to the PDG J/ψ mass in the trimuon invariant mass calculation (this is done for all samples,
because it also improves the trimuon mass resolution by removing the experimental resolution on
the J/ψ dimuon mass). Ideally, the trimuon mass shapes in the two sidebands would be similar,
so that one could be confident in interpolating this shape to the background between the two
dimuon sidebands. However, the shapes in the two sidebands are somewhat different, as shown
in Fig. 4.3, with a smaller difference in PbPb than in pp.

1Weights concerning the choice of the J/ψ dimuon (from section 5.5) are included in those numbers.
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Figure 4.2: Dimuon mass in pp (top) and PbPb (bottom) preselected data, for tight (all
three muons have |η| < 1.5, left) and loose (other cases, right) ranges, when the trimuon mass

is in [3.5, 6.2]GeV. Only the events in the signal or sideband region are shown.
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Ultimately, the sum of these histograms serves as the fake J/ψ sample, but it has been veri-
fied that the introduced bias is small. I thank here Natalie Blot, who implemented this check
during her internship at LLR. To estimate the true shape under the J/ψ peak, one needs to
interpolate between the two observed sidebands. Let us call f(mµµ) the trimuon mass probabil-
ity density of fake J/ψ, depending on the dimuon mass. The shape f(mµµ(lower sideband)) +
f(mµµ(higher sideband)) is not the same as the f(mµµ(peak region)) one. First the two side-
bands are fitted with an error function times decreasing exponential, with a fixed error function
threshold (3.28GeV). The fitted functions are f({αi,low}) and f({αi,high}), where {αi} are the
fitted parameters. Then we interpolate the parameters to have an estimation of the central
shape f({αi,central}). The parameter interpolation is a weighted average (taking into account the
different number of events Nlow and Nhigh) of the two shapes: αi,central =

Nlowαi,low+Nhighαi,high
Nlow+Nhigh

.
The two sideband fits and the function with averaged parameters are shown in Fig. 4.4 (left),
for the more problematic pp case. The fits are of good quality: χ2/ndf = 1.7 or 1.1 for the left
or right sideband, respectively.

However, comparing the function with interpolated parameters to the sum of the fits of the
two sidebands as shown in Fig. 4.4 (right), our sophisticated strategy appears to make only a
relatively small change in the trimuon mass shape. Moreover, the fitting cannot be used with
lower statistics, which will be the case later when the BDT binning is applied, producing low-
background BDT bins with very low fake J/ψ yields. This interpolation strategy is therefore
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Figure 4.3: Trimuon mass for pp (top) and PbPb (bottom) events from the lower (left) and
higher (right) sidebands.
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Figure 4.4: Fitting sidebands in order to get a better fake J/ψ trimuon mass shape in pp
collisions. Left : Separate fits of the left and right sidebands, compared to the function with
parameters interpolated between the two sideband fits (blue). Right : Fit with interpolated
parameters (blue), compared to the sum of the fits of separate sidebands (red), and to the
histogram of summed sidebands (black). The two functions are normalised to the integral of
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dropped as the central method1, and the shapes from the separate sidebands are kept as
systematic variations in the template fit (see section 6.2), which is sufficient to cover the
uncertainty on this shape.

Note on the wrong-sign sample

Fake J/ψ candidates can come from physics source (e.g. a Drell-Yan µ+µ− continuum, or
D+D− pairs that decay leptonically) or from pure combinatorics (uncorrelated muons which
are mostly misidentified hadrons, and possibly from pile-up). The latter can be estimated by
the wrong-sign sample, consisting of trimuons of charge ±3 (with other selections identical to
the signal region). This sample will be displayed for illustration in the template fit plots (in
section 6.3) but does not participate to the fit, since the associated background is already included
in the fake J/ψ contribution (the dimuon mass sidebands).

Looking at an ordered list of three ±1 charges (+ + +,−−−,+ +−,−−+,+−+,−+−,
+−−,−+ +), one observes that only two out of eight combinations of three random muons
lead to a charge ±3 trimuon. This means that there are three times more trimuons of charge
±1 coming from random muons than those of charge ±3 (the latter constituting the wrong-sign
sample). Therefore, a weight 3 is given to the wrong-sign candidates, for a correct normalisation
of the estimated purely combinatorial background in the right-sign sample.

4.3 True J/ψ and muon from the same B decay

Let us now consider backgrounds that feature a true J/ψ meson, starting with a J/ψ meson
associated to an identified muon arising from the hard process. If produced at the primary vertex,
such J/ψ–muon pairs could leak into our displaced vertex selection, because of the finite vertex
resolution. However, no prompt hard mechanisms can strictly produce a J/ψ with a third muon
with yields relevant for this analysis, so I limit this second background category to non-prompt
J/ψ mesons, namely to true B → J/ψ X decays where the X decays to or contains a muon or
a hadron misidentified as a muon. This excludes Bc decays for which a systematic uncertainty
is estimated in section 4.3.3. In any case, prompt J/ψ mesons combined with a (true or fake)
muon coming from the same process or the underlying event are included in the data-driven
background of section 4.4.3.

4.3.1 B decays

So we now deal with a non-prompt J/ψ combined with a muon from the same displaced
vertex, meaning B meson decays (a displaced vertex could mean an open charm decay, but those
are not heavy enough to produce a J/ψ). The cases where a B decays to a J/ψ and a long-lived
particle (e.g. a D meson), which then decays to a muon, are also included but negligible (no
such significant decay was thought of except for Bc decays). The B meson decays to three
muons (and possibly other particles) are rare (1% of the true B decays in the non-prompt J/ψ
MC in pp), the predominant one being Bs → J/ψ φ → µµµµ. More abundant are the B meson
decays with a J/ψ and a hadron misidentified as a muon, such as B+ → J/ψ K+ (see
section below). These processes are included in the non-prompt J/ψ MC, in which all B0, B±,
and Bs decays are simulated. This sample will thus provide the second template for our fit, with
a quasi-free normalization parameter and an important characteristic: it does not extend above
∼ 5.4 GeV, that is the Bs mass.

1Another solution would be to use the sPlot technique [190]. This technique does not need the assumption
of linear background, and predicts through sWeights (discriminating signal and background) the shape of the
background under the J/ψ peak. Its caveat is however that the discriminant (dimuon mass) and extracted
(trimuon mass) variables need to be uncorrelated for the technique to be correct, which is clearly not the case
in this analysis. In addition, the complications linked to the choice of the J/ψ dimuon among the trimuon make
unclear the dimuon mass distribution that is to be used for the extraction of the sWeights.
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4.3.2 Muon misidentification

About 90% of the simulated trimuon candidates from these same-decay processes indeed have
a fake as their third identified muon (the one not coming from J/ψ), that is a misidentified hadron.
As detailed in Ref. [175], the misidentification of hadrons into muons stems from three sources:
mismatching of a standalone track in the muon chambers with a hadron track in the inner tracker,
punch-through (high-pT hadrons that do not loose all their momentum before reaching the first
muon station), and decay-in-flight (hadrons decaying to muons before the muon stations). The
latter is the most important source at low pT. For a loose muon selection, the probability (that
depends on pT) to identify a proton as a muon is . 0.1%, while it is respectively 0.5-1% and
0.2-0.5% for the kaon and pion.1

The non-prompt J/ψ MC is considered reliable for the true B → J/ψ h±X and B →
J/ψ µX decays (where B is any B meson except the Bc), because these are well-known processes,
for which the MC has been checked by other analyses. In this simulation, one needs to discard
these candidates from the non-prompt J/ψ mesons combining with a muon from a different decay
or from the PV (this background source is studied in section 4.4). It is done by matching, in the
Oniatree, the simulated particles (i.e. simulated hits that are reconstructed into tracks as in
data) with the true particles generated in the pythia processes, for which the decay genealogy
is known.

The trimuon invariant mass shapes are presented in Fig. 4.5. The bulk below 5GeV corre-
sponds to partially reconstructed B → J/ψ (h±/µ

±)X decays where the missing particles make
the trimuon mass lower than the B mass. The peak observed around 5.2GeV corresponds to the
decay B+ → J/ψ K+ where the kaon is misidentified as a muon. As will be clear in the template
fit of chapter 6, this background is lower in PbPb– notably because B mesons are suppressed
in the QGP.
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Figure 4.5: Trimuon mass shapes of preselected of simulated B → J/ψ (h±/µ
±)X candidates

in pp (left) and PbPb (right).
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In Fig. 4.5, the simulations are scaled by the a priori normalisation calculated in section 3.5.4
(with the help of previous non-prompt J/ψ cross section measurements) to give a first estimate
of the expected background. However, since this normalisation and the misidentification rate are
imperfectly known, the normalisation of this background source will be left free in the template

1The kaon has a higher misidentification probability than the pion because of its smaller lifetime, giving it a
larger probability to decay into a muon within the tracker volume.



90 Chapter 4. Whom do we fight? Backgrounds

fits (though with a loose constraint to guide them). It is to be noted that the B+ → J/ψ K+ peak
helps the fit to determine the normalization (at least in pp in the background-enriched low-BDT
samples), but that it is not always visible, given its low statistics and the other backgrounds.

It is beyond the reach of this analysis to put in place a full data-driven check of the misiden-
tification rate, for example with a tag-and-probe on the φ → K+K− (resp. K0

S → π
+

π
−) decays

for the misidentified kaons (resp. pions).1 A global factor of data/simulation discrepancy in
this rate is covered by the normalisation of this background being free in this fit. However, to
cope with possible momentum- or rapidity-dependent errors in the simulated misidentification,
modifications of the trimuon mass shape of this background will also be considered as system-
atic uncertainties (see section 6.2), except in PbPb where it is subdominant compared to other
background sources.

4.3.3 Other Bc decays

One should not forget a decay that resembles very much the signal: the Bc → J/ψ τ ντ

decay, with the τ decaying in a µ (and neutrinos). One could produce an extra signal sample
with this decay, but one would still need to input the coarsely-known ratio of the tauonic and
muonic Bc decays to get an inclusive signal MC; furthermore, I argue here that such a sample
is not necessary. The ratio of the tauonic to muonic Bc decays is bound to be strictly less than
unity both by lepton universality combined with a tighter tauonic phase space, and by a LHCb
measurement of 0.71± 0.25 [59]. As a side comment, this measurement is part of the set of hints
for lepton flavour universality that is currently agitating the High Energy Physics community:
the Standard Model predictions for this ratio, some of which are listed in Ref. [59], are indeed
in the range 0.25 − 0.28, which is 1.8σ lower than the measurement. This ratio then needs to
be multiplied by the branching fraction of τ to µ of 17.3% [46]. This means that 12% (or less
than 5% if one rather believes Standard Model predictions) of the true Bc → µµµX events come
from this decay. Moreover, for multiple reasons, the tauonic decay will have a much smaller
acceptance times efficiency than the muonic decay:

• the muon from the tau decay is in general of lower pT than the one in the muonic decay
because some energy is lost to the neutrinos from the tau decay. This yields a lower muon
acceptance times efficiency in general (see maps of section 5.3.2);

• the τ lifetime (ctτ = 0.087 mm at rest) is slightly above the CMS vertex resolution, meaning
that the cuts on the probability of the trimuon vertex VtxProb (probability that the three
muon have a common vertex, see section 5.4) will tend to reject tauonic decays;

• the decay kinematics will be slightly different than the signal channel, which further helps
the BDT to discriminate against it.

Estimating precisely the effect of all these additional inefficiencies in the τ channel would
require its full simulation. However, one can get a lower limit through a rough estimate of two
contributing inefficiencies, helped by the MC sample for the Bc muonic decay, considering only
trimuons passing pre-selection (section 5.4) and fiducial cuts (section 5.6).

First, I estimate that a muon decaying from a tau has in average pµ

T ' 0.6p
τ

T; this is starting
from an ultrarelativistic estimation that half of the energy is taken away by the neutrinos of the
decay, and leaving some margin for a contribution of the τ mass to the pT. Then I check with
the muonic Bc simulation the proportion of signal events that pass the single muon acceptance
cuts (of section 5.3) when the pT of the muon not coming from J/ψ is multiplied by 0.6; it is
about 67%. This assumes that the kinematic distributions of the decay products are similar in

1Previous studies like Ref. [191] at 7TeV and Ref. [175] at 13TeV have compared the rate of muons that are
actually hadrons between data and MC, and found consistency, though within relatively large errors, in different
detector conditions than ours, and in general for muons with pT > 3.5GeV.
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the muonic and tauonic decays, despite the non-negligible tau mass. To this factor could be
added the additional inefficiency of muon identification, that decreases towards low pT (see maps
of section 5.3.2).

Then, I estimate how the additional displacement of the muon coming from τ affects its
efficiency of passing the selection, in particular the trimuon vertex probability cut (VtxProb).
For this, I look at the inefficiency of a tighter VtxProb cut compared to the preselection, as
a function of the distance of closest approach (DCA) between the two muons of the J/ψ; this
DCA serves as an approximation for the DCA between the J/ψ and the muon coming from the
τ decay. Assuming pτ � mτ (and small τ decay opening angles), the angle between the tau and
its muon daughter is of order mτ/pτ (obtained from the decay kinematics), but also of order
DCA

ctτ×pτ/mτ

(considering the tau boost), which means DCA ∼ ctτ , the proper time. Now, Fig. 4.6

shows in pp (conclusions are similar in PbPb) the inefficiency of the cut VtxProb > 0.04 (left
plot) or VtxProb > 0.06 (right plot), from the preselection cut VtxProb > 0.01. It is fitted to
show this inefficiency rises linearly with the DCA(J/ψ). Most of the trimuons have a DCA(J/ψ)
very close to 0, therefore adding a DCA ∼ ctτ between two muons of the trimuon affects the
inefficiency of a VtxProb cut similarly as an increase of DCA(J/ψ) from 0 to ctτ . The ratio of
the inefficiency fit function between DCA = ctτ and DCA = 0 gives about 6 for both tested
VtxProb cuts. Multiplying this by 5%, the inefficiency of the preselection VtxProb cut (see tables
of section 5.4), I get an efficiency of this cut on the τ channel of about 65− 70%.
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Figure 4.6: Inefficiency, on the pp signal MC sample (preselected and in fiducial cuts), of
a cut of the trimuon vertex probability > 0.04 (left) or > 0.06 (right), as a function of the

distance of closest approach between the two muons from the J/ψ.
——–

Multiplying these two efficiencies, present only in the τ channel, gives 45%. This estima-
tion is similar in pp and in PbPb. It is reasonable to assert that the contributions not taken
into account (in particular the sophisticated BDT selection) drive this efficiency down to 25%.
Multiplied by 12% (the ratio of tauonic to muonic decays), I hence estimate that the overall
contamination of our signal by these channels should not exceed 3% and will assign this as an
asymmetric (downward only) uncertainty on the cross sections, fully correlated along analysis
bins. Considering that the efficiency of reconstructing these channels is similar in pp and PbPb,
these contributions approximately cancel in the ratio of pp and PbPb yields. This is partially
confirmed by finding similar inefficiencies in pp and PbPb for the two contributions roughly
estimated above. A symmetric 1% error is hence assigned in the RPbPb to cover for an imperfect
cancellation of these contributions.

Decays of the type Bc → J/ψ(D → µX)X have been observed, but in addition to low
(unmeasured) branching fractions, the D meson travels more than the τ before decaying to a
muon, which reduces enough its efficiency for these channels to be ignored.
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There can also be feed-down from Bc → hcc µX, where hcc is an excited charmonium that
decays to a J/ψ and other particles. It is to be noted that no such decays have been observed
yet, but Ref. [192] summarises some theoretical predictions for the branching fractions of these
decays. The Bc → ψ(2S)µν decay has a negligible branching fraction compared to our main
decay, despite the high feed-down BF (ψ(2S) → J/ψX) = 0.61. However, the Bc → χc0,1,2 µX has
a significant branching fraction: roughly 30% of our signal channel, considering the various (and
quite dispersed) predictions in Ref. [192]. The radiative feed-down fractions χc0,1,2 → J/ψ γ are
resp. 1.4%, 34.3%, and 19.0% for the χc0, χc1, and χc2 states [46], so I roughly consider that 20%
of the χc mesons from Bc decays result in a J/ψ. The ratio of the total Bc → (χc0,1,2 → J/ψX) µX
branching fraction to our signal channel is therefore about 6%.

However, the acceptance and efficiency for reconstructing these decays will be lower than
for the main signal channel, with similar arguments than for the τ channel above. Namely, the
χc states (of masses 3.41GeV to 3.56GeV) take more energy from the Bc, notably through the
unreconstructed radiated photon, leaving a smaller pT for the final-state muons; and the muon
acceptance and efficiency reduces rapidly with pT. The selection variables might also vary from
the main signal events; for example, the resulting trimuon mass shape will be shifted to lower
values due to the energy taken by the photon. It is therefore reasonable to estimate that the
acceptance and efficiency for reconstructing and selecting these channels as signal is at least twice
lower than for the studied signal channel, resulting in a maximum 0.5×6% = 3% contribution to
the measured signal yields, taken as a one-sided (downward) systematic uncertainty on the cross
sections. It is considered to partially cancel in the RPbPb such that a 1% symmetric systematic
uncertainty is applied there.

As for the τ channel, the efficiency loss compared to the signal channel is considered to be very
similar in both pµµµ

T bins (and even more so in the centrality bins, because these decays happen
outside of the QGP). Relevant for the excited charmonium decays, the feed-down fractions to
J/ψ are also assumed to have no significant pT dependence.1 This translates in a full correlation
of this uncertainty along analysis bins. The final uncertainty associated to other Bc decays being
included in the signal yield is the quadratic sum of the Bc → χc0,1,2 µX and Bc → J/ψ τ ντ

contributions, amounting to a downward 4.5% uncertainty on the cross sections, and a 1.5%
symmetric uncertainty on the RPbPb, fully correlated along analysis bins.

4.4 True J/ψ and muon from different processes

Let us now look into the remaining true J/ψ mesons, that combine with a muon that does not
originate from the same decay vertex, including the case where they both come from the primary
vertex (but are reconstructed as displaced due to the finite vertex resolution). An important
characteristic of this background is that, contrary to the B decays, it should provide the high
trimuon mass (above the Bc mass) background events that the fake J/ψ background (data-driven
and self-normalised) do not provide. Two approaches were followed to estimate this background:

• In principle, one could treat this case with a perfect simulation. Due to problems in the
J/ψ MC with the pp 2017 running conditions (manifesting itself as a bad agreement with
data in control regions), this method was complicated to deal with. It was abandoned for
the pp case, but found efficient in the PbPb case. This possible method is described in the
following section 4.4.1, while the shortcomings of the J/ψ simulation in pp are demonstrated
in section 4.4.2.

• Alternatively, this (mostly) combinatorial background can be estimated directly from data.
I developed a method consisting in rotating, in each J/ψ dimuon event, the J/ψ candidate

1This is an approximation, but a pT dependence of the feed-down fractions would probably concern low-pT
regions that are not accessed in this analysis.
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by some angle before trying to combine it with an additional muon from the same event.
This rotated J/ψ method is described in section 4.4.3, and will gives its name to this
background source in the rest of the analysis.

4.4.1 Combinatorial background from simulation

The prompt J/ψ MC should cover the case where a prompt J/ψ meson (surviving the non-zero
displacement cuts of the analysis selection) is associated with a muon coming from the underlying
event (typically multiple partonic interactions), or from other vertices (pile-up, or non-prompt
muons from another B decay in the event). Similarly, the non-prompt J/ψ MC should describe
the candidates with a true non-prompt J/ψ and a muon from the PV (passing close enough to
the displaced vertex) or from another B decay, in general from the ‘companion’ b that recoiled
against the b-parent of the J/ψ.

For pp collisions, the study in section 4.4.2 however shows the incapacity of the J/ψ MC
in pp 2017 to predict the yields in the control region at high trimuon mass (> 6.3GeV). In
the pp 5.02TeV 2017 run, I found large discrepancies in the variables linked to vertexing and
displacement, which were also seen in earlier pp 2017 datasets, and whose source could not be
precisely established. The strategy of the Collaboration for high-statistics pp 2017 analyses1

was to correct the MC in 6 variables simultaneously. However, this is technically heavy, and
too demanding for the limited statistics available in this dataset. A weighting in ‘3.5’ variables
(DCA, pT, and lifetime significance, in three rapidity regions) was envisioned, but considering less
variables means that non-weighted variables (possibly behaving fine initially) could get distorted
due to correlations with the weighted variables; and the discrepant variables are significantly
correlated, as is shown in section 4.4.2 too.

In addition, getting perfectly correct J/ψ distributions on an inclusive J/ψ sample does not
give any guarantee that the distributions of J/ψ mesons within a preselected trimuon candidate
will be correct, as the latter could have different properties than inclusive J/ψ mesons. I hence
concluded that the existing J/ψ MC in pp could not correctly describe data, and turned to an
alternate data-driven method to describe the background of true J/ψ mesons combining with a
muon from a different vertex (or both from the PV).

The relief is that these discrepancies were not observed in pp 2018 runs, and in PbPb
2018 data the high trimuon mass control region can indeed be fitted correctly with the J/ψ
simulations.2The latter could possibly be used as the nominal description of this background in
PbPb. However, for the sake of consistency between the pp and PbPb methods, and because the
data-driven rotated J/ψ sample is proven in section 4.4.3 to be even more reliable in PbPb than
in pp, the J/ψ rotation is taken as the nominal method. The J/ψ simulations are considered only
as a shape variation of the nominal sample, to cover the systematic uncertainties of this shape
(see section 6.2).

4.4.2 Investigation of the J/ψ MC in pp 2017

The problem with the J/ψ MC in the conditions of the pp 2017 run first manifested itself in
the trimuon mass shapes of the prompt and non-prompt J/ψ MC (supposed to describe all true
J/ψ backgrounds) summed with the J/ψ sidebands shape (describing the fake J/ψ background)
not being able to make the template fit converge, due to an insufficient total background yield
in the high trimuon mass control region. No signal is expected in this mµµµ > mBc

region,
so that the sum of the predicted background shapes (with a free normalisation for the MC)

1See this talk: https://indico.cern.ch/event/870866/contributions/3673333/attachments/1963354/
3263973/17-12-2019.pdf (restricted access).

2See Fig. 4.16 at the end of this chapter, that shows similar mass shapes for the simulation and the data-driven
method in PbPb, while the latter performs well in the template fit of chapter 6.

https://indico.cern.ch/event/870866/contributions/3673333/attachments/1963354/3263973/17-12-2019.pdf
https://indico.cern.ch/event/870866/contributions/3673333/attachments/1963354/3263973/17-12-2019.pdf
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should fit data, but it does not. Several possible flaws were investigated and reported below:
muon identification, track multiplicity, and J/ψ variables. I investigate this mainly with the
non-prompt J/ψ MC, but most of the presented arguments are valid for the prompt MC too.
It is underlined that this section presents an ancillary study, that helped the choice of analysis
methods but is not directly used in the main analysis.

4.4.2.1 Dimuon+track mass to test the muon identification

One could think that this problem is related to the muon description in the simulation.
However, I checked that this underestimation at high mass still exists in a J/ψ+track selection
in the non-prompt MC, where the simulated track is not affected by possible faults in the muon
selection in MC. OniaTree’s similar to the trimuon ones were generated to build dimuon+track
candidates, as in section 3.3.2. The track that the J/ψ combines with is still attributed the
muon mass. Weights from a simple sideband subtraction (to cancel out fake J/ψ candidates, as
in section 4.2) were also applied, along with a cut on the significance of the 3D lifetime of the
dimuon (> 3σ, to eliminate prompt J/ψ). The MC was normalised to data through the integral
of the B+ → J/ψ K+ peak.

The data/MC comparison of the dimuon+track mass shapes are shown, both for the trimuon
(here, the dimuon+track) vertex probability nominal selection (Fig. 4.7 left), and for a low vertex
probability range (right). The latter sample is enriched in candidates where the J/ψ and the track
do not come from the same vertex, which is the background targeted in this section. At low
vertex probability, the underestimation in the non-prompt J/ψ MC of the high dimuon+track
mass yields is clear, not yielding enough combinatorial background along the entire mass range.
With the nominal VtxProb cut (left plot), it certainly fails to produce enough high-mass trimuons.
The shape is also observed to be wrong at lower masses (more events in data at low mass), as
the potential Bc signal in data (not simulated in the non-prompt J/ψ MC) would be completely
dominated by random dimuon+track combinations, which are very numerous when no muon
identification is required on the track.

Figure 4.7: Dimuon+track mass shapes of non-prompt J/ψ MC candidates, with preselection
cuts except the muon selection on the non-J/ψ track, and normalised with the height of
the B+ → J/ψ K+ peak, in pp collisions. Left : vertex probability cut of the preselection

(VtxProb > 0.01). Right : Low vertex probability range (0.01 < VtxProb < 0.04).
——–
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4.4.2.2 MC multiplicity

As the problem is not (or at least not fully) related to muon identification, I turned to
charged track multiplicity: if it is underestimated in the MC, either globally in the full event or
locally in a cone around the b quark, then the J/ψ has less possibilities to form a dimuon+track
candidate that passes cuts. This would impact the yields of trimuons where the J/ψ and muon
come from uncorrelated processes, but not the trimuons where the third muon comes from the
‘companion’ b shower. I look into the pythia generation method for a possible bias of the
multiplicity in events containing a J/ψ. The non-prompt J/ψ MC uses the option HardQCD which
generates a bb pair in each event; this option could trim higher-multiplicity events compared
to a simulation where the hard process is just a rare event occurring in a minimum-bias (MB)
generation. When a hard process is enforced with HardQCD, it is generated first, and then other
processes (e.g. multiple partonic interactions) are generated with decreasing scales; and the scale
of charm production is relatively low compared to underlying event processes that could but will
not be produced in this mode due to higher scales than the first generated process.

I hence also generated MB events and selected only the ones with a bb pair (about 0.1%
of events), and forced a B meson to decay into a J/ψ. Fig. 4.8 (left) shows the charged track
multiplicity associated to the chosen PV, for pythia MB events, for HardQCD events with a non-
prompt J/ψ, and for MB events that contain a B meson (forced to decay with a J/ψ). The mean
multiplicities in the last two samples are close (resp. 39 and 42), the small difference (about
3σ significant) not being sufficient to explain the factor 2 discrepancy in the high dimuon+track
mass region (reported above in Fig. 4.7). For completeness, I also checked (Fig. 4.8 right) the self-
normalised J/ψ yields as a function of the self-normalised track multiplicity, which is a quantity
often used to address how well the underlying event activity close to a quarkonia is simulated.
This quantity does not show significant differences between the two generation modes.

The other possibility for a wrong track environment around the non-prompt J/ψ is an inaccu-
rate b quark showering. pythia HardQCD only simulates a leading-order hard process. However,
in other B analyses with much more statistics, a NLO bb generation was not found to be more
useful than the LO samples to describe data. This lead is therefore not followed.
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Figure 4.8: Multiplicities in pythia events containing a non-prompt J/ψ meson. Left :
Multiplicity of charged tracks in a MB event (green), in a MB event containing a B → J/ψ X
(red), and in a HardQCD event where the B → J/ψ X generation is forced (blue). Right :
Number of J/ψ mesons divided by the average number of J/ψ mesons in the whole sample,
versus the track multiplicity in the corresponding event divided by the average multiplicity.

No strong discrepancy between HardQCD and MB generation modes is found.
——–

4.4.2.3 Dimuon J/ψ distributions

I have hence shown that the high trimuon mass underestimation in the pp J/ψ simulation
does not come exclusively from the J/ψ having to combine with a muon, nor from a lack of
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Figure 4.9: 3D dimuon lifetime. The data (dimuon mass signal region), the data sidebands,
the prompt and non-prompt simulations, and the sum of the last three are shown. This
distribution is used for the normalisation of the MC samples. The bottom pad shows the
ratio between data (dark blue in the top panel) and the sum of sidebands and MC samples

(thick black line).
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Figure 4.10: Distance of closest approach (dca) between the two muons, compared between
data (dark blue) and the sum of sidebands and J/ψ simulations (black). Left : no lifetime cut.

Right : with lifetime cuts.
——–

charged tracks to combine with. I also saw that the pythia generation mode does not affect
enough the multiplicity to be the main cause of this underestimation. Therefore, the problem
probably lies with the J/ψ distributions themselves, so that J/ψ mesons are less easily associated
with a track in the MC, or are excessively rejected by the preselection. Problems were indeed
detected with the J/ψ distributions in the 2017 pp run at 13TeV (that preceded the 5.02TeV run),
whose source is not explicitly understood, but might have been linked to data-taking incidents
in the pixel tracker commissioning (2017 RunB) or with DCDC converters (2017 RunF) that were
not properly simulated in the MC. I check now that the problems in the 2017 RunG used in this
analysis are similar.
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Figure 4.11: Comparison of J/ψ distributions between data (dark blue) and the sum of
sidebands and simulations (black), without lifetime cuts. Variables are: the dimuon pT, the pT

of muons from the dimuon, the 3D dimuon lifetime significance, the 3D dimuon angle between
the momentum and the vertex displacement, the significance of the transverse displacement

of muons from the PV, and the vertex probability.
——–

Oniatree’s are run to gather inclusive J/ψ candidates from the 2017 RunG dataset, as well
as from the prompt and non-prompt J/ψ MC described in section 3.5. I apply cuts similar to
the ones on the J/ψ within the trimuon selection, meaning:

• Dimuon vertex probability > 0.01.

• Dimuon distance of closest approach dca < 0.3mm.

• Two hybrid-soft muons (defined in section 5.3.1).

• One muon passing the tight acceptance and firing the trigger, and the other might pass
only the loose acceptance (single muon acceptance definitions in section 5.3.2). The event
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Figure 4.12: Comparison of J/ψ distributions between data (dark blue) and the sum of
sidebands and simulations (black), with lifetime cuts applied. Variables are: the dimuon
pT, the pT of muons from the dimuon, the 3D dimuon lifetime significance, the 3D dimuon
angle between the momentum and the vertex displacement, the significance of the transverse

displacement of muons from the PV, and the vertex probability.
——–

needs to fire the double-muon trigger used in the Bc analysis.

• Dimuon mass signal and sideband regions defined as in section 4.2.

I draw variables separately for the mass signal region data, for prompt and non-prompt J/ψ
simulations, and for the sidebands. Then I compare the signal region data to the sum of the
sidebands and the simulations. To do this, a normalisation of the MC is needed, which I obtain
in two steps, through the 3D lifetime distribution in Fig. 4.9:

• Scale the non-prompt MC (plus the sidebands with fixed normalisation) to data events at
high lifetime (cτ3D > 0.9mm)
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• Scale the prompt MC (plus the sidebands with fixed normalisation) to data events in the
complementary region, after having subtracted the scaled non-prompt contribution.

I compare the data and MC distributions with the cuts stated above, but also with cuts on the
dimuon lifetime such that the dimuon lifetime distribution is close to the one of the preselected
trimuon sample (with cuts of section 5.4). The first sample is dominated by prompt J/ψ, and
the second by non-prompt J/ψ. Discrepancies in the second sample are directly meaningful for
this analysis. For instance, Fig. 4.10 presents the distance of closest approach (dca) between the
two muons, for the two sets of cuts, and shows large data/MC discrepancies (up to 50%).

Other figures (4.11 for inclusive and 4.12 for non-prompt-enriched samples) reported here-
after show other variables, with the following also exhibiting discrepancies: dimuon vertex prob-
ability and lifetime significance for both selections, and the dimuon pT and 3D pointing angle
for the sample with lifetime cuts (see section 5.4 for the definition of these variables).

The correlation matrices between the J/ψ variables for data and for prompt and non-prompt
MC samples are also presented in Fig. 4.13 for the two sets of cuts. They show quite high
correlations which make a reweighting strategy particularly difficult, especially considering the
limited statistics of the 2017 pp RunG (in particular if the J/ψ is required to be in the vicinity of
a third muon), which mean that the number of reweighted variables must be limited.
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Figure 4.13: Correlation matrices between J/ψ variables, for non-prompt MC (top), and for
prompt MC (bottom). For brevity, the correlation matrices for sidebands-subtracted data are
not displayed, but show correlations of the same order than those of MC. Left: no lifetime

cuts. Right: non-prompt lifetime cuts are applied.
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4.4.3 J/ψ rotation method

The J/ψ MC samples were shown above not to be able to describe the background from J/ψ
mesons combining with muons from a different hard process. Therefore, let us now rather look
for a data-driven method. The background at hand can be decomposed in two categories:

• The random combinations of a true J/ψ with a (fake or true) muon whose production is
uncorrelated with the J/ψ. There are multiple cases that will not need to be distinguished:

– a prompt J/ψ passing the displacement selection + a (non)prompt muon;

– a non-prompt J/ψ + a prompt muon whose track is close to the J/ψ vertex.

When the muon is prompt, it is mostly a misidentified hadron, especially in PbPb collisions
where the track multiplicity at the primary vertex is very large.

• The combinations of a true J/ψ with a (fake or true) muon that shows some level of
correlation with the J/ψ. One can think of two loose correlations:

– particles linked by their parent hard process, in particular bb processes where one
b-hadron decays in a J/ψ meson, and the companion b-hadron decays in a muon that
is wrongly associated to the J/ψ vertex;

– particles linked by the longitudinal boost of the center-of-mass of the parent partonic
interaction.

The first category justifies well a data-driven approach. I envisaged the widely-used event-
mixing method. It consists in combining a J/ψ from a given event with a muon from another
event, whose properties are similar to the original event. One hence needs to categorise the
events in terms of the position of the PV (and possibly of the secondary vertex as well), multi-
plicity/centrality, and event plane angle in PbPb. This method is however technically heavy (in
particular for a displaced decay) and it can be biased by the choice of the categories which need
a lot of tuning to encompass all relevant event characteristics while keeping a reasonable number
of binning dimensions. Therefore, it was not deployed in this analysis.

Event-mixing also has the caveat to ignore the second background type above, which should
be quite hidden by the numerous nucleon-nucleon interactions in PbPb collisions, but important
in pp collisions. To estimate its relative contribution, several rotation angles will be used in
the method presented in the following. To describe at least part of this loosely correlated
background, one needs to leave the J/ψ in the same event, but break the strong correlation
between the J/ψ and its parent and sister particles. This is done by rotating the J/ψ mesons,
with angles large enough to make the original decay (J/ψ +X) too broken to be reconstructed;
but when kept also relatively small, some angles can capture the loose correlations of the J/ψ
with the surrounding event activity (low-pT bb pairs with a large opening angle, or multiplicity
increased by the boosted center-of-mass of the hard process).

The rotation method takes all J/ψ candidates in the triggered dataset, rotates the direction
of their momentum and of their displacement vector (from the primary to the dimuon vertex) by
a common angle, and then lets the rotated J/ψ candidates combine with muons from the same
event; in other words I run the Oniatree to reconstruct trimuons in inclusive J/ψ data events
where the J/ψ was rotated. Thirteen rotation angles are tried: for eight rotations the sign of η
is reversed and the azimuthal angle is changed by ∆φ = −3π

4 , −π
2 , −π

4 , 0, π4 ,
π
2 ,

3π
4 , or π, and

for five other rotations the pseudorapidity is unchanged and the azimuthal angle is modified by
∆φ = −3π

4 , −π
2 ,

π
2 ,

3π
4 , or π. The rotations that do not change η have a large enough angle to

limit contamination from J/ψ mesons combining with particles from the same decay or shower.
Two rotations of angles ∆φ1 = ±∆φ2 are of course expected to give samples of the exact same
nature, but considering both provides more statistics. The absolute pseudo-rapidity is kept
unchanged, to probe similar event and detector regions (as CMS is a cylindrical detector). Mass
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sideband subtraction weights (±1 depending if the dimuon mass is in the signal or sidebands
region defined in section 4.2) are applied so that the sample has, in average, the properties of
only true J/ψ dimuons. The entire trimuon mass range of study is kept (3.3 − 7.8GeV). The
nominal background sample will contain the J/ψ + µ combinations from all the rotation angles,
with weights of 1/nrotations = 1/13.

A possibly worrisome case is if the J/ψ is not rotated enough, and the B → J/ψ µX decay it
originates from still passes the preselection despite the J/ψ rotation. It is however not problem-
atic, as the J/ψ + µ vertex and invariant mass will still have background-like properties (similar
to the background one seeks to describe) because the J/ψ was moved away from its muon sister.
Therefore it will not be a double-counting of the background with J/ψ and muon coming from
the same B vertex (section 4.3), but just a change of normalisation of the background described
in this section; this can be ignored as the normalisation is a free parameter in the template fit
in pp, where those cases could contribute significantly compared to the purely combinatorial
background (contrarily to PbPb where it is a small contribution, as shown below).

The rotation method could also be run on the signal Bc MC to check the level of expected
signal contamination in the rotated J/ψ sample. However, as for the B decays, the properties of
potential Bc events that would still pass the preselection despite the rotation of the J/ψ daughter
would be far from the ones of signal and close to the ones of the background described in this
section. In addition, these cases are expected to be very rare, so this check has not been done.

The resulting rotated J/ψ yields are shown for each rotation angle in Fig. 4.14, where a
dimuon-sidebands subtraction and preselection cuts are applied. In PbPb collisions (right), the
obtained yields do not depend significantly on the rotation angle. All angles give similar yields
because the correlated effects are swamped in the underlying event, meaning that a majority
of candidates are random combinations of a J/ψ and a muon from a different hard process.
This makes the method particularly reliable in PbPb, because the loosely correlated background
(mostly from other B decays close to a J/ψ) is negligible – whereas it is important in pp collisions.
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Figure 4.14: Yields for the thirteen J/ψ rotation angles, the first eight featuring a η reversal,
and the last five with only a φ rotation. Left : pp. Center : pp, restricted to the high mass
region. Right : PbPb. There are no significant differences of trends in the PbPb high-mass or

complete mass regions.
——–

And indeed for pp (Fig. 4.14, left), a large yield variation is observed versus the angle. Two
effects are revealed:

• About twice more events are observed in pp when the J/ψ pseudorapidity is not changed
(last five points) than when it is reversed (first eight points). This higher activity on
the side of the original J/ψ can be understood as an effect of the longitudinal boost of
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the partonic center-of-mass, which drags more particles near the rapidity of the hardest
process.

• Yields are increasing when the rotation angle is getting closer to ∆φ = π. Momentum
conservation in the transverse plane raises the probability for the J/ψ (from a b quark) to
find a muon partner (from a companion b quark) when rotated to opposite φ.

In the middle plot, the yields are restricted to the high-mass control region (6.3–7.8 GeV) for
pp collisions. The second effect (close to ∆φ = π) is dampened because these trimuon candidates
have larger opening angles, meaning that the angle correlations are smeared out. It is however
remarkable that the yield obtained from the non-rotated data in the same mass region (320 after
sideband subtraction to cancel the fake J/ψ contribution) is of the same magnitude as the ones
obtained for the close-to-opposite-φ and opposite-η rotations (around 300), and roughly in the
center of the range of values taken by the different rotation angles. This gives confidence that
this method finally captures the high-mass background that was not well described in MC, and
that an average over rotation angles is a good approach for the nominal background description.

The trimuon mass shapes for different rotation angles are compared in Fig. 4.15 in pp and
PbPb collisions. In the PbPb case, the mass shapes show no significant differences. This confirms
that the rotation angle does not matter and that the background is mostly random combinations
of a J/ψ and a muon, uncorrelated but happening to have a consistent common vertex. I will
therefore not vary the rotation angle for systematic study of this shape, and just take the average
over candidates from all angles as the nominal rotated-J/ψ shape. Moreover, the yield studies
above show that the normalisation of this sample is well-controlled and close to the yields of
the high-mass control region; this justifies to fix its normalisation in the fit to the yield of the
data-driven method.

In pp, despite the different total yields, no clear difference appears in the shape between the
rotations on the same- or opposite-η side (Fig. 4.15, top left). However, the shape for large |∆φ|
rotations is different than other φ rotations (right): it is skewed to lower masses. This probably
reflects the association of a non-prompt J/ψ with decay products of the companion B, going
back-to-back (in the transverse plane) compared to the B parent of the J/ψ (the small masses
coming from small angles between the companion B and the rotated J/ψ). In the pp template
fit, I will allow the rotated-J/ψ shape to vary between these two shapes, which is a way to leave
free the ratio of the normalisations of the combinatorial and the loosely correlated background.
The global normalisation will be left quasi-free too, because the choice of angles considered in
the nominal background sample affects the rotated-J/ψ yields in pp (see Fig. 4.14).

Other discriminant variables (used in the preselection and in the BDT training) were com-
pared in the high-mass control region between the full rotated-J/ψ sample and data (no signal
being expected in this mass region). In the limits of the low statistics of data in this mass region,
few to no significant differences were observed. The BDT output variable, as it is the variable
used to separate signal and background in preselected data, is the most important to check; this
is done in section 5.7.4, comparing data to the sum of all backgrounds and expected signal, and
a weighting of this variable is applied in pp.
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Figure 4.15: Trimuon mass for rotated-J/ψ candidates in pp (top) and PbPb (bottom),
compared for different rotation angles. Left : Opposite-η side rotations versus same-η side.

Right : Large φ rotations (|∆φ| ≥ 3
4π) versus smaller φ rotations (|∆φ| ≤ π/2).
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To conclude, the fake J/ψ background is described with the dimuon mass sidebands (sec-
tion 4.2), and the backgrounds containing a true J/ψ are nominally described by two samples:
the fully correlated part of the non-prompt J/ψ MC sample (J/ψ and muon from the same B de-
cay, section 4.3) and the rotated-J/ψ sample, averaged over candidates from all thirteen rotation
angles (this section). In pp, systematic variations of the shape of the last background are taken
as the rotated-J/ψ with different rotation angles. In PbPb the full prompt plus non-prompt J/ψ
(excluding the true B → J/ψ µX decays) MC is taken as a shape variation, as it is believed
to be accurate in PbPb. This simulated background is compared to the rotated-J/ψ sample in
Fig. 4.16, where only a small difference (probably due to an imperfect relative normalisation of
the prompt and non-prompt MC’s) is showing for PbPb, which adds to our confidence in the
method in PbPb. The difference is much larger in pp, confirming that the J/ψ MC is not to be
used as such there. These alternative choices of trimuon mass shape are taken into account with
nuisance parameters in the fit, which are summarised (along with the normalisation parameters)
in Table 6.1 of section 6.2.
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Figure 4.16: Trimuon mass shape for the rotated-J/ψ sample compared to the sum of the
prompt J/ψ MC and the combinatorial part of the non-prompt J/ψ MC (i.e. where the B
decays are excluded), in pp (left) and PbPb (right). The prompt and non-prompt MC have

their a priori (respective) normalisations.
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“Choisir, c’était renoncer pour toujours, pour jamais,
à tout le reste.”

———–

André Gide, Nourritures terrestres,
Livre 4, Chapitre 1.1

Chapter 5

What do we seek?
Selection

5.1 Selection overview

The dimuon-triggered datasets first endure an event-level selection to reject the non-inelastic
and background events. Then a primary vertex (PV) needs to be found and chosen. These steps
are addressed in section 5.2.

A signal trimuon is defined as three muons coming from a common vertex, with a total
charge ±1, and an invariant mass between mJ/ψ + mµ ' 3.2GeV and mBc

' 6.2GeV. The
trimuons of charge ±3 are kept for cross-checking the purely random part of the fake J/ψ back-
ground (see section 4.2; this sample will be shown for illustration in the post-fit mass plots in
chapter 6). The mass range used in the fit is however [3.5, 7.8]GeV, to keep a high mass control
region [6.2, 7.8]GeV, and because the candidates below 3.5GeV end up being overwhelmed by
background and rejected very fast by the BDT (cf section 5.7). The trimuon must also feature
at least one opposite-sign (OS) muon pair (there are two such pairs) whose mass is in the J/ψ
mass signal region defined in section 4.2. The candidates with an OS dimuon in the dimuon mass
sidebands are kept to describe fake J/ψ background. Choosing which OS dimuon is the J/ψ is
ambiguous when the two OS pairs are in the signal and/or sidebands regions; this is dealt with
a candidate weighting, as described in section 5.5.

A global muon (defined in section 3.2.3.2) is most often a tracker muon too. Tracker muons
contain more fakes, especially in PbPb data where the underlying event results in a huge back-
ground in the inner tracker, but can be reconstructed to lower pT which is a key lever to get
enough statistics. In this analysis, two muon selections are considered: the soft-muon selection
(described in Ref. [175]) requiring a tracker muon, and the tighter hybrid-soft-muon selection re-
quiring a global muon that passes (almost) all soft-muon cuts. A strategy requiring the trimuons
to feature three hybrid-soft muons was chosen over a strategy requiring two hybrid-soft and
one soft muon. Section 5.3 discusses these muon selection choices and shows the single muon
acceptance associated to each selection.

Many variables can help discriminating trimuons that come from a signal Bc or from back-
ground processes. They are presented in section 5.4, along with the chosen cuts; the trimuon

1“To choose was to renounce everything else, for ever and for never.”
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candidates passing this preselection are the ones used and studied in the core of the analy-
sis. These preselected candidates can be more finely discriminated with a Boosted Decision
Tree (BDT), that compiles all the discriminating information from the input variables into one
eponym variable. It is explained in section 5.7, in particular the used variables, the training
strategy, and how the output variable is checked and/or weighted.

Section 5.6 shows our choice of the analysis bins in the trimuon transverse momentum p
µµµ

T ,
along with the associated trimuon rapidity cuts. These pµµµ

T and rapidity cuts define the phase
space for which the cross sections and modification factors results will be quoted (in chapter 9).
The BDT training and testing is done separately in two pT bins (even for the results binned in
centrality rather than in pµµµ

T ).

5.2 Event-level and primary vertex selection

5.2.1 Event-level selection

A very loose selection is applied at the event level, to reject events that are only diffractive
(containing only very high rapidity particles) or elastic pp or PbPb collisions, or that come from
cosmic muons or noise from the detector. It is standard to most of the heavy ion analyses in
CMS (see e.g. Ref. [43]).

In pp collisions, it consists in requiring:

• a fitted PV with at least two tracks, situated in the bunch crossing region;

• at least a quarter of the tracks to be tagged with high-purity (defined in section 3.2.2),
except for vertices with less than 10 tracks, which are kept whatsoever. This rejects back-
ground from beam scraping, which is the interaction of the beam with residual gas in the
pipe or with beam collimators (that act as diaphragms that diffract the outlier beam parti-
cles far from the beam axis), producing bad quality tracks, with momentum mostly in the z
direction. Such particles giving significant tracks in the detector are mainly muons because
of their long lifetime. These muons are also rejected by the muon selection cuts aimed at
cosmic muons, which require the muon track to be close to the PV (see section 5.3).

In PbPb collisions, the requirements are:

• a fitted PV with at least two tracks, situated in the bunch crossing region;

• at least one tower (i.e. a cell covering a transverse area) above the 4GeV energy threshold
in each of the forward hadron calorimeters, which are sensitive to a large majority of the
inelastic interactions. This notably rejects single-diffractive events (defined in section 1.5.5)
that cannot deposit energy in both the forward and backward calorimeters, but also elec-
tromagnetic or elastic PbPb collisions (also called ultra-peripheral because the nuclei do
not touch in the collision, see section 1.5.6);

• a good compatibility between the PV and the clusters (i.e. a group of fired cells) in the
pixel detector. One considers the ratio of the vertex-clusters compatibility (i.e. how much
the pixel detector clusters point towards this vertex) for the default PV position, and for
a vertex shifted by ±10 cm along the z axis; it must be above a threshold that depends on
the number of pixel hits. This rejects beam-scraping events, and other events from detector
noise.

In PbPb, the selection of the tracks used to fit the PV’s during data reconstruction was tight
and in some peripheral events, no PV is reconstructed, so it is cut by the PV requirement. A
recovery (standard to the heavy ion analyses) of those peripheral events that do have a primary
vertex is performed.
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The selection done with the forward hadron calorimeters has a significant inefficiency in very
peripheral collisions. This is the main reason for this analysis to measure the cross sections only
in the 0-90% centrality range, where the event selection efficiency is very close to 1, especially
for events that contain three muons and a well-reconstructed PV. This restriction makes easier
the counting of minimum bias events, needed for the normalisation of PbPb yields (see section
3.5.5).

5.2.2 Main primary vertex

Multiple identification and discrimination variables are defined with respect to the main
PV. A primary vertex (PV) is defined as a point consistent with the beam line (x = y = 0),
and to which multiple charged tracks are consistently pointing to. The average number of pp
collisions (i.e. of possible PVs) per bunch crossing is called pile-up. The pp 2017 RunG at
5.02TeV had a low pileup compared to other pp runs, namely 〈n〉 ' 3.5 in average in selected
events (2.5 in minimum-bias events [137, 193]); its distribution is shown in Fig. 5.1. In other
pp runs at higher energies, the objective is to accumulate the most possible luminosity rather
than keeping backgrounds low, so the average pile-up reached about 38 in the 2017 pp run
at 13TeV. However even at 〈n〉 ' 3.5, multiple PVs are found in most of the collisions. In
PbPb the PV is (almost always) uniquely defined, because the pile-up was 〈n〉 < 0.006 in all
running conditions [193], meaning that a PbPb bunch crossing already containing one actual
PbPb collision (which concerns less than 0.6% of the bunch crossings!) has less than 0.3%
probability (calculated from a Poisson distribution of mean 〈n〉) to feature two or more PVs.
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Figure 5.1: Distribution of pile-up (number of pp interactions per bunch crossing) for the
pp reference run at 5.02TeV. Figure from Ref. [137].
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The multiple PVs in pp are spread along a longitudinal region of about 25 cm, which means

the 2.5 additional collisions (in average) are most of the time a few centimeters apart. This is
significantly more than the typical flight distance of the B meson we look for: even a B+ with
a boost factor of 10 (momentum ∼ 50GeV) travels only 5mm, and the Bc has a three times
smaller lifetime (and many selected candidates have a momentum smaller than 50GeV). Hence,
if there are multiple PVs for a given J/ψ candidate, we choose the main PV (hereafter called
‘the PV’) to be the one closest to the dimuon vertex in terms of longitudinal distance (z); the
numbers above ensure that this is the vertex that the displaced J/ψ actually comes from, except
in less than 1% of the cases. If the wrong PV is chosen, then the variables associated to the
displacement of the candidate (lifetime and pointing angle) will be somewhat wrong – but not
dramatically different, as the wrongly chosen PV is close to the right one along z. In addition,
even if this candidate still manages to pass the preselection, the variables will be similarly wrong
for signal and background, meaning it should not significantly affect the fit procedure.
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In pp, for each dimuon candidate, the PV is refitted without its two muon tracks (if there
are at least two additional tracks to be fitted), to remove the potential influence of a displaced
dimuon on the PV position. In PbPb, there are in general many more tracks associated to the
PV, so this bias is considered negligible (and the PV refitting would be computationally heavy).

5.3 Single muon acceptance and selection

5.3.1 Muon selection

The main muon selection of this analysis is the hybrid-soft identification. It requires
that:

• The muon passes both the global and tracker identifications;

• dxy < 0.3 cm and dz < 20 cm, where dxy and dz are the minimal distance between the best
muon track and the main PV, projected on the transverse plane or on the beam direction,
respectively;

• At least six layers of the inner tracker have hits associated to this track. This is necessary
for a good pT measurement and to reject decay-in-flight muons (whose tracks show a kink
where the pion or kaon decays into a muon, see section 3.2.3);

• Among the inner tracker hits associated to the muon, at least one must come from one of
the three layers of the pixel detector (the part of the inner tracker closest to the beam).
This also helps rejecting decay-in-flight muons.

The required global identification rises the pT threshold of the identified muons: it requires
a standalone track coming from hits in muon stations, so global muons must have relatively
high momentum not to be deviated out of the acceptance of the muon stations or loose all
its momentum before reaching the second station. The alternative is the soft identification,
similar to hybrid-soft, except that the global requirement is replaced by:

• a tracker muon whose track tightly matches with hits in one muon station;

• a high-purity requirement on the inner track.

This second algorithm gives many more fakes, especially in PbPb where the occupation of the
inner tracker is very high (so that random hits that align by chance might be fitted as a track),
but has a much higher efficiency at low-pT.

