Quantum Modelling of Ruthenium Chemistry in the field of Nuclear Power Plant Safety
Modélisation quantique de la chimie du Ruthénium dans un contexte de sûreté nucléaire
Résumé
During a severe accident (SA) occurring to a pressurized water reactor (PWR), fission products (FPs) are released from the nuclear fuel and may reach the nuclear containment building. Among the FPs, ruthenium (Ru) is of particular interest due to its ability to form volatile oxide compounds in highly oxidizing conditions combined with its high radiotoxicity (103Ru and 106Ru isotopes) at middle term after the accident. Uncertainties concerning evaluation releases of Ru are important and some R&D efforts are led to get a better understanding of ruthenium chemistry in such conditions. The thermodynamic database on ruthenium species used to estimate these releases shows some discrepancies for most ruthenium oxides and for other species such as oxyhydroxides, data are scarce and not reliable, calling for quantum chemical calculations. The most suitable approach corresponds to TPSSh-5%HF for geometry optimization, followed by CCSD(T) for the calculation of the total electronic energies. The energetics are combined with statistical physics to obtain the thermochemical properties of ruthenium oxides and ruthenium oxyhydroxide species as the latter may play an important role on the transport of ruthenium in the primary circuit due to high steam content. The revised thermodynamic database is then used to predict which species are most stable in representative severe accident conditions. Next, kinetic calculations are also performed to obtain pathways of formations for ruthenium trioxide and tetraoxide gaseous compounds, which are the most stable Ru volatile species in steam/air atmospheres.
Lors d’un Accident Grave (AG) survenant à un réacteur nucléaire à eau pressurisée, sous atmosphère fortement oxydante, des relâchements importants de ruthénium, depuis le combustible dégradé, sont attendus du fait de la formation d’oxydes gazeux. Les composés de Ru représentent un risque sanitaire lié aux isotopes 103Ru et 106Ru, radio-contaminants à court et moyen terme. En outre l’oxyde RuO4, volatil à température ambiante, est susceptible d’être relâché à l’environnement via les fuites de l’enceinte de confinement. L’évaluation de ce rejet à l’environnement présente des incertitudes importantes, liées entre autres aux données thermochimiques des composés de ruthénium gazeux avec des disparités entre les valeurs de la littérature pour les oxydes. Concernant les oxyhydroxydes, les données sont très parcellaires et celles disponibles sont sujettes à caution. Une première étape de ces travaux de thèse a consisté au développement d’une méthodologie de calcul pour obtenir les données thermochimiques des oxydes de ruthénium gazeux en fonction de la température, via des outils de chimie quantique, avec la fonctionnelle TPSSh-5%HF pour l’optimisation de géométrie, suivi de la méthode CCSD(T) pour le calcul des énergies électroniques. Cette méthodologie fut ensuite étendue aux oxyhydroxydes. Des calculs de spéciation chimique ont été effectués afin de prédire les espèces gazeuses les plus stables lors d’un AG. A l’aide des propriétés thermochimiques des espèces d’intérêts et des méthodologies développées, une étude cinétique a été conduite afin de déterminer les chemins réactionnels conduisant à la formation d’oxydes de Ru, espèces gazeuses les plus stables en conditions AG.
Origine | Fichiers produits par l'(les) auteur(s) |
---|