
HAL Id: tel-03720575
https://theses.hal.science/tel-03720575

Submitted on 3 Aug 2022

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Distributed under a Creative Commons Attribution - NonCommercial 4.0 International License

The Game of Synthesis
Nathanaël Fijalkow

To cite this version:
Nathanaël Fijalkow. The Game of Synthesis. Computer Science and Game Theory [cs.GT]. Université
de Bordeaux, 2022. �tel-03720575�

https://theses.hal.science/tel-03720575
http://creativecommons.org/licenses/by-nc/4.0/
http://creativecommons.org/licenses/by-nc/4.0/
https://hal.archives-ouvertes.fr

Université de Bordeaux
École doctorale Mathématiques Informatique

Laboratoire Bordelais d’Informatique

Habilitation à diriger des recherches

The Game of Synthesis

Nathanaël Fijalkow

Defense held on 11 February 2022

Anca Muscholl Professor at University of Bordeaux President
Christel Baier Professor at Technische Universität Dresden Reviewer
Dana Fisman Senior Lecturer Reviewer
Sven Schewe Professor at University of Liverpool Reviewer
Borja Balle Research Scientist at DeepMind Examiner
Rupak Majumdar Scientific Director at Max Planck Institute Examiner
Prakash Panangaden Professor at McGill University Examiner

1

Since defending my PhD in October 2015, I have been working on a range of topics
and questions pertaining to Synthesis. The dictionary entry for synthesis is ‘the combi-
nation of components or elements to form a connected whole’. In this general definition
synthesis covers quite a lot of today’s scientific questions; this document will focus on the
formalisation of some of them in the field of computer science. This manuscript describes
the attempts we have made in the past years to understand, relate, and approach them.

This document is organised in non-technical independent sections each describing a
research theme gathering a selection of the most recent scientific works I have contributed
to and published between 2017 and today. The sections are named after one or two
research colleagues, who have been in different ways influential to the topic at hand.

Some of my recent publications are not discussed in this document, a complete list
can be found online:

http://games-automata-play.com/

Joël Ouaknine and James Worrell

I started working with Joël Ouaknine and James Worrell when joining their group as
a Research Associate (postdoc) in Oxford in November 2015. They had obtained over the
past five to ten years major contributions to a field they almost invented, or re-invented:
the algorithmic study of linear dynamical systems (see [OW15] for a survey they wrote
on the topic).

A dynamical system is given by an operator f : X Ñ X and an initial point x P X,
describing an orbit x, fpxq, f 2pxq, In the special case of linear dynamical systems,
the operators are linear, meaning f : Rn Ñ Rn is defined using a matrix A P Rnˆn

through fpxq “ A ¨ x. Surprisingly, many algorithmic questions remain unanswered for
linear dynamical systems: the most innocent looking and fundamental Skolem problem
has been open for the better part of a century, it asks whether the first coordinate of fnpxq
is zero for some n P N. Joël Ouaknine and James Worrell have shown in [OW14] that
solving the related Positivity problem would require major advances in algebraic number
theory, putting a lid on efforts to attack this problem directly.

The analysis of linear dynamical systems has many applications: one of them is pro-
gram analysis. There are two lessons to be had from this setting: the first is that global
statements of the form ‘in this program this variable is never assigned value 0’, akin to
the Skolem problem, are very hard to obtain, and the second is that a more practical
approach for this is to design (inductive) invariants to reason locally about programs.

This inspired us to study a variant of the Skolem problem: the existence of invariants
for linear dynamical systems. More formally, given a linear dynamical system and a target
point, does there exist an invariant certifying that the orbit never hits the target? Here
an invariant is a set I Ď Rn such that x P I, y R I, and fpIq Ď I. Clearly, the existence
of an invariant implies that y cannot be in the orbit of x under f . Most importantly,
I is a certificate of that fact, which can be easily verified. Without further restriction,
the converse also holds: the set I “ tx, fpxq, f 2pxq, . . .u is an invariant if and only if
y is not in the orbit. This statement does not bring much clarity to the question: the
set I is the orbit itself, and as witnessed by the difficulty of the Skolem problem, can

http://games-automata-play.com/

2

be a very complicated set. Hence our formulation of the invariant synthesis question is
parameterised by a class of invariants: natural examples include the class of semialgebraic
invariants (defined through polynomial inequalities) and the class of semilinear invariants
(defined through linear inequalities). We refer to this problem as the Monniaux problem
since it was originally formulated in a more general setting by David Monniaux in [Mon19]
and also raised by him in a series of personal communications with various members of
the theoretical computer science community over the past five years or so.

Asking the invariant synthesis question was the beginning of a daunting quest, giving
a new perspective on the analysis of linear dynamical systems. Constructing an invariant
circumvents the hardness of the Skolem problem and relates this line of work to decades
of research from the field of abstract interpretation where heuristics for constructing
invariants have been successfully developed and applied.

The first question we investigated was whether given a linear dynamical system and
a target we can determine whether there exists a semialgebraic invariant separating the
orbit from the target. Our first paper on this question [Fij+17] (and the journal ver-
sion [Fij+19b]) shows a completeness result: there exists a closed semialgebraic invariant
if and only if the target does not belong to the topological closure of the orbit. In some
sense, semialgebraic invariants are expressive enough to separate an orbit from a point,
although the orbit itself may not be semialgebraic. The proof of our result yields an
algorithm for constructing the invariant when it exists, a key ingredient for compositional
reasoning about programs.

Semialgebraic invariants are very expressive hence may prove hard to use so in many
cases it is desirable to construct simpler invariants: the class of semilinear invariants has
been widely used for this purpose. As Monniaux writes in [Mon19], ‘We started this work
hoping to vindicate forty years of research on heuristics by showing that the existence
of polyhedral inductive separating invariants in a system with transitions in linear arith-
metic (integer or rational) is undecidable.’. Indeed all existing practical implementations
rely on heuristics for constructing invariants in this setting, and the existence of an al-
gorithm would potentially have far reaching consequences. Unfortunately, there are no
such algorithms: our second paper [Fij+19a] shows the undecidability of synthesising a
semilinear invariant for dynamical systems with two linear operators, fulfiling Monniaux’s
goal of proving that heuristics are a necessary evil for constructing semilinear invariants.
We contrast this negative result with a positive one: in the case of a single linear operator
the problem is decidable, albeit very intricate.

The paper [Fij+19c] investigated the related scenario where the linear dynamical sys-
tem is controlled at each step, and the paper [Bar+20a] introduced a subclass of linear
dynamical systems for which the Skolem problem becomes tractable.

Prakash Panangaden

I met Prakash Panangaden at the Simons Institute for the Theory of Computing in
Berkeley in Autumn 2016 during the Logical Structures in Computation semester. He
accepted to be my mentor for the semester and introduced me to the beautiful notion of

3

probabilistic bisimulation about which he wrote one of the founding papers [Blu+97] and
the reference textbook [Pan09]. Probabilistic bisimulation is a notion of equivalence for
probabilistic systems (labelled Markov processes) whose strength is to be defined locally:
two states are equivalent if any action from one state can be simulated by the other,
leading to a distribution of equivalent states – note the co-inductive definition.

During the introductory lectures Prakash gave on the topic, he discussed one of the
foundational result relating probabilistic bisimulation to logic [DEP98]: two states are
not probabilistically bisimilar if and only if there exists a formula from probabilistic
modal logic separating them. This extends the celebrated Hennessey-Milner theorem from
transition systems to the probabilistic world and gives a dual perspective on bisimulation:
non-bisimilarity can be certified using a simple logical formula.

Being trained in the field of Logic, Automata, and Games, I adopted the classic game
involving Spoiler and Duplicator for defining bisimulation: this game formulation nicely
formalises the co-inductive definition. Such a point of view did not exist for probabilistic
bisimulation; I had to invent it and convince Prakash of its value. Together with the
definition of the game we found a counter-example to the logical characterization above
in the presence of uncountably many actions. This was the first negative result in that
direction; a number of positive cases had been obtained using different assumptions and
very different proof techniques (measure theory, coalgebra, domain theory).

Prakash Panangaden, Bartek Klin, and myself therefore embarked on a new venture:
understanding the limits of the logical characterization for probabilistic bisimulation. This
journey took us from sunny California to the topological and measure-theoretic realm of
Polish spaces; we understood that a new result about analytic sets (extending the Unique
Structure Theorem) was needed but its proof eluded us. As was to be expected, the
city of Warsaw hosts some of the world leading experts on Polish spaces: the topolo-
gist Roman Pol helped us to prove the Positive Unique Structure Theorem. The conse-
quence of this new theorem is a conceptually simple proof of the logical characterization
theorem [FKP17] (see the journal version [Cle+19]), extending the existing results and
matching the assumptions of the counter-example mentioned above.

The paper [Ped+18] studied the applications of probabilistic bisimulation for specify-
ing timing properties, and the paper [FKS20] constructed algorithms for related equiva-
lence relations close to probabilistic bisimulations.

Alexander Clark

I met Alexander Clark about the time I moved from (as already mentioned) sunny
California to (rainy) London in January 2017. He is one of the most recognised authority
on automata learning, a part of computational linguistics. His insightful talks connecting
learning to logic have triggered my interests for this field which is both close – for its
models and objectives – and far – for its tools, drawing from statistics, machine learning,
and linguistics – from my automata theory background.

Alexander visited me at the Alan Turing Institute in Autumn 2018 and we started
working together on learning probabilistic context-free grammars (PCFGs). Attacking

4

such a well studied problem with a long history meant getting familiar with a lot of ideas
completely new to me. I learned a lot from this collaboration and this has been very influ-
ential for shaping my research since then. The goal of learning PCFGs is motivated (from
a computational linguistic point of view) by understanding the process of first language
acquisition, in particular the early phases of the acquisition of syntactic structure. The
main difficulty is that in this framework we are learning from words and not derivation
trees: it would indeed be much easier – albeit unrealistic – to learn if we had access to
the syntactic decomposition of the words by the grammar.