5.3.2 Muon acceptance

Different aspects of the CMS detector, such as its material budget between the tracker and
the muon chambers (that makes low-energy muons loose a significant fraction of their energy), its
intense magnetic field strongly bending low-momentum tracks, and its limited geometrical cover-
age, introduce an effective muon momentum threshold depending on pseudorapidity (typically 1
to 3.5GeV). The muon reconstruction efficiency is therefore very low (or null) and non-uniform
in some kinematic regions. We want to exclude those by defining acceptance regions in the
(pT, η) plane where the muon efficiency is high enough, so that the efficiency of trimuons whose
three muons are in the muon acceptance is not too low. If the trimuon efficiency reaches very
low values, the associated corrections to be applied to the observed yields (the inverse of the
efficiency, see chapter 7) are too high and vary too fast with pT and η, which is to be avoided in
finite-size bins (see section 7.3). In addition, the corrections to the single muon efficiencies, from
the data/MC discrepancies calculated with a tag-and-probe method in section 7.1, are large and
not well-known in these low-efficiency regions.

This section presents muon kinematic cuts (and how they were determined) that avoid such
low-efficiency regions, for different muon selections. The choice of identification criteria (see
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section 5.3.3) and the determination of the associated kinematic acceptance was however lead
carefully to obtain single-muon pT thresholds as low as possible, as the muons from Bc decays have
relatively low pT. The generated Bc mesons indeed have a trimuon pT peaking at ' 3GeV. The
three muons typically do not share equally the available pT, one of them often having pT < 2 GeV:
Fig. 5.2 (left) shows that when the two muons with highest pT are well reconstructed (as hybrid-
soft), the third (softest) muon has a very low pT compared to the typical muon acceptance of
CMS. Simple muon pT cuts have a dramatic inefficiency on signal. To illustrate this, if we apply
the tight acceptance cut detailed at the end of this section (in which the lowest reachable pT is
1.5GeV) on the softest muon only, when the other two pass hybrid-soft, only 16% of the signal
yields are preserved. In addition, interesting enhancement phenomena could take place at low
pT(Bc) in PbPb (see section 2.5). Lowering the muon pT acceptance thresholds, and allowing a
low-pT acceptance for one of the muons, is therefore crucial to increase the observable Bc yields.
In particular, the standard pT thresholds in the 1.2 < |η| < 2.4 rapidity region for hybrid-soft
muons passing the J/ψ trigger were lowered by 0.3GeV compared to the ones that were used for
similar analyses on 2015 PbPb data.
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Figure 5.2: Left : pT of the softest muon from generated Bc trimuons, when the two other
muons are already reconstructed as hybrid-soft. Right : (pT, |η|) distribution of any muon from
the generated Bc mesons; this can be compared to the acceptance maps shown in the next
figures. A Bc simulation (without PbPb medium modification) without any kinematic cuts

on the generated muons from Bc is used in both plots.
——–

The reader is to be warned here that the analysis was actually performed with three hybrid-
soft muons, among which at least two need to fire a dimuon trigger, but the possibility to release
the selection of the non-triggering muon to the soft identification was seriously considered; the
choice is discussed in section 5.3.3. We thus describe here three sets of single-muon acceptance
cuts corresponding to three muon selections: soft muons, hybrid-soft muons, and hybrid-soft
muon that participate in firing the double muon trigger. Even if the Bc analysis eventually used
only the last two, the three selections and the kinematic acceptance cuts associated to them (and
determined in this section) are standard to reconstruct low-pT muons in 2017 and 2018 CMS
heavy ion data.

The single-muon reconstruction, selection, and trigger efficiencies are studied in pp and
PbPb, in order to define acceptance cuts in the (pT, |η|) plane that keep only regions with a total
efficiency above 10%. This 10% threshold is somewhat arbitrary, but means the worst possible
efficiency due to muon selection for trimuons with accepted muons is 0.1%, though in practice it
only reaches 1% (resp. 7%) in the less efficient corner of the fiducial phase space in PbPb (resp.
pp), as can be seen in the efficiency maps of section 7.4. It is stressed here that the single-muon
efficiency maps shown below serve only to determine the acceptance cuts, and are not directly
used in the final acceptance and efficiency estimation of the trimuons.
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The single-muon efficiencies are here measured on prompt J/ψ simulations in pp and PbPb
conditions, described in section 3.5. The J/ψ process is embedded in minimum-bias collisions in
PbPb and in pile-up collisions in pp; it is also corrected to data by the scale factors calculated
with a tag-and-probe method in section 7.1. No kinematics cuts are applied to the dimuons
Oniatrees extracted from this dataset. The PbPb MC events (generated with a flat centrality)
are weighted with Ncoll so that it has the centrality distribution of minimum-bias data. The
reconstructed muons are matched to the generated ones if they respect the conditions ∆R < 0.05
and ∆pT

pT
< 0.5 (and the reconstructed muon with smallest ∆R is preferred if multiple matches

are found).

For the reconstruction and identification as hybrid-soft, all generated muons are used as
probes, and the efficiency is the fraction of the probes that are matched to a hybrid-soft recon-
structed muon; and similarly for the soft identification. The efficiency of the reconstruction and
identification of soft muons is shown in Fig. 5.3, and the one of hybrid-soft muons in Fig. 5.4,
in pp and PbPb conditions. The efficiency is calculated in bins of pT and |η| of the muon,
and the regions where it is below 10% (that should be rejected) are printed in pale pink. The
corresponding acceptance cuts, detailed below, are superimposed.
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Figure 5.3: (pT , |η|) maps of the efficiency of single-muon reconstruction + soft-muon iden-
tification. Left : pp, right : PbPb. The blue line shows the chosen acceptance cuts for the soft
muons that are not required to trigger; it is to be compared to the acceptance for hybrid-soft

identification in green (which is decided based on the maps of Fig. 5.4).
——–

The next measured efficiency is for a single muon to be hybrid-soft and to fire the (double)
muon trigger, when there is another muon in the event that can help firing it. The evaluated
triggers are the ones used for the Bc analysis, presented in section 3.5.1. The pp trigger requires
two muons at the L1 (hardware) level without pT cuts. The PbPb trigger requires a L3 muon with
quality cuts (L3Mu0_NHitQ10), plus a L2 muon (L2Mu0), without pT cuts. For the PbPb case, to
be conservative, the ε > 10% criterium must be passed considering the tighter L3 branch of the
trigger (as only a single-muon efficiency can be checked with this method). The efficiency of the
L2 branch, slightly looser than the L3 one, are found to give similar maps. The efficiency map
for the L1 (hardware-only) trigger has been calculated and shows significantly higher efficiencies
than the L3 trigger, due to some inefficiency of the software trigger. The cuts of the PbPb trigger
on the dimuon mass and ∆R are ignored, but known to be very efficient.
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Figure 5.4: (pT , |η|) maps of the efficiency of single-muon reconstruction + hybrid-soft
identification. Left : pp, right : PbPb. The green line shows the chosen acceptance cuts for
the hybrid-soft muons that are not required to trigger; it is to be compared to the acceptance

for triggering muons in purple (which is decided based on the maps of Fig. 5.5).
——–

As a double muon trigger is to be probed, looking directly at a single muon efficiency is
wrong. Let us consider an extreme case, where the first muon is fully in the acceptance, and
the second muon fully out of it; then the dimuon trigger would not fire (assuming there are
only two muons) and probing the trigger efficiency on the first muon would artificially bring it
down, despite the fact it lies in a high-efficiency region. To avoid this, we apply a simplified tag-
and-probe method to emulate the efficiency of a single muon that fired a double muon trigger.
Only generated J/ψ are considered, and one of the muon must pass tag cuts, the second muon
being the probe on which the efficiency is measured. The tag must pass hybrid-soft and fire the
L3Mu3 single-muon trigger in pp, or the L3Mu3_NHitQ10 one in PbPb; these triggers, tighter than
any branch of the double-muon triggers, guarantee that the tag provides a second HLT muon
(companion of the possibly-triggering probe) able to fire double-muon trigger. The resulting pp
and PbPb maps are shown in Fig. 5.5.

Three sets of acceptance cuts are hence established and shown in Figs. 5.3, 5.3, and 5.5,
following the ε > 10% criterium. As the pp efficiencies are higher than in PbPb, it is sufficient
to check that this criterium is passed in PbPb, and the same cuts are kept in pp collisions for
simplicity, and to avoid adding differences in the kinematic distributions of pp and PbPb events.

The single-muon kinematic acceptance cuts determined from the efficiency map of Fig. 5.3
(and represented there by a blue line) correspond to the soft muon selection, and are:

• (0 < |η| 6 1.1 & pT > 3.3GeV) OR

• (1.1 < |η| 6 1.3 & pT > (13.2− 9.0)× |η|GeV) OR

• (1.3 < |η| 6 2.4 & pT > 0.8GeV & pT > (3.02− 1.17× |η|)GeV)
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Figure 5.5: (pT , |η|) maps of the efficiency of hybrid-soft identification + triggering of the
L1Mu0 (pp, left) or L3Mu0_NHitQ10 (PbPb, right) branch of the double muon trigger, when
another muon able to fire the trigger is present. The purple line draws the acceptance cuts
for triggering muons; it is to be compared to the acceptance for hybrid-soft muons that are

not required to trigger, in green.
——–

The acceptance cuts for a hybrid-soft muon (green line in Figs. 5.4 to 5.5, hereafter
designated as ‘loose acceptance’) are:

• (0 < |η| 6 0.3 & pT > 3.4GeV) OR

• (0.3 < |η| 6 1.1 & pT > 3.3GeV) OR

• (1.1 < |η| 6 1.4 & pT > (7.7− 4.0× |η|)GeV) OR

• (1.4 < |η| 6 1.55 & pT > 2.1GeV) OR

• (1.55 < |η| 6 2.2 & pT > (4.25− 1.39× |η|)GeV) OR

• (2.2 < |η| 6 2.4 & pT > 1.2GeV)

The acceptance cuts for a hybrid-soft muon that is required to trigger (purple line in
Figs. 5.4 and 5.5, hereafter designated as ‘tight acceptance’) are:

• (0 < |η| 6 1.2 & pT > 3.5GeV) OR

• (1.2 < |η| 6 2.1 & pT > (5.47− 1.89× |η|)GeV) OR

• (2.1 < |η| 6 2.4 & pT > 1.5GeV)

It is underlined again that lower pT thresholds in the muon acceptance raises significantly
the observable Bc yields. The soft muon acceptance pT cuts are much lower than the hybrid-soft
one, which are in turn lower than those of triggering muons.

5.3.3 Strategy for three muons

The soft muons contain too much fakes (especially in PbPb where there is a high number of
charged particles possibly misidentified as muons) for an analysis using only this muon selection
to be doable. However, as shows Fig. 5.2, asymmetric muon cuts can be very advantageous
to reach Bc mesons with lower-pT, which is desired for physics interests (to get closer to the
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recombination regime) and for the observable yields (because the mean pT of the produced Bc

mesons is lower than that of the softer accepted candidates).

The trigger strategy naturally makes the muon cuts asymmetric: only two muons are required
to fire the trigger, and are not required to be the muons from the J/ψ dimuon. This brings some
(manageable) complications in the application of scale factors on the MC efficiency corrections
(see section 7.2), but keeps about a quarter more signal. The trigger is more efficient on higher-
quality muons, so it is reasonable to require the two triggering muons to be tightly identified, as
hybrid-soft. Requiring the muons to trigger decreases the efficiency compared to only-identified
muons, and the triggering muons hence need the tight acceptance cuts defined in section 5.3.2.

The third muon does not need to trigger, so it has a higher efficiency and a possibly looser
acceptance. Considering the large background induced by keeping soft muons, the strategy that
was finally chosen is to require it to be hybrid-soft, giving a reasonably good muon purity; the
associated loose acceptance cuts are detailed in section 5.3.2 and are significantly looser than the
ones for triggering muons.

However, the low-pT efficiency is much higher for soft muons, so the associated acceptance
is much looser (see section 5.3.2). To further check the option of allowing one of the muons
to be simply soft, the signal efficiency of requiring hybrid-soft on the three muons (and the
respective acceptance cuts) when the trimuon passes the ‘2 hybrid-soft + 1 soft ’ strategy and the
preselection (from section 5.4) was measured. It is only 54% (resp. 63%) in pp (resp. PbPb),
but also cuts a large part of the background (see Tables 5.1 and 5.2 of next section). We chose
the ‘3 hybrid-soft ’ selection because of the more manageable background, but also because the
scale factors to correct the MC efficiency of soft muons are challenging to measure, especially in
the PbPb environment. A trial was done (shown in section 7.1.5), and gives about 10% errors
on the soft muon scale factors, which is considered a show-stopper.

5.4 Preselection

A trimuon signal candidate thus consists in three muons identified as hybrid-soft, of total
charge ±1 (though the candidates of charge ±3 are kept for illustration in the template fit, as
explained in section 4.2), and for which a common vertex can be fitted. As a reminder, only two
muons are required to fire the trigger and to pass the tight acceptance (defined in section 5.3.2
along with the loose one), and these are not necessarily from the J/ψ decay. The third muon
must be in the loose acceptance. The trigger must be fired at the event-level as well. Only the
0-90% centrality range is kept in PbPb.

For a trimuon of charge ±1, there are two choices of opposite-sign (OS) dimuons, meaning
two J/ψ candidates. For reasons related to the fake J/ψ background study (cf section 4.2),
the J/ψ is not chosen as the closest to mPDG

J/ψ . Instead, a trimuon with ambiguous J/ψ choice
(this concerns about 7% of the weighted preselected candidates of the signal region, and 5% of
the weighted J/ψ sidebands candidates) is split in two candidates having weights of sum 1, as
explained in section 5.5.

The trimuon candidates undergo a preselection before being inputted in the core analysis
steps that follow (BDT, template fit, acceptance and efficiency corrections...). The term ‘pre’-
selection is used even if all preselected events are considered in the following analysis steps,
because the binning in BDT (see sections 5.7 and 6) separates the samples in background- or
signal-enriched regions as a selection does.

The key challenge of the selection is to find variables that have significantly different distri-
butions for the signal and for the backgrounds. Fig. 5.6 sketches the topology of a Bc trimuon
decay and points out some standard variables that make it stand out versus the backgrounds.
The variables used in the preselection cuts are:
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Figure 5.6: Sketch of the spatial topology of a Bc decay to three muons and an unrecon-
structed neutrino. The flight distance L is also named cτ in the text. The distance of closest
approach of a muon to the PV dPV (µ) is called dxy(µ) and dz(µ) when projected in the trans-
verse plane or on the z direction. The pointing angle α is the angle between the Bc flight

direction and the reconstructed trimuon momentum.
——–

• The probability (VtxProb) of the trimuon vertex fit, and of the J/ψ dimuon vertex fit.
A failed fit or a fit with low probability indicates muons not coming from the same vertex.

• The absolute angle α between the Bc flight direction (i.e. the direction of the segment
from the PV to the trimuon vertex) and the trimuon momentum. This should be very
close to 0 for signal when the neutrino takes no momentum and the length of the flight
segment is well above the spatial resolution of the detector. When the neutrino takes more
energy, it can though sometimes get larger than in the fully reconstructed decays of the
non-prompt J/ψ MC background. The same variable projected on the transverse plane is
also used.

• The trimuon lifetime significance τ/στ , i.e. the distance from the PV to the trimuon
vertex divided by its uncertainty, both in 3D and projected on the transverse plane (2D).
The ‘experimental’ proper lifetime is defined as:

τ = L · cosα ·
mPDG

Bc

pµµµ

where
m

PDG
Bc
pµµµ

corrects the travelled distance L to the proper lifetime (up to the missing
neutrino momentum), and cosα drives down this quantity for events where the flight
distance of the Bc is not well resolved and/or when the neutrino takes a part of the energy.
The m/p term cancels in the ratio with the lifetime error. This effective lifetime can be
negative when the flight distance is not resolved (cosα < 0).

• The distance of closest approach of eachmuon to the PV in the longitudinal direction
|dz(µ)| must not be too large, to avoid pile-up (in pp) and cosmic muons. The choice of
PV was detailed in section 5.2.

• The corrected mass. It can get closer to the PDG Bc mass than the trimuon mass, by
correcting for the momentum of the neutrino transverse to the flight direction of the Bc.
It is defined, from the trimuon momentum transverse to the flight direction pµµµ

⊥ , as:

mcorr =

√
(mµµµ)2 + (p

µµµ

⊥ )2 + |pµµµ

⊥ | (5.1)
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If we look at the decay in the center of mass of the Bc, then the momentum conservation
reads ~p ∗ν = −~p ∗µµµ , and the energy conservation gives:

mBc
= E∗µµµ + E∗ν =

√
(mµµµ)2 + ~p ∗2µµµ + |~p ∗µµµ | .

As the momentum of the trimuon transverse to the flight direction of the Bc is not modified
by a boost along this flight direction, we can remove from it the mention of center-of-mass,
and

mBc
=
√

(mµµµ)2 + (p
µµµ

⊥ )2 + p∗2z,ν +
√

(p
µµµ

⊥ )2 + p∗2z,ν

from which we find the expression of the corrected mass of Eq. 5.1, after neglecting the
projection of the momentum of the neutrino along the flight direction of the Bc. The
resolution on the Bc flight distance additionally smears this corrected mass.

• The sum of dimuon opening angles
∑

i 6=j ∆R(µi, µj), where ∆R is the pseudo-angle
in (η, φ) between two particles (defined in Eq. 1.9), and the sum runs on the three possible
muon pairs. For the medium/high pT range accessible to this analysis, a signal trimuon is
expected to be somewhat collimated.
The ∆R is however modified to correct for the difference between the J/ψ dimuon mass and
the J/ψ PDG mass, as the dimuon mass is roughly proportional to the ∆R(J/ψ) variable
(the dimuon opening angle is of order mµµ/pµµ when pµµ � mµµ). This becomes important
in the case of the dimuon mass sidebands, where the J/ψ dimuon mass and ∆R are not
representative of those of the actual fake J/ψ events to be described (that have masses in
the J/ψ peak region). Therefore, the ∆R of the J/ψ dimuon must be modified1 into ∆R′

such that:
1− cos ∆R′ =

(
mPDG

J/ψ

mµµ

)2

(1− cos ∆R) (5.2)

Then the modifications of the ∆R of the other two muon pairs are calculated geometrically:
they are assimilated to the two sides a and b of a triangle formed by the three muons, the
non-J/ψ muon vertex being fixed between the a and b sides. The direction of the third side
c (representing ∆R(J/ψ)) is also fixed, but its length changes according to Eq. 5.2. If c is
modified to c′ = cε with ε� 1, then the other two sides are modified as:

a′ = a
(

1 +
pT(µb)

pT(µa) + pT(µb)

ε

2
(1 +

c2 − b2

a2 )
)

b′ = b
(

1 +
pT (µa)

pT (µa) + pT (µb)

ε

2
(1 +

c2 − a2

b2
)
)

where the
pT(µa/b)

pT(µa)+pT(µb)
term indicates that the modification of opening angle is assumed

more important when it concerns a J/ψ muon with smaller pT. It is reminded that these
corrections are negligible, except in the case of a dimuon from the J/ψ sidebands.

These variables are plotted along with other discriminant variables for the preselected signal
and background samples in section 5.7.2. Tables 5.1 and 5.2 present for each cut in pp and PbPb
the cut value, as well as the ‘n-1’ inefficiency, i.e. the fraction of trimuon candidates having
already passed all the other preselection cuts and that do not pass this last cut.

The inefficiencies are presented for signal and for the three background samples separately. In
pp these are the nominal samples: the data dimuon sidebands (fake J/ψ), the non-prompt J/ψ MC

1To find this expression, let us consider the mass of a dimuon, assuming massless muons of momenta ~p1 and
~p2 with an opening angle θ: it is m2

= 2| ~p1|| ~p2|(1 − cos θ) ' | ~p1|| ~p2|θ
2 (where the approximation m ∝ |θ| is

valid at small angle). Keeping constant muon momenta, this means that a mass modification m → m
′ implies

1− cos θ → (m
′

m
)
2
(1− cos θ). It is also assumed that ∆R is a proxy for the euclidean opening angle.
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Table 5.1: Preselection cuts in pp, and the associated inefficiencies on candidates that have
passed all the other cuts. The inefficiencies of signal and of the three nominal background
samples (see text for details) are shown. Some ‘n-1’ inefficiencies are also mentioned for pairs
of combined cuts. Some inefficiencies show only lower limits, along with the initial cut from
which this minimal inefficiency was measured. The last row corresponds to all cuts except

the hybrid-soft selections. All inefficiencies are in percents.

Variable cut value
pp inefficiencies [%]

signal fake J/ψ
B → J/ψ +X

non-prompt MC
rotated J/ψ

(1) trimuon VtxProb > 0.008 4.5
(from prob > 0.005)

>5.1 13.1
(from prob > 0.005)

>4.8

(2) J/ψ VtxProb > 0.005 0.73 1.2 0.83
(from prob > 0.002)

>0.52

(1) and (2) 7.9 >6.8 16.8 >5.4

(3) α3D [rad] < 0.3 1.5
(from α3D < 1.57)

>2.1 0.49
(from α3D < 1.57)

>4.2

(4) α2D [rad] < 0.6 0.50
(from α2D < 1.37)

>5.5 0.16
(from α2D < 1.37)

>4.8

(3) and (4) 2.1 >8.3 0.65 >9.6

(5) τ3D/στ3D > 1.2 0.62
(from τ/σ > 0)

>2.9 0.22
(from τ/σ > 0)

>4.1

(6) τ2D/στ2D > 1.2 3.1
(from τ/σ > 0)

>7.8 0.92
(from τ/σ > 0)

>12.2

(5) and (6) 7.0 >22.0 2.5 >31.8

(7) maxi(dz(µi)) < 6 mm 0.02 0.45 2.4 0.04

(8) mcorr < 20GeV 0.39 1.0 0.16 0.97

(9)
∑

∆R(µi, µj) < 4.5 1.7 10.0 0.33 8.9

(10) 3 hybrid-soft in loose acc. 46.1 87.3 85.6 79.3

cuts (1) to (9) 32.2 >60.2 29.9 >68.4

events in which the J/ψ and muon are daughters of the same B meson, and the rotated J/ψ sample.
In PbPb, we look at the dimuon sidebands, and the prompt and (full) non-prompt MC. The last
two are not the central methods of the template fit, but are still good estimators of the true-
J/ψ background and separate the effects of variables with respect to their link to lifetime. The
three backgrounds are not merged for this study, because the relative background normalisations
are precisely known only after the template fit. Only candidates of masses between 3.5GeV and
6.2GeV are considered for the efficiency estimations, corresponding to the signal mass range used
in the template fit. Some inefficiencies cannot be exactly measured, as some of the preselection
cuts were applied during the processing of the data Oniatree’s to lower dramatically the output
file size and running time; for these, only a lower limit on the inefficiency is given, calculated
starting from the mentioned initial cut. The last shown cut (10) corresponds to the efficiency of
3 hybrid-soft muons in the loose acceptance, from the 2 hybrid-soft + 1 soft sample, as discussed
in section 5.3.3.

The tables also present the ‘n-1’ inefficiencies of multiple simultaneous cuts. It is worth
explaining why this inefficiency is always higher than the sum of inefficiencies of the cuts consid-
ered separately. Let us consider the inefficiencies 1− ε1, 1− ε2, 1− ε1+2, respectively for cuts 1,
2, and the combination of 1 and 2. Considering small inefficiencies, we have for each cut i that
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Table 5.2: Preselection cuts in PbPb, and the associated inefficiencies on candidates that
have passed all the other cuts. See caption of Table 5.1 for details.

Variable cut value
PbPb inefficiencies [%]

signal fake J/ψ non-prompt MC prompt MC

(1) trimuon VtxProb > 0.008 4.6
(from prob > 0.005)

>4.4 73.4 34.6

(2) J/ψ VtxProb > 0.005 0.60 1.4 0.19 2.1

(1) and (2) 7.6 >6.1 74.7 39.5

(3) α3D [rad] < 0.3 0.56
(from α3D < 1.16)

>2.3 0.81 2.4

(4) α2D [rad] < 0.6 0.28
(from α2D < 1.57)

>15.5 2.2 7.2

(3) and (4) 0.85 >18.7 3.2 10.8

(5) τ3D/στ3D > 1.2 0.51
(from τ/σ > 0)

>5.6 0.84 13.8

(6) τ2D/στ2D > 1.2 2.6
(from τ/σ > 0)

>20.0 5.4 22.6

(5) and (6) 8.3 >42.4 13.0 60.4

(7) maxi(dz(µi)) < 6 mm 0.02 0.13 0.14 0.00

(8) mcorr < 20GeV 0.09 0.07 0.06 0.84

(9)
∑

∆R(µi, µj) < 4.5 0.45 21.4 2.6 8.4

(10) 3 hybrid-soft in loose acc. 37.3 96.3 96.2 95.6

cuts (1) to (9) 27.6 >79.9 81.7 94.4

1− εi =
Ncut,i

Ncut,i+Npass
' Ncut,i

Npass
, where we defined Npass as the number of trimuons passing all final

cuts, and Ncut,i the number of trimuons recovered by releasing the set of cuts i. The point is
that Ncut,1+2 > Ncut,1 + Ncut,2 (implying that (1 − ε1+2) > (1 − ε1) + (1 − ε2)), because there
are events that do not pass either of the two cuts, and are hence not recovered in Ncut,1 nor in
Ncut,2.

The criterium used to decide the cut values is mostly qualitative, looking for tails of the
distributions that are sparsely populated by the signal MC, but contains a significant amount
of background. Some cuts (e.g. mcorr or dz(µ)) do not have much effect, and are mostly set
to eliminate outliers with pathological topology. Some other cuts (e.g. on α3D) are set quite
stringent in the preselection, because they are not included as input variables of the BDT (to
eliminate variables that are too correlated, cf section 5.7.2). A majority of the background
rejection comes from cuts on the probabilities of the vertex fits, on the angle α, and on the
significance of the flight distance.

Overall, the preselection is satisfying because it cuts less than a third of signal, but cuts
at least 60% of pp background, and more than 80% of PbPb background (the numbers for
backgrounds are only lower limits due to the Oniatree’s having initial cuts, and the imprecise
relative background normalisations before the fit). This number excludes in pp the MC describing
true B → J/ψ +X candidates, which is not well discriminated against with the preselection cuts.
The BDT procedure will perform better, using higher-level topological variables.

After the preselection and the J/ψ choice weighting of next section, we obtain in pp (in the
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signal region 3.5 < Mtrimuon < 6.2GeV) 4883 candidates in data, 1788 in the expected signal
(with a MC normalisation from previous measurements), 637 in sidebands, 690 in (true B → J/ψ+
X) non-prompt MC, and 1149 in rotated-J/ψ sample (averaged over rotation angles). Similarly
in PbPb, we get about 2655 candidates in data, 194 expected signal candidates (normalising the
MC assuming RPbPb(B+

c ) = 1), 1320 in sidebands, 288 in non-prompt MC, 340 in prompt MC,
and 1134 in the rotated-J/ψ. These numbers are pre-fit and not exactly representative of the
final background normalisations that will be determined through the template fit. In particular,
the fit will show that the background normalisations from the true B → J/ψ +X simulations are
underestimated.

5.5 Choice of the J/ψ

Care has been taken in keeping unbiased the mass shape of J/ψ candidates, by using no mass
criterion to select the J/ψ dimuon. This is important in order to get the right proportions of
candidates in the dimuon mass signal or sideband region. In fact, if a criterion on the dimuon
mass is used, artificial peaks appear in the trimuon mass distributions of candidates having a
dimuon in the J/ψ signal mass region, due to excessive kinematic constraints; and the dimuon
mass distribution is dragged towards the J/ψ peak region.

To avoid this bias, the J/ψ is not chosen as the closest to mPDG(J/ψ). Instead, a trimuon is
considered to lie in the J/ψ signal or sideband region if at least one of its two opposite-sign (OS)
dimuons is in this region. In case the two pairs are in the dimuon signal and/or sideband region
(which concerns 5 to 7% of the weighted preselected data candidates, depending on the sample),
then both trimuon candidates are kept (corresponding to the two J/ψ choices), and two weights
of sum 1 are applied on them. These weights estimate the probability that this pair is a true J/ψ
meson, from the dimuon mass distribution of unambiguous events in data.

The dimuon mass probability distribution f(mµµ) is drawn for preselected trimuons where
the J/ψ choice is unambiguous, meaning that there cannot be two OS pairs (passing the dimuon-
specific preselection cuts) in the signal and/or sideband region. Let us now consider an ambiguous
candidate with OS dimuons of masses m1 and m2; this candidate is split in two candidates where
the J/ψ is chosen as the OS pair 1 or 2. These sub-candidates are respectively attributed weights

f(m1)
f(m1)+f(m2) and f(m2)

f(m1)+f(m2) , which are indeed probabilities that the first or second candidate
has chosen the right J/ψ, according to unambiguous preselected data. If the two candidates were
attributed weights of 1

2 , the fake J/ψ candidates in the sidebands would be overestimated, and
the true J/ψ candidates would be underestimated.

The dimuon mass histograms for candidates with an unambiguous J/ψ are drawn separately
for the tight and loose choices of dimuon mass regions (see the ranges defined in section 4.2
depending on the maximal muon pseudo-rapidity), and after fiducial cuts (of section 5.6). First,
these two distributions are drawn from the whole preselected data, and used to apply weights on
all preselected samples. However, once the BDT is trained (see section 5.7) with this simple J/ψ
choice weighting, one can split data in three bins of the BDT output value as will be done for the
template fit (see section 6.1), and these bins will contain different proportions of fake J/ψ. We
hence draw again, for each BDT bin, the (unambiguous) dimuon mass distributions for the loose
and tight mass ranges, and recalculate the weights of ambiguous candidates therefrom. Some of
these categories have too small statistics to obtain a reasonable mass shape, so:

• If the histogram for a category has less than 100 entries, we take the dimuon mass histogram
for the sample integrated on BDT.

• If the latter has less than 70 entries, we attribute weights 0.8 + i× 0.05 and 0.2− i× 0.05
respectively to the signal region and sideband candidates, where i is the BDT bin number
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(higher i meaning a bin more pure in signal). This choice is a bit arbitrary but concerns
very few events.

This procedure is ran only after the first-step BDT training (and not at the beginning of the
second step analysis). The dimuon mass distributions f(mµµ) used for the J/ψ choice weighting
are shown for pp and PbPb in Fig. 5.7, for the three BDT bins and for the tight and loose mass
ranges. A unique bin per sideband is used, as they contain low statistics and should show an
approximately flat shape.

2.7 2.8 2.9 3 3.1 3.2 3.3 3.4
) [GeV]µµM(

0

100

200

300

400

500

600

N

Dimuon mass of unambiguous candidates

BDT bin1

BDT bin2

BDT bin3

Dimuon mass of unambiguous candidates

2.7 2.8 2.9 3 3.1 3.2 3.3 3.4
) [GeV]µµM(

0

20

40

60

80

100

120

N

Dimuon mass of unambiguous candidates

BDT bin1

BDT bin2

BDT bin3

Dimuon mass of unambiguous candidates

2.7 2.8 2.9 3 3.1 3.2 3.3 3.4
) [GeV]µµM(

0

50

100

150

200

250

300

350

N

Dimuon mass of unambiguous candidates

BDT bin1

BDT bin2

BDT bin3

Dimuon mass of unambiguous candidates

2.7 2.8 2.9 3 3.1 3.2 3.3 3.4
) [GeV]µµM(

0

5

10

15

20

25

N

Dimuon mass of unambiguous candidates

BDT bin1

BDT bin2

BDT bin3

Dimuon mass of unambiguous candidates

Figure 5.7: J/ψ dimuon mass distributions in the signal and sideband regions in pp (top)
and PbPb (bottom), for the trimuons with unambiguous J/ψ choice, separated in three BDT
bins, for the loose (left) and tight (right) dimuon mass regions. These distributions are used

as probabilities for an ambiguous candidate to have made the right J/ψ choice.
——–

These weights, always extracted from the unambiguous events in data, are applied to all
signal and background samples. It nevertheless has the most importance for the data signal
region and sidebands, for which it is pivotal to the proper cancellation of the fake J/ψ candidates
having a dimuon mass in the J/ψ peak region. It is also applied to the signal MC and other
background samples, even if we know in these cases which dimuon pair is the true J/ψ (either by
matching it to the generated J/ψ, or because we know which dimuon we chose to rotate). This is
to account for the effect of the weighting on these samples as well, as they similarly contain about
5-10% of candidates with an ambiguous J/ψ choice, in which the second OS pair is accidentally
in the dimuon mass signal or sidebands regions. It is underlined here that the contamination
from the signal MC to the J/ψ sidebands is taken into account, as for the rotated-J/ψ sample,
with negative weights for true J/ψ mesons having their mass in the sidebands.
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For data, the signal MC, and the rotated-J/ψ sample, the dimuon mass shape of corrected
(ambiguous) candidates, was checked against the one of unambiguous candidates. The shapes
(not shown here for brevity) are found to be rather similar within the large uncertainties of the
scarce ambiguous events. The potential discrepancy for the data shapes probably comes from
the fact that ambiguous candidates undergo an additional constraint on their kinematics, which
could bias their mass shape – but this would be due to singling out those events and not to the
above weighting.

5.6 Analysis binning

Now that the preselection is set, we can decide (using the signal MC) in which phase space
the cross section and modification factor results will be quoted (often called fiducial cuts). Within
these fiducial cuts is also chosen the analysis binning. The observable trimuon kinematic variables
are used for these cuts and binning, because the precision of this analysis is not sufficient for an
evaluation of the true Bc kinematic variables (see section 8.3) to be relevant. The choice of the
studied kinematic region and binning is based on the following criteria:

• There must be some expected signal events in all corners of the chosen phase space (one
cannot quote a measurement on a region where no observed event is expected).

• In the case of event-by-event acceptance and efficiency corrections (which are not taken
as the nominal strategy, see section 7.5), the differences between the corrections for each
of the candidates must not be too large between parts of the same analysis bin, otherwise
very different acceptance and efficiency weights are applied. This decreases the statistical
significance of the yields corrected with this method, by relying on a small part of events
with very dominant weights. However in practice, the achievable binning results in large
kinematic regions, where the corrections vary a lot; this lead to dropping this method.

• It is important both for physics interests and for the expected significance of the observation
to try lowering the trimuon p

µµµ

T threshold of the measured phase space. The Bc cross
section is sharply rising around the low-pT trimuon acceptance threshold, and the low-pT

region is particularly interesting because different effects than at high-pT could appear,
such as recombination.

• Since the modifications due to the presence of QGP are expected to depend more on pT

(due to different expected phenomena) than on rapidity, it is preferred to optimise the
slicing in pµµµ

T , to assess this dependence. The rapidity cuts that will be associated to the
p

µµµ

T bins should not prevent this binning from assessing a pµµµ

T dependence, because the
rapidity spectrum is expected to be much flatter than the pT spectrum.

The map of the number of simulated signal trimuons as a function of the visible pµµµ

T and
absolute rapidity |yµµµ | is shown in pp and PbPb in Fig. 5.8, and the map of the trimuon
acceptance times efficiency in Fig. 5.9. The pµµµ

T distribution of the used signal MC is here
weighted with the final pµµµ

T -spectrum correction, meaning at the end of the second-step analysis
(just before the final acceptance and efficiency computation), as is explained in section 7.6; maps
without any pµµµ

T weighting (that do not contain this preliminary form of the measured yields)
however lead to the same conclusions. The binning of these maps is tuned to get a similar
number of expected candidates in each bin. Details on acceptance and efficiency maps are given
in section 7.4.

According to the criteria above, we define rectangular regions in trimuon pT and rapidity
over which the full acceptance times efficiency is always higher than 2 × 10-4, and in which a
p

µµµ

T binning is relatively simple. Keeping in mind the low statistics, it is not realistic to evaluate
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Figure 5.8: Trimuon (p
µµµ

T , yµµµ) map of the number of simulated signal candidates (using an
MC corrected with the final measured pµµµ

T -spectrum, see section 7.6), in pp (left) and PbPb
(right). The black lines show the regions chosen as the two pT analysis bins.
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Figure 5.9: (p
µµµ

T , yµµµ) map of the trimuon acceptance times efficiency (from the signal MC
corrected to the final measured pµµµ

T -spectrum, see section 7.6), in pp (left) and PbPb (right).
The black lines show the regions chosen as the two pT analysis bins.

——–

the cross sections in more than two bins. The two chosen analysis bins correspond to different
rapidity cuts to take advantage of the shape of the acceptance. They are defined as:

• 6 < p
µµµ

T < 11GeV for 1.3 < |yµµµ | < 2.3

• 11 < p
µµµ

T < 35GeV for 0 < |yµµµ | < 2.3

The signal yields expected within mµµµ ∈ [3.5, 6.2]GeV, with the pre-fit normalisation (im-
plying RPbPb = 1) and no pµµµ

T weighting, and the J/ψ-choice weighting, are respectively 50 and
137 in the first and second p

µµµ

T bin in PbPb, and respectively 594 and 1058 in the first and
second pT bin in pp. Increasing the upper limit of the second pT bin to 50GeV only increases
the signal yields in this bin by about 1%, which will have a negligible effect on the result, so the
upper limit of 35GeV to lower the size of this bin.
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It is to be reminded here that the centrality is restricted to 0-90% in this analysis (justified
in section 5.2). An important physics message can also be carried by a binning in centrality.
The ranges 0-20% and 20-90% are natural regarding their average Ncoll (1271 in 0-20% and 183
in 20-90% [35]) times range width (0.2 and 0.7), according to which the yields of the studied
hard process should scale. This amounts to 254 and 128 equivalent Ncoll in the 0-20% and 20-
90% ranges, but this difference will be somewhat compensated by a lower efficiency and higher
background in the most central events. It would be ideal to measure the pT dependence in each
centrality bin, but the statistics do not allow a measurement with reasonable precision, so the
two centrality bins are integrated over the pµµµ

T (and rapidity) bins spelt out above. The 0-20%
centrality range will be called ‘first centrality bin’, by convention.

Many analysis procedures are performed separately both for the two centrality and the two
pT bins, and some are performed separated only in pµµµ

T bins, such as the BDT training and the
correction of the pT spectrum from the first-step measurement. An overview of which analysis
modulesones are performed for which binning is included in section 3.3.3 and Fig. 3.13.

5.7 Boosted Decision Tree (BDT)

5.7.1 Principle

A Boosted Decision Tree is trained with the ROOT TMVA module [194] from the preselected
signal and background samples, to build a unique discriminant variable (called BDT or BDT
output variable in the following) encompassing all the discriminant power of the provided input
variables. The template fit (chapter 6) will be performed in three bins of the BDT variable,
to benefit from background-enriched bins that stabilise the background parameters, and signal-
enriched bins that will drive the determination of the signal yield.

The training algorithm starts from decision trees. The first step is to look for the most
discriminating input variable, on which the best cut is found according to some signal/background
separation criterion. This criterion is to minimise the Gini index, equal to p(1 − p) where p is
the purity (i.e. the fraction of signal in a sample); this index reaches 0 for a sample containing
only signal or only background. The sample is separated via this cut into a signal-enriched
and a background-enriched subsample (a.k.a a leaf ). Then this procedure is repeated in each
subsample, and iterated until some stopping criterion is met. I just described one decision tree,
but boosting means that many such trees are computed, reweighting the events before each new
tree computation to give more importance to the events that were classified in a wrong end-leaf
in the previous trees. The trained BDT is a function that takes values for the input variables of a
given event, and outputs a value that represents how probable it is for this event to be classified
as signal by a majority of these trees. To summarise with a simplified view of a BDT trained
in n variables, it draws rectangular n-dimensional regions (the leaves) that are tagged with a
high fraction of signal or of background, and those fractions schematically give the probability
of being a signal event for any point in this space.

A BDT performs better if the input variables already discriminate well, so I build some
higher-level variables to that end in section 5.7.2, that will be inputted along some variables
used in the preselection; and these variables are plotted for preselected samples.

The training maximises the rejection of the background while minimizing the rejection of
the inputted signal. With given input samples, the training can in principle get sophisticated
enough to discriminate perfectly the signal and background; however this would exactly fit the
statistical fluctuations and systematic uncertainties of the input samples, and would not perform
as well (and often worse than less optimised BDT’s) on data it was not trained on. This is called
overtraining. Section 5.7.3 details the choice of the input signal and background samples, and
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of the training parameters and other ways to deal with the trade-off between performance and
overtraining.

The BDT is actually trained twice, where in the second training, the input signal sample
benefits from the weighting of its pµµµ

T distribution using the first-step cross-section measurement
(see section 7.6). The final template fit (chapter 6) uses the BDT variable from the second-step
training. The training is performed separately on the two p

µµµ

T bins (even for the centrality
dependence, so that the BDT value of an event does not depend on which binning is considered).
Section 5.7.4 shows a comparison of the distributions of the second-step BDT for data versus
the sum of signal and the various backgrounds with fitted parameters. A weighting is applied to
correct the BDT distribution, only in pp, before running the final template fit.

Section 5.7.5 calculates a modified BDT variable that is uncorrelated with the trimuon mass,
which leaves to the mass its full discriminant power in the template fit procedure. This variable
is used for the BDT binning in an alternate fit, which participates in the estimation of the
systematic uncertainty on the fit procedure (section 6.4).

5.7.2 Discriminant variables after preselection

We will use these variables from the preselection (defined in section 5.4) in the training input:

• The corrected mass mcorr;

• The logarithm of the trimuon lifetime significance;

• The logarithm of the trimuon vertex probability;

• The projection of the angle α (between the flight segment and the trimuon momentum) on
the transverse plane. It is less correlated with the lifetime significance than its 3D version,
and hence provides a slightly better performance increase;

• The sum of the three pseudo-angles between the muon pairs
∑

i 6=j ∆R(µiµj).

The cuts tried by the training algorithm on the input variables can only be discrete, and the
number of cuts equally distributed on the full variable range cannot be set too high, because this
favours overtraining. In case of variables sharply peaking, the details of the signal/background
separation could be hidden in the range containing most of the events, but where only a few cuts
are tried. To avoid this phenomenon, we smoothen with a logarithm the variables showing most
of their signal/background differences in a small part of their range (the lifetime significance and
the vertex probability). This is seen to improve the performance.

In addition to these variables, we input these higher-level discriminant variables:

• The imbalance between the transverse momenta of J/ψ and of the third muon, named µW :

ImbalJ/ψ−µW
=

∣∣∣∣∣pT(J/ψ)− pT(µW)

pT(J/ψ) + pT(µW)

∣∣∣∣∣ .
In a background event with a true J/ψ meson, the J/ψ will have much higher pT than e.g.
a random track it combines with, whereas the pT of two true daughters of a Bc meson will
be more balanced;

• The ratio of ∆R(J/ψ) to the ∆R of the other two muon pairs:

∆R(µ1µ2)

∆R(µ2µW) + ∆R(µ1µW)
.

At relatively low pT, the mass of the J/ψ should result in a larger ∆R for the µ1µ2 dimuon
than for the other dimuons. This quantity hence tends to be close to 1 for signal (this value
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corresponding to the µW having its direction exactly in-between the two J/ψ muons), and
has low values when the J/ψ muons are collimated and the third muon is at a large angle
(typically for background events containing a true J/ψ meson);

• The 3D significance of the displacement to the primary vertex for the non-J/ψ muon
dxyz(µW)/σdxyz . This limits the combinations of a true J/ψ with a random track from
the PV. Considering uncorrelated transverse and longitudinal measurements and simple
error propagation, the 3D displacement significance of a muon can be obtained from the
significances of the (more standard) transverse and longitudinal displacements via:

dxyz/σdxyz =
d2
xy + d2

z√
d2
xyσ

2
dxy

+ d2
zσ

2
dz

To limit overtraining, we checked the correlations between input variables (very correlated
variables can bring ambiguity in the determination of the cuts chosen by the various trees). We
removed too correlated variables, reducing the training input to the above 8 variables, whose
correlation matrices (including the correlations with the mass, that are a motivation for the
decorrelation performed in section 5.7.5) are plotted for signal and total background in Figs. 5.10
for pp and PbPb. The additional variables were included in a test version of the BDT, and
were then progressively removed, by looking for the most correlated variables (typically with
a correlation factor & 0.5) whose removal did not degrade significantly the performance. The
following variables were removed from the training input but are still relatively good discriminants
(the last two are less so, but mentioned for completeness):

• The 3D pointing angle α3D between the flight segment and the trimuon momentum;

•
∑

i dxy(µi)/σdxy,i : the sum of the significances of the transverse displacements of each muon
to the primary vertex;

•
∑

i dz(µi)/σdz,i : idem, but for the longitudinal displacements;

• The minimum instead of the sum for the two above variables, and the 3D displacement
instead of the transverse or longitudinal one.

• The distance of closest approach of the J/ψ dimuon.

Flat trees (one row per trimuon candidate) were built from the Oniatree’s, containing
all these variables as well as other variables useful for various studies, for events passing the
preselection of section 5.4. The eight BDT discriminant variables mentioned above are plotted
(normalised to 1) for signal MC and for the relevant background samples in Figs. 5.11 and 5.12,
together with the BDT itself and the pointing angle α3D. The other mentioned variables are
plotted in Figs. 5.13 and 5.14, along with the ∆R of any muon pair in trimuon candidates.
The latter variable confirms that the muons of a trimuon candidate are separated enough to
be reconstructed mostly independently in the detector (meaning that in general, they do not
share hits). The ROC curves, illustrating the discriminant power of the variables, are shown
along with the distributions. They represent the background rejection (1− εB) versus the signal
efficiency, for all possible cuts; they stick to the borders of the canvas (i.e. their integral is 1) for
perfectly discriminant variables, and are separated from the diagonal for cuts that are somewhat
discriminant. Some backgrounds have a ROC curve below the reference diagonal indicating equal
signal and background distributions; this means that the inverse cut (e.g. cutting from below
rather than from above) can be picked as discriminant by the BDT training. The ROC curve
of the BDT variable is satisfying. In all these plots, the second-step pµµµ

T weighting of the signal
MC is applied, and the BDT is from the second-step training. The fiducial cuts in trimuon pT

and rapidity from section 5.6 are also applied. The used non-prompt J/ψ MC sample is inclusive
(not only the candidates with J/ψ and muon coming from the same B decay). The integral of
the ROC curve is also printed for each background and each variable.
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Figure 5.10: Correlation matrices of the input variables of the second-step BDT training
and the trimuon mass, for the signal (left) and background (right) training samples in pp
(top) and PbPb (bottom). See section 5.7.3 for the (pre-fit) composition of the background

sample. The trimuon mass is not a training variable and only included for illustration.
——–

5.7.3 BDT training and testing

A priori normalisations of the signal and background samples (from section 3.5.4) are needed
for the BDT training. These normalisations are not exact because they are not fitted yet. Only
in the second-step training, the signal MC is corrected to have the pµµµ

T spectrum of the signal
measured in the first-step (see section 7.6). The imperfect respective signal and background
normalisations mean that the training optimisation might not be perfect. But it does not mean
that the output variable is wrong – it is only a discriminating tool. We however applied rough
global factors to the input background samples, based on preliminary fits.

The samples used as input for the BDT are the simulated Bc signal, as well as the following
background samples, after preselection:

• The J/ψ sidebands.

• The wrong-sign sample, with candidates of charge ±3. This sample describes purely com-
binatorial background, which should be present in the sidebands sample, but it is still used
as a complement.

• The rotated-J/ψ sample, averaged over the thirteen rotation angles, with a weight of 0.7.
We give it a lower normalisation than the post-fit one, to leave room to the candidates of
the J/ψ MC featuring a J/ψ and a muon from different processes.
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Figure 5.11: Distributions of discriminant variables for preselected signal and background
samples in pp, along with their ROC curve, for lower or upper cuts. The top 8 variables are

used for training the bottom-right BDT.
——–
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Figure 5.12: Distributions of discriminant variables for preselected signal and background
samples in PbPb, along with their ROC curve, for lower or upper cuts. The top 8 variables

are used for training the bottom-right BDT.
——–
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Figure 5.13: Distributions of additional discriminant variables for preselected signal and
background samples in pp, along with their ROC curve, for lower or upper cuts. The ∆R of

all dimuons of trimuon candidates is also shown.
——–

• The non-prompt J/ψ MC, with a weight 2.6 in PbPb (1.75 in pp) for the true B → J/ψ +X
decays, and 0.6 (which is the 30% we left room for in the rotated-J/ψ normalisation, doubled
because of its underestimated normalisation) for the other (less correlated) events.

• The prompt J/ψ MC, with a weight 0.6 for similar reasons as the uncorrelated non-prompt
MC.

The global normalisation parameters of the J/ψ MC will get values between 1.7 and 2.7 in
the template fits, which justifies a posteriori the weights given to those input samples. There can
however be some imprecise counting in the sum of above backgrounds. However, as explained
before, this only means that the optimisation will not be as good as it could be, but cannot
bias the results. We keep these partially redundant backgrounds to be sure to cover all possible
background properties: if some background events are not well described in a given sample, the
BDT can train as well against the events of another sample, that might better describe those
events.

After the training (which builds the BDT variable, concentrating the discriminant power of
all input variables), the BDT needs to be tested for overtraining, and then evaluated (i.e. the
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Figure 5.14: Distributions of additional discriminant variables for preselected signal and
background samples in PbPb, along with their ROC curve, for lower or upper cuts. The ∆R

of all dimuons of trimuon candidates is also shown.
——–

output BDT variable is calculated in all samples, before drawing the mass distributions used
in the template fit). The input samples listed above are used for these three tasks. However,
evaluating the BDT on the same sample that it has been trained on leads to bad consequences
even for a light overtraining. The first stage of overtraining means that some property inferred
by the training is due to a statistical fluctuation of the training sample, and not to an authentic
feature of the true distributions. When this slightly overtrained BDT is applied to the training
sample, it will reject it more easily than it will reject the actual background from data, so that the
training sample cannot give a correct background template to compare to data. To circumvent
this, all samples are randomly separated in two, and two separate BDTs are trained in each pµµµ

T
bin: one uses the first half as training sample and the second half as the testing and evaluation
sample, and vice-versa for the second half.

The parameters of the BDT training in TMVA are:

• Number of trees: 600.

• Maximum depth of the trees: 2. This is a stopping criterion of the training.
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• Minimal size of an end leaf (tagged as signal- or background-enriched): 7% of the total
integral of the input samples. This is a stopping criterion too.

• Signal separation criterion: Gini index p(1− p).
• Number of cut values tried for each variable: 30 in pp, 15 in PbPb.

• The Boosting uses AdaBoost (i.e. adaptative boosting, known to be performant with
shallow trees [194]) with a slow-learning rate β = 0.2 (limiting the overtraining).

The integral of the BDT output ROC curve and the signal efficiency at 99% background
rejection are two quantities for which we optimised the above parameters. While optimizing,
we also need to keep the second quantity similar in the training and testing samples, so that
there is no important difference in the BDT performance when evaluating it on the statistically
independent training and testing samples. Those quantities are given for the two pµµµ

T bins in pp
and PbPb in Table 5.3, for the second-step BDT training. There are signs of light overtraining
here, with the signal efficiencies at fixed background rejection for training and testing samples
being somewhat different, but these differences are of the same order than the variability (due
to low statistics) of this efficiency between the trainings of the first and second half of the
samples. In addition, as different samples are used for training and testing/evaluating, this small
overtraining has negligible consequences. Too tight training parameters could however decrease
the performance (which is a second – worse – stage of overtraining); but we checked that releasing
them indeed makes the performance decrease. The ROC integral is between 0.84 and 0.87 in
pp and between 0.90 and 0.94 in PbPb, depending on the pµµµ

T bin and which random half is
considered. The BDT distributions are shown in Figs. 5.11 and 5.12 (bottom right).

Table 5.3: Second-step BDT performance and overtraining tests in pp and PbPb. The
integral of the ROC curve in the test sample, and the signal efficiency at 90% and 99%
background rejections in the test and training samples, are shown for the two sample splittings
(train on the first half and test on the second half, or vice-versa), along with the average of

values over the two splittings.

