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Contexte 

La consommation de tabac est aujourd’hui clairement reconnue comme un problème 

majeur de santé publique. Elle est responsable du décès de la moitié de ses 

consommateurs réguliers, soit plus de 8 millions de morts par an dans le monde (OMS, 

2019) et 75 000 par an en France (Pasquereau, 2020). La seule solution efficace pour 

réduire la mortalité est le sevrage tabagique mais la forte dépendance du consommateur 

à la nicotine rend ce sevrage difficile. Depuis 2014, de nombreuses politiques de santé 

établies en France ont été mises en place avec, notamment, le paquet de cigarettes neutre, 

l’augmentation du prix du paquet et les messages sensibilisant aux risques de la fumée 

ont contribué à une diminution du tabagisme. En parallèle de cette diminution, la 

prévalence de l’usage d’un nouveau type de dispositif permettant la prise de nicotine 

augmente : la cigarette électronique (ou e-cig). 

En effet, le marché de l’e-cig s’est considérablement développé dans le monde et en 

France depuis le début de sa commercialisation en 2010. La prévalence de vapoteurs 

quotidiens est passée de 3 % en 2014 à 4,4 % en 2019 (Pasquereau, 2020). Cependant, le 

manque de données scientifiques justifie les nombreuses interrogations des organismes 

de santé sur l’impact sanitaire à long terme de la consommation d’e-cig. La littérature 

disponible sur le sujet suggère que les émissions d’e-cig seraient bien moins toxiques que 

la fumée de cigarette. Mais, en septembre 2019, des cas de pneumopathies sévères, voire 

mortelles, survenues chez des vapoteurs ont été recensées aux Etats-Unis. Une enquête 

de la Food and Drug Administration (FDA) a relié ces cas à une utilisation anormale de l’e-

cig, et notamment, à l’ajout dans le e-liquide d’huile de cannabis contenant de l’acétate de 

vitamine E. Cette molécule se transformerait en substance collante après avoir été 

chauffée et inhalée (FDA, 2020).  Certains pays comme la Thaïlande ou l’Argentine 

préfèrent alors interdire l’utilisation de l’e-cig. A l’heure actuelle, des données 

toxicologiques sont encore nécessaires pour recommander l’utilisation de l’e-cig en tant 

que substitut nicotinique. L’urgence d’apporter des réponses est d’autant plus grande que 

les modèles d’e-cig disponibles sont de plus en plus performants en termes de génération 

d’aérosols avec le risque de comporter plus de composés toxiques dans leurs aérosols. 

Plus récemment, l’industrie du tabac a également mis au point un nouveau dispositif 

commercialisé comme une alternative à la cigarette : le tabac chauffé. Ce dispositif, 

introduit sur le marché français en 2017, permet de générer un aérosol à partir de feuilles 
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chauffées de tabac. Les études de toxicité publiées jusqu’à maintenant soulignent la 

réduction du danger par rapport à la cigarette. Cependant, ces études sont pour la grande 

majorité issues de l’industrie du tabac elle-même.  Il y a alors une nécessité de mener des 

études indépendantes sur la toxicité de ce nouveau produit du tabac. 

L’e-cig et les produits du tabac chauffé se présentent comme des alternatives à la 

cigarette classique, et pourraient participer à la réduction de la consommation de 

cigarette. Mais dans l’état actuel des connaissances, ces nouveaux dispositifs posent 

également des problèmes de santé publique. Le tabac chauffé est un produit dérivé du 

tabac, certes supposé sans combustion, mais le chauffage des feuilles de tabac pourrait 

générer les mêmes dérivés secondaires que ceux retrouvés dans la fumée de cigarette. 

L’e-cig, quant à elle, n’est pas un dérivé du tabac, mais les constituants des e-liquides, les 

produits dérivés du chauffage de ce dernier et les contaminants issus du dispositif lui-

même pourraient induire des effets néfastes à long terme. La prudence des autorités de 

santé et des agences sanitaires sur l’utilisation de ces alternatives à la cigarette témoigne 

du manque de données expérimentales indépendantes disponibles. L’amélioration des 

connaissances sur la composition chimique des aérosols et leur toxicité potentielle in vitro 

et in vivo, ainsi que l’apport de données cliniques à long terme chez l’Homme permettra 

de mieux caractériser le danger d’une exposition à ces nouveaux produits et, in fine, de 

mieux juger de leur balance bénéfices/risques.  
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Introduction 

1. Le tabagisme 

1.1. Epidémiologie 

Selon l’Organisation Mondiale de la santé, la consommation de tabac est un problème 

majeur de santé publique mondiale. Elle est responsable de plus de 8 millions de morts 

chaque année dans le monde parmi lesquels 7 millions sont des consommateurs ou 

d’anciens consommateurs et 1,2 millions sont des personnes involontairement exposées 

à la fumée. Le tabagisme est ainsi la première cause de mortalité évitable dans le monde 

(OMS, 2019). En France, en 2015, les décès attribuables au tabac ont été estimés à plus de 

75 000, dont 61,7% sont survenus suite à un cancer. Selon ces chiffes, la consommation 

de cigarettes est alors responsable de 13% de la totalité des décès survenus en France 

métropolitaine (Bonaldi, 2019). Les données du Baromètre de Santé publique France de 

2018 montrent une diminution de la prévalence du tabagisme quotidien alors que celle-

ci était stable depuis quelques années. Elle était d’environ 30% jusqu’en 2016 pour 

descendre à 27% en 2017 et 25% en 2018. La prévalence de fumeurs occasionnels en 

2018 est estimée à 32% (Andler et al., 2018). Cette tendance à la diminution est 

encourageante mais l’impact sanitaire du tabagisme ne déclinera pas dans un futur 

proche du fait du décalage entre la consommation et l’apparition des maladies pour 

lesquelles les fumeurs ont un risque plus élevé. 

1.2. Pathologies associées au tabagisme 

L’association entre le tabagisme et l’apparition précoce de pathologies ne fait 

aujourd’hui aucun doute (Doll et al., 2004). La consommation de tabac est formellement 

associée à 21 pathologies : 12 types de cancers, les maladies cardiovasculaires, le diabète, 

la broncho-pneumopathie chronique obstructive (BCPO) et d’autres pathologies 

respiratoires. Ce nombre est même considéré comme sous-estimé car il n’explique pas la 

totalité de l’excès de mortalité retrouvé dans une population de fumeurs (Carter et al., 

2015). En France, plus de 80% des décès suite à des cancers du poumon sont imputables 

à la consommation de tabac, de même qu’environ 70% des décès de cancers des voies 

aérodigestives supérieures et environ 30% des cancers du foie et de la vessie. Le 

tabagisme est également responsable d’environ 64% des décès des suites de maladies 

chroniques des voies respiratoires inférieures (incluant la bronchite, la BPCO, l’asthme…). 
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Enfin, en moyenne, environ 12 % des décès liés à l’ensemble des maladies cardio-

vasculaires sont également attribuables à la consommation tabagique (Bonaldi, 2019) 

(Tableau 1). 

De par le mode de consommation de la cigarette, les voies respiratoires sont les 

premiers tissus à devoir faire face aux agressions de la fumée de tabac. Ce chapitre vise à 

décrire brièvement les principales maladies pulmonaires ayant été associées au 

tabagisme.  

1.2.1. Cancer du poumon 

Le cancer du poumon reste la première cause de mortalité au monde et la fumée de 

cigarette augmente substantiellement le risque d’en développer un.  En effet, chez les 

Tableau 1. Pourcentage de décès 
attribuables au tabagisme en fonction des 
pathologies en France métropolitaine 
pour l'année 2015. D’après Bonaldi et al., 
2019. 

Pathologies

% de décès 

attribuables au 

tabac

Cancers

Poumon 82%

Voies aérodigestives

 supérieures
68%

Estomac 21%

Foie 27%

Pancréas 24%

Col de l'utérus 10%

Ovaire mucineux 18%

Colon-rectum 8%

Rein 25%

Vessie 32%

Leucémie 13%

Maladies respiratoires

Maladies chroniques 

des voies 

respiratoires inférieures

64%

Affection des voies 

respiratoires inférieures
14%

Autres maladies 

respiratoires
16%

Maladies infectieuses

Tuberculose 11%

Maladies cardiovasculaires

Cardiopathies ischémiques 12%

Maladies cérébrovasculaires 7%

Cardiopathies hypertensives 14%

Autres maladies cardiaques 15%
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fumeurs, 14,8 % des hommes et 11,2 % des femmes vont développer un cancer du 

poumon, contre 1,8 % des hommes et 1,3% des femmes chez les non-fumeurs (Bruder et 

al., 2018). Avant les années 1960-1970, le cancer du poumon épidermoïde était la forme 

histologique la plus répandue mais, depuis, ce sont les adénocarcinomes qui sont les plus 

retrouvés (Djordjevic et al., 1997). Ce changement de forme histologique est attribué à la 

modification de la composition de la cigarette. La réduction de la quantité de nicotine et 

l’ajout du filtre font que les fumeurs aspirent plus intensément pour être satisfaits, ce qui 

fait que les substances cancérogènes se déposent plus profondément dans les poumons 

(Harris, 2004; Hoffmann et al., 1997). L’incidence du cancer du poumon est étroitement 

liée à la prévalence du tabagisme, avec un délai d’une vingtaine d’année qui correspond 

au temps de développement de la maladie. En effet, alors que l’incidence du cancer du 

poumon a tendance à diminuer dans les pays développés dans lesquels la lutte contre le 

tabagisme s’est développée, celle dans les pays en voie de développement reste élevée 

(Toh, 2009). 

1.2.2. La broncho-pneumopathie chronique obstructive  

La BPCO est une maladie inflammatoire chronique qui entraîne une obstruction 

irréversible des voies respiratoires. Les symptômes principaux sont des bronchites à 

répétition, des difficultés respiratoires et une toux chronique. Les principales 

composantes de la BPCO sont la bronchite chronique et l’emphysème. La bronchique 

chronique est une inflammation à long terme des bronches entraînant des difficultés à 

respirer et une production excessive de mucus. L’emphysème pulmonaire est une atteinte 

de l’intégrité des alvéoles pulmonaires qui provoque leur dilatation excessive et 

permanente pouvant conduire à leur rupture. Le tabagisme est le principal facteur de 

risque pour la BPCO, environ 80 % des cas sont attribuables au tabac et au moins 25 % 

des fumeurs développent cette maladie (Lokke et al., 2006). En France, elle concerne 7 à 

10 % des individus de 40 à 64 ans. La BPCO est responsable de 100 000 à 160 000 

hospitalisations par an en France et cause environ 18 000 décès (Delmas et al., 2018). 

L’afflux de cellules de l’inflammation provoqué par la fumée de cigarette entraîne la 

sécrétion de médiateurs de l’inflammation et de protéases responsables de la dégradation 

des tissus et de la perte d’élasticité observée dans la BPCO (Owen, 2008). L’arrêt du tabac 

est la solution la plus efficace pour réduire le risque de développer cette maladie et limiter 

l’avancement des symptômes (Tonnesen et al., 2006). 
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1.2.3. Pathologies interstitielles 

La consommation de cigarette est également suspectée d’être à l’origine de 

pathologies interstitielles (Cottin, 2006; Ryu et al., 2001). Également connues sous le nom 

de pneumopathies parenchymateuses diffuses, ces pathologies regroupent les atteintes 

pulmonaires caractérisées généralement par un épaississement des parois alvéolaires, 

une prolifération de fibroblastes et un dépôt de collagène qui peuvent aboutir à une 

fibrose pulmonaire. Ces pathologies associées à la consommation de tabac regroupent la 

bronchiolite respiratoire avec pneumopathie interstitielle, la pneumopathie interstitielle 

desquamative, l’histiocytose langheransienne pulmonaire et la fibrose pulmonaire 

idiopathique (Selman, 2003; Wirth et al., 2009). Les maladies interstitielles sont 

caractérisées par une accumulation de cellules inflammatoires dans le tissu pulmonaire, 

une dyspnée et une toux. Lorsque cette inflammation est persistante, notamment suite au 

tabagisme, un tissu cicatriciel (le tissu fibrotique) se forme, entraînant la dégradation des 

alvéoles. Ce phénomène engendre une diminution de l’élasticité du poumon et de la 

capacité de transfert de l’oxygène vers le sang.  

1.2.4. Asthme 

De par ses effets pro-inflammatoires, le tabagisme est également un facteur 

d’aggravation de l’asthme. L’asthme est une maladie chronique inflammatoire qui se 

manifeste par crises d’essoufflement, de respiration sifflante et de toux sèche. 

L’interaction de cette maladie avec la fumée de cigarette amène à des symptômes plus 

sévères : l’accélération du déclin de la fonction pulmonaire, une augmentation du risque 

mortel de la maladie et surtout la baisse de sensibilité aux effets thérapeutiques des 

corticostéroïdes (Eisner and Iribarren, 2007; Thomson, 2004). De plus, des études 

suggèrent la possibilité que le tabagisme soit également un facteur de risque pour 

l‘apparition de l’asthme chez l’adulte (Piipari, 2004; Polosa et al., 2008). 

1.3. Composition chimique du tabac et de la fumée de cigarette 

La toxicité du tabac peut être majoritairement expliquée par la composition chimique 

des émissions produites lors de la combustion. La fumée de cigarette renferme en effet 

plus de 8 000 composés différents (Rodgman and Perfetti, 2016), dont une centaine de 

composés nocifs ou potentiellement nocifs a été décrite par les autorités de santé 

américaines (FDA, 2012). La FDA inclut tous les composés chimiques présents dans le 

tabac et dans la fumée de cigarette qui une fois inhalés, ingérés ou absorbés dans 
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l’organisme nuisent ou peuvent nuire aux personnes exposées au tabac. La plupart de ces 

composés sont générés par des phénomènes de pyrolyse lors de la combustion des 

molécules organiques présentes dans le tabac (Baker, 2006; Torikaiu et al., 2005). Cette 

combustion se fait à près de 900°C lors d’une prise de bouffée par l’utilisateur (Guerin et 

al., 1987). Les composés retrouvés dans les émissions sont nombreux et peuvent être 

séparés en différentes familles de composés : les composés carbonylés et autres 

composés organiques volatiles (COV), les hydrocarbures aromatiques polycycliques 

(HAP), les métaux, les N-nitrosamines et la nicotine (Tableau 2). 

Certains composés sont générés sous forme de gaz lors de la combustion du tabac.  Il 

y a entre 400 et 500 gaz différents retrouvés dans les émissions (Hoffmann et al., 1997), 

les majoritaires étant le diazote (N2), le dioxygène(O2), le dioxyde de carbone (CO2), le 

monoxyde de carbone (CO) et les oxydes d’azote (NOx). Le CO2 et le CO représentent 

environ 15% de la phase gazeuse. Le monoxyde de carbone est l’un des gaz les plus 

agressifs pour l’organisme. En effet, il peut se lier très fortement à l’hémoglobine et 

réduire la quantité d’oxygène disponible pour l’organisme. L’émission de ce gaz dans l’air 

ambiant via la fumée de cigarette est l’une des principales raisons pour justifier 

l’interdiction de fumer dans les lieux publics (Jo et al., 2004). Les COV présents dans la 

fumée de cigarette sont issus de la combustion incomplète des molécules organiques du 

tabac lors d’une bouffée (Polzin et al., 2007). Ils font partie des composés les plus toxiques 

retrouvés dans ces émissions (Fowles, 2003). Parmi eux peuvent être cités le xylène, le 

toluène, l’acétonitrile, mais aussi différents composés carbonylés. Très réactifs, ces 

derniers composés sont produits à hauteur de 1 mg par cigarette. Les aldéhydes 

majoritaires dans la fumée de cigarette sont l’acétaldéhyde, l’acroléine, et le 

formaldéhyde. Quant aux cétones, c’est l’acétone qui est prépondérante (Counts et al., 

2005). Certains de ces composés peuvent être irritants pour les voies respiratoires, voire 

cancérogènes et sont retrouvés dans la liste des produits nocifs ou potentiellement nocifs 

de la FDA (FDA, 2012). 

Les hydrocarbures aromatiques polycycliques sont des composés formés par la 

combustion incomplète de matières organiques naturelles d’origine végétale ou animale 

(Evans et al., 1993).  Ce sont des molécules formées d’au moins deux cycles aromatiques 

condensés contenant uniquement des atomes de carbone et d’hydrogène. En 1986, 

l’Agence Américaine de Protection de l’Environnement a identifié 16 HAP prioritaires 
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démontrés comme particulièrement nocifs voire cancérogènes (Phillips, 1983). Ces 16 

HAP ont été retrouvés dans la fumée de cigarette par le Centre International de Recherche 

contre le Cancer (CIRC) (CIRC, 2004). 

Parmi les nombreux alcaloïdes présents dans les feuilles de tabac, c’est la nicotine qui 

est le plus abondant. La teneur retrouvée dans une cigarette varie entre 6 et 18 mg par 

cigarette, selon les marques (Counts et al., 2005, CIRC, 2004). La nicotine est en partie 

responsable de la dépendance tabagique. Elle provoque une addiction chez l’Homme en 

mimant l’action de l’acétylcholine, un neurotransmetteur naturel (Brody et al., 2009). En 

se fixant sur les récepteurs nicotiniques, elle déclenche la libération de dopamine qui 

alimente le circuit de la récompense chez le fumeur. De plus, la nicotine est une molécule 

fortement soluble et peut donc se dissoudre facilement dans les épithéliums pulmonaires 

et gagner la circulation sanguine, facilitant son pouvoir addictogène (Hukkanen et al., 

2005). Bien que la nicotine puisse être toxique à doses très élevées et participer à la 

toxicité du tabac, elle n’est pas considérée comme cancérogène. C’est pour cela que les 

traitements nicotiniques de substitution font partie de la liste des traitements préconisés 

par l’OMS pour lutter contre le tabagisme. 

Les N-nitrosamines sont une famille de composés chimiques issus de l’association 

d’un nitrate ou d’un nitrite avec une amine (dérivé de l’ammoniac). C’est pendant le 

séchage et la combustion du tabac que la nicotine et ses dérivés peuvent être transformés 

en nitrosamines. La N’-nitrosonornicotine (NNN) et la nitrosamine cétone (NNK) sont 

celles retrouvées en plus grande quantité dans la fumée de tabac (Hecht and Hoffmann, 

1988, CIRC, 2010). Elles sont les plus toxiques (Hecht, 1999) et ont été classées par le CIRC 

comme cancérogènes de classe 1 en 2012.  

Les métaux font également partie des substances auxquelles peuvent être exposés les 

fumeurs. Ces métaux peuvent provenir des pesticides utilisés dans la culture des feuilles 

de tabac (Frank et al., 1977), mais en majorité, ils proviennent directement des 

contaminations de l’air et des sols. En effet, la capacité des plants de tabac à absorber 

l’excès de métaux dans les sols, très utilisée dans l’agriculture moderne, devient un 

problème sanitaire pour les cultures de tabac destinées à la production de cigarette. 

Aluminium, arsenic, cadmium, chrome, cuivre, plomb, manganèse, mercure, nickel, 

sélénium, vanadium et zinc ont tous été mis en évidence dans la fumée de cigarette 

(Bernhard et al., 2005). Parmi les plus toxiques, le cadmium est le métal le plus étudié 
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dans la fumée de cigarette, il y est retrouvé dans des quantités comprises entre 0,5 et 1,5 

µg par cigarette en moyenne. Ce métal s’accumule en majorité dans les reins et peut causer 

une dysfonction tubulaire et une insuffisance rénale. Mais il s’accumule également dans 

la circulation et dans les poumons, ce qui peut causer des emphysèmes et des maladies 

cardiovasculaires (Hendrick, 2004; Navas-Acien et al., 2004). Le cadmium est classé 

comme cancérogène de classe 1 par le CIRC et a été relié à l’apparition de cancer du 

poumon, du rein, de la prostate, du colon et du sein (Järup, 2003; Satarug and Moore, 

2004). Le chrome hexavalent, ou chrome VI, également un cancérogène de classe 1, est 

retrouvé à hauteur de 0,5 µg par cigarette (Smith, 1997), il s’accumule en majorité dans 

les tissus pulmonaires. Une étude a retrouvé 3 fois plus de chrome dans les poumons 

d’individus fumeurs que dans des poumons d’individus non-fumeurs (Pääkkö et al., 

1989). Le chrome présent peut alors induire des cassures simple brin de l’ADN (Liu et al., 

1999) et avoir des effets mutagènes (Shrivastava et al., 2005). Enfin le plomb et l’arsenic 

sont également considérés comme cancérogènes de classe 1. Ils sont retrouvés à hauteur 

de 0,93 µg/g de tabac et 0,15 µg/g, respectivement (Lazarević et al., 2012). Alors que 

l’exposition au plomb est plutôt corrélée au développement de maladies 

neurodégénératives (White et al., 2007), l’exposition à l’arsenic peut mener à une 

augmentation des altérations de l’ADN au niveau pulmonaire (Hays et al., 2006), au cancer 

du poumon et de la vessie, et à des maladies cardiovasculaires (Chen et al., 2004; 

Steinmaus et al., 2003). 
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Tableau 2. Exemples de composés ou de famille de composés retrouvés dans la fumée de cigarette et leurs effets 
sur la santé humaine. Classification CIRC : 1 – agent cancérogène avéré ; 2A – agent probablement cancérogène 
; 2B – agent peut-être cancérogène. 

Famille de 
composés 

Exemple Classification CIRC Effets sur la santé 

COV 

 

1 
Irritants des voies 

respiratoires, 
cancérogènes 

Benzène 

 
 

 
1 

1,3-butadiene 

Composés  
carbonylés 

 

  
 

2B 

Irritants des voies 
respiratoires, 
cancérogènes 

Acétaldéhyde 

 

  

 

1 

Formaldéhyde 

HAP 

 

1 

Adduits à l'ADN, 
Cancérogènes 

Benzo(a)pyrène 
 

2A 

dibenz(a,h)anthracène 

Nicotine 

 

N.D. Pouvoir addictogène 

N-Nitrosamines 

 

1 

Adduits à l'ADN 
Cancérogène 

N-nitrosonornicotine (NNN) 

 

  
 

1 

N-nitrosamine cétone (NNK) 

Métaux 

Arsenic 1 Risques 
cardiovasculaires 

Toxicité hépatique, 
rénale, pulmonaire Cadmium 1 
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L’identification des risques liés au tabagisme peut être compliquée. En effet, la fumée 

de cigarette générée est un mélange complexe d’un grand nombre de substances toxiques. 

Une revue a tenté d’identifier les composés de la fumée de cigarette dont le potentiel 

toxique est le plus élevé. Ainsi, le 1,3-butadiène serait le composé le plus cancérogène ; 

l’acroléine et l’acétaldéhyde seraient les plus irritants pour les voies respiratoires ; 

l’arsenic et le cyanure d’hydrogène amèneraient le plus de risques cardiovasculaires 

(Fowles, 2003).  En plus de la toxicité clairement établie de certains composés, l’effet 

cocktail dû aux nombreuses substances qui composent la fumée de cigarette rend sa 

toxicité globale difficile à caractériser.  

1.4. Mécanismes d’actions toxiques de la fumée de cigarette 

1.4.1. Vulnérabilité des voies respiratoires à la fumée de cigarette 

La fumée de cigarette est un mélange d’un grand nombre de composés qui peuvent 

être cytotoxiques, génotoxiques, mutagènes et/ou cancérogènes (Bluhm et al., 1971; Ding 

et al., 2008). L’accumulation de ces composés chez les fumeurs réguliers favorise 

l’apparition de lésions au niveau du tissu pulmonaire. En effet, les voies respiratoires et 

l’épithélium bronchique sont en première ligne face aux agressions chimiques de l’air que 

nous respirons. Pour protéger le tissu pulmonaire, des mécanismes sont mis en place pour 

éliminer les particules et les gaz inhalés (Figure 1). Ces défenses comprennent les 

barrières physiques avec les poils nasaux, les circonvolutions des sinus et les réflexes de 

toux et d’éternuement. Mais, au niveau pulmonaire, elles reposent aussi sur les cellules 

sécrétrices de mucus et les cellules ciliées qui permettent la clairance-mucociliaire, et sur 

les cellules de l’immunité avec les cellules inflammatoires et les macrophages alvéolaires. 

A côté des processus majeurs de protection des voies aériennes cités précédemment, il 

existe des systèmes enzymatiques puissants capables de transformer toute molécule 

étrangère ou xénobiotique, le plus souvent hydrophobe, en métabolite suffisamment 

hydrophile pour être excrété dans les urines ou dans la bile. Ces enzymes sont 

classiquement classées en deux catégories : les enzymes de phase I, représentées en 

majorité par la superfamille du cytochrome P450 (CYP), qui catalysent des réactions 

d’oxydation (Guengerich, 2008) et les enzymes de phase II, surtout représentées par des 

transférases, qui catalysent la conjugaison à une molécule endogène (glutathion, 
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groupement méthyl…) des xénobiotiques ou de leur(s) métabolite(s) préalablement 

produit(s). 

Le processus de combustion de la fumée de cigarette génère une phase particulaire 

et une phase gazeuse, avec la grande majorité des composés toxiques qui se trouve dans 

la phase particulaire (Witschi, 2005). Pour les gaz, l’efficacité de la clairance muco-ciliaire 

dépend de la solubilité du gaz en question (Kreyling et al., 2000). Un gaz très soluble sera 

piégé dans le mucus et pourra être éliminé plus facilement. Un gaz peu soluble (comme le 

CO) pourra, par contre, arriver jusqu’aux alvéoles et diffuser à travers la membrane 

alvéolo-capillaire. Concernant la phase particulaire, l’élimination dépend de la taille des 

particules. Alors que les particules les plus grosses (<2,5 µm) vont se déposer par 

impaction au niveau des voies respiratoires supérieures, les particules émises par la 

combustion de la cigarette, de taille comprise entre 0,3 à 0,4 µm (Bernstein, 2004; 

Martonen, 1992) se déposent plus profondément dans les voies respiratoires distales. Au 

niveau des alvéoles, du fait de l’absence du système muco-ciliaire, l’élimination des 

particules est assurée principalement par la clairance macrophagique. Celle-ci étant très 

lente, les particules ont ainsi tendance à s’accumuler (Cohen et al., 1979; Kreyling et al., 

2000). Une exposition chronique aux particules sur lesquelles sont adsorbés de nombreux 

composés toxiques peut entretenir un environnement propice à l’inflammation et au 

stress oxydant. 

Figure 1. Synthèse des mécanismes de défenses des voies respiratoires. D’après Surgeon General’s Report, 2010. 
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1.4.2. Inflammation et stress oxydant liés au tabac 

1.4.2.1. Effets du tabagisme sur le stress oxydant 

Les voies respiratoires sont donc particulièrement exposées aux espèces oxydantes 

présentes dans l’environnement, c’est pourquoi on y trouve une forte concentration de 

systèmes antioxydants. Les principales défenses antioxydantes non enzymatiques sont le 

glutathion, la vitamine E, la vitamine C ou encore l’acide urique. Lors d’un stress oxydant, 

ces antioxydants vont être consommés et l’organisme devra les régénérer pour pouvoir 

lutter à nouveau efficacement. Les systèmes de défense antioxydante enzymatiques 

catalysent des réactions de neutralisation des radicaux libres et des espèces réactives de 

l’oxygène (ERO). Ces enzymes comprennent principalement les superoxydes dismutases, 

glutathions peroxydases, glutathions réductases et catalases. La présence d’ERO dans la 

cellule n’est pas problématique à des doses raisonnables. Cependant, lorsque la balance 

oxydants/antioxydants est déséquilibrée, il y a alors ce qui est appelé un stress oxydant. 

La perte de cette homéostasie peut être due à une augmentation du nombre d’ERO ou 

alors à un défaut des défenses antioxydantes. Dès lors, l’excès de radicaux libres et d’ERO 

entraîne des dommages oxydatifs sur les macromolécules cellulaires. Sur l’ADN, les ERO 

peuvent oxyder certaines bases nucléiques (en particulier la désoxyguanine pour former 

la 8-OHdG), aboutissant à une altération possible des gènes et de leur expression. Au 

niveau des lipides, il peut y avoir des réactions de peroxydation pouvant perturber 

l’intégrité des membranes et altérer la fonction de certains récepteurs. Enfin, les ERO 

peuvent également provoquer des réactions d’oxydation de groupements sulfhydrils ou 

de carbonylation des acides aminés, altérant ainsi la fonction des protéines cellulaires. 

Tous ces produits d’oxydations sont considérés comme des marqueurs biologiques de 

stress oxydant. 

À cause des nombreux composés organiques qui la composent, la fumée de cigarette 

contient un grand nombre de produits oxydants (monoxyde de carbone, aldéhydes, HAP, 

N-nitrosamines…) (Pryor, 1992; Wogan et al., 2004). Il a été estimé dès 1985 que la 

pyrolyse du tabac génère entre 1014 et 1017 radicaux libres par bouffée (Church and Pryor, 

1985). Les radicaux majoritaires retrouvés dans la phase gazeuse sont l’anion superoxyde 

et le monoxyde d’azote qui réagissent pour former le peroxynitrite. Dans la phase 

particulaire, les quinones et les anions superoxydes réagissent pour former des radicaux 

hydroxyles et du peroxyde d’hydrogène. De plus, la présence de fer dans la fumée de 
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cigarette entraîne la génération d’autant plus d’ERO à partir du peroxyde d’hydrogène par 

la réaction de Fenton (Pryor and Stone, 1993). 

 Le tabagisme contribue alors à augmenter le taux d’oxydants et à perturber 

l’homéostasie. Il a été montré chez les fumeurs que les taux d’oxydation des lipides, des 

protéines et de l’ADN sont supérieurs à ceux des non-fumeurs (Frei et al., 1991; Kalra et 

al., 1991; Morrow et al., 1995; Reznick et al., 1992). Ce stress oxydant chronique est admis 

depuis de nombreuses années comme ayant un rôle central dans la cancérogénèse induite 

par le tabac, par le biais de dommages à l’ADN (Pryor, 1997), mais aussi dans le 

développement de la BCPO (Bowler et al., 2004). 

1.4.2.2. Effet du tabagisme sur l’inflammation 

Comme précisé précédemment, au niveau des voies respiratoires, la clairance muco-

ciliaire permet d’éliminer une partie des substances toxiques des phases gazeuse et 

particulaire de la fumée de cigarette. Cependant, une partie de ces substances peuvent 

atteindre les alvéoles pulmonaires dans lesquelles ce mécanisme n’a pas lieu à cause de 

l’absence de cellules à mucus et de cellules ciliées. Ainsi, à ce niveau, la protection se fait 

par le biais de la réponse immunitaire innée, une réponse non-spécifique de l’organisme 

contre une substance exogène dont les macrophages alvéolaires et les monocytes sont les 

acteurs les plus importants au niveau pulmonaire. Une exposition chronique à la fumée 

de cigarette engendre une augmentation du nombre de cellule de l’inflammation dans les 

voies aériennes et les tissus pulmonaires chez l’Homme, en particulier du nombre de 

macrophages alvéolaires (Schaberg et al., 1992). Chez les fumeurs chroniques, les 

macrophages participent largement à la dérégulation de la balance 

oxydants/antioxydants en produisant des ERO, et leurs fonctions de phagocytose, 

d’élimination des bactéries et de sécrétion de cytokines pro-inflammatoires sont 

également altérées (King et al., 1988; Martin and Warr, 1977; McCrea et al., 1994). 

L’exposition à la fumée de cigarette est également associée à la sécrétion de médiateurs 

de l’inflammation. Plusieurs études montrent une augmentation du tumor necrosis factor-

alpha (TNF-a), des interleukines IL-1, IL-6, IL-8 (Bermudez et al., 2002; Chung, 2005; 

Churg et al., 2002) qui favorisent le recrutement de cellules impliquées dans 

l'inflammation (neutrophiles, macrophages). Cet afflux de cellules provoque également 

une sécrétion accrue de protéases et un déséquilibre de la balance protéases/anti-

protéases (Shaykhiev et al., 2009). Churg et ses collaborateurs suggèrent que les 
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métalloprotéases matricielles (MMP) sécrétées en excès durant le processus 

inflammatoire sont responsables de la dégradation des parois alvéolaires observée suite 

à une exposition à la fumée de cigarette (Churg et al., 2007). 

Le lien entre le stress oxydant et l’inflammation est complexe. En effet, les deux 

mécanismes s’auto-alimentent et contribuent au maintien l’un de l’autre. Alors que 

l’organisme est capable de rééquilibrer les différentes homéostasies en condition 

normale, l’exposition chronique à la fumée de cigarette, en apportant des espèces 

oxydantes et en induisant une réponse inflammatoire, provoque un déséquilibre constant 

qui participe à la dégradation des tissus pulmonaires menant à diverses pathologies 

respiratoires (Figure 2, d’après Zuo et al., 2014). 

1.4.3. Altérations génétiques 

1.4.3.1. Les effets génotoxiques du tabac 

Chaque bouffée de cigarette contient un mélange d’une soixantaine de composés 

toxiques avérés cancérogènes chez l’animal ou chez l’Homme. Ce nombre est 

vraisemblablement sous-estimé puisque la toxicité de certains composés peut ne pas 

avoir été caractérisée. Les aldéhydes, les HAP, les N-nitrosamines, les COV ou encore les 

métaux sont les composés auxquels il faut apporter le plus d’attention du fait de leur haut 

Figure 2. Schéma des mécanismes induits par la fumée de cigarette liés à l'inflammation et au stress oxydant 
menant à la destruction des tissus pulmonaires. Adapté de Zuo et al., 2014. 
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potentiel cancérogène et des quantités retrouvées dans la fumée de cigarette (Hoffmann 

et al., 2001). La plupart de ces composés exercent leur génotoxicité favorisant la 

formation d’adduits à l’ADN (Hecht, 1999) qui peuvent induire des cassures des brins 

d’ADN, et des oxydations de bases nucléiques, qui peuvent mener à des mutations si elles 

ne sont pas réparées (CIRC, 2004).  

1.4.3.2. Implication des enzymes du métabolisme 

Pour pouvoir former des adduits, la plupart des composés cancérogènes contenus 

dans la fumée de cigarette nécessitent une activation métabolique. Bien que dans la 

plupart des cas, les réactions de biotransformations médiées par les enzymes, de la 

superfamille des cytochromes P450 (CYP) aboutissent à la détoxification des 

xénobiotiques, il arrive qu’elles soient responsables de la bio-activation de certains 

composés, les rendant plus réactifs que les produits initiaux et capables de former des 

adduits à l’ADN. Par exemple, l’activité de certains CYP peut transformer les HAP, le 1,3-

butadiène ou le benzène en époxydes très réactifs qui, s’ils ne sont pas désactivés par des 

époxydes hydrolases et des enzymes de phase II, peuvent conduire à la formation 

d’adduits à l’ADN mutagènes (Fretland and Omiecinski, 2000 ; Hayes et al., 2005). Les 

cytochromes P450 1A1 et 1B1 (CYP1A1 et CYP1B1), impliqués dans la métabolisation des 

HAP, sont les plus inductibles par la fumée de cigarette via une interaction avec le 

récepteur aux hydrocarbures aromatiques AhR (Aryl Hydrocarbons Receptor) (Nebert et 

al., 2004; Shimada and Fujii-Kuriyama, 2004). D’autres enzymes de la famille des 

cytochromes P450 sont également impliquées dans le métabolisme de xénobiotiques 

présents dans la fumée de cigarette, même si elles sont moins représentées : CYP1A2 pour 

les amines aromatiques qui est peu exprimé dans le poumon (Kim and Guengerich, 2005) 

et les CYP2A6, CYP2A13, et CYP2E1 pour la nicotine et les N-nitrosamines (Guengerich et 

al., 1991; Jalas et al., 2005; Wong et al., 2005; Yamazaki et al., 1992; Yoo et al., 1988). 

Certaines études ont montré que les fumeurs expriment certains CYP (CYP1A1 et 

CYP1B1) à des taux plus importants au niveau pulmonaire (Kim et al., 2004; Port et al., 

2004; Willey et al., 1997). A noter que certains composés tels que le formaldéhyde ou 

l’acétaldéhyde peuvent aussi former des adduits sans avoir besoin d’être activés. La 

balance entre l’activation métabolique et la détoxification joue un rôle fondamental dans 

la formation d’adduits, en particulier sur l’ADN (Figure 3, d’après Furrukh, 2013). Plus le 

taux d’adduits est élevé, plus le risque de mutations géniques l’est également (Phillips, 

2007). 
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1.4.3.3. Les adduits mis en évidence chez les fumeurs 

Différents composés cancérogènes retrouvés dans les émissions peuvent être à 

l’origine de la formation des adduits à l’ADN (Phillips, 2002; Phillips and Venitt, 2012). 

Par exemple, le benzo[a]pyrène-diol-époxyde (BPDE) qui est un adduit issu du 

métabolisme du benzo[a]pyrène, a été retrouvé dans 40% des tissus pulmonaires des 

fumeurs (Boysen and Hecht, 2003) et dans des cellules bronchiques épithéliales prélevées 

chez des patients atteints de cancer du poumon (Rojas, 2004). L’acétaldéhyde et le 

formaldéhyde présents dans la fumée de cigarette peuvent également former des adduits 

détectables dans le sang de fumeurs, le 1,N2-propano-20-désoxyguanosine et le N6-

hydroxyméthyldésoxyadénosine, respectivement (Garcia et al., 2011; Wang et al., 2009). 

Les nitrosamines spécifiques du tabac, NNK et NNN peuvent respectivement former les 

adduits méthanediazo-hydroxyde et 4-hydroxy-1-(3-pyridyl)-1-butanone (Hölzle et al., 

2007). Les espèces réactives de l’oxygène générées suite à l’exposition à la fumée de 

cigarette peuvent aussi former des adduits à l’ADN en oxydant la désoxyguanosine en 8-

hydroxydésoxyguanosine (8-OHdG) notamment. Il est clairement établi que la présence 

d’adduits sur l’ADN induit des erreurs de réplication lors des divisions cellulaires. Si les 

mutations engendrées affectent une région cruciale de certains oncogènes ou gènes 

suppresseurs de tumeurs, cela peut amorcer un processus de tumorigénèse. 

1.4.3.4. Les mutations induites par le tabagisme 

L’augmentation du risque de mutation a pu être associée à certains adduits causés 

par des composés retrouvés dans la fumée de cigarette. Par exemple, le BPDE, un 

métabolite du benzo[a]pyrène responsable de la formation d’adduits a été associé à 

certaines mutations de TP53 observées dans des cancers pulmonaires humains (Boysen 

and Hecht, 2003; Pfeifer et al., 2002; Phillips, 2002). Le gène TP53 est un gène suppresseur 

de tumeur retrouvé inactivé dans un grand nombre de cancers humains. Il code pour la 

protéine p53 qui est un facteur de transcription notamment impliqué dans la régulation 

Figure 3. Schéma des mécanismes d'induction du cancer du poumon par les adduits à l'ADN. D’après 
Furrukh, 2013. 
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du cycle cellulaire et dans l’apoptose. De nombreuses études ont montré que les 

mutations de TP53 étaient plus communément retrouvées chez les fumeurs que chez les 

non-fumeurs (Greenblatt et al., 1994; Hernandez-Boussard and Hainaut, 1998; Pfeifer et 

al., 2002). Le Calvez et al. ont même montré que des fumeurs de longue durée avaient 13 

fois plus de risques d’avoir des mutations de ce gène par rapport à des individus n’ayant 

jamais fumé (Le Calvez et al., 2005). Un autre exemple, la O6-méthylguanine, un adduit 

généré une nitrosamine, provoque la substitution d’une guanine par une adénine, 

fréquemment observée dans la séquence de KRAS (V-Ki-ras2 Kirsten rat sarcoma viral 

oncogene homolog), qui entraîne l’activation de l’oncogène et des voies de signalisation 

intracellulaires en aval (prolifération, migration, résistance à apoptose…). Des mutations 

de cet oncogène KRAS  ont également été montrées dans 30 % des cancers du poumon 

chez les fumeurs (Gealy et al., 1999). Ce gène code pour la protéine KRAS qui favorise la 

prolifération cellulaire en réponse à un stimulus par les hormones de croissance. Les N-

nitrosamines et les HAP présents dans la fumée de cigarette ont été associées à ces 

mutations de KRAS (Pfeifer and Hainaut, 2003; Ziegel et al., 2003). Globalement, les 

mutations des gènes KRAS et TP53 sont les plus fréquemment retrouvées chez les fumeurs 

atteints d’un cancer du poumon. Elles sont majoritairement induites par les dommages à 

l’ADN provoqués par les HAP mais d’autres composés de la fumée de cigarette tels que les 

aldéhydes et les radicaux libres, capables également d’induire la formation d’adduits, 

peuvent être impliqués dans la cancérogénèse (Pfeifer et al., 2002).  

Au final, les mutations induites par les composés retrouvés dans la fumée de cigarette 

vont modifier l’expression de gènes critiques impliqués directement ou indirectement 

dans les processus cellulaires. Ainsi, la diminution de protéines pro-apoptotiques de la 

famille de BCL-2, de la protéine du rétinoblastome (Rb) ou du gène TP53 sont des 

caractéristiques couramment retrouvées dans le cancer du poumon induit par la fumée 

de cigarette. De la même façon, une augmentation des voies anti-apoptotiques telles que 

RAS/MAPK, PI3K/AKT, NFKB peut être retrouvée dans le cas de cancer du poumon. Ces 
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caractéristiques confèrent aux cellules cancéreuses une résistance à l’apoptose qui 

améliore leur survie et leur prolifération (Figure 4). 

1.4.4. Altérations épigénétiques 

En plus de ses effets mutagènes directs, le tabac peut aussi induire des modifications 

épigénétiques. Ces altérations, généralement réversibles, sont caractérisées par leur 

héritabilité au cours des divisions cellulaires mais n’impliquent pas de changement au 

niveau de la séquence primaire de l’ADN. En remodelant l’arrangement des nucléosomes 

au sein de la chromatine, en changeant le profil de méthylation de l’ADN, ou encore en 

modifiant l’expression d’ARN non codants, le tabac peut modifier l’expression du génome 

de façon indirecte. 

Figure 4. Schéma des voies de signalisation dérégulées dans le cas d'un cancer du poumon induit par la 
cigarette. D'après Surgeon General, 2010. 
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1.4.4.1. Modification de la méthylation de l’ADN 

La méthylation de l’ADN est une modification épigénétique qui change une cytosine 

en 5-méthylcytosine. Chez les mammifères elle a lieu le plus souvent au niveau des ilots 

CpG (région di nucléotidique d’une cytosine suivie d’une guanine) présents dans les 

régions promotrices des gènes. Lorsqu’il y a méthylation, la transcription du gène 

concerné est bloquée (Figure 5). 

Plusieurs études suggèrent que la fumée de cigarette a un effet sur l’état de 

méthylation de l’ADN (Dogan et al., 2014; Elliott et al., 2014; Guida et al., 2015; Philibert 

et al., 2013; Shenker et al., 2013; Sun et al., 2013; Zaghlool et al., 2015; Zeilinger et al., 

2013; Zhu et al., 2016). La méthylation de l’ADN est catalysée par les ADN 

méthyltransférases (DNMTs). Une étude montre que l’expression de DNMT1 est 

augmentée dans les tissus pulmonaires des fumeurs (Kwon et al., 2007). DNMT1 est 

recrutée lorsque la cellule repère des anomalies dans la séquence nucléotidique des 

gènes, afin d’inactiver le ou les gène(s) concerné(s) (Cuozzo et al., 2007; Mortusewicz et 

al., 2005). Par exemple, le gène CDKN2A (cyclin dependent kinase inhibitor 2A), un gène 

essentiel dans le fonctionnement du cycle cellulaire a été montré inactivé dans le cancer 

du poumon suite à une hyperméthylation aberrante de sa région promotrice (Palmisano 

et al., 2000). Bien que la fumée de cigarette induise une hyperméthylation spécifique de 

certains gènes, l’exposition à cette dernière induirait une hypométhylation globale de 

l’ADN, ce qui correspond alors à une augmentation de la transcription d’un certain 

Figure 5. Schéma du processus de méthylation de l'ADN. (A) L'ADN méthyltransférase (DNMT) change la 
cytosine en 5-méthylcytosine. (B) La méthylation des cytosine des ilôts CpG sur la région promotrice d’un gène 
inhibe sa transcription. D’après Cui et al., 2016. 
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nombre d’autres gènes (Buro-Auriemma et al., 2013; Wan et al., 2012). Des sites CpG de 

la région promotrice des gènes AHRR (Aryl Hydrocarbons Receptor Repressor) ; CYP1B1 

et ALDH3A1 (aldéhyde déshydrogénase 3A1) ont été notamment retrouvés déméthylés 

chez des fumeurs réguliers (Freudenheim et al., 2019). Cette hypométhylation se traduit 

par une surexpression des gènes concernés et ainsi une hausse de la réponse de 

l’organisme aux xénobiotiques présents dans la fumée de cigarette. La modification de 

l’état de méthylation de l’ADN est réversible, en effet, le niveau de méthylation observés 

chez des fumeurs ayant arrêté de fumer pendant 5 ans est majoritairement revenu au 

niveau de méthylation des non-fumeurs. Cependant, certains sites, notamment AHRR, ne 

reviennent pas au niveau initial, jusqu’à 30 ans après l’arrêt (Joehanes et al., 2016), 

suggérant des effets permanents du tabagisme sur l’expression génique.  

1.4.4.2. Modification des histones 

L’exposition à la fumée de cigarette peut également influer sur l’expression des gènes 

en étant responsable de réarrangements au niveau de la condensation de la chromatine 

(Arimilli et al., 2017; Philibert et al., 2012). Les histones sont les protéines responsables 

de la compaction de l’ADN. Les modifications post-traductionnelles de ces histones 

(phosphorylation, acétylation, méthylation et ubiquitinylation) influent sur l’état 

chromatinien et ainsi sur l’accessibilité des gènes et leur expression (Figure 6). 
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L’acétylation des histones est un processus dynamique qui requiert l’intervention 

d’enzymes : les histones acétyltransférases (HAT), qui ajoutent des groupements acétyles, 

et les histones désacétylases (HDAC), qui les enlèvent. Ces enzymes régulent la balance 

acétylation/désacétylation des histones. Par exemple, lorsqu’une histone est acétylée, la 

région promotrice d’un gène peut devenir accessible aux enzymes et aux facteurs de 

transcription, favorisant sa transcription (Adenuga and Rahman, 2010; Yao et al., 2010). 

Les données de la littérature montrent que la hausse de l’acétylation des histones induite 

par la fumée de cigarette est due à une baisse de l’activité des HDAC (Ito et al., 2005; 

Marwick et al., 2004; Sundar et al., 2014; Szulakowski et al., 2006). De plus, des dosages 

chez des patients atteints de BPCO montrent que la baisse d’activité des HDAC est 

directement liée au nombre de cigarettes fumées par an (Chen et al., 2012b). Chez des 

patients atteints de BCPO, l’expression de HDAC2, HDAC5, HDAC8 (Ito et al., 2005; 

Szulakowski et al., 2006), HDAC7 (To et al., 2012) et HDAC10 (Jeong et al., 2018) a été 

montrée comme réduite au niveau pulmonaire. L’acétylation des histones H3 et H4 a été 

associée à l’augmentation de la transcription de gènes pro-inflammatoire (IL-6, IL-8, TNF-

α par exemple) ; la persistance de l’inflammation dans le cas de patients atteints de BPCO 

ayant arrêté de fumer serait due à ces modifications (Szulakowski et al., 2006). 

Figure 6. Influence des modifications des histones sur l'état de compaction de l'ADN. Les histones 
acétyltransférases (HAT), les histones méthyltransférases (HMT), les phosphorylases (PK) et les enzymes de 
l’ubiquitinylation (E1, E2 et E3) favorisent la décompaction et la transcription. Les histone désacétylases 
(HDAC), les histones dé-méthylases (HDM) et les enzymes de dé-ubiquitinylation (DUB) favorisent la 
compaction et empêchent la transcription. D’après Zong et al., 2019. 
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Une étude a également montré que la fumée de cigarette avait un impact sur le niveau 

de méthylation des histones (Sundar et al., 2014). Une augmentation de l’activité de 

l’histone méthyltransférase (HMT) et des mono- et des di-méthylations a été mise en 

évidence par cette étude sur les histones H3 (H3K27me2/3, H3K36me1/2, H3K56me2, 

and H3K79me1/2) et H4 (H4K20me1/2, H4R23me1, H4K31me2, H4R35me1/2, 

H4R36me1, H4R55me1 and H4K77me1) chez des souris exposées à la fumée de cigarette. 

Par ailleurs, l’expression de EZH2 (Enhancer of zeste homolog 2), une HMT spécifique de 

la triméthylation de l’histone H3 sur la lysine 27 (H3K27me3), est augmentée suite à une 

exposition de cellules bronchiques exposées à la fumée de cigarette (Wang et al., 2016). 

La phosphorylation des histones est également altérée suite à une exposition à la 

fumée de cigarette. L’augmentation de la phosphorylation de la sérine 10 de l’histone H3 

est d’ailleurs associée à l’activation par les composés de la fumée de cigarette de la voie 

p38/MAPK (Sundar et al., 2012; Szulakowski et al., 2006) qui favorise l’expression de 

gènes pro-inflammatoires. 

Les modifications des histones jouent un rôle primordial dans l’expression des gènes. 

Les mécanismes de modifications d’histones sont nombreux, complexes et 

interdépendants. Cependant, de nombreuses études témoignent que la fumée de cigarette 

a un effet, à la fois sur les modifications et sur les enzymes impliquées. C’est pourquoi 

l’étude des effets de la cigarette sur ce qui est appelé le « code des histones » pourrait 

permettre de mieux comprendre les dérégulations observées dans le cas de pathologies 

liées au tabac, notamment au niveau de l’inflammation. 
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1.4.4.3. Les microARN 

1.4.4.3.1. Biogénèse des microARN 

Les microARN (miARN) sont des petits ARNs non codants d’une vingtaine de 

nucléotides qui peuvent contrôler l’expression génique au niveau post-transcriptionnel 

en s’appariant à des ARNm cibles. Les miARN sont synthétisés quasi-exclusivement par 

l’ARN polymérase II sous la forme de précurseurs appelés « pri-miARN ». Après une étape 

de maturation, ils sont clivés par Drosha, une RNase de type III, pour arriver à des 

structures de 60 à 70 nucléotides en épingle à cheveux appelées « pré-miARN ». Ceux-ci 

sont ensuite transportés du noyau vers le cytoplasme par l’exportine-5. Dicer, une autre 

RNase de type III prend alors en charge les pré-miARN pour cliver la boucle terminale 

donnant naissance aux miARN et à leur brin complémentaire miARN*. Les miARN sont 

alors incorporés au complexe RISC (RNA-induced silencing complex), où leur brin 

complémentaire est dégradé, pour former les miARN matures (Figure 7, d’après (Winter 

et al., 2009)). 