It is well known that learning the whole class of PCFGs is impossible, so the objec-
tive here is to define subclasses of PCFGs which are both relevant for the goal stated
above and can be effectively learned. To this end we took inspiration from a notion dis-
covered three times in three different research communities: anchors in computational
linguistics [SCH16], separation in complexity theory [Aro+16], and residual in automata
theory [DLT02]. We showed that combining this anchored property with restrictions on
ambiguity of the grammar yields a subclass of PCFGs identifiable from words which can
be efficiently learned [CF20].

Olivier Serre

I know of Olivier Serre since my very first steps in research as his lecture notes on
games were the first documents I read on the first day of my first research internship
in 2009. I met him a few years later and have been in close contact with him ever
since, in particular as we co-supervise Pierre Ohlmann for his PhD. Olivier Serre and
coauthors introduced the notion of qualitative tree automata, a probabilistic semantics
for automata over infinite trees [CHS14]. During my PhD we worked together on the
topic and constructed an algorithm for deciding the emptiness of alternating qualitative
Büchi tree automata [FPS13].

Automata over infinite trees is a very old topic already introduced in the 70s: the
main result is due to Rabin [Rab69], it states the decidability of the monadic second-
order logic (MSO) over the infinite binary tree. Sometimes referred to as ‘the mother of
all decidability results’, this powerful result indeed implies many other decidability results
through encoding into trees.

A major open question is whether there exist even more expressive decidable logics
over the infinite binary tree; many attempts have been made in the past decades, leading
to more open problems – for instance with the theory of regular cost functions [Col13a;
Fij+15] – or to undecidability results – for instance for MSO + U [BPT16]. Probabilistic
and measure-theoretic extensions of MSO have been introduced and decidability results
obtained for large fragments [MSM18; Boj16], leaving open whether the extension of MSO
with a probabilistic path quantifier is decidable. Bastien Maubert saw the connection
between this question and alternating qualitative tree automata, which we used [Ber+21]
to give a negative answer: MSO with a probabilistic path quantifier is undecidable1.
Hence the search for a decidable extension of MSO over infinite trees remains active.
Mikołaj Bojańczyk and coauthors have recently shown that in some sense there are no

1The same result has been obtained concurrently with very different techniques [BKS19].

5

such extensions [Boj+20].
The unexpected link to logic led us to sharpen our understanding of alternating qual-

itative tree automata; the paper [Ber+21] presents a crisp decidability frontier for the
emptiness problem between Büchi and CoBüchi, and deep connections with games of
imperfect information.

In another take on probabilistic automata, I have worked with Cristian Riveros and
James Worrell on probabilistic automata with bounded ambiguity [FRW17], see also the
journal version [FRW20]. Through a new correspondence with multi-objective optimisa-
tion we have constructed efficient algorithms for analysing them.

Thomas Colcombet

One of the main contributions of Thomas Colcombet (my former PhD co-advisor
together with Mikołaj Bojańczyk) is the theory of regular cost functions [Col13b; Col13a]:
this is a set of models (the main ones are cost automata and cost logics) and a set of
algorithms for deciding boundedness properties on these models. The first example of
the use of this toolbox is the star height problem: given a regular language L and a
number k, does there exist a regular expression denoting L using at most k nesting of
the star operator? An elegant solution to this problem is from L and k to construct a
cost-automaton defining a function f : Σ˚ Ñ NY t8u such that f is bounded if and only
if the answer is positive. Intuitively, the cost-automaton is guessing a regular expression
for the language and is checking its validity using the cost mechanisms (implemented by
counters). Since checking whether a cost-automaton is bounded is decidable, this yields
an algorithm computing the star height of a regular language. More generally, there are
two types of results for the theory of regular cost functions:

• decidability results for boundedness problems applying to various models of the
theory,

• reductions to boundedness problems inside the theory.

There are many examples of results of the second type, let me cite a few: in logic [BCP16],
automata theory [Bar+20b], program analysis [CDZ17], and database theory [Ben+15].
What comes next is an application of the theory of regular cost functions to the field of
stochastic control.

Nathalie Bertrand visited the Simons Institute for a month to participate in the
semester Logical Structures in Computation (mentioned above), and gave a talk about a
recent result they had obtained on the control problem for population protocols [Ber+17]
(see also the journal version [Ber+19]). In this model, a population of agents are con-
trolled uniformly, meaning that the controller applies the same action to every agent.
The agents are represented by a finite state system, the same for every agent. The key
difficulty is that there is an arbitrary large number of agents: the question is whether for
every n P N, there exists a controller able to bring all n agents synchronously to a target
state. The technical contribution of [Ber+17; Ber+19] is to prove that in the adversarial

6

setting where an opponent chooses the evolution of the agents, the (adversarial) control
problem is EXPTIME-complete.

Nathalie introduced the stochastic variant of this problem, where each agent evolves
independently according to a probabilistic distribution, i.e. the finite state system mod-
elling an agent is a Markov decision process. The question is whether for every n P N,
there exists a controller able to bring all n agents synchronously to a target state with
probability one. (Almost) nothing was known about this problem that we call the stochas-
tic control problem; before stating our results, let us discuss four motivations and related
lines for works: control of biological systems, parameterised verification and control, dis-
tributed computing, and probabilistic automata.

The original motivation was for controlling population of yeasts [Uhl+15]. In this
application, the concentration of some molecule is monitored through fluorescence level.
Controlling the frequency and duration of injections of a sorbitol solution influences the
concentration of the target molecule, triggering different chemical reactions which can be
modelled by a finite state system. The objective is to control the population to reach a
predetermined fluorescence state.

The formulation of the problem is rooted in parameterised verification, introduced
in [GS92]: it is the verification of a system composed of an arbitrary number of identi-
cal components. The control problem introduced in [Ber+17; Ber+19] is the first step
towards parameterised control : the goal is control a system composed of many identi-
cal components in order to ensure a given property. To the best of my knowledge, the
contributions of [Ber+17; Ber+19] are the first results on parameterised control.

The model also resembles two models introduced for the study of distributed comput-
ing. The first and most widely studied is population protocols, introduced in [Ang+06]:
the agents are modelled by finite state systems and interact by pairs drawn at random.
The mode of interaction is the key difference with the model we study here: in a time step,
all of our agents perform simultaneously and independently the same action. This brings
us closer to broadcast protocols as studied for instance in [EFM99], in which one action
involves an arbitrary number of agents. As explained in [Ber+17; Ber+19], the model
can be seen as a subclass of (stochastic) broadcast protocols. The focus of the distributed
computing community when studying population or broadcast protocols is to construct
the most efficient protocols for a given task, such as (prominently) electing a leader. A
growing literature from the verification community focuses on checking the correctness of
a given protocol against a given specification; we refer to the recent survey [Esp16] for an
overview. The question here is a synthesis question: we are asking about the existence of
a strategy, in other words a protocol, whose goal is to synchronise all agents in a target
state.

When considering the limit case of infinitely many agents the parameterised con-
trol question becomes the value 1 problem for probabilistic automata, which was proved
undecidable in [GO10], and even in very restricted cases [Fij+14]. Hence abstracting
continuous distributions by a discrete population of arbitrary size can be seen as an ap-
proximation technique for probabilistic automata. Using n agents correponds to using
numerical approximation up to 2´n with random rounding; in this sense the control prob-
lem considers arbitrarily fine approximations. The plague of undecidability results on
probabilistic automata (see e.g. [Fij17]) is nicely contrasted by our positive result, which
is one of the few decidability results on probabilistic automata not making structural
assumptions on the underlying graph.

7

I started working on the stochastic control for population protocols back in 2016. The
main question was whether it is decidable at all. We identified a first tool for attacking
it: downward closures made the problem naturally fit into the theory of well quasi orders
(see [Sch17] for an introduction to recent results in computer science using this theory).
However despite years of efforts, we could not crack it. I became obsessed and presented
the problem to a number of researchers, which led to the exploration of many beautiful
ideas, but none gave us the solution. The second insight came from Thomas Colcom-
bet, who suggested a reduction of that problem to the theory of regular cost functions.
The third insight and key to the full proof is the use of the max-flow min-cut theorem
on graphs, which reformulates the question in a dual form that can then be expressed
using cost-automata. Our main technical result is that the stochastic control problem is
decidable [CFO20].

This is not the end of the story; first because our algorithms is highly impractical,
its complexity is a priori non-elementary although the best known lower bound is EX-
PTIME-hardness [MST19]. The second and most interesting perspective was suggested
by Blaise Genest (coauthor of [Ber+17; Ber+19]): in addition to requiring to synchronise
the n agents with probability one, can we bound the expected time before this happens
as a function of n? It turns out that there are three natural regimes: polylogarithmic,
polynomial, and exponential (the general case). Very little is known about these, except
for personal conjectures I would be happy to share!

Bastien Maubert

I visited Bastien Maubert in Naples in May 2017, this was the start of a fruitful collab-
oration continuing today. We explored together applications of the theory of regular cost
functions to controller synthesis, and more specifically to logical specifications involving
bound requirements.

In order to perform strategic reasoning temporal logics of programs (such as LTL)
have been extended with operators expressing the existence of strategies for coalitions of
components. Among the most successful proposals are Alternating-time Temporal Logic
(ATL) [AHK02] and, more recently, the more expressive Strategy Logic (SL) [CHP10].
Both logics can express the existence of strategies for coalitions that ensure some tem-
poral properties against all possible behaviours of the remaining components. Moreover,
if such strategies exist, one can also obtain witnessing finite-state strategies. As a re-
sult, synthesizing reactive systems from temporal specifications [PR89] can be reduced to
model checking such strategic logics. Strategy Logic can express important game-theoretic
concepts such as the existence of Nash equilibria, but they are limited to qualitative prop-
erties. For instance important properties such as bounding the maximal number of steps
between an event and its reaction cannot be expressed; parametric extensions of temporal
logics have been introduced to capture such properties.

The eventually operator can be annotated with a bound: Fďbϕ says that ϕ holds within
b steps for a constant b P N. However, one may not know such bounds or care for their
exact value when writing the specification, and it may not be practical to compute the
bound. Prompt LTL [KPV09] considers b as a variable, and the model-checking problem

8

asks if there exists a valuation of the variable b such that the formula holds.