ROC integral
test sample

εsig at εbkg = 0.01

test (train) sample
εsig at εbkg = 0.1

test (train) sample

pp
6 < pT < 11GeV

train half A, test half B 0.845 0.15 (0.23) 0.55 (0.55)
train B, test A 0.835 0.17 (0.21) 0.54 (0.59)
average 0.840 0.16 (0.22) 0.55 (0.57)

pp
11 < pT < 35GeV

train half A, test half B 0.863 0.12 (0.25) 0.54 (0.66)
train B, test A 0.872 0.20 (0.17) 0.59 (0.56)
average 0.867 0.16 (0.21) 0.57 (0.61)

PbPb
6 < pT < 11GeV

train half A, test half B 0.907 0.36 (0.47) 0.76 (0.77)
train B, test A 0.901 0.41 (0.43) 0.77 (0.77)
average 0.904 0.38 (0.45) 0.76 (0.77)

PbPb
11 < pT < 35GeV

train half A, test half B 0.937 0.40 (0.37) 0.82 (0.82)
train B, test A 0.931 0.24 (0.49) 0.78 (0.84)
average 0.934 0.32 (0.43) 0.80 (0.83)

The BDT training, testing, and evaluation are done separately for each pµµµ

T bin. As men-
tioned in section 5.5, after the first-step BDT is evaluated, we run the weighting for the J/ψ
choice a second time, taking into account the BDT binning used in the template fit. The J/ψ
choice weighting is not repeated in the second-step analysis.
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5.7.4 Check and correction of BDT distribution

The BDT distribution might be wrong in the signal MC and in the various background
samples. This could affect significantly the performance and reliability of the fit, by migrating
events among the three BDT bins. One would like to compare, and correct if necessary, the BDT
distribution of the sum of the signal and all backgrounds, to the distribution of data. This is
done only with the second-step BDT variable, used in the final template fit.

Right after the second BDT training, I run a preliminary second-step template fit, to extract
the post-fit normalisations of signal and of the various backgrounds, and apply them to the
samples plotted here. The shape morphing parameters (see section 6.2) are also used, to account
for the contributions of the background shape variations in the BDT distributions of backgrounds.
Avoiding to use the signal and background normalisations from a previous fit was tried, by getting
these weights from the high-mass control region. However, in addition to the low statistics of
this region, these weights are not necessarily the same than in the signal region.

Figs. 5.15 and 5.16 present the comparison of the second-step BDT distribution of data
versus the sum of post-fit templates, in pp and PbPb, separately in the two pµµµ

T bins, and in
two centrality bins for PbPb.
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Figure 5.15: Comparison (top) and ratio (bottom) of the BDT distributions of data and of
the sum of all post-fit templates (signal MC and the three backgrounds), for the first (left)
and second (right) pµµµ

T bins, in pp. The ratio of distributions is used to weight the samples
entering the final fit.

——–

Within the low statistics of PbPb data, no correction seems necessary for the BDT distri-
bution in PbPb – it is checked in bins of pµµµ

T or centrality, and on the integrated sample. Only
the pp samples deserve a correction of the BDT distribution. This weighting is calculated, and
applied, separately in each pµµµ

T bin. The same weights are applied to all signal and background
samples (meaning only the total BDT distribution is corrected). After this weighting, the final
second-step fit is performed.

5.7.5 Decorrelate BDT from mass

Despite our efforts to reject these, the BDT uses variables that can be significantly correlated
to the trimuon mass, as shown in the correlation matrices of Fig. 5.10. During the optimisation,
the training can hence partially ‘guess’ the typical mass of the signal events, and make the output
discriminant variable dependent on the mass. This biases the trimuon mass shapes towards
central masses (where most signal lies) for the highest BDT bins. The fit strongly exploits the
fact that the signal and background mass shapes have different features to extract the signal
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Figure 5.16: Comparison and ratio of the BDT distributions of data and of the sum of all
post-fit templates (signal MC and the three backgrounds), for the first (top left) and second
(top right) pµµµ

T bins, and for the first (bottom left) and second (bottom right) centrality bins,
in PbPb.
——–

normalisation, and such bias hence transfers some discriminative power from the fit to the BDT
binning.

One would like to check that leaving this discriminative power to the fit yields similar results
than the nominal method. Therefore, I design here a modified BDT variable that is uncorrelated
with the mass, when plotted for the summed backgrounds. This variable will be used to bin the
samples in an alternative fit, whose result is used in the estimation of the systematic uncertainty
on the template fit method (see section 6.4). This variable is computed separately for the two
analysis bins. The decorrelation is applied to the BDT variables from both first- and second-step
trainings, because the alternative fit is used in both steps to evaluate the systematics on the fit
method. All plots shown in this subsection correspond to the second-step BDT.

To decorrelate the BDT from the mass, I start by plotting the BDT versus the mass for the
summed backgrounds (Fig. 5.17). The mass binning is the same as the most fine-grained one
used in the template fit, and only events in the fiducial cuts (of section 5.6) are used. The events
are weighted to reproduce the post-fit mass distributions and normalisations; this decorrelation
is used only in variations of the fit method, so the results of the first- or second-step nominal fit
can be used.

One can then plot the average BDT versus mass for the summed backgrounds, with the
finest binning used in the template fit (i.e. the 2D histograms of Fig. 5.17 profiled along the
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Figure 5.17: 2D distributions of BDT versus the trimuon mass, for the summed backgrounds
in pp (left), in PbPb pµµµ

T bins (middle), and in PbPb centrality bins (right), for the first (top)
and second (bottom) bins.

——–

mass). This function 〈bdt〉background(mµµµ) is shown in Fig. 5.18, separated in pµµµ

T bins, for pp.
The RMS of the BDT distribution in each mass bin can also be computed from Fig. 5.17; the
resulting plots are not shown for brevity; the RMS changes smoothly between 0.11 and 0.17 over
the mass range.
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Figure 5.18: Mean BDT value in each trimuon mass, for the summed backgrounds in pp,
in the first (left) and second (right) pµµµ

T bins.
——–
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Figure 5.19: Mean corrected BDT versus the trimuon mass in the first pµµµ

T bin, in pp
(top) and PbPb (middle), and in the first PbPb centrality bin (bottom), for the summed

backgrounds (left), signal MC (center), and data (right).
——–

I can now compute a corrected BDT value that is (in average) uncorrelated with the mass
for background candidates, and that has a similar spread for all masses:

bdt′ =
bdt− 〈bdt〉background(mµµµ)

RMSbdt(m
µµµ)

(5.3)

Binning in this variable instead of the original BDT in the template fit gives similar background
shapes in all bins of corrected BDT. There is however a remaining mass dependence of the BDT
variable in the signal MC, because the aim was only to keep the total background shape stable.
Fig. 5.19 shows the mean corrected BDT value versus mass in the first pµµµ

T bin, in pp and PbPb,
and in the first PbPb centrality bin, for the total background, the signal MC, and data.

This procedure is repeated separately for each pµµµ

T or centrality bin, and for the integrated
samples, in pp and PbPb. Each of these categories hence has a different corrected BDT value.
The fits using this BDT decorrelated from the mass are shown in section 6.4.2.



“Do you really believe that the moon exists
only when you look at it?”

———–

Albert Einstein to Abraham Pais1

Chapter 6

How many do we see?
Template fit

Trimuon mass histograms for data, for the simulated signal, and for the various backgrounds
(detailed in chapter 4) are now extracted. The core of the analysis, presented in this chapter,
is then to extract the signal normalisation through a likelihood template fit, using the extracted
signal and background trimuon mass histograms as input templates. Section 6.1 explains the
principle and structure of the fit. Section 6.2 presents the nuisance parameters included in the
fit to take into account the background uncertainties. Section 6.3 shows the fit results and
associated crosschecks. Section 6.4 details the alternative fit methods that are tried, and the
resulting systematic uncertainty.

6.1 Principle

6.1.1 Likelihood fit with combine

The likelihood fit is run in the framework of the combine tool of the CMS software, based on
RooFit [195]. This framework was conceived to combine the statistical power of multiple Higgs
measurements [196], but is now very complete and used for general purposes. Its principle is to
fit data with a model featuring probability distributions for each signal or background source, of
parameters ~β, simultaneously in many channels, which can be individual bins of histograms.

Bayesian logic is used via the likelihood L(~β), which is proportional to the probability of
obtaining the observed data if ~β are the true parameters of the model chosen to describe the data.
Each data event (or bin content in the case of a template fit) contributes to the likelihood with a
factor equal to the probability of observing it given the considered model parameters. The core
of the likelihood fit consists in simple counting experiments, where the observed number of events
is compared to the number of signal and background events expected from the model. For this
simple case the model is a Poisson probability with mean the number of expected events. More
complicated models include various parametrised yield-modifying constraints in the likelihood.
The most probable value (in a Bayesian sense) ~β0 of the parameters is then found by maximising
L, or equivalently minimising the conventionally-used (double of the) negative log-likelihood
(NLL) −2 ln(L).

1Told by A. Pais in Rev. Mod. Phys. 51, 863–914 (1979), p. 907
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The presence and strength of the signal is tested through the ratio of likelihoods (i.e. the
difference of the NLLs) for the hypothesis of signal and background, and for that in which the
signal parameters are removed (set to 0 or to their best fit value). Wilkes’ theorem [197] tells
that, at infinite statistics, the difference of the NLLs for the two hypotheses is distributed as a
χ2
n function with a number of degrees of freedom n equal to the number of additional parameters

in the hypothesis including signal compared to the alternative hypothesis. The distribution of
values is to be understood here as describing multiple virtual experiments performed in the same
conditions, resulting in a distribution of fitted signal parameters. This is how the uncertainties
from the likelihood fit are determined. The region of the parameter space defined by ∆NLL ≡
−2(lnL(~β)−lnL( ~β0)) < 1 is indeed a 68% confidence region when only one parameter is left free,
as is the case where the uncertainty on a given parameter is determined. This case is simplified
by the form of the cumulative distribution function of the χ2

1 function, named F (λ) here. It is
easy to show, from χ2

1(λ) ∝ 1√
λ
e−λ/2, that:

F1(λ) = Φ(
√
λ) (6.1)

where Φ is the cumulative of the standard Gaussian distribution. This conveniently gives the
p-value, i.e. the probability to obtain a value of ∆NLL ≥ λ, as p = 1 − F1(λ). Using the
common z-score, that is the number of standard deviations of a unit Gaussian corresponding to
a required confidence level, one obtains

z = Φ−1(1− p) =
√
λ (6.2)

so that the usual 1 standard deviation (1σ, 68%) confidence region is bounded by ∆NLL = 1, the
2σ(95%) region by ∆NLL = 4, etc. The frontiers of the ∆NLL < 1 region can be interpreted
as the 1σ asymmetric uncertainty on the best-fit values ~β0 of the parameters, as detailed in
Ref. [198]; this is called the MINOS technique in the MINUIT minimiser [199] used in this fit.

The Wilkes theorem is also used to determine the significance of the observation of signal in
section 6.3.3. The nuance here is that a signal composed of two parameters will be assessed, so
the Wilkes theorem involves a χ2

2 function, with two degrees of freedom. In this case, the ∆NLL
limits of the (1−p)[%] confidence regions are generalised through the quantile of the χ2

2 function,
which is the inverse of the cumulative χ−2

2 (1− p) = F−1
2 (1− p), so that p = 1− F2(χ−2

2 ). This
results in ∆NLL limits of 2.30, 6.18, 11.8, and 28.7 for the 1σ, 2σ, 3σ and 5σ confidence regions,
respectively, rather than the values 1, 4, 9 and 25 for one degree of freedom. The conventional
5σ threshold will be used to declare an observation.

The ~β parameters comprise the ones we want to measure (parameters of interest, or POIs)
and the ones that only implement constraints and uncertainties of the model (nuisance param-
eters). We typically do not need to know the best-fit values of the nuisances, so the likelihood
is profiled : for each value of the parameters of interest, the NLL is minimised along nuisance
parameters. This profiled NLL, depending now only on POIs, is used for the minimisation and
credible interval estimation. When nuisance parameters correlated with the POIs are included
in the fit procedure, the global shape of the likelihood is changed, so the profiled likelihood
‘trajectory’ in the parameter space is modified along with the credible intervals on POIs.

The template fit is a binned shape analysis, i.e. it is based on principles stated in [200]
except histograms are given as the input rather than multiple expected yields. Mathematically
it is equivalent to a simple counting experiment for each bin of each inputted histogram of each
channel. However, the nuisance parameters implemented in the likelihood model affect the yields
of various bins in a correlated way.
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6.1.2 Structure, input and binning

The two parameters of interest (named r1 and r2) in the pp or PbPb fit are multipliers of
the normalisations of the simulated signal templates in the two pµµµ

T or centrality bins. They
should be close to 1 in pp if our result agrees with the previous measurements (used for the a
priori signal normalisation, see section 3.5.4) and if the signal MC has correct kinematics, and in
PbPb too if Bc mesons are not modified in the QGP. In addition, multiple nuisance parameters
take into account the uncertainties on the normalisations and shapes of the templates; they are
detailed in section 6.2.

In the trimuon invariant mass calculation, the mass of the dimuon chosen as the J/ψ (cf
section 5.5) is fixed to the PDG J/ψ mass, both to reduce the effect of the different kinematic
distributions in the dimuon sidebands (see section 4.2), and to improve the mµµµ resolution by
removing the dimuon mass smearing by the imperfect detector reconstruction. The input shape
histograms are defined on the [3.5, 7.8] GeV mass range. The [3.5, 6.2] GeV region is the mass
signal region (less than 0.2% of the PbPb preselected signal events have a mass outside this
range). The [6.2, 7.8] GeV region above the Bc mass is used as a control region to get a better
hold on the background. The mass binning is made dependent on the BDT bin, because low-
BDT bins contain many more events: [15, 13, 12] (or [9, 7, 6]) bins in the mass signal region in
pp (PbPb), and [4, 3, 2] (or [3, 2, 1]) bins in the control region in pp (PbPb), respectively for the
[first, second, third] BDT bins, from background-enriched to signal-enriched.

Mass histograms are drawn separately for each of the two analysis bins (i.e. pµµµ

T or central-
ity), and for each of the three BDT bins, which sums to six ‘channels’ that are simultaneously
fitted. Fits on the integrated samples are performed as well, with only three channels correspond-
ing to the BDT bins. Many parameters affect all the channels concomitantly. This can lead, for
example, to the backgrounds being constrained mainly by the low-BDT bins and propagated to
the high-BDT bins, in which the signal can be evaluated with a constrained background. In that
sense, it is a two-dimensional fit in mass and BDT, or even a three-dimensional fit considering
the two analysis bins. The limits of the BDT bins change according to the channel or fit method
(e.g. when the mass-decorrelated BDT is used, as in section 6.4.2), and are always defined such
that the first, second, and third bin respectively contain approximately 25%, 40%, and 35% of
the expected signal. The lowest considered BDT value is set such that 0.1% of signal MC events
(of the considered analysis bin) are excluded, which rejects from the fit the events that are almost
without doubt background (and that 0.1% is included in the preselection inefficiency). For fit
stability reasons, the bins of all shape histograms are forced to have a positive content: if there is
a bin with negative content (for example due to the J/ψ sidebands subtraction in the rotated-J/ψ
sample), it is set to zero as its uncertainty, and its old content is subtracted from a neighbouring
positive-content bin.

In practice, the details of the model, parameters, and input shapes, are gathered in a datac-
ard. The input shapes are:

• The signal region data. Before the data unblinding (that took place in a late stage of
the analysis work), the PbPb data was partially blinded except in the high-mass control
region and for very low BDT values for which almost no signal was expected. Blinded data
contained only a quarter of the available data, and were attributed a weight 4.1

• The expected signal from the MC (section 3.5.2.1).

• The J/ψ dimuon mass sidebands, describing the fake J/ψ background (section 4.2).

• The non-prompt J/ψ MC, where only the candidates where J/ψ and muon come from
the same B meson (section 4.3) are kept.

1This meant the central values of the PbPb data points in blinded regions were a proxy of what was expected
after unblinding, but the error bars displayed on the plots were

√
4 = 2 times larger.
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• The data-driven rotated-J/ψ sample is used to describe the background from a J/ψ
meson associating to a muon from a different decay vertex (section 4.4). In pp, the ‘combi-
natorial’ part (i.e. excluding true B decays) of the non-prompt MC, known to be underes-
timated (cf section 4.4.2), is added to it; it is redundant with it, but a nuisance parameter
deals with this overlap through alternative shapes (section 6.2). Similarly, in PbPb, the
shape of this background will be allowed to vary to the prompt plus non-prompt J/ψ MC
samples (without the true B decays), which is considered a good background description
too.

In addition to some preliminary fits in nominal conditions, the full fit (with fit method
variations of section 6.4) is performed twice. In the second-step of the analysis, the fit benefits
from the improved BDT and the correction of the pµµµ

T spectrum of signal MC. In the second-step,
I also run a preliminary nominal fit, whose signal and background parameters are used in a check
of the BDT distribution of the sum of templates versus the one of data; in pp, it results in a
weighting of the BDT value, before the full second-step fit (see section 5.7.4). Unless mentioned
otherwise, all plots of this section show the results of this final second-step fit. Five types of
fit are run: integrated over the fiducial kinematic region in pp and PbPb, in pT bins in pp and
PbPb, and in centrality bins in PbPb. The centrality dependence and integrated fits are run
only in the second step.

6.2 In-fit systematics (nuisance parameters)

Nuisance parameters take into account the uncertainties on the background templates, so
that the final POI uncertainties given by the fit reflect these background uncertainties. The
datacard also contains the initial guess and constraining ranges for the nuisance parameters, as
well as how they shall affect specific background or signal shapes. If a background normalisation
N is not precisely known, it is associated a parameter that modifies this rate, according to a
log-normal distribution with a relative width of σrelN . This means a +1σ variation will raise the
rate by σrelN %. In practice, the normalisation is changed to N(1 + σrelN )θ, where the nuisance
parameter θ is constrained via a gaussian term e−

1
2
θ
2

multiplying the likelihood.

Similarly, if a background shape is poorly known, one can provide ±1σ alternative shapes
to the datacard, and a gaussian-constrained nuisance parameter will allow the shape to vary
consistently between the nominal and these two extreme shapes. More explicitly, a parameter θ,
leading the so-called shape morphing, is considered in the likelihood with a term e−

1
2
θ
2

. When
θ = 0 or ±1, the fit takes respectively the nominal or alternative shapes for this background.
For other values, a vertical interpolation of the background fractions in each mass bin is done,
with a spline for |θ| < 1 and linearly outside this range.

The MC samples have a priori normalisations that correspond to a value of 1 for their
normalisation modifier parameter. The data-driven rotated-J/ψ sample should be self-normalised
(i.e. directly given by the method performed on data), but we still consider a normalisation
modifier for it in pp (section 4.4 motivates this choice). The following nuisance parameters are
included in the likelihood model to take into account the uncertainties on normalisations:

• The normalisation of the (true B decays part of the) non-prompt J/ψ MC is multiplied
by a log-normal-distributed parameter of initial value 2 in pp (2.2 in PbPb) and relative
width 40%1. The initial value and loose constraint aim at guiding the fit. The initial value
is based on preliminary fits. This variable normalisation could correct for a mismodelled

1In combine, it is a rateParam normalisation modifier for the initial value, fixed in the fit, and a unique lnN
nuisance parameter with 40% width applied on all channels of the related background.
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muon misidentification rate in the MC (see section 4.3), but also in pp for the underesti-
mation of MC yields due to wrong J/ψ distributions (those discrepancies are described in
section 4.4.2).

• The data-driven rotated-J/ψ sample is expected to have close to correct normalisation,
especially in PbPb where all rotation angles give similar yields (see section 4.4.3). However,
in pp, one would like to leave freedom to the fit for this background, considering the
somewhat arbitrary choice of the mix of rotation angles (which can each give a different
normalisation). Therefore this background has a log-normal normalisation modifier of
initial value 1 and relative width 40%. The normalisation is fixed to 1 in PbPb; when
leaving it completely free, this parameter gets a value very close to 1 and an uncertainty
of 7%.

• The global normalisation uncertainties (on the luminosity and Glauber model for centrality,
and on the contribution of other Bc decays), are not implemented here, but rather at the
end of the analysis, as detailed in chapter 8. They are given special status because of their
correlation between pp and PbPb (the uncertainty from other Bc channels partially cancels
in the RPbPb) or because they affect all pµµµ

T bins with the same relative uncertainty.

In pp, the 40% pre-fit uncertainty on the rate parameters (for the two true J/ψ backgrounds),
that we would like to leave free while guiding it with initial values, is a bit arbitrary. However it
was checked that doubling or halving it does not change the post-fit value, nor the POI values
nor their post-fit uncertainties (or by less than 4% of the POI uncertainty). It should however
stay significantly above the post-fit uncertainty, equal to 0.05 for the B decays and 0.05 for the
rotated J/ψ background in pp, so that the pp rate modifiers are not significantly constrained.

The pre-fit value and uncertainty of the normalisation of the true B decays MC sample
in PbPb are more challenging, because it has subdominant yields compared to the other back-
grounds, so it is hardly constrained by the fit. Leaving it completely free gives a value 3.2± 1.0.
One can however consider that it is somewhat constrained by the pp fit giving a value around
1.9, even if multiple running conditions differ. I therefore decided to set the initial value to 2.2
with a pre-fit (multiplicative) uncertainty of 40%, which leaves both values accessible. Halving
or doubling this uncertainty has a very small impact on the POIs post-fit central values and
uncertainties (less than 2% of the fit uncertainty).

The following nuisance parameters1 allow for shape morphings that fully accommodate the
uncertainty on the chosen shapes:

• The nominal shape for the B-decays background is the full non-prompt MC in pp, and only
the fully correlated part of it (J/ψ and muon coming from the same B decay) in PbPb. In
pp, the ±1σ shape variations are the non-prompt MC where the combinatorial part (J/ψ
and muon from different decay vertices, about 18% of the non-prompt MC) is removed,
and the summed prompt and non-prompt J/ψ MC samples. In PbPb, a shape variation
including the combinatorial part of the non-prompt MC (that constitutes 92% of the full
non-prompt MC) in the shape of the B decays background was tried. However, this is
a modification of the shape at fixed normalisation, and the yields of this background are
subdominant in PbPb. Consequently, this shape variation was seen to have no observable
effect on the fit central value and uncertainty, so it was removed.

• The initial shape describing the background from combinations of a J/ψ and a muon from
different decay vertices is the rotated J/ψ sample, integrated over all thirteen rotation
angles. In pp the ±1σ shape variations only integrate over the six rotations that reverse or
are close to reversing the azimuthal angle (|∆φ| ≥ 3

4π), or integrate over the seven other
rotations; those shapes are compared in Fig. 4.15 (top). In PbPb, varying the rotation

1Keyword shape in the nuisance entered in the combine datacard
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angles has very little effect (see Fig. 4.15, bottom), so we simply set a unique ±1σ shape
variation as the prompt plus non-prompt J/ψ MC (without its fully correlated B decays
part), which is considered as a good description of this background in PbPb, as shows the
shape comparison of Fig. 4.16 (right).

• The fake J/ψ background is nominally described with the sum of the two dimuon mass
sidebands. Separately, the shapes from the two sidebands (shown in Fig. 4.3) are extreme
limits for the shape of this background, therefore they are taken as ±2σ variations.

In each analysis bin and BDT bin, these varied shapes are normalised to have the same
integral as the nominal shape in this bin. The fit can hence favour the nominal or varied shape
without affecting simultaneously the normalisation parameter of this background.

The use of data-driven or even MC histogram templates that have low statistics can signifi-
cantly affect the fit results, for the backgrounds are estimated only by sampling the true back-
ground distributions. This is accommodated through the autoMCstats parameters in combine,
following the Barlow-Beeston procedure detailed in Ref. [201]. One nuisance parameter is added
per mass bin, and possibly per signal or background template. For each mass bin showing a
non-empty prediction, an effective number of total background events (evaluating the statistical
power of this bin content) neff

tot = n2
tot/e

2
tot is calculated from the error etot on the total back-

ground in this bin. If neff
tot > 10, a single parameter constrained by a Gaussian of width etot will

add to the sum of signal and background templates in this bin. If not, a Poisson parameter is to
multiply each non-empty background separately in this bin. These parameters follow a Poisson
distribution of mean the number of events expected from this background nbkg,i, and the variable
is divided by nbkg,i so that the mean value of this multiplier is indeed 1. A parameter is also
added for signal, Gaussian- or Poisson-distributed depending on whether the signal bin content
is above threshold.

These parameters are numerous, but are strongly constrained, especially when the back-
grounds are high (and hence have small statistical uncertainties). The Poisson threshold is
though chosen not too high to limit the number of parameters. These parameters lead to worry-
ing instabilities with templates having very low statistics (typically only a few MC events over the
whole mass range in a BDT bin, corresponding to less than 1 or 2 expected events), in versions
of the fit where the shape variations are normalised only to the nominal shape integrated on the
BDT bins, and not normalised in each BDT bin as is nominally done. It is understood as many
largely correlated parameters building up large contents for supposedly-low background bins.
This appears for background templates that have a very irregular shape due to the low statistics.
When removing these template-statistics parameters in the fit method systematics or changing
how the shape variations are normalised to the nominal shapes (as is done in section 6.4.3), we
will need to regularise the low-statistics shapes before the fit, which solves the issue.

All nuisance parameters included in the fit are summed up in Table 6.1.

6.3 Fit results

Before unblinding (explained in section 3.4), the results shown here for PbPb used only one
quarter of the signal region data: the signal region data points had central values similar to
the expected unblinded ones (except with higher statistical fluctuations), but two times larger
uncertainties. The likelihood fit however considers a Poisson constraint between data points
and the signal plus background yields from the model, so only the central value (i.e. a simple
number of events) matters for the pull exerted by a data point on the model in the likelihood.
The eventuality of the fit uncertainties decreasing due to unblinding in PbPb (bringing smoother
data mass histograms) was discussed with toy datasets in section 6.3.4.
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Table 6.1: Summary of systematic uncertainties implemented as nuisance parameters in the
likelihood fit. Each row corresponds to one fit parameter, except for the last row which sets

one parameter per mass bin.

Affected
samples Name Initial value −1σ +1σ Comments

Fake J/ψ shape full dimuon
sidebands low-mass sideband high-mass sideband ±2σ

variations

B decays

normalisation 2. (pp)
2.2 (PbPb)

40% multiplicative,
log-normal

shape

non-prompt
J/ψ MC
full (pp)

or keep only true
B → J/ψ X (PbPb)

keep only true
B → J/ψ X (pp)

no variation
(PbPb)

add prompt J/ψ MC
(pp)

no variation
(PbPb)

-

J/ψ-µ

combinatorics

normalisation 1 (pp)
fixed to 1 (PbPb)

40% (pp) multiplicative,
only in pp

shape rotated J/ψ

rotated-J/ψ, only
|∆φ| ≥ 3

4
π rotations

(pp)
no variation (PbPb)

rotated-J/ψ, other
rotations (pp)
uncorrelated

(non-)prompt MC (PbPb)

-

All
Statistical

uncertainties
on binned shapes

> 1 Poisson or Gaussian parameter per mass bin
Poisson threshold 10

autoMCstats
tool

6.3.1 Post-fit mass distributions and signal yields

In each mass bin, the post-fit yields of the signal and of each background are taken from the
second-step fit result, and the post-fit templates are thence built. The fitted templates in pp for
both pµµµ

T bins, and integrated over both analysis bins, are shown respectively in Figs. 6.2 and 6.1.
They are also shown in PbPb in both p

µµµ

T bins, both centrality bins, and integrated over the
whole phase space, respectively in Figs. 6.4, 6.5, and 6.3. Each of these figures correspond to a
different simultaneous fit. The wrong-sign sample is only shown for illustration and not added
in the summed backgrounds. For each sub-plot, the fraction of selected signal or of the total
selected background that falls in this BDT bin is printed, as well as the purity (the fraction of
fitted signal yields in the total yield) and the post-fit observed signal yield.

Figure 6.1: Template fit in pp, for all candidates within the studied kinematic region (defined
in section 5.6).

——–
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Figure 6.2: Template fit in pp for the pµµµ

T dependence.
Top: candidates with 6 < p

µµµ

T < 11GeV. Bottom: candidates with 11 < p
µµµ

T < 35GeV.
——–

Figure 6.3: Template fit in PbPb, for all candidates within the studied kinematic region
(defined in section 5.6).

——–

The sum of fitted background templates are to be compared to the data points, separately
in each of the six ‘channels’ (i.e. in each BDT bin and analysis bin). The pull graphs, showing
for each bin the difference between the data and the post-fit model divided by the uncertainty
on the data point, are included in the bottom panels of the fit plots. The pulls already suggest
that the fits are good, but this is not the appropriate statistical test for a likelihood fit. A proper
goodness-of-fit test is performed in the coming section 6.3.2 and is satisfying. One feature
making the fit reliable is that the low-signal BDT bin stabilises the background parameters, and
the signal-enriched BDT bin mostly determines the signal yields using the background yields
constrained by the other BDT bins.

The post-fit signal normalisation multipliers (the two parameters of interest r1 and r2) are
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Figure 6.4: Template fit in PbPb for the pµµµ

T dependence.
Top: candidates with 6 < p

µµµ

T < 11GeV. Bottom: candidates with 11 < p
µµµ

T < 35GeV.
——–

shown for both fit steps in Table 6.2, along with the number of observed signal events from the
final second-step fit, its uncertainties, and the correlation factors between analysis bins.

Given that the input signal for the second-step fit is weighted by the first-step result, the
product of the first- and second-step ri is expected to be 1 if the measurement gives exactly
the a priori cross section of section 3.5.4.2. We observe that the normalisation modifier in
pp is consistent with 1 for the second p

µµµ

T bin, but not for the first pµµµ

T bin, which implies a
discrepancy with the a priori spectrum from bcvegpy. That discrepancy in the slope of the
spectrum will be discussed in chapter 9. However, the normalisation of the integrated sample is
only 15% lower than the a-priori one, and this is consistent with 1 if we take into account the
(probably under-estimated) 14% uncertainty on the normalisation from previous measurements
given in Eq. 3.7. The normalisation modifiers differ from 1 (the normalisation based on pp
measurements) in PbPb, which is expected in the presence of modifications compared to pp.

A satisfying cross-check from Table 6.2 is that, both in pp and PbPb, the number of Bc

mesons observed in the separate fit on the integrated sample is consistent within uncertainties
with the sum of observed yields from the simultaneous fits of the two pµµµ

T or centrality bins.

The relative uncertainties on the yields from the fit are 5-9% in pp, and 17-31% in PbPb,
depending on the bin. The uncertainties can be measured with the HESSE method or the
MINOS method. The first calculates symmetric uncertainties via the second derivative of the
likelihood at the found minimum (assuming the NLL has a parabolic shape near the minimum).
The second looks numerically for the values of the parameters for which the NLL equals 1, which
are the frontier values of the ±1σ region,1 as explained in section 6.1.1. This method can give

1It is reminded here that this assumes that the Wilkes’ theorem applies, so that the log likelihood-ratio is close
to a χ2 distribution.
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Figure 6.5: Template fit in PbPb for the centrality dependence, integrated over pµµµ

T bins.
Top: candidates with event centrality in 0− 20%. Bottom: centrality in 20− 90%.

——–

Table 6.2: Normalisation modifiers r1 and r2 (i.e. the ratio to the a priori signal normalisa-
tions) and the associated second-step number of observed signal Bc events, in all differential
and integrated fits. The modifiers from the fits in the two different steps (before and after
corrections of the MC p

µµµ

T spectrum) are shown, along with their product which should be
1 if the a-priori MC pT-differential yields are exact. The quoted errors are only the ones
on ri parameters from the second-step fit. The (second-step) correlation factor between the

normalisations of the two bins is also quoted.

rfirst-step
i rsecond-step

i rfirst
i × rsecond

i Nobserved
Bc

correlation
ρ(r1, r2)

pp

6 < p
µµµ

T < 11GeV 0.597 1.238 0.739+0.068
−0.066 403+37

−36
0.10

11 < p
µµµ

T < 35GeV 0.895 1.091 0.977+0.050
−0.049 976+50

−49

integrated 0.798 1.067 0.851+0.041
−0.040 1310+63

−62 −

PbPb

6 < p
µµµ

T < 11GeV 0.839 1.306 1.096+0.352
−0.323 49+16

−15
0.05

11 < p
µµµ

T < 35GeV 0.524 1.140 0.597+0.105
−0.098 74+13

−12

centrality 0-20% 0.695 1.363 0.947+0.192
−0.179 74+15

−14
0.05

centrality 20-90% 0.623 1.125 0.701+0.168
−0.156 55+13

−12

integrated 0.634 1.258 0.797+0.124
−0.118 129+20

−19 −
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asymmetric uncertainties. We observe that the low-side uncertainties are about 10% smaller
than the high-side ones in PbPb, so we keep the asymmetric MINOS uncertainties.

6.3.2 Goodness of fit

The χ2 value of the fit is not given, because it is not a valid goodness-of-fit test in the
context of a likelihood fit with many strongly constrained parameters. Instead, we use a test
statistic t based on the saturated algorithm [202], that is a likelihood ratio test similar to a χ2

but more adapted to non-Gaussian bin contents and to a likelihood with parameter constraints.
500 toy datasets are generated following the post-fit signal plus background distributions (from
the second-step fit), meaning in a given toy, the content of a given bin is drawn from a Poisson
distribution of mean equal to the bin content in the post-fit model. t is measured for each toy
to estimate the test statistic distribution f(t). The value for data t0 is then calculated, and
compared to the distribution to get the p-value

∫∞
t0
f(t) dt. The p-value corresponds to the

probability to obtain a test statistic as bad as in data if the fit model is right. The data value
t0 is compared to the distribution of t in Fig. 6.6 for pp and PbPb. The p-value is very good in
pp (34%) and in PbPb (76%), indicating that the fit model is well-chosen, up to the statistics
available in data.

40 60 80 100 120 140
test statistic

0

5

10

15

20

25

30

35

40

45

nu
m

be
r 

of
 to

ys Entries  500

Mean    96.13

Std Dev     13.56

data value

30 40 50 60 70 80
test statistic

0

5

10

15

20

25

30

nu
m

be
r 

of
 to

ys Entries  500

Mean    55.37

Std Dev     10.42

data value

Figure 6.6: Goodness of fit test in pp (left) and PbPb (right). The p-value (probability to
observe a test statistic worse than the data value if our post-fit model is right) is the fraction
of toys having a larger test statistic than the data value, which is 101 in pp and 48 in PbPb.

——–

In PbPb when the data was partially blinded (see strategy in section 3.4), this test was ran
via fits of the blinded dataset with the true associated (blinded) yields, meaning that the events
in the partially blinded regions were not multiplied by 4 (contrarily to samples used in the rest
of the analysis), and the events in non-blinded regions had their weight divided by 4. If we had
used the blinded sample weighted to seemingly have unblinded yields, the p-value would have
been bad: the likelihood test indeed knows only about the number of events in the bins, whose
fluctuations would have been artificially large because of the use of only a quarter of the data.

6.3.3 Observed significance

Let us now evaluate the significance of the observation in PbPb, from the pµµµ

T -dependent
fit. We plot in Fig. 6.7 the scan of −2∆ lnL (twice the difference of NLL between a point
and the best-fit point) versus the parameters of interest divided by their best-fit value r1/r

best
1

and r2/r
best
2 . For each (r1, r2), the nuisance parameters are profiled again. As explained in

section 6.1.1, ∆NLL = 2∆ lnL is distributed according to a χ2
n distribution with as many
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degrees of freedom n as the parameters left free in the fit (via Wilks’ theorem). This leads to
the values of ∆NLL delimiting the confidence intervals mentioned in that section. The most
relevant boundary values are ∆NLL < 1 for the 1σ uncertainties on single parameters (where
all parameters are profiled, including the other POI), and ∆NLL < 28.7 for the 5σ significance
(where both POIs are considered). The latter is far away from the (r1 = 0, r2 = 0) point in the
PbPb figure, which shows that the observation is > 5σ significant. Assuming the likelihood has
a Gaussian shape that far from the best fit point (which is a consequence of the infinite statistics
hypothesis of the Wilkes’ theorem), the observed significance in PbPb can be calculated from
the value of ∆NLL = 62.3 at the (r1 = 0, r2 = 0) point. The p-value for this ∆NLL is

pobs =

∫ ∞
62.3

χ2
2(λ)dλ = 3.0× 10−14 . (6.3)

The associated z-score with a one-sided p-value is Φ−1(1− p/2) = 7.6σ. This means the obser-
vation of Bc mesons in PbPb collisions is significant at the 7.6σ level.
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Figure 6.7: −2∆ lnL versus the parameters of interest r1 and r2, in pp (left) and PbPb
(right). Only the regions with −2∆ lnL < 28.7 are coloured, which approximately correspond
to a 5σ contour. The limits for the nσ contours are shown on the z-axis legend. The black

cross shows the best fit point.
——–

This value of the significance takes into account only the fit uncertainty. However, I intend
to estimate here the significance of the observation of the Bc yields, not the Bc cross-sections, so
we can neglect other uncertainties if they are mostly of multiplicative nature, like those affecting
luminosity, acceptance, and efficiency. The only other uncertainty that is mainly of additive
nature is the metafit one dealing with the choice of fit method, presented in the next section 6.4.
We use the values of the relative uncertainties σ1,metafit,rel and σ2,metafit,rel in the two pµµµ

T bins in
PbPb, and their correlation factor ρ1−2 from Table 6.4. I define G(r1, r2) as a 2D gaussian centred
at the best fit point and that has these uncertainties and correlation factor.1 This Gaussian has

1A 2D gaussian with a correlation ρ between the two variables is

G(x, y) = exp

(
−1

2

1

1− ρ2

[(
x− x0
σx

)2

+

(
y − y0
σy

)2

− 2ρ (x− x0)(y − y0)

σxσy

])

When evaluating such a gaussian centered on the best fit point, and evaluated at the (x = r1 = 0, y = r2 = 0)
point, we obtain

−2 lnG =
1

1− ρ2

[
1

σ
2
1,metafit,rel

+
1

σ
2
2,metafit,rel

− 2ρ

σ1,metafit,relσ2,metafit,rel

]
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the same structure as the fit likelihood, so that the Wilkes’ theorem can be extended to it and the
−2 lnG(r1, r2) values for multiple repeated experiments is distributed according to a χ2

2 function.
The mentioned metafit uncertainties result in −2 lnG(r1 = 0, r2 = 0) = 340, resulting in p-values
of order F2(340) ' 10−75, absolutely negligible compared to the p-value from the fit only, because
the metafit uncertainty is subdominant.

Therefore, the observation of Bc mesons in PbPb collisions is significant at the
z = 7.6σ level. The associated one-sided gaussian p-value (probability of the observed data
resulting only from a statistical fluctuation of the background) is 1.5× 10−14. The significance
evaluated from the centrality dependence should yield similar values; the integrated fit might
have given somewhat smaller values, due to the removal of the pT binning information.

6.3.4 Toy study for fit uncertainties

When the PbPb dataset was partially blinded, it was important to assess if the unblinding
would affect the fit uncertainties. This initially motivated a study performing the pµµµ

T -dependent
fit on toy datasets, but it also serves after unblinding as a crosscheck of the stability of the
uncertainty and of the potential bias of the fit.

We hence generate 300 toy datasets drawn from second-step post-fit background distribu-
tions, plus the signal distribution where (rtrue1 , rtrue2 ) = (1., 1.). These values assume the second-
step fit gives results close to the first-step one, and give more agnostic results than taking the
post-fit POI values; it also allows to interpret the spreads and uncertainties directly as relative
deviations. These datasets use the statistics of the unblinded data. A full fit is performed on each
toy, and the values of the POIs (r1, r2) and their uncertainties are recorded. Figs. 6.8 and 6.9
show their distributions in pp and PbPb, that represent the POI values one could get by running
another time the same experiment in the same conditions.
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width. rtruei was set to 1.
——–

The means and RMSs printed on these plots provide multiple checks. The distribution of
POIs and uncertainties in the pp toys are useful to check that the fit uncertainties are reliable.
First, the RMSs of the r1 and r2 distributions (printed on the left panels of Figs. 6.8 and 6.9) are
close to the uncertainties on these parameters in the nominal (i.e. using actual data) fit shown
in Table 6.2; the small difference could come from the initial rtruei value being set to 1 instead of
the post-fit value. Second, the means of the r1 and r2 distributions (printed on the left panels)
are very close to the input rtruei values from which the toys were drawn: the relative difference is
0.2-0.9% in pp and 0.9-1.5% in PbPb, i.e. much smaller than the fit uncertainties and possibly
caused by the low statistics of 300 toys. This proves the absence of significant bias in the fit
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——–

convergence. The uncertainties on POIs in the nominal fit (Table 6.2) are also consistent with
the distributions of the r1 and r2 uncertainties of the toys (middle and right panels). Lastly, the
correlation factor of the 2D POIs distribution is 0.10 (-0.03), which is close to the 0.10 (0.05)
shown in Table 6.2 for pp (PbPb) collisions.

In PbPb, the uncertainty we had obtained from the partially blinded dataset was consistent
with the spread of uncertainties from the toys (middle and right panels), which indicated that it
was a good estimate of the unblinded fit uncertainty. Even after unblinding, it is interesting to
interpret the RMS of the signal normalisation uncertainties of the toys as a variability (from 3
to 10% relative to the mean uncertainty) expected on the fit uncertainties that one would obtain
by reproducing the experiment, meaning by re-running the LHC and CMS in similar conditions
giving similar-sized datasets.

6.3.5 Fit checks

Various checks have been performed to check that the fit (and notably the multi-dimensional
likelihood) is well-behaved.

First, the tool ValidateDatacards.py provided by combine has been run on all datacards
and issued no warnings. Then, a fit on an Asimov toy (i.e. a toy that has exactly the content
predicted by the model in each bin, removing any statistical fluctuations) with post-fit back-
grounds, and signal normalisations fixed to 0, gave fitted normalisations r1 and r2 that are all
< 10−3, i.e. very close to 0 compared to our uncertainties. Similarly, fitting an Asimov toy
generated with r1 = 1 and r2 = 1 gives fitted r1 and r2 values exactly equal to 1.

The tool combineTool.py -M FastScan has also been run to scan the shape of the NLL
in each of its many parameters. The goal is mainly to check that the shape is approximately
parabolic around the minimum (or at least convex, meaning the derivative of the NLL versus
each parameter is monotonous) so that the minimisation does not run into a local minimum,
or give pathologic uncertainties (due to incorrect behaviour of the NLL in the minimum±1σ
region). Most parameters have a NLL shape very close to parabolic. Some parameters, mostly
the ones linked to shape morphings, show less conventional shapes, but are always convex around
the minimum. There is one exception in PbPb for the parameter determining if the shape of the
combinatorial J/ψ-µ background is better described by MC or the rotated-J/ψ sample; it shows
a local minimum close to the true minimum, but with a very small barrier to reach the true
minimum. We checked that the nominal fit reaches the correct minimum for this parameter.

The impacts of the nuisance parameters on the parameters of interest have been computed
as well, with the post-fit parameter values. They consist in showing how much the variation of
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a given nuisance parameter within its post-fit uncertainties affects the values of the POIs – in
other words, how much a nuisance parameter contributes to the fit uncertainties on POIs. The
nuisance parameters having the largest impacts on r1 (which has larger uncertainties than r2,
so potentially a more abnormal behaviour) in pp and PbPb are shown in Figs. 6.10 and 6.11.
Many parameters (among the 92 parameters in PbPb, and 136 in pp) have very small impacts
and are not shown; this is especially the case of the parameters implementing the statistical
uncertainties of the templates (whose names start with prop_bin in the figures) in the high-
statistics background-enriched BDT bins.
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Figure 6.10: Impacts of the nuisance parameters on r1 (signal normalisation in the first pµµµ
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bin), in the pp second-step fit.
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In PbPb, the parameters dealing with the statistical uncertainties of background templates
have the largest impacts on POI uncertainties, especially those varying the very low statistics of
background in the signal-enriched BDT bin. In particular, in the centre of the signal mass region,
a modification of the background bin content is very correlated to a significant modification of
the signal fraction. The normalisation of the B → J/ψ X simulation (misID) also contributes
significantly, because it is too small to be well-constrained by the fit in the background-enriched
bins. The shape of the J/ψ sidebands (JpsiSB) and the shape of the combinatorial J/ψ − µ

background (FlipJorMC) have only the 10th and 14th largest impacts, respectively.

In pp, the B decays MC normalisation misID is largely the first contributor, followed by
JpsiSB (2nd largest) and the normalisation of the rotated-J/ψ sample (highMass, 3rd largest).
Parameters implementing the statistical uncertainties of the templates in the signal-enriched
BDT bins have the next largest impacts.
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Figure 6.11: Impacts of the nuisance parameters on r1 (signal normalisation in the first pµµµ

T
bin), in the PbPb second-step fit.
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Some of the nuisance parameters for shape morphings and global background normalisations
are significantly constrained by the fits, as can be seen in the middle column of the figures, which
presents the ratio of the post-fit uncertainties (and values) compared to the pre-fit ones. This is
nevertheless expected, considering the prior lack of knowledge on the backgrounds of this analysis,
that we implemented in the fit procedure by leaving very loose constraints on the background
shapes and normalisations. For example, the muon misidentification in MC (affecting directly
the B decays simulated background) has not been measured in CMS in the conditions of this
analysis. The combinatorial J/ψ-µ background was also never studied before in these conditions.

6.4 Fit method variations

The fit provides uncertainties on the observed signal yields, but these depend on the assump-
tions of the fit model and method. The goal of this section is to vary these assumptions and
run again the full fit on each variation, in order to extract a systematic uncertainty associated
to the choice of the fit method. Multiple variations are presented here, some of which address
difficulties with the fit method that were raised earlier. The post-fit signal yields for each method
are then compared. Some variations are used only to check the fit method, and others are used
to calculate the final systematic uncertainty. The central value of the observed yield is obtained
with the nominal fit method presented until here (this is more stable than an average over some
fit methods, which initially was a considered strategy). The multiple fit methods are run in
both steps of the analysis. In the first step, it is only used for displaying the full uncertainties,
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as the central value used in the pT spectrum fit of section 7.6 comes from the nominal method
only. In the second step, it is used to determine the final fit method systematic uncertainty. The
variations are run in pT bins, in centrality bins, and for the integrated samples.

6.4.1 Mass and BDT binning

A first variation is to remove the first BDT bin (background-enriched) in all channels, to
check that the background parameters still manage to stabilise only using the less-populated
second BDT bin (which is harder due to lower stats). It also checks that the background shapes
in the first BDT bin do not pull the parameters to a significantly different state than without
the data of this bin.

Two other fit variations keep the first BDT bin but vary the limits of the BDT bins, such as
to have approximately [20, 35, 45]% or [30, 45, 25]% of the signal MC sample in the [first, second,
third] BDT bin (from less to more signal-pure, the nominal split being [25, 40, 35]%). This is
particularly important for the first pµµµ

T bin in PbPb, where almost only the third BDT bin
shows significant signal, to control that migrating an event between signal-pure and background-
enriched bins does not modify its counting by the fit.

Two other fit variations use a different trimuon mass binning. In each BDT bin, the nominal
binning is modified for the finer (coarser) binning by adding (removing) two bins in the mass
signal region, and one bin in the high-mass control region; a minimum of one bin is kept in the
control region.

6.4.2 BDT decorrelated from mass

As explained in section 5.7.5, one can decorrelate the BDT value from the trimuon mass,
in order to leave more discriminative power to the mass during the template fit. A corrected
BDT variable is used to distribute events in the BDT bins, so the input templates of the fit are
significantly different. These fits are shown for the second-step in Figs. 6.12, 6.13 and 6.14, for
the pµµµ

T and centrality dependences in pp and PbPb.

The background shapes indeed look different, but the fits are still good. It is reminded
here that only the mean and RMS of the BDT distribution at a given mass are corrected, so,
for example, some high-BDT tails can still be mass-dependent. In addition, only the total
background is made mass-independent in average, not the separate background sources nor the
signal.

Another variation consists in using this corrected BDT variable, but removing the first BDT
bin from the fit input as in section 6.4.1.

6.4.3 Statistical uncertainties on templates, shape regularisation

Some background templates in high-BDT bins have very low statistics, which gives a lot
of leverage in the minimisation to the parameters encoding the statistical uncertainties on the
background content of each mass bin (as is made clear by the impacts of nuisance parameters
shown in section 6.3.5). The role of these parameters is to take into account these low-statistics
bins, but in practice, the large number of parameters and their large correlations can sometimes
give rise to questionable behaviours in the nominal fit. Typically, some background bins with only
a fraction of an expected event can surge to a few expected events to improve the agreement
with a data fluctuation in this bin. This is seen to happen especially when the statistics are
low enough that some background bins are empty but neighbouring bins are not (which is not
expected of the true background for the smooth underlying distributions we are dealing with).

These oddities were quite worrying with partially blinded data, but they do fade with the
smaller data fluctuations of unblinded data. I however check the effect of these parameters on
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Figure 6.12: Template fit in pp, for the pµµµ

T dependence. The candidates are split in three
bins of the mass-decorrelated BDT value. Top: candidates with 6 < p

µµµ

T < 11GeV.
Bottom: candidates with 11 < p

µµµ

T < 50GeV.
——–

the fitted signal yield by removing them in a fit variation, in the lowest-statistics BDT bin (i.e.
in the third bin), or in the second and third BDT bins. When they are removed, the irregular
shapes of the low-statistics backgrounds must be dealt with in another way; I choose to regularise
them via a 3-bin floating average.

An input background shape in a given channel (i.e. BDT and analysis bin) is regularised if
it does not contain any bin with relative error < 30% and if it follows one of these conditions:

• All non-empty bins have a relative error > 50%;

• Or there is a bin that is empty or has > 95% relative error, and there is at least one
non-empty bin at lower mass and one at higher mass.

If a template for a given background in a given channel follows these conditions, it is regu-
larised with a 3-bin floating average. Calling bi the content of bin number i and σi its uncertainty,
b′i and σ

′
i the new bin content and uncertainty, and n the number of mass bins, the regularised

histogram has:

• b′1 = 2b1+b2
3 and σ′1 = max(σ1, σ2)

• b′n =
2bn+bn−1

3 and σ′n = max(σn−1, σn)

• b′i =
bi−1+bi+bi+1

3 and σ′i = max(σi−1, σi, σi+1) for 1 < i < n.

The new uncertainties are not set to the quadratic sum of the old ones because this would assume
the bin contents are independent, which is not the case after the floating average is applied. The
maximum of the old uncertainties on the averaged bins is an upper limit on the new uncertainty
but not a precise estimate. The correlation between bins induced by this procedure implies that
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Figure 6.13: Template fit in PbPb, for the pµµµ

T dependence. The candidates are split in
three bins of the mass-decorrelated BDT value. Top: candidates with 6 < p

µµµ

T < 11GeV.
Bottom: candidates with 11 < p

µµµ

T < 50GeV.
——–

the parameters that were used to take into account independently the statistical uncertainty
on each mass bin cannot be used. Fortunately, the aim of this fit variation is to remove those
uncertainties.

Two variations are set: a fit with regularised shapes where the parameters for statistical
uncertainties in each mass bin are removed (fixed to 0 in practice) for all shapes of the third
BDT bin, and a fit where they are removed for shapes of the second and third BDT bins.
The regularisation indeed mostly happens for shapes in the third BDT bin, so the statistical
uncertainties parameters in the first and/or second BDT bins can be kept.

When varying the shape of a background with a shape morphing parameter, as is explained in
section 6.2, the varied background histogram is normalised to the yield of the nominal background
histogram in each channel, meaning in each BDT bin (and each analysis bin). This is meant to
stabilise the nominal fit, by limiting the correlations between the shape morphing parameters and
the template-statistics parameters (which can modify the integral of a background histogram).
However, if I remove the most sensitive of those template-statistics parameters, I can leave more
freedom to the shape variations, by normalising only their yield integrated over the BDT bins to
the yield of the nominal shape, in each analysis bin.

I thus make two more variations of the fit method, in which the shape variations are
normalised to the nominal shape through yields integrated over BDT bins, and in which the
template-statistics parameters are removed either in the third BDT bin, or in the second and
third BDT bins. When these parameters are removed, the low-statistics shapes need some reg-
ularisation, so I apply as well the 3-bin floating average for these fit variations. This way of
normalising the shape variations gives more freedom to the fit, by giving the shape morphing
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Figure 6.14: Template fit in PbPb, for the centrality dependence. The candidates are split
in three bins of the mass-decorrelated BDT value. Top: candidates with centrality in [0, 20]%.

Bottom: candidates with centrality in [20, 90]%.
——–

parameters a larger impact on the background templates: they can indeed, in this case, change
how the yields of a background are distributed in the BDT bins.

