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Chapter 1

Introduction

1.1 Problem definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.2 Robust approaches for one dimension . . . . . . . . . . . . . . . . . . . . . . . 4

1.2.1 Filtering . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

1.2.2 Mean as center of symmetry . . . . . . . . . . . . . . . . . . . . . . . . 6

1.2.3 Minimum distance estimator . . . . . . . . . . . . . . . . . . . . . . . . . 8

1.2.4 Lower bound . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

1.3 Robust approaches for high dimension . . . . . . . . . . . . . . . . . . . . . . . 11

1.3.1 Filtering (multidimensional case) . . . . . . . . . . . . . . . . . . . . . . 12

1.3.2 Mean as center of symmetry (multidimensional case) . . . . . . . . . . 14

1.3.3 Minimum distance estimator (multidimensional case) . . . . . . . . . . . 16

1.3.4 Leveraging covariance matrix . . . . . . . . . . . . . . . . . . . . . . . . 17

1.4 Prior work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

1.5 Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

1.5.1 Contamination models and robust estimation on the probability simplex 22

1.5.2 Robust Estimation of Gaussian Mean . . . . . . . . . . . . . . . . . . . 28

1.1 Problem definition

In statistics and learning theory, it is common to assume that samples are independently

and identically distributed according to a reference probability distribution. A more realistic

approach could be to relax this assumption by allowing a fraction of samples to not necessarily

follow the reference distribution. These disobeying samples, called outliers, may drastically

skew the classical estimators.

Consider the following setting. Let Y1, . . . ,Yn be n i.i.d. samples drawn from N (µ, σ2).

Given ε ∈ (0, 1/2), we observe ε-contaminated Gaussian random variables X1, . . . ,Xn which

3



means that we have Xi = Y i for i ∈ I while Xi takes arbitrary values when i ∈ O, where

|I| = n(1− ε) and |O| = nε. Let S be I ∪ O which is indeed the set {1, . . . , n}. Our goal is to

estimate µ and we measure the estimation error by absolute value. When there is no outlier

(O = ∅), the maximum likelihood estimator (MLE) which is the sample mean, estimates µ

with optimal non-asymptotic error rate, while the presence of a single outlier with an extreme

large value (far enough from µ) can cause an arbitrary large deviation of MLE from µ. So, we

see that MLE is not robust to outliers.

In this work, we aim to construct estimators robust to outliers, and we focus on the funda-

mental task of mean estimation, the task to which many problems in statistics reduce. We are

interested in the non-asymptotic behavior of estimators.

1.2 Robust approaches for one dimension

Let us start by exploring different ideas for estimating robustly µ in the setting of ε-corrupted

Gaussian samples.

1.2.1 Filtering

As we have seen the problem with MLE is its high sensitivity to extreme far outliers from µ. To

get around this problem, we can simply remove the largest and smallest points and then apply

MLE. Indeed, we sort the observations X(1) ≤ · · · ≤ X(n) and return µ̂F :=
∑

i∈F Xi/|F |
where F = {i ∈ I ∪ O|X(2nε) < Xi < X(n−2nε)}1. After filtering even if there are still outliers

among the samples, we are sure that they are at most as far as Y(nε) and Y(n−nε) (where the

initial samples are sorted: Y(1) ≤ · · · ≤ Y(n)). Hence, this estimator, called Trimmed mean, is

not so much influenced by extreme outliers. See Figure 1.1.

We try to analyze informally the estimation error of µ̂F without entering into the details. Let

ξi denote Y i − µ for every i ∈ S. By the triangle inequality, we have

|µ̂F − µ| ≤ 1

|F |

∣∣∣∣ ∑
i∈I∩F

(Xi − µ)

∣∣∣∣+ 1

|F |

∣∣∣∣ ∑
i∈O∩F

(Xi − µ)

∣∣∣∣
≤ 1

|F |

∣∣∣∣ ∑
i∈I∩F

ξi

∣∣∣∣+ |O ∩ F |
|F |

max
(
|ξ(nε)|, |ξ(n−nε)|

)
. (1.1)

We aim to upper bound the two terms in (1.1).

Remark 1. While the random variables (Y i)i∈S are independent, the random variables (Y i1(i ∈
I))i∈S are generally not independent. Indeed, we do not have any particular assumption on

outliers and this implies that worst scenarios are possible. For instance, we may suppose

that there is an adversary who observes the initial samples (Y i)i∈S , and knowing our estima-

tor, replaces εn of them by εn arbitrary values in a malicious way. At the end, we receive
1Without loss of generality we suppose that nε is an integer.
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Sample mean

Before contamination

Sample mean

After contamination

Sample mean

After filtering

True mean

0

1

2

−5 0 5 10 15
Samples

Figure 1.1: At the first floor the histogram of the initial samples (Y i)i∈S is depicted. At the
second floor, we have the histogram of the contaminated samples (Xi)i∈S where the smallest
nε samples among (Y i)i∈S are replaced by nε samples equal to 15. At the third floor, we
see the histogram of samples after the filtering procedure where the 2nε greatest and 2nε
smallest samples among (Xi)i∈S are removed. The sample means for each set are marked
by red lines. The effect of the filtering procedure on the performance of the sample mean is
apparent.
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only X1, . . . ,Xn as described at the beginning of the chapter. This is called the adversarial

contamination model. In this case, the nature of the subset I might depend on many factors

included all the initial samples (Y i)i∈S .

To bypass this problem of lack of independence in the first term of (1.1), we can state by

the triangle inequality that

1

|F |

∣∣∣∣ ∑
i∈I∩F

ξi

∣∣∣∣ ≤ 1

|F |

∣∣∣∣∑
i∈S

ξi

∣∣∣∣+ 1

|F |

∣∣∣∣ ∑
i∈S\(I∩F )

ξi

∣∣∣∣
≤ 1

|F |

∣∣∣∣ n∑
i=1

ξi

∣∣∣∣+ max
|J |≤5nε

1

|F |

∣∣∣∣∑
j∈J

ξj

∣∣∣∣, (1.2)

where in the second inequality we used n − 5nε ≤ |I ∩ F |. With high probability, the first

term in (1.2) is of order (1 − 4ε)−1(σ/
√
n) (using the Gaussian tail bounds and the fact that

|F | = n − 4nε), and the second term is bounded by a term of order (1 − 4ε)−1σε
√
log(e/ε)

(using the Gaussian properties and the union bound). For more details on these calculations,

we refer the reader to the proof of Lemma 6.

To upper bound the second term in (1.1), we can use Hoeffding’s inequality to prove that

ξ(nε) and ξ(n−nε) respectively are concentrated around σΦ−1(ε) and σΦ−1(1 − ε) where Φ is

the cumulative distribution function of N (0, 1). The absolute value of these two last terms

is bounded by σ
√

log(1/ε) since we deal with Gaussian variables. This entails that the sec-

ond term in (1.1) is bounded by a term of order (1 − 4ε)−1σε
√
log(1/ε) with high probability.

Therefore, we informally proved that µ̂F estimates µ with an error rate of order at most

(σ/
√
n) + σε

√
log(1/ε)

1− 4ε

with high probability.

The error rate of the trimmed mean is composed of the optimal error rate σ/
√
n in the case

of non contamination (which is achieved by MLE), and σε
√

log(1/ε) which shows the impact

of outliers in our estimation in worst case. If there is no outlier (ε = 0), the trimmed mean does

not remove any point and returns the sample mean. Nevertheless, this estimator is tolerant to

ε not larger than 1/4.

By removing other quantities of points than 4nε in the filtering step, one can change the

performance of the trimmed mean. A special case is the sample median where ⌈n/2⌉ − 1

points are filtered out from each side. We analyze the sample median as an estimator of the

mean in the next section.

1.2.2 Mean as center of symmetry

The Gaussian distribution is a symmetric distribution, and the mean is not only the barycentre

of the distribution, but also the center of symmetry. The idea is to estimate the mean, as a

6
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Figure 1.2: The behavior of the probit function: for x ∈ (0, 0.49), Φ−1(0.5 + x) < 5x.

center of symmetry. There are various notions of symmetry. The one that we consider here is

the symmetry induced by mass where there are same masses in the both sides of the center.

More precisely, in this symmetry, the center is the median. Thus, we may estimate the center,

i.e. the mean, by the sample median which is in fact the center of symmetry for the empirical

mass.

To analyze the sample median, we exceptionally provide more details since it makes

our presentation simpler. The sample median of the contaminated data2, X(⌈n/2⌉), is lo-

cated between Y(⌈n/2⌉−nε) and Y(⌈n/2⌉+nε), and by Hoeffding’s inequality we can prove that

|Y(⌈n/2⌉−nε) − µ| and |Y(⌈n/2⌉+nε) − µ| are bounded by

σΦ−1
(1
2
+ ε+

√
log(2/δ)

2n

)
with probability at least 1 − δ for any δ ∈ (0, 1) satisfying 1

2 + ε +

√
log(2/δ)

2n < 1. Observing

the behavior of the function Φ−1 (called probit) around 1/2 in Figure 1.2, we note that if ε +√
log(2/δ)

2n ≤ 0.49, we have

Φ−1
(1
2
+ ε+

√
log(2/δ)

2n

)
≤ 5

(
ε+

√
log(2/δ)

2n

)
.

We can conclude that if ε+
√

log(2/δ)
2n ≤ 0.49, the inequality |X(n/2) − µ| ≤ 5σ

(
ε+

√
log(2/δ)

2n

)
holds with probability at least 1− δ.

Remark 2. Let fix δ ∈ (0, 1). We have seen that for ε < 1
2 −

√
log(2/δ)

2n the estimation error of

2For sake of simplicity, here we suppose that n is odd.
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the sample median is bounded with probability at least 1 − δ. What if ε ≥ 1
2 −

√
log(2/δ)

2n ? For

ε ∈
[
1
2 −

√
log(2/δ)

2n , 12 −
1
n

]
, we can claim that the sample median X(⌈n/2⌉) is located between

Y(1) and Y(n) which means that |X(⌈n/2⌉) − µ| is bounded by a term of order σ
√
log(n) with

high probability. For ε > 1
2 −

1
n , the sample median could be an outlier (since the majority of

data is outlier) and therefore, the estimation error is not bounded in worst case. So, we can

state that for fixed n the breakdown point of the sample median is 1
2 −

1
n . The breakdown point

is the maximum proportion of outliers for which the estimation error is bounded in worst case.

For instance, the breakdown point of the sample mean is 1/n and that of the trimmed mean

is 1
4 −

1
n . Given our non-asymptotic study framework, we are interested here in the notion of

finite sample breakdown point. However, in Section 1.5.2 and Chapter 3, we will consider the

asymptotic notion of the breakdown point.

As we emphasized, the sample median is characterized by the empirical mass, and thereby

its robustness could be interpreted by the robustness of the empirical mass since the empir-

ical mass is not sensitive to extreme far outliers (it can be changed at most by 2ε when data

become contaminated). Another robust method could be to leverage the empirical mass to es-

timate the probability density function of the reference distribution. We will expose this method

in the coming section.

1.2.3 Minimum distance estimator

We know the explicit expression of the probability density function (p.d.f.) for our reference

distribution in terms of the mean parameter. Another approach for our problem might be to

determine a value as mean in a way that the corresponding p.d.f. fits best the observations.

To do so, we can select a set of possible candidates for the mean, and choose the one with

the best fitting of associated p.d.f. to data.

First, we introduce, as it is presented in (Devroye and Lugosi, 2000), the Scheffé’s estimate

which chooses the best between two p.d.f. f1 and f2. Let f be a p.d.f. and ν̂ be a probability

distribution. The Scheffé’s estimate f̂ is defined as

f̂ :=

f1 if
∣∣ ∫

A f1 − ν̂(A)
∣∣ < ∣∣ ∫

A f2 − ν̂(A)
∣∣,

f2 otherwise,

where A = {x : f1(x) > f2(x)}. (Devroye and Lugosi, 2000, Theorem 6.1) states that∫
|f − f̂ | ≤ 3min

(∫
|f1 − f |,

∫
|f2 − f |

)
+ 4max

A∈A

∣∣∣∣ ∫
A
f − ν̂(A)

∣∣∣∣, (1.3)

where A = {{f1 > f2}, {f2 > f1}}. Now, assume that fµ is the p.d.f. of the reference

distributionN (µ, σ) and ν is the empirical measure of the non-contaminated random variables

(Y i)i∈S , i.e., for every set A, ν(A) =
∑n

i=1 1(Y i ∈ A)/n. However, for choosing the best p.d.f.
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we have only access to the empirical measure ν̂ of the contaminated data which associates

to every set A the mass ν̂(A) =
∑n

i=1 1(Xi ∈ A)/n. Using (1.3) and the triangle inequality,

we obtain∫
|fµ − f̂ | ≤ 3min

(∫
|f1 − fµ|,

∫
|f2 − fµ|

)
+ 4max

A∈A

∣∣∣∣ ∫
A
fµ − ν(A)

∣∣∣∣+ 4max
A∈A
|ν(A)− ν̂(A)|.

The term maxA∈A
∣∣ ∫

A fµ− ν(A)
∣∣ is the difference between the empirical and theoretical mea-

sures. It is bounded by a term of order
√
1/n with high probability via Hoeffding’s inequality

and the union bound. The term maxA∈A |ν(A)− ν̂(A)| is at most two times the maximum mass

that the adversary is allowed to transport in order to contaminate data, namely 2ε. If f1 and

f2 respectively are the p.d.f. of N (µ1, σ
2) and N (µ2, σ

2), for i ∈ {1, 2} we have
∫
|fi − fµ| =

2TV
(
N (µi, σ

2),N (µ, σ2)
)

(Scheffé’s theorem) where TV denotes the total variation distance.

Furthermore, by Pinsker’s inequality we know that TV
(
N (µi, σ

2),N (µ, σ2)
)
≤ |µi − µ|/(2σ).

So, finally we deduce that there exists C > 0 such that the inequality∫
|fµ − f̂ | ≤ 3

σ
min

(
|µ1 − µ|, |µ2 − µ|

)
+ C

1√
n
+ 8ε,

is satisfied with high probability. As µ is located between X((ε+0.05)n) and X((1−ε−0.05)n)

with high probability, given γ > 0 we can construct a covering set Mγ = {µ1, . . . ,µNγ
}

over [X((ε+0.05)n),X((1−ε−0.05)n)] where for all m in [X((ε+0.05)n),X((1−ε−0.05)n)] there exists

i ∈ {1, . . . , Nγ} such that |µi − m| ≤ γ. Now, we consider a finite family of p.d.f. candi-

dates (fi)i∈{1,...,Nγ} where fi is the p.d.f. of N (µi, σ
2) and extend the Scheffé’s estimate in

order to choose the best p.d.f. among (fi)i∈{1,...,Nγ} by running a tournament between these

candidates. We declare f
k̂

as the winner of the tournament with

k̂ = argmin
k∈{1,...,Nγ}

max
A∈Aγ

∣∣∣∣ ∫
A
fk − ν̂(A)

∣∣∣∣, (1.4)

where Aγ =
{
{x : fi(x) > fj(x)} : i, j ∈ {1, ..., Nγ}

}
. When there are multiple minima for

(1.4), k̂ is defined to be the smallest index. Using (Devroye and Lugosi, 2000, Theorem 6.3),

Hoeffding’s inequality and the union bound, we can show that there exists C > 0 such that the

inequality

∫
|fµ − f

k̂
| ≤ 3

σ
γ + C

√
log(N2

γ )

n
+ 8ε,

holds with high probability. We set γ = σ√
n

, and thereby N2
γ is of order 4n as the length of

[X((ε+0.05)n),X((1−ε−0.05)n)] is less than 4σ with high probability. This yields the existence of

C > 0 such that ∫
|fµ − f

k̂
| ≤ C

√
log(n)

n
+ 8ε,
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is true with high probability. Now, we argue that µ
k̂

is a robust estimator of µ. Assume without

loss of generality µ < µ
k̂
. Then we have

∫
|fµ − f

k̂
| = 2

∫ (µ+µ
k̂
)/2

−∞
(fµ − f

k̂
) =

2√
2πσ2

∫ (µ+µ
k̂
)/2

−∞
e−(x−µ)2/(2σ2)dx

− 2√
2πσ2

∫ (µ+µ
k̂
)/2

−∞
e−(x−µ

k̂
)2/(2σ2)dx

= 2Φ

(
µ
k̂
− µ

2σ

)
− 2Φ

(
µ− µ

k̂

2σ

)
= 4Φ

(
µ
k̂
− µ

2σ

)
− 2. (1.5)

This leads to

|µ− µ
k̂
| ≤ 2σΦ−1

(
C

4

√
log(n)

n
+ 2ε+

1

2

)
,

with high probability if C
4

√
log(n)

n + 2ε < 1
2 . Again, given the behavior of the probit function

around 1/2 (cf. Figure 1.2), we deduce that

|µ− µ
k̂
| ≤ 10σ

(
C

4

√
log(n)

n
+ 2ε

)
,

is satisfied with high probability if C
4

√
log(n)

n + 2ε ≤ 0.49. This estimator µ
k̂
, called skeleton

estimate, has a breakdown point of at least 1
4 −

C
8

√
log(n)

n .

While the skeleton estimate appears to be based on the estimation of p.d.f., we should

stress that its key tool is the empirical mass, and this provides robustness for this estimator.

1.2.4 Lower bound

We have obtained so far three different error rates for estimating robustly the Gaussian mean

in one dimension, namely

• with the trimmed mean: σ√
n
+ σε log(1/ε),

• with the sample median: σ√
n
+ σε,

• and with the skeleton estimate: σ
√

log(n)
n + σε.

The best rate is achieved by the sample median. At this stage, the question is whether it is

possible to do better than the sample median. Here, we attempt to show a lower bound for

Huber’s contamination model, a contamination model weaker than the adversarial model. We

assume that the observations X1, . . . ,Xn are drawn from the mixture distribution defined by

(1− ε)N (µ, σ2) + εQ,
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where Q is an unknown distribution representing the corruption in our problem. In Chapter 2

(Proposition 3), we show that Huber’s model is nearly contained in the adversarial model, and

this implies that our lower bound for Huber’s model holds for the adversarial model, too. This

lower bound is originally proposed in (Chen et al., 2018).

Consider two distributions N (µ1, σ
2) and N (µ2, σ

2) with their respective p.d.f. f1 and f2.

We propose two distributions Q1 and Q2 defined respectively by the p.d.f. 1−ε
ε (f1 − f2)1(f1 ≥

f2) and 1−ε
ε (f2 − f1)1(f2 ≥ f1). It is now easy to verify that (1 − ε)N (µ1, σ

2) + εQ1 and

(1 − ε)N (µ2, σ
2) + εQ2 are the same distribution while we have TV

(
N (µ1, σ

2),N (µ2, σ
2)
)
=

ε
1−ε . That is to say that the two different distributions N (µ1, σ

2) and N (µ2, σ
2) might be con-

taminated in a way that they are not distinguishable one from another. In this situation, µ1 and

µ2 have the same chance to be the mean of the reference distribution and our best estimation

of the mean would be the middle point (µ2 + µ1)/2. Thus, our estimation error is at least

|µ2 − µ1|/2. Let δ denote µ2 − µ1, if µ1 < µ2 by similar calculations as in (1.5) we have

TV
(
N (µ1, σ

2),N (µ2, σ
2)
)
=

∫ µ1+δ/2

−∞
(f1 − f2) = 2Φ

( δ

2σ

)
− 1,

and this entails that |µ1 − µ2| = 2σΦ−1
(
1
2 + 1

2
ε

1−ε

)
. Adding to this, the lower bound for esti-

mating the Gaussian mean with non-contaminated data, namely σ/
√
n, our error rate under

contamination cannot be better than

σΦ−1
(1
2
+

ε

2(1− ε)

)
+

σ√
n
.

This lower bound matches our upper bound for the sample median σΦ−1
(
1
2 + ε+ 1√

n

)
and we

conclude that the sample median is a minimax estimator of the mean when data are corrupted.

Note that when ε tends to 1/2, the minimax risk and the risk of the sample median explode to

infinity.

Remark 3. The three studied estimators in this section are computable in polynomial time in

terms of sample size. The trimmed mean requires the knoweledge of ε, the skeleton esti-

mate requires the knowledge of σ whereas the sample median does not require any of them.

Moreover, the sample median is tolerant to larger values for ε. Consequently, in addition to

its optimal error rate, the sample median seems to be the most interesting estimator for our

problem.

1.3 Robust approaches for high dimension

Now, we assume that data are in Rp and the initial random variables (Y i)i∈{1,...,n} follow

the multivariate Gaussian distribution N (µ, σ2Ip). As in the previous setting, we observe

X1, . . . ,Xn, a ε-contaminated version of data under the adversarial model. We quantify the

estimation error by the Euclidean distance ∥.∥2.
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A naive solution for the multidimensional setting would be to estimate each coordinate of µ

separately via a robust method for one dimension. By the union bound, we may establish that

applying for example the sample median to each coordinate gives an estimator µ̂CM satisfying

∥µ− µ̂CM∥2 ≤ 5σ
(√p log(2p/δ)

2n
+ ε
√
p
)
,

with probability at least 1−δ if ε+
√
log(2/δ)/(2n) ≤ 0.49. This estimator is known as the com-

ponentwise median. The problem with such estimators is that the term ε
√
p in the error could

become problematic when p is large. Chen et al. (2018) prove that under Huber’s contamina-

tion model, the error rate of the componentwise median cannot be better than σ(
√
p/n+ ε

√
p)

when the contamination distribution Q is defined as a Dirac on the point µ+σ(1, . . . , 1)⊤. The

same contamination distribution can be deployed to show that the other robust methods for

one dimension will not have a better result in high dimension. Now, the question is whether

we can have a better dependency on p.

Remark 4. One might improve slightly the dependency on p for the componentwise median by

applying it not in the canonical basis but in the basis formed by the eigenvectors of the sample

covariance matrix. Against this method, the adversary may choose outliers Z1, . . . ,Znε where

for Zi the i first coordinates are σ and the rest is zero. In such situation, one can show that

the error rate of the componentwise median is at least σ(
√

p/n+ ε
√
min(nε, p)).

1.3.1 Filtering (multidimensional case)

In the multidimensional setting, there is no notion of order. Therefore, we cannot apply the

filtering method proposed previously for one dimension. However, we know that multivariate

Gaussian samples are concentrated on a sphere of radius σ
√
p with the mean as center (note

the contrast with univariate Gaussian samples which are concentrated close to the mean).

More precisely, there exists c > 0 such that for all t > 0

P
(∣∣∥ξi∥2 − σ

√
p
∣∣ > t

)
≤ 2 exp(−ct2/σ2), (1.6)

(see e.g., (Vershynin, 2018, Theorem 3.1.1)). See Figure 1.3.

We can now design a filter based on the property described by (1.6). In fact, this property

states that given τ ∈ (0, 1), at least 1− τ fraction of (ξi)i∈{1,...,n} satisfies with high probability

∥ξi∥2 ≤ Cσ
(√

p+
√
log(1/τ)

)
,

where C is a positive constant. For a formal statement of this property, see Lemma 3. On this

event, given ε-contaminated data, we can claim that at least 1− τ − ε fraction of (Xi)i∈{1,...,n}
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Figure 1.3: A schematic representation of the Gaussian point cloud in high dimension. Points
are concentrated around a sphere with center µ and radius σ

√
p.

satisfies

∥Xi − µ∥2 ≤ Cσ
(√

p+
√
log(1/τ)

)
. (1.7)

For each point Xi, we consider the set Ai := {Xj : ∥Xj −Xi∥2 ≤ 2Cσ
(√

p +
√
log(1/τ)

)
}.

If the cardinality of this set is more than n(τ + ε), there is a point Xj in Ai satisfying (1.7).

By the triangle inequality, this implies that Xi has a distance at most 3Cσ
(√

p +
√
log(1/τ)

)
from µ. Hence, all the points exhibited by the set F := {i : |Ai| ≥ n(ε + τ)} are in a distance

of order σ
(√

p +
√
log(1/τ)

)
from µ. Note that F contains all Xi satisfying (1.7) with i ∈ I if

n(1− τ − ε) > n(τ + ε), i.e., if τ + ε < 1/2. Otherwise, F could be of cardinality zero in worst

case. So, F is of cardinality at least n(1 − τ − ε) if τ + ε < 1/2. This procedure of filtering is

called Naive pruning (Diakonikolas et al., 2016a).

The empirical mean µ̂F of the points in F satisfies

∥µ̂F − µ∥2 ≤
1

|F |

∥∥∥∥ ∑
i∈I∩F

(Xi − µ)

∥∥∥∥
2

+
1

|F |

∥∥∥∥ ∑
i∈O∩F

(Xi − µ)

∥∥∥∥
2

≤ 1

|F |

∥∥∥∥ ∑
i∈I∩F

ξi

∥∥∥∥
2

+
|O ∩ F |
|F |

max
i∈O∩F

∥Xi − µ∥2. (1.8)

The fist term of (1.8) is bounded by a term of order (1−τ−ε)−1
(
σ
√
p/n+σ(ε+τ)

√
log(1/(ε+ τ))

)
via the same argument as in one dimension (cf. Lemma 6), and the second term is of order at

most (1−τ −ε)−1εσ
(√

p+
√

log(1/τ)
)
. Therefore, choosing τ = ε, we conclude that if ε < 1/4

the error rate of the sample mean µ̂F after naive pruning is

σ

1− 2ε

(√
p/n+ ε

√
log(1/ε) + ε

√
p
)
.
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At the end,
√
p unfortunately is still present behind ε in our estimation error.