In order to reason about and synthesize strategies that ensure such properties specified
in Prompt LTL, we introduced Prompt Strategy Logic, an extension of SL with the
Fďb operator, and developed further the theory of regular cost functions to prove the
decidability of model-checking for Prompt Strategy Logic [Fij+18].

Assume-guarantee originates as a modular approach to program verification that al-
lows decomposition of proof obligations [AH99]. Informally, an assume-guarantee speci-
fication consists of two specifications φ and ψ. A system S satisfies this specification if
whenever it is used in a context that satisfies the assumption φ, the guarantee ψ holds on
the system or, said differently, for all environments E satisfying φ, the composed system
S||E satisfies ψ.

Assume-guarantee synthesis is the problem of synthesising a system S satisfying an
assume-guarantee specification. We refer to [MS12] for a discussion of practical appli-
cations of assume-guarantee synthesis. When considering LTL specifications, assume-
guarantee verification and synthesis reduce to classical LTL model checking and synthesis:
if φ and ψ are LTL formulas, then the assume-guarantee specification is equivalent to the
LTL specification φ ùñ ψ. But this is not true for Prompt LTL: when we ask that in
all environments satisfying the assumption the system also satisfies the guarantee, there
is an implicit quantification on the bounds with which the assumption and the guarantee
are satisfied: a universal one for the assumption and an existential one for the guarantee.
Because in Prompt LTL the only quantification on bounds is an existential one at the
front of the formula, this alternation is not reflected in the formula φ ùñ ψ and, in fact,
cannot be captured by a Prompt LTL formula. Classical techniques to handle Prompt
LTL such as the alternating colour technique [KPV09] are thus difficult to apply, and the
assume-guarantee synthesis problem for Prompt LTL has been open for a decade.

The problem of assume-guarantee synthesis for Prompt LTL as defined above can be
called uniform, as the system that one aims at synthesising does not depend on the bounds
for which the assumption or the guarantee are satisfied. It was observed in [JTZ18] that
this variant of the problem does not always admit finite implementations, as a satisfying
system may require memory that depends on the bounds. Also, in the formulation of the
problem they consider, the assumption talks about both inputs and outputs, which makes
it possible to have solution systems that always falsify the assumption. To eliminate such
unsatisfactory solutions we consider assumptions that only talk about inputs. Also, to
account for the fact that a system’s memory may depend on the bound for the assumption,
we introduce a non-uniform variant of the problem, which asks whether for every bound
b on the assumption, there exists a bound b1 on the guarantee and a system Sb such
that whenever the assumption is satisfied with bound b, the guarantee is satisfied with
bound b1.

Our second paper constructs an algorithm for solving the assume-guarantee synthesis
problem for Prompt LTL [Fij+20b], solving this decades old open problem. Time and
again the heavylifting is done within the theory of regular cost functions: the solution
makes crucial use of new results about (history)-determinisability of cost-automata and
solvability of cost-games.

9

Guillaume Lagarde

I met Guillaume Lagarde in 2017 on Friday March 3 at 2:30PM in the room 3052
of the IRIF (Paris 7) laboratory when he gave a talk about his recent works proving
lower bounds for non-commutative circuits. He and coauthors extended a famous result
by Nisan [Nis91] proving an exponential lower on non-commutative algebraic branching
programs, by constructing from a circuit a matrix and analysing its rank. At this time I
was becoming familiar with automata learning, and in particular the fascinating notion of
Hankel matrices. I saw a connection between the following two results, which I thought
could not be a coincidence:

• Nisan’s result can be stated as follows: given a multivariate non-commutative poly-
nomial P , we can construct a matrix NP such that any algebraic branching program
computing P has size at least the rank of NP ;

• Fliess’s result [Fli74] can be stated as follows: given a function f : Σ˚ Ñ R, we
can construct a matrix Hf called the Hankel matrix of f such that the size of the
smallest weighted automaton computing f is exactly the rank of Hf .

Fliess’ result, which had been restated and rediscovered many times over the years, is
a fundamental result about weighted automata, it is the key ingredient for minimising,
and later for learning, these models. It took some time to find a perfect one-to-one
correspondence between definitions and notions in non-commutative algebraic complexity
and automata theory; once this settled we understood that Nisan’s result can indeed
be obtained as a simple corollary of Fliess’ result. More interestingly, this implies that
Nisan’s approach is not only a lower bound, but also an upper bound: the size of the
smallest algebraic branching program computing P is exactly the rank of NP . In other
words, algebraic branching programs are characterised by the matrix defined by Nisan.

Going further, we wondered whether Guillaume’s results [LLS18] (extending Nisan’s)
also had a weighted automata counterpart. The answer is positive, and for this we needed
to work with weighted automata over finite trees. Indeed Fliess’ result can be extended
(almost mutatis mutandis) to functions mapping trees to real numbers: this is the work
of Bozapalidis and Louscou-Bozapalidou [BL83]. Similarly as for the special case of al-
gebraic branching programs, the lower bound induced by the rank of the Hankel matrix
is actually also an upper bound. We were then in possession of a new tool to analyse
non-commutative circuits: this was an invitation to revisit the literature. The resulting
paper [Fij+20a] (and the journal version [Fij+21]) draws on this newly discovered con-
nection to give new and unified proofs of many existing results, but most importantly
prove new results by decomposing and analysing the Hankel matrix.

It turns out that the notion of Hankel matrix played another fundamental role in a line
of work I contributed to: lower bounds for state complexity. Motivated by a question asked
by Rabin in his seminal paper [Rab63], I investigated the succinctness of probabilistic
automata [Fij16]. This led to the introduction of (what I thought to be) a new method
for proving lower bounds on the state complexity of alternating automata [Fij18b]; the
matrix constructed in this lower bound is exactly the Hankel matrix, and the lower bounds

10

method stated in [Fij18b] is a boolean counterpart of Fliess’ theorem. The journal version
clarifies this connection [Fij20a].

Pierre Ohlmann

I met Pierre Ohlmann when he joined Oxford for a summer internship in 2016. As
Ben accurately once said: ‘Don’t get fooled: he looks like a Californian surfer but he’s
really sharp’. I co-supervised Pierre for his next two internships (in London and in Paris),
and then co-supervised him with Olivier Serre for his PhD. We worked together on many
topics, but I can proudly say that I most successfully infected him with the virus of parity
games, and more generally games of infinite duration.

Games of infinite duration are a widely studied model in several fields of computer sci-
ence including program verification, model checking, automata theory, logic, finite model
theory, and database theory: the interactions between the players can model a range of
(non-terminating) systems and are therefore used for analysing, verifying, and synthesis-
ing them. There exists a variety of game models: we consider here two player zero sum
deterministic (as opposed to stochastic) games with perfect information. Two of the most
important open problems in this field concern parity games and mean payoff games: in
both cases the complexity of solving them is in NP and in coNP, but not known to
be in polynomial time. This complexity status was once shared with primality testing,
linear programming, and others famous problems, which all turned out to the solvable in
polynomial time. Yet although both problems have attracted a lot of attention over the
past three decades, they remain widely open and exciting research directions.

Parity games are a central model in the study of logic and automata over infinite
trees and for their tight relationship with model-checking games for the modal µ-calculus.
Following decades of exponential and subexponential algorithms, a breakthrough hap-
pened in 2017 when Calude, Jain, Khoussainov, Li, and Stephan [Cal+17] constructed a
quasipolynomial time algorithm for solving parity games. A shockwave was felt through-
out Europe: Gimbert and Ibsen-Jensen published a shorter correctness proof [GI17],
Jurdziński and Lazić constructed a second quasipolynomial time algorithm [JL17], Fearn-
ley, Jain, Schewe, Stephan, and Wojtczak reformulated the original algorithm using value
iteration [Fea+17], and Bojańczyk and Czerwiński presented the algorithm as the con-
struction of a separating automaton [BC18], all of this within a matter of months. A few
months after that Lehtinen constructed a third quasipolynomial time algorithm [Leh18].

Bojańczyk’s and Czerwiński’s contribution [BC18] went beyond merely explaining the
first algorithm: by introducing the notion of separating automata they defined a new
tool for constructing and understanding algorithms; and indeed it was soon understood
that all three quasipolynomial time algorithms induced separating automata. Informally,
a separating automaton is a safety automaton – meaning it accepts all infinite runs and
only rejects on deadlocks – which separates positional winning plays from losing ones: the
observation of Bojańczyk and Czerwiński is that such an automaton induces a generic
algorithm for solving parity games by reduction to safety games. I visited Jurdziński and
Lazić in Warwick and Bojańczyk and Czerwiński in Warsaw around this time, and the

11

question on everyone’s lips was: can we construct smaller separating automata?

Diving into Jurdziński’s and Lazić’s succinct progress measure algorithm I extracted
the notion of universal trees [Fij18a]: I constructed a family of value iteration algorithms
parameterised by the choice of a universal tree, of which the succinct progress measure
algorithm is a special case. The main technical result in [Fij18a] is a quasipolynomial
lower bound on the size of universal trees, a purely combinatorial statement. The lower
bounds offered in [Fij18a] match up to a polynomial factor the universal tree (implicitly)
constructed in [JL17].

One month later Czerwiński, Daviaud, Jurdziński, Lazić, and Parys showed that any
separating automaton induces a universal tree of the same size. Combined with my lower
bounds on universal trees, this implies an unconditional quasipolynomial lower bound on
the size of separating automata. Our joint paper [Cze+19] conveys a simple message: all
existing quasipolynomial time algorithms are based on separating automata, hence cannot
break the quasipolynomial barrier of universal trees.

Parys constructed yet another quasipolynomial time algorithm [Par19] which is both
simple and beautiful, and seemed to escape the limitations of separating automata. The
algorithm is inspired by the exponential time algorithm of Zielonka [Zie98] specialising
an algorithm due to McNaughton [McN93]. Parys’ algorithm was later improved by
Lehtinen, Schewe, and Wojtczak [LSW19]. Recently Jurdziński, Morvan, Ohlmann, and
Thejaswini [Jur+20] constructed a generic ‘universal attractor decomposition algorithm’
encompassing all three algorithms. and parameterised by the choice of two universal trees
(one of each player). Choosing appropriate pairs of universal trees yields the algorithms
from [Zie98; Par19; LSW19], hence these algorithms do not escape the fate of universal
trees and their quasipolynomial lower bounds.