6.4.4 Summary and calculation of systematic uncertainty

The previous sections presented 11 variations of the fit method, which are summed up in
Table 6.3.

Let us now look at how much the post-fit yields vary with the fit method compared to
the nominal yields, for pp, PbPb, and for the ratio of PbPb yields to pp yields (equivalent to
RPbPb, because the additional normalisation factors are not related to the fit method). The latter
allows the uncertainty to partially cancel in the RPbPb thanks to partial correlations between
pp and PbPb. Some of the fit methods are taken only as checks, and the others will enter the
root-mean-square (RMS) calculation of the systematic uncertainty associated to the fit method.

The nominal method presented in sections 6.1 to 6.3 provides the central value and the fit
uncertainty. A strategy with an average over the methods that were judged equivalently good
was tested but not kept in the final strategy.

Fig. 6.15 shows the post-fit yield and associated fit uncertainty, divided by the yield from the
nominal method, for each method variation including the nominal one. It is shown in parallel
for each p

µµµ

T or centrality bin and for the integrated sample, and in pp, PbPb, and for the
ratio of PbPb to pp yields. Similarly, Fig. 6.16 shows the yields for all fit method variations in
p

µµµ

T bins, in pp and PbPb, after correction by the one-binned acceptance×efficiency (explained
in section 7.3) obtained from the signal MC after the first-step (and before the second-step)
p

µµµ

T -spectrum correction (see section 7.6).
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Figure 6.15: Post-fit yield and its uncertainty, divided by the nominal post-fit yield, for all
fit methods. The pp and PbPb yields as well as the PbPb/pp ratio are shown, for both pµµµ

T
bins (top), for both centrality bins (middle, where the integrated pp fit used as denominator
of RPbPb is also shown), and for the fit integrated on analysis bins (bottom). For each bin,
a vertical dotted line at 1 indicates the nominal value. The horizontal lines group similar
variations. The names of all variations are mentioned in the left column. The orange variations
are included in the uncertainty calculation; the others, in violet, are only used as checks.

——–
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Table 6.3: Summary of the 11 fit method variations. See the text for details. The last
column says if this variation is counted in the RMS calculation of the systematic uncertainty

or is only used as a check.

Type Summary Details Check or
Systematic?

Mass binning
coarser

-2 bins in mass signal region
-1 bin in high-mass control region check

finer +2 bins in SR, +1 bin in CR check

BDT binning

wider signal bin [20, 35, 45]% signal efficiencies in the
[1st,2nd,3rd] BDT bins check

thinner signal bin [30, 45, 25]% signal efficiencies check

no BDT bin 1 remove the (background-enriched)
BDT bin 1 from the fit syst.

BDT-mass
decorrelation

decorrelation use a BDT variable decorrelated
from mass syst.

decorrelation
+ no BDT 1 idem + remove BDT bin 1 syst.

Template
statistical

uncertainties

regularisation + no stat.
parameters for BDT3

regularisation of low-stats shapes
+ no stat. parameters in BDT bin 3 syst.

regularisation + no stat.
parameters for BDT2-3

regularisation + no stat.
parameters in BDT bins 2 and 3 syst.

BDT-integrated norm.
+ no stat. parameters for

BDT3

regularisation + no stat.
parameters in BDT bin 3

+ systematic shape variations
normalised with BDT-integrated yields

syst.

BDT-integrated norm.
+ no stat. parameters for

BDT2-3

regularisation + no stat.
parameters in BDT bins 2 and 3
+ systematic shape variations

normalised with BDT-integrated yields

syst.

The variations changing the granularity of the mass binning or the limits of the signal-
enriched BDT bin are only considered as checks of the good behaviour of the fit, because there
are no strong reasons for these to affect the fit convergence. It is checked that in all bins the POIs
r′1 and r′2 from these methods all deviate from the nominal values r1 and r2 by less than 0.4σ

in terms of the fit uncertainties of the nominal and varied POIs. More explicitly, |r′i−ri|√
σ
′2
i +σ

2
i

< 0.4

for each POI of each of these four variations, with asymmetric uncertainties (if r′i < ri, the high
uncertainty is taken for σ′i and the low one for σi, and vice versa). However, the fit uncertainties
are close to fully correlated between the methods

To obtain the relative systematic uncertainty from the fit method, I start by getting the
maximal deviation to the nominal value, separately in each of these three blocks of variations:
the removal of the first BDT bin, the two variations linked to the BDT-mass decorrelation, and
the four variations dealing with the statistical uncertainties of the templates. The variations in
each block are considered very correlated, as they come from a similar source. Then the final
uncertainty is the RMS over the maxima of the n = 3 blocks (hence covering all the 7 variations
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Figure 6.16: Post-fit yields corrected by the one-binned acceptance×efficiency corrections
(after the first-step pµµµ

T correction of the signal MC) as a function of the trimuon pµµµ

T , in pp
(left) and PbPb (right). All fit methods are compared. The markers for each method are

spread on the pµµµ

T axis to avoid superposition.
——–

labelled with ‘syst.’ in Table 6.3). More explicitly, it is:

σsyst,rel =

√∑
n(yi/ynom − 1)2

n

where yi is the post-fit yield of block i that deviates the most from the nominal, and ynom
is the yield from the nominal fit. The denominator is n and not n − 1 because the RMS is
calculated compared to a given method and not to the average of the sampled points. This
uncertainty is symmetrised (i.e. both the up and down uncertainty are taken equal to the RMS).
A similar calculation gives the correlation factor between the two analysis bins (b = 1 or 2) for
this systematic uncertainty:

ρ1−2 =

∑
n(yb=1

i /yb=1
nom − 1)(yb=2

i /yb=2
nom − 1)

nσb=1
syst,relσ

b=2
syst,rel

This correlation can also be seen graphically in Fig. 6.15 when, in multiple methods, the yields
deviate in the same direction for both analysis bins.

The resulting systematic uncertainties and their correlations between the two analysis bins
are shown in Table 6.4.
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Table 6.4: Relative systematic uncertainties from the choice of fit method in all analysis
bins, on pp and PbPb yields, and on the PbPb/pp yield ratio. The correlation factors between

the two pµµµ

T or centrality bins are also quoted.

pp PbPb PbPb/pp

6 < p
µµµ

T < 11GeV 7.5% 12.4% 12.9%

11 < p
µµµ

T < 35GeV 2.7% 5.5% 5.9%

correlation ρ1,2 0.97 0.30 0.57

centrality 0-20% − 6.8% 5.5%

centrality 20-90% − 10.3% 9.4%

correlation ρ1,2 − 0.37 0.42

integrated 2.3% 9.7% 8.2%



“Le premier [principe] était de ne recevoir jamais
aucune chose pour vraie que je ne la connusse

évidemment être telle. [...]
Le dernier [principe était] de faire partout des

dénombrements si entiers et des revues si générales,
que je fusse assuré de ne rien omettre.”

———–

René Descartes, Discours de la méthode,
Deuxième partie, 1637.1

Chapter 7

How much is produced?
Acceptance and efficiency

The observed signal yields in each analysis bin were obtained in the previous chapter. The
next step is to correct these yields by the acceptance and efficiency of the detector to reconstruct
and select trimuons that come from a signal Bc. This will provide the true number of Bc mesons
produced in the pp or PbPb collision, in the trimuon (p

µµµ

T , yµµµ) phase space defined in section 5.6
(the so-called ‘fiducial cuts’ where CMS is able to reconstruct Bc mesons). These corrected yields
will then only need to be scaled by the (equivalent) luminosities (see section 3.5.5) to obtain the
cross sections and nuclear modification factor.

To evaluate the acceptance and efficiency, we mainly rely on the signal Bc MC, whose
production is detailed in section 3.5.2. The core of the calculation of the acceptance α and the
efficiency ε is always:

α =
#accepted

#generated
, ε =

#passing cuts

#accepted
(7.1)

where a generated trimuon comes from a true simulated Bc, an accepted trimuon is a gen-
erated trimuon that has its three muons in the kinematic single-muon acceptance (defined in
section 5.3.2), and a passing trimuon passes all the single-muon reconstruction, identification,
and trigger requirements, as well as the trimuon-specific selection cuts (chapter 5).

Let us consider a true Bc meson of given kinematics (which will be the input of the acceptance
and efficiency maps of section 7.4). The acceptance of this Bc depends only on the kinematics
of its true generated trimuon, which are due to evtgen. It simulates the Bc decay into three
muons and a neutrino; but section 3.5.2 mentions that the trimuon kinematics do not change
significantly (for the precision of this analysis) with different decay models. This gives confidence

1Translation by Ian Johnston: “The first rule was that I would not accept anything as true which I did not
clearly know to be true. [...] And the last was to make my calculations throughout so complete and my examina-
tions so general that I would be confident of not omitting anything.”. The word ‘dénombrements’ translated here
as ‘calculations’ could also be translated as ‘enumerations’ or ‘counts’.
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in the acceptance value for a Bc of given kinematics. On the contrary, the simulated efficiencies
must be checked against data, and corrected with the associated scale factors; this is done in
section 7.1 for single muons with a tag-and-probe technique based on the J/ψ resonance. The
pp scale factors, that I extracted, are more detailed than the PbPb ones, that were extracted for
multiple analyses by a collaborator. The application of these corrections is not straightforward
due to asymmetric cuts on the three muons, and section 7.2 explains the related strategy. These
scale factors correct only for the single-muon efficiencies; the efficiency of the trimuon-specific
cuts is indirectly checked by the background studies in chapter 4 and by the check of the total
BDT distribution in section 5.7.4.

Two correction strategies were initially envisioned. The first (simplest) one is ‘one-binned’:
it directly measures the acceptance and efficiency on the signal MC sample, providing a simple
α × ε number for each analysis bin in pp and PbPb. Section 7.3 treats this method. However,
it relies on the kinematic distributions of the Bc mesons simulated in MC. It is challenging to
check them precisely in the pp signal MC, and they are not simulated in PbPb. And, as the
acceptance and efficiency depend strongly on the kinematics, wrong simulated distributions can
affect a lot the acceptance and efficiency values integrated over an analysis bin. This could in
principle be circumvented by building acceptance and efficiency maps (computed in section 7.4),
and applying event-by-event corrections to each observed trimuon based on these maps. The
method is explained in section 7.5 along with its limitations: the needed background subtraction
is not straightforward, which participates in increasing the statistical uncertainties to a stage
where the PbPb results are unreliable.

I hence turned to a two-steps procedure, that makes the ‘one-binned’ method more reli-
able by roughly correcting the pµµµ

T distribution in the signal MC with a first iteration of our
p

µµµ

T -differential cross-section measurement; this avoids the complications and very large un-
certainties of the event-by-event corrections. Improving the acceptance and efficiency (α × ε)
estimation is the main motivation for correcting the pµµµ

T distribution of signal MC before running
a second-step of the analysis (see the analysis flowchart in Fig. 3.13), but this correction also
improves the BDT and template fit. After the second-step fit and fit method variations, the nom-
inal yield is corrected by a one-binned α× ε from the first-step-corrected MC, and this corrected
yield is used to perform a second-step correction of the pµµµ

T distribution of MC. The resulting
corrected MC is used to estimate the final α × ε correction (that could be called third-step).
Variations of the pµµµ

T distribution correction of MC (within the uncertainties of the second-step
measurement) provide the systematic uncertainty on α× ε. The fitting of the pµµµ

T distribution,
the associated correction of signal MC, and the estimation of the final α× ε and its uncertainty
are explained in section 7.6.

7.1 Tag-and-probe corrections to single-muon MC efficiencies

7.1.1 Tag-and-probe principle

The reliance of the simulated efficiencies of reconstruction, selection, and triggering of physics
objects is key to many data analysis. A perfect description of the detector and how particle
interact with it is impossible in MC. Tag-and-probe (TnP) methods can compensate for these
imperfections, by deriving a data-driven correction of the MC efficiencies.

The TnP method is based on a known decay of mass resonance (J/ψ in this case, but Z
bosons are used for high-pT muons). Among the two particle candidates from this decay (muons
in this case), a tag and a probe are designated, and the efficiency of a particular selection criterion
is evaluated on the probe. In general, the tag needs to pass a tight selection criteria, so that they
very rarely misidentified (� 1%). The probe usually endures a much looser selection criteria.
Probes are selected by pairing them with tags such that the invariant mass of the combination
is consistent with the mass of the studied resonance.
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The invariant mass distribution of the tag-probe pairs is fitted for three cases: ‘all pairs’,‘failed
pairs’ and ‘passing pairs’, according to whether the probe passes or fails the selection criteria
whose efficiency is tested. The J/ψ yields are fitted in each of the three cases and the efficiency
is the ratio of the fitted passing pairs to all pairs. The efficiency is calculated in this way for
various kinematic ranges (pT and η) of the probe as well as in bins of the event activity (pile-up
in pp or centrality in PbPb). The TnP efficiencies in data and MC are compared and their ratios
give the scale factors correcting the MC muon efficiencies.

7.1.2 Overview in pp and PbPb

The scale factors used in this analysis (and extracted in section 7.1.3 for pp) correct the
efficiency of muons identified with the hybrid-soft selection defined in section 5.3.1, which requires
a global muon. These scale factors are used by multiple analyses studying J/ψ mesons in CMS.
The scale factors for the soft muon identification (based on tracker muons) are not calculated in
pp since no analysis plans on using this identification in the pp 5.02TeV 2017 dataset, but they
would be too challenging. However, scale factors for tracker muons (with soft ID) have never
been achieved, which is a main argument against using this identification for one of the three
muons from the Bc decay (see section 5.3.3). This is attempted in a fast study in section 7.1.5,
yielding too large uncertainties for soft ID to be a viable option.

The tight kinematic acceptance cuts of single muons (defined in section 5.3.2) is applied for
the efficiencies of reconstruction, hybrid-soft, and triggering of the muon that are required to fire
the double muon trigger defined in section 3.5.1. The loose kinematic acceptance of muons (cf
section 5.3.2) is used for the reconstruction and hybrid-soft identification of muons that are not
required to fire the trigger.

Section 7.1.3 details the extraction of the TnP scale factors for the MC efficiencies of low-pT

muons with the hybrid-soft identification in pp 2017 data at 5.02TeV. The existing PbPb scale
factors will directly be used, and shortly explained in section 7.1.4.

Each source of muon inefficiency is assumed to be independent, so that the associated effi-
ciencies can be factorised. In general, the inefficiency is separated in two identification steps (the
reconstruction, and the offline selection) and the trigger step, but the classification is in practice
more subtle. Separate scale factors are calculated for each efficiency.

7.1.3 Single-muon scale factors for pp 2017

7.1.3.1 General settings

All results and plots can be found at https://gfalmagn.web.cern.ch/gfalmagn/cms_private/
pp2017_5TeV_Muon_scaleFactors/; only a subset is shown here. A header file containing
the corrections to be applied on the single muon efficiencies in MC, depending on |η| and
pT, is given in https://github.com/gfalmagn/MuonAnalysis-TagAndProbe/blob/92X/test/
results/tnp_weight.h, and usage instructions are in https://twiki.cern.ch/twiki/pub/
CMS/HIMuonTagProbe/TnP_pp_summary_12.07.2019.pdf. These results are planned to be pub-
lished along with other muon performance studies in heavy ions in CMS (including the PbPb
2018 low-pT muon scale factors).1

Factorisation of efficiencies

The total muon efficiency is factorised in three pieces, for which the ‘all probes and ‘passing
probes’ requirements are described in Table 7.1, along with the main parameters of the procedure.
The tag cuts are the same in all cases: a high-quality muon, passing all analysis cuts (acceptance

1Internal reference in CMS: MUO-21-001 for the future paper, and AN-18-316 for the analysis note (https:
//gitlab.cern.ch/tdr/notes/AN-18-316).

https://gfalmagn.web.cern.ch/gfalmagn/cms_private/pp2017_5TeV_Muon_scaleFactors/
https://gfalmagn.web.cern.ch/gfalmagn/cms_private/pp2017_5TeV_Muon_scaleFactors/
https://github.com/gfalmagn/MuonAnalysis-TagAndProbe/blob/92X/test/results/tnp_weight.h
https://github.com/gfalmagn/MuonAnalysis-TagAndProbe/blob/92X/test/results/tnp_weight.h
https://twiki.cern.ch/twiki/pub/CMS/HIMuonTagProbe/TnP_pp_summary_12.07.2019.pdf
https://twiki.cern.ch/twiki/pub/CMS/HIMuonTagProbe/TnP_pp_summary_12.07.2019.pdf
https://gitlab.cern.ch/tdr/notes/AN-18-316
https://gitlab.cern.ch/tdr/notes/AN-18-316
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and muon ID selection), and which is matched to a single muon trigger. Events firing this trigger
are stored in another dataset than with the double muon trigger, ensuring a small overlap – a
few % – between the two samples (the first being used for TnP, the second for the analysis). The
tight single muon trigger requirement also ensures that the tag muon will always be able to help
firing the double muon trigger, along with the probe whose trigger efficiency is tested.

Name Tracking Glb MuID MuIdTrg

Efficiency type
inner-tracking

in. track-standalone matching
global muon reconstruction hybrid-soft ID hybrid-soft ID+trigger

Probe selection
standalone muon

# valid muon stations > 1

tight acceptance

inner track
not from a muon seed

# of meas. tracker layers > 5

dxy < 0.3 cm
tight acceptance

global
loose acceptance

global
hybrid-soft ID

tight acceptance

Passing Probe global global hybrid-soft ID L1DoubleMu0 trigger

SF binning No correction pT in η bins pT in |η| bins pT in |η| bins

Nominal fit
signal PDF
bkg PDF
mass range [GeV]

Triple Gaussian
2nd order polynomial

[2.0,5.0]

Double Gaussian
2nd order polynomial

[2.6,3.5]

CrystalBall+Gaussian
1st order polynomial

[2.6,3.5]

CrystalBall+Gaussian
1st order polynomial

[2.6,3.5]

Table 7.1: Overview of the settings for the separate efficiencies studied in this section.

The factorised efficiency chain for triggering muons features Glb and MuIdTrg, which give re-
spectively the efficiencies for global muon reconstruction (starting from good-quality tracks), and
for the hybrid-soft identification and double muon trigger, all using the tight muon acceptance.
The chain for muons not required to trigger features Glb and MuID, giving respectively the global
reconstruction and hybrid-soft identification efficiencies, both in the loose muon acceptance.

The probe of the first factorised efficiency has to be a reconstructed object in the detector (in
this case, a general track), and this reconstruction has an inefficiency that needs to be checked as
well. That is why a fourth Tracking efficiency, not following the factorisation paradigm, is also
studied. The derived scale factors should be close to 1, as they will cannot be used to correct
data: some inefficiencies would be double-counted.

Data and MC samples

For data, the primary datasets used are /SingleMuon/Run2017G-17Nov2017-v1/AOD and
/SingleMuonTnP/Run2017G-17Nov2017-v1/AOD, using the TnP-specific single-muon triggers. The
first contains all events passing high-pT triggers, whereas the second contains a small fraction of
the events from low-pT single-muon triggers. After processing, the two datasets are combined
(removing duplicates). As for the main dataset (see section 3.5.1), only the parts of the run
where all muon detectors were functional are kept. The centrally produced prompt J/ψ MC
samples (see section 3.5.2) are used.

The following sections (7.1.3.2 to 7.1.3.5) detail the extraction of the four categories of scale
factors of Table 7.1, and section 7.1.3.6 shows a closure test of the procedure in MC.

7.1.3.2 Efficiency of global muon reconstruction

This section calculates the efficiency and scale factor for reconstructing a global muon track
from a general track (i.e. any track in the inner track). The probe inner track is requested
not to be reconstructed starting from a track seed in the muon chambers. To reduce the large
track background, two cuts from the hybrid-soft selection (that proved best to remove this
background) are also applied to the probes (see Table 7.1). These cuts were shown to modify
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the MC efficiencies by less than 0.1% in all bins, which is negligible compared to the final
uncertainties. Finally, the probes need to pass either the tight or the loose muon kinematic
acceptance (defined in section 5.3.2), to be applied respectively to triggering or non-triggering
muons. Only the plots for the tight acceptance are shown for brevity.

The probe is considered to pass if it is also reconstructed as a global muon, and to fail
otherwise. A simultaneous fit of the dimuon (tag-probe) invariant mass around the J/ψ peak
is done in the all/pass/fail categories for data and MC, in different bins of ηprobe and pT, probe.
The signal shape is modelled by a sum of two gaussians of common mean. The background is
described by a second order polynomial. An example of this fit, for the integrated sample, is
shown in Fig. 7.1. The integrated efficiencies for data and MC are 90.6% and 90.0%, respectively.
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Figure 7.1: Dimuon mass fit of the global muon reconstruction efficiencies, integrated over
kinematics, in data (top) and MC (bottom).

——–
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The efficiencies are calculated in η bins, shown in Fig. 7.2. As the dependence is found to be
weak and as the statistical uncertainty start to dominate if the measurement is too differential,
only three bins in |η| are considered ([0, 1.2], [1.2, 1.8], and [1.8, 2.4]), compared to four in the
following sections. The pT dependence is then shown in Fig. 7.3, separately for the three |η| bins.
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Figure 7.2: Global muon reconstruction efficiencies for data and MC, versus pseudorapidity.
The bottom panel shows the ratios of data over MC efficiencies, i.e. the scale factors.

——–
The scale factors (ratio between data and MC efficiencies) are also shown in the lower panel

of these plots. The scale factors from Fig. 7.3, binned in (|η|, pT), will be applied as weights on
the muon efficiency in MC; their deviation from 1 is mostly below 2% for |η| < 1.8 and below
4% for 1.8 < |η| < 2.4.

The systematic uncertainties on these scale factors are based on three variations of the fitting
procedure. The signal shape is changed to a sum of a Gaussian and a Crystal Ball1 of common
mean, or the background shape is changed to a third order polynomial, or the mass range used
in the fit is changed from [2.6, 3.5]GeV to [2.8, 3.4]GeV. Binned scale factors are calculated
separately for these three alternative methods, and compared to the nominal results. Fig. 7.4
shows this comparison.

In a given bin, the statistical uncertainty on a scale factor is a simple error propagation from
the uncertainties on the fit efficiency parameter for data and MC; for a ratio of uncorrelated
quantities, this is the quadratic sum of the relative errors. As the variations from the change
of fit methods are reasonable, the systematic uncertainties on the scale factors are calculated
in each bin as the largest deviation from the nominal result. To be conservative, the largest
deviation is symmetrised (i.e. it gives both the up and down uncertainties).

A possible dependence on pile-up has also been studied. The efficiency as a function of the
number of reconstructed primary vertices is shown in Fig. 7.5, for data and MC. No dependence
is observed.

7.1.3.3 Efficiency of muon identification

The efficiencies and scale factors calculated in this section concern the hybrid-soft selection,
starting from a global muon. The probes need to pass the loose muon kinematic acceptance (see

1A Crystal Ball is a combination of a Gaussian (of parameters the mean and width), and a power law (of
exponent n) below some threshold (α) below the mean. See https://en.wikipedia.org/wiki/Crystal_Ball_
function.

https://en.wikipedia.org/wiki/Crystal_Ball_function
https://en.wikipedia.org/wiki/Crystal_Ball_function
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Figure 7.3: Global muon reconstruction efficiencies for data and MC versus pT, in the three
|η| bins. The bottom panels show the ratios of data over MC efficiencies, i.e. the scale factors.
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section 5.3.2), meaning that the scale factors derived here should be used only for muons that
are not required to fire the trigger, and are selected with this acceptance.

The global muon probe is considered to pass if it satisfies the hybrid-soft ID, and to fail
otherwise. A simultaneous fit of the dimuon invariant mass is performed in the all/pass/fail
categories for data and MC, in different bins of ηprobe and pT, probe. The signal shape is modelled
by a sum of a Crystal Ball and a Gaussian of common mean. The background is described by
a first order polynomial. An example of this fit, for the integrated sample, is shown in Fig. 7.6.
The integrated efficiencies for data and MC are 98.35% and 98.74%, respectively.

The pT dependence is shown in Fig. 7.7, separately in four |η| bins (of limits 0, 1.2, 1.8, 2.1, 2.4).
The η dependence is not shown, for brevity. The scale factors (ratio between data and MC effi-
ciencies) are also shown in the lower panel of these plots. These scale factors binned in (|η|, pT)
are the weights to be applied to the muon efficiencies in MC. Their deviation from 1 is below 1%
in all bins.

To evaluate the systematic uncertainties on these scale factors, three variations of the fitting
procedure are performed. The signal shape is changed to a simple Crystal Ball, or the background
shape is changed to a second order polynomial, or the mass range used in the fit is changed from
[2.6, 3.5]GeV to [2.8, 3.4]GeV. Binned scale factors are calculated for these three methods, and
compared to the nominal results. This comparison is shown in Fig. 7.8.

The statistical uncertainties on scale factors are calculated as for the global muon scale
factors of section 7.1.3.2. As the variations from the change of fit methods are small (always
less than 0.15%), the systematic uncertainties on the scale factors are the symmetrised largest
deviation from the nominal result, as in section 7.1.3.2.
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Figure 7.4: Scale factors and their variations, for the global muon reconstruction efficiency,
versus pT, in the three |η| bins. The nominal result is shown in black, and compared to the
scale factors derived from the alternative methods. The ratios between the nominal and the

varied scale factors are shown in the lower panels.
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Figure 7.5: Global muon reconstruction efficiency as a function of the number of primary
vertices, for data (left) and MC (right).
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7.1.3.4 Efficiency of muon identification and event trigger

This section computes the efficiencies and scale factors for the hybrid-soft ID and the firing of
the HLT_HIL1DoubleMu0 double muon trigger (when another firing muon already exists), starting
from a Global muon. The probes must pass the tight muon kinematic acceptance (section 5.3.2),
so that these scale factors be only for muons that are required to fire the event trigger, and are
selected with this acceptance.



7.1. Tag-and-probe corrections to single-muon MC efficiencies 167

2.6 2.7 2.8 2.9 3 3.1 3.2 3.3 3.4 3.5
)2Tag-Probe Mass (GeV/c

0

20

40

60

80

100

120

140

160

3
10×

 )
2

E
ve

n
ts

 / 
( 

0.
01

 G
eV

/c

Passing Probes

2.6 2.7 2.8 2.9 3 3.1 3.2 3.3 3.4 3.5
)2Tag-Probe Mass (GeV/c

0

500

1000

1500

2000

2500

3000

 )
2

E
ve

n
ts

 / 
( 

0.
01

 G
eV

/c

Failing Probes

2.6 2.7 2.8 2.9 3 3.1 3.2 3.3 3.4 3.5
)2Tag-Probe Mass (GeV/c

0

20

40

60

80

100

120

140

160

3
10×

 )
2

E
ve

n
ts

 / 
( 

0.
01

 G
eV

/c

All Probes

 0.007±alpha =  0.769 

 0.01±cFail = -0.167 

 0.003±cPass = -0.4239 

 0.0004±effBkg =  0.9324 

 0.0001±efficiency =  0.9835 

 0.0006±fSigAll =  0.7524 

 0.00005±mean =  3.09573 

 0.1±n =  3.9 

 1298±numTot =  1684619 

 0.0001±sigma1 =  0.0186 

 0.00010±sigma2 =  0.04143 

 0.004±vFrac =  0.374 

Figure 7.6: Dimuon mass fit of the hybrid-soft identification efficiencies, integrated over
kinematics, in data. The MC fits look similar, except with a very small background.
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Figure 7.7: Hybrid-soft identification efficiency for data and MC, versus pT, in four |η| bins
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Figure 7.8: Scale factors and their variations, for the hybrid-soft identification, versus pT

in the range 2.1 < |η| < 2.4 (the plots for the other |η| bins being very similar). See caption
of Fig. 7.4 for details.
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The probes pass if they satisfy the hybrid-soft ID requirements and fire the studied trigger,
and they fail otherwise. The dimuon mass fit for data and MC are similar to those of sec-
tion 7.1.3.3, including the same signal and background nominal shapes. An example of this fit,
for the integrated sample, is shown in Fig. 7.9. The integrated efficiencies for data and MC are
87.89% and 85.58%, respectively.
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Figure 7.9: Dimuon mass fit of the hybrid-soft identification + double muon trigger efficien-
cies, integrated over kinematics, in data. The MC fits look similar, except with a very small

background.
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The η and pT dependences of the efficiencies are shown in Figs. 7.10 and 7.11, respectively.
The pT dependence is shown in the same four |η| bins than in section 7.1.3.3. The binned scale
factors (ratio between data and MC efficiencies) are also shown in the lower panel of these plots;
they are the weights to be applied to the muon efficiencies in MC. Their deviation from 1 goes
up to 15% at very low pT, but are always below 2% for pT > 4 GeV.
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Figure 7.10: Hybrid-soft identification + trigger efficiencies for data and MC, versus η
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Figure 7.11: Hybrid-soft identification + trigger efficiencies for data and MC versus pT, in
the four |η| bins
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The statistical uncertainties on scale factors are calculated as for the global muon scale
factors of section 7.1.3.2. The procedure to calculate the systematic uncertainties on the scale
factors is also the same as in section 7.1.3.3, using the same three fit method variations. The
comparisons of the latter to the nominal fit are shown in Fig.7.12. As the variations from the
change of fit methods are small (always less than 0.5% except for the lowest and highest pT bins),
the systematic uncertainties on the scale factors are the symmetrised largest deviation from the
nominal result, as in section 7.1.3.2.
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Figure 7.12: Scale factors and their variations, for the hybrid-soft ID + trigger, versus pT

in the last two |η| bins (1.8 < |η| < 2.1 and 2.1 < |η| < 2.4); the scale factors in the first two
|η| bins are smaller and vary less with the fit method variations. See caption of Fig. 7.4 for

details.
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A possible pileup dependence has also been studied. The efficiency as a function of the
number of PVs is shown in Fig. 7.13, for data and MC. No significant dependence is observed.

5 10 15 20 25
tag_nVertices

0.86

0.865

0.87

0.875

0.88

0.885

0.89

Efficiency of TM::true

5 10 15 20 25
tag_nVertices

0.84

0.845

0.85

0.855

0.86

0.865

0.87

Efficiency of TM::true

Figure 7.13: Hybrid-soft ID + trigger efficiency as a function of the number of primary
vertices, for data (left) and MC (right).
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7.1.3.5 Efficiency of inner track reconstruction and global muon matching

This section checks the efficiency of both the inner track reconstruction, and the matching
of a standalone track to an inner track and refitting of the resulting global track (see definitions
in section 3.2.3). The considered probes are standalone tracks in the muon chambers. The
probes must pass the tight kinematic acceptance (section 5.3.2). To reduce the background from
misidentified standalone muons and to stabilise the fit, the standalone track must show in at
least two valid muon stations (see Table 7.1).
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A probe passes if it is also reconstructed as a global muon, and to fail otherwise. In each bin
ηprobe or pT,probe, dimuon (tag-probe) mass fits are performed simultaneously in the all/pass/fail
categories for data and MC. The large pT resolution of standalone muons (hence the large J/ψ
mass width) makes the fit more complicated than in the previous sections, notably because the
J/ψ signal reaches the ψ(2S) mass. The signal shape is modelled by two Gaussians of common
mean around mPDG

J/ψ , plus a third Gaussian whose mean is fixed to mPDG
ψ(2S); the normalization

of the latest is constrained to be 1 to 8% of the double gaussian normalization, around typical
values for the ψ(2S)/J/ψ ratio. The background is described by a second order polynomial.
An example of this fit, for the integrated sample, is shown in Fig. 7.14, in data and MC. The
integrated efficiencies for data and MC are 98.8% and 99.7%, respectively.
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Figure 7.14: Fit of the inner track reconstruction and global muon matching efficiencies,
integrated over kinematics, for data (left) and MC (right).
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The η dependence of the efficiencies is shown in Fig. 7.15. The pT dependence is shown
in Fig. 7.16 (left), integrated on η. Considering the pT resolution of standalone tracks, the pT

dependence should however not be fully trusted.
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Figure 7.15: Inner track reconstruction and global muon matching efficiencies for data and
MC, versus η.
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Figure 7.16: Left : Inner track reconstruction + global muon matching efficiencies for data
and MC, versus pT. Right : Scale factors and their variations, for inner track reconstruction

+ global matching, versus pT. See caption of Fig. 7.4 for details.
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The scale factors (ratio between data and MC efficiencies) are also shown in the lower panel
of Figs. 7.15 and 7.16. These scale factors can deviate up to 1 or 2%, especially in the transition
region. However, one can assume that the inefficiency observed to be wrongly simulated in MC
originates mostly from the matching of the inner track to the standalone track, and from the
global muon refitting; the inefficiency of inner tracking for muons was indeed shown to be smaller
than 0.5% in all η regions, and consistent with simulation, in pp data (see e.g. Ref. [172] for
Run I). This matching and refitting efficiencies are part of the global muon efficiency, whose
scale factors are calculated in section 7.1.3.2 and considered as MC weights in this analyses.
Therefore, the scale factors shown here are only checks, and are not considered in the analyses.

Systematic uncertainties on these scale factors are nevertheless evaluated, via three variations
of the fitting procedure. The signal shape is changed to a sum of a Voigtian function and
a Gaussian (ignoring the ψ(2S) peak), or the background shape is changed to a third order
polynomial, or the mass range used in the fit is changed from [2, 5]GeV to [2.3, 4.7]GeV.
Fig. 7.16 (right) shows the comparison of the scale factors from the nominal or the alternative
fit methods. Only the variation of the background shape gives substantial variations of the scale
factors.

7.1.3.6 Closure test in MC

A closure test is performed, comparing the MC traditional efficiencies with the ones fitted
in the TnP procedure. It checks the validity of the full TnP method, and if the extracted scale
factors can be used as corrections in the standard efficiency measurements.

First, a closure test is performed for the muon ID + trigger efficiencies, comparing:

• The ‘traditional’ efficiency, which starts from the number of global muons in acceptance and
that are in the same event than another muon passing all tag cuts detailed in section 7.1.3.1.
It then measures the fraction of these probe muons that pass the full ID and trigger cuts.

• The ‘TnP’ efficiency, which is extracted from the MuID+Trigger efficiency measurements
from the TnP procedure (of section 7.1.3.4). In practice, each muon from the denominator
of the ‘traditional’ efficiency is filled in a histogram with a weight equal to the TnP efficiency
corresponding to the (pT, η) of this muon. A linear interpolation between the binned TnP
efficiencies is assumed.
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The pseudo-TnP method in the traditional efficiency is needed to calculate a double-muon
trigger efficiency for a single muon. The results are shown for the four studied |η| regions in
Fig.7.17, and shows good closure.
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Figure 7.17: MC closure test for the hybrid-soft ID + trigger efficiency, for the four |η|
regions.
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A similar closure test is performed for the Global muon efficiency, comparing:

• The ‘traditional’ efficiency, which starts from the number of tracks in the muon acceptance,
passing the loose ID cuts mentioned in section 7.1.3.2, matched to a generated muon, and
that are in the same event than a second muon that passes all the tag cuts used in the TnP
method. It then measures what fraction of these tracks are reconstructed as global muons.

• The ‘TnP’ efficiency, which is extracted from the the global muon efficiency measurements
in the TnP framework (from section 7.1.3.2). Each generated muon in the acceptance is
filled in a histogram with a weight equal to the TnP efficiency at the (pT, η) values of this
muon. A linear interpolation between the binned TnP efficiencies is assumed.

The pseudo-TnP method in the traditional efficiency maintains consistency with the muon
ID + trigger closure test. The results are shown for the four studied |η| regions in Fig. 7.18, and
show a good closure.

A closure test for the full efficiency was also performed (multiplying the global muon and
muon ID + trigger histograms separately for the traditional and the TnP method). The resulting
plots are not included for brevity, but show good closure; this also indicates that the efficiencies
are properly factorizing.

7.1.4 Scale factors for the Bc analysis

The pT- and η-dependent scale factors, computed above for pp data, must be applied to each
muon entering any efficiency calculation in the MC.

As a reminder, three types of scale factors are used to correct muon efficiencies of the pp MC
in the Bc analysis. They concern the reconstruction of the global muon (from a track probe), the
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Figure 7.18: MC closure test for the global muon efficiency, for the four |η| regions.
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identification as hybrid-soft (from a global muon), and the firing of the trigger (from a hybrid-soft
probe). (At least) two muons from the Bc trimuon must fire the double-muon trigger and pass
the tight acceptance, and a third muon is not required to trigger, and is hence allowed to be in a
looser acceptance than the two triggering muons (see section 5.3.3). The global (section 7.1.3.2)
and ID (section 7.1.3.3) scale factors, both in the loose acceptance, are hence applied to the
third muon; whereas the global and ID+trigger (section 7.1.3.4) scale factors, both in the tight
acceptance, are applied to the two triggering muons. In section 7.2, I will call ‘loose’ (l) the total
scale factor and efficiency associated to the first case (non-triggering muon), and ‘tight’ (t) the
ones associated to the second case (triggering muons) including the probability of passing the
tight acceptance cuts from the loose acceptance.

In PbPb, no scale factor is used for the reconstruction of a global muon from a track (i.e. the
reconstruction of a standalone muon track and its matching to a track of the inner tracker), but
it was checked to be close to 1 within uncertainties. The scale factors for track reconstruction
(from a standalone muon) and hybrid-soft identification (from a global muon) are used for the
identification in the loose muon acceptance; the associated efficiencies, for the identification of
non-triggering muons, is named l in section 7.2. The official TnP results in PbPb, only calculated
in the tight acceptance, were rerun to extend them to the loose acceptance. Then the scale factors
for the L3Mu0NHitQ10_L2Mu0_MAXdR3p5_M1to5 trigger must be separated for the efficiencies of
its L2 and L3 branches,1 reflecting the asymmetric requirements on the two HLT muons. In
section 7.2, the L2 (+identification) efficiency (and scale factor) is named t as ‘trigger’, and the
L3 (+L2+identification) efficiency is named t′. These two efficiencies also include the probability
to pass the tight acceptance from the loose one.

7.1.5 Tentative soft ID scale factors in PbPb

Section 5.3.3 mentions an alternative strategy for the identification of the three muons, where
one muon is allowed to pass only the soft identification (in an even looser muon acceptance),

1The efficiency of the ∆R < 3.5 and 1 < Mµµ < 5GeV requirements of this trigger is very close to one, so
potential associated scale factors are neglected.
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while the other two muons must fire the trigger and pass hybrid-soft ID. This section presents
the difficulties linked to measuring scale factors for this selection, through tentative estimations
of scale factors for the soft identification in PbPb. I thank Noémie Pilleux, who performed
this study during here internship at LLR, and re-ran the official TnP PbPb scale factors in the
loose acceptance (see section 7.1.4).

Scale factors for the soft identification efficiency in PbPb were never calculated. It is indeed
difficult to deal with the very large background from charged tracks, when counting what fraction
of charged tracks probes are passing the tracker-muon requirement. As a comparison, the charged
track background in a similar setup in pp is manageable, cf section 7.1.3.2.

The strategy for the soft ID scale factors is to factorise the efficiency in two parts:

• The efficiency of tracker muons. The probes are charged tracks with a basic purity selec-
tion (coinciding with the part of the soft identification that concerns the inner track, see
section 5.3.1).

• The efficiency of the soft identification. The probes are here tracker muons.

The efficiencies and scale factors are estimated with the TnP method used previously in this
section. Fig. 7.19 (left) shows the pseudo-rapidity dependence for the tracker muon efficiency,
and Fig. 7.19 (right) shows the pT dependence for the soft ID efficiency, in one of the three
existing bins of absolute pseudo-rapidity.
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Figure 7.19: Left : pseudo-rapidity dependence of tracker muon efficiencies, and the resulting
data/MC scale factors. Right : transverse momentum dependence of soft-ID muon efficiencies

and the resulting scale factors, in the region 1.1 < |η| < 1.8.
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The uncertainties on the tracker muon efficiency were judged too large (> 10%) for this
option to be viable.

7.2 Applying efficiency corrections to trimuons

7.2.1 Applying scale factors on a MC trimuon

The signal efficiency in MC is the ratio of the number of passing trimuons, each corrected
with a scale factor, to the number of accepted trimuons. A scale factor must be attributed to
each trimuon entering the numerator. It should be the ratio of the ‘true’ trimuon efficiency
(from data) to its MC efficiency. The full efficiency of a trimuon can be assumed to factorise in
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the efficiencies for identification and triggering of the three separate muons and in a trimuon-
specific efficiency (corresponding to the preselection cuts of Tables 5.1 and 5.2, excluding the
muon identification). No scale factor is calculated for the latter, because that would necessitate
Bc probes in data.

On the other hand, scale factors are available for the single-muon efficiencies. When the
single-muon requirements are symmetric, i.e. the same cuts of efficiency εµ (and associated scale
factor S(µ)) are applied on each of the three muons, the single-muon part of the trimuon efficiency
is εµ(µ1)εµ(µ2)εµ(µ3). The factorisation of the efficiencies of the three muons is justified by the
relatively low-pT of the trimuons of this analysis, so that the muons are not too collimated (see
the plots of the ∆R between all muon pairs of trimuon candidates in Figs. 5.13 and 5.14) and
rarely overlap in the detector, allowing for independent reconstruction of each muon. In this
simple case, the scale factor to be applied is plainly S(µ1)S(µ2)S(µ3). I clarify that, here and in
the following, εc(µi) ≡ ci and Sc(µi) ≡ Sci are the efficiency and associated scale factor of cuts c,
for a typical muon having the kinematics (pT, η) of µi, extracted from the TnP procedure.

7.2.2 Scale factors for trimuons with asymmetric muon cuts

7.2.2.1 General procedure for Bc trimuons

However, our requirements on the three muons are asymmetric: only two muons out of three
need to trigger, and in PbPb one muon needs to fire a tighter trigger branch than the second
muon. These telescopic efficiencies were named earlier l (identification), t (identification + (L2)
trigger) and t′ (identification + (L2+L3) trigger)1; in pp the double muon trigger is symmetric
so t = t′. The efficiency of such a triplet requirement is not the simple product of the three
muon efficiencies l(µ1)t(µ2)t′(µ3) ≡ l1t2t

′
3, and the scale factor is not Sl1S

t
2S

t
′

3 . How would one
choose on which muon the scale factor for loose efficiency is applied? An intuitive solution would
be to take the trimuon scale factor as the average of the cases where the different scale factors
are applied in turn to each muon:

(Sl1S
t
2S

t
′

3 + Sl1S
t
3S

t
′

2 + Sl2S
t
1S

t
′

3 + Sl2S
t
3S

t
′

1 + Sl3S
t
2S

t
′

1 + Sl3S
t
1S

t
′

2 )/6 (7.2)

One could think as well of selectively applying the scale factors for the tight efficiency t only to
muons that pass the trigger, and for the efficiency t′ only to muons passing the L3 trigger. For
example, if µ1 does not pass the trigger, one would correct it with the scale factor (Sl1S

t
2S

t
′

3 +

Sl1S
t
3S

t
′

2 )/2. The two intuitive ideas above are nevertheless wrong because the scale factor must
be the ratio of efficiencies of a typical trimuon whose muons have the same kinematics than the
trimuon to be corrected (without considering the cuts passed by the particular trimuon to be
corrected). Eq. 7.2 is already wrong, for two reasons. First, the trimuon scale factor should
be the ratio of data and MC trimuon efficiencies, not a linear combination of single-muon scale
factors. Then the full trimuon efficiency is not the simple average of litjt

′
k for all (i, j, k) muon

permutations: binomial probabilities need to be taken into account. Sections 7.2.2.2 to 7.2.2.4
will show that the actual efficiency whose data/MC ratio must be considered is:

t′1t
′
2t
′
3 +

{
t′1
[
(l2 − l2)t3 + (t2 − t′2)l3

]
+ perm(1, 2, 3→ 2, 3, 1) + perm(1, 2, 3→ 3, 1, 2)

}
(7.3)

where the first term of the curly brackets is repeated three times with each possible rotation of
the (1, 2, 3) indices.

The signal efficiency from MC is the number of (accepted) trimuon candidates passing the
cuts and weighted by a scale factor, divided by the number of accepted trimuons. Three methods

1When a muon does not pass the tight acceptance, then we set t = t
′

= 0 (this is equivalent to saying that t
and t′ are the efficiencies of triggering and being in the tight acceptance).



7.2. Applying efficiency corrections to trimuons 177

are tested for this trimuon scale factor. The first one (blue in Fig. 7.20), that is correct, is

εdatatrimu

εMC
trimu

=
εtrimu(L× Sl, T × St, T ′ × St

′
)

εtrimu(L, T, T ′)
(7.4)

where the capital letters designate the MC efficiencies (whereas the lower case efficiencies are
the [true] data ones), and the trimuon efficiency is that of Eq. 7.3. One practical consequence
is that the data and MC efficiencies themselves, and not only their ratio, must be stored in the
output of the TnP procedure. The second method (red in Fig. 7.20) is based on the previous
one, but selectively applies the single-muon efficiencies in the full trimuon efficiency, e.g. I set
t′1 = T ′1 = 0 if µ1 does not pass L3 or t2 = T2 = 0 if µ2 does not trigger. The third method (green
in Fig. 7.20) expands on the latter, but using the averaged scale factor of Eq. 7.2 – this was at
some point the wrongly recommended method for J/ψ dimuons with asymmetric double-muon
trigger.

The distribution of trimuon scale factors (from preselected candidates of the second-step-
corrected MC) is drawn for these three methods in Fig. 7.20. The mean applied scale factor
for the nominal method in pp or PbPb is 0.964 or 1.028, respectively; the difference of this
mean with the simplistic method is 1% in pp (6% in PbPb), i.e. of the order of the scale factor
correction itself.
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Figure 7.20: Scale factors applied to signal MC trimuons in the signal efficiency estimation,
in pp (left) and PbPb (right). Three methods for calculating the trimuon scale factors are com-
pared (see text for details). The blue distribution is from the correct method (Eqs. 7.3 and 7.4)

and is taken as nominal.
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The maps of the acceptance times efficiency of the signal are shown in section 7.4. The
efficiency map is affected by the scale factors shown previously. The ratio of the nominal effi-
ciency map to the one without scale factors, or to the one with the two alternative scale factor
calculations, are shown for pp and PbPb in Fig. 7.21.

The single-muon TnP scale factors are attributed uncertainties, depending on the muon pT

and η. The efficiency measurements must be run four additional times, using the up and down
values of the statistical or systematic uncertainties on the scale factors. These uncertainties are
symmetrised (the mean of the up and down deviations from the nominal efficiency is taken). The
uncertainty is the quadratic sum of the statistical and systematic deviations of the efficiencies,
from each of the three separate scale factors. This is quoted as the tag-and-probe systematic
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Figure 7.21: Ratio of the nominal pp (top) or PbPb (bottom) trimuon efficiency map to the
maps using alternative trimuon scale factor methods. The black lines are the fiducial cuts
chosen in section 5.6. Left: no scale factor is applied. Middle: in the scale factor of Eq. 7.4,
non-zero efficiencies are used only with muons that pass the associated cuts. Right: idem,

but using the scale factor from Eq. 7.2.
——–

uncertainty in section 8.1. A 80% correlation between the two pT bins is assumed because there
is a large overlap between the kinematics of the single muons for the two pµµµ

T bins.1

This way to apply the TnP scale factor uncertainties on the efficiency is the one recommended
by the group, but it is clearly overestimated: it considers that the scale factor errors are 100%
correlated along all kinematic bins. It could be true for the systematic errors, but is wrong
for the statistical errors. I am convinced that toys should be in principle used to apply these
uncertainties, calculating many efficiency values, each using random variations of the scale factors
within their uncertainties. However, the TnP uncertainty is among the smallest contributions to
the full uncertainty (see chapter 8), so this can be overlooked.

Sections 7.2.2.2 to 7.2.2.4 calculate exactly the trimuon efficiency and scale factor as a func-
tion of the various single-muon efficiencies (of Eq. 7.3), from the simpler case of the asymmetric
dimuon trigger in PbPb (a case useful for all J/ψ analyses in PbPb, using mostly this trigger)
to the full case of the trimuon efficiency with three different efficiencies on each muon. The effi-
ciencies can be computed using explicit decision trees or using the inclusion–exclusion principle,
yielding identical results.

7.2.2.2 Case of asymmetric PbPb dimuon trigger

Decision trees

What scale factor should be applied to a dimuon in which two muons must fire an asymmetric
1It might be possible to calculate it, but it would be quite sophisticated, hence not judged necessary considering

the uncertainty is subdominant.
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trigger, one muon firing an L2 branch (efficiency ti on muon i) and the other firing an L3 branch
(efficiency t′i < ti), given that firing the L3 branch implies firing the L2 one? Fig. 7.22 draws a
decision tree with probabilities t′1, t1− t′1 (the probability of triggering L2 but not L3) and 1− t1
(probability of not triggering at all) in the first layer, and t′2, t2 − t′2 and 1 − t2 in the second
layer. At each node (i.e. a decision for one of the muons), the probabilities sum to 1.

µ1 ?

t′1

t1 − t′1

1− t1

µ2 ?
t′2 3

t2 − t′2 3

1− t2 7

t′2 3

t2 − t′2 7

1− t2 7

7

Figure 7.22: Decision tree for the calculation of the efficiency of a dimuon with asymmetric
requirements on its two muons, representative of the PbPb trigger case. The paths leading to

the dimuon passing the cuts are green, others are red.
——–

The full probability for a dimuon to pass the asymmetric cuts is the sum of the green paths of
Fig. 7.22, where the probabilities of the first and second muon decisions are multiplied (because
the reconstruction of the two muons are assumed independent, see section 7.1 for a justification).
The dimuon efficiency is hence

t′1t2 + (t1 − t′1)t′2 = t′1t
′
2

(
t1
t′1

+
t2
t′2
− 1

)
(7.5)

The scale factor is the above efficiency for data, divided by the same expression for MC (see
Eq. 7.4). With the notations of section 7.2.2, the full scale factor is hence:

SF = St
′

1 S
t
′

2

t1
t
′
1

+ t2
t
′
2
− 1

T1
T
′
1

+ T2
T
′
2
− 1

(7.6)

Next, I calculate an order of magnitude of the ratio of this scale factor to the intuitive – but
false – one that was advised until now for J/ψ analyses with the PbPb trigger. The latter is the
average over applying the attributing the L3 scale factor to one muon and the L2 to the other
one, and vice versa: 1

2(St1S
t
′

2 + St
′

1 S
t
2). With the rough approximation of equal efficiency ratios

t/t′ and T/T ′ for both muons, I get:

SFfull
SFsimple

=

t1
t
′
1

+ t2
t
′
2
− 1

T1
T
′
1

+ T2
T
′
2
− 1

2

S
t
1

S
t
′

1

+ S
t
2

S
t
′

2

∼ 1− 1
2
t
′

t

1− 1
2
T
′

T

(7.7)

From there, concrete values of scale factors are needed to quantitatively estimate the difference
between methods – this is done in Fig. 7.21.

Doing however the same exercise directly with the efficiencies (with the same assumption
that both muons behave the same way), the ratio between the full method and a simple average
of the efficiencies applied in turn to each muon ((t1t

′
2 + t′1t2)/2) is more dramatic. It is of order

2− t
′

t , which tends to 2 when t′ << t!
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Inclusion–exclusion principle

The same results can be obtained using the simple inclusion–exclusion principle. I thank
François Arleo for this crosscheck of the decision tree formulae (including in the two following
sections). Define the two events:

• A = µ1L2 ∩ µ2L3

• B = µ1L3 ∩ µ2L2

where the notation µiLk means that the muon µi fires the Lk. The wanted probability is that of
A or B occurring, P (A ∪B), given by

P (A ∪B) = P (A) + P (B)− P (A ∩B) . (7.8)

Since µ1 and µ2 are independent, P (A) = P (µ1L2)P (µ2L3) = t1t
′
2 and similarly for B, so:

P (A ∪B) = t1t
′
2 + t′1t2 − P (A ∩B) . (7.9)

Let us compute P (A ∩B), knowing that events on µ1 or µ2 are independent:

P (A ∩B) = P (µ1L2 ∩ µ2L3 ∩ µ1L3 ∩ µ2L2)

= P (µ1L2 ∩ µ1L3)× P (µ2L2 ∩ µ2L3) . (7.10)

Using P (µ1L2 ∩ µ1L3) = P (µ1L3) = t′1 (since L3 ⊂ L2), and idem for µ2, and Eq. 7.10, one gets

P (A ∪B) = t1t
′
2 + t′1t2 − t′1t′2 , (7.11)

which is indeed Eq. 7.5.