1.3.2 Mean as center of symmetry (multidimensional case)

We may study three notions of symmetry for multivariate Gaussian distribution (borrowed from

Zuo and Serfling (2000)). Each one proposes a different estimator for the center, a role played

by the Gaussian mean under the three symmetries.

Central symmetry

A random vector Y is centrally symmetric if Y −θ and θ−Y have the same distribution where

θ is the center of symmetry. This implies that θ = E[Y ] and suggests to estimate θ by the

sample mean, however, the sample mean is not robust as we have already outlined.

Angular symmetry

A random vector Y is angularly symmetric about θ if (Y − θ)/∥Y − θ∥2 is centrally symmetric.

In our case, to estimate µ, the center of angular symmetry, we may compute a point µ̂GM at

which the function ϕ : x 7−→
∑n

i=1(Xi − x)/∥Xi − x∥2 becomes null vector. It turns out that

ϕ is the gradient of the function x 7−→
∑n

i=1 ∥Xi − x∥2. The last function is convex and its

minimum is attained somewhere in the convex hull of X1, . . . ,Xn. Consequently ϕ is equal to

null vector at this point. That is to say

µ̂GM = arg min
x∈Rp

n∑
i=1

∥Xi − x∥2, (1.9)

and this formulation of µ̂GM is known as the geometric median of the samples. There are

various optimization methods for approximating the minimum in (1.9). In particular, via these

methods we may reach a point µ̂′
GM satisfying

1

n

∥∥ϕ(µ̂′
GM)

∥∥
2
≤ 1√

n
. (1.10)

This condition certifies the existence of a positive constant C such that with high probability

we have

∥µ− µ̂′
GM∥2 ≤ C

(
σ
√
p/n+ σε

√
p
)
. (1.11)

Let us show this informally. Indeed, the random vector (Y i − µ̂′
GM)/∥Y i − µ̂′

GM∥2 enjoys the

sub-Gaussian convergence rate, and since Tr
(

Var
[ Yi−µ̂′

GM

∥Yi−µ̂′
GM∥2

])
is less that one, there exists

C ′ > 0 such that ∥∥∥∥E[ Y i − µ̂′
GM

∥Y i − µ̂′
GM∥2

]∥∥∥∥
2

≤ 1

n

∥∥ϕ(µ̂′
GM)

∥∥
2
+ C ′ 1√

n
+ 2ε, (1.12)
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is valid with high probability. For large values of p the random variable ∥Y i − µ̂′
GM∥2 concen-

trates around its mean. This leads to∥∥∥∥E[ Y i − µ̂′
GM

∥Y i − µ̂′
GM∥2

]∥∥∥∥
2

≈
∥∥∥∥E[ Y i − µ̂′

GM

E∥Y i − µ̂′
GM∥2

]∥∥∥∥
2

(1.13)

=
∥µ− µ̂′

GM∥2
E∥Y i − µ̂′

GM∥2

≥ ∥µ− µ̂′
GM∥2

∥µ− µ̂′
GM∥2 +

√
E∥Y i − µ∥22

=
∥µ− µ̂′

GM∥2
∥µ− µ̂′

GM∥2 + σ
√
p
,

where we used the triangle and Jensen’s inequalities. Combining (1.10), (1.12) and (1.13),

one obtains (1.11) with high probability if for some positive C ′′ we have C′′
√
n
+2ε < 1. Therefore,

we obtain an estimator µ̂′
GM of µ with the convergence rate σ

√
p/n+σε

√
p in high dimension.

This analysis requires that ε < 1
2 −

C′′

2
√
n

which mean that the breakdown point of µ̂′
GM is

at least 1
2 −

C′′

2
√
n

. Lopuhaa and Rousseeuw (1991) prove that the geometric median has the

benefit of the maximum breakdown point value, namely 1
2 −

1
n .

On an related note, under a more general setting, (Lai et al., 2016, Proposition 2.1) con-

struct an oblivious contamination (a contamination model weaker than the adversarial one, cf.

2.2.3) for which the error rate of the geometric median cannot be better than σε
√
p.

Halfspace symmetry

A random vector Y is halfspace symmetric about θ if P(Y ∈ H) ≥ 1/2 for every closed

halfspace H containing θ. In other words, θ is the center of the symmetry induced by mass in

every direction. Indeed, this generalizes the notion of the median for higher dimensions. This

means that for all unitary vector v, v⊤θ is the median of the random variable v⊤Y . To translate

this notion of center for our sample distribution, we consider the projection of the samples in all

the directions, and we look for the point minimizing the difference of empirical masses in both

sides of the point for every direction. So, we may define the center as the point minimizing the

maximum value of this difference over all the directions. This gives a point µ̂TM belonging to

the set

arg min
x∈Rp

max
v∈Sp−1

∣∣∣∣ n∑
i=1

1(v⊤Xi ≤ v⊤x)−
n∑

i=1

1(v⊤Xi > v⊤x)

∣∣∣∣,
where

∣∣∑n
i=1 1(v

⊤Xi ≤ v⊤x)−
∑n

i=1 1(v
⊤Xi > v⊤x)

∣∣ expresses the difference of empirical

masses at the two sides of v⊤x when the samples are projected on direction v. It can easily

be shown that

µ̂TM ∈ arg max
x∈Rp

min
v∈Rp−1

n∑
i=1

1(v⊤Xi ≤ v⊤x).
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The last set is a convex polytope, and thus we can define µ̂TM in a unique way as the barycen-

tre of this polytope. The point µ̂TM is known as Tukey’s median ((Tukey, 1975)) of the samples,

and represents a generalization of the sample median for higher dimensions. Given a point x,

the value

min
v∈Rp−1

1

n

n∑
i=1

1(v⊤Xi ≤ v⊤x)

is called the Tukey’s halfspace depth of x with respect to the samples, and so, Tukey’s median

is determined as the barycentre of the points of maximum depth with respect to the samples.

Chen et al. (2018) prove that under some conditions the convergence rate of Tukey’s me-

dian is of order σ
√
p/n+ σε. More precisely, under Huber’s contamination, they establish that

for some positive constants C1 and C2, given δ ∈ (0, 1/2), µ̂TM satisfies

∥µ− µ̂TM∥2 ≤ σΦ−1

(
1

2
+

ε

1− ε
+ C1

√
p

n
+ C2

√
log(1/δ)

n

)
,

with probability at least 1− 2δ. The above formula is meaningful only if

1

2
+

ε

1− ε
+ C1

√
p

n
+ C2

√
log(1/δ)

n
< 1.

This implies that ε < 1
3 − C

√
p
n for some positive constant C, and therefore the breakdown

point of Tukey’s median is at least 1
3 −C

√
p
n . Furthermore, results from (Liu et al., 2017) show

that in general position the breakdown point of the Tukey’s median is at most 1
3 −

2
9
p−3
n .

Remark 5. We finally succeeded in avoiding the factor
√
p behind ε in the error rate. How-

ever, computation of Tukey’s median demands a number of operations of order np. Indeed,

computation of the depth of any point in the space with respect to the samples costs already

an exponential in p number of operations.

Remark 6. Central symmetry implies angular symmetry and angular symmetry implies halfs-

pace symmetry. The foregoing material suggests that broader is the adopted notion of sym-

metry, more robust is the method estimating the mean as center of symmetry, and harder is

the computation of the corresponding estimator.

Remark 7. The symmetry based estimators have two benefits: first, they do not require the

knowledge of the covariance matrix and the contamination rate; second, they are translation,

uniform scaling and orthogonal transformation equivariant.

1.3.3 Minimum distance estimator (multidimensional case)

The skeleton estimate can be built for higher dimensions in the same way as for one dimen-

sion. We need just to specify the construction of the candidates’ set. Given a naive estimator
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of µ, for instance the estimator µ̂F proposed by the filtering method, we know that µ belongs

with high probability to the ball of center µ̂F and radius C
√
p where C is a positive constant. A

covering set Mγ = {µ1, . . . ,µNγ
} can be constructed on this ball with Nγ ≤ (2C

√
p/γ)p. We

consider the family (fi)i∈{1,...,Nγ} where fi is the p.d.f. of N (µi, σIp). Let ν̂ be the empirical

measure defined by the samples X1, . . . ,Xn. We define

k̂ = argmin
k∈{1,...,Nγ}

max
A∈Aγ

∣∣∣∣ ∫
A
fk − ν̂(A)

∣∣∣∣,
where Aγ =

{
{x : fi(x) > fj(x)} : i, j ∈ {1, ..., Nγ}

}
with γ = σ

√
p/n. Using arguments

similar to those of the one dimensional setting, the skeleton estimate µ
k̂

satisfies with high

probability

∥µ− µ
k̂
∥2 ≤ 10σ

(
C

√
p log(n)

n
+ 2ε

)
,

where C is a positive constant and C
√
p log(n)/n+ 2ε ≤ 0.49.

Remark 8. The set Aγ is constructed in time exponential in p. For this reason, the skeleton

estimate as Tukey’s median is not computationally tractable. In fact, both estimators are de-

termined by a minimax optimization problem and this suggests that exponential complexity is

indispensable to achieve a error rate of order σ
√
p/n + σε (without the factor

√
p multiplying

ε). This raises the trade off challenge between the computational efficiency and statistical

accuracy.

1.3.4 Leveraging covariance matrix

Applying the same technique introduced in Section 1.2.4, it is easily established that

σΦ−1
(1
2
+

ε

2(1− ε)

)
+

σ
√
p

√
n

is a lower bound for estimating the mean under Huber’s contamination model when the non-

contaminated samples followN (µ, σIp). This shows that Tukey’s median is a minimax estima-

tor of the multivariate Gaussian mean when the samples are adversarially corrupted. As we

have outlined, there is a significant gap between the convergence rate of the computational

tractable methods presented here and that of the optimal method, i.e., Tukey’s median, which

is not tractable. In recent years, one of the main challenges in robust estimation has been

to fill this gap and various methods have been invented. The common point of almost all of

these methods is to use the knowledge of the covariance matrix of the reference Gaussian

distribution.

We try to give the high level scheme of these methods. Consider a more general setting

where the initial samples (Y i)i∈{1,...,n} are drawn from N (µ,Σ). The key idea is the following.
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If we have (contaminated) samples with a sample covariance matrix close to Σ, then we can

certify that the empirical mean of these samples is close to µ. These methods use some or

all of the following ingredients:

1. Majority of the inliers (Xi with i ∈ I) lie in a distance of order
√
p from µ. Via a filter-

ing method, we can obtain a set containing only samples with such property (see e.g.,

Lemma 4).

2. Let µS be the sample mean of the set {Y i : i ∈ S}. For all subsets S ⊂ {1, . . . , n} of

size at least (1− ε)n, ∥µS −µ∥2 is bounded by a term of order
√
p/n+ ε

√
log(1/ε) (see

e.g., Lemma 6).

3. Let ΣS be the sample covariance matrix of the set {Y i : i ∈ S}. For all subsets

S ⊂ {1, . . . , n} of size at least (1 − ε)n, ∥ΣS − Σ∥op is bounded by a term of order

max
(√

p/n, p/n
)
+ ε log(1/ε) where ∥.∥op denotes the operator norm for matrices (see

e.g., Lemma 7).

4. Let µ̂S and Σ̂S be the sample mean and sample covariance matrix of the set {Xi : i ∈
S}. We can show that ∥µ− µ̂S∥22 is controlled by a term depending on ε∥Σ− Σ̂S∥op (see

e.g., Proposition 6).

Hence, now the goal would be to find a set S with a enough small ∥Σ − Σ̂S∥op. We can

recapitulate various existing algorithms for realizing this goal in two categories:

• Filtering algorithms: they filter samples in order to control ∥Σ− Σ̂S∥op. For filtering they

deploy spectral methods on the matrix Σ − Σ̂S to detect in which directions there is

more anomaly and then they remove the samples responsible for these anomalies. In

this category, we can cite methods introduced in (Lai et al., 2016), (Diakonikolas et al.,

2017), (Diakonikolas et al., 2018a) and our method presented in Chapter 3.

• Weighting algorithms: they attribute to each sample Xi a weight ωi (such that
∑n

i=1 ωi =

1) and try to find weights in order to minimize ∥Σ − Σ̂ω∥op where Σ̂ω is the weighted

sample covariance matrix. Finally, the weighted sample mean µ̂ω determined by such

weights appears to be a robust estimator of µ. For this problem, different optimization

methods are proposed in (Diakonikolas et al., 2016a), (Cheng et al., 2019a), (Dalalyan

and Minasyan, 2020), and (Cheng et al., 2020).

All of these algorithms succeed to achieve in polynomial time a error rate with dependency

ε
√

log(1/ε) instead of ε
√
p. Diakonikolas et al. (2016b) provide a strong evidence that the

dependency ε
√
log(1/ε) in error rate is necessary for any robust polynomial time algorithm

under the adversarial model. Indeed, they demonstrate that any Statistical Query algorithm

estimating µ under the adversarial model with dependency ε (instead of ε
√
log(1/ε)) in error

rate needs to have access to sample moments of degree at least log(1/ε)1/4, and this costs at

least plog(1/ε)
1/4

operations, namely, an exponential number of operations in p. The Statistical
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Query algorithms, first introduced in (Kearns, 1998), are a class of algorithms that are allowed

to query expectations of functions of the reference distribution modulo an error rather than

directly access the samples. This can model a wide range of algorithms in statistics and

learning theory.

The four ingredients mentioned above can be generalized for samples drawn from other

classes of distributions (such as the sub-Gaussian distributions or distributions with bounded

moments), albeit with possibly different bounds corresponding to their respective concentra-

tion properties. For instance, Steinhardt et al. (2017) call a general form of the second in-

gredient resilience, Diakonikolas et al. (2020) call a general form of the second and third

ingredients together stability, or the three first ingredients together with some other conditions

are called goodness in (Diakonikolas et al., 2017). These generalizations make the algorithms

with this approach extensible for robust mean estimation of a more general class of reference

distributions.

1.4 Prior work

Robust estimation is an area of active research in Statistics since at least five decades (Donoho

and Gasko, 1992; Donoho and Huber, 1983; Huber and Ronchetti, 2011; Huber, 1964; Maronna

et al., 2006; Rousseeuw et al., 2011; Rousseeuw and Hubert, 1999; Tukey, 1975). Until very

recently, theoretical guarantees were almost exclusively formulated in terms of the notions of

breakdown point, sensitivity curve, influence function, etc. In 2015, a new line of research in

this area started by the work of Chen et al. (2018) who considered the problem of estimating

the mean and the covariance matrix of a Gaussian distribution in the high-dimensional setting

under Huber’s contamination model by studying the rate of convergence of the minimax risk

as a function of the sample size n, dimension p and the rate of contamination ε. The authors

showed that the minimax optimal rate is attained by Tukey’s median which is not computation-

ally tractable whereas classical tractable robust methods such as the componentwise median

do not achieve this rate.

This phenomenon stimulated researches for computational tractable methods with optimal

rate. First algorithms were proposed by computer science community. In this community, the

error rates are expressed differently: it contains only the term depending on ε while the sample

size necessary for obtaining this error rate is also considered. For example the error rates for

the methods presented in the last section reduce to their term depending on ε, namely, ε
√
p,

ε
√

log(1/ε) or ε and the other term which depends on p and n determines how many samples

the methods need to achieve this error rate. Thus, there are two kinds of complexity in this

approach: the computational complexity and the sample complexity.

For the Gaussian mean, Lai et al. (2016) proposed a recursive algorithm halving the di-

mension at each step based on a spectral analysis of the sample covariance matrix. Their

algorithm achieves the error rate ε
√

log(p) under the oblivious contamination model (see the
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definition in Section 2.2.3). Diakonikolas et al. (2016a) designed two algorithms with error

rate ε
√

log(1/ε): one based on an iterative spectral filtering method and one based on a con-

vex programming defined by the weighted samples. Cheng et al. (2019a) transformed this

convex programming to a semi-definite programming (SDP) and proposed a faster iterative

method with same error rate but with optimal sample complexity, i.e., sample size of order

d/ε2. Dalalyan and Minasyan (2020) introduce a different iterative method based on SDP by

giving statistical guarantees for the error rate
√

Tr(Σ)/n + ε
√
∥Σ∥op log(1/ε) in expectation

and in probability. Finally, Cheng et al. (2021) prove that a suitable vesrion of the gradient

descent method on minimization of ∥Σ − Σ̂ω∥ converges to an estimator µ̂ω of µ with same

risk ε
√

log(1/ε). The only estimator giving a error rate of order ε in polynomial time (under

oblivious contamination model) is proposed in (Diakonikolas et al., 2017) based on a spectral

filtering method, however, it has a high sample complexity. Some other methods can be found

in (Balakrishnan et al., 2017; Diakonikolas and Kane, 2019; Diakonikolas et al., 2020; Dong

et al., 2019). All of these methods are extensible for sub-Gaussian distributions. In Chap-

ter 3, we design a new estimator inspired by spectral filtering ideas in Lai et al. (2016) and

Diakonikolas et al. (2017).

Robust mean estimation is studied also for the distributions with bounded moments. Many

of the algorithms for Gaussian mean can be generalized for the distributions with bounded

moments, see (Cheng et al., 2019a; Diakonikolas et al., 2017; Diakonikolas and Kane, 2019;

Diakonikolas et al., 2020; Dong et al., 2019; Lai et al., 2016). For this problem, other algorithms

with the idea of weighting the sample are proposed, see e.g., (Depersin and Lecué, 2022; Liu

et al., 2020a; Prasad et al., 2019; Steinhardt et al., 2017). In particular, Depersin and Lecué

(2022) give a computational tractable estimator under bounded second moment assumption

with the optimal error rate
√

Tr(Σ)/n +
√
∥Σ∥opε, while the other mentioned methods are

at best nearly optimal. All we have seen so far belong to the category of the approaches

leveraging covariance matrix presented in Section 1.3.4. Minsker (2015) analyses the geo-

metric median under bounded moments assumptions and proves that it has sub-optimal error

rate. Lugosi and Mendelson (2021) extend the trimmed mean to high-dimensional setting and

show that their extension enjoys optimal error rate, though, it cannot be computed in poly-

nomial time. There are various other approaches, see e.g., (Bahmani, 2021; Depersin and

Lecué, 2021; Minsker, 2018b; Minsker and Ndaoud, 2021; Prasad et al., 2020).

A closely related problem is that of the mean estimation with sub-Gaussian rates for heavy

tailed distributions. For one dimension, the so-called median-of-means estimator, introduced

independently in (Nemirovsky and Yudin, 1983), (Jerrum et al., 1986) and (Alon et al., 1996),

has the optimal performance. Other methods exist for one dimension, see (Catoni, 2012; De-

vroye et al., 2016; Minsker and Ndaoud, 2021) and for a more complete overview, we refer

the reader to the survey (Lugosi and Mendelson, 2019a). For high-dimension, various estima-

tors are proposed such as a median-of-means based estimator (Joly et al., 2017), geometric

median (Hsu and Sabato, 2016; Minsker, 2015) or (Catoni and Giulini, 2017, 2018). The first

estimator with optimal performance is inroduced in (Lugosi and Mendelson, 2019b) which is
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not computationally efficient. Hopkins (2020) formulates a SDP relaxation of the estimator

of Lugosi and Mendelson (2019b) using sum-of-squares methods and designs a polynomial

time algorithm with the optimal sub-Gaussian rates. Cherapanamjeri et al. (2019) combine this

SDP formulation by a non-convex gradient descent procedure and improve the computational

complexity of the last algorithm. Depersin and Lecué (2022) combine the idea of SDP and

median-of-means and construct another tractable optimal estimator. Lei et al. (2019) propose

a different optimal estimator not using SDP (SDP causes a high runtime). Furthermore, unified

robust approaches against outliers and heavy tailed distributions are considered in (Bahmani,

2021; Depersin and Lecué, 2021; Depersin and Lecué, 2022; Minsker, 2015; Minsker and

Ndaoud, 2021; Prasad et al., 2019).

Concerning the robust mean estimation of discrete distributions, Chen et al. (2020); Jain

and Orlitsky (2019); Qiao and Valiant (2018); Steinhardt et al. (2017) studied the case of

group-contamination where the observations are batches of samples with ε-fraction of batches

contaminated by an adversary. In Chapter 2, we study this problem under the normal adver-

sarial model.

In addition, high-dimensional robust estimation is studied under a very different frame-

work, Generative Adversarial Networks (GAN), and robust estimators based on GANs are

constructed for various statistical tasks, see (Gao et al., 2018, 2020; Wang and Tan, 2021;

Zhu et al., 2022). This line of work is close in spirit to the minimum distance estimator dis-

cussed in 1.3.3.

Beyond Huber and adversarial contamination models, other contamination models are

considered in the literature such as parameter contamination models (Bhatia et al., 2017;

Carpentier et al., 2018; Collier and Dalalyan, 2019) (cf. Section 2.2.4), oblivious contamination

(Diakonikolas et al., 2017; Feng et al., 2014; Lai et al., 2016) (cf. Section 2.2.3) , Wasserstein

and total variation contaminations (Diakonikolas et al., 2016b; Zhu et al., 2019, 2020).

Robust estimation is investigated for other statistical tasks as covariance matrix estima-

tion (many paper studying mean estimation treat also covariance matrix estimation, see also

(Cheng et al., 2019b)), linear regression (Alquier and Gerber, 2020; Audibert and Catoni,

2011; Bakshi and Prasad, 2021; Cherapanamjeri et al., 2020; Chinot, 2020; Dalalyan and

Thompson, 2019; Depersin, 2020; Diakonikolas et al., 2019b; Gao, 2020; Liu et al., 2018;

Pensia et al., 2020; Sasai and Fujisawa, 2021), risk minimization (Chinot et al., 2018; Chinot

et al., 2020), stochastic optimization (Diakonikolas et al., 2019a), classification (Lecué et al.,

2020), density estimation (Jain and Orlitsky, 2021; Liu and Gao, 2019), etc.

1.5 Contributions

We summarize our contributions in two sections. The first section is devoted to the problem

of estimating the mean of a distribution supported by the k-dimensional probability simplex

in the setting where an ε fraction of observations are subject to adversarial corruption. A
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simple particular example is the problem of estimating the distribution of a discrete random

variable. Assuming that the discrete variable takes k values, the unknown parameter θ is a

k-dimensional vector belonging to the probability simplex. There we describe also the various

models of contamination. Chapter 2 exposes a complete version of the contribution. This work

is presented in (Bateni and Dalalyan, 2020).

The second section summarizes our contributions to the problem of robust estimation of

the mean vector of a Gaussian distribution. We introduce an estimator based on spectral

dimension reduction (SDR) and establish a finite sample upper bound on its error that is

minimax-optimal up to a logarithmic factor. Furthermore, we prove that the (asymptotic) break-

down point of the SDR estimator is equal to 1/2, the highest possible value of the breakdown

point. In addition, the SDR estimator is equivariant by similarity transforms and has low com-

putational complexity. This work is developed in Chapter 3 and is presented in (Bateni et al.,

2022).

1.5.1 Contamination models and robust estimation on the probability simplex

Assume X1, . . . ,Xn are n independent and identically distributed random variables taking

their values in the k-dimensional probability simplex ∆k−1 = {v ∈ Rk
+ : v1 + . . . + vk = 1}.

Our goal is to estimate the unknown vector θ = E[Xi] in the case where the observations are

contaminated by outliers. An important particular case is the estimation of the distribution of

a discrete random variable X taking k distinct values. In this particular case, Xi’s take values

in {e1, . . . , ek}, the set of the vectors of the canonical basis, which are also the extreme points

of the simplex ∆k−1.

In this introduction, to convey the main messages, we limit ourselves to the Huber con-

tamination model, although our results apply to the more general adversarial contamination.

Huber’s contamination model assumes that there are two probability measures P , Q on ∆k−1

and a real ε ∈ [0, 1/2) such that Xi is drawn from

P i = (1− ε)P + εQ, ∀i ∈ {1, . . . , n}.

This amounts to assuming that (1 − ε)-fraction of observations, called inliers, are drawn from

a reference distribution P , whereas ε-fraction of observations are outliers and are drawn from

another distribution Q. In general, all the three parameters P , Q and ε are unknown. The

parameter of interest is some functional (such as the mean, the standard deviation, etc.) of

the reference distribution P , whereas Q and ε play the role of nuisance parameters.

When the unknown parameter lives on the probability simplex, there are many appealing

ways of defining the risk. We focus on the following three metrics: total-variation, Hellinger
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and L2 distances3

dTV(θ̂,θ) := 1/2∥θ̂ − θ∥1,

dH(θ̂,θ) := 1/
√
2∥θ̂1/2 − θ1/2∥2,

dL2(θ̂,θ) := ∥θ̂ − θ∥2.

The Hellinger distance above is well defined when the estimator θ̂ is non-negative, which will

be the case throughout this work. We will further assume that the dimension k may be large,

but the vector θ is s-sparse, for some s ≤ k, i.e. #{j : θj ̸= 0} ≤ s. Our main interest is in

constructing confidence regions and evaluating the minimax risk

R□(n, k, s, ε) := inf
θ̄n

sup
P ,Q

E[d□(θ̄n,θ)],

where the inf is over all estimators θ̄n built upon the observations X1, . . . ,Xn
iid∼ (1−ε)P +εQ

and the sup is over all distributions P , Q on the probability simplex such that the mean θ of

P is s-sparse. The subscript □ of R above refers to the distance used in the risk, so that □ is

TV, H, or L2.

Various models of contamination

Different mathematical frameworks have been used in the literature to model the outliers. We

present here five of them, from the most restrictive one to the most general, and describe their

relationship. We present these frameworks in the general setting when the goal is to estimate

the parameter θ∗ of a reference distribution P θ∗ when ε proportion of the observations are

outliers.

