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Titre: Méthodes d’inférence de cibles thérapeutiques et de séquences de traitement
Mots clés: Réseaux booléens contrôlés - Séquence de contrôle - Médecine des réseaux

Résumé: Un enjeu majeur de la médecine
des réseaux est l’identification des perturbations
moléculaires induites par les maladies complexes
et les thérapies afin de réaliser une reprogram-
mation cellulaire. L’action de la reprogramma-
tion est le résultat de l’application d’un contrôle.
Dans cette thèse, nous étendons le contrôle unique
des réseaux biologiques en étudiant le contrôle
séquentiel des réseaux booléens. Nous présentons
un nouveau cadre théorique pour l’étude formelle
des séquences de contrôle. Nous considérons le
contrôle par gel de noeuds. Ainsi, une variable
du réseau booléen peut être fixée à la valeur 0,
1 ou décontrôlée. Nous définissons un modèle
de dynamique contrôlée pour le mode de mise
à jour synchrone où la modification de contrôle
ne se produit que sur un état stable. Nous ap-
pelons CoFaSe le problème d’inférence consistant
à trouver une séquence de contrôle modifiant la
dynamique pour évoluer vers une propriété ou un
état souhaité. Les réseaux auxquels sera appliqué
CoFaSe auront toujours un ensemble de variables
incontrôlables. Nous montrons que ce problème

est PSPACE-dur. L’étude des caractéristiques dy-
namiques du problème CoFaSe nous a permis de
constater que les propriétés dynamiques qui im-
pliquent la nécessité d’une séquence de contrôle
émergent des fonctions de mise à jour des variables
incontrôlables. Nous trouvons que la longueur
d’une séquence de contrôle minimale ne peut pas
être supérieure à deux fois le nombre de profils
des variables incontrôlables. À partir de ce résul-
tat, nous avons construit deux algorithmes inférant
des séquences de contrôle minimales sous la dy-
namique synchrone. Enfin, l’étude des interdépen-
dances entre le contrôle séquentiel et la topologie
du graphe d’interaction du réseau booléen nous
a permis de découvrir des relations existantes en-
tre structure et contrôle. Celles-ci mettent en évi-
dence une borne maximale plus resserrée pour cer-
taines topologies que celles obtenues par l’étude
de la dynamique. L’étude sur la topologie met
en lumière l’importance de la présence de cy-
cles non-négatifs dans le graphe d’interaction pour
l’émergence de séquences minimales de contrôle de
taille supérieure ou égale à deux.
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Abstract: Network controllability is a major chal-
lenge in network medicine. It consists in finding
a way to rewire molecular networks to reprogram
the cell fate. The reprogramming action is typically
represented as the action of a control. In this the-
sis, we extended the single control action method
by investigating the sequential control of Boolean
networks. We present a theoretical framework for
the formal study of control sequences.We consider
freeze controls, under which the variables can only
be frozen to 0, 1 or unfrozen. We define a model
of controlled dynamics where the modification of
the control only occurs at a stable state in the syn-
chronous update mode. We refer to the inference
problem of finding a control sequence modifying
the dynamics to evolve towards a desired state or
property as CoFaSe. Under this problem, a set
of variables are uncontrollable. We prove that this
problem is PSPACE-hard. We know from the com-
plexity of CoFaSe that finding a minimal sequence
of control by exhaustively exploring all possible
control sequences is not practically tractable. By

studying the dynamical properties of the CoFaSe
problem, we found that the dynamical properties
that imply the necessity of a sequence of control
emerge from the update functions of uncontrol-
lable variables. We found that the length of a min-
imal control sequence cannot be larger than twice
the number of profiles of uncontrollable variables.
From this result, we built two algorithms inferring
minimal control sequences under synchronous dy-
namics. Finally, the study of the interdependen-
cies between sequential control and the topology
of the interaction graph of the Boolean network
allowed us to investigate the causal relationships
that exist between structure and control. Further-
more, accounting for the topological properties of
the network gives additional tools for tightening
the upper bounds on sequence length. This work
sheds light on the key importance of non-negative
cycles in the interaction graph for the emergence of
minimal sequences of control of size greater than
or equal to two.
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1 - Introduction

Cell reprogramming consists in the control of molecular processes and modi-
fying gene expression to induce a particular cell behaviour naturally or artificially.
The potential outcomes of reprogramming have valuable benefits regarding the
essential challenges of health: cancerous targeted therapy, complex disease aetiol-
ogy, regenerative medicine, stem cells monitoring, etc. [33]. Despite the impressive
progress in cell reprogramming during the past decade, more breakthroughs are re-
quired before cellular reprogramming yields routine clinical use [59]. The main
issues lie in the discovery of reliable ways to trigger the reprogramming process
and to understand exactly how its mechanisms work. In this endeavour, the defi-
nitions of suitable theoretical frameworks and computational methods are crucial
for enabling the analysis and the design of the reprogramming patterns responsible
for the phenotypic switch.

Finding therapeutic targets is based on the study of molecular models of dis-
ease. These models are frameworks that define the causal relationship between
disturbances at the molecular level and the diseased or healthy forms of an or-
ganism. There are two complementary approaches for studying diseases at the
molecular level: empiricism and rationalism [29, 60].

The empirical method involves establishing statistical measures between sets of
patients’ symptoms and their molecular characteristics. The rational method relies
on developing mechanistic models that theorise the functioning of an organism and
explain the emergence of the symptoms of the disease via disturbances in the model.
Therefore, the discovery of targeted therapies can be based on high-throughput
screening, which tests, for example, the effectiveness of many molecules actions
without knowing their mode of action or predicts drug effects based on biological
models [56].

Whether empirical or rational methodology, developments in precision medicine
need computer science [14, 27]. The empirical methods suppose the ability to anal-
yse considerable masses of data resulting from the progress of molecular biology.
The rational methods imply the development of disease models and algorithms for
obtaining the desired predictions.

In this manuscript, we focus on a rational approach based on the study of
biological models. In [62], the authors relate mutations to their network effects:
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nonsense mutation, out-of-frame insertion or deletion and defective splicing are
interpreted as node or arc deletions, whereas missense mutation and in-frame in-
sertion or deletion can be modelled as node or arc additions. Moreover, in [15],
the authors classify mutations according to how they affect signalling networks
and distinguish between mutations that constitutively activate or inhibit enzymes
(nodes) and mutations that rewire the interactions (arcs). Similarly, [16] interpret
targeted therapies as network rewiring. The effects of mutations and drugs can,
thus, be described as elementary topological actions on the network: the deletion
or insertion of nodes and arcs. Cell reprogramming is then viewed as network
alteration based on these topological actions. The impact of the actions on the
network should be evaluated from a model of dynamics translating the topologi-
cal actions into dynamical alteration of the trajectories. Accordingly, phenotypic
changes are assessed at the molecular level via the measurement of the state of par-
ticular molecules called biomarkers—observable indicators of biological processes
whose molecular signature variation discriminates the phenotypes [16, 55]. The
signatures must be observed over a significant period of time to testify their rele-
vance, and thus are assumed to be met concomitantly with a stability condition of
the biological system.

This approach is part of network medicine [6],which aims to address drug target
discovery and the elucidation of disease mechanisms through network analysis by
renewing the phenotype-genotype relationship into the association of a phenotype
to some network perturbations [53]. Albert-László Barabási states that biological
systems contain many components that are connected in complicated relationships
but are organised by simple principles. Using network theory, the organising princi-
ples can be comprehensively analysed by representing systems as complex networks.
Network medicine is based on the idea that understanding the complexity of gene
regulation, metabolic reactions, and protein–protein interactions, as well as using a
network representation of those processes, will shed light on the causes and mech-
anisms of diseases.This thesis is, therefore, rooted in the field of network medicine.

We choose to use Boolean networks as a network representation for the cel-
lular processes. Boolean networks are widely used to model biological systems in
network medicine. These networks are discrete dynamics systems introduced in
biology by McCulloch and Pitts [38] as a model for the transmission of information
between neurons, and by Stuart Kauffman [28] and Rene Thomas [57] to model
gene regulatory networks. The molecules of the system are represented as Boolean
variables. By convention, the value 1 corresponds to an active or present state,
and 0 to an inactive or absent state. Although Boolean networks are a rough
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simplification of genetic reality, as genes are not simple binary switches, they can
correctly capture many expression patterns of genes [2, 10].

Recent research in computational biology has provided novel inference methods
for reprogramming a system to make its dynamics converge towards an expected
fate. These works use Boolean control networks (BCNs). Its a model specifying
the actions as controls on Boolean network. Various approaches have been pro-
posed, such as stuck-at fault models and SAT-based methods [32], motif-related
heuristics [61], algebraic approaches [39], and abductive methods [8]. These works
have been validated using real biological cases showing their adequacy for drug
therapy prediction. The state of art related to Boolean networks reveals that the
methods are currently focused on computing a single network action modelled as
a control input to reprogramme the dynamics in order to reach stable states that
meet some expected properties assessed at the molecular level.

However, more complex schemes may require a control sequence. For exam-
ple, in some biological cases, a sequence of mutations is observed, or a therapy
involves a scheduled protocol for administering drugs. Typically, tumorigenesis
results from a multi-step process governed by sequential genetic alterations. A col-
orectal tumour offers a paradigmatic system illustrating this sequential progression.
Fearon and Vogelstein demonstrated that colorectal cancer tumorigenesis relies on
a sequence of disturbances of three genes [22], called the ‘Vogelstein sequence’.
This sequence suggests that acquiring of a cancerous phenotype requires under-
going various intermediary stages and that, if these same disturbances occur in a
different order from that observed, the cell dies before developing its cancerous
potential.

Furthermore, in [31], the authors describe a systematic approach to identifying
efficient drug combinations in killing cancer cells depending on changes in the order
and duration of drug exposure. They found that some drug combinations (egfr

inhibitor) can synergise the apoptotic response to DNA-damaging chemotherapy for
a subset of triple-negative breast cancers if the drugs are administered sequentially
but not simultaneously, leading to an appropriate dynamics rewiring of oncogenic
signalling networks.

Therefore, the study of sequential control is a natural extension of the previous
works. Investigating control sequences can, as a long-term perspective, possibly
explain the causes of diseases via sequences of perturbations and help discover
therapeutic regimens.

The subject of control sequence inference is vast and difficult. Related ques-
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tions to this problem could find their foundation in the problems related to the
control of systems. We can cite, for example the control theory for linear systems,
in which control system design addresses the problem of making a concrete physical
system behave according to certain desired specifications by using a device called
a controller [58].We can also consider the study of the robustness of the network
and its boundary conditions, which offers insights into the behaviour of interacting
systems and can provide important leads for finding the desired controls [19, 17].
In this manuscript, we only consider sequential control on Boolean networks, which
is an under-researched area. The main studies on this subject are those of Man-
don et al. , who researched the temporal reprogramming of Boolean networks in
[35, 37, 36]. Given a trajectory, they identified the appropriate states at which
a control should be applied, and deduced the corresponding controls (perturba-
tions) to reach an expected state. The authors objective was minimising the total
number of perturbations, particularly regarding known one-step controls. These se-
ries of publications emphasiSe the computational complexity of sequence inference.

In this thesis, we are interested in the definition of a framework and computa-
tional methods for the inference of control sequences for Boolean networks. The
problem we pose is as follows:

If not all variables are controllable, how can we find a minimal control sequence
modifying the dynamics to evolve towards a desired state from an initial state if

such a state is not reachable with a one-step control?

In the model of controlled dynamics that we propose, we consider the con-
straints of its ultimate application in biology. We impose that objectives are de-
termined on stable states and that the modification of the control only occurs at a
stable state. Studying the dynamical characteristics (Chapter 5) of this framework
enabled us to bound the length of control sequences of minimal size. Furthermore,
studying the causality of sequential controls from the viewpoint of the interaction
graph (Chapter 7) offered key insights to reduce such bounds. This work helps
reveal the key importance of non-negative cycles in the interaction graph regarding
the emergence of minimal sequences of control of size greater than or equal to two.

This thesis is structured as follows: In Chapter 2, we present the Boolean
network model, its model of dynamics, and its interaction graph. We also recall the
formalism of the Boolean control network which is a function generating Boolean
networks according to control parameters. These control parameters enable us to
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model structural disturbances of the Boolean network interaction graph. In this
manuscript, we particularly focus on the control of Boolean network nodes. More
precisely on control input that freezes nodes at a specific value.

In Chapter 3, we formalise the controlled dynamics that extend the Boolean
network dynamics by revealing how the system evolves through a sequence of con-
trol inputs. We explain the inference problem regarding finding a control sequence
that modifies the dynamics to evolve towards a desired state or property. This
problem is denoted as CoFaSe (i.e., Controlled Fate in Sequence). Finally, we
prove that the inference of a control sequence satisfying CoFaSe is PSPACE-hard.

In Chapter 4, we present in greater detail the state of art regarding the control
of Boolean networks. In particular, we discuss the similarities and differences to
the framework proposed by Mandon et al. in [35, 37, 36].

In Chapter 5, we describe the dynamical properties of the sequential inference
problem. By partitioning the network variables into a set of controllable and un-
controllable variables, we obtain concrete bounds regarding the length of minimal
control sequences. These upper bounds reduce the potential solution space of the
inference problem.

In Chapter 6, we propose two computational approaches for inferring minimal
sequences of control. The first approach always finds a minimal sequence of control
if such a sequence exists. The second approach may not always find a minimal
sequence of control but generally requires less computation time. In the final
section of this chapter, we benchmark and discuss the performance of the two
algorithms.

In Chapter 7, we study the relationship between sequential control and the
topology of the interaction graph of the Boolean network. Accounting for the
topological properties of the network provides additional tools for tightening the
upper bounds regarding sequence length. This approach enables us to study the
causal relationships between structure and control.

13





2 - Boolean control network

In this manuscript, we will formalise the Boolean network reprogramming by re-
lying on Boolean control network. A BCN extends the Boolean network by adding
Boolean controls. The reprogramming of Boolean networks leads to the modifica-
tion of their dynamics. We more specifically focus on a particular class of control
called the freezing control , in which a control input definitively freezes a variable
state to a specific value.

In this chapter, we first recall the main definitions of Boolean networks (Sec-
tion 2.1) and their interaction graph (Section 2.2). Then, we define the extension
to BCNs (Section 2.3).

2.1 . Boolean network

Boolean function. A Boolean function is defined as f : Bn → B where
B = {0, 1} is the Boolean domain and n is its number of arguments. Every
Boolean function can be expressed as a propositional formula with n variables
x1, . . . , xn. For example, f(x1, x2, x3) = (x1 ∧ x3) ∨ (¬x1 ∧ x2) is a Boolean
formula which have for variables x1, x2 and x3.

Boolean network. A Boolean network is a discrete dynamical system defined
on a finite number of Boolean variables X = {x1, . . . , xn}. The network is defined
by a collection of Boolean functions,

F : Bn → Bn,

F = {xi = fi(x1, . . . , xn) | 1 ≤ i ≤ n},

in which each fi is a propositional formula computing the instantiation of xi. An
example of a Boolean network is presented in Figure 2.1.

F =


x1 = (x1 ∧ ¬x2) ∨ (x1 ∧ ¬x3) ∨ (¬x1 ∧ x2 ∧ x3)
x2 = (x1 ∧ x3) ∨ (¬x1 ∧ x2)
x3 = (x1 ∧ x3) ∨ (¬x1 ∧ ¬x2)

Legend: A Boolean network F with three variables x1, x2 and x3.
Figure 2.1: A Boolean network.
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State. A state s belonging to the set of states SX is an interpretation assigning
a Boolean value to the variables (i.e., s : X → B). The evolution of each variable
xi depends on its update Boolean function fi and a state s. Table 2.1 contains the
result of applying the set of Boolean functions of the Boolean network in Figure 2.1
to each state s ∈ SX .

s{x1,x2,x3} f1(s) f2(s) f3(s)

000 0 0 1
001 0 0 1
010 0 1 0
011 1 1 0
100 1 0 0
101 1 1 1
110 1 0 0
111 0 1 1

Legend: Application of the set of Boolean functions of the Boolean net-
work F of Figure 2.1 to its set of states SX .
Table 2.1: Application of the Boolean functions of a Boolean network.

Model of dynamics. The model of dynamics describes the evolution of states
for all variables via a labelled transition system ⟨−→,M, SX⟩, in which the states
are updated according to an updating policy M ⊆ 2X called the mode, which is a
cover of X (

⋃
m∈M m = X).

f↓X′ defines the restriction/projection of the function to X ′, such that f is
only defined for the elements of X ′ ⊂ X.

Each transition relation (−→⊆ SX×M×SX) is labelled by the set of updated
variables m:

s
m−→ s′

def
== s′ = (F↓m(s) ∪ sX\m).

The global transition relation is defined as: −→=
⋃

m∈M
m−→. A path1 s −→∗ s′

characterises a trajectory from s to s′.

For example, if we consider the Boolean network of Figure 2.1 and the updating
policy M = {{x1, x2}, {x3}}. The updating policy M means that from the state
011, it is possible to carry out one of the two following transitions:

1−→∗ is the reflexive and transitive closure of the transition relation.
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• One transition in which the variables x1 and x2 are updated and the state
111 is reached.

• One transition in which the variable x3 is updated and the state 010 is
reached.

The updating policy M provides us with the following states graph:
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Legend: Dynamics of the Boolean network F of Figure 2.1 under the up-
dating policy M = {{x1, x2}, {x3}}. Arcs are labelled by the sets of up-
dated variables realizing the transitions.

Figure 2.2: Update mode of a Boolean network.
In biological modelling, various updating modes are proposed to model the

numerous constraints of the abstracted system. There is no consensus regarding
which updating mode for Boolean networks is the most representative of the bio-
logical reality. Thus, the choice of updating mode strongly depends on the nature
of the studied problem. Indeed, each updating mode has distinct features and can
have a wide range of effects on the dynamics of the Boolean network.

In this manuscript, we only introduce two of the most used updating modes:
the synchronous mode and the asynchronous mode. These two modes only rep-
resent a small part of the spectrum of update modes introduced in the literature.
For example, the updating functions may be composed, as in block-sequential [50]
and block-parallel [20] updating modes. Other updating modes may also make use
of parameters that at first sight cannot be directly captured by these determin-
istic updates [46]. Memory Boolean networks [24, 25] and Interval Boolean net-
works [12] respectively consider delay and duration and Most Permissive Boolean

17



networks [44] consider thresholds in their updating functions.

In the synchronous mode, all the variables are updated during a transition
(M = {X}). The synchronous update mode is deterministic since all transitions
are functions.2

By contrast, in the asynchronous mode, only one variable is updated per tran-
sition (M = {{xi}}xi∈X). The asynchronous update mode is non-deterministic
since its transitions are ordinary relations (not functions). Figure 2.3 shows the
synchronous and asynchronous dynamics state graphs of the Boolean network of
Figure 2.1.
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Legend: Dynamics of the Boolean network F of Figure 2.1 under two
updatemodes. Arcs are labelled by the sets of updated variables realizing
the transitions. On the left is the dynamics of F under the synchronous
update mode. On the right is the dynamics of F under the asynchronous
update mode.

Figure 2.3: Synchronous and Asynchronous update modes of aBoolean network.

Equilibrium. An attractor A ⊆ SX is a set of states from which only states
of A are reachable and in which all states of A are reachable from any state of A.
A is an attractor if and only if:

2One result for each input value.
18



A ̸= ∅ ∧ ∀s ∈ A, ∀s′ ∈ SX \A : ¬(s −→∗ s′) ∧ ∀s, s′ ∈ A : s −→∗ s′.

A fixpoint attractor or stable state s is a particular attractor whose cardinality,
denoted |A|, is equal to 1. A state s is denoted as a stable state by the following
notation:

stblF (s)
def
== ∀m ∈ M : s

m−→ s.

A cyclic attractor is an attractor of size |A| > 1 that forms a cycle in the
dynamics of the Boolean network. Note that under the synchronous update mode
of a Boolean network, an attractor can only be a fixpoint or a cyclic attractor.

A basin of attraction of an attractor A is a set of states in which each of its
states will always eventually reach a state of A. B is a basin of attraction of an
attractor A if:

A ⊆ B ∧ ∀s ∈ B, ∃s′ ∈ A : s −→∗ s′

∧∀s ∈ B,∀s′ ∈ SX : s −→∗ s′ =⇒ s′ ∈ B.

In the left graph of Figure 2.3, the states 010, 100 and 001 are stable states.
Their largest basins of attraction are, respectively, {010}, {101, 111, 011, 110, 100},
and {000, 001}.

2.2 . Boolean networks interaction graph

Interaction graph. The interaction graph of a Boolean network captures the
interdependence of the network variables in the dynamics. For a Boolean network
F with the set of variables X, its interaction graph is a directed graph ⟨X, ⟩,
which contains the arc xi xj if a change in xi may leads to a change in xj .
Formally, an interaction is defined as follows:

xi xj
def
== ∃s, s′ ∈ SX : sxi ̸= s′xi

∧ sX\xi
= s′X\xi

∧ fj(s) ̸= fj(s
′).

Figure 2.4 shows the interaction graph of the Boolean network of Figure 2.1.

Signed interaction graph. The signed interaction graph extends the notion
of dependence by classifying arcs in three categories: a monotonic increase in xj

(sign 1), a monotonic decrease in xj (sign −1), or a non-monotonic interaction
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x1

x2

x3

Legend: Interaction graph of the Boolean network F of Figure 2.1.
Figure 2.4: The interaction graph of a Boolean network.

depending on the state of the other variable (sign 0). The signs are respectively
labelled by: + for 1, − for −1, and ± for 0. Formally, the signed interaction
graph of a Boolean graph ⟨X, , σ⟩, in which the relation xi xj is defined
in the same way as for the interaction graph, and σ : ( ) → {−1, 0, 1} is the
arc labelling function defined according to the following equations and graphically
represented by {−,±,+}:

xi
+ xj

def
== xi xj ∧

∀s, s′ ∈ SX : sxi ≤ s′xi
∧ sX\xi

= s′X\xi
=⇒ fj(s) ≤ fj(s

′),

xi
− xj

def
== xi xj ∧

∀s, s′ ∈ SX : sxi ≤ s′xi
∧ sX\xi

= s′X\xi
=⇒ fj(s) ≥ fj(s

′).

The arcs for which neither of the two equations is true, receive the label ±. Fig-
ure 2.5 displays the signed interaction graph of the Boolean network of Figure 2.1.

x1

x2

x3

±

+

+

±

±

±

±

− +

Legend: Signed Interaction graphof the Boolean networkF of Figure 2.1.
Figure 2.5: The signed interaction graph of a Boolean network.
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The arcs labelled + refer to positive arcs, whereas those labelled − refer to
negative arcs.

Cycle. In an interaction graph, a cycle is a finite sequence of distinct arcs in
the same direction that joins a sequence of vertices in which the only repeated
vertices are the first and last. In a signed interaction graph, the sign of a cycle is
the product of the sign of its arcs.

• A cycle is a positive cycle if the product of the signs is equal to 1 (i.e., if
and only if it contains an even number of ‘−’ arcs and no ‘±’ arcs).

• A cycle is a negative cycle if the product of the signs is equal to −1 (i.e., if
and only if it contains an odd number of ‘−’ arcs and no ‘±’ arcs).

• A cycle is a positive/negative cycle (positive and negative at the same time)
if the product of the signs is equal to 0 (i.e., if it contains at least a ‘±’
arc). Depending on the instantiation of the variables of the network, such
cycles can behave as positive or negative cycles.