7.2.2.3 Symmetric dimuon trigger plus a third muon (pp case)

Decision trees

A similar efficiency calculation can be performed for the pp case, where the double muon
trigger is symmetric (efficiency t, including identification), but one of the three muons is not
required to fire it (efficiency of the identification l > t). Passing the t efficiency requirements
implies passing the l efficiency.

Fig. 7.23 draws a decision tree with probabilities t1, l1 − t1 (the efficiency of passing the
loose efficiency, but not the trigger) and 1− l1 (the probability of not passing the loose cuts) in
the first layer, and t2, l2− t2 and 1− l2 in the second layer. At each node, the probabilities sum
to 1.

The full probability for a trimuon to pass these asymmetric cuts is the sum of the green paths
of Fig. 7.23, where the probabilities of the first, second, and third muon decisions are multiplied.
The trimuon efficiency in this case is hence

t1t2t3 + t1t2(l3 − t3) + t1t3(l2 − t2) + t2t3(l1 − t1) = t1t2t3 (l1/t1 + l2/t2 + l3/t3 − 2) (7.12)

Now, let us calculate the scale factor to be applied to this trimuon, with the notations of
section 7.2.2 (capital and small letters for MC and data efficiencies, respectively). The scale
factor is the trimuon efficiency of Eq. 7.12 for data, divided by that in MC:

SF = St1S
t
2S

t
3

l1
t1

+ l2
t2

+ l3
t3
− 2

L1
T1

+ L2
T2

+ L3
T3
− 2

(7.13)
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µ1 ?

t1

l1 − t1

1− l1

µ2 ?
t2

l2 − t2
1− l2

µ3 ? t3 3
l3 − t3 3
1− l3 7
t3 3
l3 − t3 7
1− l3 7

7

7

7

t2

l2 − t2
1− l2

7

t3 3
l3 − t3 7
1− l3 7

Figure 7.23: Decision tree for the calculation of the efficiency of a trimuon with one muon
having a different efficiency (l) than the other two (t), representative of the pp case. The

paths leading to a trimuon passing the cuts are green, others are red.
——–

or, introducing the scale factor for loose cuts:

SF =

L1
T1
Sl1S

t
2S

t
3 + L2

T2
St1S

l
2S

t
3 + L3

T3
St1S

t
2S

l
3 − 2St1S

t
2S

t
3

L1
T1

+ L2
T2

+ L3
T3
− 2

(7.14)

In practice the explicit SF formula above in not used: the scale factor is the ratio of the trimuon
efficiencies from Eq. 7.12 calculated separately in data and MC (see Eq. 7.4).

As for the PbPb dimuon trigger case, let us compare this exact scale factor to the simple
average over applying the different efficiencies to each of the three muons in turn (as in Eq. 7.2).
Considering (for a rough estimate) similar efficiencies for each muon, this ratio is

SFfull
SFsimple

∼
2
3(l − t)
l − 2

3 t
=

1− t
l

3
2 − t

l

t�l∼ 2

3
(7.15)

For a quantitative estimate, actual values of the efficiencies and scale factors are needed. Fig. 7.20
(left) compares the exact method with the simplistic method in pp, and the difference in the
mean applied scale factor is about 4% in the pp case, and the exact method shows lower scale
factors than the simplistic one as predicted by the analytical approximation of Eq. 7.15.

Inclusion–exclusion principle

Define the three events:

• A = µ1L1 ∩ µ2L1 ∩ µ3L0

• B = µ1L1 ∩ µ2L0 ∩ µ3L1

• C = µ1L0 ∩ µ2L1 ∩ µ3L1

Here, µkL1 means µk fired the trigger and passed ID cuts (probability tk), and µkL0 means µk

passed the loose efficiency (ID cuts, probability lk). As before, the probability that one of these
events occurs, P (A ∪B ∪ C), is needed:

P (A ∪B ∪ C) = P (A) + P (B) + P (C)− P (A ∩B)− P (B ∩ C)− P (A ∩ C) + P (A ∩B ∩ C)

= t1t2l3 + t1l2t3 + l1t2t3 − P (A ∩B)− P (B ∩ C)− P (A ∩ C) + P (A ∩B ∩ C) .
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In addition,

P (A ∩B) = P (µ1L1)× P (µ2L0 ∩ µ2L1)× P (µ3L0 ∩ µ3L1) = t1t2t3 ,

where P (µ2L0 ∩ µ2L1) = P (µ2L1) = t2 (and idem for µ3) since L1 ⊂ L0, and events concerning
different muons are independent. Similarly, P (B ∩ C) = P (A ∩ C) = t1t2t3. Since one has in
addition P (A ∩B ∩ C) = P (µ1L1 ∩ µ2L1 ∩ µ3L1) = t1t2t3, this leads to

P (A ∪B ∪ C) = t1t2l3 + t1l2t3 + l1t2t3 − 2t1t2t3 , (7.16)

which is the same as Eq. (7.12).

7.2.2.4 Full PbPb case

Decision trees

Let us now make the full calculation where the two above cases combine in PbPb. The
decision tree displays for each of the three layers (i.e. for each muon) the probabilities t′i (L3
trigger), ti− t′i (L2 trigger but not L3), li− ti (pass ID but not trigger), 1− li (does not pass ID),
of sum 1. It is more cumbersome to draw, but the method is the same as for the two simpler
cases above. The resulting probability for having at least three identified muons, among which
two are triggering, including one muon triggering L3, is expressed via rotations of the 1, 2, 3
indices as:

t′1t
′
2t
′
3 +

[
t′1
[
(l2 − l2)t3 + (t2 − t′2)l3

]
+ perm(1, 2, 3→ 2, 3, 1) + perm(1, 2, 3→ 3, 1, 2)

]
=

t′1t
′
2t
′
3 +

[
l1
[
t′2(t3 − t′3) + t2t

′
3

]
− t′1t2t3 + perm(1, 2, 3→ 2, 3, 1) + perm(1, 2, 3→ 3, 1, 2)

]
(7.17)

One can understand this probability as expressed in the first line through the combination of
different paths of the decision tree. The first term with three t′ is the case where all muons
trigger the L3. The next term, which considers the case where µ1 triggers L3, is repeated three
times with rotations of the concerned muons. It is the addition of the following cases:

• if µ2 passes ID but not trigger (efficiency (l2−t2)), then µ3 must trigger (L2 or L3, efficiency
t3);

• and if µ2 triggers L2 but not L3, the µ3 only needs to be identified but might trigger
(efficiency l3).

Let us check the consistency with the other rotations of indices:

• µ2 cannot fire L3 in this term, because this case is covered by the (2, 3, 1) rotation, where
t′2 is in factor;

• The case where µ3 triggers L3 is not redundant with the permutation (3, 1, 2) where t′3 is in
factor: in this term µ1 never triggers L3 (only efficiencies (l1− t1) and (t1− t′1) will show).

The only sound way of checking the difference between this exact method and the simplistic
method is to test them with the actual scale factors values. This is shown in Fig. 7.20, and the
difference in the mean applied scale factor is about 6% in the PbPb case.

Inclusion–exclusion principle

Define the 6 events:

• A` = µiL0 ∩ µjL2 ∩ µkL3

where ` = 1 . . . 6 stands for the permutation of indices. As before, one defines the probabilities
lk = P (µkL0), tk = P (µkL2), t′k = P (µkL3) and one has L3 ⊂ L2 ⊂ L0.
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We want to compute the probability that (at least) one of these events occurs, namely
P (∪`A`), given by the inclusion–exclusion principle [203]:

P (∪`A`) =
6∑

m=1

(−1)m+1 Sm (7.18)

where Sm is the sum, over all collections of precisely m events, of the probabilities that all these
m events occur (for each m, there are

(
6
m

)
permutations), i.e.

S1 =
6∑

m=1

P (Am)

S2 = P (A1 ∩A2) + P (A1 ∩A3) + · · ·+ P (A5 ∩A6)

S3 = P (A1 ∩A2 ∩A3) + P (A1 ∩A2 ∩A4) + · · ·+ P (A4 ∩A5 ∩A6)

. . . = . . .

S6 = P (A1 ∩A2 ∩A3 ∩A4 ∩A5 ∩A6)

It can be shown that
S1 = {ltt′}
S2 = {lt′t′}+ {ttt′}+ 3 {tt′t′}
S3 = 4 {tt′t′}+ 8 {t′t′t′}
S4 = {tt′t′}+ 12 {t′t′t′}
S5 = 6 {t′t′t′}
S6 = {t′t′t′}

where {. . . } refers to all permutations (1, 2, 3). Summing all the contributions according to
(7.18), one obtains in the end

P (∪`A`) = {ltt′} − {lt′t′} − {ttt′}+ {t′t′t′} , (7.19)

or in a less compact way,

P (∪`A`) = l1t2t
′
3 + l1t3t

′
2 + l2t1t

′
3 + l2t3t

′
1 + l3t1t

′
2 + l3t2t

′
1

−l1t′2t′3 − l2t′1t′3 − l3t′1t′2
−t1t2t′3 − t1t3t′2 − t2t3t′1
+t′1t

′
2t
′
3 .

This is equivalent to Eq. (7.17).

7.2.2.5 Check of the application of asymmetric SF with toys

One would like to confirm with a closure check on the signal MC that the procedure to apply
the scale factors when the muon cuts are asymmetric is correct. Toy efficiency functions for data
and MC are considered, for three telescopic cuts as in the full PbPb case. The goal is to start
from these muon efficiencies, known both in data and MC, to then correct the MC with the
procedure of section 7.2.2.1, and finally, to check that the trimuon efficiency resulting from the
corrected MC is exactly equal to the trimuon efficiency from data. I thank Pedro Gonzalez
and Lizardo Valencia Palomo from Sonora University for their help on performing this test.

The considered muon efficiency functions are inspired from the fit of the pp efficiencies for
global muon identification (named l here), hybrid-soft ID (whose product with l is named t),
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and trigger (whose product with t is named t′). They depend both on the muon pT and η. The
notations imply that l < t < t′. To have a larger data/MC discrepancy to test, 0.2× (1− t′) is
added to the MC efficiency t′, and the data efficiency l is multiplied by 2

π arctan(pT[GeV]/0.5).

We start, as for the standard efficiency measurement, by looping over the accepted trimuons
in the signal MC sample (the pp sample is used, but it does not matter as the muon efficiencies
are artificially inputted). We then throw three random numbers u1, u2, and u3 between 0 and 1,
associated to the three muons. The muon i passes the efficiency ε if ui < ε(pT(µi), η(µi)). This
test is applied to the three muons, and for the three efficiencies, which emulates an actual event,
where the interaction with the detector settles which muon passes what cuts. We now apply the
trimuon cut as in the nominal procedure for the full PbPb case: the trimuon passes the cuts if
all muons pass l, if at least two muons pass t, and if at least one muon passes t′ (if this test is
satisfactory, then it validates as well the simpler procedures in pp or with PbPb dimuons). If
the trimuon passes the cuts, it is filled in the selected events histogram.

The efficiency is then the ratio of the selected events over the accepted ones. To increase the
statistics, we run 100 times the random number generation, each leading to a trimuon cut test
and the filling of the selected histogram; then this histogram is divided by 100.

This procedure is ran twice: once with the data muon efficiency functions (giving the true
trimuon efficiency that we would like to reach), and once with the MC muon efficiency functions.
In the latter case, the selected histogram is filled with a weight equal to the scale factor defined in
Eq. 7.4, except that we replace SF × εMC in the numerator by the corresponding data efficiency
(which assumes that the extracted single muon scale factors are exact). We then compare
the trimuon efficiency from data muon efficiency functions, to the trimuon efficiency from MC
functions corrected with the asymmetric scale factors.

Fig. 7.24 shows the outcome of this toy procedure. The method closes very well: from a
trimuon efficiency showing data/MC differences of order 100% (bottom right panel), we obtain a
difference between data and the corrected MC significantly smaller than 1% (bottom left plot).
This confirms in an independent way that applying the scale factors as explained in section 7.2.2.1
is correct.

7.3 One-binned acceptance and efficiency corrections

From the number of observed signal trimuons obtained with the template fit, to the corrected
yield, a correction by the acceptance and efficiency defined in Eq. 7.1 is needed. The corrected
yield is the actual number of Bc mesons produced and leaving the QGP; dividing it by the
(equivalent) luminosity (see sections 3.5.1 and 3.5.5.2) results in the final cross section.

We evaluate the acceptance with a signal MC where no cut is applied on the generated Bc

mesons, but the detector reconstruction can be skipped (see Table 3.1). The efficiency can be
measured with an MC where events with muons out of the loose acceptance are cut off.

The one-binned method to measure the acceptance and efficiency correction is the most
straightforward. For the efficiency, in a given analysis bin (i.e. one of the two pµµµ

T or centrality
bins or integrated on the studied phase space), the passing trimuons (corrected by the scale
factor of section 7.2.2.1) are counted and divided by the number of accepted muons. Similarly,
for the acceptance, all accepted trimuons in this bin are counted and divided by the number of
generated trimuons. The values of the acceptance, efficiency, and their product, are given for pp
and PbPb in Table 7.2 of section 7.6.5, where they are compared to the values obtained after the
first-step or second-step pµµµ

T -spectrum corrections of the MC. The acceptance only depends on
the kinematics of the muon daughters of a generated Bc, meaning that in the first step it does
not depend on the detector conditions (pp or PbPb); it will however differ for pp and PbPb in
the second and third steps, due to different corrections of the pµµµ

T spectrum of MC.
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Figure 7.24: Closure test with toy muon efficiency functions, to check the application of
scale factors when the muon cuts are asymmetric. Top: trimuon efficiency from data (left)
and uncorrected MC (right), verus pµµµ

T . Bottom right : ratio of the uncorrected MC to the
data efficiencies, i.e. the trimuon scale factor. Bottom left : ratio of the corrected MC to the

data efficiencies, satisfyingly close to 1.
——–

Calling k the kinematic variables on which the acceptance and efficiency depend, and f(k)
the distribution of the generated Bc mesons in these variables, and bin i a given analysis bin,
then the correction is the inverse of:

(αε)bin i =

∫
bin i dk f(k)αε(k)∫

bin i dk f(k)
(7.20)

The issue with the one-binned method is that the bin correction depends strongly on the simu-
lated signal kinematics f(k).

The bcvegpy2.2 simulation of the Bc production is the most complete one existing nowa-
days (see section 3.5.2.1), but even if it was exactly correct in pp (which can actually be checked
by this measurement, within our uncertainties) it does not intend to describe the PbPb mecha-
nisms. Therefore, one might have reasonable confidence in the Bc kinematic distributions in pp,
but not in PbPb.

To illustrate the effect of possibly wrong distributions in the signal MC on the correction
in PbPb, the pµµµ

T distribution of the signal MC is biased, and the acceptance and efficiency
calculation is rerun. A 1

p
N
T

weight is attributed to all signal trimuons in MC. Fig. 7.25 then
shows the ratio of the nominal α× ε to the correction using the MC samples biased with varied
values of N . An assumed ratio of 2 between the two pµµµ

T bins of the RPbPb corresponds to an
exponent N = 1.1 in the power law biasing, and results in a 15% change in the acceptance times
efficiency values in both pT bins. If this ratio is 3 (exponent N = 1.7) the acceptance times
efficiency is modified by about 20%.



186 Chapter 7. How much is produced? Acceptance and efficiency

3− 2− 1− 0 1 2 3

N

0.6

0.8

1

1.2

1.4

1.6

1.8

2

W
ei

gh
te

d 
A

xE
/N

om
in

al

3− 2− 1− 0 1 2 3

N

0.6

0.8

1

1.2

1.4

1.6

1.8

2

W
ei

gh
te

d 
A

xE
/N

om
in

al

Figure 7.25: PbPb acceptance times efficiency with a 1

(p
µµµ

T )
N biasing of the signal MC,

divided by the nominal one, as a function of N . Left: first pT bin. Right: second pT bin.
——–

The MC kinematics can therefore strongly impact the acceptance times efficiency corrections.
The first idea to circumvent this was to apply event-by-event corrections, that take for each data
trimuon the acceptance and efficiency value from a MC map read at the kinematics of this data
trimuon. The maps are shown in section 7.4 and the event-by-event method in section 7.5. This
method however increases too much the statistical uncertainties, and the solution is detailed
in section 7.6: the two-steps method based on this simple one-binned correction method. The
principle is to use a first estimate of the pµµµ

T -dependent cross sections to roughly correct the
p

µµµ

T distribution of MC, and to subsequently re-run the analysis (including the acceptance and
efficiency correction) with the corrected MC. The final acceptance and efficiency is calculated
from a MC that is corrected one more time, by the second-step measurements.

7.4 Acceptance and efficiency maps

To be independent of the signal MC kinematics, one would like to use the exact kinematics
of data, by correcting each data candidate by the acceptance and efficiency corresponding to the
kinematics of this given candidate. To that end, and to understand better how the correction
depends on the kinematics, maps of the acceptance times efficiency versus the trimuon kinematics
are built. They are shown in Figs. 7.26 and 7.27, and were calculated exactly as the one-binned
corrections in the previous section, except in much finer bins. The black lines show the phase
space and bins in which the cross sections are measured, chosen from these maps in section 5.6.
The shown maps use the third-step signal MC, meaning after the final second-step correction of
the pµµµ

T distribution (see section 7.6).

The binning of these maps was chosen so that, in the bulk of the fiducial phase space,
a similar number of events is expected in each bin, which hence show similar and reasonable
statistical uncertainties on the acceptance times efficiency estimation.

The smallest acceptance times efficiency reached within the fiducial cuts is 1.7×10-4 in PbPb
and 9 × 10-4 in pp. This is a low value, but considering our low statistics (and the bottom left
panels of Figs. 7.26 and 7.27, showing the expected number of signal events), it is very probable
that no event with such kinematics (close to pT = 6GeV and y = 1.3) will appear in data. The
acceptance times efficiency however depends a lot on the kinematics, which underlines both that
correct kinematic distributions in MC are important if the one-binned method is used, and that
the event-by-event corrections within an analysis bin will be widely spread. The latter implies
that the statistical power of data events will be strongly diminished; this drawback made the
two-steps strategy preferable.

For the event-by-event correction in PbPb, only the third BDT bin is considered, because
the first two bins contain too much background to provide a reliable corrected signal yield.
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Figure 7.26: pp acceptance and efficiency maps of third-step signal MC trimuons, corrected
by the scale factors of section 7.2.2.1, versus their transverse momentum and rapidity. Top
left: acceptance. Top right: efficiency. Bottom right: acceptance times efficiency. Bottom
left: expected number of signal trimuons in data (normalised with the pµµµ

T -corrected MC).
——–

Therefore, the efficiency of a preselected event to be in the third BDT bin must be corrected
for. Fig. 7.28 shows the corresponding map. This efficiency is around 35% by construction of
the BDT binning, but shows a slight pµµµ

T dependence. The map of the efficiency of being in the
second or third BDT bin was also produced.

7.5 Feasibility of event-by-event corrections

Correcting for acceptance times efficiency candidate-by-candidate allows to directly consider
the kinematics of data, instead of the ones of MC. Usually, this method is rather straightforward
to apply. First, each data candidate is weighted by the inverse of the acceptance times efficiency
from the bin of the α×ε map corresponding to the kinematics of this candidate. Then, the signal
extraction procedure is applied, and the obtained signal yields are hence already corrected.

Two things differ in our case: the necessity of running the fit before applying the correction,
and of properly subtracting the background. Concerning the first point, I did not manage to
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Figure 7.27: PbPb acceptance and efficiency maps of third-step signal MC trimuons, cor-
rected by the scale factors of section 7.2.2.1, versus their transverse momentum and rapidity.
Top left: acceptance. Top right: efficiency. Bottom right: acceptance times efficiency. Bottom
left: expected number of signal trimuons in data (normalised with the pµµµ

T -corrected MC).
——–

stabilise the template fit (chapter 6) when using trimuon mass templates in which the candidates
were already weighted by 1/αε. The statistical uncertainties on each mass bin in this case are
too large (often close to 100%, due to some events having a much larger weight than the rest)
for a reliable fit convergence. The corrections hence need to be applied after the fit.

However, after having extracted the signal yield in an analysis bin it is not known exactly
which data candidates are from signal or background, so which individual candidates must be
corrected. One cannot simply apply corrections for all data candidates (and then deduce an
average correction per candidate) because the kinematics of background candidates, and hence
their corrections, can be different than for signal candidates.

The trick is to correct all events, including background, and to correct as well the events from
the background templates. Then the corrected background template events can be subtracted
from the data corrected events, to obtain the corrected signal yield. Of course, the corrections are
determined from the signal MC, so they do not adequately correct the background events for α×ε;
nevertheless the corrections are considered similarly wrong in the background template events
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——–

and in the background data events, ensuring a proper cancellation of the corrected background.

Bin-by-bin corrected background subtraction

The details of the background subtraction are however subtle. The template fit affects the
proportions of the different background sources in each analysis, BDT, and mass bin; therefore the
corrected background yield for a given source cannot be directly obtained by multiplying its fitted
background normalisation by the sum of corrected candidates from the corresponding background
sample. The driver of the values of the correction of a given candidate is its kinematics, which
can be different for each background and in each analysis, BDT, and mass bin. Therefore, the
background subtraction must be performed separately in each of these bins, for which the fit
indeed gives the fraction of signal and of each background.

I call Nb,postfit(bini) the yield for a given background b (b ∈ 1, 2, 3) in a mass bin bini,
obtained from the fit. The corrected yield in this bin isNb,postfit(bini)×C(b, bini), where C(b, bini)
is the acceptance and efficiency correction for background b in bini. In a bin, the total prediction
of the post-fit model might be different than the data yield; to get a more realistic estimate of
the background corrected yield, we rescale the sum of Nb,postfit(bini) and of the signal post-fit
yield to the content of this bin in data.

The correction can also depend on the systematic shape variation that is considered for a
given background. Therefore, I redefine the corrections as C(b, s, bini) for background b, un-
dergoing a shape variation s (s = 0 for the nominal shape, s = ±1 for the varied shapes) in
mass bin bini. C(b, s, bini) is the yield for this background and this systematic variation in the
mass bin bini, corrected candidate-by-candidate by 1/αε from the maps of Figs. 7.26 or 7.27,
and divided by the uncorrected yield. If the uncertainty on C(b, s 6= 0, bini) is larger than
the one on C(b, s = 0, bini) and larger than |C(b, s 6= 0, bini) − C(b, s = 0, bini)|, then I set
C(b, s 6= 0, bini) = C(b, s = 0, bini). Optionally, we limit the size of the correction to 500/k,
where k ∈ 1, 2, 3 is the BDT bin number. If a candidate has a higher correction, the correction
is set to this limit. This affects only a few events (mostly in the background-enriched BDT bin,
k = 1), that make the correction fluctuate too much in some mass bins. This is applied only
in the PbPb first pµµµ

T bin where these fluctuations are the largest (and lead to no significant
signal).

Now I introduce Sb, the continuous nuisance parameters leading the shape morphing of
background b (particular cases are: only the nominal shape is used when Sb = 0, and only
the shape s = ±1 is used when Sb = ±1). I force this to be a probability by using pb,s 6=0 =
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Figure 7.29: Determination of the signal yield corrected candidate-by-candidate for the
acceptance and efficiency, including the subtraction of the post-fit background, in the first
p

µµµ

T bin in pp. The left, middle, and right panels show the three BDT bins. Top: corrected
data (red) and summed backgrounds (black). Bottom: Corrected signal yield, from the
background-subtracted data (blue) or from signal MC (two versions in light and dark green).

——–

min(1, |Sb|). The corrected yield of background b is finally:

Bb,corr(bini) = Nb,postfit(bini)×
[
(1− pb,s 6=0) C(b, s = 0, bini) + pb,s6=0 C(b, s = sign(Sb), bini)

]
(7.21)

For backgrounds that have two such shape morphing parameters Sb and S
′
b, with similar defini-

tions the corrected yield of background b is:

Bb,corr(bini) = Nb,postfit(bini)× [(1− pb,s 6=0)(1− pb,s′ 6=0) C(b, s = 0, s′ = 0, bini) +

pb,s 6=0(1−
pb,s′ 6=0

2
) C(b, s = sign(Sb), s

′ = 0, bini) +

(1− pb,s 6=0

2
)pb,s′ 6=0 C(b, s = 0, s′ = sign(S′b), bini)] (7.22)

The two above formulas give back a simple Bb,corr(bini) = Nb,postfit(bini) × C(b, s(
′
) = 0, bini)

when the background exactly has the nominal shape (p
b,s

(
′
) 6=0

= 0). There is actually little

difference in the results when we assume pb,s 6=0 = 0 for all backgrounds, because the kinematics
(and hence the corrections) of the systematic background variations have only small differences
with the nominal background.

I similarly define C(data, bini) and C(sig, bini), the corrections in each mass bin for the data
and signal MC samples. The corrected signal yield in bini is then:

Scorr(bini) = Ndata(bini) C(data, bini)−Bb,corr(bini) (7.23)

Finally, the corrected signal yield for an analysis bin is the sum of Scorr(bini) where bini runs
over the BDT and mass bins.
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Figure 7.30: Determination of the signal yield corrected candidate-by-candidate for the
acceptance and efficiency, including the subtraction of the post-fit background, in the second
p

µµµ

T bin in pp. The left, middle, and right panels show the three BDT bins. Top: corrected
data (red) and summed backgrounds (black). Bottom: Corrected signal yield, from the
background-subtracted data (blue) or from signal MC (two versions in light and dark green).

——–

We also run this procedure on the signal MC sample as a crosscheck. In bini, the signal yield
from MC is Nsig,postfit(bini)× C(sig, bini), where Nsig,postfit is the post-fit yield (after rescaling
the total signal+background prediction to data yields), and C(sig) is the ratio of the sum of
acceptance-and-efficiency-weighted signal MC candidates to the unweighted sum. In a second
version of this MC crosscheck, Nsig,postfit is not rescaled with the full model to the data content.
This crosscheck allows to see the result of the method with large statistics. The signal MC
kinematics are corrected with the first-step measured p

µµµ

T distribution (contrarily to the final
α× ε that is calculated with the second-step-corrected MC).

Figs. 7.29 to 7.32 illustrate the method for the two pµµµ

T bins in pp and PbPb, by showing
for each pµµµ

T , BDT, and mass bin, both the corrected data and summed background, and their
difference, that is the corrected signal yield. The full signal yield for an analysis bin is the sum
of this corrected yield for all BDT and mass bins. The two MC crosschecks are also shown, the
difference between them showing the effect of rescaling the total prediction to the actual data
content in each bin. The difference between the corrected signal yield from the background-
subtracted data and from the signal MC mostly comes from the statistical fluctuations of data,
but can partly come from the kinematics of the MC which lacks the second-step pT spectrum
correction.

In PbPb the first BDT bins have too many fluctuations to be included in the corrected
signal yield estimation. Therefore, I consider either only the third BDT bin, or the second and
third BDT bin, and I then correct the obtained yield for the efficiency of having a BDT value in
these bins. This efficiency is taken either from an efficiency integrated on MC, or from a map
like Fig. 7.28, but this does not change significantly the resulting yield. The latter is significant
only in the second pT bin. In the first pT bin, isolated background events with large corrections
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Figure 7.31: Determination of the signal yield corrected candidate-by-candidate for the
acceptance and efficiency, including the subtraction of the post-fit background, in the first
p

µµµ

T bin in PbPb. The left, middle, and right panels show the three BDT bins. Top: corrected
data (red) and summed backgrounds (black). Bottom: Corrected signal yield, from the
background-subtracted data (blue) or from signal MC (two versions in light and dark green).
In this pµµµ

T bin, no significant signal is observed after corrections, so a cutoff of the largest
corrections is applied to reduce the fluctuations.

——–

cause fluctuations larger than the expected signal – despite indulging in limiting the maximum
single-candidate correction.

Comparison of methods

The corrected signal yields obtained from the various methods were compared: the nominal
event-by-event corrections (only in pp), the version where only the third (or second and third)
BDT bins are considered (the only way to get significant PbPb yields), and the one-binned
method of section 7.3. The event-by-event method results in large uncertainties (mainly from
the inhomogeneous 1/α×ε corrections to the candidates within a bin), and no significant yield in
the first pµµµ

T bin in PbPb, so this method was abandoned. This outcome was already clear with
blinded data, so this decision was taken before PbPb data unblinding. The comparison plot,
only relevant in pp where the event-by-event yields are significant, is not shown here (it is not
judged informative, considering the many caveats). The yields from the various event-by-event
methods are consistent with those from the one-binned method, within large uncertainties.

The comparison is slightly flawed by the uncertainty calculation for the event-by-event
method: it was calculated as the quadratic sum of the uncertainties in each bin, hence ne-
glecting the correlations between the corrected yields in the different BDT and mass bins. To
have a proper estimate of these uncertainties, one could run the MC crosscheck with only a
fraction of the statistics (representative of the data statistics), generated many times. On each
small MC dataset, the event-by-event method could be run, and the distribution of the results
would be an estimate of the expected uncertainty. However, as this method is not kept as the
nominal one, this proper treatment was not implemented.



7.6. Two-steps procedure 193

Figure 7.32: Determination of the signal yield corrected candidate-by-candidate for the
acceptance and efficiency, including the subtraction of the post-fit background, in the second
p

µµµ

T bin in PbPb. The left, middle, and right panels show the three BDT bins. Top: corrected
data (red) and summed backgrounds (black). Bottom: Corrected signal yield, from the
background-subtracted data (blue) or from signal MC (two versions in light and dark green).

——–

As the event-by-event method proved not feasible, let us now rather improve the one-binned
method by correcting the distributions of MC with a first estimate of the pµµµ

T distribution from
the data measurement, as explained in section 7.6.

7.6 Two-steps procedure

I implemented two methods to correct the observed signal yields (from the fit of chapter 6)
for the effect of the acceptance and efficiency of reconstructing, selecting, and triggering sig-
nal trimuons. The most straightforward, named one-binned (section 7.3), is simpler and keeps
all the statistical power of the extracted yield; but its drawback is that it relies on the kine-
matic distributions of the signal MC. Wrong MC kinematics bias a lot the corrections if the
acceptance and efficiency depend on the kinematics, which is strongly the case (see the maps of
Figs 7.26 and 7.27). Beyond the fact that the Bc kinematics in pp might not be perfectly simu-
lated, the QGP effects on Bc production are not considered in the PbPb MC and influence the
kinematics. Using the kinematics of data directly, by correcting separately each data event, has
been implemented (section 7.5), but in a non-standard way because the corrections are applied
after the fit, making the background subtraction relatively sophisticated; moreover, it strongly
reduces the statistical power of the yields, resulting in too large uncertainties.

Therefore, I rather correct the kinematics of the signal MC, up to the knowledge of the
spectra from preliminary analyses, before applying the one-binned method. The acceptance and
efficiency depends more on p

µµµ

T than on rapidity, and the modification of the Bc production
(which increases the difference between the PbPb data and MC spectra) is expected to depend
more on pT than rapidity, so the pµµµ

T distribution of MC is corrected rather than the rapidity.
This correction is run both at the end of the first-step and at the end of the second-step analysis
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(see Fig. 3.13). In the first step, only the correction of the pµµµ

T spectrum is needed for running
the second-step analysis (i.e. the part of the procedure linked to the acceptance and efficiency
uncertainty is run only at the end of the second step). A simplified sketch of the procedure to
extract the uncertainties from the pµµµ

T spectrum correction is presented in Fig. 7.33.

fit of measured pT

varied 
yields varied pT spectrum fit ratio to MC spectrum fit

= varied pT correction of MC

varied 
acceptance and efficiency 

corrections
measured 

yields

Figure 7.33: Extraction of the uncertainties on the acceptance and efficiency corrections
from variations of the measured pµµµ

T spectrum.
——–

The two-steps procedure is the following:

• Some assumption on the spectrum shape (used as fit function) is made, with the help of a
fit of the signal MC spectrum.

• I fit with this assumed shape the corrected yields measured in two coarse pµµµ

T bins in a first
iteration of the analysis. The yields are divided by the pµµµ

T and rapidity bin widths. I use
for this measurement one-binned α × ε corrections resulting from the uncorrected signal
MC, or from the first-step-corrected one (for the second-step pµµµ

T spectrum fit).

• (Only in the second-step run:) the corrected yields in the two bins are varied within what
the uncertainties from the second-step measurement allow. The uncertainty comes from
the fit (sampling the fit likelihood), from the fit method variations, and from the tag-and-
probe (via Gaussian-distributed random numbers multiplied by the uncertainties). The
uncertainties from the luminosity and other Bc decays are excluded because they are small
and fully correlated along pµµµ

T , so they do not affect significantly the shape of the pµµµ

T
spectrum. The uncertainty from α × ε corrections is to be determined from this method,
so it is not included. The correlations between the uncertainties on the two pµµµ

T bins are
taken into account when varying the two data points.

• (Only in the second-step run:) 500 variations are run for each shape assumption. Each
two-points toy measurement is fitted, resulting in 500 pµµµ

T spectra per shape assumption.

• For each variation (only in the second-step run) and for the nominal, the fit to the (toy
or true) measurement is divided by the fit of the MC with the same shape assumption (to
eliminate most of the potential error in the choice of the fit function). This ratio is the
correction applied to the pµµµ

T distribution of MC.

• For each of the pµµµ

T spectrum corrections determined from the varied (only in the second-
step run) and the nominal two-points measurements, the one-binned acceptance and effi-
ciency are computed with the resulting corrected MC.

• In each analysis bin (pµµµ

T , centrality, or integrated), the nominal acceptance and effi-
ciency correction is determined from the MC whose spectrum was corrected with the fit
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of the nominal (non-varied) measurement. This means the α× ε correction is calculated a
third time, after the second-step pµµµ

T -correction of MC, to provide the final nominal value.
(Only in the second-step run:) the spread of the acceptance and efficiency (or directly of
the corrected yields) values from the variations of the pµµµ

T -differential measurement (cf
Fig. 7.36 and 7.37) results in the final uncertainty on acceptance and efficiency.

7.6.1 Lafferty-Wyatt: how to place the abscissa

To fit the measurement in two coarse pµµµ

T bins, one needs an appropriate prescription for
placing the points along the pµµµ

T axis. Intuitively, a hypothetical continuous version of the
spectrum should coincide with the two points. The center of the bin or the average pµµµ

T within a
bin do not satisfy this requirement. One instead needs to follow the prescription from Lafferty
and Wyatt [204], which consists in placing the point xi,LW such that:

f(xi,LW ) =

∫
bin i

f(x) dx (7.24)

where f is the true spectrum, and the integral is performed within the limits of the studied bin.

This is the points are placed along pµµµ

T for this study, and for the final plots of the cross-
section and modification factor. For this study, these abscissa positions are though only set for
display purposes, as the fit of the two points is performed using only the integrals of the spectrum
over each bin range. For the results plots, the abscissa are extracted with f being the fit of the
nominal two-points measurement.

7.6.2 ‘Fitting’ two points

The true spectrum must be inferred from a measurement that features only two points. Lit-
erally any function with two parameters could exactly fit this. I thus need a justified assumption
on the fit function, taken from fitting the continuous spectrum of MC. However, we need to limit
this function to only two parameters, in order not to have more parameters to determine than the
number of independent data points. I then ‘fit’ two parameters on two points, which amounts to
solving a system of two equations with two unknowns, and gives an exact result (with reasonable
functions).

As suggested by the Lafferty-Wyatt prescription, this system of equations involves the inte-
grals of the spectrum in the two bins, which should be equal to our measured points yi – those are
indeed estimations of the integrals of the produced signal events over the respective bin ranges.
So the parameters {ai} of function f are determined by solving these equations (one per bin i):∫

bin i
f{ai}(p

µµµ

T ) dpµµµ

T = yi (7.25)

Parts of this equation system can be done analytically: e.g. the integral of the power law
(function mentioned later) is simple. However, the complete resolution is not feasible analyti-
cally, so I look numerically for the solutions of this system with the HybridSJ algorithm of the
GSLMultiRootFinder class of ROOT. It is based on the GNU Scientific Library.1 The fits of
some variations are failing, but tweaking the initial values of the parameters for these cases makes
all of them converge (with only 2 exceptions for which the toy measurement is randomly drawn
again).

1see https://www.gnu.org/software/gsl/doc/html/multiroots.html for details on the algorithm.

https://www.gnu.org/software/gsl/doc/html/multiroots.html
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7.6.3 Choice of fit function

An intuitive way to fit a spectrum with a two-parameter spectrum is a power law f1(pT) = a p−nT .
However this does not fit well the continuous spectrum of MC (see the dashed green thick line in
Figs. 7.34 and 7.35); it is still kept as a possible fit function, because it has only two parameters,
and dividing two such functions (the fit on data and the fit on MC) should cancel out most of
the modelling error.

The power law is a straight line in a log-log display, but the curved shape of the spectrum
invites to try a function that is quadratic when displayed in a log-log canvas:

f2(p
µµµ

T ) = N (p
µµµ

T )n+m×ln(p
µµµ

T ) (7.26)

This function fits very well the MC spectrum (see the dashed thick red line of Figs. 7.34 and 7.35).
However, it has three parameters, so I need to fix one parameter, not to have more unknowns than
independent equations. I choose to fixm to the value obtained in the fit of the MC spectrum, but
fixing n was tried too and the change in the data/MC ratio is of the same order than changing
the model to other fit functions.

Another possibility is to use the so-called Kaplan spectrum, that has more physical grounds
than the log-log-quadratic function:

f(p
µµµ

T ) =
N

(1 + (p
µµµ

T /a)2)n
(7.27)

It also fits very well the MC spectrum, except a possible small deviation at high pµµµ

T , that mostly
cancels in the data/MC ratio. It is shown in violet in Figs. 7.34 and 7.35. Here again, to fit the
two data points, I fix one parameter to the one found in the fit of the continuous MC spectrum. I
fix a, but when fixing n, the changes are of the same order than when the fit function is changed.

A satisfying check is that, using the last two functions (whichever parameter is fixed), the
fit of the continuous MC spectrum gives parameters very close to the fit on the two-points MC
spectrum (integrated on the bin ranges). The small difference between the fit of a continuous
spectrum and of two points comes from the definition of the abscissa of the two points: they
should be the xLW corresponding exactly to the true spectrum, whereas they are actually defined
on the pre-fit spectrum. This test is not satisfying in the power law case because of the modelling
error.

7.6.4 Fit of toys (varied measurements)

This concerns only the procedure run at the end of the second-step analysis. I hence have
three different functions, and for each of them, 500 toy measurements (obtained by varying the
second-step measurement within uncertainties) are fitted, along with the nominal second-step
measurement and the MC. The ratio between the fits of the second-step measurement and the MC
is close to 1, because a correction was already applied to MC in the first step. Figs. 7.34 and 7.35
show these fits, for the MC in dashed lines, for the nominal measurement in solid lines, and for
the variations in thin dash-dotted lines (only 40 out of 500 per function type are displayed, for
readability). Three colour palettes are used respectively for the three fit function types. The
bottom pad shows the ratio of the fit of the nominal or varied measurements to the fit of the
MC spectrum. Similar plots exist for the first-step correction, with higher data/MC difference
and without the variations.

The spectrum of the first-step-corrected MC (whose fit gives the reference MC function)
is also shown. In practice, it is the signal MC without any acceptance nor selection cuts. An
interesting feature to notice here is the small discontinuity at the frontier of the two pµµµ

T bins,
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Figure 7.34: Nominal and variations of the second-step correction of the pµµµ

T spectrum of
signal MC in pp. Top: fits of the yields corrected by first-step-corrected one-binned α × ε,
differential in p

µµµ

T and yµµµ . Bottom: ratio of the fit of measured corrected yields to the
fit of the spectrum of the first-step-corrected signal MC. The shape is first fitted (dashed
lines) on the continuous MC (solid blue histogram), and then the two shape parameters are
estimated from the two measured points. Three different function shape assumptions are
used (in red, green, and violet). The thin dash-dotted lines show for each function type 40
(out of the 500 actually run) fits to two-bin toy measurements, from varying the data points
within their uncertainties. The thick line for each shape is the fit of the nominal (non-varied)

measurement.
——–

which points to the difference in rapidity range used for the two pµµµ

T bins: at lower pµµµ

T , the
range 1.3 < yµµµ < 2.3 is used, where a lower differential yield is expected than in the more
central rapidity range 0 < yµµµ < 2.3 that is used for the higher pµµµ

T bin. This discontinuity is
small enough to be neglected compared to the dominant uncertainties of the fitted measurement.

7.6.5 Resulting nominal value and uncertainty

For each of the three fit methods, I have now 500 varied functions (ratio of the toy fits to
the MC fit) and one nominal function to correct the pµµµ

T spectrum of the original (or first-step-
corrected) signal MC. I hence run (in the second step), both in pp and PbPb, 1503 computations
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Figure 7.35: Nominal and variations of the second-step correction of the pµµµ

T spectrum of
signal MC in PbPb. See caption of Fig. 7.34 for details.

——–

of the acceptance and of the efficiency, performed as in section 7.3 but with the MC corrected by
one of the pµµµ

T spectrum function. The acceptance previously depended only on the kinematics
of the generated MC events and was the same in pp and PbPb, but now the MC is different in
the two cases, so both are run separately. In the first step, only one acceptance and efficiency
value is calculated, with the MC corrected with one of the pµµµ

T fit method (the one quadratic in
log-log and where m is fixed to the value in the continuous MC spectrum).

This results in a distribution of the 1
α×ε corrections representative of the uncertainty of the

p
µµµ

T spectrum correction, which follows from the uncertainty on the second-step measurement.
Fig. 7.36 shows these distributions for the integrated samples and the two centrality bins in
PbPb, separated for the three function types. The coloured dashed vertical lines show the value
resulting from the pµµµ

T spectrum corrected by the fit of the nominal second-step measurement.
They are much closer to each other than the spread due to varying the fitted measurement, which
is a sign of stability of the procedure. Those values, as well as the spread, can be compared to
the value from the simple one-binned procedure without correcting the pµµµ

T spectrum of MC, or
with the first-step correction. The separation of the value associated to the original MC from
the new nominal is larger than the RMS of the distribution of the toys, which means that this
is a useful correction. The difference between the second-step value and the first-step value is
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much smaller than the effect of the first-step correction on the original MC, indicating that the
procedure converges (see section 7.6.7 for more on this convergence).
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Figure 7.36: Variations of the second-step data measurement are associated to variations
of the pµµµ

T spectrum correction in MC. Here is shown in the integrated sample in pp (top
left) or PbPb (top right) or in the two PbPb centrality bins (bottom left and right) the effect
of these variations on the inverse of the acceptance times efficiency which will multiply the
post-fit yields. The coloured dashed lines are the nominal results from the three fit functions
(and no variation of the data points), compared to the result without any correction of the

p
µµµ

T spectrum (dashed black line) or with the first-step correction (dotted line).
——–

The spread (RMS) of this distribution of acceptance and efficiency values will be quadrat-
ically summed to the other uncertainties for the centrality-binned and the integrated results.
However, for the pµµµ

T -differential measurement, one can and should take into account the cor-
relation between the variation of the pµµµ

T -dependence measurement (the 1500 toy two-binned
measurements) and the associated variation of acceptance and efficiency (the 1500 α × ε val-
ues extracted from the MC corrected with each of these varied fitted p

µµµ

T spectra). This is
done by calculating the final uncertainty directly as the spread of the varied corrected yields,
which are the products of the varied yields times the associated varied corrections. Only the
uncertainties from luminosity and other Bc channels (that were not included for the variation
of the pµµµ

T -differential measurement) need then to be quadratically summed to obtain the final
uncertainty.
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Fig. 7.37 shows the distribution of corrected yields from the toys, in the two pµµµ

T bins in pp
and PbPb. The final uncertainty (excluding the luminosity and τ channel ones) is calculated for
the pµµµ

T -differential measurements as the RMS of this distribution (including toys from the three
spectrum-fit methods). The correlation between the yield variation and the associated α×ε value
changes substantially the final uncertainty. For PbPb, a correlation increases strongly the total
uncertainty in the first pµµµ

T bin (compared to the simple quadratic sum of the α× ε uncertainty
from the equivalent of Fig. 7.36 and the other uncertainties), but an anti-correlation decreases
it in the second bin down to a final uncertainty smaller than when ignoring the acceptance and
efficiency. For the pµµµ

T dependence, the α× ε uncertainty is quoted as the quadratic subtraction
of the other uncertainties from the final uncertainty, which is hence negative in the case of the
second p

µµµ

T bin in PbPb. In pp, the uncertainty in the two pµµµ

T bins is decreased with this
procedure, but the α× ε contribution to the total uncertainty stays positive.

8000 10000 12000 14000 16000 18000 20000
correctedN

0

10

20

30

40

50

60

70

80

to
ys

n -n
T

p

 (fix m)
)

T
ln(p×-n+m

T
p

 (fix a)
-n2

a
T

p
1+

unbiased MC

-step correctedst1

 bin1
T

 eff toys pp p×yields for acc 

7500 8000 8500 9000 9500 10000 10500 11000
correctedN

0

10

20

30

40

50

60

70

80

90to
ys

n -n
T

p

 (fix m)
)

T
ln(p×-n+m

T
p

 (fix a)
-n2

a
T

p
1+

unbiased MC

-step correctedst1

 bin2
T

 eff toys pp p×yields for acc 

0 2000 4000 6000 8000 10000 12000 14000 16000
correctedN

0

10

20

30

40

50

60

70

to
ys

n -n
T

p

 (fix m)
)

T
ln(p×-n+m

T
p

 (fix a)
-n2

a
T

p
1+

unbiased MC

-step correctedst1

 bin1
T

 eff toys PbPb p×yields for acc 

600 800 1000 1200 1400 1600 1800 2000 2200 2400
correctedN

0

10

20

30

40

50

60

70

80

to
ys

n -n
T

p

 (fix m)
)

T
ln(p×-n+m

T
p

 (fix a)
-n2

a
T

p
1+

unbiased MC

-step correctedst1

 bin2
T

 eff toys PbPb p×yields for acc 

Figure 7.37: Variations of the second-step data measurement are associated to variations of
the pµµµ

T spectrum correction in MC. Here is shown in the two pµµµ

T bins in pp (top) and PbPb
(bottom) the effect of these variations on the corrected yields, including the uncertainty on
the measurement of the observed yields. The coloured dashed lines are the nominal results
from the three pµµµ

T -spectrum fit functions (and no variation of the data points), compared to
the original result without any correction of the pµµµ

T spectrum (dashed black line) or with the
first-step correction (dotted line).

——–
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Applying this procedure to the integrated results as well was considered (summing the vari-
ations of the two pµµµ

T -bin varied yields), but it would be somewhat hybrid to use the integrated
fit for the central value, and the variations of the pµµµ

T -dependent measurements for the uncer-
tainties. I therefore keep this acceptance and efficiency uncertainty decorrelated from the other
uncertainties, as for the centrality bins (that are integrated on pµµµ

T ). The main impediment for
applying the strategy considering these correlations, is that in the latter, the pµµµ

T spectrum is
smeared with all the non-αε uncertainties in a given p

µµµ

T bin, and the combined effects of all
uncertainties (including αε) on the same pµµµ

T bin is considered. This is impossible to apply in
the pT-integrated sample (and in the centrality bins) for which the non-αε uncertainties are not
the ones that are used to vary the pµµµ

T spectrum and the acceptance and efficiency values.

One can visualise the correlation between the αε uncertainty and all the other ones (except
that from luminosity and other Bc decays) by displaying jointly the acceptance and efficiency
correction (first uncertainty) and the observed yield (second uncertainty) associated to each toy.
Toys from the three methods are simply summed here. For the pµµµ

T bins, the final uncertainty is
the RMS of the distribution of the corrected yields, i.e. the product of these two quantities. This
means that if the two quantities are positively (negatively) correlated, the final uncertainty on the
corrected yields will be larger (smaller) than the simple quadratic sum of the RMS values of the
two quantities. This mechanism is illustrated in Fig. 7.38, where the two-dimensional plots that
show a positive (negative) correlation factor are associated to a final uncertainty that is larger
(smaller) than if the acceptance and efficiency was simply considered as another uncorrelated
source of uncertainty.

The said correlation is positive (negative) for the low-pµµµ

T (high-pµµµ

T ) bins, both in pp
and PbPb. This can be qualitatively understood: if the observed yield in the low-pµµµ

T bin
rises (meaning if the true value is higher than the nominal measured value in this bin), and
considering to simplify that the high-pµµµ

T bin yield is fixed to the measured value, then the fitted
p

µµµ

T -differential corrected yields shall have a stronger slope, favouring low-pµµµ

T signal. This larger
slope will be reflected in the signal MC, that will in turn be biased towards lower-pµµµ

T candidates
and give lower acceptance and efficiency values (because the acceptance and efficiency sharply
drop towards low p

µµµ

T values), and hence even higher corrected yields. Inversely, if the high-pµµµ

T
observed yield rises and the low-pµµµ

T yield is fixed, then the slope of the fitted pµµµ

T spectrum will
be smaller, resulting in higher acceptance and efficiency values from the associated biased MC.

The same logic can be applied to the corrected yields in pp and PbPb, whose ratio is
proportional to the RPbPb quoted in the results. As there are toys distributed with the final
uncertainties (on the pT-dependent corrected yields), I can check if the pp and PbPb ones are
correlated, and therefore check if it is correct to simply add the associated uncertainties in
quadrature. Correlations between pp and PbPb could arise e.g. from similar shapes of the
acceptance and efficiency versus pµµµ

T . Fig. 7.39 shows the two-dimensional distributions of the
corrected yields in PbPb and pp in both p

µµµ

T bins, and the distributions of the acceptance
and efficiency corrections for the PbPb centrality bins versus the pp integrated sample. The
correlation factors are quite small in both cases, revealing that it would be acceptable to take
the final uncertainties on the RPbPb as the quadratic sum of the uncertainties on the pp and PbPb
measurements. I however take the final uncertainty on RPbPb from the RMS of the distribution
of the ratio of varied (toy) PbPb to pp corrected yields for the pµµµ

T -dependent results, and the
acceptance and efficiency uncertainty on RPbPb from the RMS of the ratio of the varied pp to
PbPb acceptance and efficiency values for the pµµµ

T -integrated results.

The nominal 1
α×ε correction (or corrected yield, in the case of the pµµµ

T dependence) is defined
as the average of the nominal values from the three pµµµ

T spectrum fit methods. It is shown in
Table 7.2 along with the values from the simple one-binned method, and the values after the
first-step correction. The associated systematic uncertainty is the quadratic sum of:
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Figure 7.38: Acceptance and efficiency correction associated to each toy variation of the
observed yield, the latter arising from all relevant uncertainty sources other than the accep-
tance and efficiency, in pp (top) and PbPb (bottom), for the first (left) and second (right)
p

µµµ

T bins. The z-axis, represented in colour nuances, shows the product of the two plotted
quantities, namely the variation of the corrected yield, whose RMS will constitute the final
uncertainty on the pµµµ

T -differential cross sections. The black cross shows the nominal value.
The correlation factors between the two axes are also displayed.

——–

• The RMS of all toys from the three fit methods. The three RMS values for the three
methods are very close, so it is reasonable to consider the common RMS of all methods.
As the spread of values around the nominal is not symmetric, I use an asymmetric RMS
determination (meaning for e.g. the upper error, I use the root of the mean of squares of
only upper-going deviations to the nominal). For the modification factor RPbPb, the RMS
is that of the distribution of the ratios of the varied acceptance and efficiency corrections
(or the varied corrected yields for the pµµµ

T dependence) in PbPb over the pp ones, taking
into account possible correlations between pp and PbPb uncertainties.

• The maximal deviation of the nominal values from the three methods to the average of
the three values. This uncertainty is much smaller than the RMS, which indicates that the
procedure is reliable.