Huber’s contamination The most popular framework for studying robust estimation meth-

ods is perhaps the one of Huber’s contamination. In this framework, there is a distribu-

tion Q defined on the same space as the reference distribution P θ∗ such that all the ob-

servations X1, . . . ,Xn are independent and drawn from the mixture distribution P ε,θ∗,Q :=

(1− ε)P θ∗ + εQ.

This corresponds to the following mechanism: one decides with probabilities (1 − ε, ε)

whether a given observation is an inlier or an outlier. If the decision is made in favor of being

inlier, the observation is drawn from P θ∗ , otherwise it is drawn from Q. More formally, if we

denote by Ô the random set of outliers, then conditionally to Ô = O,

{Xi : i ̸∈ O} iid∼ P θ∗ , {Xi : i ∈ O} iid∼ Q, {Xi : i ∈ O} ⊥⊥ {Xi : i ̸∈ O}, (1.14)

for every O ⊂ {1, . . . , n}. Furthermore, for every subset O of the observations, we have

3We write ∥u∥q = (
∑k

j=1 |uj |q)1/q and uq = (uq
1, . . . , u

q
k) for any u ∈ Rk

+ and q > 0.
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P (Ô = O) = (1−ε)n−|O|ε|O|. We denote by4MHC
n (ε,θ∗) the set of joint probability distributions

Pn of the random variables X1, . . . ,Xn satisfying the foregoing condition.

Huber’s deterministic contamination The set of outliers as well as the number of outliers

in Huber’s model of contamination are random. This makes it difficult to compare this model to

the others that will be described later in this section. To cope with this, we define here another

model, termed Huber’s deterministic contamination. As its name indicates, this new model

has the advantage of containing a deterministic number of outliers, in the same time being

equivalent to Huber’s contamination in a sense that will be made precise below.

We say that the distribution Pn of X1, . . . ,Xn belongs to the Huber’s deterministic contam-

ination model denoted byMHDC
n (ε,θ∗), if there are a set O ⊂ {1, . . . , n} of cardinality at most

nε and a distribution Q such that (1.14) is true. The apparent similarity of modelsMHC
n (ε,θ∗)

andMHDC
n (ε,θ∗) can also be formalized mathematically in terms of the orders of magnitude of

minimax risks. To ease notation, we let R□
d (n, ε,Θ, θ̂) to be the worst-case risk of an estimator

θ̂, where □ is either HC or HDC. More precisely, forM□
n (ε,Θ) := ∪θ∈ΘM□

n (ε,θ), we set5

R□
d (n, ε,Θ, θ̂) := sup

Pn∈M□
n (ε,Θ)

E[d(θ̂,θ∗)].

This definition assumes that the parameter space Θ is endowed with a pseudo-metric d :

Θ×Θ→ R+. When Θ = {θ∗} is a singleton, we write R□
d,n(ε,θ

∗, θ̂) instead of R□
d (n, ε, {θ

∗}, θ̂).

Proposition 1. Let θ̂n be an arbitrary estimator of θ∗. For any ε ∈ (0, 1/2),

RHC
d (n, ε,θ∗, θ̂n) ≤ RHDC

d,n (2ε,θ∗, θ̂n) + e−nε/3RHDC
d,n (1,θ∗, θ̂n),

sup
Pn∈MHC

n (ε,θ∗)

rP
(
d(θ̂n,θ

∗) > r
)
≤ RHDC

d,n (2ε,θ∗, θ̂n) + re−nε/3.

Denote by DΘ the diameter of Θ, DΘ := maxθ,θ′ d(θ,θ′). Proposition 1 implies that

inf
θ̂n

RHC
d (n, ε,Θ, θ̂n) ≤ inf

θ̂n

RHDC
d (n, 2ε,Θ, θ̂n) + e−nε/3DΘ.

When Θ is bounded, the last term is typically of smaller order than the minimax risk over

MHDC
n (2ε,Θ). Therefore, the minimax rate of estimation in Huber’s model is not slower than

the minimax rate of estimation in Huber’s deterministic contamination model. This entails

that a lower bound on the minimax risk established in HC-model furnishes a lower bound in

HDC-model.

Oblivious contamination A third model of contamination that can be of interest is the obliv-

ious contamination. In this model, it is assumed that the set O of cardinality o and the joint
4The superscript HC refers to the Huber’s contamination
5The subscript d refers to the distance d used in the definition of the risk.
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distribution QO of outliers are determined in advance, possibly based on the knowledge of

the reference distribution P θ∗ . Then, the outliers {Xi : i ∈ O} are drawn randomly from QO

independently of the inliers {Xi : i ∈ Oc}. The set of all the joint distributions P n of random

variables X1, . . . ,Xn generated by such a mechanism will be denoted by MOC
n (ε,θ∗). The

model of oblivious contamination is strictly more general than that of Huber’s deterministic

contamination, since it does not assume that the outliers are i.i.d. Therefore, the minimax risk

overMOC
n (ε,Θ) is larger than the minimax risk overMHDC

n (ε,Θ):

inf
θ̂n

RHDC
d (n, ε,Θ, θ̂n) ≤ inf

θ̂n

ROC
d (n, ε,Θ, θ̂n).

The last inequality holds true for any set Θ, any contamination level ε ∈ (0, 1) and any sample

size.

Parameter contamination In the three models considered above, the contamination acts

on the observations. One can also consider the case where the parameters of the distribu-

tions of some observations are contaminated. More precisely, for some set O ⊂ {1, . . . , n}
selected in advance (but unobserved), the outliers {Xi : i ∈ O} are independent and inde-

pendent of the inliers {Xi : i ∈ Oc}. Furthermore, each outlier Xi is drawn from a distribution

Qi = P θi
belonging to the same family as the reference distribution, but corresponding to

a contaminated parameter θi ̸= θ∗. Thus, the joint distribution of the observations can be

written as (
⊗

i∈Oc P θ∗)⊗ (
⊗

i∈O P θi
). The set of all such distributions P n will be denoted by

MPC
n (ε,θ∗), where PC refers to “parameter contamination”.

Adversarial contamination The last model of contamination we describe in this work, the

adversarial contamination, is the most general one. It corresponds to the following two-stage

data generation mechanism. In a first stage, iid random variables Y1, . . . ,Yn are gener-

ated from a reference distribution P θ∗ . In a second stage, an adversary having access to

Y1, . . . ,Yn chooses a (random) set Ô of (deterministic) cardinality s and arbitrarily modifies

data points {Y i : i ∈ Ô}. The resulting sample, {Xi : i = 1, . . . , n}, is revealed to the Statisti-

cian. In this model, we have Xi = Y i for i ̸∈ Ô. However, since Ô is random and potentially

dependent of Y1:n, it is not true that conditionally to Ô = O, {Xi : i ∈ Oc} are i.i.d. drawn from

P θ∗ (for any deterministic set O of cardinality o).

We denote by MAC
n (ε,θ∗) the set of all the joint distributions P n of all the sequences

X1, . . . ,Xn generated by the aforementioned two-stage mechanism. This set MAC
n (ε,θ∗) is

larger than all the four sets of contamination introduced in this section. Therefore, the following

inequalities hold:

inf
θ̂n

RPC
d (n, ε,Θ, θ̂n) ≤ inf

θ̂n

ROC
d (n, ε,Θ, θ̂n) ≤ inf

θ̂n

RAC
d (n, ε,Θ, θ̂n),

for any n, ε, Θ and any distance d.
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Figure 1.4: Visual representation of the hierarchy between various contamination models.
Note that the inclusion of MHC

n (ε,θ∗) in MHDC
n (2ε,θ∗) is somewhat heuristic, based on the

relation on the worst-case risks reported in Proposition 1

Minimax rates on the “sparse” simplex and confidence regions

We now specialize the general setting of Section 1.5.1 to a reference distribution P , with

expectation θ∗, defined on the simplex ∆k−1. Along with this reference model describing

the distribution of inliers, we will use different models of contamination. More precisely, we

will establish upper bounds on worst-case risks of the sample mean in the most general,

adversarial, contamination setting. Then, matching lower bounds will be provided for minimax

risks under Huber’s contamination.

Upper bounds: worst-case risk of the sample mean We denote by ∆k−1
s the set of all

v ∈ ∆k−1 having at most s non-zero entries.

Theorem 1. For every triple of positive integers (k, s, n) and for every ε ∈ [0, 1], the sample

mean X̄n := 1
n

∑n
i=1Xi satisfies

RAC
TV(n, ε,∆

k−1
s , X̄n) ≤ (s/n)1/2 + 2ε,

RAC
H (n, ε,∆k−1

s , X̄n) ≤ (s/n)1/2 +
√
2 ε1/2,

RAC
L2 (n, ε,∆

k−1
s , X̄n) ≤ (1/n)1/2 +

√
2 ε.

An unexpected and curious phenomenon unveiled by this theorem is that all the three rates

are different. As a consequence, the largest possible number of outliers, o∗d(n, s), that does

not impact the minimax rate of estimation of θ∗ crucially depends on the considered distance

d. Taking into account the relation ε = o/n, we get

o∗TV(n, s) ≍ (ns)1/2, o∗H(n, s) ≍ s, o∗L2(n, s) ≍ n1/2.
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Lower bounds on the minimax risk A natural question, answered in the next theorem,

is how tight are the upper bounds obtained in the last theorem. More importantly, one can

wonder whether there is an estimator that has a worst-case risk of smaller order than that of

the sample mean.

Theorem 2. There are universal constants c > 0 and n0, such that for any integers k ≥ 3,

s ≤ k ∧ n, n ≥ n0 and for any ε ∈ [0, 1], we have

inf
θ̄n

RHC
TV (n, ε,∆

k−1
s , θ̄n) ≥ c{(s/n)1/2 + ε},

inf
θ̄n

RHC
H (n, ε,∆k−1

s , θ̄n) ≥ c{(s/n)1/2 + ε1/2},

inf
θ̄n

RHC
L2 (n, ε,∆

k−1
s , θ̄n) ≥ c{(1/n)1/2 + ε},

where inf θ̄n
stands for the infimum over all measurable functions θ̄n from (∆k−1)n to ∆k−1.

The main consequence of this theorem is that whatever the contamination model is (among

those described in Section 1.5.1), the rates obtained for the MLE in Theorem 1 are minimax

optimal. Indeed, Theorem 2 yields this claim for Huber’s contamination, and in Chapter 2 we

will show that the lower bounds obtained for HC remain valid for all the other contamination

models and are minimax optimal.

Confidence regions In previous parts, we established bounds for the expected value of

estimation error. The aim of this part is to present bounds on estimation error of the sample

mean holding with high probability. This also leads to constructing confidence regions for the

parameter vector θ∗. To this end, the contamination rate ε and the sparsity s are assumed to

be known. It is an interesting open question whether one can construct optimally shrinking

confidence regions for unknown ε and s.

Theorem 3. Let δ ∈ (0, 1) be the tolerance level. If θ∗ ∈ ∆k−1
s , then under any contamination

model, the regions of ∆k−1 defined by each of the following inequalities

dL2(X̄n,θ) ≤ (1/n)1/2 +
√
2 ε+

(
log(1/δ)/n

)1/2
,

dTV(X̄n,θ) ≤ (s/n)1/2 + 2 ε+
(
2 log(1/δ)/n

)1/2
,

dH(X̄n,θ) ≤
√
5
(
(s/n) log(2s/δ)

)1/2
+ ε1/2 +

(
(1/2n) log(2/δ)

)1/2
,

contain θ∗ with probability at least 1− δ.

To illustrate the shapes of these confidence regions, we depicted them in Figure 1.5 for a

three dimensional example, projected onto the plane containing the probability simplex. The

sample mean in this example is equal to (1/3, 1/2, 1/6).
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Figure 1.5: The shape of confidence sets (white regions) for the distances L2 (left), TV
(center), and Hellinger (right) when the sample mean is (1/3, 1/2, 1/6).

Instance based bounds When the dimension k is not finite, we can provide bounds which

depend on the reference distribution θ∗ or the sample mean X̄n. We restrict Xi’s to take value

in {e1, e2 . . . }, and assume ej occurs with probability θ∗
j . We define αn(θ) := 2

∑
θj<1/n θj and

βn(θ) := 1√
n

∑
θ≥1/n

√
θj . Using the results of Berend and Kontorovich (2013) the following

upper and lower bounds are obtained for the error of the sample mean under the TV distance

and adversarial model with ε-contamination.

Proposition 2. Suppose Xi’s take value in {e1, e2 . . . }, and for j ∈ N, ej occurs with proba-

bility θ∗
j . For every n and for every ε ∈ [0, 1], the sample mean X̄n satisfies

αn(θ
∗
j ) + βn(θ

∗
j )

4
− 1

4
√
n
− 2ε ≤ EdTV(X̄n,θ

∗) ≤ αn(θ
∗
j ) + βn(θ

∗
j ) + 2ε.

These bounds need the knowledge of the reference distribution. The next theorem repre-

sent bounds based on the sample mean.

Theorem 4. Suppose Xi’s take value in {e1, e2 . . . }, and for j ∈ N, ej occurs with probability

θ∗
j . For every n and for every ε ∈ [0, 1], the sample mean X̄n satisfies

dTV(X̄n,θ
∗) ≤ 1√

n

∥∥X̄1/2
n

∥∥
1
+ 2ε+ 3

√
log(2/δ)

2n

with probability at least 1− δ, where δ ∈ (0, 1). We also have

EdTV(X̄n,θ
∗) ≤ 1√

n
E
∥∥X̄1/2

n

∥∥
1
+ 2ε.

1.5.2 Robust Estimation of Gaussian Mean

The goal of this work is to make a step forward by designing an estimator which is not only

nearly rate optimal and computationally tractable, but also has a (asymptotic) breakdown point

equal to 1/2, which is the highest possible value of the breakdown point. To construct the es-

timator, termed iterative spectral dimension reduction or SDR, we combine and suitably adapt
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Figure 1.6: Plots that help to visually compare four robust estimators: SDR (our estimator), geomet-
ric median (GM) given by (3.1), componentwise median (CM), iteratively reweighted mean (IRM) of
(Dalalyan and Minasyan, 2020). The first two plots show that SDR is as accurate as IRM for small ε,
with SDR outperforming IRM for ε close to 1/2. IRM and SDR are naturally much more accurate than
GM and CM. The last plot shows that the running time of SDR is comparable to that of GM and is much
smaller than that of IRM. More details on these experiments are provided in Section 3.5.

ideas from (Lai et al., 2016) and (Diakonikolas et al., 2017). The main underlying observation

is that if we remove some clear outliers and restrict our attention to the subspace spanned by

the eigenvectors of the sample covariance matrix corresponding to small eigenvalues, then

the sample mean of the projected data points is a rate-optimal estimator. This allows us to

iteratively reduce the dimension and eventually to estimate the remaining low-dimensional

component of the mean by a standard robust estimator such as the componentwise median

or the trimmed mean, see Algorithm 1.

The papers that are the closest to the present work are (Lai et al., 2016), (Diakonikolas

et al., 2017) and (Dalalyan and Minasyan, 2020). The spectral dimension reduction scheme

was proposed by (Lai et al., 2016) along with an initial sample splitting step ensuring the in-

dependence of the estimators over different subspaces. In the case of spherical Gaussian

distribution contaminated by non-adversarial outliers, the paper states that the proposed esti-

mator has a squared error at most of order p log2 p log(p/ε)/n+ ε2 log p. Compared to this, our

results are valid in the more general setting of sub-Gaussian distribution, with arbitrary covari-

ance matrix and adversarial contamination. In addition, our estimator does not rely on sample

splitting and, therefore, has a risk with a better dependence on p. As compared to the filtering

method of (Diakonikolas et al., 2017), our estimator has the advantage of being independent

of ε and our error bound is valid for every covariance matrix and every confidence level. On

the down side, our error bound has an extra factor log p in front of ε2. We believe that this

factor is an artifact of the proof, but we were unable to remove it. Finally, compared to the

iteratively reweighted mean (Dalalyan and Minasyan, 2020), the SDR estimator studied in the

present work has a higher breakdown point, does not require the knowledge of ε and is much

faster to compute. The advantages and shortcomings of these estimators are summarized in

Table 1.1 and Figure 1.6.

Notation. For any pair of integers k and d such that 1 ≤ k ≤ d, we denote by V d
k the

set of all k-dimensional linear subspaces V of Rd. For V ∈ V d
k , we write k = dim(V ) and
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Comput. Breakdown known ε Squared known Σ
tractable point error rate or Σ ∝ I

Gaussian distribution

C./G. Median yes 0.5 no rΣ/n+ ε2p no
Tukey’s Median no 0.33 no rΣ/n+ ε2 no
Agnostic Mean yes − yes (p/n) log3 p+ ε2 log p yes

Gaussian and sub-Gaussian distribution

Iter. Rew. Mean yes 0.28 yes (rΣ/n) + ε2 log(1/ε) yes
Iterative Filtering yes − yes (p/n) loga p+ ε2 log(1/ε) yes
SDR (this work) yes 0.5 no (rΣ/n+ ε2 log(1/ε)) log p yes

Table 1.1: Properties of various robust estimators. Agnostic mean, iteratively reweighted
mean and iterative filtering are the estimators studied in (Lai et al., 2016), (Dalalyan and
Minasyan, 2020) and (Diakonikolas et al., 2017), respectively. The error rates reported for
Tukey’s median, componentwise median, geometric median and the agnostic mean have been
proved for non-adversarial contamination. The squared error rate is provided in the case of a
covariance matrix satisfying ∥Σ∥op = 1.

denote by PV the orthogonal projection matrix onto V . Sd−1 stands for the unit sphere in

Rd. For a d × d symmetric matrix M, we denote by λ1(M), . . . , λd(M) its eigenvalues sorted

in increasing order, and use the notation λmin(M) = λ1(M), λmax(M) = λd(M), ∥M∥op =

max(|λmin(M)|, |λmax(M)|), Tr(M) = (λ1 + . . . + λd)(M) and rM = Tr(M)/∥M∥op. For any

integer n > 0, we set [n] = {1, . . . , n}. We will denote by O ⊂ [n] the subscripts of the outliers

and by I = [n] \ O the subscripts of inliers. We also use notation log+(x) = max{0, log(x)}.

Algorithm 1 SDR(X1, . . . ,Xn;Σ, t)
1: let p be the dimension of X1

2: let µ̂GM be the geometric median of X1, . . . ,Xn

3: let S ← {i : ∥Xi − µ̂GM∥ ≤ t
√
p}

4: let XS be the sample mean of the filtered sample {Xi : i ∈ S}
5: let Σ̂S be the covariance matrix of the filtered sample {Xi : i ∈ S}
6: if p > 1 then
7: let V be the span of the top ⌈p/e⌉ principal components of Σ̂S −Σ
8: let PV be the orth. projection onto V
9: let PV ⊥ be the orth. projection onto the orth. complement of V

10: let µ̂← PV ⊥XS + SDR(PV X1, . . . , PV Xn; PV Σ PV , t)
11: else
12: let µ̂← µ̂GM

13: end if
14: return µ̂
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Adversarially corrupted sub-Gaussian model and spectral dimension reduction

We assume that a set X1, . . . ,Xn of n data points drawn from a distribution Pn is given. This

set is assumed to contain at least n − [nε] inliers, the remaining points being outliers. All the

points lie in the p-dimensional Euclidean space and the inliers are independently drawn from a

reference distribution, assumed to be sub-Gaussian with mean µ∗ ∈ Rp and covariance matrix

Σ. To state the assumptions imposed on the observations in a more precise way, let us recall

that the random vector ζ is said to be sub-Gaussian with zero mean and identity covariance

matrix, if E[ζ] = 0, E[ζζ⊤] = Ip and for some s > 0, we have

E
[
ev

⊤ζ
]
≤ exp

{
s∥v∥2/2

}
, ∀v ∈ Rp.

The parameter s is commonly called the variance proxy and the writing ζ ∼ SGp(s) is used.

Definition 1. We say that the data generating distribution Pn is an adversarially corrupted sub-

Gaussian distribution with mean µ∗, covariance matrix Σ, variance proxy s and contamination

rate ε, if there is a probability space on which we can define a sequence of random vectors

(X1,Y1), . . . , (Xn,Yn) such that
1. Y1, . . . ,Yn are independent and Σ−1/2(Y i − µ∗) ∼ SGp(s) for every i ∈ [n].

2. the cardinality of O = {i ∈ [n] : Y i ̸= Xi} is at most equal to nε.

3. the distribution of (X1, . . . ,Xn) is Pn.
We write then6 Pn ∈ SGAC(µ∗,Σ, s, ε). In the particular case where all Y i are Gaussian, we

will write Pn ∈ GAC(µ∗,Σ, ε).

The estimator we analyze in this work is termed iterative spectral dimension reduction and

denoted by µ̂SDR. It is closely related to the agnostic mean (Lai et al., 2016) and to iterative

filtering (Diakonikolas et al., 2017) estimators. We will prove that SDR enjoys most of desired

properties in the setting of robust estimation of the sub-Gaussian mean.

The parameters given as input to the iterative spectral dimension reduction algorithm are

a strictly decreasing sequence of positive integers p0, . . . , pL such that p0 = p and a positive

threshold t > 0. We recall that the geometric median is defined by

µ̂GM ∈ arg min
µ∈Rp

n∑
i=1

∥Xi − µ∥2.

The algorithm for computing the SDR estimator reads as follows.

1. Start by setting V0 = Ip.

2. For ℓ = 0, . . . L− 1 do

(a) Define µ̄(ℓ) ∈ Rpℓ as the geometric median of {V⊤
ℓ Xi : i ∈ [n]}.

6SGAC stands for sub-Gaussian with adversarial contamination.
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(b) Define the set S(ℓ) =
{
i ∈ [n] : ∥V⊤

ℓ Xi − µ̄(ℓ)∥2 ≤ t
√
pℓ
}

of filtered data points.

(c) Let X(ℓ) and Σ̂(ℓ) be the mean vector and the covariance matrix of the filtered

sample {Xi : i ∈ S(ℓ)}, that is

X(ℓ) =
1

|S(ℓ)|
∑
i∈S(ℓ)

Xi, Σ̂(ℓ) =
1

|S(ℓ)|
∑
i∈S(ℓ)

(Xi −X)⊗2.

(d) Set µ̂(ℓ) = VℓU
⊤
ℓ UℓV

⊤
ℓ X

(ℓ), where Uℓ is a (pℓ − pℓ+1) × pℓ orthogonal matrix

the rows of which are the eigenvectors of V⊤
ℓ (Σ̂

(ℓ) − Σ)Vℓ corresponding to its

(pℓ − pℓ+1) smallest eigenvalues.

(e) Set Vℓ+1 = Vℓ(U
⊥
ℓ )

⊤ ∈ Rp×pℓ+1 , where U⊥
ℓ is a pℓ+1×pℓ orthogonal matrix orthog-

onal to Uℓ, that is U⊥
ℓ U

⊤
ℓ = 0.

3. Define µ̄(L) as the geometric median of V⊤
LXi for i = 1, . . . , n and set S(L) =

{
i ∈ [n] :

∥V⊤
LXi − µ̄(L)∥2 ≤ t

√
pL

}
.

4. Define µ̂(L) = VLV
⊤
L X(L), the average of filtered and projected vectors.

5. Return µ̂SDR = µ̂(0) + µ̂(1) + . . .+ µ̂(L).

The steps described above can be summarized as follows. At each iteration ℓ < L,

we start by determining a filtered subsample S(ℓ) and a “nearly-outlier-orthogonal” subspace

Uℓ = Im(VℓU
⊤
ℓ ) of Rp of dimension pℓ − pℓ+1. We define the projection of µ̂SDR onto Uℓ as

the sample mean of the filtered and projected subsample, and we move to the next step for

determining the projection of µ̂SDR onto the remaining part of the space. At the last iteration L,

when the dimension is well reduced, the projection of µ̂SDR onto the subspace UL is defined

as the average of the filtered subsample projected onto UL. The subspaces Uℓ are two-by-

two orthogonal and span the whole space Rp. Each subspace is determined from the spectral

decomposition of the covariance matrix of the data points projected onto (U0 ⊕ . . .⊕Uℓ−1)
⊥,

after removing the points lying at an abnormally large distance from the geometric median.

Choice of the dimension reduction regime The analysis of the error of the SDR estimator

conducted in this work leads to an upper bound in which the sequence (p0, . . . , pL) is involved

only through the expression

F (p0, . . . , pL) =

L∑
ℓ=1

pℓ−1

pℓ
.

Therefore, an appealing way of choosing this sequence is to minimize the function F under the

constraint that the sequence is decreasing and p0 = p and pL = 1. It follows from the inequality

between the arithmetic and geometric means that F (p0, . . . , pL) ≥ Lp1/L. Furthermore, the
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equality is achieved7 in the case when all the terms in the definition of F are equal, i.e.,

when for some c > 0 we have pℓ−1 = cpℓ for every ℓ ∈ [L]. Since p0 = p and pL = 1,

this yields c = p1/L or, equivalently, L = log p/ log c. Using these relations, we find that the

function F is lower bounded by Lc = (c/ log c) log p. The last step is to find the minimum of

the function c 7→ c/ log c over the interval (1,∞). One easily checks that this function has a

unique minimum at c = e. All these considerations advocate for using the dimension reduction

regime defined by

p0 = p, pℓ = ⌊pℓ−1/e⌋+ 1, ℓ ∈ [L], pL = 1, (1.15)

where ⌊x⌋ is the largest integer strictly smaller than x. Such a definition of (pℓ) ensures that

pℓ−1/pℓ ≤ e and that8 L ≤ 2 log p. In the rest of the paper, we assume that the sequence (pℓ)

is chosen as in (1.15).

