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General introduction

Symmetric cryptography is a subfield of modern cryptography where all the legitimate partici-
pants share the same knowledge and secrets. Protocols based on symmetric cryptography are
used in a wide range of applications, e.g. to protect the confidentiality of a message (using
symmetric encryption schemes) or to protect its integrity (Message Authentication Codes,
MAC). In the vast majority of cases, such cryptographic protocols rely on lower-level and
specialised cryptographic components called primitives. This modular approach allows to study
the security of the primitives independently of the security of the whole protocol, effectively
producing complex symmetric cryptosystems from the careful composition of secure smaller
ones. There exists many different examples of symmetric primitives, with each answering some
specific needs. For example, hash functions are commonly used in the design of MACs whereas
block ciphers or permutations are often employed inside symmetric encryption schemes.

In this thesis, we study the security of the design and implementation of some cryptographic
primitives, from their design to their implementations in presence of adversaries.

First, we study some security properties of a specific kind of cryptographic primitives, cryp-
tographic permutations. Permutations can be used in a variety of cryptographic protocols such
as symmetric encryption schemes or can also appear as a building block of other primitives like
hash functions. There exists multiple approaches to the underlying design of a permutation used
in symmetric cryptography. One of them, popularized by the Advanced Encryption Standard
(AES), consists in partitioning the bits of the state in non-trivial groups, e.g. in bytes, and con-
sistently processing them in these groups. This approach can be seen as aligned, in a certain
sense of alignment. One of the benefits of such an approach, is that it leads to structures that
make it easier to reason about differential and linear properties (the main properties used by
statistical attacks against primitives, namely differential and linear attacks). Using combinato-
rial arguments, one may thus be able to bound the applicability of those attacks. In contrast,
an unaligned approach avoids any meaningful grouping of states bits in its design. The major
drawback is that the same combinatorial arguments can no longer be used to describe the dif-
ferential and linear properties of such permutations. However, it also means that there is much
less structure to be exploited by an adversary.

The goal of the first part of this thesis is to define formally what it means for a permutation
to be aligned and to study its concrete impact on the differential and linear properties. To
do so, we analyse four different permutations that have in common that they are constructed
with a “bottom-up” approach. In fact, they are all built from the successive application of
two underlying components: a linear layer and a nonlinear layer. However, the four primitives
are exponents of four different design strategies with three that are deemed to be aligned and
one unaligned. Even if the nonlinear and linear layers have been thoroughly studied in the
literature, their interaction has much less often been studied in a formal framework. We present
a quantitative framework based on the construction of histograms to analyse these interactions
and use it to compare the aligned approaches to the unaligned one. This part takes its source
from a joint work with Joan Daemen, Daniël Kuijsters and Gilles Van Assche and the results
have been published in the proceedings of CRYPTO 2021.

In the second part of this thesis we focus on another important aspect in the security of
cryptographic primitives: the protection of their implementations. More specifically, we study
a class of attacks, side-channel attacks, where an attacker may be able to extract the secrets of
a cryptographic algorithm by only measuring physical leakages from the components computing
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it. In the right conditions, often met when targeting embedded devices, these attacks can be
devastatingly effective against a cryptosystem and its role in the overall security of the device
on which it has been implemented. Nonetheless, this class of attacks can be counteracted, or
at least their efficiency can be reduced, by artificially increasing the measurement noise which
will affect the precision of the information gathered by an attacker. One such countermeasure,
called masking, leverages secret-sharing schemes to split the sensitive data into uniformly random
and individually independent shares. Doing so forces the attacker to be able to get access to
multiple shares simultaneously in order to be able to extract secret information. The number
of shares needed by an attacker, called the masking order, is thus a good estimator of the level
of security provided by this countermeasure: as it grows, the attacker needs increasingly more
measurement to reach their goal. However, the main challenge from the designer point-of-view is
to be able to securely compute the target cryptographic primitive given not directly the inputs,
but rather a sharing of them. One major obstacle to such secure implementations is that their
cost rapidly increases in the masking order. The overhead that arises at high orders (that is,
when the masking order is strictly greater than one) can sometimes be impracticable, especially
for applications on embedded devices. Moreover, the verification that a masked implementation
is indeed secure in a given security model can be, in itself, computationally intractable at such
high orders and formal proofs are often not provided, at least not for arbitrary orders.

In this thesis, we show how to improve the performance of both the verification and execution
cost of masked implementations at high orders. To do so, we develop a new algorithm to
verify the security of high-order masked components in different security models faster than
the state of the art. Additionally, by modifying already existing masked designs and by being
able to efficiently assess their security using our verification algorithm, we present more efficient
high-order masking schemes. An article on this subject, with Pierre Karpman as a co-author,
has been published in the proceedings of EUROCRYPT 2021. Following these results, we also
propose a fully masked version of the AES that is less costly than what is already done in the
literature and we experimentally verify its robustness against side-channel attacks by following
a leakage assessment methodology.
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Overview

In this part of the manuscript, we focus on a specific kind of symmetric primitives called crypto-
graphic permutations, that are invertible functions from a finite space of states to itself. These
permutations can be used to build more complex cryptographic algorithms as symmetric encryp-
tion schemes or hash functions. The use of permutations as primitive is conditioned on them
having “good” properties and what is exactly meant by that is studied in a subfield of symmetric
cryptography: permutation-based cryptography. One of the interesting properties a permutation
must have in order to be useful in a cryptographic context is its resistance against differential
and linear cryptanalysis. These attacks exploit the structure of the permutation to find relations
between its input and output that are verified with a non-negligible probability.

The design of permutations is thus focused on having, among other properties, sufficiently
good differential and linear properties while still being as efficient as possible with respect to
different metrics of cost, such as the number of cycles to execute, the memory consumption or
even the area taken by hardware implementations. In our work, we more specifically focus on an
approach widely used consisting in designing permutations from smaller round functions, that
are meant to be successively composed to build the full permutation. We also focus on round
functions that are made from two distinct components: a linear one and a nonlinear one. Theses
two components may have distinct but sometimes overlapping roles in the overall properties of
the permutation.

In turn, the linear and nonlinear components of a round function can be designed in multiple
ways. In this part, we propose a way to classify these designs in two categories: aligned and
unaligned. This classification comes from the observation that for some permutations, the input
bits are grouped together, e.g. in bytes, and are consistently processed using operations that
never break these groups. Rijndael, a block cipher that later became the Advanced Encryp-
tion Standard (AES), popularized this aligned approach because it allows the use of convenient
combinatorial arguments to reason on its differential and linear properties. However, some per-
mutations have also been designed specifically with the goal of making sure that such groupings
do not exist. Such unaligned permutations are constructed in the hope that it leads to better
differential and linear properties, but at the same time it makes their analysis more difficult.
To bring light on the compared behaviour of aligned and unaligned approaches, we study four
permutations, Rijndael, Spongent, Saturnin and Xoodoo, with different design philosophy.

In Chapter 1, we introduce the concepts needed in the other chapters, formalize the notion
of alignment and present in more details the four permutations studied as well as their align-
ment properties. Then, Chapter 2 defines metrics and associated histograms that are used to
quantitatively compare the differential and linear properties of the four permutations. Finally,
we study the approximations that are sometimes made in the description of the differential and
linear properties in Chapter 3 and show that the confidence in their accuracy can be higher for
unaligned permutations than for aligned ones.

This part takes it source from a joint work with Joan Daemen, Daniël Kuijsters and Gilles
Van Assche and the results have been published in the proceedings of CRYPTO 2021 [BDK+21].
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6 1.1. Notation

1.1 Notation

We use the following conventions and notation:

— We define J1, kK = {i ∈ N | 1 ≤ i ≤ k}.

— Given a set S and an equivalence relation ∼ on S, we write [a]∼ for the equivalence class
of a ∈ S:

[a]∼ = {a′ ∈ S | a′ ∼ a} .

— We denote the cardinality of S by #S.

— We use the term state, difference or linear mask for a vector of b bits, with b specified or
clear from the context.

— Given a state a ∈ Fb
2, we refer to its i-th component as ai.

— We consider index sets Bi ⊆ J1, bK that form a partition of the full index set J1, bK.

— We write Pi(a) : Fb
2 → F#Bi

2 for the projection onto the bits of a indexed by Bi.

— We write eki for the i-th standard basis vector in Fk
2 , i.e. for j ∈ J1, kK we have that ekij = 1

if i = j and 0 otherwise.

— Permutations of the index space are written as τ : J1, bK → J1, bK; By shuffle (layer),
we mean a linear transformation π : Fb

2 → Fb
2 given by π(a) = Pτ a, where Pτ is the

permutation matrix associated with some τ , i.e. obtained by permuting the columns of the
(b× b) identity matrix according to τ .

— Given a linear transformation L: Fb
2 → Fb

2, there exists a matrix M ∈ Fb×b
2 such that

L(a) = Ma, with the state a seen as a column vector. We define its transpose Lt : Fb
2 → Fb

2

by Lt(a) = M ta.

1.2 Preliminaries

In this part we study bijective functions from {0, 1}b, the finite space of bit-strings of length
b, to itself. These functions are called permutations of {0, 1}b. Permutations are symmetric
primitives that can be used as modules to implement more complex cryptosystems such as
symmetric encryption schemes (e.g. as in ChaCha [Ber08] or using the more generic duplex
construction [BDP+11]) and hash functions (e.g. as in the SHA-3 finalist JH [Wu11] or the
sponge construction [BDP+11]).

Often, a permutation f used as a building block for cryptographic primitives is designed
as the composition of a number of lightweight round functions, i.e. f = Rr ◦ · · · ◦ R2 ◦ R1 for
some number of rounds r ∈ N∗. We write f [k] = Rk ◦ · · · ◦ R1 the successive application of k
rounds, and define f [0] = id with id the identity function. There are multiple approaches to
the design of the round function itself. One can use a (generalized) Feistel network [Fei73] with
the help of underlying smaller functions fi. Three rounds of a two-branch Feistel network are
illustrated in Figure 1.1a. Another approach can be to use a MISTY structure [Mat96] as shown
in Figure 1.1b. However, in this part of the thesis we focus on yet another type of round function
design often called a Substitution Permutation Network (SPN).

In an SPN, the round function Ri is further decomposed into step functions, i.e. Ri = ιi ◦
Li ◦Ni, where Ni is a nonlinear map, Li is a linear map, and ιi is the addition of a round constant.
Apart from the round constant addition, these step functions are often, but not always, identical.
For this reason, we often simply write N or L, without referring to an index if the context allows
it, and call them the nonlinear layer and linear layer respectively. When the nonlinear layer
can be further decomposed as the parallel application of smaller nonlinear maps Si, we call these
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f1

f2

f3

L0 R0

L3 R3

(a) Three rounds of a Feistel network (figure
from [Jea15]).

f1

f2

f3

L0 R0

L3 R3

(b) Three rounds of a MISTY network.

Figure 1.1: Two different approaches to the design of a round function.

maps S-Boxes, write n for the number of S-boxes of N and denote their size by m. In this context,
the index set of a whole state J1, bK can often be naturally partitioned along the boundaries of
S-Boxes with index sets Bi = J(i− 1)m+ 1, im+ 1K. An example of such a construction can be
found in Example 1.1.

Example 1.1: Toy round function Rt

Let Rt be a toy round function working on states of length bt = 12 bits. It is built as
Rt = Lt ◦Nt with:

— Nt, a nonlinear layer composed of the parallel application of nt = 4 S-boxes St each of
length mt = 3 bits, where:

St : F3
2 → F3

2, (a0,a1,a2) 7→ ((a1 ⊕ 1).a2, (a2 ⊕ 1).a0, (a0 ⊕ 1).a1) ;

— Lt = πt ◦Mt, a linear layer such that:

— Mt is a linear layer composed of the parallel application of two identical linear maps,
each of length 6 bits, that can be seen as the left multiplication by the binary matrix

Mt =


1 1 0 1 0 0
0 1 1 0 1 0
0 0 1 1 0 1
1 0 0 1 1 0
0 1 0 0 1 1
1 0 1 0 0 1

;

— πt a shuffle layer that swaps the first three bits J1, 3K with the three bits at position
J7, 9K, in the same order.

Three successive applications of this toy round function are shown in Figure 1.2.
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Mt Mt

St St St St

Mt

Nt

πt

Lt

Mt Mt

St St St St

Mt

Nt

πt

Lt

Mt Mt

St St St St

Mt

Nt

πt

Lt

Figure 1.2: Three successive applications of the toy round function Rt.

A block cipher E is not a permutation but rather a family of permutations Ek indexed by a
key k. In this work, we implicitly study the permutation obtained from a given block cipher by
fixing a key, e.g. by considering the block cipher with an all-zero key E0.

1.3 Differential and linear cryptanalysis

1.3.1 Differential cryptanalysis

Differential cryptanalysis [BS90] is framework for chosen-plaintext attacks that exploits the non-
uniformity of the distribution of differences at the output of a permutation when it is applied to
pairs of inputs with a fixed difference. We call an ordered pair of an input and output difference
(∆in,∆out) ∈ (Fb

2)
2 a differential. Given a differential, we are interested in its solution set:

Definition 1.3.1 (Solution set). Let f : Fb
2 → Fb

2 be a permutation and define

Uf (∆in,∆out) = {x ∈ Fb
2 | f(x) + f(x+∆in) = ∆out} .

We call Uf (∆in,∆out) the solution set of the differential (∆in,∆out).

If there exists an ordered pair (x,x+∆in) with x ∈ Uf (∆in,∆out), then it is said to follow
the differential (∆in,∆out). We then give the probability that a uniformly random state follow
the given differential using its differential probability.

Definition 1.3.2 (Differential probability). The differential probability (DP) of a differential
(∆in,∆out) over the permutation f : Fb

2 → Fb
2 is defined as:

DPf (∆in,∆out) =
#Uf (∆in,∆out)

2b
.

When a differential (∆in,∆out) is such that Uf (∆in,∆out) ̸= ∅ or equivalently that
DPf (∆in,∆out) ̸= 0, we say that the input difference ∆in is compatible with the output dif-
ference ∆out through f and call (∆in,∆out) a valid differential.
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Example 1.2: Valid differential and differential probability

Let St be the S-box defined in Example 1.1. Let ∆in =
(
1 0 0

)
and ∆out =

(
1 1 0

)
.

Since St(
(
0 1 1

)
) =

(
0 0 1

)
and St(

(
1 1 1

)
) =

(
1 1 1

)
, we have that St(

(
0 1 1

)
)+St(

(
0 1 1

)
+

∆in) =
(
1 1 0

)
= ∆out. This implies that

(
0 1 1

)
∈ USt

(∆in,∆out) (and
(
1 1 1

)
∈

USt(∆in,∆out)). Thus, USt(∆in,∆out) ̸= ∅ and the differential (∆in,∆out) is valid over
an S-Box St.

There are only two vectors (namely
(
0 1 1

)
and

(
1 1 1

)
) in USt

(∆in,∆out), thus the differ-
ential probability of (∆in,∆out) is DPSt

(∆in,∆out) = 2/2mt = 2−2.

When studying permutations that can be seen as the application of multiple round functions,
we are often interested in decomposing the differential (∆in,∆out) into a sequence of intermediate
differences. Such a decomposition is called a differential trail (or characteristic).

Definition 1.3.3 (Differential trail). A sequence Q = (q(0), q(1), . . . , q(k)) ∈
(
Fb
2

)k+1
that satis-

fies DPRi+1(q
(i), q(i+1)) > 0 for 0 ≤ i ≤ k − 1 is called a k-round differential trail.

Sometimes we specify a trail as Q = (b−1,a0, b0, . . . ,ak, bk) by giving the additional in-
termediate differences between the nonlinear layers Ni and the linear layers Li of each round
considered. Here, bi = Li(ai) = qi+1.

Example 1.3: Differential trail

Let Rt = πt ◦Mt ◦Nt be as defined in Example 1.1. Let Q = (∆in, δ
(0), δ(1),∆int,∆out) be

a differential trail over one and a half round f = Nt ◦Rt without the last linear layer πt ◦Mt

where each difference is defined before and after each step function.
As an example, we take ∆in =

(
0 0 0 0 0 0 1 0 0 1 0 0

)
, ∆int =

(
1 0 1 0 0 0 0 0 0 1 0 1

)
, and

∆out =
(
0 0 1 0 0 0 0 0 0 0 0 1

)
This differential trail is shown in Figure 1.3. Since Mt and πt

are linear, the values of δ(0) and δ(1) are fully determined by the one of ∆int but are shown
to illustrate the difference propagation through each function.

∆in =(
0 0 0 0 0 0 1 0 0 1 0 0

)
Nt

δ(0) =(
0 0 0 0 0 0 1 1 0 1 1 0

)
Mt

δ(1) =(
0 0 0 0 0 0 1 0 1 1 0 1

)
πt

∆int =(
1 0 1 0 0 0 0 0 0 1 0 1

)
Nt

∆out =(
0 0 1 0 0 0 0 0 0 0 0 1

)

x =
(
· · · · · · 0 1 1 0 1 1

) (
· · · · · · 1 1 1 1 1 1

)
= y

x(0) =
(
· · · · · · 0 0 1 0 0 1

) (
· · · · · · 1 1 1 1 1 1

)
= y(0)

x(1) =
(
· · · · · · 0 1 0 0 1 0

) (
· · · · · · 1 1 1 1 1 1

)
= y(1)

x(2) =
(
0 1 0 · · · · · · 1 0

) (
1 1 1 · · · · · · 1 1 1

)
= y(2)

x(3) =
(
1 1 0 · · · · · · 1 1 0

) (
1 1 1 · · · · · · 1 1 1

)
= y(3)
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Figure 1.3: Example of a trail over f = Nt ◦Rt.

In Figure 1.3 we also give an example of a pair (x,y) following this differential trail and
the values x(i) and y(i) they take at each step. Thanks to the inherent structure of the round
function R, the six bits corresponding to the first half of the state before the shuffle πt (denoted
by “·′′) can be chosen arbitrarily as long as bits at the same index in x and y are equal, that
is ∀i ∈ J1, 6K,xi = yi. This means that the pair (x,y) can be seen as an equivalence class of
pairs of size 26.

Given a valid differential, there may exist multiple differential trails:

Definition 1.3.4 (Enveloping differential, differential trail core and clustering of trails). We
write DT(∆in,∆out) for the set of all differential trails with q(0) = ∆in and q(k) = ∆out. We
call (∆in,∆out) the enveloping differential of the trails in DT(∆in,∆out).

By deleting the initial difference ∆in and final difference ∆out of a differential trail
(∆in, q

(1), . . . , q(k−1),∆out) we are left with a differential trail core (q(1), . . . , q(k−1)).
If #DT(∆in,∆out) > 1, then we say that trails cluster together in the differential (∆in,∆out).

A differential trail core obtained by deleting the initial ∆in and final ∆out difference of a
differential trail is said to be in the differential (∆in,∆out).

We now define the differential probability of a differential trail.

Definition 1.3.5 (Differential trail probability). Let Q = (q(0), q(1), . . . , q(k)) ∈
(
Fb
2

)k+1
be a

differential trail over k rounds. Each round differential (q(i), q(i+1)) has a non-empty solution
set URi+1(q

(i), q(i+1)) because, by definition, we have DPRi+1(q
(i), q(i+1)) > 0 for 0 ≤ i ≤ k − 1.

Consider the transformed sets of points Ui = f [i]−1(URi+1(q
(i), q(i+1))) at the input of f . For an

ordered pair (x,x+q(0)) to follow the differential trail, it is required that x ∈ Uf (Q) =
⋂k−1

i=0 Ui.
The fraction of states x that satisfy this equation is the differential probability of the trail.

The differential probability DP of a differential trail is defined as:

DPf (Q) =
#Uf (Q)

2b

Any given ordered pair (x,x +∆in) follows exactly one differential trail. Hence, the differ-
ential probability of the differential (∆in,∆out) is the sum of the differential probabilities of all
differential trails with initial difference ∆in and final difference ∆out:

DPf (∆in,∆out) =
∑

Q∈DT(∆in,∆out)

DPf (Q) .

As a first approximation, one may consider that there are only few differential trails for the
same differential which results in the differential probability being approximated to the differen-
tial trail. However, the more differential trails cluster together the furthest this approximation
is from the real value of the differential probability.

While it is hard in general to compute the differential probability of a differential over a
function f , the differential probability of any differential (∆in,∆out) over a round function
R = ι ◦L ◦N where N consists in the parallel application of n S-boxes Si is easy to compute. We
start by specifying the intermediate differences as a differential trail (∆in, b, c,∆out). Thanks to
the linearity of L, we have c = L(b) and due to the fact that a difference is invariant under addition
of a constant, all valid such differential trails are of the form (∆in,L

−1(∆out),∆out,∆out).
Therefore, the differential (∆in,∆out) contains only a single trail and its differential probability
is the differential probability of the differential (∆in,L

−1(∆out)) over the S-box layer N:

DPR(∆in,∆out) =
∏

1≤j≤n

DPSj (Pj(∆in), Pj(L
−1(∆out))) (1.1)
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where Pj is the projection over the j-th S-Box. Hence, the differential probability of a round
differential is the product of the differential probabilities of its S-box differentials.

However, the differential probability of a differential trail may not be equal to the product of
probability of each of its round differentials. The concept of independence of round differentials
follows from this observation:

Definition 1.3.6 (Independence of round differentials). The round differentials of a given dif-

ferential trail Q = (q(0), q(1), . . . , q(k)) ∈
(
Fb
2

)k+1
are said to be independent if and only if

DPf (Q) =

k∏
i=1

DPRi+1
(q(i), q(i+1)) .

Example 1.4: Differential trail clustering and round dependence

Example 1.3 shows a differential trail Q = (∆in,∆int,∆out) over f = Nt ◦Rt as in Exam-
ple 1.1. The differential (∆in,∆out) is the enveloping differential of Q. ∆int is called the trail
core of Q and (∆in,∆out) is the enveloping differential of Q.

The differential probability of each round differential can be computed using Equa-
tion (1.1). In our case, we have that each of the two round differentials is equal to 2−4.
Since it is computationally easy to exhaustively visit every possible input state of our toy
permutation (there are only 212 = 4096 different states), the exact differential probability of
Q can be computed: there are exactly 2× 26 = 27 pairs following this differential trail, which
implies that DP(Q) = 27/2bt = 2−5. This probability is not equal to the product of the
probabilities of the round differentials, 2−8. Thus, the round differentials are not independent
in the sense of Definition 1.3.6.

However, Q is not the only trail in its enveloping differential (∆in,∆out). In fact,
there are three other trails in DT(∆in,∆out). These trails Q′ = (∆in,∆

′
int,∆out), Q′′ =

(∆in,∆
′′
int,∆out) and Q′′′ = (∆in,∆

′′′
int,∆out) differ only in their trail core: ∆′

int =(
0 1 1 0 0 0 0 0 0 0 1 1

)
, ∆′′

int =
(
1 1 1 0 0 0 0 0 0 1 1 1

)
and ∆′′′

int =
(
0 0 1 0 0 0 0 0 0 0 0 1

)
. Thus,

we say that Q, Q′, Q′′, Q′′′ cluster together. This effect is shown in Figure 1.4.

∆in

Rt

∆int∆′
int ∆′′

int

Nt

∆out

Figure 1.4: Illustration of trail clustering over f = Nt ◦Rt.

The number of pairs that follow Q′ is also equal to 2 × 26. The same is true for Q′′ and
Q′′′. The differential probability of (∆in,∆out) is the sum of the probability of all differential
that cluster inside it, which is:

DP(∆in,∆out) = 4× 2−5 = 2−3 .

This is a non-negligible variation from the approximation DP(∆in,∆out) ≈ DP(Q) = 2−5.
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We now introduce the concept of restriction weight of a differential.

Definition 1.3.7 (Restriction weight of a differential). The restriction weight of a differential
(∆in,∆out) that satisfies DPf (∆in,∆out) > 0 is defined as:

wr(∆in,∆out) = − log2 DPf (∆in,∆out) .

To motivate the definition, consider the set Uf (∆in,∆out). If we suppose that Uf (∆in,∆out)
is a non-empty affine space, then we have wr(∆in,∆out) = b − dimF2 Uf (∆in,∆out). Hence, in
this case the weight equals the number of independent affine equations describing Uf (∆in,∆out).

For a differential, its restriction weight is directly tied to its differential probability. However,
for a differential trail, the restriction weight is instead defined as the sum of the restriction
weights of every round differentials:

Definition 1.3.8 (Restriction weight of a differential trail). The restriction weight of a differ-
ential trail Q = (q(0), q(1), . . . , q(k)) is defined as

wr(Q) =

k−1∑
i=0

wr(q
(i), q(i+1)) .

In general, the weight of a differential trail is easy to compute since the weight of each round
differential can be computed from its differential probability given by Equation (1.1), whereas
the differential probability of a differential trail might be difficult to compute when the round
differentials are not supposed independent in the sense of Definition 1.3.6. In the case where
the round differentials are independent, or supposed independent for an approximation of the
differential trail probability, then we have that DPf (Q) = 2−wr(Q). However, this approximation
is always false when wr(Q) > b − 1, since by definition of a differential trail DPf (Q) ≥ 21−b

because Q must be followed by at least two ordered pairs of states. Example 1.5 shows an
example of the computation of the weight of a differential trail.

Example 1.5: Weight of a differential trail

Let Q = (∆in,∆int,∆out) be a differential trail as in Examples 1.3 and 1.4 over f = Nt ◦Rt

as in Example 1.1.
Then, the weight of Q can be computed by adding the restriction weight of Q1 =

(∆in,∆int) and Q2 = (∆int,∆out). As explained before, the differential probability of Q1

can be computed by multiplying the probability of the differential over each of its S-box,
which gives:

DP(Q1) = DP(
((
1 0 0

)
,
(
1 1 0

))
)×DP(

((
1 0 0

)
,
(
1 1 0

))
= 2−2 × 2−2 = 2−4 .

See Example 1.2 for the computation of the differential probability over a single S-Box. The
same computation can be made for the differential probability of Q2: DP(Q2) = 2−4. The
weight of Q is thus:

wr(Q) = wr(Q1) + wr(Q2) = 4 + 4 = 8 .

However, DP(Q1)×DP(Q2) = 2−8 ̸= DP(Q) = 2−5 (as computed in Example 1.4) which
means that, as already observed in Example 1.4, the round differentials Q1 and Q2 are not
independent.

1.3.2 Linear cryptanalysis

Linear cryptanalysis [Mat93; TG91] is a known-plaintext attack. It exploits correlations between
linear combinations of input bits and linear combinations of output bits of a permutation.

We first formally define the concept of correlation in the context of linear cryptanalysis:
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Definition 1.3.9 (Correlation). The (signed) correlation between the linear mask u ∈ Fb
2 at

the input and the linear mask v ∈ Fb
2 at the output of a function f : Fb

2 → Fb
2 is defined as

Cf (u,v) =
1

2b

∑
x∈Fb

2

(−1)u
tx+vtf(x) .

We call the ordered pair of linear masks (u,v) a linear approximation. A positive (respectively,
negative) correlation Cf (u,v) indicates that a linear approximation (u,v) is more often followed
than not (respectively, more often not followed than it is) for the function f . If Cf (u,v) ̸= 0,
then we say that u is compatible with v and that (u,v) is a valid linear approximation.

Example 1.6: Valid linear approximation

Let St be the S-box defined in Example 1.1. Let u =
(
0 0 1

)
and v =

(
1 0 1

)
. We can

then compute the correlation of the linear approximation (u,v) by going over each of the
eight 3-bit states. By determining if (x,St(x)) follows (repsectively does not follow) the linear
approximation (u, v), we increment (respectively decrement) a counter. At the end, the value
of this counter divided by 8, the total number of states, is exactly the correlation of (u,v)
over St. This way, we find CSt(u,v) = 2−1.

Since CSt
(u,v) ̸= 0, u is compatible with v and the linear approximation (u,v) is valid.

We note that in the literature (e.g. in the linear cryptanalysis attack by Matsui [Mat93]) the
term linear approximation has several meanings. It should not be confused with what we call a
linear trail, which is used to decompose a linear approximation into intermediate masks.

Definition 1.3.10 (Linear trail). A sequence Q = (q(0), q(1), . . . , q(k)) ∈
(
Fb
2

)k+1
that satisfies

CRi+1
(q(i), q(i+1)) ̸= 0 for 0 ≤ i ≤ k − 1 is called a linear trail.

Linear approximations and linear trails are the counterparts of differentials and differentials
trails in differential cryptanalysis. As for the differential analysis, many linear trails may exists
for the same linear approximation.

Definition 1.3.11 (Enveloping linear approximation, linear trail core and clustering of linear
trails). We write LT(u,v) for the set of all linear trails in the linear approximation (u,v), so
with q(0) = u and q(k) = v. We call (u,v) the enveloping linear approximation of the trails in
LT(u,v).

By deleting the initial linear mask u and final linear mask v of a linear trail
(u, q(1), . . . , q(k−1),v) we are left with a linear trail core (q(1), . . . , q(k−1)).

If #LT(u,v) > 1, then we say that trails cluster together in the linear approximation (u,v).

A linear trail core obtained by deleting the initial mask u and final mask v of a linear trail
is said to be in the linear approximation (u,v). Note that a linear trail core actually defines a
set of linear trails with the same inner linear masks.

We now define what we call the correlation contribution of a linear trail Q in LT(u,v):

Definition 1.3.12. The correlation contribution of a linear trail Q over f equals

Cf (Q) =

k∏
i=1

CRi+1
(q(i), q(i+1)) .

From the theory of correlation matrices [Dae95], it follows that

Cf (u,v) =
∑

Q∈LT(u,v)

Cf (Q) .

While it is hard in general to compute the correlation of a linear approximation of a function
f , the correlation of any linear approximation (u,v) of a round function R = ι ◦ L ◦N where N
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consists in the parallel application of n S-boxes Si is easy to compute. We start by specifying
the intermediate linear masks as a linear trail (u, b, c,v). Thanks to the linearity of L, we have
b = Lt(c) and due to the fact that a linear mask is invariant under addition of a constant, all valid
such linear trails are of the form (u,Lt(v),v,v). Hence the linear approximation (u,v) contains
only a single trail and its correlation contribution is the correlation of the linear approximation
(u,Lt(v)) over the S-box layer, where the round constant addition affects only the sign:

CR(u,v) = (−1)v
tι(0)

∏
1≤j≤n

CSj
(Pj(u), Pj(L

t(v))

where Pj is the projection over the j-th S-Box.
The squares of the correlations play an important role in linear cryptanalysis. Hence, it makes

sense to give this quantity a name and we call it the linear potential.

Definition 1.3.13 (Linear potential). The linear potential (LP) of a linear approximation (u,v)
is defined as:

LPf (u,v) = Cf (u,v)
2 .

Analogous to the differential cryptanalysis case, we define a weight metric.

Definition 1.3.14 (Correlation weight of a linear approximation). The correlation weight of a
linear approximation (u,v) with LPf (u,v) ̸= 0 is given by:

wc(u,v) = − log2 LPf (u,v) .

For a linear approximation, the weight is directly tied to its linear potential. However, for a
linear trail, the correlation weight is instead defined as the sum of the correlation weight of every
round linear approximation:

Definition 1.3.15 (Correlation weight of a linear trail). The correlation weight of a linear trail
Q = (q(0), q(1), . . . , q(k)) is defined as

wc(Q) =

k−1∑
i=0

wc(q
(i), q(i+1)) .

1.4 Box partitioning and alignment

In this section, we consider the partition of the index space defined by the nonlinear layer N
of a given SPN-based permutation. We then define the alignment properties of the other step
functions with respect to this partition.

The nonlinear layer N is described as the parallel application of n S-boxes of size m to disjoint
parts of the state, indexed by Bi. Formally, this means that we can write N as S0× · · · × Sn−1

and that it is characterized by

Pi ◦ (S1× · · · × Sn) = Si ◦Pi for 1 ≤ i ≤ n .

Hence, N defines a unique ordered partition ΠN = (B1, . . . ,Bn) of the index space J1, bK. We
call ΠN the box partition defined by N and the Bi N-boxes. If there is no ambiguity, we call the
box partition Π and its members boxes.

Besides the box partition, it is clearly possible to define other partitions of the index space as
well. We call a partition non-trivial if it has at least two members. Between any two partitions
of the index space there may be a relation that we denote as refinement.