Along with the RMS, the correlation between the two pµµµ

T bins for all pµµµ

T -spectrum varia-
tions can be calculated with the standard formula (based on a symmetric RMS), with n variations:
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Figure 7.39: Top: Corrected yields in PbPb versus the ones in pp associated to toy variations
of the observed yields, for the low-pµµµ

T (left) and high-pµµµ

T (right) regions. The z-axis colours
show the ratio of the two quantities, whose RMS will be taken as the final uncertainty on
the pµµµ

T -differential RPbPb. Bottom: Acceptance and efficiency corrections in PbPb versus
the ones in pp associated to toy variations of the observed yields. The first (left) and second
(right) PbPb centrality bins are shown versus the pµµµ

T -integrated pp sample; the two bins give
very similar plots because only the efficiency changes with centrality (and not the acceptance,
which brings the largest pµµµ

T dependence). The z-axis colours shows the distribution of the
ratio of the two corrections, whose RMS will be used as the uncertainty from the acceptance
and efficiency corrections for the centrality-dependent RPbPb. The nominal values (black

cross) and the correlation factors between the two axes are also displayed.
——–

ρ1,2 =
1

n− 1

∑
i(y1,i − 〈y1〉)(y1,2 − 〈y2〉)

σ1σ2
(7.28)

As a given pµµµ

T spectrum correction has a very similar effect on the spectrum within each pµµµ

T
bins, this correlation is very close to 1 for all three fit methods (ρ1,2 > 0.99). We add to this
correlation factor (via the sum of the covariances) an assumed correlation factor of 0.3 for the
maximal deviation of the three nominal values to the final nominal correction (which is sub-
dominant compared to the RMS). The resulting correlation factor is still > 0.95. The bin-to-bin
correlation factors for the corrected yield uncertainty on the pµµµ

T -dependent RPbPb and for the
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Table 7.2: Acceptance and efficiency values calculated on the signal MC, integrated over the
kinematics of the first or second pµµµ

T bin. The values are from the (final) third step, except
in the two columns showing the results without pµµµ

T -spectrum correction or with a first-step
correction.

system bin acceptance α
(final)

efficiency ε
(final)

α× ε
(no correction)

α× ε
(2nd step)

α× ε
(final)

pp

6 < p
µµµ

T < 11GeV 0.098 0.27 0.025 0.0271 0.0266

11 < p
µµµ

T < 35GeV 0.249 0.43 0.100 0.109 0.106

integrated 0.155 0.36 0.049 0.0597 0.0567

PbPb

6 < p
µµµ

T < 11GeV 0.086 0.097 0.0098 0.0087 0.0084

11 < p
µµµ

T < 35GeV 0.22 0.23 0.058 0.052 0.050

centrality 0-20% 0.113 0.117 0.0198 0.0144 0.0132

centrality 20-90% 0.11 0.21 0.035 0.026 0.024

integrated 0.113 0.148 0.0248 0.0182 0.0168

acceptance and efficiency uncertainty on the centrality-dependent RPbPb are also calculated this
way. This is possible thanks to the complete distribution of the ratios of corrected yields (or 1/αε
corrections) of PbPb over pp. Only the calculation of bin-to-bin correlation of the fit uncertainty
of the centrality-dependent RPbPb needs a small MC procedure that is explained in section 8.2,
where the three correlations are shown (Table 8.1).

This almost-full bin-to-bin correlation of the α× ε uncertainty is the reason why it is much
larger in the centrality bins and in the pµµµ

T -integrated results: the pµµµ

T -spectrum variations have
cumulating effects on the α×ε values along pµµµ

T bins. The correlation between the two centrality
bins is high because the uncertainties of the two bins come from the same pµµµ

T -spectrum variations
and similar pµµµ

T distributions. It is assumed that the large uncertainties (of pT-integrated bins)
cover for the possibility of the pµµµ

T spectra in the two centrality bins being different.

The fact that the extracted uncertainty on the acceptance and efficiency is very correlated
between the pµµµ

T bins renders the iterative procedure very stable, as will also demonstrate sec-
tion 7.6.7: the change seen between the first-step and second-step 1

α×ε can indeed only come
from the changes in the BDT and fit of the second-step analysis, because the change of the
acceptance and efficiency from the previous step (used to calculate the corrected yields that are
fitted) affects the yields mostly as a global factor (that does not impact the 1

α×ε determination
from MC). In other words, running again this procedure with unchanged BDT and fit will result
in very similar acceptance and efficiency values.

7.6.6 Additional remarks

A few other items of the analysis, linked to the BDT, are improved by the input of a first-step
measurement:

• The second-step BDT training and fit benefit from a better description of the pµµµ

T spectrum
of signal MC.

• The background normalisations during the training of the BDT (section 5.7.3) are coarsely
inspired from the (first-step) post-fit values of the corresponding parameters.

• The average BDT value and RMS per mass bin, extracted in Fig. 5.18 of section 5.7.5, uses
background samples with post-fit parameters to build the full background sample. The
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second-step post-fit background is more accurate, giving a corrected BDT that is more
exactly decorrelated from the mass.

• In the second-step, one can check in section 5.7.5 that the BDT distribution of data is con-
sistent with the BDT distribution from the sum of the post-fit signal MC and backgrounds,
and apply an associated correction in pp before a last re-fit.

7.6.7 MC closure test of the iterative procedure

In total, three estimations of the nominal acceptance and efficiency correction are performed:
with the original MC, and after the first-step or second-step p

µµµ

T spectrum correction. The
difference between the last two estimates mostly comes from the BDT and the template fit being
modified in the second-step analysis.

Figs. 7.36 and 7.37 already show that this iterative procedure converges, as the difference
between the second-step and third-step nominal values (of the correction or of the corrected yield)
is smaller than the difference between the second-step value and the value from the original MC.
However, it is worth checking this convergence, as well as the fact that it converges to the right
value, through a closure check on the signal MC. To do this, I create two toy MC datasets in
PbPb with biased pµµµ

T spectrum, run the whole iterative procedure from the original MC as in
our main analysis, and intend to find back the pµµµ

T spectrum that was injected. More precisely:

1. I strongly bias the pµµµ

T spectrum of the MC to create a new ‘true’ value of the corrected
yield, taking the role of the true data yield that this analysis aims at measuring. The two

toys are biasing the MC with event weights
(
p

µµµ

T [GeV]
11

)±1.7

, which is a stronger variation

than from the original MC to the final measured PbPb spectrum.

2. From this biased MC, I estimate the true acceptance and efficiency correction with the
one-binned method. Multiplying the known true yield by this, I get an equivalent observed
yield, that takes the role of the signal yield extracted from the template fit in the main
analysis. I then forget temporarily the true value of the acceptance and efficiency, and
rather try to evaluate it as is done on actual data.

3. I hence first evaluate the acceptance and efficiency on the original MC, as in the first-step
analysis. This divides the toy observed yields mentioned above to give the initial corrected
yields. I then fit the pµµµ

T -differential corrected yields to obtain the first-step correction to
the pµµµ

T spectrum, to be applied to the original MC.

4. At this stage, in the nominal analysis, I would re-run most of the analysis steps including
the template fit, giving slightly modified observed yields. In this closure test, I ignore
this, i.e. the effect of the pµµµ

T correction of MC on the extracted observed signal yields.
This crosscheck indeed aims at confirming the convergence of the acceptance and efficiency
determination procedure.

5. From the first-step-corrected MC, I estimate again the acceptance and efficiency and the
resulting corrected yields. Those yields are fitted to obtain the second-step pµµµ

T correction
of the MC.

6. As in the main analysis, the final acceptance and efficiency is evaluated on the second-step-
corrected MC.

I hence obtained, for each of the two toy MC datasets with arbitrarily biased corrected
yields, three values for the corrected yields, from the original MC and the first-step or second-
step corrected MC. These values can be compared with the true corrected yield, corresponding to
the true acceptance and efficiency calculated with the known bias used to create the toy datasets.
The convergence of the iterative procedure is also tested. Fig. 7.40 shows the iterated values of
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the corrected yields, and that they indeed converge to the true value, already after the first-step
correction. This validates the global procedure. In the actual measurement, the last two values
of the corrected yields are more different than in this closure test, because the observed yields
were modified in the second run of the analysis (including the template fit), which this closure
test does not intend to reproduce.
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Figure 7.40: MC closure test of the iterative procedure for determining the nominal accep-
tance and efficiency corrections, in PbPb. Two toy datasets (red and blue) undergo the same
procedure as in the main analysis, each giving rise to three sets of corrected yields for the
three steps of the analysis. These corrected yields are compared to the true toy corrected

yields, for both pµµµ

T bins and for the integrated sample.
——–



“Entre la foi et l’incrédulité, un souffle,
entre la certitude et le doute, un souffle.

Sois joyeux dans ce souffle présent où tu vis,
car la vie elle-même est dans le souffle qui passe.”

———–

Omar Khayyam (died 1123),
Les 144 Quatrains d’Omar Khayyam,

traduits par Claude Anet et Mirza Muhammad,
Quatrain 130, 1920.1

Chapter 8

Are we sure?
Summary of uncertainties

8.1 Uncertainty sources

I summarise here the various uncertainties that are considered in the final uncertainty on
the cross sections and RPbPb:

• The uncertainty from the fit procedure is given by minos when running combine. minos
gives asymmetric uncertainties, which are kept as such; they are shown in Table 6.2. Mi-
nos also outputs a correlation factor between the two pµµµ

T or centrality bins. These fit
uncertainties take into account uncertainties such as the statistical fluctuations of data, or
the morphing variations of the background shapes within reasonable hypotheses.

• The uncertainties from varying the fit method are treated in section 6.4 and values are
summarised in Table 6.4. These uncertainties are calculated from an RMS of some vari-
ations, so it is symmetric by construction, and also provides the correlation between the
two analysis bins through an RMS-like calculation.

• The uncertainty on the acceptance and efficiency corrections is determined in sections 7.6.4
and 7.6.5. It results from the RMS of the re-computations of the 1

α×ε correction after
modifying the pµµµ

T spectrum of the signal MC within what it allowed by the second-step
measurement uncertainties. A small contribution from the potential mis-modelling of the
p

µµµ

T spectrum is also included. For the pµµµ

T -dependent result, this uncertainty is actually

1I prefer this French traduction (from Farsi or Arabic, as Khayyam wrote this piece in both languages) over
the English one found in quatrain 20 of The quatrains of Omar Khayyam translated by E.H. Whinfield, 1903:
“The distance which separates incredulity from faith is but a breath, – that which separates doubt from certainty
is equally but a breath. – Let us, then, pass this precious space of a breath gaily, – for our life also is only
separated [from death] by the space of a breath.”. I thank Batoul Diab for checking that the meaning is similar
in the original quatrain in Arabic.
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convolved with (most) other uncertainties, such that the final uncertainty (excluding lu-
minosity and other Bc decay channels) is the RMS of the varied corrected yields, that are
based on MC toy samples whose pµµµ

T spectra are each corrected with a different variation
of the second-step pµµµ

T -differential measurement. The bin-to-bin correlation is calculated
from the sample of varied acceptance and efficiency values or of varied yields.

• The uncertainty on the correction of single-muon efficiencies through tag-and-probe scale
factors is explained in section 7.2.2.1.

• Concerning the possible contribution of other Bc decays as Bc → J/ψ τ ντ and Bc →
χc,0,1,2 µX to the measured signal yield, section 4.3.3 justified to assign an asymmetric
(yield-decreasing) 4.5% uncertainty for the cross sections, and a symmetric 1.5% for RPbPb.
This uncertainty is assumed 100% correlated between the two pµµµ

T or centrality bins.

• The uncertainties on the normalisation of the extracted yield are 1.9% in pp (on luminos-
ity), 2.6% in PbPb (on NMB × TPbPb for the 0 − 90% centrality range), and respectively
2.3% and 3.8% for the 0 − 20% and 20 − 90% PbPb centrality ranges, as explained in
section 3.5.5.2. This (multiplicative) luminosity uncertainty is summed in quadrature to
the other uncertainties after all corrections. It is fully correlated along analysis bins.

• There is an uncertainty in the calibration of the centrality ranges, that amounts to varying
the limits of the sum of transverse energy in the forward calorimeter corresponding to a
given centrality range. The varied centrality limits were calculated, but have no effect on
the result in the 0 − 90% centrality, as there is no preselected event in data that is close
to 90% centrality. Concerning the centrality binning, there are zero events from the third
BDT bin that migrates centrality bin (i.e. crosses the 20% boundary) with the varied
centrality calibration, and only one event in the second BDT bin (containing a minority of
signal events). The centrality has hence a negligible systematic effect on the results.

• It is chosen in this analysis to present all results as a function of the partially reconstructed
kinematic variables. A possible (imperfect) correction to the full Bc kinematics, that is not
considered in the nominal results, is presented in section 8.3.

In the pµµµ

T -dependence case, the main part of the uncertainty is obtained via the spread of
the corrected yields resulting from varying the pµµµ

T spectrum within the uncertainties from the
fit, the fit method, and the tag-and-probe. I then simply add in quadrature the uncertainties from
luminosity/Glauber model and from other Bc decays, and combine the corresponding bin-to-bin
correlation factors as explained in section 8.2.2. In other cases (integrated results and centrality
dependence), the first six uncertainty sources considered above are quadratically summed into
the final uncertainties, and their correlation factors are combined into the final correlation.

Figs. 8.1 and 8.2 present the contributions of these sources to the relative asymmetric uncer-
tainties for the pµµµ

T and centrality dependences, in pp, PbPb, and in the RPbPb. The dominant
contribution is from the fit in the pµµµ

T dependence, and from the acceptance and efficiency when
integrating on p

µµµ

T (including the centrality bins). For the pµµµ

T -integrated bins, the fit is the
second-largest contribution. For the pµµµ

T dependence, depending on the bins, the uncertainty
from the acceptance and efficiency corrections or from the fit method variations is the second-
largest one.

8.2 Correlations

For the cross sections, the bin-to-bin correlations for the fit, fit method, and acceptance and
efficiency uncertainties are directly provided by the procedures that compute these uncertainties.
For the RPbPb, they are also given by the procedures, for the fit method, for the acceptance and
efficiency, and, in the pµµµ

T dependence, for the uncertainty on the corrected yields (gathering
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Figure 8.1: Contribution of the various sources to the relative uncertainties on the cross
sections and on the RPbPb, compared to the total uncertainty (in black), for the pµµµ

T de-
pendence. Bin1 is low-pµµµ

T and bin2 is high-pµµµ

T . The vertical-hash bars show the high-side
uncertainties, and the horizontal-hash bars the low-side ones. The negative values for the
acceptance and efficiency in some bins represent the effect of anti-correlations compensating

the effect of the other uncertainties (cf section 7.6.5).
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the three mentioned sources). In these cases, the correlation is indeed computed with a RMS-
like formula on the distribution of ratios of the varied PbPb and pp values. In the centrality
dependence however, the bin-to-bin correlation misses for the fit uncertainty. This is calculated
through a simple MC in section 8.2.1, that is also applied to display the correlation for the RPbPb
fit uncertainty in the pµµµ

T dependence (unused in the final result).

The uncertainty from other Bc decays has been assumed fully correlated along bins, including
for the RPbPb where the uncertainty partially cancels in the PbPb/pp ratio. Similarly, for the
tag-and-probe uncertainty, the bin-to-bin correlation factor is assumed to be 0.8, including for
the RPbPb.

The bin-to-bin correlation factors from the different sources need to be combined into the
correlation quoted for the final uncertainty. The procedure to do so is explained in section 8.2.2.
The resulting correlation factors for all uncertainty sources and the final uncertainties are dis-
played in Table 8.1.

Table 8.1: Correlation factor between the two pµµµ

T or centrality bins for pp, PbPb, and
RPbPb, for all uncertainty sources and for the total uncertainties. For the pµµµ

T dependence
the final correlation combines the one from the ‘full’ uncertainty with the ones from luminos-
ity/Glauber model and other Bc decays. For the centrality dependence, the correlations of

the sources in the first five lines are combined.

uncertainty source pp
(pµµµ

T )
PbPb
(pµµµ

T )
RPbPb
(pµµµ

T )
PbPb

(centrality)
RPbPb

(centrality)

fit 0.10 0.05 0.06 0.05 0.10

fit method 0.97 0.30 0.57 0.37 0.42

acc. and eff. correction 0.98 0.99 0.99 1.00 1.00

Bc → J/ψ τ ντ decay + lumi. 1.0 1.0 1.0 1.0 1.0

tag-and-probe scale factors 0.8 0.8 0.8 0.8 0.8

full (w/o lumi.+Bc → J/ψ τ) 0.67 0.44 0.42 − −

total 0.69 0.45 0.43 0.54 0.57

8.2.1 Correlation factor of a ratio of random variables

If the correlation factors between the two analysis bins for the pp and the PbPb yields
ρ1,2(ypp) and ρ1,2(yPbPb) are known, what is the correlation factor for the ratio of the two yields
ρ1,2(yPbPb/ypp)? There is no exact analytical answer to this question, so I implement a simple
MonteCarlo to measure it. This is needed for the correlation of the fit uncertainty between the
two centrality bins of RPbPb– and only for display purposes for the pµµµ

T dependence.

For n = 2 × 105 iterations, I draw from a bivariate Gaussian distribution, separately for
the pp yields in the two studied bins, and for the PbPb yields. Each 2D Gaussian is biased to
contain the known correlations of the pp and PbPb yields. The RPbPb (ratio of the two yields,
normalised as in Eq. 3.9) resulting from each set of toy PbPb and pp yields is then plotted on a
2D histogram. Finally, the correlation factor of this 2D histogram is measured; it is that of the
RPbPb, corresponding to the input pp and PbPb correlations.

In practice, four random numbers u1, u2, v1, and v2, are drawn for each iteration, from a
unit gaussian distribution of mean 0. Then the pp yield distribution is reproduced from the
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nominal yields ypp
b=1,2, their uncertainties σpp

b=1,2, and their correlation factor ρpp
1,2, and similarly

for PbPb:

Y pp
1 = ypp

1 + u1 × σpp
1

Y pp
2 = ypp

2 + (u1 ρ
pp
1,2 + u2

√
1− ρpp

1,2)× σpp
2

and similarly in PbPb, but using (v1, v2) instead of (u1, u2). Three two 2D histograms are
filled, respectively with the pp or PbPb yields, or with the resulting RPbPb values. The wanted
correlation factor is extracted from the last histogram.

This method is run for the correlation of the fit uncertainty in the RPbPb. The resulting
correlation is only used for the centrality dependence, which is actually a special case, as the pp
yields entering the denominator are exactly the same in the two bins (i.e. the integrated yield).
This means the correlation factor is exactly 1 for the pp yields, resulting in an increase of the
correlation from the PbPb yields to the RPbPb. The mentioned histograms of the procedure in
this case are shown in Fig. 8.3, and the same plots for the pT dependence are omitted.
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Figure 8.3: Determination of the correlation of the fit uncertainty between the two centrality
bins for RPbPb. Left: identical corrected yields for the two bins in pp, drawn from a 1D
Gaussian distribution with the uncertainty of the pp integrated yield. Center: yields in
the PbPb centrality bins, drawn from a bivariate Gaussian distribution using the relevant
uncertainties. Right: Values of the RPbPb from the ratio of pp and PbPb yields drawn from

their respective distributions.
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8.2.2 Correlation factor for the sum of independent uncertainty sources

Let us start from the bilinearity of the covariance of two random variables. Let X, X ′, Y
be three random variables, i.e. uncertainty sources; then:

Cov(X +X ′, Y ) = Cov(Y,X +X ′) = Cov(X,Y ) + Cov(X ′, Y ) (8.1)

In passing, this gives the classic result that the variances (defined by V ar(A) = Cov(A,A))
of independent sources A and B (so that Cov(A,B) = 0) can be summed:

V ar(A+B) = Cov(A,A) + Cov(B,B) + 2Cov(A,B) = V ar(A) + V ar(B) (8.2)

Defining now the variables A1, B1, A2, and B2 corresponding to independent sources A and
B that influence respectively the first and second analysis bins, I get :

Cov(A1 +B1, A2 +B2) = Cov(A1, A2) + Cov(B1, B2) + Cov(A1, B2) + Cov(B1, A2) (8.3)
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The last two terms are null because of the independence of A and B, so I get the correlation factor
between the two analysis bins for a total uncertainty resulting from independent sources Ai:

ρ1,2 =
Cov(

∑
iA

i
1,
∑

iA
i
2)√

V ar(
∑

iA
i
1)V ar(

∑
iA

i
2)

=

∑
iCov(Ai1, A

i
2)

σtot,1σtot,2
(8.4)

where σtot,k = σ(
∑

iA
i
k) sums in quadrature the uncertainties of all (assumed independent)

sources, for each bin k. These standard deviations are symmetrised if they were extracted as
asymmetric (through the average of upper and lower uncertainties).

This allows to simply sum the covariances (between the two analysis bins) of each source
and then divide by the product of the total standard deviations in each bin, to obtain the final
bin-to-bin correlation for all sources. As shown in Table 8.1, the correlations from all six sources
are combined for the centrality dependence, and from only three sources in the pµµµ

T dependence,
in which some uncertainties were already combined in that on the corrected yields.

8.2.3 Separating correlated and uncorrelated uncertainties

As chapter 9 will explain, the final uncertainties of the results are presented differently than
the usual separation of statistical and systematic uncertainties. This is motivated by two facts.
First, the combine fit outputs uncertainties that already account for some systematic sources,
and separating them would be somewhat artificial. Second, the majority of the systematic uncer-
tainties actually depend significantly on the available statistics – meaning they would decrease
with larger datasets. The characteristic that I want to keep from the ‘statistical versus system-
atic’ paradigm is that systematic uncertainties are often considered fully correlated along bins.
The information most useful for the results to be used (typically for comparisons with models)
is the correlation factor between the two bins, needed for any rigorous fit. For display purposes,
let us find a way to separate the uncertainty into a part that is fully correlated between the two
analysis bins, and another part that is uncorrelated between the two bins. The latter is mostly
associated to statistical sources, but also partly to uncorrelated systematic sources.

Therefore, I intend to extract the correlated (σ1,c and σ2,c) and uncorrelated (σ1,unc and
σ2,unc) uncertainties, from the total uncertainties on the two bins σ1,tot and σ2,tot, and the total
correlation factor between the two bins ρ1,2. The quadratic sum of these two parts should equal
the total uncertainty:

σ2
i,unc + σ2

i,c = σ2
i,tot

I characterise the correlated part of an uncertainty by requiring that it is the only part that
cancels in the uncertainty on the subtraction (for a positive ρ1,2) or the addition (for a negative
ρ1,2) of the two bin contents. Defining the uncertainty σ1±2,tot on the addition or subtraction of
the bin contents, I get:

σ2
1±2,tot = σ2

1,tot + σ2
2,tot ± 2ρ1,2σ1,totσ2,tot

= σ2
1,unc + σ2

2,unc + σ2
1,c + σ2

2,c ± 2ρ1,2σ1,totσ2,tot

require
= σ2

1,unc + σ2
2,unc

(8.5)

To satisfy the last equation, and considering that one would like either the bin addition or
subtraction to cancel the correlated uncertainties, one needs:

σ2
1,c + σ2

2,c = 2|ρ1,2|σ1,totσ2,tot (8.6)



8.3. Potential correction of the visible pT 213

I also assume that the correlated fraction of the uncertainty is the same for the first and
second bin, so that σ1,c

σ1,tot
=

σ2,c
σ2,tot

. Inserting this in Eq. 8.6, I get the correlated part of the
uncertainty as:

σ2
2,c = σ2

1,c

σ2
2,tot

σ2
1,tot

=
2|ρ1,2|

1 +
σ
2
1,tot

σ
2
2,tot

σ1,totσ2,tot (8.7)

The correlation factor is calculated after symmetrising the uncertainties, but this formula
is applied separately to each side of the asymmetric uncertainties: the correlated part of the
low-side uncertainty uses the symmetrised correlation factor and the low-side total uncertainties
in both bins.

8.3 Potential correction of the visible pT

All the results presented in chapter 9 and before show dependences along the visible kine-
matic variables of the Bc, meaning those of the trimuon from the Bc decay. The energy taken by
the neutrino makes these variables differ from those of the true Bc. This effect adds to the recon-
struction by the detector, which smears the reconstructed kinematics; this is however negligible
compared to the effect of partial reconstruction.

One could imagine correcting the pµµµ

T distribution so that it corresponds in average to the
pT of the generated Bc, relying on the signal MC. In LHCb, it is usual to correct by the average
of the ratio of visible and generated kinematics, as a function of the visible mass: the neutrino
indeed takes away more energy at lower visible masses, yielding a smaller correction.

Fig. 8.4 shows the reconstructed trimuon pT and the full pT of the generated Bc. The signal
MC is weighted using the nominal second-step pµµµ

T correction obtained in section 7.6.
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Figure 8.4: Reconstructed trimuon pT and the full pT of the generated Bc, for all preselected
signal MC events, in pp (left) and PbPb (right).

——–
Fig. 8.5 shows the ratio of the visible and generated pT, as a function of the visible (trimuon)

mass. The average pT ratio is also shown. Despite the different pµµµ

T distribution corrections,
the results are similar in pp and PbPb. One could divide the pµµµ

T by this average ratio (red line
in Fig. 8.5), so that the corrected signal events would have in average the generated pT. This
average correction is below 15%, and even below 10% for m > 5.4GeV. One might rather correct
with the median ratio instead of the mean; it would give a smaller correction, because of the
long asymmetric tails in the distribution of the ratio.
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Figure 8.5: Ratio of the reconstructed trimuon pT to the full pT of the generated Bc, as a
function of the visible trimuon mass, for preselected signal MC events, in pp (left) and PbPb

(right). The red line shows the average ratio.
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Another way to understand the possible correction is via the ratio of the generated to the
visible pT as a function of the visible pT, shown in Fig. 8.6. Here the average ratio ranges
again from 10 to 15%, and is close to flat versus pµµµ

T . As this correction shows no significant
dependence on pµµµ

T , it could be applied without worrying about bin migration compared to the
results versus pµµµ

T . This actually means that a zeroth order correction can be to simply scale
the pµµµ

T axis in the shown results with this constant ratio (neglecting its mass dependence).
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At first order, this average correction (as a function of the mass) could be applied to each
signal MC event to obtain in average the true pT of Bc. However, there is a large dispersion
around the average pT ratio, which means events would be attributed to the wrong true pT

bin. The proper correction would involve unfolding the pT distribution, but the available data
statistics are very insufficient for this. A systematic uncertainty linked to the pT bin migration
could be relatively high due to the steepness of the pT distribution.
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Ne durent qu’un temps.1”

———–

François Arleo

Chapter 9

What do we learn?
Results

9.1 Cross sections and nuclear modification factors

The corrected yields obtained in section 7.6 are then normalised as explained in section 3.5.5.2.
In pp, dividing by the luminosity gives the cross section times the branching fraction for the
B+

c → (J/ψ → µ
+

µ
−) µ

+
νµ decay. In PbPb, the yields are divided by TPbPb × NMB

PbPb for the
appropriate centrality range, giving the per-event pp-equivalent yield times the branching frac-
tion. The cross section or pp-equivalent yield is then divided by the width of the considered
(2D) bin ∆p

µµµ

T ×∆yµµµ to obtain the differential cross section or pp-equivalent yield. The cross
sections and yields include both charges of the Bc meson. Finally, the RPbPb(B+

c ) is calculated
from Eq. 3.9, dividing the pp-equivalent PbPb yield by the pp cross section.

The central values for the results integrated on pµµµ

T (and centrality) are obtained with the
integrated fit, and the uncertainty from acceptance and efficiency is taken as uncorrelated from
the other uncertainties (as for the centrality dependence, see section 7.6.5). I have considered
accounting for the correlations between the acceptance and efficiency and the fit, fit method,
and tag-and-probe uncertainties, as is done for the pµµµ

T dependence – by taking the uncertainty
on the four mentioned sources as the RMS of the sum of the varied corrected yields in each pµµµ

T
bin. However, section 7.6.5 (p. 200) explains how this method is somewhat ill-defined, so it is
discarded.

This measurement is performed as a function of the visible (trimuon) Bc transverse momen-
tum, and the results are not claimed to represent a dependence in the true pT(Bc). The trimuon
pT is in general lower than the true transverse momentum of the Bc due to the unreconstructed
neutrino of the decay. Section 8.3 has compared the two variables and proposed a correction,
that is not applied in the shown results. Considering the relatively large uncertainties on the
results, the absence of this correction is a rather sub-dominant systematic change compared to a
true pT dependence. A zeroth-order approximation of the result versus the true pT would be to
scale the pµµµ

T axis by ∼ 1.1− 1.15. This neglects the dispersion of the pµµµ

T /pT,true ratio around

1“Beauty, charm
Fleeting combination
Last but a while.”
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the average as well as the trimuon mass dependence of the average correction. However, for an
adequate comparison of the results with theoretical predictions, the latter should perform the
leptonic channel decay and be quoted using the trimuon kinematic variables – it is easier to fold
than to unfold kinematic distributions.

Table 9.1 presents for the pµµµ

T and centrality bins and for the integrated sample the results
of the cross sections and RPbPb(B+

c ) along with the full uncertainty on these quantities, and
the correlation factor between the two bins. This measurement is performed in a phase space
divided in two pµµµ

T bins that each have cuts on the rapidity |yµµµ | (see the cuts in section 5.6);
the integrated and centrality-binned results integrate over these two pµµµ

T and rapidity regions.

Table 9.1: Branching fraction BF of the B+
c → (J/ψ → µ

+
µ
−) µ

+
νµ decay times the

B±c meson pp cross section and PbPb per-event yield, and the B±c nuclear modification fac-
tor, in the two pµµµ

T and centrality bins, and integrated over the studied regions. The total
uncertainties and the correlation between the two bins are also displayed.

system bin quantity value ρ1,2

pp

6 < p
µµµ

T < 11GeV
BF × dσpp

dp
µµµ

T dyµµµ
[pb/GeV] 5.01+0.48

−0.73
0.69

11 < p
µµµ

T < 35GeV 0.275+0.016
−0.023

integrated BF × σpp [pb] 76.6+5.6
−7.5 −

PbPb

6 < p
µµµ

T < 11GeV BF × 1

N
C
MBT

C
PbPb

dN
Bc
PbPb

dp
µµµ

T dyµµµ

[pb/GeV]

8.3+3.9
−2.9

0.45
11 < p

µµµ

T < 35GeV 0.192+0.033
−0.033

centrality 0-20%
BF × 1

N
C
MBT

C
PbPb

N
Bc
PbPb(C)

[pb/C]

119+39
−37

0.54
centrality 20-90% 98+33

−32

integrated 110+33
−32 −

PbPb
pp

6 < p
µµµ

T < 11GeV
RPbPb(p

µµµ

T )
1.67+0.91

−0.58 0.43
11 < p

µµµ

T < 35GeV 0.70+0.14
−0.12

centrality 0-20%
RPbPb(C) 1.55+0.54

−0.47 0.57
centrality 20-90% 1.28+0.46

−0.42

integrated RPbPb 1.43+0.46
−0.41 −

The differential B±c branching fraction times cross section and per-event yield are plotted
in Fig. 9.1 for the pµµµ

T dependence and in Fig. 9.2 for the integrated samples. In these plots,
the fit uncertainty (containing mostly the purely statistical uncertainty) is isolated from the
total uncertainty. The pp cross section is compared to the prediction from bcvegpy2.2, further
detailed later in this section. The Bc nuclear modification factor is shown in Fig. 9.3 as a function
of pµµµ

T , and in Fig. 9.4 versus the centrality of the PbPb collision. In these plots, the part of
the uncertainty that is uncorrelated between the two bins (such that the uncertainty on the
subtraction of the two bins is the quadratic sum of the uncorrelated uncertainties) is isolated
from the total uncertainty, as explained in section 8.2.3.
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Figure 9.1: The cross section or pp-equivalent yield for B+
c meson production times the

branching fraction of the B+
c → (J/ψ → µ

+
µ
−) µ

+
νµ decay, in pp and PbPb collisions, as a

function of pµµµ

T , compared to bcvegpy2.2 predictions [181]. The bin-to-bin correlation factors
are printed. For data, the solid and lighter rectangles show the fit and total uncertainties,
respectively. See the text concerning the placement of markers. For bcvegpy, the red
horizontal bars and small open circle respectively mark out the four quartiles and the mean
of the distribution of about thirty different B+

c → J/ψ µ
+

νµ branching fraction predictions
that multiply the bcvegpy predicted cross sections.

——–

For the pµµµ

T dependent cross sections, the abscissa markers are drawn at the pµµµ

T obtained in
section 7.6.1 applying the Lafferty-Wyatt prescription to the second-step-corrected pµµµ

T spectrum
(cf section 7.6.4). The resulting pµµµ

T bin positions are relatively close for the pp or the PbPb
spectrum, so their arithmetic average is taken as the position of the pµµµ

T markers for RPbPb.
The centrality bin markers are placed at the minimum-bias average number of participants
Npart in the corresponding centrality range, calculated from the model used in section 3.5.5.2.
The low statistics do not allow for a doubly-differential distribution (in centrality and pµµµ

T ). The
uncertainty is dominated by the acceptance and efficiency correction in the centrality dependence,
because the pµµµ

T spectrum variations are integrated on pµµµ

T , but it is very correlated for the two
bins. This is the case as well for the integrated cross-sections and modification factor.

The measured values of RPbPb in the two pµµµ

T bins are probably different, with a significance
of 1.8σ1. This suggests that the pT spectrum of Bc mesons is softened in the QGP.
The RPbPb in the pµµµ

T ∈ [6, 11]GeV bin stands 1.2σ above 1, and is consistent with high
values, possibly exceeding 2.5. If RPbPb continues rising at low-pT, as most Bc mesons are
produced below the pT threshold of this measurement, the resulting RPbPb values integrated
over phase space could reach values consistent with the generous predictions of section 2.5.
Future measurements could consolidate this hint of RPbPb(B+

c ) > 1, which would be a totally
1Significance values given in this section assume an (asymmetric) Gaussian behaviour of the total uncertainties,

taking into account the asymmetric uncertainties, and the bin-to-bin correlations.
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unambiguous proof of recombination – or at least of a new Bc production mechanism in
heavy ion collisions.

The pp cross section can be compared to theoretical expectations from bcvegpy2.2 [181]
(obtained from the samples detailed in section 3.5.2.1), where the Bc mesons are decayed with
evtgen1.3. The easiest to compare is the ratio between the differential cross sections in the
low-pµµµ

T and high-pµµµ

T bins: it equals 24.1 in the original bcvegpy simulation, whereas our
measurement gives 18.2+1.3

−2.1. This suggests that bcvegpy overestimates the high-pµµµ

T spectrum
slope, hence generating Bc mesons with an underestimated pµµµ

T .

Comparing the absolute cross sections is however less straightforward, because the total cross
section given by bcvegpy must be multiplied by the branching fraction of the studied decay
before being compared to this measurement. The J/ψ → µµ branching fraction is precisely known
(5.96± 0.03% [46]), but not the one for the B+

c → J/ψ µ
+

νµ decay: it was never measured, and
its theoretical predictions range from 1.3% to 7.5%, based on cross-studies in Refs. [192, 205]
quoting about thirty different values. Values from Ref [205] actually need to be combined with
the ratio of the hadronic to leptonic branching fractions from Ref. [52], whose 15% uncertainty
is negligible compared to the spread of the branching fraction predictions.

The total cross section given by bcvegpy (after integrating it with vegas) for both B±c
charges is 160 nb for the ground state 1S0 and the 3S1 state (almost all decaying to the ground
state and a soft photon). When including the other eight excited states simulated in bcvegpy,
the cross section rises to 235 nb. This measurement observes only the ground state, but let us
assume here that the feed-down from the excited states to the ground state is close to 100%,
hence that the observable total Bc cross section is 235 nb.
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I compare this cross section with two measurements from LHCb, up to the values of the
branching fraction. Ref [192] measures the fraction of b quarks that fragment into a Bc times the
leptonic branching fraction fc ×BF (B+

c → J/ψ µ
+

νµ) = 5.0× 10−5 with a 5% uncertainty. The
total production cross section of hadrons containing a b quark was measured in Ref. [206] to be
72 µb for the pseudorapidity range 2 < η < 5 at

√
s = 7TeV. I get two extrapolation factors from

bcvegpy: 0.69 to get to
√
s = 5.02TeV, and 4.1 to translate this into a cross section integrated

on the whole phase space, giving 204 µb. Multiplying by the fragmentation to Bc states, I obtain
a total cross section times leptonic branching fraction of 10.2 nb. Dividing by branching fractions
from 1.3 to 7.5% yields total cross section values from 136 to 785 nb, compatible with bcvegpy
for the highest branching fraction values. However, it should be noted that these highest values
are relative outliers, and excluded from considerations in Ref. [192] on grounds that it is not
compatible with previous measurements of the width of B mesons to semi-leptonic final states.

As bcvegpy seems to overestimate the high-pµµµ

T slope, it is fair to correct the fraction of
the total cross section that reaches the experimentally studied phase space before attempting a
comparison to an absolute normalisation of the cross section from bcvegpy. As relatively high
p

µµµ

T ranges are measured here, this fraction is very sensitive to the pµµµ

T spectrum slope, if the
reference is the total cross section (which considers mostly low-pµµµ

T Bc mesons). So I correct the
p

µµµ

T spectrum of bcvegpy with the second-step measurement before recalculating this fraction,
which is then found to be 1.5 times higher than the original value. This constant factor multiplies
both pµµµ

T bins of the bcvegpy expectation displayed in Fig. 9.1.

The bcvegpy absolute cross section seems to be lower than our result, despite two hypoth-
esised corrections that increase its value (the 100% feed-down of excited states into the ground
state, and the preliminary correction of the fraction of simulated events that reach the studied
phase space). The cross section propagated to the phase space measured here are consistent
– within the above caveats – with our result when taking the (relatively disfavoured) highest
branching fraction predictions for the B+

c → J/ψ µ
+

νµ decay. The fact that only the domi-
nant production mechanism in pp collisions (gluon-gluon fusion) is simulated in bcvegpy could
participate in this probable underestimation.
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Figure 9.5: Comparison of theoretical predictions of Yao et al. (based on Ref. [102]) of
the Bc nuclear modification factor in the two pµµµ

T bins (left) and in the two centrality bins
(right). The kinematic distributions of the prediction are those of the full Bc meson.
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Only two theory predictions were received. The first, from Rapp et al., was presented in
section 2.5 (Fig. 2.10), because it in integrated over the phase space, so it cannot be directly
compared to our results. The second, from Yao et al., is based on the transport model of
Ref. [102], a paper containing the Bc predictions being in preparation. This model includes
both correlated (b and c from a previously dissociated Bc) and uncorrelated (b and c from
independent hard processes) recombination. It does not however include cold nuclear matter
effects like nPDFs, nor takes into account the modification of excited Bc states that would decay
into the ground state measured here. The kinematics are the ones of the full Bc, and not of the
daughter trimuon; as shown in section 8.3, this is non-negligible but sub-dominant effect (10 to
15% difference in pT in average) considering the uncertainties of this measurement.

Fig. 9.5 shows the comparison of these predictions to our measurements, in pµµµ

T and centrality
bins. The predicted suppression is much higher than what we measure. This might be due to
the feed-down from excited states, whose potential recombination is ignored in this prediction.
This could point to the importance of recombination of excited states, and in particular to the
cross-talk between recombined excited states: even with reasonably small feed-down fractions,
if the excited states are more recombined than the primary ground states, the enhancement of
ground states will be larger. Ref. [102] declares that this cross talk recombination is key to
describe the bottomonium suppression.

Putting aside the global magnitude of the suppression, Yao’s prediction shows no pT de-
pendence, contrarily to the pT dependence having a 1.8σ significance in this measurement. Yao
also predicts a RPbPb in 0 − 20% centrality to be twice lower than that in 20 − 90% centrality,
whereas this measurement finds no significant centrality dependence. Overall, as the recombina-
tion is probably underestimated in this model (that hence mainly shows the effects suppressing
the Bc production), this comparison could suggest that most observed Bc mesons are produced
by recombination rather than in the primary hard scatterings.
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Figure 9.6: Comparison of the Bc modification to the nuclear modification factors measured
with CMS for various open heavy flavour mesons (left), or for heavy quarkonia ground and
excited states (right). Only the total uncertainty is shown for the Bc, whereas all other results
show the statistical uncertainties as bars and the systematic uncertainties as shaded boxes.

——–

It is also interesting to compare these results to previous CMS results on the modification
of heavy flavour mesons. Fig 9.6 shows both a comparison of the B±c modification to that of
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multiple open flavour mesons (light hadrons [79], and D0 [77], B± [76], and B0
s [74] mesons,

left), and to heavy quarkonia ground and excited states (1S and 2S states for charmonia [78]
and bottomonia [83], right). The suppression of quarkonia is strikingly larger than that of Bc

mesons, pointing towards a different behaviour in the QGP despite a similar quark content.
The Bc modification is found to be close to the Bs meson one (within the large uncertainties),
even though the expected enhancement for these mesons comes from a different source. That
of Bs mesons points to strangeness enhancement, which is mostly thermal and changes the net
strangeness number in the QGP; that of Bc mesons points to charm recombination, which is
mostly combinatorial and is not linked to a change in the total charm number.

Bc mesons also appear to be less suppressed than open heavy flavour mesons (excluding Bs)
and light hadrons. Let us calculate the p-value for the hypothesis that the measured RPbPb is
below 0.5 (the typical value of the modification of light hadrons, and the maximal value reached
by current quarkonia measurements) in both analysis bins. I use a 2D asymmetric Gaussian
implementing the final RPbPb values and uncertainties, including the bin-to-bin correlation, and
calculate its integral in the region where the values of both bins are below 0.5. The resulting p-
value (0.5%) yields a 2.8σ significance (both when using the pµµµ

T or the centrality bins), tending
to confirm that Bc mesons are less suppressed than most hadrons. Considering the
current uncertainties and the possible recombination, it is hard to use the Bc measurements to
inform the mass dependence of energy loss at low- to mid-pT. The overall view of Fig 9.6 also
suggests that the RAA of all hadrons converge at very high pT, supporting the idea of a universal
pT dependence of the radiative energy loss, which is discussed in the second part of this thesis.

9.2 Conclusion

The analysis fulfilled in this thesis studies the B±c meson in its semi-leptonic decay B+
c →

(J/ψ → µ
+

µ
−) µ

+
νµ , where the neutrino is not reconstructed. I measured its pp and PbPb

cross sections, as well as its nuclear modification factor in PbPb collisions, as a function of the
transverse momentum of the trimuon decay daughter and of the PbPb collision centrality. The
presence of Bc signal in PbPb collisions is significant at the 7.6σ level, which makes this analysis
the first to observe Bc mesons in heavy-ion collisions. The Bc meson is significantly less
suppressed than most other light and heavy hadrons, which may indicate that the heavy-quark
recombination is a significant Bc production mechanism. The hypothesis of a modification factor
independent of pT is rejected with a 1.8σ significance, favouring a softening of the pT spectrum,
and the modification in the low-pT region stands 1.2σ above 1. Future measurements with larger
datasets will be able to confirm or infirm these hints, potentially leading to an unambiguous
proof of heavy quark recombination, namely RAA > 1 for heavy hadrons.
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“Off the flying quarks
In the cosmogonic bath

Colour is blooming”

———–

François Arleo

Chapter 10

Are we lost in colour?
Energy loss in the QGP

The last part of this thesis addresses the energy loss that partons undergo when they radiate
gluons, due to their interaction with the QGP. Some aspects of energy loss in the QGP were
already discussed in section 2.3. Here, I develop on a model focusing on the radiative energy loss
of high-pT partons. At high pT, this process should indeed dominate over other collisional energy
loss, as well as over other processes affecting partons in heavy ion collisions. The model is that
of F. Arleo in Ref. [2], and predicts a universal dependence of high-pT hadron suppression in
the QGP, from which an average energy loss can be extracted. This chapter explains this result
after some generalities about radiative energy loss. In the next two chapters, I explain first a
new scaling that I set forth from the energy loss values extracted in the first scaling, then other
contributions I brought to the model.

10.1 BDMPS gluon emission

The starting point of the model is the medium-induced gluon emission spectrum deter-
mined by Baier, Dokshitzer, Mueller, Peigné and Schiff in Ref. [207]. Let us present
here some aspects of it. First, one broad goal of the study of energy loss in the QGP is to
quantify its diffusion properties, which can be encoded in the transport coefficient q̂. It is
the typical squared transverse momentum kick received from the medium by a traversing parton
in one rescattering (µ2), in units of the mean path length of this parton in the medium (λ).
Explicitly:

q̂ =
µ2

λ
(10.1)

where λ ≡ λg is by convention here the mean path length of a gluon. The mean free path for any
traversing parton in representation R is Nc

CR
λ (as Nc is the gluon colour charge), so its associated

transport coefficient is rather q̂R = CR
Nc

µ
2

λ . The momentum kick µ2 in one rescattering is of order
of the Debye mass:

µ2 ∼ m2
D ∼ αST 2 (10.2)

where Eq. 2.3 is used for the Debye mass.
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Gluon formation time

Let us compute the typical formation time of an emitted gluon, of use in the following. The
formation time tf is linked to the phase of the eik.x term of the wave function of the gluon,
where k and x = (t, z, x2, x3) are the energy and position 4-vectors. Let us consider light-cone
coordinates, where x± = t±z√

2
and the 4-vector dot product is

a.b = a−b+ + a+b− − a2b2 − a3b3 . (10.3)

Let us assume for simplification that the gluon is on-shell, so that it is on the light-cone and
x− = 0. Considering it travels only along the z direction, the dot product of interest becomes

k.x = x+k−. Looking now at the 4-vector k, we have ω = kt = |~k| =
√
k2
z + k2

⊥ on the light-cone,
so that

k−k+ =
1

2
(k2
t − k2

z) =
k2
⊥
2
. (10.4)

In addition, k+ =
√

2ω and x+ =
√

2t, so the phase of the gluon wave-function is

x+k− =
tk2
⊥

2ω
(10.5)

The phase is also of order t/tf , therefore

tf ∼
ω

k2
⊥

(10.6)

Another approach to obtain this result is to consider tf to be the time necessary for the
distance d between the gluon and the parton it is emitted from to be larger than the (inverse of
the) gluon transverse wave length, so that the gluon and the parent parton are not coherent any
more. This amounts to

d ∼ v⊥tf =
k⊥
ω
tf & 1

k⊥
(10.7)

which is consistent with Eq. 10.6.

Different gluon emission regimes

The gluon energy spectrum is expressed as ω dI
dω . Integrating this spectrum directly provides

the total energy lost by a parton traversing the QGP. Depending on the formation time of the
emitted gluons, this spectrum behaves differently. Three regimes can be separated, illustrated
in Fig. 10.1. In this thesis, the total energy loss is always assumed small compared to the initial
parton energy (this is the soft gluon approximation), i.e. ω � E, where E is the energy (or the
transverse momentum) of the traversing parton.

The shape of the gluon emission spectrum depends on how the gluon formation time com-
pares to the probability for the traversing parton to interact with the medium (through the mean
path length λR), and to the finite length L of the medium:

• At small formation times (tf � λR), the parton scatters independently with each source of
radiation. This is the Bethe-Heitler (BH) regime, where the parton scatters L/λR times.

• The Landau-Pomeranchuk-Migdal (LPM) regime corresponds to intermediate forma-
tion times λR � tf . L. In this regime, groups of tf/λR scattering centres behave as
single coherent radiators. There are hence L/tf gluon emissions.

• In the fully coherent regime at large formation times (tf � L), the whole medium acts
as a unique coherent scattering center.
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Figure 10.1: Regimes in the energy spectrum of the gluons emitted in the medium. Figure
from Ref. [18].

——–

Now, the squared transverse momentum kick due to one emitted gluon k2
⊥ in Eq. 10.6 is the

product of the broadening due to one rescattering in the medium µ2 with the number of coherent
scattering centres that the gluon is emitted from: 1, tf/λR and L/λR respectively in the BH,
LPM and fully coherent regime. Therefore, in the fully coherent regime:

k2
⊥ =

µ2L

λR
= q̂RL (10.8)

and
tf =

ω

q̂RL
. (10.9)

In the LPM regime, tf = ω
q̂R tf

implies

tf =
√
ω/q̂R . (10.10)

In the BH regime, we get tf = ω
q̂Rλ

= ω

µ
2 , so the probability of emitting a gluon should be

proportional to 1/ω in a fixed-size medium. The gluon energy spectrum ω dI
dω ∝ αS hence does

not depend on the emitted gluon energy, as shows Fig. 10.1.

Conversely, in the LPM regime, the gluon energy spectrum scales with the total number of
gluons emitted by the traversing parton, so:

1

αS
ω
dI
dω
∝ L

tf
=

√
L2q̂R
ω

=

√
2(CR/Nc)ωc

ω
(10.11)

where
ωc =

1

2
q̂L2 (10.12)

is the characteristic total energy loss for a traversing gluon, as explained below.

Total energy loss

From integrating over the energies of all emitted gluons, the total energy loss of a parton of
colour charge CR in a medium of size L, from Eq. (6.8) of Ref. [207] (corrected by a factor 1

2 as
explained in Ref. [208]), is, averaging over fluctuations, but for a fixed parton path:

ε ≡ ∆E =
αSCR

4

µ2

λg
L2 ln

(
L

λg

)
' αSCR

2
ωc (10.13)
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where the term ln(L/λg), neglected here, is indeed of order 1 in practice. This is interestingly
independent of the energy of the considered parton, up to logarithmic corrections (discussed at
the end of this section). It is reminded here that this is valid only in the soft gluon approximation,
i.e. when the fractional energy loss is small.

The dependence ε ∼ q̂L2 can be understood from the discussion of (in)coherent regimes
above and from the spectrum schematised in Fig. 10.1. The LPM regime is the main contributor
to the total energy loss, in particular at the largest energies allowed in this regime, corresponding
to tf ∼ L. The latter yields ω = q̂L2 using Eq. 10.10. This hence supports the result of Eq. 10.13,
based on the integral ∫ q̂L

2

q̂λ
2

dω√
ω

√
2ωc = 2

√
2ωc

(√
q̂L2 −

√
q̂λ2

)
' 4ωc . (10.14)

where here λ, q̂, and ωc are those of the traversing parton, and the condition L� λ was used.

For tf � L, the energy spectrum rapidly decreases as ω dI
dω ∝ 1/ω, which integrates (in the

range [q̂L2, E]) into a term 2ωc ln( E
2ωc

) (this logarithmic dependence is also found in the high-
energy limit in Ref. [209]). This weak contribution is due to most of the emitted gluon radiation
originating from interactions with the vacuum (as a jet in pp collisions) rather than with the
medium. Therefore, this regime does not contribute much to the induced gluon spectrum,
i.e. the difference between the AA and pp spectra, and the energy loss from gluons in this regime
can be neglected in the integral of the energy spectrum. This logarithmic dependence on the
energy of the traversing parton is neglected in this study. However, one could test how this term
affects the scaling explains below, by scaling the standard energy loss of Eq. 10.13 by 1+ 1

2 ln( E
2ωc

)

(comparing the obtained integral with that of Eq. 10.14) in the quenching weight defined later;
see section 12.4. Similarly, the Bethe-Heitler regime does not contribute significantly, because
the energy of the emitted gluons is too small (< q̂λ2

R).

10.2 Radiative energy loss model

Let me remind the main message of Ref. [2]. The goal is to determine the average energy
loss from measurements of single hadron modification, by modelling only the dominant process
at high pT: the medium-induced gluon radiation. Cold nuclear matter effects indeed fade away
above the saturation scale (of order 1 − 2GeV) of the initial colliding nuclei [210]. So do other
effects of hot nuclear matter, such as quark recombination – including that of light quarks, but
the principle is the same as that explained in section 2.5. Another advantage of studying high-pT

partons is that the gluon emission spectrum becomes independent of the energy, up to logarithms
(see section 10.1). Finally, the pp cross section for producing single hadrons has a power law
behaviour at high pT, which is key for the scaling explained below.