1.4.4.3.2. Rôles des miARN et implications dans le tabagisme 

Les miARN peuvent réguler l’expression d’un gène de plusieurs façons : soit en 

induisant la dégradation des ARNm cibles, ou alors en inhibant leur traduction. Dans le 

cas d’une dégradation, le miARN couplé au complexe RISC (RNA-induced silencing 

complex) reconnaît la séquence de l’ARNm cible pour qu’il soit clivé. Dans le cas d’une 

inhibition de la traduction, l’appariement du miARN avec l’ARNm cible est suffisant pour 

Figure 7. Schéma de la biogénèse canonique 
des miARN. D’après Winter et al., 2009. 
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bloquer la traduction. Ce deuxième mécanisme d’action est celui majoritairement 

retrouvé chez les mammifères (Béné and Cartron, 2009). 

Un miARN peut réguler plusieurs gènes cibles, et un gène cible peut être régulé par 

plusieurs miARN. De cette façon, les miARN ont un rôle dans de nombreux processus 

physiologiques tels que la croissance cellulaire, la prolifération, l’apoptose ou encore la 

différenciation (Singh et al., 2008). De plus, des altérations de l’expression de miARN ont 

été mises en évidence dans de nombreuses pathologies humaines (Alipoor et al., 2016) et 

notamment dans les cancers (Calin and Croce, 2006). 

Izzotti et al., en 2009, ont analysé la dérégulation des miARN chez des rats exposés à 

la fumée de cigarette pendant 28 jours. Ils montrent que 26% des 484 miARN analysés 

sont sous-exprimés et 7% sont surexprimés par rapport aux rats non exposés (Izzotti et 

al., 2009). En observant l’effet de l’arrêt du tabagisme, ils ont aussi mis en évidence que 

les dérégulations des miARN chez des souris exposées pendant 4 semaines sont 

restaurées après 1 semaine d’arrêt (Izzotti et al., 2011). Cependant, chez des souris 

exposées pendant 4 mois à la cigarette, les changements d’expression de miARN 

persistent 3 mois après l’arrêt (Izzotti et al., 2011). Ces travaux suggèrent que plus 

l’exposition à la cigarette est longue, moins les effets sur le miRNome sont réversibles et 

peuvent être impliqués dans le développement de pathologies. Des dérégulations ont 

également été mises en évidence chez l’Homme (Schembri et al., 2009). L’analyse de 

l’ensemble des miARN sur des cellules épithéliales bronchiques issue de fumeurs 

montrent que 82% des miARN dérégulés sont sous-exprimés par rapport aux non-

fumeurs. Mascaux et al. retrouvent également que sur les 69 miARN dérégulés, une vaste 

majorité est sous-exprimée (Mascaux et al., 2009). Le Tableau 3 présente quelques 

exemples de miARN dérégulés dans le cancer du poumon et leurs cibles potentielles 

associées (Li et al., 2019a). 
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Tableau 3. Exemple de miARN retrouvés dérégulés dans le cancer du poumon 

Sur-exprimé Sous-exprimé Fonction suspectée Espèce Références 

miR-294 

miR-30, let-7, miR-10, 
miR-26, miR-34, miR-223, 
miR-122, miR-123, miR-
124, miR-99, miR-125, 

miR-140, miR-145, miR-
146, miR-191, miR-192, 

miR-219, miR-222 

Cible p53, oncogène, 
STAT3, apoptose 

Rat 
(Izzotti et al., 2009 ; 
Wang et al., 2016) 

let7e, miR-19a, 
miR-191, miR-
142, miR-350 

miR-92b, miR-668, miR-
700 

Suppresseur de tumeur, 
apoptose 

Souris (Yuchuan et al.) 

miR-31  Cible Wnt Humain 
(Lv et al., 2017; Xi et 

al., 2010) 

 let-7i, miR-154-5p 
Cible NF-kB, MAPK, HIF-

1 
Humain (Huang et al.) 

 

Finalement, les composés toxiques contenus dans la fumée de cigarette forment un 

cocktail qui favorise le déséquilibre de la balance entre agressions et défenses 

pulmonaires. Le pouvoir addictogène de la cigarette contribue à maintenir ces 

dérégulations dans le temps et mène à la persistance d’un stress oxydant et d’une 

inflammation chronique. Par ces mécanismes, le tabagisme chronique est responsable de 

la dégradation des tissus pulmonaires pouvant amener à des pathologies respiratoires. 

De plus, la formation d’adduits à l’ADN et les modifications épigénétiques favorisées par 

la consommation de cigarette augmentent le risque de modifications d’expression 

génique. Lorsque ces modifications d’expression affectent des gènes suppresseurs de 

tumeurs, des oncogènes ou des gènes critiques impliqués dans des processus cellulaires 

importants, elles favorisent également l’apparition de cancer. 

1.5. Les politiques de lutte contre le tabagisme 

Il a été montré qu’il n’existe pas de seuil au-dessous duquel le tabagisme n’est pas 

dangereux. Actuellement, le seul moyen efficace pour ralentir le développement des 

pathologies associées au tabagisme et diminuer le risque de décès est le sevrage 

tabagique. Il est estimé que l’arrêt de la consommation du tabac à l’âge de 60, 50, 40 ou 
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30 ans permettrait d’augmenter respectivement d’environ 3, 6, 9 ou 10 ans l’espérance de 

vie (Doll et al., 2004). Le sevrage tabagique est rendu difficile compte tenu du pouvoir 

addictogène de la nicotine présente dans le tabac. La diminution du nombre de fumeurs 

reste cependant une perspective majeure puisqu’elle permet à la fois de réduire le 

nombre de morts évitables et de réduire les dépenses et les moyens de santé impliqués 

dans la prise en charge des pathologies provoquées par le tabac. Pour cela, plusieurs types 

d’action sont mises en place par les gouvernements. Le premier niveau d’action se fait au 

niveau financier. Le prix du tabac est probablement la mesure la plus efficace pour réduire 

son utilisation. Il est estimé que pour 10% d’augmentation du prix du tabac, la 

consommation baisse de 3 à 4% (Levy et al., 2004). En France, la hausse des taxes visant 

à réduire la consommation de tabac est progressive depuis quelques années, et a pour 

objectif de fixer le prix moyen du paquet à 10 euros ; ce prix a été atteint depuis le 1er mars 

2020 pour certaines marques de cigarettes. Le deuxième niveau d’action se situe au 

niveau marketing. Depuis le 15 avril 2010, les fabricants de tabac se doivent d’imprimer 

une image dissuasive couvrant au moins 40% de l’arrière du paquet. Une autre mesure 

datant du 20 mai 2016, impose aux industriels du tabac de ne produire que des paquets 

neutres. L’objectif ici est de sensibiliser la population au risque du tabac et d’en véhiculer 

une image néfaste, dans le but de limiter l’accès au tabac à de nouveaux utilisateurs, mais 

aussi d’encourager des fumeurs à arrêter. Les différentes actions mises en œuvre 

semblent porter leur fruit, puisque les derniers chiffres montrent que la part de fumeurs 

quotidiens est passée de 28,5 % en 2014 à 24 % en 2019 (Pasquereau, 2020). 

En France, près de 58% des fumeurs quotidiens souhaitent arrêter, mais l’addiction 

à la nicotine rend la tâche difficile (Tabac-Info-Service). Pour cela, en plus d’un 

accompagnement psychologique proposé aux fumeurs, il existe des solutions 

médicamenteuses non-nicotiniques et nicotiniques. La pharmacothérapie non-

nicotinique consiste à agir directement sur le système nerveux en imitant l’action de la 

nicotine. Les médicaments prescrits (bupropion, varénecline et cytisine) visent ainsi à 

réduire l’envie de fumer et les symptômes de manque, et diminuent les effets plaisants de 

la cigarette et des autres produits du tabac. La pharmacologie par des traitements 

nicotiniques de substitution (TNS) est disponible sous la forme de gommes à mâcher, de 

pastilles à sucer, de patches, d’inhalateurs ou encore de sprays nasaux. Ces traitements 

permettent de réduire l’envie de fumer et les symptômes de manque en délivrant une 

dose contrôlée de nicotine sans les autres produits toxiques retrouvés dans la fumée de 
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cigarette. Le but étant de diminuer les doses graduellement jusqu’à ce que l’utilisateur 

puisse se passer de nicotine. Les taux de réussite de sevrage tabagique sont faibles 

(environ 5%) surtout en l’absence d’aide pharmacologique. En effet, la majorité des 

personnes ayant essayé d’arrêter de fumer continue à consommer du tabac avec des 

périodes d’abstinence et de rechute (Lagrue, 2005). En France, l’aide au sevrage tabagique 

consiste en un accompagnement psychologique par un professionnel de santé, 

permettant d’aider le fumeur à modifier son comportement. Cette thérapie 

comportementale peut être accompagnée ou non de traitements pharmacologiques. 

Ainsi, même si les différents traitements pharmacologiques disponibles (nicotiniques 

ou non-nicotiniques) apparaissent comme efficaces (Cahill et al., 2014; Le Foll and George, 

2007), le taux de rechute à long terme une fois les traitements arrêtés sont les mêmes 

qu’en l’absence de traitements (Alpert et al., 2013). C’est pourquoi, il y a une nécessité 

d’apporter de nouvelles solutions plus efficaces permettant une aide au sevrage tabagique 

sur le long terme. 

2. Les nouveaux produits de délivrance de nicotine 

Depuis quelques années, des nouveaux produits permettant de délivrer de la nicotine 

sont apparus sur le marché. L’OMS distingue deux dispositifs : les Systèmes Electroniques 

de Délivrance de Nicotine (SEDN) et les produits du tabac chauffé. Les SEDN appelés aussi 

cigarette électronique ou e-cig sont des systèmes qui chauffent un liquide pour créer un 

aérosol inhalable par l’utilisateur. Le liquide contient de la nicotine, ou non, mais pas de 

tabac. Les produits du tabac chauffé sont des dispositifs électroniques qui génèrent un 

aérosol à partir de feuilles de tabac. Ces produits pourraient être de nouvelles solutions 

dans l’aide à l’arrêt de la cigarette. Cependant, l’OMS émet des réserves sur leur innocuité 

et ne conseille pas leur utilisation tant que les risques sanitaires ne seront pas clairement 

identifiés, d’où l’intérêt d’évaluer rapidement leur impact sur la santé humaine. 

2.1. La cigarette électronique 

2.1.1. Epidémiologie du vapotage 

Le principe de l’e-cig a été inventé en 2003 par un pharmacien chinois Hon Lik (Hajek 

et al., 2014) et consiste à générer un aérosol à partir d’une solution appelée e-liquide 

contenant, ou non, de la nicotine. Lors de l’inhalation, le e-liquide est transformé en 

« vapeur » ou « e-vapeur », permettant de véhiculer la nicotine et mimant la fumée de la 
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cigarette conventionnelle. Les utilisateurs d’e-cig sont appelés « vapoteurs » et l’action de 

« vapoter » fait même son entrée dans le dictionnaire en 2015. 

Introduite sur le marché européen en 2006 et américain en 2007 (Noel et al., 2011), 

l’e-cig se développe et évolue rapidement dans les années 2010. Les chiffres européens 

montrent que sur 27 000 personnes interrogées en 2017, 15 % ont déjà essayé au moins 

une fois l’e-cig (contre 12 % en 2014). Les français sont parmi ceux qui l’expérimentent 

le plus, avec plus d’un fumeur sur deux qui l’a déjà essayée (55 %) (Pasquereau et al., 

2017). En France, en 2019, la prévalence du vapotage quotidien était de 4,4 % chez les 18-

75 ans. Un chiffre en hausse puisqu’elle n’était que de 3,0 % en 2014 (Pasquereau, 2020). 

Entre 2014 et 2017, en France métropolitaine, la part de fumeurs quotidiens a 

diminué de 64,5 % à 39,7 % chez les vapoteurs alors que la part des ex-fumeurs a 

augmenté de 23,5 % à 49,5 % (Pasquereau, 2020). Ces résultats suggèrent que l’e-cig 

pourrait aider les fumeurs à arrêter le tabac. Dans le même temps, de plus en plus d’études 

s’interrogent sur l’efficacité de l’e-cig pour le sevrage tabagique. Deux études britanniques 

montrent même qu’avec un accompagnement, le taux d’abstinence est plus élevé qu’avec 

certains TNS classiques (Hajek et al., 2019; Jackson et al., 2019). 

2.1.2. Cadre réglementaire de l’e-cig 

En Europe, la directive sur les produits du tabac (TPD pour « Tobacco Product 

Derived » en anglais) de 2014 avait classé l’e-cig comme un « produit dérivé du tabac » 

pour mieux encadrer leur commercialisation. Cette directive a été transposée dans le droit 

français en 2016 par l’ordonnance 2016-623. L’e-cig, qui est en France un produit de 

consommation, rentre dans la catégorie des « produits de vapotage ». Cette ordonnance 

vise surtout à encadrer les ventes de e-liquides et leur composition. Un fabricant doit ainsi 

d’abord soumettre un dossier de mise sur le marché à l’ANSES (Agence Nationale de 

Sécurité Alimentaire, de l’Environnement et du travail) 6 mois avant de mettre en vente 

son e-liquide nicotiné. De plus, la mention du mot « tabac » est prohibée pour les produits 

du vapotage. 

Depuis le 1er octobre 2017, l’utilisation de l’e-cig dans les lieux publics est limitée. Elle 

est interdite dans les établissements scolaires et ceux destinés à l’accueil, à la formation 

et à l’hébergement des mineurs, dans les moyens de transports collectifs fermés et dans 

les lieux de travail fermés et couverts à l’usage collectif.  
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2.1.3. Principe de fonctionnement 

L’e-cig peut prendre aujourd’hui de nombreuses formes, mais ses composants et son 

fonctionnement restent essentiellement identiques. Il est possible de distinguer 3 

parties : un réservoir, un atomiseur, et une batterie (Figure 8). Le réservoir sert à contenir 

le e-liquide, l’atomiseur est composé d’une résistance, tandis que la batterie alimente 

celle-ci. Lors d’une prise de bouffée, le e-liquide contenu dans le réservoir, aussi appelé 

« clearomiseur », est chauffé par la résistance. Le e-liquide est amené jusqu’à la résistance 

par capillarité à travers une matière absorbante, constituée de fibre de silice ou de coton. 

Le réservoir possède deux ouvertures : une entrée d’air, permettant de faire circuler le 

flux d’air qui va générer l’aérosol, et une sortie, équipée d’un embout buccal ou « drip tip » 

pour faire sortie la vapeur. 

Dans les premiers modèles, la résistance chauffait automatiquement dès que 

l’utilisateur aspirait afin de mimer le fonctionnement d’une cigarette classique. Les 

nouveaux modèles sont quant à eux munis d’un bouton qui permet notamment à 

l’utilisateur de préchauffer la résistance pour qu’au moment de l’aspiration, l’aérosol 

généré soit suffisamment dense. Ces derniers modèles sont aujourd’hui majoritaires sur 

le marché. 

2.1.4. Les différents modèles 

Le marché de l’e-cig a bien évolué depuis la sortie des premiers modèles, en termes 

de design mais également de technologie. Les différents dispositifs sont souvent classés 

en 3 catégories : première, deuxième et troisième générations (Walley et al., 2019).  

Figure 8. Schéma général d'une e-cig et de ses différents composants (d’après e-fumeur.com) 
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1. Première génération 

Les e-cig de première génération prennent le plus souvent l’apparence d’une 

cigarette, c’est pourquoi elles sont aussi appelées « cig-a-like » (Figure 9). Ces e-cig sont 

la plupart du temps jetables, mais peuvent aussi être rechargeables par le biais de 

cartouches pré-remplies d’e-liquide. Elles n’ont peu, voire pas de choix d’arômes, et leurs 

composants internes ne peuvent pas être modifiés.  

2. Deuxième génération 

La deuxième génération d’e-cig se distingue par un design différent de la cigarette 

conventionnelle, plus coloré (Figure 10). Contrairement à la génération précédente, ces 

e-cig sont réutilisables. Elles sont constituées d’un réservoir de e-liquide rechargeable. 

Cette caractéristique permet d’élargir le champ d’arômes disponibles et d’en changer plus 

facilement. Elle permet aussi d’ajuster le taux de nicotine plus facilement et de manière 

plus précise. 

Figure 9. E-cig de première génération ou « cig-a-like » (d'après www.stop-tabac.ch) 

Figure 10. Illustration de plusieurs modèles différents d’e-cig de deuxième génération (d'après U.S. 
Department of Health and Human Services) 
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3. Troisième génération 

Les modèles de troisième génération sont aussi appelés « Tank », de par leur 

contenance plus importante en e-liquide, ou aussi « Mods », pour modifiables. Ces e-cigs 

ont des designs assez variés et leur taille est souvent supérieure à celle des e-cigs de 

deuxième génération (Figure 11). Leur caractéristique particulière est qu’elles possèdent 

une carte électronique reliée à leur batterie qui contrôle directement, sans changer de 

composant, le voltage (Volts) et la puissance (Watts). Ceci permet aux utilisateurs de 

modifier, la densité et la température de l’aérosol créé. Ces paramètres sont primordiaux 

dans l’utilisation des e-cig puisque qu’ils vont déterminer le « hit », c’est-à-dire l’effet que 

recherche un fumeur au niveau de la gorge, qui correspond à la délivrance de la nicotine 

lors d’une bouffée. C’est un paramètre difficile à évaluer puisque le hit recherché pour un 

utilisateur n’est pas forcément valable pour un autre. Pour pallier à ce problème, le 

vapoteur peut changer par exemple la valeur de sa résistance, en jouant sur la longueur, 

l’épaisseur et les métaux qui la composent. 

4. Autres modèles 

Les e-cig ont également été déclinées sous d’autres formes permettant d’imiter 

d’autres produits dérivés du tabac. Parmi ces produits peuvent être cités les e-cigares, les 

e-shishas ou encore les e-pipes. 

Figure 11. Illustration de plusieurs modèles d’e-cig de troisième génération (d'après U.S. Department of 
Health and Human Services) 



41 
 

Suite à l’arrivée des e-cig de troisième génération qui peuvent paraître trop élaborées 

pour certains utilisateurs, une vague de dispositifs plus simples d’utilisation a fait son 

apparition plus récemment sur le marché, notamment avec la marque JUUL (Figure 12). 

Ces e-cig sont un retour à l’essentiel : elles sont rechargeables avec des « pods » qui 

contiennent du e-liquide. Elles sont plus petites et ont un design plus travaillé, plus 

moderne, ressemblant par exemple à des clefs USB. Ces e-cig, de par leur marketing 

essentiellement dirigé vers les jeunes, posent un problème car elles pourraient être une 

porte d’entrée à la consommation de nicotine. 

2.1.5. Les e-liquides et leur composition 

Le e-liquide est le consommable principal de l’e-cig. Il est chauffé jusqu’à son point de 

vaporisation pour générer un aérosol qui va permettre de délivrer la nicotine à 

l’utilisateur. Depuis 2016, une directive européenne indique que les flacons contenant de 

la nicotine ne peuvent pas dépasser un volume de 10 mL et que la concentration en 

nicotine ne doit pas excéder 20 mg/mL. Un e-liquide est composé généralement de 

propylène glycol et de glycérol en proportion variable et d’arômes très différents. Ils 

peuvent être supplémentés, ou non, de nicotine. De l’eau, de l’éthanol, et certains additifs 

peuvent également être retrouvés en quantités variables (Office Français de prévention 

du Tabagisme, 2013). C’est le mélange propylène glycol/glycérol qui permet de générer 

l’aérosol une fois la température de vaporisation atteinte. Le propylène glycol est 

également utilisé comme exhausteur d’arôme, alors que le glycérol est plutôt responsable 

de l’abondance et de la densité de la vapeur. En effet, selon la proportion des deux 

produits, la vapeur générée ne sera pas la même. Plus la teneur en propylène glycol est 

élevée, plus le goût sera prononcé, et plus celle en glycérol sera élevée, plus la vapeur sera 

Figure 12. E-cig de la marque JUUL et ses pods de recharge contenant le e-liquide. 
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abondante. Sur le marché actuel, les e-liquides classiques commercialisés ont un ratio 

propylène glycol/glycérol compris entre 80/20 et 70/30 afin de garder un bon équilibre 

saveur/vapeur. Mais d’autres proportions existent, notamment des e-liquides à teneur 

élevée de glycérol qui permettent de faire beaucoup plus de vapeur. Enfin, il est aussi 

possible pour l’utilisateur d’acheter séparément les différents composants d’un e-liquide 

afin de faire le mélange lui-même. 

En 2014, le nombre de e-liquides différents sur le marché mondial était estimé à 7764 

(Zhu et al., 2014). Cependant, un rapport récent de l’ANSES estime à plus de 25000 le 

nombre de e-liquides différents disponibles sur le marché sur la période 2019-2020, avec 

plus de 1200 substances utilisées comme ingrédient (ANSES, 2020). Ces données rendent 

compte de la difficulté d’évaluer la toxicité de chacun de ces e-liquides. En revanche, ce 

que l’on sait c’est que les différents composants pris individuellement ne semblent pas 

présenter de danger particulier. D’abord, le propylène glycol est utilisé depuis longtemps 

pour simuler la fumée dans les cinémas ou dans les concerts par exemple. Il est aussi 

utilisé comme humectant par l’industrie pharmaceutique, cosmétique ou encore 

l’industrie du tabac, empêchant par exemple les cigarettes classiques de se dessécher. Le 

propylène glycol et le glycérol font tous les deux parties de la liste des substances 

alimentaires GRAS (Generally Recognized As Safe) qui n’ont pas besoin d’évaluation avant 

mise sur le marché car elles sont considérées comme sans danger (FDA). Cette 

classification ne prend cependant pas en compte l’aérosolisation de ces composés ni 

l’exposition répétée sur le long terme par inhalation, ce qui pourrait modifier leurs effets 

sur l’organisme. 

La nicotine retrouvée dans les e-liquides est le plus souvent extraite de plants de 

tabac. Sa concentration est contrôlée en France depuis l’ordonnance de 2016 (10 mL à 20 

mg/mL maximum). Bien que la nicotine sous forme liquide présente un danger non 

négligeable d’intoxication cutanée ou par ingestion, sa toxicité directe par inhalation sous 

forme d’aérosol n’est pas encore clairement établie.  

Concernant les arômes, il en existe une multitude sur le marché d’origine naturelle 

ou artificielle ; il est donc difficile d’analyser la toxicité de chacun. Les arômes les plus 

populaires en Europe sont d’abord les arômes au goût fruité, puis le goût tabac et en 

troisième le goût mentholé (Eurobaromètre, 2017). Ils sont souvent issus d’un mélange 

d’arômes utilisés dans l’industrie agroalimentaire, et sont donc sans danger dans le cas 
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d’une ingestion. Cependant, leurs effets par inhalation sont pour la plupart inconnus et 

leur innocuité reste donc à démontrer (Tierney et al., 2016). 

2.1.6. Composition des aérosols d’e-cig 

De façon générale, l’e-cig apparaît comme moins nocive que la cigarette 

conventionnelle, notamment du fait de l’absence de combustion durant la génération de 

l’aérosol. L’analyse de la composition chimique des émissions constitue alors une étape 

préliminaire indispensable afin d’évaluer leur toxicité. En effet, si les différents 

composants d’un e-liquide sont relativement bien caractérisés lorsqu’ils sont en solution, 

leur transformation en aérosol peut générer des produits secondaires qui pourraient être 

dangereux pour l’utilisateur. La classification GRAS de la FDA ne s’applique justement pas 

à l’aérosolisation des substances, et il y a peu d’études sur le long terme analysant les 

effets d’une inhalation de propylène glycol ou de glycérol chez l’Homme. Cependant, il est 

admis que ces composés peuvent former des aldéhydes toxiques lorsqu’ils sont chauffés 

(Sleiman et al., 2016). En plus de ces transformations chimiques, des composants de l’e-

cig peuvent aussi être relargués dans les émissions exposant, par exemple, les voies 

respiratoires à des métaux potentiellement toxiques (Williams et al., 2013, 2017). La 

composition finale de l’aérosol peut ainsi devenir très différente de celle du e-liquide de 

base et l’effet « cocktail » des différents composés primaires et/ou secondaires présents 

pourrait être nocif. 

De nombreux articles ont fait état de la composition chimique des aérosols d’e-cig. 

Une revue récente a recensé une centaine d’articles sur le sujet (Ward et al., 2020). Jusqu’à 

maintenant cinquante-six articles ont mesuré la présence de composés carbonylés, 7 pour 

les HAP, 19 pour les COV, 16 pour les métaux, 10 pour les ERO et les radicaux libres, 16 

pour les nitrosamines. Globalement, la majorité des études retrouvent ces composés à des 

concentrations très inférieures à celles mesurées dans la fumée de cigarette. Mais 

certaines détectent des quantités de composés carbonylés plus importantes. Cependant, 

en 2018, une étude met en évidence les biais méthodologiques qui peuvent exister lors de 

la caractérisation des émissions à travers l’analyse de 32 articles mesurant la quantité en 

composés carbonylés dans les aérosols d’e-cig (Farsalinos and Gillman, 2018). En effet, 

cette analyse montre que certaines études, qui retrouvent des quantités de composés 

carbonylés plus importantes (Hutzler et al., 2014; Sleiman et al., 2016; Uchiyama et al., 

2016), ont généré les aérosols dans des conditions d’utilisation extrêmes appelées « dry 
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puff ». Ce phénomène arrive lorsque le profil de bouffée n’est pas adapté et que la mèche 

de coton n’a pas le temps d’amener le e-liquide par capillarité jusqu’à la résistance. Celle-

ci n’est alors pas refroidie par le passage du e-liquide et peut atteindre des températures 

bien plus élevées que la normale (Geiss et al., 2016). Cependant, les « dry puffs » sont 

aversives pour le vapoteur et ne représentent pas la réalité des expositions. Ceci montre 

alors l’importance du profil de bouffée et des paramètres utilisés dans les études de 

compositions des émissions d’e-cig. Contrairement à la cigarette, il n’existe pas de profil 

de bouffée standardisé, ce qui peut remettre en question la pertinence des résultats et 

rendre difficiles les comparaisons inter-laboratoires (Cheng, 2014). De plus, les 

conditions de collecte pour en étudier la composition chimique peuvent être différentes 

selon les laboratoires pour un même composé recherché. Pour les composés carbonylés, 

par exemple, la collecte peut se faire sur cartouche de silice imprégnée de 2,4-

Dinitrophénylhydrazine (DNPH), dans des barboteurs remplis d’une solution de DNPH ou 

encore sur des cartouches de charbon actif. Ces différences de méthodologies sont 

importantes à prendre en compte et montrent l’intérêt d’évaluer plusieurs modèles d’e-

cig de la même façon afin de faciliter les comparaisons. Des méthodes ont déjà été 

développées au laboratoire et ont permis de quantifier des composés carbonylés, les HAP, 

certains COV et certains métaux dans les aérosols d’e-cig (Beauval et al., 2016, 2017, 

2019). Ces études ont montré notamment que les émissions d’e-cig de 2ème génération 

avaient des niveaux de HAP, de composés carbonylés et de métaux bien inférieurs à ceux 

de la fumée de cigarette. La dernière étude en date a notamment mis en évidence des 

différences de compositions en composés carbonylés émis par une e-cig de 3ème 

génération en fonction des profils de bouffée (durée, volume et fréquence) utilisés pour 

générer les aérosols d’e-cig. Elle confirme la nécessité de standardiser les profils de 

bouffée utilisés afin pouvoir comparer la composition des aérosols. 

Enfin, les derniers modèles d’e-cig, de troisième génération ont une puissance 

réglable. Cependant, augmenter la puissance augmente aussi la température de chauffe 

du e-liquide. Certaines études montrent déjà une relation entre l’augmentation de 

température et la génération d’un plus grand nombre de composés toxiques (Geiss et al., 

2016; Gillman et al., 2016; Korzun et al., 2018, 2018; Salamanca et al., 2017; Uchiyama et 

al., 2020). Encore une fois, une étude provenant de notre laboratoire, en accord avec la 

littérature, a montré qu'augmenter la puissance délivrée par l’e-cig induisait une 

génération plus importante de composés carbonylés (Beauval et al., 2019). Les 
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caractéristiques et la puissance grandissante des nouveaux modèles pourraient alors 

avoir des effets toxiques plus importants au niveau cellulaire et moléculaire. 

Même si les différents composés sont retrouvés à des concentrations bien inférieures 

à celles retrouvées dans la cigarette classique, cela pourrait suffire à induire une toxicité 

au niveau des voies respiratoires. Il est alors nécessaire de mener des études 

toxicologiques pour évaluer le risque des émissions d’e-cig. 

2.1.7. Etats des connaissances sur la toxicité in vitro de l’e-cig 

2.1.7.1. Analyses toxicologiques sur cultures immergées 

L’e-cig reste un sujet controversé puisque son rapport bénéfices/risques est encore 

mal identifié. Les faibles teneurs en produits toxiques dans les aérosols ne constituent pas 

un argument suffisant pour valider l’utilisation des e-cig en tant qu’aide au sevrage 

tabagique. Des études toxicologiques ont déjà été menées mais la nouveauté de ces 

dispositifs signifie aussi une absence de standardisation dans les protocoles de recherche. 

Alors que certains laboratoires exposent des cellules en diluant le e-liquide directement 

dans le milieu de culture, d’autres utilisent des extraits d’aérosol d’e-cig pour leurs études 

toxicologiques in vitro. Ces extraits d’aérosols sont d’abord générés avec une e-cig, puis 

solubilisés dans le milieu de culture cellulaire.  

2.1.7.1.1. Cytotoxicité des e-liquides 

Les études analysant la cytotoxicité des e-liquides sont résumées dans le Tableau 4. 

Une équipe a testé la toxicité de 36 e-liquides différents avec différents arômes et 

différentes concentrations de nicotine sur différents types cellulaires (Bahl et al., 2012). 

Leurs résultats montrent que le e-liquide à l’arôme cannelle, par son dérivé secondaire le 

cinnamaldéhyde, est celui qui induit la toxicité cellulaire la plus importante. D’autres 

arômes ont également été montrés comme cytotoxiques tels que « chocolat noir suisse », 

« menthol arctique » ou « caramel au beurre salé ». La toxicité de l’arôme cannelle a été 

confirmée par une deuxième étude plus approfondie du même laboratoire qui a évalué 8 

e-liquides à l’arôme cannelle de marque différente et montre une cytotoxicité importante 

(Behar et al., 2014). Une exposition de cellules immortalisées de l’épithélium bronchique 

humain aux arômes « vanille » et « chocolat » montre une cytotoxicité et une diminution 

de la résistance transépithéliale (Sherwood and Boitano, 2016). Les arômes à base 

d’acétoïne, de diacétyle, de pentanedione, et de maltol induisent une augmentation de la 
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sécrétion d’IL-8 dans deux lignées cellulaire bronchiques humaines (BEAS-2B et H292) 

(Gerloff et al., 2017).  

 Tableau 4. Résumé des études citées utilisant un mode de culture immergé et une exposition directe aux e-
liquides 

 

Cependant, les utilisateurs d’e-cig ne sont pas en contact direct avec les e-liquides 

mais avec les aérosols générés. De ce fait, la toxicité mesurée dans les études 

précédemment citées ne reflète pas la réalité des expositions. En effet, le chauffage du e-

liquide peut générer d’autres dérivés secondaires qui peuvent être plus toxiques. Il est 

nécessaire d’étudier la toxicité in vitro des aérosols générés.  

2.1.7.1.2. Cytotoxicité des extraits solubilisés d’aérosol d’e-cig 

Les études utilisant ce type de protocole ont la plupart du temps mis en évidence des 

effets toxiques liés à certains arômes. Sur les 21 e-liquides testés par Romagna et al. sur 

des fibroblastes murins, seul l’arôme café induisait une baisse de viabilité de 50 % 

(Romagna et al., 2013). De la même façon, une autre étude mesurant l’effet de 20 extraits 

Etude Modèle cellulaire E-liquide Principaux résultats 

(Bahl et al., 
2012) 

Culture primaire de cellules 
souches embryonnaires 

humaines, de cellules souches 
neurales murines et de 

fibroblastes pulmonaires 
humains 

36 e-liquides de 
marques et d'arômes 

différents 

- Cytotoxicité n'est pas 
dépendante de la nicotine 
mais des arômes présents 

dans le e-liquide 

 

(Wu et al., 
2014) 

Culture primaire de cellules 
trachéobronchiques humaines 

E-liquide, arôme 
tabac, avec 
différentes 

concentrations de 
nicotine  

- Pas de cytotoxicité 
- Diminution de l'activité 

antimicrobienne 

 

 

(Behar et al., 
2014) 

Culture primaire de cellules 
souches embryonnaires humaines 

et de fibroblastes pulmonaires 
humains 

8 e-liquides à l'arôme 
cannelle de marque 

différente 

- Cytotoxicité est 
proportionnelle à la quantité 
de cinnamaldéhyde et de 2-

méthoxycinnamaldéhyde 

 

 

(Sherwood and 
Boitano, 2016) 

Lignée immortalisée de cellules 
de l'épithélium bronchique 

humain (16HBE14o) 

Arômes dilués 
directement dans le 

milieu 

- Cytotoxicité et diminution 
de la résistance trans-

épithéliale après expositions 
aux arômes vanille ou 

chocolat 

 

(Gerloff et al., 
2017) 

Lignées cellulaires immortalisées 
d’épithélium bronchique humain 

(BEAS-2B), Lignée cancéreuse 
bronchique humaine (H292) 

Arômes et nicotine 
dilués directement 

dans le milieu 
directement 

- Pas de cytotoxicité 
- Acétoïne, diacétyl, 

pentanedione et maltol ont 
induit une augmentation de 

la sécrétion d'IL-8 
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d’aérosols sur des cellules myocardiques montrait également que la cytotoxicité induite 

par 4 d’entre eux était liée aux arômes (Farsalinos et al., 2013). Leslie et al. ont observé 

que les arômes fraise, cerise et tabac pouvaient également être cytotoxiques sur 7 types 

cellulaires d’origine pulmonaire (Leslie et al., 2017). Enfin, Behar et al. ont mis en 

évidence qu’en exposant deux types de cellules pulmonaires à des extraits d’aérosols avec 

ou sans ces arômes, une cytotoxicité était observée uniquement en présence d’arômes 

(Behar et al., 2018). Dans le même temps, certaines études ont également évalué l’impact 

cytotoxique de la concentration en nicotine dans les extraits d’aérosol. Les résultats 

révèlent que la toxicité observée est due en plus grande partie aux arômes présents qu’à 

la quantité de nicotine (Bengalli et al., 2017; Farsalinos et al., 2013; Higham, 2016; Leslie 

et al., 2017). Misra et al. n’ont pas retrouvé de génotoxicité, de cytotoxicité ou même 

d’inflammation suite à l’exposition de cellules pulmonaires aux extraits d’aérosols d’e-cig 

(Misra et al., 2014). Cependant, il a été montré, plus récemment, qu’avec ou sans nicotine, 

les extraits d’aérosols d’e-cig pouvaient induire la sécrétion de facteurs pro-

inflammatoires IL-8 et MMP-9 (Higham, 2016).  En revanche, en comparant les effets 

cytotoxiques avec ceux provoqués par des extraits de fumée de cigarette, toutes les études 

s’accordent à dire que les extraits d’aérosol d’e-cig sont significativement moins toxiques 

(Bengalli et al., 2017; Chun et al., 2017; Farsalinos et al., 2013; Taylor et al., 2016). Bien 

que les extraits d’aérosols solubilisés soient une solution pour faciliter les études de 

toxicité in vitro sur l’e-cig, ils ne permettent pas une exposition des cellules pulmonaires 

dans des conditions réalistes. En effet, il est nécessaire d’exposer les cellules directement 

aux aérosols d’e-cig pour analyser l’ensemble des potentiels effets cytotoxiques. Le 

Tableau 5 reprend l’ensemble des études citées précédemment. 
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Tableau 5. Résumé des études citées utilisant un mode de culture immergé et des extraits d'aérosols d'e-cig 

Etude Modèle cellulaire E-cig Principaux résultats 

(Romagna et al., 
2013) 

Lignée de fibroblastes 
murins (3T3) 

510T, Omega 
Vape (2ème 

génération) 

- Seul l'extrait d’e-liquide arôme café induit 
une cytotoxicité. 

 - E-cig moins toxique que la cigarette. 

(Farsalinos et al., 
2013) 

Lignée myocardique de 
rat (H9c2) 

eGO Joyetech 
(2ème 

génération) 

- 4 e-liquides sur 20 testés ont des effets 
cytotoxiques (3 arômes tabac, un arôme 

« cookie »). 
 - Cytotoxicité associée aux arômes mais pas à 

la concentration en nicotine. 

(Leslie et al., 2017) 

Lignées cellulaires 
immortalisées 

d’épithélium bronchique 
humain (BEAS-2B, IB3-1, 

C38, CALU-3 

Modèles non 
précisés (2ème 
génération) 

- E-cig moins toxique que la cigarette. 
 - Cytotoxicité associée aux arômes fruités 

mais pas à la concentration en nicotine. 

(Behar et al., 2018) 

Lignée cancéreuse 
alvéolaire humaine 

(A549), culture primaire 
de fibroblastes 

pulmonaires humains 
(hPFs) 

Innokin 
iClear16 (2ème 
génération), 

Innokin iTaste 
MVP 3.0 (3ème 
génération) 

- Cytotoxicité sur les deux types cellulaires. 
 - 12 des 39 arômes testés ont induit une 

cytotoxicité. 
 - Extraits générés avec une batterie de 5V 
sont plus cytotoxiques que ceux avec une 

batterie de 2V. 

(Higham, 2016) 
Culture primaire de 

neutrophiles humains 

3 marques d'e-
cig : VIP, KIK et 
Puritane (1ère 
génération) 

- Les extraits d'aérosols d'e-cig ont induit la 
sécrétion de MMP-9 et IL-8. 

 - Activation de la voie p38/MAPK. 
 - Les effets sont dus aux arômes plutôt qu'à la 

concentration en nicotine. 

(Bengalli et al., 2017) 
Lignée cancéreuse 
alvéolaire humaine 

(A549) 

iSimple Ribilio 
(2ème 

génération) 

- La cytotoxicité observée est due aux arômes 
menthe et cannelle, mais pas à la nicotine. 

(Misra et al., 2014) 
Lignée cancéreuse 
alvéolaire humaine 

(A549) 

Blu e-cig (1ère 
génération) 

- Extraits d'aérosol d'e-cig avec ou sans 
nicotine ni arômes n'ont pas induits de 

cytotoxicité. 
- E-cig moins toxique que la cigarette. 

(Taylor et al., 2016) 
Lignée cancéreuse 

bronchique humaine 
(H292) 

Marque VYPE 
(2ème 

génération) 

- Pas de cytotoxicité observée après 
exposition aux extraits d'aérosols d'e-cig. 

 - E-cig moins toxique que la cigarette. 
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2.1.7.2.  Analyses toxicologiques sur cultures en interface air-liquide 

Pour se rapprocher de la réalité des expositions aux aérosols d’e-cig, certaines 

d’études ont été réalisées sur des cultures en interface air-liquide (IAL) (Tableau 6). Ce 

type de culture permet de maintenir le pôle basal des cellules en contact avec le milieu de 

culture alors que le pôle apical est directement exposé à l’air ambiant. Lors des analyses 

toxicologiques, les aérosols générés sont ainsi directement en contact avec le tapis 

cellulaire (Figure 13). La culture cellulaire en IAL mime de façon plus fidèle les 

interactions entre l’aérosol et les cellules des voies respiratoires. En utilisant ce type 

d’exposition, Cervellati et al. ont montré que l’exposition aux émissions d’e-cig induisait 

la sécrétion des cytokines IL-1, et IL-8, IL-10 ou TNF-a dans la lignée cancéreuse 

pulmonaire humaine A549 (adénocarcinome pulmonaire) (Cervellati et al., 2014). La 

sécrétion d’IL-6 a également été mise en évidence dans la lignée cancéreuse pulmonaire 

humaine H292 (cancer pulmonaire épidermoïde) (Lerner et al., 2015). Deux autres études 

confirment la modulation de la réponse inflammatoire suite à l’exposition aux aérosols 

d’e-cig de cultures primaires de cellules bronchiques humaines (NHBE) (Iskandar et al., 

2016) ou de cellules immortalisées de l’épithélium bronchique humain (BEAS-2B) 

(Anthérieu et al., 2017). Pourtant, contrairement à ce qui a été observé par Cervellati et 

al., ces modulations ne s’accompagnent pas d’une diminution de la viabilité cellulaire. Ces 

données concordent avec d’autres études qui n’observent que très peu de cytotoxicité sur 

un modèle de culture 3D d’épithélium trachéo-bronchique reconstitué (EpiAirway™) 

(Czekala, 2019; Neilson et al., 2015). Quelques études montrent des résultats différents 

en mettant en évidence une mort cellulaire de cellules NHBE (Scheffler et al., 2015) et de 

cellules A549 (Hwang et al., 2016). Une autre équipe observe une baisse de l’activité 

métabolique et de la viabilité cellulaire des cellules H292 (Leigh et al., 2016). Des analyses 

Figure 13. Schéma du mode de culture cellulaire immergée (à gauche) et en interface air-liquide (IAL) 
(à droite) 



50 
 

transcriptomiques ont déjà été effectuées dans le but d’identifier de potentielles 

modifications induites par les émissions d’e-cig. Une étude menée au laboratoire a montré 

qu’avec ou sans arôme, les aérosols n’induisaient quasiment pas de modifications 

d’expression génique sur les cellules BEAS-2B (Anthérieu et al., 2017). Haswell et al. ont 

également retrouvé peu de modifications transcriptomiques sur un modèle 3D de culture 

primaire de cellules bronchiques (Haswell et al., 2017). Une grande partie de ces études a 

été réalisée sur des modèles d’e-cig de deuxième génération de puissance fixe. Une étude 

a cependant comparé plusieurs e-cig de deuxième génération et de puissance différente 

et a observé que les effets cytotoxiques étaient plus importants lorsque la puissance était 

plus élevée (Leigh et al., 2016). Comme précédemment, les études utilisant des cultures 

en IAL montrent que les aérosols d’e-cig sont moins nocifs que la fumée de cigarette 

classique en termes de viabilité cellulaire, d’inflammation, de stress oxydant et de 

modifications transcriptomiques (Anthérieu et al., 2017; Azzopardi et al., 2016; Iskandar 

et al., 2016; Leigh et al., 2016; Scheffler et al., 2015). 

La multiplicité des protocoles (profil de bouffée, e-cig, e-liquide, modèle cellulaire) 

rend difficile la comparaison et l’harmonisation de toutes les études disponibles. 

Cependant, les résultats sont pour la plupart concordants. Les émissions d’e-cig induisent 

peu, voire pas de diminution de la viabilité cellulaire. En revanche, un certain nombre 

d’étude démontre une modulation de l’inflammation et quelques-unes une augmentation 

du stress oxydant. De plus, même si les aérosols d’e-cig sont tout de même bien moins 

cytotoxiques que la fumée de cigarette, ils pourraient, à long terme, être impliqués dans 

l’apparition de processus pathologiques. Les études toxicologiques in vitro sont 

importantes pour faire des études de screening et des études mécanistiques sur des types 

cellulaires précis. Mais des études in vivo sont également nécessaires afin de déterminer 

les effets des émissions d’e-cig à plus long terme et sur un organisme entier. 
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Tableau 6. Résumé des études citées sur la cytotoxicité de l’e-cig utilisant un mode de culture en interface air-
liquide. N.C. = Non Communiqué 

Etude Modèle cellulaire E-cig 
Profil de 
bouffée 

Principaux résultats 

(Cervellati et 
al., 2014) 

Lignée cancéreuse 
alvéolaire humaine 

(A549) 

Modèle non 
précisé 

Exposition de 
50 minutes en 

continu 

- Sécrétion de médiateurs pro-
inflammatoires. 

- E-cig moins toxique que la cigarette. 

(Lerner et al., 
2015) 

Lignée cancéreuse 
bronchique humaine 

(H292) 

Batterie eGO, 
clearomiseur 

Anyvape (2ème 
génération) 

N.C./4/30 
pendant 5, 10 

ou 15 min 

- Sécrétion d'IL-6 et IL-8 de façon dose-
dépendante. 

(Iskandar et 
al., 2016) 

Culture primaire de 
cellules épithéliales 

bronchiques humaines 
(NHBE) 

Modèle non 
précisé (2ème 
génération) 

55/3/30 
pendant 55 ou 

115 min 

- Pas de cytotoxicité mais sécrétion de 
médiateurs pro-inflammatoires. 

 - Arôme semble avoir plus d'effet sur la 
cytotoxicité que la nicotine. 

 - E-cig moins toxique que la cigarette. 

(Anthérieu et 
al., 2017) 

Lignée immortalisée 
bronchique humaine 

(BEAS-2B) 

Lounge Nhoss 
(2ème 

génération) 

55/3/30 
pendant 8 ou 

48 min 

- Pas de cytotoxicité, ni de stress 
oxydant. 

 - Sécrétion d'IL-6. 
- Très peu de gènes dérégulés par 

rapport à la cigarette. 
 - Ni la nicotine, ni l'arôme n'ont d'effets 

sur la toxicité de l'e-cig. 
 - E-cig moins toxique que la cigarette. 

(Neilson et al., 
2015) 

Culture primaire 
d’épithélium trachéo-
bronchique humain 

(EpiAirway) 

NJOY (1ère 
génération) 

80/3/30 
jusqu'à 6 h 

- Pas de cytotoxicité observée. 
 - E-cig moins toxique que la cigarette. 

(Czekala, 
2019) 

Culture primaire de 
l'épithélium trachéo-
bronchique humain 

(EpiAirway) 

Blu PLUS (2ème 
génération 

55/3/30 
jusqu'à 120 

min 

- Aucun effet sur la sécrétion de 
médiateurs de l'inflammation ou sur 

l'intégrité de l'ADN. 
- E-cig moins toxique que la cigarette. 

(Scheffler et 
al., 2015) 

Culture primaire de 
cellules épithéliales 

bronchiques humaines 
(NHBE) 

Modèle non 
précisé 

35/2/N.C. 
jusqu'à 200 

bouffées 

- L'e-cig génère 4,5 à 5 fois moins de 
stress oxydant que la cigarette. 

 - E-cig moins toxique que la cigarette. 

(Hwang et al., 
2016) 

Lignée cancéreuse 
alvéolaire humaine 

(A549) 

Modèles de 
2ème 

génération 

Aérosol généré 
en continue 
pendant 15 

min 

- Induction de mort cellulaire. 

(Leigh et al., 
2018) 

Lignée cancéreuse 
bronchique humaine 

(H292) 

Blu (1ère 
génération), 
Blu Plus et 
eGO (2ème 

génération) 

55/2/30 
pendant 110 

min 

- Diminution de l'activité métabolique. 
 - E-cig moins toxique que la cigarette. 

(Haswell et al., 
2017) 

Modèle 3D de cellules 
primaires épithéliales 
bronchiques humaines 

(MucilAir) 

Vype ePen 
(2ème 

génération) 

55/3/30 
jusqu'à 60 min 

- Peu de modifications 
transcriptomiques. 

 - E-cig moins toxique que la cigarette. 

(Azzopardi et 
al., 2016) 

Lignée cancéreuse 
bronchique humaine 

(H292) 

Vype ePen et 
Vype eStick 

(2ème 
génération) 

35/2/60 et 
55/2/30 

jusqu'à 60 min 

- Les aérosols d'e-cig peuvent induire de 
la cytotoxicité à un profil de bouffée 

intense. 
 - E-cig moins toxique que la cigarette. 

(Bishop et al., 
2019) 

Modèle 3D de cellules 
primaires épithéliales 
bronchiques humaines 

(MucilAir) 

Vype eBox 
(3ème 

génération) 

55/3/30 
jusqu'à 60 min 

- Mesure de la viabilité cellulaire, du 
battement des cils et de la résistance 

trans-épithéliale 
- E-cig a moins d’effets cytotoxiques que 

la cigarette 
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2.1.8. Etats des connaissances sur la toxicité in vivo de l’e-cig 

2.1.8.1. Etudes in vivo par exposition « corps entier » 

Il existe deux types d’approches pour exposer des animaux à un aérosol (Figure 14). 

La méthode d’exposition « corps entier », qui consiste à placer l’animal dans une chambre 

d’exposition dans laquelle l’aérosol est délivré. Cette méthode comporte cependant 

certains biais puisque les aérosols peuvent se déposer sur le pelage de l’animal. La toxicité 

ferait alors rentrer en jeu une exposition cutanée voire digestive lors de la toilette de 

l’animal. Pour pallier à cela, il est possible de mettre en place des expositions « nose-

only ». Les animaux sont alors maintenus en contention afin de permettre une inhalation 

directe de l’aérosol par voie nasale. Cette méthode peut cependant entraîner un stress 

non négligeable dû à la contention qui doit être pris en considération (van Eijl et al., 2006). 

La majorité des études décrites ont utilisé un mode d’exposition « corps entier » pour 

analyser l’impact des émissions d’e-cig (Tableau 7). La plupart de celles-ci ont été 

effectuées sur des souris, mais quelques-unes ont été réalisées chez le rat. Une exposition 

aux aérosols sur des rats Sprague Dawley pendant 4 semaines a été associée à une 

augmentation significative de l’activité d’enzymes du métabolisme des xénobiotiques, 

responsable de la métabolisation des HAP, une réduction de la capacité antioxydante et 

des dommages à l’ADN (Canistro et al., 2017). Une autre étude de 4 semaines sur des rats 

Figure 14. Schéma de l’exposition « corps entier » (à gauche) ou « nose-only » (à droite) à un aérosol. 
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Wistar a également montré une modification de la réponse anti-oxydante avec une 

augmentation de l’expression des enzymes superoxide dismutase et glutathion-S-

transférase (El Golli et al., 2016). Salturk et al. n’ont cependant pas trouvé de différence 

significative entre des rats exposés 1h/jour pendant 4 semaines et des rats contrôles 

(Salturk et al., 2015). Chez la souris C57BL/6J, l’exposition à l’e-cig 5h/jour pendant 3 

jours induit la sécrétion de cytokines pro-inflammatoires et réduit le taux de glutathion 

au niveau pulmonaire, témoignant d’un stress oxydant (Lerner et al., 2015). Glynos et al. 

confirment également cette augmentation de l’inflammation et du stress oxydant 

pulmonaire chez des souris C57BL/6J exposées jusqu’à 4 semaines. Ils montrent aussi une 

augmentation de la sécrétion de mucus et une hyper réactivité bronchique, de même que 

des modifications de la fonction respiratoire dès 3 jours d’exposition (élasticité, 

compliance et résistance) (Glynos et al., 2018). Sussan et al. ont exposé des souris 

C57BL/6J aux aérosols d’e-cig deux fois 1h30 par jour pendant 2 semaines. Cette étude 

montre que les souris exposées sont plus vulnérables aux infections virales et 

bactériennes du fait d’une réduction de la phagocytose des macrophages alvéolaires 

(Sussan et al., 2015). Une diminution de l’efficacité de la clairance muco-ciliaire a été 

observée chez des souris C57BL/6J exposées 20 min/jour pendant 3 semaines mais pas 

chez celles exposées seulement 1 semaine (Laube et al., 2017). Plus récemment, une 

équipe a exposé des souris FVB/N, une souche fortement sensible à l’induction de cancer 

par produits chimiques, pendant 54 semaines, à de longues sessions de 4 h/jour à raison 

de 5 jours/semaine en utilisant un e-liquide à 36 mg/mL de nicotine. Ces expositions 

intenses ont provoqué des adénocarcinomes au niveau pulmonaire dans 20% des souris 

et des hyperplasies au niveau rénal dans 60% des cas (Tang et al., 2019).  
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Tableau 7. Résumé des études citées sur la toxicité in vivo de l'e-cig utilisant un protocole d’exposition corps 
entier. 