• A cycle is a non-negative cycle if the product of the signs is not equal to
−1 (i.e., the cycle is a positive cycle or a positive/negative cycle).

For example, in the interaction graph of F in Figure 2.5, the cycles {x2, x2}, {x3, x3},
are positive cycles, the cycle {x2, x3, x2}, is a negative cycle and the cycles
{x1, x1}, {x1, x2, x3, x1}, are positive/negative cycles.

Strongly connected component. A subgraph of a directed graph is called
a strongly connected component (SCC) if every vertex is reachable from every other
vertex. We can distinguish between trivial SCCs, which do not contain cycles, and
complex SCCs, which contain one or more cycles. Since an SCC with more than
one variable necessarily possesses a cycle, all trivial SCCs are of cardinality 1. All
signed interaction graphs can be partitioned into SCC modules. For an example of
a partitioned interaction graph into SCC modules, see Figure 2.6.

In the rest of this manuscript, we only study complex strongly connected com-
ponents. For the sake of clarity, complex SCCs are simply referred to as SCCs.

Upstream, downstream, and disconnected variables. For the sake
of proof in the remainder of this manuscript, we now define the notion of upstream,
downstream, and disconnected variables in regards to a set of variables as follows:
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Legend: Interaction graph partitioned into SCC modules where each
color corresponds to a distinct SCC. The variables x1 to x4 belong to com-
plex SCCs in contrary to the variables y1 to y6 which belong to trivial SCCs.

Figure 2.6: Interaction graph partitioned into SCC modules
Let A be a set of variables in the interaction graph of the network F . The

variables of F can be classified according to A into four sets:

• A the set of the reference variables.

• A↙ = {x | x ∈ X,x /∈ A, ∃x′ ∈ A : x ∗x′} the set of variables
upstream of the set of variables A.

• A↘ = {x | x ∈ X,x /∈ A, ∃x′ ∈ A : x′ ∗x} the set of variables
downstream of the set of variables A.

• A× = X\(A∪A↙ ∪A↘) the set of variables disconnected from the set of
variables A.

For example, in Figure 2.6, if we take the set of variables A = {x1} we will have
A↙ = {y1, y6}, A↘ = ∅, and A× = {x2, x3, x4, y2, y3, y4, y5}, and if we take the
set of variables B = {x3, y4}, we will have B↙ = {x2, x4, y2, y3}, B↘ = {x4, y3}
and B× = {x1, y1, y5, y6}.

2.3 . Boolean control network

The Boolean control network (BCN) extends the Boolean network by adding
controls on variables. A control is represented by an additional parameter whose
state is set simultaneously and instantaneously when a control is applied.

More formally, a Boolean control network FU is a function generating a Boolean
network from an interpretation µ ∈ SU of control parameters U = {u1, . . . , uj , . . . , um},
which is called a control input. This input is defined as follows:

FU = {xi = fi(x1, . . . , xn, u1, . . . , um) | 1 ≤ i ≤ n},
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For each instantiation of control input µ, the Boolean control network FU

generates a Boolean network Fµ, modelling the application of a control on the
initial Boolean network F .

The freezing control assigns a definite value to each variable. The two possible
freezing outcomes, 0 or 1, are supported by two parameters with two distinct
regimes: either they freeze the variable or remain idle. By convention, inspired by
the freezing temperature of water at 0◦C, the freezing action is triggered when the
control parameter is set to 0, whereas 1 represents the idle situation. Implementing
of the freezing control on a Boolean network augments the formulas of the network
by adding the control parameter to obtain the expected control behaviour.

A control can be applied to a node. In this case, the control parameters are
applied to the formula of the frozen variable. For a formula fi, adding the control
parameters u0i ∈ U0 and u1i ∈ U1 to freeze the variable xi to 0 or 1, respectively,
leads to the following specification:

xi = fi(x1, . . . , xn) ∧ u0i for freezing to 0, (2.1)
xi = fi(x1, . . . , xn) ∨ ¬u1i for freezing to 1. (2.2)

A control can be applied an arc. In this case, the control parameters are applied
to the occurrence of variables in the functions of other variables. For a formula fi,
adding the control parameters u0i,j ∈ U0 and u1i,j ∈ U1 to freeze the variable xj

in the formula of xi to 0 or 1, respectively, leads to the following specification:

xi = fi(x1, . . . , xj ∧ u0i,j , . . . , xn) for freezing to 0, (2.3)
xi = fi(x1, . . . , xj ∨ ¬u1i,j , . . . , xn) for freezing to 1. (2.4)

Many other types of controls are possible. In this manuscript, we focus on
the freezing of nodes and do not consider the control applied on arcs. U0 and
U1 control parameters can be combined to trigger the freezing to different values
(i.e., xi = fi(x1, . . . , xn)∧ u0i ∨¬u1i ). Subsequently, U = U0 ∪U1 represents the
whole set of freezing control parameters, and ui ∈ U represents a generic freezing
control parameter (u0i or u1i ).

The active control set of a control input, µ̇, represents the set collecting all
the activated controls: µ̇ = {u | µ(u) = 0}. Note that µ and µ̇ are equivalent
descriptions of the control since we can define one from the other. Subsequently,
for the sake of simplicity, a control µ will be described using µ̇ to avoid a long
description of the control including all inactive control inputs.

In Figure 2.7, we can see an example of the application of a control to the
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x1 =
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)
∧ u01

x2 = (x1 ∧ x3) ∨ (¬x1 ∧ x2)

x3 = (x1 ∧ x3) ∨ (¬x1 ∧ ¬x2)

010

100 001

111

110

011

101000

111

100

110

001

011

101

010

000

010

001

110

011

100

101000

111

∅ u1
1 u0

1

Legend: The Boolean network F of Figure 2.1 is completed by the for-
mulas of the freezing controls to produce the Boolean control network
F{u1

1,u
0
1}. From left to right, the respective controls are: no freeze, x1 isfrozen to 1, x1 is frozen to 0. The active control parameters arementioned

below each dynamics. The dynamics are synchronous and the self-loops
on states are not shown. For the sake of clarity, the set of updated vari-
ables m on the transition was omitted. The stable states of each dynam-
ics are coloured in three shades of grey, and their contours are drawn in
different styles. Each contour style is associated with a different control
input.
Figure 2.7: The synchronous dynamics of a Boolean control network.
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variable x1 on the Boolean network of Figure 2.1. The three depicted dynamics
respectively correspond to the following:

1. the absence of control,

2. the freezing of the variable x1 to 1 (u11 = 0),

3. the freezing of the variable x1 to 0 (u01 = 0).

We can see that applying different freezing controls results in different be-
haviours in the dynamics of the system. These dynamics changes lead to different
transitions and different equilibriums.

It is worth noticing that some variables are purposely uncontrolled to play the
role of observers used for freely reporting the evolution of the states of a system.
In biology, biomarkers play the role of these observers. An observer is always an
uncontrolled variable used to assess the evolution of the system. Therefore, the
uncontrolled variables are important for assessing the fate of the dynamical system.
The set of controlled variables is denoted CX , and the set of uncontrolled variables
is C̄X = X \ CX . In our example in Figure 2.7, the C̄X−variables are {x2, x3},
and the CX−variables are {x1}

The profile of a set of variables A denotes the instantiation of the variables of
A in a given state s. In the sequel, the profiles of uncontrolled variables are denoted
‘C̄X−profiles’, and the profiles of controlled variables are denoted ‘CX−profiles’.
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3 - Control sequence dynamics

We build on previous studies by characterising control sequences to explore
the inference of sequences of control,. Therefore, we need to define a frame-
work that enables us to describe the notion of sequentiality of control in Boolean
control networks. In this chapter, we define the control sequence dynamics and
related concepts (Section 3.1), present the problem of control sequence discovery
(Section 3.2), and discuss its complexity (Section 3.3).

3.1 . Control sequence dynamics

Controlled dynamics extend the Boolean network dynamics by specifying how
the system evolves through a sequence of control inputs.

A sequence of controls is formally defined by the function µ : N+ → (U → B)

indexing control inputs, where µi, i ≥ 1, is the i-th control input in the sequence
and µ[k] stands for the sequence of size k starting with µ1 and ending in µk:
µ[k] = (µ1, . . . , µk).

Controlled dynamic. Given a Boolean control network FU , the model of
controlled dynamics is defined as a labelled transition system that includes the
control inputs as labels ⟨SX , SU ×M,−→⟩, such that as transition is defined by:

s
µi,m−−−→ s′

def
== s′ = (Fµi)↓m(s) ∪ sX\m. (3.1)

A control sequence µ[k] leads, therefore, to the following trajectory (path) of size
k + 1 and in which, for each transition, a control is applied:

s1
µ1,m1−−−−→ . . . si

µi,mi−−−→ si+1 . . . sk
µk,mk−−−−→ sk+1.

In Equation 3.1 the state si denotes the i-th state of the sequence. Each
control is labelled by a pair of control and modality. For the sake of clarity, we
omit the mode if it is not needed for explanation, meaning we consider the union
relation:

µ−→=
⋃

m∈M
µ,m−−→.

State trace. The trace defines the sequence of visited states in the control
sequence trajectory: (si)1≤i≤k+1.
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Legend: The Boolean network F of Figure 2.1 is completed by the for-
mulas of the freezing controls to produce the Boolean control network
F{u1

2,u
0
2,u

1
3,u

0
3}. From left to right, top to bottom, the respective controls

are: no freeze, x3 is frozen to 1, x3 is frozen to 0, x2 is frozen to 1, x2 and
x3 are frozen to 1, x2 is frozen to 1 and x3 is frozen to 0, x2 is frozen to 0,
x2 is frozen to 0 and x3 is frozen to 1, x2 and x3 are frozen to 0. The active
control parameters are mentioned below each dynamics. The dynamics
are synchronous and the self-loops on states are not shown. The stable
states of each dynamics are coloured in three shades of grey, and their
contours are drawn in different styles. Each 2−tuples of contour styles
and shades of grey is associated with a different control input. We can
notice that the centre graph where x2 and x3 is frozen to 1 have a unique
cyclic attractor and no stable states.
Figure 3.1: The synchronous dynamics of a Boolean control network.

28



For example, take the controlled Boolean network described in Figure 3.1 and
its different controls. Let the initial state be 010, the sequential application of
the sequence of control µ[5] = ({u02}, {u02}, {u12}, {u12}, ∅) leads to the following
trajectory in the controlled dynamics:

010
{u0

2}−−−→ 000
{u0

2}−−−→ 001
{u1

2}−−−→ 011
{u1

2}−−−→ 110
∅−−→ 100. (3.2)

In Equation 3.2, the control inputs are represented by their active control set,
with elements indexed by the freeze value, and the stable states traversed by the
trajectory are in boldface. The state trace of the trajectory is thus:

(010, 000,001, 011,110,100)

Classes of sequences. Control sequences can be categorised into families
based on the evolution of the control between steps. The complexity of the se-
quential control evolution depends on the rule governing such control application
strategies. Indeed, a chosen strategy can impact the inference of a sequence. It
may exist a sequence of control for a given strategy that evolves a Boolean net-
work dynamics towards an expected state, when for another strategy such problem
cannot be solved. We propose two control application strategies:

• Total Control Sequence (TCS): All the controls are triggered during the
first phase for all the controlled variables and remain active throughout the
sequence. The values to which the variables are frozen may change.

• Open Control Sequence (OCS): No constraints regarding control parameters
are imposed. A control can be changed or released freely.

The sequence described in the trajectory (3.2) is an OCS since x2 is controlled,
then uncontrolled. The TCS class is mainly used for proofs and algorithmic reasons.
This sequence has no realistic biological application of its own. Indeed, in the case
where we consider that C̄X -variables correspond to biomarkers, controlling all genes
corresponding to CX -variables is not realistically feasible in vitro and in vivo. The
OCS class is the most general class that may represent the action of the drugs on
molecular networks, potentially implying the modification and the relaxation of the
actions. The following inclusion between these families holds:

TCS ⊊ OCS.
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The control dynamics enable the change of control at any time in the dynamics.
This observation leads to the following proposition:

Proposition 3.1. For any control sequence µ[k], there exists a total control se-
quence of the same size ν[k] ∈ TCS generating the same state trace under the
synchronous mode.

Proof. Take a control sequence µ[k] and an initial state. For a transition si
µi−→

si+1, 1 ≤ i ≤ k, two cases may occur for the control parameters of the con-
trolled variables, xj ∈ CX :

1. If one of the two control parameters u0j , u1j is already activated, then theconfiguration remains the same for ν.
2. If the control parameters are both idle (u0j = 1, u1j = 1), then we directly

fix the expected final state value by setting the control appropriately,
namely: νi(u0j ) = 0, νi(u

1
j ) = 1 if si+1(xj) = 0 and

νi(u
0
j ) = 1, νi(u

1
j ) = 0 if si+1(xj) = 1.

As the update is synchronous, then all the values of the controlled variables
xj lead to the state si+1(xj) in a controlled way. For uncontrolled variables,
xj ∈ C̄X , we have (fν)j = (fµ)j since no modifications occur, meaning the
update is the same.

Since a transition only depends on the previous state that can be obtained
by applying of a TCS control input νi, we can define a TCS control input for
each step, finally leading to a total controlled sequence ν[k], simulating the
trajectory controlled by µ[k] from an s1.

Proposition 3.1 states the observational equivalence between OCS and TCS
classes under the synchronous update mode, namely any OCS control sequence
state trace can be reproduced by a TCS sequence. Thus, under the control dynam-
ics, for each OCS control sequence, a TCS control sequence exists with the same
state trace. For example, the OCS sequence of control µ[5] = ({u02}, {u02}, {u12}, {u12}, ∅),
which generates the trajectory (3.2), has an equivalent TCS sequence of con-
trol µ′[5] = ({u02, u03}, {u02, u13}, {u12, u13}, {u12, u03}, {u02, u03})1 with the same state
trace.

Let the initial state be 010, the control sequence µ′[5] leads to the following
trajectory in the controlled dynamics. The control inputs are represented by their

1According to the definition of a TCS, µ′[5] is also an OCS sequence of control.
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active control set, with elements indexed by the freeze value, and the stable states
traversed by the trajectory are in boldface.

010
{u0

2,u
0
3}−−−−−→ 000

{u0
2,u

1
3}−−−−−→ 001

{u1
2,u

1
3}−−−−−→ 011

{u1
2,u

0
3}−−−−−→ 110

{u0
2,u

0
3}−−−−−→ 100. (3.3)

In control sequence dynamics, allowing a change of control at any time has
no concrete application in biology. Knowing the state of the phenotype of a cell
at any time to administer a sequential therapy is impractical. On the contrary,
waiting for the cell to reach a stable phenotype before changing the administered
drug is practicable.

We could have considered other types of attractors; for example, a cyclic at-
tractor for which a subset of components does not vary is instantiated to a desired
phenotype. We have chosen to constrain ourselves to stable states due to them
being the easiest type of attractors to find. Based on this choice, we define the
following control dynamics:

Control Evolution based on Stable–State dynamics. The model of
controlled dynamics is said to be Control Evolution based on Stable–State dynamics
(ConEvs) if the modification of the control inputs instantiation only occurs at a
stable state. The change of control modifies the dynamics and releases the stability;
hence, the ConEvs dynamics fulfil the following property:

∀s1 µ1−→ . . .
µk−→ sk+1 : µi ̸= µi+1 ⇐⇒ stblFµi

(si+1),

given that si
µi−→ si+1 µi+1−−−→ si+2, 1 ≤ i < k. (3.4)

Under the ConEvs dynamics, we impose as a restriction that the property must
be validated on a stable state. When no state in the set of target states is stable
in the dynamics of at least one of the possible controlled Boolean networks2, the
CoFaSe problem will have no solution.

In ConEvs dynamics, changing the control is the only way to evolve the dy-
namics since a stable state is reached with the current instance of the Boolean
network, which results from applying a control input to the BCN. ConEvs dynam-
ics model either the different mutational steps in which a mutation rewires the
network reaching another phenotype, the molecular signature of which is stable,

2We also consider the empty control (i.e., the Boolean network not controlled).
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or a therapeutic regimen where the drug administering depends on the therapeutic
evaluation modelled by a stable state assessment. The trajectory described in (3.2)
is ConEvs, in contrast to the trajectory described in (3.3), in which the control is
changed in state 011 which is not a stable state of F{u1

2,u
1
3}.

Under the ConEvs dynamics, Proposition 3.1 is false. Therefore, some OCS
sequences of control do not have a TCS equivalent sequence. Thus, it may exist
an OCS sequence of control that evolves a Boolean network dynamics towards a
desired state in which, for a TCS control strategy, the same problem is unsolvable.
The trajectory described in (3.2) is a prime example of an instance in which no
TCS equivalent sequence of control exists. The state trace of the Trajectory (3.2)
cross, in this order, the states 001, 011, and 110. To reproduce such trace, two
total controls would be needed since the CX−variables are different in 001, 011
and 110. In Figure 3.1, no controlled Boolean networks have in their dynamics 011
as a stable state. Thus, under the ConEvs dynamics, there is no TCS sequence of
control that could reproduce the Trajectory (3.2) state trace.

Contracted control sequence. The contracted control sequence retains
only one instance of the control input for each sub-sequence with identical control
inputs. For ConEvs dynamics, the contracted control sequence can be considered
as the sequence making the dynamics evolve from stable states to stable states.
Note that under the synchronous update mode and the ConEvs dynamics, the ini-
tial control sequence can be easily retrieved by connecting the encountered stable
states for each Fµi using a trajectory controlled by µi.The contracted control se-
quence notation, is therefore, an alternative ConEvs representation of a sequence
of control, enabling a clearer visualisation of its control evolution. In the case of
Example (3.2), the contracted sequence is thus represented by the active controls
({u02}, {u12}, ∅).

In the rest of this manuscript, all the results are based on the synchronous
dynamics, in which all the variables are updated jointly. This choice was motivated
by the fact that, under this update mode, the practical computation time of the
reachability problem is reduced. Indeed, in the asynchronous update mode, one
needs to tackle the fact that state transition becomes a relation inducing non-
determinism, that should not be exhaustively explored to ensure the efficiency of
an algorithm.

3.2 . Control sequence discovery
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Determining a control sequence that modifies the dynamics to evolve towards
an expected state can be stated as a reachability problem:

Let Sα, Sω ⊆ SX be two set of states, can we find a control sequence:
µ[k] = (µ1, . . . , µk) such that there exists a path s1

µ1−→ . . .
µk−→ sk+1,

with: s1 ∈ Sα and sk+1 ∈ Sω ?

We refer to this problem as the ‘Controlled Fate in Sequence’ (CoFaSe) problem.

Consider, for example, the Boolean network from Figure 2.7. For this CoFaSe
problem, the initial states are Sα = {000}, whereas the final states are Sω =

{010, 110}. x1 is the sole controllable variable, whereas x2 and x3 are observers.
Therefore, for this CoFaSe problem, we must find a control sequence reaching any
state in which x2 = 1 and x3 = 0 from the initial state 000 by only controlling x1.

For all three possible controls (i.e., x1 not freeze, x1 freeze to 1 and x1 freeze
to 0), no paths connect 000 to 010 or 000 and 110. However, the freeze of x1
to 1 leads to the state 111 (middle graph). From this state, the freeze of x1

to 0 (rightmost graph) finally leads to the state 010. This sequence of controls,
therefore, solves the above CoFaSe problem and the following trajectory. The
control inputs are represented by their active control sets, with elements indexed
by the freeze value, and the stable states traversed by the trajectory are in boldface.

000
∅−−→ 001

{u1
1}−−−→ 101

{u1
1}−−−→ 111

{u0
1}−−−→ 011

{u0
1}−−−→ 010. (3.5)

Applied to ConEvs dynamics, the CoFaSe problem implies that at least a state
appearing in Sω is stable for Fµk

. We suggest that all states of Sα should be stable
for uncontrolled F . When this is not the case, we consider the stable states have
in their basin of attraction one of the initial states. For example, if we consider
for the Boolean network from Figure 2.7 with Sα = {000} and Sω = {010, 110},
to change the control, we would need to wait for F∅(000)

∗ to reach the stable
state 001. In this case, we simply consider that Sα = {001}. In this case, the
TCS contracted control sequence ({u11}, {u01}) resolves CoFaSe under the ConEvs
dynamics with the following trajectory, in which all states are stable under the
previous control:

001
{u1

1}−−−→
∗
111

{u0
1}−−−→

∗
010. (3.6)

In another example, let us consider the Boolean network from Figure 3.1 with
Sα = {010} and Sω = {100}. In this case, the contracted OCS sequence
({u02}, {u12}, ∅) resolves CoFaSe under the ConEvs dynamics with the following
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trajectory, in which all states are stable under the previous control:

010
{u0

2}−−−→
∗
001

{u1
2}−−−→

∗
110

∅−→
∗
100. (3.7)

In biological modelling, the outcome of reprogramming can be formulated as a
condition on the biomarkers, checking whether the system has reached an expected
signature. Note that achieving a given state for controlled variables is trivial and
consists in merely assigning their expected values by setting the appropriate control
inputs. Therefore, the main problem lies in indirectly influencing the state variation
of the uncontrolled variables by applying freeze actions on controllable variables.

Minimal control sequences. We now define some properties related to the
size of sequences. We first consider the CoFaSe problem, in which the control can
be changed at any time:

• A sequence µ[k] is said to be minimal for the CoFaSe problem with respect
to FU , Sα, and Sω if no control sequences ν[l] satisfy the CoFaSe problem,
such that l < k.

We now consider contracted control sequence under the ConEvs dynamics and
resolving the CoFaSe (FU , Sα, Sω).

• A contracted control sequence µ[k] is called minimal for the CoFaSe problem
with respect to FU , Sα, and Sω if no contracted control sequence satisfying
the CoFaSe problem has a lower number of steps.

To define the following notions on contracted control sequence, we first need
to define the parsimony and minimality of a control input in a contracted sequence
transition:

• A control input µ is called parsimonious for a contracted transition s
µ−→

∗

s′ ∧ STBLFµ(s
′) if ∄µ′ ∈ SU , µ

′ ⊆ µ ∧ s
µ′
−→

∗
s′ ∧ STBLFµ′ (s

′)

• A control input µ is called minimal for a contracted transition s
µ−→

∗
s′ ∧

STBLFµ(s
′) if ∄µ′ ∈ SU , |µ′| < |µ| ∧ s

µ′
−→

∗
s′ ∧ STBLFµ′ (s

′). A minimal
control input with respect to a given contracted transition is, by definition,
also parsimonious.
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We now define the parsimony and control minimality of a contracted control
sequence:

• A contracted sequence µ[k] is called parsimonious if it yields a trajectory
s1

µ1−→
∗
s2 . . . sk

µk−→
∗
sk+1 reaching a target state sk+1 ∈ Sω from an

initial state s1 ∈ Sα, in which all the controls µi, with 1 ≤ i ≤ k, are
parsimonious controls for the contracted transition si

µi−→
∗
si+1.

• A contracted sequence µ[k] is called control minimal if it yields a trajectory
s1

µ1−→
∗
s2 . . . sk

µk−→
∗
sk+1 reaching a target state sk+1 ∈ Sω from an initial

state s1 ∈ Sα, in which all the controls µi, with 1 ≤ i ≤ k, are minimal
controls for the contracted transition si

µi−→
∗
si+1. If a sequence is control

minimal, it is by definition also parsimonious.