Spectrum and quenching weight

The effect of energy loss on the production cross section of a particle species i in minimum-
bias AA collisions is modelled as:

dσiAA
dp⊥

(p⊥) = A2
∫

dε′ Pi(ε
′)
dσipp
dp⊥

(p⊥ + ε′) (10.15)

where the quenching weight Pi(ε
′) is the probability for particle i to lose the energy ε′ when

traversing the medium. As explained section 10.1, it is independent of the parton energy E in
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the large E approximation [211]. Therefore, one can define a scaleless P̄i such that:

P (ε) ≡ 1

ωc
P̄

(
x ≡ ε

ωc

)
(10.16)

Knowing the characteristic energy loss ωc and the mean of the P̄ distribution (〈x〉 = 1
2αSCR

from Ref. [208] or from Eq. 10.13), one can obtain the average energy loss:

〈ε〉 = 〈x〉ωc (10.17)

It is denoted as 〈ε〉 when it is related to this phenomenological model and the associated fits,
where the behaviour

Fragmentation into hadrons

What is observed in the experiment is not the parton that escapes the medium, but the
hadron that it hadronised into, which only carries of fraction z of the momentum of its parent
parton. To obtain the spectrum of observed hadrons, one must integrate the partonic cross
section over the fragmentation functions of every parton species to the considered hadron species.
Here, it is assumed that only one parton species dominates the production of a given hadron
(e.g. gluons dominate the production of light hadrons); this assumption will be challenged in
Eq. 12.4. It is also assumed that 1

z P̄ (x/z) is a smooth function of z, so that it can be evaluated
at a typical value 〈z〉 and taken out of the integral over the fragmentation function. With these
assumptions and a change of variables x = ε/ωc, Eq. 10.15 is only modified due the p⊥ loss of
the hadron being multiplied by 〈z〉 compared to that of its parton parent:

dσAA
dp⊥

(p⊥) = A2
∫

dx P̄ (x)
dσpp
dp⊥

(p⊥ + 〈z〉ωcx) (10.18)

pp spectrum

Now let us determine the p⊥ spectrum at high energy in pp collisions. It is assumed to follow
a power law at large p⊥, which is consistent with the measurements that are fitted for various
hadron species and energies:

σpp
p⊥dp⊥

∝ 1

p
n(h,
√
s)

⊥

(10.19)

The values of the exponent n are obtained from fits to measurements of the production of the
considered hadron in pp collisions. The E dσ

d3
p
∝ dσ

p⊥dp⊥
measured spectra are actually fitted

with the Kaplan spectrum of Eq. 7.27, which tends to a power law at large p⊥, and gives the
same value of the exponent n as that of a power-law fit using only very high-p⊥ measurements.
A lower limit on p⊥ of 5GeV is used in these fits. CMS measurements of Refs. [79, 212, 213]
are used for light hadrons production, respectively for

√
s = 2.76, 5.02, and 5.44TeV. The n

values are 5.55± 0.02, 5.54± 0.02, and 5.29± 0.04, respectively. The apparent discrepancy (5%)
between the exponents at 5.02 and 5.44TeV might come from the 5.02TeV measurements reaching
higher p⊥ values, where some phase-space limitations might start to increase the spectrum slope;
however, this difference has a negligible impact on the coming results. A measurement from
PHENIX at RHIC [214] is used for the pp spectrum of π

0 at
√
s = 200GeV, yielding an exponent

n = 7.70± 0.28; the accessible p⊥ range being closer to the total available energy at RHIC could
be the cause of this faster spectrum decrease. CMS measurements are used for the pp spectrum of
J/ψ [78] and D [77] at

√
s = 5.02TeV. The resulting n exponents are respectively 5.90±0.11 and

5.28±0.11. The associated uncertainty will be ignored in the uncertainty on the extracted mean
energy loss. Fig. 10.2 shows the p⊥ spectrum fit in pp for charged hadrons (at two energies),
and J/ψ and D mesons (at

√
s = 5.02TeV). For the last two, I fitted more recent measurements

than the 7TeV data originally considered (see Table 11.1).
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Figure 10.2: Fit of the p⊥ spectrum in pp collisions with a Kaplan spectrum (equivalent to
a power law at high p⊥), at various energies and for various hadrons. Top right: π

0 mesons at√
s = 0.20TeV. Top left: light hadrons at

√
s = 5.02TeV. Bottom: J/ψ (left) and D (right)

mesons at
√
s = 5.02TeV. The fit of pp collisions at

√
s = 2.76TeV and

√
s = 5.44TeV are

similar and not shown for brevity.
——–

Nuclear modification factor scaling

Now one can write the p⊥-dependent nuclear modification factor RAA using Eq. 1.25 and
the pp cross section dependence of Eq. 10.19:

RAA(p⊥) =

∫
dx P̄ (x)

 1

1 + x 〈z〉ωcp⊥

n

(10.20)

At fixed n, this only depends on p⊥
〈z〉ωc

. Considering that small energy losses dominate the
quenching weight, one can exponentiate the power law as:

RAA(p⊥) =

∫
dxP̄ (x) exp

(
−xn〈z〉ωc

p⊥

)
. (10.21)

This assumption was checked in Ref. [2] to be very good for the n and p⊥ ranges of the considered
measurements. It will be checked again on each set of measurements fitted in the following.
Eq. 10.20 therefore gives a RAA that is only a function of the scaling variable

p⊥
n〈z〉ωc

. (10.22)
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An explicit expression of RAA is obtained by using the quenching weight computed in Ref. [215]
(for ‘outgoing quarks’) as a log-normal empirical parametrisation.

The shape of Eq. 10.20 can be fitted on the pT-differential modification of high-pT hadrons
in various heavy ion collision systems. For each

√
s and hadron species, n is known by fitting

pp spectrum measurements (shown in Fig. 10.2). Therefore, the values of ω̄c ≡ 〈z〉ωc can
be extracted from fits to various systems. For now, no assumption is made on the average
hadronisation fraction 〈z〉 (expected to be of order 0.5 for light hadrons [216]), and only values
of ω̄c are quoted.

Examples of such fits are displayed in Fig. 10.3. The exact model of Eq. 10.20 is used as fit
function. The difference with using the model of Eq. 10.21 including the exponentiation is small.
I have superimposed on these plots a fit (dashed red line) using this approximate model along
with the associated fitted energy loss, and the resulting RAA functions are indeed very close,
especially towards peripheral collisions and high p⊥ (where the argument of the exponential p⊥

nω̄c
is small thanks to a small energy loss). In addition, a somewhat arbitrary lower limit of about
10GeV (varying slightly for different systems, see section 11.1.2.2) is set on the data points
considered in the fit, corresponding to the conditions p⊥ � mh, ε in which the model is assumed
to hold, and to the fact that radiative energy loss might not be the dominant effect any more at
lower momenta. This lower limit is discussed in section 11.1.2.2, yielding a systematic uncertainty
on the extracted energy loss. I have superimposed on the fit plots an alternative fit (dotted green
line) and the resulting energy loss using a higher p⊥ threshold. No uncertainties on the x-axis
are considered in the fit. For each bin, the geometric average of the p⊥ bin limits is taken as the
x-axis bin centre.

Fits of the modification of light hadrons in multiple collision systems, centrality ranges, and
at different energies have been performed. I have fitted more sets of measurements than in the
original work [2], in particular from collisions of other nuclei than lead (xenon and gold) and at
other energies (including at RHIC). Examples of fits in various centrality classes and systems
are presented in section 11.1.2.4, along with details of the extraction of the fitted energy loss.
Section 11.1.3 illustrates how various systems all scale with the variable of Eq. 10.22 at high p⊥.
This indicates that radiative energy loss is the dominant process modifying the production in
this regime and that it is well described by the model adopted here.

The p⊥-dependent modification of J/ψ [78] and D [77] mesons from CMS have also been
fitted, and scale with the p⊥

nω̄c
variable as the light hadrons. I have added additional J/ψ and D

measurements to be fitted compared to the original publication (see chapter 11).
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Figure 10.3: Inclusive (minimum-bias) RAA of hadrons, fitted by the energy loss model.
The nominal fit function is in blue (Eq. 10.20), while a fit with the exponentiated model
(Eq. 10.21) is shown in dashed red, and a fit with a higher p⊥ threshold is shown in dotted
green. Top left: light charged hadrons in PbPb collisions at √s

NN
=5.02TeV [79]. Bottom:

J/ψ [78] (left) and D [77] (right) mesons in the same conditions. Top right: Neutral pions in
AuAu collisions at 200GeV [217].

——–



“You may think it strange that I publish anything about
colours, without a particular theory of them. But the

professed design of this treatise is to deliver things
rather historical than dogmatical [...]. This is a

treatise, wherein I do not pretend to present my reader
with a compleat fabrick, or so much as a model; but
only to bring in materials proper for the building. ”

———–

Robert Boyle, Experimenta et considerationes de
coloribus... ceu initium historiae experimentalis de

coloribus, Foreword, 1671.1

Chapter 11

Is it universal?
Many systems

11.1 Many systems

11.1.1 Measurements to be fitted

Data from more systems than in the original model have been fitted with the predicted
RAA(pT) shape of Eq. 10.20. Measurements in a different collision system have been fitted,
namely in xenon-xenon (with A = 154) collisions at

√
s = 5.44TeV, and in gold-gold (AuAu,

with A = 197) collisions at
√
s = 200GeV at RHIC. More measurements of the modification of

J/ψ and D mesons have also been included, as well as ALICE measurements of the modification of
charged hadrons. All measurements have been extracted from the HepData database. Table 11.1
provides a full view of the measurements fitted with the model of Eq. 10.20. One energy loss
value per dataset per centrality class is extracted from these fits. The datasets used for the fits
of the p⊥ spectra in pp are also listed. The observation of a scaling of the high-p⊥ modification
in PbPb as well as in XeXe collisions, discussed in section 11.1.3, has been published in Ref. [3],
complementing Ref [2].

I need to comment some of these datasets. The results extracted from the π
0 measurements

with PHENIX at RHIC will be considered on the same footing than those from inclusive charged
hadrons, as the latter at LHC energies contains 80-90% of pions. This is equivalent to considering
that the average parton parents of pions behave similarly in the QGP as the partons that fragment
into inclusive hadrons. In addition, in these PHENIX measurements, the available modification
factors at centrality > 60% are discarded. This is because the global uncertainties (from Glauber

1English translation (from latin) from The works of the honourable Robert Boyle, 1744, Vol. 2, p. 3. The
original title translates as “Experiments and considerations on colours... meaning the beginning of the experimental
history of colours”.
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Table 11.1: Datasets to be fitted with the radiative energy loss model, each providing a
fitted energy loss value per centrality class. The centrality class column also indicates if the

fitted pp spectrum originates from this dataset.

Particle System √
sNN

experi-
ment

already in
Ref. [2]?

pp fit and
centrality classes Kinematic range Ref.

Light
charged
hadrons

h
±

PbPb

2.76TeV
CMS yes pp, 0-5%, 5-10%, 10-30%,

30-50%, 50-70%, 70-90%
|η| < 1,

p⊥ < 103GeV [212]

ATLAS no
0-5%, 5-10%, 10-20%,

20-30%, 30-40%, 40-50%,
50-60%, 60-80%

|η| < 2,
from p⊥ < 95GeV to

p⊥ < 150GeV
[218]

ALICE no 0-5%, 5-10%, 10-20%,
20-30%, 30-40%, 40-50%,
50-60%, 60-70%, 70-80%

|η| < 0.8,
p⊥ < 50GeV

[219]

5.02TeV
ALICE no

CMS yes
pp, 0-5%, 5-10%,

10-30%, 30-50%, 50-70%,
70-90%, 0-100%

|η| < 1, p⊥ < 400GeV
(250GeV for
centr.> 70%)

[79]

XeXe 5.44TeV CMS no
pp, 0-5%, 5-10%,

10-30%, 30-50%, 50-70%,
70-80%, 0-80%

|η| < 1, p⊥ < 103GeV
(48GeV for
centr.> 50%)

[213]

π
0 AuAu 0.20TeV PHENIX no

pp |y| < 0.35,
p⊥ < 25GeV [214]

0-10%, 10-20%, 20-30%,
30-40%, 40-50%, 50-60%

|y| < 0.35,
p⊥ < 20GeV [217]

D
0 PbPb 5.02TeV

CMS yes
(except pp) pp, 0-10%, 0-100% |y| < 1,

p⊥ < 100GeV [77]

ALICE no 0-10%, 30-50%, 60-80%
|y| < 0.5,

p⊥ < 50GeV (35GeV
for centr.> 50%)

[220]

J/ψ PbPb 5.02TeV
CMS

no
(except
0-100%)

pp,
0-10%, 10-30%, 30-100%,

0-100%

|y| < 2.4,
p⊥ < 30GeV (50GeV
for centr. 0-100%)

[78]

ATLAS no 0-10%, 20-40%, 40-80%,
0-80%

|y| < 2,
p⊥ < 40GeV [221]

modelling) are large in peripheral collisions and the energy loss is very small, which results in
uncertainties of order 100% on the extracted energy loss; the used multiplicity measurements
(see section 11.2.2) are also unavailable above centralities of 60%.

The D meson modification factors measured with ALICE actually average over D0, D+, and
D∗+ meson results. The quoted D measurements from CMS only include D0 mesons. All J/ψ
and D meson measurements include cuts to select prompt mesons, that are not daughters of B
mesons.

11.1.2 Extraction of the energy loss in various systems and centralities

Figs. 11.1, 11.2, and 11.3 show the (χ2 minimisation) fits of multiple systems respectively
in the most central, in mid-central, and in the most peripheral considered centrality classes.
The experiment yielding each measurement is printed on each canvas. In case two experiments
measured the same system, in general the dataset reaching the highest p⊥ is shown, except
for PbPb collisions at 2.76TeV for which ALICE measurements are shown. The uncertainties
shown on the data points are the statistical (black line) and systematic (yellow boxes, excluding
luminosity and Glauber) quoted by the experiments. In all Figures, the nominal fit function is
in blue (from Eq. 10.20), while a fit with the exponentiated model (from Eq. 10.21) is shown in
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dashed red, and a fit with a higher p⊥ threshold (section 11.1.2.2) is shown with a green dotted
line. The energy loss values resulting from these three fits are printed. In Fig. 11.3, the two fits
where all points are moved either up or down with the global uncertainties (section 11.1.2.3) are
also shown, as these uncertainties have a large impact in peripheral collisions. These peripheral
fits are mainly shown to illustrate the current limits of the procedure, as they are somewhat less
informative due to the approximations of the model come to a limit (see section 11.1.2.1) and to
the large data uncertainties.
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Figure 11.1: RAA of various hadrons in various systems, fitted by the energy loss model,
for the most central (0-5% or 0-10%) collisions considered. Top: light charged hadrons in
PbPb collisions at √s

NN
=5.02TeV (left) and at 2.76TeV (middle), and in XeXe collisions at

5.44TeV (right). Bottom left: π
0 in AuAu collisions at 200GeV. Bottom middle and right:

D and J/ψ mesons in PbPb collisions at 5.02TeV.
——–

All fits show a good χ2 per number of degrees of freedom, below 2.5 (see in section 11.1.2.3
what part of the uncertainties is considered in these nominal fits), except those on ALICE
h± measurements in PbPb 5.02TeV below 30% of centrality, on ATLAS h± measurements in
PbPb 2.76TeV below 20% of centrality and on the CMS measurements of J/ψ below 30% of
centrality, which show a less steep rising slope than the model. Fortunately, there are measure-
ments of the same or similar systems by other experiments, that do not confirm these isolated
discrepancies. In addition, for all of these tensions (except for the CMS J/ψ 0-10% and the
ATLAS h± 2.76TeV central collision measurements), one of the three fit variations mentioned
in sections 11.1.2.2 and 11.1.2.3 leads to χ2/ndf < 1. The relatively low p⊥ reach of the J/ψ
measurements compared to the J/ψ mass hinders a strong conclusion on the discrepancy of the
model with the CMS measurements in central collisions (not seen in ATLAS datasets).

The following sections (11.1.2.1, 11.1.2.2, and 11.1.2.3) detail how the fit is performed and
what uncertainties are considered on the fitted measurements and on the extracted energy loss.
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Figure 11.2: RAA of various hadrons in various systems, fitted by the energy loss model,
for mid-central collisions (between 30% and 50% centrality). Top: light charged hadrons in
PbPb collisions at √s

NN
=5.02TeV (left) and at 2.76TeV (middle), and in XeXe collisions at

5.44TeV (right). Bottom left: π
0 in AuAu collisions at 200GeV. Bottom middle and right:

D and J/ψ mesons in PbPb collisions at 5.02TeV.
——–

11.1.2.1 Correction for peripheral collisions

A geometric bias due to the trigger selection of hadronic heavy ion collisions has been
demonstrated by Loizides and Morsch in Ref. [222]. It tends to show an apparent suppression
in the RAA in peripheral centrality classes. I used the correction factors given by the authors,
that are less than 2% in centrality classes below 50%, but rise to respectively 7 and 18% for the
centrality classes 50− 70% and 70− 90% in PbPb.

However, it should be underlined that at these centralities, the framework of the BDMPS
energy loss explained in section 10.1 starts to break down: the medium is indeed assumed to
contain a few scattering centres – in other words, the path length of the parton through the
medium should be large enough. This assumption might be at its limit for centralities above
70-80%, corresponding to path lengths in the QGP of order 1–1.5 fm (as shows Fig. 11.13).

11.1.2.2 p⊥ minimal threshold

The used model should hold only at high p⊥, because of the two approximations p⊥ �
m, ΛQCD and p⊥ � ε. The latter requires a small energy loss compared to the initial parton
energy. The p⊥ lower limit used in the fits is 10GeV in general, except for the heavier J/ψ
mesons (13GeV), for the pion measurements from PHENIX (9GeV, to compensate the fact that
the measurement only reaches 20GeV), and for the centrality ranges above 50% where the energy
loss is smaller (2GeV smaller than the quoted thresholds).
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Figure 11.3: RAA of various hadrons in various systems, fitted by the energy loss model,
in the most peripheral collisions considered. The data points all moved either up (fitted with
the pink dotted line) or down (fitted with the black dotted line) are also drawn. Top: light
charged hadrons in PbPb collisions at √s

NN
=5.02TeV (left) and at 2.76TeV (middle), and

in XeXe collisions at 5.44TeV (right). Bottom left: π
0 in AuAu collisions at 200GeV. Bottom

middle and right: D and J/ψ mesons in PbPb collisions at 5.02TeV.
——–

As a systematic variation, alternative fits are run with a higher p⊥ threshold: 5GeV higher
in general, except for the J/ψ mesons (4GeV higher) and the pions from PHENIX (3GeV higher).
The absolute difference of the extracted energy loss with that extracted from the nominal fit is
taken as a symmetric systematic uncertainty on the energy loss value.

11.1.2.3 Global uncertainties on the measurements

Global uncertainties are often quoted on the RAA measurements, linked to the luminosity
and the Glauber modelling (that affects the TAA values used for the normalisation of the AA
yields). The energy loss acts on the model as a rescaling of the x-axis variable (i.e. a shift in the
ln(x) variable). Therefore, these uncertainties, fully correlated along all bins, have a stronger
impact on the extracted energy loss than uncorrelated uncertainties (such as the statistical ones),
and should be given a special status.

In addition, the other systematic uncertainties in the used datasets often have high bin-to-
bin correlations, as some uncertainty sources act similarly on each p⊥ bin. This is qualitatively
suggested by the data points showing a relatively smooth evolution compared to what the un-
certainties would allow if they were uncorrelated along bins. To fully take these correlations into
account, the full correlation matrix (containing n(n− 1)/2 correlation factors for n bins) should
be used in the fit; it is however not given, in any of the used measurements. I hence assume that
the bin-to-bin correlations are all equal to a single correlation factor of fcorr = 0.3 (or fcorr = 0.5
for the measurements that do not quote a global uncertainty, meaning that it is included in the
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quoted systematic uncertainties; this is the case for the two sets of ATLAS measurements). This
is equivalent to assuming that a fraction

√
fcorr of the systematic uncertainty of each bin is fully

correlated to all other bins.

The fully-correlated uncertainty is taken in each bin as
√
fcorr σ

2
syst + σ2

glob, while the nom-
inal fit providing the fit uncertainty on the energy loss uses the fully-uncorrelated uncertainties√

(1− fcorr)σ
2
syst + σ2

stat. σstat, σsyst, and σglob are respectively the statistical, systematic, and
global uncertainties quoted by the measurements, where the global one is a simple fraction of
the value of the considered bin. Some measurements quote asymmetric uncertainties, which are
taken into account.

I could modify the χ2 function minimised in the fit to accommodate for these global uncer-
tainties. However, as the correlations are global (i.e. it acts only on a global normalisation),
it is easier to perform on each RAA(p⊥) dataset two alternative fits, in which the data values
in all bins are shifted either up or down with the fully-correlated uncertainties. The resulting
uncertainty on the energy loss is half the absolute difference between the energy loss extracted
from the two alternative fits.

The fits of measurements in peripheral collisions suffer most from these global uncertainties,
notably because the Glauber model uncertainties on TAA rise significantly towards peripheral
collisions. Fig. 11.3 shows fits in the most peripheral collisions considered here, along with the
data points all shifted either up or down, and the fits of these two alternative datasets. The
resulting energy loss values show that the associated uncertainty can be of order 50-100% in the
most peripheral collisions. As mentioned in section 11.1.2.1, the approximations of the energy
loss framework are at their limit in the most peripheral collisions, so the large uncertainties
mentioned above might cover for the potential resulting deviations from the energy loss model.

The total uncertainty on the fitted energy loss for each dataset is the quadratic sum of
the uncertainty on the energy loss parameter from the nominal fit, that from the p⊥ threshold
variation (section 11.1.2.2), and that from the global uncertainties. The latter (and maybe the
one from the p⊥ threshold) are partially correlated between datasets from the same experiment
and/or from the same run, in particular that from luminosity. For now, this correlation will be
ignored in the conclusions drawn from these energy loss values, but it could be considered in the
future.

11.1.2.4 Resulting energy loss

I show in Fig. 11.4 all the extracted energy loss values, along with their uncertainties. It is
reminded here that the fitted characteristic energy loss is ω̄c, i.e. the characteristic energy loss
times the average fragmentation fraction 〈z〉 of the traversing parton into the observed hadron.
To obtain the values of the mean energy loss times fragmentation fraction 〈ε̄〉 plotted e.g. in
Fig. 11.4, the characteristic loss ω̄c is multiplied by the first moment of the quenching weight
〈x〉 ∼ 1

2CAαS ' 0.289, evaluated from the parametrisation of Ref. [215]. This amounts to
αS ∼ 0.2, evaluated at the scale of the energy loss, i.e. 1 − 10GeV, and considering that the
observed hadrons mostly originate from gluons.

Fig. 11.4 makes clear that the energy loss decreases with centrality, as expected due to a
smaller medium density and volume; the latter is associated to a smaller path length L of partons
through the QGP entering the energy loss of Eq. 10.13. The aim of section 11.2 is to find variable
representative of the activity of each system, in which the energy loss does scale for a large range
of systems. The centrality is only a proxy of this variable; it does not take into account the
density of the medium, nor the proper dependence on its size.

Another noteworthy feature (already mentioned in Refs. [2, 3]) is that the minimum-bias
energy loss values of light hadrons in PbPb and XeXe collisions is of the same order of those
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Figure 11.4: Summary of all extracted average energy loss values (multiplied by the average
fragmentation fraction 〈z〉), for all considered systems and centrality ranges, from various
experiments. Table 11.1 details the fitted datasets yielding these values. The thin vertical bars
show the total uncertainty, whereas the thick vertical bars show the uncertainty of the nominal
fit (that accounts only for the uncorrelated part of the uncertainties from the measurements).

——–

of J/ψ and D mesons in PbPb collisions at similar
√
s values. The D mesons mostly come

from charm fragmentation (associated to a colour charge CF /CA = 4/9 smaller than gluons),
whereas J/ψ mostly come from gluon fragmentation, so the latter should naively yield a 9/4
higher energy loss. The non-negligible gluon fragmentation for D, as well as the colour-singlet
contribution (that do not lose energy) to J/ψ mesons, could dampen this factor such that the
observed ratio is consistent with 1. A potential dead-cone effect (see section 2.3), decreasing
radiation from heavy partons, would have the opposite effect, diminishing the energy loss of D
mesons – but it would affect p⊥ values much lower than those considered here. More precise D
and J/ψ measurements towards higher p⊥ might help enlighten this discussion.

11.1.3 Universal p⊥ shape of the modification factor

Fig. 11.5 and 11.6 gather fitted measurements of hadron modification in various systems,
where for each set, the p⊥ is scaled with the corresponding energy loss extracted in section 11.1.2.4
and the value of the pp slope n. As can be seen on all fit plots above, the exact model of Eq. 10.20
scaling with p⊥/ω̄c is very close to the universal shape scaling with p⊥/(nω̄c). However, there are
slight deviations at lower p⊥ and higher energy loss (so towards central collisions). Therefore,
as the values of n are close for the studied systems, I still show here the exact model, with the
n value of one of the printed systems. The x-axis variables of the measurements are though still
scaled with the (energy loss and the) n slope corresponding to their collision system and energy.

The Loizides-Morsch factor (mostly relevant in peripheral collisions) has been applied to the
data measurements in this scaling plot (contrarily to the RAA(p⊥) fit plots where the function
itself was scaled, and the data points were shown as quoted by the experiments). Only the
statistical uncertainties are printed; this is motivated by the systematic uncertainties usually
being significantly correlated, resulting in a shift in the fitted energy loss that is compensated
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Figure 11.5: RPbPb of charged hadrons measured in PbPb and XeXe collisions at various
energies, where p⊥ is scaled by the fitted mean energy loss and n value. The shape predicted
by the model is superimposed. On the left (or right) plot, only data points with p⊥ > 4GeV

(or p⊥ above the threshold of the fit, see section 11.1.2.2) are shown.
——–
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Figure 11.6: RPbPb of D and J/ψ mesons in PbPb collisions at 5.02TeV (left) or of π
0

mesons in AuAu collisions at 200GeV (right), where p⊥ is scaled by the fitted mean energy
loss and n value. The shape predicted by the model is superimposed. Only data points with

p⊥ above the threshold of the fit (see section 11.1.2.2) are shown.
——–

by using the p⊥/(nω̄c) variable. Data points with a statistical uncertainty larger than 0.05 (or
0.15 for PHENIX measurements, or 0.1 for D and J/ψ) are not printed, for readability reasons.

Ref. [2] whose model this study is based on pointed out that all measurements coincide with
the universal RAA shape of Eq. 10.21 at high p⊥. The multiple additional measurements added
here are consistent with this conclusion, even at the much lower energy (200GeV) reached at
RHIC (though the these measurements do not reach very high p⊥). This supports the fact that
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radiative energy loss is the dominant process leading the suppression of hadrons in this regime,
and that the main characteristics of this process are well encompassed by the BDMPS model. In
Fig. 11.5 (left), the scaling violations are clear when I consider p⊥ values below those chosen as
the threshold for the individual fits (between 8 and 13GeV depending on the considered system).

11.2 A new scaling

11.2.1 Principle: energy loss versus collision activity

In this section, I aim at finding a variable describing the collision activity, in which the energy
loss scales in many different collision systems and energies. The starting point is to consider that
the transport coefficient (or the density of scattering centres) is not constant in the medium,
and dilutes along with the QGP expansion – in other words, that the QGP created in heavy ion
collisions in not a static ‘brick’. This evolution with the time τ after the collision was discussed
by Salgado and Wiedemann [223]:

q̂(τ) = q̂0

(τ0

τ

)α
(11.1)

where the expansion parameter α is 0 for a static medium, while α = 1 is consistent for a
typical Bjorken expansion [126], i.e. when the medium dilutes longitudinally (along the beam
axis) at speed c. When the medium volume (proportional to 1/τα) decreases, a traversing parton
meets less scatterers, so it loses less energy. The transport coefficient q̂0 is that of the medium
at formation time, τ0. It is actually quoted in Ref. [223] as:

q̂0 ∝ n0C (11.2)

where n0 is the initial density of scatterers in the medium, and C enters the dipole cross
section σ(~r) = C~r 2. Eq. 11.2 can be qualitatively understood through the use of λg ∼ 1/σn0 in
q̂ = µ2/λg = µ2n0C~r

2. More precisely, the initial transport coefficient is quoted in Ref. [224] as:

q̂0 =
9π

2
α2
Sn0 (11.3)

where the term α2
S is understandable as coming from the cross section of a hard parton with a

parton of the medium.

Now the main point of Ref. [223] is the dynamical scaling of the transport coefficient in a
non-static medium. The transport coefficient equivalent to the static case is therein:

〈q̂〉 =
2

L2

∫ τ0+L

τ0

dτ (τ − τ0)q̂(τ) =
2τα0

L2 q̂0

∫ τ0+L

τ0

dτ
(τ − τ0)

τα
(11.4)

where L is the path length, i.e. the length of the trajectory of the considered parton in the
QGP, in the transverse plane. When the medium is static, i.e. α = 0, the integral simplifies to
L2/2 and one indeed recovers the standard constant transport coefficient. In the integral, the
time after the QGP formation is considered equivalent to the distance travelled by the parton
(moving at speed c). When the medium is large compared to cτ0, which will be assumed from
now on (except in specific checks), the equivalent dynamic transport coefficient reads:

〈q̂〉 ' 2τα0

L2 q̂0

∫ L

0
dτ τ1−α =

2

2− α q̂0

(τ0

L

)α
. (11.5)
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Eq. 11.5 and the expression of q̂0 versus the medium density of Eq. 11.3 can then be incor-
porated in the standard total energy loss ε from Eq. 10.13 to get:

ε =
αSCR

4
〈q̂〉L2 =

9π

4(2− α)
α3
SCRn0τ

α
0 L

2−α (11.6)

This is the mean energy lost by a parton on a given trajectory of length L through the QGP, but
I will from now on mostly use the path length 〈L〉 averaged over all possible parton paths. This
assumption, concerning independence of various integrals, will be discussed in section 12.1.2.1.

This general intent is here to prove, from fitting measurements, that the energy loss indeed
scales as ε ∝ Lβ with

β ≡ 2− α (11.7)

and possibly β 6= 2, contrarily to the static BDMPS picture commanding ε ∝ L2. To this
goal, I need more explicit expressions of the density and the average path length. The latter
will be discussed at length in section 11.2.7. Concerning the density of partons than the probe
parton can scatter with, it should be that of the medium at creation time. At that time, the
medium has a volume τ0A⊥, where A⊥ is the area (transverse to the beam) in which nucleons
from the nuclei did interact. The number of partons in that medium is a non-perturbative
quantity that is hard to evaluate from first principles, so it is approximated as the multiplicity
of charged particles observed in the detector, considering that, at first order and in average, each
parton will hadronise into one hadron. This quantity is multiplied by 3/2 to account for the
neutral hadrons that are also produced. This multiplicity should be that at central rapidities
(η = 0), more representative of the early-time medium dynamics (but Bjorken expansion yields a
rapidity plateau, so measurements at any rapidity |η| . 3 would be acceptable). This multiplicity
is extracted from measurements in each of the studied collision configurations, see section 11.2.2.
So, using

n0 =

3
2

dNch
dη

∣∣∣
η=0

A⊥ τ0
, (11.8)

I get:

〈ε〉 =
27π

8(2− α)
α3
SCRτ

α−1
0

dNch

dη
〈L〉2−α
A⊥

. (11.9)

The transverse area A⊥ will be discussed and computed in section 11.2.8.

The fits results of section 11.1.2.4 provide values of the energy loss 〈ε̄〉fit = 〈x〉ω̄c = 〈x〉〈z〉ωc,
where 〈x〉 = 〈x〉ref = 1

2αSCA ' 0.289 was taken as the scaleless average quenching weight for a
gluon. However, let us switch to a general parton, and input

〈ε〉 =
αSCR

2
ωc =

αSCR
2

〈ε̄〉fit

〈x〉ref〈z〉
(11.10)

in Eq. 11.9, so that

〈ε̄〉fit

〈x〉ref〈z〉
=
〈ω̄c〉fit

〈z〉 =
27πα2

S

4(2− α)
τα−1

0
dNch

dη
〈L〉2−α
A⊥

. (11.11)

This first equality assumes that only gluons fragment into the hadrons whose energy loss is
measured. Were only quarks fragmenting, the energy loss would be reduced by a factor CA/CF =
9/4. However, for the second equality, this hypothesis is not needed: the colour factor can be
unknown and the characteristic energy loss 〈ω̄c〉 be extracted. The impact of the nature of the
parton on the conclusions of the used energy loss model will be discussed in section 12.4.

I will show in section 11.2.9 that the energy loss behaviour of Eq. 11.11 is consistent with
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all the measurements of light hadrons listed in Table 11.1, with an expansion parameter α
not far from 1, disproving the static medium hypothesis. The prefactor could in principle
allow for extracting the formation time τ0, but in practice α is too close to 1 to have a lever arm
on this quantity (mind that 〈ε̄〉 ∝ τα−1

0 in Eq. 11.9). I will only provide an order of magnitude
of the static-equivalent transport coefficient for typical systems.

To this goal, I need to compute the multiplicities (shown in section 11.2.2), the transverse
area and path length for each collision centrality and system. For the last two, an explicit
Glauber model is needed to describe the geometry of the collisions in various centrality ranges.
As explained in section 11.2.3, I will consider the MC Glauber model of Ref. [35], and three
versions of an optical Glauber model I implemented: first considering that nuclei are hard spheres,
with a constant QGP density in the interaction region, or with a variable density, and finally
using nuclei densities parametrised as Woods-Saxons (a.k.a two-parameter Fermi) distributions.
Sections 11.2.4, 11.2.5 and 11.2.6 explain the calculations within the various models of the nuclear
thickness, of the number of participants and of binary collisions, and of the centrality, respectively.
Sections 11.2.7 and 11.2.8 are dedicated to the computation of the path length and the transverse
area, respectively, and compare these quantities in the different systems and using the different
models.

11.2.2 QGP density and multiplicity

The number density of the QGP entering Eq. 11.6 (and ultimately Eq. 11.9) is estimated
from the charged particle multiplicity at central rapidities, that is well measured in experiments,
in each of the studied collision systems and energies. For PbPb at

√
s = 5.02TeV, ALICE [225]

measurements are used. For PbPb at 2.76TeV, ALICE [226] and CMS [227] measurements are
averaged, with a weighting considering their respective uncertainties (BLUE method). Similarly,
ALICE [228] and CMS [229] measurements are weighted-averaged for XeXe collisions at 5.44TeV.
Finally, PHENIX [230] measurements are used for AuAu at 200GeV. Fig. 11.7 shows all these
measurements of dNch

dη at mid-rapidity, as a function of the collision centrality.
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Figure 11.7: Multiplicity at central rapidity for various systems and at different energies,
measured by ALICE, CMS, and PHENIX.
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11.2.3 Glauber models

From now on, I will extensively use the Glauber model concepts and definitions introduced
in section 1.5.6, such as centrality, the nuclear thickness TA, the nuclear overlap function TAA,
the impact parameter ~b between the two nuclei centres (defining the horizontal x-axis) and the
transverse position compared to the first nucleus ~s. To contract slightly the expressions, and
because this is the case in the studied measurements, I will consider only symmetric collisions of
nuclei of same number of nucleons A.

When fitting all the measurements together with the intent of finding that they scale with
Eq. 11.11, I will test four Glauber models, listed below. However, for a given fit, the computations
of the area and of the path length will always use the same Glauber model, such that the model
variations partially cancel in the ratio Lβ/A⊥.

The first model considered is the MC Glauber of Ref. [35], that tabulates 〈A⊥〉 and 〈L〉
versus centrality. The MC Glauber does not consider a continuous density of nucleons, but rather
simulates events with discrete positions of each nucleon from the colliding nuclei.

Then, I simply consider that nuclei are perfect hard spheres with a constant density
– both the nucleus density and that of the QGP created in the overlap region. In this case,
〈A⊥〉 and 〈L〉 are straightforward and unambiguous to calculate: they are directly based on the
geometric limits of the region where the hard spheres cross. No Glauber model is needed in this
simple case. No assumption is made in this case on the standard Glauber parameters such as
the nucleon-nucleon cross section σNN.

Still considering hard sphere nuclei, I implemented a full optical Glauber model, mean-
ing with continuous nuclear densities. It allows for calculating the area and path length consid-
ering a non-constant QGP density.

Finally, I run my optical Glauber model considering a Woods-Saxons distribution for
the nucleonic density of the nuclei. In this case, I will need relatively arbitrary choices of
regularisation for the path length calculation of peripheral collisions, as the Woods-Saxons profile
does not feature a clear cut of the active area for the path length to end.

11.2.4 Radius, density and nuclear thickness

11.2.4.1 Numerical values of the radius, a, and σNN

Let me first discuss the numerical values of the core parameters of the Glauber models: the
radius of the nucleus R, the skin depth a (which is the length scale on which the density fades
out in the Woods-Saxons) and the hadronic nucleon-nucleon cross section σNN.

For the Woods-Saxons nuclear profile explained in section 11.2.4.3, I take the nucleus radius
and skin depth of the 208Pb lead nucleus to be R = 6.66 fm and a = 0.46 fm, R = 6.42 fm and
a = 0.44 fm for the 197Au gold nucleus, and R = 2.61 fm and a = 0.51 fm for the 16O oxygen
nucleus, from Ref. [231], with a A1/3 scaling to get R(208Pb) from R(207Pb), and taking into
account the finite nucleon distribution. Ref. [35] also provides the parameters of 129Xe xenon
nucleus: R = 5.36 ± 0.10 fm and a = 0.45 fm, where a was scaled through the skin depths of
gold in both references to account for the finite number of nucleons.

In the models using hard sphere nuclei, the number density of nucleons ρ0 is constant and
equal to

ρ0 =
A

V
=

A
4π
3 R

3 =
1

4π
3 r

3
0

(11.12)

where the value r0 = 1.12 fm (resulting in ρ0 = 0.170 fm−3) is assumed here, as in frequent con-
ventions. From these values and the number of nucleons A, the radius R = r0A

1/3 is calculated,
resulting in R = 6.64 fm, 6.52 fm, 5.66 fm and 2.82 fm for the lead, gold, xenon and oxygen nuclei.
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The nucleon-nucleon cross sections in the Glauber model are taken from Ref. [35]: 67.6 mb
for PbPb at

√
s = 5.02TeV (taken to be the same at

√
s = 2.76TeV for simplicity, as this has a

sub-dominant effect on the results), 68.4 mb for XeXe at
√
s = 5.44TeV, and 70.8 mb for OO at√

s = 7TeV. The uncertainties on R and σNN are negligible for this thesis.

11.2.4.2 Density and nuclear thickness: hard spheres

Using Eq. 1.18 with the constant density ρ0 of Eq. 11.12, the nuclear thickness at position
~s from the nucleus centre is:

TA(~s) = ρ0

∫ √R2−s2

−
√
R

2−s2
dz = 2ρ0

√
R2 − s2 (11.13)

and it is normalized to A, so that: ∫
TA(~s) d~s = ρ0V = A (11.14)

11.2.4.3 Density and nuclear thickness: Woods-Saxons

The main difference between the last two Glauber models that I will consider is the use of a
more realistic number density of nucleons in the nucleus: the standard Woods-Saxons distribution
(also called 2-parameter-Fermi-Model) that reads

ρ(r) =
ρ0

1 + exp r−R
a

. (11.15)

So the nuclear overlap is

TA(~s) = ρ0

∫
dz

1 + exp

√
s
2
+z

2−R
a

(11.16)

This integral has no analytic form at fixed ~s, but it should be normalized to A. Therefore:∫
TA(~s)d~s = A =

∫
ρ(~r)d~r (11.17)

= 4πρ0

∫ ∞
0

r2dr
1 + exp r−R

a

r
′
=r/R
= 4πR3ρ0

∫ ∞
0

r′2dr′

1 + exp (r′ − 1)Ra
(11.18)

The last integral has a analytical expression with polylogarithm functions Li, giving:

I ≡
∫ ∞

0

r′2dr′

1 + exp (r′ − 1)Ra
= − 2

(R/a)3Li3(−e−R/a) =
2e−R/a

(R/a)3

where the last expression uses the limit R/a� 1. However, in practice I integrated TA numeri-
cally and normalised TA by the result.

11.2.5 Number of participants and of binary collisions

11.2.5.1 In Glauber models

For the area and path length calculation, it will be important to know the density of the
QGP (in the transverse plane) that a parton travels through. This density will be assumed to be
that of the participant nucleons, despite other hypotheses being possibly legitimate. Considering
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the finite nucleon-nucleon cross section, and with similar arguments as in Eq. 1.21, it is:

ρQGP(~b,~s) ∝ ρpart(~b,~s) = ρA
part(~b,~s) + ρB

part(~b,~s) (11.19)

= TA(~s)

1−
(

1− σNN TA(~s−~b)
AB

)AB+ TB(~s−~b)
[

1−
(

1− σNN TB(~s)

AB

)AB]

The density of binary collisions, using Eq. 1.19 and 1.20, is

ρcoll(~b,~s) = σNN TA(~s)TB(~b− ~s) (11.20)

These two quantities, as well as their integrals over ranges in b, are calculated with numerical
integrals.

Figs. 11.8, 11.9 and 11.10 show the surface density of nucleon participants and binary colli-
sions for impact parameters b corresponding to three different centrality classes, for the Glauber
models I implemented with hard sphere or Woods Saxons nucleonic distributions. The black
lines show the disks of radius R of the two nuclei: a hard limit of the presence of nuclei in hard
spheres, but only the typical radius at which the density drops in Woods-Saxons. The conversion
from b to a given centrality is explained in section 11.2.6.

In the Woods-Saxons case, the number of participants in peripheral collisions is much lower
than what is expected from the hard spheres model, that gives similar values of Npart for a
given centrality range than the MC Glauber model from Ref. [35]. These lower Npart values in
the Woods-Saxons case is due to the very high impact parameters allowed in peripheral classes
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(see section 11.2.6). This has not been fully investigated yet, but a potential fix is discussed in
section 12.2. The Npart values are kept as such for now, despite the impact on the area and path
length estimations; keeping this consistent in the estimations of these two quantities (i.e. both
in the Woods-Saxons model) will indeed reduce the impact, as the final result depends on the
ratio Lβ/A⊥. In addition, peripheral collisions are associated to small energy loss values, and
hence do not have a large impact on the scaling results.

11.2.5.2 Npart in hard spheres

The number of participants in hard spheres is computed here analytically, but will not be
used in the later text: it was calculated initially to obtain the impact parameters corresponding
to given centralities, but in hard spheres a simple trick is sufficient and Npart is not needed (see
section 11.2.6.1).

In the simple case where all touching nucleons are assumed to interact, ρpart is proportional

to TA(~s) +TB(~s) ∝
√
R2 − s2 +

√
R2 − |~s−~b|2, simplifying Eq. 11.19. From Eq. 11.20, one also

has ρcoll(~b,~s) ∝
√
R2 − s2

√
R2 − |~s−~b|2. This must be integrated over ~s to obtain Npart (or

Ncoll). I nevertheless prefer here to calculate from scratch the volume of nucleus A that ‘touches’
or ‘wounds’ the nucleus B, starting exceptionally with asymmetric nuclei. I will then normalise
it to 2A at b = 0 (both the volume of both nuclei are fully counted).

Two different volumes must be calculated. The x axis is taken along ~b, and x = 0 at
the centre of nucleus A. I first call d = R

2
A−R

2
B+b

2

2b the intersection of the spheres (d = b/2 if
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RA = RB). I call V1 the touched volume of A that is cut by the almond intersection, but is at
x < d, and V2 the volume of the endcap of nucleus A, from x = d to x = RA. For symmetric
nuclei, V1 = V2. Then:

Npart = 2ρconstant(V1 + V2) (11.21)

V2 is the sum, for all relevant x values, of the disk surfaces π(R2
A − x2):

V2 =

∫ RA

d
dxπ(R2

A − x2)

= π

(
2

3
R3
A −

b

8
(3R2

A +RB) +
b3

24
+

1

8b
(R4

B + 2R2
AR

2
B − 3R4

A) +
1

24
(R6

A + 3R2
AR

4
B − 3R4

AR
2
B −R6

B)

)

which, when RA = RB, amounts to

V2 = π

(
2

3
R3 − b

2
R2 +

b3

24

)

The other volume is harder to calculate. The z-directed line touching the edges of A has

a length of 2

√
R2
A − x2 − y2, for x and y being in the low-x part of the almond (on the side of

nucleus A). I must integrate the z-line over the (x, y) that are in this half-almond surface. x
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runs from b−RB to d, and for a given x, |y| runs from 0 to
√
R2
B − (b− x)2. Hence:

V1 =

∫ d

b−RB
dx 2

∫ √
R

2
B−(b−x)

2

0
dy 2

√
R2
A − x2 − y2

= 2

∫ d

b−RB
dx

(R2
A − x2) arcsin

√R2
B − (b− x)2

R2
A − x2

+

√
R2
B − (b− x)2

√
R2
A −R2

B + (b− x)2 − x2


and when RA = RB = R:

V1 = 2

∫ b/2

b−R
dx

(R2 − x2) arcsin


√√√√1− ( b−xR )2

1− ( xR)2

+

√
R2 − (b− x)2

√
b2 − 2bx


This integral has no analytical solution, so it is integrated numerically.

11.2.6 Centrality versus impact parameter

The goal of this section is to calculate the b limits of a given centrality range [c1, c2]%,
i.e. to compute b as a function of centrality. This amounts to calculating the number of PbPb
collisions N versus b (or Npart). The number of participants at given impact parameter Npart(b)
is (proportional to) the wounded volume of Eq. 11.21 for the hard spheres case without Glauber
model, or is the numerical integration of Eq. 11.19 over the transverse plane for the Glauber
models.

11.2.6.1 Hard spheres without Glauber model

In hard spheres without Glauber model, the explicit expression of Npart(b) (which is the
wounded volume) is not needed. The distribution N(b) is readily obtained by noticing that the
distribution dN

db
2 ∝ dN

d~b
is constant, because the nuclei are uniformly distributed in the transverse

plane, so the relative position ~b of two nuclei is uniformly distributed in the space of ~b vectors.
This is true for nuclei that do touch (equivalent to interacting, in this simple model), i.e. for
b < 2R. After integration, N(b) ∝ b2, i.e. b ∝

√
N(b). This was checked with a very simple MC.

So if I define N(bC=100%) = 1 (corresponding to 100% centrality, i.e. bC=100% = 2R), I directly
get the b corresponding to a given centrality C as:

b0,C% =
√
C × b100% (11.22)

These simple b limits of the centrality ranges are used in the case of hard spheres without
Glauber model, because it does not depend on any assumption on Npart and σNN. As explained
below, for the Glauber models both with hard spheres and with Woods-Saxons, the full Npart
from integrating Eq. 11.19 and the distribution of AA collisions from Eq. 11.23 are rather used.

11.2.6.2 Glauber model case

In case of a full Glauber model, I start from the functionNpart(b), that is strictly monotonous,
so the function b(Npart) (and db

dNpart
) is obtained by (numerical) inversion. The goal is then to

obtain the distribution dN
db , from which the b limits of the centrality classes can be deduced. We

start with:
dN
db

=
dN
db2

db2

db
= 2b

dN
db2

. (11.23)
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The term dN
db2

would be constant if the nucleon-nucleon cross section σNN was infinite, as was
assumed in section 11.2.6.1, yielding dN

dNpart
∝ b. However, σNN is finite, so dN

db2
should be

proportional to the probability of two nuclei to have at least one hadronic interaction when
they are at distance b. This probability phadr(b) is exactly that of Eq. 1.21, depending on
σNN and TAA(b). The latter is calculated as a numerical integral for each b. Fig. 11.11 shows
dN
db ∝ b phadr(b) for both Glauber models in PbPb collisions.
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Figure 11.11: The distribution of hadronic PbPb collisions simulated in the custom Glauber
model with hard spheres (left) or Woods Saxons (right) nuclei, versus b. Integrating this
normalised distribution from 0 to b′ yields the centrality corresponding to b′, in percent.

Higher b values than 2R are of course reached in the Woods-Saxons case.
——–

Fig. 11.12 shows the more standard centrality plots, meaning the number of events versus
the event activity; here it is based on this Npart dependence:

dN
dNpart

=
dN
db

db
dNpart

. (11.24)

In this expression, I calculate numerically the derivative db
dNpart

(Npart) =
b(Npart(1+w)) − b(Npart(1−w))

2wNpart
,

with w = 0.002 giving a stable result.

The dN
dNpart

distribution in the Woods-Saxons case shows an unusual feature at the highest
Npart values: it does not decrease sharply as do published Glauber models and the hard spheres
model implemented here, which show significantly larger Npart values for given centrality ranges.
It might be a numerical instability or an actual feature of a Woods-Saxons optical model, in
which all very high b values still result in substantial NN interactions. This is not investigated
yet; temporary solutions are discussed in section 12.2, but they are not applied here and the
resulting b and Npart limits of centrality classes are kept as such.

The b (or Npart) value corresponding to a centrality of C% is that for which the cumulative
of the distribution of Eq. 11.23 (or Eq. 11.24), normalised to 1 and starting from the lowest b
values (or highest Npart values), equals C%. These b limits will be those of the b integrals in the
calculation of the path length and transverse area in a given centrality class, for the two custom
Glauber models.

11.2.7 Path length

When a parton is created at a given point in the transverse overlap area in a given direction,
the distance it covers before exiting the QGP created in the collision is the path length. The
average path length of particles created in collisions at a given b enters Eq. 11.9 that I intend
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Figure 11.12: The distribution of hadronic PbPb collisions simulated in the custom Glauber
model with hard spheres (left) or Woods Saxons (right) nuclei, versus Npart. The vertical lines

show the Npart limits of all 10%-wide centrality classes.
——–

to prove consistent with the measurements, and it is at the core of the scaling demonstrated in
section 11.2.9.

Determining the appropriate method for computing the path length has not been a straight
path. It is unambiguous in the case of hard spheres and of constant QGP density in the overlap
region. However, it requires a careful definition when the QGP density is realistic (meaning
in the hard spheres Glauber model), and even more so in the Woods-Saxons case for which
a somewhat arbitrary regularisation parameter is needed. However, the final result will prove
relatively stable with the various (non-)Glauber models, at the condition that the path length
and transverse area (section 11.2.8) are computed consistently in the same framework. I start
with spelling out the average path length formula in section 11.2.7.1. Then section 11.2.7.2
computes analytically the path length in the hard-spheres case with constant QGP density.
Last, sections 11.2.7.3 and 11.2.7.4 compute it numerically from a path length formula that is
justified, in the hard-spheres and Woods-Saxons case.

11.2.7.1 Average path length

It is reminded here that ~b joins the centres of the two colliding nuclei, and defines the x-axis.
Points in the transverse plane are parametrised with ~s(s, θ) = seiθ, where θ is the angle between
the of ~b and ~s directions. I also define φ as the angle between ~b and the trajectory of a particle
in the transverse plane. This trajectory is assumed straight, according to the approximation of
small energy loss ε� E.

From the expression of the path length of a single parton through the QGP, the average
over all produced partons at given impact parameter is needed: this is the quantity used for
comparisons with measurements. To obtain it, partons are shot in the transverse plane, with a
probability ρcoll(b, ~s), the nuclear overlap in the longitudinal direction from Eq. 11.20. I consider
uniformly distributed φ angles for the trajectories of particles in the transverse plane (otherwise,
that would amount to v2 6= 0, see section 12.5). The average path length of the particle in the
medium is then [35]:

〈L〉 =

∫
L(~s, φ) ρcoll(~b,~s) d~s dφ

2π
∫
ρcoll(~b,~s) d~s

(11.25)

where ~s covers the whole transverse plane. This assumes a Ncoll-scaling for the produced yields
of hard partons. This is integrated numerically once L(~s, φ) for a given parton path is known.
It is performed by drawing partons in a conservative region encompassing the interaction region,
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uniformly in the φ and ~s variables; then the single path length values are summed with a weight
ρcoll to obtain the numerator.

11.2.7.2 Constant QGP density in hard spheres (analytic calculation)

Now I calculate, for a particle with given (s, θ, φ), the length of the path in the medium,
assumed to have a constant density in the whole hard-spheres interaction region. θ and φ are
defined w.r.t. the ~b direction, in the interval [−π, π]. So the problem reduces to finding, from a
given point and direction in the transverse intersection of the two nuclei, the distance to the edge
of this almond region. I present here an analytical solution, based on standard trigonometry, but
for which care is needed in the definition of limit cases. A personal sketch of the geometry will
help the reader understanding the following expressions.

Two cases must be considered: if the touched edge is the limit of nucleus A (case A) or of
nucleus B (case B). At fixed ~s, the discrimination between these cases can be done via min and
max values of φ. If the particle is produced closer to the centre of A than of B (i.e. s cos θ < b

2),
then the condition for case A is:

−π
2
< − arctan


√
R2 −

(
b
2

)2
+ s sin θ

b
2 − s cos θ

 < φ < arctan


√
R2 −

(
b
2

)2 − s sin θ

b
2 − s cos θ

 <
π

2
.