Definition 1.4.1 (Refinement of a partition). We call Π a refinement of Π′ and write Π ≤ Π′

if for every Bi ∈ Π there exists a B′
j ∈ Π′ such that Bi ⊆ B′

j .
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Let Π be a partition of the index space consisting of k boxes, each of size l. We call a shuffle
layer a Π-shuffle if the associated permutation matrix is an invertible block matrix with k blocks
being the identity matrix Il and all the others being 0l, the all-zero matrix of dimension (l× l).
If this is the case, then bit index permutations can be specified as a box index permutation.

Definition 1.4.2 (Alignment of a function to a given partition). We say that ϕ : Fb
2 → Fb

2 is
aligned to Π if we can decompose it as

ϕ1 × · · · × ϕk :
k

ą

i=1

Fl
2 →

k
ą

i=1

Fl
2 ,

with Pi ◦ ϕ = ϕi ◦ Pi where the projections Pi are defined from the partition Π.

We are mostly interested in looking at the behaviour of the whole round function and the
interaction of the linear components with the nonlinear one. Thus, we define what it is for a
round function to be aligned in a definition that makes the partition implicitly defined by the
nonlinear layer of the round function.

Definition 1.4.3 (Alignment of a round function). Given a round function that is composed
of the parallel application N of equally-sized S-boxes, a linear layer L, and the addition ι of a
round constant, we say it is aligned if it is possible to decompose the linear layer L as L = π ◦M
in such a way that

— π is a ΠN-shuffle;

— M is aligned (in the sense of Definition 1.4.2) to a non-trivial partition ΠM that satisfies
ΠN ≤ ΠM.

We assume that the split between the linear and nonlinear layer is chosen so as to maximize the
number of S-boxes in N.

Note that ι does not play a role in the alignment properties. If all of the round functions of
a primitive are aligned, then we call the primitive aligned. If the primitive is not aligned, then
we call it unaligned. We show in Example 1.7 that the toy permutation defined in Example 1.1
is aligned.

Example 1.7: Decomposition of an aligned round function
Let Rt = πt ◦Mt ◦Nt be as in Example 1.1. Let ΠNt

=
({1, 2, 3}, {4, 5, 6}, {7, 8, 9}, {10, 11, 12}) and ΠMt = ({1, 2, 3, 4, 5, 6}, {7, 8, 9, 10, 11, 12})
be the partition naturally obtained from Nt and Mt.

In Figure 1.5, the linear layer Lt is shown as the composition of a function Mt and a ΠNt
-

shuffle πt. The mixing layer Mt is aligned with the partition ΠMt
of which the partition ΠN

is a refinement in the sense of Definition 1.4.1. Thus, Rt is aligned.

Mt Mt

St St St St

Mt

Nt

πt

Lt

ΠMt

ΠNt

ΠN ≤ ΠM

Figure 1.5: Alignment of Rt.

For some round functions, it is more natural to decompose the linear layer L as a composition
of a shuffle π followed by a mixing layer M instead of a mixing layer M followed by a π as imposed
by Definition 1.4.3. In fact, both description are equivalent.
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Proposition 1.4.4. If the linear layer L can be decomposed as M ◦π, with M and π following
the same properties as in Definition 1.4.3, then the round function is aligned.

Proof of Proposition 1.4.4. Given a round function that is composed of the parallel application
N of a layer of S-Boxes and a linear layer L, we suppose that we can decompose L as M ◦π with
π a ΠN-shuffle and M aligned to ΠM such that ΠN ≤ ΠM.

Let us define M′ = π−1 ◦M ◦π. Then π ◦M′ = M ◦π = L. Since M is aligned to ΠM ≤ ΠN

and π is a ΠN-shuffle, M′ is itself aligned to a partition ΠM′ ≤ ΠN. The partition ΠM′ can be
seen as the shuffle of the partition ΠM by π−1.

Thus, the round function is aligned and can be decomposed as π ◦M′.

The decomposition of L used (either L = π ◦M or L = M ◦π) and the associated partition
ΠM are chosen depending on the studied round function.

Superbox structure. Any aligned primitive has a superbox structure [PSC+02], that is helpful
when investigating distributions and bounds on the differential probability of two-round differ-
entials and the linear potential of two-round trails. We explain what this means. Consider
a two-round structure: π ◦M ◦N ◦π ◦M ◦N. The final two linear steps π and M have no ef-
fect on the distributions studied, so we can simplify this expression to N ◦π ◦M ◦N. Clearly,
N ◦π = π ◦N′, with N′ := π−1 ◦N ◦π. Hence, this is equivalent to π ◦N′ ◦M ◦N. Discarding the
shuffle layer at the end gives N′ ◦M ◦N. Since ΠN′ = ΠN ≤ ΠM, we can view this as the parallel
application of a number of superboxes that are defined as the functions applied in parallel on
each component of ΠM over two rounds. We call this a superbox layer.

In a sequence of two rounds, N′ ◦M ◦N is a (composite) nonlinear layer and π ◦M ◦π is a
(composite) linear layer. If the latter is aligned to a non-trivial partition Π such that ΠN ′◦M ◦N =
ΠM ≤ Π, then we can describe the sequence of two rounds as a single round that is itself aligned.

1.5 Permutations under study

In this section we describe the round functions of the permutations we investigate, their alignment
properties, and compare their implementation cost.

1.5.1 Rijndael

Rijndael [DR20] is a block cipher family supporting all block and key lengths of b = 32k bits,
with 4 ≤ k ≤ 8, i.e. ranging from 128 up to and including 256 bits. The case b = 128 is of great
importance as Rijndael with that block length is the ubiquitous AES [oST01]. In this paper
we investigate Rijndael-256, the instance with b = 256, a width closer to those of the other
permutations we investigate. In the remainder of this part we write Rijndael for Rijndael-256.

The Rijndael round function consists of four steps: a nonlinear layer SubBytes, a box shuffle
ShiftRows, a mixing layer MixColumns, and round key addition AddRoundKey. As the name of
the nonlinear layer SubBytes suggests, ΠSubBytes partitions the state in bytes. The mixing layer
MixColumns is aligned to a non-trivial partition ΠMixColumns such that ΠSubBytes ≤ ΠMixColumns. By
applying Proposition 1.4.4 we can conclude that Rijndael is aligned.

Figure 1.6 shows a round of Rijndael-128 (without the key addition) that is is easier to
draw due to its dimensions, but the alignment properties for Rijndael-256 are the same.

1.5.2 Saturnin

The Saturnin [CDL+20] block cipher has a 256-bit key and block length. The state has several
representations: three-dimensional, two-dimensional, and flat. In three dimensions, the 256-bit
state is represented as a 4×4×4 cube of 4-bit nibbles. Nibbles in the cube are indexed by triples
(x, y, z). A slice is a subset of the nibbles with z constant. A sheet is a subset of the nibbles with
x constant. A column is a subset of the nibbles with x and z constant. However, we focus on the
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ΠMixColumns

ΠSubBytes

S S S S S S S S S S S S S S S S

MixColumns MixColumns MixColumns MixColumns

Figure 1.6: Alignment properties of Rijndael.

flat representation of Saturnin to draw the figure with the step functions and the partitions
they define. A nibble with index (x, y, z) in the three-dimensional representation corresponds to
a nibble with index y + 4x+ 16z in the flat representation.

The Saturnin permutation is composed of a number of so-called super-rounds, where a super-
round consists of two consecutive rounds with indices 2r and 2r + 1. Round 2r is composed as
MC ◦ S, where MC is a mixing layer and S is a nonlinear layer. There are two different rounds
with odd indices. Round 4r + 1 is composed as follows: RC ◦RK ◦ SR−1

slice ◦MC ◦ SRslice ◦ S.
Round 4r + 3 consists of RC ◦RK ◦ SR−1

sheet ◦MC ◦ SRsheet ◦ S. Here, RC denotes addition of a
round constant, RK denotes addition of a round key, and SRslice and SRsheet shuffle nibbles. The
partition ΠS divides the state into 64 nibbles. The shuffles SRslice and SRsheet are ΠS-shuffles.
The mixing layer MC is aligned to a non-trivial partition ΠMC that divides the state into 16
columns, each consisting of 4 nibbles, and that satisfies ΠS ≤ ΠMC. It follows that Saturnin is
aligned. In a super-round we identify the sequence S ◦MC ◦ S as a superbox layer with partition
ΠMC and the linear layer of such a round is SR−1

slice ◦MC ◦ SRslice. This is a mixing layer that
is aligned to a non-trivial partition Πslice that divides the state into 4 slices, each containing 4
columns, and we have ΠMC ≤ Πslice. Similarly, for the other type of super-round, the mixing
layer is aligned to a non-trivial partition Πsheet that divides the state into 4 sheets, and we have
ΠMC ≤ Πsheet. It follows that the super-rounds of Saturnin are aligned and hence have their
own superboxes. These have width 64 bits and we call them hyperboxes. Figure 1.7 shows the
alignment properties of the steps.

1.5.3 Spongent

Spongent [BKL+11] is a sponge-based hash function family that uses a Present-like permu-
tation. The permutation is defined for any b that is a multiple of 4. In this paper, we only
consider the case b = 384, to match the state size of the largest of the other permutations that
we investigate, Xoodoo. The round function of Spongent consists of three steps: a round
constant addition lCounter, a 4-bit S-box layer sBoxLayer, and a bit shuffle pLayer.

The index permutation of the bit shuffle pLayer is:

pLayer(j) =

{
96j mod 383, if j ∈ J0, 382K
383, if j = 383

As indicated by the Spongent designers in [BKL+11], we can decompose it into a mixing layer,
followed by a box shuffle:

1. SpongentMixLayer applies the same mixing function SpongentMix in parallel to the 24
subgroups (following the terminology of [BKL+11]). It is a bit shuffle associated with the
index permutation τ subgroup : J0, 15K→ J0, 15K:

τ subgroup(j) =

{
4j mod 15, if j ∈ J0, 14K
15, if j = 15
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ΠMC · · ·
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S S S S S S S S S S S S S S S S

MC MC MC MC

S S S S S S S S S S S S S S S S
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SR−1
slice

S S S S S S S S S S S S S S S S

MC MC MC MC
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MC MC MC MC
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· · ·
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...
...

...
...

Figure 1.7: Alignment properties of Saturnin.

2. SpongentBoxShuffle is a box shuffle that is associated with the box index permutation
τbox : J0, 95K→ J0, 95K defined by:

τbox(j) =

⌊
j

4

⌋
+ 24(j mod 4) .

The sBoxLayer defines a box partition ΠsBoxLayer corresponding to the 96 4-bit boxes. The
box shuffle SpongentBoxShuffle is a ΠsBoxLayer-shuffle. The bit shuffle SpongentMixLayer is
aligned to a non-trivial partition ΠSpongentMixLayer that divides the state into 96 16-bit subgroups,
each grouping four consecutive boxes, and we have ΠsBoxLayer ≤ ΠSpongentMixLayer. It follows that
Spongent is aligned. Figure 1.8 shows these steps and their alignment properties.

1.5.4 Xoodoo

Xoodoo [DHV+18a] is a permutation with b = 384. The state consists of 3 equally sized
horizontal planes, each one consisting of 4 parallel 32-bit lanes. Alternatively, the state can be
seen as a set of 128 columns of 3 bits, arranged in a 4× 32 array.

The round function of Xoodoo consists of the following five steps: a mixing layer θ, a bit
shuffle ρeast, round constant addition ι, a nonlinear layer χ, and a bit shuffle ρwest. The χ step
applies the same 3-bit S-box to the columns of the state. The nonlinear layer χ defines a box
partition Πχ that corresponds to the 128 columns. The bit shuffles ρeast and ρwest perform
translations of planes and neither ρeast nor ρwest is a Πχ-shuffle. Additionally, Πχ is not a
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ΠSpongentMix · · ·
ΠsBoxLayer

S S S S S S S S S S S S S S S S

SpongentMix SpongentMix SpongentMix SpongentMix

SpongentBoxShuffle · · ·

S S S S S S S S S S S S S S S S

...
...

...
...

Figure 1.8: Alignment properties of Spongent.

Πχ

Πρeast/Πρwest

Figure 1.9: Alignment properties of Xoodoo.

refinement of neither Πρeast
nor Πρwest

The mixing layer θ defines no non-trivial box partition
at all. Due to the properties of the ρ steps and θ it is impossible to split the linear layer in a
column shuffle and a mixing layer that is aligned to a partition that Πχ is a refinement of. In
other words, Xoodoo is unaligned. Figure 1.9 shows the alignment properties of the steps.

We provide a computer-assisted proof that Xoodoo is unaligned.

Xoodoo is unaligned. Let us assume that we can factor the linear layer of Xoodoo into
L = π ◦M with M operating on non-trivial superboxes. We can identify the input bits of M that
lie in the same superbox with the two following rules:

1. The output bits of L in the same box (column) depend on input bits from the same
superbox;

2. Any two output bits that depend on the same input bit must also depend on input bits
from the same superbox.

Therefore, we construct a bipartite graph with the 128 output boxes on one side and the 384



20 1.5. Permutations under study

def buildGraph():

G = Graph()

for x in range(4):

for z in range(32):

G.add_vertex("out-{0}-{1}".format(x, z))

for y in range(3):

G.add_vertex("in-{0}-{1}-{2}".format(x, y, z))

for x in range(4):

for z in range(32):

out = "out-{0}-{1}".format(x, z)

G.add_edge(out, "in-{0}-{1}-{2}".format(x, 0, z))

G.add_edge(out, "in-{0}-{1}-{2}".format((x+3)%4, 0, (z+27)%32))

G.add_edge(out, "in-{0}-{1}-{2}".format((x+3)%4, 0, (z+18)%32))

G.add_edge(out, "in-{0}-{1}-{2}".format((x+3)%4, 1, (z+26)%32))

G.add_edge(out, "in-{0}-{1}-{2}".format((x+3)%4, 1, (z+17)%32))

G.add_edge(out, "in-{0}-{1}-{2}".format((x+1)%4, 2, (z+19)%32))

G.add_edge(out, "in-{0}-{1}-{2}".format((x+1)%4, 2, (z+10)%32))

G.add_edge(out, "in-{0}-{1}-{2}".format((x+3)%4, 1, (z+31)%32))

G.add_edge(out, "in-{0}-{1}-{2}".format((x+2)%4, 0, (z+27)%32))

G.add_edge(out, "in-{0}-{1}-{2}".format((x+2)%4, 0, (z+18)%32))

G.add_edge(out, "in-{0}-{1}-{2}".format((x+2)%4, 1, (z+26)%32))

G.add_edge(out, "in-{0}-{1}-{2}".format((x+2)%4, 1, (z+17)%32))

G.add_edge(out, "in-{0}-{1}-{2}".format((x+0)%4, 2, (z+19)%32))

G.add_edge(out, "in-{0}-{1}-{2}".format((x+0)%4, 2, (z+10)%32))

G.add_edge(out, "in-{0}-{1}-{2}".format((x+2)%4, 2, (z+13)%32))

G.add_edge(out, "in-{0}-{1}-{2}".format((x+3)%4, 0, (z+16)%32))

G.add_edge(out, "in-{0}-{1}-{2}".format((x+3)%4, 0, (z+ 7)%32))

G.add_edge(out, "in-{0}-{1}-{2}".format((x+3)%4, 1, (z+15)%32))

G.add_edge(out, "in-{0}-{1}-{2}".format((x+3)%4, 1, (z+ 6)%32))

G.add_edge(out, "in-{0}-{1}-{2}".format((x+1)%4, 2, (z+ 8)%32))

G.add_edge(out, "in-{0}-{1}-{2}".format((x+1)%4, 2, (z+31)%32))

return G

G = buildGraph()

G.is_connected()

Figure 1.10: Sage code to construct the graph and to check its connectivity used to prove that Xoodoo
is unaligned.

input bits on the other side, with edges connecting an output box to the input bits that it
depends on. We explicitly construct this graph (see Figure 1.10) and check that it is connected.
This contradicts the assumption that M operates on non-trivial superboxes.
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Overview

The alignment properties of our four permutations, Rijndael, Saturnin, Spongent and
Xoodoo, have been studied in Chapter 1 showing that both Rijndael, Saturnin and Spon-
gent are aligned in the sense of our definition whereas Xoodoo is unaligned.

In this chapter, we explore how the alignment affects the effectiveness of their linear layer
and also its impact on their differential and linear properties. First, we recall in Section 2.1 the
definitions of the bit and box weight metrics. We use these metrics to build histograms depicting
quantitatively the mixing power of the linear layer. We also compare how the histograms varies
from bit to box weight because of an effect that we call huddling, which seems to have more impact
on aligned designs. Then, we investigate in Section 2.2 how it translates to a first measure of
their differential and linear properties by studying the weight of two-round trails. To do so, we
define a third type of histograms, the trail weight histogram, that reports on the repartition of
the trails by their weight and we construct this histogram for our four permutations.

2.1 Bit and box weight histograms and the huddling effect

2.1.1 Definitions of bit weight, box weight and their histograms

The weight of a two-round trail (qin,a, b, qout) over N ◦L ◦N is equal to the sum of the weight
of (qin,a) and the weight of (b, qout). Since each of these differentials or linear approximations
is over a layer of S-boxes, their weights directly depend on the product of the differential proba-
bilities or linear potentials of the projections of a and b over each S-box. Knowing how many of
these projections are non-zero can actually suffice to compute a lower bound of the total weight.

Additionally, the value of a fully determines the value of b as b = L(a) in differential trails
and a = Lt(b) in linear trails. Thus, the distribution of the differences or linear masks depending
on the number of non-zero projections before and after a linear layer L determines its mixing
power. In this section, we define a metric for the number of these non-zero projections and
formalize the corresponding distribution as histograms to be able to quantitatively describe the
mixing power of L.

Bit weight and box weight. First, we formally define what it means for a bit to be active.

Definition 2.1.1 (Bit activity). We call a bit i active in the state, difference or linear mask
a ∈ Fb

2 if ai = 1 and passive otherwise. We call this property the activity of a bit.

The natural metric associated with bit activity is the bit weight, also called the Hamming
weight:

Definition 2.1.2 (Bit weight). Given a state, a difference or a linear mask a, its bit weight
w2(a) is defined as:

w2(a) = #{i ∈ J1, bK | ai ̸= 0} .

These definitions can be naturally extended to describe a state, a difference or a linear mask
a at the granularity of the S-boxes. To do so, we first define an indicator function with respect
to a box partition.

Definition 2.1.3 (Indicator function with respect to a partition). We call an indicator function
with respect to a partition Π a function 1i : Fb

2 → F2 such that

1i(a) =

{
0, if Pi(a) = 0

1, otherwise.

where projections Pi are taken along the partition Π.
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We use this definition to define what is an active box.

Definition 2.1.4 (Box activity). Let Π = (B1, . . . ,Bn) the box-partition naturally defined from
the description of a nonlinear layer N that consists in the parallel application of n S-Boxes.

We call the box Bi active in the difference or linear mask a ∈ Fb
2 if 1i(a) = 1 and passive

otherwise. We call this property the activity of a box.

The natural metric associated with box activity is the box weight:

Definition 2.1.5 (Box weight). Given a state, a difference or a linear mask a, we define its box
weight wΠ(a) with respect to a partition Π as:

wΠ(a) = #{i ∈ J1, nK | 1i(a) ̸= 0} .

We can naturally encode the box activity of a difference or a linear mask as a vector:

Definition 2.1.6 (Activity pattern). Given a state, a difference or a linear mask a, its activity
pattern rΠ(a) with respect to a partition Π is defined as

rΠ(a) =

n∑
i=1

1Bi
(a)eni .

It is the vector whose i-th component is one if box Bi is active and zero otherwise.

We describe how the activity pattern is impacted by the application of the nonlinear layer in
the following lemma.

Lemma 2.1.7 (Activity pattern preservation through N). Let (∆in,∆out) be a valid differential
and (u,v) a valid linear approximation over a nonlinear layer N composed of n S-boxes S applied
in parallel along the box partition Π. For the differential case, we need the additional hypothesis
that S is injective.

Then we have that:

rΠ(∆in) = rΠ(∆out)

and

rΠ(u) = rΠ(v)

Proof. As seen in Section 1.3, the differential probability (respectively correlation) over N is the
product of the differential probabilities (respectively correlations) of the differential (respectively
linear approximation) over each S-Box. Additionally, over a single S-box S, a differential or a
linear approximation of the form (a, 0) (or (0,a)) with a ̸= 0 have a differential probability of 0
when S is injective and a correlation of 0.

Thus in the valid differential (∆in,∆out), for all i ∈ J1, nK, Pi(∆in) = 0 (respectively
Pi(∆in) ̸= 0) implies Pi(∆out) = 0 (respectively Pi(∆out ̸= 0) where Pi is the projection
over the i-th S-box. The same is true for the linear approximation. By definition of the activity
pattern, this proves the lemma.

Not surprisingly, the number of active bits is not a good estimator of the number of active
boxes, as shown in Example 2.1.

Example 2.1: Bit weight and box weight

Let Π = ({1, 2, 3}, {4, 5, 6}, {7, 8, 9}, {10, 11, 12}) be the partition naturally defined from the
layer of S-boxes Nt of the permutation defined in Example 1.1.

It follows that rΠ(
(
1 1 1 0 0 0 0 0 0 0 0 0

)
=

(
1 0 0 0

)
and rΠ

(
1 0 0 1 0 0 0 0 1 0 0 0

)
=(

1 1 1 0
)
. Thus we have, wΠ(

(
1 1 1 0 0 0 0 0 0 0 0 0

)
) = 1 and w2(

(
1 1 1 0 0 0 0 0 0 0 0 0

)
) = 3

whereas wΠ(
(
1 0 0 1 0 0 0 0 1 0 0 0

)
) = 3 while still having w2(

(
1 0 0 1 0 0 0 0 1 0 0 0

)
) = 3.

This example shows that a large number of active bits does not necessarily lead to a large
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number of active boxes. This phenomenon is discussed more thoroughly in Subsection 2.1.3.

We now define two types of histograms to show the behaviour of the mixing layer at the bit
level, at the box level and we comment on the link between these two behaviours.

Bit and box weight histograms. In order to quantify the “mixing power” of a linear trans-
formation L, we consider the weight distribution of (a ∥L(a)) over all differences or linear masks
a ∈ Fb

2 and embed it in a histogram. This is a well-known concept in coding theory, where
weight distributions are embedded in so-called weight enumerator polynomials that classify the
code [HP03]. For a given code C of length n and minimum distance d, its weight enumerator
polynomial is the following bivariate formal polynomial WC =

∑n
k=0 Akx

kyn−k with Ak being
the number of codewords in C of weight k.

Definition 2.1.8 (Weight histogram). The weight histogram of a linear transformation
L: Fb

2 → Fb
2 is a function N·,L : N→ N given by

N·,L(k) = #{a ∈ Fb
2 | w·(a) + w·(L(a)) = k} ,

where · must be replaced by either 2 (bit weight histogram) or Π (box weight histogram).
Informally, for every integer k the weight histogram embeds the information of the number

of different states, differences or linear masks such that the sum of their weight before and after
applying the linear transformation L is equal to k.

The cumulative version on the same domain and codomain is given by

C·,L(k) =
∑
l≤k

NL(l) .

We call the tail of the histogram, the values that correspond to low weight. In the charts we
present, the tail consists in their left-most parts.

Remarks on the branch number. We note that the differential branch number [Dae95]
of the linear layer is simply the smallest non-zero entry of the bit or box weight histogram,
i.e. min{k > 0 | N·,L(k) > 0}. The linear branch number is the smallest non-zero entry in the
corresponding histogram of Lt and can be different from its differential counterpart. This is not
the case for the mappings in this part and we omit the qualifier in the remainder. A higher
branch number typically implies higher mixing power. However, the box weight histogram is
more informative than just the branch number as it gives the exact number of differences or
linear masks meeting the branch number and it also gives a description of the repartition of
differences and linear masks for higher weight values. In general, the weight histogram allows a
more nuanced comparison of mixing layers than the branch number.

2.1.2 Computing the weight histograms for an aligned round function

Given an aligned round function R, it is sufficient to compute the weight histograms of only the
mixing layer M to compute the one of the linear layer:

Lemma 2.1.9 (Box weight histogram of the linear layer of an aligned round function). Given
an aligned round function R = π ◦M ◦N (or R = M ◦π ◦N), the box weight histogram of M and
L = π ◦M (or L = M ◦π) are equal.

Proof. By definition of an aligned round function, π is a ΠN-shuffle. Since π only permutes the
boxes after (or before) the effect of M it does not impact on the box weight of the output (or
input) of M.

We have that wΠ(a) = wΠ(π(M(a))), thus the lemma is true for L = π ◦M.
If L = M ◦π, let SM = {a ∈ Fb

2 | wΠ(a) + wΠ(M(a)) = k} and SL = {a ∈ Fb
2 | wΠ(a) +

wΠ(M(π(a))) = k} for a given k ∈ N. Since wΠ(π(a)) = wΠ(a), π is a bijection from SL to
SM. Thus, both sets have the same cardinality for every k ∈ N and therefore the box weight
histogram of M and L are equal.
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Hence, the box weight histogram of a box-aligned function equals that of the identity. The
identity is special in that it has the least mixing power out of all permutations. In other words,
a box-aligned function does not contribute to the mixing power. The same reasoning can be
applied to the bit weight histogram of shuffles that only permute bits.

Additionally, the superbox structure of an aligned primitive makes it possible to use a divide-
and-conquer approach to compute the box weight histograms. By definition of alignment the
mixing layer M acts independently on each of the s superboxes defined by the partition ΠM. Thus,
we can define Mi as the component of M that is applied to the i-th superbox. Additionally, we
define for all k ∈ N S(k) = {v ∈ Ns |

∑s
i=1 vi = k}. Finally, we can compute the weight

histograms of M from the weight histograms of its superbox functions Mi:

N·,M(k) =
∑

v∈S(k)

s∏
i=1

N·,Mi
(vi) . (2.1)

The Maximum Distance Separable (MDS) case. First, we define what are Maximum
Distance Separable linear codes:

Definition 2.1.10 (Maximum Distance Separable code). A linear code of length n and dimen-
sion k is said to be Maximum Distance Separable (MDS) if its minimum distance d verifies:
d = n− k + 1, that is if it reaches the Singleton bound.

From this definition, we can also define what are Maximum Distance Separable linear map-
pings:

Definition 2.1.11 (Maximum Distance Separable (MDS) function). A function f : Fp
2m → Fp

2m

is called a Maximum Distance separable (MDS) function if the set {(x ∥ f(x)) | x ∈ Fp
2m} ⊆ F2p

2m

is an MDS code over F2m of minimum distance d.

When each function Mi is a Maximum Distance Separable (MDS) function, the box weight
histogram is given from coding theory results on the underlying MDS code. It can be expressed
as a combinatorial expressions of m, the box size, and n, the number of boxes. Since the round
function studied is aligned, the ordered partition ΠN is a refinement of the ordered partition ΠM

naturally defined by M and the Mis.

More precisely, we have the following theorem:

Theorem 2.1.12 (Special case of [HP03, Theorem 7.4.1]). Let C be an [2p, p, p+ 1] MDS code
over Fq. The coefficient Ai, 0 ≤ i ≤ 2p of the weight enumerator polynomial of C is given by:

Ai =

{
0 if i ≤ p(
2p
i

)∑i−p−1
j=0 (−1)j

(
i
j

)
(qi−p−j − 1) if i ≥ p+ 1

Thus, in the case of MDS mixing layers, computing the box weight of the linear layer is
straightforward by combining Lemma 2.1.9, Theorem 2.1.12, and Equation (2.1).

General case. In general, we do not have the same numeric formula as in the MDS case
and Equation (2.1) only applies to aligned permutations. The details on how the weight his-
tograms are computed for Xoodoo should appear in Daniël Kuijsters’ thesis [Kui].

2.1.3 Application to the four permutations and huddling

We discuss the cumulative bit and box weight histograms for the linear layers of our four permu-
tations, given in Figure 2.1. We include the histogram for the identity function, assuming 3, 4
and 8-bit S-boxes for the box weight histogram to allow for comparison with the permutations.
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Bit weight histogram. The bit weight histogram for Spongent coincides with that of the
identity permutation. This is because its linear layer is a bit shuffle. As the identity permutation
maps inputs to identical outputs, it has only non-zero entries for even bit weights. Its bit branch
number is 2. In conclusion, its mixing power is the lowest possible.

The bit branch number of the mixing layer of Rijndael, MixColumns, is 6, that of Saturnin-
MC is 5, and that of Xoodoo-θ is 4.

Similar to Spongent, the bit weight histograms of Rijndael and Xoodoo have only non-
zero entries at even bit weights. This is because both Xoodoo-θ and Rijndael-MixColumns
can be modeled as a 7→ (Ib +M)a for some matrix M ∈ Fb×b

2 with the property that the bit
weight of Ma is even for all a ∈ Fb

2 and Ib the identity matrix of Fb×b
2 . Saturnin-MC cannot

be modeled in that way and does have non-zero entries at odd bit weights. The bit weight
histograms of Rijndael and Saturnin are very close and that of Xoodoo is somewhat higher.

Box weight histogram. Both MixColumns in Rijndael and MC in Saturnin are mixing
layers that are MDS function as defined in Definition 2.1.11. Thus, their box weight histogram
can be computed using Theorem 2.1.12 combined with Equation (2.1). For Spongent, the box
weight histogram is computed from the one of SpongentMix.

For Spongent the box branch number is 2, the same as the bit branch number. However,
the box weight histogram of Spongent has a lower tail than the identity permutation. This
shows that SpongentMixLayer has a higher mixing power than in the bit case.

The box branch number of the linear layers of Rijndael, MixColumns, and of Saturnin-MC
are both 5, while for Xoodoo it is 4. Even if the branch numbers of MixColumns and MC are
equal, Saturnin’s mixing layer has a better mixing power than Rijndael’s, which is indicated
by a lower tail.

Bit huddling. The discrepancy between the bit and box weight histogram brings us to the
qualitative notion of bit huddling : many active bits huddle together in few active boxes.

Huddling has an effect on the contribution of states a to the histogram, i.e., by definition we
have that wΠ(a) + wΠ(L(a)) ≤ w2(a) + w2(L(a)). In words, from bit to box weight, huddling
moves states to the left in the histogram, thereby raising the tail. Huddling therefore results in
the decay of mixing power at box level as compared to bit level. In the absence of huddling, the
bit and box weight histogram would be equal. However, huddling cannot be avoided altogether
as states do exist with multiple active bits in a box since m ≥ 2.

Example 2.2: Bit huddling

If the mixing layer is a simple bit shuffle, then there are n
(
m
2

)
states with only two active

bits and where the two active bits are in the same box. These states have a total bit weight
(before and after the mixing layer) of 4 since a bit shuffle has the same bit weight histogram as
the identity permutation. However they have a total box weight (before and after the mixing
layer) of either 2 if the bits are still in the same box after the bit shuffle or 3 otherwise.

Superbox huddling effect. We see Rijndael has high bit huddling. In moving from bit
weights to box weights, the branch number decreases from 6 to 5 and the tail rises from being
the lowest of the four to the highest. This is a direct consequence of the large width of the
Rijndael S-boxes, namely 8, and the byte alignment. Indeed, MixColumns only mixes bits
within the 32-bit columns. We call this the superbox huddling effect. Of course, there is a reason
for these large S-boxes: they have low maximum differential probability and linear potential.

Saturnin, with its Rijndael-like structure also exhibits the superbox huddling effect,
though less pronounced than Rijndael. From bits to boxes the branch number does not de-
crease and the tail rises less than for Rijndael. Clearly, its smaller S-box size, namely 4, allows
for less bit huddling.

Due to its alignment, Spongent exhibits the superbox huddling effect, but less so than
Saturnin. The reason for this is the already high tail in the bit weight histogram, due to the
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absence of bit-level diffusion in the mixing layer. When designing a bit shuffle, one has a choice
to minimize the amount of huddling. Such a bit shuffle would move bits of a small number of
boxes at the input to a large number of boxes at the output (and vice versa). Unfortunately, the
designers of Spongent have not followed such a design approach. The superbox structure of
Spongent implies that the bits belonging to groups of four boxes are moved to bits of another
group of four boxes. The result is higher huddling and as a consequence lower mixing power
than what would have been possible.

Finally, Xoodoo has the lowest bit huddling of the four primitives studied. The huddling
is mostly limited to what is unavoidable, resulting in entries with odd box weight and a slight
change in the entries of even box weight due to states shifting to the left from higher weight or to
lower weights. This is the consequence of two design choices: having very small S-boxes (3-bit)
and the absence of alignment, avoiding the superbox huddling effect altogether.