In summary, all existing quasipolynomial time algorithms for parity games (and some
exponential ones) are related to the combinatorial notion of universal trees, hence sub-
jected to the quasipolynomial lower bounds. If there exists a polynomial time algorithm,
we should look for it elsewhere!

Beyond parity games. There are a number of other objectives of interest, the most
prominent one being mean payoff. With minor adjustements the notion of separating
automata can be extended to any positionally determined objective, begging the question
whether they can be useful beyond parity games. Trying to extend universal trees I de-
fined universal graphs and told Thomas Colcombet and Pierre Ohlmann about this new
definition. Thomas came back the next day with a fantastic technical idea: saturation.
This implied a direct and simple proof of the equivalence between separating automata
and universal graphs, extending the results of [Cze+19] from parity to any positionally
determined objective. The paper [CF18; CF19] states this equivalence also considering
non-deterministic separating automata and the semantically restricted notion of good-
for-small-games automata. The equivalence proof implies a normal form for universal
graphs called linear universal graphs, which means that they yield generic value iteration
algorithms (and in particular can be implemented with quasilinear space complexity).
At this point we had in our hands two equivalent tools: separating automata and uni-
versal graphs. Seeing two sides of the same coin is often useful, and in the subsequent
developments going from one representation to the other was sometimes essential.

To summarise, what are universal graphs good for? Given a class of objectives, they

12

reduce the question of constructing algorithms for solving games to constructing universal
graphs. This is considerably simpler as it is not anymore about the interaction of the two
players but only about the combinatorial properties of the objectives. We followed this
recipe for different classes of objectives:

• For mean payoff objectives [FGO20], we proved matching upper and lower bounds on
the size of universal graphs: the upper bounds induce algorithms for solving mean
payoff games matching the best known deterministic complexity, and the lower
bounds imply that these algorithms are optimal within this class of algorithms.
The main message here is that universal graphs do not yield quasipolynomial time
algorithms for mean payoff games.

• For disjunctions of mean payoff objectives, and for disjunctions of mean payoff and
parity objectives, we investigated how to combine existing universal graphs for each
objective into universal graphs for their disjunctions. Rather than constructing
universal graphs from scratch, we wanted to define constructions using universal
graphs for the atomic objectives as black boxes. In other words, we assumed the
existence of universal graphs for parity objectives and for mean payoff objectives,
and constructed universal graphs for combinations of these classes. An important
benefit of this approach is its simplicity: both constructions and their correctness
proofs are rather short and focus on the interactions between the objectives.

The paper [Fij20b] is an introduction to universal graphs, and the (submitted) journal
paper [Col+21] is a comprehensive account of all existing results on the nascent theory of
universal graphs.

Adrià Gascón and Brooks Paige

Adrià Gascón, Brooks Paige, and myself, were research fellows at the Alan Turing
Institute in London at the same time, around 2017. Adrià’s background is in security and
machine learning and Brooks’ in probabilistic programming; as a way to collaborate we
offered a summer internship at the Turing, which is aimed at PhD students. We hired
Judith Clymo, who was specialising in the theory of QBF solvers, and Haik Manukian, an
astrophysicist with a solid background in machine learning. This mix of five backgrounds
made for a very productive summer! The goal was to work on programming by example,
a program synthesis framework where the program is constructed from a few examples,
and in particular study the recent ‘DeepCoder’ approach [Bal+17] guiding the search of
programs using machine learning predictions.

Working on a re-implementation of DeepCoder’s approach, we identified an important
challenge: machine learning means training data, and in this context it is essentially non-
existent. DeepCoder’s results were based on synthetic data, posing the following question:
how to create a dataset of millions of programs, and for each programs of relevant and
interesting inputs? Our paper [Cly+20] introduces different approaches to data generation
for program synthesis leveraging tools from formal methods (SMT solvers), and shows the
influence of this question in the overall solution.

13

Besides the question of data generation, this summer was a very exciting dive into
a fascinating topic: machine learning guided program synthesis. Little was known on
the theoretical side, yet its practice was booming with dozens of papers published in the
machine learning community annually. The following year I was awarded a three-year
research grant DeepSynth (CNRS Momentum 2018 – 2021) to work on the topic and to
hire a post-doc for two years. Guillaume Lagarde joined LaBRI in September 2019 to carry
out this ambitious project. Our aim was to lay the theoretical foundations for machine
learning guided program synthesis and to relate this question to existing approaches in
computer science; see [FL20] for our tutorial.

We focused on the search aspect and it took us the whole duration of the project to
define a satisfactory framework in which we could formulate existing algorithms, quantify
their merits, and construct new ones. The abstract question we ask is the following:
we are looking for a program in a set of programs. We do not know what the program
is but we do have some predictions in the form of a probabilistic distribution D over
the set of programs. The question is: how to organise the search? The most natural
answer is to enumerate programs in non-increasing order: x1, x2, . . . such that Dpx1q ě
Dpx2q ě . . . , meaning x1 is the most likely program according to D, x2 the second
most likely, and so on. Unfortunately, enumerating programs in this exact order may be
computationally expensive if the distribution D is complicated. This reveals a trade-off:
should we enumerate many programs, albeit with low likelihood, or should we enumerate
a lot of very likely programs? Another approach is sampling: choose a distribution D1
and sample programs from it. Surprisingly enough, the optimal choice of distribution is
not D1 “ D: indeed to account for the possible sample repetitions it is beneficial to skew
D into what we call the square root of D. The point of the distribution based search
framework we introduced is to formalise the algorithmic challenges we just sketched.

We implemented a general purpose program synthesis tool called DeepSynth [Fij+22]:

https://github.com/nathanael-fijalkow/DeepSynth

It serves as a basis for all our experiments and shows the improvements due to the
distribution based search. Thanks to the genericity of the codebase we are exploring appli-
cations of DeepSynth to three different problems: reinforcement learning, the Abstraction
and Reasoning Corpus (ARC), and synthesis of reactive controllers.

Ritam Raha

I met Ritam Raha when he joined LaBRI as an intern in Summer 2018. He started his
PhD in September 2019 under the joint supervision of Guillermo Perez and Floris Geerts
from the University of Antwerp (Belgium), and Jérôme Leroux (Bordeaux) and myself.
The goal of Ritam’s PhD is to construct algorithms for the verification of machine learning
models. We have worked together on different aspects of automata learning in a passive
scenario (as opposed to the celebrated active automata learning due to Angluin [Ang87]).

Passive learning of languages has a long history paved with negative results. Learning
automata is notoriously difficult from a theoretical perspective, as witnessed by the origi-
nal NP-hardness result of learning a deterministic finite automaton (DFA) from examples

https://github.com/nathanael-fijalkow/DeepSynth

14

by [Gol78]. This line of hardness results culminates with the inapproximability result
of [PW93] stating that there is no polynomial time algorithm for learning a DFA from
examples even up to a polynomial approximation of their size.

One approach to cope with such hardness results is to change representation, replacing
automata by logical formulas: their syntactic structures make them more amenable to
principled search algorithms. There is a range of potential logical formalisms to choose
from depending on the application domain. Linear Temporal Logic [Pnu77] is a prominent
logic for specifying temporal properties over words. It has become a de facto standard in
many fields such as model checking, program analysis, and motion planning for robotics.
A key property making LTL a strong candidate as a concept class is that its syntax does
not include variables, contributing to the fact that LTL formulas are typically easy to
interpret and therefore useful as explanations.

Over the past five to ten years learning temporal logics (of which LTL is the core) has
become an active research area, with applications in program specification and anomaly
and fault detections. A number of different approaches have been proposed, leveraging
SAT solvers, automata, and Bayesian inference, and extended to more expressive logics
such as Property Specification Language (PSL) and Computational Tree Logic (CTL).

Nothing was known about the computational complexity of the underlying problem;
indeed the works cited above focused on constructing efficient algorithms for practical
applications. In [FL21] we initiated the study of the complexity of learning LTL formulas
from examples both for the exact and the approximation settings, and relating the problem
to classical problems algorithmic questions on finite strings.

Together with Ritam and coauthors [Rah+22] we have used these theoretical insights
to construct a new tool performing LTL learning from examples. Thanks to succinct
representations and the use of approximation algorithms, our algorithm scales to formulas
of size 100, while all previous approaches could not output formulas of size larger than
10. The main appeal of our algorithm is to be anytime: whereas previous algorithms may
reach the timeout and not give any output, our algorithm constructs smaller and smaller
formulas along the computation, hence in most cases can output some formula even if it
is not minimal.

Antonio Casares

I met Antonio Casares in Spring 2020 for an (online...) internship, which was immedi-
ately followed by the start of his PhD under the joint supervision of Thomas Colcombet
(Paris), Igor Walukiewicz (Bordeaux), and myself. Antonio’s research interests are in
automata, logic, and games, and their applications to synthesis of reactive controllers
specified in Linear Temporal Logic (LTL).

The original approach of Pnueli and Rosner [PR89] for LTL synthesis using automata
and games devised more than four decades ago is today at the heart of the state of the art
synthesis tools [Esp+17; LMS20; MC18]. The bottleneck is the determinisation of Büchi
automata: given a non-deterministic Büchi automaton, construct an equivalent parity au-
tomaton. This problem has a long history; it was originally solved by McNaughton in the
60s, and the first asymptotically optimal construction is due to Safra in the 80s. Most of

15

the recent theoretical and practical solutions of this problem are based on the construction
of Piterman [Pit06]. Schewe’s [Sch09] enlightening perspective on this construction is to
decompose it into two steps: first construct a deterministic Muller automaton, and then
transform it into an equivalent deterministic parity automaton. Piterman and Schewe’s
determinisation procedure is one of many examples of constructions using as an intermedi-
ate step (subclasses of) Muller conditions before transforming them into parity conditions,
either working with automata models or games models.