Etude 
Modèle 
animal 

E-cig Exposition Principaux résultats 

(Canistro et al., 
2017) 

Rats Sprague 
Dawley 

Modèle non 
précisé (3ème 
génération) 

1 mL/jour d'e-liquide 
5 jours/semaine pendant 

4 semaines 

- Augmentation de l'activité des 
enzymes de phase I, de la production 

d'ERO, de l'oxydation et des 
dommages à l'ADN. 

(Salturk et al., 
2015) 

Rats Wistar 
eGO T (2ème 
génération) 

1 h/jour pendant 4 
semaines 

- Etude histopathologique montre 
des hyperplasies et métaplasies 

après expositions à l’e-cig. 

(Lerner et al., 
2015) 

Souris 
C57BL/6J 

Blu e-cig (1ère 
génération) 

5 h/jour pendant 3 jours 

- Exposition à l'e-cig induit la 
sécrétion de cytokines pro-

inflammatoires. 
 - Augmentation du stress oxydant. 

(Glynos et al., 
2018) 

Souris 
C57BL/6J 

eRoll (Joye 
Technology) 

4 expositions/jour de 7 
minutes pendant 3 jours 

ou 4 semaines 

- Augmentation de la sécrétion de 
mucus. 

 - Hyperréactivité bronchique et 
altération de la fonction respiratoire. 

 - Augmentation du stress oxydant. 

(Sussan et al., 
2015) 

Souris 
C57BL/6J 

NJOY (1ère 
génération) 

2 expositions de 1,5 
h/jour pendant 2 

semaines 

- Augmentation de la vulnérabilité 
aux infections virales et 

bactériennes. 

(Laube et al., 
2017) 

Souris 
C57BL/6J 

Joyetech 510-T 
(2ème 

génération 

Exposition de 20 
min/jour pendant 1 ou 3 

semaines 

- Diminution de la clairance 
mucociliaire chez les souris exposées 

3 semaines. 

(Tang et al., 
2019) 

Souris FVB/N 

E-cig aerosol 
generator 

(équivalent 2ème 
génération) 

Exposition de 4 h/jour, 5 
jours/semaine pendant 

54 semaines 

- Induction d’adénocarcinomes 
pulmonaires dans 20% des souris, et 
des hyperplasies rénales dans 60%. 

 

2.1.8.2. Etudes in vivo par expositions « nose-only » 

Une exposition « nose-only » des animaux semble plus pertinente pour évaluer les 

risques sanitaires liés à l’inhalation des aérosols d’e-cig. Quelques études utilisant ce 

mode d’exposition ont déjà été effectuées (Tableau 8). Hwang et al. ont observé des 

modifications de la sécrétion de médiateurs de l’inflammation au niveau pulmonaire et 

systémique chez des souris CD-1 exposées en « nose-only » 1h/jour pendant 4 semaines 

(Hwang et al., 2016). Crotty Alexander et al. ont exposé des souris C57BL/6J et CD-1 

1h/jour pendant 3 ou 6 mois et ont montré une augmentation de la sécrétion de cytokines 

pro-inflammatoires au niveau systémique (Crotty Alexander et al., 2018). Une étude 

menée sur des rats Spragues Dawley a retrouvé une augmentation du nombre de cellules 

de l’immunité au niveau des voies respiratoires (neutrophiles et macrophages 

alvéolaires) après 90 jours d’exposition, mais qui disparaissent après un recouvrement 

de 42 jours (Werley et al., 2016). Une autre étude a analysé le transcriptome de souris 

C57BL6/J exposées 4h/jour pendant 3 semaines à l’e-cig ou à la fumée de cigarette. Le 

nombre de gènes dérégulés est beaucoup plus important dans le cas d’une exposition à la 

fumée de cigarette. Les aérosols d’e-cig induisent en revanche assez peu de modifications, 
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et pas suffisamment pour conclure à une toxicité (Lee et al., 2018). Les résultats les plus 

inquiétants sont ceux rapportés par Lee et al.. Ils ont montré que des expositions de 

3h/jour pendant 12 semaines aux émisisons d’e-cig sur des souris FVB/N pouvaient 

induire des dommages au niveau de l’ADN pulmonaire, vésical et cardiaque. De plus, les 

protéines impliquées dans la réparation de l’ADN ont été retrouvées diminuées au niveau 

de ces tissus. Les auteurs émettent l’hypothèse que les nitrosamines dérivées de la 

nicotine seraient responsables de cet effet mutagène (Lee et al., 2017). Ces résultats in 

vivo ont beaucoup fait parler d’eux puisqu’ils suggèrent que l’e-cig pourrait avoir des 

effets cancérogènes. Cette étude suggère aussi que ces nouveaux dispositifs pourraient 

exercer un effet toxique sur d’autres organes que les poumons. Des effets pro-fibrotiques 

avaient également été mis en évidence au niveau cardiaque et rénal dans une précédente 

étude (Crotty Alexander et al., 2018).  

Tableau 8. Résumé des études citées sur la toxicité in vivo de l'e-cig utilisant un protocole d’exposition « nose-
only ». 

Etude 
Modèle 
animal 

E-cig Profil de bouffée Résultats principaux 

(Hwang et al., 2016) Souris CD-1 
Marque non 

précisée (2ème 
génération) 

Exposition 1 
h/jour pendant 4 

semaines 

 - Augmentation de la réponse 
inflammatoire pulmonaire et 

systémique. 

(Crotty Alexander et 
al., 2018) 

Souris 
C57BL/6J et 

CD-1 

Marque non 
précisée (2ème 

génération) 

Exposition 1 
h/jour pendant 3 

ou 6 mois 

 - Augmentation de la réponse 
inflammatoire pulmonaire et 

systémique. 
 - Activation de la voie profibrotique 
retrouvée au niveau rénal, hépatique 

et cardiaque. 

(Werley et al., 2016) 
Rats 

Sprague 
Dawley 

MarkTen (1ère 
génération) 

Expositions de 
16, 48 ou 160 

min/jour pendant 
90 jours 

 - Augmentation du nombre de 
macrophages alvéolaires et de 

neutrophiles au niveau pulmonaire. 
 - Disparition de ces altérations 

après 42 jours de recouvrement. 

(Lee et al., 2018) 
Souris 

C57BL/6J 
MarkTen (1ère 

génération) 

Exposition 4 
h/jour, 5 

jours/semaine 
pendant 3 
semaines 

 - Moins de gènes dérégulés par l’e-
cig par rapport à la cigarette. 
 - Pas de voie de signalisation 

dérégulée suite à l'exposition à l'e-
cig. 

(Lee et al., 2017) 
Souris 
FVB/N 

Njoy (2ème 
génération) 

Exposition de 3 
h/jour pendant 

12 semaines 

 - Dommages à l'ADN pulmonaire, 
vésical et cardiaque. 

 - Diminution des mécanismes de 
réparation de l’ADN. 

 

Les études toxicologiques in vitro et in vivo évaluant l’impact de l’e-cig ont permis de 

mettre en évidence une modulation de la réponse inflammatoire et une dérégulation de 

la balance oxydants/antioxydants par les aérosols. Cependant beaucoup de ces études 

correspondent à des expositions aiguës ou subchroniques, et ne témoignent pas 
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d’éventuelles lésions pouvant apparaître suite à des expositions chroniques susceptibles 

de conduire à des pathologies plus ou moins graves. De plus, les différences de protocoles 

d’expositions en termes de durée, de fréquence, de modèles d’e-cig et de profil de bouffée 

rendent difficile la comparaison et l’uniformisation des résultats retrouvés.  En effet, 

certaines méthodes d’exposition correspondent à des conditions assez extrêmes 

d’utilisation de l’e-cig qui ne seraient pas pertinentes dans le cas d’une utilisation 

conventionnelle. De plus, la plupart des études disponibles utilise des modèles d’e-cig de 

deuxième génération, alors que les modèles prépondérants sur le marché aujourd’hui 

sont ceux de troisième génération. Au vu de leur technologie plus poussée permettant de 

générer des aérosols plus denses et plus concentrées en composés nocifs il est alors 

important d’évaluer leur toxicité de façon plus précise. Enfin, pour faciliter la 

comparaison entre les différents dispositifs disponibles, mais aussi par rapport à la 

cigarette classique, il semble important de standardiser les méthodes d’expositions et 

d’utiliser les mêmes paramètres d’analyse. 

2.1.9. Effets de l’e-cig sur la santé humaine 

Les effets de l’e-cig sur la santé humaine sont encore largement inconnus. Ces 

dispositifs sont encore trop récents pour disposer de données de toxicité à long terme 

d’une utilisation régulière, d’autant plus que beaucoup d’études reposent sur le fait que 

ce sont des fumeurs ou anciens fumeurs qui se mettent à l’e-cig. De ce fait, bien que la 

plupart de celles-ci montrent une amélioration des marqueurs de toxicité, il est difficile 

de conclure sur leur innocuité totale. 

Une première étude en 2012 a montré une augmentation de la résistance des voies 

aériennes, et une réduction de l’oxyde nitrique (NO) exhalé, marqueur d’inflammation 

pulmonaire, après 5 minutes de vapotage chez 30 fumeurs (Vardavas et al., 2012). Ces 

altérations ont été confirmées avec plusieurs modèles d’e-cig, avec ou sans nicotine 

(DeMarini, 2004). La réduction du NO exhalé a également été observée chez des individus 

non-fumeurs après 6 mois d’utilisation d’e-cig (Meo et al., 2019). Cette dernière étude met 

également en évidence des altérations de la fonction pulmonaire suggérant une 

augmentation de l’obstruction des voies aériennes. Bien que le nombre de participants 

soit assez faible (n=30), la durée de l’étude de 6 mois permet d’observer des effets liés à 

une exposition prolongée. Une exposition à l’e-cig a également été liée à une augmentation 

de l’inflammation et du stress oxydant chez des individus non-fumeurs dont le sang a été 
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prélevé à intervalles réguliers 6h après une session de vapotage (Chatterjee et al., 2019). 

L’étude la plus longue à ce jour a suivi pendant 42 mois (3 ans et demi) neuf utilisateurs 

d’e-cig n’ayant jamais été fumeurs (Polosa et al., 2017). Sur tous les paramètres étudiés 

(pression sanguine, fréquence cardiaque, poids, fonction pulmonaire, symptômes 

d’affections des voies respiratoires, oxyde nitrique exhalé et monoxyde de carbone 

exhalé), aucun n’est significativement modifié par rapport aux douze individus du groupe 

contrôle (non-fumeurs et non-vapoteurs). 

Dans le but d’évaluer l’impact respiratoire de l’e-cig, il est également intéressant de 

déterminer si la transition d’un fumeur vers le vapotage pourrait être bénéfique pour sa 

santé. Walele et al., ont mené une étude dans ce sens, en suivant pendant deux ans des 

anciens fumeurs passés à l’e-cig. (Walele et al., 2018). Les auteurs n’ont pas constaté de 

signes cliniques de toxicité pulmonaire particuliers. Barna et al. ont évalué la différence 

d’impact respiratoire entre la cigarette et l’e-cig en regardant directement les effets sur 

les membranes alvéolo-capillaires. Les résultats montrent que le passage à l’e-cig est bien 

bénéfique pour le fumeur (Barna et al., 2019). Il a également été mis en évidence qu’après 

3 ans d’utilisation d’e-cig, des anciens fumeurs atteints de BPCO montraient une 

amélioration de leur condition physique, mesurée par le test de marche de 6 minutes, et 

une diminution moindre de leur capacité respiratoire comparée à ceux qui ont continué 

de consommer la cigarette (Polosa et al., 2017, 2018).  

Ces données cliniques, bien qu’encore peu nombreuses, rejoignent les études 

chimiques des aérosols et les études toxicologiques in vitro et in vivo. Elles suggèrent que 

la vapeur d’e-cig serait moins toxiques que la fumée de cigarette classique, et qu’elle 

permettrait d’inverser certains effets délétères induits par le tabac. Cependant, les études 

citées précédemment ne garantissent pas l’innocuité des e-cig suite à une utilisation de 

plusieurs années, voire dizaine d’années. Une exposition chronique prolongée à ces 

aérosols pourrait être associée à d’autres pathologies que celles observées chez les 

fumeurs. De plus, les modèles d’e-cig utilisés sont souvent de deuxième voire de première 

génération. Ainsi, les modèles de troisième génération ayant une température de chauffe 

du e-liquide plus importante pourrait avoir une toxicité à long terme différente que celle 

observée pour les autres modèles d’e-cig. 
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2.2. Le tabac chauffé 

2.2.1. Généralités 

Le tabac chauffé a été introduit pour la première fois au Etats-Unis en 1988 mais 

n’ayant pas été populaire tout de suite, il a rapidement été retiré du marché. Plus 

récemment, en voyant le succès grandissant de l’e-cig, l’industrie du tabac a décidé de 

retenter une commercialisation. C’est en 2014 que Philip Morris International (PMI) met 

en vente son premier modèle de tabac chauffé, l’« iQOS ». D’autres industries du tabac ont 

développé à leur tour leur propre dispositif : « Glo » pour la British American Tobacco, 

« Ploom TECH » pour la Japan Tobacco et plus récemment « PAX » par PAX labs, les 

créateurs de la marque d’e-cig JUUL. Tous ces dispositifs reposent sur un principe qui 

permet de générer un aérosol sans processus de combustion directement à partir de 

feuilles de tabac. Le produit le plus répandu actuellement est l’iQOS, sorti d’abord au 

Japon, en Italie puis en France depuis 2017 ; il est maintenant disponible dans plus de 40 

pays dans le monde. La vente aux Etats-Unis a été récemment autorisée en octobre 2019 

par la FDA dans la catégorie de « produit du tabac à risque modifié ». La prévalence de 

l’utilisation de l’iQOS ne cesse d’augmenter depuis sa mise en vente dans les pays pilotes. 

Elle est, par exemple, passée de 0,6 % en 2016 à 3,6 % en 2017 au Japon (Tabuchi et al., 

2018). Les parts de marché ont été multipliées par 5 de 2016 à 2017 en Italie (Liu et al., 

2018). Le tabac chauffé étant encore très récent en France, les données de prévalence ne 

sont pas encore disponibles. Le tabac chauffé représentait en 2017 13 % du chiffre 

d’affaire de PMI, et l’objectif est d’augmenter ce chiffre à 38 % d’ici 2025, en le substituant 

à la vente de cigarettes classiques. 
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2.2.2. Principe de fonctionnement 

Comme précisé précédemment, il existe plusieurs marques de produits de tabac 

chauffé. Le modèle iQOS de PMI est le plus répandu et celui qui sera utilisé dans notre 

étude toxicologique. Ce système électronique est composé d’un élément appelé « holder » 

qui chauffe des bâtonnets de tabac et d’une batterie portable pour recharger ce dernier. 

Les bâtonnets ou sticks de tabac sont les consommables de l’iQOS et sont appelés « heets » 

(Figure 15).  Ils sont composés de feuilles de tabac broyées et imprégnées de glycérine 

permettant, selon le fabricant, la production d’un aérosol sans combustion (Smith et al., 

2016). Ces sticks sont insérés sur une résistance en forme de lame qui chauffe jusqu’à 

350°C (Davis et al., 2019) pour une durée de 6 minutes, ou pour l’équivalent de 14 

bouffées. Après chaque utilisation, le stick doit être enlevé et le holder rechargé. La 

batterie peut recharger le holder une vingtaine de fois avant de devoir être elle-même 

rechargée. A noter que cette description est valable pour le modèle d’iQOS version 2.2 ; il 

existe des modèles améliorés qui permettent de consommer plus de heets avant la 

recharge (iQOS duo ou multi). 

 

 

Figure 15. Illustration de l'iQOS, produit de tabac chauffé commercialisé par Philip Morris International 
(d’après TechInsights et Philip Morris International). 
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Le dispositif Glo fonctionne d’une manière similaire avec une résistance chauffante 

et un bâtonnet de tabac appelé « Ken Neostiks » (Figure 16). La résistance chauffe jusqu’à 

250°C pour une durée de 3 minutes. A la différence de l’iQOS, ce dispositif peut être 

réutilisé jusqu’à 30 cycles avant d’être rechargé (Forster et al., 2018). 

Enfin le dispositif Ploom fonctionne d’une manière un peu différente (Figure 17). 

L’appareil est composé d’une batterie, d’une cartouche contenant un mélange de 

propylène glycol, de glycérol et de triacétine, et d’une capsule de tabac granulé. Lors d’une 

bouffée, le liquide contenu dans la cartouche est chauffé afin de générer un aérosol sans 

nicotine. Cet aérosol en passant à travers la capsule chauffe le tabac puis est inhalé. Le 

tabac est ainsi chauffé indirectement par l’aérosol à une température d’environ 30°C, lui 

permettant de libérer son arôme et de la nicotine (Takahashi et al., 2018). 

Figure 16. Illustration d'un appareil Glo de la British 
American Tobacco et son consommable Ken Neostick 
(d’après BAT) 

Figure 17. Appareil Ploom Tech de Japan Tobacco International (JTI) et ses capsules de tabac 
(d’après JTI) 
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2.2.3. Composition des sticks d’iQOS 

Les heets de l’iQOS sont disponibles en plusieurs arômes codés par couleur : 

« bronze » pour un goût cacao, « sienna » pour un goût boisé, « amber » pour un goût 

noisette, « yellow » pour un goût épicé et « turquoise » pour un goût mentholé. Leur 

composition a été détaillée par le fabricant (Smith et al., 2016). Le tabac contenu dans les 

sticks est d’abord broyé puis reconstitué en feuille après l’ajout d’eau, de glycérol, de 

propylène glycol, de gomme de guar et de fibres de cellulose. Selon le fabricant, les heets 

contiennent moins de tabac que les cigarettes classiques : environ 320 mg contre 550-700 

mg. Deux études indépendantes ont montré qu’ils contenaient 20 à 30 % de nicotine en 

moins par bouffée (Bekki et al., 2017 ; Farsalinos et al., 2018). Les consommables de l’iQOS 

sont constitués de deux filtres, le premier permettant de refroidir l’aérosol, composé de 

film polymère plastique, et le deuxième composé d’acétate de cellulose qui, selon le 

fabricant, mime la sensation d’une cigarette classique. Enfin, le tabac est séparé des deux 

filtres par un tube d’acétate, destiné à empêcher la chaleur de faire fondre les filtres en 

question (Figure 18). Cependant, Davis et al. ont montré que la chaleur de la lame était 

suffisante pour faire fondre le premier filtre en polymère plastique (Davis et al., 2019). 

2.2.4. Composition des aérosols d’iQOS 

Les aérosols d’iQOS sont composés à 75-85% d’eau alors que la fumée de cigarette 

classique l’est à 17-27%. Globalement, les composés chimiques les plus retrouvés dans les 

émissions de tabac chauffé sont le propylène glycol, le glycérol et l’acétol (Li et al., 2018; 

Uchiyama et al., 2018). Concernant les substances toxiques, PMI a publié plusieurs études 

évaluant la composition des aérosols des produits du tabac chauffé. Pour résumer, ces 

différentes études affirment que, du fait de l’absence de combustion, les émissions 

contiennent environ 90 à 95 % de moins de composés toxiques que la fumée de cigarette 

(Schaller et al., 2016a). Ces données ont été confirmées par quelques études 

Figure 18. Schéma de la composition d'un "heets" ou stick de tabac, consommable de 
l'iQOS (d'après Smith et al., 2016) 
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indépendantes. Li et al. ont mesuré une diminution de 90% de la plupart des composés 

toxiques (Li et al., 2019b). Mallock et al. ont également mesuré des concentrations 

d’aldéhydes plus faibles (entre 80 et 95%) comparé à la fumée de cigarette (Mallock et al., 

2019). Cependant, ces réductions ne signifient pas que les émissions sont totalement 

exemptes d’effets toxiques. Bien que controversés par leur méthode d’analyse, Auer et al. 

ont montré des concentrations plus élevées de composés organiques volatiles, de HAP et 

de monoxyde de carbone que les autres données de littérature (Auer et al., 2017). Une 

autre étude a aussi montré que, malgré l’absence de combustion, l’iQOS émet des 

quantités non négligeables de composés carbonylés (Ruprecht et al., 2017). Concernant 

la nicotine, quelques études ont déjà montré que les concentrations retrouvées dans les 

aérosols de tabac chauffé représentaient 70 à 80% de celles mesurées dans la fumée de 

cigarette (Auer et al., 2017; Brossard et al., 2017; Jaccard et al., 2018; Li et al., 2019b; 

Mallock et al., 2019). De par son positionnement sur le marché, le tabac chauffé est en 

concurrence avec l’e-cig pour aider à la diminution de la consommation de la cigarette 

conventionnelle. La comparaison de ces dispositifs est alors une étape primordiale dans 

l’avancée des connaissances sur leur toxicité. Des travaux dans ce sens commencent à voir 

le jour dans la littérature. Farsalinos et al. ont notamment montré que les émissions de 

tabac chauffé contenaient moins de composés carbonylés que celles de la cigarette 

classique, mais plus que celles de l’e-cig (Farsalinos et al., 2018b). Leigh et al. ont retrouvé 

des concentrations en nitrosamines inférieures dans les émissions d’iQOS que dans la 

fumée de cigarette, mais plus importantes que dans celles de l’e-cig (Leigh et al., 2018). 

Enfin, des taux importants d’espèces réactives de l’oxygène ont été mesurés dans les 

aérosols de tabac chauffé, cependant, ils sont inférieurs de 85% par rapport à ceux 

retrouvés dans la fumée de la cigarette (Salman et al., 2019). 

2.2.5. Analyses toxicologiques de l’iQOS 

2.2.5.1. Toxicité in vitro de l’iQOS 

Les analyses toxicologiques in vitro du tabac chauffé proviennent majoritairement de 

l’industrie du tabac (Tableau 9). La plupart de ces études compare les effets cytotoxiques 

des émissions d’iQOS avec ceux de la fumée de cigarette. En 2016, Philip Morris sort une 

série de 8 études destinées à évaluer la toxicité de leur dispositif. Parmi elles, une étude 

in vitro affirme que, par rapport aux émissions de tabac classique, la cytotoxicité des 

émissions d’iQOS est diminuée de 90% (Schaller et al., 2016a). Les expositions ont été 

réalisées, comme pour l’e-cig, soit sur des cellules immergées, en mélangeant au préalable 
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un extrait d’aérosol solubilisé au milieu de culture, soit sur des cellules cultivées en IAL. 

Concernant les travaux utilisant des extraits d’aérosol d’iQOS, deux études montrent que 

les aérosols d’iQOS ont moins d’effets néfastes que la cigarette sur des cultures primaires 

de cellules endothéliales. La première révèle, à l’aide d’analyses transcriptomiques, que 

les voies de signalisation de la prolifération cellulaire, de l’apoptose, de l’autophagie sont 

moins impactées avec les aérosols d’iQOS qu’avec ceux de cigarettes (Poussin et al., 2016). 

La deuxième montre une cytotoxicité et une inflammation dose-dépendante après 

exposition au tabac chauffé et à la cigarette. Cependant, les paramètres étudiés (intégrité 

du tapis cellulaire et sécrétion de cytokines) sont moins affectés par l’iQOS (van der Toorn 

et al., 2018). Iskandar et al. ont directement exposé des cellules épithéliales bronchiques 

et un modèle 3D de cellules d’épithélium nasal aux aérosols d’iQOS. Les auteurs ont 

analysé un grand nombre de paramètres : la viabilité cellulaire, la sécrétion de médiateurs 

pro-inflammatoires et les modifications d’expressions géniques. Pour les deux modèles 

cellulaires, les effets cytotoxiques étaient plus importants après une exposition à la fumée 

de cigarette qu’après une exposition aux émissions de tabac chauffé. (Iskandar et al., 

2017a, 2017b).  Cette diminution des effets cytotoxiques a été observée dans d’autres 

études financées également par l’industrie du tabac (Malinska et al., 2018; van der Toorn 

et al., 2018; Zanetti, 2017). Actuellement, encore peu d’études indépendantes évaluant la 

cytotoxicité du tabac chauffés sont publiées. Leigh et al. ont mesuré la viabilité cellulaire 

et la sécrétion de médiateurs de l’inflammation sur des cellules épithéliales bronchiques 

(H292) après une exposition à la fumée de cigarette, aux émissions d’iQOS ou d’e-cig. Ils 

montrent que le tabac chauffé est moins toxique que la cigarette classique, mais plus que 

l’e-cig (Leigh et al., 2018).  
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Tableau 9. Résumé des études citées sur la toxicité in vitro du tabac chauffé. 

Etude Financement Modèle cellulaire Exposition Principaux résultats 

(Schaller et al., 
2016a) 

PMI 
Lignée de fibroblastes 
murins (Balb/c 3T3) 

Extraits 
d'aérosols 

d'iQOS 

- Absence de mutagénicité suite à l'exposition à 
l'iQOS.  

- Cytotoxicité diminuée de 90% par rapport à 
celle de la cigarette. 

(Poussin et al., 
2016) 

PMI 

Co-culture de cellules 
primaires 

endothéliales 
(HCAECS) et d’une 

lignée cancéreuse de 
monocytes humains 

(MM6) 

Extraits 
d'aérosols 

d'iQOS 
 - Cytotoxicité inférieure à celle de la cigarette. 

(van der Toorn 
et al., 2018) 

PMI 

Cellules primaires 
endothéliales 

humaines (HCAES) et 
d’une lignée 

cancéreuse de 
monocytes humains 

(THP-1) 

Extraits 
d'aérosols 

d'iQOS 

 - Cytotoxicité et inflammation inférieures à 
celles induites par la cigarette. 

(Iskandar et al., 
2017a)  

PMI  

Cultures primaires de 
cellules de 

l'épithélium 
bronchique humain 

(EpiAirway, MucilAir) 

Culture en 
interface 

air-liquide 

 - Altérations de miARN, sécrétion de 
médiateurs de l'inflammation inférieure à celles 

induites par la fumée de cigarette. 

Modèle de culture 
primaire 3D 

d'épithélium nasal 
(SmallAir) 

Culture en 
interface 

air-liquide 

 Par rapport à la cigarette, les aérosols d'iQOS 
induisent moins de : 

 - cytotoxicité 
 - sécrétion de médiateurs pro-inflammatoires 

 - altérations de la morphologie tissulaire. 
 - altérations de la fonction ciliaire. 

 - altérations transcriptomiques et miARN. 

(Zanetti, 2017) PMI 

Culture primaire de 
cellules de 

l'épithélium gingival 
(Epi-Gingival) 

Culture en 
interface 

air-liquide 

 - Cytotoxicité et sécrétion de médiateurs pro-
inflammatoires inférieures à celles de la 

cigarette. 

(Malinska et al., 
2018) 

PMI 

Lignée immortalisée 
de l'épithélium 

bronchique humain 
(BEAS-2B) 

Culture en 
interface 

air-liquide 

 - Phosphorylation oxydative, altération de 
l'expression des gènes et des protéines 

impliqués dans la réponse au stress oxydant 
inférieures à la cigarette. 

(van der Toorn 
et al., 2018) 

PMI 

Lignée immortalisée 
de l'épithélium 

bronchique humain 
(BEAS-2B) 

Culture en 
interface 

air-liquide 

 - Exposition à long terme aux aérosols d'iQOS 
(12 semaines) induit moins d'altérations liées à 
la cancérogénèse pulmonaire qu'une exposition 

à la cigarette. 

(Leigh et al., 
2018) 

Indépendant 

Lignée cancéreuse de 
l'épithélium 

bronchique humain 
(H292) 

Culture en 
interface 

air-liquide 

 - Cytotoxicité inférieure à celle de la cigarette 
mais plus élevée que celle l'e-cig. 

2.2.5.2. Toxicité in vivo de l’iQOS 

L’industrie du tabac a également déjà effectué quelques études sur des modèles in 

vivo (Tableau 10). La plupart de ces études ont été réalisées sur des souris ApoE-/-. Ces 

souris qui n’expriment pas l’apolipoprotéine E peuvent développer une athérosclérose 

précoce dès leurs premières semaines de vie. Ce modèle est couramment utilisé pour 

étudier les pathologies cardiovasculaires associées à la cigarette classique. Leur profil 

pro-inflammatoire est également idéal pour étudier le développement de maladies 

pulmonaires telles que la BPCO ou l’emphysème. Une exposition au tabac chauffé a donc 
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permis à PMI d’évaluer les dangers associés à son utilisation. Les études menées sur des 

expositions de 8 mois montrent qu’à la différence de la fumée de cigarette, les émissions 

d’iQOS ne sont pas impliquées dans la dérégulation de gènes du cytosquelette, de la 

fonction contractile ou de la réponse inflammatoire (Szostak et al., 2017).  D’autres études 

portant sur les effets hépatiques, pulmonaires et sur le métabolisme lipidique suggèrent 

également que le tabac chauffé est bien moins toxique que la cigarette classique (Lo Sasso 

et al., 2016; Phillips et al., 2016 ; Titz et al., 2016). Wong et al. ont également observé chez 

des rats exposés pendant 90 jours que la toxicité au niveau des voies respiratoires est bien 

moindre après exposition au tabac chauffé qu’après exposition à la cigarette (Wong, 

2016). Une revue indépendante met en évidence une potentielle hépatotoxicité avec une 

augmentation du taux d’alanine aminotransférase retrouvée chez des rats exposés à 

l’iQOS et qui n’a pas été observée avec le tabac classique (Chun et al., 2018). 

Tableau 10. Résumé des études citées sur la toxicité in vivo du tabac chauffé. 

Etude Financement  
Modèle 
animal 

Profil de 
bouffée 

 Exposition Principaux résultats 

(Szostak et al., 
2017) 

PMI 
Souris 

ApoE -/- 
Exposition 

"corps entier" 

Exposition de 3 
h/jour, 5 

jours/semaine 
jusqu'à 8 mois 

 - Pas d'effets sur les gènes 
impliqués dans la réponse 

inflammatoire. 

(Lo Sasso et al., 
2016) 

PMI 
Souris 

ApoE -/- 
Exposition 

"corps entier" 

Exposition de 3 
h/jour, 5 

jours/semaine 
jusqu'à 8 mois  

 - Effets hépatotoxiques réduits 
comparés à ceux de la cigarette. 

(Phillips et al., 
2016) 

PMI 
Souris 

ApoE -/- 
Exposition 

"corps entier" 

Exposition de 3 
h/jour, 5 

jours/semaine 
jusqu'à 8 mois  

 - Absence d'inflammation 
pulmonaire et d'emphysème, 
contrairement à la cigarette. 

(Titz et al., 
2016) 

PMI 
Souris 

ApoE -/- et 
C57BL/6J 

Exposition 
"corps entier" 

Exposition de 3 
h/jour, 5 

jours/semaine 
jusqu'à 8 mois  

 - Pas d’altérations du 
métabolisme lipidique 

contrairement à la cigarette. 

(Wong, 2016) PMI 
Rats 

Sprague 
Dawley 

Exposition 
"nose-only" 

Exposition de 6 
h/jour, 5 

jours/semaine 
pendant 90 jours 

- Moins d'inflammation, 
d'altérations histologiques, de 

modifications 
transcriptomiques au niveau 

pulmonaire comparés à la 
cigarette. 

(Oviedo et al., 
2016) 

PMI 
Rats 

Sprague 
Dawley 

Exposition 
"nose-only" 

Exposition de 6 
h/jour, 5 

jours/semaine 
pendant 90 jours 

 - Moins d'inflammation, 
d'altérations protéiques au 

niveau pulmonaire qu’avec la 
cigarette. 

(Nabavizadeh et 
al., 2018) 

Indépendant 
Rats 

Sprague 
Dawley 

Exposition 
"nose-only" 

Exposition à un 
seul stick de 
tabac d'iQOS 

 - Altération de la fonction 
endothéliale de façon 

comparable à la cigarette  

(Chun et al., 
2018) 

Indépendant 
Rats 

Sprague 
Dawley 

Exposition 
« nose-only » 

Exposition de 6 
h/jour, 5 

jours/semaine 
pendant 90 jours 

- En se basant sur les résultats 
de Wong, 2016 : Corrélation 

entre l’augmentation d’alanine 
aminotransférase et une 

potentielle hépatotoxicité 
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Ces différentes études issues de financements de l’industrie du tabac suggèrent que 

les effets toxiques in vivo de l’iQOS sont bien moins importants que ceux induits par la 

cigarette. Une étude in vivo indépendante montre que des rats exposés au tabac chauffé 

ont les mêmes effets délétères au niveau vasculaire que ceux exposés à la fumée de 

cigarette, à savoir une diminution de l’élasticité artérielle, suggérant que l’exposition à 

l’iQOS n’éviterait pas les risques cardiovasculaires induits par la cigarette (Nabavizadeh 

et al., 2018).  

2.2.6. Effets du tabac chauffé sur la santé humaine 

PMI a également mené et financé un certain nombre d’investigations pour étudier les 

effets de l’iQOS sur la santé humaine dans le but de montrer la réduction des risques par 

rapport à la cigarette classique. Haziza et al. ont mesuré 15 biomarqueurs d’expositions 

aux produits toxiques retrouvés dans la fumée de cigarette. Ils ont montré que les fumeurs 

étant passés à l’iQOS présentent des niveaux de biomarqueurs d’exposition diminués par 

rapport à ceux qui fument encore la cigarette (Haziza et al., 2016a). Une autre étude a 

comparé un arrêt de la cigarette sans aide et un arrêt avec une transition vers le tabac 

chauffé. Les auteurs ont estimé que la réduction de l’exposition à certains composés 

toxiques était similaire entre les deux conditions (Lüdicke et al., 2018a). Ludicke et al., 

dans une deuxième étude, ont également montré que la réduction des marqueurs de 

risques cliniques associés au tabagisme (stress oxydant, activité des plaquettes, 

métabolisme lipidique, fonction pulmonaire) était similaire entre un arrêt total du tabac 

et une transition vers l’iQOS (Lüdicke et al., 2018b). Afin de conforter l’idée que l’iQOS 

pourrait être utilisée pour aider à l’arrêt de la cigarette, des études ont montré que la 

pharmacocinétique de la nicotine délivrée par l’iQOS était proche de celle observée pour 

la cigarette (Brossard et al., 2017; Picavet et al., 2016). Ainsi, la réduction de l’envie de 

fumer serait comparable entre les deux dispositifs, bien que l’iQOS soit un peu moins 

satisfaisante (Haziza et al., 2016b). 

Deux études indépendantes ont réévalué les données fournies par PMI à la FDA pour 

obtenir l’autorisation de la mise sur le marché de l’iQOS. La première estime que les 

preuves apportées ne sont pas suffisantes pour affirmer que le passage de la cigarette à 

l’iQOS réduit l’inflammation ou améliore les fonctions pulmonaires (Moazed et al., 2018). 

La deuxième étude a réanalysé la différence au niveau des biomarqueurs de toxicité 

utilisés par PMI pour comparer les utilisateurs d’iQOS et les fumeurs. Sur 24 
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biomarqueurs, 23 ne seraient pas significativement différents par rapport à ce qui est 

observé chez des fumeurs dans le cas d’une étude menée aux Etats-Unis, et 10 sur 13 ne 

le seraient pas non plus pour une étude effectuée au Japon (Glantz, 2018). Ces études 

mettent en évidence des biais méthodologiques et remettent en cause les bénéfices sur la 

santé de passer de la cigarette classique à l’iQOS. Ces données interrogent donc sur 

l’intérêt de ce dispositif quant à son utilisation comme alternative à la cigarette et 

rappellent la nécessité d’effectuer des études indépendantes. D’autant plus que deux cas 

de pneumonie à éosinophiles ont été rapportés au Japon chez des consommateurs 

quotidiens d’iQOS âgés de 16 et 20 ans (Aokage et al., 2019; Kamada et al., 2016). Une 

autre étude menée au Japon, a révélé que 12% des personnes interrogées sur un panel de 

8000 individus se sont plaintes d’une exposition passive à l’iQOS. Parmi elles, 37% ont 

rapporté avoir ressenti un effet parmi les symptômes suivants : gorge sèche, douleur aux 

yeux, nausée. Ces données suggèrent qu’une exposition passive aux émissions d’iQOS 

pourrait poser un problème sanitaire, comme pour la cigarette (Tabuchi et al., 2018). En 

utilisant les données disponibles en termes d’émissions de substances toxiques et 

cancérogènes, une étude indépendante a estimé que le risque de cancer associé à la 

consommation de tabac chauffé était réduit comparé à celui associé au tabagisme. 

Cependant, le risque associé au vapotage a été évalué encore plus faible (Stephens, 2018). 

Adriaens et al. ont mesuré une augmentation du monoxyde de carbone exhalé beaucoup 

moins importante chez les consommateurs d’iQOS que chez les fumeurs ; aucune 

augmentation n’a été détectée chez les vapoteurs. Les auteurs rapportent cependant 

qu’en terme de « satisfaction », les utilisateurs préfèrent l’iQOS à l’e-cig (Adriaens et al., 

2018). 

En conclusion, la consommation de tabac chauffé est encore relativement récente, 

c’est pourquoi les études indépendantes évaluant sa toxicité chez l’Homme sont encore 

trop peu nombreuses. Les quelques études fournies par le fabricant ont été remises en 

question soulignant la nécessité d’apporter des réponses quant à son utilisation en tant 

qu’aide à l’arrêt de la consommation de cigarettes. Un autre point important à soulever 

est la comparaison avec l’e-cig. Le but de la consommation d’iQOS étant également de 

contribuer à l’arrêt de la cigarette, il est important de mettre en regard la toxicité 

potentielle de ces deux dispositifs. Les premiers résultats suggèrent que l’e-cig serait 

moins dangereuse que le tabac chauffé, mais le rapport bénéfices/risques de ces deux 

produits n’est pas encore clairement identifié. 
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Problématique et objectifs du projet de thèse 

Le tabagisme constitue indiscutablement un risque majeur pour la santé publique. Il 

est responsable de plus de 80 % des cancers du poumon et représente un facteur de 

risques pour de nombreuses maladies respiratoires et cardiovasculaires. La seule 

solution efficace pour lutter contre les méfaits du tabagisme est l’arrêt de la cigarette. 

Cependant, à cause de la nicotine, le sevrage est complexe et difficile pour les fumeurs 

chroniques. Il existe des dispositifs médicaux qui peuvent aider au sevrage tabagique, 

appelés également substituts nicotiniques qui permettent de réduire progressivement 

l’apport en nicotine tout en évitant les substances toxiques présentes dans la fumée de 

cigarette. Ces dix dernières années, une nouvelle alternative est arrivée sur le marché : 

l’e-cig. Ce dispositif permet de mimer la gestuelle d’un fumeur avec l’inhalation de 

« vapeur » véhiculant une quantité de nicotine qui peut être contrôlée par l’utilisateur.  

Bien que, par l’absence de combustion, l’e-cig soit généralement perçue comme 

moins nocive que la cigarette, l’innocuité des émissions générées par l’e-cig fait encore 

débat. En effet, la nouveauté de ce dispositif signifie aussi un manque de recul sur son 

impact sanitaire à long terme. De plus, alors que les effets des premiers modèles d’e-cig 

(1ère et 2ème générations) sont de plus en plus documentés, les études sur les modèles les 

plus récents, dits de 3ème génération, sont encore assez peu nombreuses. Ces derniers, 

avec leur puissance modulable, peuvent générer une vapeur plus dense et induire la 

production de dérivés secondaires plus toxiques, qui pourrait produire des effets 

délétères plus importants. 

 En parallèle, les industries du tabac ont développé un nouveau système qui permet 

de générer décrit sans combustion un aérosol à partir de tabac : le tabac chauffé. L’iQOS, 

commercialisé par PMI, est le produit le plus répandu actuellement ; il est arrivé en France 

en 2017. Les émissions de ce dispositif ont été caractérisées dans la littérature 

scientifique dans des travaux essentiellement financés par PMI. Bien que ces travaux 

affirment que la toxicité de l’iQOS serait bien moindre que celle de la cigarette classique, 

il y a un réel besoin d’études venant de laboratoires indépendants pour confirmer ou 

infirmer ces données toxicologiques. 

C’est dans ce contexte de l’augmentation de l’usage de systèmes électroniques de 

délivrance de nicotine que se situe mon projet de thèse. Il a eu pour but d’évaluer la 

toxicité de l’e-cig et du tabac chauffé et de la comparer à celle de la cigarette classique. 
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Mon projet de thèse se décline en trois parties : (1) une analyse de la composition 

chimique des émissions des différents dispositifs, (2) une analyse de leur toxicité in vitro 

et (3) une analyse de leur toxicité à long terme in vivo. L’ensemble des objectifs est résumé 

dans la Figure 19. 

(1) Le premier volet de mes travaux consistera à comparer la composition chimique, 

en termes de composés carbonylés, de HAP et de nicotine, des émissions d’une e-cig de 

2ème génération (modèle Lounge), d’une e-cig de 3ème génération (modèle Modbox) réglée 

à une puissance faible (18 W) ou forte (30 W), d’un dispositif de tabac chauffé (l’iQOS) et 

de la cigarette. 

(2) Le deuxième volet de mon projet permettra d’évaluer et de comparer la toxicité 

des émissions de tous les dispositifs sur une lignée cellulaire épithéliale bronchique 

humaine (BEAS-2B) cultivée à l’interface air-liquide. Cette évaluation sera basée sur 

différents paramètres biologiques : la viabilité cellulaire, la sécrétion des médiateurs de 

l’inflammation, le stress oxydant et l’expression de certains gènes impliqués dans le 

métabolisme des xénobiotiques et dans le stress oxydant. 

(3) Enfin, le dernier volet s’inscrit dans le projet RESPIRE, financé par l’Institut 

National du Cancer et mené par l’ULR 4483 – IMPECS en collaboration avec le laboratoire 

de toxicologie génétique de l’Institut Pasteur de Lille et les équipes Inserm UMR1019 et 

UMR1277. Il a pour but d’analyser l’impact respiratoire sur un modèle murin d’une 

exposition aiguë (1 semaine), subchronique (3 mois) et chronique (6 mois) des émissions 

d’une e-cig de 3ème génération (modèle Modbox) réglée à deux puissances (faible et forte) 

et de le comparer à celui de la cigarette. En particulier, les objectifs de ce projet sont de 

caractériser l’impact des expositions aux aérosols d’e-cig (i) sur la fonction respiratoire 

des souris, l’inflammation, le stress oxydant, la fonction mitochondriale et le remodelage 

des tissus pulmonaires, (ii) les effets génétiques (lésions primaires de l’ADN et mutations) 

et épigénétiques (modifications des histones, méthylation de l’ADN et expression des 

miARN) et (iii) les effets transcriptomiques. Ma part de travail dans ce projet a consisté 

dans un premier temps à identifier les effets des émissions d’e-cig sur les altérations 

génétiques (tests des comètes, des micronoyaux et du Pig-A) et épigénétiques 

(méthylation globale de l’ADN, activité d’enzymes impliquées dans la modification des 

histones et expression pulmonaire de 754 miARN).  Dans un second temps, l’évaluation 

des mécanismes impliqués dans la pathogénicité potentielle des émissions d’e-cig a été 
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réalisée à l’aide d’analyses transcriptomiques pangénomiques permettant de comparer 

les profils d’expression génique après expositions aux aérosols d’e-cig ou à la fumée de 

cigarette.  

 

  

Figure 19. Objectifs du projet de thèse. Les traits pleins bleus représentent les objectifs de thèse et objectifs du 
projet RESPIRE en traits pointillés oranges. 
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Matériels et méthodes 

1. Dispositifs utilisés et génération des aérosols 

1.1. Cigarettes 

Les cigarettes utilisées dans cette étude sont les cigarettes 3R4F, fournies par 

l’Université du Kentucky (Lexington, KY, Etats-Unis). Ces cigarettes sont standardisées et 

sont largement utilisées dans la recherche sur le tabac afin d’uniformiser les études 

menées à la fois par les laboratoires académiques et l’industrie du tabac. La physico-

chimie de leurs émissions a été caractérisée à de nombreuses reprises dans la littérature 

(Eldridge et al., 2015). 

1.2. Cigarettes électroniques et e-liquide 

Dans cette étude, deux types d’e-cig de la marque NHOSS® (Innova, Bondues, France) 

ont été utilisés. D’une part, le modèle de deuxième génération « Lounge » qui délivre une 

puissance de 4,6 W avec une résistance de 2,8 Ω composée de nickel et de chrome, 

alimentée par un voltage de 3,6 V. D’autres part, le modèle de troisième génération 

« Modbox » qui délivre une puissance variable en modulant le voltage fourni par la 

batterie. Pour nos expériences, nous avons choisi deux réglages de puissance : une « faible 

puissance » à 18 W, et une « forte puissance » à 30 W. La résistance choisie était de 0,5 Ω 

et composée de kanthal (alliage de fer, de chrome et d’aluminium), permettant d’utiliser 

les deux puissances en restant dans les recommandations du fabricant (de 15 à 30 W). 

Le choix du e-liquide s’est porté sur un des liquides les plus vendus de la marque 

NHOSS. Selon le fabricant, il est composé de 65% de propylène glycol et de 35% de 

glycérine, d’arômes alimentaires pour lui donner un goût « tabac blond » et de nicotine à 

la concentration de 16mg/mL. 

1.3. Tabac chauffé 

Le produit du tabac chauffé utilisé était le modèle iQOS 2.4, fabriqué par Philip Morris 

International (Neuchâtel, Suisse). Les sticks de tabac utilisés étaient du type « ambre », 

décrit par PMI comme le plus proche du goût des cigarettes Marlboro Red. L’iQOS est 

prévue pour fonctionner pendant 6 minutes ou 12 bouffées après activation d’un bouton 

pressoir. Après chaque session de 6 minutes, le dispositif était rechargé. Il était nettoyé 

tous les 20 sticks, suivant les recommandations du fournisseur. 
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1.4. Génération des aérosols 

Les aérosols des différents dispositifs ont été générés grâce à une machine à fumer 

Vitrocell® VC1 (Vitrocell, Waldkirch, Allemagne). La machine était entièrement nettoyée 

après chaque expérience. De plus, afin de prévenir des risques de contamination 

chimique, l’ensemble des tuyaux constituant la machine étaient spécifiques au dispositif 

utilisé (e-cig, iQOS ou 3R4F) (Figure 20). 

Afin de pouvoir comparer les différents dispositifs, un profil de bouffée unique a été 

utilisé pour l’ensemble des modèles testés : le profil Health Canada Intense (HCI). Celui-ci 

se définit par un volume de bouffée de 55 mL et d’une aspiration de 2 secondes toutes les 

30 secondes. A noter que pour respecter les recommandations du profil HCI, le filtre de la 

cigarette 3R4F a été recouvert d’un ruban adhésif sur toute sa circonférence, permettant 

de bloquer d’éventuelles entrées d’air et mimant les doigts du fumeur. Pour le modèle 

Lounge, l’iQOS et la 3R4F, l’aspiration de la machine à fumer suffisait à générer l’aérosol. 

En revanche, pour le modèle Modbox, un déclenchement manuel sur le bouton pressoir 

Figure 20. Machine à fumer Vitrocell VC1 
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était nécessaire avant chaque bouffée, la résistance était préchauffée 1 seconde avant le 

début de la bouffée selon la méthode recommandée par la CORESTA (CRM n°81, 2015). 

Dans ces conditions, une cigarette 3R4F était consommée entièrement en 10 

bouffées, soit 5 minutes, et un stick d’iQOS était limité à 12 bouffées maximum, soit 6 

minutes. 

2. Caractérisation chimique des aérosols 

2.1. Composés carbonylés 

2.1.1. Collecte des aérosols 

Les composés carbonylés ont été prélevés à la sortie de la machine à fumer sur deux 

cartouches Sep-Pak DNPH-Silica Plus Short Cartridge (Waters, Guyancourt, France) 

disposées en série. La deuxième cartouche dite « de garde » servait à collecter les 

composés qui n’auraient pas été retenus par la première. Le piégeage des composés 

carbonylés s’effectue par adsorption sur de la 2,4dinitrophénylhydrazine (DNPH) qui 

forme alors des dérivés hydrazones différents en fonction du composé piégé (Figure 21).  

Pour les aérosols d’e-cig et d’iQOS, les cartouches utilisées contenaient 350 mg 

d’adsorbant alors que celles utilisées pour les aérosols de 3R4F en contenaient 700 mg. 

Une cartouche de plus grande capacité était nécessaire pour la cigarette car les données 

de littérature indiquaient une quantité de composés carbonylés supérieures à la capacité 

d’absorption des cartouches de 350 mg dans une seule bouffée (Eldridge et al., 2015). Un 

blanc a été réalisé en faisant fonctionner la machine à fumer sans e-cig, iQOS ou 3R4F et 

en récupérant l’air à la sortie de la même façon que pour les dispositifs testés. Pour 

prendre en compte une éventuelle pollution de l’air ambiant, la valeur du blanc a été 

Figure 21. Illustration du devenir des composés carbonylés en présence de DNPH. 
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retirée à chaque échantillon. Chaque prélèvement a été réalisé quatre fois et a été 

conservé à -20°C avant d’être analysé (Figure 22). 

 

2.1.2. Analyse des composés carbonylés 

Les cartouches de DNPH de 350mg et 700mg ont été éluées respectivement avec 3 et 

6 mL d’acétonitrile. Le volume mort de chaque cartouche a été pris en compte en pesant 

l’acétonitrile élué. Les éluâts des deux cartouches ont été rassemblés puis 2 µL ont été 

injectés dans un chromatographe à ultra-haute performance (UHPLC) Dionex UltiMate 

3000 UHPLC System (Thermo Scientific, Waltham, MA, Etats-Unis) couplé à un détecteur 

ultraviolet (UV/vis). La chromatographie liquide a été réalisée à une température de 28°C 

à un flux constant de 0,4mL/min d’un gradient d’acétonitrile et d’eau pendant 15 minutes. 

L’analyse a été effectuée dans une colonne Acclaim Carbonyl C18 RSCL 150mm x 2.1 mm 

x 5 µM (Thermo Fisher Scientific). L’acquisition a été réalisée à une longueur d’onde de 

360 nm. La surveillance des bonnes conditions d’analyses et l’interprétation des 

chromatogrammes a été réalisée à l’aide du logiciel Chromeleon 7.0 Data Acquisition 

System for LC (Thermo Scientific). Des solutions de standards de concentration connue 

en composés carbonylés étaient passées régulièrement dans l’HPLC pour vérifier le bon 

déroulement de l’analyse. Le protocole utilisé a permis la détection de 19 composés 

carbonylés avec une limite de quantification allant 6 à 15 ng/mL (Tableau S 1). 