Example 2.3: Quantitative indicator for huddling
An interesting quantitative indicator for huddling is the weight below which there are some
given number of states. If we do the exercise with this number equal to 230, we see from bit
to box weight that in Rijndael this value decreases from 20 to 8, in Saturnin from 20 to
12, in Spongent from 10 to 8 and in Xoodoo from 18 to 16. While starting out with better
mixing at bit level, due to its alignment properties Saturnin loses more than Xoodoo when
switching to boxes and ends up with worse mixing power than Xoodoo.

We see that the bit weight histograms are in line with the computational cost of the mix layers.
From bit to box weight histograms we see the superbox huddling effect affecting Rijndael and
Saturnin the most. Thanks to the absence of alignment in Xoodoo, its linear layer has the
best box-level mixing despite the fact that its mixing layer has the lowest cost of these three.
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Figure 2.1: Cumulative bit weight and box weight histograms.
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2.2 Trail weight histograms

2.2.1 Definition of trail weight histogram

In the previous section, we considered a mixing layer M with the box partition ΠS of the nonlinear
layer taken into account to quantitatively describe its mixing power. In this section, we extend
this view by taking the differential and linear properties of the S-box layer into account as well.

We define the trail weight histogram analogous to Definition 2.1.8:

Definition 2.2.1 (Trail weight histogram). The trail weight histogram of a k-round transforma-
tion of the form N ◦L ◦ · · · ◦ L ◦N is a function T H· : N→ N given by

T H·(k) = # {trails Q | w·(Q) = k} ,

where · must be replaced by either r (restriction weight of differential trails) or c (correlation
weight of linear trails).

The cumulative version on the same domain and codomain is given by

CT H·(k) =
∑
k′≤k

T H·(k
′) .

As before, systematically lower values in the tail of one histogram compared to the other
means the permutationassociated with the former performs better with respect to the metric.

2.2.2 Two-round trail weight histograms

Figure 2.2 reports on the distribution of the weight of two-round differential and linear trails of
our four permutations.

We use a similar method as for weight histograms to compute the trail weight histograms
of the aligned permutations, that is we exploit the superbox structures and compute the whole
histogram from the one of a superbox using Equation (2.1).

While Rijndael performed the worst with respect to the box weight metric, we see that it
performs the best with respect to the trail weights. The reasons are the low maximum differential
probability and linear potential of its S-box as well as its high branch number. However, this
have to be put in perspective with the implementation cost of these S-boxes, which is naturally
higher than for smaller ones. The relative ranking of the other permutations does not change
in moving from box weight to trail weights. Still, Xoodoo loses some terrain due to its more
lightweight S-box layer.

Due to its bad mixing properties, Spongent does not perform well with respect to the trail
weights either. Despite the difference in design approach, Xoodoo and Saturnin have quite
similar two-round trail weight histograms.
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Figure 2.2: Two rounds: cumulative differential and linear trail weight histograms.
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Overview

The investigation of two-round trails and their weight conducted in Chapter 2 gives a first
approximation of the differential and linear properties of the studied permutations but does not
draw the full picture.

Indeed, as seen in Chapter 1, because of clustering effects this approximation is not always
accurate. In fact, when trails cluster together in the same differential or linear approximation, it
can increase its differential probability or linear potential compared to the one of the trail alone.
We study the clustering of two-round trails for our four ciphers in Section 3.1 by introducing a
fourth histogram, the cluster histogram. We show that this clustering behaviour is negligible in
Xoodoo while it is not the case for the other aligned permutations. Additionally, we present an
algorithm searching for clusters of three-round trails. This algorithm is sufficiently efficient for
Xoodoo and is thus used to extend the analysis of clustering of trails for this permutation by
showing that there exists no clustering of three-round trails up to weight 50.

Finally, in Section 3.2 we investigate another approximation seen in Chapter 1: the hypothesis
that round differentials are independent, which is known to be false for Rijndael for two-
round trails [DR07]. This approximation can cause the differential probability of trails to be
underestimated: this leads to an optimistic description of the differential and linear properties
of the permutation under study. We focus on the three-round case and we present an algorithm
searching for round differential dependence and independence. This algorithm is applied to
Xoodoo and show that every round differential of three-round differential trails up to weight
50 are independent.

3.1 Clustering

In this section, we investigate clustering of differential trails and of linear trails. The occurrence
of such clustering in two-round differentials and linear approximations requires certain conditions
to be satisfied. In particular, we define an equivalence relation of states with respect to a linear
layer and a box partition that partitions the state space in candidate two-round trail cores and
the size of its equivalence classes upper bounds the amount of possible trail clustering. This is
the so-called cluster partition.

We present the partitions of our four permutations by means of their cluster histograms. For
all four permutations, we report on two-round trail clustering and for Xoodoo in particular we
look at the three-round case. With its unaligned structure, we found little clustering in Xoodoo.
However, the effects of clustering are apparent in the aligned primitives Rijndael, Saturnin,
and Spongent, with them being most noticeable in Rijndael.

3.1.1 The cluster histogram

To define the cluster histogram we need to define two equivalence classes.

Definition 3.1.1 (Box-activity equivalence). Two states are box-activity-equivalent if they have
the same activity pattern with respect to a box partition Π:

a∼a′ if and only if rΠ(a) = rΠ(a
′) .

We denote the set of states that are box-activity equivalent with a by [a]∼ and call it the
box-activity class of a.

Box-activity equivalence has an application in the relation between trail cores and differentials
or linear approximations.

We now state a lemma that motivates the use of this newly defined equivalence class.

Lemma 3.1.2. Two trail cores (a0, b0, · · · ,ar−2, br−2) and (a∗
0, b

∗
0, · · · ,a∗

r−2, b
∗
r−2) over a func-

tion f = Nr−1 ◦Lr−2 ◦Nr−2 ◦ · · · ◦L0 ◦N0 that are in the same differential (or linear approxima-
tion) satisfy a0∼a∗

0 and br−2∼ b∗r−2.
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Proof. Let (∆in,∆out) be the differential (or linear approximation) over f that the trail cores
are in. Since N0 and Nr−2 preserve activity patterns (see Lemma 2.1.7), we have that ∆in∼a0,
and ∆in∼a∗

0, and ∆out∼ br−2, and ∆out∼ b∗r−2. From the symmetry and transitivity of ∼ it
follows that a0∼a∗

0 and br−2∼ b∗r−2.

Considering the case r = 2 in Lemma 3.1.2 immediately gives rise to a refinement of box-
activity equivalence.

Definition 3.1.3 (Cluster equivalence). Two states are cluster-equivalent with respect to a
linear mapping L : Fb

2 → Fb
2 and a box partition Π if they are box-activity equivalent before L

and after it (See Figure 3.1):

a≈a′ if and only if a∼a′ and L(a)∼L(a′) .

We denote the set of states that are cluster-equivalent with a by [a]≈ and call it the cluster class
of a. The partition of Fb

2 according to these cluster classes is called the cluster partition.

Corollary 3.1.4 (Two-round trail). If two two-round trail cores (a,L(a)) and (a∗,L(a∗)) over
f = N ◦L ◦N are in the same differential, then a≈a∗.

Proof. If we apply Lemma 3.1.2 to the case r = 2, we have a∼a∗ and L(a)∼L(a∗). It follows
that a≈a∗.

Corollary 3.1.4 shows that the defining differences (or linear masks) of any two-round trail
cores that cluster together are in the same cluster class. It follows that if these cluster classes
are small, then there is little clustering.

[L(a)]∼[a]∼

L

L

[a]≈

L

Figure 3.1: Partitions of Fb
2 defined by ∼ and ≈.

For all a′ ∈ [a]≈ the box weight wΠ(a
′) + wΠ(L(a

′)) is the same since the activity patterns
are equal by definition. Hence, this number is an invariant of the equivalence class. If we let
w̃ : Fb

2/≈ → N, given by w̃([a]≈) = wΠ(a)+wΠ(L(a)), be the function that maps an equivalence
class to this number, then we see that w̃ is well-defined.

In a similar way than for the bit and box weight histograms, we define an histogram from w̃.

Definition 3.1.5 (Cluster histogram). Let L : Fb
2 → Fb

2 be a linear transformation. Let ≈ be
the equivalence relation given in Definition 3.1.3.

The cluster histogram NΠ,L : N× N → N of L with respect to the box partition Π is given
by:

NΠ,L(k, c) = #{[a]≈ ∈ Fb
2/≈ | w̃([a]≈) = k ∧ #[a]≈ = c} .

For a fixed box weight, the cluster histogram shows the distribution of the sizes of the cluster
classes with that box weight. Ideally, for small box weights, the cluster classes are all very
small. Large cluster classes of small weight may lead to two-round trails with a large differential
probability or linear potential.
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3.1.2 Computing the cluster histogram for an aligned round function

Given an aligned round function R we can exploit its superbox structure to compute the cluster
histogram of its linear layer in the same fashion as in Subsection 2.1.2.

Lemma 3.1.6 (Cluster histogram of the linear layer of an aligned round function). Given
an aligned round function R = π ◦M ◦N (or R = M ◦π ◦N), the cluster histogram of M and
L = π ◦M (or L = M ◦π) are equal.

Proof. We use the exact same reasoning as for the proof of Lemma 2.1.9.

As seen before, the mixing layer M of an aligned round function can be decomposed as s
functions Mi applied along a partition ΠM of which the box partition Π from the nonlinear layer
N is a refinement. Let p be the number of m-bit boxes of ΠN in each of the s boxes of ΠM. As
for the box weight histogram, the cluster histogram of the mixing layer M can be derived from
the one of Mi using an equation similar to Equation (2.1).

The MDS case. We now focus on the computation of the cluster histogram of Mi when it is
an MDS function as defined in Definition 2.1.11.

Since it is MDS, the branch number of Mi seen as a function from Fp
2m to itself is p+1. Thus,

NΠ,Mi
(k, c) = 0 for any c ∈ N and k < p+ 1.

We now prove the following lemma, for the case k = p+ 1:

Lemma 3.1.7. For k = p + 1, the only non-zero value in the cluster histogram NΠ,Mi(k, ·) of
Mi is for c =

(
2p
k

)
and its value is 2m − 1.

In other words, there are
(
2p
k

)
cluster classes of weight p+ 1, each of size 2m − 1.

Proof. Since Mi is an MDS function, there exists a p × p matrix M over F2m such that H =(
M t Ip)

)
is a parity-check matrix of the MDS code associated with Mi of dimension p.

Let S ⊆ J1, 2pK be a subset of the column index space of H with #S = p . The columns
of H indexed by S form a p × p sub-matrix. Since H defines an MDS code, this sub-matrix
is invertible. Let H ′ be the result of permuting the columns of H such that those originally
indexed by S in H are now in position 1 to p in H ′ and let H ′′ be the row reduced echelon form
of H ′. Then, H ′′ =

(
M ′ Ip

)
is the parity-check matrix of a new code which defines a linear

map M′ : Fp
2m → Fp

2m given by M′(a) = M ′ta.
Now, let a ∈ Fpm

2 be such that wΠ(a)+wΠ(Mi(a)) = p+1. Pick a subset S in such a way that
it contains the index of one active box of (a ∥Mi(a)) and such that the other indices correspond
to p − 1 passive boxes. The value of the remaining p active boxes are completely determined
by the value in the chosen active box through the corresponding M′. There are 2m − 1 different
possible values.

Since there are
(

2p
p+1

)
different possible activity patterns of weight p + 1, there are

(
2p
p+1

)
different cluster classes each of size 2m − 1.

We extend Lemma 3.1.7 as the following recurrence relation:

Theorem 3.1.8. For p+1 ≤ k ≤ 2p, all the
(
2p
k

)
cluster classes of weight k have the same size.

Let C(k) be the size of these cluster classes.
The following recurrence relation holds for p+ 1 ≤ k ≤ 2p:

C(k) = (2m − 1)k−p −
∑

1≤i≤k−p−1

(
p

i

)
C(k − i)

Moreover, C(0) = 1.

Proof. Let a ∈ Fpm
2 with wΠ(a)+wΠ(M(a)) = k. By the same argument as given in Lemma 3.1.7,

pick S such that it contains the indices of k − p active boxes.



Chapter 3. Clustering and round differentials independence 35

There are (2m − 1)k−p ways of choosing the vector a such that it is active in k − p boxes. It
follows that p+ 1 ≤ wΠ((a,M(a))) ≤ k. We then subtract the number of vectors that lead to a
box weight of p+ i for 1 ≤ i ≤ k − p− 1 and obtain the result.

This is independent from the exact activity pattern of a, thus every cluster class has the
same size.

General case. As for the bit and box weight histograms, there is no general formula to compute
efficiently the cluster histogram of an unaligned permutation. The details on how the cluster
histogram is computed for Xoodoo should appear in Daniël Kuijsters’ thesis [Kui].

3.1.3 The cluster histograms of our permutations

Next, we present the cluster histograms of the superboxes of Rijndael, Saturnin and of the
Saturnin hyperbox computed using Theorem 3.1.8 in Table 3.1a. We also present the cluster
histogram of Spongent in Table 3.1b. Moreover, we present a partial cluster histogram of
Xoodoo in Table 3.1c.

Table 3.1: Cluster histograms of the four permutations studied

(a) The cluster histograms of Rijndael and Saturnin.

w̃
N × Cm,n

Rijndael superbox Saturnin superbox Saturnin hyperbox
m = 8, n = 4 m = 4, n = 4 m = 16, n = 4

5 (56× 255) (56× 15) (56× 65535)
6 (28× 64005)) (28× 165) (28× 4294574085)
7 (8× 16323825) (8× 2625) (8× 281444913315825)
8 (1× 4162570275) (1× 39075) (1× 18444492394151280675)

(b) The cluster histogram of SpongentMix of Spongent.

w̃ N × C
2 (16× 1)
3 (48× 1)
4 (32× 1) (36× 7)
5 (8× 1) (48× 25)
6 (12× 79) (16× 265)
7 (8× 2161)
8 (1× 41503)

(c) Partial cluster histogram (up to translation equiva-
lence) of Xoodoo.

w̃ N × C
4 (3× 1)
7 (24× 1)
8 (600× 1)
9 (2× 1)
10 (442× 1)
11 (10062× 1)
12 (80218× 1)
13 (11676× 1)
14 (228531× 1) (3× 2)
15 (2107864× 1) (90× 2)
16 (8447176× 1) (702× 2)
...

...

In Table 3.1, C denotes the cardinality of a cluster class and N denotes the number of cluster
classes with that cardinality.

Example 3.1: Reading the cluster histograms

In Table 3.1, an expression such as (32 × 1) (36 × 7) means that there are 32 cluster classes
of cardinality 1 and 36 classes of cardinality 7. Looking at w̃ = 8 across the three tables,
we see that Rijndael, Saturnin, and Spongent have only a single cluster class containing
all the states with wΠ(a) + wΠ(L(a)) = 8. In contrast, for Xoodoo, each state a sits in its
own cluster class. This means that L(a) is in a different box activity class than L(b) for any
b ∈ [a]∼ and b ̸= a.



36 3.1. Clustering

Table 3.1b gives the cluster histogram of Spongent’s superbox. For weights above 4 we
see large cluster equivalence classes. Hence, we expect to see clustering of differential and linear
trails in differentials and linear approximations, respectively.

Now, consider the cluster histogram of Xoodoo in Table 3.1c. We see that up to and
including box weight 13, we have #[a]≈ = 1. For box weight 14, 15, and 16, we see that
#[a]≈ ≤ 2. Due to its unaligned structure, it is less likely that equal activity patterns are
propagated to equal activity patterns. Therefore, many cluster classes contain only a single
state.

3.1.4 Two-round trail clustering

Two-round trail clustering in the keyed Rijndael superbox was investigated in [DR06]. In that
paper the expected differential probability of trails and differentials are studied, where expected
means averaged over all keys. We see considerable clustering in differentials with 5 active S-boxes.
For these, the maximum expected differential probability of differentials is more than a factor 3
higher than the maximum expected differential probability of two-round trails, with differentials
containing up to 75 trails. For more active S-boxes the number of trails per differential is much
higher and hence clustering is worse, but their individual contributions to the expected differential
probability are much smaller and all differentials have expected differential probability very close
to 2−32. For fixed keys or in an unkeyed superbox these differentials and trails have a differential
probability that is a multiple of 2−31. This effect on differential trails was previously studied
in [DR07]. In this section we report on our experiments on the other three permutations where
we compare two-round differentials with differential trails and linear approximations with linear
trails.

Figure 3.2 shows the number of two-round differentials and differential trails up to a given
weight of the Saturnin and the Spongent superboxes. For example, for Saturnin there is a
trail with 5 active S-boxes that has a weight of 10. The corresponding differential has a weight
that is also approximately equal to 10.

In both cases, we see that for low weight the histograms are close and as the weight grows,
these histograms diverge. For Saturnin there are roughly 50 times more differentials with weight
15 or less than differential trails with weight 15 or less. For Spongent this ratio is roughly 20.
This divergence is due to two reasons: differential trails of higher weight clustering to give a
differential of lower weight, and what we call clipping.

Due to the large number of differential trails and the limited width of the superbox, the trails
of high weight have to cluster in differentials of lower weight. For example in Saturnin where
superboxes have width 16, differentials of weight greater than 16 cannot exist. In fact since
any differential over a superbox has an even number of ordered pairs, the minimum differential
probability is 2−15, yielding a maximum weight of 15. We call this effect clipping. In all generality,
a trail over a k-bit superbox with weight w ≤ k cannot have a differential probability equal to
2−w as this would imply a fractional number of pairs. Thus, the lowest differential probability
of this trail is 21−k. This effect has been studied in Rijndael and we refer to Section 3.2 for a
discussion.

Figure 3.3 shows the weight histograms for two-round differentials and linear approximations.
It can be compared with the weight histograms of two-round trails in Figure 2.2.

The full-state correlation weight histogram of Saturnin was obtained from that of any of
its columns by first rounding the correlation weights to the nearest integer to make integer
arithmetic possible. The full-state correlation weight histogram of Spongent was obtained in
a similar manner. The remainder of the histograms is exact. Table 3.1c shows that in Xoodoo
almost all differentials contain only a single trail. This means that the clustering is negligible.
Therefore, there is no difference between Figure 2.2 and Figure 3.3 for Xoodoo. For Saturnin
the clustering is the most striking: while there are about 230 differential trails with weight 15
or less, there are more than 235 such differentials: a factor 30 times more. For linear trails we
observe a similar effect. For Spongent the effect of clustering is less clear due to the fact that
the trail weight histogram is quite bad to start with.
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Figure 3.2: Cumulative count of two-round differentials and differential trails in the superboxes of
Saturnin and Spongent.

The effect of clustering in four-round (or two super-round) Saturnin is interesting. Four-
round Saturnin consists of the parallel application of four 64-bit hyperboxes. The consequence
is that for a fixed key, the roughly 2127 · 4 differentials that are active in a single hyperbox
and have non-zero differential probability, all have weight below 63. When computing expected
differential probabilities averaging the differential probabilities over all round keys, this is closer
to 64.

The cluster classes also determine the applicability of the very powerful truncated differential
attacks [Knu94]. These attacks exploit sets of differentials that share the same box activity
pattern in their input difference and the same box activity pattern in their output difference.
Despite the fact that the individual trails in these truncated differentials may have very low
differential probabilities, the joint probability can be significant due to the very high number
of them. For two-round differentials the cluster classes are exactly the trail cores in a given
truncated differential. In Table 3.1a we see that the cluster classes for the Rijndael superbox
and Saturnin hyperbox are very large. This clustering leads to distinguishers for e.g. 4-round
Rijndael and 8-round Saturnin. The latter can be modeled as 4 hyperboxes followed by an
MDS mixing layer followed by 4 hyperboxes. An input difference with a single active hyperbox
will have 4 active hyperboxes after 8 rounds, with probability 1. In contrast, if the cluster classes
are small, as in the case of the unaligned Xoodoo permutation, it is very unlikely that truncated
differential attacks would have an advantage over ordinary differential attacks.
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Figure 3.3: Two rounds: cumulative restriction and correlation weight histograms.

3.1.5 Three-round differential trail clustering in Xoodoo

According to [DHP+20], there exist no differential or linear trails over four rounds of Xoodoo
with weight below 74. Additionally, Table 3.1c shows that trail clustering in two-round differ-
entials in Xoodoo is negligible, as expected because of its unaligned design. We investigate
the conjecture that Xoodoo’s unaligned design also leads to negligible trail clustering for three
rounds.

First, we present a generic technique that, given a three-round trail core, finds every trail
that cluster with it. In other words, we find DT((∆in,∆out)) for all enveloping trail (∆in,∆out)
of the given trail core. We then apply the technique to known trail cores of Xoodoo, for which
it is very efficient.

Given a trail core (a∗
1, b

∗
1,a

∗
2, b

∗
2), Lemma 3.1.2 shows that we can restrict our search to trails

(∆in,a1, b1,a2, b2,∆out) such that a1∼a∗
1 and b2∼ b∗2. Figure 3.4 shows a differential trail

over three rounds with the last linear layer omitted since the value of the difference after it
deterministically depends on ∆out.

From the difference a∗
1, we define the vector space A

′ of all the states in which a box is passive
whenever it is passive in a∗

1. In other words, if a1 ∈ [a∗
1]∼, then a1 ∈ A′ but also, for it to

be a vector space, A′ includes states that are not in [a∗
1]∼ but for which the activity pattern is

included in the one of a∗
1. We define a vector space B′ from b∗2 in the exact same fashion. In other

words, A′ and B′ contain the candidate for respectively a1 and b2 but are slightly augmented in
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Figure 3.4: A differential trail over three-round (without the last linear layer)

order to be vector spaces of dimension respectively m× wΠ(a1) and m× wΠ(b2).

The vector space B = L(A′) contains all possible candidate values for b1. Similarly, the
vector space A = L−1(B′) contains all possible candidate values for a2. Since it preserves
activity patterns (see Lemma 2.1.7), the central nonlinear layer N restricts the set of candidate
values to those satisfying b1∼a2. Hence, we can limit the search to those x ∈ B and y ∈ A
with x∼y.

A naive exhaustive search can quickly be intractable, so we exploit the structure of the
permutation to reduce the cost. To find all valid trails of the form (∆in, a1, b1, a2, b2,∆out),
we first reduce the size of the space of all trail cores (a1, b1, a2, b2) using a necessary condition.
When this space is small enough, we exhaustively search for a valid trail.

We write B for a basis of B and A for a basis of A. To reduce the dimension of the spaces,
we define and apply an algorithm directly on their bases. Before doing so, we need the notion of
isolated active bit.

Definition 3.1.9 (Isolated active bit). A bit i of b ∈ B is said to be an isolated active bit if
bi = 1 and b′i = 0 for all b′ ∈ B \ {b}.

A basis vector having an isolated active bit determines the box activity of any linear combi-
nation that includes it as stated in the following lemma.

Lemma 3.1.10. If b ∈ B has an isolated active bit at coordinate i ∈ J1, bK, then any vector in
the affine space b+ span(B \ {b}) has the corresponding box activated.

Proof. If b has an isolated active bit at coordinate i, then the i-th bit of any vector in the affine
space b+ span(B \ {b}) is active. As a result, the box in which lies this bit is active.

Similarly to how an isolated active bit always activates the corresponding box, a box is never
activated if no basis vector activates it:
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Lemma 3.1.11. If the i-th box is passive in every vector of A, then the i-th box is passive in
all vectors of A. We say that box i is passive in A.

To reduce the number of basis vectors of either base, we define a sufficient condition on basis
vectors for it to be removed from the basis while ensuring that it does not exclude candidates
that would lead to a valid differential over the central nonlinear layer.

Condition 3.1.12 (Reduction condition). We say that a basis vector b ∈ B satisfies the reduc-
tion condition if and only if it has an isolated active bit in a box that is passive in A. The same
is true when swapping the role of B and A.

The following lemma shows that the reduction condition is sufficient to reduce the dimension
of the vector space we consider.

Lemma 3.1.13. If a basis vector b ∈ B satisfies Condition 3.1.12, then all valid differentials
over the central nonlinear layer N are in span(B \ {b}). The same is true when swapping the
role of B and A.

Proof. As a consequence of Lemma 3.1.10 and Lemma 3.1.11, a valid difference before the central
nonlinear layer N cannot be constructed from b(i) because it would contradict the fact that the
activity pattern is preserved through N.

We now define an algorithm that consists in repeatedly removing basis vectors from B and
A that satisfy Condition 3.1.12 until this is no longer possible. Efficiency can be increased by
searching for pivots for a Gaussian elimination among indices of vectors from A′ (respectively

B′) that correspond to never activated boxes in B′ (respectively A′). Indeed, these pivots can
be used to row-reduce the corresponding basis along them, thus revealing an isolated active bit.

To be part of a differential trail in any enveloping differential of the initial trail core, it is
necessary and sufficient that a candidate differential (b1,a2) meets all the following conditions:

— (b1,a2) is a valid differential over N;

— There exists a ∆in such that both (∆in,a
∗
1) and (∆in,a1) are valid differentials over N

(where a1 = L−1(b1));

— There exists a ∆out such that both (b∗2,∆out) and (b2,∆out) are valid differentials over N
(where b2 = L(a2)).

If the algorithm sufficiently decreases the dimensions, then we can exhaustively test all pairs
(b1,a2) ∈ B×A remaining after reduction against these conditions. A cluster is found if, during
this exhaustive search, we find at least one pair (a1, b2) that is different from (a∗

1, b
∗
2).

Applying our method to all three-round trail cores of Xoodoo up to weight 50, given
in [DHV+18b], shows that there exists no cluster for all these trails. The details of the search
for three-round differential clusters in Xoodoo can be found in Table 3.2.

3.2 Independence of round differentials

In this section we study the dependence of round differentials in the sense of Definition 1.3.6.
It has been found in [DR07] that the vast majority of trails over the Rijndael superbox have
dependent round differentials. We expect that the dependence effects observed in Rijndael
disappear in an unaligned permutation. As for the three-round clustering of trails, we present
here a method to check for round differential dependence or independence given a three-round
trail and we apply it to Xoodoo.
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Table 3.2: Result of the search for three-round differential trails clustering in Xoodoo.

Trail weight dim(B) dim(A) dim(B) dim(A) Valid trails
Before reduction After reduction

36 18 18 3 3 1

36 6 42 1 2 1

38 15 33 5 8 1

46 12 45 2 2 1

46 24 30 1 1 1

46 6 57 3 10 1

46 15 45 1 2 1

46 12 45 2 3 1

48 12 48 2 2 1

48 9 51 2 4 1

48 12 36 4 8 1

48 18 36 3 4 1

48 21 39 1 2 1

48 21 39 4 7 1

48 12 48 2 3 1

48 18 36 3 3 1

48 6 60 1 3 1

50 21 39 2 3 1

50 12 51 2 3 1

50 18 39 3 4 1

50 12 54 4 10 1

50 21 39 2 2 1

50 15 51 5 9 1

50 24 36 5 7 1

50 6 63 1 3 1

50 24 36 2 2 1

50 15 42 3 5 1

50 12 54 2 3 1

50 15 51 4 7 1

3.2.1 Linear masks for differentials over nonlinear components

We note VN(∆in,∆out) the set of output states that follow the differential (∆in,∆out) over N,
i.e. VN (∆in,∆out) = N(UN(∆in,∆out)).

From [DR07, Lemma 4, 5, 6 and Property 2], we have that UN(∆in,∆out) and VN(∆in,∆out)
are affine if #USi

(Pi(∆in), Pi(∆out)) ≤ 4 for each S-box. Since this assumption holds for our
four permutations, in Xoodoo both UN(∆in,∆out) and VN(∆in,∆out) are affine. Thus, they
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can be described by a system of affine equations on the bits of the input state a. Each affine
equation can be written as uta+ c with u a b-bit vector called mask and c a single bit..

Given a three-round differential trail Q = (∆in,a1, b1,a2, b2,∆out) (see Figure 3.4), one can
define four sets of masks:

— A1, the masks that come from VN(∆in,a1), at the output of the first nonlinear layer;

— B1, the masks that come from UN(b1,a2), at the input of the second nonlinear layer;

— A2, the masks that come from VN(b1,a2), at the output of the second nonlinear layer;

— B2, the masks that come from UN(b2,∆out), at the input of the third and last nonlinear
layer.

In this section, our goal is to prove that restrictions that come from three different rounds are
independent in the sense that:

#UN ◦L ◦N ◦L ◦N(Q) = 2b−(#A1+#B1+#B2) = 2b−(#A1+#A2+#B2) .

which is, per Definition 1.3.6, equivalent to the independence of round differentials.

We first present a generic method for determining whether three-round trail masks are inde-
pendent. Then we apply this method to Xoodoo for which the method is efficient.

3.2.2 Independence of masks over a nonlinear layer

Since L is linear, A1 can be linearly propagated through it to obtain a set of masks A′
1 at the

input of the second nonlinear layer. Similarly, we can propagate B2 through the inverse linear
layer to obtain a set of masks B′

2 at the output of the second nonlinear layer.

B1 and A′
1 form sets of masks at the input of the second nonlinear layer. If the rank of

C1 = B1 ∪ A′
1 is the sum of the ranks of B1 and A′

1, then C1 contains independent masks. The
same strategy can be used to test for dependence of masks in C2 = A2 ∪B′

2.

At this point, we suppose that the internal linear dependence of C1 = A′
1 ∪ B1 and C2 =

A1 ∪B′
2 have been checked using the criterion of the rank. As for the independence of masks of

the complete trail, we need to check for dependence between C1 and B′
2 or between A′

1 and C2.
We apply an algorithm similar to the one we used in Subsection 3.1.5 to reduce bases. However,
here we use it to reduce the cardinalities of the mask sets.

To do so, we will try to find the masks in either C1 or B′
2 which removal would cause the

number of solutions to double. By iteratively removing them, we hope to reach the point where
at least one of the two sets of masks is empty. In this case, since we have already checked that the
remaining set is internally independent, we would have proven independence of all the starting
masks. To find removable masks, we will use a condition that is analogous to Condition 3.1.12:

Condition 3.2.1. Let u be a restriction in C1. u is said to satisfy Condition 3.2.1 if and only
if u, seen as a linear mask, has an isolated bit that corresponds to an S-box that is not activated
by any restrictions of B′

2. Condition 3.2.1 can be defined for restrictions in B′
2 by swapping the

role of C1 and B′
2.

Condition 3.2.1 is a sufficient condition for a restriction to be removed from the set of restric-
tions studied:

Lemma 3.2.2. Let C1 and B′
2 be two sets of masks before and after a nonlinear layer composed

of invertible S-boxes applied in parallel. If a mask u in C1 satisfies Condition 3.2.1, then the
number of states that satisfy the equations associated with the masks in both C1 \ {u} and B′

2 is
exactly two times the number of solutions before removing u. The same is true by swapping the
role of C1 and B′

2.
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Proof. Since u satisfies Condition 3.1.12, let i be the index of the isolated bit, j be the index of
the corresponding S-Box and k the number of masks in B′

2.
No mask in B′

2 is putting a constraint on any of the m bits of the j-th S-Box, thus the 2b−k

solutions can be seen as 2b−k−m groups of 2m different states that only differ in the m bits of
the j-th S-box. Since the S-box is invertible, the application of the inverse of the nonlinear layer
to a whole group of 2m vectors results in a group of 2m different states that, again, only differ
on the value of the j-th S-box.

We can further divide those 2b−k−m groups each into 2m−1 subgroups of 2 different states
that only differ in the value of the i-th bit. By definition of an isolated bit, either both or none
of the two states inside a subgroup satisfy all equations associated with the masks in C1 \ {u}.

Finally, inside a subgroup exactly one of the two states will satisfy the equation associated
with mask u. Thus, the number of solutions by removing u is multiplied by exactly two.

Algorithm to check for (in)dependence. The whole algorithm to check for independence
goes as follows: we first check for linear dependence inside C1 by computing its associated rank.
Then, we recursively check if some mask in either C1 or B′

2 satisfies Condition 3.2.1 and if it is
the case we remove them from the sets of masks. We apply this process until one of the three
following possible outcomes occurs:

— If C1 is not full rank, we can conclude that masks in B1 and A′
1 are dependent;

— Else, if either set is empty, Lemma 3.2.2 applied backward at each step guarantees us that
the number of states satisfying the equations associated with the masks in both C1 and B′

2

is equal to 2b−(#C1+#B′
2), that is to say the masks are independent;

— If none of the two outcomes above happened and no mask can be further removed, we
cannot directly conclude about (in)dependence between remaining masks. However, we
can try applying the same method to A1 and C2.