During the first year of Antonio’s PhD we focused on this particular step and study
transformations from Muller to parity. We worked with general transition systems to
seamlessly encompass both automata and games models. There are several existing con-
structions transforming subclasses of Muller conditions to parity. The first is the Latest
Appearance Record (LAR), which applies to all Muller conditions. It was proved to be
optimal in the worst case: there exists a family of Muller automata for which the obtained
parity automata are minimal. Many refinements of the LAR have been constructed for
subclasses of Muller conditions.

The notion of Zielonka tree of a Muller condition was introduced in [Zie98] and shown
to capture the exact memory requirements of Muller games [DJW97]. In the long version
of [DJW97], it implicitly appears that the Zielonka tree of a Muller condition can be used
to construct a parity automaton recognising this Muller condition. Our first observation
was to show a strong optimality result: for all Muller conditions, the parity automaton
obtained from the Zielonka tree of a Muller condition is minimal both in the number
of states and in the number of priorities. This optimality result is much stronger than
the worst case optimality result of the LAR transformation; in essence, it shows that
the Zielonka tree of a Muller condition precisely captures the properties of the Muller
condition, whereas for instance the LAR only depends on the number of colours.

Our second insight was to note that all existing constructions, including the one based
on Zielonka trees, only consider the Muller condition but do not take into account the
structure of the underlying transition system. In other words, all transformations work
at the level of conditions: they transform a Muller condition into a parity condition, and
ignore the interplay between the condition and the transition structure.

In our first paper [CCF21] we constructed a new transformation called the alternating
cycle decomposition (ACD) which captures this interplay: the ACD transforms a Muller
transition system into a parity transition system, extending Zielonka trees by considering
the alternation of accepting and rejecting cycles in the original transition system. We
proved a strong optimality result for the ACD transformation, which had a number of
important consequences. The first is an improvement of Piterman and Schewe’s construc-
tion, and the second is a set of crisp characterisations for relabelling transition systems
with different classes of acceptance conditions. With these new insights, Antonio [Cas21]
related an automata minimisation question to memory requirements for Muller games,
solving a long standing open question of Kopczyński [Kop09]. On the more practical side,
the ACD transformation has been implemented by Antonio and coauthors in the state of
the art tool Strix, yielding smaller controllers for many benchmarks.

16

Bibliography

Personal references

[Bar+20a] Corentin Barloy, Nathanaël Fijalkow, Nathan Lhote, and Filip Mazowiecki.
“A Robust Class of Linear Recurrence Sequences”. In: Computer Science in
Logic, CSL. 2020. doi: 10.4230/LIPIcs.CSL.2020.9 (cited on p. 2).

[Ber+21] Raphaël Berthon, Nathanaël Fijalkow, Emmanuel Filiot, Shibashis Guha,
Bastien Maubert, Aniello Murano, Laureline Pinault, Sophie Pinchinat, Sasha
Rubin, and Olivier Serre. “Alternating Tree Automata with Qualitative Se-
mantics”. In: ACM Transactions on Computational Logic 22.1 (2021). doi:
10.1145/3431860 (cited on pp. 4, 5).

[CCF21] Antonio Casares, Thomas Colcombet, and Nathanaël Fijalkow. “Optimal
Transformations of Games and Automata Using Muller Conditions”. In: In-
ternational Colloquium on Automata, Languages, and Programming, ICALP.
2021. doi: 10.4230/LIPIcs.ICALP.2021.123 (cited on p. 15).

[CF20] Alexander Clark and Nathanaël Fijalkow. “Consistent Unsupervised Estima-
tors for Anchored PCFGs”. In: Transactions of the Association for Compu-
tational Linguistics 8 (2020). doi: 10.1162/tacl_a_00323 (cited on p. 4).

[Cle+19] Florence Clerc, Nathanaël Fijalkow, Bartek Klin, and Prakash Panangaden.
“Expressiveness of probabilistic modal logics: A gradual approach”. In: In-
formation and Computation 267 (2019). doi: 10.1016/j.ic.2019.04.002
(cited on p. 3).

[Cly+20] Judith Clymo, Haik Manukian, Nathanaël Fijalkow, Adrià Gascón, and Brooks
Paige. “Data Generation for Neural Programming by Example”. In: Inter-
national Conference on Artificial Intelligence and Statistics, AI&STATS.
Vol. 108. Proceedings of Machine Learning Research. PMLR, 2020. url:
http://proceedings.mlr.press/v108/clymo20a.html (cited on p. 12).

[CF18] Thomas Colcombet and Nathanaël Fijalkow. “Parity games and universal
graphs”. In: CoRR (2018). url: https://arxiv.org/abs/1810.05106
(cited on p. 11).

[CF19] Thomas Colcombet and Nathanaël Fijalkow. “Universal Graphs and Good for
Games Automata: New Tools for Infinite Duration Games”. In: Foundations
of Software Science and Computation Structures, FoSSaCS. 2019. doi: 10.
1007/978-3-030-17127-8_1 (cited on p. 11).

[Col+21] Thomas Colcombet, Nathanaël Fijalkow, Paweł Gawrychowski, and Pierre
Ohlmann. “The Theory of Universal Graphs for Infinite Duration Games”.
In: CoRR (2021). url: https://arxiv.org/abs/2104.05262 (cited on
p. 12).

https://doi.org/10.4230/LIPIcs.CSL.2020.9
https://doi.org/10.1145/3431860
https://doi.org/10.4230/LIPIcs.ICALP.2021.123
https://doi.org/10.1162/tacl_a_00323
https://doi.org/10.1016/j.ic.2019.04.002
http://proceedings.mlr.press/v108/clymo20a.html
https://arxiv.org/abs/1810.05106
https://doi.org/10.1007/978-3-030-17127-8_1
https://doi.org/10.1007/978-3-030-17127-8_1
https://arxiv.org/abs/2104.05262

17

[CFO20] Thomas Colcombet, Nathanaël Fijalkow, and Pierre Ohlmann. “Controlling a
Random Population”. In: Foundations of Software Science and Computation
Structures, FoSSaCS. 2020. doi: 10.1007/978-3-030-45231-5_7 (cited
on p. 7).

[Cze+19] Wojciech Czerwiński, Laure Daviaud, Nathanaël Fijalkow, Marcin Jurdz-
iński, Ranko Lazić, and Paweł Parys. “Universal trees grow inside separating
automata: Quasi-polynomial lower bounds for parity games”. In: Interna-
tional Symposium on Discrete Algorithms, SODA. 2019. doi: 10.1137/1.
9781611975482.142 (cited on p. 11).

[Fij18a] Nathanaël Fijalkow. “An Optimal Value Iteration Algorithm for Parity Games”.
In: CoRR (2018). url: https://arxiv.org/abs/1801.09618 (cited on
p. 11).

[Fij20a] Nathanaël Fijalkow. “Lower bounds for the state complexity of probabilistic
languages and the language of prime numbers”. In: The Journal of Logic and
Computation 30.1 (2020). doi: 10.1093/logcom/exaa007 (cited on p. 10).

[Fij16] Nathanaël Fijalkow. “Online Space Complexity of Probabilistic Automata”.
In: Logical Foundations of Computer Science, LFCS. 2016. doi: 10.1007/
978-3-319-27683-0_8 (cited on p. 9).

[Fij18b] Nathanaël Fijalkow. “The State Complexity of Alternating Automata”. In:
Logic in Computer Science, LICS. 2018. doi: 10.1145/3209108.3209167
(cited on pp. 9, 10).

[Fij20b] Nathanaël Fijalkow. “The Theory of Universal Graphs for Games: Past and
Future”. In: Coalgebraic Methods in Computer Science, CMCS. Vol. 12094.
2020. doi: 10.1007/978-3-030-57201-3_1 (cited on p. 12).

[Fij17] Nathanaël Fijalkow. “Undecidability results for probabilistic automata”. In:
SIGLOG News 4.4 (2017). doi: 10.1145/3157831.3157833 (cited on p. 6).

[FGO20] Nathanaël Fijalkow, Paweł Gawrychowski, and Pierre Ohlmann. “Value Iter-
ation Using Universal Graphs and the Complexity of Mean Payoff Games”.
In: Mathematical Foundations of Computer Science, MFCS. 2020. doi: 10.
4230/LIPIcs.MFCS.2020.34 (cited on p. 12).

[Fij+14] Nathanaël Fijalkow, Hugo Gimbert, Florian Horn, and Youssouf Oualhadj.
“Two Recursively Inseparable Problems for Probabilistic Automata”. In:Math-
ematical Foundations of Computer Science, MFCS. 2014. doi: 10.1007/978-
3-662-44522-8_23 (cited on p. 6).

[Fij+15] Nathanaël Fijalkow, Florian Horn, Denis Kuperberg, and Michał Skrzypczak.
“Trading Bounds for Memory in Games with Counters”. In: International
Colloquium on Automata, Languages, and Programming, ICALP. 2015. doi:
10.1007/978-3-662-47666-6_16 (cited on p. 4).

[FKS20] Nathanaël Fijalkow, Stefan Kiefer, and Mahsa Shirmohammadi. “Trace Re-
finement in Labelled Markov Decision Processes”. In: Logical Methods in
Computer Science 16.2 (2020). doi: 10.23638/LMCS-16(2:10)2020 (cited
on p. 3).

https://doi.org/10.1007/978-3-030-45231-5_7
https://doi.org/10.1137/1.9781611975482.142
https://doi.org/10.1137/1.9781611975482.142
https://arxiv.org/abs/1801.09618
https://doi.org/10.1093/logcom/exaa007
https://doi.org/10.1007/978-3-319-27683-0_8
https://doi.org/10.1007/978-3-319-27683-0_8
https://doi.org/10.1145/3209108.3209167
https://doi.org/10.1007/978-3-030-57201-3_1
https://doi.org/10.1145/3157831.3157833
https://doi.org/10.4230/LIPIcs.MFCS.2020.34
https://doi.org/10.4230/LIPIcs.MFCS.2020.34
https://doi.org/10.1007/978-3-662-44522-8_23
https://doi.org/10.1007/978-3-662-44522-8_23
https://doi.org/10.1007/978-3-662-47666-6_16
https://doi.org/10.23638/LMCS-16(2:10)2020

18

[FKP17] Nathanaël Fijalkow, Bartek Klin, and Prakash Panangaden. “Expressive-
ness of Probabilistic Modal Logics, Revisited”. In: International Colloquium
on Automata, Languages, and Programming, ICALP. 2017. doi: 10.4230/
LIPIcs.ICALP.2017.105 (cited on p. 3).