2.2. Hydrocarbures aromatiques polycycliques 

2.2.1. Collecte des aérosols 

Les prélèvements de HAP ont été réalisés en sortie de la machine à fumer à l’aide de 

barboteurs frittés placés en série. Les aérosols ont été piégés dans 50 mL et 25 mL de 

méthanol contenus respectivement dans le premier et le deuxième barboteur maintenus 

Figure 22. Schéma du montage expérimental pour la collection des composés carbonylés 
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à -40°C grâce à un bain d’éthanol refroidi par ajout régulier de glace carbonique. Comme 

pour les composés carbonylés, le deuxième barboteur dit « de garde » servait à collecter 

les HAP qui n’auraient pas été piégés dans le premier. Un blanc a été réalisé en réalisant 

les prélèvements pendant que la machine fonctionnait normalement sans e-cig, iQOS ou 

cigarette. Pour prendre en compte une éventuelle pollution de l’air ambiant, la valeur du 

blanc a été retiré à chaque échantillon. Chaque prélèvement a été réalisé quatre fois et a 

ensuite été conservé à -20°C avant d’être analysé (Figure 23). 

Figure 23. Schéma du montage expérimental pour la collection des hydrocarbures aromatiques polycycliques 
et de la nicotine. 

2.2.2. Analyse des HAP 

Les prélèvements ont été maintenus dans un bain à 45°C et concentrés à l’aide d’un 

évaporateur sous flux d’azote Zymark TurboVap LV (Caliper Life Sciences, Roissy Charles 

de Gaulle, France) pour faire évaporer le méthanol et pour atteindre un volume final de 

l’ordre du millilitre. Les échantillons ont été ensuite déposés sur un filtre en fibres de 

quartz. Au préalable, ces filtres avaient été calcinés à 500°C pendant 16 h pour éliminer 

toute trace de composés organiques résiduels. 

Une fois les prélèvements concentrés et déposés sur le filtre, la matière organique a 

été extraite par liquide pressurisé à l’aide du dispositif Accelerated Solvent Extractor® 

(ASE) 200 de Dionex (Sunnyvale, Californie, États-Unis). Cette méthode permet 

d’augmenter l’efficacité d’extraction en se plaçant à des conditions de températures et de 

pressions élevées.  

Les HAP présents sur le filtre sont extraits dans l’acétonitrile et reconcentrés par 

évaporation dans un bain à 60°C pour atteindre de nouveau un volume final de l’ordre du 

millilitre. Les solutions obtenues ont ensuite été filtrées puis injectées dans une HPLC 

Alliance 2695 couplée à un détecteur UV à barrette de diodes (Waters 2996) et un 
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fluorimètre à longueurs d’ondes multiples (Waters 2475). La chromatographie a été 

réalisée dans une colonne EC 250/2 Nucleosil 100-5 C18 PAH (Macherey Nagel, Hoerdt, 

France) spécifique pour des séparations des HAP. Des solutions de standards de 

concentration connue en HAP étaient injectées régulièrement dans l’HPLC pour vérifier 

le bon déroulement de l’analyse. Chaque composé mesuré avait un couple 

d’excitation/lecture optimal déjà mis au point permettant d’analyser la présence de 23 

HAP avec des limites de quantification allant de 1 à 39 pg/mL (Tableau S 2).  

2.3. Nicotine 

La nicotine et le HAP contenus dans les aérosols ont été collectés simultanément dans 

les mêmes barboteurs (Figure 23). Chaque prélèvement a été réalisé quatre fois. Les 

extraits méthanoliques ont été dilués 40 fois dans l’eau. Afin de vérifier le bon 

déroulement de l’analyse, les échantillons ont été supplémentés avec de la D4-nicotine 

comme standard interne. Dix microlitres d’échantillons ont été injectés sur une colonne 

Acquity UPLCr HSS T3 1.8µm (Waters) puis analysé à l’aide d’un spectromètre de masse 

à triple quadripole. L’analyse s’est déroulée à 50°C dans un gradient d’acétonitrile et 

d’eau. La détection a été réalisée par électro-nébulisation. 

3. Expérimentations in vitro 

3.1. Modèle et méthode de culture cellulaire 

Les expériences in vitro ont été réalisées sur la lignée cellulaire épithéliale 

bronchique humaine BEAS-2B (ATCC® CRL9609™). Les cellules ont été cultivées dans un 

milieu sans sérum, le LHC-9 (Life Technologies, Courtabœuf, France), complété par des 

antibiotiques (pénicilline et streptomycine) à hauteur de 1%. Les cellules ont été 

ensemencées dans des flasques CellBIND de 75cm² (Corning, Amsterdam, Pays-Bas) puis 

maintenues dans une étuve à 37°C dans une atmosphère avec 5% de CO2 et 85% 

d’humidité. Les cellules ont été repiquées lorsqu’elles atteignaient 80% de confluence au 

maximum puis ensemencées toujours au même nombre de 18 000 cellule/cm², dans des 

inserts de polyesters de 4,67 cm² avec des pores de 0,4µm (Sigma Aldrich, Saint-Quentin 

Fallavier, France) et recouverts au préalable de collagène de type I (0,03 mg/mL). Les 

cellules ont d’abord été cultivées en immersion, c’est-à-dire avec 1 mL de milieu dans 

l’insert et 2 mL de milieu de culture dans le puits. Lorsque les cellules étaient confluentes, 

le milieu dans l’insert a été retiré pour ne laisser que le pôle basal des cellules en contact 
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avec le milieu. Le pôle apical est alors directement en contact avec l’air, permettant la 

culture en IAL (Figure 13). Les cellules restaient dans cette configuration pendant 24 h 

avant les expositions. 

3.2. Exposition des cellules 

Pour les expositions, les inserts de cellules étaient placés dans un module 

d’exposition Vitrocell 6/4 CF. Ce module permet d’exposer trois inserts simultanément et 

de les garder dans un environnement contrôlé, stérile et à 37°C (Figure 24). Elles étaient 

alors exposées à différentes doses d’aérosols non dilués d’e-cig, d’iQOS, et de 3R4F, 

définies par le nombre de bouffées générées par la machine à fumer. Les cellules contrôles 

n’ont pas été exposées et laissées dans l’incubateur. Il avait été montré au laboratoire lors 

d’expériences préliminaires qu’il n’y avait aucune différence de viabilité entre des cellules 

exposées à de l’air stérile dans le module d’exposition et des cellules laissées dans 

l’incubateur (Anthérieu et al., 2017). Chaque exposition a été réalisée trois fois avec des 

cultures cellulaires de passages différents. 

Pour refléter la circulation des aérosols dans les voies respiratoires et éviter la 

stagnation des émissions générées par la machine à fumer, une aspiration active a été 

mise en place en aval des inserts. Avant chaque expérience, l’aspiration et le débit d’air 

circulant dans le module d’exposition étaient mesurés pour s’assurer qu’ils étaient 

identiques pour tous les inserts et pour toutes les expériences menées. 

Figure 24. Illustration du module Vitrocell 6/4 CF utilisé pour les expositions in vitro, fermé 
hermétiquement à gauche et ouvert à droite. Le quatrième emplacement du module d’exposition 
peut accueillir une microbalance. 
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 La Figure 25 résume le design expérimental des expérimentations in vitro. Chaque 

analyse est expliquée en détails dans la partie correspondante. 

3.3. Analyse de la viabilité cellulaire 

Les cellules BEAS-2B ont été exposés aux aérosols non dilués des différents 

dispositifs testés : 40, 80 et 120 bouffées pour l’e-cig, 2, 12, 40, 80 et 120 bouffées pour le 

tabac chauffé et 1, 2, 4 et 10 bouffées pour la cigarette 3R4F. Une fois exposées, les cellules 

ont été replacées dans l’incubateur et la viabilité cellulaire a été mesurée 24 h après les 

expositions à l’aide du kit CellTiter-Glo Luminescent (Promega, Charbonnières, France). 

Ce kit consiste à mesurer la concentration de l’ATP intracellulaire par chimiluminescence 

grâce à l’oxydation de la luciférine en présente d’ATP. La luminescence mesurée à la fin 

de la réaction est ainsi proportionnelle au contenu de la cellule en ATP, ce qui reflète 

l’activité métabolique de la cellule et par extension la viabilité cellulaire. Le taux d’ATP 

des cellules exposées est exprimé en pourcentage du taux retrouvé dans les cellules 

contrôles, dont la valeur a été arbitrairement fixée à 100%. 

Figure 25. Schéma expérimental des expériences in vitro. 
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3.4. Mesure des médiateurs de l’inflammation 

Les cellules BEAS-2B ont été exposées aux aérosols non dilués des différents 

dispositifs testés : 40 et 120 bouffées pour l’e-cig, 2, 12 et 40 bouffées pour le tabac 

chauffé, et 1 et 2 bouffées pour la cigarette 3R4F. Une fois exposées, les cellules ont été 

replacées dans l’incubateur et les milieux de culture ont été récupérés 24h après, puis 

conservés à -80°C. Les concentrations de dix médiateurs de l’inflammation sécrétés ont 

été mesurées : Granulocyte-Macrophage Colony-Stimulating factor (GM-CSF), Growth 

Regulated Oncogene α (GRO-α), Interleukine 1β (IL-1 β), Interleukin 6 (IL-6), Interleukin 

8 (IL-8), Interleukine 13 (IL-13), Monocyte Chemoattractant Protein 1 (MCP-1), 

Macrophage Inflammatory Protein 1-α (MIP- α), Regulated on Activation, Normal T cell 

Expressed and Secreted (RANTES) et Tumor Necrosis Factor - α. Le dosage de ces 

protéines a été réalisé grâce au kit MilliPlex MAP Human Cytokine/Chemokine Magnetic 

Bead Panel (Merck Millipore, Molsheim, France). Ce kit utilise la technologie Luminex® 

xMAP® (Luminex Corp., Austin, Texas, Etats-Unis) qui permet de doser un grand nombre 

d’analytes avec un volume faible d’échantillon. Cette technologie se base sur des 

microbilles de polystyrène sur lesquelles sont présents des anticorps spécifiques qui 

reconnaissent la protéine d’intérêt. Une fois l’analyte capturé, les billes sont comptées à 

l’aide d’anticorps de détection fluorescents. La lecture de fluorescence a été réalisée sur 

le Luminex Magpix® et les données ont été traitées par le logiciel Milliplex® Analyst 5.1 

Software (Merck Millopre). La capacité des cellules BEAS-2B à sécréter les médiateurs de 

l’inflammation d’intérêt avait été préalablement testée après un traitement au 

lipopolysaccharide à 50 µg/mL pendant 24h.  

3.5. Analyse du glutathion 

Les concentrations en glutathion oxydé et total ont été mesurées dans les cellules 

BEAS-2B exposées aux aérosols non dilués pendant 40 et 120 bouffées pour l’e-cig, 2, 12 

et 40 bouffées pour le tabac chauffé, et 1 et 2 bouffées pour la cigarette 3R4F. Le glutathion 

a été quantifié directement après les expositions aux différents aérosols. Les cellules ont 

été lysées dans un tampon RIPA (KCL à 142 mM, MgCl2 à 5 mM, EDTA à 1 mM, glycérol à 

5%, SDS à 0,1%, NP40 à 1% et HEPES à 20 mM dans de l’eau ultrapure) dans lequel a été 

ajouté des inhibiteurs de protéases et de phosphatases MS-SAFE (Sigma-Aldrich, Saint-

Louis, Missouri). Pour arrêter les réactions d’oxydo-réduction du glutathion 

immédiatement après les expositions, de l’acide métaphosphorique à 10% a été rajouté 
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dans les lysats, puis les échantillons ont été stockés à -80°C.  Le kit GSH/GSGG-Glo™ 

(Promega) a été utilisé pour mesurer les concentrations en glutathion. Ce kit permet de 

doser le glutathion total et le glutathion oxydé par chimiluminescence. Le glutathion 

réduit (GSH) est ensuite déduit par la soustraction du glutathion total par le glutathion 

oxydé (GSSG). Les ratios GSSG/GSH ont ensuite été calculés pour chaque échantillon. 

Enfin, les résultats sont exprimés en fonction du ratio GSSG/GSH des cellules contrôles 

qui a été arbitrairement fixé à 1. 

3.6. Extraction des ARN 

Les ARN des cellules BEAS-2B ont été extraits en utilisant le kit RNeasy plus mini kit 

(Qiagen, Courtabœuf, France). Les cellules ont été lysées dans un tampon fourni par le kit 

supplémenté par du β-mercaptoéthanol suivant les recommandations du fournisseur. Les 

ARN ont ensuite été extraits par un automate Qiacube (Qiagen) avec le protocole fourni 

par le fabricant, puis quantifiés par analyse spectrophotométrique sur un lecteur Spark 

(Tecan, Männedrof, Suisse). 

3.7. Analyse de l’expression des gènes 

Les ARN extraits ont été rétro-transcris en ADNc grâce au kit High Capacity cDNA 

Reverse Transcription (Applied Biosystems, Californie, Etats-Unis). L’expression génique 

de 12 gènes a été analysées par qPCR (quantitative Polymerase Chain Reaction) en temp 

réel à l’aide du Thermocycler StepOnePlus (Applied Biosystems) en utilisant des Taqman 

assays et le tampon Taqman Fast Advanced Mix (Applied Bioystems). Les Taqman assays 

utilisées étaient les suivants : Hs99999901_m1 pour 18S ; Hs00907314_m1 pour AHR ; 

Hs_01054797_m1 pour CYP1A1 ; Hs_00164383_m1 pour CYP1B1 ; Hs03044634_m1 pour 

CYP2B6 ; Hs_00975961_m1 pour NRF2 ; Hs01110250_m1 pour HMOX1 ; Hs01045993_m1 

pour NQO1 ; Hs00174131_m1 pour IL-6 ; Hs00174097_m1 pour IL-1β ; Hs00234140_m1 

pour MCP1 ; Hs00236937_m1 pour GRO-α. Après exposition à 120 bouffées pour l’e-cig, 

12 bouffées pour le tabac chauffé et 1 bouffée pour la cigarette, l’expression génique de 

ces gènes d’intérêt a été analysée 4h ou 24h après la fin des expositions. 

Les courbes d’amplification ont été analysées dans le cloud Thermo Fisher en 

utilisant la méthode comparative des cycles seuils. Les résultats ont été normalisés grâce 

au gène de ménage 18S. Les expressions ont été rapportées en comparaison des niveaux 
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d’expression retrouvés dans les cellules contrôles dont les valeurs ont été arbitrairement 

fixées à 1. 

3.8. Analyses statistiques 

Pour les expériences in vitro, toutes les analyses statistiques ont été réalisées avec un 

test non-paramétrique de Mann-Whitney à l’aide du logiciel GraphPad Prism 8 (GraphPad 

Software Inc., Californie, Etats-Unis). Les résultats étaient considérés comme significatifs 

lorsque p était inférieur à 0,05. 

4. Expérimentations in vivo 

4.1. Souris et design expérimental des expérimentations in vivo. 

Les expériences ont été menées sur des souris mâles BALB/c âgées de 6 semaines au 

début des expositions. Cette lignée de souris est décrite comme relativement sensible à 

l’induction chimique de cancers pulmonaires (Meuwissen, 2005). Les animaux ont été 

hébergés dans l’animalerie de l’Institut Pasteur de Lille avec de la nourriture et de l’eau 

ad libitum. Trois séries d’exposition ont été réalisées : des expositions aiguës de 4 jours et 

Figure 26. Schéma expérimental des expositions in vivo. 
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des expositions chroniques de 3 mois et de 6 mois. Les expositions aiguës ont consisté en 

4 jours d’exposition consécutifs, soit pendant 30, 60 ou 90 minutes aux aérosols de l’e-cig 

Modbox réglé à 18 W ou à 30 W, soit pendant 60 minutes aux aérosols de cigarette 3R4F. 

Les expositions chroniques ont consisté à des expositions de 60 minutes aux aérosols de 

l’e-cig Modbox réglé à 18 W ou à 30 W, ou aux émissions de cigarette 3R4F, 5 fois par 

semaine pendant 3 ou 6 mois. Les souris contrôles ont été placées dans les mêmes 

conditions que les souris exposées mais sans exposition à une quelconque émission. La 

Figure 26 présente le schéma expérimental des expositions in vivo.  

4.2. Machine à fumer et modules d’exposition 

Les expositions ont été réalisées avec des systèmes inExpose commercialisés par 

Emka SCIREQ® (Montréal, Québec, Canada). Deux équipements différents ont été utilisés 

indépendamment selon la nature des expositions. Le premier est un système permettant 

d’allumer automatiquement les cigarettes 3R4F les unes après les autres (Figure 27A). Il 

est relié à une chambre de dilution puis à une tour d’exposition. Le deuxième est composé 

d’un appareillage permettant le déclenchement automatique de l’e-cig Modbox pour 

enchaîner les bouffées (Figure 27B). Il est relié à une chambre de condensation, à une 

chambre de dilution et enfin à une tour d’exposition. La tour d’exposition permet 

d’exposer simultanément 24 animaux en « nose-only » à l’aide d’un filet de contention qui 

maintient la tête des animaux au niveau de l’arrivée des émissions d’e-cig ou de cigarette 

(Figure 27C). Les 24 animaux ont été ensuite divisés en 3 lots de 8 souris. Un lot dédié aux 

analyses histologiques, un lot dédié aux analyses de la fonction respiratoire et un lot dédié 

à nos analyses transcriptomiques et épigénétiques. Le profil de bouffée HCI a été utilisé 

pour tous les dispositifs testés comme pour les expériences in vitro. L’équipement 

déclenchant automatiquement l’e-cig était configuré pour appuyer sur le bouton poussoir 

une seconde pour faire préchauffer la résistance avant le début de la bouffée. 
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Figure 27. Illustration du système inExpose avec le système pour cigarette (A), e-cig (B) et le module 
d'exposition (C). 

4.3. Sacrifices et recueils des échantillons 

Les souris ont été sacrifiées par anesthésie léthale avec un mélange 

kétamine/xylazine. L’ordre des sacrifices a été randomisé pour éviter les effets du cycle 

circadien. Le sang a été prélevé par ponction intracardiaque et une partie a été réservée 

pour réaliser les tests du Pig A. L’autre a été centrifugée à 1200 g pendant 10 minutes à 

4°C pour éliminer les cellules sanguines. Le surnageant a ensuite été centrifugé à 16000 g 

pendant 5 minutes à 4°C pour éliminer d’éventuels débris cellulaires. Le plasma obtenu a 

été conservé à -80°C. Ensuite les poumons ont été prélevés et divisés en trois parties : la 

première partie, réservée aux extractions d’acide nucléiques, a été conservés dans le RNA 

Later™ (Thermo Fisher Scientific), conservés à 4°C 48 h, puis stockés à -20°C, selon les 

instructions du fabricant ; la deuxième partie destinée aux extractions protéiques a été 

congelée à sec dans de l’azote liquide puis conservée à -80°C ; la troisième partie a été 
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conservée à 4°C dans du PBS pour réaliser les analyses de génotoxicité. Le foie a 

également été prélevé et divisé de la même façon en trois morceaux. Enfin, les fémurs des 

souris ont été récupérés pour extraire la moelle osseuse afin de réaliser le test du 

micronoyau. L’ensemble de ces sacrifices ont été réalisées sur 8 souris par condition. 

4.4. Analyse de la génotoxicité  

L’évaluation du potentiel génotoxique in vivo des émissions d’e-cig et de 3R4F a été 

réalisée par le laboratoire de Toxicologie Génétique de l’Institut Pasteur de Lille. Les 

prélèvements biologiques destinés à chaque test ont été récupérés 2 à 6 heures après la 

dernière exposition (OCDE n°489 et n°474). Le test des comètes, visant à mettre en 

évidence les altérations primaires de l’ADN a été réalisé sur les poumons et le foie des 

souris exposées pendant 4 jours, 3 mois et 6 mois aux différentes émissions. Le test du 

micronoyau a été réalisé sur moelle osseuse pour évaluer les aberrations 

chromosomiques après les expositions chroniques (3 et 6 mois). Le test du Pig-A qui 

permet d’identifier d’éventuelles mutations géniques a été réalisés sur le sang des souris 

exposées pendant 3 et 6 mois. La réalisation des tests ainsi que l’interprétation des 

données ont été faites conformément aux lignes directrices de l’OCDE n°489 et n°474 

pour les tests des comètes et du micronoyau, respectivement, et aux recommandations 

internationales pour le test du Pig-A. 

4.4.1. Test des comètes 

Des cellules ont été isolées par digestion enzymatique avec de la collagénase à partir 

de poumons fraîchement prélevés. Les cellules recueillies ont été incluses dans un gel 

d’agarose déposé sur une lame de microscope. Les microgels obtenus ont été soumis aux 

étapes de lyse des membranes cellulaires et nucléaires, de dénaturation de l’ADN puis 

d’électrophorèse à l’abri de la lumière. Les lames ont été ensuite déshydratées puis 

colorées par un agent intercalant fluorescent (iodure de propidium) avant l’analyse et la 

quantification de la fragmentation de l’ADN. Les images de 50 noyaux sélectionnés 

aléatoirement ont été analysées pour chaque lame étudiée. Pour chaque animal, au moins 

3 lames ont été analysées, soit 150 noyaux. Les résultats sont alors exprimés en 

pourcentage de fragments d’ADN dans la queue de la comète. 

4.4.2. Test des micronoyaux 

Le test du micronoyau consiste à détecter des anomalies de migration de fragments 

chromosomiques ou de chromosomes entiers lors de l’anaphase qui ne sont pas retenus 
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dans le noyau des cellules filles. Ils apparaissent alors sous forme de corps de Howell-Jolly 

ou « micronoyau ». Ce test permet de mettre en évidence le retard mitotique, l’apoptose, 

les cassures chromosomiques, la perte d’un ou plusieurs chromosomes et la non-

disjonction des chromosomes. Il a été réalisé de façon standard (OCDE 474) à partir de la 

moelle osseuse des souris exposées aux différents dispositifs. Après le traitement des 

souris, les fémurs ont été récupérés pour extraire la moelle osseuse dans du sérum de 

veau fœtal. Les culots de centrifugation ont été homogénéisés, déposés sur des lames et 

colorés. La fréquence des érythrocytes polychromatiques avec un ou plusieurs 

micronoyaux a été déterminée en comptant au moins 2000 de ces cellules par animal. 

4.4.3. Test du Pig-A 

Le test du Pig-A est un test de mutation génique in vivo réalisé par cytométrie en flux. 

Le gène du Pig-A est impliqué dans la synthèse du récepteur membranaire phosphatidyl-

inositol glycane (PIG), nécessaire à l’ancrage membranaire de plusieurs protéines des 

cellules sanguines, notamment le CD59. Ce dernier est couplé à un fluorophore et est 

étudié dans deux populations de cellules : les érythrocytes totaux (RBC) et les 

réticulocytes circulants (RET) contenant encore de l’ARN. Le gène Pig-A étant situé sur le 

chromosome X, une mutation de la seule copie fonctionnelle présente chez les mâles 

conduit à une protéine non fonctionnelle. Les cellules seront alors déficientes en 

marqueurs de surface CD59. La fréquence de cellules CD59- pourra être alors directement 

liée à la fréquence de mutations induites par le composé d’intérêt. Le test Pig-A a été 

réalisé sur le sang des souris exposées. Après séparation des différentes populations 

sanguines, les érythrocytes totaux sont isolés puis marqués avec l’anticorps anti-CD59 

murin couplé à la phycoérythrine. Les réticulocyte circulants contenant encore de l’ARN 

sont différenciés par un marquage au Syto 13. Les deux populations ont été discriminées 

et comptées par cytométrie en flux pour déterminer la fréquence de mutation. 

4.5. Extraction de l’ADN pulmonaire 

Les ADN pulmonaires ont été extraits à partir de tissus pulmonaires conservés dans 

le RNAlater™. Pour chaque poumon, 15 à 25 mg de tissu ont été homogénéisés avec le 

Gentlemacs Dissociator (Miltenyi Biotec). Les ADN totaux ont ensuite été extraits à l’aide 

de l’automate Qiacube (Qiagen) en suivant les instructions du kit QiaAmp DNA mini 

(Qiagen). Ce protocole contient une étape de digestion à la protéinase K qui permet 
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d’optimiser le rendement d’extraction et de purifier des acides nucléiques. Les ADN totaux 

ont ensuite été dosés par analyse spectrophotométrique sur le lecteur Spark (Tecan). 

4.6. Dosage de la 8-hydroxy-2-désoxyguanosine (8-OHdG) pulmonaire 

La concentration de 8-OHdG est un biomarqueur couramment utilisé pour détecter 

le niveau de stress oxydant. Les échantillons d’ADN ont été prétraités par une digestion à 

la nucléase P1 en utilisant les réactifs du kit Wako 8-OHdG Assay Preparation (Wako, 

Tokyo, Japon). Les concentrations en 8-OHdG ont été dosées sur les ADN digérés à l’aide 

du kit Oxiselect Oxydative DNA Damage (Cell Biolabs Inc., Californie, Etats-Unis) en 

suivant les recommandations du fabricant. Il s’agit d’un test ELISA compétitif qui permet 

de quantifier la concentration en 8-OHdG par absorbance à 450nm. 

4.7. Analyse de la méthylation globale de l’ADN pulmonaire 

La méthylation globale de l’ADN a été analysée à partir des ADN extraits comme 

décrit précédemment, en utilisant le kit Global DNA Methylation LINE-1 (Active Motif, La 

Hulpe, Belgique). Ce kit permet de quantifier le taux de 5-méthylcytosine au sein des 

motifs LINE-1 de l’ADN. Cinq cents nanogrammes d’ADN ont été digérés par l’enzyme de 

restriction MseI pour produire des fragments de 290 paires de base contenant un motif 

LINE-1 correspondant à 10 résidus CpG. Cinquante nanogrammes d’ADN ainsi fragmentés 

ont été déposés sur une plaque de microtitration pour quantifier par méthode ELISA la 

méthylation de l’ADN à l’aide d’anticorps anti-5-méthylcytosine. La lecture des résultats 

a été réalisée par mesure de l’absorbance à 450 nm sur le spectrophotomètre Spark 

(Tecan) avec une longueur d’onde de référence à 655nm.  

4.8. Extraction protéique 

Les protéines pulmonaires ont été extraites à partir du tissu pulmonaire des souris 

exposées. Vingt-cinq à trente-cinq milligrammes de tissu ont été broyés et homogénéisés 

dans un tampon RIPA supplémenté d’inhibiteurs de protéases et de phosphatases à l’aide 

du Gentlemacs Dissociator (Miltenyi Biotec). Les protéines ont été ensuite dosés à l’aide 

du kit Pierce™ BCA Protein Assay (Thermo Fisher Scientific) 

4.9. Dosage de l’enzyme HDAC 

L’activité des histones désacétylases a été mesurée par fluorescence à partir 

d’extraits de protéines total (environ 25 µg) à l’aide du kit HDAC Assay (Active Motif). Le 
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principe de ce kit est d’ajouter un substrat en présence d’extraits protéiques pulmonaires 

qui contient un résidu lysine acétylé et qui relargue un fluorophore lorsqu’il est désacétylé 

par l’enzyme HDAC. Des contrôles positifs et un inhibiteur spécifique des HDAC ont été 

fournis dans le kit afin de vérifier le bon fonctionnement de l’expérimentation. La lecture 

en fluorescence a été réalisé à 360nm pour l’émission et à 460nm pour l’excitation à l’aide 

du lecteur Spark (Tecan). 

4.10. Dosage de l’enzyme HAT 

L’activité des histones acétyltransférases a été mesuré par fluorescence à partir de 

protéines totales de poumon des souris exposées à l’aide du kit HAT Assay (Active Motif). 

Le principe de ce kit est d’ajouter de l’acétylcoenzyme-A (acétyl-CoA) et des substrats 

d’histone H3 aux échantillons. Pendant la réaction, les enzymes HAT présentes dans les 

échantillons transfèrent le groupement de l’acétyl-CoA sur les histones H3 générant des 

CoA-SH. Ce sont les groupements thiol qui sont mesurés pour témoigner de l’activité des 

HAT.  Des contrôles positifs et un inhibiteur spécifique des HAT ont été utilisés pour 

vérifier le bon déroulement de l’expérimentation. La lecture en fluorescence a été réalisé 

à 360 nm pour l’émission et à 460 nm pour l’excitation à l’aide du lecteur Spark (Tecan). 

4.11. Extraction des ARN pulmonaires 

Les ARN pulmonaires ont été extraits à partir des poumons conservés dans le 

RNAlater™. Quinze à vingt-cinq milligrammes de tissus pulmonaires ont été broyés dans 

700µL de QIAzol (Qiagen) à l’aide du système Gentlemacs Dissociator (Miltenyi Biotec, 

Paris, France). Après homogénéisation des tissus, l’ajout de chloroforme a permis d’isoler 

les acides nucléiques des protéines dénaturées. Le mélange a été centrifugé à 4°C pendant 

15 minutes à 12 000 G puis la phase aqueuse a été récupérée pour purifier les ARN à l’aide 

de l’automate Qiacube (Qiagen) en suivant les recommandations du kit miRNeasy plus 

mini (Qiagen) qui permet d’extraire les ARN et les miARN. Une digestion à la DNase I a été 

effectué dans le but d’éliminer d’éventuelles traces d’ADN génomiques résiduelles. Les 

ARN ainsi extraits ont ensuite été quantifiés par analyse spectrophotométrique sur le 

lecteur Spark (Tecan). 

4.12. MicroArrays 

Les expériences de microarray ont été réalisées par la plateforme de génomique 

fonctionnelle de l’Université de Lille (Centre de Biologie Pathologie du CHU de Lille) à 
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l’aide de micropuces 8x60k OneColor (Agilent Technologies) couplées à des 

oligonucléotides de 60-mer couvrant l’ensemble du génome de la souris. Le marquage, 

l’hybridation, et la détection des ARNc ont été réalisés selon les instructions du fabricant 

(Agilent Technologies). Pour chaque micropuce, les ARNc couplés à la Cyanine 3 ont été 

synthétisés par le Kit Low input QuickAmp à partir de 50ng d’ARN total. Des ARN Spike-

In ont été rajoutés à chaque tube et utilisés comme contrôles positifs de l’étape de 

marquage et de l’amplification. Les ARNc marqués ont été purifiés et 600ng de chaque 

ARNc ont ensuite été hybridés avec les micropuces en suivant les instructions du 

fabricant. Après lavage, les micropuces ont été scannées et les données ont été ensuite 

exportées par le logiciel « Agilent Feature Extraction Software© » (FE version 10.7.3.1). 

L’interprétation des résultats a ensuite été réalisée en sélectionnant les ARNm dont 

l’expression était au moins significativement 1,5 fois supérieure ou 1,5 fois inférieure à 

celle des souris contrôles non exposées (p<0,05). Les analyses statistiques ont été 

réalisées avec le package « linear models for microarray data » (limma) pour R, en utilisant 

le « moderated t statistics » avec des données normalisées. L’analyse fonctionnelle des 

ARN pulmonaires dérégulés sélectionnés a été réalisée grâce à l’utilisation du logiciel 

Ingenuity Pathway Analysis (Qiagen). Ce logiciel croise les données de la littérature avec 

les gènes retrouvés dérégulés pour prédire les voies de signalisation ou fonctions 

biologiques qui pourraient être affectées. Il peut également estimer l’état d’activation de 

ces voies dérégulées grâce au z-score : un z-score positif signifie qu’une voie est activée et 

un z-score négatif signifie qu’une voie est inhibée. 

4.13. OpenArrays 

Le design expérimental des analyses de l’expression des miARN au niveau 

pulmonaire est résumé dans la Figure 28. La transcription inverse des miARN a été 

effectuée à partir de 100 ng d’ARN total à l’aide du kit Megaplex™ RT Primers 

(ThermoFisher). Une étape de préamplification a été réalisée à l’aide du kit Megaplex™ 

PreAmp (ThermoFisher). Enfin, les ADNc préamplifiés ont été dilués au 40ème dans un 

tampon Tris EDTA à pH 8,0 (Ambion) selon les recommandations du fabricant. Les ADNc 

préamplifiés ont été déposés sur les lames OpenArrays grâce au robot Accufill (Applied 

Biosystems). Après les réactions d’amplification, l’analyse de l’expression des miARN a 

été ensuite réalisée par OpenArrays avec le système QuantStudio 12K Flex (Applied 

Biosystems). Cette technique consiste à réaliser des RT-PCR quantitatives à très haut-
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débit avec la technologie Taqman. Les lames Taqman OpenArray Rodent miRNA (Applied 

Biosystems) utilisées ont permis de quantifier simultanément l’expression de 754 miARN. 

L’analyse informatique a été effectuée en sélectionnant les miARN dont l’expression était 

au moins significativement 1,5 fois supérieure ou 1,5 fois inférieure à celle des souris 

contrôle non exposées (p < 0,05, test de student, n=8 souris par condition). 

4.14. Analyses statistiques 

Pour les expériences de dosage de la 8-OHdG, de génotoxicité, de méthylation globale 

de l’ADN et de modification des histones réalisées in vivo, les analyses statistiques ont été 

effectuées avec un test non-paramétrique de Mann-Whitney à l’aide du logiciel GraphPad 

Prism 8 (GraphPad Software Inc., Californie, Etats-Unis). Les résultats ont été considérés 

comme significatifs lorsque p était inférieur à 0,05 (n=8 souris par condition). 

  

Figure 28. Schéma expérimental de l'analyse des miARN par la technologie OpenArrays. 
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Résultats et discussions 

1. Caractérisation chimique des émissions d’e-cig, de tabac chauffé et 

de cigarette 

A ce jour, un grand nombre d’études propose de caractériser les émissions d’e-cig. 

Mais les méthodologies utilisées sont très différentes et les protocoles d’exposition sont 

parfois non représentatifs d’une utilisation réelle. De plus, il y a un manque de données 

sur les aérosols d’e-cig de dernière génération qui sont aujourd’hui majoritaires sur le 

marché de l’e-cig. D’autre part, les données de caractérisation chimique des émissions de 

tabac chauffé sont encore peu nombreuses et surtout, le peu d’études publiées ont été 

réalisées ou financées par l’industrie du tabac. 

L’objectif des fournisseurs d’e-cig et de tabac chauffé est de placer leurs produits sur 

le marché en tant qu’alternatives plus saines à la cigarette. Il semble alors crucial de 

comparer la toxicité de ces deux dispositifs concurrents qui proposent de délivrer de la 

nicotine avec des principes totalement différents. Or, alors que les comparaisons entre 

l’iQOS et la cigarette classique sont décrites dans la littérature, celles entre l’iQOS et l’e-

cig sont plus rares. La comparaison entre ces deux dispositifs pourrait participer à la 

clarification du rapport bénéfices/risques de leur utilisation et faciliter leur 

positionnement dans la lutte contre le tabagisme. La première partie de ce travail a donc 

consisté à caractériser et à comparer chimiquement les aérosols des 3 e-cig testées 

(Lounge et Modbox réglée à 18 W (Mb18W) ou à 30 W (Mb30W)), du tabac chauffé (HTP, 

système iQOS de PMI)) et de la cigarette (cigarette de référence 3R4F). Le dosage de la 

nicotine, des composés carbonylés et des HAP a été réalisé sur des émissions générées 

par la machine à fumer VitroCell VC1 en utilisant le profil de bouffée HCI (55 mL de 

bouffée pendant 2 secondes toutes les 30 secondes). 

1.1. Températures des aérosols générés 

Avant de récolter les émissions des différents dispositifs, la température des aérosols 

générés a été mesurée au niveau de la sortie de chacun des dispositifs étudiés. Cette 

mesure était nécessaire, notamment pour les e-cig, afin de vérifier que les réglages et le 

profil de bouffée généraient des aérosols dans des conditions réalistes de température. La 

température a été relevée par une sonde pendant la durée complète de la consommation 

d’un stick de tabac chauffé (12 bouffées), d’une cigarette (10 bouffées) et pendant la durée 
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maximale d’utilisation de l’e-cig durant les expérimentations in vitro (120 bouffées) 

(Figure 29). 

Concernant l’e-cig, la température mesurée à la sortie diffère selon le modèle. En effet, 

alors que les aérosols du modèle Lounge sont émis à température ambiante (entre 23 et 

26°C), celles de la Mb18W atteignent rapidement 31°C et stagnent à cette température 

jusqu’à la fin de l’expérience (120 bouffées). C’est le modèle à la plus forte puissance, la 

Mb30W qui génère les émissions les plus chaudes puisqu’elles sont à plus de 30°C dès les 

premières bouffées pour atteindre un maximum de 50°C après 120 bouffées, soit 60 

minutes d’utilisation. Comme ce qui a été observé pour la Lounge, les émissions de tabac 

(HTP) chauffé et de cigarette mesurées en aval des filtres sont à température ambiante.  

Figure 29. Températures (en °C) des aérosols générés par 3 modèles d’e-cig (Lounge, Mb18W, Mb30W), de 
HTP ou de 3R4F en fonction du nombre de bouffée. 
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1.2. Analyse de la nicotine 

La capacité du tabac chauffé et de l’e-cig à remplacer la cigarette est liée aux quantités 

de nicotine qui pourront être délivrées à l’utilisateur. Les données de littérature suggèrent 

en effet que ce dernier auto-régule sa consommation en fonction de la satisfaction que lui 

apporte le dispositif en termes de quantité de nicotine (Farsalinos et al., 2018a; 

Woodward and Tunstall-Pedoe, 1993). C’est pourquoi ces quantités ont été mesurés dans 

les émissions des 3 modèles d’e-cig (Lounge, Mb18W et Mb30W) utilisant un e-liquide à 

16 mg/mL de nicotine, du tabac chauffé (HTP) et de la cigarette 3R4F. La quantité de 

nicotine retrouvée dans les aérosols est rapportée dans la Figure 30. 

Avec le profil de bouffée utilisé, le HTP émet environ 30 % de moins de nicotine que 

la cigarette (63 µg/bouffée contre 95 µg/bouffée).  Concernant les e-cig, c’est le modèle 

de deuxième génération Lounge qui émet le moins de nicotine (8 µg/bouffée) comparé à 

tous les autres dispositifs testés. Le modèle de troisième génération montre quant à lui 

une relation entre le réglage de la puissance et la quantité de nicotine retrouvée dans les 

émissions. En effet, il émet 60 µg/bouffée lorsqu’il est réglé à 18 W et 137 µg/bouffée 

lorsqu’il est réglé à 30 W. La quantité de nicotine émise est donc très variable entre les 

dispositifs testés (de 8µg à 137µg/bouffée) malgré un profil de bouffée identique. Or, la 

nicotine est un facteur qui influence la prise de bouffée d’un fumeur, il sera alors 

important de prendre en compte ce paramètre pour les autres analyses. 

1.3. Analyse des composés carbonylés 

Un total de 20 composés carbonylés a été dosé dans les émissions des 3 modèles d’e-

cig (Lounge, Mb18W ou Mb30W), de HTP et de cigarette.  Ce dosage est effectué à l’aide 

de cartouches imprégnées de DNPH qui peuvent capturer une certaine quantité de 
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Figure 30. Quantité de nicotine (en µg/bouffée) 
dans les aérosols d'e-cig (Lounge, Mb18W et 

Mb30W), de HTP et de 3R4F. Les données 
représentent la moyenne de 4 expériences 
indépendantes. * p < 0,05 
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composés carbonylés. De précédents résultats obtenus au laboratoire ont montré qu’une 

cartouche pouvait être utilisée pour un maximum de 20 bouffées d’aérosols d’e-cig avant 

d’être saturée (Beauval et al., 2017). Or, les tests in vitro se déroulent jusqu’à 60 minutes, 

à raison de 2 bouffées par minute, soit 120 bouffées au total. Des tests ont alors été 

réalisés pour déterminer s’il y avait une différence dans la génération de composés 

carbonylés en fonction du temps de fonctionnement de l’e-cig. Des prélèvements de 20 

bouffées ont été effectués toutes les 10 minutes pendant une heure pour le modèle d’e-cig 

de troisième génération. Les quantités totales en composés carbonylés par tranche de 10 

minutes (ou 20 bouffées) sont représentées dans la Figure 31. 

Les tests réalisés révèlent qu’il y a une tendance à l’augmentation de la génération de 

composés carbonylés au cours du temps. Au vu de ces résultats, les prélèvements suivants 

ont été récolté durant les 10 dernières minutes d’une e-cig fonctionnant pendant 60 

minutes pour ne pas sous-estimer la génération de composés carbonylés. Concernant le 

tabac chauffé, des tests d’optimisation du protocole ont été réalisés et ont permis de 

montrer que les cartouches pouvaient contenir jusqu’4 bouffées avant d’être saturées. 

Enfin, en se basant sur les données disponibles dans la littérature (Eldridge et al., 2015), 

une seule bouffée de cigarette 3R4F a été prélevée par cartouche de DNPH pour les 

analyses finales. 

Les dosages finaux des composés carbonylés ont ainsi été réalisés 4 fois 

indépendamment et les résultats sont présentés en ng/bouffée dans le Tableau 11. Au 

total, 15 composés carbonylés ont été mesurés à des quantités de 2 à 15 fois supérieures 

dans la fumée de cigarette que dans les aérosols de HTP. Deux composés sont notables 

Figure 31. Quantité de composés carbonylés (en ng/bouffée) dans les émissions de Mb18W et Mb30W en 
fonction de la durée d'utilisation exprimée en bouffée. 



105 
 

dans les aérosols de HTP. L’hexanal, qui est plus concentré dans les aérosols de HTP que 

dans ceux de 3R4F (22,1 contre 10,4 ng/bouffée) et le benzaldéhyde, qui a été retrouvé à 

des quantités similaires entre les deux dispositifs (58,9 ng/bouffée pour le HTP et 63,6 

ng/bouffée pour la 3R4F). En revanche, tous les composés ont été mesurés à des quantités 

très inférieures dans les aérosols d’e-cig par rapport à celles des produits du tabac (HTP 

et 3R4F), sauf deux, le m-tolualdéhyde et le 2,5-diméthylbenzaldéhyde qui ont été 

détectés à de faibles quantités uniquement dans les émissions des 3 modèles d’e-cig (≈ 1 

ng/bouffée). 

Tableau 11. Concentrations en 19 composés carbonylés (en ng/bouffée) dans les émissions d'e-cig (Lounge, 
Mb18W et Mb30W), de tabac chauffé (HTP) et de cigarette (3R4F). Les données sont représentées en moyenne 
± écart-type de 4 mesures indépendantes. « ~ » correspond aux valeurs sous la limite de détection (LOD). 

Composés carbonylés Lounge Mb18W Mb30W HTP 3R4F 

Formaldéhyde 6 ± 0,7 25,8 ± 2,9 64,5 ± 23,7 156,9 ± 9,5 255,5 ± 60,8 
Acétaldéhyde 32,9 ± 5,4 63 ± 10,4 161 ± 46,4 26687,7 ± 657,9 166345,0 ± 59540,1 

Propanone 3,9 ± 2,7 13,8 ± 3 28,5 ± 8,2 3132,3 ± 149,2 36075,8 ± 7896,6 
Propanal 2,2 ± 0,8 8,4 ± 2,4 23,2 ± 5,6 1400,1 ± 205,8 6924,8 ± 1688,2 

Méthyl vinyl kétone 0,2 ± 0,1 6,4 ± 4,2 6,4 ± 2,1 443,2 ± 42,2 1341,2 ± 219,3 
Crotonaldéhyde 2,4 ± 0,2 16,1 ± 3,3 38,8 ± 8,2 140 ± 10,3 1697,4 ± 794,5 

Méthyl éthyl kétone 0,8 ± 1,7 34,7 ± 23,6 23,5 ± 9,6 625,6 ± 27 9005,2 ± 1097,8 
Méthylpropénal ~ ± ~ ~ ± ~ ~ ± ~ 334,8 ± 20,6 842,4 ± 350,7 

Butanal 0,1 ± 0,1 2 ± 0,1 2,4 ± 0,1 985,9 ± 94,8 3654 ± 1055,1 
Benzaldéhyde 0,5 ± 0,1 2,5 ± 0,4 3,2 ± 0,2 58,9 ± 2,9 63,6 ± 59,3 

Isopentanal 0,7 ± 0,1 8 ± 1,1 11,5 ± 0,7 391,3 ± 37,7 2084,9 ± 599 
Pentanal 0,5 ± 1,1 1 ± 0,2 0,4 ± 0,1 25,2 ± 1,4 172,1 ± 50,5 
Glyoxal 0,6 ± 0,4 0,6 ± 0 0,7 ± 0 40,7 ± 9,3 308,2 ± 92 

o-tolualdéhyde 0,7 ± 0,2 2,9 ± 0,5 2,8 ± 0,6 6,3 ± 0,4 29 ± 2,8 
m-tolualdéhyde ~ ± ~ 1 ± 0,7 1,1 ± 0,8 ~ ± ~ ~ ± ~ 
p-tolualdéhyde 1,7 ± 0,4 0,9 ± 0,7 0,6 ± 0,7 115 ± 26,4 291,8 ± 195,9 
Méthylglyoxal 25,2 ± 3,1 12,2 ± 1,1 44,1 ± 10,9 490,1 ± 69,8 982 ± 249 

Hexanal 0,5 ± 0,1 1,5 ± 0,2 1,8 ± 0,2 22,2 ± 11,9 10,5 ± 12,1 
2,5 diMlbenzaldéhyde ~ ± ~ 0,6 ± 0,1 0,8 ± 0,1 ~ ± ~ ~ ± ~ 

Total 79 ± 10,7 201,5 ± 48,5 415,2 ± 63,6 35056,1 ± 824,9 230083,5 ± 70153,5 

 

La Figure 32 représente la somme des 19 composés carbonylés retrouvés dans les 

émissions d’e-cig (Lounge, Mb18W et Mb30W), de HTP et de 3R4F et les pourcentages de 

réduction comparés à la 3R4F, le HTP et la Mb30W. Les données montrent qu’il y a 

considérablement moins de composés carbonylés dans les émissions de HTP (35 

µg/bouffée) que dans les fumées de 3R4F (230 µg/bouffée). En effet, le tabac chauffé émet 

84,7 % de composés carbonylés en moins que la cigarette 3R4F. Par ailleurs, les quantités 

de composés carbonylés retrouvées dans les aérosols d’e-cig sont très inférieures à celles 

mesurées dans les émissions de HTP, quel que soit le modèle, avec une réduction d’au 

moins 98,5 %. Par rapport à la 3R4F, le taux de réduction est d’au moins 99,5 % pour l’e-
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cig. Au sein des modèles d’e-cig, c’est la Lounge qui génère le moins de composés 

carbonylés (0,079 µg/bouffée), puis la Mb18W (0,201 µg/bouffée) et enfin la Mb30W 

(0,415 µg/bouffée). Par rapport à la Mb30W, le pourcentage de réduction correspond à 

51,4 % pour les aérosols de Mb18W et à 82,3 % pour celles de la Lounge. 

 

1.4. Analyse des HAP 

La présence de 23 HAP a été analysées dans les aérosols des 3 modèles d’e-cig 

(Lounge, Mb18W ou Mb30W), de HTP et de cigarette 3R4F et les résultats sont rapportés 

en pg/bouffée dans le Tableau 12. Sur ces 23 HAP analysés, 21 ont été retrouvés dans des 

quantités de 2 à 676 fois inférieures dans les aérosols du tabac chauffé que dans ceux de 

la cigarette. Seul le benzo(c)phénanthrène est plus concentré dans les aérosols de HTP 

(10,2 pg/bouffée) par rapport aux autres dispositifs. Le cyclopenta(c,d)pyrène n’a quant 

à lui été retrouvé dans aucun aérosol. Les aérosols d’e-cig contiennent pour la majorité 

Figure 32. (A) Quantité totale de composés carbonylés (en µg/bouffée) dans les émissions d'e-cig (Lounge, 
Mb18W ou Mb30W), de HTP ou de 3R4F. Les données représentent la moyenne de 4 expériences indépendantes. 
* p < 0,05. (B) Réductions (en %) en émission de composés carbonylés en comparaison à celles de 3R4F, de HTP 
ou de Mb30W. 
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des HAP moins concentrés que les aérosols de HTP. Il n’y a que le naphtalène qui est 

retrouvé à des quantités similaires entre les deux dispositifs. 

Tableau 12. Concentrations en HAP (en pg/bouffée) dans les émissions d'e-cig (Lounge, Mb18W et Mb30W), de 
tabac chauffé (HTP) et de cigarette (3R4F). Les données sont représentées en moyenne ± écart-type de 4 
mesures indépendantes. « ~ » correspond aux valeurs sous la limite de détection (LOD) 

 

La Figure 33 représente la somme de tous les HAP retrouvés dans les émissions d’e-

cig (Lounge, Mb18W ou Mb30W), de HTP et de 3R4F, et les pourcentages de réduction de 

concentration par rapport à la 3R4F, au HTP et à la Mb30W. De manière similaire à ce qui 

a été observé pour les composés carbonylés, les données montrent que le HTP émet 96,2 

% de HAP en moins que la cigarette 3R4F (0,7 ng/bouffée contre 19,6 ng/puff) et que l’e-

cig émet entre 64,9 et 78,2 % de HAP en moins que le HTP (entre 0,1 et 0,2 ng/bouffée). 

Contrairement à ce qui a été observé pour les composés carbonylés, la différence observée 

entre les deux modèles de troisième génération réglés à une puissance différente n’est 

plus significative. Cependant le modèle Lounge, de deuxième génération, émet tout de 

même ≈ 40 % de HAP en moins que la Mb18W ou la Mb30W. 