When the particle is produced in the other half of the almond (s cos θ > b
2), the condition for

case A is rather:

−π < −π
2
− arctan

 s cos θ − b
2√

R2 −
(
b
2

)2
+ s sin θ

 < φ <
π

2
+ arctan

 s cos θ − b
2√

R2 −
(
b
2

)2 − s sin θ

 < π .

And if s cos θ = b
2 , the min and max values of φ are ±π

2 .

Let me now calculate the path length l in case A. I start from the vector equality ~R = ~s+~l
(with ~l = (l, φ) expressed in polar coordinates of origin the particle starting point), which implies
R2 = s2 + l2 + 2sl cos(θ−φ) where θ−φ is the angle between ~l and ~s. This gives a second order
equation in l:

l2 + l (2s cos(θ − φ)) + s2 −R2 = 0 (11.26)

of discriminant

∆ = 4s2 cos(θ − φ)2 + 4(R2 − s2) = 4(R2 − s2 sin(θ − φ)2) > 0 . (11.27)

The only positive solution is then

lA = −s cos(θ − φ) +

√
R2 − s2 sin(θ − φ)2 (11.28)

The solution for the case B (i.e. ~l rather touches the side of nucleus B), is found from the
solution of case A. By symmetry, I just need to replace s→ |~s−~b| and cos(θ−φ)→ cos(θB−φ),
where θB − φ is the angle between ~l and ~s −~b. Care is needed for the calculation of θB, which
must be counted from the ~b reference direction – and this slightly breaks the symmetry of the
problem. I hence have:

lB = −|~b− ~s| cos(θB − φ) +

√
R2 − |~b− ~s|2 sin(θB − φ)2 (11.29)
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where

|~b− ~s|2 = b2 + s2 − 2 bs cos θ

if b ≥ s cos θ: θB = π − arcsin

(
s sin θ

|~b− ~s|

)

if b < s cos θ: θB = arcsin

(
s sin θ

|~b− ~s|

)
.

The limiting case for the definition of θB is when the point (s, θ) is right (towards positive x) of
the centre of nucleus B. The definition by parts is needed because arcsin(·) ∈ [−π/2, π/2].

With the Monte Carlo that I will use in the non-constant QGP density calculation, I checked
that the path length expression calculated above is correct.

11.2.7.3 Effective path length for non-constant QGP density

The path length calculated in the previous section assumed that the QGP affects the partons
in the same way in the whole transverse intersection region (i.e. that the QGP transverse density
is constant). I will now discuss a definition of the path length that takes into account the
inhomogeneity of the medium that the parton passes through, using ρQGP = ρpart of Eq. 11.19
as a proxy for the QGP density.

As the path length is now not only geometric, and that the borders of the interaction region
are not even definite in the Woods-Saxons case, one needs to define an effective path length that
takes into account the density of the traversed medium. Let me start with an intuitive but wrong
definition, that integrates over the trajectory while weighting each point with the density:

Leff,naive(~b,~s, φ) =

∫∞
0 ρQGP(~s+~l) dl

ρQGP,ref
. (11.30)

Unfortunately, this calls for an arbitrary decision for the reference density in the denominator.
Five possibilities were thought of, that depend or not on ~s and ~b:

• The starting point of the produced particle ρQGP(~s, l = 0). However, this is problematic
when the parton crosses regions with higher density than at its start: the reference density
in the denominator can get very small compared to the integral over the whole path in the
numerator.

• The maximal density found on the path. It avoids the above problem, but depends on s,
so that there would no absolute reference for the effect of QGP on partons.

• The maximum density of the interaction region (at x = b/2 and y = 0). This would give
much smaller lengths, but is a true reference density, working also in the Woods-Saxons
case.

• Npart/AT , the average density in the lentil. The area is however not well-defined in the
Woods-Saxons case.

• A true reference density for all impact parameters.

All above solutions seem intuitive, but are intrinsically arbitrary. In addition, it is not
consistent with the energy loss formalism leading to ε ∝ L2, as shown below. This is why the
following effective path length is adopted in the literature [35, 232] and will be used here:

Leff(~b,~s, φ) =
2
∫∞

0 ρQGP(~s+~l) l dl∫∞
0 ρQGP(~s+~l) dl

(11.31)
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from which the geometric length is recovered when inputting hard spheres nuclei with constant
density.

The (best-behaved) path length definitions based on Eq. 11.30 were implemented and tested
against measurements, but the consistency of the results with the nominal path length calculation
was not fully investigated. It is not used in the literature because it is inconsistent with the
BDMPS path dependence of the energy loss ε ∝ L2, with which Eq. 11.31 is consistent as shown
below. However, future work could be done to adapt this effective length to a ε ∝ L dependence
due to the close-to-longitudinal medium expansion set forth at the end of this chapter.

Let us start from
ε =

1

2
〈q̂〉L2

eff =

∫ ∞
0

dE
dz

dz (11.32)

where the left term is the BDMPS estimation at constant QGP density (proportional to the
average transport coefficient 〈q̂〉), and the right term can take into account a variable density.
Let us find the effective length needed for Eq. 11.32 to hold, that is fully justified only in the case
of hard spheres with constant density, but later generalised to the other cases. No expansion of
the medium is assumed here, so only the space dependence of the QGP density is averaged.

The BDMPS energy loss on a small trajectory is taken as

dE = z q̂(z) dz (11.33)

consistent with Eq. 11.32 for constant densities. Then, the average density on a path [0, z] is

〈q̂〉(z) =

∫ z
0 q̂(l)dl
z

(11.34)

which translates into

〈q̂〉(Leff) =

∫∞
0 q̂(l)dl
Leff

(11.35)

where the integral boundary has been generalised from Leff to infinity, on the basis of a null
density beyond the limits of hard spheres nuclei. As a consequence:

ε =
1

2

∫ ∞
0

q̂(l)dl × Leff =

∫ ∞
0

dE
dz

dl (11.36)

Inputting dE/dz from Eq. 11.33, one indeed finds back the effective length of Eq. 11.31. In
section 12.1.1, I attempt a justification of this without constant density arguments, and how this
might affect the definition of the effective path length.

The path length of Eq. 11.31 with ρQGP = ρpart is hence used for the two Glauber models.
It is computed numerically, making the particle travel from its production point to the outside
of the medium in small steps. At each step ρpart times the distance from the production point is
summed to give the numerator, and similarly for the denominator.

11.2.7.4 Minimal QGP density for Woods-Saxons

In the Woods-Saxons optical Glauber model, the length from Eq. 11.31 grows un-physically
in peripheral collisions, because towards small densities, the denominator decreases almost as
much as the numerator does. This is due to the optical Glauber model having no hard phase
space limits: nucleon interactions can possibly take place at very large distances from the centre
of the interaction region. To be able to extract a length and a transverse area for this Glauber
model, I need to regularise the formula with a minimal-density cutoff, to prevent the integral in
the numerator to give non-null weight to very large distance. A somewhat arbitrary choice is



11.2. A new scaling 255

needed for the regularisation parameter, but I have checked that it does not affect significantly
the results.

What could be the minimal transverse surface density of nucleons for a QGP to be created, or
simply for any hadronic activity to occur? The area in Ref. [232] is taken as A = πr2

0(1
2Npart)

2/3

(considering the overlap area as a disk). Assuming that the QGP cannot exist for nucleonic
densities lower than the 〈ρpart〉 for Npart = 1 (corresponding to half the activity of typical pp
collisions), I get

ρpart,min =
Npart = 1

πr2
0((Npart = 1)/2)2/3

' 0.35 fm−2 (11.37)

with r0 ' 1.2 fm. In practice, a lower value ρpart,min = 0.1 fm−2 is taken, to limit the influence of
this parameter on the path length values. I tested that taking rather ρpart,min = 0.01 fm−2 has
few effect on the results, and only in the most peripheral collisions.

11.2.7.5 Comparison of methods

I compare in Fig. 11.13 the average path length in the four considered models (listed in ),
including that tabulated for the MC Glauber model in Ref. [35]. The uncertainties quoted in
the latter are large, about 50% at all centralities, but will not be considered in the fit results
of section 11.2.9. I present it as a function of centrality, because the discrepancies of path
length functions of b partially compensate thanks to the different b limits of the centrality classes
associated to the various models.

0 20 40 60 80 100
centrality

0

1

2

3

4

5

6

<
L>

 [f
m

]

Mean path length of particles in the medium

PbPb 5.02TeV MC Glauber (PRC97, 054910)

PbPb 5.02TeV Hard Spheres (const density)

 density)
part

ρPbPb 5.02TeV Hard Spheres (

)
part

ρPbPb 5.02TeV Woods-Saxons (w/ minimal 

Mean path length of particles in the medium

Figure 11.13: Comparison of the average path length in the medium as a function of
centrality for the four Glauber models.

——–

Despite all the differences of the models, they result in similar path length estimations. In
particular, the ratio of the lengths for different models in close to constant, up to centralities of
80%. For most centralities the MC Glauber and optical Woods-Saxons models are very close,
whereas the two hard spheres model are particularly close at higher centralities, where the QGP
density comes closer to constant.

For the most peripheral collisions, the models start to diverge, as the path length definition
is slightly ambiguous where few hadronic interactions occur. The MC Glauber model [35] is
the only model showing there non-null lengths, of order 1 fm. The sharp drop in the optical
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Woods-Saxons model is due to the minimal-density regularisation (section 11.2.7.4); smaller
values of this threshold (such as 0.01 fm−2) push this drop closer to 100% centrality, but with
a significantly higher length than the other models in the 70-90% range. However, these most
peripheral collisions have only a small impact on the results of the scaling.

I show in Fig. 11.14 the comparison of the average path length for the four collisions systems
present in the fitted measurements, in the case of the full Glauber model in hard spheres. As
expected, smaller nuclei show smaller path lengths. However, especially in the MC Glauber and
Woods-Saxons cases, the path length AuAu collisions at 200GeV starts to decrease below that
of smaller nuclei in peripheral collisions, because the smaller σNN at this smaller energy starts
to affect the probability for hadronic interactions of nucleons.
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Figure 11.14: Comparison of the average path length in the medium as a function of
centrality for the four studied collision systems, calculated with the full Glauber model in

hard spheres.
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11.2.8 Transverse area

11.2.8.1 Hard spheres and constant density

Let us start by calculating, for hard sphere nuclei of constant density, the transverse area of
the nuclei wherein the hadronic activity occurs. This corresponds to the textbook almond/lentil

shape of centre (x = b/2, y = 0), width 2R− b, and height 2

√
R2 −

(
b
2

)2, e.g. shown in Fig. 1.6.
I calculate it here analytically, in the hard-spheres view where it is non-ambiguously defined as
the area of a nucleus that is ‘touched’ by the other nucleus. I will then compare these to the
values of the transverse area versus centrality given in the MC Glauber model of Ref. [35].

The transverse area of the interaction region in the collision of two hard-sphere nuclei of
radius R, with a separation b between the nuclei centres, is:

A⊥(b, R) = 2R2 arccos

(
b

2R

)
− b
√
R2 −

(
b

2

)2

. (11.38)

The first term is twice the area of the sector of the first nucleus joining the two tips of the
almond, of angle 2 arccos

(
b

2R

)
. The second term subtracts the unwanted area from this sector,
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which, by playing with triangles of hypotenuse ~R, is half of a rectangle of sides b and the height

of the almond 2

√
R2 −

(
b
2

)2.
The area in a class of centrality between impact parameters b1, b2 is:

A⊥(Cb1,b2 , R) =

∫ b2
b1
bA⊥(b, R) db∫ b2
b1
b db

. (11.39)

The integral in the denominator is trivial, and I obtain the one in the numerator thanks to
integral calculator (which was checked manually):

∫ b2

b1

db bA⊥(b) =

R4 arcsin

(
b

2R

)
+ b2R2 arccos

(
b

2R

)
− bR3

√
1−

(
b

2R

)2
(

1

2
+

(
b

2R

)2
)b2

b1
(11.40)

11.2.8.2 Glauber models

The area in the MC Glauber [35] is that where any nucleon has a hadronic interaction. It
is tabulated in 5%-wide centrality ranges. The quoted uncertainties are large, but smaller than
for the path length: they run from 5-10% in central collisions to 100% in the most peripheral
collisions.

For the hard spheres optical Glauber, it could be calculated as the geometrical intersect of
section 11.2.8.1. However, for consistency with the path length determination, the area is rather
defined based on the path length of Eq. 11.31 for non-constant QGP densities. It is the integral∫ 2π

0
dφ
∫ r=l(φ)

r=0
r dr =

∫ 2π

0
dφ

l2(φ)

2
(11.41)

where l(φ) is calculated from the centre of the almond interaction region along the direction φ.
This amounts to taking the limits of the area of the medium to be one path length away from
the centre of the intersection region.

In the Woods-Saxons case, the area is calculated in the same way, with the path length based
on the Woods-Saxons densities. The same minimal ρpart > 0.1 fm−2 threshold is used as in the
average length calculation.

11.2.8.3 Comparison of models

In Fig, 11.15, the transverse area as a function of centrality is compared for all (non-)Glauber
models. It is systematically higher with the MC Glauber than in the custom Glauber models,
probably due to the MC allowing for isolated interacting nucleons far from the nuclei centres.
The Woods-Saxons model shows a flatter transverse area versus centrality in peripheral collisions
than the other models, which would be worse with a looser minimal ρpart threshold.

As I discussed the consistency of the calculations of the path length and of the area, let
me discuss a simple variable that should mitigate the modelling uncertainties: the ratio of the
area to the squared path length. It is shown in Fig. 11.16. It takes values that are comfortingly
between π and 2π, and are relatively constant until a centrality of 80%.

11.2.9 Scaling results

I finally have all the ingredients to test the proposed scaling of Eq. 11.11 on all the light
hadron measurements listed in Table 11.1. All the extracted energy loss values of light hadrons
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——–

summarised in Fig. 11.4 are used, except the inclusive measurements when they are redun-
dant with the centrality-dependent ones, and except the centralities above 60% measured with
PHENIX (because the measured energy loss is almost null).

Each energy loss value is fitted from light hadron measurements in a given collision system,
at a given energy, measured by a given experiment, in a given centrality range. In each of
these specific conditions, the multiplicity at central rapidities, the transverse area, and the path
length are calculated as mentioned in the above sections, consistently within each Glauber model.
The hard-spheres Glauber model (with non-constant QGP density) will be used for the nominal
results shown here, but the extracted parameters for all four models will be mentioned.
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I then perform a fit to determine the value of β = 2 − α and the prefactor K entering the
scaling:

〈ε̄〉fit = K
dNch

dη
〈L〉β
A⊥

. (11.42)

So I draw the values of 〈ε̄〉fitA⊥/(
dNch
dη ) as a function of 〈L〉, and fit them with a power law

function with positive exponent, constrained to have null energy loss for null medium length.
This fit is shown in Fig. 11.17.
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spheres optical Glauber model. The power law fit is shown with a violet solid line, yielding

the exponent β. See the text for details on the uncertainties.
——–

Only the quadratic sum of the total uncertainties on the extracted energy loss (see sec-
tion 11.1.2.3) and on the multiplicities are included in this fit, and are displayed in the error
bars. In the MC Glauber fit, the uncertainties on the area and the path length are not included.
In the custom Glauber models, no uncertainties on the path length and area are considered: I
prefer to extract the final result using each Glauber model, and to quote a systematic uncertainty
as the spread of these results.

The measurements already scale well in Fig. 11.17, but with large uncertainties, especially
for points originating from peripheral collision systems. This scaling is better illustrated when
the dependence of interest is plotted: the energy loss as a function of the activity of the QGP
dNch
dη
〈L〉β
A⊥

. The value of β is fixed from the fit of Fig. 11.17, and only the prefactor of Eq. 11.42 is
fitted once more, and yields values very close to the previous fit. This new scaling law is shown
in Fig. 11.18, and is valid over more than an order of magnitude of difference in the collision
energy, and for nuclei of sizes up to two times smaller or larger. I hence show here that all existing
measurements, in very different collision systems, energies, and geometric configurations, do scale
with the ‘activity’ of the QGP as explained in this chapter.
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The χ2 of the fit is very good, and is similar for all four Glauber models. It is actually
slightly underestimated due to the correlations of the energy loss uncertainties in groups of points
that originate from the same Run and experiment. Typically, the luminosity or Glauber model
uncertainties are correlated for all measurements of a data-taking period, and the systematic
uncertainties linked to a given analysis method is very correlated along the bins of the same
experimental analysis. I shall take into account these correlations in the future, but it should
not affect significantly the results discussed here.

They are not shown here, but the energy loss values extracted for J/ψ and D mesons are
also consistent with the found scaling, within large uncertainties, despite the differences that
could emerge from different quark/gluon ratio or fragmentation function (mentioned in sec-
tion 11.1.2.4).

Let me discuss now the values of the parameters extracted in the fit of Fig. 11.17, with
the hard spheres Glauber model. The most striking conclusion is the value β = 1.00 ± 0.08,
(fortuitously) equalling the value α = 2 − β = 1 expected with a perfect Bjorken expansion
in the longitudinal direction [126]. If the medium was expanding in the transverse direction
as well, the density would decrease faster so α would be larger than 1, and if the longitudinal
expansion was slower than c, then α < 1 (i.e. β > 1). With the observed α = 1.00 ± 0.08, the
expansion could be a perfect longitudinal one, or a compensation of an imperfect longitudinal
expansion with some transverse expansion.

The values of β obtained in hard spheres with constant QGP density (no Glauber model),
the MC Glauber model, and the custom Woods-Saxons optical Glauber model, are 1.10± 0.07,
0.97 ± 0.10, and 1.03 ± 0.09, respectively. The value for the simple hard spheres case deviates
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by about 1σ from the other models. However, it is not worrying considering the significantly
different hypotheses made for the path length and area estimations in this case; it rather shows
the robustness of the procedure. So I deduce a systematic uncertainty on β of 0.03, which yields
a total uncertainty of 0.09. This definitively excludes the view of a static block of QGP
created in heavy ion collisions.

The prefactor coefficient K equals 0.073± 0.001, 0.076± 0.002, 0.127± 0.003, and (0.073±
0.001) GeV.fm2−β , in the simple hard-spheres, the optical hard spheres, the MC, and the Woods-
Saxons optical Glauber models, respectively. The coefficient is significantly higher in the MC
Glauber model mostly due to the transverse area (dividing the prefactor) being systematically
larger than for the other models. From Eq. 11.11, the prefactor is:

K = 〈x〉ref〈z〉
〈ω̄c〉fit

〈z〉 = 〈x〉ref〈z〉
27πα2

S

4(2− α)
τα−1

0 . (11.43)

In principle, this scaling could have constrained the formation time τ0 of the QGP. However, as
the fitted α value is very close to 1, the factors τα−1

0 and (2 − α) are considered to be 1 (and
dimensionless) in this discussion. The term 〈x〉ref = 0.289 only cancels the factor used to convert
the energy loss scale ωc to the energy loss ε. The average fragmentation fraction 〈z〉 is estimated
to be of order 0.5 (with 10-15% uncertainties) for light hadrons at the LHC [216].

Let us compare the numerical value of K versus expectations for the factors of Eq. 11.43.
Taking the above-mentioned values of 〈x〉ref and 〈z〉,K = 0.076 and τα−1

0 = 1 results in αS ' 0.16
close to what could be expected. If the factor 〈x〉ref is not fixed, one rather gets a constraint
CRα

3
S = 0.014, which is consistent with the values CR = 3 and αS = 0.17 – the colour factor is

nevertheless not well constrained, as the factor α3
S is very sensitive to variations of the assumed

value of αS .

Values of the transport coefficient q̂ cannot be extracted from this result, as the length
dependence is not L2, as needed for a comparison to the BDMPS formalism. This is because
some properties of the transport coefficient are absorbed in the multiplicity, length and area
quantities.

To conclude, I have shown here that the average energy loss of partons in any collision
condition creating a QGP, assuming that the mean fragmentation fraction into hadrons 〈z〉
is similar to that of the light hadrons of the used measurements, can be determined as:

〈ε〉 = (0.26± 0.03)
αSCR

2

dNch

dη
〈L〉1.00±0.09

A⊥
[GeV] (11.44)

where CR is the colour factor of the dominant parton parent of the considered hadron (and 〈L〉
and A⊥ are measured in fm and fm2). The uncertainty on the prefactor is strongly correlated
with that on the exponent of 〈L〉, and it is recommended to use the values of 〈L〉 and A⊥ of a
Glauber model close to the two custom ones presented here.





“Theory is when you know everything but nothing
works. Practice is when everything works but no one

knows why.”

———–

Attributed to Albert Einstein or Hermann Hesse1

Chapter 12

Can we do better?
Checks and improvements

This chapter presents checks of the formalism of the previous chapter, as well as work
directions and ideas that are promising but have not been fully exploited yet.

12.1 Checks of energy loss and path length formalism

12.1.1 Alternative effective path length

Let us try here to justify the formula of the effective length of section 11.2.7.3 without using
the argument of constant QGP density. I generalize the formula of the energy loss on a path
[0, z] from Eq. 11.33 to a variable density as ε(z) = 〈q̂〉(z) z2 = z

∫ z
0 q̂(l)dl, meaning I have:

dε
dz

(z) = zq̂(z) +

∫ z

0
q̂(l)dl (12.1)

which gives an energy loss on the range [0,∞] of

ε =

∫ ∞
0

zq̂(z) dz +

∫ ∞
0

dz
∫ z

0
q̂(l) dl (12.2)

Equating this with the total energy loss of Eq. 11.35, I get

Leff =

∫∞
0 zq̂(z) dz +

∫∞
0 dz

∫ z
0 q̂(l) dl∫∞

0 q̂(z)dz
(12.3)

I do not use this path length expression, that has not been tested yet.
1The source is very unclear. The main internet trend is to add at the end of this quote “Here, theory and

practice are combined: nothing works and no one knows why!”, and to still attribute it to Einstein. The version
attributed to Hermann Hesse is “Theorie ist, wenn man alles weiss, aber nichts funktioniert. Praxis ist, wenn alles
funktioniert, aber niemand weiss warum.”
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12.1.2 Independence of various integrals

I revisit here with more explicit expressions the principle of the scaling (section 11.2.1), and
assess the validity of the assumption of constant QGP density and the successive averaging of
multiple involved variables.

12.1.2.1 Effect of spatial inhomogeneties

In Ref. [223] the transport coefficient is:

q̂(z, t) ≡ Cn0f(z)g(t) = C

 dNch
dy

∣∣∣
y=0

A⊥τ0

( ρpart(z)

Npart/A⊥

)(
τ0

τ0 + t

)α
(12.4)

In the second term, the surface density of nucleons is normalised by the total Npart from the
same model to cancel some modelling uncertainties.

I now impose z = t because of the medium expands at light-speed, and the energy loss on a
given path is:

ε(b,X0, φ) =

∫ L(b,X0,φ)

0
q̂(z, z) z dz (12.5)

and integrating on all possible (isotropic) φ directions of emission, and on the probability of
production of a hard probe at X0, the average energy loss for a given impact parameter b is:

〈ε〉(b) = C

 dNch
dy

∣∣∣
y=0

A⊥τ0

 1

Ncoll(b)

∫
dX0 ρcoll(X0)

1

2π

∫ 2π

0
dφ
∫ L(X0,φ)

0

ρpart(X0, φ, l)

Npart(b)/A⊥(b)

(
τ0

τ0 + l

)α
l dl

(12.6)

The goal of our scaling is to show that this can be approximated by

〈ε〉(b) ∝ C τα−1
0

2− α

 dNch
dy

∣∣∣
y=0

A⊥τ0

 〈L〉2−α(b) (12.7)

where we approximated l
(τ0+l)

α ' l1−α, and where 〈L〉 is an average length in the interaction
region:

〈L〉(b) =
1

Ncoll(b)

∫
dX0 ρcoll(X0)

1

2π

∫ 2π

0
dφ Lgeom(X0, φ) (12.8)

or, taking into account an effective length for a non-constant QGP density:

〈L〉(b) =

∫
dX0 ρcoll(X0)

∫
dφ

∫∞
0 ρpart(X0, φ, l) l dl

2π
∫
dX0 ρcoll(X0) 1

2

∫∞
0 ρpart(X0, φ, l) dl

(12.9)

Note that, even neglecting the spatial dependence of q̂, having a scaling of the integrated 〈ε〉
on 〈L〉2−α is not exactly equivalent to having a dependence ε(z) ∝ L2−α on a given path! This
is because for the ρcoll and φ integrals,

∫
dxxα 6= (

∫
dxx)α. Luckily, α being found close to 1

limits a posteriori this problem.

Now, let me assess how the spatial inhomogeneity of the density can affect the final energy
loss values, and if this depends on parameter α, on centrality (b), and on the average length
〈L〉(b). This amounts to checking the difference between the hard spheres model with or without
the assumption of constant density. In hard spheres, the effect of inhomogeneity F , for a given
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path, on a given lentil (b), is:∫ L(X0,φ)

0

ρpart(X0, φ, l)

Npart(b)/A⊥(b)

(
τ0

τ0 + l

)α
l dl ≡ F (X0, φ, b)

∫ L(X0,φ)

0

(
τ0

τ0 + l

)α
l dl (12.10)

Except this depends on the production point and direction of the particle. So I rather consider
take the ratio of fully integrated energy losses, with or without the spatial inhomogeneity ρpart:

Ffull(α, b) =
1

Npart(b)/A⊥(b)

∫
dX0 ρcoll(X0)

∫
dφ
∫ L(X0,φ)

0 ρpart(X0, φ, l)
(

τ0
τ0+l

)α
l dl∫

dX0 ρcoll(X0)
∫
dφ
∫ L(X0,φ)

0

(
τ0
τ0+l

)α
l dl

(12.11)

Let me test analytically some limits of F (before integration over the lentil), with a particle
drawn at a given φ from the centre of the QGP region, so that it travels distance L (in hard
spheres). I assume the spatial dependence of q̂ to be f(z) = 1− ( zL)2, qualitatively close to the
numerical hard spheres density, and the time dependence as g(t) = ( l0

l+l0
)α, where α 6= 1 and

6= 2. I assume that L� l0, L(α− 1)� l0, and L(α− 2)� l0. I then obtain

F '
1− α

2−7α+10
α−4 (Ll0

)2−α

1− (α− 1)(Ll0
)2−α '

2

4− α (12.12)

which gives values between 2/3 and 1, for 1 < α < 2, and values between 1/2 and 2/3 for
0 < α < 1. This is satisfyingly close to a constant. Doing the same calculation with α = 1 gives

F = 1− l20

L2 −
1

3

L− 3
2 l0

L− l0 ln |1 + L
l0
|
' 2/3 (12.13)

which is comforting as well: 0.5 < F < 1 for 0 < α < 2.

Fig. 12.1 shows the integrated Ffull in the simulated hard spheres case. For the α = 1 that
is observed in the previous chapter, it varies only of 2 − 3% in the most central collisions, but
is constant at larger b values. This is consistent with the relatively small difference found in the
results of the scaling when using a constant or a ρpart QGP density.

12.1.2.2 Order of averages, formation time

Still in hard spheres, I quantify here the difference between the expected scaling (sec-
tion 11.2.1) and a full calculation of energy loss, that considers the energy loss of each individual
parton separately and includes the effect of the formation time. This amount to the ratio

1 + δ〈ε〉 =

∫
ρcoll

∫
dφ
∫ L

0

ρpart(X0,φ,l)

Npart(b)/A⊥(b)

(
τ0
τ0+l

)α
l dl

τ
α
0

2−α
(∫
ρcoll

∫
dφ L

)2−α (12.14)

except I checked above that the spatial dependence of the density does not have a strong effect,
so I need only to look at

1 + δ〈ε〉 =

∫
ρcoll

∫
dφ
∫ L

0
l

(τ0+l)
α dl

1
2−α

(∫
ρcoll

∫
dφ L

)2−α (12.15)

This ratio, numerically calculated, is shown in Fig. 12.2 in the (α, b) plane, for τ0 = 0.1fm. It
ranges from 0.4 to 1.7 in the (b, α) space, for 0.3 < α < 1.6 and τ0 = 0.3 fm (and a density that
starts being diluted only from τ0, meaning τ0

l+τ0
becomes 1 for l < τ0). Let us investigate what

dominates in this ratio.
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First, I study the position of the ρcoll, φ integrals compared to the power 2− α is negligible
when α is close to 1. For values up to α < 1.6), the ratio

1 + δ〈ε〉 =

∫
ρcoll

∫
dφ L2−α(∫

ρcoll
∫
dφ L

)2−α (12.16)

deviates down by max 5-6%. However, for α < 1, it deviates up in peripheral collisions, and
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ranges from 1.15 to 1.5 for α = 0.3. However, for α = 0.85, the deviation for large b goes only
up to 5-7%. This is hence not the main contribution to the large ratio of Fig. 12.2.

Now, I study the dependence on τ0. Even with a very small τ0 = 0.01 fm, the ratio varies
up to 60% in the (b, α) plane, giving lower values for small α or large b. This can be understood
with the equivalence large b ↔ small L and, ignoring the position of the ρcoll integral and the
power: ∫ L

0
l dl

(l+τ0)
α∫ L

0 l1−αdl
=
(

1 +
τ0

L

)1−α
(

1 +
τ0

L(α− 1)

)
− 1

α− 1

(τ0

L

)2−α
(12.17)

which we develop at 2nd order in τ0/L for α < 2:∫∫ = 1 +
τ0

L(1− α)

(
α2 − 2α+ (τ0/L)1−α

)
− 1 + α

2

(τ0

L

)2
(12.18)

which is mostly lower than 1, due to α2− 2α for α < 1, and to (τ0/L)1−α for α > 1. In the later
case, the main contribution is ∝

( τ0
L

)2−α, which gives significant deviations for α close to 2 and
small L (ie large b).

To conclude, it is not straightforward to use the Salgado-Wiedemann effective density (with
medium expansion) as a scaling on the average length, especially in peripheral collisions. Even
close to α = 1, the ratio has variations of order 50% along b. This still needs to be investigated
further.

12.1.3 Separating time and space dependences

In hard spheres, for a given parton produced at point and direction (x0, y0, φ) and with a
density q̂ = q̂0g(z)f(t), the energy loss is:

ε = q̂0

∫ L

0
g(l)f(l)l dl (12.19)

and to separate the temporal (f) and spatial (g) dependences in the integral I define G such that

ε = q̂0G

∫ L

0
g(l)l dl (12.20)

so

G =

∫ L
0 f(l)g(l)l dl∫ L

0 g(l)l dl
(12.21)

If G does not depend strongly on the shape of f(l) = ( l0
l0+l )

α, then it justifies the separation
between f and g integrals. The hope is also that it does not depend too much on L. If it has
a weak but power dependence G ∝ Lγ , then this can be interpreted as ε ∝ Lγ+(2−α), where α
is only linked to the time expansion, and γ is mostly due to the spatial shape of the medium
density. The shape of G differ for various φ and centralities.

With the custom Glauber models of section 11.2, I check explicitly that the space and
time dependences act on different scales, so that their integrals can effectively be performed
independently. Fig. 12.3 shows the ρpart and ρcoll densities in hard spheres at centrality 40%
along the x and y directions (passing through the centre of the interaction region), compared to
the term τ0

τ0+τ ∼
l0
l0+l . The latter evolves indeed on much smaller length scales than the change

of density. This conclusion is less strong in the most peripheral collisions, but still holds.
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Figure 12.3: Hard spheres ρpart and ρcoll along the x and y directions, at centrality 40%.
The spatial variation of ρpart is slow compared to that of the medium expansion close to the

centre of the medium, and inversely close to the edge of the medium.
——–

12.2 Npart and centrality in the Woods-Saxons model

I come back in this section on the difference of Npart (densities) between hard spheres and
Woods-Saxons mentioned in section 11.2.6.2. I considered changing the definition of centrality
for Woods-Saxons, so that the integrated Npart at a given centrality is similar in hard-spheres
and in Woods-Saxons. This new centrality variable will still correspond to different values of b
for the two models, but lower b (so higher Npart) in peripheral collisions in Woods-Saxons than
previously.

This fix could be justified by the fact that with the optical (continuous) approximation,
contrarily to a Glauber MC where the probabilities of single discrete nucleon-nucleon collisions
are calculated, the criterium for ‘a hadronic AA interaction took place’ (which defines the ‘cen-
trality=100%’ reference) could be biased. The hadronic interaction probability might decrease
unrealistically slowly with b because in reality, the nucleons at these low densities are scarce and
might not meet. In a classical sense, there could be two nucleons present in a given area with
reasonably high nucleon density, but they would be far away to meet head-on.

I could cut away the very high-b collisions, defining a ‘100% centrality’ reference point as
the b where the maximal ρpart is lower than the reference density mentioned in section 11.2.7.3.
Alternatively, I could simply redefine the b limits of the centrality classes as those corresponding
to the Npart limits of the centrality classes of the hard spheres model. However, this was not tried
yet, because the Woods-Saxons Glauber model I implemented gives very similar results than the
other models despite the observed differences in the Npart limits, meaning that the modelling
uncertainties partially cancel in the ratio of the length and the area.

12.3 RAA predictions in OO (and pPb) collisions

From the scaling of section 11.2, more precisely from the result of Eq. 11.44, I predict here
the radiative energy loss of inclusive high-p⊥ hadrons in the OO collisions at √s

NN
= 7TeV,

along with the resulting RPbPb, in various centrality classes. These OO collisions will take place
in the Run3 of LHC, probably in 2024-2025.

I only need the path length, the transverse area, and the charged multiplicities. The first
two are already calculated exactly as in the other systems, possibly with any of the three custom
models, but I keep the hard spheres Glauber model (with non-constant QGP density) as the
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nominal one. Only the NN cross section is slightly higher, and it is extracted from the √s
NN

dependence of Ref. [35].

The charged particle multiplicity is harder to obtain as there are no available measurements
in this system at this energy. However, I can estimate it at first order with Fig. 12.4 from
Ref. [229]. The ratio dNch/dη/Npart is of order 2.5 − 5, slightly rising with Npart/2A. The
multiplicity and Npart are here implicitly averaged over a given centrality range. I include this
non-constant part in an empirical parametrisation:

dNch/dη
Npart

= 3.0 + s
Npart

2A
(12.22)

for any nuclei at√s
NN

= 5.02TeV, where s = 1.8±0.6 is extracted with a conservative uncertainty
from the various slopes observed at 5.02 or 5.44TeV in Fig. 12.4.

Consequently, I take dNch/dη in OO collisions as:

dNch/dη(OO) = Npart(OO)

[
dNch/dη(PbPb)

Npart(PbPb)
+ s

(
Npart

2A
(OO)− Npart

2A
(PbPb)

)]
(12.23)

where all quantities refer to the centrality range at hand, and Npart is calculated with the nominal
Glauber model. The difference in Npart(OO) from taking s = 0 instead of s = 1.8 is of maximum
2%, so the uncertainty on s is not propagated. I rather use a conservative 6% uncertainty to all
multiplicity estimates, corresponding to the maximal difference of dNch/dη

Npart
between the ALICE

measurements in PbPb 5.02TeV and XeXe 5.44TeV.

Figure 12.4: The charged particle multiplicity divided by Npart, as a function of Npart/2A,
for PbPb and XeXe collisions. Figure from Ref. [229].

——–

The ratio dNch/dη/〈Npart〉 slowly rises with the collision energy: Ref. [233] gives a de-
pendence in

√
s
n=0.11 or 0.158 in pp or (various) AA collisions, respectively. This gives a factor

(7/5.44)0.11 = 1.028 or (7/5.02)0.158 = 1.054 to multiply the right-hand side of Eq. 12.23 for OO
collisions at 7TeV. The second factor is used, and the associated uncertainty (2%) is negligible
compared to the 6% mentioned above. In the future, the resulting values of Npart could be
compared to predictions from the EPOS generator.

The energy loss (times the average fragmentation fraction, assumed equal in all systems)
is predicted with the fit function of Eq. 11.44 in three centrality ranges: 0–100%, 0–10%, and
40–60%. The resulting values are 〈ε̄〉 = 0.63 ± 0.20, 1.47 ± 0.34, and 0.44 ± 0.15GeV. The
uncertainty comes from the multiplicity (6%) and from the points fitted to give Eq. 11.44.
The second uncertainty is half the difference between the energy loss values obtained from two
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alternative fit functions, in which the fitted points are either all moved up of 1σ or all moved down
1σ. This simple approach overestimates the uncertainty by assuming full correlation between
the uncertainties on the fitted points; whereas the fitted energy loss values are only correlated
when they come from the same set of measurements. In the future, these non-trivial correlations
should be better considered to obtain an accurate uncertainty on the fit function.

To obtain RAA(pT) predictions from these 〈ε̄〉 values and Eq. 10.20, only two ingredients are
missing. First, the slope n of the p⊥ spectrum in pp is taken as the one in PbPb collisions at 7TeV,
as, at LHC-like energies, its variations with the change of nucleus and energy are small compared
to the uncertainty on the predicted 〈ε̄〉 (see Fig. 10.2), and no precise measurement in OO
collisions at 7TeV is available yet. Second, the Loizides-Morsch correction in peripheral collisions
introduced in section 11.1.2.1 is applied to the modelled RAA function. These corrections are
considered to be the same in OO than in PbPb for a given centrality range (though this should
be checked with the authors) since the PbPb and XeXe ones show negligible differences.

The predicted RAA(pT) for light hadrons in OO collisions is shown in Fig. 12.5. The RAA
is smaller in peripheral collisions than in minimum-bias ones only due to the Loizides-Morsch
correction, which reaches 0.955 at 40–60% centrality. The RAA values are comparable to the
typical suppression expected from cold nuclear matter effects (that can reach about
20%), except in central collisions at the lowest pT predicted by the model, where RAA ∼ 0.6
values can be expected.
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Figure 12.5: Predicted pT-dependence of the nuclear modification factor of light hadrons in
OO collisions at 7TeV, in three centrality ranges.

——–

An order of magnitude of the suppression in pPb collisions can also be predicted, with the
rough assumption that a QGP drop of the transverse size of a proton is therein created. Another
caveat is that, as in the case of the OO predictions, the L � λ hypothesis (large path length
compared to the mean free path) might not hold for such small systems. Using values 〈L〉 ∼ r0

and A⊥ ∼ πr2
0 with r0 ' 1 fm, and the multiplicity dNch/dη ' 20 measured in minimum-bias

pPb collisions at 8.16TeV, I obtain 〈ε̄〉 ' 0.5GeV. This energy loss is similar to the prediction
in minimum-bias OO collisions, or to that in PbPb collisions at 60–80% centrality. This shows
again that the suppression of hadrons from radiative energy loss in these small systems might be
subdominant or comparable to effects from cold nuclear matter.
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12.4 Tests of scaling violation

I show here two tests, that will soon be performed, of the robustness of the scaling of
section 10.2 versus the considered assumptions.

12.4.1 Logarithms of the energy

Here I challenge the assumption that the logarithmic dependence of the BDMPS energy loss
on the energy of the parton does not affect significantly the scaling and the extracted energy loss
values.

In the following modification factor:

RAA =

∫
dεP (ε)

(
p⊥ + ε

p⊥

)−n
(12.24)

one can modify the quenching weight P into P ′ such that

P ′(ε) =
1

r
P
(ε
r

)
(12.25)

which indeed has an average energy loss r times larger: 〈ε〉′ =
∫
dε εP ′(ε) = r〈ε〉. Therefore, the

modified RAA is:

RAA =

∫
dε
r
P
(ε
r

)(p⊥ + ε

p⊥

)−n
=

∫
dεP (ε)

(
1 +

rε

p⊥

)−n
(12.26)

Let me modify the mean energy loss to take into account the logarithmic dependence on
the parton energy mentioned at the end of section 10.1. This implies, taking p⊥ for the parton
energy:

r = 1 +
1

2
ln

(
p⊥
ωc

)
. (12.27)

where pT � ωc is always assumed (the logarithm is forced to 0 if pT < ωc). The shape of P is
assumed, at first order, to stay the same, and only the average of P to be shifted. Including the
average fragmentation fraction 〈z〉 ignored above, this reads

RAA =

∫
dε P (ε)

1 + ε〈z〉
1 + 1

2 ln
(
p⊥
ωc

)
p⊥

−n (12.28)

In this context, ωc should be the energy scale at which the spectrum goes from the LPM to the
fully coherent regime (see section 10.1). I take it here as ωc = 〈ε〉 =

∫
dε′ ε′P (ε′).

One can then check if the RAA breaks significantly the scaling observed in the p⊥/nωc
variable, by drawing this RAA for various realistic values of ωc, n, and p⊥. These scaling violations
are expected to be much smaller than the sensitivity of the current measurements, but it needs
to be checked quantitatively, which will be done soon.

12.4.2 Quarks vs gluons

The energy loss model starts from only one species of parton to produce the hadron of which
we measure the RAA. Let us consider that this parton can either be a gluon or a quark, and how
this affects the RAA model and the scaling in p⊥/nωc.
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I introduce the fraction xq(p⊥) = σhq /σ
h
tot of final state partons that are quarks (meaning

that σhg = (1− xq)σhtot). The fraction xq ranges from 0.6 at 10 GeV to 0.4 at 100 GeV, e.g. from
the NLO calculations of Ref. [216]. Then:

σAA = A2
∫

dε
(
Pq(ε)xq(p⊥) + Pg(ε)(1− xq(p⊥))

)
σhpp(p⊥ + ε) (12.29)

The mean energy loss is also proportional to the colour charge, so that 〈εq〉/〈εg〉 = CF /CA =
4
9 = r. Therefore:

〈εq〉 =

∫
Pq(ε)εdε = CF = rCA = r〈εg〉 = r

∫
Pg(ε)εdε =

∫
1

r
Pg(

ε′

r
)ε′dε′ (12.30)

where the last equality comes from a change of variable ε′ = rε. Assuming that the functional
form of Pq and Pg are the same, I get Pq(ε) = 1

rPg(
ε
r ). Then:

σAA = A2
∫

dε
(

1

r
Pg

(ε
r

)
xq(p⊥) + Pg(ε)(1− xq(p⊥))

)
σhpp(p⊥ + ε) (12.31)

Now, defining Pg(ε) = 1
〈ε〉 P̄g(

ε
〈ε〉) and changing the variable x = ε

〈ε〉 or x = ε
r〈ε〉 in the first

or second terms:

σAA = A2
∫

dxP̄g (x)xq(p⊥)σhpp(p⊥+xr〈ε〉)+A2
∫

dxP̄g(x)(1−xq(p⊥))σhpp(p⊥+x〈ε〉) (12.32)

I then divide by the pp cross section:

RAA =

∫
dxP̄g(x)

xq(p⊥)
1(

1 + xr〈ε〉
p⊥

)n + (1− xq(p⊥))
1(

1 + x〈ε〉
p⊥

)n
 (12.33)

and after exponentiation:

RAA =

∫
dxP̄g(x)

[
xq(p⊥) exp

(
−xnr〈ε〉

p⊥

)
+ (1− xq(p⊥)) exp

(
−xn〈ε〉

p⊥

)]
(12.34)

which varies now not only with n〈ε〉
p⊥

, due to xq(p⊥) not being constant. I project to compare
soon the resulting shapes in the typical p⊥ range of the measurements, for conservative assump-
tions on the p⊥ dependence of xq and different values of n, and quantify the scaling violation. I
will also refit the measurements with this improved model.

12.5 v2

The Glauber models of the previous chapter allow compute a detailed φ dependence of the
high-p⊥ energy loss, hence of the RAA of light hadrons. The v2 coefficient is then straightforward
to extract from RAA(φ), at a given p⊥, or integrated over p⊥. I could e.g. use the simple formula
for the v2 Fourier coefficient in Ref. [234]. The v2 is the second coefficient of the Fourier series of
the distribution of particles in AA collisions as a function of φ. However, this is equivalent to the
RAA(φ), as the distribution of particles can be considered isotropic in φ in pp collisions, giving
a constant denominator for the RAA. This v2 calculation could motivate future measurements
of v2 at very high-p⊥.
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AA nucleus-nucleus
AD Antiproton Decelerator
ALICE A Large Ion Collider Experiment
ATLAS A Toroidal LHC ApparatuS
BDT Boosted Decision Tree
CERN Conseil Européen pour la Recherche Nucléaire (Eur. Council for Nuclear Research)
CSC Cathode Strip Chambers
CMS Compact Muon Solenoid
c.o.m. centre-of-mass
DAQ Data AcQuisition system
DCA Distance of Closest Approach
DT Drift Tubes
ECAL Electromagnetic Calorimeter
Eq. Equation
Fig. Figure
HCAL Hadronic Calorimeter
HLT High Level Trigger
ID particle IDentification
IP impact parameter
L1 first Level of trigger
LEP Large Electron–Positron Collider
LHC Large Hadron Collider
LS Long Shutdown
MB Minimum Bias
MC Monte Carlo (simulation)
MIP Minimum-Ionising Particle
NLL Negative Log-Likelihood
NN Nucleon-Nucleon
nPDF nuclear Parton Distribution Functions
NRQCD Non-Relativistic QCD
OO Oxygen–Oxygen
OS Opposite–Sign
pp proton–proton
PbPb lead–lead
PHENIX Pioneering High Energy Nuclear Interaction eXperiment
POI Parameter Of Interest
pNRQCD perturbative-NRQCD
PV Primary Vertex
QED Quantum ElectroDynamics
QCD Quantum ChromoDynamics
QGP Quark-Gluon Plasma
Ref. Reference
RF RadioFrequency
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RHIC Relativistic Heavy-Ion Collider
RMS Root-Mean-Square
RPC Resistive Plate Chambers
SF Scale Factor
SM Standard Model
SPS Super Proton Synchrotron
TnP Tag-and-Probe
XeXe xenon–xenon



Values of Physical Constants

This table shows numerical values of some physical constants, particle properties, and unit
conversions that are used in this document. The uncertainties are not displayed

when lower than ' 10−4 − 10−5 relative to the central value.

Physical constants Symbol = Value (SI units) Value (natural units)
Speed of light c = 2.997 924 58× 108 m s−1 c = 1, exact
Reduced Planck constant ~ = h/2π = 1.054 571 8× 10−34 J s ~ = 1

Gravitational constant G = 6.674 08× 10−11 m3 kg−1 s−2

Elementary charge e = 1.602 18× 10−19 C (or J V−1) (1 eV)/(1 V)
Vacuum permittivity ε0 = 8.854 187 81× 10−12 F m−1

Fine structure constant αQED = 1
4πε0

e
2

~c = 7.297 352 569× 10−3

Bohr radius a0 = ~
mecα

= 5.291 772 109× 10−11 m

Particle properties
Neutron mass mn = 1.6749× 10−27 kg 939.56MeV/c2

Proton mass mp = 1.6726× 10−27 kg 938.27MeV/c2

Pion mass mπ = 2.4881× 10−28 kg 139.57MeV/c2

Electron mass me = 9.1093× 10−31 kg 0.51100MeV/c2

Muon mass mµ = 1.8835× 10−28 kg 105.66MeV/c2

Bc mass mBc
= (6274.9± 0.8)MeV/c2

Bc lifetime cτBc
= (153± 3) µm

J/ψ mass mJ/ψ = 3096.9MeV/c2

Conversions
fermi vs MeV 1 fm = (197MeV)−1

second vs MeV 1 s = (6.57× 10−22 MeV)−1

barn vs cm−2 1 b = 10−24 cm−2
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Titre : Le méson B+
c en collisions d’ions lourds avec le détecteur CMS.

Mots clés : plasma de quarks et gluons, Bc, QGP, CMS, ions lourds, pertes d’énergie

Résumé : Cette thèse traite de comment l’hadro-
nisation des quarks lourds et les partons de haute
énergie sont affectées par le plasma de quarks et
gluons (QGP) créé dans les collisions plomb-plomb
(PbPb) au LHC. La première observation de mésons
B+

c en collisions d’ions lourds est menée en analy-
sant des données du détecteur CMS. Partant d’une
loi d’échelle existante dans un modèle de pertes
d’énergie radiatives dans le QGP, une seconde loi
d’échelle est mise en évidence.
L’analyse de données CMS en collisions proton-
proton (2017) et PbPb (2018) à

√
sNN = 5.02 TeV

mène à l’observation de désintégrations B+
c →

(J/ψ → µ+µ−)µ+νµ, et à la mesure du facteur de
modification nucléaire du B+

c en deux intervalles d’im-
pulsion transverse du trimuon (pµµµT ) ou de la centra-
lité de la collision PbPb. Trois bruits de fond princi-
paux sont décrits par simulation ou par des méthodes
spécifiques et fondées sur les données. Un arbre
de décision amélioré (BDT) est entraı̂né sur le si-
gnal et les bruits de fond sélectionnés. Un ajustement
d’histogrammes en probabilités (likelihood template
fit) est opéré en intervalles de BDT, de masse inva-
riante du trimuon, et de pµµµT ou de centralité. L’ac-
ceptance et l’efficacité de la chaı̂ne de sélection sont

évaluées itérativement, avec le signal simulé dont le
spectre en pµµµT est préalablement corrigé par une
analyse préliminaire. Moins de suppression est ob-
servée pour le méson B+

c que pour toutes les autres
saveurs lourdes ouvertes et fermées, à l’exception du
méson B0

s . Un probable adoucissement du spectre en
pT est trouvé. Ces résultats pourraient indiquer que la
recombinaison de quarks lourds contribue significati-
vement à la production de mésons B+

c .
À haut pT (& 10 GeV), la perte d’énergie radiative
devrait dominer la suppression des hadrons dans le
QGP. Un modèle de perte d’énergie radiative par-
tonique existant, fondé sur le spectre BDMPS des
gluons induits par le milieu, prédit une dépendence
en pT universelle du facteur de modification nucléaire.
Des mesures dans des systèmes de différentes
géométries et énergies sont collectées et ajustées
à ce modèle, pour en extraire la perte d’énergie
moyenne. Cette dernière est incluse dans une nou-
velle loi d’échelle, qui la décrit comme dépendant uni-
quement de la taille du milieu et de la multiplicité en
particules chargées. Cela permet d’extraire des pro-
priétés d’expansion et de diffusion du milieu et poten-
tiellement de prédire le coefficient d’asymmétrie azi-
muthale v2 à haut pT.

Title : The B+
c meson in heavy-ion collisions with the CMS detector.

Keywords : quark gluon plasma, Bc, QGP, CMS, heavy ions, energy loss

Abstract : This thesis addresses how heavy-quark
hadronisation and high-energy partons are affected
by the quark-gluon plasma (QGP), a hot and dense
medium created in lead-lead (PbPb) collisions at the
LHC. Data from the CMS detector are analysed to
achieve the first observation of B+

c mesons in heavy-
ion collisions. Building on an existing scaling law from
a model of radiative energy loss in the QGP, a second
scaling law is also brought to light.
The analysis of CMS data from 2017 proton-proton
and 2018 PbPb collisions at

√
sNN = 5.02 TeV leads

to the observation of B+
c → (J/ψ → µ+µ−)µ+νµ de-

cays, and to the measurement of the B+
c nuclear mo-

dification factor in two bins of the trimuon transverse
momentum (pµµµT ) or of the PbPb collision centrality.
Three main backgrounds are described either with
simulation or with specifically-designed data-driven
samples. A boosted decision tree (BDT) is trained on
the selected background and simulated signal candi-
dates. A likelihood fit is run on templates binned in
BDT, trimuon invariant mass, and pµµµT or centrality.
The acceptance and efficiency of the selection chain
are evaluated iteratively in each pµµµT or centrality bin

with the simulated signal, whose pµµµT spectrum is first
corrected with the one measured in a preliminary ana-
lysis. The B+

c meson is found to be less suppressed
than all measured open and hidden heavy flavour me-
sons, except the B0

s meson. The results also hint at a
softening of the pT spectrum in PbPb collisions. These
may indicate that heavy-quark recombination is a si-
gnificant B+

c production mechanism.
At high pT (& 10 GeV), radiative energy loss should be
the dominant source of suppression of hadrons in the
QGP. An existing model for the radiative energy loss
of partons, based on the BDMPS medium-induced
gluon spectrum, predicts a universal pT-dependence
of the nuclear modification factor. This fits measure-
ments collected in systems of various geometries and
energies, whose mean energy losses are extracted. A
new scaling law is found consistent with the gathered
measurements: it links the mean energy loss with the
medium size and the inclusive charged particle multi-
plicity. This leads to the extraction of medium expan-
sion and diffusion properties, and to a possible predic-
tion of the azimuthal asymmetry coefficient v2 at high
pT.
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