The following sequences are examples of minimal and control minimal con-
tracted control sequences:

• The TCS contracted control sequence ({u11}, {u01}) of Trajectory 3.6 is min-
imal and control minimal under the ConEvs dynamics.

• The OCS contracted control sequence ({u02}, {u01}, ∅) of Trajectory 3.7 is
minimal and control minimal under the ConEvs dynamics. Note that no
TCS sequence solving this CoFaSe problem exists.

The following sequences are examples of minimal or control minimal contracted
control sequences, but not both:

• Let us consider the Boolean network from Figure 2.7 with Sα = {000} and
Sω = {010, 110}. The TCS contracted control sequence ({u11}, ∅, {u01},
{u11}, {u01}) that resolves CoFaSe under the ConEvs dynamics with the fol-
lowing trajectory is a control minimal contracted control sequence but is not
minimal:

001
{u1

1}−−−→
∗
111

∅−→
∗
100

{u0
1}−−−→

∗
001

{u1
1}−−−→

∗
111

{u0
1}−−−→

∗
010. (3.8)

• Let us consider the Boolean network from Figure 3.1 with Sα = {010} and
Sω = {100}. The OCS contracted control sequence ({u02}, {u12}, {u02, u03})
that resolves CoFaSe under the ConEvs dynamics with the following trajec-
tory is a minimal contracted control sequence but is not control minimal:

010
{u0

2}−−−→
∗
001

{u1
2}−−−→

∗
110

{u0
2,u

0
3}−−−−−→

∗
100. (3.9)
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Note that a minimal and control minimal sequence for a given CoFaSe problem
may not be the sequence with the minimal total number of perturbations (i.e.,
number of freeze or unfreezing of variables). Indeed, there may be a control
sequence with a minimal total number of perturbations that is not minimal in size.

3.3 . Complexity of CoFaSe

In this section, we show that the inference of a control sequence satisfying
CoFaSe is PSPACE-hard. Since the freezing to 0 and to 1 cannot be triggered
simultaneously for a single variable, the cardinality of possible controlled transi-
tions from a state is 3|X| · |M |. Finding a single parsimonious control without
considering a set of initial states is NP-complete [7]. Thus, the CoFaSe problem
is even less tractable than finding single controls (assuming that PSPACE ̸= NP).
Therefore, finding the control sequence by exhaustively exploring possible control
spaces is not tractable.

To prove that CoFaSe inference is a PSPACE-hard problem, we lean on the
fact that the problem of reachability in Boolean networks working in synchronous
mode can actually be formalised as a CoFaSe problem. Indeed, reachability in a
Boolean network is precisely the CoFaSe problem for a Boolean control network
without controlled variables. Lemma 3.1 shows that this reduction is not merely
an artefact. Indeed, We can construct a network with a non-empty set of control
variables and reduce the CoFaSe problem for this network to a reachability problem
for a standard Boolean network.

Lemma 3.1. Deciding whether a control sequence exists for the CoFaSe prob-
lem in the synchronous mode is at least as hard as reachability in (uncontrolled)
Boolean networks in synchronous mode.

Proof. Take an n-variable Boolean networkF and construct a Boolean control
network F ′ by adding to F the single control variable x0 and defining the up-
date functions f ′

i ofF ′ in terms of the update functions fi ofF in the following
way:

f ′
i = fi ∧ x0, 1 ≤ i ≤ n,

f ′
0 = 0,

where f ′
0 is the update function for x0.Consider the controls µ1 = d10 and µ0 = d00 controlling x0 to 1 and 0 re-

spectively. The previous two properties ensure that the state graph of F ′
µ1

is
that of F , with x0 = 1 added to each state, and that the state graph F ′

µ0
only
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contains transitions to the state 0, which is the state in which all variables are
0.

Let X be the set of variables of F . The set of variables of F ′ is thus X ′ =

X ∪ {x0}. Fix a set of starting states Sα ⊆ SX′ and a set of target states
Sω ⊆ SX′ \ (Sα ∪{0}), such that the states in both sets satisfy x0 = 1. The Co-
FaSe problem for the tuple (F ′, Sα, Sω) has a solution if and only if the states
in Sω↓X are reachable from Sα↓X inF . Indeed, by construction ofF ′ and since
0 /∈ Sω , the control sequence for this instance of CoFaSe may only be the sin-
gleton control sequence consisting of µ1, and it must ensure the reachability
of Sω from Sα in Fµ1 , whose state graph is trivially isomorphic to that of F .

In conclusion, an oracle for CoFaSe would allow to solve reachability in
Boolean networks working in the synchronous mode with, at most, polyno-
mial overhead, which proves the lemma statement.

It is known that the complexity of the reachability in Boolean networks working
in synchronous mode is PSPACE-complete [44, 21].3 Below, we provide a sketch
of an alternative proof of this complexity based on a reduction from Deterministic
Linear Bounded Automaton (Lemma 3.2). In Lemma 3.3 we prove that the reach-
ability of Boolean networks with the synchronous mode is PSPACE. Finally, these
two lemmas result in the Theorem 3.1, which state the PSPACE-completeness of
the reachability problem for Boolean networks with the synchronous update mode.

Lemma 3.2. Given a Boolean network F with the variables X , a set of starting
states Sα ⊆ SX , and the set of target states Sω ⊆ SX \Sα, it is PSPACE-hard to de-
cide whether F can reach any of the states in Sω from a state in Sα in synchronous
mode.

Proof. The proof idea is to polynomial-time reduce the acceptance problemof
a Deterministic Linear Bounded Automaton (a DLBA) to reachability for Boolean
networks working in synchronous mode.

An LBA is a Turing machine that is only allowed to use, at most, f(n) con-
tiguous tape cells, in which n is the size of the input and f is a linear function.
Deciding whether a DLBA accepts a given input string is a PSPACE-complete
problem (e.g., [23]).

Take a DLBAM and construct the Boolean network F simulatingM in the
following way. Define the Boolean variables Ai,j and Qi,k, in which i indexes

3In [21], Dennunzio et al. prove that the reachability problem in reaction systems isPSPACE-complete. Since reaction systems form a subclass of Boolean networks, thePSPACE-hardness result is a lower complexity bound for the reachability problem inBoolean networks.
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the tape cells of M , j indexes the symbols in the tape alphabet of M , and k

indexes the states ofM . The situation in which the i-th tape cell contains the
j-th symbol is represented by setting Ai,j to 1. The situation in whichM is in
the k-th state and the head is on the i-th tape cell is represented by setting
Qi,k to 1. F operates by stepwise simulating the evolution of M : rewriting
the j1-th symbol to the j2-th symbol in the i-th tape cell is done by setting
Ai,j1 to 0 and Ai,j2 to 1, while moving the head from cell i1 to i2 and changing
the state from k1 to k2 is simulated by setting Qi1,k1 to 0 and Qi2,k2 to 1. The
synchronous dynamics of F , therefore, faithfully simulate M , because M is
deterministic.

For any input word w, the DLBA M reaches a configuration in the set of
accepting configurations CA if and only F can reach the encoding of one of
the configurations CA from the encoding of the initial configuration of M .
The statement of the lemma follows from the facts that the procedure of con-
structing F from M is polynomial and that acceptance for DLBA is PSPACE-
complete.
Lemma 3.3. Given a Boolean network F with the variables X , a set of starting
states Sα ⊆ SX , and the set of target states Sω ⊆ SX \ Sα, it is in PSPACE to
decide whether F can reach any of the states in Sω from one of the states in Sα in
synchronous mode.

Proof. The proof idea is to construct a DLBA M that accepts the input if and
only if the Boolean network F can reach a state in Sω from a state in Sα. The
initial configuration ofM consists of the following three segments:

1. the list of binary vectors representing the states in Sα, each vector writ-
ten in two copies;

2. the list of binary vectors representing the states in Sω , each vector writ-
ten in one copy;

3. an |X|-bit binary counter initialised to 0, where |X| is the number of
binary variables of F .

In the remainder of the proof, we implicitly assume that the states of F
are represented as binary words. A state (x1, x2, ..., xn) is thus represented
by the word x1x2 . . . xn.

Consider a state s ∈ Sα. The initial configuration of M contains a sub-
string ss. M starts by simulating the transitions of F on one copy of s and
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replacing the other copy by the new state s′ = F (s), thereby yielding the new
substring ss′. The subsequent operation of M is divided into macrosteps,
during which it carries out the following actions:

1. calculates the new state for each pair of states in Segment (1);
2. compares each new state with the states written in Segment (2); if one

of these comparisons is successful, M accepts, otherwise it continues
to the following substep;

3. checks if all the bits of the binary counter in Segment (3) are 1; if yes,
reject, otherwise, commence the next macrostep.

Intuitively,M simulates the deterministic synchronous dynamics of F on
every state in Segment (1), accepts if it sees a target state from Sω , or rejects
after 2|X| steps. Counting to 2|X| = |SX | ensures that the entire state graph
of F reachable from Sα is visited. Therefore, M accepts if and only if F can
reach at least one state in Sω from at least one state in Sα. Constructing
M from the triple (F, Sα, Sω) is a polynomial-time procedure, meaning that
an oracle for DLBA acceptance would allow deciding reachability for Boolean
networks working in the synchronous mode with polynomial overhead. This
point proves the statement of the lemma.

Theorem 3.1 below is derived directly from Lemmas 3.2 and 3.3.

Theorem 3.1. Given a Boolean network F with the variables X , a set of starting
states Sα ⊆ SX , and the set of target states Sω ⊆ SX \ Sα, it is PSPACE-complete
to decide whether F can reach any of the states in Sω from one of the states in Sα.

Theorem 3.1 combined with Lemma 3.1, implies the complexity of CoFaSe
is at least PSPACE-hard. This point is stated in Theorem 3.2. Whether solving
CoFaSe is in PSPACE remains an open question.

Theorem 3.2. Deciding the existence of a control sequence for the CoFaSe prob-
lem in the synchronous mode is PSPACE-hard.
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4 - State of the art in control inference

Algorithmic methods enabling the identification of control strategies of Boolean
networks in order to identify therapeutic targets have been the subject of a number
of publications in recent years. The controllability of biological systems has mostly
been done in one-step. Sequential controllability analysis, in contrast, is still in its
infancy. and has mainly been studied by Mandon et al. in [35, 37, 36, 34]. We
therefore explain their approach in detail and compare it with our works.

In this chapter, we first describe different approaches of one-step program-
ming in Section 4.1. In Section 4.2, we then describe the sequential programming
approach proposed by Mandon et al. Finally, we will conclude in Section 4.3 by
explaining the principal differences between the sequential paradigm proposed by
Mandon et al. and ours.

4.1 . One-step reprogramming

We briefly recall the existing approaches to one-step reprogramming, namely:
simulation, max-SAT ATPG,attractors and Hamming distance, stable motifs, Gröb-
ner basis, and prime implicants. These approaches differ according to their opti-
misation objectives and control application.

4.1.1 . Simulation

To the best of our knowledge, one-step reprogramming for Boolean networks
was pioneered by Layek et al. in [30]. The authors present an approach for design-
ing cancer therapies by assimilating cancerous perturbations with stuck-at-fault
and bridging faults by analogy with the errors of electronic circuits. Relevant gene
regulation pathway information is first used to produce an acyclic Boolean net-
work. The resulting network has a set of input and output variables. The Boolean
network is then transformed into a digital circuit from which an enumeration and
classification of possible faults is realised.

Stuck-at-fault corresponds to the setting of a network variable to a particular
value (0 or 1). Bridging faults correspond to the removal or incorporation of new
interactions between system variables. A simulation-based method for implement-
ing and identifying stuck-at-fault failures is proposed. The authors first model,
from biological knowledge, the effect of existing n drugs. The authors then ex-
haustively simulate from a given initial state the 2n possible drug binary vectors. If
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a particular drug is applied, it is assigned the value 1; otherwise, it is assigned the
value 0. A drugs vector is considered effective if, for single failures or combinations
of failures, its application to the system results in a healthy output state. The
method proposed in this article is therefore based on a ‘brute force’ method of the
exhaustive simulation of all possible single failures for acyclic Boolean networks.

4.1.2 . Max-SAT ATPG

In [32], Lin et al. propose an improvement on the method by Layek et al.
The authors present an efficient and extensible SAT-based ATPG1 methodology
for cancer therapy and introduce the notion of optimality of therapies. The digital
circuit presented in [30], in addition to the testing conditions, is converted into a
conjunctive normal form (CNF). The conjunctive normal form is then augmented
with the desired output and solved using a weighted partial Max-SAT solver. Each
gene of the network is associated with an CNF formula. This formula is evaluated
at 1 if and only if the variables representing its inputs and outputs take on values
consistent with the gene truth table. An α failure is added to this formula as an
input variable. The simulation of the activation of the failure consists in adding a
clause α to the CNF, whereas the simulation of the non-activation of the failure
consists of adding a clause ¬α to the CNF. To select the drugs that guarantee
the best output from the network, weights are assigned to the clauses representing
exit variables in the conjunctive normal form so that the healthy state is associated
with the greatest weight, and the failed states the lowest with weight. In order to
prioritise treatments that minimise the number and cost of drugs, positive weights
proportional to the cost of a drug are assigned to failures corresponding to the
action of the drug.

4.1.3 . Attractors and Hamming distance

In [42, 43], Paul et al. propose an approach for finding single-step control,
enabling the Boolean network to reach one of the desired attractors from a given
initial state. The paper considers various types of control actions but focuses on
temporary simultaneous perturbations. The authors aim is to make the control
as least invasive as possible to the system as possible. This aim results in the
search for the most parsimonious control. Simultaneous temporary perturbations
were all applied for just a single time step at the same time. The perturbations
induce a change in the value of some variables, but these variables can later be

1Automatic Test Pattern Generation and Automatic Test Pattern Generator is anelectronic design automation method used to find an input that, when applied to adigital circuit, enables to automatically distinguish between correct circuit behaviourand faulty circuit behaviour caused by defects.
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updated according to their original Boolean function. Thus, only the dynamics of
the Boolean network without control needs to be considered.

The problem of finding a minimal control driving the system from an initial
state to a desired attractor is PSPACE-hard. Thus, a simple global approach
performing computations on the entire network will not scale well for large networks.
Therefore, they propose a decomposition-based solution to this problem, which can
be significantly quicker than existing approaches on large networks. This approach
takes advantage of existing algorithms for computing the basin of attraction of an
attractor.

The central assumption of Paul et al. is that the computed basins of attrac-
tion are smaller than the size of the transition system. This factor reduces the
state space that needs to be considered and thus improves efficiency. A minimal
control is determined by finding the minimal Hamming distance between the initial
state and the state of a target attractor. The control can then be deduced from
the substitutions of variable values required to jump from the initial state to the
state of the target attractor. The algorithm presented in [43] performs efficiently
for networks with a low number of small strongly connected components in the
interaction graph as, in this case, the computed basins of attraction will also be
small.

4.1.4 . Stable motifs

In this article [61], Zañudo et al. propose a network control approach that
combines the structural and functional information of a Boolean network to iden-
tify control targets. The method builds on the concept of stable motifs and their
relation to finding attractors. By connecting stable motifs with other stable motifs,
the presented algorithm identifies targets whose manipulation ensures the conver-
gence of the system to an attractor of interest form the original network dynamics.
Stable motifs are defined as interaction subgraphs composed of minimal strongly
connected components in which the states of the motif variables form a partial
fixed point that, once reached, will not be changed by the dynamics. Stable motif
control interventions are guaranteed to drive the network from all possible sets of
initial states to the target attractor state. This outcome can be explained by the
fact that controlling all cycles of a Boolean network results in a network with only
one attractor. Furthermore, the control only needs to be applied transiently for
the network to reach and stay in the desired attractors of the original network.

4.1.5 . Gröbner basis
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The authors of [39], Murrugarra et al., propose an approach that takes advan-
tage of the rich algorithmic theory of computer algebra to infer potential inter-
vention targets in synchronously updated Boolean networks. The paper considers
two types of control actions: the deletion of arcs and the deletion (or constant
expression) of nodes. The proposed methods are based on rewriting the Boolean
network, its control actions, and the desired property as a system of polynomial
equations. Three control actions are considered in the paper: the generation of
new steady states representing a desirable cell fate,; the removal of existing steady
states representing undesirable cell fates; and the blocking of regions in the state
space in which particular values of variables trigger an undesirable pathway or are
the signature of an abnormal cell. Based on these points, the authors obtain a
system of polynomial equations (or a single equation) that needs to be solved to
find the appropriate controls. The resolution of this system of equations is based
on the calculation of the Gröbner basis. The controls inferred by using this ap-
proach do not guarantee the global reachability of a desired stable state because
the inferred control modified the state space by augmenting the size of a desired
stable state basin of attraction or removing undesired attractors.

4.1.6 . Prime implicants

Biane et al. propose in [9, 7, 8] an approach for inferring the minimal sets of
actions, enabling the reprogramming of Boolean networks updated synchronously
or asynchronously. The authors introduce the formalism of controlled Boolean
networks via arc freezing and variable freezing. The control formalism presented in
Section 2.3 is drawn from the work of Biane et al. who present two reprogramming
modes, possibility and necessity, in which, respectively:

• At least a stable state of the controlled Boolean network validates the desired
property.

• All stable states of the controlled Boolean network validate the desired prop-
erty.

Biane et al. prove that the computation of the parsimonious control strat-
egy, in which the network needs to have stable states validating a property, is a
problem of abductive inference in propositional logic. Using well-known methods
for computing the prime implicants of Boolean functions, the authors developed
algorithms computing all parsimonious control strategies.

The first algorithm recursively calculates all parsimonious control strategies.
The algorithm is based on integer linear programming and rewrites the Boolean
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network, its control actions, and the desired property as a system of linear equa-
tions. This method also makes it possible to assign costs to reprogrammation and
thus compute control strategies minimizing this cost. This algorithm is also used
as a solver in one of the algorithms solving CoFaSe under the ConEvs dynamics
that we present later.

The second algorithm based on the binary decision diagram calculates all par-
simonious control strategies in one-step. This algorithm calculates the prime impli-
cants from the formula specifying the stability and property conditions represented
by a reduced ordered binary decision diagram. This algorithm obtains better per-
formance than the first algorithm in the case of the necessity reprogramming mode.

4.2 . Sequential reprogramming

In [35, 37, 36], Mandon et al. studied asynchronously updated Boolean net-
works and, more particularly, their interaction graph. The authors expected to find
all control sequences reaching a desired property from a set of initial states and
having a number of disturbances inferior to a defined limit. The authors considered
the total number of perturbations realised throughout the sequence. A minimal
sequence of control is considered to be a sequence with a minimal number of per-
turbations (i.e., a minimal number of controlled variables). The authors goal was
to find sequential controls with fewer perturbations to bring new reprogramming
solutions to biological networks for which one-step reprogramming strategies are
already known.

To modify the dynamics of a Boolean network, Mandon et al. perturb either
one of its functions or its current state. A function perturbation is considered to
be a permanent perturbation as it induces a permanent state change of nodes to
a desired profile of 1 or 0. Such perturbation is equivalent to node freezing. A
state perturbation is considered to be a temporary perturbation as it induces a
state change of nodes, but these nodes can later be updated according to their
original Boolean functions. A state perturbation can also be viewed as a jump in
the dynamics of the studied Boolean network.

Given a set of initial states and a set of target states, Mandon et al. classify
successful reprogramming strategies according to different ‘degrees of success’:

• If the target is reachable in principle with the control strategy but might
never be reached then the strategy is called existential.

• If the target is always reached, then the strategy is called inevitable.
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Paper [35] shows that the strongly connected components of the interaction
graph considerably influence the dynamics of the Boolean network. The authors
found that strongly connected components that contain loops are more important.
Paper [34] presents an algorithm that perturbs the strongly connected components
in a given order, using sequentiality to reduce the size of the perturbations. How-
ever, the proposed algorithm does not always return minimal solutions and works
only on networks with small strongly connected components.

Papers [36, 37] propose a second algorithm that relies on a transition graph with
k superposed layers corresponding to the number of k possible perturbations given
by the user. This second algorithm, which enables the network to be perturbed
in any state, returns a complete list of solutions for temporary and permanent
perturbations but only works on small networks due to its slowness.

In the framework of the papers [35], sequential reprogramming enables the net-
work to be perturbed in any state. The authors claim this process requires complete
observability of the system, which is very difficult to obtain experimentally in vivo
and in vitro. To make the sequential reprogramming practical, the authors designed
a sequential reprogramming strategy that uses attractors [42, 43] as intermediate
steps. This control update dynamics resembles our ConEvs dynamics but, unlike
ConEvs, enable a change of control on cyclic attractors. The authors propose a
third algorithm [36, 37] using this new update control dynamics and inspired by
their second algorithm, enabling only temporary perturbations. This algorithm is
quicker than the other proposed methods in some cases and returns shorter pertur-
bation sequences. However, the resulting sequences are fewer and generally have
a larger number of perturbations than those yielded by the second algorithm.

4.3 . Conclusion

The algorithmic methods developed in the literature to calculate control strate-
gies for Boolean networks differ in the objectives of the reprogramming, the mod-
elled perturbation, the dynamics and topology of the studied networks, and the
minimality of the solutions. For example, the one-step controllability methods
based on simulation in [30, 32] and attractors and Hamming distance in [42, 43]
seek to infer controls that drive the system from a stable state to an attractor
validating a desired property. In contrast, the one-step controlabillity methods
based on stable motifs [61], the Gröbner basis in [39], and the prime implicants in
[9, 7, 8] seek to infer controls that drive the system from all stable states to a set
of attractors validating a desired property. In the literature, the main approaches
have some similarities but also some differences in term of goal and framework.
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For example, determining a control driving the system from an initial state to a
desired attractor and determining a control resulting in a network with a given set
of property on its fixed point attractors are two problems with differing complexi-
ties. The first is PSPACE-hard, whereas the second is NP-hard. Such differences
mean that comparing these approaches can be a difficult exercise.

The sequential reprogramming framework we propose in this thesis differs from
that introduced in [35, 37, 36, 34]. We seek to infer a minimal contracted control
sequence in size. In contrast, Mandon et al. ’s main objective was to minimise
the total number of perturbations, particularly regarding known one-step controls.
These fundamental differences in the objectives of the reprogramming and the
definition of minimality form real variations in the way sequential control is defined
and treated. Concretely, in all examples in which the algorithms by Mandon et al.
found a sequential control smaller than an existing one-step control, our algorithms
would return only a one-step control.

Another difference concerns the nature of perturbations: the third algorithm of
Mandon et al. presented in [36, 37] only addresses with temporary perturbations.
In this case, the dynamics graph of the controlled Boolean network does not change
with the control. This outcome differs from our paradigm of Boolean controlled
network, in which each control can result in a different dynamics graph. Thus, de-
spite similarities such as the importance of strongly connected components, which
we explore later, our method deals with a slightly different problem.
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5 - Dynamical sequence analysis

Finding a minimal control sequence by exhaustively exploring all possible con-
trol sequences is not tractable. Indeed, since controllable variables can alternate
between being controlled to 1, 0 or uncontrolled indefinitely, the number of possi-
ble control sequences is infinite. Therefore, we need to design a method capable
of inferring an appropriate control sequence without performing an exhaustive ex-
ploration of all the sequences.