HAP Lounge Mb18W Mb30W HTP 3R4F 

Naphtalène 61,5 ± 9,5 75,9 ± 5,6 92,2 ± 6,2 71,2 ± 38,9 3598,6 ± 735,4 

Acénapthène 0,2 ± 0,1 2,6 ± 1,1 5 ± 1,4 12,5 ± 13,7 1318,2 ± 397,5 

Fluorène 6,7 ± 3,3 6,8 ± 1,6 5 ± 1,4 26 ± 22,5 1976,7 ± 387,7 

Phénanthrène 7,2 ± 0,7 25,2 ± 8,2 22,8 ± 3,5 55,9 ± 34,7 2829,4 ± 533,3 

Anthracène 0,6 ± 0,1 1,7 ± 0,5 2,9 ± 3,8 4,7 ± 2,3 1356,2 ± 266,8 

Fluoranthène 9,2 ± 1,4 20,1 ± 11,8 11,5 ± 11,9 130,9 ± 79 1463,5 ± 288,8 

Pyrène 17,9 ± 4,3 30,9 ± 9,2 30,9 ± 10,9 153 ± 98,6 1752,4 ± 304,5 

Benzo(c)phenanthrène 1,9 ± 0,7 4,6 ± 2,2 3,2 ± 4,4 10,3 ± 6,9 1,5 ± 0,6 

Cyclopenta(c,d)pyrène 0 ± 0 0 ± 0 0 ± 0 0 ± 0 0 ± 0 

Benzo(a)anthracène 0,2 ± 0 2,6 ± 0,9 3,2 ± 4 43,8 ± 23,4 542,5 ± 150,1 

Chrysène 0,4 ± 0,3 1,6 ± 0,3 2,5 ± 4,1 26,4 ± 13,9 471,7 ± 72,5 

5-méthylchrysène 1,5 ± 0,4 1 ± 0,7 0,6 ± 0,4 1,7 ± 1 1130,6 ± 294 

Benzo(e)pyrène 2 ± 0,3 6,1 ± 2,5 5,4 ± 3,6 22,9 ± 17,1 1343,9 ± 303,1 

Benzo(b)fluoranthène 0,3 ± 0,1 1,2 ± 0,3 4,2 ± 7,1 18,9 ± 8,9 359 ± 125,6 

Benzo(k)fluoranthène 0,2 ± 0,1 0,5 ± 0,1 1,4 ± 2,2 18,4 ± 11,1 99,6 ± 28,1 

Benzo(a)pyrène 0,6 ± 0,2 0,6 ± 0,2 1,1 ± 0,3 25,6 ± 13,9 457,6 ± 114,5 

Dibenzo(a,l)pyrène 0,1 ± 0 0 ± 0 0,1 ± 0 0,3 ± 0,2 0,6 ± 0,2 

Dibenzo(a,h)anthracène 0 ± 0 0 ± 0 0,2 ± 0,3 0,8 ± 0,5 38,4 ± 11,9 

Benzo(g,h,i)pérylène 1,5 ± 0,7 0,9 ± 0,3 4,8 ± 3,2 16,6 ± 8,9 276,2 ± 56 

Indeno(1,2,3-c,d)pyrène 0,3 ± 0,1 0,2 ± 0 1,5 ± 2 6,6 ± 5,6 214 ± 81,5 

Dibenzo(a,e)pyrène 0,1 ± 0 0 ± 0 0,2 ± 0,4 0,5 ± 0,3 92,4 ± 43,5 

Anthanthrène 0,3 ± 0,1 0,2 ± 0,1 0,4 ± 0,1 11,7 ± 6,7 233,9 ± 52,6 

Coronène 0,3 ± 0,1 0,5 ± 0,2 2,8 ± 1 5,5 ± 1,9 25,6 ± 5,4 

Total 112,7 ± 16,1 183,2 ± 29,7 201,7 ± 57,9 664,4 ± 389,8 19582,3 ± 400,1 
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1.5. Normalisation par la quantité de nicotine 

Les quantités de composés carbonylés et de HAP ont d’abord été présentées en masse 

par bouffée, ce qui a permis de comparer les dispositifs entre eux. Cependant, les 

utilisateurs ne consomment pas forcément une cigarette, le tabac chauffé ou l’e-cig de la 

même manière. En effet, ils vont ajuster le nombre, le volume et la fréquence des bouffées 

en fonction de leur besoin en nicotine. Pour tenter de prendre ce paramètre en 

considération, les quantités des différents composés toxiques mesurés ont été rapportées 

à la quantité de nicotine retrouvée dans les aérosols correspondants. Les résultats 

détaillés de cette normalisation sont rapportés en annexe dans le Tableau S 1 pour les 

composés carbonylés et Tableau S 2 pour les HAP. 

Figure 33. (A) Quantité totale de composés carbonylés (en ng/bouffée) dans les émissions d'e-cig (Lounge, 
Mb18W ou Mb30W), de HTP ou de 3R4F. Les données représentent la moyenne de 4 expériences 
indépendantes. * p < 0,05. (B) Réductions (en %) en émission de HAP en comparaison à celles de 3R4F, de HTP 
ou de Mb30W. 
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Ces données sont résumées dans la Figure 34 rapportant la quantité totale de 

composés carbonylés ou de HAP normalisés avec la quantité de nicotine (A et B) et les 

pourcentages de réduction associées (C et D).  La comparaison de ces résultats montre 

que le classement des dispositifs en fonction de la quantité de composés carbonylés émis 

ne change pas. En effet, le HTP émet 76,9 % de composés carbonylés en moins (497 ng/µg 

de nicotine) que la cigarette 3R4F (2308 ng/µg de nicotine). Les 3 modèles d’e-cig 

émettent au moins 97,9 % de composés carbonylés en moins (<10 ng/µg de nicotine) que 

le HTP. Cependant, au sein des modèles d’e-cig, c’est la Lounge qui émet le plus de 

composés (10,5 ng/µg de nicotine) par rapport au modèle de troisième génération. De 

plus, la différence entre la Mb18W et la Mb30W n’apparaît plus après normalisation avec 

la nicotine (3,6 et 3,4 ng/µg de nicotine, respectivement).  De la même façon, après 

normalisation avec la nicotine, la quantification des HAP révèle que la Lounge émet plus 

de composés par µg de nicotine que les e-cig Mb18W et Mb30W (15 contre 3 et 1,5 pg/µg 

de nicotine, respectivement) et même plus que le HTP (10,6 pg/µg de nicotine). C’est en 

revanche toujours la cigarette 3R4F qui génère le plus de HAP par µg de nicotine (207 

pg/µg de nicotine). Le HTP montre tout de même une réduction des émissions en HAP de 

94,3 % par rapport à la cigarette, la lounge de 92,5 % et les modèles Modbox d’au moins 

98,5 %. 
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1.6. Discussion 

Dans un premier temps, il était nécessaire de vérifier que nos conditions 

expérimentales d’utilisation des e-cig étaient représentatives d’une utilisation normale. 

En effet, en fonction du profil de bouffée et des réglages de l’e-cig, il est possible de générer 

Figure 34. Quantités totales de composés carbonylés (A) ou de HAP (B) rapportées à la quantité de nicotine 
(en masse/µg de nicotine) dans les émissions d'e-cig (Lounge, Mb18W ou Mb30W), de HTP ou de 3R4F et 
réductions (en %) en émission de composés carbonylés (C) ou de HAP (D) en comparaison à celles de 3R4F, de 
HTP ou de Lounge. * p < 0,05. 
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des « dry puffs ». Dans ce cas, la mèche de coton brûle, ce qui provoque une sensation très 

aversive pour l’utilisateur. Nous avons fait essayer nos conditions d’expérimentation à 

des vapoteurs réguliers pour confirmer l’absence de « dry puffs ». De plus, la température 

des aérosols en sortie d’e-cig a été mesurée pour l’ensemble des dispositifs utilisés. Les 

filtres du stick de tabac chauffé et de la cigarette permettent de redescendre la 

température des émissions au niveau de la température ambiante. Pour l’e-cig, les 

modèles Lounge et Modbox réglés à 18 W n’augmentent que très légèrement la 

température des aérosols à la sortie des dispositifs. Cependant, le modèle Modbox réglé à 

30 W délivre un aérosol pouvant atteindre 50°C. Les recommandations de l’AFNOR 

suggèrent que les émissions sont aversives pour l’utilisateur à partir de 60°C (Association 

française de normalisation, 2016). Ces données justifient alors nos conditions 

d’expérimentations. 

Les composés carbonylés sont principalement générés suite à la pyrolyse à haute 

température des hydrates de carbone présents dans le tabac (jusqu’à 900°C) (Seeman et 

al., 2002). C’est dans la fumée de cigarette 3R4F qu’a été mesurée la plus grande quantité 

de composés carbonylés. L’acétaldéhyde et l’acétone sont les deux composés majoritaires 

dans la fumée de cigarette, comme rapporté dans la littérature (Eldridge et al., 2015). 

L’acroléine est un composé fréquemment retrouvé dans la fumée de cigarette. Cependant, 

elle n’a pas pu être quantifiée dans notre étude. En effet, bien que les recommandations 

de l’ANSES conseillent l’utilisation de cartouches imprégnées de DNPH pour la doser, 

comme celles que nous avons utilisées, deux études suggèrent que si le temps entre le 

prélèvement et la désorption des composés est trop long (plus de 6h), l’acroléine peut se 

di- et trimériser (Herrington and Hays, 2012; Ho, 2011). Dans notre cas, la désorption des 

cartouches étant réalisée sur un site très éloigné de celui où les prélèvements sont 

réalisés, nous n’avons pu réaliser ces deux étapes sur la même journée et avons choisi de 

ne pas prendre en compte les résultats obtenus pour ce composé. Pour le dispositif de 

tabac chauffé utilisé dans notre étude, l’iQOS, la génération des aérosols s’effectue à une 

température maximale de 350°C grâce aux sticks de tabac imprégné de propylène glycol. 

Le marketing relatif à ces dispositifs met en avant l’absence de combustion qui 

permettrait de réduire l’exposition des utilisateurs aux substances cancérogènes 

produites par celle-ci (Schaller et al., 2016a). Les quantités de composés carbonylés 

mesurées confirment cette hypothèse et montrent une diminution de 90 % par rapport à 

celles retrouvées dans la fumée de cigarette. Ces données sont en accord avec les études 
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menées par PMI (Schaller et al., 2016a, 2016b) et deux études indépendantes (Farsalinos 

et al., 2018b; Li et al., 2019b). Cependant, la présence de certains composés carbonylés 

cancérogènes tels que l’acétaldéhyde et le formaldéhyde a pu être mise en évidence. La 

présence d’acétaldéhyde témoigne d’une potentielle pyrolyse ou d’une dégradation 

thermique des constituants des feuilles de tabac présentes dans les sticks (Auer et al., 

2017). Les quantités de formaldéhyde retrouvées étaient légèrement inférieures à celles 

retrouvées dans la littérature. Les analyses chromatographiques effectuées montraient 

un deuxième composé très proche du formaldéhyde, qui a pu gêner l’interprétation et 

mener à une mauvaise estimation de sa quantité. Cet artefact pourrait être dû à la 

présence de formaldéhyde cyanhydrine provenant de la pyrolyse du filtre en acide 

polylactique présent dans le stick de tabac, comme cela a été mis en évidence dans une 

autre étude (Davis et al., 2019). Concernant les modèles d’e-cig, une faible quantité de 

composés carbonylés a été retrouvée dans les émissions. Ces quantités étaient très 

inférieures à celles retrouvées dans les émissions de tabac chauffé (84,7 % de réduction) 

et, de ce fait, encore plus inférieures à celles de la fumée de cigarette (plus de 99 % de 

réduction). Pour ces dispositifs, la majeure partie des composés carbonylés provient de la 

dégradation thermique du glycérol et du propylène glycol retrouvés dans les e-liquides 

(Uchiyama et al., 2020). Notre étude a pu mettre en évidence un lien entre la puissance 

délivrée par l’e-cig et la quantité de composés carbonylés générés. En effet, le modèle 

Modbox réglé à 30 W génère plus de composés que celui réglé à 18 W qui, lui-même, 

génère plus de composés carbonylés que le modèle Lounge d’une puissance de 4,6 W. Une 

puissance délivrée plus importante, pour une même résistance, augmente la température 

de chauffe ainsi que le volume consommé de e-liquide, et impacte la quantité de composés 

carbonylés retrouvés dans les émissions d’e-cig. Le lien entre ces différents paramètres a 

déjà été rapporté dans plusieurs publications qui relèvent, par ailleurs, des quantités de 

formaldéhyde supérieures à celles observées dans notre étude (Goniewicz et al., 2014; 

Hutzler et al., 2014; Sleiman et al., 2016; Talih et al., 2016). Cependant, ces études ont été 

remises en question à cause de leur méthodologie. En effet, la génération des émissions a 

été réalisée dans des conditions extrêmes et non représentatives de l’utilisation normale 

d’une e-cig (Farsalinos, 2017; Farsalinos et al., 2015). Les mesures de température 

réalisées dans notre étude nous permettent d’affirmer que les réglages des e-cig et du 

profil de bouffée restaient réalistes et permettaient d’éviter le phénomène de « dry puffs » 

décrit précédemment. 
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L’analyse des HAP des émissions des différents dispositifs a montré que l’e-cig 

générait moins de composés que la cigarette (plus de 99 % en moins). Les HAP de la fumée 

de cigarette sont des composés issus de processus de combustion incomplète du tabac à 

des températures supérieures à 500°C (Evans et al., 1993). Mais des études plus récentes 

ont montré que la formation de HAP à partir de tabac pouvait avoir lieu à des 

températures inférieures, à partir de 350°C (McGrath et al., 2007) . Les quantités 

retrouvées dans les émissions d’e-cig, de l’ordre du dixième de ng/bouffée confirment 

l’absence de ce processus de combustion. Bien que la nicotine dans certains e-liquides soit 

parfois extraite à partir de feuilles de tabac, les e-liquides ne contiennent généralement 

pas les éléments du tabac pouvant être précurseurs de HAP. Cependant, les HAP retrouvés 

dans les émissions pourraient provenir du e-liquide directement dans lequel nous avons 

déjà mesuré des traces de HAP (Beauval et al., 2017). De plus, le point d’ébullition du e-

liquide, qui est la température nécessaire à atteindre pour générer un aérosol, se situe 

entre 188,6 °C et 292 °C. Ce point d’ébullition varie selon la proportion de propylène glycol 

et de glycérol, et peut encore diminuer avec l’ajout d’additif comme de l’eau ou de l’éthanol 

(Duell et al., 2018). Par comparaison, la température de combustion d’une cigarette peut 

atteindre jusqu’à 900 °C au niveau du foyer (Baker, 1974). De plus, à la différence de ce 

qui a été observé pour les composés carbonylés, la quantité de HAP générée par les 

différents modèles d’e-cig n’a pas été liée à la puissance délivrée par celle-ci. Ces résultats 

indiquent que même à forte puissance, la température de chauffe du e-liquide n’est pas 

suffisante pour générer des HAP en quantité importante. Le dispositif de tabac chauffé, 

quant à lui, chauffe à une température de 350°C (Auer et al., 2017). Les quantités de HAP 

que nous avons mesurées dans les émissions de tabac chauffé étaient bien inférieures à 

celles retrouvées dans la fumée de cigarette (96 % en moins) et en accord avec les 

données avancées par PMI et une étude indépendante (Li et al., 2019b). Les sticks du 

dispositifs iQOS contiennent des produits dérivés du tabac et renferment donc les 

précurseurs nécessaires pour générer des HAP. De plus, une équipe a montré qu’un 

processus de pyrolyse pouvait avoir lieu dans le stick de tabac et pourrait augmenter la 

quantité de composés toxiques dans les émissions (Davis et al., 2019). Le benzo[a]pyrène, 

cancérogène avéré pour l’Homme, est un bon indicateur de la potentielle toxicité des 

émissions (Vu et al., 2015). Ce composé a été retrouvé en plus faible quantité dans les 

émissions de tabac chauffé par rapport à la fumée de cigarette (25,6 pg contre 457,6 
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pg/bouffée, respectivement), mais en plus grande quantité par rapport aux émissions d’e-

cig (entre 0,6 et 1,1 pg/bouffée). 

Pour que le tabac chauffé et l’e-cig puissent être une alternative à la cigarette, il faut 

qu’ils délivrent à minima une quantité de nicotine suffisante pour que l’utilisateur puisse 

l’inhaler et s’en satisfaire (Farsalinos et al., 2018a). C’est pourquoi la quantité de nicotine 

a été mesurée dans les émissions de chaque dispositif avec un même profil de bouffée. 

C’est pour le modèle d’e-cig Lounge, de deuxième génération, que le taux de nicotine 

mesuré était le plus faible, alors que pour le modèle Modbox, de troisième génération, la 

quantité délivrée était bien plus importante. Ces résultats confirment qu’en augmentant 

le réglage de la puissance, le volume de e-liquide consommé et par conséquent le taux de 

nicotine dans les aérosols sont augmentés (Talih et al., 2016). Concernant les émissions 

de tabac chauffé, les taux de nicotine mesurés étaient environ 30 % inférieurs à ceux 

observés dans la fumée de cigarette, comme décrit dans la littérature (Belushkin et al., 

2020; Farsalinos et al., 2018a; Li et al., 2019b; Schaller et al., 2016a). Ce paramètre est 

important à prendre en compte puisqu’il est admis que les fumeurs s’auto-régulent en 

fonction de la quantité de nicotine inhalée. C’est-à-dire qu’avec une cigarette qui délivre 

moins de nicotine, un fumeur aura tendance à fumer plus agressivement (Woodward and 

Tunstall-Pedoe, 1993). Ainsi, une quantité plus faible de nicotine dans les émissions d’e-

cig ou de tabac chauffé pourrait induire une compensation et une augmentation du 

nombre de bouffée et/ou de leur fréquence. 

Pour essayer de prendre en compte ces différents profils de consommation, les 

quantités en composés carbonylés et HAP, initialement présentées en masse par bouffée, 

ont été normalisées par rapport à la quantité de nicotine respective de chaque émission. 

Les résultats ainsi normalisés ne changent pas le classement entre les dispositifs : l’e-cig 

émet moins de composés toxiques que le tabac chauffé qui, lui-même, en émet moins que 

la cigarette. Cependant, la normalisation des quantités par la nicotine change le 

classement entre les modèles d’e-cig puisque, avec ce mode de calcul, c’est le modèle 

Lounge qui émet le plus de composés potentiellement toxiques. Cela s’explique par le fait 

que ce modèle génère très peu de nicotine par rapport à celui de troisième génération. 

Ces données soulignent qu’en fonction de la façon d’exprimer les résultats, leur 

interprétation peut être différente. A ce jour, il n’existe pas de façon universelle 

d’exprimer des résultats de composés émis dans les aérosols.  En effet, dans la littérature, 
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ce type de données est exprimé en quantité par bouffée (Beauval et al., 2019), en quantité 

par millilitres de bouffée (Beauval et al., 2017), par cigarette ou par stick de tabac chauffé 

(Li et al., 2019b), par quantité de nicotine (Farsalinos et al., 2018a) ou par volume d’e-

liquide consommé (Beauval et al., 2016). Cette multitude d’unités rend plus difficile la 

comparaison entre les données de la littérature. De plus, il existe également plusieurs 

méthodes de génération et de collection des émissions qui pourraient également influer 

sur la façon dont les composés sont capturés et quantifiés (Farsalinos and Gillman, 2018). 

A cela s’ajoute la diversité des e-liquides et des dispositifs, qui amplifie la variabilité des 

résultats retrouvés dans la littérature. Il semble ainsi nécessaire d’harmoniser les 

protocoles, que ce soit en termes de méthodologie, d’analyse ou encore d’interprétation 

des résultats. Notre étude offre l’opportunité de caractériser la composition des émissions 

d’e-cig et du tabac chauffé recueillies et analyser avec un protocole commun. Nos données 

permettent alors de générer des résultats plus aisément comparables entre les dispositifs. 

Globalement, les données obtenues montrent que les émissions de tabac chauffé 

contiennent moins de composés toxiques que celles de la cigarette classique, mais plus 

que celles de l’e-cig. Cependant, la présence, même en bien plus faible quantité, de HAP et 

de composés carbonylés, n’exclut pas une absence de toxicité car il n’existe pas de seuil 

pour lesquels ces composés seraient sans danger. Il est alors nécessaire de mener des 

études toxicologiques afin d’évaluer l’impact réel de ces émissions. 
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Comparaison de la toxicité in 
vitro des émissions d’e-cig, de tabac 

chauffé et de cigarette 
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2. Comparaison de la toxicité in vitro des émissions d’e-cig, de tabac 

chauffé et de cigarette 

Les réductions observées en termes de composés toxiques testés dans les émissions 

de tabac chauffé et d’e-cig ne peuvent évidemment pas être interprétées comme une 

réduction proportionnelle des risques pour les fumeurs souhaitant arrêter la cigarette en 

utilisant ces nouveaux dispositifs de délivrance de nicotine. Peu d’études disponibles à ce 

jour se proposent d’étudier et de comparer la cytotoxicité à la fois de l’e-cig, du tabac 

chauffé et de la cigarette. Or, le tabac chauffé et l’e-cig sont tous les deux des dispositifs 

alternatifs à la cigarette dont la toxicité est encore à étudier. Les protocoles d’exposition 

retrouvés dans la littérature sont divers : utilisation de cultures immergées ou de cultures 

en interface air-liquide, exposition aux e-liquides, aux aérosols solubilisés, ou directement 

aux aérosols (Tableau 4, Tableau 5, Tableau 6, Tableau 9). C’est pourquoi mon travail de 

thèse propose d’étudier la toxicité des émissions d’e-cig et du tabac chauffé et de la 

comparer à celle de la cigarette en utilisant des conditions d’exposition identiques. De 

plus, les aérosols ont été générés en utilisant le même profil de bouffée que lors des 

prélèvements réalisés pour la caractérisation chimique des aérosols. Des cellules 

immortalisées de l’épithélium bronchique humain (BEAS-2B) cultivées à l’interface air-

liquide ont été exposées aux émissions non diluées de 3 modèles d’e-cig (Lounge, Mb18W, 

Mb30W), de HTP et de cigarette 3R4F. Les effets de ces émissions ont été évalués en 

termes de cytotoxicité et de réponses au stress oxydatif et à l’inflammation, qui sont des 

mécanismes clés dans le développement de maladies respiratoires chroniques. 

2.1. Mesure de la viabilité cellulaire 

La viabilité cellulaire a été analysée 24h après les différentes expositions en mesurant 

la quantité d’ATP intracellulaire. Les données sont présentées dans la Figure 35. Les 

résultats montrent que les aérosols d’e-cig n’induisent pas ou peu de baisse de viabilité 

cellulaire même après 120 bouffées. En effet, la viabilité des cellules exposées aux 

émissions de Modbox reste supérieure à 92 %, et à 75 % pour celles exposées aux 

émissions du modèle Lounge. En revanche, une exposition aux aérosols de HTP induit une 

baisse du contenu en ATP intracellulaire dès 12 bouffées (89 % de viabilité), et une 

diminution de viabilité jusqu’à 98 % après 120 bouffées. Une exposition aux fumées de 

cigarette induit encore plus rapidement une forte diminution de la viabilité ; elle a atteint 

0 % après 10 bouffées seulement. Pour comparer les dispositifs, la dose efficace de chaque 
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aérosol, exprimée en bouffée, pour laquelle la viabilité cellulaire atteint 50 % a été 

calculée (ED50). Alors qu’aucune ED50 n’a pu être calculée, pour les 3 modèles d’e-cig, 

celle du HTP est égale à 45 bouffées (soit 22,5 minutes d’exposition) et celle de la 3R4F 

est égale à 2 bouffées (soit 1 minute d’exposition). Toujours dans le but de comparer 

l’ensemble des dispositifs, la viabilité cellulaire a été exprimée en fonction de la quantité 

en nicotine et les résultats sont rapportés dans la Figure 35F. Comme pour les résultats 

de viabilité exprimés par bouffée, ceux exprimés par mg de nicotine montrent une 

  

  

  

Figure 35. Viabilité cellulaire mesurée après 24h d’exposition des cellules BEAS-2B à des aérosols non dilués 
d’e-cig : Lounge (A), Mb18W (B) et Mb30W(C), de HTP (D) et de cigarette 3R4F (E) en fonction du nombre de 
bouffées. Les résultats sont exprimés en pourcentage comparé aux contrôles arbitrairement fixés à 100 %. Les 
résultats représentent la moyenne de 4 expériences indépendantes. (F) Viabilité cellulaire exprimée en 
fonction de la quantité en nicotine (en mg) des émissions de chaque dispositif. * p < 0,05. 
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cytotoxicité plus élevée pour la 3R4F (ED50 de 0,2 mg de nicotine), que pour le HTP (ED50 

de 2,8 mg de nicotine) et une très faible cytotoxicité de l’e-cig. 

En se basant sur les données de viabilité cellulaire présentées ci-dessus, des doses 

sub-toxiques (> 75 % de viabilité) ou toxiques ont été sélectionnées pour mesurer les 

paramètres du stress oxydant et de l’inflammation : 40 et 120 bouffées pour les e-cig ; 2, 

12 et 40 bouffées pour le HTP ; 1 et 2 bouffée(s) pour la cigarette 3R4F. 

2.2. Analyse du stress oxydant 

La génération du stress oxydant a d’abord été analysée en mesurant le contenu des 

cellules exposées en glutathion réduit (GSH) et glutathion oxydé (GSSG). Le GSH est 

considéré comme l’un des antioxydants les plus importants, qui permet de réduire les 

espèces réactives de l’oxygène. Le déséquilibre du rapport GSSG/GSH peut être utilisé 

comme un marqueur de stress oxydant. La prise en charge du stress oxydant dans la 

cellule peut être un phénomène très rapide. Une étude menée précédemment au 

laboratoire a d’ailleurs montré que le rapport GSSG/GSH était rapidement modulé juste 

après les expositions, puis était revenu à la normale 3 heures après. (Anthérieu et al., 

2017). C’est pourquoi, le contenu en glutathion a été mesuré dès la fin des expositions aux 

différent dispositifs (0h). Les résultats sont rapportés dans la Figure 36. Concernant les 

expositions aux e-cig, aucun changement du contenu intracellulaire en glutathion n’a été 

observé après des expositions à la Lounge ou à la Mb18W. Seules les émissions de Mb30W 

ont induit une hausse significative du rapport GSSG/GSH (x 2,9), mais seulement après la 

plus longue exposition (120 bouffées). Les expositions aux émissions de HTP ont, quant à 

elles, induit une augmentation significative du rapport GSSG/GSH par rapport aux cellules 

contrôles dès 12 bouffées (x 2,7). Cette augmentation est confirmée et plus marquée après 

40 bouffées (x 4,5). Enfin, les expositions à la cigarette 3R4F ont également induit une 

augmentation de la réponse antioxydante, mais plus rapidement. En effet, dès la première 



122 
 

bouffée le rapport GSSG/GSH augmente significativement (x 2,7) par rapport aux cellules 

non-exposées et croît encore après 2 bouffées (x 7,8). 

Figure 36. Rapport de glutathion (GSSG/GSH) mesuré sur des cellules BEAS-2B immédiatement après une 
exposition aux aérosols d’e-cig : Lounge (A), Mb18W (B) et Mb30W (C), de HTP (D) et de 3R4F (E). Les 
données représentent la moyenne de trois expériences indépendantes et sont exprimées en ratio par rapport 
aux cellules contrôles dont le ratio a été arbitrairement fixé à 1. * p < 0,05. 
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2.3. Analyse de l’expression de gènes du métabolisme et du stress oxydant 

Lorsque la cellule est exposée à des composés potentiellement toxiques, un des 

mécanismes de défense est constitué par l’action des enzymes du métabolisme des 

xénobiotiques et notamment par celles de la superfamille des cytochromes P450 (CYP). 

Le CYP1A1 et le CYP1B1 sont particulièrement impliqués dans la métabolisation des HAP 

retrouvés dans la fumée de cigarette. Cependant, leur activité est aussi génératrice de 

radicaux libres et peut alors participer à l’induction d’un stress oxydant. C’est pourquoi 

l’expression de gènes impliqués dans le métabolisme des xénobiotiques (CYP1A1 et 

CYP1B1) et dans la réponse antioxydante induite par Nrf2 (HMOX1 et NQO1) a été 

Figure 37. Expression des ARNm codant pour des gènes liés au métabolisme : CYP1A1 (A) et CYP1B1 (B) ou à la 
réponse antioxydante : HMOX1 (C) et NQO1 (D) sur des cellules BEAS-2B. L’expression des gènes a été analysée 
4h ou 24h après l’exposition aux aérosols d’e-cig (Lounge, Mb18W et Mb30W), de HTP et de 3R4F. Les données 
représentent la moyenne de trois expériences indépendantes et sont exprimés en rapport comparé aux cellules 
contrôles dont le rapport d’expression a été arbitrairement fixée à 1. * p < 0,05. 
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analysée 4 h ou 24 h après une exposition de 120 bouffées aux émissions d’e-cig, de 12 

bouffées à celles de HTP et de 1 bouffée à celles de 3R4F. Les résultats sont rapportés dans 

la Figure 37. 

D’abord, une induction de l’expression des gènes du métabolisme, CYP1A1 et CYP1B1 

a été observée, quel que soit l’exposition ou le temps considéré. Pour les deux gènes 

l’induction est plus forte 4 h que 24 h après l’exposition. Concernant CYP1A1, son 

expression est bien plus augmentée que celle de CYP1B1. De plus, l’induction mesurée est 

plus forte après une exposition au HTP et à la 3R4F (> x 20 par rapport aux cellules non-

exposées) qu’après une exposition aux e-cig. Ensuite, une augmentation de l’expression 

des gènes d’enzymes antioxydantes, HMOX1 et NQO1, a été également observée, quel que 

soit le dispositif ou le temps considéré sauf 24h après une exposition aux aérosols de 

Lounge. De plus, l’expression de HMOX1 et de NQO1, augmente avec l’augmentation de la 

puissance délivrée par les e-cig. Enfin, l’augmentation de l’expression du gène HMOX1 est 

plus importante à 4h qu’à 24h, témoignant de la rapidité des mécanismes mis en jeu dans 

la réponse au stress oxydant. Pour l’ensemble des gènes, la cigarette induit les mêmes 

effets que l’e-cig et le tabac chauffé, mais seulement après 1 bouffée contre 12 pour le 

tabac chauffé et 120 pour les 3 modèles d’e-cig. 

2.4. Analyse de l’inflammation 

La réponse inflammatoire des cellules BEAS-2B a été mesurée à l’aide du dosage de 

dix médiateurs de l’inflammation 24h après une exposition aux aérosols d’e-cig (40 et 120 

bouffées), de HTP (2, 12 et 40 bouffées) ou de 3R4F (1 et 2 bouffée(s)). La capacité des 

cellules BEAS-2B à sécréter ces médiateurs de l’inflammation a été confirmée par un 

traitement au lipopolysaccharide (LPS). Après 24h d’exposition aux différents dispositifs, 

6 médiateurs sur les 10 testés n’ont pas été détectés dans le milieu de culture : GM-CSF, 

IL-13, IL-1β, MIP-1α, RANTES et TNF-α. En revanche, 4 ont pu être quantifiés : GRO-α, IL-

6, IL-8 et MCP-1. Les résultats, exprimés en ratio par rapport à la concentration mesurée 

dans les cellules contrôles non exposées, sont rapportés dans le Tableau 13. 
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Tableau 13. Profil de sécrétion des médiateurs de l’inflammation par les cellules BEAS-2B mesurés 24h après 
les expositions aux émissions d’e-cig (Lounge, Mb18W et Mb30W), de tabac chauffé (HTP), et de cigarette 
(3R4F). Les données sont représentées par la moyenne ± écart-type des ratios comparés aux cellules non-
exposées dont le ratio a été arbitrairement fixé à 1. Les données en gras sont significativement différentes du 
contrôles (p<0,05).  

Premièrement, une augmentation de la sécrétion d’IL-6 a été observée dans le milieu 

de culture des cellules exposées aux aérosols de modèle d’e-cig de troisième génération, 

après 120 bouffées pour la Mb18W (x 2,3 par rapport aux cellules non exposées) et après 

40 (x 3,3) et 120 bouffées (x 2,4) pour la Mb30W. Aucun changement significatif sur la 

sécrétion d’IL-6 n’a été mesuré pour le HTP et la 3R4F, même après des expositions au 

plus grand nombre de bouffée (40 et 2 bouffées, respectivement). Concernant IL-8, une 

exposition aux émissions de HTP induit une augmentation significative de la sécrétion 

après 12 bouffées (x 3,3), mais cette augmentation n’est pas retrouvée après 40 bouffées.  

Une diminution significative de la sécrétion de MCP-1 et de GRO-α a été observée 

suite aux expositions aux émissions de Mb30W, de HTP et de 3R4F.  Ces diminutions sont 

seulement mesurées pour le temps d’exposition le plus long (120 bouffées) pour la 

Mb30W (x 0,6 et x 0,4 pour MCP-1 et GRO-α, respectivement), mais sont retrouvées pour 

la plupart des temps d’exposition pour le HTP (après 2, 12 et 40 bouffées pour MCP-1 et 

12 et 40 pour GRO-α) et la 3R4F (après 2 bouffées pour MCP-1 et 1 et 2 bouffées pour 

GRO-α). 

 IL-6 IL-8 MCP-1 GROα 

LPS 38,86 ± 0,41 7,32 ± 0,03 3,91 ± 0,21 8 ± 0,69 

Lounge     

40 bouffées 2,14 ± 0,69 0,81 ± 0,36 0,67 ± 0,22 0,68 ± 0,15 

120 bouffées 2,21 ± 1 0,63 ± 0,01 0,62 ± 0,27 0,6 ± 0,04 

Mb18W     

40 bouffées 2,55 ± 1,18 1,13 ± 0,65 0,99 ± 0,08 0,99 ± 0,26 

120 bouffées 2,26 ± 0,63 0,98 ± 0,35 0,77 ± 0,15 0,82 ± 0,16 

Mb30W     

40 bouffées 3,28 ± 0,48 0,87 ± 0,12 0,8 ± 0,15 0,71 ± 0,2 

120 bouffées 2,42 ± 0,16 0,57 ± 0,12 0,63 ± 0,17 0,38 ± 0,11 

HTP     

2 bouffées 0,4 ± 0,03 0,95 ± 0,03 0,61 ± 0,03 0,9 ± 0,06 

12 bouffées 3,03 ± 3,05 3,27 ± 0,48 0,58 ± 0,16 0,73 ± 0,05 

40 bouffées 1,3 ± 1,05 1,33 ± 1,54 0,21 ± 0,14 0,24 ± 0,16 

3R4F     

1 bouffée 1,37 ± 0,55 1,44 ± 0,33 0,97 ± 0,11 0,72 ± 0,06 

2 bouffées 1,45 ± 0,56 1,8 ± 0,86 0,19 ± 0,06 0,24 ± 0,07 
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2.5. Analyse de la corrélation entre la composition des aérosols et la toxicité 

in vitro 

Afin d’essayer d’expliquer les différences de toxicité in vitro observées par la 

composition chimique des différents aérosols, les données de viabilité cellulaire et de 

ratio de glutathion ont été exprimées en fonction des quantités de composés carbonylés 

et de HAP mesurées précédemment. Les courbes de tendance présentées dans la  Figure 

38 permettent d’estimer un coefficient de corrélation entre les différents paramètres 

étudiés. Les données obtenues montrent une corrélation négative entre la quantité de 

composés mesurés dans les aérosols et la viabilité cellulaire. En effet, plus les quantités 

de composés carbonylés ou de HAP augmentent, plus la viabilité cellulaire diminue. 

Cependant les coefficients de corrélation ne sont que de 0,75 et 0,64, respectivement, 

indiquant que d’autres facteurs rentrent en jeu dans la diminution de la viabilité. De la 

même façon, les courbes de corrélation C et D montrent que le stress oxydant augmente 

lorsque la quantité de composés carbonylés et de HAP augmente. Cependant les 

Figure 38. Courbes de tendance et coefficient de corrélation entre les paramètres de toxicité in vitro et les 
quantités de composés chimiques retrouvées dans les émissions d’e-cig (Lounge, Mb18W, Mb30W), de HTP ou 
de 3R4F. (A) Viabilité cellulaire exprimée en fonction des composés carbonylés ; (B) Viabilité cellulaire 
exprimée en fonction des HAP ; (C) Ratio GSSG/GSH exprimé en fonction des composés carbonylés ; (D) Ratio 
GSSG/GSH exprimé en fonction des HAP. R² = coefficient de corrélation 



127 
 

coefficients de corrélation sont assez faibles (0,1663 et de 0,7011, respectivement), 

indiquant, comme pour la diminution de viabilité, que d’autres facteurs rentrent en jeu 

dans l’induction du stress oxydant. 

2.6. Discussion 

L’étude de la viabilité cellulaire effectuée dans nos conditions d’exposition a montré 

que les e-cig testées n’altéraient pas ou peu la viabilité cellulaire, quel que soit le modèle 

d’e-cig, la puissance de celle-ci ou le nombre de bouffées lors de l’exposition. En revanche, 

l’exposition aux émissions de tabac chauffé dans les mêmes conditions a induit une forte 

baisse de viabilité, même si elle est moins rapide qu’avec la cigarette. Nous avons choisi 

pour nos expériences d’exposer les cellules à des aérosols non dilués. Cette méthode est 

décrite comme plus sensible pour comparer les réponses aux émissions des nouveaux 

dispositifs de délivrance de nicotine. C’est ce que suggèrent Bishop et al., qui ont exposé 

un épithélium bronchique humain reconstitué en 3D à des aérosols dilués ou non dilués 

d’e-cig et de cigarette (Bishop et al., 2019). Ils observent également que la fumée de 

cigarette induit plus de mortalité cellulaire que les émissions d’e-cig. Cependant, ils 

mettent en évidence une baisse de viabilité importante (ED50 = 60 bouffées) avec les 

aérosols non dilués après une exposition de 40 bouffées aux aérosols d’e-cig. Ces résultats 

diffèrent de ceux obtenus dans notre étude mais cela s’explique par le fait que les auteurs 

se sont volontairement placés dans des conditions extrêmes en fermant les arrivées d’air 

de l’e-cig. Ces conditions entraînent une augmentation de la température car il y a moins 

d’air pour refroidir la résistance et elles peuvent mener à une génération plus importante 

de composés carbonylés et donc à une cytotoxicité plus importante. Concernant le tabac 

chauffé, actuellement peu d’études comparent sa cytotoxicité à celle de l’e-cig. De plus, la 

plupart de ces études ont été réalisées dans des conditions de cultures immergées 

exposées à des extraits d’aérosols (Ito et al., 2019; Munakata et al., 2018; Sohal et al., 

2019). L’approche par des cellules cultivées en IAL est cependant plus pertinente dans le 

cadre d’étude sur des produits générant des aérosols pouvant être inhalés (Wan et al., 

2009). De plus, les études analysant la cytotoxicité du tabac chauffé sur des cultures en 

IAL sont pour la plupart issues de l’industrie du tabac (Tableau 9). Nos résultats sont 

cependant en accord avec une étude indépendante qui montre que les aérosols de tabac 

chauffé induisent une diminution de la viabilité de cellules épithéliales bronchiques 

humaines (H292) cultivées en IAL. Comme dans notre étude, la diminution de la viabilité 
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cellulaire observée avec le tabac chauffé est plus importante qu’avec l’e-cig mais moins 

qu’avec la cigarette (Leigh et al., 2018). Alors que certaines études expriment leurs 

résultats de viabilité en fonction du nombre de bouffées, ils semblent pertinent 

d’exprimer les données en fonction de la quantité en nicotine, théorique ou mesurée, pour 

rendre compte d’une utilisation réelle (Wang et al., 2019). L’expression des résultats en 

fonction de la quantité de nicotine ne change pas la hiérarchisation des dispositifs vis-à-

vis de la viabilité cellulaire. Ces résultats suggèrent alors que pour une même quantité de 

nicotine, le tabac chauffé est moins cytotoxique que la cigarette mais plus que l’e-cig. 

Le stress oxydant est un des mécanismes impliqués dans la pathogénicité pulmonaire 

de la fumée de cigarette (Rahman and MacNee, 1999). En effet, l’exposition chronique aux 

radicaux libres et aux composés organiques réactifs retrouvés dans les émissions peut 

induire à long terme le dysfonctionnement de nombreux processus cellulaires. Bien que 

les concentrations en composés toxiques soient beaucoup moins importantes dans les 

émissions d’e-cig, elles pourraient être suffisantes pour induire des effets délétères. 

L’analyse du stress oxydant dans les cellules exposées aux différents dispositifs a alors été 

réalisée en mesurant le ratio glutathion oxydé/réduit qui est un bon indicateur de 

l’équilibre redox intracellulaire (Asensi et al., 1999). Les expositions à la cigarette, au 

tabac chauffé et à l’e-cig réglée à 30 W ont induit une augmentation de ce ratio, témoignant 

d’un déséquilibre en faveur des oxydants. L’induction d’un stress oxydant par l’e-cig avait 

déjà été mise en évidence dans plusieurs études (Chatterjee et al., 2019; Pearce et al., 

2020) mais n’avait pas été comparé au tabac chauffé ou à la cigarette. Concernant le tabac 

chauffé, nos résultats vont dans le sens de Wang et al., qui montrent également une 

diminution du taux de glutathion oxydé, mais aussi une augmentation de la quantité 

d’ERO dans une lignée de macrophages cultivée en IAL (Wang et al., 2019). Par contre, ces 

données diffèrent de ce qui avait été présenté par PMI, indiquant que le tabac chauffé 

n’avait pas d’effet sur la génération de ERO et sur le contenu en glutathion (Taylor et al., 

2018). Cette dernière étude a cependant été réalisée sur des cellules en culture immergée 

et sur une lignée cellulaire différente (H292), ce qui peut expliquer la différence de 

résultats. Munakata et al. ont également montré une modification du contenu en 

glutathion dans des cellules BEAS-2B après des expositions aux aérosols de tabac chauffé 

et d’e-cig (Munakata et al., 2018). Nos résultats ont, en plus, permis de mettre en évidence 

une différence de réponse en fonction de la puissance de l’e-cig. En effet, contrairement 

aux émissions de la Mb30W, celles du modèle Lounge et de la Mb18W ne semblent pas 
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modifier le contenu en glutathion des cellules exposées. L’analyse de l’expression de gènes 

impliqués dans les processus de détoxication (CYP1A1 et CYP1B1) et dans la réponse 

antioxydante (HMOX1 et NQO1) ont pu permettre de vérifier si d’autres mécanismes 

cellulaires de défense contre les substances toxiques ont été impactés. De façon 

intéressante, l’expression des quatre gènes analysés a été augmentée pour tous les 

dispositifs testés, y compris le modèle Lounge et Mb18W. La fumée de cigarette et plus 

particulièrement les HAP sont connus pour induire l’expression des gènes CYP1A1 et 

CYP1B1 qui, via l’activation du récepteur Ahr, les métabolisent en produits 

potentiellement génotoxiques (Sacks et al., 2011). Ces enzymes contribuent à 

l’élimination des HAP mais peuvent produire des métabolites intermédiaires hautement 

réactifs et génotoxiques. La surexpression des CYP1A1 et CYP1B1 a été mise en évidence 

dans les poumons de fumeurs (Kim et al., 2004) mais également suite à une exposition in 

vitro aux aérosols d’e-cig (Sun et al., 2019). Ces données sont en accord avec les résultats 

de ce projet et suggèrent que même si les émissions d’e-cig renferment des traces de HAP, 

cela suffit pour induire une surexpression des gènes CYP1A1 et CYP1B1, qui peuvent 

participer à la production de composés génotoxiques (Guengerich, 2008). Les composés 

carbonylés peuvent aussi activer la voie Nrf2 qui intervient dans la réponse antioxydante 

et l’induction de l’expression de HMOX1 et NQO1 qui sont impliqués dans l’élimination des 

ERO (Zhang et al., 2019). Ces composés, bien caractérisés dans la fumée de cigarette ont 

également été retrouvés, en moindre quantité, dans nos analyses des émissions de tabac 

chauffé et d’e-cig ; ils peuvent expliquer l’induction de ces gènes mesurée dans les cellules 

exposées. Ces données illustrent la capacité de tous les dispositifs testés à induire ces 

processus de défenses cellulaires. Dans la fumée de cigarette, les espèces oxydantes sont 

principalement générées par le processus de combustion (Kopa and Pawliczak, 2020) et 

peuvent être corrélées à la quantité totale de composés toxiques dans les émissions. Dans 

notre cas, la quantité plus importante de composés carbonylés générée par l’e-cig réglée 

à la plus forte puissance (Mb30W) pourrait expliquer que cette dernière est la seule à 

induire une altération du contenu en glutathion. En effet, une puissance plus élevée 

signifie une température de chauffe de la résistance plus élevée et un volume de e-liquide 

consommé plus grand et donc une potentielle production d’espèces oxydantes plus 

importante (Haddad et al., 2019; Son et al., 2019; Zhao, 2018). Cependant, il a été montré 

que les émissions d’e-cig peuvent contenir de 10 à 1000 fois moins de radicaux libres que 

la fumée de cigarette (Son et al., 2019). En effet, les résultats précédemment décrits ont 
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été obtenus à différents temps d’expositions selon le dispositif : 120 bouffées pour l’e-cig, 

seulement 12 bouffées pour le tabac chauffé et une seule bouffée pour la cigarette. Il faut 

alors replacer ces temps d’exposition dans le cadre d’une utilisation réaliste : alors que le 

nombre de bouffée pour le tabac chauffé semble raisonnable, 120 bouffées d’e-cig en 1h 

correspond plutôt à une session intense de vapotage (Jones et al., 2020; Lee et al., 2017) 

L’inflammation chronique provoquée par la fumée de cigarette est considérée comme 

jouant un rôle central dans la pathogenèse de maladies respiratoires comme la BCPO ou 

le cancer du poumon. L’augmentation de l’IL-6 observée après des expositions aux trois 

modèles d’e-cig a déjà été décrite dans plusieurs modèles cellulaires exposés à l’e-cig 

(Merecz-Sadowska et al., 2020) et aussi dans le plasma de vapoteurs réguliers (Singh et 

al., 2019). Concernant le tabac chauffé, la réponse biphasique observée dans notre étude 

concernant l’IL-8 (c’est-à-dire une augmentation après 12 bouffées et diminution après 

40 bouffées) a déjà été décrite dans la littérature. Munakata et al. observent cette réponse 

biphasique sur des cellules BEAS-2B exposées à des extraits d’aérosols de tabac chauffé 

et de fumée de cigarette mais également pour GM-CSF, contrairement à notre étude 

(Munakata et al., 2018). Cette différence peut s’expliquer encore une fois par le fait que 

l’étude en question est réalisée sur des cultures de cellules immergées et exposées à des 

extraits d’aérosols et non directement aux aérosols sur des cellules cultivées en IAL. Nous 

avons également mesuré une diminution de la sécrétion de GRO-α et de MCP-1 pour les 

temps d’exposition les plus longs aux émissions d’e-cig, de tabac chauffé et de cigarette. 

Cette diminution a déjà été décrite suite à une exposition de cellules endothéliale humaine 

à la cigarette (Allam et al., 2013). GRO-α joue un rôle majeur dans le recrutement sur le 

site de l’inflammation des neutrophiles qui participent au maintien de l’homéostasie 

tissulaire et à l’aide pour lutter contre les agressions des voies respiratoires notamment. 

MCP-1 est un chimio-attractant pour recruter les monocytes et les macrophages sur les 

tissus inflammatoires. De ce fait, la diminution de GRO-α et de MCP-1 observée dans le cas 

des expositions aux émissions de tabac chauffé et à la fumée cigarette pourrait être 

délétère pour l’immunité des tissus pulmonaires et affecter le bon déroulement de la 

réponse anti-inflammatoire. Ces modulations de la sécrétion des médiateurs de 

l’inflammation peuvent être partiellement expliquées par les quantités de composés 

carbonylés et les HAP mesurées dans les différentes émissions. En effet, certains 

composés carbonylés, notamment les aldéhydes tels que l’acroléine, le formaldéhyde et 

l’acétaldéhyde, sont des irritants pour les voies respiratoires et peuvent déclencher une 
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inflammation (Lino-dos-Santos-Franco et al., 2011; Shields et al., 2017). Le 

benzo(a)pyrène est également un composé pouvant induire la sécrétion de cytokines 

(Chen et al., 2012a). D’autres composés contenus dans les émissions peuvent jouer un rôle 

dans l’induction de la réponse inflammatoire comme les métaux, par exemple (Lerner et 

al., 2015). De plus, le propylène glycol et le glycérol sont des molécules très 

hygroscopiques, c’est-à-dire qu’elles retiennent les molécules d’eau du milieu 

environnant ; elles peuvent de ce fait provoquer un stress hyper osmotique (Fowles et al., 

2013; Frank et al., 1981). La présence de ces composés au niveau des voies respiratoires 

pourraient ainsi altérer le mécanisme de clairance muco-ciliaire et mener à une 

augmentation de la sécrétion de facteurs pro-inflammatoires (Iskandar et al., 2016; 

Munkholm and Mortensen, 2014; Palazzolo et al., 2017).  

Il semble important de rappeler que pour l’ensemble des paramètres étudiés, nous 

avons choisi de nous placer à des temps d’exposition pour lesquels les émissions 

n’induisaient pas une baisse de viabilité supérieure à 50 %. Ceci nous permettant 

d’évaluer les mécanismes de toxicité précoces induits par les différents dispositifs. 

Cependant, ces temps d’exposition sont très différents en fonction du dispositif et ont pu 

impacter les résultats obtenus.  En effet, bien qu’une exposition à une seule bouffée de 

cigarette soit suffisante pour générer du stress oxydant et induire l’expression d’enzymes 

responsables du métabolisme des xénobiotiques, ce nombre de bouffée est peut-être 

insuffisant pour induire une réponse inflammatoire caractéristique d’une exposition à la 

fumée de cigarette. Par ailleurs, certaines protéines de l’inflammation sont sécrétées 

rapidement après la mise en contact avec des composés toxiques alors que d’autres 

interviennent plus tardivement. Pour cette étude, nous avons choisi d’évaluer la sécrétion 

de ces protéines 24h après la dernière exposition mais il faudrait réaliser une cinétique 

complète pour mieux caractériser la réponse inflammatoire induite par ces dispositifs. 

Enfin, les expérimentations in vitro ont été réalisées sur des cellules BEAS-2B qui sont 

largement utilisées dans l’étude des voies respiratoires. Cependant, il serait intéressant 

d’étudier la réponse d’autres modèles cellulaires des voies respiratoires aux émissions 

d’e-cig. Des modèles de cellules primaires mieux différenciées avec la présence de cellules 

ciliées et sécrétrices de mucus pourraient exprimer des réponses différentes aux 

expositions. De plus, l’utilisation de co-cultures ou de cultures 3D serait primordiale pour 

étudier les mécanismes mis en place. 
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Finalement, en reliant les paramètres analysés (viabilité, stress oxydant et réponse 

inflammatoire) aux quantités de composés carbonylés et de HAP mesurées dans les 

différents aérosols, les courbes de corrélations montrent que (i) la diminution de la 

viabilité cellulaire semble partiellement corrélée à la concentration des émissions en 

composés carbonylés et en HAP, (ii) l’augmentation du ratio GSSG/GSH, montre une 

meilleure corrélation avec la quantité de HAP mesurée dans les émissions qu’avec celles 

des composés carbonylés et (iii) les HAP et les composés carbonylés ne jouent qu’un rôle 

mineur dans la réponse inflammatoire induite par les différents dispositifs. En effet, les 

composés carbonylés et les HAP ne représentent qu’une fraction du mélange complexe 

constituant la fumée de cigarette et les émissions de tabac chauffé et d’e-cig. D’autres 

familles de composés toxiques susceptibles d’être présents dans les aérosols d’e-cig et de 

tabac chauffé tels que les métaux, les nitrosamines et les composés organiques volatiles 

par exemple (Li et al., 2019b; Schaller et al., 2016a; Zhao et al., 2016) participent à l’ « effet 

cocktail » et devront également être pris en considération dans l’étude de la toxicité des 

différentes émissions. 
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Évaluation de la toxicité des 
émissions d’e-cig et de cigarette 

dans un modèle de souris BALB/c 
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3. Évaluation de la toxicité pulmonaire des émissions d’e-cig et de 

cigarette dans un modèle de souris BALB/c 

L’étude de la toxicité de l’e-cig et du tabac chauffé s’est d’abord portée sur la 

composition chimique des aérosols, puis sur des expérimentations in vitro. Cependant, il 

est impossible d’identifier les effets des émissions sur l’ensemble d’un organe voire d’un 

organisme à partir de ces seules données. L’exposition d’animaux à ces dispositifs est ainsi 

primordiale pour comprendre et évaluer la pathogénicité potentielle de l’e-cig. Sur les 

quelques études menées sur des modèles in vivo, peu analysent les effets à long terme et 

aucune ne s’est intéressée à l’impact potentiel de la puissance de l’e-cig sur la toxicité. 

