Contribution of measurements from the CALIPSO platform for the study of sources and optical properties of aerosols in Siberia
Apport des mesures de la plateforme CALIPSO pour l’étude des sources et des propriétés optiques des aérosols en Sibérie
Résumé
Knowledge of the distribution and physico-chemical properties of aerosol particles in the troposphere has been identified by the Intergovernmental Panel on Climate Change (IPCC) as the main source of uncertainty in the study of climate change. Characterization of the types, optical properties and vertical distribution of aerosols at the regional scale is needed to reduce this source of uncertainty and some areas such as Siberia are still poorly documented. Aerosol concentrations in Siberia depend on natural sources, such as seasonal forest fires or northward transport of desert dust, but also on anthropogenic sources such as those from hydrocarbon mining areas or long-range transport of emissions from northern China. In order to contribute to the improvement of this characterization of aerosol sources in Siberia, we first analyzed the measurements of two airborne campaigns carried out over distances of several thousand km in July 2013 and June 2017. The aircraft was equipped with a back-scattering lidar at 532 nm, as well as in-situ measurements of carbon monoxide (CO), black carbon (BC) and aerosol size distributions. These observations were studied in synergy with those of the CALIOP spaceborne lidar and the MODIS and IASI missions. The altitude range of the aerosol layers and the role of age on the optical properties (optical thickness (AOD532), depolarization, color ratio) are discussed for each type of aerosol. The results of a flight over the gas extraction regions corresponded to the highest AOD532 and higher BC concentrations than the emissions from urban areas and allowed an estimation of the lidar ratio of these aerosol plumes poorly documented in the literature. The second part of the work consisted in proposing an alternative to the indirect restitution of the AOD532 by the CALIOP instrument from the inversion of the attenuated back-scattering lidar signal. This method uses the surface reflectance of the CALIOP lidar signal and has already been used over oceans or optically opaque liquid water clouds to calculate an AOD value. In this work, we have thus developed and evaluated an AOD restitution from the CALIOP surface reflectance for continental areas. Two methodologies were used to determine the surface lidar reflectance not attenuated by aerosols: (i) selection of CALIOP observations under clear sky conditions over 7 years of observation (ii) extrapolation of the linearity relationship between attenuated surface lidar reflectance and atmospheric transmission. If these two methods give good results in areas of low surface lidar reflectance (< 0.75sr-1), the first method is not usable in desert areas. The use of these LIDAR AOD measured directly over continental surfaces improves the bias (|ME| < 0.034) and dispersion (< 0.145) compared to MODIS observations. This greatly improves the results of the CALIOP-MODIS comparisons obtained with the indirect restitution of the AODs an analysis of the vertical profiles of attenuated lidar backscatter with a bias < 0.174 and dispersion < 0.234.
Les connaissances sur la distribution et les propriétés physico-chimiques des particules aérosols dans la troposphère ont été identifiées par le Groupe d’experts Intergouvernemental sur l’Évolution du Climat (GIEC) comme la principale source d’incertitude dans l’étude de l’évolution du climat. Une caractérisation des types, des propriétés optiques et de la distribution verticale des aérosols à l’échelle régionale est nécessaire pour réduire cette source d’incertitude et certaines zones comme la Sibérie sont encore mal documentées. Les concentrations en aérosol de la Sibérie dépendent de sources naturelles, comme les feux de forêt saisonniers ou le transport vers le nord des poussières désertiques, mais également des sources anthropiques comme celles des zones exploitations d’hydrocarbures ou le transport à longue distance des émissions du Nord de la Chine. Afin de contribuer à l’amélioration de cette caractérisation des sources d’aérosol en Sibérie, nous avons dans un premier temps analysé les mesures de deux campagnes aéroportés réalisées sur des distances de plusieurs milliers de km en juillet 2013 et juin 2017. L’avion était équipé d’un lidar à rétrodiffusion à 532 nm ainsi de mesures in-situ de monoxyde de carbone (CO), de carbone suie (BC) et des distributions en taille des aérosols. Ces observations ont été étudiées en synergie avec celle du lidar spatial CALIOP et des missions MODIS et IASI. La gamme d'altitude des couches d'aérosols et le rôle de l’âge sur les propriétés optiques (épaisseur optique (AOD532), dépolarisation, rapport de couleur) sont discutés pour chaque type d'aérosol. Les résultats d’un vol au-dessus des régions d’extraction du gaz correspond au plus fortes AOD532, et des concentrations en BC supérieure à celle des émissions des zones urbaines et a permis une estimation du rapport lidar de ces panaches d'aérosols mal documentés dans la littérature. La deuxième partie du travail a consisté à proposer une alternative à la restitution indirecte de l’AOD532 par l’instrument CALIOP à partir de l’inversion du signal lidar de rétrodiffusion atténué. Cette méthode utilise la réflectance du signal lidar de CALIOP par la surface et a déjà été utilisée au-dessus des océans ou des nuages d’eau liquide optiquement opaques pour calculer une valeur AOD. Dans ce travail, nous avons ainsi développé et évalué une restitution des AOD à partir de la réflectance CALIOP de surface pour les zones continentales. Deux méthodologies ont été utilisées afin de déterminer la réflectance lidar de surface non atténuée par les aérosols: (i) sélection des observations CALIOP en condition de ciel clair sur 7 ans d’observation (ii) extrapolation de la relation de linéarité entre la réflectance lidar de surface atténuée et la transmission atmosphérique. Si ces deux méthodes donnent de bons résultats dans les zones de faible réflectance lidar de surface (< 0.75 sr-1) la première méthode n’est pas utilisable sur les zones désertiques. L’utilisation de ces AOD lidar mesurées directement au-dessus des surfaces continentales permet d’améliorer le biais (|ME| < 0.034) et la dispersion (< 0.145) en comparaison aux observations MODIS. Ceci améliore beaucoup les résultats des comparaisons CALIOP-MODIS obtenus avec la restitution indirecte des AOD une analyse des profils verticaux de rétrodiffusion lidar atténuée avec un biais < 0.174 et une dispersion < 0.234.
Origine | Version validée par le jury (STAR) |
---|