Choice of the threshold The SDR procedure has one important tuning parameter: the

threshold t used to discard clearly outlying data points. Let us introduce the auxiliary notation

r̄n =

√
rΣ +

√
2 log(2/δ)√
n

, and τ =
1

4

∧ r̄n√
log+(2/r̄n)

. (1.16)

Note that r̄n is essentially the quantile, up to a universal constant factor, of order 1 − δ of the

distribution of ∥Ȳn−µ∗∥2 where Y i’s are independently drawn fromNp(µ
∗,Σ) with ∥Σ∥op = 1.

Our theoretical results advocate for using the value t = t1 + t2, where

t1 =
2(1 + r̄n)

1− 2ε∗
, t2 = 1 +

r̄n√
τ
+
√
2 + log(2/τ),

where ε∗ < 1/2 is the largest value of the contamination rate that the algorithm may handle.

Let ξ1, . . . , ξn be independent Gaussian with zero mean and covariance Σ. The expression

of t1 is obtained as an upper bound on the quantile of order 1 − δ/2 of the distribution of the

random variable

T1 = sup
V

2

n(1− 2ε) dim(V )

n∑
i=1

∥PV ξi∥2,

see Lemma 2 and its proof for further details. Similarly, t2 is defined so that the event

sup
V

n∑
i=1

1
(
∥PV ξi∥22 > t22 dim(V )

)
≤ nτ

has a probability at lest 1− δ/2. Although we tried to get sharp values for these thresholds t1

7We relax here the assumption that all the entries pℓ are integers.
8To check this inequality, one can use the fact that 3 ≤ pL−2 ≤ pe2−L + e/(e− 1). This implies L ≤ 2 log p for

p ≥ 6. For smaller values of p, the inequality can be checked by direct computations.
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and t2, it is certainly possible to improve these values either by better mathematical arguments

or by empirical considerations. Of course, smaller values of the thresholds t1 and t2 satisfying

aforementioned conditions lead to an SDR estimator having smaller error.

Assessing the error of the SDR estimator

The iterative spectral dimension reduction estimator defined in previous sections has some

desirable properties of a robust estimator that are easy to check. In particular, it is clearly

equivariant by translation, orthogonal linear transform and global scaling. Furthermore, the

breakdown point of the estimator is equal to that of the geometric median, that is to 1/2.

This means that even if almost the half of data points are chosen to be infinitely large, the

estimator will not “break down” in the sense of becoming infinitely large. However, the fact

that the estimated value does not become infinitely large, it might be not very close to the

true mean. The next theorem shows that this is not the case and that the error of the SDR

estimator has a nearly rate-optimal behavior even when the contamination rate is close to 1/2.

The adverb “nearly” is used here to reflect the presence of the
√
log p factor in the error bound,

which is not present in the minimax rate.

Theorem 5. Let ε∗ ∈ (0, 1/2), and δ ∈ (0, 1/2). Define r̄n and τ as in (1.16). For every ε ≤ ε∗,

let µ̂SDR be the estimator returned by Algorithm 1.5.2 with

t =
3− 2ε∗

1− 2ε∗

(
1 +

r̄n√
τ

)
+
√
2 + 2 log

(
1/τ

)
.

There exists a universal constant C such that for every Pn ∈ GAC(µ∗,Σ, ε) with ε ≤ ε∗ and9

∥Σ∥op = 1, the probability of the event

∥∥µ̂SDR − µ∗∥∥
2
≤ C
√
log p

1− 2ε∗

(√
rΣ
n

+ ε
√
log(2/ε) +

√
log(1/δ)

n

)
is at least 1 − δ. Moreover, the constant C from the last display can be made explicit by

replacing the effective rank rΣ by the dimension p in the definition of r̄n: That is, for every

δ ∈ (0, 1/5) the inequality

∥∥µ̂SDR − µ∗∥∥
2
≤ 156

√
2 log p

1− 2ε∗

(√
2p

n
+ ε

√
log(2/ε) +

√
3 log(2/δ)

n

)
holds with probability at least 1− 5δ.

If we compare this result with its counterpart established in (Dalalyan and Minasyan, 2020)

for the iteratively reweighted mean, besides the extra log p factor, we see that the above error

bound does not reduce to the error of the empirical mean when the contamination rate goes

9Since in this theorem Σ is assumed to be known, we can always divide all the data points Xi by ∥Σ∥1/2op to
get a data set with a covariance matrix satisfying ∥Σ∥op = 1.
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to zero. We do not know whether this is just a drawback of our proof, or it is an intrinsic

property of the estimator. Our numerical experiments reported later on suggest that is might

be a property of the estimator.

There is another logarithmic factor,
√
log(2/ε), present in the second term of the error

bounds provided by the last theorem, which does not appear in the minimax rate. There

are computationally intractable robust estimators of the Gaussian mean, such as the Tukey

median, that have an error bound free of this factor. However, all the known error bounds

provably valid for polynomial time algorithms has this extra
√
log(2/ε) factor. Furthermore,

this factor is known to be unavoidable in the case of sub-Gaussian model with adversarial

contamination10, see (Lugosi and Mendelson, 2021, Section 2).

The case of unknown covariance matrix

The SDR estimator, as defined in Algorithm 1, requires the knowledge of covariance matrix

Σ. In this section we consider the case where the matrix Σ is unknown, but an approximation

of the latter is available. Namely, we assume that we have access to a matrix Σ̃ and to a real

number γ > 0 such that ∥Σ̃−Σ∥op ≤ γ∥Σ∥op. In such a situation, we can replace in the SDR

estimator the true covariance matrix by its approximation Σ̃. This will necessarily require to

adjust the threshold t accordingly. The goal of the present section is to propose a suitable

choice of t and to show the impact of the approximation error γ on the estimation accuracy.

As mentioned, the parameter t used in Algorithm 1 needs to be properly tuned in order

to account for the approximation error in the covariance matrix. To this end, we introduce the

following auxiliary notation similar to those presented in (1.16):

r̃n =

√
CγrΣ̃ +

√
2 log(2/δ)

√
n

and τ̃ =
1

4

∧ r̃n√
log+(2/̃rn)

, (1.17)

where Cγ = (1 + γ)/(1− γ). Compared to (1.16), the main difference here is the presence of

the factor Cγ (which is equal to one if γ = 0) and the substitution of the effective rank of Σ by

that of its approximation Σ̃. In the rest of this section, we assume that Σ is invertible.

Theorem 6. Let ε∗ ∈ (0, 1/2), δ ∈ (0, 1/2) and define r̃n and τ as in (1.17). Assume that

Σ̃ satisfies ∥Σ−1/2Σ̃Σ−1/2 − Ip∥op ≤ γ for some γ ∈ (0, 1/2]. Let µ̂SDR be the output of

SDR(X1, . . . ,Xn; Σ̃, t̃γ), see Algorithm 1, with

t̃γ =
∥Σ̃∥op
1− γ

{
3− 2ε∗

1− 2ε∗

(
1 +

r̃n√
τ̃

)
+
√
2 + log

(
2/τ

)}
.

Then, there exists a universal constant C such that for every data generating distribution Pn ∈
10Both sub-Gaussianity of the reference distribution and the adversarial nature of the contamination are impor-

tant for getting the extra
√

log(2/ε) factor in the minimax rate.
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GAC(µ∗,Σ, ε) with ε ≤ ε∗, the probability of the event

∥∥µ̂SDR − µ∗∥∥
2
≤

C ∥Σ∥1/2op
√
log p

1− 2ε∗

(√
rΣ
n

+ ε
√
log(2/ε) +

√
εγ +

√
log(1/δ)

n

)
(1.18)

is at least 1− δ.

On the one hand, if the value of γ is at most of order
√

(rΣ/n) log(1/ε) + ε log(1/ε) then

Theorem 6 implies that the estimation error is of the same order as in the case of known

covariance matrix Σ (Theorem 5). For instance, if the matrix Σ is assumed to be diagonal,

one can defined Σ̃ as the diagonal matrix composed of robust estimators of the variances of

univariate contaminated Gaussian samples; see, for instance, Section 2 in (Comminges et al.,

2021). For recent advances on robust estimation of (non-diagonal) covariance matrices by

computationally tractable algorithms we refer the reader to (Cheng et al., 2019b).

On the other hand, if the value of γ for which the condition ∥Σ̃−Σ∥op ≤ γ∥Σ∥op is known

to be true is of larger order than
√

(rΣ/n) log(1/ε) + ε log(1/ε), then
√
εγ dominates the other

terms appearing in the error bound (1.18). Moreover, if γ is of constant order, then we get

the error rate
√

rΣ
n +

√
ε, which is in line with previously known bounds for computationally

tractable estimators; see for example (Lai et al., 2016, Theorem 1.1), (Diakonikolas et al.,

2017, Theorem 3.2), (Dalalyan and Minasyan, 2020, Theorem 4).
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Chapter 2

Contamination models and robust
estimation on the probability simplex

We consider the problem of estimating the mean of a distribution supported by the k-dimensional

probability simplex in the setting where an ε fraction of observations are subject to adversar-

ial corruption. A simple particular example is the problem of estimating the distribution of a

discrete random variable. Assuming that the discrete variable takes k values, the unknown

parameter θ is a k-dimensional vector belonging to the probability simplex. We first describe

various settings of contamination and discuss the relation between these settings. We then

establish minimax rates when the quality of estimation is measured by the total-variation dis-

tance, the Hellinger distance, or the L2-distance between two probability measures. We also

provide confidence regions for the unknown mean that shrink at the minimax rate. Our anal-

ysis reveals that the minimax rates associated to these three distances are all different, but

they are all attained by the sample average. Furthermore, we show that the latter is adaptive

to the possible sparsity of the unknown vector. Some numerical experiments illustrating our

theoretical findings are reported.
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2.4.2 Lower bounds on the minimax risk . . . . . . . . . . . . . . . . . . . . . 46
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2.1 Introduction

Assume X1, . . . ,Xn are n independent and identically distributed random variables taking

their values in the k-dimensional probability simplex ∆k−1 = {v ∈ Rk
+ : v1 + . . . + vk = 1}.

Our goal is to estimate the unknown vector θ = E[Xi] in the case where the observations are

contaminated by outliers. An important particular case is the estimation of the distribution of

a discrete random variable X taking k distinct values. In this particular case, Xi’s take values

in {e1, . . . , ek}, the set of the vectors of the canonical basis, which are also the extreme points

of the simplex ∆k−1.

In this introduction, to convey the main messages, we limit ourselves to the Huber con-

tamination model, although our results apply to the more general adversarial contamination.

Huber’s contamination model assumes that there are two probability measures P , Q on ∆k−1

and a real ε ∈ [0, 1/2) such that Xi is drawn from

P i = (1− ε)P + εQ, ∀i ∈ {1, . . . , n}.

This amounts to assuming that (1 − ε)-fraction of observations, called inliers, are drawn from

a reference distribution P , whereas ε-fraction of observations are outliers and are drawn from

another distribution Q. In general, all the three parameters P , Q and ε are unknown. The

parameter of interest is some functional (such as the mean, the standard deviation, etc.) of

the reference distribution P , whereas Q and ε play the role of nuisance parameters.

When the unknown parameter lives on the probability simplex, there are many appealing

ways of defining the risk. We focus on the following three metrics: total-variation, Hellinger

and L2 distances1

dTV(θ̂,θ) := 1/2∥θ̂ − θ∥1,

dH(θ̂,θ) := 1/
√
2∥θ̂1/2 − θ1/2∥2,

dL2(θ̂,θ) := ∥θ̂ − θ∥2.

The Hellinger distance above is well defined when the estimator θ̂ is non-negative, which will

be the case throughout this work. We will further assume that the dimension k may be large,

1We write ∥u∥q = (
∑k

j=1 |uj |q)1/q and uq = (uq
1, . . . , u

q
k) for any u ∈ Rk

+ and q > 0.
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but the vector θ is s-sparse, for some s ≤ k, i.e. #{j : θj ̸= 0} ≤ s. Our main interest is in

constructing confidence regions and evaluating the minimax risk

R□(n, k, s, ε) := inf
θ̄n

sup
P ,Q

E[d□(θ̄n,θ)], (2.1)

where the inf is over all estimators θ̄n built upon the observations X1, . . . ,Xn
iid∼ (1−ε)P +εQ

and the sup is over all distributions P , Q on the probability simplex such that the mean θ of

P is s-sparse. The subscript □ of R above refers to the distance used in the risk, so that □ is

TV, H, or L2.

The problem described above arises in many practical situations. One example is an

election poll: each participant expresses his intention to vote for one of k candidates. Thus,

each θj is the true proportion of electors of candidate j. The results of the poll contain outliers,

since some participants of the poll prefer to hide their true opinion. Another example related

to elections, is the problem of counting votes across all constituencies. Each constituency

communicates a vector of proportions to a central office, which is in charge of computing

the overall proportions. However, in some constituencies (hopefully a small fraction only) the

results are rigged. Hence, the set of observed vectors contains outliers.

We intend to provide non-asymptotic upper and lower bounds on the minimax risk that

match up to numerical constants. In addition, we will provide confidence regions of the form

B□(θ̂n, rn,ε,δ) = {θ : d□(θ̂n,θ) ≤ rn,ε,δ} containing the true parameter with probability at least

1−δ and such that the radius rn,ε,δ goes to zero at the same rate as the corresponding minimax

risk.

When there is no outlier, i.e., ε = 0, it is well known that the sample mean

X̄n :=
1

n

n∑
i=1

Xi

is minimax-rate-optimal and the rates corresponding to various distances are

RL2(n, k, s, 0) ≍ (1/n)1/2 and R□(n, k, s, 0) ≍ (s/n)1/2 for □ ∈ {TV,H}.

This raises several questions in the setting where data contains outliers. In particular, the

following three questions will be answered in this work:

Q1. How do the risks R□ depend on ε? What is the largest proportion of outliers for which the

minimax rate is the same as in the outlier-free case ?

Q2. Does the sample mean remain optimal in the contaminated setting?

Q3. What does happen if the unknown parameter θ is s-sparse ?
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The most important step for answering these questions is to show that

RTV(n, k, s, ε) ≍ (s/n)1/2 + ε,

RH(n, k, s, ε) ≍ (s/n)1/2 + ε1/2,

RL2(n, k, s, ε) ≍ (1/n)1/2 + ε.

It is surprising to see that all the three rates are different leading to important discrepancies in

the answers to the second part of question Q1 for different distances. Indeed, it turns out that

the minimax rate is not deteriorated if the proportion of the outliers is smaller than (s/n)1/2 for

the TV-distance, s/n for the Hellinger distance and (1/n)1/2 for the L2 distance. Furthermore,

we prove that the sample mean is minimax rate optimal. Thus, even when the proportion of

outliers ε and the sparsity s are known, it is not possible to improve upon the sample mean.

In addition, we show that all these claims hold true for the adversarial contamination and we

provide corresponding confidence regions.

The rest of the paper is organized as follows. Section 2.2 introduces different possible ways

of modeling data sets contaminated by outliers. Pointers to relevant prior work are given in

Section 2.3. Main theoretical results and their numerical illustration are reported in Section 2.4

and Section 2.6, respectively. Section 2.7 contains a brief summary of the obtained results

and their consequences, whereas the proofs are postponed to the appendix.

2.2 Various models of contamination

Different mathematical frameworks have been used in the literature to model the outliers. We

present here five of them, from the most restrictive one to the most general, and describe their

relationship. We present these frameworks in the general setting when the goal is to estimate

the parameter θ∗ of a reference distribution P θ∗ when ε proportion of the observations are

outliers.

2.2.1 Huber’s contamination

The most popular framework for studying robust estimation methods is perhaps the one of

Huber’s contamination. In this framework, there is a distribution Q defined on the same space

as the reference distribution P θ∗ such that all the observations X1, . . . ,Xn are independent

and drawn from the mixture distribution P ε,θ∗,Q := (1− ε)P θ∗ + εQ.

This corresponds to the following mechanism: one decides with probabilities (1 − ε, ε)

whether a given observation is an inlier or an outlier. If the decision is made in favor of being

inlier, the observation is drawn from P θ∗ , otherwise it is drawn from Q. More formally, if we

denote by Ô the random set of outliers, then conditionally to Ô = O,

{Xi : i ̸∈ O} iid∼ P θ∗ , {Xi : i ∈ O} iid∼ Q, {Xi : i ∈ O} ⊥⊥ {Xi : i ̸∈ O}, (2.2)
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for every O ⊂ {1, . . . , n}. Furthermore, for every subset O of the observations, we have

P (Ô = O) = (1−ε)n−|O|ε|O|. We denote by2MHC
n (ε,θ∗) the set of joint probability distributions

Pn of the random variables X1, . . . ,Xn satisfying the foregoing condition.

2.2.2 Huber’s deterministic contamination

The set of outliers as well as the number of outliers in Huber’s model of contamination are

random. This makes it difficult to compare this model to the others that will be described later

in this section. To cope with this, we define here another model, termed Huber’s deterministic

contamination. As its name indicates, this new model has the advantage of containing a

deterministic number of outliers, in the same time being equivalent to Huber’s contamination

in a sense that will be made precise below.

We say that the distribution Pn of X1, . . . ,Xn belongs to the Huber’s deterministic contam-

ination model denoted byMHDC
n (ε,θ∗), if there are a set O ⊂ {1, . . . , n} of cardinality at most

nε and a distribution Q such that (2.2) is true. The apparent similarity of modelsMHC
n (ε,θ∗)

andMHDC
n (ε,θ∗) can also be formalized mathematically in terms of the orders of magnitude of

minimax risks. To ease notation, we let R□
d (n, ε,Θ, θ̂) to be the worst-case risk of an estimator

θ̂, where □ is either HC or HDC. More precisely, forM□
n (ε,Θ) := ∪θ∈ΘM□

n (ε,θ), we set3

R□
d (n, ε,Θ, θ̂) := sup

Pn∈M□
n (ε,Θ)

E[d(θ̂,θ∗)].

This definition assumes that the parameter space Θ is endowed with a pseudo-metric d :

Θ×Θ→ R+. When Θ = {θ∗} is a singleton, we write R□
d,n(ε,θ

∗, θ̂) instead of R□
d (n, ε, {θ

∗}, θ̂).

Proposition 3. Let θ̂n be an arbitrary estimator of θ∗. For any ε ∈ (0, 1/2),

RHC
d (n, ε,θ∗, θ̂n) ≤ RHDC

d,n (2ε,θ∗, θ̂n) + e−nε/3RHDC
d,n (1,θ∗, θ̂n), (2.3)

sup
Pn∈MHC

n (ε,θ∗)

rP
(
d(θ̂n,θ

∗) > r
)
≤ RHDC

d,n (2ε,θ∗, θ̂n) + re−nε/3. (2.4)

Proof in the appendix, page 82

Denote by DΘ the diameter of Θ, DΘ := maxθ,θ′ d(θ,θ′). Proposition 3 implies that

inf
θ̂n

RHC
d (n, ε,Θ, θ̂n) ≤ inf

θ̂n

RHDC
d (n, 2ε,Θ, θ̂n) + e−nε/3DΘ. (2.5)

When Θ is bounded, the last term is typically of smaller order than the minimax risk over

MHDC
n (2ε,Θ). Therefore, the minimax rate of estimation in Huber’s model is not slower than

the minimax rate of estimation in Huber’s deterministic contamination model. This entails

that a lower bound on the minimax risk established in HC-model furnishes a lower bound in

HDC-model.
2The superscript HC refers to the Huber’s contamination
3The subscript d refers to the distance d used in the definition of the risk.
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2.2.3 Oblivious contamination

A third model of contamination that can be of interest is the oblivious contamination. In this

model, it is assumed that the set O of cardinality o and the joint distribution QO of outliers

are determined in advance, possibly based on the knowledge of the reference distribution

P θ∗ . Then, the outliers {Xi : i ∈ O} are drawn randomly from QO independently of the

inliers {Xi : i ∈ Oc}. The set of all the joint distributions P n of random variables X1, . . . ,Xn

generated by such a mechanism will be denoted by MOC
n (ε,θ∗). The model of oblivious

contamination is strictly more general than that of Huber’s deterministic contamination, since

it does not assume that the outliers are iid. Therefore, the minimax risk over MOC
n (ε,Θ) is

larger than the minimax risk overMHDC
n (ε,Θ):

inf
θ̂n

RHDC
d (n, ε,Θ, θ̂n) ≤ inf

θ̂n

ROC
d (n, ε,Θ, θ̂n).

The last inequality holds true for any set Θ, any contamination level ε ∈ (0, 1) and any sample

size.

2.2.4 Parameter contamination

In the three models considered above, the contamination acts on the observations. One

can also consider the case where the parameters of the distributions of some observations

are contaminated. More precisely, for some set O ⊂ {1, . . . , n} selected in advance (but

unobserved), the outliers {Xi : i ∈ O} are independent and independent of the inliers {Xi :

i ∈ Oc}. Furthermore, each outlier Xi is drawn from a distribution Qi = P θi
belonging to

the same family as the reference distribution, but corresponding to a contaminated parameter

θi ̸= θ∗. Thus, the joint distribution of the observations can be written as (
⊗

i∈Oc P θ∗) ⊗
(
⊗

i∈O P θi
). The set of all such distributions P n will be denoted by MPC

n (ε,θ∗), where PC

refers to “parameter contamination”.

2.2.5 Adversarial contamination

The last model of contamination we describe in this work, the adversarial contamination, is

the most general one. It corresponds to the following two-stage data generation mechanism.

In a first stage, iid random variables Y1, . . . ,Yn are generated from a reference distribution

P θ∗ . In a second stage, an adversary having access to Y1, . . . ,Yn chooses a (random) set Ô

of (deterministic) cardinality s and arbitrarily modifies data points {Y i : i ∈ Ô}. The resulting

sample, {Xi : i = 1, . . . , n}, is revealed to the Statistician. In this model, we have Xi = Y i

for i ̸∈ Ô. However, since Ô is random and potentially dependent of Y1:n, it is not true that

conditionally to Ô = O, {Xi : i ∈ Oc} are iid drawn from P θ∗ (for any deterministic set O of

cardinality o).

We denote by MAC
n (ε,θ∗) the set of all the joint distributions P n of all the sequences
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Figure 2.1: Visual representation of the hierarchy between various contamination models.
Note that the inclusion of MHC

n (ε,θ∗) in MHDC
n (2ε,θ∗) is somewhat heuristic, based on the

relation on the worst-case risks reported in Proposition 3.

X1, . . . ,Xn generated by the aforementioned two-stage mechanism. This set MAC
n (ε,θ∗) is

larger than all the four sets of contamination introduced in this section. Therefore, the following

inequalities hold:

inf
θ̂n

RPC
d (n, ε,Θ, θ̂n) ≤ inf

θ̂n

ROC
d (n, ε,Θ, θ̂n) ≤ inf

θ̂n

RAC
d (n, ε,Θ, θ̂n),

for any n, ε, Θ and any distance d.

2.2.6 Minimax risk “in expectation” versus “in deviation”

Most prior work on robust estimation focused on establishing upper bounds on the minimax

risk in deviation4, as opposed to the minimax risk in expectation defined by (2.1). One of the

reasons for dealing with the deviation is that it makes the minimax risk meaningful for models5

having random number of outliers and unbounded parameter space Θ. The formal justification

of this claim is provided by the following result.

Proposition 4. Let Θ be a parameter space such that DΘ = supθ,θ′∈Θ d(θ,θ′) = +∞. Then,

for every estimator θ̂n, every ε > 0 and n ∈ N, we have RHC
d (n, ε,Θ, θ̂n) = +∞.

Proof in the appendix, page 83

This result shows, in particular, that the last term in (2.5), involving the diameter of Θ is

unavoidable. Such an explosion of the minimax risk occurs because Huber’s model allows the

number of outliers to be as large as n/2 with a strictly positive probability. One approach to

overcome this shortcoming is to use the minimax risk in deviation. Another approach is to limit

4We call a risk bound in deviation any bound on the distance d(θ̂,θ∗) that holds true with a probability close to
one, for any parameter value θ∗ ∈ Θ.

5This is the case, for instance, of the Gaussian model with Huber’s contamination.
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theoretical developments to the models HDC, PC, OC or AC, in which the number of outliers

is deterministic.

2.3 Prior work

Robust estimation is an area of active research in Statistics since at least five decades (Donoho

and Gasko, 1992; Donoho and Huber, 1983; Huber, 1964; Rousseeuw and Hubert, 1999;

Tukey, 1975). Until very recently, theoretical guarantees were almost exclusively formulated

in terms of the notions of breakdown point, sensitivity curve, influence function, etc. These

notions are well suited for accounting for gross outliers, observations that deviate significantly

from the data points representative of an important fraction of data set.

More recently, various authors investigated (Chen et al., 2013; Dalalyan and Chen, 2012;

Nguyen and Tran, 2013) the behavior of the risk of robust estimators as a function of the

rate of contamination ε. A general methodology for parametric models subject to Huber’s

contamination was developed in Chen et al. (2016, 2018). This methodology allowed for

determining the rate of convergence of the minimax risk as a function of the sample size n,

dimension k and the rate of contamination ε. An interesting phenomenon was discovered:

in the problem of robust estimation of the Gaussian mean, classic robust estimators such as

the coordinatewise median or the geometric median do not attain the optimal rate (k/n)1/2 +

ε. This rate is attained by Tukey’s median, the maximaizer of Tukey’s halfspace depth, the

computation of which is costly in a high dimensional setting. Detailed analysis of Tukey’s

halfspace depth was conducted in (Brunel, 2019).