In the trajectory of a minimal sequence µ[k], the set of intermediary states si,
1 < i ≤ k can be viewed as intermediary properties that must be reached before
reaching a target state. By seeking for factors that limit the set of possible inter-
mediary states, we should significantly reduce the search space in practice.

In order to find such factors, we study the dynamical properties of the Co-
FaSe problem generated by the opposition between C̄X -variables and CX -variables.
Proposition 3.1 states that when not in ConEvs dynamics, the dynamics of control-
lable variables can be ignored as they can be reproduced by a TCS sequence. This
statement offers insights into the critical role of the uncontrolled variables in the
resolution of the CoFaSe problem. As the variables in CX are fully controlled by
the TCS sequence, their natural evolution is essentially discarded. Thus, visiting an
already encountered C̄X -profile with a different CX -profile is irrelevant for solving
a CoFaSe problem. Therefore, the dynamical properties that imply the necessity
of a sequence of control should emerge from the update functions of C̄X -variables.
The same observation is true for solving CoFaSe under the ConEvs dynamics.

In this chapter, we explore the dynamical properties of the CoFaSe problem
emanating from the existence of a set of CX -variables. In the first section, we study
the partitioning of the C̄X -variables and their properties. In the second section,
we define a bound on the size of sequence in the CoFaSe problem. In the final
section, we present bounds for the ConEvs dynamics.

5.1 . Partitioning of the C̄X-variables

This technical section defines the notions employed to solve the proofs of the
upper bounds on sequence length (Sections 5.2 and 5.3).

5.1.1 . Partitioned dynamics.
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We focused on the partitioning of the states of the Boolean networks with
respect to their C̄X -profiles. Starting from a model of dynamics, we defined the
quotient graph called partitioned dynamics, representing the transitions over the
partition. The following equivalence relation is used for its definition:

∀s, s′ ∈ SX : s ∼ s′ ⇔ sC̄X
= s′C̄X

. (5.1)
All the states with the same C̄X -profile belong to the same partition. Formally,

the partitioned dynamics of the Boolean network FU is, thus, a labelled transition
system ⟨SC̄X

, U, ⟩. [s] denotes the equivalence class of the state s according to
the equivalence relation (5.1). The transition is defined as follows:

[s] [s′]
def
== s, s′ ∈ SX ,∃µ ∈ SU : s

µ−→ s′. (5.2)
The resulting partitioned dynamics models the intrinsic dynamical interactions be-
tween the signature variations of the biomarkers and provides an overview of the
possible sequence-controlled evolution of the network.

Figure 5.1 displays the partitioned synchronous dynamics of the example Boolean
networks from Figure 2.7 and Figure 3.1.
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Legend: On the left is the synchronous partitioned dynamics of the
Boolean network F{u1

1,u
0
1} of Figure 2.7 where C̄X = {x2, x3} and on the

right is the synchronous partitioned dynamics of the Boolean control net-
work F{u1

2,u
0
2,u

1
3,u

0
3} of Figure 3.1 where C̄X = {x1}. Equivalence classes arerepresented by polygons containing the C̄X -profile of the states belong-ing to them.

Figure 5.1: Synchronous partitioned dynamics of two controlledBoolean networks.
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5.1.2 . Properties of equivalence classes.

In this subsection, we define the properties of equivalence classes and the
properties of states belonging to equivalence classes.

Target equivalence class. Take s as a state; if ∃µ ∈ SU ,∃s′ ∈ SX : s
µ−→ s′,

then [s′] is defined as a target equivalence class of s. Propositions 5.1 and 5.2
provide observational properties of target equivalence classes and their states in
synchronous evolution.

Proposition 5.1. In the synchronous mode, regardless of the control, each tran-
sition from a state leads to states belonging to a unique target equivalence class.

Proof. Assume an initial state s with s1 and s2 two states derived from the
one step synchronous evolution of, respectively, Fµ1 and Fµ2 . Assume also
that the following is true:

∃µ1, µ2 ∈ SU : s
µ1−→ s1 ∧ s

µ2−→ s2 ∧ s1C̄X
̸= s2C̄X

By definition C̄X -variables are not controllable. In synchronous mode,
the dynamics is determined by anterior states (i.e., applying different controls
cannot change the values of the C̄X -variables, because one step is not enough
to propagate the updates). Thus, the states s1 and s2 cannot have different
equivalence classes by means of controls. This point contradicts the above
equation and substantiates the statement of this proposition.
Proposition 5.2. In the synchronous mode, a state can reach any state of its
target equivalence class in a single step under an appropriate control.

Proof. The proposition follows from the fact that, in the synchronous mode,
all CX -profiles are reachable by a total control in a single step
Impermanent and enduring states. For a better understanding of the
evolution of states with respect to equivalence classes, we distinguish impermanent
states which cannot be stabilised whatever the applied control, from enduring
states that can be stabilised by an appropriate control. This point is formally
expressed as follows:

∀µ ∈ SU :¬STBLFµ(s) impermanent state, (5.3)
∃µ ∈ SU :STBLFµ(s) enduring state. (5.4)

51



Any state s must either be impermanent or enduring: the definitions in Equa-
tions (5.3) and (5.4) are logical opposites. We can further derive C̄X -related
properties from these definitions.

• If s is impermanent, s cannot be a stable state for any control. Therefore,
we can deduce the following equation ∀µ : Fµ(s) ̸= s. We know that this
point true even for the total control µT , which fixes the CX -variables to
their values in s (i.e., (Fµ(s))CX

= sCX
). According to Proposition 5.1, no

matter the control, (Fµ(s))C̄X
will always have the same profile. Thus, s

must be a state in which the C̄X -variables must evolve at the next dynamics
step, ∀µ : (Fµ(s))C̄X

̸= sC̄X
.

• If s is enduring, then there must exist a control µ where Fµ(s) = s. Accord-
ing to Proposition 5.1, no matter the control, (Fµ(s))C̄X

will always have
the same profile. Therefore, ∀µ : (Fµ(s))C̄X

= sC̄X
.

Therefore, an arc between two equivalence classes [s] and [s′] in the partitioned
dynamics implies the existence of a state in [s] whose target equivalence class is
[s′]. If [s] = [s′], s must be an impermanent state. In the case where [s] ̸= [s′],
s must be an enduring state. These dynamical properties are formally defined as
follows:

s is impermanent if: ∀µ ∈ SU : s
µ−→ s′ =⇒ sC̄X

̸= s′
C̄X

,

s is enduring if: ∀µ ∈ SU : s
µ−→ s′ =⇒ sC̄X

= s′
C̄X

.

Figure 5.2 shows the partitioned dynamics of the Boolean networks from Fig-
ures 2.7 and 3.1, together with the impermanent and enduring states, as well as
their target equivalence classes.

5.2 . Bounds on sequence size

Proposition 5.2 and the definition of an impermanent state provide insights
into the resolution of the CoFaSe problem. The dynamical properties related to
equivalence classes enable us to define an upper bound on the length of minimal
control sequences. A minimal sequence solving the problem should jump from an
impermanent state to another until it reaches the equivalence class of a target
state. A trajectory induced by a minimal control sequence should not pass through
intermediary enduring states. Such an action would be redundant as all states of
an impermanent target equivalence class of a state s are always reachable with a

52



010111

100001

110

000

011

101
100 101
110

001
010000111

011

Enduring and
impermanent states

of F{u1
1,u

0
1}

Enduring and
impermanent states

of F{u1
2,u

0
2,u

1
3,u

0
3}

Legend: On the left are the enduring and impermanent states of the
Boolean network F{u1

1,u
0
1} of Figure 2.7 where C̄X = {x2, x3} and on the

right are the enduring and impermanent states of the Boolean control
network F{u1

2,u
0
2,u

1
3,u

0
3} of Figure 3.1 where C̄X = {x1}. The enduring statesof each equivalence class of the partitioned dynamics are coloured in grey

and the impermanent states, in white, are connected to their target equiv-
alence classes represented by a dotted circle.

Figure 5.2: Synchronous enduring and impermanent states and thepartitioned dynamics of two Boolean networks.
control from s.

Theorem 5.1 defines an upper bound on the size of minimal sequences that only
depends on the number of equivalence classes and, thus, of uncontrolled variables.
This theorem reveals the critical role of uncontrolled variables in determining the
control sequence. Indeed, the upper bound given by Theorem 5.1 (2|C̄X |) depends
on the number of C̄X -variables.

Theorem5.1. The size of theminimal control sequenceµ[k] solving a given CoFaSe
problem is bounded by 2|C̄X | for the synchronous mode:

∣∣µ[k]

∣∣ ≤ 2|C̄X |.

Proof. Assume that µ[k], with k > 2|C̄X |, is a minimal sequence solving the
CoFaSe problem ⟨Fµ, Sα, Sω⟩. The control sequence µ[k] yields the following
sequence of states: s1 µ1−→ s2 . . . sk

µk−→ sk+1, with s1 ∈ Sα and sk+1 ∈ Sω.
FromProposition (5.2), we know that all states of a target equivalence class

are reachable in one step under the appropriate control. Since only the up-
date of impermanent states evolves the uncontrolled variables, it is only pos-
sible to reach the next desired impermanent state or property from another
impermanent state.Then, the main steps for solving CoFaSe consist in find-
ing the minimal path, from a state of Sα to a state of Sω , by traversing solely
impermanent through impermanent states of different equivalence classes.
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Therefore, a minimal control sequence does not pass through two states with
identical equivalence class. Since µ[k] is minimal, the states from s2 to sk are
impermanent states and the equivalence classes from [s2] to [sk] are differ-
ent target equivalence classes of their former state. The sequence then spans
k − 1 ≥ 2|C̄X | different equivalence classes. Since only 2|C̄X | C̄X -profiles ex-
ist, for 2 ≤ i < j ≤ k + 1, the sequence must have a state si with the same
C̄X -profile as sj . Note that 2 ≤ i because the first state s1 may not be an
impermanent state. Thus, from the state si−1 having for target equivalence
class [si] = [sj ], it is possible to reach sj and to yield the following sequence
s1

µ1−→ . . . si−1
µ′
i−1−−−→ sj

µj−→ . . . sk+1. Hence, the sequence µ[k] is not minimal,
thus contradicting the original assumption and proving the statement of the
theorem.

For example, consider the Boolean network from Figure 2.7 with Sα = {000}
and Sω = {010, 110}. By following the minimal path between the equivalence
classes [000] and [110] or [010] in the right graph of Figure 5.2, we obtain the two
following minimal sequences solving the CoFaSe problem:

000
{d11}−−−→ 101

{d01}−−−→ 011
{d11}−−−→ 110.

000
{d11}−−−→ 101

{d01}−−−→ 011
{d10}−−−→ 010.

Consider now the Boolean network from Figure 3.1 with Sα = {010} and
Sω = {100}. By following the minimal path between the equivalence classes [010]
and [100] in the left graph of Figure 5.2, we obtain the following minimal sequence
solving the CoFaSe problem:

010
{d21,d31}−−−−→ 011

{d20,d30}−−−−→ 100.

5.3 . Bounds on sequence size for ConEvs dynamics

Determining low upper bounds on the size of control sequences would indicates
that algorithms based on a direct exploration of the sequence space can be an
efficient solution for sequence inference. Theorem 5.1 establishes such an upper
bound, but it is proved for the particular context under which the control can be
changed at any state. This bound is not therefore directly applicable to ConEvs,
where control changes are only allowed at stable states.

The following theorems establish the upper bounds for this semantics. The-
orem 5.2 provides an upper bound of 2|C̄X | under the TCS control application
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strategies and Theorem 5.3 provides an upper bound of 2|C̄X |+1 − 1 under the
OCS control application strategies. Thus, the exhaustive exploration of all possi-
ble profiles for the CX -variables should constitute an efficient approach for control
sequence computation in comparison with an exhaustive exploration of possible
control sequences. For the two theorems, we always consider that every initial
state is enduring.

Theorem 5.2. The size of the minimal contracted total control sequence µ[k] ∈
TCS solving the CoFaSe problem (F, Sα, Sω) for the ConEvs model of dynamics
under the synchronous mode is at most 2|C̄X |:∣∣µ[k]

∣∣ ≤ 2|C̄X |.

Proof. Consider the CoFaSe problem (FU , Sα, Sω) and assume that µ[k] ∈ TCS
is aminimal contracted total control sequence solving it for the ConEvsmodel
of dynamics. This control sequence leads to the trajectoryT = s1

µ1−→
∗
s2 . . . sk

µk−→
∗

sk+1, with s1 ∈ Sα, sk+1 ∈ Sω , and the states si, 1 ≤ i < k+1, being the stable
states at which the control is changed. We use the symbol τ to refer to the
sequence of stable states, plus the initial and the final states: τ = (si)1≤i≤k+1.

Now assume that k > 2|C̄X |. Since k is greater than the number of all
states over C̄X , it must be that τ contains two states with the same target
equivalence class. Assume these two states are at positions 1 ≤ i ≤ j < k+1

(i.e., for [si] = [sj ]).
According to Proposition 5.1, controlling si withµj reaches the state sj+1 in

one step. Indeed, si and sj are enduring states; for si µj−→ s′ and sj
µj−→ s′′, we

have s′
C̄X

= s′′
C̄X

. Furthermore, since [si] = [sj ], s′ is equal to s′′, this leads to
the trajectory T ′ = s1

µ1−→
∗
s2 . . . si

µj−→
∗
sj+1 . . . sk

µk−→
∗
sk+1, contradicting

our initial assumption that µ[k] is minimal.
Therefore, any control sequence solving theCoFaSeproblem for theConEvs

model of dynamicswithmore than 2|C̄X | elements is notminimal, which proves
the statement of the theorem.
Theorem 5.3. The size of the minimal contracted control sequence µ[k] ∈ OCS

solving the CoFaSe problem (F, Sα, Sω) for the ConEvs model of dynamics under
the synchronous mode is at most 2|C̄X |+1 − 1:∣∣µ[k]

∣∣ ≤ 2|C̄X |+1 − 1.

Proof. Consider the CoFaSe problem (FU , Sα, Sω) and assume that µ[k] ∈ OCS
is a minimal contracted control sequence solving it for the ConEvs model of
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dynamics. This control sequence gives rise to the trajectory T = s1
µ1−→

∗

s2 . . . sk
µk−→

∗
sk+1, with s1 ∈ Sα, sk+1 ∈ Sω and the states si, 1 ≤ i < k + 1

being the stable states at which the control is changed. We use the symbol τ
to refer to the sequence of stable states, plus the initial and the final states:
τ = (si)1≤i≤k+1.

Now assume that k > 2|C̄X |+1 − 1. Since k + 1 is greater than double the
number of all states over C̄X , it must be that τ contains three states with the
same target equivalence class. Assume these three states are at positions
1 ≤ h < i < j ≤ k + 1 (i.e., for sh µh−→ sh

′, si µi−→ si
′ and sj

µj−→ sj
′), this means

we have [sh
′
] = [si

′
] = [sj

′
]. Note that at least two different controls must

appear between the states sh and sj because there is at least the stable state
si in between the two.

By construction the stable states si, sj , and sh are enduring states, and
thus have for target equivalence class their own equivalence class. According
to Proposition 5.2, it is possible from sh to find a control µ′

h reaching sj in one
step. This gives rise to the following trajectory: T ′ = s1

µ1−→
∗
s2 . . . sh

µ′
h−→

sj . . . sk
µk−→

∗
sk+1. This trajectory contradicts our initial assumption that µ[k]

is minimal.
Therefore, any control sequence solving theCoFaSeproblem for theConEvs

model of dynamics and with more than 2|C̄X |+1 − 1 elements is not minimal,
which proves the statement of the theorem.

Theorem 5.2 implies the impossibility of having two states, si and sj , 1 < i <

j ≤ k + 1, in the contracted trace with identical equivalence class. This point
extends to 1 ≤ i if the initial state is an enduring state. The following corollary
formalises this observation:

Corollary 5.1. Consider a minimal contracted control sequence µT
[k] ∈ TCS solv-

ing the CoFaSe problem (F, Sα, Sω) for the ConEvs model of dynamics under the
synchronous mode. Take the sequence τ = (si)1≤i≤k+1 of states induced by µT

[k],
with s1 ∈ Sα, sk+1 ∈ Sω , and the states si, 1 ≤ i < k + 1, being the stable states
at which the control is changed. In this case, it is impossible to have two indices
1 < i < j ≤ k such that [si] = [sj ].

Proof. As the two target equivalence classes [si] and [sj ] are equal, and as sj
and si are enduring states by hypothesis, it follows from Proposition 5.2 and
Theorem 5.2 that sj+1 can be reached from si with the control µj . Indeed,
si and sj are enduring states for si µj−→ s′ and sj

µj−→ s′′, meaning we have
s′
C̄X

= s′′
C̄X

. Furthermore, since [si] = [sj ], s′ is equal to s′′. Thus, in a minimal
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control sequence, it is impossible to have two indices 1 < i < j ≤ k such that
[si] = [sj ].
Duplicates Theorem 5.3 highlights the possibility of the occurrence of states
with identical equivalence class in the contracted trace. Since in minimal con-
tracted control sequences all intermediary states are enduring states. The proof
of the theorem also entails that any equivalence class may appear at most twice.
Furthermore, such an appearance necessarily happens in consecutive states of the
trace. We refer to these occurrences as duplicates. Intuitively, if duplicate equiva-
lence classes appear in non-successive steps i and j, the whole evolution between i

and j can be skipped by applying an appropriate control input. These observations
exclude the first state as the equivalence class of the first state may appear three
times at most. Indeed, if the first state is an impermanent state, then its tar-
get equivalence class and its own equivalence class will be distinct. The following
corollary formalises this observation:

Corollary 5.2. Consider aminimal contracted control sequence µ[k] ∈ OCS solv-
ing the CoFaSe problem (F, Sα, Sω) for the ConEvs model of dynamics under the
synchronous mode. Take the sequence τ = (si)1≤i≤k+1 of states induced by µ[k],
with s1 ∈ Sα, sk+1 ∈ Sω , and the states si, 1 < i < k + 1, being the stable states
at which the control is changed. If there exist two indices 1 < i < j ≤ k + 1 such
that si µi−→ si

′
, sj

µj−→ sj
′ and [si

′
] = [sj

′
], then j = i+ 1.

Proof. As the two target equivalence classes [si′] and [sj
′
] are equal, and as sj

is an enduring state by hypothesis, it follows from Proposition 5.2 and Theo-
rem 5.3 that it is possible to find a control µ′

i reaching sj from si in one step
whenever j > i + 1. Thus, in a minimal control sequence, if there exist two
indices 1 < i < j ≤ k + 1 such that si µi−→ si

′
, sj

µj−→ sj
′ and [si

′
] = [sj

′
], then

j = i+ 1.
For example, the contracted trace of the trajectory 3.7 of the Boolean networks

of Figure 3.1 contains the duplicate x1 = 0 in the initial state 010 and the stable
state 001.

Examples reaching the bounds. We demonstrate that with the Boolean
control networks of Figures 5.3 and Figure 5.4, that the length of the minimal
control sequences reaches the bounds outlined by Theorems 5.2 and 5.3.

57



F{u1
3,u

0
3,u

1
4,u
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x1 = x1 ∨ (x2 ∧ ¬x3 ∧ x4)

x2 = (x1 ∧ x2) ∨ (x1 ∧ x3 ∧ ¬x4)
∨(¬x1 ∧ ¬x3 ∧ ¬x4) ∨ (x2 ∧ x3)

x3 = (1 ∨ ¬u13) ∧ u03
x4 = (1 ∨ ¬u14) ∧ u04

x3

x4

x1x2 ++
±
+

±

+−

−

Legend: Boolean control networkF{u1
3,u

0
3,u

1
4,u

0
4} with aminimal control se-

quence reaching the bound defined by Theorem 5.2. The Boolean control
network is accompanied by the interaction graph of the corresponding
Boolean network without control parameters.

Figure 5.3: Boolean network having a control sequence reaching thebound for TCS ConEvs.
Example 5.1. In Figure 5.3, in which C̄X = {x1, x2}, the CoFaSe problem under
the ConEvs dynamics in which Sα = {0011}, Sω = {1111} has the following TCS
sequence of size 2|C̄X | (4) as a solution:

0011
{u0

3,u
0
4}−−−−−→

∗
0100

{u0
3,u

1
4}−−−−−→

∗
1001

{u1
3,u

0
4}−−−−−→

∗
1110

{u1
3,u

1
4}−−−−−→

∗
1111.

F{u1
3,u

0
3,u

1
4,u

0
4,u

1
5,u

0
5} =

x1 = (x1 ∧ ¬x2) ∨ (x1 ∧ x3) ∨ (x1 ∧ ¬x4)
∨(x1 ∧ x5) ∨ (¬x1 ∧ x2 ∧ ¬x3 ∧ x4 ∧ ¬x5)
x2 = (x1 ∧ x2 ∧ ¬x3) ∨ (¬x1 ∧ x2 ∧ x3)

∨(¬x1 ∧ ¬x2 ∧ ¬x3 ∧ ¬x4 ∧ ¬x5) ∨ (x2 ∧ x5)

∨(x1 ∧ ¬x2 ∧ x3 ∧ ¬x4 ∧ ¬x5) ∨ (x2 ∧ x4)

x3 = (1 ∨ ¬u13) ∧ u03
x4 = (1 ∨ ¬u14) ∧ u04
x5 = ((x1 ∧ x2 ∧ x3 ∧ ¬x4) ∨ (¬x1 ∧ x2 ∧ ¬x3 ∧ x4)

∨(¬x1 ∧ ¬x2 ∧ ¬x3 ∧ ¬x4) ∨ x5 ∨ ¬u15) ∧ u05
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Legend: Boolean control network F{u1
3,u

0
3,u

1
4,u

0
4,u

1
5,u

0
5} with a minimal con-

trol sequence reaching the bound defined by Theorem 5.3. The Boolean
control network is accompanied by the interaction graph of the corre-
sponding Boolean network without control parameters.

Figure 5.4: Boolean network having a control sequence reaching thebound for OCS ConEvs.
Example 5.2. In Figure 5.4 in which C̄X = {x1, x2} the CoFaSe problem under
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the ConEvs dynamics where Sα = {00111}, Sω = {10111}has the following OCS
sequence of size 2|C̄X |+1 − 1 (7) as a solution:

00111
{u0

5}−−−→
∗
00110

{u0
3,u

0
4}−−−−−→

∗
01001

{u0
5}−−−→

∗
01110

{u0
3}−−−→

∗

11011
{u0

5}−−−→
∗
11110

{u0
4}−−−−−→

∗
10101

∅−−−→
∗
10111.
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6 - Control sequence inference algorithms

Studying the dynamical properties of Total Control Sequence and Open Con-
trol Sequence control strategies in Chapter 5 enabled us to define the upper bounds
on the length of minimal control sequences. These upper bounds reveal that the
uncontrollable variables are central for the inference of a control sequence. As
the number of uncontrolled variables is in practice markedly lower than the num-
ber of controlled variables (e.g., [7, 11, 13]), the exhaustive exploration of all
possible profiles for these variables constitutes an efficient approach for control
sequence computation. Thus, we defined algorithms based on partitioning and the
exploration of uncontrolled variable profiles. The algorithms infer control minimal
sequences that solve the CoFaSe problem for the ConEvs model of dynamics.

In this chapter, we present two algorithms [40, 41] based on C̄X -profiles explo-
ration. In the first section, we present an algorithm for sequence inference. In the
second section, we propose the TCS-based inference method, which is less costly
but cannot find sequences containing duplicates. In the final section, we present
and discuss the benchmarks of the two proposed algorithms.