3.2.3 Application to Xoodoo

This process is used to check for independence in differential trails over three rounds of Xoodoo.
It has been applied to the same differential trails as processed in Subsection 3.1.5. In all cases,
the masks, and thus round differentials, were found to be independent. This was not obtained
by sampling, but instead by counting the exact number of solutions, hence this independence
is exact in the sense of Definition 1.3.6. As a result, the differential probability of each such
trail is the product of the differential probabilities of its round differentials, which implies that
DP(Q) = 2−wr(Q).



Summary and future work

In this part of the thesis, we focused on the differential and linear properties of four permutations,
namely Rijndael, Spongent, Saturnin and Xoodoo. After having proposed a formal defi-
nition in Chapter 1 for what alignment meant for cryptographic permutations, we investigated
in Chapter 2 the decay of the mixing power of the linear layer between its analysis at bit-level and
box-level. This effect, called huddling, is less visible for Xoodoo than for the aligned primitives
under study. Also, we observed that the alignment property seems to have an impact on the
repartition of trails by their weight, which is a more precise criterion than the branch number.
Finally, we saw in Chapter 3 that alignment also has an impact on approximations made during
the study of differential and linear properties and in particular that in the differential analysis
of Xoodoo over three rounds, these approximations are correct.

One natural follow-up of this work would be to adapt the algorithm searching for clustering
of differential trails to do the same for linear trails. The same adaptation could be done for
the algorithm checking the (in)dependence of round differentials. Additionally, both algorithms
could be applied to other permutations to have a clearer view on their behaviour over three
rounds.

To continue the effort towards a more fine-grained understanding of the differential and linear
properties of permutations, the formal framework we defined could be extended to study more
than three rounds. More importantly, and in order to reach a stronger conclusion on the impact
of alignment, this framework could be applied to other permutations following different design
strategies.



Part II

High-order masking



Overview

In this part of the manuscript, we study another important aspect of the security of cryptographic
applications: the robustness of their implementation against adversaries having physical access
to the device on which the primitives are executing. These adversaries may be able to extract
sensitive data or directly bypass cryptosystems only by making physical measurements on the
device under attack. A physical quantity which variation depends on secret data and that is
measurable by an attacker is called a side-channel. The attacks exploiting these side-channels
are called side-channel attacks. In certain conditions, such as when the adversary can make
precise measurements on the device, these attacks can be devastatingly effective.

In Chapter 4, we go over different kinds of countermeasures against side-channel attacks
and present one of them in more details: masking. Masking consists in using a secret-sharing
scheme to split the secret values into shares that are, when observed individually, independent
from the secret. The number of shares that an attacker needs to observe to learn something
on the underlying data is called the masking order and can be seen as a good indicator of
the security level of a masked implementation. In Chapter 5, we give the definition of formal
security models and describe how they can be used to build complex masked implementations
from smaller components. We also explain how the cost of a masked implementation is linked
to its masking order. Then, in Chapter 6, we show that, even for very formal and composable
security models, verifying the security of a masked implementation can be too costly in itself. To
address this issue, we introduce an algorithm based on the enumeration of potential attacks that
has better verification performance than the state of the art. We implemented this algorithm as
a tool and use it to design more efficient masking schemes. Finally, in Chapter 7 we implement a
masked version of the Advanced Encrypted Standard (AES) at order 3 and 7 for ARM Cortex-M
processors that is executing faster than the state of the art for these masking orders. Additionally,
we experimentally assess its resistance against side-channel attacks.
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4.1 Side-channel attacks

As well-designed as a cryptographic algorithm may be, vulnerabilities may appear during its
implementation and execution. Even if it is necessary to prove algorithms in high-level security
models, one must not neglect security issues that arise when an algorithm becomes a program
and when the program becomes a process. Software vulnerabilities through user data input or
hardware tampering (e.g. fault injection, hardware Trojan, . . . ) are examples of attacks which
goal is to deviate the process from its legitimate behaviour, allowing to bypass cryptographic pro-
tection. However, even when control-flow integrity is ensured and state-of-the-art cryptographic
algorithms are used, there exists a whole range of passive attacks that can be used against a
vulnerable implementation. Side-channel attacks are one of them.

Side-channel attacks is a class of attack that aims to exploit physical variations during the
program execution. These physical variations are called side-channels and can be, for example,
the time it takes for the program to execute [Koc96], the power consumption of the circuit [KJJ99]
but also the electromagnetic radiations [QS01] or the acoustic waves [GST14] emitted during the
computations. When these depend on secret internal data, an attacker may be able to extract
information that would be not available to them in a model where they only have a “black box”
access to the cryptographic function as it is the case in Known Plaintext Attacks (KPA), Chosen
Plaintext Attacks (CPA) and Chosen Ciphertext Attacks (CCA). Even a partial knowledge of,
for example, the secret key but also more broadly of the intermediate values of a program
implementing cryptographic primitives can be devastating for its security. A recent example
is given in January 2021 by Lomné and Roche when they published a practical side-channel
attack against Titan security keys [LR21]. They exploited electromagnetic leakage during the
computation of an ECDSA (Elliptic Curve Digital Signature Algorithm) signature to retrieve the
full private key, allowing to generate new valid ECDSA signatures and thus to clone the security
key.

Except for the special case of timing attacks where execution duration may be measured
remotely, the attacker needs to have physical access to the device in order to do measurements.
Thus, embedded devices are the most targeted devices. They can be smart cards, hardware
wallets for cryptocurrencies, or embedded electronic components in a vehicle. All of these devices
share the fact that they can be stolen, (partially) publicly reachable, or at least that they are made
to be installed in or to be operated in a non-fully controlled environment. Additionally, those
devices are often made to execute only a few features and rarely equipped with multiprocessors
or other devices that can generate additional noise to measures. Thus, this fact along with the
one that an attacker may be able to stand really close to it, induces low noise level during, e.g.
electromagnetic, measurement which makes the attack easier on embedded devices than on any
other setup.

4.2 Countermeasures against side-channel attacks

Embedded devices are the most susceptible to be targeted by side-channel attacks but they also
have hard efficiency and production constraints. These constraints are even stronger than for
other devices and they must be taken into account when designing and choosing countermeasures.
These constraints may be stated in term of computation power, memory usage, physical size or
manufacturing cost in general.

Most countermeasures against side-channel attacks aim at limiting the exploitability of the
hypothetical signal an attacker could be able to measure from the device and to increase the cost
(in time, technical expertise, hardware measurement tool, . . . ) of the attack. There are three
main approaches for the design of countermeasures.

4.2.1 Reducing the signal strength

This first approach is the more obvious one: by reducing the signal strength, it is harder for an
attacker to get useful information for it. To do so in practice turns out to be hard. Even if it is
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possible to build an electromagnetic shield on the device keeping it from leaking electromagnetic
radiations, it is far from perfect. First, this countermeasure requires to act very early in the
production line and can hardly be applied to any device already manufactured. Also, in a
context where the attacker has physical access to the device, this countermeasure can often be
defeated by a direct intervention of the attacker voluntarily modifying or damaging the device
shield to reduce its impact. Most importantly, this countermeasure is specific for a given side-
channel: an electromagnetic shield will not protect against power analysis. Thus, protecting
against a wide range of side-channels can be very costly without any guarantee that the attacker
will not find a new side-channel to exploit.

4.2.2 Lowering measure reproducibility

The concrete measure of a side-channel over a period of time is classically called a trace. In
practice, a single trace is rarely enough to successfully attack a device and the attacker often
must gather additional traces in order to reduce measurement noise and improve signal quality.
However to be really useful for an attack these traces must be synchronized, that is the attacker
must be able to know which measurement points in the traces correspond to the same compu-
tation. This way, multiplying the number of traces actually increases the signal to noise ratio.
Knowing that, countermeasures are designed to specifically make this synchronization difficult,
for example by adding dummy code at random location during runtime [CCD00]. The goal is no
longer to keep leakages from happening but instead to offset in a non-deterministic manner the
point in time where the secret data are used by the program, making the analysis of traces much
more difficult. Such a countermeasure has been proposed by Coron and Kizhvatov [CK09; CK10]
at CHES in 2009 and 2010. However this approach has its limits: if only one trace is enough
to attack the device [KPP20], desynchronization does not help; also, using signal processing and
pattern recognition techniques, the points of leakages can be nonetheless identified and one may
be able to counteract desynchronization attempts [DRS+12; CDP17].

4.2.3 Increasing the measurement noise

The last approach to keep attackers from exploiting side-channel leakages in practice is to create
or amplify measurement noise. Doing so forces the attacker to record an increasingly higher
number of traces until it is no longer possible to do so in practice. Noise can be generated
leveraging architectural properties of the circuit [KBG09; GM11] but we will focus on a generic
approach: masking.

4.3 Masking

The concept at the root of masking is to use a secret sharing algorithm to split the sensitive data
into multiple shares that are individually statistically independent from the original data. All
computation are done on those shares such that what an attacker is observing looks like noise and
do not directly depend on the sensitive data. This approach has been introduced simultaneously
by Goubin et al. [GP99] and Chari et al. [CJR+99] in 1999. The word masking has first been
used in this context by Messerges [Mes01] in 2001 where he applies this principle to AES finalists.

Most of the time an additive secret sharing scheme is used which consists in sharing a given
value x into two or more shares. When using two shares x0 and x1, their values is such that
x0 is drawn uniformly at random and x = x0 + x1. This way, as for the one-time pad, both x0

and x1 follow a uniform distribution. Figure 4.1 shows two boolean circuits: one realising the
sharing and the other retrieving the original value from its sharing.

Masking is said to be at order d when the number of shares is equal to d+1. When using an
additive secret sharing scheme, an order d masking is achieved by drawing uniformly at random
the first d shares x0, · · · ,xd−1 and computing the last share xd such that x =

⊕d
i=0 xi. This

way, every subset of fewer than d shares is uniformly distributed. Figure 4.2 shows a generalized
circuit for masking and unmasking at order d.
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Figure 4.1: Masking and unmasking circuits.
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(b) A circuit retrieving x from its sharing at order d.

Figure 4.2: Masking and unmasking circuits at order d.

However, it is not sufficient to have a way to securely share a secret. As in secure Multi-
Party Computation, one also needs to be able to apply meaningful operations on the shared-secret
without revealing the secret itself.

In Chapter 5 we first present the security models used to formally define the notion of security
of masked circuits and show a generic method to design secure masked circuits from smaller ones.
Then, we introduce in Chapter 6 a new algorithm to computationally verify the security of masked
circuit. Finally, we implement a masked algorithm and assess its security by using experimental
leakage assessment methods in Chapter 7.
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Overview

We saw in Chapter 4 that masking techniques can be used to protect an implementation against
side-channel attacks. In this chapter, we start be formally defining key masking concepts: mask-
ing gadgets and probes on these circuits. Then, we introduce the main security framework used
for a formal analysis of masking gadgets which is the d-probing model. We next define concrete
security models in this framework and more particularly we focus on compositional security mod-
els. These models are needed to adopt a generic and modular approach to the design of masked
implementations based on the composition of smaller secure masked circuits. Finally, we discuss
the cost of these smaller gadgets depending on the function they implement.

This chapter was in part published in an article at EUROCRYPT 2021 [BK21].

5.1 Formal security models: d-probing model and d-
privacy

We start by recalling the needed definitions before giving the models definitions.

5.1.1 Gadgets and probes

To begin with, we give the definition of what we call a masked gadget implementing any function
f :

Definition 5.1.1 (Gadgets). Let K be an arbitrary finite field and let f : Kn → Km, u, v ∈ N;
a (u, v)-gadget for the function f is a randomised circuit C with output (y1, . . . ,ym) ∈ (Kv)m

such that for every tuple (x1, . . . ,xn) ∈ (Ku)n and every set of random coins R, (y1, . . . ,ym)← [
C (x1, . . . ,xn;R) satisfies: v∑

j=1

y1,j , . . . ,

v∑
j=1

ym,j

 = f

 u∑
j=1

x1,j , . . . ,

u∑
j=1

xm,j

 .

We then use xi to denote
∑u

j=1 xi,j , and similarly for yi; xi,j is called the jth share of xi.

In this definition, a randomised circuit C is a directed acyclic graph whose vertices represent
arithmetic operation gates (addition and multiplication) over K of arity two, or random gates of
arity zero whose outputs are uniform over K and pairwise independent for every execution of the
circuit, and recorded in the variable R; the edges of the graph are wires that connect the input
and output of the gates together so as to describe the full computation of a given function.

A probe on a circuit C is a map that for every execution C (x1, . . . ,xn;R) returns the value
propagated on one of the wires of C . One may further distinguish between external probes on
the output wires (or output shares) yi,j of C , and the remaining internal probes.

Example 5.1: Addition gadget with probes

A (2, 2)-gadget for the addition over K = F2 is a circuit with four input wires: two shares
for each of the two operands. The two output wires must be a valid sharing for the result
of the addition, and that for all possible values produced by the random gates. Each input,
intermediate and output wire can be probed.

We show in Figure 5.1 a (2, 2)-gadget for the addition in F2 with an external probe p1 and
two internal probes {p2, p3}.



Chapter 5. Designing masked circuit 53

a0

b0

a1

b1

p1 = a0 ⊕ b0 ⊕ a1

p2 = a0

p3 = a1

c0

c1

Figure 5.1: Toy addition gadget.

Example 5.2: Multiplication gadget

In Figure 5.2 we show an example of a (2, 2)-gadget for the multiplication over F2 along with
a probe p. The

⊗
block computes every aibj , 0 ≤ i, j ≤ d, that is to say the tensor product

of a and b.
p = a0b0 ⊕ a1b1

a
⊗

b c

a1b0

a0b1

a1b1

a0b0
c0

c1

Figure 5.2: Insecure multiplication gadget.

In Example 5.3 we show that this gadget is insecure at order 1 in the security model
described in Definition 5.1.2.

5.1.2 The d-probing attack model and the role of the order d

The d-probing model is an attack model where the attacker is given access to up to d probes
on the target gadget. At first glance, this model can seem far from the real capabilities of an
attacker: on one hand, an attacker is often not strictly limited by the number of probes, especially
on a software implementation where the sequential execution can lead an attacker to observe the
leakage of each operations over a whole period of time; on the other hand, an attacker observation
always embeds measurement noise.

Another model, the noisy leakage model, has been introduced in the work of
Chari et al. [CJR+99] and later extended by Prouff and Rivain [PR13]. In this model, the secu-
rity is studied while considering noise perturbations on the shares and during the computations.
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However, Duc et al. [DDF14] have proved that this more realistic model is, under reasonable
assumptions, equivalent to the probing model.

Additionally, the masking order d plays an important role in the security because, for equiv-
alent noise level, the number of measurements needed for a successful attack increases expo-
nentially in d [DFS15]. Unfortunately, generic high-order schemes also come with a significant
overhead as discussed in Section 5.4.

5.1.3 A first security model: d-privacy

To assess the security of a given circuit against side-channel attacks in a d-probing setting, we
need to introduce security models. A first security model was proposed in 2003 by Ishai, Sahai
and Wagner [ISW03] through the concept of d-privacy:

Definition 5.1.2 (d-privacy). Let C be a (u, v)-gadget for f : Kn → Kn. C is said to be
d-private if for any set of d probes P = {p1, . . . , pd} and for any (x1, . . . , xn), (x

′
1, . . . , x

′
n) ∈ Kn

the two distributions

{P(x1, . . . , xn)}R and {P(x′
1, . . . , x

′
n)}R

are identical, where {P(x1, . . . , xn)}R denotes the distribution over the random coins R of the
tuple of values returned by the probes in P and where R is used for both the sharing of the
(x1, . . . , xn) and the additional random coins needed by C .

This notion of d-privacy is rather intuitive to define the security of a gadget: the distribution
of the values observed by an attacker must not depend on the concrete value on which the circuit
is evaluating.

Example 5.3: d-privacy
The gadget shown in Example 5.1 is 1-private since there is no single probe whose distribution
depends on either a or b. On the other hand, it is not 2-private because the distribution of
{p2, p3} depends on the value of a: p2 ⊕ p3 = a.

The gadget shown in Example 5.2 is not 1-private. To see why, let us compute the con-
ditional probability of p = 0 knowing a = 0 and b = 0, P[p = 0 | a = 0, b = 0]. We have
that:

a = 0, b = 0 =⇒ a0 = a1, b0 = b1 =⇒ p = a0b0 ⊕ a1b1 = 0

Thus P[p = 0 | a = 0, b = 0] = 1 ̸= P[p = 0 | a = 1, b = 1] = 0.5. The distribution of p depends
on the input a and b, which implies that the gadget is not 1-private.

5.2 Compositional security models

It was shown in 2013 by Coron et al. [CPR+13] that the sequential composition of two d-private
gadgets does not necessarily yield a d-private circuit. In order to be able to build bigger circuits
by composing gadgets while having guarantees on their security, new security models have been
introduced by Barthe et al. at CCS 2016 [BBD+16].

5.2.1 (Strong) Non-Interference

These new models are based on the following definition:

Definition 5.2.1 (t-Simulatability). Let C be a (u, v)-gadget for f : Kn → Kn, and ℓ, t ∈ N.
A set P = {p1, . . . , pℓ} of probes on C is said to be t-simulatable if ∃ I1, . . . , In ⊆ J1, uK; #Ii ≤ t
and a randomised function π : (Kt)n → Kℓ such that for any fixed (x1, . . . ,xn) ∈ (Ku)n,
{p1, . . . , pℓ}R ∼ {π({x1,i, i ∈ I1}, . . . , {xn,i, i ∈ In})}R.
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Less formally, a set P of probes on C is t-simulatable if there exists a randomised function
that perfectly simulates the distribution of {p1, . . . , pℓ} while requiring at most t shares of every
input to C to do so. It is important to remark here that the simulation is done w.r.t. a fixed input
(x1, . . . ,xn), regardless of the fact that one may randomise these inputs across many executions
of C .

Intuitively, a set of probe that is t-simulatable does not give more informations than the
knowledge of t shares for each input precisely because the probes can be simulated with those
shares.

Example 5.4: t-simulatability
In Figure 5.3 we show an example of the use of a random gate generating the value labelled
r in a multiplication gadget over K = F2. r is drawn uniformly at random in K at each
execution. Although it appears twice in the circuit it is in fact the output of a single random
gate, duplicated for convenience.

p1 = a0b0 ⊕ r

p2 = a0b1

a
⊗

b c

a1b0

a0b1

a1b1

r
c1

a0b0

r

c0

Figure 5.3: Generic scheme from Ishai, Sahai and Wagner [ISW03] instantiated at order d = 1.

The probe p1 is 0-simulatable because, for fixed a0,a1, b0, and b1, the distribution of
the value taken by p is uniform thanks to r. It thus can be perfectly simulated without the
knowledge of any input share.

The probe p2 is not 0-simulatable but is 1-simulatable: one perfectly simulate its distribu-
tion given only one share of each input, namely a0 and b1, but cannot without them.

Definition 5.2.1 is only a property on a given set of probes but it can be used to define the
following property characterizing the security of a gadget:

Definition 5.2.2 (d-Non-interference). A (u, v)-gadget C for a function over Kn is d-non-
interfering (d-NI) if and only if for any set P of at most d probes on C ∃ t ≤ d such that P is
t-simulatable.

This notion of d-Non-interference can be reformulated in a less formal way as follows: given
any set of d or less probes on a d-NI circuit an attacker is gaining at most as much information
as the knowledge of d shares on each input. The distribution of those d shares being uniform and
independent of the value they mask, the whole gadget is d-private. Thus d-NI implies d-privacy,
but the converse is not true.

Example 5.5: A d-private circuit that is not d-NI
A gadget can be d-private while having a set of probes that is not d-simulatable, meaning that
it is not d-NI.

For example, let us look at the circuit presented in Example 5.1. It can be shown that it
is 1-private because there is no single probe having a distribution that depends on either a, b
or c. However, the probe p1 = a0 ⊕ b0 ⊕ a1 cannot be simulated from only a single share of
a and thus is an attack against the 1-NI property.

In some contexts, we need a slight variation of the d-Non-interference notion:
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Definition 5.2.3 (d-Tight non-interference). A (u, v)-gadget C for a function over Kn is d-tight-
non-interfering (d-TNI) if and only if any set of t ≤ d probes on C is t-simulatable.

However, the notions of d-(tight)Non-interference are not sufficient to ensure composability
and one last security notion is needed:

Definition 5.2.4 (d-Strong non-interference). A (u, v)-gadget C for a function over Kn is d-
strong non-interfering (d-SNI) if and only if for every set P1 of d1 internal probes and every set
P2 of d2 external probes such that d1 + d2 ≤ d, then P1 ∪ P2 is d1-simulatable.

To prove that a given set of probe is not an attack against the d-TNI notion one needs to
simulate it using as many input shares as the cardinality of the set of probe, whereas in the d-SNI
setting the external probes do not provide input shares for the simulation. It is thus harder to
simulate a set of probe in the latter case than in the former. Thus, a d-SNI circuit is also d-TNI.
Using the same reasoning, we see that d-TNI implies d-NI.

However, tight non-interference does not imply strong non-interference. Also, non-
interference and tight non-interference are in fact equivalent [BBD+16] which in proofs allows to
select the most convenient notion between d-TNI and d-NI.

Example 5.6: A d-NI circuit that is not d-SNI

In Figure 5.4 we show a multiplication (3,3)-gadget over F2 with two probes, one internal (p1)
and one external (p2):

p1 = r0 p2 = a0b0 ⊕ r0 ⊕ a0b2 ⊕ a2b0

a
⊗

b c

a1b2

a2b1

a2b2

r0 r1

c2

a0b1

a1b0

a1b1

r1

c1

a2b0

a0b2

a0b0

r0

c0

Figure 5.4: Scheme from Beläıd et al. [BBP+16, Algorithm 4].

The set {p1, p2} can be perfectly simulated using two shares of each input, namely a0, a2,
b0 and b2. For this gadget to be 2-SNI this set of probes must be simulated using only one
share of each input since there is only one internal probe, p1. However, this is not the case
because p1 ⊕ p2(= a0b0 ⊕ a0b2 ⊕ a2b0) requires at least the knowledge of a0, a2, b0 and b2
to be perfectly simulated.

Those security models are designed to ease the secure combination of gadgets.
Beläıd et al. [BGR18] proved the following lemma, which is an implication of the d-SNI notion:

Lemma 5.2.5 ([BGR18, Lemma 1]). Let C be a n-input (d + 1)-shared d-SNI circuit for a
function f : Kn → K. Then for every uniform and independent input sharings (x1, . . . ,xn) ∈
(Kd+1)n, an evaluation of C on these inputs produces a sharing y which is uniform and mutually
independent of (x1, . . . ,xn).

Proof. See [BGR18, Appendix A].
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Informally, Lemma 5.2.5 means that a d-SNI circuit produces a sharing independent of the
inputs provided that the inputs are themselves independent. This directly implies that the
composition of two d-SNI gadgets is also d-SNI which in turn implies means that it is d-private.
This is not always true with the composition of d-private circuits. Additionally, under the right
assumptions, the composition of a d-NI gadgets with a d-SNI one is itself d-SNI [BBD+16,
Proposition 4]. This allows to construct more complex secure circuits by composing smaller
gadgets that are individually proven to be d-NI or d-SNI.

5.2.2 Mask-refreshing gadgets

Mask-refreshing gadgets are d-SNI gadgets on a single masked input that return a single masked
output without having any functional impact (both input and output are a masked representation
of the same value). The purpose of such a gadget is to break the propagation of dependence
because, by Lemma 5.2.5, its output is a independent masking of its input. As a direct corollary
of [BBD+16, Proposition 4], a d-NI gadget can be turned into a d-SNI one by composing it with
a d-SNI mask-refreshing gadget.

The initial designs for refreshing gadget were using the ISWmultiplication gadget by replacing
one of the two operands by (1, 0, . . . , 0), which is a correct additive sharing for 1 at the same
order as the masked input. However, doing so has a big impact on performance each time a
refreshing gadget is used.

There are three main approaches to reduce the cost induced by the use of refreshing gadgets
on a masked implementation:

Lowering the cost of a single refreshing gadget. The first approach is to design less
costly refreshing gadgets. The best current results comes from [BBD+18] who prove the SNI
security at any order of a “block” refreshing gadget introduced in [BDF+17] (see Example 5.7
for a refreshing gadget at order 2), when iterated enough times. Together with [GPS+18], they
also remark that it is possible to make significant improvements in practice at the cost of losing
generic proofs, and they give cheaper alternatives verified secure up to order 16. In Chapter 6
and more precisely in Subsection 6.4.2, we discuss the verification of the security of refreshing
gadgets and provide a slightly improved 7-SNI refreshing gadget.

Example 5.7: Mask-refreshing gadget at order 2
In Figure 5.5, we show an example of a mask-refreshing gadget at order 2 that is used to
refresh the randomness of a and that is 2-SNI.

a b

a2

r2 r0

b2

a1

r1 r2

b1

a0

r0 r1

b0

Figure 5.5: Mask-refreshing 2-SNI gadget from [BDF+17].

As expected, the value masked by a and b are the same because each of the three additional
random masks (r0, r1 and r2) appears twice and thus will cancel out when unmasking the value
of b.
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Reducing the use of refreshing gadgets. The second approach to improve performance in
practice is to use refreshing gadgets only where they are necessary to make the whole circuit
secure. A first attempt at a tool that finds the exact places where it is needed to add refreshing
gadget was published in 2016 by Barthe et al. [BBD+16] and is called maskComp. However, in
some cases the tool is not able to find an attack but also cannot prove its security without a
refreshing gadget. Because it then conservatively adds a refreshing gadget where they might not
be needed, the tool is said not to be tight. To fill this gap, Beläıd, Goudarzi and Rivain [BGR18]
proposed a tool named TightPROVE that is able to check in a tight manner the security of
any circuit composed of only d-SNI multiplication gadgets, d-SNI refresh gadgets and sharewise
addition gadgets.

Changing the compositional models. Finally, to deal with the problem of composing the
trivial implementations of linear functions in a secure way, a new model called Probe Isolating
Non-Interference has been proposed in 2020 by Cassiers and Standaert [CS20].

5.2.3 Probe Isolating Non-Interference

The Probe Isolating Non-Interference (PINI) framework comes from the need of directly compos-
ing trivial implementations of linear gadgets. This framework relies on the observation that in
the trivial implementation of those gadgets, e.g. the gadget for the finite field addition in Exam-
ple 5.1, an output share ci only depends on the i-th share of both input. From this observation,
Cassiers and Standaert derive the following definition of the PINI security model:

Definition 5.2.6 (d-Probe Isolating Non-Interference). A (u, v)-gadget C for a function over
Kn is d-probe isolating non-interfering (d-PINI) if and only if for every set P1 of d1 internal
probes and I2 a set of d2 indices such that d1 + d2 ≤ d, then there exists a set I1 of at most
d1 indices such that P1 ∪ P2 is simulatable by giving access only to input shares of indices in
I1 ∪ I2, where P2 is the set of all external probes on output shares of indices in I2.

It is shown in [CS20] that the composition of only d-PINI gadgets is also d-PINI and that
d-PINI implies d-privacy. Additionally, the trivial implementation of linear functions with d+ 1
shares is d-PINI. d-PINI multiplication gadgets can be designed artificially from d-SNI gadgets
by using a mask-refreshing gadget systematically on one input of a d-SNI multiplication gadget.
However, Cassiers and Standaert proposed a more efficient d-PINI multiplication gadget based on
the ISW multiplication and using the same amount of additional random values [CS20, Section
IV.B].

5.3 Accounting for physical or micro-architectural effects:
the robust probing model

A limitation of the traditional probing model is that it does not capture interactions between
intermediate values of a computation made possible by either physical or micro-architectural
effects. For instance Gao et al. showed that some bitslicing implementation strategies of software
masking schemes could exhibit unwanted bit-interactions, thereby violating typical independence
assumptions from the probing model and resulting in unwanted leakage [GMP+20]. Similarly,
Grégoire et al. had noticed that their 4-share vectorised implementation of a masked AES was
subject to such an order reduction, without identifying the exact cause [GJR+18].

In the case of hardware implementations, additional violations to the probing model are
typically witnessed and some of them are well-identified enough to be formally captured. For
one such phenomenon known as glitches, a probe at an arithmetic gate (i.e. an addition or a
multiplication) can leak more to the adversary than its sole output —something that is not
taken into account in the basic model. In an effort to remedy this situation, Faust et al. recently
proposed to extend probing security into a robust probing model [FGP+18], able to take several
types of hardware defects into account.
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Concretely, the robust probing model defines a leakage set L(p) of possibly more than one
value for every probe p at an arbitrary gate. A probe at an arithmetic gate leaks the union of
the leakage sets of its two inputs. One consequence is that if two arithmetic gates are connected
together, leakage at the first one also propagates to the second. To stop this propagation, one
must then use a memory gate (a register): the leakage set of a memory gate is equal to the
singleton of its output value.

Example 5.8: Masked circuit in the robust probing model
We show in Figure 5.6 a circuit implementing a multiplication over F2 using Ishai Sahai and
Wagner scheme [ISW03] at order d = 1.

p

a
⊗

b c

a1b0

a0b1

a1b1

r0

c1

a0b0

r0

c0

Figure 5.6: Multiplication gadget in presence of hardware glitches.

The propagation of the electric signal at a given moment in time is shown by the purple
line. When the output of some intermediate gates may change before the end of the current
execution because of propagation delays in the circuit, the line is dotted.

In the previous circuit, a delay occurring at the output of the random gate producing r0
leads to the propagation of a temporary state up to the probe p. This temporary state does
not take the value of r0 into account since it has not propagated yet. The probe p can thus
read the value a1b1 ⊕ a0b1 ⊕ a1b0, which is an attack against 1-Non-interference.

p

a
⊗

b c

a1b0

a0b1

a1b1

r0

M M
c1

a0b0

r0

c0

Figure 5.7: Multiplication gadget in presence of glitches with memory gates (M) added

Adding two memory gates at the output of the two XOR gates prevents the temporary
signal from propagating all the way to the probe p, which only reads a1b0 in this example.
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5.4 Generic approach to (high-order) masking and its cost

5.4.1 A generic approach to masking using compositional security

Given a function f that needs to be protected against side-channel attacks, one can try to design
a gadget implementing it in a masked way. However for complex circuits like for cryptographic
primitives and especially for high masking orders, which corresponds in practice to order above
2, it is often not practically possible to conceive the whole circuit at once while formally ensuring
the absence of an attack.

Compositional security models are used in this context to allow the following generic and
modular approach at masking complex circuits:

— decompose the complex circuit into elementary components, e.g. boolean gates for crypto-
graphic primitives having a convenient bit-level description;

— design gadgets that are proven secure in compositional security models for the previously
defined elementary components;

— replace every elementary component by its masked equivalent;

— determine where to add mask-refreshing gadgets.

The crucial part for the efficiency of masked implementation is to design, for every different
elementary component, masking gadgets that are both efficient and proved secure in the com-
posable models seen previously. We show now that the difficulty of this task is radically different
between linear and non-linear components.

5.4.2 Designing secure and efficient generic linear gadgets at any order

Depending on the secret sharing scheme used to mask a value, what is deemed “linear” may
differ. Here we look at the case of the most widely used secret sharing scheme: additive secret
sharing.

Additions. The simplest linear operation that we want to implement is the addition. In this
setting, a naive share-wise masked addition is trivially d-NI, as shown in the following theorem:

Theorem 5.4.1 (Security of the trivial addition gadget). Let a = (a0, . . . ,ad) be a sharing of
a ∈ K and b = (b0, . . . , bd) be a sharing of b ∈ K. Let C be the naive masking gadget producing
the shared output c = (c0, . . . , cd) such that ci = ai + bi, 0 ≤ i ≤ d.

Then, C is a correct and d-Non-Interfering gadget for the addition in K.