In the model analyzed in this paper, we find the same minimax rate, (k/n)1/2 + ε, only

when the total-variation distance is considered. A striking difference is that this rate is attained

by the sample mean which is efficiently computable in any dimension. This property is to

some extent similar to the problem of robust density estimation (Liu and Gao, 2019), in which

the standard kernel estimators are minimax optimal in contaminated setting. Note that the

fact that in the sparse setting the improvement from (k/n)1/2 to (s/n)1/2 can be achieved

without any penalization, and that the constraint of belonging to the probability simplex acts

as a sparsity favoring penalty, was already known in the literature, see (Dalalyan and Sebbar,

2018; Xia and Koltchinskii, 2016). Interestingly, similar phenomenon is observed in problems

of estimation under shape constraints (Bellec, 2018; Guntuboyina and Sen, 2018). It is an

interesting avenue of future research to analyze the robustness of the maximum likelihood

estimator in this context.

Computational intractability of Tukey’s median motivated a large number of studies that

aimed at designing computationally tractable methods with nearly optimal statistical guar-

antees. Many of these works went beyond Huber’s contamination by considering parame-

ter contamination models (Bhatia et al., 2017; Carpentier et al., 2018; Collier and Dalalyan,

2019), oblivious contamination (Feng et al., 2014; Lai et al., 2016) or adversarial contami-
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nation (Balakrishnan et al., 2017; Dalalyan and Minasyan, 2020; Diakonikolas et al., 2016a,

2017, 2018b). Interestingly, in the problem of estimating the Gaussian mean, it was proven

that the minimax rates under adversarial contamination are within a factor at most logarithmic

in n and k of the minimax rates under Huber’s contamination6. While each of the aforemen-

tioned papers introduced clearly the conditions on the contamination, to our knowledge, none

of them described different possible models and the relationship between them.

Another line of growing literature on robust estimation aims at robustifying estimators and

prediction methods to heavy tailed distributions, see (Audibert and Catoni, 2011; Chinot et al.,

2018; Devroye et al., 2016; Donoho and Montanari, 2016; Joly et al., 2017; Lecué and Lerasle,

2017; Lugosi and Mendelson, 2019b; Minsker, 2015, 2018a). The results of those papers are

of a different nature, as compared to the present work, not only in terms of the goals, but also

in terms of mathematical and algorithmic tools.

In the case of the discrete distributions, Braess and Sauer (2004) established the minimax

rates under the Kullback-Leibler divergence. More recently, Kamath et al. (2015) determined

the minimax rates under other distances such as L2, TV and the general family of f -divergence

(including the χ2-divergence and the Hellinger distance). The estimator proposed in (Kamath

et al., 2015), achieving the minimax rate for L2 and TV distances, is the sample mean while

different estimators are proposed for the other distances. Concerning the robust estimation

of discrete distributions, Chen et al. (2020); Jain and Orlitsky (2019); Qiao and Valiant (2018)

studied the case of group-contamination. The distinctive feature of this setting is a better

dependence of the minimax rate on the contamination rate ε. More precisely, if each group

contains m samples, and ε fraction of groups are contaminated, the rates are obtained by

replacing ε by ε/
√
m. The estimators achieving these rates are much more sophisticated than

the sample mean.

2.4 Minimax rates on the “sparse” simplex and confidence re-
gions

We now specialize the general setting of Section 2.2 to a reference distribution P , with ex-

pectation θ∗, defined on the simplex ∆k−1. Along with this reference model describing the

distribution of inliers, we will use different models of contamination. More precisely, we will

establish upper bounds on worst-case risks of the sample mean in the most general, adver-

sarial, contamination setting. Then, matching lower bounds will be provided for minimax risks

under Huber’s contamination.

2.4.1 Upper bounds: worst-case risk of the sample mean

We denote by ∆k−1
s the set of all v ∈ ∆k−1 having at most s non-zero entries.

6All these papers consider the risk in deviation, so that the minimax risk under Huber’s contamination is finite.
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Theorem 7. For every triple of positive integers (k, s, n) and for every ε ∈ [0, 1], the sample

mean X̄n := 1
n

∑n
i=1Xi satisfies

RAC
TV(n, ε,∆

k−1
s , X̄n) ≤ (s/n)1/2 + 2ε,

RAC
H (n, ε,∆k−1

s , X̄n) ≤ (s/n)1/2 +
√
2 ε1/2,

RAC
L2 (n, ε,∆

k−1
s , X̄n) ≤ (1/n)1/2 +

√
2 ε.

Proof in the appendix, page 84

An unexpected and curious phenomenon unveiled by this theorem is that all the three rates

are different. As a consequence, the answer to the question “what is the largest possible num-

ber of outliers, o∗d(n, s), that does not impact the minimax rate of estimation of θ∗?” crucially

depends on the considered distance d. Taking into account the relation ε = o/n, we get

o∗TV(n, s) ≍ (ns)1/2, o∗H(n, s) ≍ s, o∗L2(n, s) ≍ n1/2.

Furthermore, all the claims concerning the total variation distance, in the considered model,

yield corresponding claims for the Wasserstein distances Wq, for every q ≥ 1. Indeed, one can

see an element θ ∈ ∆k−1 as the probability distribution of a random vector X taking values

in the finite set A = {e1, . . . , ek} of vectors of the canonical basis of Rk. Since these vectors

satisfy ∥ej − ej′∥22 = 21(j ̸= j′), we have

W q
q (θ,θ

′) = inf
Γ

E(X,X′)∼Γ[∥X −X ′∥q2] (2.6)

= inf
Γ

2q/2P (X ̸= X ′) = 2q/2∥θ − θ′∥TV,

where the inf is over all joint distributions Γ on A × A having marginal distributions θ and θ′.

This implies that

RAC
Wq

(n, ε,∆k−1
s ) ≤

√
2
{
(s/n)1/2 + 2ε

}1/q
, ∀q ≥ 1. (2.7)

In addition, since the L2 norm is an upper bound on the L∞-norm, we have RAC
L∞

(n, ε,∆k−1) ≤
(1/n)1/2 +

√
2 ε. Thus, we have obtained upper bounds on the risk of the sample mean for all

commonly used distances on the space of probability measures.

2.4.2 Lower bounds on the minimax risk

A natural question, answered in the next theorem, is how tight are the upper bounds obtained

in the last theorem. More importantly, one can wonder whether there is an estimator that has

a worst-case risk of smaller order than that of the sample mean.

Theorem 8. There are universal constants c > 0 and n0, such that for any integers k ≥ 3,
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s ≤ k ∧ n, n ≥ n0 and for any ε ∈ [0, 1], we have

inf
θ̄n

RHC
TV (n, ε,∆

k−1
s , θ̄n) ≥ c{(s/n)1/2 + ε},

inf
θ̄n

RHC
H (n, ε,∆k−1

s , θ̄n) ≥ c{(s/n)1/2 + ε1/2},

inf
θ̄n

RHC
L2 (n, ε,∆

k−1
s , θ̄n) ≥ c{(1/n)1/2 + ε},

where inf θ̄n
stands for the infimum over all measurable functions θ̄n from (∆k−1)n to ∆k−1.

Proof in the appendix, page 86

The main consequence of this theorem is that whatever the contamination model is (among

those described in Section 2.2), the rates obtained for the MLE in Theorem 7 are minimax opti-

mal. Indeed, Theorem 8 yields this claim for Huber’s contamination. For Huber’s deterministic

contamination and and the TV-distance, on the one hand, we have

RHDC
TV (n, ε,∆k−1

s , θ̄n) ≥ RHDC
TV (n, 0,∆k−1

s , θ̄n)

(1)
= RHC

TV (n, 0,∆
k−1
s , θ̄n)

(2)

≥ c(s/n)1/2,

where (1) uses the fact that for ε = 0 all the setsM□
n (ε,θ

∗) are equal, while (2) follows from

the last theorem. On the other hand, in view of Proposition 3, for ε ≥ (6/n) log(8n/c) (implying

that 2e−nε/6 ≤ (c/4)ε),

RHDC
TV (n, ε,∆k−1

s , θ̄n) ≥ RHC
TV (n, ε/2,∆

k−1
s , θ̄n)− 2e−nε/6

≥ (c/4)
{
(s/n)1/2 + ε

}
.

Combining these two inequalities, for n ≥ (10 + 2 log(1/c))2, we get

RHDC
TV (n, ε,∆k−1

s , θ̄n) ≥ (c/4)
{
(s/n)1/2 + ε

}
for every k ≥ 1 and every ε ∈ [0, 1]. The same argument can be used to show that all the

inequalities in Theorem 8 are valid for Huber’s deterministic contamination model as well.

Since the inclusions MHDC
n (ε,θ∗) ⊂ MOC

n (ε,θ∗) ∩ MPC
n (ε,θ∗) ⊂ MAC

n (ε,θ∗) hold true, we

conclude that the lower bounds obtained for HC remain valid for all the other contamination

models and are minimax optimal.

The main tool in the proof of Theorem 8 is the following result (Chen et al., 2018, Theorem

5.1). There is a universal constant c1 > 0 such that

inf
θ̄n

sup
MHC

n (ε,∆)

P
(
d(θ̄n,θ

∗) ≥ wd(ε,∆)
)
≥ c1, ∀ε ∈ [0, 1),

where wd(ε,∆) is the modulus of continuity defined by wd(ε,∆) = sup{d(θ,θ′) : dTV(θ,θ
′) ≤
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Figure 2.2: The shape of confidence sets (white regions) for the distances L2 (left), TV
(center), and Hellinger (right) when the sample mean is (1/3, 1/2, 1/6).

ε/(1 − ε)}. Choosing θ and θ′ to differ on only to coordinates, one can check that, for any

ε ≤ 1/2, wTV(ε,∆
k−1
s ) ≥ ε, wH(ε,∆

k−1
s ) ≥ ε1/2 and wL2(ε,∆k−1

s ) ≥
√
2ε. Combining with the

lower bounds in the non-contaminated setting, this result yields the claims of Theorem 8. In

addition, (2.6) combined with the results of this section implies that the rate in (2.7) is minimax

optimal.

2.4.3 Confidence regions

In previous sections, we established bounds for the expected value of estimation error. The

aim of this section is to present bounds on estimation error of the sample mean holding with

high probability. This also leads to constructing confidence regions for the parameter vector

θ∗. To this end, the contamination rate ε and the sparsity s are assumed to be known. It is an

interesting open question whether one can construct optimally shrinking confidence regions

for unknown ε and s.

Theorem 9. Let δ ∈ (0, 1) be the tolerance level. If θ∗ ∈ ∆k−1
s , then under any contamination

model, the regions of ∆k−1 defined by each of the following inequalities

dL2(X̄n,θ) ≤ (1/n)1/2 +
√
2 ε+

(
log(1/δ)/n

)1/2
,

dTV(X̄n,θ) ≤ (s/n)1/2 + 2 ε+
(
2 log(1/δ)/n

)1/2
,

dH(X̄n,θ) ≤
√
5
(
(s/n) log(2s/δ)

)1/2
+ ε1/2 +

(
(1/2n) log(2/δ)

)1/2
,

contain θ∗ with probability at least 1− δ.

Proof in the appendix, page 88

To illustrate the shapes of these confidence regions, we depicted them in Figure 2.2 for a

three dimensional example, projected onto the plane containing the probability simplex. The

sample mean in this example is equal to (1/3, 1/2, 1/6).

While the estimator, X̄n, used in the construction of confidence regions is adaptive both

to the sparsity s and to the contamination rate ε, the confidence region itself is not adaptive.
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Indeed, the radius of the confidence region depends on s and/or on ε. Constructing adaptive

confidence regions and adaptive tests is an important question in statistics, we refer to (Cai

and Low, 2006; Hoffmann and Nickl, 2011) for some precise results.

In the setting of shape constrained regression, Bellec (2016) proposed a method of con-

structing adaptive confidence regions that could be of interest for our setting as well. In par-

ticular, if there is no contamination, i.e., ε = 0, we can define ŝ = Card(j : (X̄n)j ̸= 0), the

observed sparsity. It is clear that ŝ ≤ s. The analog of Bellec’s method in our setting would

consist in replacing s by ŝ in the radius of the ball given by Theorem 9. Of course, this does

not inflate the ball. However, we did not manage to adapt the argument in (Bellec, 2016,

Theorem 4.1) for proving that the modified region (with ŝ instead of s) has still the required

coverage property and, therefore, is adaptive to s. The main difficulty, at a very high-level,

comes from the fact that the distance we consider, dTV , is not induced by an inner product.

Thus, constructing adaptive confidence regions even when there is no contamination is an

open question.

2.5 Instance based bounds

When the dimension k is not finite, we can provide bounds which depend on the reference dis-

tribution θ∗ or the sample mean X̄n. We restrict Xi’s to take value in {e1, e2 . . . }, and assume

ej occurs with probability θ∗
j . We define αn(θ) := 2

∑
θj<1/n θj and βn(θ) :=

1√
n

∑
θ≥1/n

√
θj .

Using the results of Berend and Kontorovich (2013) the following upper and lower bounds are

obtained for the error of the sample mean under the TV distance and adversarial model with

ε-contamination.

Proposition 5. Suppose Xi’s take value in {e1, e2 . . . }, and for j ∈ N, ej occurs with proba-

bility θ∗
j . For every n and for every ε ∈ [0, 1], the sample mean X̄n satisfies

αn(θ
∗
j ) + βn(θ

∗
j )

4
− 1

4
√
n
− 2ε ≤ EdTV(X̄n,θ

∗) ≤ αn(θ
∗
j ) + βn(θ

∗
j ) + 2ε.

Proof in the appendix, page 90

These bounds need the knowledge of the reference distribution. The next theorem repre-

sent bounds based on the sample mean.

Theorem 10. Suppose Xi’s take value in {e1, e2 . . . }, and for j ∈ N, ej occurs with probability

θ∗
j . For every n and for every ε ∈ [0, 1], the sample mean X̄n satisfies

dTV(X̄n,θ
∗) ≤ 1√

n

∥∥X̄1/2
n

∥∥
1
+ 2ε+ 3

√
log(2/δ)

2n
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with probability at least 1− δ, where δ ∈ (0, 1). We also have

EdTV(X̄n,θ
∗) ≤ 1√

n
E
∥∥X̄1/2

n

∥∥
1
+ 2ε.

Proof in the appendix, page 91

2.6 Illustration on a numerical example

We provide some numerical experiments which illustrate theoretical results of Section 2.4.

The data set is the collection of 38 books written by Alexandre Dumas (1802-1870) and 38

books written by Emile Zola (1840-1902)7. To each author, we assign a parameter vector

corresponding to the distribution of the number of words contained in the sentences used in

the author’s books. To be more clear, a sentence containing l words is represented by vector

el, and if the parameter vector of an author is (θ1, . . . , θk), it means that a sentence used by

the author is of size l ∈ {1, . . . , k} with probability θl. We carried out synthetic experiments

in which the reference parameter to estimate is the probability vector of Dumas, while the

distribution of outliers is determined by the probability vector of Zola. Ground truths for these

parameters are computed from the aforementioned large corpus of their works. Only the

dense case s = k were considered. For various values of ε and n, a contaminated sample

was generated by randomly choosing n sentences either from Dumas’ works (with probability

1 − ε) or from Zola’s works (with probability ε). The sample mean was computed for this

corrupted sample, and the error with respect to Dumas’ parameter vector was measured by

the three distances TV, L2 and Hellinger. This experiment was repeated 104 times for each

special setting to obtain information on error’s distribution. Furthermore, by grouping nearby

outcomes we created samples of different dimensions for illustrating the behavior of the error

as a function of k.

The error of X̄n as a function of the sample size n, dimension k, and contamination rate ε

is plotted in Figures 2.3 and 2.4. These plots are conform to the theoretical results. Indeed,

the first plot in Figure 2.3 shows that the errors for the three distances is decreasing w.r.t. n.

Furthermore, we see that up to some level of n this decay is of order n−1/2. The second plot

in Figure 2.3 confirms that the risk grows linearly in k for the TV and Hellinger distances, while

it is constant for the L2 error.

Left panel of Figure 2.4 suggests that the error grows linearly in terms of contamination

rate. This is conform to our results for the TV and L2 errors. But it might seem that there is a

disagreement with the result for the Hellinger distance, for which the risk is shown to increase

at the rate ε1/2 and not ε. This is explained by the fact that the rate ε1/2 corresponds to the

worst-case risk, whereas here, the setting under experiment does not necessarily represent

the worst case. When the parameter vectors of the reference and contamination distributions,
7The works of both authors are available from https://www.gutenberg.org/
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Figure 2.3: Estimation error of X̄n measured by total variation, Hellinger, and L2 distances
as a function of (left panel) number of observations with contamination rate 0.2 and dimension
102 and (right panel) dimension with contamination rate 0.2 and 104 samples. The interval
between 5th and 95th quantiles of the error, obtained from 104 repetitions, is also depicted for
every graph.

respectively, are ei and ej with i ̸= j (i.e., when these two distributions are at the largest

possible distance, which we call an extreme case), the graph of the error as a function of ε

(right panel of Figure 2.4) is similar to that of square-root function.

Figure 2.4: The estimation error of X̄n measured by total variation, Hellinger, and L2 dis-
tances in terms of the contamination rate (with dimension 102 and 104 samples). At right, we
plotted the error with respect to the contamination rate for an extreme case, where the refer-
ence and contamination distributions have the largest distance. The interval between 5th and
95th quantiles of the error, obtained from 104 trials, is also depicted.

2.7 Summary and conclusion

We have analyzed the problem of robust estimation of the mean of a random vector belonging

to the probability simplex. Four measures of accuracy have been considered: total variation,

Hellinger, Euclidean and Wasserstein distances. In each case, we have established the min-

imax rates of the expected error of estimation under the sparsity assumption. In addition,
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confidence regions shrinking at the minimax rate have been proposed.

An intriguing observation is that the choice of the distance has much stronger impact on the

rate than the nature of contamination. Indeed, while the rates for the aforementioned distances

are all different, the rate corresponding to one particular distance is not sensitive to the nature

of outliers (ranging from Huber’s contamination to the adversarial one). While the rate obtained

for the TV-distance coincides with the previously known rate of robustly estimating a Gaussian

mean, the rates we have established for the Hellinger and for the Euclidean distances appear

to be new. Interestingly, when the error is measured by the Euclidean distance, the quality of

estimation does not get deteriorated with increasing dimension.
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Chapter 3

Robust Estimation of Gaussian Mean

We study the problem of robust estimation of the mean vector of a sub-Gaussian distribu-

tion. We introduce an estimator based on spectral dimension reduction (SDR) and establish a

finite sample upper bound on its error that is minimax-optimal up to a logarithmic factor. Fur-

thermore, we prove that the breakdown point of the SDR estimator is equal to 1/2, the highest

possible value of the breakdown point. In addition, the SDR estimator is equivariant by similar-

ity transforms and has low computational complexity. More precisely, in the case of n vectors

of dimension p—at most εn out of which are adversarially corrupted—the SDR estimator has

a squared error of order (rΣ/n + ε2 log(1/ε))log p and a running time of order p3 + np2. Here,

rΣ ≤ p is the effective rank of the covariance matrix of the reference distribution. Another

advantage of the SDR estimator is that it does not require knowledge of the contamination

rate and does not involve sample splitting. We also investigate extensions of the proposed

algorithm and of the obtained results in the case of (partially) unknown covariance matrix.

3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54
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3.1 Introduction

Robust estimation of a finite-dimensional parameter is a classical problem in statistics. The

broad goal of robust estimation is to design statistical procedures that are not very sensitive

to small changes in data or to small departures from the modeling assumptions. A typical

example, extensively studied in the literature, and considered in the present work, is when the

data set contains outliers.

The literature on robustness to outliers in parametric estimation is very rich; it would be

impossible to review here all the important contributions. For an in-depth exposition of by

now classical results and approaches, such as the influence function, the breakdown point

and the efficiency, we refer to the books (Huber and Ronchetti, 2011; Maronna et al., 2006;

Rousseeuw et al., 2011). In their vast majority, these well-established approaches treated the

dimension of the parameter as a fixed and small constant. This simple setting was conve-

nient for mathematical analysis and for computational purposes, but somewhat disconnected

from many practical situations. Furthermore, it was hiding some fascinating phenomena that

emerge only when the dimension is considered as a parameter that might be large, in the

same way as the sample size.

More recently, (Chen et al., 2018) considered the problem of estimating the mean and

the covariance matrix of a Gaussian distribution in the high-dimensional setting. The authors

namely uncovered a new phenomenon: under the Huber contamination, the componentwise

median is not minimax-rate optimal whereas the Tukey median is. More precisely, if a p-

dimensional mean vector is to be estimated from n independent vectors drawn from the mix-

ture distribution (1 − ε)Np(µ,Σ) + εQ (where ε ∈ (0, 1/2) is the rate of contamination and Q

is the unknown distribution of outliers), then the mean squared error of the componentwise

median is of order p/n+ pε2 while that of Tukey’s median is of order p/n+ ε2. This extra factor

p in front of ε2 has been proven in (Lai et al., 2016) to be present in the error of another widely

used robust estimator of the mean, the geometric median (Minsker, 2015). Thus, as long as

only statistical properties of the estimators are considered, Tukey’s median is thus superior

to its competitors, the componentwise and the geometric medians. However, the component-

wise and the geometric medians are better than the Tukey’s median in terms of the breakdown

point: their breakdown point is equal to 1/2 (Lopuhaa and Rousseeuw, 1991) whereas that of

Tukey’s median is 1/3 (Donoho and Gasko, 1992). This is one of the appealing phenomena

taking place in the high dimensional setting.

Another specificity of the high dimensional setting uncovered by (Chen et al., 2018) was the

lack of computational tractability of the estimators that are statistically optimal. Indeed, Tukey’s

median is computationally intractable, but minimax-rate optimal, whereas the componentwise

and the geometric medians are computationally tractable but statistically suboptimal. This

observation led to the development of a number of computationally tractable estimators having

an error with a better dependence on dimension than that of Tukey’s median (Dalalyan and

Minasyan, 2020; Diakonikolas et al., 2016a, 2017, 2018a; Dong et al., 2019; Lai et al., 2016).
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Figure 3.1: Plots that help to visually compare four robust estimators: SDR (our estimator), geomet-
ric median (GM) given by (3.1), componentwise median (CM), iteratively reweighted mean (IRM) of
(Dalalyan and Minasyan, 2020). The first two plots show that SDR is as accurate as IRM for small ε,
with SDR outperforming IRM for ε close to 1/2. IRM and SDR are naturally much more accurate than
GM and CM. The last plot shows that the running time of SDR is comparable to that of GM and is much
smaller than that of IRM. More details on these experiments are provided in Section 3.5.

In particular, most estimators introduced in these papers allow to conciliate computational

tractability (i.e., are computable in time polynomial in n, p, 1/ε) and statistical optimality up to

logarithmic factors.

The goal of this paper is to make a step forward by designing an estimator which is not

only nearly rate optimal and computationally tractable, but also has a breakdown point equal

to 1/2, which is the highest possible value of the breakdown point. To construct the estimator,

termed iterative spectral dimension reduction or SDR, we combine and suitably adapt ideas

from (Lai et al., 2016) and (Diakonikolas et al., 2017). The main underlying observation is

that if we remove some clear outliers and restrict our attention to the subspace spanned by

the eigenvectors of the sample covariance matrix corresponding to small eigenvalues, then

the sample mean of the projected data points is a rate-optimal estimator. This allows us to

iteratively reduce the dimension and eventually to estimate the remaining low-dimensional

component of the mean by a standard robust estimator such as the componentwise median

or the trimmed mean, see Algorithm 2.

The main contributions of this paper are methodological and theoretical. The SDR esti-

mator, thoroughly defined in Section 3.2, is a fast and accurate method for robustly estimating

the mean of a set of points. It depends on one tuning parameter, the threshold used for iden-

tifying and removing clear outliers, and on the dimension reduction regime. Our theoretical

considerations provide some recommendations for their choices and our numerical experi-

ments reported in Section 3.5 confirm the relevance of these choices. Importantly, the SDR

estimator does not require as input the rate of contamination ε but only an upper bound on ε.

As for theoretical contributions of this paper, we state in Section 3.3 an upper bound on the

error of the SDR estimator, showing that it is nearly minimax-rate optimal and has a break-

down point equal to 1/2. This is done in the general case of a sub-Gaussian distribution with

heterogeneous covariance matrix contaminated by adversarial noise. In Section 3.4, we fur-

ther investigate the error of the SDR estimator in the case where only an approximation to the
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Comput. Breakdown known ε Squared known Σ
tractable point error rate or Σ ∝ I

Gaussian distribution

C./G. Median yes 0.5 no rΣ/n+ ε2p no
Tukey’s Median no 0.33 no rΣ/n+ ε2 no
Agnostic Mean yes − yes (p/n) log3 p+ ε2 log p yes

Gaussian and sub-Gaussian distribution

Iter. Rew. Mean yes 0.28 yes (rΣ/n) + ε2 log(1/ε) yes
Iterative Filtering yes − yes (p/n) loga p+ ε2 log(1/ε) yes
SDR (this work) yes 0.5 no (rΣ/n+ ε2 log(1/ε)) log p yes

Table 3.1: Properties of various robust estimators. Agnostic mean, iteratively reweighted
mean and iterative filtering are the estimators studied in (Lai et al., 2016), (Dalalyan and
Minasyan, 2020) and (Diakonikolas et al., 2017), respectively. The error rates reported for
Tukey’s median, componentwise median, geometric median and the agnostic mean have been
proved for non-adversarial contamination. The squared error rate is provided in the case of a
covariance matrix satisfying ∥Σ∥op = 1.

covariance matrix is available.