6.1 . Inference of contracted control sequences

The algorithm inferring a control sequence under the ConEvs model of dynam-
ics builds a tree describing the possible paths reaching a final state of Sω from
the initial set of states Sα. The shortest paths/trajectories are found in this tree,
from which the control sequences are then directly derived. By construction, the
algorithm avoids redundant operations. Indeed, exploring an already explored C̄X -
profile is redundant as all C̄X -profiles reachable from such a profile would have
already been reached in the algorithm in one step or with a duplicate.

We impose that our set of initial states Sα will be composed only of stable
states of the uncontrolled dynamics of the studied network. This choice allows us
to avoid cases in which an initial state belongs to a basin of attraction of a cyclic
attractor.1

1Under the ConEvs model of dynamics, the modification of the control inputs in-stantiation only occurs at a stable state. If the system is in a cyclic attractor, the con-trol inputs cannot be changed.
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Phases of Algorithm 1. Algorithm 1 comprises two major phases.
The first phase (Steps 1 and 2) involves searching for a control allowing to

directly attain a state of Sω.
The second phase (Steps 3 and 4) involves searching for a trajectory visiting

an intermediary state within an unexplored equivalence class.
At each step, a parsimonious control input is inferred using the method pre-

sented in [7, 8]. The evolution of the main steps is detailed in Figure 6.1.

Data structures. The algorithm relies on the following data structures:

1. The list ∆ of equivalence classes according to the equivalence relation 5.1.

2. The exploration tree G with nodes labelled by sets of stable states and arcs
labelled by controls.

3. The sets Zl, Zl+1, and Zl+2 of unexplored nodes of the tree for the current
level of depth l and the next two levels, respectively.

At the beginning, ∆ is initialised to [SX ]\ [Sα], the depth of l = 1, Z1 contains
the root node {Sα} of the exploration tree, and all the other data structures are
empty. Note that we extend the notation of equivalence class to sets of states:
[A] = {[a] | a ∈ A}.

Duplicate states. A specific treatment is applied to consider the case in which
a trajectory passes through duplicates (i.e., the occurrence of states with identical
equivalence class). As all states in the explored sequence are stable, and thus
enduring states (i.e., their target equivalence class is equal to their equivalence
class), a pair of duplicate states can be described as two states belonging to the
same equivalence class. By considering that duplicates can only occur in two
successive states of any given minimal contracted sequence (Corollary 5.2), we
propose two strategies:

1. Let ζ be a set of initial states and ζ ′ be the set of stable states of Fµ reach-
able from ζ. then, infer the set of parsimonious control inputs µ validating
the following equation:

∃s ∈ ζ, ∃s′ ∈ SX : s
µ−→

∗
s′ ∧ stblFµ(s

′) ∧ [s′] ⊆ [ζ] ∧ s′ /∈ ζ. (6.1)
Informally, µ is a control that brings the network into a stable state other
than the states of ζ, but has the same equivalence class as one of the states
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Algorithm 1 Inference of control minimal contracted control se-quences
1. Direct reachability of Sω: For all ζ ∈ Zl, infer the control µ takingthe BCN from ζ to a state in Sω. If such a µ exists, add the arclabelled by µ to G and go to step 6.
2. Reachability of Sω via a duplicate: For all ζ ∈ Zl, infer a pair of con-trols (µ, µ′) such that µ takes the BCN to a state with an equiva-lence class included in [ζ], and µ′ takes the BCN from there to oneof the target state in Sω. If such a pair of controls exists, add twochained arcs labelled by µ and µ′ to G and go to step 6.
3. Direct reachability of ∆: For every ζ ∈ Zl, infer a set of controls

U taking the BCN from ζ to a state with an equivalence class in-cluded in ∆. If U is non-empty, add the arcs labelled by the con-trols from U to G, delete the equivalence class reached in∆, andstore the sets of stable states reached thank to the inferred con-trols in Zl+1.
4. Reachability of ∆ via a duplicate: For every ζ ∈ Zl, infer a set ofpairs of controls D = {(µ, µ′) | µ, µ′ ∈ SU} such that µ takes theBCN to a state with an equivalence class included in [ζ], and µ′

takes the BCN from there to some of the equivalence classes in
∆ which could not be directly reached at the previous step. If Dis not empty, add chained arcs labelled by the pairs of controlsfromD toG, delete the equivalence class reached in∆ and storethe sets of stable states reached thank to the inferred pairs ofcontrols in Zl+2.

5. Continue if states left: If one of Zl, Zl+1, or Zl+2 is non-empty, go tostep 1 with l = l + 1 i.e., discarding Zl.
6. Produce the result: Find the sequence of controls by backtracking

G from a leaf found in steps 1 or 2 to the root Sα. If no such leafwas found, return ∅.
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of ζ. For each such control µ, infer a parsimonious control input µ′ such
that the set of stable states Sµ′ of Fµ′ reachable from ζ ′ contains some
elements satisfying the desired property (i.e., a state that has the desired
equivalence class or a state that belongs to the set of target states Sω).

2. Let ζ be a set of initial states. then, infer a pair of parsimonious control
inputs µ and µ′ validating the following equation, with P being the predicate
applied to the individual constant x that determines whether x is a state
that has the desired equivalence class or a state that belongs to the set of
target states Sω:

∃s ∈ ζ, ∃s′, s′′ ∈ SX : s
µ−→

∗
s′ ∧ stblFµ(s

′) ∧ [s′] ⊆ [ζ]

∧ s′
µ′
−→

∗
s′′ ∧ stblFµ′ (s

′′) ∧ P (s′′).
(6.2)

We note that in the first strategy, we first infer µ, and then µ′, whereas in the
second we infer the pair directly. This difference is important as the first strategy
may, in some cases, not find the intermediary state needed to reach the desired
property. For example, let us consider the following Boolean network:

Example 6.1.

F =



x1 = (x1 ∧ ¬x2 ∧ ¬x3) ∨ (¬x1 ∧ x2 ∧ x3 ∧ x4)

x2 = ¬x4 ∧ x2

x3 = ¬x4 ∧ x3

x4 = x4

with C̄X = {x1}, CX = {x2, x3, x4}, Sα = {0000}, and Sω = 1⋆⋆⋆ as CoFaSe
parameters. The minimal and control minimal sequence of size 2 reaching a state
in Sω from Sα is µ[2] = ({u12, u13}, {u14}) inducing the following trajectory:

0000
{u1

2,u
1
3}−−−−−→ 0110

{u1
4}−−−→ 0111

{u1
4}−−−→ 1001.

Strategy 1 will not find this sequence. In fact, for s = 0000 Equation (6.1) only
yields the parsimonious controls ({u12}, {u13}), giving the states 0100 and 0010,
from which no states reached belongs to the set of target states Sω.

On the other hand, the second strategy finds all duplicates. In fact, equation
(6.2) completely formalises the necessity of having a duplicate to validate the
desired property. However, the second strategy is more costly computationally
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speaking. In the inference of the pair of controls µ and µ′, the dynamics of both
Fµ and Fµ′ need to be evaluated at the same time, which effectively doubles the
number of variables for which an assignment must be found.

Minimality & optimality. The algorithm returns a control minimal sequence
(i.e., all control inputs of the contracted sequence are minimal.), but it may be
possible to find shorter control sequences.

In the algorithm, the minimality condition is satisfied for the control inputs
at each step of the inference. Therefore, for all intermediary states, the returned
minimal control is reaching the desired C̄X -profile with a minimal number of per-
turbations. However, the state reached by applying the minimal control may not
be the same as the state that needed to be reached in the C̄X -profile to find the
minimal control sequence. In this case, a duplicate is needed to reach such a state.
Note that these cases remain rare as they rely on the same complex mechanisms
that generate duplicates. Therefore, the algorithm returns a minimal sequence in
size when considering the constraint of minimal control to reach the intermediate
C̄X -profiles.

Consider the following Boolean network:

Example 6.2.

F =



x1 = x1 ∨ (x2 ∧ x3 ∧ ¬x4)

x2 = (¬x1 ∧ x2) ∨ (¬x1 ∧ x4) ∨ (x2 ∧ ¬x3) ∨ (x2 ∧ x4)

x3 = (x1 ∧ x3) ∨ (¬x2 ∧ x3) ∨ (x3 ∧ x4)

x4 = x4

with C̄X = {x1, x2}, CX = {x3, x4}, Sα = {0000}, and Sω = 11⋆⋆ as Co-
FaSe parameters. The control sequence of size 3 inferred by Algorithm 1 is µ[3] =

({u14}, {u13}, {u04}).However, the following sequence of size 2: ν[2] = ({u13, u14}, {u04})
also converges to the same final state 1100. Their trajectories are respectively:

Tµ = 0000
{u1

4}−−−→ 0001
{u1

4}−−−→ 0101
{u1

3}−−−→ 0111
{u0

4}−−−→ 0110
{u0

4}−−−→ 1100,

Tν = 0000
{u1

3,u
1
4}−−−−−→ 0011

{u1
3,u

1
4}−−−−−→ 0111

{u0
4}−−−→ 0110

{u0
4}−−−→ 1100.

Since the target equivalence class 11 ⋆ ⋆ cannot be directly attained from the
starting state 0000, Algorithm 1 infers a control sequence driving the BCN through
some intermediary states. In the example above, the equivalence class 01⋆⋆ is
picked first, and the state 0101 is then reached by the single minimal freezing of
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x4 to 1. The next stable state 0111, in the same equivalence class, is reached by
minimally freezing x3 to 1. The stable state 1100 in the target equivalence class is
then reached by minimally controlling x4 to 0.

In contrast, applying a non-minimal and non-parsimonious control when con-
sidering the constraint of reaching the intermediate C̄X -profiles results in a smaller
sequence. The application of the control {u13, u14} at the starting state 0000 reaches
the stable state 0111 directly, thereby reducing the length of the control sequence
ν to 2. The first control in ν can be considered a union of the first two controls
appearing in µ, but such a union cannot be generalised.

Note that the algorithm can be modified in such a way that it returns all the
minimal sequences when considering the constraint of minimal control to reach the
intermediate C̄X -profiles. In the case where all the returned minimal sequences
contain no duplicate, the returned sequences are minimal without considering the
constraint on intermediate C̄X -profiles.

Correctness. Algorithm 1 closely follows the proofs of Theorem 5.3 and Corol-
lary 5.2, which guarantees the correctness of the result.

In other words, the sequences found by Algorithm 1 solve a CoFaSe problem
for the ConEvs model of dynamics under the synchronous mode, and are control
minimal and minimal when considering the constraint of reaching the intermediate
C̄X -profiles.

Theorem 6.1. Algorithm 1 returns all minimal control sequences µ[k] solving the
CoFaSe problem for the ConEvs model of dynamics under the synchronous mode
when considering the constraint of reaching the intermediate C̄X -profiles.

Proof. The compliance of µ[k] with the ConEvsmodel of dynamics and its min-
imality, when considering the constraint of reaching the intermediate C̄X -
profiles, is guaranteed by the use of theminimal one-shot inference algorithm
from [7, 8]. This algorithm yields minimal controls, allowing to reach stable
states satisfying certain properties. The fact that µ[k] solves the given CoFaSe
problem follows from the end condition in Step 6.

Example. Figure 6.1 illustrates, on the Boolean control network FU of Fig-
ure 2.7, the computation of a control sequence reaching a state in Sω from the set
of initial states Sα. The data structures are initialised as follows: C̄X = {x2, x3},
Sα = {001}, Sω = {010, 110}, l = 1, Z1 = Sα, ∆ = {11, 10, 00}, and all the
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Iteration 1:
Direct reachability of Sω Reachability of Sω via a duplicate

{001} s ∈ Sw
{001} [001] s ∈ Sw

Direct reachability of∆ Reachability of∆ via a duplicate

{001} 11

10

00

({u1
1}) {001} {111}

[001] 10

[001] 00

({u1
1})

Iteration 2:
Direct reachability of Sω

{001} {111} s ∈ Sw

({u1
1}) ({u0

1})

Legend: Steps of the construction of the tree built by Algorithm 1. Forthe Boolean control network FU of Figure 2.7 and the set of initial states
Sα = {001}, Algorithm 1 infers the control sequence allowing to reach
Sω = {010, 110}. The only controlled variable is CX = {x1} and the un-controlled ones are C̄X = {x2, x3}.A black arc is a branch of the tree G connecting the previous initial statesto the new set of stable states of FU , under the control given in the an-notation. A green arc represents the possibility to reach a state validatingthe desired property by a set of parsimonious controls. A red arc corre-sponds to a failure to find a control input leading to the desired property.
The returned sequential control is ({u11}, {u01}).

Figure 6.1: Iterations of Algorithm 1 on the Boolean network of Fig-ure 2.7.
other data structures are empty.

1. The first iteration of the algorithm is depicted in four parts that illustrate
the construction of the tree during the four phases of the iteration: direct
reachability of Sω, reachability of Sω via a duplicate, direct reachability of
∆, and reachability of ∆ via a duplicate. In this iteration, we first search for
a potential trajectory from Sα to the desired property via a direct control
or via a duplicate (i.e., a pair of controls validating the Equation 6.1.) In
Figure 6.1, we can see that no such trajectories exist.

As no sequences were found, all equivalence classes in ∆ are used as new
targets. In Figure 6.1, we see that a state of the equivalence class [⋆11] is
reachable from a state of Sα with the control {u11}, whereas the equiva-
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lence classes [⋆10] and [⋆00] are not reachable. Accordingly, we update ∆

by deleting 11 and adding to Z2 the stable states ζ ′ of Fu1
1

belonging to
the searched equivalence class [⋆11] and reachable from Z1. Since in this

example, Sα contains only a state and 001
F
u11−−→

∗

111, ζ ′ will be equal to
{111}.

After creating the new arcs of the tree s
{u1

1}−−−→ ζ ′ with s ∈ Sα, we search
for new trajectories which would attain an equivalence class in the updated
∆ via a duplicate. In Figure 6.1, we see that the equivalence classes [⋆10]

and [⋆00] are not reachable via duplicates.

Note that since Sω contains all the states of the equivalence class [⋆10],
trying to reach directly or via a duplicate one of its states is pointless. In-
deed, if such action were possible, the algorithm would have stopped at the
previous phase. In such a case, deleting the equivalence class from the initial
∆ is a simple algorithm optimisation.

2. The second iteration of the algorithm is depicted in Figure 6.1 in one part
of which displays only the first phase of the iteration. This iteration of
the algorithm is started after updating all the sets of initial variables with
new values: l = 2, Z2 = {111}, and ∆ = {00, 10}. We can observe, in
Figure 6.1, that a state with an equivalence class included in Sω is reachable
from the initial state 111 under the control {u01}. Since a target state is
reached, the main loop of the algorithm stops. After adding the last arc to G,
the returned sequential control ({u11}, {u01}) is constructed by backtracking
the resulting tree. This sequential control leads to the following trajectory:

001
{u1

1}−−−→
∗
111

{u0
1}−−−→

∗
010.

6.2 . TCS-based inference

In this section, we show a two-stage approach for inferring a control sequence:
first, infer a total control sequence (TCS) driving the C̄X subnetwork to satisfy
the target property (i.e., reaching a state with the same equivalence class as a
state of Sω); second, derive a control sequence with smaller-size controls (i.e.,
controls acting on as few control variables as possible). By first inferring a TCS
control sequence, we significantly reduce the computation time of the problem
for networks with a small number of uncontrolled variables. We will later reveal
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that this approach yields solutions of roughly the same quality as those given by
Algorithm 1 but is considerably more efficient (Figure 6.3).

Step one: Inference of a TCS sequence of minimal length The first
stage of the TCS-based inference is formally described in Algorithm 2, which ex-
haustively explores all possible C̄X -profiles by building a tree describing the possible
paths from the initial states to a target state. As in Algorithm 1, the control se-
quences are directly derived from this tree by collecting the controls annotating
its edges. In contrast to Algorithm 1, TCS inference does not need to explore
duplicate states because Theorem 5.2 shows that no duplicate states can occur
in minimal TCS sequences. Thus, no solutions are found by Algorithm 2 when
the target property can only be reached by control sequences having a duplicate
occurrence.

Phases of Algorithm 2. Algorithm 2 comprises two major phases.
The first phase (Step 1) corresponds to the search for a total control allowing

to directly attain a state of Sω.
The second phase (Step 2) corresponds to visiting the intermediary equivalence

classes of a given trajectory.
The total controls are inferred with an SAT solver.

Data structures. The algorithm relies on the following data structures:

1. The list ∆ of equivalence classes according to the equivalence relation 5.1.

2. The exploration tree G with nodes labelled by equivalence classes and arcs
labelled by total controls.

3. The sets Zl, Zl+1 of unexplored nodes of the tree for the current level of
depth l, and the next level.

At the beginning, ∆ is initialised to [SX ]/[Sα], the depth is l = 1, Z1 contains
the root equivalence classes {[s] | ∀s ∈ Sα} of the exploration tree, and all the
other data structures are empty.

Correctness. Algorithm 2 closely follows the proof of Theorem 5.2, which
guarantees the correctness and the minimality of the result. More concretely, the
sequences found by Algorithm 2 solve the CoFaSe problem for the totally controlled
ConEvs model of dynamics under the synchronous mode. These sequences are
minimal.
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Algorithm 2 Inference of minimal contracted total control sequences
1. Direct reachability of Sω: For all ζ ∈ Zl, infer the total control µT

taking the BCN from the equivalence class ζ to one of the targetstate in Sω. If such a µT exists, add the arc labelled by µT toG andgo to step 4.
2. Direct reachability of ∆: For every ζ ∈ Zl, infer a set of total con-trols UT taking the BCN from the equivalence class ζ to some ofequivalence classes in∆. IfUT is non-empty, add the arcs labelledby the controls from UT toG, delete from∆ and store in Zl+1 theset of reached equivalence classes.
3. Continue if states left: IfZl+1 is non-empty, go to step 1 with l = l+1

i.e., discarding Zl.
4. Produce the result: Find the trajectory of the sequence of total con-trols by backtrackingG from a leaf found in step 1 to a root equiv-alence class in Z0. If no such leaf was found, return ∅.

Step two: Control minimisation The second stage of the TCS-based in-
ference is formally described in Algorithm 3. The stage reduce a sequence of total
controls by testing, for each total control, whether one of its subsets enables reach-
ing the same target equivalence class.

Algorithm 3 comprises only one iterated phase: for every total control µT
i

appearing in a contracted control trajectory (si
′ µT

i−−→ si+1′)1≤i≤n induced by a
TCS sequence [µT

n ], it considers all subsets of µT
i and selects the smallest that

reaches the same equivalence class as [si+1′]. As with all the previous algorithms,
Algorithm 3 focuses mainly on the ConEvs model of dynamics.

Data structures. Algorithm 3 relies on the following data structures:

1. The input contracted total control trajectory (si
′ µT

i−−→ si+1′)1≤i≤n.

2. The resulting reduced control sequence µ[n].

3. The sets Sl, Sl+1 of unexplored initial states of the reduced sequence for
the current level of depth l, and the next level.

4. The set Sµ of stable states the BCN can reach under a given control µ.
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At the beginning, (si
′ µT

i−−→ si+1′)1≤i≤n is initialised with a contracted total
control trajectory (e.g., one found by Algorithm 2), the depth l is 1, s1 is equal to
Sα, and all the other data structures are empty.

Algorithm 3 Iterative reduction of total controls sequences
1. Reduce the current total control: For every control subset µ of thetotal control µT

l , construct the set of stable states Sµ the BCNreaches from Sl under µ. Pick the smallest control µ for which
[sl+1′] ∈ [Sµ]. Append µ to µ[n] and set Sl+1 = {s | s ∈ Sµ : [s] =

[sl+1′]}.
2. Continue if the sequence is not finished: If l ≤ n, go to step 1 with

l = l + 1. Otherwise return the reduced sequence µ[n].

Parsimony & optimality. Algorithm 3 always selects the smallest control
subsets. Therefore, if every control in a given TCS sequence is a superset of a
corresponding control in a control sequence composed of minimal controls, Algo-
rithm 3 will always find it. However, if the input control sequence is not a superset
of such a control sequence, the result of Algorithm 3 will be a sequence of par-
simonious controls but will not be composed of only minimal controls. In other
words, the combination of Algorithm 2 and Algorithm 3 finds parsimonious control
sequences.

6.3 . Summary of the algorithms

For reference, we give here a short summary of the approaches to inference
and of the algorithms we presented in this section.

The first approach consists of an exhaustive exploration of all possible equiv-
alence classes of C̄X -profiles and controlled trajectories between them. This ap-
proach is implemented in Algorithm 1, which organises the explored equivalence
classes in a tree, stores the found controls on its arcs, and then derives a control
minimal sequence from a path in the tree connecting the root—the starting equiv-
alence classes in [Sα]—to the first leaf corresponding to one of the target states
in Sω.

The second approach is also based on exhaustive exploration of equivalence
classes and control trajectories, but this time only total controls are considered.
Algorithm 2 works rather similarly to Algorithm 1: it constructs the tree of explored
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equivalence classes, whose arcs are annotated by the found total controls. Since
freezing every single CX -variable is not always necessary, the controls in the output
of Algorithm 2 are further individually reduced (Algorithm 3).

6.4 . Benchmarks

To assess the efficiency of the proposed approaches for the inference of control
sequences, we benchmarked them on a set of randomly generated Boolean net-
works. We compared their computational time, memory used and the quality of
their results. In the below subsections, we refer to the first approach as OCS-based
inference and the second approach TCS-based inference.

6.4.1 . Experimental protocol

The experiments consist in comparing the effectiveness and the performance
of one-step control inference by the two proposed approaches on random Boolean
networks. Indeed, inferring a single control is the core part of both methods and
the principal difference between them. Evaluating the performance of one-step
inference is, therefore, a good indicator for comparing their computational costs.
Furthermore, considering one-step inference only eliminates the potential bias in
the observed resource consumption, which may be introduced by the presence of
sequences of different lengths in the sample networks.

As our long-term perspective is to study the controllability of regulatory net-
works, we generated random networks sharing the same topological propriety. Since
it appears that regulatory network topologic is scale-free [1], we generated random
Boolean networks from random scale-free interaction graphs obtained using the
Barabási-Albert model [5]. More precisely, a random Boolean network was ran-
domly generated in two steps from the generated interaction graph:

1. Generation of an undirected graph with respect to a Barabási–Albert graph
distribution in which a new node with 3 edges is added at each step with
the dedicated function [47] of the Wolfram Mathematica library.

2. Fix the orientation of the generated graph randomly with a probability of
self-loop of 0.2 and a probability of generating a positive regulation of 0.6.

We generated networks of 10 to 35 variables with increments of 5. For each
sizes, we tested on 100 different random Boolean networks for the inference of
a one-step control, reaching a set of target states Sω from a set of initial states
Sα. The initial set of states Sα originated from the set of stable states of the
random Boolean network. The initial set of target states Sω originated from the
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enduring states. Around 30% of the network variables were randomly picked to
be the uncontrollable variables in C̄X . Table 6.4.1 provides the exact values of
different parameters and the technical specifications of the machine used to run
the benchmarks.