[FL20] Nathanaël Fijalkow and Guillaume Lagarde. “A tutorial on machine learning
Guided program synthesis”. In: European Conference on Artificial Intelli-
gence, ECAI. 2020. url: https://deepsynth.labri.fr/?page=tutorial
(cited on p. 13).

[FL21] Nathanaël Fijalkow and Guillaume Lagarde. “The Complexity of Learning
Linear Temporal Formulas from Examples”. In: International Conference on
Grammatical Inference, ICGI. 2021 (cited on p. 14).

[Fij+22] Nathanaël Fijalkow, Guillaume Lagarde, Théo Matricon, Kevin E. Ellis,
Pierre Ohlmann, and Akarsh Potta. “DeepSynth: Scaling Neural Program
Synthesis with Distribution-based Search”. In: AAAI Conference on Artifi-
cial Intelligence, AAAI. 2022. url: https://arxiv.org/abs/2110.12485
(cited on p. 13).

[Fij+20a] Nathanaël Fijalkow, Guillaume Lagarde, Pierre Ohlmann, and Olivier Serre.
“Lower Bounds for Arithmetic Circuits via the Hankel Matrix”. In: Sympo-
sium on Theoretical Aspects of Computer Science, STACS. 2020. doi: 10.
4230/LIPIcs.STACS.2020.24 (cited on p. 9).

[Fij+21] Nathanaël Fijalkow, Guillaume Lagarde, Pierre Ohlmann, and Olivier Serre.
“Lower Bounds for Arithmetic Circuits via the Hankel Matrix”. In: Compu-
tational Complexity (2021) (cited on p. 9).

[Fij+19a] Nathanaël Fijalkow, Engel Lefaucheux, Pierre Ohlmann, Joël Ouaknine, Amaury
Pouly, and James Worrell. “On the Monniaux Problem in Abstract Interpre-
tation”. In: International Symposium on Static Analysis, SAS. 2019. doi:
10.1007/978-3-030-32304-2_9 (cited on p. 2).

[Fij+18] Nathanaël Fijalkow, Bastien Maubert, Aniello Murano, and Sasha Rubin.
“Quantifying Bounds in Strategy Logic”. In: Computer Science in Logic, CSL.
2018. doi: 10.4230/LIPIcs.CSL.2018.23 (cited on p. 8).

[Fij+20b] Nathanaël Fijalkow, Bastien Maubert, Aniello Murano, and Moshe Y. Vardi.
“Assume-Guarantee Synthesis for Prompt Linear Temporal Logic”. In: In-
ternational Joint Conference on Artificial Intelligence, IJCAI. 2020. doi:
10.24963/ijcai.2020/17 (cited on p. 8).

[Fij+19b] Nathanaël Fijalkow, Pierre Ohlmann, Joël Ouaknine, Amaury Pouly, and
James Worrell. “Complete Semialgebraic Invariant Synthesis for the Kannan-
Lipton Orbit Problem”. In: Theory of Computing Systems 63.5 (2019). doi:
10.1007/s00224-019-09913-3 (cited on p. 2).

[Fij+17] Nathanaël Fijalkow, Pierre Ohlmann, Joël Ouaknine, Amaury Pouly, and
James Worrell. “Semialgebraic Invariant Synthesis for the Kannan-Lipton
Orbit Problem”. In: Symposium on Theoretical Aspects of Computer Science,
STACS. 2017. doi: 10.4230/LIPIcs.STACS.2017.29 (cited on p. 2).

https://doi.org/10.4230/LIPIcs.ICALP.2017.105
https://doi.org/10.4230/LIPIcs.ICALP.2017.105
https://deepsynth.labri.fr/?page=tutorial
https://arxiv.org/abs/2110.12485
https://doi.org/10.4230/LIPIcs.STACS.2020.24
https://doi.org/10.4230/LIPIcs.STACS.2020.24
https://doi.org/10.1007/978-3-030-32304-2_9
https://doi.org/10.4230/LIPIcs.CSL.2018.23
https://doi.org/10.24963/ijcai.2020/17
https://doi.org/10.1007/s00224-019-09913-3
https://doi.org/10.4230/LIPIcs.STACS.2017.29

19

[Fij+19c] Nathanaël Fijalkow, Joël Ouaknine, Amaury Pouly, João Sousa Pinto, and
James Worrell. “On the decidability of reachability in linear time-invariant
systems”. In: International Conference on Hybrid Systems: Computation and
Control, HSCC. 2019. doi: 10.1145/3302504.3311796 (cited on p. 2).

[FPS13] Nathanaël Fijalkow, Sophie Pinchinat, and Olivier Serre. “Emptiness Of Al-
ternating Tree Automata Using Games With Imperfect Information”. In:
Foundations of Software Technology and Theoretical Computer Science, FSTTCS.
2013. doi: 10.4230/LIPIcs.FSTTCS.2013.299 (cited on p. 4).

[FRW17] Nathanaël Fijalkow, Cristian Riveros, and James Worrell. “Probabilistic Au-
tomata of Bounded Ambiguity”. In: International Conference on Concurrency
Theory, CONCUR. 2017. doi: 10.4230/LIPIcs.CONCUR.2017.19 (cited on
p. 5).

[FRW20] Nathanaël Fijalkow, Cristian Riveros, and James Worrell. “Probabilistic Au-
tomata of Bounded Ambiguity”. In: Information and Computation (2020).
doi: https://doi.org/10.1016/j.ic.2020.104648 (cited on p. 5).

[Ped+18] Mathias Ruggaard Pedersen, Nathanaël Fijalkow, Giorgio Bacci, Kim G.
Larsen, and Radu Mardare. “Timed Comparisons of Semi-Markov Processes”.
In: International Conference on Language and Automata Theory and Appli-
cations, LATA. 2018. doi: 10.1007/978-3-319-77313-1_21 (cited on
p. 3).

[Rah+22] Ritam Raha, Roy Rajarshi, Nathanaël Fijalkow, and Daniel Neider. “Scalable
Anytime Algorithms for Learning Formulas in Linear Temporal Logic”. In:
International Conference on Tools and Algorithms for the Construction and
Analysis of Systems, TACAS. 2022. url: https://arxiv.org/abs/2110.
06726 (cited on p. 14).

Other references

[AH99] Rajeev Alur and Thomas A Henzinger. “Reactive modules”. In: Formal meth-
ods in system design 15.1 (1999). doi: 10.1023/A:1008739929481 (cited on
p. 8).

[AHK02] Rajeev Alur, Thomas A. Henzinger, and Orna Kupferman. “Alternating-time
temporal logic”. In: Journal of the ACM 49.5 (2002), pp. 672–713. doi: 10.
1145/585265.585270 (cited on p. 7).

[Ang87] Dana Angluin. “Learning Regular Sets from Queries and Counterexamples”.
In: Information and Computation 75.2 (1987). doi: 10.1016/0890-5401(87)
90052-6 (cited on p. 13).

[Ang+06] Dana Angluin, James Aspnes, Zoë Diamadi, Michael J. Fischer, and René
Peralta. “Computation in networks of passively mobile finite-state sensors”.
In: Distributed Computing 18.4 (2006). doi: 10.1007/s00446-005-0138-3
(cited on p. 6).

[Aro+16] Sanjeev Arora, Rong Ge, Ravi Kannan, and Ankur Moitra. “Computing a
Nonnegative Matrix Factorization - Provably”. In: SIAM Journal of Comput-
ing 45.4 (2016). doi: 10.1137/130913869 (cited on p. 4).

https://doi.org/10.1145/3302504.3311796
https://doi.org/10.4230/LIPIcs.FSTTCS.2013.299
https://doi.org/10.4230/LIPIcs.CONCUR.2017.19
https://doi.org/https://doi.org/10.1016/j.ic.2020.104648
https://doi.org/10.1007/978-3-319-77313-1_21
https://arxiv.org/abs/2110.06726
https://arxiv.org/abs/2110.06726
https://doi.org/10.1023/A:1008739929481
https://doi.org/10.1145/585265.585270
https://doi.org/10.1145/585265.585270
https://doi.org/10.1016/0890-5401(87)90052-6
https://doi.org/10.1016/0890-5401(87)90052-6
https://doi.org/10.1007/s00446-005-0138-3
https://doi.org/10.1137/130913869

20

[Bal+17] M. Balog, A. L. Gaunt, M. Brockschmidt, S. Nowozin, and D. Tarlow. “Deep-
Coder: Learning to Write Programs”. In: International Conference on Learn-
ing Representations, ICLR. 2017. url: https://openreview.net/forum?
id=ByldLrqlx (cited on p. 12).

[Bar+20b] David Barozzini, Lorenzo Clemente, Thomas Colcombet, and Paweł Parys.
“Cost Automata, Safe Schemes, and Downward Closures”. In: International
Colloquium on Automata, Languages, and Programming, ICALP. Vol. 168.
LIPIcs. 2020. doi: 10.4230/LIPIcs.ICALP.2020.109 (cited on p. 5).

[Ben+15] Michael Benedikt, Balder ten Cate, Thomas Colcombet, and Michael Vanden
Boom. “The Complexity of Boundedness for Guarded Logics”. In: Logic in
Computer Science, LICS. 2015. doi: 10.1109/LICS.2015.36 (cited on p. 5).

[Ber+17] Nathalie Bertrand, Miheer Dewaskar, Blaise Genest, and Hugo Gimbert.
“Controlling a Population”. In: International Conference on Concurrency
Theory, CONCUR. 2017, 12:1–12:16. doi: 10.4230/LIPIcs.CONCUR.2017.
12 (cited on pp. 5–7).