The papers that are the closest to the present one are (Lai et al., 2016), (Diakonikolas

et al., 2017) and (Dalalyan and Minasyan, 2020). The spectral dimension reduction scheme

was proposed by (Lai et al., 2016) along with an initial sample splitting step ensuring the in-

dependence of the estimators over different subspaces. In the case of spherical Gaussian

distribution contaminated by non-adversarial outliers, the paper states that the proposed esti-

mator has a squared error at most of order p log2 p log(p/ε)/n+ ε2 log p. Compared to this, our

results are valid in the more general setting of sub-Gaussian distribution, with arbitrary covari-

ance matrix and adversarial contamination. In addition, our estimator does not rely on sample

splitting and, therefore, has a risk with a better dependence on p. As compared to the filtering

method of (Diakonikolas et al., 2017), our estimator has the advantage of being independent

of ε and our error bound is valid for every covariance matrix and every confidence level. On

the down side, our error bound has an extra factor log p in front of ε2. We believe that this

factor is an artifact of the proof, but we were unable to remove it. Finally, compared to the

iteratively reweighted mean (Dalalyan and Minasyan, 2020), the SDR estimator studied in the

present paper has a higher breakdown point, does not require the knowledge of ε and is much

faster to compute. The advantages and shortcomings of these estimators are summarized in

Table 3.1 and Figure 3.1.

Notation. For any pair of integers k and d such that 1 ≤ k ≤ d, we denote by V d
k the

set of all k-dimensional linear subspaces V of Rd. For V ∈ V d
k , we write k = dim(V ) and

denote by PV the orthogonal projection matrix onto V . Sd−1 stands for the unit sphere in

Rd. For a d × d symmetric matrix M, we denote by λ1(M), . . . , λd(M) its eigenvalues sorted

in increasing order, and use the notation λmin(M) = λ1(M), λmax(M) = λd(M), ∥M∥op =
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max(|λmin(M)|, |λmax(M)|), Tr(M) = (λ1 + . . . + λd)(M) and rM = Tr(M)/∥M∥op. For any

integer n > 0, we set [n] = {1, . . . , n}. We will denote by O ⊂ [n] the subscripts of the outliers

and by I = [n] \ O the subscripts of inliers. We also use notation log+(x) = max{0, log(x)}.
For a matrix M, we denote by σmin(M) and σmax(M) respectively its smallest and largest

singular values.

Algorithm 2 SDR(X1, . . . ,Xn;Σ, t)
1: let p be the dimension of X1

2: let µ̂GM be the geometric median of X1, . . . ,Xn

3: let S ← {i : ∥Xi − µ̂GM∥ ≤ t
√
p}

4: let XS be the sample mean of the filtered sample {Xi : i ∈ S}
5: let Σ̂S be the covariance matrix of the filtered sample {Xi : i ∈ S}
6: if p > 1 then
7: let V be the span of the top ⌈p/e⌉ principal components of Σ̂S −Σ
8: let PV be the orth. projection onto V
9: let PV ⊥ be the orth. projection onto the orth. complement of V

10: let µ̂← PV ⊥XS + SDR(PV X1, . . . , PV Xn; PV Σ PV , t)
11: else
12: let µ̂← µ̂GM

13: end if
14: return µ̂

3.2 Adversarially corrupted sub-Gaussian model and spectral di-
mension reduction

We assume that a set X1, . . . ,Xn of n data points drawn from a distribution Pn is given. This

set is assumed to contain at least n − [nε] inliers, the remaining points being outliers. All the

points lie in the p-dimensional Euclidean space and the inliers are independently drawn from a

reference distribution, assumed to be sub-Gaussian with mean µ∗ ∈ Rp and covariance matrix

Σ. To state the assumptions imposed on the observations in a more precise way, let us recall

that the random vector ζ is said to be sub-Gaussian with zero mean and identity covariance

matrix, if E[ζ] = 0, E[ζζ⊤] = Ip and for some s > 0, we have

E
[
ev

⊤ζ
]
≤ exp

{
s∥v∥2/2

}
, ∀v ∈ Rp.

The parameter s is commonly called the variance proxy and the writing ζ ∼ SGp(s) is used.

Definition 2. We say that the data generating distribution Pn is an adversarially corrupted sub-

Gaussian distribution with mean µ∗, covariance matrix Σ, variance proxy s and contamination

rate ε, if there is a probability space on which we can define a sequence of random vectors

(X1,Y1), . . . , (Xn,Yn) such that
1. Y1, . . . ,Yn are independent and Σ−1/2(Y i − µ∗) ∼ SGp(s) for every i ∈ [n].
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2. the cardinality of O = {i ∈ [n] : Y i ̸= Xi} is at most equal to nε.

3. the distribution of (X1, . . . ,Xn) is Pn.
We write then1 Pn ∈ SGAC(µ∗,Σ, s, ε). In the particular case where all Y i are Gaussian, we

will write Pn ∈ GAC(µ∗,Σ, ε).

For an overview of various kind of contamination models we refer the interested reader to

(Bateni and Dalalyan, 2020). The adversarial contamination considered throughout this work

is perhaps the most general one considered in the literature as the elements of the set O—

called outliers—may be chosen using µ∗,Σ, ε but also Y1, . . . ,Yn by an omniscient adversary.

Note that in this setting, even the set O is random and depends on Y1, . . . ,Yn. Therefore, the

inliers {Xi : i ∈ I} cannot be considered as independent random variables. The problem

studied in this work consists in estimating the mean µ∗ of the reference distribution from the

adversarially corrupted observations X1, . . . ,Xn.

The estimator we analyze in this work is termed iterative spectral dimension reduction and

denoted by µ̂SDR. It is closely related to the agnostic mean (Lai et al., 2016) and to iterative

filtering (Diakonikolas et al., 2017) estimators. We will prove that SDR enjoys most of desired

properties in the setting of robust estimation of the sub-Gaussian mean.

The parameters given as input to the iterative spectral dimension reduction algorithm are

a strictly decreasing sequence of positive integers p0, . . . , pL such that p0 = p and a positive

threshold t > 0. We recall that the geometric median is defined by

µ̂GM ∈ arg min
µ∈Rp

n∑
i=1

∥Xi − µ∥2. (3.1)

The algorithm for computing the SDR estimator reads as follows.

1. Start by setting V0 = Ip.

2. For ℓ = 0, . . . L− 1 do

(a) Define µ̄(ℓ) ∈ Rpℓ as the geometric median of {V⊤
ℓ Xi : i ∈ [n]}.

(b) Define the set S(ℓ) =
{
i ∈ [n] : ∥V⊤

ℓ Xi − µ̄(ℓ)∥2 ≤ t
√
pℓ
}

of filtered data points.

(c) Let X(ℓ) and Σ̂(ℓ) be the mean vector and the covariance matrix of the filtered

sample {Xi : i ∈ S(ℓ)}, that is

X(ℓ) =
1

|S(ℓ)|
∑
i∈S(ℓ)

Xi, Σ̂(ℓ) =
1

|S(ℓ)|
∑
i∈S(ℓ)

(Xi −X)⊗2.

(d) Set µ̂(ℓ) = VℓU
⊤
ℓ UℓV

⊤
ℓ X

(ℓ), where Uℓ is a (pℓ − pℓ+1) × pℓ orthogonal matrix

the rows of which are the eigenvectors of V⊤
ℓ (Σ̂

(ℓ) − Σ)Vℓ corresponding to its

(pℓ − pℓ+1) smallest eigenvalues.
1SGAC stands for sub-Gaussian with adversarial contamination.
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(e) Set Vℓ+1 = Vℓ(U
⊥
ℓ )

⊤ ∈ Rp×pℓ+1 , where U⊥
ℓ is a pℓ+1×pℓ orthogonal matrix orthog-

onal to Uℓ, that is U⊥
ℓ U

⊤
ℓ = 0.

3. Define µ̄(L) as the geometric median of V⊤
LXi for i = 1, . . . , n and set S(L) =

{
i ∈ [n] :

∥V⊤
LXi − µ̄(L)∥2 ≤ t

√
pL

}
.

4. Define µ̂(L) = VLV
⊤
L X(L), the average of filtered and projected vectors.

5. Return µ̂SDR = µ̂(0) + µ̂(1) + . . .+ µ̂(L).

The steps described above can be summarised as follows. At each iteration ℓ < L,

we start by determining a filtered subsample S(ℓ) and a “nearly-outlier-orthogonal” subspace

Uℓ = Im(VℓU
⊤
ℓ ) of Rp of dimension pℓ − pℓ+1. We define the projection of µ̂SDR onto Uℓ as

the sample mean of the filtered and projected subsample, and we move to the next step for

determining the projection of µ̂SDR onto the remaining part of the space. At the last iteration L,

when the dimension is well reduced, the projection of µ̂SDR onto the subspace UL is defined

as the average of the filtered subsample projected onto UL. The subspaces Uℓ are two-by-

two orthogonal and span the whole space Rp. Each subspace is determined from the spectral

decomposition of the covariance matrix of the data points projected onto (U0 ⊕ . . .⊕Uℓ−1)
⊥,

after removing the points lying at an abnormally large distance from the geometric median.

3.2.1 Choice of the dimension reduction regime

The analysis of the error of the SDR estimator conducted in this work leads to an upper bound

in which the sequence (p0, . . . , pL) is involved only through the expression

F (p0, . . . , pL) =
L∑

ℓ=1

pℓ−1

pℓ
.

Therefore, an appealing way of choosing this sequence is to minimize the function F under the

constraint that the sequence is decreasing and p0 = p and pL = 1. It follows from the inequality

between the arithmetic and geometric means that F (p0, . . . , pL) ≥ Lp1/L. Furthermore, the

equality is achieved2 in the case when all the terms in the definition of F are equal, i.e.,

when for some c > 0 we have pℓ−1 = cpℓ for every ℓ ∈ [L]. Since p0 = p and pL = 1,

this yields c = p1/L or, equivalently, L = log p/ log c. Using these relations, we find that the

function F is lower bounded by Lc = (c/ log c) log p. The last step is to find the minimum of

the function c 7→ c/ log c over the interval (1,∞). One easily checks that this function has a

unique minimum at c = e. All these considerations advocate for using the dimension reduction

regime defined by

p0 = p, pℓ = ⌊pℓ−1/e⌋+ 1, ℓ ∈ [L], pL = 1, (3.2)

2We relax here the assumption that all the entries pℓ are integers.
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where ⌊x⌋ is the largest integer strictly smaller than x. Such a definition of (pℓ) ensures that

pℓ−1/pℓ ≤ e and that3 L ≤ 2 log p. In the rest of the paper, we assume that the sequence (pℓ)

is chosen as in (3.2).

3.2.2 Choice of the threshold

The SDR procedure has one important tuning parameter: the threshold t used to discard

clearly outlying data points. Let us introduce the auxiliary notation

r̄n =

√
rΣ +

√
2 log(2/δ)√
n

, and τ =
1

4

∧ r̄n√
log+(2/r̄n)

. (3.3)

Note that r̄n is essentially the quantile, up to a universal constant factor, of order 1 − δ of the

distribution of ∥Ȳn−µ∗∥2 where Y i’s are independently drawn fromNp(µ
∗,Σ) with ∥Σ∥op = 1.

Our theoretical results advocate for using the value t = t1 + t2, where

t1 =
2(1 + r̄n)

1− 2ε∗
, t2 = 1 +

r̄n√
τ
+
√
2 + log(2/τ),

where ε∗ < 1/2 is the largest value of the contamination rate that the algorithm may handle.

Let ξ1, . . . , ξn be independent Gaussian with zero mean and covariance Σ. The expression

of t1 is obtained as an upper bound on the quantile of order 1 − δ/2 of the distribution of the

random variable

T1 = sup
V

2

n(1− 2ε) dim(V )

n∑
i=1

∥PV ξi∥2,

see Lemma 2 and its proof for further details. Similarly, t2 is defined so that the event

sup
V

n∑
i=1

1
(
∥PV ξi∥22 > t22 dim(V )

)
≤ nτ

has a probability at lest 1 − δ/2. The related computations are deferred to Appendix B.1.3.

Although we tried to get sharp values for these thresholds t1 and t2, it is certainly possible to

improve these values either by better mathematical arguments or by empirical considerations.

Of course, smaller values of the thresholds t1 and t2 satisfying aforementioned conditions lead

to an SDR estimator having smaller error.

3.3 Assessing the error of the SDR estimator

The iterative spectral dimension reduction estimator defined in previous sections has some

desirable properties of a robust estimator that are easy to check. In particular, it is clearly
3To check this inequality, one can use the fact that 3 ≤ pL−2 ≤ pe2−L + e/(e− 1). This implies L ≤ 2 log p for

p ≥ 6. For smaller values of p, the inequality can be checked by direct computations.
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equivariant by translation, orthogonal linear transform and global scaling. Furthermore, the

breakdown point of the estimator is equal to that of the geometric median, that is to 1/2.

This means that even if almost the half of data points are chosen to be infinitely large, the

estimator will not “break down” in the sense of becoming infinitely large. However, the fact

that the estimated value does not become infinitely large, it might be not very close to the

true mean. The next theorem shows that this is not the case and that the error of the SDR

estimator has a nearly rate-optimal behavior even when the contamination rate is close to 1/2.

The adverb “nearly” is used here to reflect the presence of the
√
log p factor in the error bound,

which is not present in the minimax rate.

Theorem 11. Let ε∗ ∈ (0, 1/2), and δ ∈ (0, 1/2). Define r̄n and τ as in (3.3). For every ε ≤ ε∗,

let µ̂SDR be the estimator returned by Algorithm 3.2 with

t =
3− 2ε∗

1− 2ε∗

(
1 +

r̄n√
τ

)
+
√
2 + 2 log

(
1/τ

)
.

There exists a universal constant C such that for every Pn ∈ GAC(µ∗,Σ, ε) with ε ≤ ε∗ and4

∥Σ∥op = 1, the probability of the event

∥∥µ̂SDR − µ∗∥∥
2
≤ C
√
log p

1− 2ε∗

(√
rΣ
n

+ ε
√
log(2/ε) +

√
log(1/δ)

n

)
is at least 1 − δ. Moreover, the constant C from the last display can be made explicit by

replacing the effective rank rΣ by the dimension p in the definition of r̄n: That is, for every

δ ∈ (0, 1/5) the inequality

∥∥µ̂SDR − µ∗∥∥
2
≤ 156

√
2 log p

1− 2ε∗

(√
2p

n
+ ε

√
log(2/ε) +

√
3 log(2/δ)

n

)
holds with probability at least 1− 5δ.

Proof in the appendix, page 92

If we compare this result with its counterpart established in (Dalalyan and Minasyan, 2020)

for the iteratively reweighted mean, besides the extra log p factor, we see that the above error

bound does not reduce to the error of the empirical mean when the contamination rate goes

to zero. We do not know whether this is just a drawback of our proof, or it is an intrinsic

property of the estimator. Our numerical experiments reported later on suggest that is might

be a property of the estimator.

There is another logarithmic factor,
√
log(2/ε), present in the second term of the error

bounds provided by the last theorem, which does not appear in the minimax rate. There

are computationally intractable robust estimators of the Gaussian mean, such as the Tukey

median, that have an error bound free of this factor. However, all the known error bounds
4Since in this theorem Σ is assumed to be known, we can always divide all the data points Xi by ∥Σ∥1/2op to

get a data set with a covariance matrix satisfying ∥Σ∥op = 1.
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provably valid for polynomial time algorithms has this extra
√
log(2/ε) factor. Furthermore,

this factor is known to be unavoidable in the case of sub-Gaussian model with adversarial

contamination5, see (Lugosi and Mendelson, 2021, Section 2).

As shows the next theorem, the claims of Theorem 11 carry over the sub-Gaussian refer-

ence distributions with some slight modifications. These modifications mainly stem from the

following lemma assessing the tail behavior of the singular values of a matrix having indepen-

dent and sub-Gaussian columns.

Lemma 1 (Vershynin (2012), Theorem 5.39). Let ξ1:n be a matrix consisting of sub-Gaussian

vectors with variance proxy s. There is a universal constant C0 such that for every t > 0 and

for every pair of positive integers n and p, we have

P
(
σmin(ξ1:n) ≤

√
n− C0s(

√
p+ t)

)
≤ e−t2 ,

P
(
σmax(ξ1:n) ≥

√
n+ C0s(

√
p+ t)

)
≤ e−t2 .

Note that in the Gaussian case s = 1 and the constant C0 can be chosen equal to
√
2. The

last lemma leads to the following adaptations in the values of the thresholds used in the SDR

estimator. First, we introduce auxiliary definitions

τ =
1

4

∧ r̄n,s√
log+(2/r̄n,s)

, with r̄n,s =
3
√
s
(√

p+ 2
√
log(2/δ)

)
√
n

. (3.4)

Then, we set t = t1 + t2 with

t1 =
2(1 + C0 r̄n,s

√
s)

1− 2ε∗
, t2 = 1 + C0

√
s
( r̄n,s√

τ
+
√

2 + log(1/τ)
)
,

where C0 is the same as in Lemma 1.

Now we are ready to state the theorem for the sub-Gaussian distributions showing that the

SDR estimator with the threshold depending on the variance proxy s yields the same upper

bound on ℓ2 distance between our estimator µ̂SDR and the true value µ∗ replacing the effective

rank rΣ with the dimension p.

Theorem 12 (Sub-Gaussian version). Let ε∗ ∈ (0, 1/2), and δ ∈ (0, 1/2). Define r̄n,s and τ as

in (3.4). For every ε ≤ ε∗, let µ̂SDR be the estimator returned by Algorithm 3.2 with

t =
3− 2ε∗

1− 2ε∗

(
1 + C0 r̄n,s

√
s

τ

)
+ C0 s

√
2 + 2 log

(
1/τ

)
,

where C is a universal constant. Then, there exists a constant Cs depending only on the

variance proxy s such that for every Pn ∈ SGAC(µ∗,Σ, s, ε) with ε ≤ ε∗ and ∥Σ∥op = 1, the

5Both sub-Gaussianity of the reference distribution and the adversarial nature of the contamination are impor-
tant for getting the extra

√
log(2/ε) factor in the minimax rate.
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probability of the event

∥∥µ̂SDR − µ∗∥∥
2
≤ Cs

√
log p

1− 2ε∗

(√
p

n
+ ε

√
log(2/ε) +

√
log(1/δ)

n

)
is at least 1− δ.

Proof in the appendix, page 111

3.4 The case of unknown covariance matrix

The SDR estimator, as defined in Algorithm 2, requires the knowledge of covariance matrix

Σ. In this section we consider the case where the matrix Σ is unknown, but an approximation

of the latter is available. Namely, we assume that we have access to a matrix Σ̃ and to a real

number γ > 0 such that ∥Σ̃−Σ∥op ≤ γ∥Σ∥op. In such a situation, we can replace in the SDR

estimator the true covariance matrix by its approximation Σ̃. This will necessarily require to

adjust the threshold t accordingly. The goal of the present section is to propose a suitable

choice of t and to show the impact of the approximation error γ on the estimation accuracy.

As mentioned, the parameter t used in Algorithm 2 needs to be properly tuned in order

to account for the approximation error in the covariance matrix. To this end, we introduce the

following auxiliary notation similar to those presented in (3.3):

r̃n =

√
CγrΣ̃ +

√
2 log(2/δ)

√
n

and τ̃ =
1

4

∧ r̃n√
log+(2/̃rn)

, (3.5)

where Cγ = (1 + γ)/(1 − γ). Compared to (3.3), the main difference here is the presence of

the factor Cγ (which is equal to one if γ = 0) and the substitution of the effective rank of Σ by

that of its approximation Σ̃. In the rest of this section, we assume that Σ is invertible.

Theorem 13. Let ε∗ ∈ (0, 1/2), δ ∈ (0, 1/2) and define r̃n and τ as in (3.5). Assume that

Σ̃ satisfies ∥Σ−1/2Σ̃Σ−1/2 − Ip∥op ≤ γ for some γ ∈ (0, 1/2]. Let µ̂SDR be the output of

SDR(X1, . . . ,Xn; Σ̃, t̃γ), see Algorithm 2, with

t̃γ =
∥Σ̃∥op
1− γ

{
3− 2ε∗

1− 2ε∗

(
1 +

r̃n√
τ̃

)
+
√
2 + log

(
2/τ

)}
.

Then, there exists a universal constant C such that for every data generating distribution Pn ∈
GAC(µ∗,Σ, ε) with ε ≤ ε∗, the probability of the event

∥∥µ̂SDR − µ∗∥∥
2
≤

C ∥Σ∥1/2op
√
log p

1− 2ε∗

(√
rΣ
n

+ ε
√

log(2/ε) +
√
εγ +

√
log(1/δ)

n

)
(3.6)

is at least 1− δ.

Proof in the appendix, page 106
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On the one hand, if the value of γ is at most of order
√

(rΣ/n) log(1/ε) + ε log(1/ε) then

Theorem 13 implies that the estimation error is of the same order as in the case of known

covariance matrix Σ (Theorem 11). For instance, if the matrix Σ is assumed to be diagonal,

one can defined Σ̃ as the diagonal matrix composed of robust estimators of the variances of

univariate contaminated Gaussian samples; see, for instance, Section 2 in (Comminges et al.,

2021). For recent advances on robust estimation of (non-diagonal) covariance matrices by

computationally tractable algorithms we refer the reader to (Cheng et al., 2019b).

On the other hand, if the value of γ for which the condition ∥Σ̃−Σ∥op ≤ γ∥Σ∥op is known

to be true is of larger order than
√

(rΣ/n) log(1/ε) + ε log(1/ε), then
√
εγ dominates the other

terms appearing in the error bound (3.6). Moreover, if γ is of constant order, then we get

the error rate
√

rΣ
n +

√
ε, which is in line with previously known bounds for computationally

tractable estimators; see for example (Lai et al., 2016, Theorem 1.1), (Diakonikolas et al.,

2017, Theorem 3.2), (Dalalyan and Minasyan, 2020, Theorem 4).

3.5 Numerical experiments

We conducted numerical experiments on synthetic contaminated data to corroborate our the-

oretical results. The main goal of these experiments is to display statistical and computational

features of the SDR and their dependence on various parameters. Moreover, we compared

SDR to some other estimators proposed in the literature as well as to the oracle (empirical

mean of the inliers). To do so, we selected componentwise median (CM), geometric median

(GM) and Tukey’s median (TM) as the three classic estimators of the context, and the itera-

tively reweighted mean (IRM), introduced in (Dalalyan and Minasyan, 2020), as an example

of optimization based method.

3.5.1 Implementation details

The experiments were run on a laptop with a 1.8 GHz Intel Core i7 and 8 GB of RAM. R codes

of the experiments are freely available on the last author’s website. For GM and TM the R

packages Gmedian6 (Cardot et al. (2013)) and TukeyRegion7 (Liu et al. (2019)) were used.

IRM had been already implemented in R using Mosek8.

To optimize SDR, several choices were made. First, since geometric median is used in

SDR as a rough estimator of the location, we limited it to at most 15 iterations and to stop at

an accuracy of order 1. See the reference manual of Gmedian to have more details on these

parameters. Second, since at the last step of the SDR one can use any estimator which is

robust in low-dimensional setting, we chose to use the median of the projected data points.
6https://cran.r-project.org/package=Gmedian
7https://cran.r-project.org/web/packages/TukeyRegion/index.html
8www.mosek.com
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Finally, we adjusted the numerical constant in the threshold t. In all the experiments, we

assumed that the true value of ε is known and used ε∗ = ε.

3.5.2 Experimental setup

Experiments were conducted on synthetic data sets obtained by applying a contamination

scheme to n i.i.d. samples drawn from Np(0, Ip). The following contamination schemes were

considered.

• Contamination by uniform outliers (CUO): the locations of nε outliers are chosen at ran-

dom independently of the inliers. The outliers are independent Gaussian with identity

covariance matrix and with means having coordinates independently drawn from the

uniform in [0, 3] distribution.

• Gaussian mixture contamination (GMC): the locations of nε outliers are chosen at ran-

dom independently of the inliers. The outliers are independent Np(µ, Ip). In our experi-

ments, we chose µ such that ∥µ∥ = 15.

• Contamination by "smallest" eigenvector (CSE): We replace the nε samples most cor-

related with the smallest principal eigenvector vp of the sample covariance matrix, by nε

vectors all equal to
√
pvp (vp is assumed to be a unit vector). In contrast with the two

previous schemes, this one is adversarial.

Each experiment was repeated 50 times for SDR, CM, GM, the oracle and 10 times for IRM

and TM. The tolerance probability δ was set to 0.1 in all the experiments. In the figures, points

on the curves are median values of the error or of the running time for these trials whereas

vertical bars overlaid on the points show the spread between the first and third quartiles. Since

the computation of TM is prohibitively costly and is possible only for small sample sizes and

dimensions, it is excluded from most of the experiments.

3.5.3 Statistical accuracy

At the upper left panel of Figure 3.2, we illustrate the behavior of the risk when the sample

size increases for four different contamination levels: ε ∈ {0.1, 0.2, 0.3, 0.4}. The data are of

dimension 60 and generated by the GMC scheme. The median estimation error converges

respectively to the values 0.18, 0.36, 0.62 and 1.06. According to our theoretical result, the

limit of the error should be proportional to ε log(1/ε)
1−2ε . This is confirmed by the experimental

results, since the ratio between the empirical limit of the median error and ε log(1/ε)
1−2ε for each ε

is between 0.58 and 0.69.