Characteristics of thecomputer used to performthe experiments
Model Macbook ProCPU Intel Core i7 of 2.8GHzRAM 16Gb of DDR3

Implementation language Wolfram Mathematica
Parameters of thegeneration of randomBoolean networks

Barabási-Albert modeldistribution parameter 2.1

probability to have a self-loop 0.1probability of having positiveregulation and not a negativeregulation 0.6

Generated Booleannetworks size 10 15 20 25 30 35

C̄X -profile size 3 4 6 8 9 10

Table 6.1: Parameters of the benchmarks.

The Boolean formula fn+1
xi

is the n-iterated symbolic composition of a variable
xi. It is obtained by replacing all variables in the fn

xi
formula with their respective

Boolean formula in the initial controlled Boolean network. Below is an example
showing the 3-iterated symbolic composition of the variable x2 of the controlled
Boolean network of Figure 2.7:

fx2(X,U) = (x1 ∧ x3) ∨ (¬x1 ∧ x2)

f2
x2
(X,U) = (fx1(X,U) ∧ fx3(X,U)) ∨ (¬fx1(X,U) ∧ fx2(X,U))

= (u01 ∧ ¬u11 ∧ x1 ∧ x3) ∨ (u01 ∧ ¬x2 ∧ x3) ∨ (¬u01 ∧ x1 ∧ ¬x3)
∨(¬x1 ∧ ¬x2)

f3
x2
(X,U) = (u01 ∧ ¬u11 ∧ fx1(X,U) ∧ fx3(X,U)) ∨ (u01 ∧ ¬fx2(X,U)∧

fx3(X,U)) ∨ (¬u01 ∧ fx1(X,U) ∧ ¬fx3(X,U)) ∨ (¬fx1(X,U)∧
¬fx2(X,U))

= (u01 ∧ ¬u11 ∧ x1 ∧ x3) ∨ (¬u01 ∧ x1 ∧ ¬x3) ∨ (¬x1 ∧ ¬x2)
f4
x2
(X,U) = (u01 ∧ ¬u11 ∧ fx1(X,U) ∧ fx3(X,U)) ∨ (¬u01 ∧ fx1(X,U)∧

¬fx3(X,U)) ∨ (¬fx1(X,U) ∧ ¬fx2(X,U))

= (u01 ∧ ¬u11 ∧ x1 ∧ x3) ∨ (¬u01 ∧ x1 ∧ ¬x3) ∨ (¬x1 ∧ ¬x2)
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Note that in the example f3
x2
(X,U) = f4

x2
(X,U). This is a fixed point in the

composition. Since the composition of x2 reached a fixed point, we know that
a state s will reach a state s′ of an attractor of the dynamics of Fµ in which
s′x2

= f3
x2
(s, µ).

The Boolean formula encapsulating the synchronous reachability is obtained
by a logical conjunction of the 20-iterated symbolic composition of all variables
xi ∈ X. Preliminary experiments revealed that 20 compositions were enough to
reach stable states in the sequence inferring algorithms.

The inference of one-step controls is time-constrained to 1 hour of computation
time. Due to excessive computational time of OCS-based inference, the method
is only applied to networks of size 10 and 15 (see Figure 6.2).

10 15 20 25 30 35

20%
40%
60%

12%

68%

0% 0% 0% 0% 1% 8%
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OCS-based inferenceTCS-based inference

Figure 6.2: Percentage of the OCS-based and TCS-based one-step infer-ence runs, aborted after an hour ofcomputation.
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Figure 6.3: Median of the computa-tion time of the OCS-based and TCS-based one-step inference, excludingaborted runs.

6.4.2 . Description of the resulting data

The figures, contain the median values for multiple computations since the
outliers present in the dataset risk biasing the average.

Figure 6.2 describes the percentage of timed-out computations. Figures 6.3,
6.4, and 6.6 are realised without considering the aborted inferences. Figure 6.3
illustrates the median of the total computational time of the two approaches,
including the minimum and the maximum. Figure 6.4 displays the median, with
the minimum and the maximum, of the total memory used in bytes of the two
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Figure 6.4: Median of memoryusage by OCS-based and TCS-based one-step inference, excludingaborted computations.
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Figure 6.5: Median of memory us-age by OCS-based and TCS-based in-ferences in aborted computations.
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Figure 6.6: Median of the sizesof controls found by the OCS-basedand TCS-based one-step inference,excluding aborted computations.
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approaches. Figure 6.5 describes the median, with the minimum and the maximum,
of the total memory used in bytes by the timed-out inferences. Figure 6.6 illustrates
the median, with the minimum and maximum, of the number of variables controlled
by the inferred one-step controls. Figure 6.7 displays the percentage of times the
TCS-based inference finds a parsimonious but not optimal control (i.e., the inferred
control is larger than the OCS-based inferred control.) We recall that as OCS-based
inference is optimal by construction, a control inferred by the TCS-based inference
cannot be smaller than the corresponding OCS-based inferred control.

6.4.3 . Discussion of the benchmarks

The benchmark clearly shows a performance gap between the computation time
of the two approaches (Figure 6.3). This disparity becomes more obvious when
taking into account that for networks of sizes 10 and 15, respectively 10% and
70% (Figure 6.2) of computations are aborted after 1 hour, and thus are omitted
in Figure 6.3.

Figure 6.2 reveals that, on networks of size 35, the TCS-based inference re-
sulted in a similar number of aborted computations as the OCS-based inference
for networks of size 10. Furthermore, Figure 6.3 shows that the times of the TCS-
based inference on networks of size 35 are similar to the times of the OCS-based
inference on networks of size 10. This correspondence is due to the fact that the
TCS-based inference discards the dynamics of the controlled variables by freezing
all of them. Since we selected around one-third of variables to be uncontrollable,
the TCS-based inference considered the dynamics of only about 10 variables for
networks of size 35.

In Figure 6.4, we observe a jump in median memory usage for networks of size
20. As minimum and maximum values seem within ranges that agree with the
other bounds visible on the graph, this variation is probably random and unrelated
to the intrinsic properties of the algorithm.

In Figures 6.4 and 6.5, for networks of size 10 and 35, we observe the same
pattern as in Figures 6.2 and 6.3 while noting that the median memory used by the
OCS-based inference is larger than its counterpart. This outcome can be attributed
to the fact that Boolean formulas, for the reachability of the TCS-based inference,
may generally be less complex for similar numbers of variables because the sets of
C̄X -variables are randomly selected. Therefore, the C̄X -variables subnetwork does
not follow the power-law distribution of scale-free networks. This difference should
result in a network with fewer arcs than a scale-free network with a similar number
of variables. In Figure 6.6, the size of inferred controls remains small, even when
the size of the network increases. Therefore, we can conclude that the reduction
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carried out by Algorithm 3 generally results in rather small controls.
Since the size of the Boolean formula for reachability increases as the network

size increases, the time needed for the inference of a one-step control by the solver
also increases. By only considering the dynamics of C̄X -profiles, the TCS-based
inference postpones the computational explosion, in contrast to the OCS-based
inference. As we can see in all the figures, this entails a better performance in
terms of time and memory used by the second approach compared with the first
one. In Figure 6.7, the number of times where the TCS-based algorithm provides
a parsimonious but not optimal solution is low. However, given the low number
of instances where both algorithms returned a result (120 instances in total), this
observation should be taken with caution.

In these benchmarks, we compared the effectiveness and the performance of
one-step control inference of the OCS-based approach and the TCS-based approach
on random Boolean networks. From these experiments, we observe that TCS-based
inference, in comparison with the OCS-based inference, is less costly in computation
time and memory usage. By definition, the OCS-based inference always returns
the minimal control. By comparing the instance where the two algorithms return
a result, we note that TCS-based inference seems to return minimal controls most
of the time. From these observations, we conclude that the TCS-based approach
infers solutions of good quality and is a rather viable alternative to the more
computationally costly OCS-based approach.
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7 - Structural sequence analysis

By relying on knowledge about the topology, it would be possible to use the
sequence bound parameter as well as other topological properties to select fewer
C̄X -profiles to explore in order to reduce the computational cost of the inference
algorithm. The previous chapters proved an upper bound of the sequence with
regard to the number of uncontrolled variables. In this chapter, we examine the
determination of this bound according to the topology of the network. Indeed, we
can establish a tighter upper bound for some topologies. The goal is to establish
some causal relationship between the topology of the network and the control.

The approach presented in Section 5.3 offers a solution based on the dynamical
properties of TCS and OCS control strategies. The proposed methodologies ex-
plore the set of C̄X -profiles of the controlled Boolean network to infer a sequence
of controls. To limit the number of C̄X -profiles to explore, we are particularly in-
terested in eliminating profiles that cannot have an impact the course of a sequence
of controls. For example, C̄X -profiles containing no stable states do not need to be
visited under the ConEvs model of controlled dynamics because a control change
can only occur in a stable state.

We seek to answer the following question: ‘Given a network topology, what is
the upper bound of the control sequence minimal size? ’

A controlled Boolean network is a function generating a set of Boolean networks
with different dynamics. Thus, the dynamical behaviour of the Boolean network
greatly depends on its control inputs. In controlled Boolean networks, C̄X -variables
cannot be controlled. Their update functions are, therefore, the same regardless of
the control. Since possible controls include total controls in which all CX -variables
are controlled to ’0’ or ’1’, the properties that imply the necessity of a sequence
of control should emerge from the update functions of C̄X -variables. As the in-
teraction graph is a compact and static abstraction of Boolean network dynamics
[45], studying the topology of the signed interaction graph of the C̄X -variables
should offer insights into which dynamical interactions between C̄X -variables play
a central role in the CoFaSe problem.

In this chapter, we formally describe the relationship between structure and the
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length of control sequences, and we provide the corresponding theorems. In the
first section, we study the evolution of the interaction graph as a function of the
control. We reveal that the only important part corresponds to the C̄X -subgraph.
Based on this subgraph, we study the bounds on sequence length. Section 7.2, we
study the structural properties of non-negative cycles. Finally, in Section 7.3, we
present the new set of bounds.

7.1 . Impact of the interaction graph on the control

The goal of this section is to study the link between the sequential control
and the interaction graph. We begin in the first subsection by presenting the
C̄X -interaction graph which is a subgraph that remains invariant for all Boolean
networks generated by the BCN. We conclude in the second subsection by de-
scribing the structural condition for the emergence of sequential control. This
structural condition is the necessity of the presence of at least a positive loop in
the C̄X -interaction graph for a minimal sequence of control to be of a size greater
or equal to two.

7.1.1 . C̄X-interaction graph

A Boolean control network is a family of Boolean networks parameterised by
the control input. Each valuation of the control, therefore, leads to a specific
Boolean network. As an interaction graph is the structural representation of a
Boolean network, the interaction graph is thus also modified by the control. Al-
though the interaction graphs may differ for the generated Boolean networks, only
the update functions of the CX -variables may be altered. Indeed, by construction,
the update functions of C̄X -variables are not directly affected by a modification in
control since they cannot be controlled. Thereby, whatever the control applied to a
Boolean control network, the interactions between C̄X -variables do not vary. The
C̄X -subgraph will be the same for any Boolean network generated by a Boolean
control network with a given set of C̄X -variables. We denote this subgraph the
C̄X -interaction graph. This representation is central for the structural analysis of
the sequence bound.

C̄X -interaction graph. The C̄X -interaction graph of a Boolean control net-
work captures the interdependence of the C̄X -variables of the network occurring in
the dynamics. This subgraph is a directed graph ⟨C̄X , ⟩.Strictly speaking, a
BCN does not have an interaction graph, but since C̄X -variables are not controlled,
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the interactions between these variables remain the same regardless of the control
input.

The C̄X -interaction graph can be constructed from the signed interaction graph
of the Boolean network without the control parameter since its interaction graph
corresponds to the interaction graph of the Boolean network yielded by the empty
control.

Figure 7.1 illustrates the signed interaction graph of a Boolean network f of
Figure 2.1 with the signed C̄X -interaction graph of two controlled Boolean networks
with a different set of controllable variables on F :

• The BCN of Figure 2.7, F{u0
1,u

1
1} in which the variable x1 is controlled

• The BCN of Figure 3.1, F{u0
2,u

1
2,u

0
3,u

1
3} in which the variables x2 and x3 are

controlled.

x1

x2

x3
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+

+
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−

+

x1 ±

Signed interactiongraph of F
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C̄X -interactiongraph of F{u0
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C̄X -interactiongraph of F{u0
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1
2,u

0
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3}

Legend: F is the Boolean network of Figure 2.1. On the left is the signed
interaction graph of F . In the middle is the signed C̄X -interaction graph
of F{u0

1,u
1
1} where the unique controllable variable is x1 and the uncontrol-lable variables are x2 and x3. On the right is the signed C̄X -interactiongraph of F{u0

2,u
1
2,u

0
3,u

1
3} where the controllable variables are x2 and x3 andthe unique uncontrollable variable is x1.

Figure 7.1: The signed C̄X -interaction graph of Boolean control net-works.
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7.1.2 . Necessary conditions for sequences

We want to find the structural condition for the emergence of sequential con-
trol. In this section, we show that the size of the sequence depends on the structure
of the C̄X -interaction graph. More precisely, we explain the necessity of a non-
negative cycle in the C̄X -interaction graph to have non-trivial control sequences
(i.e., of size greater or equal to two).

One of the central conditions for the existence of non-trivial control sequences is
that all controlled Boolean networks validating the target property1 on an attractor
must have at least two basins of attraction. Indeed, no control allows to reach the
property from the initial states. If this were the case, the sequence would be of
size one. Moreover, under ConEvs dynamics, the property must be reached by a
stable state.

Thus, since all Boolean networks necessarily fall into an attractor, the target
property cannot be satisfied in all the reachable attractors from the set of initial
states. Therefore, In the case of a minimal sequence of control of size greater than
or equal to two, in all the Boolean networks produced by the controlled Boolean
network and in which the property is validated by one of its stable states, there are
at least two attractors: the one that satisfies the property an cannot be attainable
from all states of Sα, and the others.

Since the above sentence is true for all control inputs, it is also true for total
control (i.e., control in which all CX -variables are controlled to 1 or 0). In this
case, the fact that the control is total means that the attractors of the generated
Boolean network must be generated by its set of C̄X -variables.

Note that for all controlled BCNs validating the target property on one of
their stable states denoted s, there exists a total control in which all CX -variables
are controlled to have the same instantiation as in s, which results in a Boolean
network having s as a stable state.

Thus, in the case of a minimal sequence of control of size greater than or equal
to two, in all the Boolean networks produced by the controlled Boolean network,
and in which the property is validated by one of its stable states, there must exist
a total control also validating the property on one of its stable states and in which
there are at least two attractors: the one attainable from all states of Sα and the
other that satisfies the property. If this were not true, all control sequences would

1A state that has a desired equivalence class or a state that belongs to the set oftarget states Sω.
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be trivial and be reached in one step with total control. Therefore, the situations
in which one-step controls are insufficient could be explained by the interactions
between C̄X -variables.

We now seek to identify which structures generate multiple basins of attraction
in the dynamics of a Boolean network. We then transpose these structures into a
C̄X -interaction graph and observe what is their influence on sequences of control.

In Boolean networks, complex behaviours in dynamics require the presence of
cycles [48]. To understand the influence of such cycles, we rely on the following
results:

Theorem 7.1 (Robert [52]). Let F be a Boolean network and assume that the
interaction graph ofF is acyclic. Then,F in synchronous and asynchronousmodes
has a unique attractor which is a fixed point.

Theorem 7.2 (Aracena [3]). Let F be a Boolean network and assume that the
interaction graph of F is strongly connected, has at least one arc, and has no
positive cycle. Then, F in synchronous modes has no fixed points.

According to Theorems 7.1 and 7.2, for a Boolean network to have a fixed
point and more than one attractor in its dynamics, its interaction graph must not
be acyclic or a strongly connected component containing no positive cycles.

Relaying on Theorems 7.1 and 7.2, the following two theorems emphasise the
importance of non-negative cycles in sequences of control. The following folklore
theorem states that the interaction graph of a Boolean network must contain a
non-negative cycle in order to have in the dynamics at least two attractors, among
which is at least one fixed point.

Theorem 7.3 (Folklore). Let F be a Boolean network and assume that the in-
teraction graph of F has no non-negative cycle. Then, in synchronous modes, F
cannot have two attractors among which at least one is a fixed point.

Proof. Consider the Boolean network F in which the interaction graph of F
has no non-negative cycle. We assume, for the sake of contradiction, that F
has at least a fixed point attractor and another attractor. Thus, the interaction
graph of F cannot be acyclic and must contain a negative cycle (Theorem 7.1).
According to the definition of a negative cycle, the interaction graph ofF must
contain at least a strongly connected component. Thus, we can define:

• B as the set of variables belonging to complex strongly connected com-
ponents in F .
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• B↙ as the set of upstream variables of B.
For F to have a fixed point, B↙ must not be empty. Indeed, since F has a

fixed point, all complex SCC composed of negative cycles must be stabilised
to a fixed point by a set of upstream variables (Theorem 7.2). We can then
define FB↙ as the subnetwork composed of the variables of B↙. By defini-
tion, there cannot be any arcs going from B to the variables of B↙, which
means that the update functions for the variables ofB↙ do not depend on B,
and therefore taking them separately provide a perfectly valid Boolean sub-
network. FB↙ must have at least two fixed points such that one instantiation
of the variables of B↙ stabilises all complex strongly connected components
to a fixed point, and another to destabilise at least one complex strongly con-
nected component to a cyclic attractor or stabilises all complex strongly con-
nected components to another fixed point. This is impossible because the
interaction graph of FB↙ is by definition acyclic (Theorem 7.1), thus validating
the above theorem.

The presence of non-negative cycles in the C̄X -interaction graph is crucial
for the emergence of sequential control. We observe that the presence in the
C̄X -interaction graph of positive cycles and positive/negative cycles must play a
preponderant role in the emergence of sequences of control. For example, all the
previously presented Boolean networks with CoFaSe problems solved by minimal
sequences of control of size greater than or equal to two, F{u0

1,u
1
1} with the se-

quence 3.6, and F{u0
2,u

1
2,u

0
3,u

1
3} with the sequence 3.7, have at least a non-negative

cycle in their respective signed C̄X -interaction graphs (Figure 7.1). The following
theorem confirms this central role. It states that without a non-negative cycle in
the C̄X -interaction graph, all properties reachable with a control or sequence of
controls will be reachable with a one-step control strategy.

Theorem 7.4. Let FU be a Boolean control network. The existence of a sequence
of minimal size µ[k] with k ≥ 2, solving the CoFaSe problem under the ConEvs
model of dynamics and synchronous modes implies the presence of at least a
non-negative cycle in the C̄X -interaction graph of FU .

Proof. Consider the CoFaSe problem (FU , Sα, Sω) and assume that µ[k] with
k ≥ 2 is a minimal contracted total control sequence solving the problem
for the ConEvs model of dynamics. This control sequence gives rise to the
trajectory T = s1

µ1−→
∗
. . .

µk−→
∗
sk+1, with s1 ∈ Sα and sk+1 ∈ Sω.

As sk+1 is a stable state, it is possible to find a total control µT such that
stblF

µT
(sk+1). Since µ[k] is minimal, s1 µT

−−→
∗ does not reach the fixed point
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sk+1. Thus, the dynamics graph of FµT must have at least a fixed point and
another attractor. According to Theorems 7.1 and 7.3, for FµT to have at least
a fixed point and another attractor, its interaction graphmust contain at least
one cycle that is not negative. Moreover, since µT is a total control, the cycle
must be enclosed in the C̄X -interaction graph of FU as all CX -variables are
constant.

7.2 . Cycle structural properties

Finding what attractors can be generated by the application of the different
control inputs of a Boolean control network is crucial for understanding the causal-
ity of the CoFaSe problem. Theorem 7.4 explains that such a basin of attractions
must arise from non-negative cycles present in the C̄X -interaction graph.

In this section, we focus on studying the structural properties of single non-
negative cycles. This section is a technical section used to define new notions
that solve the proofs of the new set of tight upper bounds (Section 7.3). In
Subsection 7.2.1, we discuss what stable states an isolated positive cycle can have.
In Subsection 7.2.2, we explore the effect of the upstream variables of a cycle on
its dynamics. Finally, in Subsection 7.2.3, we formalise some of the structural and
dynamical properties of non-negative cycles.

7.2.1 . The stable states of a positive cycle

We condiser the stable states that an isolated positive cycle can have and
whether they have a particular property. Several structural properties have al-
ready been obtained by Robert [49, 51, 52], Shih and Dong [54], Aracena [3, 4],
Goles [26], Demongeot [18], and Richard [48]. For the particular case of positive
cycles, Aracena [3] proved the following theorem.

Theorem 7.5 (Aracena [3]). Let F be a Boolean network. Assume that its interac-
tion graph is strongly connected, has at least one arc, and has no negative cycles.
Then, F has at least two attractors and two fixed points of opposite instantiations
s = ¬s′.

This theorem highlights the presence of two stable states of opposite instanti-
ations in the dynamics of Boolean networks for interaction graphs consisting of a
strongly connected component without negative cycles. However, this theorem is
too general and encompasses more than a single positive cycle. We need to know
exactly the nature and the number of fixed point attractors a positive cycle can
generate.
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From the work of Goles in [26], it can be found that an isolated positive cycles
trivialy have two fixed points. This observation was made by Demongeot in [18]
and provides the following lemma:

Lemma 7.1. Let F be a Boolean network. Assume that its interaction graph con-
sists of a unique positive cycle. Then, F has at least two attractors and exactly two
fixed points of opposite instantiations s = ¬s′.

Proof. This lemma is a weakening of the number of p-attractors of a positive
Boolean cycle given in Theorem 1 of [18].

Lemma 7.1 can be applied to a cycle without upstream in a larger interaction
graph. Since, in such a network, ci has no upstream variables, we can study the
evolution of the values of the variables of ci independently of the dynamics of the
other variables. Concretely, we examine the projections of the trajectories of the
network on the variables of ci. and notice that ci can be in exactly two stable
states with opposite instantiations.

Opposite instantiations of a cycle. We denote the two opposite instan-
tiations of a cycle ci as γ⊤ci and γ⊥ci . We also denote the set of states in which
s′′ci ̸= γ⊤ci ∧ s′′ci ̸= γ⊥ci as Γ⊙

ci i.e., Γ⊙
ci is the set of instantiation of ci variables that

are neither γ⊤ci nor γ⊥ci . We also denote as γ⊙ci any element of Γ⊙
ci .

7.2.2 . Effects of the upstream variables of a cycle

In this subsection, we study the effect on a cycle of the instantiation of its
upstream variables. For some upstream variables instantiation, a cycle can be con-
sidered to behave like a virtual cycle whit no upstream variables. If a virtual cycle
is a positive cycle, Lemma 7.1 applies.

The instantiation of the upstream variables of a cycle can have two effects on
it. To explain these effects, we define for a given cycle c the following sets of
variables:

• {y1, . . . , yk} = c: the set of variables of the cycle,

• {z1, . . . , zl} = X \ c: the set of variables not belonging to the cycle.

We denote Φ(f) as the minimal DNF of a Boolean formula f . A cycle c may
have the following:
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• A set of non-absorbing instantiations Nc of its upstream variables in which
the instantiation of the cycle can be considered to behave like a virtual cycle
with no upstream variables.

∀s ∈ SX : sc↙ ∈ Nc =⇒
∀yi ∈ c : Φ(fyi(y1, . . . , yk, sz1 , . . . , szl)) ̸∈ {1, 0}.

(7.1)

• A set of absorbing instantiations Ac of its upstream variables in which the
instantiation of the cycle directly depends on its upstream variables.