C’est pourquoi la dernière partie de ce travail de thèse consiste à l’exposition d’un 

modèle de souris BALB/c à des émissions d’e-cig de troisième génération (Mb18W ou 

Mb30W) pendant 4 jours, 3 mois ou 6 mois. Les effets de ces émissions ont été évalués en 

termes de stress oxydant, de génotoxicité, et de modifications épigénétiques et 

transcriptomiques, puis comparés à ceux de la fumée de cigarette. 
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3.1. Génotoxicité 

3.1.1. Analyse des lésions oxydatives de l’ADN 

La 8-OHdG, un marqueur de lésions oxydatives sur l’ADN a été quantifiée dans le tissu 

pulmonaire des souris exposées aux émissions d’e-cig ou de cigarette pendant 4 jours, 3 

mois ou 6 mois. Les résultats exprimés en ratio par rapport à la quantité de 8-OHdG des 

souris contrôles sont présentés dans la Figure 39. Les émissions du modèle d’e-cig 

Mb18W n’ont jamais induit de changement significatif de la quantité de 8-OHdG quelle 

que fût la durée des expositions. Cependant les émissions du modèle d’e-cig de plus forte 

puissance, Mb30W, ont induit une augmentation significative pour les temps 60 (x1,5) et 

90 minutes (x1,6) des expositions aiguës. Cette augmentation significative est également 

observée après les expositions de 3 mois (x1,8) et 6 mois (x1,2). Concernant la fumée de 

cigarette, elle a induit également une augmentation de la quantité de 8-OHdG aux temps 

4 jours (x1,6), 3 mois (x2) ou 6 mois (x1,4). A noter que les augmentations significatives 

observées avec la Mb30W et la 3R4F après 3 mois d’exposition sont aussi significatives 

par rapport à la quantité mesurée avec la Mb18W. 

Figure 39. Quantité de 8-OHdG mesurée dans l’ADN pulmonaire de souris exposées 30, 60 ou 90 minutes 
à l'e-cig (Mb18W et Mb30W) ou à la 3R4F pendant 4 jours (A), ou 60 minutes pendant 3 mois (B) ou 6 
mois (C) exprimée par rapport à celle des souris contrôles (ctrl) arbitrairement fixée à 1. * p < 0,05 par 
rapport aux souris contrôles ; # p < 0,05 par rapport à Mb18W. 
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3.1.2. Analyse des cassures simple et double brins de l’ADN (test des 

comètes) 

Le test des comètes a été réalisé pour rechercher des lésions primaires de l’ADN dans 

le foie et les poumons des souris exposées aux émissions d’e-cig et de cigarette pendant 4 

jours, 3 mois et 6 mois. Ce test évalue l’occurrence de cassures simple et double brin de 

l’ADN suite à des expositions. Un contrôle positif a été réalisé avec le méthane sulfonate 

de méthyle (MMS), un agent alkylant connu pour ses propriétés génotoxiques. Les 

résultats des tests des comètes sont présentés dans la Figure 40. 

Les tests des comètes classiques indiquent que les expositions de 4 jours et de 3 mois 

aux émissions d’e-cig et de cigarette n’ont pas induit de lésions primaires de l’ADN au 

niveau du foie et des poumons. En revanche, le pourcentage d’ADN altéré au niveau de la 

queue des comètes est significativement plus élevé dans le cas des cellules exposées au 

MMS, témoignant de la validité du test. Puisque les résultats du dosage de la 8-OHdG 

présentés précédemment avaient montré l’existence de lésions oxydatives de l’ADN chez 

les souris exposées pendant 4 jours ou 3 mois aux émissions de Mb30W et de cigarette, 

une étape supplémentaire consistant à incuber l’ADN avec la 8-hydroxyguanine ADN-

glycosylase (hOgg1) a été réalisée pour les souris exposées pendant 6 mois aux différentes 

émissions afin d’augmenter la sensibilité du test. En effet, cette enzyme clive 

spécifiquement les lésions oxydatives au niveau de la 8-oxoguanine et génèrent des 

fragments d’ADN supplémentaires. Ainsi, pour les expositions de 6 mois, alors que le test 

des comètes hOgg(-) ne mesure aucune altération de l’ADN, le test hOgg(+) est en accord 

avec les dosages de 8-OHdG à 6 mois et révèle que les émissions de Mb30W et de 3R4F 

augmentent significativement le pourcentage d’ADN fragmenté retrouvé dans la queue de 

la comète, indiquant une augmentation des lésions oxydatives de l’ADN au niveau 

hépatique et pulmonaire. Cette augmentation n’est pas retrouvée dans le cas d’une 

exposition à la Mb18W. 
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3.1.3. Analyse des aberrations chromosomiques (test des micronoyaux) 

Le test des micronoyaux a été réalisé sur la moelle osseuse pour déterminer si les 

émissions d’e-cig ou de cigarette pouvaient induire des aberrations chromosomiques 

Figure 40. Lésions primaires de l’ADN évaluées par le test des comètes au niveau hépatique (A, C et E) et 
pulmonaire (B, D et F) après expositions de 60 minutes des souris BALB/c aux e-cig (Mb18W, Mb30W) et à la 
3R4F pendant 4 jours (A et B), 3 mois (C et D) ou 6 mois (E et F). Contrôle positif : MMS (méthane sulfonate 
de méthane). hOgg1 (-) : test des comètes classique ; hOgg1 (+) : test des comètes associés à l’enzyme hOgg1. 
* p < 0,05 par rapport aux souris contrôles (ctrl). 
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après des expositions subchronique (3mois) ou chronique (6 mois). Les résultats 

rapportant le nombre de micronoyaux comptés dans les érythrocytes (MNPCE) et le 

rapport du nombre d’érythrocytes polychromatiques (PCE) sur le nombre d’érythrocytes 

normochromatiques (NCE) sont présentés en Figure 41. Le rapport PCE/NCE est indiqué 

pour évaluer la cytotoxicité des traitements effectués sur les cellules de la moelle osseuse. 

Alors qu’une exposition au MMS a induit une augmentation significative du nombre 

de micronoyaux par rapport aux échantillons contrôles, certifiant de la validité du test, 

aucune variation significative n’a été observée dans le nombre de MNPCE quels que 

fussent le dispositif et la durée d’exposition. De plus, aucune variation significative du 

ratio PCE/NCE n’a été observée, témoignant que les tests ont été réalisés dans des 

conditions d’expositions non cytotoxiques. 

Figure 41. Tests des micronoyaux évaluant 
les aberrations chromosomiques après 
une exposition de 60 minutes des souris 
BALB/c aux émissions d’e-cig (Mb18W ou 
Mb30W) ou de cigarette pendant 3 mois 
(A) ou 6 mois (B). MNPCE : Nombre de 
micronoyaux dans les érythrocytes 
polychromatiques ; PCE : érythrocytes 
polychromatiques ; NCE : érythrocytes 
normochromatiques. * p < 0,05 par 
rapport aux souris contrôles (ctrl). 
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3.1.4. Analyse des mutations géniques (test du Pig-A) 

Pour évaluer les mutations géniques induites par les émissions d’e-cig, le test du Pig-

A a été réalisé sur les cellules sanguines des animaux exposés pendant 3 mois ou 6 mois. 

L’effet mutagène est estimé en comptant par cytométrie en flux la fréquence 

d’érythrocytes (RBC pour red blood cells) et de réticulocytes (RET) mutants pour le gène 

Pig-A. La cytotoxicité induite par les expositions est estimée par le pourcentage de RET 

nouvellement formés qui témoigne du bon déroulement de l’hématopoïèse. Les résultats 

sont présentés dans la Figure 42. 

Comme lors des tests précédents, alors que le contrôle positif (ENU) a induit une 

augmentation significative de la fréquence des RET ou RBC mutants, aucune variation 

significative n’a été observée après une exposition aux émissions d’e-cig Mb18W, Mb30W 

ou de cigarette, témoignant de l’absence de mutations géniques. Le pourcentage de RET 

par rapport au nombre de cellules totales ne change pas entre les dispositifs, témoignant 

de l’absence de l’altération de l’hématopoïèse pour les temps d’expositions testés. 

Figure 42. Test du Pig-A évaluant l’induction 
de mutations géniques après expositions de 
60 minutes des souris BALB/c pendant 3 
mois (A) ou 6 mois (B) aux émissions d’e-cig 
(Mb18W ou Mb30W) ou de 3R4F. Les 
résultats sont exprimés en nombre 
d’érythrocytes (RBC) ou de réticulocytes 
(RET) mutants pour le gène Pig-A. Le ratio 
% RET rapporte le pourcentage de 
nouveaux réticulocytes observées. * p < 0,05 
par rapport aux souris contrôles (ctrl). 
ENU : N-nitroso-N-éthylurée, contrôle 
positif. 
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3.2. Modifications épigénétiques 

En plus de ces mécanismes de génotoxicité, la fumée de cigarette peut également 

moduler l’expression du génome par le biais de modifications épigénétiques. La 

méthylation globale de l’ADN, la modification des histones et la dérégulation de miARN 

pourraient notamment jouer un rôle dans la pathogénicité du tabac. L’étude de ces 

modifications dans le cadre d’expositions à l’e-cig pourrait permettre de mettre en 

évidence des mécanismes qui pourraient jouer un rôle dans la potentielle toxicité de ces 

dispositifs. 

3.2.1. Méthylation globale de l’ADN 

La méthylation de l’ADN joue un rôle dans l’initiation de la transcription des gènes. 

L’analyse du taux de méthylation de l’ADN a été réalisée chez les souris exposées pendant 

3 mois ou 6 mois aux émissions des e-cig réglées à 18 W ou 30 W, ou de cigarette. La Figure 

43 rapporte ces résultats. Après 3 mois d’exposition, aucun changement significatif n’a été 

observé chez les souris exposées par rapport aux souris contrôles. En revanche, après 6 

mois d’exposition, une augmentation de la méthylation globale de l’ADN d’un ratio 1,4 a 

Figure 43. Taux de méthylation globale de l'ADN 
mesuré au niveau pulmonaire sur des souris 
BALB/c exposées 60 minutes à l’e-cig (Mb18W et 
Mb30W) ou à la 3R4F pendant 3 mois (A) ou 6 
mois (B). Les résultats sont exprimés en ratio par 
rapport au taux de méthylation mesuré chez les 
souris contrôles (ctrl) dont le ratio a été 
arbitrairement fixé à 1. * p < 0,05. 
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été enregistrée chez les souris exposées aux émissions de Mb18W, Mb30W ou de 

cigarette. 

3.2.2. Analyse de la modification des histones 

Les histones jouent un rôle fondamental dans la compaction de l’ADN en chromatine 

et dans la régulation des fonctions du génome. Toute modification de ces histones peut 

ainsi favoriser ou inhiber la transcription de certains gènes. L’une des principales 

modifications d’histones est l’acétylation, elle est médiée par deux enzymes : l’histone 

acétyltransférase (HAT) et l’histone désacétylase (HDAC). C’est la balance entre ces deux 

enzymes qui détermine l’état d’acétylation des histones et toute dérégulation peut être 

responsable d’une modification de l’expression génique. 

Les activités de HAT et de HDAC ont été mesurées au niveau pulmonaire en réponse 

à des expositions de 3 ou 6 mois aux émissions d’e-cig Mb18W, de Mb30W ou de 3R4F. 

Les résultats sont présentés dans la Figure 44. Aucune variation significative d’activité, ni 

Figure 44. Analyse de l'activité de l'histone acétyltransférase (HAT) et de l'histone désacétylase (HDAC) au niveau 
des poumons de souris BALB/c exposées aux émissions de deux e-cig (Mb18W et Mb30W) ou de 3R4F pendant 3 
mois (A et B) ou 6 mois (C et D). Les résultats sont exprimés en ratio de l’activité mesurée chez les souris contrôles 
(ctrl) dont le ratio a été arbitrairement fixé à 1. 
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du ratio HAT/HDAC n’a été mesurée chez les animaux. Ces résultats sont observés avec 

tous les dispositifs et pour tous les temps d’exposition. 

3.2.3. Analyse des miARN 

Le profil d’expression de 754 miARN a été déterminé au niveau pulmonaire après 

expositions des souris BALB/c à l’e-cig ou à la cigarette pendant 4 jours, 3 mois ou 6 mois. 

La Figure 45 rapporte le nombre de miARN dérégulés d’un facteur d’au moins 1,5 par 

rapport aux souris contrôles (p<0,05) pour les expositions aiguës. Les résultats montrent 

que le nombre total de miARN dérégulés est plutôt similaire entre les 3 temps d’exposition 

à la Mb18W (entre 14 et 17 miARN). En revanche, chez les souris exposées à la Mb30W, 

le nombre total de miARN dérégulés est plus faible à 30 minutes (10 miARN) qu’aux temps 

d’exposition les plus longs (19 miARN à 60 et à 90 minutes). Enfin, c’est après l’exposition 

à la fumée de cigarette (60 min) que l’expression des miARN est la plus altérée avec 30 

miARN dérégulés. 

La Figure 46 répertorie le nombre de miARN dérégulés au niveau pulmonaire après 

des expositions chroniques de 3 mois ou de 6 mois. En ce qui concerne les expositions de 

3 mois, la fumée de cigarette a induit un nombre de miARN dérégulés plus élevé que les 

Figure 45. Nombre de miARN dérégulés au niveau pulmonaire après des expositions de souris BALB/c 30, 60 
ou 90 minutes par jour pendant 4 jours aux émissions d’e-cig (Mb18W ou Mb30W) et à la fumée de cigarette 
par rapport aux souris contrôles non exposées. Les miARN ont été considérés dérégulés quand leur différentiel 
d’expression était d’au moins 1,5 (p<0,05). Les histogrammes en rouge représentent les miARN surexprimés 
et les histogrammes en vert représentent les miARN sous-exprimés dans chaque groupe. 
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émissions de Mb18W ou de Mb30W (11 et 5 miARN dérégulés, respectivement). Cette 

différence n’est plus observée après 6 mois d’exposition : alors que la Mb18W a induit la 

dérégulation de 4 miARN, la Mb30W et la cigarette ont induit la dérégulation de 8 miARN. 

Les listes des miARN dérégulés après les expositions de 4 jours, 3 mois ou 6 mois sont 

rapportées en annexe dans le Tableau S 3, le Tableau S 4  et le Tableau S 5, respectivement. 

 

 

 

 

 

 

Figure 46. Nombre de miARN dérégulés au niveau pulmonaire après des expositions de 60 minutes, 5 
jours/semaine pendant (A) 3 mois ou (B) 6 mois aux émissions d’e-cig ou à la fumée de cigarette par rapport 
aux souris contrôles non exposées. Les miARN ont été considérés dérégulés quand leur différentiel d’expression 
était d’au moins 1,5 (p<0,05). Les histogrammes en rouge représentent les miARN surexprimés et les 
histogrammes en vert représentent les miARN sous-exprimés dans chaque groupe. 
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Parmi les miARN dérégulés par les émissions de Mb18W, de Mb30W et de cigarette 

(Figure 47), très peu de miARN sont communs aux temps d’expositions 4 jours, 3 mois ou 

6 mois. En effet, seul le mir-653 est commun entre les expositions de 3 mois et de 6 mois 

à la Mb18W, le mir-223 pour les expositions de 3 et 6 mois à la Mb30W et le mir-494 pour 

les expositions aiguës et de 6 mois à la cigarette. Enfin, certains miARN dérégulés sont 

communs entre les dispositifs (Figure 48). Concernant les expositions aiguës, 6 miARN 

sont communs entre la Mb18W et la 3R4F, 7 sont communs entre la Mb30W et la 3R4F et 

2 sont communs entre toutes les expositions. Après 3 mois d’exposition, le mir-189 est 

commun à tous les dispositifs. Aucun autre miARN n’est commun à ce temps d’exposition. 

Pour les expositions de 6 mois, deux miARN sont notables : le mir-223 qui est surexprimé 

dans le cas de la Mb30W et sous-exprimé dans celui de la cigarette, et le mir-375 qui est 

surexprimé par la Mb18W et la cigarette. Aucun miARN dérégulé commun n’est retrouvé 

pour les deux modèles d’e-cig après 6 mois. 

Figure 47. Nombre de miARN dérégulés spécifiques et communs entre les expositions aiguës de 60 
minutes, de 3 mois, et de 6 mois de souris BALB/c aux émissions de (A) Mb18W, (B) Mb30W, (C) 3R4F. 

Figure 48. Nombre de miARN dérégulés spécifiques et communs entre les dispositifs (A) Mb18W, (B) 
Mb30W et (C) 3R4F suite aux expositions de souris BALB/c pendant 4 jours, 3 mois ou 6 mois. 
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3.3. Analyses transcriptomiques 

Avec pour objectif de mieux comprendre et de comparer les mécanismes et les voies 

de signalisation dérégulés par les expositions aux deux modèles d’e-cig ou à la cigarette, 

le profil d’expression global des ARNm pulmonaires des souris a été analysé à l’aide de 

microarrays. Cette technique permet d’effectuer une analyse pangénomique et sans à 

priori des modifications transcriptomiques pulmonaires potentiellement induites par les 

différentes expositions. Les dérégulations transcriptomiques ont été considérées 

significatives pour les différentiels d’expression d’un facteur 1,5 avec un p<0,05. 

3.3.1. Expositions aiguës 

Le nombre de gènes dérégulés pour chaque exposition est rapporté dans la Figure 49. 

Avec les critères choisis, aucun gène n’a été dérégulé après les expositions à la Mb18W 

aux temps 30 et 90 minutes et seulement 2 gènes l’ont été à 60 minutes. En revanche, le 

transcriptome a été plus impacté par les expositions à la Mb30W : 40 gènes (33 

surexprimés et 7 sous-exprimés) ont été dérégulés à 30 minutes, 42 gènes (23 

surexprimés et 19 sous-exprimés) à 60 minutes et 132 gènes (31 surexprimés et 101 

sous-exprimés) à 90 minutes. C’est après l’exposition à la fumée de cigarette pendant 60 

Figure 49. Nombre de gènes dérégulés au niveau pulmonaire après des expositions 30, 60 ou 90 minutes par 
jour pendant 4 jours aux émissions d’e-cig (Mb18W ou Mb30W) et à la fumée de cigarette par rapport aux souris 
contrôles non exposées. Les gènes ont été considérés dérégulés quand leur différentiel d’expression était d’au 
moins 1,5 (p<0,05). Les histogrammes en rouge représentent les gènes surexprimés et les histogrammes en vert 
représentent les gènes sous-exprimés dans chaque groupe. 
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minutes que l’expression des gènes pulmonaires a été la plus altérée avec 215 gènes 

dérégulés (141 surexprimés et 74 sous-exprimés). 

La Figure 50 montre l’ensemble des gènes dérégulés dans au moins une des 

conditions et regroupe les dispositifs en fonction du profil d’expression de ces gènes. Cette 

représentation illustre que la cigarette 3R4F, la Mb18W et la Mb30W ont des profils 

d’expression suffisamment différents pour ne pas former un cluster entre elles. En effet, 

pour chaque e-cig, les 3 temps (30, 60 et 90 min) sont strictement regroupés par modèle 

(Mb18W ou Mb30W). De plus, au sein de ces clusters, les expositions de 30 et 60 minutes 

se différencient des expositions de 90 minutes pour les deux e-cig. 

 

 

 

 

Figure 50. Heatmap des gènes dérégulés dans au moins une des conditions. Les gènes 
représentés en rouge sont les gènes surexprimés et ceux représentés en vert sont sous-
exprimés. 
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Les diagrammes de Venn présentés dans la Figure 51 rapportent les gènes communs 

et spécifiques entre les différentes expositions. Ces données mettent en évidence que la 

majeure partie des gènes dérégulés après une exposition aiguë de 30 minutes à la Mb30W 

est retrouvée après une exposition de 60 minutes (19 sur-exprimés et 7 sous-exprimés). 

De plus, une grande partie des gènes dérégulés à 60 minutes sont également dérégulés 

après une exposition de 90 minutes (13 sur-exprimés et 6 sous-exprimés). Mais la 

majorité des gènes dérégulés après 90 minutes d’exposition sont spécifiques à cette 

condition (12 sur-exprimés et 82 sous-exprimés). Enfin, la majorité des gènes dérégulés 

par les expositions à la cigarette sont spécifiques à cette condition (136 sur-exprimés et 

61 sous-exprimés). 

 

3.3.2. Expositions chroniques de 3 et 6 mois 

Pour les expositions de 3 mois et 6 mois le nombre de gènes significativement 

dérégulés est rapporté dans la Figure 52. Contrairement à ce qui a été observé lors des 

expositions aiguës, les expositions chroniques aux émissions de Mb18W ont induit plus 

de dérégulations que celles aux émissions de Mb30W. De plus, alors qu’un plus grand 

nombre de gènes dérégulés a été observé à 6 mois par rapport à 3 mois avec la Mb18W, 

Figure 51. Diagrammes de Venn présentant les gènes dérégulés communs et spécifiques sous-exprimés (A) et 
surexprimés (B) entre les différentes conditions des expositions aiguës. 
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l’inverse a été observé avec la Mb30W. En effet, avec les critères statistiques utilisés, les 

émissions de Mb18W ont induit la dérégulation de 197 (121 surexprimés et 76 sous-

exprimés) et 431 gènes (388 surexprimés et 43 sous-exprimés) après 3 mois ou 6 mois 

d’exposition, respectivement, alors que les émissions de Mb30W ont induit la 

dérégulation de 72 (50 surexprimés et 22 sous-exprimés) et 40 gènes (12 surexprimés et 

28 sous-exprimés) pour ces mêmes temps d’exposition. Comme lors des expositions 

aiguës, ce sont les expositions chroniques à la fumée de cigarette qui ont induit le plus 

grand nombre de gènes dérégulés : 248 gènes (186 surexprimés et 62 sous-exprimés) 

après 3 mois et 615 gènes (336 surexprimés et 279 sous-exprimés) après 6 mois. 

Globalement, les expositions ont induit plus de surexpression de gènes que de sous-

expression. 

 

Les diagrammes de Venn représentés dans la Figure 53 permettent de montrer le 

nombre de gènes dérégulés communs entre les expositions aiguës, de 3 mois et de 6 mois 

pour les différents dispositifs testés (60 min d’expositions/jour). Les résultats révèlent 

Figure 52. Nombre de gènes dérégulés au niveau pulmonaire après des expositions de 60 minutes, 5 
jours/semaine pendant (A) 3 mois ou (B) 6 mois aux émissions d’e-cig ou à la fumée de cigarette par rapport 
aux souris contrôles non exposées. Les gènes ont été considérés dérégulés quand leur différentiel d’expression 
était d’au moins 1,5 (p<0,05). Les histogrammes en rouge représentent les gènes surexprimés et les 
histogrammes en vert représentent les gènes sous-exprimés dans chaque groupe. 
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qu’il n’y a qu’un seul gène commun dérégulé entre les expositions aiguës et sub-

chroniques : il s’agit d’un gène surexprimé à la fois après une exposition aiguë et de 3 mois 

à la Mb30W. Par contre, entre les expositions de 3 mois et de 6 mois le nombre de gènes 

communs est plus importants. En effet, 24 gènes sous-exprimés et 63 surexprimés sont 

communs entre les expositions de 3 mois et 6 mois à la Mb18W, ce qui représente près de 

la moitié (44 %) de la totalité des gènes dérégulés à 3 mois, mais seulement 20 % des 

gènes dérégulés à 6 mois. Pour la Mb30W, seulement 10 gènes (9 sous-exprimés et 1 

surexprimé) sont communs entre les expositions de 3 mois et de 6 mois. Concernant les 

expositions à la fumée de cigarette, un plus grand nombre de gènes sont communs entre 

les différentes expositions. En effet, 30 gènes dérégulés sont communs aux 3 protocoles 

d’exposition et 126 sont communs entre les expositions de 3 mois et de 6 mois. Cinquante 

et un % des gènes dérégulés après des expositions de 3 mois à la cigarette sont aussi 

Figure 53. Diagrammes de Venn rapportant les gènes sous-exprimés (A, B et C) ou surexprimés (D , E et F) 
spécifiques et communs entre les expositions aiguës, de 3 mois et de 6 mois à la Mb18W (A et D), à la Mb30W 
(B et E) et à la cigarette 3R4F (C et F). 
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retrouvés dérégulés après 6 mois, ce qui représente 38 % des gènes dérégulés dans cette 

dernière condition. 

La Figure 54 permet de rapporter le nombre de gènes dérégulés communs et 

spécifiques entre les différents dispositifs testés après les expositions de 3 mois et de 6 

mois. Elle montre qu’après 3 mois, 25 gènes (12 surexprimés et 13 sous-exprimés) sont 

dérégulés communément par toutes les émissions, et que 23 gènes (10 surexprimés et 13 

sous-exprimés) le sont après 6 mois. Cependant, ces gènes dérégulés de manière 

commune ne sont pas les mêmes à 3 mois et à 6 mois. La Figure 54 montre également 

qu’après 3 mois d’exposition, 22 % des gènes dérégulés (16 gènes sur un total de 72) par 

les émissions de Mb30W le sont aussi par celles de Mb18W ; après 6 mois d’exposition, ce 

ratio atteint 28 % (11 sur 40). Certains gènes dérégulés par les émissions de Mb18W sont 

communs avec ceux dérégulés par la fumée de cigarette : 53 gènes (39 surexprimés et 14 

sous-exprimés) après 3 mois et 192 (183 surexprimés et 9 sous-exprimés) après 6 mois 

Figure 54. Diagrammes de Venn représentant les gènes sous-exprimés (A et B) et surexprimés (C et D) 
communs et spécifiques après une exposition de 3 mois (A et C) ou de 6 mois (B et D) entre les dispositifs 
(Mb18W, la Mb30W et cigarette). 
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d’exposition. Par ailleurs, 103 gènes (60 surexprimés et 43 sous-exprimés) et 215 gènes 

(195 surexprimés et 10 sous-exprimés) sont dérégulés après 3 et 6 mois d’exposition à la 

Mb18W, respectivement. Cependant, c’est avec la fumée de cigarette que le nombre de 

gènes spécifiquement dérégulés est le plus important avec 167 gènes pour les expositions 

de 3 mois (132 surexprimés et 35 sous-exprimés) et 398 gènes pour celles de 6 mois (142 

surexprimés et 256 sous-exprimés).  

3.3.3. Analyses fonctionnelles des gènes dérégulés 

Pour aller plus loin dans l’étude des effets toxicologiques des émissions d’e-cig et de 

de cigarette, une analyse fonctionnelle des gènes dérégulés a été réalisée à l’aide du 

logiciel Ingenuity Pathway Analysis (IPA). Cet outil permet d’identifier les voies de 

signalisation les plus impactées en fonction du nombre et de la fonction des gènes 

dérégulés impliqués dans celles-ci. Cette analyse a été effectuée pour les expositions 

aiguës de 60 minutes et les expositions chroniques. 

Pour les expositions aiguës, 17 voies de signalisation sont apparues significativement 

dérégulées (p<0,05) par les émissions de la Mb30W et 80 voies par la fumée de cigarette. 

Les expositions aiguës aux émissions de Mb18W, n’ayant modifié significativement que 2 

gènes, aucune voie de signalisation n’a été associée. Concernant les expositions de 3 mois, 

88 voies de signalisation ont été impactées par les émissions de Mb18W, 26 par celles de 

la Mb30W et 48 par celles de la cigarette. Enfin, après 6 mois d’exposition, la dérégulation 

de 26 voies de signalisation a pu être mise en évidence pour la Mb18W, contre 29 voies 

pour la Mb30W et 55 pour la cigarette. Les Figure 55,Figure 56 etFigure 57 montrent 

respectivement les 25 voies de signalisation les plus impactées (top 25), classées en 

fonction de leur significativité, par les expositions aiguës, de 3 mois ou de 6 mois. Les voies 

ont également été réparties dans des fonctions biologiques plus globales et le nombre de 

gènes impliqués dans chaque fonction est également rapporté dans ces figures. 
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Figure 55. Top 25 des voies de signalisation dérégulées classées en fonction de leur significativité (-log(p-val)) 
suite aux expositions aiguës aux émissions de (A) Mb30W et (B) 3R4F. Les voies dérégulées ont été classés par 
fonctions biologiques et les diagrammes circulaires représentent la proportion de gènes dérégulés pour 
chaque fonction. 
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Figure 56. Top 25 des voies de signalisation dérégulées classées en fonction de leur significativité (-
log(p-val)) suite aux expositions de 3 mois aux émissions de (A) Mb18W, (B) Mb30W et (C) 3R4F. Les 
voies dérégulées ont été classés par fonctions biologiques et les diagrammes circulaires représentent 
la proportion de gènes dérégulés pour chaque fonction. 
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Figure 57. Top 25 des voies de signalisation dérégulées classées en fonction de leur significativité (-log(p-
val)) suite aux expositions de 6 mois aux émissions de (A) Mb18W, (B) Mb30W et (C) 3R4F. Les voies 
dérégulées ont été classés par fonctions biologiques et les diagrammes circulaires représentent la 
proportion de gènes dérégulés pour chaque fonction. 
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Pour les expositions aiguës, les résultats montrent que les deux fonctions biologiques 

les plus affectées sont la réponse inflammatoire et le métabolisme des xénobiotiques en 

ce qui concerne les émissions de Mb30W et à la fumée de cigarette. Les voies de 

signalisation dérégulées le sont cependant de manière nettement plus significative pour 

une exposition à la fumée de cigarette que pour les émissions de Mb30W. De plus, le 

nombre de gènes dérégulés et impliqués dans les différentes voies est également plus 

important chez les souris exposées à la cigarette. Par exemple, seulement 6 et 7 gènes sont 

respectivement dérégulés dans la réponse inflammatoire et le métabolisme des 

xénobiotiques pour la Mb30W lorsque 105 et 81 gènes le sont pour la cigarette (Figure 

55). 

Concernant les expositions de 3 mois, les émissions des deux modèles d’e-cig 

induisent majoritairement une modification de la réponse inflammatoire et de 

l’homéostasie cellulaire. A noter que pour ces dispositifs, quelques voies impliquées dans 

le stress oxydant sont également affectées. Pour les expositions à la cigarette, la majorité 

des voies dérégulées sont impliquées dans le métabolisme des xénobiotiques, en 

particulier la biotransformation des HAP, mais certaines mettent également en évidence 

une réponse inflammatoire, un stress oxydant et une altération de l’homéostasie 

cellulaire. De par un plus grand nombre de gènes modulés, la significativité des 

dérégulations des voies de signalisation est plus importante après exposition à la fumée 

de cigarette qu’après celles aux émissions d’e-cig, et légèrement plus élevée après 

expositions à celles de Mb18W qu’après expositions à celles de Mb30W (Figure 56). 

Après 6 mois d’exposition, la fonction la plus impactée par la fumée de cigarette est 

la réponse inflammatoire avec 199 gènes dérégulés contre 22 et 8 gènes modulés pour la 

Mb18W et la Mb30W, respectivement. De la même façon, la seconde fonction la plus 

affectée par la fumée de cigarette est le métabolisme des xénobiotiques avec 88 gènes 

impliqués alors que 31 gènes sont impliqués dans le cas des expositions à la Mb18W et 5 

gènes pour la Mb30W. La tendance observée après les expositions aiguës et de 3 mois se 

constate également après 6 mois : les voies de signalisation sont plus significativement 

dérégulées et impliquent plus de gènes après exposition à la fumée de cigarette (Figure 

57). 
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3.4. Discussion 

Les expositions des animaux ont été réalisées strictement par voie nasale selon la 

méthode « nose-only ». Ce protocole permet de réduire les effets systémiques de la 

nicotine et des autres substances présentes dans les émissions qui pourraient pénétrer 

par voie cutanée dans le cas de l’utilisation de chambres d’exposition « corps entier » 

(Oyabu et al., 2016). De plus, la méthode « nose-only » permet un contrôle plus précis de 

l’atmosphère dans laquelle les animaux respirent et évite que l’air expiré par une souris 

n’influe sur les autres (Pauluhn and Thiel, 2007). La limite de ces expositions par voie 

nasale est qu’elles nécessitent la contention des animaux, ce qui peut être la source d’un 

stress non négligeable. 

Comme pour les expositions in vitro, il n’existe pas à l’heure actuelle de profil de 

bouffée standardisé pour l’évaluation de l’impact de l’e-cig sur les animaux. Le choix du 

profil de bouffée s’est alors porté sur le même profil que celui adopté lors de la 

caractérisation chimique et de l’étude in vitro : le profil HCI. La connaissance des 

différents paramètres étudiés (températures, quantité de composés carbonylés et de 

HAP) nous permet d’affirmer que les émissions ne sont pas générées dans des conditions 

extrêmes mais qu’elles correspondent plutôt à des conditions réalistes. Cependant, la 

machine à fumer utilisée pour les expériences in vivo comporte une chambre de 

condensation et dilue les aérosols pour les délivrer aux vingt-quatre souris 

simultanément. Ces différences, bien que n’affectant pas la génération des aérosols, 

pourraient impacter la quantité finale de produits toxiques délivrée aux animaux. Pour 

pallier à cela, le dosage plasmatique de la cotinine, un métabolite de la nicotine, pourra 

être réalisé et nous permettra de rapporter la quantité de nicotine que les souris ont 

inhalée et de mieux contrôler les niveaux d’exposition aux différents dispositifs. 

Il est aujourd’hui admis que la fumée de cigarette comporte un grand nombre de 

composés cancérogènes. Certains de ces composés peuvent produire des adduits et des 

lésions de l’ADN, qui constituent des étapes importantes dans le processus de 

cancérogénèse. Le stress oxydant est un phénomène qui peut être induit par ces composés 

et mener à l’oxydation de bases nucléotidiques puis à des cassures de l’ADN. Durant notre 

étude, nous avons pu mesurer une augmentation de la concentration pulmonaire en 8-

OHdG, un marqueur de lésions oxydatives de l’ADN, chez les souris exposées de manière 

aiguë ou chronique à la fumée de cigarette ou aux émissions de Mb30W. Ces résultats 
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témoignent que l’e-cig, réglée à forte puissance est, comme la cigarette, capable de générer 

un stress oxydant au niveau pulmonaire chez la souris. Ce stress est induit rapidement 

dès 4 jours d’exposition et se maintient dans les expositions chroniques de 3 et 6 mois. 

Cette augmentation du stress oxydant a déjà été mise en évidence in vivo dans la 

littérature mais une seule étude prend également en compte le réglage de la puissance de 

l’e-cig (Cirillo et al., 2019).  Ainsi, dans des poumons de rats, Cirillo et al. montrent que les 

émissions d’e-cig réglées à 40 W augmente la production de ERO par rapport aux e-cig 

réglées à 8 W. La capacité d’induction du stress oxydant de l’e-cig pourrait dépendre de la 

composition des émissions en composés carbonylés. En effet, nos données de 

caractérisation chimique ont démontré que l’e-cig réglée à forte puissance émet deux fois 

plus de composés carbonylés que celle réglée à faible puissance. Bien que les deux 

paramètres puissent être corrélés, les composés carbonylés ne sont pas les seuls 

constituants des émissions d’e-cig impliqués dans le stress oxydant et d’autres composés 

non mesurés, pourraient également jouer un rôle.  

L’oxydation des guanosines peut mener à des cassures simple et double brin de l’ADN 

et peut être corrélée avec le taux de mutagénicité dans les cellules de mammifères (Cooke 

et al., 2003). Pour vérifier cette hypothèse, nous avons d’abord réalisé des tests des 

comètes au niveau pulmonaire et hépatique. Étonnamment, les résultats obtenus lors des 

expositions aiguës et de 3 mois ont été négatifs pour les expositions à l’e-cig et à la 

cigarette. En effet, de nombreuses études des années 1990 montrent que la cigarette peut 

induire des cassures des brins d’ADN sur des lignées cellulaires, des cellules primaires et 

in vivo chez des rongeurs (DeMarini, 2004). Pour les expositions de 6 mois, les tests des 

comètes ont alors été complétés par l’utilisation de l’enzyme hOgg1 qui clive 

spécifiquement l’ADN au niveau des lésions oxydatives. Avec ce test des comètes hOgg1+, 

nous avons pu mettre en évidence des fragments d’ADN chez les souris exposées pendant 

6 mois aux émissions de cigarette classique, ou d’e-cig Mb30W. Ces données confirment 

l’existence de lésions oxydatives de l’ADN chez ces souris. Ces lésions, probablement 

consécutives à un stress oxydant, pourraient être les premières étapes d’un processus de 

pathogénicité des émissions d’e-cig si elles ne sont pas réparées. Cependant, dans notre 

étude, les aérosols d’e-cig et de cigarette n’ont induit ni aberrations chromosomiques 

(micronoyaux), ni mutagénicité (Pig-A) chez des souris exposées jusqu’à 6 mois. 

Dalrymple et al. montrent, contrairement à nos résultats, que des expositions à la fumée 

de cigarette peuvent induire des cassures de l’ADN dès 3 semaines d’exposition (1h/jour 
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et 5 fois/semaine) chez des rats, par contre, en concordance avec nos résultats, ils ne 

retrouvent aucune augmentation significative du nombre de mutations du gène Pig-A et 

du nombre de micronoyaux après 6 semaines d’exposition (Dalrymple et al., 2016). 

D’autres résultats confirment l’absence de micronoyaux suite à des expositions de 

rongeurs à la cigarette (Miert et al., 2008; Schramke et al., 2014). Il a été montré que les 

mécanismes de réparation  de l’ADN se mettent rapidement en place au niveau 

pulmonaire à la suite d’une exposition à la cigarette et que des cassures simple brin 

pouvaient être réparées dès 60 minutes après la dernière exposition (Tsuda et al., 2000).  

Ces données pourraient alors expliquer les résultats négatifs observés pour les différents 

tests de mutagénicité. Les mécanismes cellulaires de réparation mis en place seraient 

suffisants dans le cadre de nos conditions d’exposition pour empêcher que les lésions 

oxydatives de l’ADN observées perdurent. Cependant, il faut rappeler que les tests des 

micronoyaux et du Pig-A ont été respectivement réalisés sur des prélèvements de moelle 

osseuse et de sang. Ils ne reflètent donc pas directement les effets des émissions sur le 

poumon. Deux études de génotoxicité ont déjà été réalisées suite à des expositions de 

rongeurs aux émissions d’e-cig (Canistro et al., 2017; Lee et al., 2017). La première met en 

évidence des lésions primaires de l’ADN au niveau systémique et des micronoyaux sur les 

réticulocytes ; la deuxième recense la présence d’adduits issus des aldéhydes et des 

nitrosamines. Cependant, ces deux études se placent dans des conditions d’exposition 

plus intenses que les nôtres (11 cycles de 2 x 6 secondes de bouffée, 5 fois/semaine 

pendant 4 semaines pour la première et des expositions de 3h/jour, 5 fois/semaine, 

pendant 3 semaines pour la deuxième). Il serait cependant intéressant de mesurer 

d’autres adduits de l’ADN, comme ceux retrouvés par Lee et al. (1,N2-propano-

désoxyGuanosine) pour vérifier s’ils sont également retrouvés avec nos conditions 

d’exposition. Les mécanismes de réparation de l’ADN les plus représentés dans les tissus 

pulmonaires de souris sont la réparation par excision de nucléotides et par excision de 

base (David et al., 2007). Les activités de protéines réparatrices de l’ADN impliquées 

respectivement dans ces mécanismes, XPC (Xeroderma pigmentosum complementation 

group C) et OGG1/2 (8-Oxoguanine glycosylase) (Radicella et al., 1997; Sugasawa et al., 

1998) pourraient être de bons indicateurs supplémentaires pour évaluer l’effet 

génotoxique des émissions d’e-cig. 

En plus des modifications directes du génome, la fumée de cigarette peut aussi être 

responsable d’altérations de mécanismes épigénétiques (Kopa and Pawliczak, 2018; Zong 
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et al., 2019). En effet, de nombreuses études ont démontré l’existence de modifications 

épigénétiques chez les fumeurs réguliers. Ces modifications sont impliquées dans la 

dérégulation de l’expression génique menant aux processus de pathogénicité de la 

cigarette. Dans un premier temps, l’étude de la méthylation globale de l’ADN a été 

effectuée dans les poumons des souris exposées pendant 3 ou 6 mois aux émissions d’e-

cig (Mb18W et Mb30W), ou de cigarette. Alors qu’aucune modification n’a été observé 

après 3 mois d’exposition, une légèrement augmentation de la méthylation globale de 

l’ADN d’environ 30 % a pu être mise en évidence après 6 mois d’exposition aux émissions 

des deux modèles d’e-cig et à la cigarette, sans différence entre les différents dispositifs. 

Dans la littérature, les études sur la fumée de cigarette rapportent plutôt une 

hypométhylation globale de l’ADN chez l’Homme (Freudenheim et al., 2019). Cependant, 

la plupart des études sont menées sur les cellules sanguines pour faciliter les 

prélèvements et témoignent plutôt des effets systémiques. L’état de méthylation de l’ADN 

pourrait alors être différent au niveau pulmonaire. De plus, les individus inclus dans ces 

études sont souvent des fumeurs réguliers de plus de 50 ans, exposés donc à plus long 

terme que nos animaux. Une étude de 8 semaines sur des souris exposées pendant 

3h/jour à la fumée de cigarette a quantifié les régions où la méthylation de l’ADN est 

altérée. Elle montre que certaines régions sont hyperméthylées, mais globalement, elle 

met en évidence un plus grand nombre de régions pour lesquelles la méthylation est 

diminuée (Phillips and Goodman, 2009). La fumée de cigarette influe sur l’état de 

méthylation par le biais des dommages à l’ADN qu’elle peut induire. En effet, lors de 

lésions de l’ADN, des mécanismes de réparation se mettent en place et la DNMT1 est 

recrutée au niveau du site endommagé (Jin and Robertson, 2013). L’activation de cette 

enzyme induit alors une hyperméthylation des ilots CpG qui vise à inhiber le gène 

endommagé pendant la phase de réparation (Cuozzo et al., 2007; Mortusewicz et al., 

2005). Les résultats issus de nos travaux pourraient alors témoigner de mécanismes de 

réparation de l’ADN en réponse aux lésions provoquées par les composés chimiques 

toxiques présents dans les émissions. D’après les données de nos analyses 

transcriptomiques, l’expression du gène de DNMT1 n’est pas modifiée mais il serait alors 

intéressant de mesurer directement l’activité enzymatique au niveau pulmonaire des 

souris exposées.  De plus, il serait pertinent d’analyser la méthylation spécifique de 

certains gènes impliqués dans les mécanismes de toxicité et de cancérogénèse (oncogènes 

ou gènes suppresseurs de tumeurs) induits par la fumée de cigarette tels que CDKN2A 
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(Palmisano et al., 2000), p53 et KRAS (Gao et al., 2017) afin de vérifier s’ils sont également 

modifiés par les émissions d’e-cig. 

La structure de la chromatine, médiée par les histones, joue également un rôle 

important dans la régulation de l’expression génique en contrôlant l’accessibilité des sites 

promoteurs de gènes notamment. Quelques études mettent en évidence des modifications 

des histones, et ainsi de la structure de la chromatine, suite à des expositions à la fumée 

de cigarette, mais le lien direct avec les pathologies respiratoires n’est pas encore 

clairement défini (Sundar and Rahman, 2016). Aucune étude ne s’est encore intéressée à 

ce paramètre dans le contexte d’expositions aux émissions d’e-cig. Il a déjà été montré que 

des expositions aiguës à la fumée de cigarette chez des souris induisaient une 

augmentation de l’expression de HDAC, de HAT et de phosphorylases, alors que des 

expositions chroniques induisaient une diminution de l’expression de ces enzymes (Yao 

and Rahman, 2011). Les données que nous avons obtenues dans notre étude ne montrent 

pas de modifications de l’activité des enzymes responsables de l’acétylation (HAT) et de 

la désacétylation des histones (HDAC) dans les poumons des souris exposées pendant 3 

mois et 6 mois aux émissions d’e-cig ou de cigarette. Ces résultats diffèrent de ce qui est 

retrouvé dans la littérature sur le sujet. Ceci pourrait être expliqué par plusieurs raisons. 

D’une part, il existe plusieurs classes de HDAC. La méthode que nous avons utilisée ne 

permet de détecter que celles de classe I, IIB et IV, connues pour être sensibles à la fumée 

de cigarette (Zong et al., 2019), et non celles de classe IIA et III qui peuvent également être 

modulées par la réponse à la fumée de cigarette, comme la Sirtuin-1 (SIRT1) par exemple, 

qui a été montrée dérégulée suite à une exposition in vitro et in vivo à la fumée de cigarette 

(Conti et al., 2018; Pace et al., 2016; Ting et al., 2016). Il serait alors peut-être intéressant 

de mesurer également ces dernières classes d’HDAC. D’autre part, bien que le ratio des 

activités HAT/HDAC, qui est un indicateur de la modification de l’état d’acétylation des 

histones, ne soit pas modifié dans nos conditions expérimentales, certaines modifications 

spécifiques sur les histones H3 et H4 pourraient exister. Nous avons tenté d’analyser 

directement des modifications spécifiques d’histones connues pour être affectées par 

l’exposition à la fumée de cigarette (H3K9ac, H3S10ph, H3K9me, H3K27me et H3K4me). 

Les méthodes utilisées n’ont cependant pas permis l’obtention de résultats interprétables. 

Les miARN contribuent également aux mécanismes épigénétiques, cette fois-ci post-

transcriptionnels, en jouant un rôle central dans la régulation négative de l’expression 
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génique. Ce sont de petits ARN non codants capables de s’apparier sur des ARNm cibles 

et d’empêcher leur traduction. Même si la fonction précise de la majorité d’entre eux, 

c’est-à-dire l’identité de toutes leurs cibles, reste à définir, les miARN sont reconnus pour 

être impliqués dans la majorité des processus biologiques et/ou pathologiques. La 

méthode des OpenArrays que nous avons utilisée nous a permis d’analyser l’expression 

pulmonaire de 754 miARN. Ce sont les expositions aiguës qui ont induit le plus de 

dérégulations de miARN. Cependant, aucun de ces miARN n’a été retrouvé dérégulé après 

les expositions chroniques. Cela pourrait témoigner de mécanismes initiaux de réponse 

aux émissions d’e-cig et de cigarette mais auxquels l’organisme des souris se serait par la 

suite adapté. C’est pourquoi nos premières analyses bioinformatiques se sont d’abord 

focalisées sur les miARN dérégulés après 3 mois et 6 mois d’exposition. En effet, ces 

dérégulations pourraient être de meilleurs marqueurs d’effets à long terme sur les 

animaux. A ce jour, trois études ont analysé l’expression du mirnome suite à des 

expositions à l’e-cig. Une étude sur des cellules primaires d’épithélium bronchique 

humain exposées à des extraits d’aérosols d’e-cig pendant 48 h a validé la dérégulation de 

8 miARN, mais aucun n’est en commun avec nos résultats (Solleti et al., 2017). Deux autres 

études ont été réalisées chez l’Homme au niveau systémique : la première n’a détecté 

aucune modification chez des individus ayant vapoté pendant 4 semaines (Song et al., 

2020), et la deuxième réalisée sur des utilisateurs réguliers d’e-cig ou de cigarette met en 

évidence 17 miARN dérégulés avec l’e-cig et 24 avec la cigarette, mais aucun de ces miARN 

n’est en commun avec ceux que nous avons mis en évidence (Singh et al., 2020). 

La validation fonctionnelle des miARN dérégulés n’a pas été réalisé au cours de ces 

travaux de thèse mais elle sera abordée au laboratoire lorsque des miARN candidats 

auront été sélectionnés. Cependant, des analyses bio-informatiques préliminaires 

permettent d’avoir une première vision de leur implication. Pour initier ces analyses, nous 

nous sommes intéressés aux miARN dérégulés à la fois par les émissions d’e-cig et de 

cigarette. Deux premiers miARN ont alors attiré notre attention. Le miR-189 est sous-

exprimé après expositions de 3 mois aux émisisons d’e-cig ou à la fumée de cigarette. Il 

est alors peut-être témoin d’une réponse induite par les deux types d’émissions. 

Cependant, le miR-189 n’a pas encore de fonction décrite dans la littérature. Ainsi, l’étude 

plus approfondie de la fonction de ce miARN pourrait permettre de mieux comprendre 

les mécanismes de réponse commun entre l’e-cig et la cigarette et d’évaluer le rôle de ce 

miARN dans leur potentielle toxicité à long terme.  Le miR-223, quant à lui, est dérégulé à 
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la fois par les expositions de 3 et 6 mois aux émissions de Mb30W et par les expositions 

de 6 mois à la fumée de cigarette.  De façon intéressante, il est surexprimé après 

expositions à la Mb30W mais sous-exprimé après expositions à la cigarette. Ce miARN a 

déjà été mesuré surexprimé chez la souris, mais suite à des expositions de seulement 3 

semaines à la cigarette (Leuenberger et al., 2016). Il est décrit comme suppresseur de 

tumeur dans le cadre du cancer du poumon. La sous-expression de miR-223 favoriserait 

la tumorigenèse et serait médiée par p53 tandis que la surexpression inhiberait la 

prolifération cellulaire (Luo et al., 2019). Ce miARN serait, dans un premier temps, 

protecteur face aux agressions des produits toxiques contenus dans la cigarette, puis 

après des expositions de 6 mois à la cigarette, sa sous-expression pourrait alors favoriser 

l’apparition de tumeur. La surexpression observée suite aux expositions aux émissions de 

Mb30W pourrait alors indiquer que le tissu pulmonaire se défend contre des agressions 

chimiques, même après 6 mois.  