At the upper right panel of Figure 3.2, the dependence of the error on the dimension is

displayed. To better illustrate the effect of the dimension on the estimation error, we carried

out our experiment on data sets of small sample size n = 100 with CUO contamination.
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We compared the error of GM, CM, IRM and the oracle. In this plot, we clearly observe

the supremacy of SDR and IRM as compared to GM and CM, which is in line with theoretical

results. An important observation is that the error of the SDR estimator is very close to those of

the IRM estimator and the oracle. This suggests that the factor
√
log p present in our theoretical

results might be an artifact of the proof rather than an intrinsic property of the estimator, at

least for nonadversarial contamination.

The last experiment aiming to display the behavior of the estimation error is depicted in

the lower left panel of Figure 3.2. The examined synthetic datasets were generated by the

CSE scheme with ε = 0.2. We measured the error for different values of the dimension and

for sample size n = 10p proportional to the dimension. In this case, the term
√

p/n in the

risk bound remains unchanged and we may perceive if the dimension virtually effects the term

dependent on ε in the bound. The plot clearly confirms that the error is stable for SDR as it

is for IRM and the oracle, in sharp contrast with GM and CM. The last point, of course, is not

surprising since the risks of GM and CM scale as ε
√
p. Once again, this plot suggests that the

factor
√
log p present in the SDR’s risk bound might be unnecessary.

3.5.4 Computational efficiency

We conducted another experiment in order to better understand the computational complexity

of SDR. Note that the computational cost of SDR comes from two operations done at each

iterations: SVD of sample covariance matrix and computation of geometric median. We see

that SDR can be computed in a reasonable time even in high dimensions. For instance, for

n = 10000 and p = 1000 it takes nearly 26 seconds (tested over 20 trials).

At the lower right panel of Figure 3.2, we plotted the running times (in seconds) of GM,

CM, IRM and SDR for various dimensions. Sample size in this experiment was set to 100,

contamination rate was ε = 0.2 and CSE contamination scheme was used. As expected,

IRM has substantially larger running time compared to SDR, GM and CM; this is due to the

semidefinite programming solver running at each iteration of IRM. The fact that SDR is faster

than GM (even though GM is deployed at each iteration of SDR) is explained by our choice

of computing only a rough approximation of GM within SDR (limiting to 15 iterations and a

tolerance parameter set to 1).

3.5.5 Breakdown point

A natural measure of robustness of an estimator is its resistance to a large fraction of outliers.

The goal here is to demonstrate empirically our theoretical result showing that the breakdown

point of the SDR estimator is 1/2.

In Figure 3.3, at the left panel, we evaluated the error of the estimators on samples of

size 100 and dimension 10 generated by the CSE scheme, for various values of ε. We can

observe that SDR preserves its robustness with large contamination rates and outperforms
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Figure 3.2: The upper left panel illustrates the convergence of SDR’s median error when the
sample size tends to infinity, for various contamination rates. The limiting values are shown
by gray lines. The upper right panel shows the effect of dimension on the error. We see that
in the case of SDR this effect is almost the same as for IRM and the oracle. The lower left
panel plots the quantities when the sample-size increases proportionally to the dimension.
Once again, we see that SDR is almost as accurate as IRM and the oracle. The lower right
panel plots the running times of different estimators for various dimensions. It shows the huge
computational gain of the SDR estimator as compared to IRM.
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Figure 3.3: The left panel compares the robustness of various estimators by displaying the
estimation error for different contamination rates under SCE scheme. SDR outperforms other
estimators (even the oracle). Results displayed in the right panel are obtained by a similar
experiment conducted for the GMC scheme. SDR is remarkably stable for different contami-
nation schemes, while we see that SDR and Tukey’s median may behave poorly for ε > 1/3.

other estimators, excepted the oracle. More precisely, SDR and IRM have roughly the same

error up to ε = 0.28. Starting from this value, the error of IRM starts a steep deterioration

joining CM and GM.

At the right panel of Figure 3.3, we plotted the error as a function of the contamination rate

for TM, CM, GM, IRM and SDR. Data used in this experiment were of size 100 and dimen-

sion 3, corrupted by GMC scheme. For this type of contamination, we observe that the IRM

estimator remains robust even for ε close to 1/2, whereas the error of TM deteriorates signifi-

cantly for ε > 1/3. As a conclusion, for two contamination schemes which are challenging for

iteratively reweighted mean and Tukey’s median, SDR shows very stable behavior.

3.6 Summary, related work and conclusion

We have proved that the multivariate mean estimator obtained by the iterative spectral di-

mension reduction method enjoys several appealing properties in the setting of sub-Gaussian

observations subject to adversarial contamination. More precisely, in addition to being rigid

transform equivariant and having breakdown point equal to 1/2, the estimator has been shown

to achieve the nearly minimax rate. Furthermore, the SDR estimator has low computational

complexity, confirmed by reported numerical experiments. Indeed, its computational complex-

ity is of the same order as that of computing the sample covariance matrix and performing a

SVD on it. Presumably, at the cost of a moderate drop in accuracy, further speed-ups can

be obtained by randomization (Halko et al., 2011) in the spirit of the prior work (Cheng et al.,

2019a; Depersin and Lecué, 2022).
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Notably, we have proved that the SDR estimator achieves the nearly optimal error rate

without requiring the precise knowledge of the contamination rate. It however requires the

knowledge of the covariance matrix. To alleviate this constraint, we have also established

estimation guarantees in the case where an approximation of the covariance matrix is used

instead of the true one. We have conducted numerical tests that show that the SDR is both

fast and accurate.

Many recent works studied the problem of robust estimation in more complex high di-

mensional settings such linear regression or sparse mean and covariance estimation; see

(Balakrishnan et al., 2017; Cheng et al., 2021; Chinot, 2020; Chinot et al., 2020; Collier and

Dalalyan, 2019; Dalalyan and Thompson, 2019; Goes et al., 2020; Liu et al., 2020b; Pensia

et al., 2020) and the references therein. It is under current investigation whether the results of

the present paper can be extended to these settings.

Another interesting avenue for future research is to find an estimator that is rate-optimal,

computationally tractable, with breakdown point equal to 1/2 and, in the same time, asymp-

totically optimal in the sense that its risk is of order
√
p/n when ε tends to zero. On a related

note, it would be interesting to push further the exploration of second-order properties of the

risk started in (Minasyan, 2020). Finally, an open question is how the minimax risk blows-up

when the contamination rate tends to 1/2. For the SDR estimator studied in this work, we

established an upper bound of order 1/(1 − 2ε). However, we have no clue whether this is

optimal. Our intuition is that it is not as the lower bound provided in Chapter 1 is of order

log1/2
(
1/(1− 2ε)

)
when ε is close to 1/2.

69



Chapter 4

Discussion

In this manuscript, we investigated the problem of the robust estimation of the mean against

outliers for two types of distributions: distributions supported by probability simplex and mul-

tivariate sub-Gaussian distributions. At the beginning, we presented existing approaches for

dealing with outliers. We reviewed some folklore results and in particular we outlined the

main challenge of the problem in high-dimensional settings which is the reconciliation of the

statistical accuracy and computational efficiency.

We started our study by the simpler case of the distributions supported by the proba-

bility simplex, a special case of which is the the category of the discrete distributions. We

established the minimax rates under three different distances: total variation, Hellinger and

Euclidean distances. We discovered that the convergence rate is different under each dis-

tance. Then, we proposed confidence regions shrinking at the minimax rate and instance

based bounds. Finally, we provided some experimental results corroborating the established

theoretical rates. In addition, throughout this study, we presented various contamination mod-

els and relations among them.

In the next stage, we considered the problem of the robust estimation of the multivariate

sub-Gaussian mean under the adversarial contamination model. Unlike to the case of the

distributions supported by probability simplex, the sample mean is not a robust estimator for

the Gaussian mean. We designed a new robust estimator (called SDR), based on the idea

of spectral dimension reduction proposed in (Lai et al., 2016). SDR enjoys a near optimal

risk rate, a high breakdown point (1/2), a low computational complexity and is equivariant

by similarity transforms. While SDR has the advantage of not requiring the knowledge of

the contamination rate, it requires the knowledge of the covariance matrix, as it is the case

for all the proposed computational tractable estimators attaining a near optimal error rate

(we outlined this fact in Section 1.3.4). However, to alleviate this constraint, we established

estimation guarantees in the case where an approximation of the covariance matrix is used

instead of the true one. At the end, we presented some practical evidences for the theoretical

properties of SDR by carrying out different experiments on synthetic data and comparing the

performance of SDR to that of some other existing estimators in the literature.
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An avenue for future research is to extend the SDR for robust realization of other statistical

tasks such as linear regression, covariance matrix estimation, etc. It is also interesting to

investigate the properties of SDR with respect to the pseudo-norms of the form x ∈ Rp 7→
∥x∥S = supv∈S⟨v,x⟩ where S is a symmetric subset of Rp.

Despite the existence several tractable robust estimators achieving a near optimal risk rate

(with dependency ε
√
log(1/ε)), and the evidence provided by Diakonikolas et al. (2016b) on

the necessity of the factor ε
√
log(1/ε) for tractable robust estimators under the adversarial

contamination, there are still some open questions. Is there an estimator for the adversar-

ial contamination model that is rate-optimal, computationally tractable, with breakdown point

equal to 1/2, not requiring the knowledge of the contamination rate, and in the same time,

asymptotically optimal in the sense that its risk is equivalent to
√

p/n when ε tends to zero?

Is there a tractable estimator for Huber’s contamination which attains the optimal error rate√
p/n+ ε?

On another note, Tukey’s median which is considered as an optimal estimator in the robust

estimation context has still unknown properties to be explored. For example, in the case of the

non-spherical Gaussian distributions, where the covariance matrix of the reference distribution

is the matrix Σ, does Tukey’s median enjoy the optimal risk rate
√

Tr(Σ)/n + ∥Σ∥1/2op ε? How

does it perform in robust estimation of the mean for other distributions such as distributions

with bounded moments? Let ε∗ denote the finite-sample breakdown point of Tukey’s median.

In Chapter 1, we showed that for multivariate spherical Gaussian data, ε∗ satisfies

C
p

n
≤ 1

3
− ε∗ ≤ C ′

√
p

n
,

where C and C ′ are positive constants. Can we improve the lower bound of 1
3−ε

∗ to
√

p
n? And

there are questions on the computational aspects of Tukey’s median. Tukey’s median is a NP-

hard problem, but, is there an approximation algorithm returning a point with an acceptable

high Tukey’s halfspace depth? We hope that these questions yield new directions and creative

approaches in statistics and computer science.
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Introduction en français
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5.1 Définition du problème

On observe des données indépendamment identiquement distribuées (iid) selon une loi de

référence. On suppose que cette loi admet une moyenne et on souhaite estimer cette moyenne

à partir des observations. Dans le cas des distributions sous-gaussiennes, on sait que la

moyenne empirique est un estimateur optimal dans le sens minimax, c’est-à-dire que l’erreur

d’estimation de la moyenne empirique dans son pire cas est au moins aussi bonne que celle

de tout autre estimateur dans son pire cas respectif. Mais que se passe-t-il si parmi nos

données, il y a quelques-unes qui ne suivent pas la loi de référence ? Ces données désobéis-

santes que l’on appellera données aberrantes ou outlier, peuvent avoir des effets significatifs

et indésirables sur notre estimations. Par exemple, la présence d’une donnée aberrante ex-

trêmement éloignée de la moyenne peut considérablement dévier la moyenne empirique et

entraîner une grande erreur d’estimation. Ainsi, la moyenne empirique n’est pas robuste con-

tre les données aberrantes.

Dans ce travail, on étudie le problème de l’estimation robuste de la moyenne. On suppose

que Y1, . . . ,Yn sont n échantillons iid selon une loi P θ où θ est la moyenne de cette loi. Étant

donné ε ∈ [0, 1/2), on observe des échantillons ε-contaminés X1, . . . ,Xn ce qu’il veut dire
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que Xi = Y i si i ∈ I et que Xi prend une valeur arbitraire si i ∈ O où |I| = n(1 − ε) et

|O| = nε1. On pose S := I ∪ O = {1, . . . , n}. Le but est d’estimer θ à partir de X1, . . . ,Xn.

5.2 Variables discrètes

Pour commencer, on considère le cas où la loi de référence P θ est une distribution discrète à

k valeurs distinctes. On représente les variables aléatoires issue de cette loi par des vecteurs

de dimension k en utilisant l’encodage one-hot. Ainsi, Y1, . . . ,Yn et X1, . . . ,Xn appartiennent

à l’ensemble Ek := {e1, . . . , ek}, l’ensemble des vecteurs de la base canonique. Pour mesurer

l’erreur de notre estimation θ̂ de θ, on utilise trois différentes distances : celle2 de variation

totale, de Hellinger, et de L2

dTV(θ̂,θ) := 1/2∥θ̂ − θ∥1,

dH(θ̂,θ) := 1/
√
2∥θ̂1/2 − θ1/2∥2,

dL2(θ̂,θ) := ∥θ̂ − θ∥2.

On s’intéresse à l’erreur minimax définie par

R□(n, k, ε) := inf
θ̄n

sup
Pn∈Mn(ε,θ)

E[d□(θ̄n,θ)],

où inf porte sur tous les estimateurs θ̄n construits à partir des observations X1, . . . ,Xn et

sup porte sur toutes les distributions jointes Pn de X1, . . . ,Xn déterminées par notre modèle

de contamination Mn(ε, θ). L’indice □ de R ci-dessus fait référence à la distance employée

dans le risque, et donc □ est TV, H, ou L2.

Mn(ε, θ) détermine la nature des outliers dans un modèle où la loi de référence est P θ

et les outliers constituent une ε fraction des données. Le modèle de contamination le plus

général est le modèle adversarial dans lequel un adversaire omniscient observe les variables

initiales Y1, . . . ,Yn et remplace nε d’entre eux par des valeurs arbitraires. Le modèle de con-

tamination le plus restrictif dans la littérature est celui de Huber dans lequel les observations

sont des variables iid issues de la loi de mélange suivante

(1− ε)P θ + εQ,

où Q désigne la distribution des outliers. On détaille les différents modèles de contamination

dans la section 2.2.
1Sans perte de généralité, on suppose que nε est un entier.
2On écrit ∥u∥q = (

∑k
j=1 |uj |q)1/q et uq = (uq

1, . . . , u
q
k) pour tout u ∈ Rk

+ et q > 0.
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Concentrons maintenant sur la distance euclidienne. On sait que la moyenne empirique

X̄n :=
1

n

n∑
i=1

Xi

est l’estimateur minimax quand il n’y a pas de donnée aberrante. On va vérifier si cet estima-

teur reste robuste lors que des outliers contaminent les données. Nous avons

dL2(X̄n,θ
∗) =

∥∥X̄n − θ∗∥∥
2
=

∥∥Ȳ n − θ∗ +
1

n

∑
i∈O

(Xi − Y i)
∥∥
2

≤
∥∥Ȳ n − θ∗∥∥

2
+
|O|
n

sup
x,y∈Ek

∥x− y∥2

=
∥∥Ȳ n − θ∗∥∥

2
+
√
2ε.

On voit que l’erreur dans le cas contaminé est majorée par l’erreur dans le cas non-contaminé

plus un terme de l’ordre de ε. Ceci montre que la contamination a au plus un impact de

l’ordre de ε sur notre erreur d’estimation. Remarquons que cette relation est valable sous

n’importe quel modèle de contamination. Par ailleurs, on peut montrer qu’il y a une borne

inférieure de même ordre de grandeur pour l’erreur en question dans le modèle de Huber,

i.e. dans le modèle le plus restrictif de la littérature. Cela nous aide à établir les vitesses

de convergence minimax pour les différents modèles de contaminations. En effet, dans le

chapitre 2, en généralisant cet argument, on prouve que

RTV(n, k, ε) ≍ (k/n)1/2 + ε,

RH(n, k, ε) ≍ (k/n)1/2 + ε1/2,

RL2(n, k, ε) ≍ (1/n)1/2 + ε.

C’est curieux de voir que toutes ces vitesses de convergence sont distinctes. En fait, il s’avère

que l’erreur minimax n’est pas détériorée si la proportion des outliers est plus petite que

(k/n)1/2 pour la distance de variation totale, k/n pour la distance de Hellinger, et (1/n)1/2

pour la distance euclidienne. De plus, on en déduit que la moyenne empirique est l’estimateur

minimax pour les trois distances.

Dans le même chapitre, on étudie la relation entre les différents modèles de contamination,

et on généralise ces résultats pour toutes les distributions à support dans le simplexe de

dimension k, soit ∆k−1 = {v ∈ Rk
+ : v1 + . . . + vk = 1}. En outre, on y établit des régions de

confiance qui rétrécissent à vitesses minimax.

5.3 Variables gaussiennes

Le cas des variables à support dans un simplexe est simple tandis que si la loi de référence

est à support infini, il est un peu délicat de trouver un estimateur robuste contre les outliers.
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La raison est que la présence d’un seul outlier avec une valeur arbitrairement grande peut

dévier largement un estimateur tel que la moyenne empirique. Dans cette partie, on étudie le

problème de l’estimation de la moyenne d’une loi normale à partir des observations contam-

inées par des outliers sous le modèle adversarial. On commence par le cas uni-dimensionnel

et puis on aborde la version multidimensionnelle du problème.

5.3.1 Problème en dimension 1

On garde le cadre introduit dans la section 5.1, et on suppose désormais que la loi de

référence est N (µ, σ2). On regarde brièvement deux approches possibles pour estimer µ

de manière robuste. L’erreur d’estimation est mesurée par la valeur absolue.

Filtrage

Comme nous avons évoqué le problème avec la moyenne empirique est sa sensibilité aux

outliers extrêmement éloignés de µ. Pour régler ce problème, on peut calculer la moyenne

empirique sans considérer les plus petits et les plus grands points. En fait, on trie les obser-

vations X(1) ≤ · · · ≤ X(n) et on retourne µ̂F :=
∑

i∈F Xi/|F | où F = {i ∈ I ∪ O|X(2nε) <

Xi < X(n−2nε)}. Même s’il y a des outliers parmi les échantillons après ce filtrage, on peut

être sûr qu’ils sont au plus aussi éloignés que Y(nε) et Y(n−nε) (où les échantillons initiaux

sont triés : Y(1) ≤ · · · ≤ Y(n)). Ainsi, cet estimateur, appelé la moyenne tronquée, n’est pas

tant influencé par les outliers avec des valeurs extrêmes. Regarder la figure 5.1.

Dans la section 1.2.1, on donne des clés de preuve pour montrer que µ̂F estime µ avec

une erreur de l’ordre de

σ√
n
+ σε

√
log(1/ε)

avec grande probabilité, si ε < 1/4.

Moyenne en tant que le centre de symétrie

La loi normale est une loi symétrique, et la moyenne n’est pas seulement le barycentre de la

distribution, mais elle est également le centre de symétrie. Ainsi, une autre idée pour estimer

la moyenne serait d’estimer le centre de symétrie. Il y a de différentes notions de symétrie.

La notion que l’on adopte ici c’est celle induite par la masse : il existe la même quantité de

masse dans les deux côtés du centre. Plus précisément, dans cette symétrie, le centre est

la médiane. Donc, on peut estimer le centre, i.e. la moyenne, par la médiane de l’échantillon,

qui en fait le centre de la symétrie induite par la masse empirique.

Dans la section 1.2.2, on prouve que la médiane de l’échantillon, sous une condition non
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Figure 5.1: Au premier étage, l’histogramme des échantillons initiaux (Y i)i∈S est affiché. Au
deuxième étage, nous avons l’histogramme des échantillons contaminés (Xi)i∈S où les nε
plus petits échantillons sont remplacées par nε échantillons de valeur 15. Au troisième étage,
on voit l’histogramme des échantillons après le filtrage où les 2nε plus grands et les 2nε plus
petits échantillons parmi (Xi)i∈S sont mis de côté. La moyenne empirique pour chaque jeu
de données est marquée par des lignes rouges. L’impact du filtrage sur la performance de la
moyenne empirique est visible.
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très restrictive, estime µ avec une erreur de l’ordre de

σ√
n
+ σε

avec grande probabilité. Par ailleurs, Chen et al. (2018) montre une borne inférieure du même

ordre pour l’erreur minimax, ce qui implique que la médiane de l’échantillon est un estimateur

minimax pour ce problème. Pour plus de détails sur cette borne inférieure regarder la sec-

tion 1.2.4.

À part les deux méthodes mentionnées ci-dessus, il y a aussi la méthode de tournoi qui

consiste à sélectionner parmi un ensemble fini de fonctions de densité, celle qui s’adapte

mieux aux observations. On aborde cette méthode dans la section 1.2.3.

5.3.2 Problème en grande dimension

On suppose que nos données vivent dans Rp et que les échantillons initiaux (Y i)i∈{1,...,n}

suivent la loi normale multidimensionnelle N (µ, σ2Ip). Tout comme le cas précédant, nous

observons X1, . . . ,Xn, une version ε-contaminée des données sous le modèle adversarial.

On quantifie l’erreur d’estimation par la distance euclidienne ∥.∥2.
Une solution naïve pour le cas multidimensionnel serait d’estimer séparément chaque co-

ordonnée de µ par une méthode robuste unidimensionnelle. Par la borne d’union, on pourrait

prouver qu’en appliquant par exemple la médiane de l’échantillon à chaque coordonnée, on

obtient un estimateur avec une erreur de l’ordre de

σ

√
p log(p)

n
+ σε

√
p

avec grande probabilité. Le problème lié à ce genre d’estimateurs est que le terme ε
√
p pour-

rait être problématique lorsque la valeur de p est grande. Chen et al. (2018) montre que

sous le modèle de contamination de Huber, l’erreur de la médiane coordonnée par coordon-

née ne peut pas être meilleure que σ(
√

p/n+ ε
√
p) quand la distribution de contamination Q

est définie comme un Dirac sur le point µ + σ(1, . . . , 1)⊤. La même contamination peut être

utilisée pour montrer que les autres méthodes robustes pour dimension 1 n’auront pas de

meilleur comportement en grande dimension si on les applique coordonnée par coordonnée.

Maintenant, la question est si on peut avoir une meilleure dépendance en p dans l’expression

de l’erreur de notre estimation.

Filtrage (cas multidimensionnel)

Dans le cas multidimensionnel, il n’y a pas de notion d’ordre. Par conséquent, ce n’est pas

possible d’employer la méthode de filtrage uni-dimensionnelle proposée ci-dessus. Pourtant,

on sait que les échantillons gaussiens multidimensionnels se concentrent sur une sphère

autour de la moyenne de rayon σ
√
p (remarquer le contraste avec le cas unidimensionnel où
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Figure 5.2: En grande dimension, les échantillons se concentrent sur une sphère de rayon
σ
√
p autour de la moyenne. Ici, les points rouges sont les outliers et les points verts sont les

bons échantillons. Les simples outils de filtrage ne peuvent pas détecter ces outliers, et cette
contamination dévie la moyenne empirique par un terme de l’ordre de ε

√
p.

les échantillons gaussiens se concentrent près de la moyenne). Plus précisément, il existe

c > 0 tel que pour tout t > 0

P
(∣∣∥Y i − µ∥2 − σ

√
p
∣∣ > t

)
≤ 2 exp(−ct2/σ2),

(regarder e.g., (Vershynin, 2018, Theorem 3.1.1)).

Cette propriété nous aide à construire des procédures de filtrage capables de détecter les

échantillons extrêmement éloignés de la moyenne. En voir un exemple dans la section 1.3.1.

Le problème est que ce genre de filtrages ne peuvent enlever que les outliers extrêmes. Dans

ce cas, les outliers peuvent se concentrer sur une même direction dans la sphère indiquée

plus haut sans être filtrés, et après dévier la moyenne empirique par un terme de l’ordre de

ε
√
p. Regarder la figure 5.2. En conséquence, on voit qu’un filtrage simple ne nous permet pas

non plus de nous débarrasser du terme ε
√
p dans l’expression de l’erreur de notre estimation.

Pourtant, comme on verra c’est un outil utile.

La moyenne en tant que le centre de symétrie (cas multidimensionnel)

Pour généraliser la notion de la médiane de l’échantillon au cas multivarié, il faut adopter

une notion de symétrie. Les différentes notions de symétrie donnent lieu à de différentes

définitions de la médiane. Comme on analyse dans la section 1.3.2, la notion de la symétrie

centrale définit la moyenne empirique comme la médiane de l’échantillon, ce qui n’est pas

un estimateur robuste de la moyenne ; la notion de la symétrie angulaire définit la médiane

géométrique, et ce dernier a le même défaut que les estimateurs précédents, à savoir le terme
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ε
√
p dans l’expression de son erreur dans le pire scénario.

En dimension 1, on a défini la médiane en tant que le centre de la symétrie induite par la

masse. Cette notion de symétrie se généralise au cas multidimensionnel par la notion de la

symétrie de demi-espace. Un vecteur aléatoire Y respecte la symétrie de demi-espace autour

le centre θ si l’inégalité P(Y ∈ H) ≥ 1/2 est valide pour tout demi-espace fermé H contenant

θ. Autrement dit, θ est le centre de la symétrie induite par la masse dans toute direction. Cette

notion de symétrie définit la médiane de Tukey qui est un point appartenant à l’ensemble

arg max
x∈Rp

min
v∈Rp−1

n∑
i=1

1(v⊤Xi ≤ v⊤x).

Pour plus de précisions sur cette définition, regarder la section 1.3.2.

Chen et al. (2018) prouvent que sous certaines conditions, le risque de la médiane de

Tukey est de l’ordre de

σ
√

p/n+ σε

avec grande probabilité, et qu’en plus il s’agit de l’erreur optimale. C’est à dire que la médiane

de Tukey est un estimateur optimal dans le sens minimax. Cependant, la médiane de Tukey

n’est pas calculable en temps polynomial car son calcul nécessite le traitement de toutes les

directions, soit un nombre d’opérations qui est exponentiel en p.