∀s ∈ SX : sc↙ ∈ Ac =⇒
∃yi ∈ c : Φ(fyi(y1, . . . , yk, sz1 , . . . , szl)) ∈ {1, 0}.

(7.2)

F{u1
1,u

0
1} =

{
x1 =

(
x1 ∨ ¬u11

)
∧ u01

x2 = x1 ∧ x2
x2x1+ ++

00

1011

01

1011

01 00 0001

1011

∅ u1
1 u0

1

Legend: The synchronous dynamics of a Boolean control network
F{u1

1,u
0
1} with its interaction graph. From left to right, the respective con-

trols are: no freeze, x1 is frozen to 1, x1 is frozen to 0. The active control
parameters are mentioned below each dynamics. The stable states of
each dynamics are coloured in three shades of grey, and their contours
are drawn in different styles. Each contour style is associated with a dif-
ferent control input.

Figure 7.2: The synchronous dynamics of a BCN used to illustrate non-absorbing and absorbing instantiations.
For example, take the Boolean controlled network of Figure 7.2 in which

CX = {x1} and C̄X = {x2}. In this case, the C̄X -interaction graph consists
of a unique positive cycle c = {x2}, which has for upstream variables the set
c↙ = {x1}. {x1 = 0} is an absorbing instantiation of the upstream variable of c

as fx2 = 0∧x2 = 0. For any control µ in which x1 is equal to 0, x2 is equal to 0 at
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the next dynamics step (i.e., ∀µ ∈ SU : 0⋆
µ−→ 0⋆).2 On the other hand, {x1 = 1}

is a non-absorbing instantiation of the upstream variable of c as fx2 = 1∧x2 = x2.
For any control, when x1 is equal to 1, x2 is equal to itself at the next dynamics
step (i.e., ∀µ ∈ SU , α ∈ B : 1α

µ−→ ⋆α).

7.2.3 . Cycle dynamics

In this subsection, we formalise the structural properties of the non-negative
cycles when their upstream variables are set to non-absorbing instantiations. If
a stable state has the upstream variables of the cycle c instantiated to one of
its non-absorbing instantiations, then this state only has a limited set of possible
instantiations for the variables of the cycle c. Indeed, c can be considered for
each non-absorbing instantiation to have the dynamics of a virtual cycle denoted
c without any upstream variables and with the same set of variables as the cycle
c. Lemma 7.1 can be applied to the subgraph composed of cycle c. We define for
a given cycle c the following sets of variables:

• {y1, . . . , yk} = c: the set of variables of the cycle.

• {z1, . . . , zl} = X \ c: the set of variables not belonging to the cycle.

The functions of the Boolean network f ′, which has for interaction graph the
subgraph composed of the cycle c, are defined as follows:

∀s ∈ SX : sc↙ ∈ Nc =⇒
∀yi ∈ c : f ′

yi = Φ(fyi(y1, . . . , yk, sz1 , . . . , szl)).
(7.3)

Since the Boolean network f ′ has for interaction graph a unique cycle c, each
function of its variables has exactly one parameter. Thus, c has ’±’ arcs as such
arcs require a function with at least two input parameters.

Therefore, for a state s in which sc↙ ∈ Nc, the non-negative cycle c can
be considered to have the dynamics of a positive or a negative cycle c. We now
introduce the following notations:

• For each pair {yj , yi} of variables of c in which yj
+ yi, the relation from

yj to yi in c is labelled by 1 (‘+’).

• For each pair {yj , yi} of variables of c in which yj
− yi, the relation from

yj to yi in c is labelled by −1 (‘−’).

20⋆ and ⋆0 respectively correspond to the sets of states {00, 01} and {00, 10}.
88



• For each pair {yj , yi} of variables of c in which yj
± yi, the relation from

yj to yi in c is labelled by 1 (‘+’) or −1 (‘−’)3.

From these observations, we can refine the Equation 7.1 as follows:

∀s ∈ SX : sc↙ ∈ Nc =⇒ ∀yi, yj ∈ c :

(yj
+ yi =⇒ Φ(fyi(y1, . . . , yk, sz1 , . . . , szl)) = yj)∧

(yj
− yi =⇒ Φ(fyi(y1, . . . , yk, sz1 , . . . , szl)) = ¬yj)∧

(yj
± yi =⇒ Φ(fyi(y1, . . . , yk, sz1 , . . . , szl)) ∈ {yj ,¬yj}).

(7.4)

The following proposition helps reveal on the nature of the set of possible
instantiations of variables of a cycle c in which a stable state has the upstream
variables of c instantiated to one of its non-absorbing instantiations. The proof
is based on the observation that in this situation the virtual cycle of c must be
positive.

Proposition 7.1. Let c be a cycle in the interaction graph of a Boolean network F .
For all stable states s of F where sc↙ ∈ Nc, sc is only equal to one of the opposite
instantiations of one of its positive virtual cycles.

Proof. Let c be a cycle in the interaction graph of a Boolean network. For all
states swhere sc↙ ∈ Nc, cwill behaves like a virtual cycle c. When s is a stable
state, cmust be a positive cycle. Indeed, since each function of the variables of
the resulting virtual cycle c has exactly one parameter, this cycle cannot have
’±’ arcs. Thus, c can only be a positive or negative cycle. If c was negative, s
would not be a stable state as the variable of c would have the dynamics of
a negative cycle, which that cannot have a stable state (Theorem 7.2). More-
over, if s is a stable state, sc must have the same instantiation as one of the
stable states of c. Thus, sc is equal to one of the opposite instantiations of the
positive virtual cycle c.

Note that when a cycle does not contain two ‘±’ arcs in its interaction graph,
then in the set of stable states with a non-absorbing upstream instantiation, only
two profiles of the cycle variables are possible. Indeed, in this case, only one virtual
positive cycle c can exist. Thus, the two possible profiles are the pair of opposite
instantiations of c.

3Note, such a relationship is only possible when yj
± yi is not the only arc inwhich yi is the head of the arc (i.e., there exists an arc between x → yi with x ∈

{z1, . . . , zl}).
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When a cycle c does contain two or more ‘±’ arcs in its interaction graph, c

can have multiple pairs of opposite instantiations. When the upstream variables of
c are in one of their non-absorbing instantiations, its set of ‘±’ arcs becomes ‘+’
or ‘−’ arcs. Thus, the cycle that c is considered to behave as may not always be
the same, because multiple positive cycles can be generated by transforming the
set of ‘±’ arcs.

To summarise, a non-negative cycle will have a set of opposite instantiations
pairs. If a cycle c is positive or if the number of ‘±’ arcs is fewer than 2, then the
set will be of size 1. In this case, we denote for the sake of simplicity the opposite
profiles as γ⊤c and γ⊥c .

Example 7.1. Consider the Boolean networks F , F ′ and F ′′ of Figure 7.3. Each
BCN F{u1

1,u
0
1}, F

′
{u1

1,u
0
1}
,and F ′′

{u1
1,u

0
1}

can freeze x1 to 0 (u01 = 0) and 1 (u11 = 0)

or not freeze x1 (∅). In all these cases, the control input u11 results in the same
dynamics as the control input ∅. F , F ′, and F ′′ have in their C̄X -interaction graph
a cycle c = {x2, x3} with, respectively, zero, one, and two ‘±’ arcs, and the set
of upstream variables of each cycle is c↙ = {x1}. We distinguish the following
situations in the three networks:

• F{u1
1,u

0
1} has for a set of non-absorbing instantiationsNc = {{x1 = 1}} and

for absorbing instantiationsAc = {{x1 = 0}}. For all stable states s where
sc↙ ∈ Nc, the upstream of cwill has no impact on the dynamics of the cycle.
In this case, c has for γ⊤c = {x2 = 1, x3 = 1} and γ⊥c = {x2 = 0, x3 = 0}.

• F ′
{u1

1,u
0
1}
has for set of non-absorbing instantiationsNc = {{x1 = 1}, {x1 =

0}} and for absorbing instantiations Ac = ∅.For all stable states s where
x1 = 0, the cycle cwill have the same dynamics as a negative cycle with a ‘+’
arc between x2 and x3 and a ‘−’ arc between x3 and x2. For all stable states
s where x1 = 1 the cycle c will have the same dynamics as the equivalent
positive cycle c with a ‘+’ arc between x2 and x3 and between x3 and x2.
The cycle c has for opposite instantiations γ⊤c = {x2 = 1, x3 = 1} and
γ⊥c = {x2 = 0, x3 = 0}.

• F ′′
{u1

1,u
0
1}
, has for a set of non-absorbing instantiationsNc = {{x1 = 1}, {x1 =

0}} and for absorbing instantiations Ac = ∅. For all stable states s where
sc↙ ∈ Nc, when x1 = 1, the cycle c has the same dynamics as the equiva-
lent positive cycle cwith a ‘+’ arc between x2 and x3 and between x3 and x2.
When, on the other hand, x1 = 0, the cycle c has the same dynamics as the
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Legend: The synchronous dynamics of Boolean control networks
F{u1

1,u
0
1}, F ′

{u1
1,u

0
1}
, and F ′′

{u1
1,u

0
1}
. The dynamics are synchronous and the

self-loops on states are not shown. The stable states of each dynamics
are coloured in two shades of grey, and their contours are drawn in dif-
ferent styles. Each shade of grey is associated with different control input
and each contour style is associated with a different Boolean network.
Figure 7.3: Influence of upstream instantiations on a cycle behaviour.
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equivalent positive cycle c′ with a ‘−’ arc between x2 and x3 and between x3
and x2. The cycle c has for opposite instantiations γ⊤c = {x2 = 1, x3 = 1}
and γ⊥c = {x2 = 0, x3 = 0} and the cycle c′ has for opposite instantiations
γ⊤c′ = {x2 = 0, x3 = 1} and γ⊥c′ = {x2 = 1, x3 = 0}.

From the definition regarding absorbing and non-absorbing instantiations, we
can make two observations about the significant effect the upstream variables of
a cycle have on a sequence of control.

• If the dynamics of a Boolean control network has a stable state s where sc

is not in one of the opposite instantiations of the cycle, then the upstream
variables of c should be instantiated to one of their absorbing instantiations
(i.e., sc↙ ∈ Γ⊙).

• Consider a Boolean network in which none of the non-negative cycles of the
C̄X -interaction graph are connected. In this case, all stable states si of a
minimal sequence µ[k] under the ConEvs model of dynamics must have the
upstream of at least one of the positive cycles in the C̄X -interaction graph
set to a non-absorbing instantiation.

7.3 . Maximal sizes of minimal sequences

In Chapter 6, we presented two algorithms inferring minimal sequences of con-
trol based on the exploration of all C̄X -profiles. Studying the topology of the
C̄X -interaction graph enables us to limit the number of C̄X -profiles to explore by
providing a more accurate specification of the upper bound. By relying on the
properties of the non-negative cycles presented in Section 7.2, we determine tight
upper bounds on the size of control sequences.

In the first subsection, we present new upper bounds for the general case when
the subgraph of C̄X -variables contains strongly connected components. In the
second subsection, we present new upper bounds for when the subgraph of C̄X -
variables contains a single positive cycle. Treating this particular case provides
insight into the mechanism behind the necessity of sequential control. In the final
subsection, we draw conclusions about the topological approach and engage a
discussion on mechanisms being sequential control.

92



7.3.1 . Bounds in the general case

In this subsection, we treat all Boolean networks that have a C̄X -interaction
graph containing strongly connected components. As we showed in the previous
section, for a sequence to be of a size greater than or equal to two, a cycle that
is not negative must at least be present in the C̄X -variables. Therefore, we treat
networks with at least a non-negative cycle in its C̄X -interaction graph.

To prove the following bounds, we generalise the notion of non-absorbing in-
stantiations, so that it can be applied to any given SCC of F , in which F is
a Boolean network. Therefore, an SCC denoted A of F may have a set of non-
absorbing instantiations NA of its upstream variables in which A can be considered
to behave as if the SCC had no upstream variables. We define the sets of variables
{y1, . . . , yk} = A and {z1, . . . , zl} = X \ A.

∀s ∈ SX : sA↙ ∈ NA =⇒
∀yi ∈ A : Φ(fyi(y1, . . . , yk, sz1 , . . . , szl)) ̸∈ {1, 0}.

(7.5)

The topological approach is based on Theorem 7.3, which shows that a se-
quence of size greater than or equal to two can only occur in the presence of a
non-negative cycle in the C̄X -interaction graph. This theorem and the structural
properties of cycles presented in Section 7.2 enable us to prove Theorem 7.6.

Theorem 7.6 is central for understanding the causality of the sequence by high-
lighting the role of non-negative cycles in the sequence mechanism. From Theorem
7.4, we can extract the following observation: For a minimal sequence to be of a
size greater than or equal to two, every stable state si of its contracted dynamics,
with 2 < i, must have at least two stable attractors. From this observation, we
conclude that all si states must have at least one cycle in one of their opposite
instantiations.

Theorem 7.6. Let FU be a totally controlled Boolean control network and let
C denotes the set of non-negative cycles in its C̄X -interaction graph. Let µT

[k] be a
minimal sequence of total controls of size k > 2 and resolving the CoFaSe problem
(FU , Sα, Sω) under the ConEvs dynamics in synchronous update mode with the

following trajectory: s1
µT
1−−→

∗
s2 . . . sk

µT
k−−→

∗
sk+1, where s1 ∈ Sα, sk+1 ∈ Sω

and si with 1 ≤ i ≤ k + 1 are stable states. In this case, all states sj+1 with
1 < j < k + 1 will have at least one cycle of C having for a profile one of its
opposite instantiations.
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Proof. Since si+1 is a stable state, theremust exist a total control µT such that
FµT (si+1) = si+1. Furthermore, for the state si+2 not to be directly reachable
from s1, the Boolean network FµT must have at least two attractors (Theorem
7.4). Since the control is total, all attractors of FµT will have the same CX

profile.
We note that since si+1 is stable, any negative cycle c of the SCCs of the

C̄X -interaction graph must have si+1
c↙

∈ Ac. Thus, there must exist a sub-
SCC A that has si+1

A↙ ∈ NA and does not contain negative cycles. Indeed, if
no such sub-SCC A exists,variables in all SCCs will depend on their upstream
variables. Since all possible attractors have the same CX -profile under µT ,
only one stable state attractor can exist, which is a contradiction.

Theorem 7.6 enables us to define new upper bounds on the sequence length.
We first only considered networks whose C̄X -interaction graph forms a single SCC,
and which operate under total control. We now introduce the following notations:

• Γ⊤⊥ denotes the union of all pairs of opposite instantiations of a cycle.

• Sstbl
X denotes the set of stabilisable states {s | s ∈ SX ,∃µ ∈ SU : STBLFµ(s)}.

• β denotes the cardinality of the set of C̄X -profile in which a stabilisable state
with this profile exists and in which there is a cycle in one of its opposite
instantiations. More formally, β = |{s | s ∈ SC̄X

,∃c ∈ C, ∃γ• ∈ Γ⊤⊥,∃s′ ∈
Sstbl
X ,∃µ ∈ SU : sc = γ• ∧ s′

C̄X
= s}|, with C being the set of non-negative

cycles in the C̄X -interaction graph.

Theorem7.7. LetFU be a totally controlled Boolean control network. All minimal
sequences of total controls resolving the CoFaSe problem (FU , Sα, Sω) under the
ConEvs dynamics in synchronous update mode cannot be of a size greater than
min(β + 2, 2|C̄X |).

Proof. Take the trajectory induced by µT
[k] : T = s1

µT
1−−→

∗
s2 . . . sk

µT
k−−→

∗
sk+1,

where s1 ∈ Sα, sk+1 ∈ Sω and si, 1 < i < k + 1 are stable states.
According to Corollary 5.1, in TCS any given C̄X -profile cannot appear twice

between s1 and sk. Thus, k will have for upper bound the number of different
possible C̄X -profiles. According to Theorem 7.6, all states si+1, where 1 < i <

k+1, must have at least one cycle set to one of its opposite profiles. Thus, we
can deduce that k − 2 ≤ β, which proves the statement of the theorem.
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Theorem 7.7 provides a bound on the length of minimal sequences, which
dependents on the number of equivalence classes in which a cycle in the C̄X -
interaction graph is instantiated to one of its opposite instantiations. If the number
of such equivalence classes for a Boolean network validating the condition of the
theorem is 3, a minimal sequence will necessarily be of a size lower or equal to 5.
We note that since we are in ConEvs dynamics, such an equivalence class should
at least have an enduring state; otherwise, it would not be possible to stabilise a
state of this equivalence class.

Note that s1 and s2 are the only states in which the C̄X -profile may contain
no non-negative cycle instantiated to one of its opposite profiles. However, if a
C̄X -variable has a self-loop with a ‘+’ or ‘±’sign, then it will always be instantiated
to one of its opposite profiles. In this case, the length of the sequence can reach
the bound of 2|C̄X | (Theorem 5.2) as SC̄X

\ β = ∅ (i.e., the set of states in which
no cycle is in one of its opposite instantiations is an empty set).

Example 5.1 of Section 5.3 is such a case. It is also, therefore, an example of
a network reaching the upper bound of Theorem 7.7.

Note that it is possible to make a bound easier to calculate by ignoring the
necessity of stable states:

Corollary 7.1. LetFU be a totally controlled Boolean control network and let C de-
notes the set of non-negative cycles in its C̄X -interaction graph. A control sequence
resolving the CoFaSe problem (FU , Sα, Sω) for the ConEvs model of dynamics can-
not be of a size greater than min(2 + |{s | s ∈ SC̄X

,∃c ∈ C, ∃γ• ∈ Γ⊤⊥ : sc =

γ•}|, 2|C̄X |).

Proof. β ⊆ {s | s ∈ SC̄X
,∃c ∈ C,∃γ• ∈ Γ⊤⊥ : sc = γ•},;therefore, the above

statement is true.
In the following, we extend this result to all TCS networks. We first prove

that, under total control, the downstream and the disconnected variables of the
C̄X -interaction graph have no influence on the upper bound under a TCS control
strategy. We now introduce the following notations:

• V denotes the set of variables belonging to the SCCs of an C̄X -interaction
graph.

• V↙C̄X denotes the set of upstream variables of V in the C̄X -interaction
graph.
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• V⋄ denotes the union of V↙C̄X and V. More formally, V ∪ V↙C̄X .

• V⇓ denotes the set of strictly downstream and disconnected variables of V
in the C̄X -interaction graph. More formally, V⇓ = C̄X \ V⋄.

Lemma 7.2. Let FU be a totally controlled Boolean control network. Let µT
[k] be

any minimal sequence of total controls of size k > 2 that resolves the CoFaSe
problem (FU , Sα, Sω) under the ConEvs dynamics in synchronous update mode

with the following trajectory: s1
µT
1−−→

∗
s2 . . . sk

µT
k−−→

∗
sk+1, in which si, where

1 ≤ i ≤ k + 1, are stable states. In this case, there cannot exist a pair of states si

and sj , where 1 ≤ i < j < k + 1, which has the same V⋄-profile.

Proof. Assume there exist two states, si and sj , in the trajectory T where 1 ≤
i < j < k + 1, sj

C̄X
̸= sl

C̄X
and siV⋄ = sjV⋄ . By definition, all paths from a V⇓

variable to a variable inVmust contain someCX -variables. Thus, since allCX -
variables are totally controlled, the profile of V⇓-variables cannot influence
the profiles of V variables. Therefore, the profile sj+1

C̄X
only dependents on sjV⋄ .

In this case, sj+1 can be reached from si under the total control µT
j . Thereby,we conclude that there cannot be two states in the trajectory of a minimal

sequence of control total that have the same V⋄ profile.
We then give an upper bound on the sequence length as a function of the

number of equivalence classes whose states have a cycle in the C̄X -interaction
graph instantiated to one of its opposite instantiations. Note that if we obtain
two equivalence classes that only differ in the downstream or disconnected vari-
ables, then visiting only one of them is sufficient. We now introduce the following
notations:

• β′ denotes the cardinality of the set of V⋄-profile in which a stabilisable state
with this profile exists and in which there is a cycle in one of its opposite
instantiations. More formally, β′ = |{s | s ∈ SV⋄,∃c ∈ C, ∃γ• ∈ Γ⊤⊥, ∃s′ ∈
Sstbl
X : sc = γ• ∧ s′

C̄X
= s}|

Theorem7.8. LetFU be a totally controlled Boolean control network. All minimal
sequences of total controls resolving the CoFaSe problem (FU , Sα, Sω) under the
ConEvs dynamics in synchronous update mode cannot be of a size greater than
min(β′ + 2, 2|C̄X |).
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Proof. Take the trajectory induced by µT
[k] : T = s1

µT
1−−→

∗
s2 . . . sk

µT
k−−→

∗
sk+1,

where s1 ∈ Sα, sk+1 ∈ Sω and si, 1 < i < k + 1 are stable states.
We know fromTheorem7.6 that all states si+1with 1 < i < k+1must have

at least one of their cycles set at one of it opposite instantiation. Futhermore,
according to Lemma 7.2, no a pair of states si and sj , where 1 ≤ i < j < k+1,
and that have the same V⋄ exist in the trajectory. Thus, we can deduce that
k − 2 ≤ β′., which proves the statement of the theorem.

Regarding Theorem 7.6, Example 5.1 of Section 5.3 is an example of a network
reaching the upper bound of Theorem 7.8

We now further generalise this result from TCS to OCS control sequences.
Lemma 7.3 proves that the downstreams of the SCCs and the disconnected vari-
ables have no influence on the lengths of minimal OCS control sequences.

Lemma7.3. LetFU be a Boolean control network. Let µ[k] be aminimal sequence
of control of size k > 2 that resolves the CoFaSe problem (FU , Sα, Sω) under
the ConEvs dynamics in synchronous update mode with the following trajectory
s1

µ1−→
∗
s2 . . . sk

µk−→
∗
sk+1, where si, 1 ≤ i ≤ k+1, are stable states. In this case,

there exists at most a pair of states in the trajectory that has the same V⋄-profile.

Proof. Assume there exist three states, si, sj and sl, in the trajectory T where
1 ≤ i < j < l ≤ k + 1 and the following conditions hold:

• si
C̄X

̸= sj
C̄X

∧ si
C̄X

̸= sl
C̄X

∧ sj
C̄X

̸= sl
C̄X

.
• siV⋄ = sjV⋄ = slV⋄ .

Here, the only differences between the three states are the values of down-
stream and disconnected variables of V in the C̄X -interaction graph (i.e., V⇓).

Since sl is a stable state, there must exist a total control µT such that
FµT (sl) = sl. By definition, all paths from a V⇓ variable to a V variable must
contain some CX -variables. Thus, in the case of the total control µT , V⇓ vari-
ables cannot influence the profiles of V variables. Thus, sl must be reachable
under µT from any enduring state s with the property slV⋄ = sV⋄ . Therefore, sl
can be reached from si. Thereby, the sequence µ[k] cannot be minimal, which
is a contradiction.
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Theorem 7.9. Let FU be a Boolean control network. All minimal sequences of
controlµ[k] resolving the CoFaSe problem (FU , Sα, Sω) under the ConEvs dynamics
in synchronous update mode will be of sizemin(2β′ + 2, 2|V

⋄|+1).