Afin de préciser ou d’identifier la fonction des miARN dont l’expression pulmonaire 

a été modifiée par l’exposition aux émissions d’e-cig et de cigarette, il est, dans un premier 

temps, possible d’utiliser des algorithmes de prédiction de cibles tels que TargetScan et 

miRDB. Ces algorithmes se basent sur des données de complémentarité de séquence et 

thermodynamiques afin de prédire une interaction et sa stabilité entre de potentiels 

ARNm cibles et un miARN (Min and Yoon, 2010). En croisant les listes prédictives d’ARNm 

cibles générées pour chaque miARN dérégulé et celles des gènes effectivement sous- et 

sur-exprimés recensées par nos analyses transcriptomiques, certains miARN ont retenu 

notre attention. Le gène slc7a11, sous-exprimé suite aux expositions chronique aux 

émissions de Mb18W, est par exemple retrouvé comme cible possible de 3 miARN 

dérégulés : le miR-375 surexprimé suite aux expositions de 6 mois aux émissions de 

Mb18W et de cigarette et les miR-764-5p et -448 surexprimés après expositions de 6 mois 

à la fumée de cigarette. Le gène slc7a11 code pour une protéine qui est impliquée dans le 

transport de la cystéine, un acide aminé précurseur dans la biosynthèse du glutathion, et 

qui joue ainsi un rôle dans l’équilibre redox intracellulaire (Koppula et al., 2018). La 

surexpression des miR-375, miR-764-5p et miR-448 pourrait être responsable de la 

diminution d’expression de slc7a11 et modifier ainsi la réponse au stress oxydant induite 

par les expositions aux différents dispositifs. La dérégulation de miR-375 semble d’autant 

plus intéressante que ce miARN, connu pour jouer un rôle dans un grand nombre de 

fonctions biologiques, est surtout décrit comme étant protecteur contre la tumorigenèse 
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dans de nombreux types de cancer (Yan et al., 2014). La surexpression de miR-375 

observée suite à nos expositions correspond peut-être à un phénomène compensatoire 

face aux processus biologiques potentiellement dérégulés par les émissions des différents 

dispositifs (Yan et al., 2014). Cette approche méthodologique visant à identifier la fonction 

des miARN et leur rôle dans la réponse aux effets respectivement induits par les aérosols 

d’e-cig et la fumée de cigarette sera appliquée à l’ensemble des miARN spécifiquement 

dérégulés par ces émissions. La validation fonctionnelle des miARN candidats 

sélectionnés sur la base des analyses bio-informatiques sera assurée par transfections des 

pré- ou anti-miARN correspondants dans des modèles de cellules pulmonaires, puis par 

analyses transcriptomiques. 

Dans l’objectif d’apporter de nouvelles données mécanistiques concernant les effets 

des émissions d’e-cig, une analyse transcriptomique pangénomique a été effectuée au 

niveau pulmonaire sur les souris exposées. Cette méthode permet d’analyser sans à priori 

les dérégulations induites par les deux modèles d’e-cig d’une part, mais aussi de les 

comparer à celles induites par la fumée de cigarette d’autre part. Les résultats obtenus 

lors des expositions aiguës montrent que l’e-cig réglée à forte puissance induit la 

dérégulation de plus de gènes que celle réglée à faible puissance, mais moins que la 

cigarette classique. De façon intéressante, les altérations transcriptomiques semblent 

suivre un effet dose-réponse pour la Mb30W, avec les expositions de 90 minutes qui 

induisent la dérégulation d’un plus grand nombre d’ARNm que celles de 60 et 30 minutes. 

Après 3 mois et 6 mois d’exposition, la tendance entre les deux modèles d’e-cig s’inverse 

puisque c’est la Mb18W qui induit le plus grand nombre de gènes dérégulés par rapport 

à la Mb30W. C’est la première fois qu’une telle différence est mise en évidence mais 

l’analyse de nos résultats ne nous permet pas de l’expliquer clairement. Ces résultats sont 

peut-être représentatifs de mécanismes mis en place plus précocement suite aux 

expositions à l’e-cig de plus forte puissance. Les concentrations en composés toxiques 

plus élevées dans les émissions de Mb30W par rapport à celles du modèle Mb18W 

auraient pu induire des mécanismes d’adaptation plus rapidement après les expositions. 

Il pourrait donc être intéressant d’exposer des souris à des temps intermédiaires (1 mois 

par exemple) pour examiner la cinétique des altérations transcriptomiques induites par 

les émisisons d’e-cig. En revanche, c’est toujours la cigarette qui provoque le plus de 

dérégulations en comparaison aux deux modèles d’e-cig. Cette différence entre cigarette 

et e-cig a déjà été mise en évidence dans la littérature, notamment au laboratoire sur des 
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cellules BEAS-2B (Anthérieu et al., 2017), mais aussi sur un modèle in vivo de souris 

C57BL/6 exposé pendant 3 semaines (Lee et al., 2018). Cependant, c’est la première fois 

que les différences observées entre deux e-cig réglées à des puissances différentes sont 

décrites, d’autant plus dans un modèle in vivo exposé à court, moyen et long terme. Pour 

essayer d’apporter des premières réponses quant aux modifications transcriptomiques 

observées, nous avons effectué une analyse fonctionnelle des gènes dérégulés dans les 

différentes conditions testées. Il apparaît d’abord que les voies dérégulées par la fumée 

de cigarette le sont plus significativement que par les émissions d’e-cig. De plus, malgré le 

plus grand nombre de gènes dérégulés par les émissions de Mb18W, la significativité des 

voies dérégulées est très similaire avec celle mesurée pour les expositions aux émissions 

de Mb30W. Sans surprise, suite aux expositions à la fumée de cigarette, les fonctions 

biologiques les plus impactées sont le métabolisme des xénobiotiques et la réponse 

inflammatoire. La surexpression des voies du métabolisme, et notamment de la voie AhR, 

est caractéristique d’une réponse aux HAP comme ceux que nous avons dosés dans la 

fumée de cigarette. Les gènes surexprimés de cette voie sont notamment ceux des 

cytochromes CYP1A1 et CYP1B1, que nous avons également retrouvés surexprimés dans 

nos expérimentations in vitro. Ces enzymes peuvent être impliquées dans la 

transformation de xénobiotiques en métabolites intermédiaires très réactifs pouvant 

causer des adduits et, à plus long terme, des lésions de l’ADN. Des voies impliquées dans 

le métabolisme des xénobiotiques sont également retrouvées dans les voies 

significativement dérégulées par les expositions aux e-cig. Cependant, les gènes dérégulés 

dans ce cas codent plutôt pour une alcool déshydrogénase (ADH7) des aldéhydes 

déshydrogénases (ALDH18A1, ALDH1L2 et ALDH3A1) qui pourraient être impliquées 

dans le métabolisme de composés carbonylés tels que ceux identifiés dans les émissions 

d’e-cig (Ahmed Laskar and Younus, 2019), mais plus probablement dans la voie de 

biotransformation du propylène glycol, composé majoritaire des aérosols d’e-cig 

(Bornhorst and Mbughuni, 2019). Il est intéressant de noter que l’expression de CYP1A1 

n’est pas modifiée et que celle de CYP1B1 est sous-exprimée, ce qui démontre finalement 

l’absence d’activation de la voie AhR, en cohérence avec les quantités de HAP, mesurées à 

l’état de trace dans les émissions d’e-cig. Une étude réalisée sur des cellules de 

l’épithélium bronchique issues de donneurs fumeurs ou utilisateurs d’e-cig, met 

également en évidence une dérégulation des voies du métabolisme xénobiotiques par l’e-

cig, mais différente de celle observée pour la cigarette (Corbett et al., 2019).  
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L’analyse fonctionnelle des altérations transcriptomiques montre également une 

modulation de la voie Th17 suite aux expositions à la fumée de cigarette. Cette voie est 

impliquée dans la différentiation des lymphocytes T CD4+ naïfs vers des cellules Th17 

capables de produire l’IL-17. Les lymphocytes Th17 sont impliqués dans la défense 

immunitaire contre certaines bactéries et champignons, mais suite à une exposition à la 

fumée de cigarette, l’augmentation du nombre de ces cellules dans le tissu pulmonaire 

serait impliquée dans l’inflammation chronique et persistante retrouvée chez les patients 

atteints de BPCO (Di Stefano et al., 2009). Des expositions de 6 à 8 mois de souris C57BL/6 

à la fumée de cigarette ont déjà mis en évidence cette augmentation de Th17 (Harrison et 

al., 2008), mais cela n’a jamais été montré avec des expositions à l’e-cig. Nos résultats 

montrent que cette voie est également dérégulée par l’exposition chronique aux 

émissions des deux modèles d’e-cig (à 6 mois pour la Mb30W et à 3 mois pour la Mb18W). 

Le gène IL17RA (pour IL-17 receptor A) est dérégulé dans le cas d’exposition à la cigarette 

et témoigne directement de l’augmentation de la sécrétion de l’IL-17A (Gaffen, 2009). 

Cependant, dans le cas des expositions à l’e-cig, les gènes dérégulés font partie de la voie 

des Th17 mais sont encore trop peu nombreux pour conclure sur une éventuelle 

surexpression de cette voie. Une autre voie de l’inflammation est également retrouvée 

significativement dérégulée suite aux expositions à la fumée de cigarette et aux aérosols 

d’e-cig : il s’agit de la voie LXR/RXR (pour Liver X Receptor/Retinoid X Receptor). 

L’implication des gènes majeurs de cette voie, à savoir les transporteurs ABC (ATP binding 

cassette) et certaines métalloprotéases matricielles (comme MMP9), a été mise en 

évidence dans l’exacerbation de l’inflammation pulmonaire médiée par les macrophages 

dans le cas d’une exposition à la cigarette (Sonett et al., 2018).  

D’autres fonctions moins représentées apparaissent également impactées chez les 

souris exposées aux émissions d’e-cig. Par exemple, l’analyse des données 

transcriptomiques a révélé la dérégulation de gènes impliqués dans le métabolisme 

lipidique (PLA1A, PMVK, PLCB1, PLCB4). Celui-ci a déjà été décrit comme pouvant être 

affecté chez des vapoteurs réguliers, ce qui pourrait témoigner de la charge excessive en 

lipides apportée par le glycérol contenu dans les e-liquides. Cette charge excessive 

pourrait alors perturber la sécrétion de surfactant au niveau pulmonaire et impacter la 

fonction pulmonaire (Madison et al., 2019). Des gènes impliqués dans la biosynthèse des 

nucléotides sont également dérégulés chez les souris exposées aux aérosols d’e-cig ou à 

la fumée de cigarette (AK7, AK8, AK9, ATIC et NME5). Ces modifications d’expression 
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pourraient être liées à un phénomène de prolifération cellulaire comme le suggère la 

dérégulation de la voie ERK5 (avec les gènes FOSL1, MYC et SFN) (Nishimoto and Nishida, 

2006) ou à des mécanismes de réparation de l’ADN.  

Sur la base de nos résultats transcriptomiques, il est difficile de conclure sur les 

mécanismes précis de toxicité des émissions d’e-cig. Cela pourrait s’expliquer par le fait 

que, pour les analyses transcriptomiques, les ARN ont été extraits à partir du tissu 

pulmonaire total. De ce fait, l’absence de distinction entre les différents tissus composants 

le poumon (bronche, bronchiole, alvéole) fait que certains mécanismes spécifiques 

pourraient être masqués par le transcriptome d’autres cellules. Par ailleurs, lors des 

sacrifices, les poumons de souris ont été divisés et répartis dans différents milieux de 

conservation en fonction des paramètres à mesurer (génotoxicité, analyses protéiques et 

analyses transcriptomiques). Certaines lésions qui seraient très localisées ne seraient 

alors pas observables dans la partie de poumon dédiée aux analyses transcriptomiques. 

Pour compenser en partie ces biais méthodologiques, il est envisagé de réaliser des 

analyses d’immunohistochimie et d’hybridation in situ sur des poumons complets 

d’autres lots de souris exposées dans les mêmes conditions. Le résultat de ces 

observations permettrait, d’une part, de savoir si d’éventuelles lésions cellulaires ou 

tissulaires sont localisées ou diffuses et, d’autre part, d’identifier à l’aide d’anticorps ou de 

sondes marquées, choisis sur la base des données transcriptomiques (ARNm et miARN) 

déjà acquises et des voies de signalisation suggérées par les analyses bio-informatiques, 

le ou les types cellulaires les plus affectées par les expositions. Enfin, pour de futurs 

projets, il serait peut-être intéressant de réaliser les analyses transcriptomiques sur des 

cellules ou des groupes de cellules préalablement isolés à l’aide de la technologie de 

séquençage de cellule unique (ou « single cell »). L’utilisation de cette technologie 

permettrait d’identifier plus aisément les types cellulaires impactés (cellules épithéliales, 

cellules immunitaires, cellules endothéliales, fibroblastes...) et de sélectionner les 

modèles in vitro les plus pertinents pour étudier les mécanismes précis induits par les 

différentes émissions. 
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Discussion générale 

La croissance du marché du vapotage depuis les années 2010 a forcé les institutions 

à prendre des mesures pour encadrer l’utilisation de l’e-cig. De la directive européenne, 

transposée dans le droit français en 2016, qui vise à mieux contrôler la composition des 

e-liquides, jusqu’à l’interdiction de vapoter dans les lieux publics fin 2017, les autorités 

de santé prônent la prudence vis-à-vis de ces produits (OMS, 2020). Alors que la majorité 

des données scientifiques s’accordent à dire que l’e-cig serait moins toxique que la 

cigarette conventionnelle, il y a encore un manque de recul sur la toxicité intrinsèque du 

vapotage à long terme sur la santé humaine. De plus, les enjeux commerciaux du marché 

de l’e-cig poussent les fabricants à proposer une grande diversité de e-liquides et de 

modèles aux technologies toujours plus avancées qui rendent difficile l’évaluation 

toxicologique exhaustive de l’ensemble des dispositifs commercialisés (ANSES, 2020) .  

L’évaluation des effets du vapotage sur la santé peut se faire à plusieurs niveaux : la 

caractérisation chimique des émissions, pour estimer l’exposition des consommateurs 

aux différents composés toxiques ; la toxicité in vitro, qui permet de mettre en évidence 

les mécanismes cellulaires mis en jeu dans la réponse à ces composés ; la toxicité in vivo, 

pour rendre compte de l’impact d’une exposition à long terme aux émissions ; et les 

études épidémiologiques et le suivi des vapoteurs. Cependant, dans un contexte où les 

publications concernant l’e-cig se font de plus en plus nombreuses, la multiplicité des 

protocoles expérimentaux utilisés complique la comparaison entre les données de la 

littérature disponibles (Ward et al., 2020). En effet, les premiers travaux menés au 

laboratoire montrent que le choix de l’arôme, de la quantité de nicotine, du modèle d’e-

cig ou encore du profil de bouffée utilisé, peuvent influencer la concentration des aérosols 

en composés toxiques (Beauval et al., 2017, 2019). De plus, les méthodologies 

d’exposition in vitro sont également nombreuses dans la littérature, allant de l’exposition 

de cellules immergées aux e-liquides ou à des extraits d’aérosols, à l’utilisation de cellules 

en interface air-liquide permettant de les exposer directement aux aérosols (Tableau 4, 

Tableau 5 et Tableau 6). Ainsi, pour évaluer pleinement la toxicité de l’e-cig il est 

aujourd’hui nécessaire de réaliser des travaux transdisciplinaires afin de caractériser non 

seulement la toxicité des aérosols mais aussi leur composition chimique. 
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Le premier point clé de ce travail de thèse était de comparer la toxicité de l’e-cig à 

celle de la cigarette conventionnelle. La comparaison des émissions générées par les 

dispositifs a montré que les émissions d’e-cig de tous les modèles testés (2ème et 3ème 

génération) contenaient beaucoup moins de composés carbonylés et de HAP que la fumée 

de cigarette, même rapporté à la quantité de nicotine délivrée. Ces quantités plus faibles 

en produits toxiques se sont traduites dans les expériences in vitro, sur un modèle de 

cellules épithéliales bronchiques humaines, par une faible cytotoxicité, même après 1h 

d’exposition aux émisisons d’e-cig. A l’inverse, la fumée de cigarette a induit une mortalité 

cellulaire dès la première minute d’exposition. Nos expériences in vitro ont montré que 

les faibles quantités de composés toxiques retrouvées dans les émissions d’e-cig 

pouvaient suffire à déclencher des mécanismes cellulaires de défenses tels que l’induction 

d’enzymes du métabolisme des xénobiotiques, d’un stress oxydant et de la sécrétion de 

cytokines. 

L’induction de ces mécanismes est une réponse physiologique lors d’une exposition 

à des composés chimiques. C’est la chronicité des expositions qui peut jouer un rôle dans 

leur pathogénicité (Milara and Cortijo, 2012). Pour comparer l’impact à court, moyen et 

long terme des émissions d’e-cig et de la fumée de cigarette, nous avons utilisé un modèle 

de souris BALB/C exposées en « nose-only » pendant 4 jours, 3 mois ou 6 mois aux 

différentes émissions. Les données obtenues lors de ces expériences in vivo sont plus 

nuancées que celles obtenues lors des expériences in vitro. En effet, les expositions aux 

aérosols d’e-cig ont induit, à l’instar de la fumée de cigarette, des lésions oxydatives de 

l’ADN, une augmentation de la méthylation de l’ADN et des dérégulations au niveau des 

miARN et de l’expression génique. Les premières analyses des modifications 

transcriptomiques montrent que quelques fonctions biologiques sont impactées mais 

elles ne témoignent pas d’une toxicité avérée des aérosols d’e-cig sur les souris exposées, 

même après 6 mois. Cependant, sur la base des résultats présentés, les expositions à long 

terme à la fumée de cigarette n’ont pas non plus induit de toxicité évidente. Bien qu’un 

plus grand nombre de gènes soit dérégulé et que les premières analyses fonctionnelles 

suggèrent que les fonctions biologiques sont plus impactées par les expositions à la 

cigarette, aucune voie de signalisation, notamment après 6 mois ne semble pointer vers 

des effets délétères importants. Cependant, quelques voies de l’inflammation sont tout de 

même dérégulées par la fumée de cigarette, notamment la voie des Th17, avec plus de 

gènes impliqués qu’après des expositions à l’e-cig. De même, sur la base des données 
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transcriptomiques obtenues après 6 mois d’exposition à la fumée de cigarette, l’absence 

de voies de cancérogénèse peut sembler étonnante. En effet, des voies impliquées dans la 

prolifération et/ou l’apoptose (p53, KRAS ou MAPK) sont souvent décrites chez l’Homme 

dans le cancer du poumon induit par la cigarette (Surgeon General US, 2010). Mais, une 

revue de littérature met en évidence que peu de modèles in vivo induisent des cancers 

suite à des expositions à la cigarette, même après de longs protocoles (Coggins, 2010). En 

effet, la meilleure méthode décrite dans cette publication pour voir l’apparition de 

tumeurs, et qui a été testée sur plusieurs modèles de souris (A/J, BALB/c et SWR), est une 

exposition à la fumée de cigarette de 6h/jour, 5j/semaine pendant 5 mois suivi d’une 

période de recouvrement de 4 mois (Witschi, 2002). L’ajout d’une période de 

recouvrement aurait peut-être permis de mettre en évidence le développement de 

dérégulations plus importantes induites par la fumée de cigarette et/ou les émissions d’e-

cig.  

Bien que sur la base de nos résultats, nous ne mettons pas en évidence de toxicité 

particulière des émissions d’e-cig, nous ne pouvons pas non plus démontrer leur 

innocuité. La présence, même faible, de composés toxiques et la mise en évidence de la 

sécrétion de cytokine in vitro, d’un stress oxydant pouvant mener à des lésions de l’ADN, 

et de modifications épigénétiques et transcriptomiques pourraient être des premiers 

éléments dans l’identification de potentiels effets néfastes. Nos analyses 

transcriptomiques apportent des éléments de réponses en mettant en lumière certaines 

voies de signalisation communes avec la cigarette (bien que le nombre de gènes impliqués 

soit beaucoup plus faible avec l’e-cig), notamment la voie des Th17 impliquée dans le 

développement d’une inflammation chronique et dans la progression de la BPCO (Ponce-

Gallegos et al., 2017). Cependant, les données sont pour l’instant uniquement basées sur 

l’analyse fonctionnelle des gènes dérégulés obtenue par le logiciel IPA. Il sera alors 

nécessaire de valider les dérégulations observées, notamment au niveau protéique, pour 

caractériser précisément les mécanismes de réponse mis en jeu lors d’une exposition à 

l’e-cig. 

Un autre point clé de ce travail de thèse était d’identifier l’impact de la puissance de 

l’e-cig sur la toxicité des émissions. La première différence constatée se situe au niveau de 

la composition chimique des aérosols. En effet, nous avons montré que l’e-cig réglée à 30 

W génère deux fois plus de composés carbonylés que celle réglée à 18 W. Ces composés 
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sont très réactifs et peuvent être impliqués dans la génération d’un stress oxydant au 

niveau des voies respiratoires (Bekki et al., 2014). De façon intéressante, les marqueurs 

de stress oxydant mesurés in vitro et in vivo montrent également que seules les 

expositions à l’e-cig réglée à forte puissance induisent une augmentation du glutathion 

oxydé et des lésions oxydatives de l’ADN. Une autre différence majeure observée entre les 

e-cig de faible et forte puissance se situe au niveau des modifications transcriptomiques 

induites in vivo. En effet, alors que le modèle Modbox réglé à 30 W induit la dérégulation 

d’un plus grand nombre de gènes après les expositions aiguës, ce sont les expositions 

chroniques de 3 et 6 mois aux émissions d’e-cig réglée à 18 W qui induisent le plus de 

gènes dérégulés. Ces résultats sont surprenants du fait de la quantité plus importante de 

composés toxiques dans les émissions de Mb30W qui laissait présager qu’elles 

induiraient plus de modifications transcriptomiques. Cependant, les analyses 

fonctionnelles des gènes dérégulés révèlent que, par rapport aux expositions à la fumée 

de cigarette, moins de gènes sont impliqués dans les différentes voies de signalisation 

mises en évidence après une expositions aux aérosols des deux modèles d’e-cig. Ces 

observations sont alors à nuancer et le faible nombre de gènes retrouvés dans chaque voie 

ne garantit pas la pertinence biologique des dérégulations induites par les aérosols d’e-

cig. Les émissions de Mb30W, plus riches en composés toxiques, auraient pu induire des 

mécanismes d’adaptation plus précocement que celles de la Mb18W. Pour vérifier cela, il 

serait intéressant de réaliser des temps d’expositions intermédiaires pour rendre compte 

de la cinétique des modifications transcriptomiques. 

En plus de l’évaluation de la toxicité de l’e-cig, ce projet de thèse propose également 

l’analyse d’un nouveau dispositif de délivrance de nicotine : le tabac chauffé. Ce nouveau 

produit, dont le représentant principal est l’iQOS développé par PMI, permet de générer 

un aérosol à partir de feuille de tabac supposément sans combustion. Arrivé sur le marché 

en 2017 en même temps qu’un grand nombre de publications scientifiques financées par 

le fabricant, le marketing de ce dispositif repose sur le fait qu’il serait moins toxique que 

la cigarette conventionnelle (Haziza et al., 2016b; Oviedo et al., 2016; Schaller et al., 2016a, 

2016b; Smith et al., 2016; Wong, 2016). En effet, les études menées par le fabricant 

indiquent une réduction de l’exposition aux composés toxiques équivalente à 90 % par 

rapport à la cigarette (Schaller et al., 2016a). Récemment, en juillet 2020, la FDA a autorisé 

la commercialisation de l’iQOS aux États-Unis en tant que « produit du tabac à risque 
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modifié » (FDA, 2020). Cependant, le nombre d’études indépendantes évaluant la toxicité 

de ce dispositif est encore faible et son utilisation pourrait comporter des risques. 

Dans ce contexte, nous avons décidé d’analyser également la composition chimique 

et la toxicité in vitro des émissions de tabac chauffé suivant les mêmes paramètres que 

nos analyses sur l’e-cig et la cigarette. En effet, les études disponibles à ce jour semblent 

indiquer que le tabac chauffé comporte moins de risque que la cigarette, mais qu’en est-t-

il par rapport à l’e-cig ? La caractérisation chimique montre que les émissions de tabac 

chauffé contiennent moins de composés carbonylés et de HAP que la fumée cigarette 

conventionnelle, mais plus que les émissions d’e-cig. De plus, les expériences in vitro 

montrent que les émissions de tabac chauffé induisent 50 % de mortalité cellulaire après 

un nombre de bouffées plus importants (45 bouffées) que la fumée de cigarette (2 

bouffées). Par opposition, les aérosols d’e-cig n’avaient induit que très peu de mortalité 

jusqu’à 120 bouffées. Enfin, les mécanismes cellulaires étudiés montrent que le rapport 

GSSG/GSH et l’expression de gènes du métabolisme impliqués dans le métabolisme des 

HAP (CYP1A1 et CYP1B1) et dans la réponse antioxydante (HMOX1 et NQO1) sont 

augmentés après une exposition moins intense aux aérosols de tabac chauffé (12 

bouffées) par rapport à la fumée de cigarette (1 bouffée), mais moins forte par rapport 

aux émissions d’e-cig (120 bouffées). 

Globalement, nos premiers résultats montrent que les émissions de tabac chauffé 

semblent effectivement moins toxiques que la fumée de cigarette, mais notre étude 

souligne le fait qu’elles paraissent cependant avoir une toxicité cellulaire bien plus sévère 

que les émissions d’e-cig. L’e-cig et le tabac chauffé sont des dispositifs de délivrance de 

nicotine alternatifs à la cigarette. Alors que l’OMS prône le sevrage tabagique, l’arrivée du 

tabac chauffé sur le marché pose plusieurs problèmes. Premièrement, l’impossibilité de 

baisser la quantité de nicotine délivrée. En effet, les e-liquides contiennent une quantité 

variable de nicotine (de 0 à 20 mg/mL, en Europe) alors que le tabac chauffé, contient une 

quantité fixe de nicotine, celle présente dans les feuilles de tabac. Ainsi, alors que le 

vapoteur peut utiliser l’e-cig comme substitut nicotinique en diminuant graduellement les 

doses de nicotine, l’utilisateur de tabac chauffé ne fait que remplacer la cigarette. 

Deuxièmement, la cinétique de délivrance de nicotine est également importante à prendre 

en compte. En effet, différentes études montrent que l’administration d’une grande 

quantité de nicotine dans un petit laps de temps espacé de périodes de manque, provoque 
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une addiction bien plus forte que dans le cas d’une administration diffuse (Allain et al., 

2015; Samaha et al., 2005). Le tabac chauffé reprend un mode d’administration similaire 

à celui de la cigarette conventionnelle, qui ressemble plutôt au premier mode, alors que 

celui de l’e-cig est plutôt similaire à l’administration diffuse tout au long de la journée 

(Helen et al., 2016; Voos et al., 2019). L’e-cig pourrait alors, à la différence du tabac 

chauffé, être moins addictive que la cigarette et faciliter la sevrage nicotinique (Shiffman 

and Sembower, 2020). Mais le pouvoir addictogène de ces dispositifs, primordial dans 

l’aide à l’arrêt de la cigarette, nécessite encore des études. 
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Conclusion et perspectives 

Les travaux réalisés lors de cette thèse ont permis d’apporter de nouvelles 

connaissances sur l’impact sanitaire des nouvelles alternatives à la cigarette. Les analyses 

de la composition chimique et de la toxicité in vitro des émissions d’e-cig de différentes 

puissances et du tabac chauffé ont été réalisées dans des conditions expérimentales 

standardisées, en comparaison avec la fumée de cigarette conventionnelle. Ces données 

sont nécessaires pour évaluer la réduction des risques associée à l’utilisation de ces 

dispositifs.  

La composition chimique des émissions en composés carbonylés et en HAP est un 

bon indicateur de leur potentielle toxicité, mais, d’autres composés, dont la présence a 

déjà été montrée dans les émissions d’e-cig (Ward et al., 2020) et les aérosols de tabac 

chauffé (Li et al., 2019b), devraient être étudiés, comme par exemple, les nitrosamines 

issues du tabac, les métaux issus de la résistance de l’e-cig ou du tabac, ou encore d’autres 

COV qui pourraient être des dérivés secondaires issus du chauffage du e-liquide ou du 

stick de tabac.  

Les études in vitro menées au laboratoire sur la toxicité de l’e-cig et du tabac chauffé 

ne se limitent pas à ce qui a été décrit dans ces travaux. En effet, un autre projet ayant 

pour but d’évaluer la toxicité génétique et épigénétique de ces dispositifs sur les cellules 

BEAS-2B a été abordé. Les premiers résultats obtenus en termes de génotoxicité montrent 

que les émissions de tabac chauffé et la fumée de cigarette induisent des cassures 

primaires de l’ADN, contrairement aux aérosols de Mb18W et de Mb30W pour lesquelles 

aucun dommage de l’ADN n’a été observé. Les analyses transcriptomiques réalisées pour 

l’ensemble de ces dispositifs devraient permettre de mieux caractériser la toxicité in vitro. 

De la même façon, les expositions in vivo à long terme aux émissions d’e-cig font 

partie d’un projet plus vaste : le projet RESPIRE financé par l’INCa. C’est dans le contexte 

de ce projet, qu’ont été réalisées les analyses de génotoxicité, de modifications 

épigénétiques et génétiques réalisées durant cette thèse. D’autres analyses ont également 

été effectuées à partir des mêmes expositions de souris. Ainsi, nos données seront à 

mettre en regard de celles obtenues en termes de lésions tissulaires pulmonaires, de 

fonction respiratoire, du profil inflammatoire et de la fonction mitochondriale. La 

confrontation de l’ensemble des résultats obtenus avec les données issues de mes travaux 
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de thèse devrait permettre de mieux caractériser l’impact respiratoire des émissions d’e-

cig et de la comparer à celle de la fumée de cigarette dans nos conditions d’exposition. 

L’ensemble de ces données devraient pouvoir apporter de nouvelles connaissances 

fondamentales pour l’évaluation des risques de ces produits émergents et, in fine, aider 

les décisions des autorités de santé sur la politique à suivre pour réduire la prévalence 

des maladies pulmonaires et des décès liés à la cigarette. 
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Annexes 

Tableau S 1. Concentrations en composés carbonylés (en ng/µg de nicotine) dans les émissions d'e-cig (Lounge, 

Mb18W et Mb30W), de tabac chauffé (HTP) et de cigarette (3R4F). Les données sont représentées en moyenne 
± écart-type de 4 mesures indépendantes. « ~ » correspond aux valeurs sous la limite de détection (LOD). 

 

Composés carbonylés Lounge Mb18W Mb30W HTP 3R4F 

Formaldéhyde 0,8 ± 0,1 0,4 ± 0,1 0,5 ± 0,2 2,5 ± 0,2 2,7 ± 0,6 

Acétaldéhyde 4,3 ± 0,7 1 ± 0,2 1,2 ± 0,3 369,2 ± 9,7 1665,7 ± 601 

Propanone 0,5 ± 0,4 0,2 ± 0,1 0,2 ± 0,1 45 ± 1,2 361,7 ± 79,8 

Propanal 0,3 ± 0,1 0,1 ± 0 0,2 ± 0 16,1 ± 1,8 68,5 ± 19,8 

Méthyl vinyl kétone 0 ± 0 0,1 ± 0,1 0,1 ± 0 5,9 ± 0,8 13,3 ± 2,2 

Crotonaldéhyde 0,3 ± 0 0,3 ± 0,1 0,3 ± 0,1 3,7 ± 0,5 19 ± 7,9 

Méthyl éthyl kétone 0,1 ± 0,2 0,6 ± 0,4 0,2 ± 0,1 8,7 ± 0,1 89,8 ± 10 

Méthylpropénal ~ ± ~ ~ ± ~ ~ ± ~ 4,7 ± 0,3 8,5 ± 3,5 

Butanal 0 ± 0 0 ± 0 0 ± 0 15,5 ± 1,6 39,4 ± 10,4 

Benzaldéhyde 0,1 ± 0 0 ± 0 0 ± 0 2,9 ± 2 1 ± 1,8 

Isopentanal 0,1 ± 0 0,1 ± 0 0,1 ± 0 7,7 ± 1,3 19,2 ± 5,9 

Pentanal 0,1 ± 0,1 0 ± 0 0 ± 0 1,8 ± 1,2 2,7 ± 1,8 

Glyoxal 0,1 ± 0,1 0 ± 0 0 ± 0 1,1 ± 0 2,1 ± 1,5 

o-tolualdéhyde 0,1 ± 0 0,1 ± 0 0 ± 0 0,3 ± 0,3 0,3 ± 0 

m-tolualdéhyde ~ ± ~ 0 ± 0 0 ± 0 ~ ± ~ ~ ± ~ 

p-tolualdéhyde 0,2 ± 0,1 0 ± 0 0 ± 0 3,2 ± 0,4 4,6 ± 3,1 

Méthylglyoxal 3,3 ± 0,4 0,2 ± 0 0,3 ± 0,1 6,5 ± 1,1 9,4 ± 2,4 

Hexanal 0,1 ± 0 0 ± 0 0 ± 0 2,1 ± 2,3 0,1 ± 0,1 

2,5 diMlbenzaldéhyde ~ ± ~ 0 ± 0 0 ± 0 ~ ± ~ ~ ± ~ 

Total 10,4 ± 1,4 3,3 ± 0,8 3 ± 0,5 496,6 ± 12,5 2308 ± 743,6 
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Tableau S 2. Concentrations en HAP (en pg/µg de nicotine) dans les émissions d'e-cig (Lounge, Mb18W et 
Mb30W), de tabac chauffé (HTP) et de cigarette (3R4F). Les données sont représentées en moyenne ± écart-
type de 4 mesures indépendantes. « ~ » correspond aux valeurs sous la limite de détection (LOD). 

 

  

HAP Lounge Mb18W Mb30W HTP 3R4F 

Naphtalène 8,1 ± 1,3 1,3 ± 0,1 0,7 ± 0,1 1,1 ± 0,5 38 ± 7,8 

Acénapthène 0 ± 0 0 ± 0 0 ± 0 0,2 ± 0,2 13,9 ± 4,2 

Fluorène 0,9 ± 0,4 0,1 ± 0 0 ± 0 0,4 ± 0,3 20,9 ± 4,1 

Phénanthrène 1 ± 0,1 0,4 ± 0,1 0,2 ± 0 0,9 ± 0,4 29,9 ± 5,6 

Anthracène 0,1 ± 0 0 ± 0 0 ± 0 0,1 ± 0 14,3 ± 2,8 

Fluoranthène 1,2 ± 0,2 0,3 ± 0,2 0,1 ± 0,1 2,1 ± 0,9 15,5 ± 3,1 

Pyrène 2,4 ± 0,6 0,5 ± 0,2 0,2 ± 0,1 2,4 ± 1,1 18,5 ± 3,2 

Benzo(c)phenanthrène 0,3 ± 0,1 0,1 ± 0 0 ± 0 0,2 ± 0,1 0 ± 0 

Cyclopenta(c,d)pyrène 0 ± 0 0 ± 0 0 ± 0 0 ± 0 0 ± 0 

Benzo(a)anthracène 0 ± 0 0 ± 0 0 ± 0 0,7 ± 0,2 5,7 ± 1,6 

Chrysène 0,1 ± 0 0 ± 0 0 ± 0 0,4 ± 0,1 5 ± 0,8 

5-méthylchrysène 0,2 ± 0,1 0 ± 0 0 ± 0 0 ± 0 11,9 ± 3,1 

Benzo(e)pyrène 0,3 ± 0 0,1 ± 0 0 ± 0 0,4 ± 0,2 14,2 ± 3,2 

Benzo(b)fluoranthène 0 ± 0 0 ± 0 0 ± 0,1 0,3 ± 0,1 3,8 ± 1,3 

Benzo(k)fluoranthène 0 ± 0 0 ± 0 0 ± 0 0,3 ± 0,1 1,1 ± 0,3 

Benzo(a)pyrène 0,1 ± 0 0 ± 0 0 ± 0 0,4 ± 0,1 4,8 ± 1,2 

Dibenzo(a,l)pyrène 0 ± 0 0 ± 0 0 ± 0 0 ± 0 0 ± 0 

Dibenzo(a,h)anthracène 0 ± 0 0 ± 0 0 ± 0 0 ± 0 0,4 ± 0,1 

Benzo(g,h,i)pérylène 0,2 ± 0,1 0 ± 0 0 ± 0 0,3 ± 0,1 2,9 ± 0,6 

Indeno(1,2,3-c,d)pyrène 0 ± 0 0 ± 0 0 ± 0 0,1 ± 0,1 2,3 ± 0,9 

Dibenzo(a,e)pyrène 0 ± 0 0 ± 0 0 ± 0 0 ± 0 1 ± 0,5 

Anthanthrène 0 ± 0 0 ± 0 0 ± 0 0,2 ± 0,1 2,5 ± 0,6 

Coronène 0 ± 0 0 ± 0 0 ± 0 0,1 ± 0 0,3 ± 0,1 

Total 14,9 ± 2,1 3 ± 0,5 1,5 ± 0,4 10,6 ± 6,2 206,8 ± 42,3 
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Tableau S 3. Listes des miARN significativement dérégulés d’un facteur au moins 1,5 (p<0,05) après des 
expositions de 4 jours à 30, 60 ou 90 minutes à des émissions de Mb18W ou de Mb30W ou 60 min à la fumée de 
cigarette. 

 Mb18W 30 min Mb18W 60 min Mb18W 90 min Mb30W 30 min Mb30W 60 min Mb30W 90 min 3R4F 60 min 

miARN 
sous-

exprimés 

mmu-miR-701 hsa-let-7f-1# mmu-miR-543 hsa-miR-367 mmu-miR-1971 mmu-miR-1971 
mmu-miR-
1971 

hsa-miR-15a mmu-miR-592 hsa-let-7f-1 hsa-miR-27a hsa-miR-136 hsa-let-7f-1 
mmu-miR-
1898 

hsa-miR-15b mmu-miR-203 mmu-miR-1959   hsa-miR-30c hsa-miR-199a 
mmu-miR-
1935 

mmu-miR-451 hsa-miR-330-5p 
hsa-miR-193a-
3p   mmu-miR-28 hsa-miR-30c 

hsa-miR-193a-
3p 

  mmu-miR-451 hsa-miR-199a     hsa-miR-15b mmu-miR-701 

  hsa-miR-15b mmu-miR-466G     mmu-miR-451 hsa-miR-30c 

  hsa-miR-30c hsa-miR-15a     hsa-miR-15a mmu-miR-451 

  hsa-miR-15a hsa-miR-425-5p     mmu-miR-28 hsa-miR-15a 

  hsa-miR-200b hsa-miR-15b       mmu-miR-28 

  mmu-miR-877#         hsa-miR-15b 

  hsa-miR-27a         mmu-miR-877 

            
mmu-miR-
466G 

            
hsa-miR-542-
3p 

miARN 
sur-

exprimés 

mmu-miR-337 hsa-miR-542-3p hsa-miR-542-3p 
mmu-miR-374-
5p mmu-miR-15a# mmu-miR-489 

mmu-miR-
582-5p 

mmu-miR-669D hsa-miR-190 mmu-miR-376c mmu-miR-337 
mmu-miR-582-
5p hsa-miR-99b mmu-miR-489 

hsa-miR-542-3p mmu-miR-376c hsa-let-7e# mmu-miR-15a mmu-miR-376c rno-miR-339-3p 
mmu-miR-
467e 

mmu-miR-125b mmu-miR-337 mmu-miR-293 mmu-miR-125b 
mmu-miR-374-
5p hsa-miR-181c 

mmu-miR-
376c 

hsa-miR-450a mmu-miR-136 mmu-miR-330 hsa-miR-449 hsa-miR-30e hsa-miR-141 rno-miR-381 

mmu-miR-374-
5p hsa-miR-133a hsa-miR-154 mmu-miR-293 mmu-miR-218-1 mmu-miR-547 hsa-miR-141 

rno-miR-489   mmu-miR-155 mmu-miR-449b hsa-miR-99b mmu-miR-293 hsa-miR-190b 

hsa-miR-141     hsa-miR-208b rno-miR-339-3p hsa-let-7e 
rno-miR-339-
3p 

mmu-miR-293       mmu-miR-547 hsa-miR-148a 
mmu-miR-
345-3p 

hsa-miR-331-5p       hsa-miR-449 hsa-miR-154 mmu-miR-136 

        mmu-miR-1188 hsa-miR-302b mmu-miR-547 

        hsa-miR-487b   hsa-miR-494 

        mmu-miR-293   mmu-miR-293 

        mmu-miR-449b   rno-miR-207 

        hsa-miR-154   mmu-miR-505 

            
mmu-miR-
139-3p 

            hsa-miR-154 
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Tableau S 4. Listes des miARN significativement dérégulés d’un facteur au moins 1,5 (p<0,05) après des 
expositons de 60 minutes pendant 3 mois à des émissions de Mb18W, de Mb30W ou à la fumée de cigarette. 

 Mb18W Mb30W 3R4F 

miARN 
sous-

exprimés 

mmu-miR-673 hsa-miR-189 mmu-miR-330 

mmu-miR-150   mmu-let-7d 

hsa-miR-189   rno-miR-632 

    hsa-miR-30c-2 

    hsa-miR-189 

miARN sur-
exprimés 

rno-miR-551B mmu-miR-34b-5p hsa-miR-539 

hsa-miR-653 mmu-miR-1949 hsa-miR-487b 

  hsa-miR-223 hsa-miR-205 

  hsa-miR-190b mmu-miR-544 

    hsa-miR-133a 

    hsa-miR-133b 

 Mb18W Mb30W 3R4F 

miARN 
sous-

exprimés 

mmu-miR-21 mmu-let-7d mmu-miR-1193 

hsa-miR-653 hsa-miR-590-5p hsa-miR-494 

  mmu-miR-10b mmu-miR-1939 

  mmu-miR-499 hsa-miR-223 

miARN sur-
exprimés 

hsa-miR-375 hsa-miR-296 hsa-miR-375 

hsa-miR-708 hsa-miR-223 mmu-miR-34b 

  mmu-miR-1932 hsa-miR-448 

  rno-miR-24-1 mmu-miR-764-5p 

Tableau S 5. Listes des miARN significativement dérégulés d’un facteur au moins 1,5 (p<0,05) après des 
expositons de 60 minutes pendant 6 mois à des émissions de Mb18W, de Mb30W ou à la fumée de cigarette. 
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addition, increasing e-cig power impacted levels of certain toxic compounds and related oxidative stress. This
study provides important data necessary for risk assessment by demonstrating that HTP might be less harmful
than tobacco cigarette but considerably more harmful than e-cig.

1. Introduction

The tobacco epidemic causes 8 million deaths each year worldwide.
Responsible for almost 30 % of cancer-related deaths (especially 90 %
of lung cancers) and being the major risk factor for chronic obstructive
pulmonary diseases, smoking is the main single cause of preventable
deaths in the world (WHO, 2019). Out of the more than 7000 chemicals
present in tobacco smoke, at least 250 are known to be harmful and
about 70 can cause cancer: benzene, formaldehyde, acetaldehyde, ac-
rylamide, nitrosamines, arsenic, cadmium… There is no safe level of
tobacco use and quitting smoking significantly reduces the risk of de-
veloping smoking-related diseases. Although the health benefits are
greater for people who stop at earlier ages, benefits exist at any age
(Babb et al., 2017). However, smoking cessation is a difficult and
challenging task because of the addictive power of nicotine, which is
naturally found in tobacco (Benowitz, 2010). Nicotine replacement
therapy (mostly available as transdermal patch, nasal spray, inhaler,
gum and sublingual tablets) can help to increase chances of sustainable
smoking cessation (Stead et al., 2012). However, none of these devices
mimic the feeling of satisfaction that occurs with the rapid and abun-
dant delivery of nicotine during smoking. New alternatives to regular
cigarettes, such electronic cigarettes (e-cigs) and heated tobacco pro-
ducts (HTP), also called heat-not-burn tobaccos, have emerged on the
market over the past decade. The e-cigs and emergent tobacco products
are generally perceived as low-risk substitutes for cigarette and have
quickly gained popularity, well before sufficient scientific evidence
would allow to determine their potential detrimental effects on users.

E-cigs comprise a battery-powered heating element that is designed
to vaporize a solution (“e-liquid”) made of propylene glycol and/or
glycerine and frequently flavouring and nicotine. The vapour is then
inhaled by the user. Concerns raised about the levels of some harmful
constituents found in e-cig aerosols, such as carbonyl compounds (in-
cluding formaldehyde, acetaldehyde and acrolein) (Beauval et al.,
2017, 2019; Belushkin et al., 2020) and polycyclic aromatic hydro-
carbons (PAHs) (including benzo[a]pyrene) (Beauval et al., 2017;
Belushkin et al., 2020), which may be produced by thermal decom-
position of e-liquid components. The presence of several trace metals
was also reported in e-cig emissions, likely released by cartomizer
components (Beauval et al., 2017; Zhao et al., 2019). In parallel, some
studies investigated the effects of e-cig vapour exposure on human
bronchial epithelial cells cultured at air-liquid interface, and found that
e-vapours did not lead to significant cytotoxicity, but induced oxidative
stress and/or increased the secretion of pro-inflammatory mediators
(Anthérieu et al., 2017; Iskandar et al., 2016; Scheffler et al., 2015). In
addition, transcriptomic modifications induced by e-cig vapour ex-
posure were demonstrated to be lesser than those induced by tobacco
smoke (Anthérieu et al., 2017; Iskandar et al., 2016). Evolution in e-cig
devices (especially the development of a new e-cig generation with high
power, sub-Ohm devices) may increase the amounts of harmful and
potentially-harmful compounds in emissions (Beauval et al., 2019;
Belushkin et al., 2020; Farsalinos et al., 2018c; Zhao et al., 2019).
Consequently, further research is needed to better understand the im-
pacts of e-cig model and power output on cellular toxicity.

Although e-cig could help to quit smoking (Kalkhoran et al., 2019;
Nelson et al., 2015), some vapers could be unsatisfied because e-cig
devices do not use real tobacco ingredients and lack the so-called
“throat-hit” or authentic tobacco tastes that cigarettes offer. These
elements may encourage some people to go back to conventional ci-
garettes (Staal et al., 2018). Therefore, tobacco companies developed
new tobacco products to keep meeting the changing needs of their

consumers. They launched HTP that taste more like conventional ci-
garettes while still delivering nicotine to consumers. In particular,
Philip Morris International created the IQOS device: disposable tobacco
sticks soaked in glycerine (called heatsticks) are inserted in a holder in
the IQOS device and heated with an electric blade (Smith et al., 2016).
These new devices are marketed by Philip Morris International as
products that do not combust tobacco, as cigarettes do, but heat it to a
lower temperature (less than 350 °C) with the aim to avoid the com-
bustion-related production of harmful compounds. To support the
health claims of IQOS, Philip Morris International published several
peer-reviewed papers (Malinska et al., 2018; Schaller et al., 2016a,b;
Sewer et al., 2016; Smith et al., 2016; van der Toorn et al., 2015; Wong
et al., 2016). They showed a reduction of most of the harmful con-
stituents found in tobacco smoke (carbonyl compounds, PAHs, ni-
trosamines…), as well as a reduction of cytotoxicity and genotoxicity in
comparison to cigarette smoke exposure (Schaller et al., 2016a). Today,
most data about HTP are published by HTP or tobacco industries
themselves and toxicity assessment is limited to a comparison with ci-
garette smoke. However, it is crucial for smokers to know the toxicity of
HTP compared to conventional cigarette and e-cigs.

The aim of this study is to compare the chemical composition and
the toxicological effects of aerosols from HTP (iQOS model), conven-
tional cigarette smoke (3R4F) and vapours from one nicotine-con-
taining e-liquid vaporized by different e-cig models or conditions (a
second generation "Lounge" model with 2.6 Ohms coil and 4.6 W-fixed
power and a third generation “Modbox” model with 0.5 Ohms coil and
set at 18 W (Mb18W) or 30 W (Mb30W) power). Chemical character-
ization analyses focused on nicotine, carbonyl compounds and PAHs.
The toxicity of the aerosols was evaluated in the air-liquid interface-
cultured BEAS-2B cell line, which is the most commonly used human
bronchial epithelial cell line for respiratory toxicological studies.
Cellular effects were assessed by measuring cytotoxicity, oxidative
stress and inflammatory response, which are key mechanisms leading to
chronic respiratory diseases.

2. Material and methods

2.1. Tobacco products and e-cig

The HTP used in this study was the iQOS 2.4 model manufactured
by Philip Morris (Neuchâtel, Switzerland), with iQOS heatsticks (amber
box from Philip Morris) purchased in a local tobacco shop. IQOS was
cleaned regularly after each 20th heatstick, as recommended by the
manufacturer. Two models of e-cig from a French manufacturer
(NHOSS® brand) were used in these experiments. The first one was the
second generation “Lounge” model, equipped with a 2.8 Ω nichrome
coil and 4.6 W power supply. The coil heating was triggered by air
suction. The second one was the third generation “ModBox” model,
used with the “Air Tank” clearomiser equipped with a 0.5 Ω kanthal
coil and with a partially closed air flow. Heating was pre-activated 1 s
prior the puff, as recommended by the manufacturer and accordingly
with the CORESTA standard puffing method CRM81 (CORESTA, 2015).
Modbox model was tested at two power settings, 18 W and 30 W. These
settings correspond to the lower and upper range power supplies re-
commended by the manufacturer for the coils used. One e-liquid was
used, “blond tobacco” flavoured (NHOSS® brand) and labelled as fol-
lows: propylene glycol< 65 %; glycerol< 35 %; food flavourings; ni-
cotine 16 mg/mL. 3R4F research cigarettes were purchased from the
University of Kentucky (Lexington, KY, USA).
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2.2. Aerosol generation

Aerosols from HTP, e-cig and 3R4F cigarette were generated with a
Vitrocell® VC1 smoking machine (Vitrocell, Waldkirch, Germany), as
described previously (Anthérieu et al., 2017; Beauval et al., 2017,
2019). All products were tested with Health Canada Intense (HCI) puff
profile (55 mL puff volume, 2 s puff duration, 30 s puff period). For
3R4F cigarette, all ventilation holes were blocked using adhesive tape
during the experiments to follow the recommendations of this smoking
regime (WHO Tobacco Laboratory, 2012). Under these settings, one
3R4F cigarette was completely consumed after 10 puffs and one heat-
stick was limited to 12 puffs by the IQOS device.

2.3. Quantification of nicotine

Nicotine was collected from aerosols into two glass impingers with
fritted nozzle placed in series containing 50 and 25 mL of methanol,
respectively, maintained at −40 °C. Quantification of nicotine in
aerosol extracts was performed as described previously (Beauval et al.,
2017). Each collection was replicated four times.

2.4. Identification and quantification of carbonyl compounds

Carbonyls were collected from aerosols into two silica cartridges
coated with 2,4-dinitrophenylhydrazine (DNPH) placed in series, as
described previously (Beauval et al., 2019). Sep-Pak DNPH-Silica Plus
Short Cartridges containing 350 or 750 mg of sorbent per cartridge
(Waters, Guyancourt, France) were used for e-cig and iQOS aerosols or
cigarette smoke, respectively. Each collection was replicated four times.
Blank collections were performed using the smoking machine working
without e-cig, HTP or conventional cigarette connected to and were
taken into account for data analysis. DNPH cartridges were eluted with
3 or 6 mL of acetonitrile for short and long cartridges, respectively.
Elutions from both cartridges placed in series were pooled and then
injected into a Thermo Scientific Dionex UltiMate 3000 UHPLC System
with UV/VIS Detector (Thermo Scientific, Waltham, MA). The UHPLC
instrument was operated at 28 C° at a constant flow rate of 0.4 mL/min,
under a gradient of acetonitrile and water during 15 min. Analysis was
performed using Acclaim Carbonyl C18 RSCL 150 mm x 2.1 mm x 5 μM
(Thermo Fisher Scientific). Acquisition was performed at 360 nm wa-
velength. Instrument monitoring and data acquisition were done using
Chromeleon 7.0 Data Acquisition System for LC (Thermo Scientific,

Waltham, MA). The method allows the detection and quantification of
nineteen compounds (Table 1) with limits of quantification (LOQs)
ranging from 6 to 15 ng/mL. Acrolein was not measured in this study
due to the unsuitability of using the DNPH-coated solid sorbent car-
tridge for its collection (Ho et al., 2011).