Proof. C is correct since:

d∑
i=0

ci =

d∑
i=0

ai + bi =

d∑
i=0

ai +

d∑
i=0

bi = a+ b

Now to prove its d-NI security, we must prove that any set P of t ≤ d probes can be perfectly
simulated. Probes on C are either of the form, p = ai, p = bi or p = ai ⊕ bi. Since each
probe is composed of at most one share of each input, each probe in P is constant and can be
simulated by knowing exactly one probe of each input. Thus, the constant distribution of P can
be perfectly simulated with the knownledge of the t = #P corresponding shares of both a and
b.

This naive masking scheme has a cost linear in the order d since it takes only d+1 additions
(one for each share) to compute the masked addition. The case of the addition in F2 for a boolean
additive masking is illustrated in Example 5.9.
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Example 5.9: XOR gate masked at order 2
The trivial masked implementation of the addition in F2 uses 3 XOR gates and consists in
simply doing the sharewise XOR between each of the 3 shares of the input to obtain each of
the 3 shares of the output. The circuit is shown in Figure 5.8.

a0

b0

a1

b1

a2

b2

c0

c1

c2

Figure 5.8: 2-NI addition gadget in F2, i.e. masked XOR gate.

Generic linear transformation. More generically, any linear transformation can naively be
implemented by applying it independently on each tuple of shares of index i as stated by the
following theorem:

Theorem 5.4.2 (Security of the generic gadget for a linear form). Let f be a linear form from
Kn to K. Let C be a circuit taking as input n additive sharings x(1), . . . ,x(n) of x(1), . . . , x(n)

and computing an output c = (c0, . . . , cd) such that ci = f(x
(1)
i , . . . ,x

(n)
i ).

Then C is a correct and d-Non-Interfering gadget for f .

Proof. C is correct since by linearity:

d∑
i=0

ci =

d∑
i=0

f(x
(1)
i , . . . ,x

(n)
i ) = f(

d∑
i=0

x
(1)
i , . . . ,

d∑
i=0

x
(n)
i ) = f(x(1), . . . , x(n))

To prove its security, the reasoning is the same as for the proof of Theorem 5.4.1: a probe on
the circuit is the function of at most one share of each input; any set of fewer than d probes can
be simulated with at most d shares of each input. Thus, C is d-NI.

This theorem gives us a way to design secure masked gadgets at any order d and for any
linear form. Additionally, any linear transformation from Kn to Km can be seen as m linear
form and Theorem 5.4.2 can thus be naturally extended to the generic masked gadget of any
linear transformation. The cost of these masked gadgets is linear in the order d: the masked
gadgets is repeating d times the computation, each time for a different share’s index.

This can be seen in a Multi-Party Computation point-of-view where each participant locally
computes the linear function on its own shares of the inputs, thus obtaining a share of the result
without leaking anything to the other participants.

Generic affine transformation. Addition of a constant, that is computing c = a + k for a
constant k in K on a masked input a, is also trivial to implement. In fact, adding a constant
k can be done using any correct sharing of k and using the same gadget as for the addition.
However, it can actually be done with a constant complexity by taking the following sharing of
k: k = (k, 0, . . . , 0). Then, computing c = a + k in a masked way costs only a single addition
since for 1 ≤ i ≤ d no addition is required. The case of K = F2 and k = 1 is interesting since the
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circuit implementing c = a⊕ 1 in a masked way is a masked gadgets for the NOT boolean gate.
This gadget at order 2 is shown in Example 5.10.

Example 5.10: NOT gate masked at order 2
By simply doing the XOR of the first share with 1, one can implement the NOT gate in a
masked way with only one XOR gate. The circuit is shown in Figure 5.9.

1

a0

a1

a2

c0

c1

c2

Figure 5.9: 2-NI masked NOT gate

5.4.3 Generic multiplication

As seen in Example 5.3, the design of multiplication gadget in K is not as trivial as for linear
transformations.

Since the proposition of Ishai, Sahai and Wagner in 2003 [ISW03], no better generic design
proven to be d-SNI for any order d has been proposed. The ISW multiplication uses (d + 1)2

multiplication and 2d(d + 1) additions in K but more importantly requires, for each multi-

plication, the generation of d(d+1)
2 fresh random elements in K. The quadratic complexity in

fresh masks generation is not negligible since this generation can be an important bottleneck
during concrete implementation of masking schemes: in 2017, Journault and Standaert report
that between 68% and 92% of the time is spent in randomness generation during their 32-share
implementations [JS17].

In 2016, Beläıd et al. [BBP+16, Algorithm 3] presented a new design to build, for any d,
a multiplication gadget that is proven to be d-NI. This new design is less costly than the ISW

multiplication since for even (respectively odd) d it uses d2

4 +d (respectively (d2−1)
4 +d) additions,

(d+ 1)2 multiplications and d(7d+10)
4 (respectively (d+1)(7d+1)

4 ) fresh random elements in K.
Thus, the overall cost of using masking as a protection against side-channel attacks for

a complex function mostly resides in its non-linear components. Some block ciphers have
been designed with this constraint in mind, such as PICARO [PRC12], Zorro [GGN+13], Fan-
tomas/Robin [GLS+14b], (i)SCREAM [GLS+14a] or more recently Pyjamask [GJK+20]. They are
all based on having a multiplicative complexity as low as possible to reduce the cost of masking.
However, the approach proposed in the design of these block ciphers is not generic and cannot
necessarily be used for other primitives. Additionally, drastically reducing the multiplicative
complexity can make them less resistant to algebraic attacks, as shown by Leander, Minaud
and Rønjom in an attack against (i)SCREAM, Robin and Zorro [LMR15]. Thus, being able to
construct more efficient gadgets for the multiplication and especially reducing their randomness
cost is still an active research topic in order to lower the cost of masking in a generic way.

Additionally, trying to prove the security of a given multiplication gadget by enumerating all
possible subsets of probes is exponential in the masking order and can be quickly intractable in
practice for high masking order. Thus, in absence of a formal proof, deciding whether a circuit
is secure or not is not a trivial task and is the subject of the next chapter.
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Overview

Chapter 5 presented compositional security models used in a generic approach to the implemen-
tation of masked algorithm. We also discussed the cost of such implementations and saw that it
increase quadratically in the masking order. However, the naive method to verify that a gadget
is secure in the d-probing model has to go over every candidate set of probes and check that it
is not an attack. This approach is quickly intractable at high masking orders since the number
of such set of probes increase exponentially in this order.

In this chapter, we extend a matrix-based model introduced in 2017 by Beläıd et al. [BBP+17]
so that it can be used on masking gadgets over small finite fields (e.g. F2) to prove their security
in the compositional models from Chapter 5. We present a verification algorithm and implement
it as a new tool which is publicly available1. This tool compares favourably against tools from
state-of-the-art. In fact it allows to verify masking gadgets three orders of magnitude faster
than existing tools and is able to check the security of masking schemes at orders never achieved
before. Finally, the verification tool has been of great help to design slightly better multiplication
gadgets, mask-refreshing gadgets and to disprove a conjecture from Barthe et al. [BDF+17]. The
new multiplications gadgets will be used in a concrete implementation presented in Chapter 7.

Most parts of this chapter are originally published as an article at EUROCRYPT 2021 [BK21],
with Pierre Karpman as a co-author.

6.1 Proving (strong) non-interference in small finite fields

When designing new masking gadgets for a function f , checking for their correctness is trivial: it
can be done by checking that the output is a correct sharing of the result of the function f over
the input ; this can be easily done by symbolically summing all the output shares and verifying
the result. However, verifying their security is much harder, even in very formal security models
as the one introduced in Chapter 5.

In this section, we first recall the matrix model introduced by Beläıd et al. [BBP+17] and
then extend it to small finite fields.

6.1.1 Matrix model for non-interference revisited

We now recall Theorem 3.5 from Beläıd et al. [BBP+17], which defines a powerful matrix model
to analyze the (T)NI property of a gadget over a sufficiently large field K for which all probes
are bilinear. We then generalise it as Theorem 6.1.7 to work with schemes over any finite field
(and F2 in particular), and to also analyse SNI security in Theorem 6.1.15.

In all of the following, we restrict our interest to gadgets for binary functions2 f : K2 → K, and
the inputs to f (respectively their sharings in a gadget C ) will be denoted a and b (respectively
a = (a0, . . . ,au−1)

t, b = (b0, . . . , bu−1)
t). We also write the elements of the set R of R random

additional coins as a vector r = (r1, . . . , rR)
t

Definition 6.1.1 (Bilinear probe). A probe p on a (d+1, v)-gadget C for a function f : K2 → K
is called bilinear iff. it is an affine function in ai, bj , aibj , rk; 0 ≤ i, j ≤ d, 1 ≤ k ≤ R.
Equivalently, p is bilinear iff. ∃M ∈ K(d+1)×(d+1), µ, ν ∈ K(d+1), σ ∈ KR and τ ∈ K such that
p = atMb+ atµ+ btν + rtσ + τ .

By considering only such bilinear probes, we are implicitly restricting our analysis to gadgets
using only additions and multiplications gates. Also, the multiplicative depth of those gadgets
must not be more than one. While this may seems very restrictive, composing such gadgets
is made possible thanks to the d-(S)NI properties defined in Subsection 5.2.1, thus allowing to
build more complex circuits.

1https://github.com/NicsTr/binary masking
2Results for unary functions can then easily be obtained by e.g. fixing one input.

https://github.com/NicsTr/binary_masking
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Definition 6.1.2 (Functional dependence). An expression E(x1, . . . , xn) is said to functionally
depend on xn iff. ∃ c1, . . . , cn−1 such that the mapping xn 7→ E(c1, . . . , cn−1, xn) is not constant.

We now introduce the following condition which plays a central role in the security analysis
of a gadget in the matrix model.

Condition 6.1.3 ([BBP+17, Condition 3.2]). A set of bilinear probes P = {p1, . . . , pℓ} on a
(d + 1, v)-gadget C for a function f : K2 → K satisfies Condition 6.1.3 iff. ∃λ ∈ Kℓ, M ∈
K(d+1)×(d+1), µ, ν ∈ Kd+1, and τ ∈ K such that

∑ℓ
i=1 λipi = atMb+atµ+btν+ τ and all the

rows of the block matrix
(
M µ

)
or all the columns of the block matrix

(
M
νt

)
are non-zero.

In other words, this condition states that there exists a linear combination of probes of P
that does not functionally depend on any random scalar and that functionally depends on either
all of the shares for a or all of the shares for b. Thus, P cannot be perfectly simulated using only
d shares of a and d shares of b, effectively proving that the C is not d-NI. In such a case, we say
that P is an attack against the d-NI property of C .

We are now ready to state the following theorem.

Theorem 6.1.4 ([BBP+17, Theorem 3.5]). Let P be a set of bilinear probes on a (d + 1, v)-
gadget C for a function f : K2 → K. If P satisfies Condition 6.1.3, then it is not d-simulatable.
Furthermore, if P is not d-simulatable and #K > d+ 1, then it satisfies Condition 6.1.3.

Example 6.1: Condition 6.1.3 =⇒ d-NI attack
We reuse the circuit and probes defined in Example 5.1. The probe p1 can be written as

p1 = a0 ⊕ b0 ⊕ a1 = atMb+ atµ+ btν, with M = 02×2, µ =

(
1
1

)
and ν =

(
1
0

)
. Since the

block matrix
(
M µ

)
has no zero row, {p0} satisfies Condition 6.1.3. This means that {p0}

is not 1-simulatable and is thus an attack against the 1-NI property of the circuit.

The previous theorem immediately leads to the following corollary.

Corollary 6.1.5 ([BBP+17, Corollary 3.7]). Let C be a (d+1, v)-gadget for a function f : K2 →
K for which all probes are bilinear. If C is d-NI, then there is no set of d probes on C satisfying
Condition 6.1.3. Furthermore, if #K > d + 1 and there is no set of d probes on C satisfying
Condition 6.1.3, then C is d-NI.

This corollary is more useful than the theorem in practice because, under the restriction that
#K > d+ 1, it can be directly applied as an algorithm to determine if a given gadget is d-NI or
not.

For the masking schemes of CRYPTO 2017 [BBP+17] the restriction #K > d + 1 is never
an issue, as they are defined over large fields; however, this condition means that one cannot
directly apply Corollary 6.1.5 to prove the security of a scheme over a small field such as F2.

Example 6.2: Not d-simulatable ≠⇒ Condition 6.1.3 (in a small field)

We show a counter-example to demonstrate the limitation of Condition 6.1.3 in a small field
such as F2.

Let C be a circuit for a function f : F2 → F2 with one of its input being a = (a0,a1,a2).
Let P = {p1, p2} be a set of probes on this circuit with p1 = a0 ⊕ a2 and p2 = a0 ⊕ a1. We

can write p1 = atµ1 and p2 = atµ2 with µ1 =

1
0
1

 and µ2 =

1
1
0

.

P cannot be simulated with only the knowledge of two shares of a, thus is not 2-simulatable.
However, all four linear combinations

∑
λipi =

∑
λia

tµi for λ ∈ F2
2 are such that at least

one row is zero. Thus, even if the set of probes is not 2-simulatable, it does not satisfies Con-
dition 6.1.3.
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We now sketch a proof of the second statement of Theorem 6.1.4 as a preparation to extending
it to any field.

Proof of Theorem 6.1.4 right to left, sketch. Let P = {p1, . . . , pℓ} be a set of bilinear probes
that is not d-simulatable. We call R the block matrix

(
σ1 · · · σℓ

)
, where σi denotes as in

Definition 6.1.1 the vector of random scalars on which pi depends. Up to a permutation of its rows

and columns3, the reduced column echelon formR′ ofR is of the shape

(
It 0t,ℓ−t

N 0t

)
, where t ≤ ℓ

is the rank of R and N is arbitrary. If we now consider the symbolic matrix P =
(
p1 · · · pℓ

)t
and multiply it by the change-of-basis matrix fromR toR′, we obtain the matrix P ′ =

(
P ′

r P ′
d

)
where P ′

r represents t linear combinations {p′1, . . . , p′t} of probes that each depend on at least
one random scalar which does not appear across any of the other linear combinations, and P ′

d

represents ℓ − t linearly independent linear combinations P ′ = {p′t+1, . . . , p
′
ℓ} of probes that do

not depend on any random scalar. All of the {p′1, . . . , p′t} can then be simulated by independent
uniform distributions without requiring the knowledge of any share, and as P is not d-simulatable,
P ′ cannot be d-simulatable either. W.l.o.g., this means that for every share ai, there is at
least one linear combination of probes in P ′ that depends on it. In other words, the matrix
D =

(
M ′

t+1 µt+1 · · ·M ′
ℓ µℓ

)
that records this dependence has no zero row. We now finally

want to show that there is a linear combination
(
λt+1 · · · λℓ

)t
of elements of P ′ that satisfies

Condition 6.1.3. This can be done by showing that ∃Λ =
(
Λt+1 · · · Λℓ

)t
such thatDΛ has no

zero row, where the Λi’s are the (d+2)×(d+2) scalar matrices of multiplication by the λi’s. By
the Schwartz-Zippel-DeMillo-Lipton lemma this is always the case as soon as #K > d+1 [Sch80],
and this last step is the only one that depends on K.

We now wish to extend Theorem 6.1.4 and its corollary to any finite field K. We do this using
the TNI notion rather than NI, and so first state an appropriate straightforward adaptation of
Condition 6.1.3:

Condition 6.1.6. A set of bilinear probes P = {p1, . . . , pℓ} on a (d + 1, v)-gadget C for a
function f : K2 → K satisfies Condition 6.1.6 iff. ∃λ ∈ Kℓ, M ∈ K(d+1)×(d+1), µ, ν ∈ Kd+1,
and τ ∈ K such that

∑ℓ
i=1 λipi = atMb+ atµ+ btν + τ and the block matrix

(
M µ

)
has at

least ℓ+ 1 non-zero rows or the block matrix

(
M
νt

)
has at least ℓ+ 1 non-zero columns.

In other words, Condition 6.1.6 states that the expression
∑ℓ

i=1 λipi, which involves ℓ probes,
functionally depends on no random scalar and on at least ℓ+ 1 shares of a or ℓ+ 1 shares of b,
and hence is an l-TNI attack. We will then show the following:

Theorem 6.1.7. Let P be a set of at most d bilinear probes on a (d+1, v)-gadget C for a function
f : K2 → K. If P, is not d-simulatable then ∃P ′ ⊆ P such that P ′ satisfies Condition 6.1.6.

Corollary 6.1.8 (Corollary of Theorems 6.1.4 and 6.1.7). Let C be a (d + 1, v)-gadget C for
a function f : K2 → K for which all probes are bilinear. If C is d-NI, then there is no set of
d probes on C satisfying Condition 6.1.3. Furthermore, if there is no set of t ≤ d probes on C
satisfying Condition 6.1.6, then C is d-NI.4

As for Corollary 6.1.5, this corollary will be particularly convenient to design an algorithm
proving the (non)d-NI property of a gadget given its probe.

The proof of Theorem 6.1.7 essentially relies on the following lemmas, conveniently formulated
with linear codes:5

3This permutation corresponds to renaming/reordering the random scalar σi and probes pi
4As Condition 6.1.6 directly implies an attack, one could also formulate this corollary solely in terms of this

condition.
5Recall that an [n, k] linear code over a field K is a k-dimensional linear subspace of Kn.
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Lemma 6.1.9. Let C1 (respectively C2) be an [n1, k] (respectively [n2, k], n2 > n1) linear code
over a finite field K. Let G1 ∈ Kk×n1 and G2 ∈ Kk×n2 be two generator matrices for C1 and C2
that have no zero column. Then the code C1,2 generated by G1,2 :=

(
G1 G2

)
has the following

property: ∃ c ∈ C1,2 such that wt1(c) < wt2(c), where wt1(·) (respectively wt2(·)) denotes the
Hamming weight function restricted to the first n1 (respectively last n2) coordinates of C1,2.

One may remark that if #K is sufficiently large with respect to the parameters of the codes,
then by the Schwartz-Zippel-DeMillo-Lipton lemma there exists a word in C1,2 of maximal wt2
weight, and the conclusion immediately follows; yet this argument does not hold over any field.

We first give the following two definitions that will be used in the proof of Lemma 6.1.9:

Definition 6.1.10 (Shortening of a linear code). Let C be an [n, k] linear code over K generated
by G ∈ Kk×n, the shortened code C′ with respect to coordinate i ∈ J1, nK is the subcode made
of all codewords of C that are zero at coordinate i, with this coordinate then being deleted.

Definition 6.1.11 (Isolated coordinate). Let M ∈ Km×n, a coordinate i ∈ J1, nK is called
isolated for the row Mj of M , j ∈ J1,mK, iff. Mj,i ̸= 0 and ∀j′ ̸= j ∈ J1,mK, Mj′,i = 0.

In order to prove Lemma 6.1.9 we will define a procedure that aims to reduce the dimension
of the starting code by shortening it in a specific way:

Procedure 6.1.12. We reuse the notation of the statement of Lemma 6.1.9. This procedure
is applied on a row of G1,2 by doing the following: denote I1 (respectively I2) the (possibly
empty) set of isolated coordinates for this row on its first n1 (respectively last n2) columns; then
if #I1 ≥ #I2, shorten C1,2 with respect to all the coordinates in I1 ∪ I2.

Practically, shortening the code with respect to one or more isolated coordinates means
deleting from G1,2 the row being processed and all the columns in I1 ∪ I2. The row being
processed is the one and only one having to be removed from the generator matrix because: 1)
all other rows have a zero in the given coordinates, thus all codewords generated by them are zero
in these coordinates; 2) any linear combination of rows that includes the row being processed
with a non-zero coefficient will result in a non-zero value in the isolated coordinated.

This results in a code C′1,2 generated by
(
G′

1 G′
2

)
where G′

1 ∈ K(k−1)×n′
1 (respectively

G′
2 ∈ K(k−1)×n′

2) is a submatrix of G1 (respectively G2) and n′
1 < n1, n

′
2 ≤ n2, n

′
1 < n′

2, and
none of the columns of G′

1,2 is zero. One may also remark that since G′
1 is of rank k − 1, we

have k − 1 ≤ n′
1.

Example 6.3: Procedure 6.1.12
We consider the following matrix that satisfies the premise of Lemma 6.1.9:

G1,2 =


1 1 0 1 1 1 0 0 1

1 1 1 1 1 1 0 0 0
1 0 0 1 1 0 1 0 0

1 1 0 0 1 0 0 1 0


We apply Procedure 6.1.12 to its second row. To do so, we have to find the isolated

coordinates. Here, I1 = {2, 6} and I2 = {9}:

G1,2 =


1 1 0 1 1 1 0 0 1

1 1 1 1 1 1 1 1 1
1 0 0 1 1 0 1 0 0

1 1 0 0 1 0 0 1 0


Since we have #I1 ≥ #I2, applying Procedure 6.1.12 on the second row leads to the short-
ening of the code along the columns 2, 6 and 9. This results in the following generator matrix
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of the shortened code, with the isolated coordinates of each row being highlighted:

G′
1,2 =

1 1 1 1 1 0 0 1
1 0 1 1 0 1 0 0

1 1 0 1 0 0 1 0


At this point and for each row, the number of isolated coordinates for the left part is strictly

lower than for the right part. Thus, there is no row for which applying Procedure 6.1.12 results
in a shortening of the code.

We are now ready to prove Lemma 6.1.9.

Proof of Lemma 6.1.9. We prove this lemma by induction using Procedure 6.1.12.
In a first step one applies Procedure 6.1.12 to every row of G1,2 one at a time and repeats

this process again until either there is no row for which applying the procedure results in a
shortening, or the dimension of the shortened code reaches 1.

In the latter case, this means that the only non-zero codeword in G′
1,2 ∈ K1×(n′

1+n′
2) is of full

weight n′
1 + n′

2 with n′
1 < n′

2 (since G′
1,2 only has a single row and none of its columns is zero).

This induces a codeword c of C such that wt1(c) = n′
1 and wt2(c) = n′

2, so we are done.
In the former case, one is left with a matrix G′

1,2 ∈ Kk′×(n′
1+n′

2), k′ > 1. One then com-
putes the reduced row echelon form of G′

1,2 (this does not introduce any zero column since the
elementary row operations are invertible) and again iteratively applies Procedure 6.1.12 on the
resulting matrix as done in the first step. Now either the application of Procedure 6.1.12 leads
to a shortened code of dimension 1 and then we are done as above, or we are left with a matrix
G′′

1,2 ∈ Kk′′×(n′′
1 +n′′

2 ) which can be of two forms:

1. k′′ ≥ n′′
1 . Up to permutation of its columns, G′′

1,2 can be written as:(
In′′

1
In′′

1
In′′

1
∗

0(k′′−n′′
1 )×n′′

1
∗ ∗ ∗

)
,

where the ∗ are arbitrary and the bottom (k′′ − n′′
1) × (n′′

1 + n′′
2) block is possibly non-

existent. The left k′′ × n′′
1 block is justified from G′′

1,2 being in reduced row echelon form
and having none of its column equal to zero. The right k′′ × n′′

2 block is justified from the
fact that every non-zero row of the left block has exactly one isolated coordinate; since no
simplification can be done anymore to G′′

1,2 by applying Procedure 6.1.12, this means that
those rows have at least two isolated coordinates on the right block. This is enough to
conclude on the existence of a codeword of C satisfying the desired property.

2. k′′ < n′′
1 . Up to a permutation of its columns, the rank-k′′ matrix G′′

1,2 can be written as:(
Ik′′ ∗L Ik′′ Ik′′ ∗R

)
,

and it has no zero column. One then applies Lemma 6.1.9 inductively on the code generated
by the submatrix G′′′

1,2 :=
(
∗L Ik′′ ∗R

)
which is of strictly smaller length. Let c′′′ =

λG′′′
1,2 be a codeword of this latter code that satisfies the desired property, then λG′′

1,2 also
satisfies it for C1,2, which concludes the proof.

Example 6.4: Application of Lemma 6.1.9

We study the case of the same matrix G′
1,2 defined in Example 6.3. It is already in row reduced

echelon form and cannot be shortened any more using Procedure 6.1.12. Since the number of
rows k′′ = 3 of G′

1,2 is stricly less than the number of columns n′′
1 = 5 of the first code, we

follow the proof of Lemma 6.1.9 by studying the code of strictly smaller length generated by:
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G′′′
1,2 =

1 1 1 1
0 1 1 0
1 0 1 0


Applying Procedure 6.1.12 cannot lead to a shortening of the code since it was not the

case for G′′
1,2. To continue, G′′′

1,2 is put into its row reduced echelon form:

G̃1,2 =

1 0 1 1 0 1
0 1 0 1 0 0
0 0 1 1 1 1


We can remark that the last row of the matrix is already a codeword such that

wt1(
(
0 0 1 1 1 1

)
) = 0 < wt2(

(
0 0 1 1 1 1

)
) = 4

which is what we want to find. The first row is also a codeword that satisfies the same property.
Nonetheless, we will continue to follow the proof’s algorithm by applying Procedure 6.1.12 to
the first row, which leads to a shortened code:

G̃′
1,2 =

(
1 0 1 0 0
0 1 1 1 1

)
And then, on the first row again:

G̃′
1,2 =

(
1 1 1 1

)
This new code is of dimension 1 and so the algorithm stops. The only codeword left satisfies

the property:
wt1(

(
1 1 1 1

)
) = 0 < wt2(

(
1 1 1 1

)
) = 4

Up to a permutation of the columns, G̃′
1,2 is the generator matrix of a shortening of the code

described by the initial G1,2. Thus a codeword in G̃′
1,2 can be zero-extended to obtain a

codeword in G1,2, which means that there exists a codeword c in G1,2 such that wt1(c) <
wt2(c).

Shortening the code with respect to some coordinates during the application of Proce-
dure 6.1.12 leads to a subcode where codewords have zeroes for those coordinates. Thus by
keeping track of those coordinates and of the operations used during the row reduction steps,
one can retrieve a codeword satisfying the desired property. In this example, the resulting
codeword is:

(
1 0 1 1 0 0 0 1 0 1 1 1 1 1 1

)
.

Now we are almost ready to prove Theorem 6.1.7, not by using Lemma 6.1.9 but using an
extension of it:

Lemma 6.1.13. The statement of Lemma 6.1.9 still holds if K is replaced by a matrix ring
K′d×d

and if G1 is defined over the subfield of the scalar matrices of K′d×d
.

Proof of Lemma 6.1.13. The proof simply consists in remarking that all the steps of the proof
of Lemma 6.1.9 can be carried out in the modified setting of Lemma 6.1.13. Mainly:

— Definitions 6.1.10 and 6.1.11 and Procedure 6.1.12 naturally generalise to matrices over
rings, and the application of Procedure 6.1.12 is unchanged.

— Recall that by induction the left k′×n′
1 submatrix is always of full rank k′, which is also the

rank of G′
1,2. Since G1 is defined over scalar matrices, the row reduction can be computed

as if over a field.

The proof of Theorem 6.1.7 then follows.
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Proof of Theorem 6.1.7. We start similarly from the proof of Theorem 6.1.4, and use the same
notation: let P ′ be a set of ℓ − t linearly-independent linear combinations of probes of P that
do not depend on any random scalar, and let D =

(
M ′

t+1 µt+1 · · ·M ′
ℓ µℓ

)
be the matrix

that records the dependence of these probes on every share ai.We will show that ∃P ′′ ⊆ P that
satisfies Condition 6.1.6. To do this, we introduce two new indicator matrices:

— Let Π ∈ K(d+2)×(d+2)(ℓ−t)×ℓ
be such that for every p′ ∈ P ′ it records in its rows its

dependence on the probes of P as scalar matrices;6 that is, Π is such that p′i =
∑ℓ

j=1 πi,jpj
where πi,j is the scalar on the diagonal of the scalar matrix Πi,j . Without loss of generality,
we may assume that every probe of P appears at least once in a linear combination of P ′,
otherwise it is simply discarded, so Π has no zero column.

— Let ∆ ∈ K(d+2)×(d+2)(ℓ−t)×(d+1)
be the matrix that for every p′ ∈ P ′ records in its rows

its dependence on the shares ais; that is if the bilinear probe p′i can be written as p′i =
atM ′b+atµ′+btν′+τ ′, then∆i,j is set to the diagonal matrix of the jth row of

(
M ′ µ′).7

Note that since by assumption D has no zero row, ∆ has no zero column.

Now we invoke Lemma 6.1.13 with Π as G1 and ∆ as G2 the generator matrices for the code
C1,2. Let c ∈ C1,2 be a codeword that satisfies wt1(c) < wt2(c); this translates to a linear
combination of ℓ′′ := wt1(c) probes of P ′′ ⊆ P that (as linear combinations of elements of
P ′) does not depend on any randomness and such that the associated matrix

(
M ′′ µ′′) has

wt2(c) ≥ ℓ′′ +1 non-zero rows (by applying the inverse transformation from ∆ to D), hence P ′′

satisfies Condition 6.1.6.

Finally, the proof of Corollary 6.1.8 is immediate from Theorems 6.1.4 and 6.1.7.

6.1.2 Matrix model for strong non-interference revisited

We now wish to adapt the approach of Theorems 6.1.4 and 6.1.7 to be able to prove that a
scheme is SNI. This is in fact quite straightforward, and it mostly consists in defining a suitable
variant of Condition 6.1.6 and in applying Lemma 6.1.13 to well-chosen matrices, to show again
that there is a subset of probes that satisfies the condition whenever there is an attack.

Condition 6.1.14. A set of ℓ = ℓ1 + ℓ2 bilinear probes P = {p1, . . . , pℓ} on a (d+ 1, v)-gadget
C for a function f : K2 → K, of which ℓ1 are internal, satisfies Condition 6.1.14 iff. ∃λ ∈ Kℓ,
M ∈ K(d+1)×(d+1), µ, ν ∈ Kd+1, and τ ∈ K such that

∑ℓ
i=1 λipi = atMb+ atµ+ btν + τ and

the block matrix
(
M µ

)
(respectively the block matrix

(
M
νt

)
) has at least ℓ1 +1 non-zero rows

(respectively columns).

Theorem 6.1.15. Let P be a set of at most d bilinear probes on a (d + 1, v)-gadget C for a
function f : K2 → K, of which ℓ1 are internal. If P is not ℓ1-simulatable then ∃P ′ ⊆ P such
that P ′ satisfies Condition 6.1.14.

Proof. We reuse the notation of Theorems 6.1.4 and 6.1.7. The proof is essentially the same as
the one of Theorem 6.1.7, except that we only account for internal probes in Π. Let P ′ be a set of
ℓ− t linearly independent linear combinations of probes of P that do not depend on any random
scalar, and let D =

(
M ′

t+1 µt+1 · · ·M ′
ℓ µℓ

)
be the matrix that records the dependence of

6This use of scalar matrices is only so that Π is defined on the same base structure as ∆ below. As an example,

taking ℓ = d = 2 and considering two probes in P ′ as p′1 = p1 + p2; p′2 = p2, then Π =

(
I4 I4
04 I4

)
.

7This use of diagonal matrices allows to keep track of (the lack of) simplifications when combining several
probes; for instance, if two probes depend on the same ai as aibj and aibj′ with j ̸= j′, then the sum of those
probes still depends on ai. Continuing the previous example and taking p′1 = a0b0 +a0b1 +a1b2 +a2, then the

first row of ∆ (whose entries are 4× 4 matrices) is


1 0 0

1 0 0
0 1 0

0 0 1

.
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these probes on every share ai. From the assumption that P is not ℓ1-simulatable, we have that
without loss of generality, D has at least ℓ1+1 non-zero rows. We will show that ∃P ′′ ⊆ P that
satisfies Condition 6.1.14, using the following indicator matrices:

— Let Π ∈ K(d+2)×(d+2)(ℓ−t)×ℓ1
be such that for every p′ ∈ P ′ it records in its rows its

dependence on the ℓ1 internal probes (without loss of generality, {p1, . . . , pℓ1}) of P as

scalar matrices; that is, Π is such that p′i =
∑ℓ1

j=1 πi,jpj +
∑ℓ

j=ℓ1+1 αjpj , where πi,j is the
scalar on the diagonal of the scalar matrix Πi,j and the αjs are unimportant. Without
loss of generality, we may assume that every internal probe of P appears at least once in
a linear combination of P ′, otherwise it is simply discarded, so Π has no zero column.

— Let ∆ ∈ K(d+2)×(d+2)(ℓ−t)×d′

be the matrix that for every p′ ∈ P ′ records in its rows its
dependence on the shares ais. If a row of D is all zero, the corresponding column is not
included in ∆, and since D has at least ℓ1 + 1 non-zero rows, ∆ has at least d′ ≥ ℓ1 + 1
columns none of which are zero.