[Ber+19] Nathalie Bertrand, Miheer Dewaskar, Blaise Genest, Hugo Gimbert, and Ad-
wait Amit Godbole. “Controlling a population”. In: Logical Methods in Com-
puter Science 15.3 (2019). url: https://lmcs.episciences.org/5647
(cited on pp. 5–7).

[BCP16] Achim Blumensath, Thomas Colcombet, and Paweł Parys. “On a Fragment of
AMSO and Tiling Systems”. In: Symposium on Theoretical Aspects of Com-
puter Science, STACS. Vol. 47. 2016. doi: 10.4230/LIPIcs.STACS.2016.19
(cited on p. 5).

[Blu+97] Richard Blute, Josée Desharnais, Abbas Edalat, and Prakash Panangaden.
“Bisimulation for Labelled Markov Processes”. In: Logic in Computer Science,
LICS. 1997. doi: 10.1006/inco.2001.2962 (cited on p. 3).

[Boj16] Mikołaj Bojańczyk. “Thin MSO with a Probabilistic Path Quantifier”. In: In-
ternational Colloquium on Automata, Languages, and Programming, ICALP.
Vol. 55. LIPIcs. 2016. doi: 10.4230/LIPIcs.ICALP.2016.96 (cited on p. 4).

[BC18] Mikołaj Bojańczyk and Wojciech Czerwiński. An Automata Toolbox. https:
//www.mimuw.edu.pl/~bojan/papers/toolbox-reduced-feb6.pdf. 2018
(cited on p. 10).

[BKS19] Mikołaj Bojańczyk, Edon Kelmendi, and Michał Skrzypczak. “MSO+∇ is
undecidable”. In: Logic in Computer Science, LICS. 2019. doi: 10.1109/
LICS.2019.8785892 (cited on p. 4).

[Boj+20] Mikołaj Bojańczyk, Edon Kelmendi, Rafał Stefański, and Georg Zetzsche.
“Extensions of ω-Regular Languages”. In: Logic in Computer Science, LICS.
2020. doi: 10.1145/3373718.3394779 (cited on p. 5).

[BPT16] Mikołaj Bojańczyk, Paweł Parys, and Szymon Toruńczyk. “The MSO+U
Theory of (N, <) Is Undecidable”. In: Symposium on Theoretical Aspects of
Computer Science, STACS. Vol. 47. LIPIcs. 2016. doi: 10.4230/LIPIcs.
STACS.2016.21 (cited on p. 4).

[BL83] Symeon Bozapalidis and Olympia Louscou-Bozapalidou. “The Rank of a For-
mal Tree Power Series”. In: Theoretical Computer Science 27 (1983), pp. 211–
215. doi: 10.1016/0304-3975(83)90100-7 (cited on p. 9).

https://openreview.net/forum?id=ByldLrqlx
https://openreview.net/forum?id=ByldLrqlx
https://doi.org/10.4230/LIPIcs.ICALP.2020.109
https://doi.org/10.1109/LICS.2015.36
https://doi.org/10.4230/LIPIcs.CONCUR.2017.12
https://doi.org/10.4230/LIPIcs.CONCUR.2017.12
https://lmcs.episciences.org/5647
https://doi.org/10.4230/LIPIcs.STACS.2016.19
https://doi.org/10.1006/inco.2001.2962
https://doi.org/10.4230/LIPIcs.ICALP.2016.96
https://www.mimuw.edu.pl/~bojan/papers/toolbox-reduced-feb6.pdf
https://www.mimuw.edu.pl/~bojan/papers/toolbox-reduced-feb6.pdf
https://doi.org/10.1109/LICS.2019.8785892
https://doi.org/10.1109/LICS.2019.8785892
https://doi.org/10.1145/3373718.3394779
https://doi.org/10.4230/LIPIcs.STACS.2016.21
https://doi.org/10.4230/LIPIcs.STACS.2016.21
https://doi.org/10.1016/0304-3975(83)90100-7

21

[Cal+17] Cristian S. Calude, Sanjay Jain, Bakhadyr Khoussainov, Wei Li, and Frank
Stephan. “Deciding parity games in quasipolynomial time”. In: Symposium on
Theory of Computing, STOC. 2017, pp. 252–263. doi: 10.1145/3055399.
3055409 (cited on p. 10).

[CHS14] Arnaud Carayol, Axel Haddad, and Olivier Serre. “Randomization in Au-
tomata on Infinite Trees”. In: ACM Transactions on Computational Logic
15.3 (2014). doi: 10.1145/2629336 (cited on p. 4).

[Cas21] Antonio Casares. “On the Minimisation of Transition-Based Rabin Automata
and the Chromatic Memory Requirements of Muller Conditions”. In: CoRR
(2021). url: https://arxiv.org/abs/2105.12009 (cited on p. 15).

[CHP10] Krishnendu Chatterjee, Thomas A. Henzinger, and Nir Piterman. “Strategy
logic”. In: Information and Computation 208.6 (2010). doi: 10.1016/j.ic.
2009.07.004 (cited on p. 7).

[Col13a] Thomas Colcombet. “Fonctions Régulières de Coût”. Habilitation à diriger
des recherches. Université Paris 7, 2013 (cited on pp. 4, 5).

[Col13b] Thomas Colcombet. “Regular Cost Functions, Part I: Logic and Algebra over
Words”. In: Logical Methods in Computer Science 9.3 (2013). doi: 10.2168/
LMCS-9(3:3)2013 (cited on p. 5).

[CDZ17] Thomas Colcombet, Laure Daviaud, and Florian Zuleger. “Automata and
Program Analysis”. In: Fundamentals of Computation Theory, FCT. Vol. 10472.
2017. doi: 10.1007/978-3-662-55751-8_1 (cited on p. 5).

[DLT02] François Denis, Aurélien Lemay, and Alain Terlutte. “Residual Finite State
Automata”. In: Fundamenta Informaticae 51.4 (2002). url: http://content.
iospress.com/articles/fundamenta-informaticae/fi51-4-02 (cited on
p. 4).

[DEP98] Josée Desharnais, Abbas Edalat, and Prakash Panangaden. “A Logical Char-
acterization of Bisimulation for Labelled Markov Processes”. In: Logic in
Computer Science, LICS. 1998. doi: 10.1109/LICS.1998.705681 (cited
on p. 3).

[DJW97] Stefan Dziembowski, Marcin Jurdziński, and Igor Walukiewicz. “How much
memory is needed to win infinite games?” In: Logic in Computer Science,
LICS. 1997. doi: 10.1109/LICS.1997.614939 (cited on p. 15).

[Esp16] Javier Esparza. “Parameterized Verification of Crowds of Anonymous Pro-
cesses”. In:Dependable Software Systems Engineering. IOS Press, 2016, pp. 59–
71. doi: 10.3233/978-1-61499-627-9-59 (cited on p. 6).

[EFM99] Javier Esparza, Alain Finkel, and Richard Mayr. “On the Verification of
Broadcast Protocols”. In: Logic in Computer Science, LICS. 1999, pp. 352–
359. doi: 10.1109/LICS.1999.782630 (cited on p. 6).

[Esp+17] Javier Esparza, Jan Křetínský, Jean-François Raskin, and Salomon Sickert.
“From LTL and Limit-Deterministic Büchi Automata to Deterministic Parity
Automata”. In: Tools and Algorithms for the Construction and Analysis of
Systems, TACAS. 2017. doi: 10.1007/978-3-662-54577-5_25 (cited on
p. 14).

https://doi.org/10.1145/3055399.3055409
https://doi.org/10.1145/3055399.3055409
https://doi.org/10.1145/2629336
https://arxiv.org/abs/2105.12009
https://doi.org/10.1016/j.ic.2009.07.004
https://doi.org/10.1016/j.ic.2009.07.004
https://doi.org/10.2168/LMCS-9(3:3)2013
https://doi.org/10.2168/LMCS-9(3:3)2013
https://doi.org/10.1007/978-3-662-55751-8_1
http://content.iospress.com/articles/fundamenta-informaticae/fi51-4-02
http://content.iospress.com/articles/fundamenta-informaticae/fi51-4-02
https://doi.org/10.1109/LICS.1998.705681
https://doi.org/10.1109/LICS.1997.614939
https://doi.org/10.3233/978-1-61499-627-9-59
https://doi.org/10.1109/LICS.1999.782630
https://doi.org/10.1007/978-3-662-54577-5_25

22

[Fea+17] John Fearnley, Sanjay Jain, Sven Schewe, Frank Stephan, and Dominik Wo-
jtczak. “An ordered approach to solving parity games in quasi polynomial
time and quasi linear space”. In: International Symposium on Model Check-
ing of Software, SPIN. 2017, pp. 112–121 (cited on p. 10).

[Fli74] Michel Fliess. “Matrices de Hankel”. In: Journal de Mathématiques Pures et
Appliquées 53 (1974), pp. 197–222 (cited on p. 9).

[GS92] Steven M. German and A. Prasad Sistla. “Reasoning about systems with
many processes”. In: Journal of the ACM 39.3 (1992), pp. 675–735. doi:
10.1145/146637.146681 (cited on p. 6).

[GI17] Hugo Gimbert and Rasmus Ibsen-Jensen. “A short proof of correctness of the
quasi-polynomial time algorithm for parity games”. In: CoRR abs/1702.01953
(2017). url: http://arxiv.org/abs/1702.01953 (cited on p. 10).

[GO10] Hugo Gimbert and Youssouf Oualhadj. “Probabilistic Automata on Finite
Words: Decidable and Undecidable Problems”. In: International Colloquium
on Automata, Languages, and Programming, ICALP. 2010, pp. 527–538. doi:
10.1007/978-3-642-14162-1_44 (cited on p. 6).

[Gol78] E. Mark Gold. “Complexity of Automaton Identification from Given Data”.
In: Information and Control 37.3 (1978). doi: 10.1016/S0019-9958(78)
90562-4 (cited on p. 14).

[JTZ18] Swen Jacobs, Leander Tentrup, and Martin Zimmermann. “Distributed syn-
thesis for parameterized temporal logics”. In: Information and Computation
262 (2018). doi: 10.1016/j.ic.2018.09.009 (cited on p. 8).