The number of puffs for each collection was determined in pre-
liminary experiments in order to avoid saturation in the cartridges.
Finally, for e-cig, HTP and 3R4F analyses, 20, 4 and 1 puff(s) were
respectively found to be the best compromise with satisfying efficiency
without saturation of the cartridge (data not shown). Moreover, con-
cerning e-cig, we measured carbonyl emissions in the twenty last puffs
of one-hour-exposure session (100–120 puffs). To compare the different
aerosol samples, the levels of the carbonyls were then expressed in mass
of each compounds by puff.

2.5. Identification and quantification of PAHs

PAHs were collected from aerosols simultaneously with nicotine
collection in the same impingers, as described previously (Beauval
et al., 2017). Each collection was replicated four times. Blank collec-
tions were performed using the smoking machine working without e-
cig, HTP or conventional cigarette connected to and were taken into
account for data analysis. Methanolic samples were first concentrated
under a gentle nitrogen flow in a water bath at 45 °C to a final volume
of 1 mL in order to subsequently extract PAHs using accelerated solvent
extraction with acetonitrile. This extraction was followed by a second
concentration step under a gentle nitrogen flow in a water bath at 60 °C
to a final volume of 1 mL. Remaining products were then filtrated with
a syringe membrane filter before injection into the chromatographic
system. The analyses were performed on HPLC Alliance 2695 (Waters
Corporation, MA) coupled with a multi-wavelength fluorescence de-
tector. Chromatographic separation was achieved on a EC 250/2 Nu-
cleosil 100−5 C18 PAH (Macherey Nagel, Hoerdt, France). The method
allows the detection and quantification of twenty-three compounds
(Table 2) with LOQs ranging from 1 to 39 pg/mL.

2.6. Cell culture and cell exposure to aerosols

In vitro experiments were performed using the human bronchial
epithelial BEAS-2B cell line obtained from the American Type Culture
Collection (ATCC® CRL9609™). Cells were cultured in LHC-9 medium
(Life Technologies, Courtabœuf, France) and seeded in CellBIND 75 cm²

Table 1
Carbonyl concentrations (in ng/puff) in e-cig (Lounge, Mb18W or Mb30W), HTP and 3R4F cigarette aerosols. Data represent the mean± SD of four independent
measurements. “∼” : undetectable as< to LOD.

Lounge Mb18W Mb30W HTP 3R4F

Formaldehyde 6.0± 0.7 25.8± 2.8 64.5± 23.7 156.9± 9.4 255.5± 60.8
Acetaldehyde 32.9± 5.4 63.0± 10.3 160.9± 46.4 26,687.7± 657.8 16,6345.0± 59,540.1
Propanone 3.9± 2.7 13.8± 3.0 28.5± 8.1 3,132.3± 149.1 36,075.8± 7,896.5
Propanal 2.1± 0.7 8.4± 2.4 23.2± 5.6 1,400.1± 205.8 6,924.8±1,688.2
Methyl vinyl ketone 0.2± 0.1 6.4± 4.2 6.4± 2.1 443.1±42.1 1,341.1± 219.3
Crotonaldehyde 2.4± 0.1 16.1± 3.3 38.8± 8.1 139.9±10.2 1,697.4± 794.5
Methyl ethyl ketone 0.8± 1.6 34.7± 23.6 23.5± 9.5 625.6±26.9 9,005.1±1,097.8
Methylpropenal ∼±∼ ∼±∼ ∼±∼ 334.8±20.6 842.4±350.7
Butanal 0.1± 0.1 2.0± 0.1 2.4± 0.1 985.9±94.7 3,653.9±1,055.0
Benzaldehyde 0.5± 0.1 2.5± 0.3 3.2± 0.1 58.9±2.8 63.6±59.3
Isopentanal 0.7± 0.1 7.9± 1.1 11.5± 0.6 391.3±37.6 2,084.9±5,990.0
Pentanal 0.5± 1.1 1.0± 0.2 0.4± 0.1 25.2±1.4 172.0± 50.5
Glyoxal 0.6± 0.4 0.6± 0.0 0.7± 0.0 40.7±9.2 308.2± 92.0
o-Tolualdehyde 0.7± 0.1 2.9± 0.5 2.8± 0.5 6.3± 0.4 29.0± 2.8
m-Tolualdehyde ∼±∼ 1.0± 0.6 1.1± 0.8 ∼±∼ ∼±∼
p-Tolualdehyde 1.7± 0.4 0.9± 0.6 0.6± 0.7 115.0±26.4 291.8±195.8
Methylglyoxal 25.2± 3.1 12.2± 1.1 44.1± 10.9 490.1±69.8 982.0±249.0
Hexanal 0.5± 0.1 1.5± 0.1 1.8± 0.1 22.1± 11.8 10.4±12.1
2,5-Dimethylbenzaldehyde ∼±∼ 0.6± 0.1 0.7± 0.1 ∼±∼ ∼±∼
Total carbonyl compounds 79±10 201±48 415±63 35,056±825 230,083±70,153
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tissue culture flasks (Corning, Amsterdam, Netherlands) at 37 °C in a
humidified incubator with 5 % CO2 in air and 85 % relative humidity.
Cell passaging was performed when cells reached 80–90 % confluence.
Following subculture, cells were transferred to an air-liquid interface
(ALI) system. Cells were seeded (18 000 cells/cm²) onto transwell clear
culture inserts (4.67 cm²) with 0.4 μm pore size (Sigma Aldrich, Saint-
Quentin Fallavier, France) pre-coated with 0.03 mg/mL type I collagen
solution (Life Technologies). BEAS-2B cells were firstly maintained
submerged, then ALI was established by removing medium from the
apical surface, exposing only the basal surface to medium. Cells were
then transferred to an exposure module (Vitrocell 6/4 CF module) and
exposed to different doses (defined in puff number) of the undiluted
HTP, e-cig or cigarette aerosol generated by the Vitrocell® system.
Control cells were unexposed cells, which were left in the incubator.
Each exposure was replicated in three independent cell cultures.

2.7. Cell viability

BEAS-2B cells were exposed to different puff number of undiluted
aerosols (40, 80 and 120 puffs for e-cig; 2, 12, 40, 80 and 120 puffs for
HTP and 1, 2, 4 and 10 puffs for 3R4F cigarette) and cell viability was
measured 24 h after exposure via the Cell Titer-Glo Luminescent Cell
Viability assay kit (Promega, Charbonnières, France), as described
previously (Anthérieu et al., 2017). Intracellular ATP was determined
as percentages related to the ATP content in control cells arbitrarily set
at a value of 100 %.

2.8. Glutathione content assay

The GSH/GSSG-Glo™ Assay (Promega) was used following the
manufacturer’s guidelines for the determination of total glutathione
and oxidized glutathione (GSSG). Finally, GSSG/GSH ratios were cal-
culated and results are expressed as fold-change relative to the GSSG/
GSH ratio in control cells arbitrarily set at a value of 1.

2.9. Gene expression analysis

The total RNA of BEAS-2B cells was extracted using the RNeasy plus
mini kit (Qiagen, Courtaboeuf, France) following the manufacturer’s

instructions. Expression of target genes was measured by quantitative
real-time PCR of corresponding reverse‐transcribed mRNA. One μg of
total RNA was reverse-transcribed into cDNAs using the High Capacity
cDNA Reverse Transcription kit (Applied biosystems, CA, USA). qPCRs
were carried out with the StepOnePlus thermocycler (Applied
Biosystems), using the TaqMan Fast advanced Master Mix (Applied
Biosystems) and the following TaqMan Assays: Hs99999901_s1, 18S;
Hs01054797_g1, CYP1A1; Hs00164383_m1 CYP1B1; Hs01110250_m1,
HMOX1; Hs01045993_g1, NQO1. Amplification curves were read with
the StepOne software V2.1 using the comparative cycle threshold
method. The relative quantification of the steady-state mRNA levels
was normalized against 18S RNA. Results are expressed as fold-change
relative to the levels in control cells arbitrarily set at a value of 1.

2.10. Measurement of secreted mediators of inflammation

Concentrations of ten secreted inflammation mediators were mea-
sured in the basolateral media of BEAS-2B cells: granulocyte-macro-
phage colony-stimulating factor (GM-CSF), growth regulated oncogene
ɑ (GRO-ɑ), interleukin 1ß (IL-1ß), interleukin 6 (IL-6), interleukin 8 (IL-
8), interleukin 13 (IL-13), monocyte chemoattractant protein 1 (MCP-
1), macrophage inflammatory protein 1-alpha (MIP-1 α), regulated on
activation, normal T cell expressed and secreted (RANTES) and inter-
feron gamma (INF-γ). The assay has been performed based on the re-
commendations of the Milliplex MAP Human Cytokine/Chemokine
Magnetic Bead Panel kit (Merck Millipore, Molsheim, France) using the
Luminex® xMAP® technology (Luminex Corp., Austin, TX). The capacity
of BEAS-2B cells to secrete various mediators of inflammation had been
previously tested by treating cells with lipopolysaccharide (Anthérieu
et al., 2017).

2.11. Statistical analysis

Data were represented by the mean± SD of four independent
measurements. Statistical analyses were performed using the non-
parametric Mann-Whitney test. Data were considered significantly dif-
ferent when p<0.05.

Table 2
PAH concentrations (in pg/puff) in e-cig (Lounge, Mb18W or Mb30W), HTP and 3R4F cigarette aerosols. Data represent the mean± SD of four independent
measurements. “∼” : undetectable as< to LOD.

Lounge Mb18W Mb30W HTP 3R4F

Naphthalene 61.5± 9.5 75.9± 5.6 92.2± 6.2 71.2± 38.8 3,598.6± 735.4
Acenaphthene 0.2± 0.1 2.6±1.1 5.0±1.4 12.5± 13.6 1,318.2± 397.5
Fluorene 6.7± 3.3 6.7±1.5 5.0±1.3 26.0± 22.4 1,976.7± 387.6
Phenanthrene 7.2± 0.7 25.2± 8.2 22.8± 3.5 55.9± 34.7 2,829.4± 533.3
Anthracene 0.6± 0.1 1.7±0.4 2.8±3.7 4.7± 2.3 1,356.2± 266.7
Fluoranthene 9.2± 1.4 20.1±11.8 11.5±11.8 131.0± 79.0 1,463.5± 288.7
Pyrene 17.9± 4.3 30.9± 9.2 30.9±10.9 153.0± 98.6 1,752.4± 304.4
Benzo(c)phenanthrene 1.9± 0.6 4.5±2.1 3.1±4.4 10.2± 6.9 1.5± 0.6
Benzo(a)anthracene 0.2± 0.0 2.6±0.8 3.2±4.0 43.8± 23.3 542.5± 150.1
Chrysene 0.4± 0.3 1.6±0.2 2.5±4.0 26.3± 13.8 471.7± 72.5
5-Methylchrysene 1.5± 0.4 1.0±0.7 0.6±0.4 1.7± 1.0 1,130.5± 293.9
Benzo(e)pyrene 1.9± 0.2 6.1±2.5 5.3±3.6 22.9± 17.1 1,343.9± 303.1
Benzo(b)fluoranthene 0.3± 0.1 1.2±0.2 4.2±7.1 18.9± 8.9 358.9± 125.6
Benzo(k)fluoranthene 0.2± 0.1 0.5±0.1 1.4±2.2 18.4± 11.1 99.6± 28.1
Benzo(a)pyrene 0.6± 0.2 0.6±0.2 1.1±0.3 25.6± 13.8 457.6± 114.5
Dibenzo(a,l)pyrene 0.1± 0.0 0.0±0.0 0.1±0.0 0.3± 0.1 0.6± 0.2
Dibenzo(a,h)anthracene 0.0± 0.0 0.0±0.0 0.2±0.3 0.8± 0.4 38.4± 11.8
Benzo(g,h,i)perylene 1.5± 0.7 0.9±0.2 4.8±3.1 16.6± 8.9 276.2± 55.9
Indeno(1,2,3-c,d)pyrene 0.3± 0.1 0.2±0.0 1.5±2.0 6.6± 5.6 214.0± 81.4
Dibenzo(a,e)pyrene 0.1± 0.0 0.0±0.0 0.2±0.3 0.5± 0.3 92.4± 43.5
Anthanthrene 0.3± 0.1 0.2±0.1 0.4±0.1 11.7± 6.7 233.9± 52.6
Coronene 0.3± 0.1 0.5±0.1 2.8±1.0 5.5± 1.8 25.6± 5.4
Cyclopenta(c,d)pyrene ∼±∼ ∼±∼ ∼±∼ ∼±∼ ∼±∼
Total PAHs 113±16 183±29 202±57 664±389 19,582±400
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3. Results and discussion

3.1. Chemical characterization of aerosols

3.1.1. Nicotine content
The potential of the HTP and e-cig to substitute cigarette smoking is

expected to be at least dependent on the level of nicotine delivered in
their aerosols and subsequently inhaled by the user (Farsalinos et al.,
2018a). Therefore, the levels of nicotine present in the HTP aerosols
were determined and compared with those in the tobacco cigarette
smoke and vapours from different e-cig models used with an e-liquid
containing 16 mg/mL of nicotine. Levels of nicotine delivered to the
aerosols are presented in Fig. 1. HTP delivered about 30 % less nicotine
to its aerosol (63 μg/puff) than the 3R4F cigarette (95 μg/puff) under
the HCI puffing profile, as described in other studies (Belushkin et al.,
2020; Farsalinos et al., 2018a; Li et al., 2019; Schaller et al., 2016a). For
e-cig emissions, the second generation Lounge model provided strongly
less nicotine amounts (8 μg/puff) than the two tobacco products tested,
while the third generation Modbox model delivered 60 μg/puff at 18 W
setting and 137 μg/puff at 30 W setting. Increasing power supply of e-
cig has already been shown to increase nicotine level in vapour, mostly
due to a more efficient vaporization of the e-liquid (Talih et al., 2015).
In summary, the nicotine delivery is highly variable (from 8 to 137 μg
of nicotine/puff) depending on the device in comparable conditions of
use (under HCI puffing regime). This parameter is important, while it is
expected a phenomenon of nicotine self-titration with smokers who
want to switch from cigarette to nicotine-delivering alternatives, such
as e-cig or HTP (Farsalinos et al, 2018d; Woodward and Tunstall-Pedoe,
1993). To compensate and obtain a similar nicotine amount from HTP
or e-cig as from tobacco cigarette, they might adopt a more intense
“puffing regime” and/or consume more puffs with HTP or e-cig. Con-
sequently, the nicotine concentrations in emissions will be used to es-
timate a “normalized” exposure to other harmful and potentially
harmful compounds.

3.1.2. Carbonyl and PAH contents
Carbonyls and PAHs are part of principal compounds released from

the tobacco combustion and many of them contribute significantly to
the carcinogenic activity of tobacco smoke (IARC, 2004). Indeed, the
carbonyl compounds, formaldehyde and acetaldehyde, are respectively
classified as carcinogenic (Group 1) and possibly carcinogenic (Group
2B) to humans by the International Agency for Research on Cancer
(IARC, 2016). Among the PAHs, the benzo[a]pyrene is classified in
Group 1 and the dibenzo[a,h]anthracene in Group 2A as probably
carcinogenic to humans. Within the framework of tobacco harm re-
duction, it appears interesting to measure and compare the levels of
these harmful and potentially harmful compounds in the emissions of
HTP and e-cig.

The emission of nineteen carbonyl compounds in the aerosols of
HTP, 3R4F cigarette and e-cigs was first analysed and results (expressed
in mass of each compound per puff) are reported in Table 1. Fifteen
compounds were quantified at levels between 2 and 15 times higher in
cigarette smoke than in HTP aerosols. Hexanal was the only compound
measured at a higher level in HTP emission (22.1 ng/puff) than in 3R4F
tobacco smoke (10.4 ng/puff), and benzaldehyde was generated in al-
most equivalent amounts by HTP and cigarette. By contrast, all the
carbonyl compounds were measured at very lower amounts in vapours
from the different tested e-cig conditions in comparison to tobacco
products, except for m-tolualdehyde and 2,5 dimethylbenzaldehyde
which were only detected in aerosols from the Modbox device, at both
low and high-power settings. Fig. 2-A represents the sum of total car-
bonyl compounds measured in e-cig, HTP and 3R4F emissions. There
are much less carbonyl compounds produced in one puff of HTP (35 μg/
puff) than in one puff of cigarette smoke (230 μg/puff). Indeed, HTP
emitted 84.7 % less carbonyl compounds than 3R4F cigarette (Fig. 2B).
Levels of carbonyl compounds measured in vapours from different e-cig

models were even at least 98.5 % weaker than in HTP aerosols. Com-
parison of data between different e-cig devices showed that Lounge and
Mb18W emitted respectively 82.3 % and 51.4 % less carbonyl com-
pounds than Mb30W (0.4 μg/puff) (Fig. 2A and B).

These different tobacco products and e-cigs produced carbonyls at
very different levels in emissions, probably because they generat
aerosols via different processes and from diverse materials (tobacco
fillers or e-liquid). During smoking, carbonyls are mainly produced by
the pyrolysis of carbohydrates contained in tobacco (Seeman et al.,
2002) at high temperature (up to 900 °C). The aerosolization process of
HTP operates at temperatures less than 350 °C with the use of heatsticks
containing tobacco leaves soaked in propylene glycol. These devices are
often referred to as “heat-not-burn” tobacco products with a reduction
of the user’s exposure to carcinogenic chemicals usually produced by
the combustion of tobacco (Schaller et al., 2016a). We effectively ob-
served a reduction of about 90 % in carbonyl emissions in accordance
with data from the IQOS manufacturer (Schaller et al., 2016a,b) and
two independent studies (Farsalinos et al., 2018b; Li et al., 2019).
However, several harmful carbonyls were still measured in HTP
aerosol, such as acetaldehyde and formaldehyde, which are carcino-
genic compounds. The presence of high levels of acetaldehyde is the
mark of pyrolysis and thermogenic degradation of tobacco (Auer et al.,
2017). By contrast, the main source of carbonyls in e-cig emissions is
the thermal degradation of glycerol and propylene glycol contained in
the e-liquid (Uchiyama et al., 2020). Some carbonyls were quantifiable
in the different vapours of tested e-cig, but several times far lower than
in the emissions from both tested tobacco products (Table 1). In addi-
tion, there is a relation between the operating power or the e-cig model
and the concentrations of carbonyl compounds detected in the e-cig
aerosols. The power of e-cig, and therefore ultimately the heat gener-
ated on the evaporation coil, has been reported to affect the quantity of
carbonyls formed (Geiss et al., 2016; Kosmider et al., 2014; Talih et al.,
2016). Some studies reported higher carbonyl amounts in e-cig emis-
sions (Goniewicz et al., 2014; Hutzler et al., 2014; Sleiman et al., 2016;
Talih et al., 2015). However, these findings have been questioned as
they could be the consequence of using unrealistic or extreme condi-
tions (low interpuff interval or high power generating high tempera-
tures, drypuff phenomenon) (Farsalinos et al., 2015, 2017). Indeed, e-
cig can release high levels of aldehydes if the e-liquid is overheated, but
the overheating generates an aversive taste that would secure such
emissions to be avoided. To ensure realistic experimental conditions,
two regular e-cig users tested the e-cigs used in our study for the gen-
eration of dry puffs, using the puff duration and power settings as tested
with the smoking machine. The users confirmed no dry puff sensation
and sufficient vapour production. In addition, the temperature of the
generated aerosol was also considered as an indicator of experimental

Fig. 1. Nicotine levels (in μg/puff) in e-cig (Lounge, Mb18W or Mb30W), HTP
and 3R4F cigarette aerosols. Data represent the mean± SD of four independent
measurements. *p< 0.05.
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relevance and realism. The temperature of the aerosols generated from
each device did not exceed 60 °C during all the collection periods
(Supplemental Fig. 1), following the recommendations of the French
national organisation and standardization (AFNOR, 2016). Overall, our

data thus demonstrate that, at normal vaping temperatures, carbonyl
content in e-cig emissions represents only a small fraction of levels
inhaled by users of tobacco products.

In parallel, the emission of twenty-three PAHs in the aerosols of

Fig. 2. Total content of carbonyl compounds in e-cig (Lounge, Mb18W or Mb30W), HTP and 3R4F cigarette aerosols. Data represent the mean±SD of four
independent measurements (*p<0.05) and are expressed in μg/puff (A) or in ng/μg of nicotine (C). The corresponding reduction (%) in emissions of total carbonyl
compounds (B and D, respectively) was compared to that of the 3R4F cigarette, HTP or e-cig.

Fig. 3. Total content of PAHs in e-cig (Lounge, Mb18W or Mb30W), HTP and 3R4F cigarette aerosols. Data represent the mean± SD of four independent mea-
surements (*p< 0.05) and are expressed in ng/puff (A) or in pg/μg of nicotine (C). The corresponding reduction (%) in emissions of total PAHs (B and D, re-
spectively) was compared to that of the 3R4F cigarette, HTP or e-cig.

R. Dusautoir, et al. Journal of Hazardous Materials 401 (2021) 123417

6



HTP, 3R4F cigarette and e-cigs was analysed and results expressed in
pg/puff are reported in Table 2. A similar pattern than that seen for
carbonyl compounds was observed for almost all emitted PAHs: the
concentrations of twenty-one compounds were markedly lower in HTP
emissions than in 3R4F cigarette smoke (from 2 to 676 times depending
on the compound), and were even lesser in e-cig vapours. Only benzo(c)
phenanthrene was reported to be higher in HTP emissions, compared to
all other aerosols. The sum of total PAHs measured was calculated for
each aerosol (Fig. 3A) and the reduction rate is indicated in Fig. 3B:
HTP (0.7 ng/puff) emitted 96.2 % less PAHs than 3R4F cigarette (19.6
ng/puff), but e-cig emitted 64.9–78.2 % less PAHs than HTP. Com-
parison of e-cig models showed no significant difference in PAH content
between Mb18W and Mb30W, and about 40 % less of total PAHs in
Lounge than in the Modbox model. These results support that the
pyrolysis process is limited with e-cigs. The e-liquid used for vaping is
generally free of tobacco ingredients which contain the PAH precursors.
Moreover, the temperature required to produce an e-cig aerosol from a
e-liquid is depending of the proportion in propylene glycol and glycerol.
This temperature ranges from 188.6 °C to 292 °C, but water and alcohol
used as additives, decrease this boiling point (Duell et al., 2018). By
comparison, IQOS operates at temperatures between 330 °C and 349 °C
(Davis et al., 2019). PAH emissions released by HTP were lower than
combustible cigarette but still contained harmful elements from
thermal degradation that are also found in cigarette smoke (Li et al.,
2019; Rodgman et al., 2000), including the carcinogenic benzo[a]
pyrene.

The quantifications of carbonyl and PAH compounds were first
presented in mass of analysed compounds per puff to compare devices
with each other. However, users do not necessarily consume the same
number of puffs when using HTP, e-cig or conventional cigarettes. They
appear to self-regulate their consumption (number, frequency and vo-
lume of puffs, notably) according to their needed quantity of nicotine
(Farsalinos et al., 2018c). To take into consideration this nicotine self-
titration, it appears relevant to also report all the amounts of harmful
and potentially harmful compounds per nicotine yield. Detailed data for
carbonyl and PAH levels, normalized by the level of emitted nicotine in
aerosols, are reported in Tables S1 and S2 (supplementary materials),
respectively. The comparison of total carbonyl compounds after nico-
tine normalization (Fig. 2C and D) showed, according to previous
conclusions, that the HTP emitted 76.9 % less carbonyl compounds

(497 ng/μg of nicotine) than the combustible cigarette (2308 ng/μg of
nicotine), but at least 97.9 % higher levels than the e-cig vapours (< 10
ng/μg of nicotine). However, comparing the e-cig models, Lounge
emitted more carbonyl compounds than the Modbox model and no
significant difference was reported between Mb18W and Mb30W. The
comparison of total PAHs after nicotine normalization (Fig. 3C and D)
also showed substantial reduction (94.3 %) in the PAH content of HTP
emissions (11 pg/μg of nicotine) in comparison to cigarette smoke (207
pg/μg of nicotine). The pattern of PAH content between the different e-
cig models was different after nicotine normalization: the Lounge
model emitted more PAHs (15 pg/μg of nicotine) than the Modbox
model (79.2–90 %) and even 27.5 % more than HTP. These results
showed that the way of expressing data (emissions per puff vs emissions
per nicotine yield) can influence their interpretation. Today, there is no
standardized manner to express the amount of emitted compounds in
aerosols. Indeed, data can be expressed in amount per puff (Beauval
et al., 2019), per mL of puff (Beauval et al., 2017), per cigarette or per
IQOS heatstick (Li et al., 2019), per mass of nicotine (Farsalinos et al.,
2018b), per liquid consumption for e-cig (Beauval et al., 2017), thus
hampering comparisons between studies and making interpretations
difficult. In addition, it is still unclear to which extent vapor generation,
collection and analysis procedures could affect results of chemical
characterization. Harmonized protocols to determine the chemical
composition of emissions and to express results are crucially needed to
establish and compare risk profiles of each emergent tobacco products
in terms of chemical composition and user exposure.

3.2. In vitro toxicity

The apparent reduction of some harmful constituents in HTP and e-
cig emissions in comparison to tobacco cigarette cannot be directly
extrapolated to a proportionate harm reduction for smokers. Today,
research is needed about toxicological impacts of these products on
human airway epithelial cells in comparison with tobacco cigarette.
The use of undiluted aerosols is described as a more sensitive method to
compare responses from aerosols produced from emergent products,
such as HTP and e-cig (Bishop et al., 2019). Thus, human bronchial
epithelial BEAS-2B cells cultured at ALI were exposed to undiluted
emissions from HTP, e-cig and 3R4F cigarette and effects of those
emissions were evaluated on cytotoxicity, oxidative stress and

Fig. 4. Cell viability after exposure of BEAS-2B cells to different puff numbers of e-cigs [Lounge (A), Mb18W (B) or Mb30W (C)], HTP (D) and 3R4F cigarette (E). The
viability was assessed by measuring intracellular ATP content in cells 24 h after exposure. Results are expressed as percentages relative to the ATP content in control
cells arbitrarily set at a value of 100 %. Data represent the mean±SD of three independent culture replicates. *p< 0.05 compared to control cells. (F) Cell viability
expressed as a function of nicotine content (mg) in aerosols from each device. Nicotine content is determined by the nicotine concentration per puff (depending of the
device) multiplied by the number of puffs.
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inflammatory response, which are key mechanisms leading to chronic
airway diseases.

3.2.1. Cell viability
Cell viability was assessed 24 h after aerosol exposure by measuring

intracellular ATP content, which is directly proportional to the number
of living cells. Data displayed in Fig. 4(A–E) show that e-cig vapours
had no significant (Modbox model) or low (Lounge model:> 75 % cell
viability) cytotoxic effects up to a 120-puff-exposure. In comparison,
HTP emissions caused intracellular ATP changes from 12 puffs (89 %
viability) to a strong reduction of cell viability that reached 2 % after
120 puffs. Cigarette smoke demonstrated also a full dose-response
curve, but its cytotoxicity appeared within fewer puffs (< 10 puffs). In
order to better compare the different devices, the effective dose of
aerosol which results in a 50 % reduction of cell viability (ED50, ex-
pressed here in puff number) was calculated. Although the e-cig va-
pours did not induce sufficient cell mortality to calculate an ED50
(whatever the tested e-cig power or model), ED50 was 45 puffs for HTP
aerosol and 2 puffs for 3R4F cigarette smoke. Bishop et al. have exposed
a 3D-reconstituted human airway epithelium to undiluted cigarette
smoke and e-cig aerosol (Bishop et al., 2019). They fund ED50 equal to
4 puffs and 60 puffs under HCI regime for cigarette and e-cig exposures,
respectively. However, they voluntarily used extreme conditions for e-
cig exposure with an airflow vent closed to achieve a worst case for
carbonyl production and, consequently, higher cytotoxicity. In a pre-
vious study using diluted aerosols (Anthérieu et al., 2017), we have
tested the Lounge model with different e-liquids (with or without ni-
cotine, flavoured or unflavoured) and demonstrated that none of the
aerosols induced cytotoxicity in BEAS-B cell line up to an exposure of
576 puffs. Today, few in vitro studies have compared the relative cy-
totoxicity of HTP aerosols with both cigarette smoke and e-cig vapours,
and most of these assays have been performed using submersed cultures
exposed to aerosol extracts (Ito et al., 2019; Munakata et al., 2018;
Sohal et al., 2019). ALI exposures provide a more pertinent approach to

perform toxicological studies related to inhalation of emerging e-cigs or
novel tobacco products (Johnson et al., 2009). Our present results are in
agreement with a study performed in ALI-cultured human bronchial
epithelial H292 cells, demonstrating that HTP show reduced cytotoxi-
city relative to combustible cigarette, but higher cytotoxicity than e-cig
(Leigh et al., 2018). There is no standardized approach to compare the
in vitro toxicity between emergent tobacco products, e-cigs and tobacco
cigarette. Some authors used the same exposure time or the same puff
number between the different aerosols while some used comparable
nicotine exposure (Wang et al., 2019). Therefore, we also reported cell
viability as a function of emitted nicotine (Fig. 4F). The results were
equivalent with or without nicotine normalization: a higher cytotoxi-
city for tobacco cigarette (ED50 = 0.2 mg of nicotine) than for HTP
(ED50 = 2.8 mg of nicotine) and low cytotoxicity for e-cig. These
differences in cytotoxic effects are probably attributable to lower con-
centrations of potentially harmful chemicals in HTP and especially e-cig
aerosols. Based on these cytotoxicity data, sub-toxic (> 75 % cell via-
bility) or toxic doses were chosen for the further analyses that assessed
oxidative stress and inflammation: 40 and 120 puffs for e-cig; 2, 12 and
40 puffs for HTP; 1 and 2 puffs for 3R4F cigarette.

3.2.2. Oxidative stress
The generation of oxidative stress was first assessed by measuring

the intracellular content of oxidized (GSSG) and reduced (GSH) glu-
tathione. GSH is considered to be one of the most important scavengers
of reactive oxygen species (ROS), and the ratio GSSG/GSH may be used
as a marker of oxidative stress. We have previously described that the
generation of oxidative stress was transient and no change in glu-
tathione levels was found in BEAS-2B cells 3 h after the end of cigarette
smoke exposure (Anthérieu et al., 2017). Consequently, we have mea-
sured GSH and GSSG contents immediately (0 h) after cell exposures
(Fig. 5). In these experimental conditions, HTP induced a significant
increase of GSSG/GSH ratio in comparison to control cells (2.7 and 4.5
fold-changes after 12 and 40 puffs, respectively). 3R4F cigarette also

Fig. 5. Glutathione ratio (GSSG/GSH) in BEAS-2B cells after exposure to e-cig [Lounge (A), Mb18W (B) or Mb30W (C)], HTP (D) and 3R4F cigarette (E) aerosols. The
GSSG and GSH contents were measured immediately after cell exposure. Results are expressed as fold-change relative to the GSSG/GSH ratio in control cells
arbitrarily set at a value of 1. Data represent the mean±SD of three independent culture replicates. * p<0.05 compared to control cells.
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induced an increase of the GSSG/GSH ratio but already after only 1 puff
(2.7 fold-change) and a 7.8 fold-change was observed after an exposure
to 2 puffs. For e-cig exposures, anti-oxidative response was evidenced
only after a longer exposure of 120 puffs with Mb30W (2.9 fold-
change), although no significant change in the GSSG/GSH ratio was
observed with Mb18W and Lounge.

The cellular defense mechanisms against toxic substances also in-
clude transcriptomic regulations of genes involved in detoxification
processes and the anti-oxidative response. Thus, the expression of se-
lected genes involved in xenobiotic metabolism (cytochrome P450 1A1,
CYP1A1; cytochrome P450 1B1, CYP1B1) and the anti-oxidative re-
sponse (heme oxygenase 1, HMOX1; NADPH Quinone Dehydrogenase
1, NQO1) was quantified 4 or 24 h after exposure to 120 puffs of e-cig
vapours, 12 puffs of HTP aerosol or 1 puff of 3R4F cigarette smoke
(Fig. 6). For all the products and both time points, an increase of
CYP1A1 and CYP1B1 expression was observed, with a higher induction
for CYP1A1 than for CYP1B1. PAHs contained in cigarette smoke are
known to induce expression of CYP1A1/1B1 via the Aryl Hydrocarbon
Receptor (AhR) pathway and, subsequently, to affect the metabolism of
tobacco carcinogens (Sacks et al., 2011). The CYP1A1/1B1 expression
is also induced in the lungs of smokers (Kim et al., 2004). E-cig aerosols
can also induce CYP1A1 and CYP1B1 and enhance the metabolism of
some PAHs (e.g. benzo[a]pyrene) to genotoxic products by activating
AhR (Sun et al., 2019). Furthermore, the expression of the downstream
target genes of the nuclear erythroid 2-related factor 2 (Nrf2), NQO1
and HMOX1, was up-regulated 4 h after exposure to the Lounge model

vapours and at both time points for all other emissions. The up-reg-
ulation of NQO1 and HMOX1 levels 4 h after exposure increased with
the e-cig power, reaching a 3.3 or 95-fold-change, respectively, for
Mb30W. Some smoke compounds, including carbonyls, PAHs, qui-
nones, naphthoquinones and benzenediols, were identified as activators
of the Nrf2/antioxidant response element (ARE) pathway and HMOX1
induction in response to oxidative stress (Chan et al., 2013; Sekine
et al., 2016; Zhang et al., 2019). Some of these different components of
cigarette smoke were also found in aerosols of HTP or e-cig, which can
explain the up-regulation of NQO1 and HMOX1 in BEAS-2B cells
whatever the products. Almost all of these transcriptomic modulations
were higher after 4 h exposure than after 24 h and correspond to early
adaptive mechanisms set up by BEAS-2B cells in response to a cellular
stress after aerosol exposure. It is important to note that these tran-
scriptomic mechanisms were globally similar for all the devices tested,
demonstrating that all products have the potential to induce detox-
ification and an anti-oxidative response. However, these molecular and
cellular responses were observed for highly different exposure levels
(from 120 puffs for e-cig, 12 puffs for HTP and only 1 puff for tobacco
cigarette). In addition, an exposure of 120 puffs in one hour is re-
presentative of an intense exposure session, compared to data from
topography studies with e-cig users (Jones et al., 2020; Lee et al., 2018).

These results are in accordance with other studies demonstrating
that the generation of ROS is observed in HTP emissions after a more
intensive use than with cigarette smoke (Munakata et al., 2018). ROS
would be mainly generated by exposure to chemicals derived from

Fig. 6. Expression of mRNAs encoding genes related to metabolism [CYP1A1 (A), CYP1B1 (B)] and oxidative stress [HMOX1 (C), NQO1 (D)] in BEAS-2B cells. The
gene expression was analysed 4 h or 24 h after exposure to 120 puffs of e-cig (Lounge, Mb18W or Mb30W), 12 puffs of HTP or 1 puff of 3R4F cigarette. Data represent
the mean± SD of three independent culture replicates. Results are expressed as fold-change relative to control cells, arbitrarily set at a value of 1. Data represent the
mean± SD of three independent culture replicates. * p< 0.05 compared to control cells.
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combustion processes (Kopa and Pawliczak, 2020) and, therefore, can
be directly linked to the relative amounts of carbonyls and PAHs
measured in HTP and cigarette smoke emissions (Figs. 2 and 3). The
increase in the amount of carbonyl compounds produced when Modbox
was used under high power setting could explain, at least in part, the
greater induction of ROS production that would contribute to alter the
oxidative/antioxidative balance. Indeed, higher power leads to higher
filament temperature, which enhances the e-liquid vaporization pro-
cess, pyrolysis and chain reactions with the production of hydroxide
and superoxide free radicals (Haddad et al., 2019; Son et al., 2019;
Zhao et al., 2018). However, Son et al. reported that the dose of free
radicals per puff associated with e-cig vaping was 10–1000 times lower
than the reported dose generated by cigarette smoking (Son et al.,
2019).

3.2.3. Inflammatory response
The inflammatory response of BEAS-2B cells was assessed by mea-

suring the secretion of ten cytokines and chemokines 24 h after ex-
posure to defined subtoxic doses of HTP, 3R4F cigarette smoke or e-cig
emissions. Only four mediators were found in quantifiable levels (IL-6,
IL-8, GROα, and MCP-1) after exposure. GM-CSF, IL-13, IL-1ß, MIP-1ɑ,
RANTES and TNF-ɑ were not detected in cell culture medium of BEAS-
2B cells exposed to aerosols, despite the capacity of these cells to secrete
these mediators after treatment with lipopolysaccharide (Anthérieu
et al., 2017). The results for the four detected mediators were expressed
in fold-change relative to control cells (Table 3). A significant increase
of IL-6 secretion was observed in the culture medium of cells exposed to
Mb18W (for 120 puffs) and Mb30W (for both 40 and 120 puffs) aero-
sols, while no significant change was evidenced for IL-8 secretion. In-
crease of IL-6 and/or IL-8 had already been described in different cell
models after e-cig exposures (Merecz-Sadowska et al., 2020), and more
remarkably in the plasma of e-cig users (Singh et al., 2019), demon-
strating that e-cig vapors could induce a pro-inflammatory response.
For HTP, a biphasic response was observed for IL-6 and IL-8 with a
greater increase in secretion after 12 puffs (3 and 3.3 fold-change, re-
spectively) than after 40 puffs (1.3 fold-change). A comparable biphasic
response in IL-8 secretion was previously described in BEAS-2B cells
exposed to HTP aerosol or tobacco smoke and a similar trend was also
observed for GM-CSF (Munakata et al., 2018), which was undetectable
in our study. These differences in results could be explained by the
different protocols of cell exposure. Indeed, Munataka et al. exposed
submerged BEAS-2B cells to aerosol extracts, while ALI-cultured cells
were exposed directly to aerosols in our study. Finally, the secretion of
MCP-1 and GRO-α was significantly decreased for the longer exposures
to HTP aerosol, 3R4F cigarette smoke and Mb30W vapour (Table 3). A
down-regulation of GRO-α and MCP-1 was also demonstrated after
exposure to cigarette smoke in human endothelial cells (Allam et al.,
2013). GRO-α plays a significant role in the chemotaxis of neutrophils
to the site of inflammation and MCP-1 is a potent chemoattractant for
monocytes and macrophages. This recruitment and subsequent activa-
tion of monocytes into the inflamed tissues play a central role in de-
termining the outcomes of the immune responses of the tissues. Thus,
alteration of GRO-α and MCP-1 secretion after aerosol exposure could
affect the tissue immune and protective responses.

These different modulations in inflammatory mediators can be ex-
plained partially by the carbonyl and PAH levels measured in the dif-
ferent emissions. Indeed, some carbonyls found in aerosols or smoke
(such as acrolein, acetaldehyde and formaldehyde) are known strong
irritants that may cause inflammation (Lino-dos-Santos-Franco et al.,
2011; Shields et al., 2017). The benzo[a]pyrene is also known as an
inducer of the secretion of pro-inflammatory cytokines (Chen et al.,
2012). Other constituents of aerosols or smoke could play a major role
in the inflammatory response. Metals are capable of causing in-
flammatory cytokine induction (Lerner et al., 2015). In addition, pro-
pylene glycol and glycerol produce a hygroscopic/hyperosmolar
aerosol which could deposit on the surface of lung cells and trigger local

inflammation (Chaumont et al., 2019).
Carbonyls and PAHs represent only a part of the complex mixture

constituting the cigarette smoke or the HTP and e-cig aerosols.
Therefore, these pollutants take part in the cellular response but all the
changes observed in BEAS-2B cells (cytotoxicity, oxidative stress, in-
flammation) cannot be explained solely by PAH and carbonyl emis-
sions. A multitude of other harmful compounds comprising other vo-
latile organic compounds, metals, nitrosamines etc. (Li et al., 2019;
Schaller et al., 2016a,b; Zhao et al., 2019) should be taken into account
to better characterize the toxic profile of these novel tobacco products
and e-cigs in comparison to tobacco cigarette.

4. Conclusion

Within the framework of tobacco harm reductions, in which smo-
kers ideally should be able to freely choose from a variety of alter-
natives for smoking, emerging tobacco products (such as HTP) and e-cig
seem to have potential of a promising new offering. However, it is
fundamental for smokers to know and compare the health risks of these
different emergent devices in order to determine which product should
be preferred for smoking cessation. Our study provides comparative
data on both chemical composition of HTP, e-cig and tobacco cigarette
emissions and their toxicological impacts on human bronchial epithelial
cells. We first report that HTP deliver slightly less nicotine and emit
much lower amounts of carbonyl and PAH compounds than tobacco
cigarette. However, HTP emissions still contain carcinogenic com-
pounds (e.g. formaldehyde, acetaldehyde and benzo[a]pyrene) and the
amounts of carbonyls and PAHs in HTP aerosols are higher than in e-cig
vapours. In accordance with the levels of toxic compounds in each
aerosol, HTP aerosol exhibits reduced cytotoxicity compared to cigar-
ette smoke but higher than e-cig vapours. HTP and e-cig have the po-
tential to increase oxidative stress and inflammatory response, in a
manner very similar to that of cigarette smoke, but only after a more
intensive exposure. In addition, our data support that e-cig use at higher
power settings emit higher carbonyl and PAH compounds and, conse-
quently, generate more oxidative stress. Finally, this study contributes
to a better understanding of HTP and e-cig emission properties and
their related toxicological impacts and provides important data needed
for risk assessment purposes, by demonstrating that HTP might be less
harmful than tobacco cigarette but considerably more harmful than e-
cig. Further long-term studies in animal models should be conducted to
confirm these in vitro findings and to allow the assessment of chronic

Table 3
Profile of inflammatory mediators (IL-6, IL-8, MCP-1 and GROα) secreted by
BEAS-2B cells 24 h after exposure to the emissions of e-cigs (Lounge, Mb18W or
Mb30W), HTP or 3R4F cigarette. Data represent the mean± SD of three in-
dependent culture replicates. Results are expressed as fold-change relative to
control cells, arbitrarily set at a value of 1. Data in bold are significantly dif-
ferent from controls (p< 0.05).

IL-6 IL-8 MCP-1 GRO-α

Lounge
40 puffs 2.1± 0.6 0.8± 0.3 0.7± 0.2 0.7± 0.1
120 puffs 2.2± 1.0 0.6± 0.1 0.6± 0.2 0.6± 0.1
Mb18W
40 puffs 2.5± 1.1 1.1± 0.6 1.0± 0.1 1.0± 0.2
120 puffs 2.3±0.6 1.0± 0.3 0.8± 0.1 0.8± 0.1
Mb30W
40 puffs 3.3±0.4 0.9± 0.1 0.8± 0.1 0.7± 0.2
120 puffs 2.4±0.1 0.6± 0.1 0.6±0.1 0.4±0.1
HTP
2 puffs 0.4± 0.0 1.0± 0.0 0.6±0.0 0.9± 0.1
12 puffs 3.0± 3.0 3.3±0.4 0.6±0.1 0.7±0.1
40 puffs 1.3± 1.0 1.3± 1.5 0.2±0.1 0.2±0.1
3R4F
1 puff 1.4± 0.5 1.4± 0.3 1.0± 0.1 0.7±0.1
2 puffs 1. 5± 0.5 1.8± 0.8 0.2±0.1 0.2±0.1
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exposures to emergent tobacco products. In addition to the toxic im-
pacts of these products, comparison of their addictiveness is another
key element to take into account in the tobacco harm-reduction
strategy.
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Abstract 

Smoking is responsible for 8 million deaths a year worldwide. Currently, smoking cessation is 
the only solution to lower this mortality, but is made difficult by nicotine addiction. In recent years, 
new nicotine delivery devices have come onto the market: the electronic cigarette (e-cig) and heated 
tobacco. Although they are generally perceived as healthier alternatives to cigarettes, their precise 
impact on human health remains to be determined. 

The first objective of this thesis was to analyze the chemical composition and the in vitro 
toxicity of e-cig emissions of different powers (a second-generation model and a third-generation 
model (Modbox) set at low power, Mb18W, or high power, Mb30W) and heated tobacco emissions to 
compare them to cigarette smoke. We have been able to show that heated tobacco generates much 
less carbonyl compounds and PAHs than cigarettes, but much more than e-cig, regardless of the model. 
Consistently, the exposure of human bronchial epithelial cells (BEAS-2B) cultured at the air-liquid 
interface to the emissions from the different devices showed that heated tobacco emissions induced 
less cytotoxicity than cigarette smoke, but much more than e-cig emissions. In addition, exposures to 
12 puffs of heated tobacco or 120 puffs of e-cig induce oxidative stress and the secretion of some pro-
inflammatory cytokines. Similar effects were observed for cigarette smoke but only after one puff. 
Interestingly, for e-cig, we have demonstrated that the amount of carbonyl compounds emitted and 
induced oxidative stress increase with the power of the device. 

The second objective of this doctoral project was to evaluate on a mouse model the long-term 
respiratory toxicity of aerosols generated by a third-generation model of e-cig. BALB/c mice were nose-
only exposed for 4 days, 3 months or 6 months to Mb18W or Mb30W emissions or to cigarette smoke. 
Our in vivo experiments have shown that, on the one hand, e-cig emissions generated at 18 W and 30 
W were responsible for epigenetic modifications inducing long-term DNA hypermethylation and 
deregulation of certain miRNAs at all exposure times, but that, on the other hand, only those generated 
at 30 W were capable of causing oxidative DNA damage, without leading to chromosomal aberrations 
or gene mutations. Transcriptomic data obtained after 6 months of exposure to e-cig emissions have 
shown the deregulation of several signaling pathways involved, in particular, in the inflammatory 
response, oxidative stress and metabolism of carbonyl compounds and, in particular, of propylene 
glycol metabolites. However, the low number of genes impacted in each of these pathways does not 
guarantee that the observed deregulations have a real biological impact. By comparison, cigarette 
smoke induced, under the same exposure conditions, the deregulation of a greater number of signaling 
pathways, particularly in relation to inflammation and PAH metabolism, each involving a larger number 
of genes. 

Overall, our chemical and in vitro analyses suggest that heated tobacco emissions are less toxic 
than conventional cigarette smoke but much more harmful than those of e-cigs, regardless of their 
power. Moreover, the in vivo experiments described in this work did not reveal a proven long-term 
toxicity of e-cig emissions. However, a more in-depth study of our transcriptomic data and their 
comparison with future complementary results from histological analyses of exposed animals, their 
respiratory function and their pulmonary and systemic inflammatory response should allow us to 
confirm or invalidate this preliminary conclusion. 
 

Keywords: cigarette, electronic cigarette, heated tobacco, chemical characterization, 
experimental toxicology in vitro and in vivo. 

  





 
 

Résumé 

Le tabagisme est responsable de 8 millions de morts par an dans le monde. Le sevrage 
tabagique est actuellement la seule solution pour endiguer cette mortalité mais il est rendu difficile du 
fait de l’addiction à la nicotine.  epuis quelques années, de nouveaux dispositifs de délivrance de 
nicotine sont arrivés sur le marché : la cigarette électronique (e-cig) et le tabac chauffé.  ien qu’ils 
soient généralement perçus comme des alternatives plus saines à la cigarette, leur impact précis sur 
la santé humaine reste à déterminer. 

Le premier objectif de cette thèse était d’analyser la composition chimique et la toxicité in vitro 
des émissions d’e-cig de différentes puissances (un modèle de deuxième génération et un modèle de 
troisième génération (Modbox) réglé à une puissance faible, Mb18W, ou forte, Mb30W) et du tabac 
chauffé et de les comparer à la fumée de cigarette. Nous avons pu montrer que le tabac chauffé génère 
beaucoup moins de composés carbonylés et de HAP que la cigarette, mais bien plus que l’e-cig, quel 
que soit le modèle.  e manière concordante, l’exposition de cellules épithéliales bronchiques 
humaines (BEAS-2 ) cultivées à l’interface air-liquide aux émissions des différents dispositifs a permis 
de mettre en évidence que les émissions de tabac chauffé induisent une cytotoxicité réduite par 
rapport à la fumée de cigarette, mais bien plus élevée que les émissions d’e-cig. De plus, des 
expositions à 12 bouffées de tabac chauffé ou à 120 bouffées d’e-cig induisent un stress oxydant et la 
sécrétion de certaines cytokines pro-inflammatoires. Des effets similaires sont observés pour la fumée 
de cigarette mais seulement après 1 bouffée.  e manière intéressante, en ce qui concerne l’e-cig, nous 
avons pu démontrer que la quantité de composés carbonylés émis et le stress oxydant augmentent 
avec la puissance du dispositif. 

Le deuxième objectif de mon projet doctoral consistait à évaluer sur un modèle murin la 
toxicité respiratoire sur le long terme des émissions d’e-cig de troisième génération. Des souris BALB/c 
ont été exposées exclusivement par voie nasale pendant 4 jours, 3 mois ou 6 mois aux aérosols de 
Mb18W ou de Mb30W, ou à la fumée de cigarette. Nos expérimentations in vivo ont montré que, 
d’une part, les émissions d’e-cig générées à 18 W et 30 W sont responsables de modifications 
épigénétiques induisant sur le long terme une hyper méthylation de l’  N et la dérégulation de 
certains mi RN à tous les temps d’exposition, mais que, d’autre part, seules celles générées à 30 W 
sont capables de provoquer des lésions oxydatives de l’  N, sans pour autant aboutir à des 
aberrations chromosomiques ou des mutations géniques. Les données transcriptomiques obtenues 
après 6 mois d’exposition aux aérosols d’e-cig ont mis en évidence la dérégulation de plusieurs voies 
de signalisation impliquées notamment dans la réponse inflammatoire, le stress oxydant et le 
métabolisme de composés carbonylés et, en particulier, des métabolites du propylène glycol. 
Cependant, le faible nombre de gènes impactés dans chacune de ces voies ne garantit pas que les 
dérégulations observées aient un réel impact biologique. Par comparaison, la fumée de cigarette a 
induit, dans les mêmes conditions d’exposition, la dérégulation d’un nombre plus important de voies 
de signalisation, notamment en lien avec l’inflammation et le métabolisme des H P, et impliquant 
chacune un nombre de gènes plus conséquent. 

Globalement, nos analyses chimiques et in vitro suggèrent que les émissions de tabac chauffé 
sont moins toxiques que la fumée de cigarette conventionnelle mais bien plus nocives que celles des 
e-cig, quelle que soit leur puissance. Par ailleurs, les expérimentations in vivo décrites dans ce travail 
n’ont pas permis de mettre en évidence une toxicité avérée des émissions d’e-cig sur le long terme. 
Cependant une étude plus approfondie de nos données transcriptomiques et leur confrontation à des 
résultats complémentaires à venir issues d’analyses histologiques des animaux exposés, de leur 
fonction respiratoire et de leur réponse inflammatoire pulmonaire et systémique devraient permettre 
de confirmer ou d’infirmer cette conclusion préliminaire.  

 
 

Mots-clés : cigarette, cigarette électronique, tabac chauffé, caractérisation chimique, 
toxicologie expérimentale in vitro et in vivo. 
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