Now we invoke Lemma 6.1.13 with Π as G1 and ∆ as G2 the generator matrices for the code
C1,2. Let c ∈ C1,2 be a codeword that satisfies wt1(c) < wt2(c); this translates to a linear
combination of ℓ′′ := wt1(c) internal probes to which one can add a linear combination of up to
ℓ2 external probes such that it does not depend on any randomness and the associated matrix(
M ′′ µ′′) has wt2(c) ≥ ℓ′′ + 1 non-zero rows. The set P ′′ ⊆ P of these internal and external
probes thus satisfies Condition 6.1.14.

And we then have the immediate corollary:

Corollary 6.1.16. Let C be a (d+1, v)-gadget for a function f : K2 → K for which all probes are
bilinear, then C is d-SNI iff. there is not set of t ≤ d probes on C that satisfies Condition 6.1.14.

Proof. From left to right, by contrapositive: a set of probe satisfying Condition 6.1.14 functionally
depends on at least ℓ1 + 1 shares of a or b, without functionally depending on any ri; it cannot
be simulated using ℓ1 or fewer shares of either a or b and thus C is not d-SNI.

From right to left: it follows directly from Theorem 6.1.15.

6.1.3 Security of binary schemes over finite fields of characteristic two

Let C be a d-NI or SNI gadget for a function defined over F2; a natural question is whether
its security is preserved if it is lifted to an extension F2n . Indeed, the probes available to the
adversary are the same in the two cases, but the latter offers more possible linear combinations∑ℓ

i=1 λipi, since the λis are no longer restricted to {0, 1}. We answer this question positively,
and give a simple proof based on Theorems 6.1.7 and 6.1.15.

Theorem 6.1.17. Let C be a d-NI (respectively d-SNI) gadget for a function f : F2
2 → F2, then

for any n, the natural lifting Ĉ of C to f̂ : F2
2n → F2n is also d-NI (respectively d-SNI).

Proof. We only prove the d-NI case, the d-SNI one being similar. From Corollary 6.1.8, it is
sufficient to show that if there is no set of probes P for C that satisfies Condition 6.1.6, then
the same holds for Ĉ . We do this by showing the following contrapositive: if a set of probes P
is not d-simulatable for Ĉ , then it is not d-simulatable either for C .

From the proofs of Theorems 6.1.4 and 6.1.7, if P is not d-simulatable for Ĉ , then there is
a matrix D̂ that leads to the existence of P ′ such that Condition 6.1.6 is satisfied. All we need
to do is showing that a similar matrix D can also be found for C . Since C is defined over F2,
the matrices R and P , and thence R̂ and P̂ have all their coefficients in {0, 1}. As 1 is its own

inverse, the change-of-basis matrix from R̂ to R̂′ is also binary; equivalently, this means that
the row elimination of R̂ can be done in the subfield F2. Thus one only has to take D = D̂ to
satisfy Condition 6.1.6 on C .
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This result is quite useful as it means that the security of a binary scheme only needs to be
proven once in F2, even if it is eventually used in one or several extension fields. Proceeding
thusly is in particular beneficial in terms of verification performance, since working over F2 limits
the number of linear combinations to consider and may lead to some specific optimisations (cf.
e.g. Sections 6.2 and 6.3).

Remark. This result was in fact already implicitly used (in a slight variant) by Barthe et al.
in their masking compiler [BBD+15] and in maskVerif [BBC+19], since they use gadgets defined
over an arbitrary structure (K, 0, 1,⊕,⊖,⊙). However we could not find a proof therein, which
actually seems necessary to justify the correctness of this approach and of our algorithms of the
next section.

6.2 Algorithm for checking (strong) non-interference

In this section, we present a new efficient algorithm to check if a scheme is (strong) non-interfering.
This algorithm is a modification of the one presented by Beläıd et al. at EUROCRYPT 2016
[BBP+16, Section 8], and its correctness crucially relies on Theorems 6.1.7 and 6.1.15; it thus
only applies to schemes for which all probes are bilinear, but this is not a hard restriction in
practice since this condition is satisfied by most schemes of the literature.

In all of the following we assume that the field K over which the scheme is defined is equal
to F2, which means that we simultaneously assess its security in that field and all its extensions
(cf. Subsection 6.1.3). Some discussion of implementation in the NI case for schemes natively
defined over larger fields (meaning that shares or random masks may be multiplied by constants
not in {0, 1}) for which the new Theorem 6.1.7 is not needed can be found in [KR18].

We start by introducing some vocabulary and by recalling the algorithm from Beläıd et al..

Definition 6.2.1 (Elementary probes). A probe p is called elementary if it is of the form
p = aibj (elementary deterministic probe) or p = ri (elementary random probe).

Definition 6.2.2 (Shares indicator matrix). Let p be a bilinear probe. We call shares indicator
matrix and write Mp the matrix M from Definition 6.1.1.

Definition 6.2.3 (Randomness indicator matrix). Let p be a bilinear probe. We call randomness
indicator matrix and write σp the column matrix σ from Definition 6.1.1.

Example 6.5: Elementary probes and indicator matrices
We reuse the circuit and probes defined in Example 5.4.

The probe p2 = a0b1 is an example of an elementary deterministic probe on the circuit.

The share indicator matrix of p1 = a0b0 ⊕ r is Mp1
=

(
1 0
0 0

)
and the one of p2 = a0b1

is Mp2
=

(
0 1
0 0

)
. The randomness indicator matrix of p1 is σp1

=
(
1
)
and the one of p2 is

σp2
=

(
0
)
.

6.2.1 The algorithm from EUROCRYPT 2016

At EUROCRYPT 2016, Beläıd et al. presented an efficient probabilistic algorithm to find po-
tential attacks against the d-privacy notion8 for masking schemes for the multiplication over
F2. By running the algorithm many times and not detecting any attack, one can also establish
the security of a scheme up to some probability, but deriving a deterministic counterpart is less
trivial. This algorithm works as follows.

8It can also be trivially modified to check attacks against NI security.
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Consider a scheme on which all possible probes P are bilinear, and let HP :=
(
σp

)
, p ∈ P

be the block matrix constructed from all the corresponding randomness indicator matrices. The
algorithm of [BBP+16, Section 8] starts by finding a set of fewer than d probes whose sum9 does
not depend on any randomness. That is to say, it is looking for a vector x such that HP ·x = 0
and wt(x) ≤ d. This can be immediately reformulated as a coding problem, as one is in fact
searching for a codeword of weight less than d in the dual code of HP . This search can then be
performed using any information set decoding algorithm, and Beläıd et al. used the original one
of Prange [Pra62].10 Once such a set has been found, it is tested against [BBP+16, Condition 2]
(which is similar to Condition 6.1.3) to determine if it is a valid attack against the d-NI notion,
and [BBP+16, Condition 1] to determine if it is an attack for d-privacy. This procedure is then
repeated until an attack is found or one has gained sufficient confidence in the security of the
scheme.

Removing elementary deterministic probes. To make the above procedure more efficient,
an important observation made by Beläıd et al. is that if the sum of every probe of a given set
does not functionally depend on some ai or bj , it is always possible to make it so by adding a
corresponding elementary probe aibj . This can be used to check, say, d-NI security by simply
comparing the number of missing ai or bj to d − wt(x). This allows to reduce the number of
probes that one has to include in P (and thus the dimension of HP), making the algorithm more
efficient.

6.2.2 A new algorithm based on enumeration

We now describe a new algorithm based on a partial enumeration of the power set ℘(P) of P.
The idea is to simply consider every sum of fewer than d probes and check if it depends on all
shares and no random masks, relying on Corollaries 6.1.8 and 6.1.16 for correctness. Since the
cost of such an enumeration quickly grows with the size of P, we then follow and extend the
above observation by Beläıd et al. and only perform the enumeration on a reduced set. We first
describe a simple extension of this “dimension reduction” strategy, before detailing the algorithms
themselves. A more elaborate dimension reduction process is then described in Subsection 6.2.3,
and we discuss implementation aspects in Section 6.3.

Removing elementary random probes. It is easy to adapt a deterministic enumeration so
that one can completely remove elementary random probes; it suffices to remark that if the sum
of every probe of a given set functionally depends on some ri, it is always possible to make it
not so by adding the corresponding elementary probes.

Combining the two above observations, we may remove every elementary probe from the set
P.11 This can be summarized by saying that in the enumeration, one is not restricted anymore to
finding exactly a combination of fewer than d probes that depends on all shares and no random
masks, as it is enough to find a combination of ℓ ≤ d probes that depends on u shares and v
masks as long as d− ℓ ≥ (d+ 1− u) + v, since the missing shares and extra masks can be dealt
with elementary probes in a predictable way. This is in fact exactly the check that is performed
in our implementation in the case of NI security, as is detailed and justified below.

6.2.2.1 Checking a scheme for non-interference

We now state the following:

9That is, the only non-trivial linear combination over F2 that depends on all the elements of the set.
10One may remark that since information set decoding relies on Gaussian elimination, the cost of one step of

this algorithm increases more than linearly in the size of P.
11Note that this means that one would not detect the existence of an attack that would use only elementary

probes. However, it is easy to see from their definitions that ℓ such probes functionally depend on at most ℓ
shares, and so can never lead to a non-trivial attack.
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Proposition 6.2.4. Let C be a (d + 1, v)-gadget for a function f : F2
2 → F2 for which all

probes are bilinear, and Q0 be a set of n0 non-elementary probes on C that functionally depends
on na shares ais, nb shares bjs, and nr random scalars ris. Let Q1 be one of the smallest
sets of elementary probes needed to complete Q0 such that Q0 ∪Q1 satisfies Condition 6.1.6 and
functionally depends on all the ais or all the bis.

12 Then n1 := #Q1 = nr+(d+1−max(na, nb)).

Proof. An elementary probe functionally depends on either one ri or one ai and one bj , but not
both. Thus, the minimum number of elementary probes needed to cancel every ri and to add
the d+ 1− na (respectively d+ 1− nb) missing ais (respectively bjs) in Q0 is nr + (d+ 1− na)
(respectively nr + (d + 1 − nb)). Thus, #Q1 = min(nr + d + 1 − na, nr + d + 1 − nb) =
nr + d+ 1−max(na, nb).

This proposition can then be used in a straightforward way to check if a scheme is d-NI.
To do so, one simply has to enumerate every set Q0 ∈ ℘(P) of d non-elementary probes or
fewer and check if n0 + n1 ≤ d. By Corollary 6.1.8, if no such set Q0 can be completed as in
Proposition 6.2.4 and still contain fewer than d probes, then the scheme is d-NI.

6.2.2.2 Checking a scheme for strong non-interference

We only need to adapt Proposition 6.2.4 to distinguish between internal and external probes:

Proposition 6.2.5. Let C be a (d+1, v)-gadget for a function f : F2
2 → F2 for which all probes

are bilinear, and Q0 be a set of n0 non-elementary probes on C that functionally depends on
na shares ais, nb shares bjs, and nr random scalars ris. Let nI denote the number of internal
probes in Q0. Then there is a set Q1 of nr elementary random probes such that Q0∪Q1 satisfies
Condition 6.1.14 iff. max(na, nb) > nI + nr.

Proof. Recall that all elementary probes are internal. If Q0 does not satisfy Condition 6.1.14,
then adding an elementary deterministic probe increases by at most one the number of non-zero
rows, while increasing by one the total number of probes, so this completed set does not satisfy
Q0 either. It is thus enough to only consider random probes in Q1.

For Q = Q0∪Q1 to satisfy Condition 6.1.14, it is necessary to cancel all the potential random-
ness ris on which Q0 depends; so Q1 must be the (possibly empty) set of the nr corresponding
elementary random probes. Now Q contains nI +nr internal probes and it functionally depends
on na ais and nb bjs. Thus it satisfies Condition 6.1.14 iff. max(na, nb) > nI + nr.

This proposition can then be used in a straightforward way to check if a scheme is d-SNI. To
do so, one simply has to enumerate every set Q0 ∈ ℘(P) of d non-elementary probes or fewer
and check if max(na, nb) > nI + nr and n0 + nr ≤ d. If no such set satisfying this condition is
found, then the scheme is d-SNI by Corollary 6.1.16.

6.2.3 Further dimension reduction

To further reduce the size of the space to explore during the verification, it may be possible to
filter additional non-elementary probes from the set P, in the case where they can be replaced
by “better” ones. To do so while preserving the correctness of our verification algorithm, we first
define the following:

Definition 6.2.6 (Reduced sets). Let P := ∪vk=0Pk and P ′ := ∪vk=0P ′
k be two sets of probes

on a (d + 1, v)-gadget C for a function f : F2
2 → F2 for which all probes are bilinear, where Pk

(respectively P ′
k) denotes the probes on the wires of C that are connected to the output share

ck. Then P ′ is said to be a reduced set for P iff.:

— #P ′ ≤ #P
12This additional constraint is not in itself necessary, but it simplifies the overall algorithm.
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— For all output wires k, for every linear combination of probes of Pk there is a linear
combination of equal or lower weight of probes of P ′

k with: 1) exactly the same randomness
dependence (reusing the notation of Definition 6.1.1 this means that both combinations
have the same σ term); 2) the shares dependence of the combination from P ′

k covers the
one of the combination from Pk (i.e. the support of the M , µ, ν terms of the former
include the ones of the same terms of the latter).

We then have:

Lemma 6.2.7. If two linear combinations of probes
∑

λipi and
∑

λ′
ip

′
i functionally depend on

disjoint sets of elementary probes and shares aibj, ai and bj, then their sum functionally depends
on the union of those sets.

Proof. Immediate, since using the notation of Definition 6.1.1, the supports of M , µ, ν are
disjoint from the ones of M ′, µ′, ν′.

Finally, we conclude with the following:

Proposition 6.2.8. Let P ′ be a reduced set for a set of probes P on a (d+ 1, v)-gadget C for a
function f : F2

2 → F2 for which all probes are bilinear and for which all output shares functionally
depend on pairwise disjoint sets of elementary probes and shares aibj, ai and bj. Then if Q ⊆ P
satisfies Condition 6.1.6, ∃Q′ ⊆ P ′, #Q′ ≤ #Q that also satisfies Condition 6.1.6.

Proof. Let us write Q as ∪vk=0Qk (respectively Q′ as ∪vk=0Q′
k) where Qk (respectively Q′

k) de-
notes the probes on the wires of C that are connected to the output share ck. Let

∑
pi∈Q λipi

denote one linear combination of elements of Q whose existence is guaranteed by its satisfy-

ing Condition 6.1.6, which we rewrite as:
∑

k

∑
p
(k)
i ∈Qk

λ
(k)
i p

(k)
i . For each λ(k), let λ′(k) be the

coefficients for one of the linear combination of elements of Q′
k whose existence is guaranteed by

P ′ being a reduced set for P.
Each

∑
p
(k)
i ∈Qk

λ
(k)
i p

(k)
i (respectively

∑
p
(k)
i ∈Q′

k

λ
′(k)
i p

(k)
i ) satisfies the premise of Lemma 6.2.7

which can be applied successively on
∑k−1

j=0

∑
p
(j)
i ∈Qj

λ
(j)
i p

(j)
i and

∑
p
(k)
i ∈Qk

λ
(k)
i p

(k)
i (respectively∑k−1

j=0

∑
p
(j)
i ∈Q′

j
λ
′(j)
i p

(j)
i and

∑
p
(k)
i ∈Q′

k

λ
′(k)
i p

(k)
i ).

It follows that both
∑

k

∑
p
(k)
i ∈Qk

λ
(k)
i p

(k)
i and

∑
k

∑
p
(k)
i ∈Q′

k

λ
′(k)
i p

(k)
i do not functionally

depend on any elementary random probe ri, and the elementary deterministic probes and shares
on which the latter functionally depends is a superset of the ones on which depends the former;
thus Q′ satisfies Condition 6.1.6.

Example 6.6: Reduced set of probes
Consider a set P of three probes a0b1, a0b0 + r0 + a0b1 and a0b0 + r0 + a0b1 + a1b0 on the
same output share. Then, the set P ′ = {a0b1,a0b0 + r0 + a0b1 + a1b0} is a reduced set for
P because for any linear combination of k probes in P, a linear combination of k′ ≤ k probes
in P ′ can be computed such that it has exactly the same randomness dependence and has at
least the same shares dependence.

On the other hand, a set containing two probes a0b0 + r0 + a0b1 + a1b0 and a0b0 + r0 +
a0b1 + a1b0 + r1 cannot be simplified since the two probes do not include exactly the same
random masks.

Algorithm 1 shows a summary of the algorithm to check the (strong) non-interference at
order d of a gadget given the set of all possible probes on this gadget.

Section 6.4 shows how Proposition 6.2.8 can be used in practice to significantly improve
verification performance. The nature of the probes that can be removed of course depends on
the scheme under consideration, and we will later detail how to do this for some concrete gadgets.
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Algorithm 1: Summary of our algorithm to check if a gadget is d-(S)NI.

Input : P, the set of all possible probes on the gadget C
Input : The order d of the verification
Input : SNI a boolean indicating if we check the d-SNI or the d-NI property
Output: True if C is d-(S)NI else False
P ← {p ∈ P | p is not an elementary probe} // Removing elementary probes

P ← Reduce(P) // Using Proposition 6.2.8

for 1 ≤ n0 ≤ d do
for Q0 ∈ {Q ∈ ℘(P) | #Q = n0} do

nr ← number of ri on which Q0 functionally depends
na ← number of ai on which Q0 functionally depends
nb ← number of bi on which Q0 functionally depends
if SNI then

nI ← number of internal probes in Q0

if max(na, nb) > ni + nr and n0 + nr ≤ d then
return False // Q0 can be completed into a d-SNI attack

end

else
n1 ← nr + (d+ 1−max(na, nb))
if n0 + n1 ≤ d then

return False // Q0 can be completed into a d-NI attack

end

end

end

end
return True

6.2.4 Adaptation to the robust probing model

The verification of a gadget is done in two steps: first iterate over all subsets P of d probes
or fewer; then check that the subset P does not lead to an attack. In the case of the non-
robust probing model, the second step can be done directly, as explained in Subsection 6.2.2, by
considering the sum of the expression associated with each probe in P.

However, when the implementation of the masking scheme is in a context where there are
hardware defects to take into account, one may need to verify the target gadget in the robust
probing model seen previously in Section 5.3. In this model each probe p can be associated with
a leakage set L(p) containing more than one expression. Since the value leaked for a given probe
can be any binary linear combination of the expressions in its leakage set, there are in general∏

p∈P
(
2#L(p) − 1

)
expressions for which we want to know if they satisfy the appropriate attack

condition. We explain next in Section 6.3 how this can be done efficiently.

Related work. The maskVerif tool [BBC+19] also implements the robust probing model
to check security in presence of glitches. More dedicated approaches are the ones of Bloem
et al. [BGI+18] and of the SILVER tool [KSM20].

6.3 Implementing algorithm of Section 6.2 as a tool

We now describe an efficient C implementation of the algorithms of the previous section for
K = F2. Our software is publicly available at https://github.com/NicsTr/binary masking.

https://github.com/NicsTr/binary_masking
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6.3.1 Data structures

To evaluate if a set of probes P may lead to an attack, it is convenient to define the following:

Definition 6.3.1 (Attack matrix). The attack matrix AP of a set of probes P is defined as the
sum of the share indicator matrices of the probes in P:

AP =
∑
p∈P

Mp.

Definition 6.3.2 (Noise matrix). The noise matrix BP of a set of probes P is defined as the
sum of the randomness indicator matrices of the probes in P:

BP =
∑
p∈P

σp.

One can then simply compute the quantities na, nb and nr needed in Propositions 6.2.4
and 6.2.5 as the number of non-zero rows or columns of these two matrices, which we do using
an efficient vectorised Hamming weight routine. To analyse a given scheme, one then just has
to provide a full description of Mp and σp for every non-elementary probe. Additionally, since
Proposition 6.2.5 requires to compute the number of internal probes nI in a set, those have to
be labelled as such.

We inline all data structures and store them in either standard or vector registers. AP
is stored twice, once row-wise and once column-wise, in order to avoid the otherwise costly
transposition needed to compute both its row and its column weight. For schemes at order
d ≤ 15, each row or column fits within a 16-bit words leading to a quite efficient vectorised
Hamming weight computation, as shown in Listing 6.1. We also provide a slower implementation
for schemes at higher order; in this case actually proving the security with our algorithm is likely
to be intractable due to the combinatorial explosion of the number of sets to consider, yet a
partial run may still be able to detect attacks, in the fashion of the original algorithm from
EUROCRYPT 2016.

int popcount256_16(__m256i v)

{

return __builtin_popcountl(_mm256_cmpgt_epi16_mask(v,

_mm256_setzero_si256()));↪→

}

Listing 6.1: Hamming weight computation of a vector of dimension 16 over 16-bit words using
AVX512VL and AVX512BW; a variant with only a few more instructions can be used
with only AVX2.

6.3.2 Amortised enumeration & parallelisation

Recall that to prove the security of a scheme at order d, the algorithm of Section 6.2 requires
to enumerate all the

∑d
i=1

(
n
i

)
subsets of a (possibly filtered) set of probes P of size n. For a

subset P ′ ⊆ P of size ℓ, a näıve approach in computing AP′ would use ℓ − 1 additions, and
this for every such P ′. However, a well-known optimisation for this kind of enumeration is
instead to go through all the subsets of a fixed weight in a way that ensures that two consecutive
sets P ′ and P ′′ only differ by two elements. One can then compute, say, AP′′ efficiently by
updating AP′ with one addition and one subtraction. We do this in our implementation by
using a so-called “revolving-door algorithm” described by Knuth [Knu11, Algorithm R] for the
Nijenhuis-Wilf-Liu-Tang “combination Gray code”[NW78; LT73].

In practice, Algorithm 2 is used to compute both attack matrix A and noise matrix B for
every set of k probes among the n probes P available on the circuit. Going from a matrix AP′

to the next matrix AP′′ can always be done using only one addition and one subtraction:
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Algorithm 2: Revolving-door combinations algorithm [Knu11, Algorithm R] going over
the

(
n
k

)
combinations ck . . . c2c1.

R1. Set cj ← j − 1 for 1 ≤ j ≤ k and ck+1 ← n.
R2. The combination ck . . . c2c1 is ready to be used.
R3. (Step depending on the parity of k)
If k is odd: If c1 < c2, increase c1 by 1 and return to R2, otherwise set j ← 2 and go to
R4.
If k is even: If c1 > 0, decrease c1 by 1 and return to R2, otherwise set j ← 2 and go to
R5.
R4. (At this point cj = cj−1 + 1.)
If cj ≥ j, set cj ← cj−1, cj−1 ← j − 2, and return to R2.
Otherwise increase j by 1.
R5. (At this point cj−1 = j − 2.)
If cj + 1 < cj+1, set cj−1 ← cj , cj ← cj + 1, and return to R2.
Otherwise increase j by 1, and go to R4 if j ≤ k.
The algorithm has reached its end if j > k.

— if the update is done in step R3, one needs to subtract Mpc1
and add, depending on the

parity of k, either Mpc1+1 or Mpc1−1 ;

— if the update is done in step R4, one needs to subtract Mpcj
and add Mpj−2

;

— if the update is done in step R5, one needs to subtract Mpcj−1
and add Mpcj+1 .

The same applies to go from BP′ to BP′′ by adding and subtracting the right matrices σp.

In the robust probing model setting one may also need to enumerate more than one expression
for a given set of probes; this can still be done efficiently using Gray codes. First one uses the
same approach as described above to enumerate the sets of probes thanks to a combination Gray
code. Then for each of these sets P, checking if it leads to an attack or not requires one to
go over the

∏
p∈P(2

#L(p) − 1) linear combinations of the relevant leakage sets as explained in
Subsection 6.2.4. This enumeration itself is done using two layers of Gray codes: an outer layer
is composed of a mixed-radix Gray code of length #P, with the radix associated with probe
p being equal to 2#L(p); this outer Gray code indicates at each step which probe needs to be
“incremented” to obtain the next linear combination. Then this increment is itself implemented
efficiently by using an inner (“standard”) binary Gray code in dimension #L(p).

The entire enumeration process can also be easily parallelised, and the main challenge is to
couple this with the above amortised approaches. This can in fact be done quite efficiently, as
the combination Gray code that we use to enumerate the probe subsets possesses an efficient
unranking map from the integers to arbitrary configurations [Wal, p.25-26] given in Algorithm 3.

Algorithm 3: Unranking algorithm from [Wal, pp.25-26].

Input : The rank r strictly lower than
(
n
k

)
Output: The configuration ck . . . c1 of rank r
for i← k to 1 do

ci ← min{x |
(
x
i

)
≥ r}

r ←
(
ci

i

)
− r

end

One can then easily divide a full enumeration of a total of n combinations into j jobs by
starting each of them independently at one of the configurations given by the unranking of
i× n/j, i ∈ J0, jJ.



Chapter 6. Verifying masked circuit in characteristic two 79

6.3.3 From high-level representation to C description

We use a custom parser to convert a readable description of a masking scheme into a C description
of its probes’ indicator matrices.

Each line of the high-level description corresponds to an output share. The available symbols
are:

— sij which represents a product aibj ;

— ri which represents a random mask ri;

— a space ‘ ’, a binary operator which represents an addition (i.e. XOR) gate;

— parentheses, which allow explicit scheduling of the operations;

— |, a postfixed unary operator which represents the use of a register to store the expression
that is before the symbol. This is only needed for an analysis in presence of glitches.

Additionally, the user needs to specify the order d of the scheme as well as the list of random
masks used.

The scheduling of the operations needed to compute the output shares is important, as it
determines the probes available to the adversary. In that respect, the parser uses by default an
implicit left-to-right scheduling and addition gates have precedence over registers. As an example
the scheme whose output shares are defined as:

c0 = ((((a0b0 ⊕ r0)⊕ a0b1)⊕ a1b0)⊕ r1)

c1 = ((((a1b1 ⊕ r1)⊕ a1b2)⊕ a2b1)⊕ r2)

c2 = ((((a2b2 ⊕ r2)⊕ a2b0)⊕ a0b2)⊕ r0)

is described by the file:
ORDER = 2

MASKS = [r0, r1, r2]

s00 r0 s01 s10 r1

s11 r1 s12 s21 r2

s22 r2 s20 s02 r0

Another example is the following DOM-indep multiplication by Groß et al. [GMK16], which
is NI at order two even in the presence of glitches:

ORDER = 2

MASKS = [r0, r1, r2]

s00 (s01 r0|) (s02 r1|)

(s10 r0|) s11 (s12 r2|)

(s20 r1|) (s21 r2|) s22

6.4 Application of the verification tool

In this section we apply our fast implementation of the verification algorithm of Section 6.2 to
various state-of-the-art masking gadgets and also propose new improved instances in medium
order, including better SNI multiplication and refreshing gadgets for the practically-relevant case
of 8 shares.

We analyse:

— In Subsection 6.4.1: NI and SNI multiplication gadgets originally from [BDF+17; GJR+18].

— In Subsection 6.4.2: SNI refreshing gadgets originally from [BDF+17; BBD+18].

— In Subsection 6.4.3: Glitch-resistant NI multiplication from [GMK16].
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6.4.1 NI and SNI multiplication gadgets

We first study a family of multiplication gadgets that were introduced by Barthe et al. at EU-
ROCRYPT 2017 [BDF+17] and used in the efficient masked AES implementation of Grégoire
et al. [GPS+18] (who also propose improvements in the 4-share setting) and in the very high
order implementations of Journault and Standaert [JS17].

Our motivations in doing so are the following: since there is no known security proof at
arbitrary order for these schemes, it is natural to try to prove them computationally at the
highest possible order. Barthe et al. originally did this up to order 7,13 and we manage to reach
order 11 both for NI and SNI security, which represents a significant improvement.14 A second
motivation is that the verification of multiplication gadgets quickly becomes intractable with
increasing order, and such a task allows us to clearly demonstrate our performance gain over
maskVerif. Finally, this improved verification efficiency is exploited in trying to find ad hoc
gadget variants with lower cost.

On the negative side our verification shows that a conjecture from Barthe et al. on the security
of a natural strategy to convert NI multiplication into SNI fails at order 10. More positively,
we were able to find ad hoc conversions tuned to every NI multiplication we considered, which
sometimes also bring a significant improvement in randomness cost over Barthe et al.’s strategy.
For instance we are able to gain 17% for an 8-share, 7-SNI gadget similar to the one used
in [GPS+18]. Finally using a slight variant of Barthe et al.’s gadget generation algorithm, we
occasionally obtain some improvements also in the NI case, notably at order 5.

We give details of our improvements in Table 6.1 and the descriptions of all the gadgets at
https://github.com/NicsTr/binary masking. Note however that Beläıd et al. also propose
optimized gadgets in [BBP+16] up to order 4, that ISW is also better than [BDF+17] at order
3 and that Grégoire et al. already proposed improvements at this same order in [GPS+18]. The
main range of interest of Table 6.1 is thus at order 5 and beyond.

6.4.1.1 The NI multiplication gadget family of [BDF+17, Algorithm 3]

We give in Algorithm 4 a description of a slightly modified variant of [BDF+17, Algorithm 3],
which occasionally gives better gadgets than the original. We also provide a small script to auto-
matically generate a scheme at a given order at https://github.com/NicsTr/binary masking.

This description relies on the following convenient definition:

Definition 6.4.1 (Pair of shares). Let (aibj), i, j ∈ J0, dK be the input shares of a (d + 1, v)
gadget. We define α̂i,j as:

α̂i,j =

{
aibj if i = j

aibj + ajbi otherwise

6.4.1.2 Extension to SNI security

One can derive an SNI multiplication gadget from Algorithm 4 by doing the following: 1) proving
NI security at some order d; 2) proving SNI security at the same order for a refreshing gadget ;
3) composing the two gadgets.

This strategy can for instance be implemented with the refreshing gadgets also introduced
in [BDF+17] that we discuss in the next Subsection 6.4.2, but Barthe et al. already remarked that
it was in fact apparently not necessary to use full refreshing gadgets and that one could do better
by using a degraded variant thereof: in a nutshell, one starts from a secure NI multiplication
and simply masks every output share with a fresh random mask and then again with the mask
of the following share in a circular fashion.

13We ourselves used the latest version of maskVerif to do so up to order 8.
14This however still cannot theoretically justify the use of this masked multiplication at order 31 as is done

in [JS17].

https://github.com/NicsTr/binary_masking
https://github.com/NicsTr/binary_masking


Chapter 6. Verifying masked circuit in characteristic two 81

Table 6.1: Explicit randomness cost of multiplication gadgets.

Order d Defined and verified in [BDF+17] Defined or verified in §6.4.1

Random masks XOR gates Random masks XOR gates

2 SNI 3 12 = =

3
NI 4 20 = =

SNI 8 28 5 24

4
NI 5 30 = =

SNI 10 40 9 38

5
NI 12 54 10 50

SNI 18 66 12 54

6
NI 14 70 = =

SNI 21 84 18 78

7
NI — — 16 88

SNI 24 104 20 96

8
NI — — 18 108

SNI — — 27 126

9
NI — — 26 142

SNI — — 30 150

10
NI — — 33 176

SNI — — 39 188

11
NI — — 36 204

SNI — — 42 216

Barthe et al. then conjecture in [BDF+17] that this transformation is always enough to con-
vert an NI scheme into an SNI one. However we could check that this is not true for 11- and
12-share gadgets: the respective instantiations of Algorithm 4 are NI, but the transformation
fails to provide SNI multiplications. Yet it is in fact still possible to derive an 11-share, 10-SNI
multiplication gadget at no additional cost by simply rotating the last repeated masks by two
positions instead of one, for a total cost of 44 random masks.