[JL17] Marcin Jurdziński and Ranko Lazić. “Succinct progress measures for solving
parity games”. In: Logic in Computer Science, LICS. 2017. doi: 10.5555/
3329995.3330027 (cited on pp. 10, 11).

[Jur+20] Marcin Jurdziński, Rémi Morvan, Pierre Ohlmann, and K. S. Thejaswini. “A
symmetric attractor-decomposition lifting algorithm for parity games”. In:
CoRR (2020). url: https://arxiv.org/abs/2010.08288 (cited on p. 11).

[Kop09] Eryk Kopczyński. “Half-positional determinacy of infinite games”. PhD The-
sis. University of Warsaw, 2009 (cited on p. 15).

[KPV09] Orna Kupferman, Nir Piterman, and Moshe Y Vardi. “From liveness to
promptness”. In: Formal Methods in System Design 34.2 (2009). doi: 10.
1007/s10703-009-0067-z (cited on pp. 7, 8).

[LLS18] Guillaume Lagarde, Nutan Limaye, and Srikanth Srinivasan. “Lower Bounds
and PIT for Non-commutative Arithmetic Circuits with Restricted Parse
Trees”. In: Computational Complexity (2018), pp. 1–72. doi: 10 . 1007 /
s00037-018-0171-9 (cited on p. 9).

[Leh18] Karoliina Lehtinen. “A modal-µ perspective on solving parity games in quasi-
polynomial time”. In: Logic in Computer Science, LICS. 2018, pp. 639–648.
doi: 10.1145/3209108.3209115 (cited on p. 10).

[LSW19] Karoliina Lehtinen, Sven Schewe, and Dominik Wojtczak. “Improving the
complexity of Parys’ recursive algorithm”. In: CoRR (2019). url: https:
//arxiv.org/abs/1904.11810 (cited on p. 11).

https://doi.org/10.1145/146637.146681
http://arxiv.org/abs/1702.01953
https://doi.org/10.1007/978-3-642-14162-1_44
https://doi.org/10.1016/S0019-9958(78)90562-4
https://doi.org/10.1016/S0019-9958(78)90562-4
https://doi.org/10.1016/j.ic.2018.09.009
https://doi.org/10.5555/3329995.3330027
https://doi.org/10.5555/3329995.3330027
https://arxiv.org/abs/2010.08288
https://doi.org/10.1007/s10703-009-0067-z
https://doi.org/10.1007/s10703-009-0067-z
https://doi.org/10.1007/s00037-018-0171-9
https://doi.org/10.1007/s00037-018-0171-9
https://doi.org/10.1145/3209108.3209115
https://arxiv.org/abs/1904.11810
https://arxiv.org/abs/1904.11810

23

[LMS20] Michael Luttenberger, Philipp J. Meyer, and Salomon Sickert. “Practical syn-
thesis of reactive systems from LTL specifications via parity games”. In: Acta
Informatica (2020). doi: 10.1007/s00236-019-00349-3 (cited on p. 14).

[MS12] Shahar Maoz and Yaniv Sa’ar. “Assume-guarantee scenarios: Semantics and
synthesis”. In: Model Driven Engineering Languages and Systems, MoDELS.
2012. doi: 10.1007/978-3-642-33666-9_22 (cited on p. 8).

[MST19] Corto Mascle, Mahsa Shirmohammadi, and Patrick Totzke. “Controlling a
Random Population is EXPTIME-hard”. In: CoRR (2019). url: http://
arxiv.org/abs/1909.06420 (cited on p. 7).

[McN93] Robert McNaughton. “Infinite Games Played on Finite Graphs”. In: Annals
of Pure and Applied Logic 65.2 (1993), pp. 149–184. doi: 10.1016/0168-
0072(93)90036-D (cited on p. 11).

[MC18] Thibaud Michaud and Maximilien Colange. “Reactive Synthesis from LTL
Specification with Spot”. In: Synthesis Workshop, SYNT@CAV. 2018 (cited
on p. 14).

[MSM18] Matteo Mio, Michał Skrzypczak, and Henryk Michalewski. “Monadic Second
Order Logic with Measure and Category Quantifiers”. In: Logical Methods in
Computer Science 14.2 (2018). doi: 10.23638/LMCS-14(2:2)2018 (cited on
p. 4).

[Mon19] David Monniaux. “On the decidability of the existence of polyhedral invari-
ants in transition systems”. In: Acta Informatica 56.4 (2019). doi: 10.1007/
s00236-018-0324-y (cited on p. 2).

[Nis91] Noam Nisan. “Lower Bounds for Non-Commutative Computation (Extended
Abstract)”. In: Symposium on Theory of Computing, STOC. 1991. doi: 10.
1145/103418.103462 (cited on p. 9).

[OW15] Joël Ouaknine and James Worrell. “On linear recurrence sequences and loop
termination”. In: ACM SIGLOG News 2.2 (2015). doi: 10.1145/2766189.
2766191 (cited on p. 1).

[OW14] Joël Ouaknine and James Worrell. “Positivity Problems for Low-Order Linear
Recurrence Sequences”. In: International Symposium on Discrete Algorithms,
SODA. 2014. doi: 10.1137/1.9781611973402.27 (cited on p. 1).

[Pan09] Prakash Panangaden. Labelled Markov Processes. Imperial College Press,
2009. doi: 10.1142/p595 (cited on p. 3).

[Par19] Paweł Parys. “Parity Games: Zielonka’s Algorithm in Quasi-Polynomial Time”.
In:Mathematical Foundations of Computer Science, MFCS. 2019, 10:1–10:13.
doi: 10.4230/LIPIcs.MFCS.2019.10 (cited on p. 11).

[Pit06] Nir Piterman. “From Nondeterministic Büchi and Streett Automata to De-
terministic Parity Automata”. In: Logic in Computer Science, LICS. 2006.
doi: 10.1109/LICS.2006.28 (cited on p. 15).

[PW93] Leonard Pitt and Manfred K. Warmuth. “The Minimum Consistent DFA
Problem Cannot be Approximated within any Polynomial”. In: Journal of
the ACM 40.1 (1993). doi: 10.1145/138027.138042 (cited on p. 14).

https://doi.org/10.1007/s00236-019-00349-3
https://doi.org/10.1007/978-3-642-33666-9_22
http://arxiv.org/abs/1909.06420
http://arxiv.org/abs/1909.06420
https://doi.org/10.1016/0168-0072(93)90036-D
https://doi.org/10.1016/0168-0072(93)90036-D
https://doi.org/10.23638/LMCS-14(2:2)2018
https://doi.org/10.1007/s00236-018-0324-y
https://doi.org/10.1007/s00236-018-0324-y
https://doi.org/10.1145/103418.103462
https://doi.org/10.1145/103418.103462
https://doi.org/10.1145/2766189.2766191
https://doi.org/10.1145/2766189.2766191
https://doi.org/10.1137/1.9781611973402.27
https://doi.org/10.1142/p595
https://doi.org/10.4230/LIPIcs.MFCS.2019.10
https://doi.org/10.1109/LICS.2006.28
https://doi.org/10.1145/138027.138042

24

[Pnu77] Amir Pnueli. “The temporal logic of programs”. In: Symposium on Founda-
tions of Computer Science, SFCS. 1977. doi: 10.1109/SFCS.1977.32 (cited
on p. 14).

[PR89] Amir Pnueli and Roni Rosner. “On the synthesis of a reactive module”. In:
Principles of Programming Languages, POPL. 1989. doi: 10.1145/75277.
75293 (cited on pp. 7, 14).

[Rab69] Michael O. Rabin. “Decidability of Second-Order Theories and Automata
on Infinite Trees”. In: Transactions of the AMS 141 (1969). doi: 10.2307/
1995086 (cited on p. 4).

[Rab63] Michael O. Rabin. “Probabilistic Automata”. In: Information and Control
6.3 (1963), pp. 230–245. doi: 10.1016/S0019-9958(63)90290-0 (cited on
p. 9).

[Sch09] Sven Schewe. “Tighter Bounds for the Determinisation of Büchi Automata”.
In: Foundations of Software Science and Computation Structures, FoSSaCS.
2009. doi: 10.1007/978-3-642-00596-1_13 (cited on p. 15).

[Sch17] Sylvain Schmitz. “Algorithmic Complexity of Well-Quasi-Orders”. Habilita-
tion à diriger des recherches. École normale supérieure Paris-Saclay, 2017.
url: https://tel.archives-ouvertes.fr/tel-01663266 (cited on p. 7).

[SCH16] Karl Stratos, Michael Collins, and Daniel Hsu. “Unsupervised part-of-speech
tagging with anchor hidden Markov models”. In: Transactions of the Associ-
ation for Computational Linguistics 4 (2016). doi: 10.1162/tacl_a_00096
(cited on p. 4).

[Uhl+15] Jannis Uhlendorf, Agnès Miermont, Thierry Delaveau, Gilles Charvin, François
Fages, Samuel Bottani, Pascal Hersen, and Gregory Batt. “In silico control of
biomolecular processes”. In: Computational Methods in Synthetic Biology 13
(2015), pp. 277–285. doi: 10.1007/978-1-4939-1878-2_13 (cited on p. 6).

[Zie98] Wiesław Zielonka. “Infinite Games on Finitely Coloured Graphs with Ap-
plications to Automata on Infinite Trees”. In: Theoretical Computer Science
200.1-2 (1998), pp. 135–183. doi: 10.1016/S0304-3975(98)00009-7 (cited
on pp. 11, 15).

https://doi.org/10.1109/SFCS.1977.32
https://doi.org/10.1145/75277.75293
https://doi.org/10.1145/75277.75293
https://doi.org/10.2307/1995086
https://doi.org/10.2307/1995086
https://doi.org/10.1016/S0019-9958(63)90290-0
https://doi.org/10.1007/978-3-642-00596-1_13
https://tel.archives-ouvertes.fr/tel-01663266
https://doi.org/10.1162/tacl_a_00096
https://doi.org/10.1007/978-1-4939-1878-2_13
https://doi.org/10.1016/S0304-3975(98)00009-7

	Personal References Used in This Document
	Other References Used in This Document