Proof. Take the trajectory induced by µ[k] : T = s1
µ1−→

∗
s2 . . . sk

µk−→
∗
sk+1,

where s1 ∈ Sα, sk+1 ∈ Sω , and si, where 1 < i < k + 1, are stable states.
We know from Theorem 7.6 that all states si+1 with 1 < i < k + 1 must

have at least one of their cycles set at one of its opposite instantiations. Fur-
thermore, according to Lemma 7.2 there cannot exist three states in the tra-
jectory that have the same V⋄-profile, which proves the statement of the the-
orem.

Theorem 7.9 is similar to Theorem 7.8 but considers the possibility of having
duplicates (Section 5.3). With duplicates, the upper bound becomes 2|C̄X |+1 if
the SCCs do not have downstream variables (i.e., C̄X = V⋄). Thus, Example 5.2
of Section 5.3 is an example of a network reaching the upper bound.

7.3.2 . Bounds for a single positive cycle

In this subsection, we examine at the networks in which the C̄X -interaction
graph consists of a unique positive cycle. This interaction graph is possibly
equipped with acyclic appendages and accompanied by disconnected acyclic struc-
tures, as in Figure 7.4. Such configurations may lead to minimal sequences of
length two at most, as shown in the following theorem.

Theorem 7.10. Let FU be a totally controlled Boolean control network whose
C̄X -interaction graph consists of a unique positive cycle. In this case, all minimal
sequences of total control µT

[k] resolving the CoFaSe problem (FU , Sα, Sω) under
the ConEvs dynamics in synchronous update mode are of size ≤ 2.

Proof. Take the trajectory induced by µT
[k] : T = s1

µT
1−−→

∗
s2 . . . sk

µT
k−−→

∗
sk+1,

where s1 ∈ Sα, sk+1 ∈ Sω and si, where 1 < i < k + 1, are stable states. We
denote c as the unique cycle of the C̄X -interaction graph.

We know from Theorem 7.6 that for all states sj+1 with 1 < j < k + 1, at
least one cycle in the C̄X -interaction graph is in one of its opposite instantia-
tions. Moreover, to reach sj+1 from sj , sj and sj+1 must be in the same basin
of attraction in the dynamics of FµT

j
.
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Legend: The C̄X -variables x1 to x5 form a positive cycle. The C̄X -variables y1 and y2 form its upstream, the C̄X -variables z1 to z3 form its
downstream, while the C̄X -variables t1 to t4 form an acyclic structure dis-
connected from the positive cycle. Only the cycle is required to be positive.
The signs on all other arcs in the graph can be arbitrary. The connections
to controlled variables are not shown.

Figure 7.4: The single positive cycle on C̄X , accompanied by upstream,downstream, and disconnected acyclic structures.
Since the C̄X -interaction graph consists of a unique positive cycle, all sj+1

c↙are in Nc, meaning the variables of c have the same dynamics as the cycle
c without upstream variables. Since c has a unique positive virtual cycle, we
know from the first remark of Proposition 7.1 that the cycle c only has a single
pair of opposite instantiations {γ⊤c , γ⊥c }. Thus, all state sj+1 have the same
basins of attraction. Therefore, to reach sj+1 from a state sj where sj+1

c ̸= sjc,
µT
j must be a control generating a network with only one attractor (i.e., j = 1).

Moreover, from sj+1it is possible to reach all states s in which sj+1
c = sc in

one-step since sand sj+1 are two enduring states of the same equivalence
class (Proposition 5.2). Therefore, a minimal sequence has a maximal size of
2.

This result can be generalised from TCS to the general OCS case. We begin
by revealing that in Lemma 7.4 all non-total controls can always be replaced by
a total control. This process enables us to prove the following theorem, which
provides the same upper bound on the lengths of minimal OCS sequences as in
Theorem 7.10.

Lemma 7.4. Let FU be a controlled Boolean control network. Assume that its
C̄X -interaction graph consists of a unique positive cycle c with {γ⊤c , γ⊥c } as its
unique pair of opposite instantiations. Let s and s′ be enduring states, with s′c ∈

99



{γ⊤c , γ⊥c } and SUT the set of total controls. The following statement is true under
the synchronous update mode:

(∃µ ∈ SU : s
µ−→

∗
s′ ∧ STBLFµ(s

′)) =⇒

(∃s′′ ∈ SX , ∃µT ∈ SUT : s
µT

−−→
∗
s′′ ∧ STBLF

µT
(s′′) ∧ s′c = s′′c).

Proof. Assume there is a control µ such that s µ−→
∗
s′ ∧ STBLFµ(s

′) but there
is no total control µT such that:

s
µT

−−→
∗
s′ ∧ STBLF

µT
(s′′) ∧ s′c = s′′c . (7.6)

Here s′c↙ must be a non-absorbing instantiation. If this were not the case,
it would suffice to apply the total control, which would put the upstream in
the configuration of s′c↙ to reach s′. Moreover, sc ̸= s′c since if sc was equal to
s′c, it would suffice to apply the total control which would put the upstream in
the configuration of s′c↙ to reach s′ as s and s′ are two enduring states of the
same equivalence class (Proposition 5.2).

Since s′c↙ ∈ Nc and s′c ̸= s′c, there must be a transition si
µ−→ si+1 in the

uncontracted trajectory s µ−→ . . .
µ−→ s′ such that si+1

c = s′c and sic ̸= s′c.If sic↙ ∈ Nc, then the instantiation sic must be part of a cyclic attractor of
the virtual positive cycle c of the cycle c since si is not a stable state and all
states of c belong to an attractor [18]. Thus, si+1

c = s′c cannot be true as s′cis one of the stable states of c. Therefore, sic↙ cannot be in a non-absorbing
instantiation. This means that sic↙ ∈ Ac.

Let µT be a total control that freezes the CX -variables at the instantiation
of the CX -profile of si. Such control leads to the following trajectory si

µT

−−→
si+1′ µT

−−→ si+2′ in which si+1
c

′ ∈ {γ⊤c , γ⊥c } since si+1
c

′
= si+1

c = s′c.If si+1
c

′
= si+2

c
′, then si+1′ is a stable state as all c↙-variables under the

total control µT are CX -variables. Since sic↙ ∈ Ac, the controlled Boolean
networkFµT would have only one stable state with no cyclic attractors. There-
fore, Equation 7.6 would be true.

Suppose now that si+1
c

′ ̸= si+2
c

′. Since the total control µT fixes the CX -
profiles of si and its subsequent states to the same constants, the change of
instantiation of C̄X -variables depends on their formula. Thus, the dynamics
generated by the formula of the variables of the cycle c must contains the
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trajectory si
µT

−−→ si+1′ µT

−−→ si+2′, in which sic ̸= si+1
c

′ ∧ si+1
c

′ ̸= si+2
c

′ and
si+1

c
′ ∈ {γ⊤c , γ⊥c }. Such a trajectory cannot be generated by a positive cy-

cle with its upstream variables in absorbing or non-absorbing instantiation.,
which proves the statement of the theorem.

Theorem 7.11. Let FU be a totally controlled Boolean control network. Assume
that its C̄X -interaction graph consists of a unique positive cycle. In this case, all
minimal sequences of control resolving the CoFaSe problem (FU , Sα, Sω) under
the ConEvs dynamics in synchronous update mode are of size ≤ 2.

Proof. Since the C̄X -interaction graph is a positive cycle, for all controls reach-
ing a stable state s′ from s, there is a total control reaching the stable state
s′ from s (Lemma 7.4). Thereby, we conclude that if a sequence validates the
CoFaSe problem under the ConEvs dynamics in synchronous update mode, a
sequence of total controls validating the same problem also exists. The upper
bound, is thus, the same as in Theorem 7.10, which proves the statement of
the theorem.

We insist on the fact that Theorems 7.10 and 7.11 are only applied for pos-
itive cycles and not positive/negative cycles. For example, the Boolean network
from Figure 3.1 in Section 3.1, which has for C̄X -interaction graph a unique posi-
tive/negative cycle {x1}, one can find minimal sequences of size 3 (Trajectory 3.7).

From the two theorems, we understand that a minimal sequence of control
sets different cycles to profiles, which will drive them into one of their opposite
instantiations in a specific order.

Example 7.2. The controlled Boolean network F{u0
1,u

1
1} of Figure 7.2, with C̄X =

{x2}, is a prime example of a Boolean network reaching the bounds of Theo-
rems 7.10 and 7.11. For the CoFaSe problem under the ConEvs dynamics, in which
Sα = {11} and Sω = {01}, the solution for the TCS and OCS control strategies is
the following sequence of size 2:

11
{u0

1}−−−→
∗
00

{u1
1}−−−→

∗
01

To facilitate reading, we repeat the controlled Boolean network equations below:

F{u1
1,u

0
1} =

{
x1 =

(
x1 ∨ ¬u11

)
∧ u01

x2 = x1 ∧ x2
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In Example 7.2, the attractor we want to reach is when the cycle c = {x2}
has x1 set to 0. In Sα, x2 is set to 1. Since the state 01 can be stabilised only by
networks F{u1

1} and F∅, in which 11 is not in the desired attractor, we must drive
the controlled network in a intermediary step to a state that would eventually end
up in the desired attractor. This is realised by setting x2 to 0.

7.3.3 . Discussion

This topological approach enables us to determine tight upper bounds. The
approach limits the number of C̄X -profiles to explore and thus decreases the com-
putation time. The most notable reduction is due to Lemmas 7.2 and 7.3, which
reveal that the downstream and disconnected variables of the SCCs have no in-
fluence on the lengths of minimal sequences. Thus, a sequence can be found by
considering the equivalence classes of V⋄-variables.

On the other hand, knowing that every4 stable state of a sequence dynamics
must have at least one cycle in one of its opposite instantiations does not create
any significant gain in algorithm computation time. Indeed, the stabilisable states
in which no cycle is in its opposite instantiations can be reached from any states
with a total control. Thus, they would be all reached from Sα at the first iteration
of the algorithms presented in Chapter 6. However, sequences that traverse such
states in their trajectory are uncommon as they require complex Boolean formulas.
Therefore, trying at first to infer sequences of control without considering states in
which no cycle is in its opposite instantiations can be a good method for obtaining
a better computation time in general.

From Theorems 7.10 and 7.11,we can extract some interesting observations
concerning a BCN whose C̄X -interaction graph contains a single SCC, which is
a cycle. For example, if a sequence is of size two, the property that we wish to
reach must require, according to Theorem 7.6, the C̄X -variables to be in one of
the two opposite instantiations of the cycle. In this case, from the initial states,
we have only one C̄X -profile to test: the profile in which the cycle is set in the
same instantiation as one of the target states. In this situation, the cycle acts as
a binary memory. The target states are in the ‘good’ memory state which can be
translated into being blocked in a ‘good’ attractor. The initial states are in the
‘bad’ memory state or blocked in a ‘bad’ attractor. Thus, to reach the desired
states, we must flip the memory to a ‘good’ state (i.e., drive the network to a
state in the right attractor).

4Excluding the first two stable states of the trajectory.
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Under the simple premise of having for C̄X -interaction graph a unique positive
cycle, finding the order in which cycles need to be set to ‘good’ attractors is
trivial. In the general case, finding such an order cannot be done achieved using
a topological analysis. The problem arises from the fact that the C̄X -interaction
graph abstraction of the interactions between C̄X -variables is not granular enough
to deduce such an order in complex topologies.

For example, if the cycle has upstream variables in it C̄X -variables, we must
to refer to Theorem 7.8 for the TCS control strategy and Theorem 7.9 for the
OCS control strategy. The example, below, shows a controlled network reaching
the upper bound with a TCS control strategy and having only the positive cycle
{x1, x2} in its C̄X -interaction graph.

Example 7.3. The Boolean network in Figure 7.5 has for C̄X -variables x5, x6 and
x7. Its C̄X -interaction graph contains only the positive cycle c = {x1, x2}. It is one
of the simplest examples of a Boolean network with a sequence of control reaching
the bound of Theorem 7.8. In this network, there are only 8 equivalence classes in
which the positive cycle c is in one of its opposite instantiations:

[0000 ⋆ ⋆⋆] [0001 ⋆ ⋆⋆] [0010 ⋆ ⋆⋆] [0011 ⋆ ⋆⋆]

[1100 ⋆ ⋆⋆] [1101 ⋆ ⋆⋆] [1110 ⋆ ⋆⋆] [1111 ⋆ ⋆⋆]

Therefore, the maximal theoretical sequence size for TCS should be 2+8. This
bound is reached for the following CoFaSe problem under the ConEvs dynamics
where Sα = {1001011}, Sω = {1111111}. This problem has for a solution the
sequence of size 10:

1001011
{u1

5,u
0
6,u

1
7}−−−−−−→

∗
0110101

{u0
5,u

0
6,u

1
7}−−−−−−→

∗
0000001

{u0
5,u

1
6,u

0
7}−−−−−−→

∗

0001010
{u1

5,u
0
6,u

0
7}−−−−−−→

∗
0010100

{u1
5,u

1
6,u

0
7}−−−−−−→

∗
0011110

{u0
5,u

0
6,u

0
7}−−−−−−→

∗

1100000
{u0

5,u
1
6,u

0
7}−−−−−−→

∗
1101010

{u1
5,u

0
6,u

0
7}−−−−−−→

∗
1110100

{u1
5,u

1
6,u

0
7}−−−−−−→

∗

1111110
{u1

5,u
1
6,u

1
7}−−−−−−→

∗
1111111.
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F{u1
5,u

0
5,u

1
6,u

0
6,u

1
7,u

0
7} =

x1 = (x2 ∧ ¬x3 ∧ ¬x5) ∨ (x2 ∧ x6)∨
(x2 ∧ ¬x7) ∨ (x3 ∧ x4 ∧ ¬x6 ∧ ¬x7)∨
(x3 ∧ ¬x5 ∧ ¬x7) ∨ (¬x3 ∧ ¬x4 ∧ x5 ∧ ¬x7)∨
(¬x3 ∧ x5 ∧ x6) ∨ (x4 ∧ ¬x5 ∧ ¬x6)∨
(¬x4 ∧ x6 ∧ x7) ∨ (¬x5 ∧ x6 ∧ x7)

x2 = (x1 ∧ x3 ∧ x4 ∧ x5 ∧ x6)∨
(x1 ∧ x3 ∧ ¬x4 ∧ x5 ∧ ¬x7)∨
(x1 ∧ ¬x3 ∧ x4 ∧ x5 ∧ ¬x6)∨
(x1 ∧ ¬x3 ∧ ¬x4 ∧ ¬x5 ∧ ¬x6)∨
(x1 ∧ ¬x3 ∧ ¬x5 ∧ x6 ∧ ¬x7)∨
(x3 ∧ x4 ∧ ¬x5 ∧ ¬x6 ∧ ¬x7)∨
(x5 ∧ ¬x6 ∧ x7)

x3 = x5

x4 = x6

x5 = (0 ∨ ¬u15) ∧ u05
x6 = (1 ∨ ¬u16) ∧ u06
x7 = (1 ∨ ¬u17) ∧ u07

x1

x2

x3

x5

x7

x6

x4

+
+

+

+

±

±

±

±

±

±

±

±
±

±

Legend: Boolean control network F{u1
5,u

0
5,u

1
6,u

0
6,u

1
7,u

0
7} having in its C̄X -interaction graph a unique positive cycle, for which there exists a mini-

mal control sequence reaching the bound defined in Theorem 7.8. The
Boolean control network is accompanied by the interaction graph of the
corresponding Boolean network without control parameters.

Figure 7.5: A Boolean network with a control sequence reaching thebound for TCS sequences .
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8 - Conclusion

In this thesis, we studied the sequential control applied to Boolean networks.
The results are concretely applied to network medicine, which uses the concept of
networks as a modelling framework.

We proposed a new framework that defines sequential control for Boolean
control networks. In particular, we considered freeze controls, under which the
variables can be frozen to 0 or 1. The proposed controlled dynamics extends
the Boolean network dynamics by revealing how the system evolves through a
sequence of control inputs. We defined a model of controlled dynamics denoted
ConEvs, in which the modification of the control only occurs at a stable state in
the synchronous update mode.

To allow detailed theoretical analysis, the variables of the studied network were
partitioned into two sets. The set of variables that are controllable were denoted
CX -variables, and the set of variables that cannot be controlled were denoted C̄X -
variables.

We referred to the inference problem of finding a control sequence modifying
the dynamics to evolve towards a desired state or property CoFaSe (i.e., Controlled
Fate in Sequence). We proved that this problem is PSPACE-hard.

We know from the complexity of CoFaSe that finding a minimal control se-
quence by exhaustively exploring all possible control sequences is intractable. By
seeking for factors that limit the set of the possible intermediary states of the
sequence, we significantly reduced the search space in practice.

By studying the dynamical properties of the CoFaSe problem, we found that the
dynamical properties that imply the necessity of a sequence of control emerged from
the update functions of C̄X -variables. These properties enabled us to define the
upper bounds on the length of minimal control sequences. We found that a minimal
control sequence cannot be larger than 2|C̄X |+1 − 1. These upper bounds indicate
that the uncontrollable variables are central for the inference of a control sequence.
As the number of uncontrolled variables is, in practice, markedly lower than the
number of controlled variables (e.g., [7, 11, 13]), the exhaustive exploration of
all possible profiles for these variables constitutes an efficient approach for control
sequence computation.
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Our analysis also emphasised non-obvious complex features of the sequence,
such as the occurrence of duplicates in which only the controlled variables evolve
without changing the states of uncontrolled variables. Such occurrences were in-
terpreted as the need to evolve to different stable states with the same profiles for
uncontrolled variables, but which could not previously be reached.

We proposed two approaches for inferring control sequences. Both approaches
are based on the exhaustive exploration of the possible intermediate profiles of
uncontrolled variables [40, 41]. The first approach is implemented in Algorithm 1
(page 63) and applies the single control inference algorithm from [8] 2|C̄X |+1 − 1

times in the worst case.
The second approach is implemented as a chaining of Algorithms 2 and 3

(pages 70 and 71). This approach focuses on inferring a total control sequence in
which all controllable variables are frozen, and then reducing the sizes of individual
controls. This technique implies that the second approach does not consider the
occurrence of duplicates. Our benchmark revealed that inferring total controls is
much cheaper because the dynamics of uncontrolled variables are neglected, while
the quality of the solutions remains close to the quality of the sequences inferred
by Algorithm 1.

We explored the relationship between the structure of the BCN and its dynam-
ics to understand how the structure impacts the control sequences and thereby
improves the bounds. Therefore, we studied the dynamics properties emanating
from the interaction graph to characterise the bounds on the sequence length with
respect to its topology. Taking topology into account makes it possible to find
tighter bounds for minimal sequences of control. These upper bounds also enabled
us to study the causal relationships that exist between structure and control.

One of our major observations is the importance of non-negative cycles in the
interaction subgraph generated by the C̄X -variables (C̄X -interaction graph). We
found that without a non-negative cycle in the C̄X -interaction graph, all properties
reachable with control or a sequence of controls are reachable with a one-step
control. This finding is due to the fact that for some instantiations of the upstream
of a non-negative cycle, this cycle behaves as if it were an isolated subgraph, which
therefore has only two opposite stable instantiations. Informally, a sequence of
control is needed when an uncontrollable non-negative cycle acts as a memory
that blocks the validation of the desired property until this memory is set to its
un-blocking value.

We also revealed that all stable states encountered in a minimal sequence
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trajectory under the ConEvs dynamics and that cannot be reached from the set of
initial states must set at least one of the cycles in one of its opposite instantiations.
This process results in a bound dependent on the number of C̄X -profiles in which
at least one cycle in the C̄X -interaction graph is instantiated to one of its opposite
instantiations.

Perspectives. The perspectives of our work are threefold:

The analysis of the Boolean functions: The proposed dynamics analysis re-
mains general but can be improved by considering the topological aspects or the
structure of formulas. In this thesis, we chose to study the topological approach.
Under this approach, the inference of a sequence of control is trivial if the C̄X -
interaction graph consists of a unique positive cycle. However simply adding some
more variables and more cycles in the C̄X -variables rapidly complicates the situa-
tion. This is due to the fact that multiple Boolean networks can have the same
topology. For more complex networks, one of the possible approaches to consider
is combining the study of the topology and the analysis of the update functions of
the C̄X -variables. Indeed, by analysing the Boolean formulas of the non-negative
cycles in the C̄X -interaction graph, we hope to find the order in which the cycles
need to be blocked or unblocked to reach a state validating the desired property.
Such a discovery should greatly improve inference times, enabling the inference on
larger networks.

Sequential control in biological models: This thesis focused on the formal as-
pects of sequential control. Applying this method to biological cases to investigate
complex treatment schemes, more specifically for cancer, seems a natural prospect.
One other interesting perspective would involve conducting a survey on the exist-
ing biological Boolean models to determine how many contain non-negative cycles
in their set of uncontrollable variables and require a sequence of control to reach
the target property from the given initial states. Such a survey could provide a
good understanding of the frequency of sequential control in biological models.
the findings would open a discussion on whether such frequency represented or
under-represented biological mechanisms or whether it is an undesirable modelling
effect.

Asynchronous CoFaSe problem: The final perspective revolves around studying
sequential controls in a broader context, notably by considering other modes, such
as the asynchronous one. For the asynchronous mode, one needs to tackle the fact
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that the transition becomes a relation inducing non-determinism that should not
be exhaustively explored to ensure the efficiency of a minimal sequential control
inferring algorithm. In the synchronous algorithms presented in this manuscript, the
desired property is reached from at least one of the initial states. However, because
of the non-deterministic nature of the asynchronous mode, the notion of necessity
and the possibility of reaching the desired property must also be introduced.
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Notation Index

C̄X Set of uncontrollable variables of a Boolean control network.
CX Set of variables controllable to 1, 0 or uncontrolled of a Boolean

control network.

µ, µi, ν Control input representing an interpretation of the control
parameters U .

µT Control input where all control parameters are controlled to 1 or 0.
µ[k] Sequence of k control inputs.

s, si A state of the studied Boolean network dynamics.
[s] Instantiation of the equivalence class i.e., C̄X -variables in s.
sA Instantiation of the variables of the set A in s.
Sα Set of initial states of a CoFaSe problem.
Sω Set of target states of a CoFaSe problem.
s

µ−→ s′ Transition from s to s′ in the dynamics of Fµ.
s

µ−→
∗
s′ Path from s to s′ in the dynamics of Fµ.

STBLFµ(s) Predicate returning true if s is a stable state in the dynamics
of Fµ.

c, ci Set of variables of a cycle.
c Set of variables of a virtual cycle.
{γ⊤c , γ⊥c } A pair of opposite instantiations of a cycle c.
γ⊤c , γ⊥c Instantiation of a cycle c set to one of its opposite instantiations.
Γ⊤⊥

c Set of all opposite instantiations of a cycle c.
Γ⊙

c Set of all instantiations of a cycle c that do not belong in Γ⊤⊥
c .

γ⊙c Instantiation of a cycle c that do not belong in Γ⊤⊥
c .

A↙ Set of variables upstream of the set of variables A in the Boolean
network interaction graph.

A↘ Set of variables downstream of the set of variables A in the Boolean
network interaction graph.

A× Set of variables disconnected from the set of variables A in the
Boolean network interaction graph.

V Set of variables belonging belonging to the SCCs of the C̄X -interaction
graph.

V↙C̄X Set of C̄X -variables upstream of the set of variables V in the
Boolean network interaction graph.

V⋄ Union of V↙C̄X and V.
V⇓ Set of strictly downstream and disconnected variables of V in the

C̄X -interaction graph.
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