We explored several other transformation strategies, trying to exploit the special shape of the
NI multiplication gadgets as much as possible. This almost always improved on the use of a new
mask for every share (the current exception being the order-8 gadget), usually requiring only
about half. For instance our best 11-share gadget in fact only requires 39 masks instead of the
above 44 as shown in Figure 6.1, and we found a 7-SNI multiplication with only 20 masks shown in
Figure 6.2, which is 4 less than [BDF+17]. While this latter improvement is somewhat moderate
at about 17%, this 8-share case is quite relevant due to its use in the efficient vectorised masked
AES implementation of Grégoire et al. [GPS+18]; using our new variant should then result in
a noticeable decrease in randomness usage. In fact, an implementation using our variant is
described in Chapter 7 and publicly available.
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Algorithm 4: A conjectured d-NI (d+ 1, d+ 1)-gadget for multiplication over fields of
characteristic two.
Input : S = {α̂i,j , 0 ≤ i ≤ j ≤ d}
Input : R = {ri}, i ∈ N
Output: (ci)0≤i≤d, such that

∑d
i=0 ci =

∑d
i=0 ai

∑d
i=0 bi

for i← 0 to d do
ci ← α̂i,i

S ← S \ {α̂i,i}
end
R′ ← {}
j ← 1
while S ≠ ∅ do

for i← 0 to d do
if j ≡ 1 mod 2 then

ci ← ci + r (j−1)
2 .(d+1)+i

R′ ← R′ ∪
{
r (j−1)

2 .(d+1)+i

}
else

ci ← ci + r (j−2)
2 .(d+1)+(i+1 mod (d+1))

R′ ← R′ \
{
r (j−2)

2 .(d+1)+(i+1 mod (d+1))

}
end
if S ≠ ∅ then

ci ← ci + α̂i,((i+j) mod (d+1))

S ← S \ {α̂i,((i+j) mod (d+1))}
else

break
end

end
j ← j + 1

end
k ← #R′

for i← 0 to d do
ci ← ci + r (j−1)

2 (d+1)+(i+1 mod k)

end

s00 r00 s01 s10 r01 s02 s20 r11 s03 s30 r12 s04 s40 r22 s05 s50 r23 r40

s11 r01 s12 s21 r02 s13 s31 r12 s14 s41 r13 s15 s51 r23 s16 s61 r24 r41

s22 r02 s23 s32 r03 s24 s42 r13 s25 s52 r14 s26 s62 r24 s27 s72 r25 r42

s33 r03 s34 s43 r04 s35 s53 r14 s36 s63 r15 s37 s73 r25 s38 s83 r26 r43

s44 r04 s45 s54 r05 s46 s64 r15 s47 s74 r16 s48 s84 r26 s49 s94 r27 r44

s55 r05 s56 s65 r06 s57 s75 r16 s58 s85 r17 s59 s95 r27 s5a sa5 r28 r45

s66 r06 s67 s76 r07 s68 s86 r17 s69 s96 r18 s6a sa6 r28 s60 s06 r29 r40

s77 r07 s78 s87 r08 s79 s97 r18 s7a sa7 r19 s70 s07 r29 s71 s17 r30 r41

s88 r08 s89 s98 r09 s8a sa8 r19 s80 s08 r20 s81 s18 r30 s82 s28 r31 r42

s99 r09 s9a sa9 r10 s90 s09 r20 s91 s19 r21 s92 s29 r31 s93 s39 r32 r43

saa r45 sa0 s0a r00 sa1 s1a r21 sa2 s2a r11 sa3 s3a r32 sa4 s4a r22 r44 r10

Figure 6.1: 10-SNI gadget for multiplication, using 39 random masks.
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s00 r00 s01 s10 r01 s02 s20 r08 s03 s30 r09 s04 r20

s11 r01 s12 s21 r02 s13 s31 r09 s14 s41 r10 s15 r21

s22 r02 s23 s32 r03 s24 s42 r10 s25 s52 r11 s26 r22

s33 r03 s34 s43 r04 s35 s53 r11 s36 s63 r12 s37 r23

s44 r04 s45 s54 r05 s46 s64 r12 s47 s74 r13 s40 r20

s55 r05 s56 s65 r06 s57 s75 r13 s50 s05 r14 s51 r21

s66 r06 s67 s76 r07 s60 s06 r14 s61 s16 r15 s62 r22

s77 r07 s70 s07 r00 s71 s17 r15 s72 s27 r08 s73 r23

Figure 6.2: 7-SNI gadget for multiplication, using 20 random masks.

6.4.1.3 Verification performance

We now analyse the performance of our verification software on these multiplication schemes,
and compare it with the one of the latest version of maskVerif [BBC+19].15

Probes filtering. Following the results of Subsection 6.2.3, we use a filtering process to
reduce the initial set of probes that one has to enumerate to prove security. For the gad-
gets of Algorithm 4 and their SNI counterparts, this means removing probes of the form:
α̂∗,∗ +

∑
(r∗ + α̂∗,∗) + r∗ + a∗b∗,

16 and the fact that the filtered set really is a reduced set
in the sense of Definition 6.2.6 is verified by an exhaustive check on the subsets corresponding
to every output share; this filtering process was only partially automated since an initial human
intervention was necessary to identify the probes that could be removed. Intuitively, the idea is
that one can always replace in an attack a probe of the above form with one that includes one
extra ajbi term, i.e. one of the form α̂∗,∗ +

∑
(r∗ + α̂∗,∗) + r∗ + α̂∗,∗, since the latter only adds

an additional functional dependence on the input shares “for free”.

The concrete impact of filtering on the verification performance of our schemes can be seen
in Table 7.1, where we give the size of the attack sets to enumerate before and after this filtering.

Performance. For order d ≤ 10 (except the 10-SNI case) we have run our software on a single
core of the retourdest server, which features a single Intel Xeon Gold 6126 at 2.60GHz. The
corresponding timings are given in Table 6.2. At peak performance, we are able to enumerate
≈ 227.5 candidate attack sets per second for NI verification, while SNI performance is slightly
worse.

Using filtered sets significantly improves verification time, especially at high order. For in-
stance, the running times of 2 and 6 hours for NI and SNI multiplication at order 9 are an order
of magnitude faster than the 3 and 6 days initially spent before we implemented filtering. This
optimisation was also essential in allowing to check the security of 10-NI multiplication in less
than one calendar day on a single machine (using parallelisation); it would otherwise have taken
a rather costly 1 core-year.

We also tested a multi-threaded implementation of our software on schemes at order 8 ∼ 10,
using all 12 physical cores of the same Xeon Gold 6126; the results are shown in the right column
of Table 6.2. While we do not have many data points, the speed-up offered by the parallelisation
seems to be close to linear, albeit slightly less for NI verification: the 9-SNI multi-threaded wall
time is ≈ 11.7 times less than the single-threaded one, and multi-threading for 9- and 10-NI saves
a factor ≈ 9.7.

The largest schemes that we verified are NI (resp. SNI) multiplication at order d = 11. We
relied heavily on parallelisation to enumerate the ≈ 252.72 (resp. ≈ 254.48) possible attack sets,17

using up to 40 nodes of the Dahu cluster.18 Each node has two 16-core Intel Xeon Gold 6130 at

15Available at https://gitlab.com/benjgregoire/maskverif.
16This corresponds exactly to the probes made of an even number of a∗b∗ terms.
17This is after filtering of the initial ≈ 259 (resp. ≈ 259.76) sets.
18https://ciment.univ-grenoble-alpes.fr/wiki-pub/index.php/Hardware:Dahu

https://gitlab.com/benjgregoire/maskverif
https://ciment.univ-grenoble-alpes.fr/wiki-pub/index.php/Hardware:Dahu
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2.10GHz, and when using hyperthreading allows to enumerate ≈ 231.38 sets per second19. This
cluster was also used to verify the best version of our 10-SNI gadget.

Comparison with maskVerif. We used the maskVerif tool from Barthe et al. [BBC+19] to
check the security of the gadgets at order 6 to 8. Due to system constraints, we could not run
the verification on retourdest, and instead defaulted to the older hpac, which features an Intel
Xeon E5-4620 at 2.20GHz. We compare this to our software on this machine using 4 threads
—the same amount of parallelisation that maskVerif is able to exploit.

The running times are summarised in Table 6.3. Even though we cannot benefit from vec-
torisation due to the absence of AVX2 instructions on hpac, it is notable that our own software
is faster by three orders of magnitude, for instance taking slightly more than two minutes to
check 8-NI multiplication versus two days for maskVerif. Note that this comparison is done after
filtering in our case, which saves us up to a factor ≈ 30 (cf. for instance the 8-NI case) as can
be computed from Table 6.2.

Table 6.2: Running time of our verification software on retourdest.

Order d log2(number of sets) Wall time (1 thread) Wall time (12 threads)
Before/After filtering Best (after filtering) Best (after filtering)

1
NI 2.6/2.6 < 0.01 sec. —

SNI 2.6/2.6 < 0.01 sec. —

2
NI 6.3/5.5 < 0.01 sec. —

SNI 6.3/5.5 < 0.01 sec. —

3
NI 10.4/8.9 < 0.01 sec. —

SNI 11.2/9.96 < 0.01 sec. —

4
NI 15.0/12.6 < 0.01 sec. —

SNI 16.4/14.6 < 0.01 sec. —

5
NI 21.2/18.6 < 0.01 sec. —

SNI 21.7/19.3 < 0.01 sec. —

6
NI 27.1/23.9 0.09 sec. —

SNI 28.0/25.3 0.28 sec. —

7
NI 32.7/28.7 2.43 sec. —

SNI 33.6/30.6 11.70 sec. —

8
NI 38.5/33.7 1 min. 17 sec. 7.43 sec.

SNI 40.3/36.3 9 min. 28 sec. 47.0 sec

9
NI 45.6/40.5 2 h. 18 min. 14 min. 20 sec.

SNI 46.3/41.6 6 h. 30 min. 33 min. 20 sec.

10
NI 52.6/47.1 9 days 3h. 22 h. 30 min.

SNI 53.5/48.4 — —

19This is somewhat slow compared to performance on the similar ‘6126. The reason is currently unclear, but
might involve the different build environment and overall setup.
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Table 6.3: Comparison with maskVerif [BBC+19] on hpac.

Order d Wall time Wall time
maskVerif (4 threads) Our software (4 threads, filtered)

6
NI 2 min. 44 sec. 0.57 sec.

SNI 8 min. 11 sec. 1.48 sec.

7
NI 1 h. 39 min. 4.13 sec.

SNI 5 h. 54 min. 15.60 sec.

8
NI 2 days 10h. 2 min. 15 sec.

SNI 13 days 6h. 14 min. 35 sec.

6.4.2 SNI refreshing gadgets

We used our software to verify the SNI security of some (variations of) refreshing gadgets intro-
duced in [BDF+17], and subsequently improved in [GPS+18; BBD+18]. As explained in Sub-
section 5.2.2, such schemes are useful when designing large circuits based on gadgets satisfying
composable security notions since they help in providing strong security for the overall design.
However, refreshing also comes with a significant cost in terms of randomness while not per-
forming any sort of useful computation, leading several prior work to try finding new low-cost
gadgets.

Our contribution here is an 8-share, 7-SNI refreshing gadget shown in Figure 6.3 that only
needs 13 masks, which improves slightly on the best gadget from [BBD+18], which requires 16.
Since such gadgets are used in the implementation of [GPS+18], it could again lead to actual
practical gains.

We also compared the verification time of our tool with the one of maskVerif on the largest
“RefreshZero” instances of [BBD+18], and actually have worse performance. For instance, even
using 24 threads on the 12-core retourdest, verifying RefreshZero14[1,3] took us about 3 hours 40

minutes, while [BBD+18] reports an “Order of Magnitude” of 1 hour 30 minutes. We suspect
this to be caused by the fact that there is no obvious probe filtering to be done on this sort
of gadget, whereas maskVerif is likely able to successfully exploit their structure to reduce the
number of attack sets to consider.

s00 r00 r01 r10 r20

s11 r01 r02 r11 r20

s22 r02 r03 r12 r20

s33 r03 r04 r13 r20

s44 r04 r05 r10

s55 r05 r06 r11

s66 r06 r07 r12

s77 r07 r00 r13

Figure 6.3: 7-SNI refreshing gadget, using 13 random masks.

6.4.3 Glitch-resistant NI multiplication

We conclude with a brief application to the DOM-indep family of multiplication gadgets in-
troduced by Groß et al. [GMK16]. While those schemes are not more efficient than the state-
of-the-art in terms of randomness cost, their main advantage is their resistance to glitches. A
description of an instantiation at order 2 can be found in Subsection 6.3.3, and at any order less
than 5 at https://github.com/NicsTr/binary masking.

https://github.com/NicsTr/binary_masking
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These gadgets can be instantiated at an arbitrary order d but do not come with a generic
security proof guaranteeing the security of the result. We then have used our implementation
to verify that instantiations up to order 5 are NI in the robust probing model. The running
times on retourdest are summarised in Table 6.4. At order 1 and 2 both verification are almost
instantaneously. However, our software is able to also verify the gadget at order 3, 4 and 5 in
less than a second while SILVER is taking 24 seconds at order 3 and does not provide proof for
higher orders.

Table 6.4: Comparison with SILVER [KSM20] for the NI verification of DOM-indep [GMK16] schemes
in the robust probing model.

Order d Wall time Wall time
SILVER [KSM20] Our software (1 thread, on retourdest)

1 < 0.01 sec. < 0.01 sec.

2 < 0.01 sec. < 0.01 sec.

3 24.4 sec. < 0.01 sec.

4 — 0.12 sec.

5 — 2 min. 22 sec.
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Overview

In this chapter, we follow the generic masking approach presented in Chapter 5 to implement
a masked version of the AES. To do so, we use the previously designed and proven multiplica-
tion gadgets of Chapter 6. We discuss the choices made during the implementation and review
different ways to implement the nonlinear layer of the AES. This results in an implementation
publicly available at https://github.com/NicsTr/better cortexm. Finally, we apply experi-
mental methodologies to assess the security of our implementation by making concrete leakage
measurements during the execution on a development board.

7.1 Introduction to concrete implementations of masking
schemes

7.1.1 Which hardware target?

As explained in Chapter 4, the devices that are the most vulnerable against side-channel attacks
are embedded ones. In this context, the processor used often implements the ARM architecture.
It is thus natural to consider implementing a masking scheme specifically for this architecture.
Following Schwabe and Stoffelen’s work [SS16], we will further focus on one of the most popular
modern microprocessor family in this context: the ARM Cortex-M4.1 This family of micropre-
cessors implements the ARMv7E-M architecture which provides all the Thumb-1, Thumb-2 and
Digital Signal Processing (DSP) instructions. Unlike the higher-end Cortex-A family of micro-
processors (used for example in [GPS+18]), it does not implement the NEON Single Instruction
Multiple Data (SIMD) instructions. This means that our implementation will not use these
powerful vectorised instructions to instead target cheaper processors for cheaper applications.
However, we will see in Section 7.2 that optimizations aimed at using as much as possible the
32-bit registers are strongly related to vectorization and are also possible on ARM Cortex-M4.

More specifically, our implementation’s test target is an STM32L432 Nucleo development
board2 (see Figure 7.1) that embeds an ARM Cortex-M4 processor, 256 kilobytes of flash memory
and 64 kilobytes of SRAM. The processor has an embedded Random Number Generator (RNG)
using ring oscillators to generate 32-bit random output. Using ST environment, we are able to
easily program the board using STLINK3 through USB. Also, an open-source low-level library
called libopencm34 is used to ease the development of bare-metal programs in C.

Figure 7.1: STM32L432 Nucleo development board

We explain in Section 7.4 how the board is instrumented in order to perform the experimental
leakage assessment.

1https://developer.arm.com/ip-products/processors/cortex-m/cortex-m4
2https://www.st.com/en/evaluation-tools/nucleo-l432kc.html
3https://www.st.com/en/development-tools/st-link-v2.html
4https://libopencm3.org/

https://github.com/NicsTr/better_cortexm
https://developer.arm.com/ip-products/processors/cortex-m/cortex-m4
https://www.st.com/en/evaluation-tools/nucleo-l432kc.html
https://www.st.com/en/development-tools/st-link-v2.html
https://libopencm3.org/
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7.1.2 Which security models?

In the 2000’s, many attempts have been made to design ad hoc masked implementations and
“provably secure” ones [PGA06; SP06; RP10; BFG+12]. However, many were found to be
vulnerable to side-channel attacks a few years after their publication [CGP+08; CPR07; CPR+13;
PRR14].

In the light of those attempts, we will use the more recent compositional security models
introduced by Barthe et al. [BBD+16]. As shown before, these models’s goal is specifically
turned toward the design of complex masked circuits given only elementary gadgets. The role of
these models is to ensure that, under reasonable assumptions, the security of the composition is
naturally derived from the security of the elementary gadgets and from compositional rules.

In order to have more confidence in the security of the implementation in practice, we explain
in Section 7.4 how we performed an experimental leakage assessment using current state-of-the-
art methodologies and we show the effect of masking on a concrete implementation. Since
masking’s ultimate goal is to amplify noise during the critical computations by introducing
random values, the effect of masking in practice will be demonstrated by comparing the leakages
while random gates in the masked circuit are implemented using an embedded TRNG or while
they are implemented with deterministic values.

7.1.3 Which masking order?

Using the generic approach for masking a full algorithm, we need first to choose the elementary
gadgets that will implement the elementary gates and especially the masked AND gate. The
choice of the masking order at which these gates are instantiated is crucial for both security and
performance since it has a quadratic impact on both. The need for implementation masked at
order greater than one has been recently highlighted by the practical attack of Bronchain and
Standaert [BS20] on an implementation of the AES at order one.

The most recent and optimized implementations using the same generic approach as
ours [JS17; GJR+18] chose an order such that the number of shares is a power of two. Their
choice was made because they are based on a specific implementation approach (described in Sub-
section 7.2.4) that provides the best performance when the size of the registers in bit is a multiple
of the number of shares. To allow for a fair comparison between our implementation and the
state of the art, we chose to also use an order where the number of shares is a power of two.

Even if there exists masked AND gadgets, that are formally proven to be secure in composable
models at any order (such as ISW [ISW03]), we chose to use gadgets that give better performance
while still being proved secure. To do so, we refer to the gadgets analysed by our tool presented
in Chapter 6.

With these constraints in mind, we provide two masked implementations: one at order 3 (four
shares) and one at order 7 (eight shares). During the compilation of the library, the user must
choose between these two orders. The other orders are left as a future works but only require
implementing the gadgets in assembly, while the rest of the code base is generic.

7.1.4 Which algorithm to implement?

Recently, symmetric block cipher proposals were made that were specifically designed to be
masked, for example by reducing the nonlinear complexity of the algorithms. However, some
of these new constructions were subject of cryptanalytic attacks. As of today, they are not yet
widely used in concrete applications.

The Advanced Encryption Standard [oST01] is a block cipher standardized in 2001. It is based
on Rijndael [DR98; DR20], which was designed in 1998 by Joan Daemen and Vincent Rijmen,
with the additional constraints that blocks of the AES are 128-bit long and the key size must be
either 128, 192 or 256 bits. It consists in the successive application of a round function composed
of four operations: a round key addition, AddRoundKey; a layer of nonlinear components called
S-boxes, SubBytes; a byte shuffle, ShiftRows; and finally a linear transformation on four bytes,
MixColumns.
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The AES is used in a wide range of applications, most commonly as a building block of
symmetric encryption schemes. Implementations of the AES has been the target of heavy opti-
mization efforts. These optimizations are often made to decrease its running time or its memory
consumption without giving much attention to side-channel protections, which is relevant in
many threat models where the physical access to the device is near impossible. However, for
embedded devices, the threat model is different and side-channel attacks must not be overlooked.
Some effort has been made toward masked implementation but mainly at a masking order of
one.

Our goal is then to continue improving the efficiency of masked implementations of the AES,
especially at higher orders, in the hope that it will help moving from ad hoc and specialized
countermeasures against side-channel attacks toward formally secure and generic ones.

7.2 Different approaches to implement a masked AES S-
Box

In both the original Rijndael reference [DR98] and its standardization as AES [DR20], the block
state is described as an array of 16 elements in F28 stored as 16 bytes and the operations made
on them use the same representation. Specifically, the AES S-Box is described for each byte
as an inversion of the current element followed by a F2-linear transformation. Every other step
in the AES being linear and are easily masked as shown in Section 5.4, the biggest differences
between masked implementations are often found in the computation of the S-Box. There are
mainly four popular approaches.

7.2.1 Table lookups

Table lookups is a popular way to implement the AES S-box, even in implementations that
are not masked. This method consists in pre-computing tables to be used during the actual
computation. In the case where there is no masking, this table contains the 256 different results
of the S-Box applied to each of the 256 elements in F28 . During the actual computation of the
S-Box, the implementation just has to fetch the value at the offset corresponding to the byte for
which we want to compute the S-Box. However, it may lead to cache-timing attacks when the
implementation is running on a processor where a data cache is available [Ber05].

Since the table look-up depends on the value of the input, this cannot be done directly in
a masked implementation even on a microprocessor without a cache: there would be a trivial
single-probe side-channel attack because computing the right offset in the table is equivalent to
unmasking the data. Thus, the precomputed tables must be built depending on the value of the
first d−1 shares of the masked byte. However, doing so has a major drawback: it is very memory
consuming when trying to protect against high-order attacks because it requires to pre-compute
and store tables for every possible different values of the first d− 1 shares.

7.2.2 Finite-field secure multiplication

The second approach is to consider the original description using an inversion in F28 and designing
a masking gadget implementing this operation. In fact, since inverting an element in F28 is
equivalent to raising it to the power 254, this can be done using multiplication and squaring
gadgets, e.g. using the square-and-multiply algorithm. However, squaring in characteristic two
is a linear operation and linear gadgets are much less costly than multiplication gadgets. Thus
one aims to have the least possible number of multiplications which lead Rivain and Prouff to
propose an algorithm [RP10, Algorithm 2] to do so in only four multiplications. Nonetheless, this
computation must be done for each byte of the AES state independently and requires arithmetic
in F8.
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7.2.3 Bitslicing

In 1997 Biham introduced the idea of bitslicing as a new way to implement the Data Encryption
Standard (DES) [Bih97]. In modern computers, including our target architecture, the instruc-
tions work on registers having a bit-width of more than 8. Instructions as and (bitwise AND)
and eor (bitwise XOR) are actually computing in parallel as much binary operations as the
bit-width of the registers considered. The main idea of Biham is to “view a 64-bit processor as
a SIMD computer with 64 one-bit processors” [Bih97].

Instead of applying a (potentially complex) operation on one of the 16 bytes at a time, the
idea is to slice each byte and see them as 8 16-bit words instead of 16 8-bit words, by gathering
all the i-th bits in the i-th 16-bit word. The main difficulty is then to represent the operation as
a series of bitwise operations such that each operation between the i-th and j-th bit will be made
by executing only one instruction between the i-th and j-th word, thus doing the operation on
the 16 bytes in parallel.

Using circuit minimization techniques, Boyar and Peralta proposed a binary circuit to com-
pute the AES S-Box using 32 AND gates and 83 XOR/XNOR gates [BP10]. It was further
improved to 32 AND gates and 81 XOR/XNOR gates [Per20]. For a masked implementation of
the AES, it means that instead of using a masked circuit for the inversion in F28 and applying
it to the 16 bytes of the state, masking gadgets for the binary AND are used to build the full
circuit of the S-Box from Boyar and Peralta which will be executed on the 16 bytes in parallel
thanks to bitslicing.

7.2.4 Shareslicing

Another approach close to bitslicing exists and has been introduced as a way to parallelize
the computation of the multiplication gadgets defined by Barthe et al. in 2017 [BDF+17]. It
consists in regrouping the shares of the same value inside the same register. As in the case of
bitslicing, this allows to parallelize the computation of the masked gadget by using only the most
common instructions. In Example 7.1, we show an example of how shareslicing is able to increase
performance in the case of a multiplication gadget at order 3.

Example 7.1: Shareslicing
Figure 7.2 shows an example of a multiplication gadget from Barthe et al. at order 3.
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Figure 7.2: 3-NI multiplication scheme by Barthe et al. [BDF+17]

Given a and b the vectors representing the shares of a and the shares of b, and r =
(r0, r1, r2, r3) the vector of the four additional random values, the naive approach would be to
compute directly all the aibj and add them sequentially following the scheme. However, one
can implement this scheme following Algorithm 5.

Algorithm 5: Sharesliced algorithm for 3-NI multiplication scheme by Barthe
et al. [BDF+17]

Input : a, b, r
Output: c
c← a ∧ b
c← c⊕ r
c← c⊕ (a ∧ ROR(b, 1))
c← c⊕ (ROR(a, 1) ∧ b)
c← c⊕ ROR(r, 1)
c← c⊕ (a ∧ ROR(b, 2))

In this algorithm, ROR(·, n) means rotating right the vector by n positions. Most modern
processors have an instruction to perform these rotations (e.g., ror on ARM or x86 processors).
And, given that both a, b and r are stored in the same register, the XOR and AND operations
can also be made on the whole vectors with a single instruction as in the bitsliced approach.
Thus, this scheme can be implemented on most processors using only 13 instructions.

The example seen in Example 7.1 can be easily extended to all the multiplication and mask-
refreshing gadgets proposed by Barthe et al. [BDF+17]. This allows to gain significantly in
efficiency as shown by Goudarzi et al. [GJR+18].

Furthermore, there can be additional performance gain by using architecture specific capabil-
ities as the “flexible second operand” feature on Cortex-M4 processors. This feature allows to do
a rotation of the second operand of some instructions for free. It uses a barrel shifter, which is a
component made from multiple multiplexers stages. This component is inserted on the datapath
before the component that actually computes the operation asked, i.e. the Arithmetic Logic Unit
(ALU). The barrel shifter action occurs during the same cycle as the instruction itself and thus
does not have an impact on the number of execution cycles. This feature has been used together
with shareslicing by Journault and Standaert [JS17] in their implementation.

7.3 Implementation choices and performance

7.3.1 Masking the nonlinear layer of the AES

We first considered both shareslicing and bitslicing to implement the nonlinear layer of the AES.
However, the security of shareslicing heavily relies on the assumption that there is no interaction
between the bits of a register during the execution. In 2020, Gao et al. [GMP+20] have shown
that this assumption does not always hold and they show an example with the effect of the barrel
shifter on Cortex-M0 and Cortex-M3 processors. In light of the work of Gao et al. [GMP+20],
since our target uses a Cortex-M4 processor and to avoid relying on this assumption, we choose
of not using shareslicing techniques for our implementation. Additionally, to avoid unwanted
effects due to bit interactions inside registers, we make sure that the shares of a given value are
always stored in different registers throughout the execution.

Details on the bitsliced implementation. Our implementation uses the bitsliced approach
to implement all 16 S-boxes in parallel as in the implementation by Goudarzi and Rivain [GR17].
Goudarzi and Rivain are using the 83-XOR/XNOR version of the circuit by Boyar and Peralta
and mask-refreshing gadgets are regularly inserted to ensure correct composition of the masked
gadgets. However, the work of Beläıd et al. [BGR18] has shown that the circuit remains probing
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secure without them. For our implementation, we use the more recent 81-XOR/XNOR version
of the circuit and to ensure that it is still secure from a compositional point of view, we used the
same tool called TightPROVE.

In non-masked implementations, bitslicing techniques are often used together with n-bit,
n ≥ 16, registers to compute the AES encryption on n

16 blocks in parallel. In our case, n = 32
on Cortex-M4. However, during the computation of a masked implementation, each one of the
8 16-bit words of the bitsliced state is masked which means that each word is in fact a masked
state of d + 1 16-bit words. Each of the 32 AND gates of the Boyar-Peralta circuit must be
replaced by a masked AND gadget working on 16 masked bits in parallel. Nonetheless, since our
target is a microprocessor with 32-bit registers we still want to maximize the use of our registers.
To do so, Goudarzi and Rivain [GR17] proposed to group the 32 AND gates by pairs allowing
to replace each pair by a masked AND gadget working on 32 masked bits in parallel such that
each share is 32-bit wide. For this to work properly, we must ensure that the output of one gate
in the pair is not needed for the input of the other gate.

The exact circuit used in our implementation is thus a slightly-modified version of the 81-
XOR/XNOR circuit as shown in Figure 7.3 where highlighted pairs of gates can be computed in
parallel.

Masked gadgets for the AND gates. The exact gadget used for the AND gates depends
on the order chosen at compile time for the implementation: at order 3, the 3-SNI gadget
of [BDF+17] is used; at order 7, the new 7-SNI gadget from Subsection 6.4.1. The implementation
of the parallel version of these masked gadgets is done directly in ARM assembly. To limit
performance overhead due to memory access, we used the instruction scheduler and register
allocator from the work of Schwabe and Stoffel [SS16; Sto16]. This tool helps reducing the
number of store and load instructions used.

7.3.2 Masking the linear components of the AES

As seen in Section 5.4, thanks to the linearity of the additive secret-sharing used for masking
the data the transformations of the linear layer can be applied share-wise which introduces much
less overhead than for the gadgets for the nonlinear layers.

Since we are using a bitsliced approach to the computation of the AES S-Box, the inputs
and outputs of the nonlinear layers are in a bitsliced representation. To avoid having to pay
costly bit manipulations that are needed to go from and into a more standard representation
where each byte of the block state is stored in a single byte in memory, the linear components
(MixColumns, ShiftRows and AddRoundKey) are implemented using the same bitsliced represen-
tation. Our implementation reuses already existing bitsliced version of MixColumns [KS09; SS16]
(see Figure 7.4) and Shiftrows5.

7.3.3 Round function composition

During the design of the masked nonlinear layer, TightPROVE [BGR18] is used to ensure that
the circuit for the S-Box is d-private. However, and as seen in Chapter 5, this is not sufficient
for the composition of rounds to be d-private. Thus, the security of the full AES circuit is not
formally proven, but only the nonlinear layer is.

We conjecture that the composition is nonetheless secure in the d-probing model but it is left
as future work to prove it. We believe that it can be done, for example, by using TightPROVE
on the circuit that includes every linear operations after the output of the last AND gates of the
previous nonlinear layer and the circuit of the S-box itself.

Another approach to ensure that the full circuit is secure is to either: add mask-refreshing
gadgets on one of the input for every masked AND as done by Goudarzi and Rivain [GR17] (there
are 16 × 32 masked bits to refresh for each S-box layer); or refresh the whole AES state before
every nonlinear layer (there are 16 × 8 masked bits to refresh for each S-box layer) such that

5Proposed in a GitHub Issue by Peter Dettman to improve the implementations presented in [SS16; AP21]

https://github.com/Ko-/riscvcrypto/issues/1
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y14 = U3 ⊕ U5 y4 = y1 ⊕ U3 y15 = t1 ⊕ U5 y17 = y10 ⊕ y11
y13 = U0 ⊕ U6 y12 = y13 ⊕ y14 y20 = t1 ⊕ U1 y19 = y10 ⊕ y8
y9 = U0 ⊕ U3 y2 = y1 ⊕ U0 y6 = y15 ⊕ U7 y16 = t0 ⊕ y11
y8 = U0 ⊕ U5 y5 = y1 ⊕ U6 y10 = y15 ⊕ t0 y21 = y13 ⊕ y16
t0 = U1 ⊕ U2 y3 = y5 ⊕ y8 y11 = y20 ⊕ y9 y18 = U0 ⊕ y16
y1 = t0 ⊕ U7 t1 = U4 ⊕ y12 y7 = U7 ⊕ y11

(a) Top linear transformation, Ui being the i-th bit of the input byte

t2 = y12 ∧ y15
t3 = y3 ∧ y6

t23 = t19 ⊕ y21 t34 = t23 ⊕ t33 z4 = t40 ∧ y1
z5 = t29 ∧ y7t26 = t21 ∧ t23

t15 = y8 ∧ y10

t35 = t27 ⊕ t33
t4 = t3 ⊕ t2 z2 = t33 ∧ U7

t36 = t24 ∧ t35

z6 = t42 ∧ y11
z7 = t45 ∧ y17t7 = y13 ∧ y16

t5 = y4 ∧ U7

t16 = t15 ⊕ t12
t18 = t6 ⊕ t16 t37 = t36 ⊕ t34 z8 = t41 ∧ y10

z9 = t44 ∧ y12t6 = t5 ⊕ t2 t20 = t11 ⊕ t16 t38 = t27 ⊕ t36
t10 = y2 ∧ y7
t8 = y5 ∧ y1

t22 = t18 ⊕ y19 t44 = t33 ⊕ t37 z10 = t37 ∧ y3
z11 = t33 ∧ y4t24 = t20 ⊕ y18 z0 = t44 ∧ y15

t39 = t29 ∧ t38t9 = t8 ⊕ t7 t25 = t21 ⊕ t22 z12 = t43 ∧ y13
z13 = t40 ∧ y5t11 = t10 ⊕ t7 t27 = t24 ⊕ t26 t40 = t25 ⊕ t39

t12 = y9 ∧ y11
t13 = y14 ∧ y17

t30 = t23 ⊕ t24 t41 = t40 ⊕ t37 z14 = t29 ∧ y2
z15 = t42 ∧ y9t31 = t22 ⊕ t26 t42 = t29 ⊕ t33

t14 = t13 ⊕ t12 t32 = t31 ∧ t30
t28 = t25 ∧ t27

t43 = t29 ⊕ t40 z16 = t45 ∧ y14
z17 = t41 ∧ y8t17 = t4 ⊕ y20 t45 = t42 ⊕ t41

t19 = t9 ⊕ t14 t29 = t28 ⊕ t22 z1 = t37 ∧ y6
z3 = t43 ∧ y16t21 = t17 ⊕ t14 t33 = t32 ⊕ t24

(b) Middle nonlinear transformation with pairs of AND gates highlighted

tc1 = z15 ⊕ z16 tc8 = z7 ⊕ tc6 S3 = tc3 ⊕ tc11 S0 = tc3 ⊕ tc16
tc2 = z10 ⊕ tc1 tc9 = z8 ⊕ tc7 tc16 = z6 ⊕ tc8 S6 = ¬(tc10 ⊕ tc18)
tc3 = z9 ⊕ tc2 tc10 = tc8 ⊕ tc9 tc17 = z14 ⊕ tc10 S4 = tc14 ⊕ S3

tc4 = z0 ⊕ z2 tc11 = tc6 ⊕ tc5 tc18 = tc13 ⊕ tc14 S1 = ¬(S3 ⊕ tc16)
tc5 = z1 ⊕ z0 tc12 = z3 ⊕ z5 S7 = ¬(z12 ⊕ tc18) tc26 = tc17 ⊕ tc20
tc6 = z3 ⊕ z4 tc13 = z13 ⊕ tc1 tc20 = z15 ⊕ tc16 S2 = ¬(tc26 ⊕ z17)
tc7 = z12 ⊕ tc4 tc14 = tc4 ⊕ tc12 tc21 = tc2 ⊕ z11 S5 = tc21 ⊕ tc17

(c) Bottom linear transformation, Si being the i-th bit of the output byte

Figure 7.3: AES S-Box binary circuit from Boyar and Peralta [BP10; Per20] with slight modifications
of the order of operations to regroup AND gates by pair. 113 gates are needed, 32 AND
(∧) and 81 XOR (⊕) and 4 NOT (¬).
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Figure 7.4: Bitsliced MixColumns implementation from [KS09]. Ri is the 16-bit register containing the
i-th bit of every byte and Ri

≫j refers to a rotation of j bits to the right.

every masked inputs are uniform and mutually independent, thus matching the requirement of
TightPROVE’s inputs. Both strategies would have a negative impact on the overall performance
of the implementation but the new mask-refreshing gadgets presented in Chapter 6 could be used
to reduce this overhead.

7.3.4 Code structure

For each masking order, we provide a C header file and a C static library exposing the following
main functions:

— mask bitslice state, that is used to convert a 128 bits AES state block into its masked
and bitsliced representation;

— unmask unbitslice state, that is used to convert a masked and bitsliced AES state block
into 128-bit non-bitsliced unmasked representation;

— masked aes keyschedule128, that implements the AES-128 keyschedule for a masked and
bitsliced 128 bits key;

— masked aes encrypt128, that implements the AES-128 encryption for a masked and bit-
sliced 128 bits state block given the masked and bitsliced round key from the keyschedule.

These main functions are using auxiliary functions. To improve performance by taking into
account the fact that the target architecture is known and by leveraging on ARM architecture’s
specific features, the most critical components are written directly in assembly. Also, this ap-
proach gives more control on the final executable code, as there is no interpretation by a compiler.
These components are written such that they are exposing one function and they are respecting
the calling convention of ARM 32-bit. This way each assembly-written component can be seen
as independent of the rest of the project and a change in the implementation of a component
(e.g. to fix bugs, to improve performance, to refactor or to change the masking order) can be
made without worrying about its impact on the rest of the project.

7.3.5 Randomness generation

Each gadget for the masked AND gate at order 3 (respectively 7) requires the generation of 5
(respectively 20) random masks. In our implementation, the functions masked aes encrypt128
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and masked aes keyschedule128 take as last parameter a function pointer to rng fill, a func-
tion that is used to fill a buffer of arbitrary size with random values. This function must be
provided by the user of the library.

For our specific environment, rng fill is implemented using the Random Number Generator
(RNG) embedded in the STM32L432. This RNG is based on ring oscillators and allows to
generate 32-bit words. A specific control register in memory is updated by the RNG module to
tell whether or not the random value is ready to be read for the data register in memory. It takes
approximately 64 cycles to generate each 32-bit word. The performance impact of the RNG on
the overall implementation is discussed in Subsection 7.3.6.

The embedded RNG is working asynchronously with the rest of the chip and thus it may
induce unexpected and non-deterministic delays while waiting for new random values to be
drawn. Thus, during the leakage assessment presented in Section 7.4, all needed random values
are drawn beforehand and stored in a buffer. This buffer contains as many random values as
needed by the function on which the assessment is conducted. This impacts negatively on the
memory footprint of the implementation but has the major advantage that two consecutive runs
of the same function are taking exactly the same number of cycle to execute, allowing the analysis
of multiple traces without risking desynchronization between them. This approach to random
values generation is thus advantageous for an attacker and detrimental to its performance (since
the RNG is a device running parallel to the processor). It is done only for leakage assessment
and not in the final implementation.

The experimental leakage assessment done in Section 7.4 uses this RNG (through rng -

fill) but also uses a function fake rng fill that fills the buffer with deterministic values. As
explained in Section 7.1 and further discussed in Subsection 7.4.4.3, this allows to observe almost
directly the impact of masking by comparing the effect of the RNG on the detection of leakages.

7.3.6 Performance

The performance of our implementation in the number of cycles by block encryption is presented
in Table 7.1.

Table 7.1: Number of cycles to compute AES-128 keyschedule, encryption and S-Box, using either the
embedded RNG or deterministic values.

Order d 3 7

With RNG Without RNG With RNG Without RNG

AND gate 491 145 1771 497

S-Box 9353 3929 31025 10721

Keyschedule 100644 46393 323758 120716

Encryption 102442 48203 327383 124343

As a comparison with an unprotected AES optimized for the same platform, Schwabe and
Stoffelen report that their implementation is computing a single block encryption in 661.7 cy-
cles [SS16]. In the same paper, they proposed an implementation masked at order 1 that takes
7422 cycles by using an RNG that outputs a 32-bit every 40 cycles while the RNG we are using
for our implementation is slower (64 cycles for each 32-bit words).

For masked implementations at higher orders, we do not directly compare to the one by
Journault and Standaert [JS17] since they use masking schemes only at order 32. Also, we do
not compare to the implementation by Grégoire et al. [GPS+18] because it is targeted at ARM
Cortex-A, a higher end family of processors with vectorized instructions. Instead, we compare
our implementation to the one of Goudarzi and Rivain [GR17] which has the same target (ARM
Cortex-M) and the same range of masking order. They report that their implementation uses
3280(d+1)2+14075(d+1)+12192 cycles to compute an AES encryption where d is the masking
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order, including the cost of randomness generation. However, they use a RNG that is even faster
than the one used by Schwabe and Stoffelen: it is able to produce a 32-bit random value every
10 cycles.

Taking RNG performance into account. As seen in Table 7.1 and also reported in almost
every implementations [SS16; GR17; JS17; GJR+18], the performance of the RNG itself is crucial
to be taken into account. In fact, in our implementation the cost of randomness generation is
taking around 53% (respectively 62%) of the total number of cycles needed for a block encryption
at order 3 (respectively order 7). Indeed, this impact strongly depends on the efficiency of the
RNG used. Thus, to achieve a fair comparison, we approximate the cost of generating the needed
random values parametrized by nRNG, the number of clock cycles taken by the RNG to output
a 32-bit random word.

At order 3, each S-Box is using 32 AND gates and each bitsliced AND gate on 16-bit operands
uses 16 × 5 random bits. At order 7, each bitsliced AND gates on 16-bit operands uses 16 ×
20 random bits. For each nonlinear layer of the AES, 32 AND gates on 16-bit operands are
computed. Thus, the overall randomness usage of an S-Box computation is 32 × 16 × 5 bits,
that is 80 32-bit words at order 3 and 32 × 16 × 20 bits, that is 320 32-bit words at order 7.
In AES-128, there are 10 nonlinear layers to apply to the state, which means that at order 3
(respectively 7) our implementation needs 80 × 10 = 800 (respectively 320 × 10 = 3200) 32-bit
words of randomness. Then, the cost of randomness generation for a full block encryption takes
approximately 800nRNG at order 3 and 3200nRNG at order 7.

The implementation of Schwabe and Stoffelen [SS16] at order 1 is using nRNG = 40. With the
same value for nRNG, our implementation would take approximately 48203 + 800nRNG = 80203
cycles to run at order 3 and 124343 + 3200nRNG = 252343 at order 7.

The implementation of Goudarzi and Rivain [GR17] is using nRNG = 10 and takes 120972
cycles to run at order 3 and 334712 cycles at order 7. With the same value for nRNG, our
implementation would take approximately 48203 + 800nRNG = 56203 cycles at order 3 and
124343 + 3200nRNG = 156343 at order 7. This is an improvement of around 53% for both order
3 and 7.

7.4 Experimental leakage assessment

In this section, we explore different experimental methodologies and apply them to test the
security of our implementation against side-channel attacks.

7.4.1 The Test Vector Leakage Assessment (TVLA)

The Test Vector Leakage Assessment (TVLA) is a procedure that consists in trying to detect
statistically meaningful differences between two datasets containing traces measured during the
computation on the device under test.

These two datasets may be, for example, one containing the traces measured during the
encryption of a constant plaintext with a constant key while the second dataset contains the
traces measured during the encryption of a random plaintext with the same key. This is called
a fixed vs. random test. The two datasets may also be filled with measurements of traces during
encryption of two fixed different plaintexts, thus performing a fixed vs. fixed test. Being able to
statistically distinguish the two sets of traces would mean that what is leaked during the execution
depends on the plaintext on which the encryption is performed. This can be seen as a necessary
condition to the presence of attacks against the implementation but, the number of total traces
analysed is crucial in experimental evaluation. It is not uncommon to start observing significant
differences between the two datasets only after several hundred thousands traces measured when
the environmental measurement noise is high or when some counter-measures are present.

Finally, to determine if the two datasets are distinguishable, the TVLA relies on an underlying
statistical test at a chosen (Type I) error rate α, which is defined as the probability of concluding
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that the datasets are statistically distinguishable and being wrong. In practice, the result of those
statistical test is a so-called p-value which can then be compared to α: if p < α then the datasets
are said to be distinguishable. In the literature, α is often equal to 10−5.

Welch’s t-test The underlying statistical test commonly used is a Welch’s t-test done for each
point in time. The common approach to aggregate every trace inside each dataset is to compute
their mean and to try to distinguish this mean from the mean of the other dataset.

The Welch’s t-test is producing a statistic t:

t =
µ1 − µ2√
s12

n1
+ s22

n2

,

with µi the mean of the i-th dataset, si its variance and ni its size. The greater the absolute
value of t is, the more statistically significant the difference between the two datasets is. The
associated p-value which can then be compared to the target error rate α, can be computed using
the statistic t along with its associated degree of freedom ν defined as:

ν =

(
s1

2

n1
+ s2

2

n2

)2

(
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2
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)
n1−1 +

(
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2
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)
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In most of the concrete cases ν is big enough to allow an approximation of p such as ν is not
needed anymore during the computation. Using this approximation, we have:

p = 2×
(
1− CDFN (0,1)(|t|)

)
,

with CDFN (0,1) being the cumulative distribution function of the normal distribution of mean 0
and standard deviation 1.

In the original proposal of the TVLA, the two datasets are compared using a common thresh-
old directly on the value of t. This threshold is fixed to ±4.5 for every point in time. This means
that the device under test is said to successfully pass the test (i.e. no leakage is found) if the
maximum absolute value of t over all points in time is lower than 4.5. For a single point in time,
this t-value of 4.5 corresponds to a p-value of p ≈ 7 × 10−6. Thus, having a threshold at 4.5 is
almost equivalent to an error rate of α = 10−5.

However, since this test is done independently once for each point in time, the effect of repeat-
ing the t-test must be taken into account for long traces. Thus, it has been proposed [DZD+17;
BGG+14] to adapt this threshold to the actual length of the traces. At a given target error rate
α, the corresponding target error rate at each point in time is given by

αTH = 1− (1− α)1/nL , (7.1)

with and nL the number of time samples. The threshold for the t-value is thus:

TH = CDF−1
N (0,1) (1− αTH/2) . (7.2)

For instance in a setting with 10 000 time samples, the same threshold for the t-value as before,
max(|t|) < 4.5, corresponds in fact to an error rate of only α ≈ 0.06. To have an error rate of
α = 10−5, one need to put the threshold at: max(|t|) < TH = 6.1.

Higher-order t-test At EUROCRYPT 2012, Moradi [Mor12] proposed to try to distinguish
these datasets by using moments of higher order (variance, skewness, kurtosis, . . . ) instead of the
variances. In 2015, Schneider and Moradi [SM15] introduced formulas to compute the moments
of higher-order incrementally allowing to use each trace to update each moment before discarding
them. This helps reducing the memory footprint of the analysis, especially when hundreds of
thousand traces are used.

In 2017, Reparaz et al. [RGV17] claimed to have designed a new algorithm to compute the
t-statistic of the Welch’s t-test even faster than the approach by Schneider and Moradi. Their
implementation as a C library called libfastld is not publicly available.
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χ2-test. Replacing the Welch’s t-test by Pearson’s χ2-test has been proposed in 2015 as a
complementary approach [MRS+18].

As for the t-test, this test aims at trying to distinguish the two datasets. However, it does
not consists in comparing the means (or higher-order moments) of the observations but instead
it works directly on the whole distribution. Nonetheless, this test also work at the granularity
level of a single point in time.

First, the n1 + n2 observations are stored in a matrix F with two rows, one for each dataset,
and where each of the c columns corresponds to a possible observation (or more generally an
interval). From this matrix F , one can compute an expected frequencies matrix E as

E1,j =

(F1,j + F2,j)
c∑

i=1

F1,k

n1 + n2

E2,j =

(F1,j + F2,j)
c∑

i=1

F2,k

n1 + n2
.

Then the statistic x and degree of freedom ν associated with the χ2-test are given by

x =

c∑
j=1

(F1,j −E1,j)
2

E1,j
+

c∑
j=1

(F2,j −E2,j)
2

E2,j
,ν = c− 1 .

Finally, the p-value is given using the cumulative distribution function of the χ2 distribution:

p = 1− CDFχ2(x)

In the χ2-test setting, there is no concept of moment of higher order as for the t-test since
it does not use moments. In some case the χ2-test can directly detect leakages that otherwise
would need a higher-order analysis in the case of the t-test. We use this test as it was intended
and described in the work of Moradi et al. [MRS+18], that is as a complementary approach to
the t-test.

7.4.2 Multivariate analysis

In the TVLA methodology, both the t-test and the χ2-test are conducted on each point in time
independently. This is sometimes called a univariate (or vertical) analysis, in opposition with
a multivariate (or horizontal) analysis where n > 1 points in time are considered simultane-
ously. In a multivariate setting, the distribution of subsets of n points are compared in order to
distinguished between the fixed and the random dataset.

An univariate leakage assessment is more adapted to an implementation where multiple shares
are manipulated in parallel as in hardware implementations of masked circuit. However, in
software implementations the computation are done sequentially and different shares of the same
value are manipulated in different clock cycle, except when the value in memory or in a register
is overwritten with another value. Thus, a multivariate analysis is often needed to successfully
achieve a side-channel attack on masked software implementation.

The major drawback of a multivariate analysis is its efficiency: when the number of datapoint
of a single trace increases, the number of different subsets of n points grows exponentially. The
goal of an attacker is then to find the so-called Points of Interest (PoI), which are a reduced
set of points in time that are carrying the most information and are thus more susceptible to
lead to an attack. Detecting those points is often the most challenging part, while the Welch’s
t-test or the χ2-test can be adapted to the multivariate case by carefully choosing an aggregation
function that is applied on the subsets of n points. In Subsection 7.4.4.3, we conduct a bivariate
analysis where points of interest are found based on the fact that we have full control over the
device under test.
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7.4.3 Template attacks

Template attacks (sometimes called profiling attacks) are a family of side-channel attacks where
the target device is attacked in two steps: in the profiling step, the attacker has total control over
the device and makes side-channel measurements during the execution of the program on chosen
plaintexts with chosen keys; in the attack step, the device is running on known plaintexts with
an unknown key. Template attacks are based on building a reliable profile of the device thanks
to controlled executions and to use this profile to match the behaviour of the device during the
execution with the unknown key. The profiling step requires to have full access and control on
a device which is as close as possible to the target device in term of leaking behaviour. For
example, to attack an RFID tag using a template attack, the attacker can first the same tag
model to build a reliable profile before applying the attack step to the target one. The number
of traces needed in the first step is often much higher than in the second step. Thus, when
differences between target and profiling devices are small enough that accurate profiles can be
computed, the attack against an instance of the target device can require only a devastatingly
low number of traces.

Recently, Bronchain and Standaert [BS21] published an article attacking the most recent
masked implementations of the AES on Cortex-M processors using a combination of a profiling
attack and a multivariate analysis. Their tool, SCALib, is published as a Python interface with
Rust libraries and can be found at https://github.com/simple-crypto/SCALib.

7.4.4 Results

We assess experimentally the security of our implementation using the methodology and statis-
tical tests seen in Subsection 7.4.1 before conducting a bivariate analysis. We choose our target
error rate to be equal to α = 10−5. This error rate is indeed arbitrary but is chosen to match the
one found in the literature. We use Equations (7.1) and (7.2) to compute the thresholds needed
for the different statistical test.

7.4.4.1 Hardware bench

We monitor the target board and acquire traces using a ChipWhisperer Lite Capture board6.
To do so, we configure and connect six of the 30 pins available on the STM32L432. Table 7.2
gives the configuration for each connected pin between the target board and the capture board.

Table 7.2: Connections between the capture board and the target board. Each line gives the function
and the corresponding pin for each side. When relevant, the alternate function (AF) to
configure is also given.

ChipWhisperer Lite capture board STM32L432 Nucleo target board

Ground voltage (GND) ←→ Ground voltage (GND)

Clock Input (HS1/I) ←→ System clock output (PA8 with AF0)

Reset target trigger (nRST) ←→ Self reset trigger (NRST)

Serial receiver (IO2) ←→ Serial transmitter (PA9 with AF7)

Serial transmitter (IO1) ←→ Serial receiver (PA10 with AF7)

Trigger capture (IO4) ←→ Trigger capture (PA12)

Since masking is a generic counter-measure that is side-channel agnostic, we chose to mea-
sure leakages from the processor using an electromagnetic directional probe from Langer EMV-

6https://store.newae.com/chipwhisperer-lite-cw1173-two-part-version/

https://github.com/simple-crypto/SCALib
https://store.newae.com/chipwhisperer-lite-cw1173-two-part-version/
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Figure 7.5: Picture of our hardware bench.

Technik7. This probe is connected to a pre-amplifier in order to amplify the signal before it
reaches the capture board. This setup is illustrated in Figure 7.5.

Every experiment will be done twice: once using deterministic values in lieu of random
masks (RNG off); and a second time using the integrated RNG of the STM32L432 described
in Subsection 7.3.5 (RNG on) to generate these random masks. Doing so allows to directly
compare the effect of masking on the leakages. It also helps distinguishing between points in
time that are not depending on the processed data (e.g., loop counter increment or unconditional
jump) with points in time actually leaking information to the attacker. Thus, this can be used to
get rid of many points before doing a multivariate analysis by keeping only the most information-
carrying points, reducing the overall cost of the assessment. The exact steps used to reduce the
cost of the multivariate analysis are explained in Subsection 7.4.2

The capture board used in our setup is limited to 24 000 time samples at once. This means
that we are not able to make a measurement for each cycle during the full masked encryption for
neither order 3 nor order 7, which takes respectively 48 203 and 124 343 cycles to execute. Instead,
we assess the leakages that occurs during the computation of the S-boxes. As explained before
in Subsection 7.3.5, we generate the additional random values needed in the function masked -

aes sbox (and its underlying component) beforehand. This allows to run the implementation at
both order 3 (in less than 4000 cycles) and order 7 (in less than 11000 cycles).

7.4.4.2 TVLA application and bivariate analysis results

Welch’s t-test We conduct a first order t-test on the application of the S-box layer protected
with a masking scheme at order 3 and 7. To do so, we use the TVLA methodology by splitting
traces in two datasets (fixed versus random) as explained in Subsection 7.4.1. We apply the test
in the two settings: with deterministic or random masks. The threshold for the t-value is set to
±6 for 4000 time samples and ±6.1 for 11000 time samples.

When deterministic values are used in lieu of randomly drawn ones, we use 100 000 traces
for each dataset which is sufficient to see clear leakage points. However, since we did not find
any leakage when using random values, we stopped the assessment after 1 000 000 traces for each
dataset which takes approximately 15h in our setup.

The result is shown in Figures 7.6 and 7.7. We can clearly see the impact of the Random
Number Generator on the security of the implementation. When using deterministic values, the

7https://www.langer-emv.de/en/product/lf-passive-100-khz-up-to-50-mhz/36/lf-b-3-h-field-probe-
100-khz-up-to-50-mhz/3

https://www.langer-emv.de/en/product/lf-passive-100-khz-up-to-50-mhz/36/lf-b-3-h-field-probe-100-khz-up-to-50-mhz/3
https://www.langer-emv.de/en/product/lf-passive-100-khz-up-to-50-mhz/36/lf-b-3-h-field-probe-100-khz-up-to-50-mhz/3
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t-test is able to find clear differences between the computation on fixed plaintexts compared to
the computation of random plaintexts. These leakages are not found when using the embedded
RNG, even after recording 1 000 000 traces for each dataset.

χ2-test We use the same TVLA but instead of using a t-test to distinguish the two datasets,
we apply a χ2-test as explained in Subsection 7.4.1. This test is applied on the same traces
as the t-test previously shown, with the same rationale behind the choice of the total number
of traces and the use of deterministic values or randomly generated ones as masks during the
computation. The threshold for the p-value at each point in time is set to 2.5 × 10−9 for 4000
time samples and to 9× 10−10 for 11000 time samples.

The result is shown in Figures 7.8 and 7.9 where the y axis is − log(p) for convenience. As
for the t-test, the role of the RNG is visibly crucial. Compared with the t-test, the χ2-test seems
to be less sensitive but more precise: there are fewer points in time going above the threshold
(183 against 879 for the t-test) but with higher contrast between non-leaking and leaking points.

7.4.4.3 Bivariate analysis

We conduct a bivariate analysis using the χ2-test on our implementation by following the method-
ology of Moradi et al. [MRS+18].

In order to limit the time and memory complexity of a bivariate analysis, we keep only the
points in time that actually carry information. We do so by filtering out the ones that do not go
above the threshold during the univariate χ2 analysis on the implementation using deterministic
masks. Thanks to this step, we are able to reduce the number of points from 4000 to 183 at
order 3 and from 11000 to 585 at order 7.

The threshold for the p-value at each point in time is set to 5.9 × 10−10 at order 3 (for a
total of 183(183 + 1)/2 = 16836 points of analysis) and to 5.8× 10−11 at order 7 (for a total of
585(585 + 1)/2 = 171405 points of analysis).

The result of the bivariate analysis is shown in Figures 7.10 and 7.11. The colour of each
pixel represents the p-value of the combination of the two points in time at the corresponding
coordinate. The diagonal thus corresponds to the univariate analysis. Since our bivariate analysis
relies on a symmetric combination function of each point, the resulting graph is also symmetric.
p-values below the threshold are shown in levels of red and the ones that are below the threshold
are in plain white. When deterministic masks are used, only 30 000 traces for each dataset are
sufficient to detect clear differences between the two datasets whereas after 1 000 000 traces for
each dataset, no bivariate leakage has been found for the implementation at both order 3 and 7
when the embedded RNG is used to generate the masks.
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(a) t-test on 2× 100 000 traces (fixed vs. random) with deterministic masks on the implementation at order 3.

(b) t-test on 2× 1 000 000 traces (fixed vs. random) with random masks on the implementation at order 3.

Figure 7.6: TVLA with Welch’s t-test on the S-box layer masked at order 3.
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(a) t-test on 2× 100 000 traces (fixed vs. random) with deterministic masks on the implementation at order 7.

(b) t-test on 2× 1 000 000 traces (fixed vs. random) with random masks on the implementation at order 7.

Figure 7.7: TVLA with Welch’s t-test on the S-box layer masked at order 7.
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(a) χ2-test on 2× 100 000 traces (fixed vs. random) with deterministic masks on the implementation at order 3.

(b) χ2-test on 2× 1 000 000 traces (fixed vs. random) with random masks on the implementation at order 3.

Figure 7.8: TVLA with χ2-test on the S-box layer masked at order 3.
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(a) χ2-test on 2× 100 000 traces (fixed vs. random) with deterministic masks on the implementation at order 7.

(b) χ2-test on 2× 1 000 000 traces (fixed vs. random) with random masks on the implementation at order 7.

Figure 7.9: TVLA with χ2-test on the S-box layer masked at order 7.
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(a) Bivariate χ2-test on 2× 30 000 traces (fixed vs. random) with deterministic masks at order 3.

(b) Bivariate χ2-test on 2× 1 000 000 traces (fixed vs. random) with random masks at order 3.

Figure 7.10: Bivariate χ2-test on the S-box layer masked at order 3 with 183 points of interest. p-values
below the threshold are shown in levels of red, below threshold in white.
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(a) Bivariate χ2-test on 2× 30 000 traces (fixed vs. random) with deterministic masks at order 7.

(b) Bivariate χ2-test on 2× 1 000 000 traces (fixed vs. random) with random masks at order 7.

Figure 7.11: Bivariate χ2-test on the S-box layer masked at order 7 with 585 points of interest. p-values
below the threshold are shown in levels of red, below threshold in white.



Summary and future work

In this part of the thesis, we focused on a class of attacks that target specifically the implementa-
tions of cryptographic primitives: side-channel attacks. We described how masking can be used
as a countermeasure against such attacks. After having presented different security models and
how to design masked implementations in Chapter 5, we introduced in Chapter 6 a new algorithm
to verify the security of masking schemes. This algorithm was implemented as a tool which is
publicly available, and was used to design more efficient masking gadgets. Finally, we presented
in Chapter 7 a secure implementation of the AES, also publicly available, and conducted an
experimental assessment of the leakage that occurs when executing it giving more confidence in
its security.

As future work, this experimental assessment could be made more complete by using differ-
ent frameworks. For example, the recent tool by Bronchain and Standaert [BS21] called SCALib
could be used to verify its security against more complex attacks, namely template and multi-
variate attacks. Additionally, due to hardware restrictions on the number of time samples, our
analysis focused only on the security of the most critical component: the nonlinear layer. The
use of a higher-end hardware such as the ChipWhisperer Pro could allow us to assess the full
execution of the AES.

As pointed out in Section 7.3, only the nonlinear layer of this implementation is formally
proven to be d-probing secure. To prove the conjecture that the full masked circuit is also
secure, we could either make TightPROVE verify the full circuit or improve it to prove the
security of circuits in composable models. We could also add mask-refreshing gadgets to our
implementation between the application of two rounds.

Finally, our verification tool could be improved by adding support to the verification of
gadgets in the PINI security model presented in Section 5.1. Even if d-PINI gadgets are in
general costlier than d-SNI ones, we could use them to make an alternative version of our masked
implementation of the AES, solving the problem of rounds composition altogether.
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[BBD+18] Gilles Barthe, Sonia Beläıd, François Dupressoir, Pierre-Alain Fouque, Ben-
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[CK09] Jean-Sébastien Coron and Ilya Kizhvatov. An efficient method for random delay
generation in embedded software. In Christophe Clavier and Kris Gaj, editors,
Cryptographic Hardware and Embedded Systems - CHES 2009, 11th International
Workshop, Lausanne, Switzerland, September 6-9, 2009, Proceedings, volume 5747
of Lecture Notes in Computer Science, pages 156–170. Springer, 2009 (page 49).



118 Bibliography
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and Jean-Sébastien Coron, editors, Cryptographic Hardware and Embedded Sys-
tems - CHES 2013 - 15th International Workshop, Santa Barbara, CA, USA, Au-
gust 20-23, 2013. Proceedings, volume 8086 of Lecture Notes in Computer Science,
pages 383–399. Springer, 2013 (page 62).
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[GPS+18] Benjamin Grégoire, Kostas Papagiannopoulos, Peter Schwabe, and Ko Stoffelen.
Vectorizing Higher-Order Masking. In [FG18], pages 23–43 (pages 57, 80, 81, 85,
88, 96).

[GR17] Dahmun Goudarzi and Matthieu Rivain. How fast can higher-order masking be
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Abstract / Résumé

The first part of this thesis is concerned with the study of some properties of cryptographic per-
mutations. It takes its source from a joint work with Joan Daemen, Daniël Kuijsters and Gilles
Van Assche published in the proceedings of CRYPTO 2021. These symmetric primitives can be
designed using multiple approaches. One of them, popularized by the Advanced Encryption Stan-
dard (AES), consists in grouping the bits, e.g. in bytes, and consistently processing them in these
groups. This aligned approach leads to structures that make it possible to reason about the differ-
ential and linear propagation properties using combinatorial arguments. In contrast, an unaligned
approach avoids any such grouping in its design, which however complexifies the analysis of the
same properties. In this thesis, we define formally what it means for a permutation to be aligned
and study its impact on the differential and linear properties of four primitives adopting different
design strategies.

The second part of this thesis focuses on the secure implementation of symmetric primitives.
Specifically, we study a class of attacks, side-channel attacks, where an attacker may be able to
extract the secrets of a cryptographic algorithm by only measuring physical leakages from the
components computing it. One countermeasure against these attacks, called masking, leverages
secret-sharing schemes to split the sensitive data into random shares while allowing to securely
compute using this sharing. However, verifying that a masked implementation is indeed secure
and the countermeasure itself are both costly. We improve the performance on this two aspects in
an article published in the proceedings of EUROCRYPT 2021 with Pierre Karpman as a co-author.
Following these results, we also propose a new masked version of the AES and we experimentally
verify its robustness against side-channel attacks.

La première partie de cette thèse décrit certaines propriétés des permutations cryptographiques.
Ce travail est issue d’une collaboration avec Joan Daemen, Daniël Kuijsters and Gilles Van Assche
et est publié dans les actes de CRYPTO 2021. Ces primitives symétriques peuvent être construites
en adoptant différentes approches. Une d’entre elles, popularisée par l’Advanced Encryption Stan-
dard (AES) consiste à regrouper les bits, par exemple en octets, et à procéder à des opérations
uniquement à cette granularité. Cette approche, dite alignée, fait émerger une structure permettant
de décrire les propriétés de propagation différentielle et linéaire en utilisant des arguments combi-
natoriaux. Au contraire, il est possible de concevoir des permutations de telle manière qu’un tel
alignement n’existe pas, rendant néanmoins l’analyse différentielle et linéaire plus complexe. Dans
cette thèse, nous définissons formellement cette propriété d’alignement et étudions son impact sur
les propriétés différentielles et linéaires de quatre permutations ayant des constructions différentes.

La seconde partie de cette thèse se concentre sur l’implémentation sécurisée des primitives
symétriques. Plus particulièrement, elle étudie une classe d’attaques, les attaques par canaux auxi-
liaires, permettant dans certaines conditions à un attaquant d’extraire les secrets manipulés par un
algorithme cryptographique en mesurant les variations de grandeurs physiques lors de l’exécution
de celui-ci. Un exemple de contre-mesure contre ce type d’attaques, le masquage, utilise un par-
tage de secret pour répartir l’information à protéger en des parties individuellement indépendantes
tout en permettant d’effectuer les calculs de manière sécurisée en utilisant ce partage. Néanmoins,
vérifier qu’une implémentation est sécurité ainsi que la contremesure elle-même peuvent être très
couteux. Nous améliorons les performances de l’état de l’art sur ces deux aspects dans un article
co-écrit avec Pierre Karpman et publié dans les actes de EUROCRYPT 2021. Finalement, nous
proposons une nouvelle version masquée de l’AES et nous évaluons sa robustesse contre les attaques
par canaux auxiliaires.
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