Utiliser la matrice de covariance

Comparant ε
√
p et ε, on remarque qu’en grande dimension, il y a un écart significatif entre

l’erreur des méthodes calculables déjà citées (telles que la médiane coordonnée par coor-

donnée, la médiane géométrique, le filtrage, etc.) et celle de la médiane de Tukey ou de la

méthode de tournoi expliquée dans la section 1.3.3, qui ne sont pas calculables efficacement.

Ce phénomène a stimulé beaucoup de recherches afin de trouver un compromis entre la pré-

cision statistique et l’efficacité de calcul. Le point commun entre presque toutes les méthodes

proposant un tel compromis, c’est qu’elles se servent de la connaissance de la matrice de

covariance de la loi de référence.

On suppose désormais que la loi de référence est N (µ,Σ). Soit Σ̂ la matrice de co-

variance empirique. En nous appuyant sur notre connaissance de Σ, on essaie de filtrer ou

pondérer les observations de sorte que Σ̂ s’approche de Σ. En effet, on se sert ici d’une

propriété essentielle : ∥µ − µ̂∥2 est contrôlé par ε∥Σ − Σ̂∥op où µ̂ et Σ̂ sont respective-

ment la moyenne empirique et la matrice de covariance empirique des observations filtrées

ou pondérées. Ainsi, notre but consiste à minimiser ∥Σ − Σ̂∥op en filtrant ou pondérant les

observations.

La méthode que nous construisons dans le chapitre 3, appelée Spectral Dimension Re-

duction (SDR), appartient à ce paradigme des méthodes employant la matrice de covariance
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de la loi de référence. Il s’agit d’une méthode qui filtre les observations de manière itérative

où dans chaque itération elle réduit la dimension en regardant le spectre de la matrice Σ̂−Σ.

Elle est basée sur l’observation qu’il y a des directions dans lesquelles l’impact de la contam-

ination n’est pas significatif. Autrement dit, au lieu de regarder toutes les directions comme

c’est nécessaire pour le calcul de la médiane de Tukey, on se focalise sur les directions les

plus impactées par la contamination.

En fait, nous pouvons partitionner les vecteurs propres de la matrice Σ̂ − Σ en deux

groupes : les vecteurs propres supérieurs (correspondant aux grandes valeurs propres) et

les vecteurs propres inférieurs (correspondant aux petites valeurs propres). Puis, nous proje-

tons orthogonalement les échantillons sur les sous-espaces engendrés par chaque groupe. Il

s’avère que la moyenne empirique est un estimateur robuste dans le sous-espace engendré

par les vecteurs propres inférieurs. Donc, nous pouvons nous concentrer sur le sous-espace

engendré par les vecteurs propres supérieurs. Sur ce sous-espace, nous répétons récur-

sivement la même démarche. L’idée de la réduction itérative de dimension pour l’estimation

robuste est originellement introduite dans (Lai et al., 2016). Cette procédure peut se schéma-

tiser dans l’algorithme "SDR" suivant :

• Si p = 1 on retourne la médiane de l’échantillon

• Sinon :

1. Étape de filtrage : on supprime des échantillons afin d’avoir tous les échantillons

dans une distance de l’ordre de
√
p de µ

2. Soit V le sous-espace engendré par les p/2 vecteurs propres supérieurs de Σ̂−Σ

3. On projette orthogonalement les échantillons sur V et V ⊤

4. Sur V ⊤ on applique la moyenne empirique

5. Sur V on applique récursivement SDR

La version détaillée de cet algorithme se trouve dans le chapitre 3. On y prouve que le risque

de SDR est de l’ordre de

√
log p

(√
Tr(Σ)/n+ ∥Σ∥1/2op ε

√
log(1/ε)

)
avec grande probabilité. Donc, SDR est une méthode calculable en temps polynomial avec

une erreur presque optimale (optimale modulo des facteurs logarithmiques). Cette méthode

peut être également généralisée pour toutes les distributions sous-gaussiennes.

L’avantage de la méthode SDR, ce qu’elle est rapide, qu’elle ne requière pas la connais-

sance de la proportion de contamination (ε), et que son breakdown point vaut 1/2 (breakdown

point est la proportion maximale des outliers pour laquelle le risque de notre estimateur reste

borné). De plus, on montre à la fin que SDR est adaptable au cas où notre connaissance de

Σ est partielle.
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5.4 Organisation du manuscrit

Ce manuscrit est constitué de quatre chapitres et deux appendices. Le chapitre 1 est une

introduction sur l’estimation robuste de la moyenne gaussienne. On y présent les approches

générales et on prouve informellement quelques résultats folklores du domaine. À la fin

du chapitre, on expose les contributions principales de ce travail. Le chapitre 2 aborde le

problème de l’estimation robuste des distributions à support dans le simplexe de probabilité.

Dans ce chapitre, on étudie aussi les différents modèles de contamination. Cette partie du

manuscrit est publiée dans (Bateni and Dalalyan, 2020). Dans le chapitre 3, on propose une

méthode calculatoirement efficace avec une erreur presque optimale pour estimer la moyenne

d’une loi gaussienne sous le modèle adversarial. Cette partie du travail se trouve dans (Bateni

et al., 2022). On finit avec le chapitre 4 où on présente une conclusion et une perspective sur

les directions possibles pour les prochains travaux. Les deux appendices contiennent les

preuves formelles des résultats exposés dans les chapitres 2 et 3.
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Appendix A

Proofs for Chapter 2

A.1 Proofs of propositions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82

A.2 Minimax upper bounds over the sparse simplex . . . . . . . . . . . . . . . . . . 84

A.3 Minimax lower bounds over the sparse simplex . . . . . . . . . . . . . . . . . . 86

A.4 Proofs of bounds with high probability . . . . . . . . . . . . . . . . . . . . . . . 88

A.5 Proofs of instance based bounds . . . . . . . . . . . . . . . . . . . . . . . . . . 90

A.1 Proofs of propositions

Proof of Proposition 3 on page 41. Recall that Ô is the set of outliers in the Huber model. Let

O be any subset of {1, . . . , n}. It follows from the definition of Huber’s model that if PO
n stands

for the conditional distribution of (X1, . . . ,Xn) given Ô = O, when (X1, . . . ,Xn) is drawn

from P n ∈ MHC
n (ε,θ∗), then PO

n ∈ MHDC
n (|O|/n,θ∗). Therefore, for every O of cardinality

o ≥ 2εn, we have

sup
MHC

n (ε,θ∗)

E[d(θ̂n,θ
∗)1(Ô = O)] = sup

MHC
n (ε,θ∗)

E[d(θ̂n,θ
∗)|Ô = O]P(Ô = O)

≤ sup
MHDC

n (o/n,θ∗)

E[d(θ̂n,θ
∗)]P(Ô = O) (A.1)

(1)

≤ sup
MHDC

n (1,θ∗)

E[d(θ̂n,θ
∗)]P(Ô = O).

Inequality (1) above is a direct consequence of the inclusionMHDC
n (o/n,θ∗) ⊂ MHDC

n (1,θ∗).

Summing the obtained inequality over all sets O of cardinality ≥ 2εn, we get

sup
MHC

n (ε,θ∗)

E[d(θ̂n,θ
∗)1(|Ô| ≥ 2εn)] ≤ sup

MHDC
n (1,θ∗)

E[d(θ̂n,θ
∗)]P(|Ô| ≥ 2εn).
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It follows from the multiplicative form of Chernoff’s inequality that P(|Ô| ≥ 2εn) ≤ e−nε/3. This

leads to the last term in inequality (2.3).

Using the same argument as for (A.1), for any O of cardinality o < 2nε, we get

sup
MHC

n (ε,θ∗)

E[d(θ̂n,θ
∗)1(|Ô| < 2nε)] ≤ sup

MHDC
n (2ε,θ∗)

E[d(θ̂n,θ
∗)]

∑
|O|≤2nε

P(Ô = O)

= sup
MHDC

n (2ε,θ∗)

E[d(θ̂n,θ
∗)].

This completes the proof of (2.3).

One can use the same arguments along with the Tchebychev inequality to establish (2.4).

Indeed, for every S of cardinality o ≤ 2εn, we have

sup
MHC

n (ε,θ∗)

rP
(
d(θ̂n,θ

∗) > r and Ô = O
)

= sup
MHC

n (ε,θ∗)

rP
(
d(θ̂n,θ

∗) > r | Ô = O
)
P(Ô = O)

≤ sup
MHDC

n (o/n,θ∗)

rP
(
d(θ̂n,θ

∗) > r
)
P(Ô = O)

≤ sup
MHDC

n (2ε,θ∗)

E[d(θ̂n,θ
∗)]P(Ô = O).

Summing the obtained inequality over all sets O of cardinality o ≤ 2εn, we get

sup
MHC

n (ε,θ∗)

rP
(
d(θ̂n,θ

∗) > r and |Ô| ≤ 2εn
)
≤ sup

MHDC
n (2ε,θ∗)

E[d(θ̂n,θ
∗)]

= RHDC
d (n, 2ε,θ∗, θ̂).

On the other hand, it holds that

sup
MHC

n (ε,θ∗)

rP
(
d(θ̂n,θ

∗) > r and |Ô| > 2εn
)
≤ rP

(
|Ô| > 2εn) ≤ re−nε/3,

and the claim of the proposition follows.

Proof of Proposition 4 on page 43. Let θ1 and θ2 be two points in Θ. We have

2RHC
d (n, ε,Θ, θ̂n) ≥ RHC

d (n, ε,θ1, θ̂n) +RHC
d (n, ε,θ2, θ̂n)

≥ E(1−ε)P θ1
+εP θ2

[d(θ̂n,θ1)] +E(1−ε)P θ1
+εP θ2

[d(θ̂n,θ2)].

To ease writing, assume that n is an even number. Let O be any fixed set of cardinality n/2. It

is clear that the set of outliers Ô satisfies

pO = P (Ô = O) = P (Ô = Oc) > 0.
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Furthermore, if X1:n is drawn from ((1− ε)P θ1 + εP θ2)
⊗n := P⊗n

ε , then its conditional distri-

bution given Ô = O is exactly the same as the conditional distribution of X1:n ∼ P⊗n
ε given

Ô = Oc. This implies that

2RHC
d (n, ε,Θ, θ̂n)

≥ pO
(
EP ε [d(θ̂n,θ1)|Ô = O] +EP ε [d(θ̂n,θ2)|Ô = Oc]

)
= pOEP ε [d(θ̂n,θ1) + d(θ̂n,θ2)|Ô = S] ≥ pOd(θ1,θ2),

where in the last step we have used the triangle inequality. The obtained inequality being true

for every θ1,θ2 ∈ Θ, we can take the supremum to get

RHC
d (n, ε,Θ, θ̂n) ≥ (pO/2) sup

θ1,θ2∈Θ
d(θ1,θ2) = +∞.

This completes the proof.

A.2 Minimax upper bounds over the sparse simplex

This section is devoted to the proof of the upper bounds on minimax risks in the discrete model

with respect to various distances.

Proof of Theorem 7 on page 46. To ease notation, we set

X̄n =
1

n

∑
i

Xi, Ȳ n =
1

n

∑
i

Y i, X̄O =
1

o

∑
i∈O

Xi, Ȳ O =
1

o

∑
i∈O

Y i

In the adversarial model, we have Xi = Y i if i ̸∈ O where Y1, . . . ,Yn are generated from the

reference distribution θ∗.

dL2(X̄n,θ
∗) =

∥∥X̄n − θ∗∥∥
2
=

∥∥Ȳ n − θ∗ +
1

n

∑
i∈O

(Xi − Y i)
∥∥
2

≤
∥∥Ȳ n − θ∗∥∥

2
+
|O|
n

sup
x,y∈∆k−1

∥x− y∥2

=
∥∥Ȳ n − θ∗∥∥

2
+
√
2ε,

which gives us

sup
MAC

n (ε,θ∗)

E[dL2(X̄n,θ
∗)] ≤ sup

θ∗
E[dL2(Ȳ n,θ

∗)] +
√
2ε.
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And for a fixed θ∗ it is well known that

E[d2L2(Ȳ n,θ
∗)] =

k∑
j=1

Var[Ȳ n,j ] =
k∑

j=1

Var

[
1

n

n∑
i=1

1(Yi = ej)

]

=
1

n

k∑
j=1

Var[1(Y1 = ej)] ≤
1

n

k∑
j=1

E[1(Y1 = ej)] =
1

n
.

Hence, we obtain RAC
L2 (n, ε,∆

k−1) ≤ (1/n)1/2 + ε. Similarly,

dTV(X̄n,θ
∗) ≤

∥∥Ȳ n − θ∗∥∥
1
+
|O|
n

sup
x,y∈∆k−1

∥x− y∥1

=
∥∥Ȳ n − θ∗∥∥

1
+ 2ε.

This gives

sup
MAC

n (ε,θ∗)

E[dTV(X̄n,θ
∗)] ≤ sup

θ∗
E[dTV(Ȳ n,θ

∗)] + 2ε.

In addition, for every θ∗,

E[dTV(Ȳ n,θ
∗)] =

1

2

k∑
j=1

E
[∣∣Ȳ n,j − θ∗

j

∣∣]
≤ 1

2

k∑
j=1

(
E
[∣∣Ȳ n,j − θ∗

j

∣∣2])1/2

=
1

2

k∑
j=1

(
Var

[
Ȳ n,j

])1/2

(1)
=

1

2

∑
j∈J

( 1
n
θ∗
j (1− θ∗

j )
)1/2

(2)

≤ 1

2
s1/2

( k∑
j=1

1

n
θ∗
j (1− θ∗

j )

)1/2

≤ 1

2

(
s/n

)1/2
,

where in (1) we have used the notation J = {j : θ∗j ̸= 0} and in (2) we have used the Cauchy-

Schwarz inequality. This leads to

RAC
TV(n, ε,∆

k−1) ≤ (k/n)1/2 + ε.

Finally, for the Hellinger distance

dH(X̄n,θ
∗) ≤ dH(X̄n, Ȳ n) + dH(Ȳ n,θ

∗) ≤ dTV(X̄n, Ȳ n)
1/2 + dH(Ȳ n,θ

∗),
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where we have already seen that

dTV(X̄n, Ȳ n) =
o

n

∥∥X̄O − Ȳ O

∥∥
1
≤ 2ε.

This yields

sup
MAC

n (ε,θ∗)

E[dH(X̄n,θ
∗)] ≤ sup

θ∗
E[dH(Ȳ n,θ

∗)] +
√
2ε.

Note that E[Ȳ n,j ] = θ∗j implies that Ȳ n,j = θ∗j = 0 for every j that does not belong to the

sparsity pattern J . Furthermore, for every j ∈ J , we have

∣∣√Ȳ n,j −
√
θ∗
j

∣∣ = |Ȳ n,j − θ∗
j |√

Ȳ n,j +
√

θ∗
j

≤
|Ȳ n,j − θ∗

j |√
θ∗
j

.

This implies that for every θ∗ ∈ ∆k−1
s ,

E[d2H(Ȳ n,θ
∗)] = E

[
1

2

k∑
j=1

(√
Ȳ n,j −

√
θ∗
j

)2
]
≤ 1

2
E

[∑
j∈J

(Ȳ n,j − θ∗
j )

2

θ∗
j

]

=
1

2

∑
j∈J

1

θ∗
j

Var
[
Ȳ n,j

]
=

1

2

∑
j∈J

1

θ∗
j

×
θ∗
j (1− θ∗

j )

n
=

s− 1

2n
.

Hence, by Jensen’s inequality E[dH(Ȳ n,θ
∗)] <

√
s/n. Therefore, we infer that

RAC
H (n, ε,∆k−1

s ) ≤ (s/n)1/2 +
√
2ε1/2

and the last claim of the theorem follows.

A.3 Minimax lower bounds over the sparse simplex

This section is devoted to the proof of the lower bounds on minimax risks in the discrete model

with respect to various distances. Note that the rates over the high-dimensional “sparse”

simplex ∆k−1
s coincide with those for the dense simplex ∆s−1. For this reason, all the lower

bounds will be proved for ∆s−1 only (for s ≥ 2 an even integer). In addition, we will restrict our

attention to the distributions P , Q over ∆s−1 that are supported by the set A of the elements

of the canonical basis that is P (A) = Q(A) = 1.

Proof of Theorem 8 on page 46. We denote by ej the vector in Rs having all the coordinates

equal to zero except the jth coordinate which is equal to one. Setting

θ = e1, and θ′ =
(
1− ε

1− ε

)
e1 +

ε

1− ε
e2
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we have

dTV(θ,θ
′) =

ε

1− ε
, dL2(θ,θ′) ≥

√
2ε, and dH(θ,θ

′) ≥ ε1/2.

Therefore, modulus of continuity defined by

wd(ε,∆) = sup
{
d(θ,θ′) : θ,θ′ ∈ ∆, dTV(θ,θ

′) ≤ ε/(1− ε)
}

for a distance d and a set ∆, satisfies for any ε ≤ 1/2,

wTV(ε,∆
k−1) ≥ ε, wL2(ε,∆k−1) ≥

√
2ε, and wH(ε,∆

k−1) ≥ ε1/2.

These bounds on the modulus of continuity are the first ingredient we need for lower bounding

the minimax risk using (Chen et al., 2018, Theorem 5.1).

The second ingredient is the minimax rate in the non-contaminated case. are well known.

For each of the considered distances, this rate is well-known. However, for the sake of com-

pleteness, we provide below a proof those lower bounds using Fano’s method. For this, we

use the Varshamov-Gilbert lemma (see e.g. Lemma 2.9 in (Tsybakov, 2009)) and Theo-

rem 2.5 in (Tsybakov, 2009). The Varshamov-Gilbert lemma guarantees the existence of a

set ω(1), . . . ,ω(M) ∈ {0, 1}⌊s/2⌋ of cardinality M ≥ 2s/16 such that

ρ(ω(i),ω(j)) ≥ s

16
, for all i ̸= j,

where ρ(., .) stands for the Hamming distance. Using these binary vectors {ωj}, a parameter

β ∈ [0, 1/s] to be specified later and the “baseline” vector θ(0) = (1/s, . . . , 1/s), we define

hypotheses θ(1), . . . , θ(M) by the relations

θ
(i)
2j−1 = θ

(0)
2j−1 + ω

(i)
j β and θ

(i)
2j = θ

(0)
2j − ω

(i)
j β ∀j ∈ {0, . . . , ⌊s/2⌋}.

Remark that θ(0), . . . ,θ(M) are all probability vectors of dimension s. Denoting the Kullback-

Leibler divergence by dKL(., .), one can check the conditions of Theorem 2.5 in Tsybakov

(2009):

dL2(θ(i),θ(j)) ≥ β

√
2s

4
∀j ̸= i,

dTV(θ
(i),θ(j)) ≥ βs

16
∀j ̸= i,

87



as well as

dKL(θ
(i),θ(0)) ≤

⌊s/2⌋∑
j=1

(θ
(0)
2j−1 + β) log

θ
(0)
2j−1 + β

θ
(0)
2j−1

+ (θ
(0)
2j − β) log

θ
(0)
2j − β

θ
(0)
2j

≤
⌊k/2⌋∑
j=1

β

θ
(0)
2j−1

(θ
(0)
2j−1 + β)− β

θ
(0)
2j

(θ
(0)
2j − β)

= β2
k∑

j=1

1

θ
(0)
j

= β2
s∑

j=1

s = β2s2 ≤ α logM

n
∀i ∈ {1, . . . ,M},

for β =
√

α/(ns)/4, taking into account the fact that 2s/16 ≤ M . Now by applying the afore-

mentioned theorem, we obtain for the non-contaminated setting (ε = 0)

inf
θ̄n

sup
MHC

n (0,∆s−1)

P

(
dL2(θ̄n,θ

∗) ≥ β
√
2s

2

)
≥

√
M

1 +
√
M

(
1− 2α−

√
2α

logM

)
,

inf
θ̄n

sup
MHC

n (0,∆s−1)

P

(
dTV(θ̄n,θ

∗) ≥ βs

8

)
≥

√
M

1 +
√
M

(
1− 2α−

√
2α

logM

)
.

Setting M = 2s/16 and α = 1/32, by Markov’s inequality, one concludes

inf
θ̄n

RHC
L2 (n, 0,∆

s−1, θ̄n) ≥ c(1/n)1/2,

inf
θ̄n

RHC
TV(n, 0,∆

s−1, θ̄n) ≥ c(s/n)1/2,

where c = 1/25600. Since,
√
2 dH(θ,θ

′) ≥ dTV(θ,θ
′) for any pair of points (θ,θ′) on the

simplex, we have

inf
θ̄n

RHC
H (n, 0,∆s−1, θ̄n) ≥ c(s/n)1/2.

Finally, we apply (Chen et al., 2018, Theorem 5.1) stating in our case for any distance d

inf
θ̄n

RHC
d (n, ε,∆s−1, θ̄n) ≥ c

{
inf
θ̄n

RHC
d (n, 0,∆s−1, θ̄n) + wd(ε,∆

s−1)
}
,

for an universal constant c, which completes the proof of Theorem 8.

A.4 Proofs of bounds with high probability

Proof of Theorem 9 on page 48. Suppose Xi = Y i if i ̸∈ O where Y1, . . . ,Yn are indepen-

dently generated from the reference distribution P so that E[Y i] = θ∗. For any Z1, . . . ,Zn, let

Φ□(Z1, . . . ,Zn) := d□(
∑n

i=1Zi/n,θ
∗), where □ refers here to the distances L2 or TV. Given
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Y ′
1, . . . ,Y

′
n ∈ ∆k−1 we have for every i

Φ□(Y1, . . . ,Y i, . . . ,Yn)−Φ□(Y1, . . . ,Y i−1,Y
′
i,Y i+1, . . . ,Yn) ≤

1

n
d□(Y i,Y

′
i).

Furthermore, it can easily be shown that the last term is bounded by
√
2/n and 2/n for the

distances L2 and TV, respectively. By bounded difference inequality (see for example Theo-

rem 6.2 of Boucheron et al. (2013)) with probability at least 1− δ

ΦL2(Y1, . . . ,Yn) ≤ EΦL2(Y1, . . . ,Yn) +
(
log(1/δ)/n

)1/2
≤ (1/n)1/2 +

(
log(1/δ)/n

)1/2
,

ΦTV (Y1, . . . ,Yn) ≤ EΦTV (Y1, . . . ,Yn) +
(
log(2/δ)/n

)1/2
≤ (s/n)1/2 +

(
log(2/δ)/n

)1/2
.

Using Φ□(X1, . . . ,Xn) ≤ Φ□(Y1, . . . ,Yn) + d□(
∑

i∈O Xi/n,
∑

i∈O Y i/n), one can conclude

the proof of the first two claims of the theorem.

For the Hellinger distance, the computations are more tedious. We have to separate the

case of small θ∗j . To this end, let J = {j : 0 < θ∗j < (1/n) log(2s/δ)} and J ′ = {j : θ∗j ≥
(1/n) log(2s/δ)}. We have

∑
j∈J

(√
Ȳn,j −

√
θ∗j

)2
≤

∑
j∈J

(Ȳn,j + θ∗j )

≤ 1

n

n∑
i=1

(∑
j∈J

Y i,j − θ∗j

)
+

2s log(2s/δ)

n
.

Since the random variables Ui :=
(∑

j∈J Y i,j

)
are iid, positive, bounded by 1, the Bernstein

inequality implies that

1

n

n∑
i=1

(
Ui −E[U1]

)
≤

√
2Var(U1) log(2/δ)

n
+

log(2/δ)

3n
,

holds with probability at least 1 − δ/2 for 0 < δ < 1. One easily checks that
√

Var(U1) ≤∑
j∈J

√
Var(Y1,j) ≤ s

√
log(2s/δ)/n. Therefore, with probability at least 1− δ/2, we have

1

n

n∑
i=1

(∑
j∈J

Y i,j − θ∗j

)
≤
√
2 s log(2s/δ)

n
+

log(2/δ)

3n
.

This yields

∑
j∈J

(√
Ȳn,j −

√
θ∗j

)2
≤ 3.5slog(2s/δ) + log(2/δ)

n
, (A.2)

with probability at least 1− δ/2.
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On the other hand, we have

∑
j∈J ′

(√
Ȳn,j −

√
θ∗j

)2
≤

∑
j∈J ′

(Ȳn,j − θ∗j )
2

θ∗j
≤ smax

j∈J ′

(Ȳn,j − θ∗j )
2

θ∗j
. (A.3)

The Bernstein inequality and the union bound imply that, with probability at least 1 − δ/2, for

all j ∈ J ′,

|Ȳn,j − θ∗j | ≤
√

2Var(Y1,j) log(2s/δ)

n
+

log(2s/δ)

n

≤

√
2θ∗j log(2s/δ)

n
+

log(2s/δ)

n
≤ 2.5

√
θ∗j log(2s/δ)

n
. (A.4)

Combining (A.3) and (A.4), we obtain

∑
j∈J ′

(√
Ȳn,j −

√
θ∗j

)2
≤ 2.52

s log(2s/δ)

n
, (A.5)

with probability at least 1− δ/2. Finally, inequalities (A.2) and (A.5) together lead to

d2H(Ȳ n,θ
∗) =

1

2

n∑
j=1

(√
Ȳn,j −

√
θ∗j

)2
≤ 5s log(2s/δ)

n
+

log(2/δ)

2n
,

which is true with probability at least 1 − δ. Using the triangle inequality and the fact that the

Hellinger distance is smaller than the square root of the TV-distance, we get

dH(X̄n,θ
∗) ≤ dH(X̄n, Ȳ n) + dH(Ȳ n,θ

∗)

≤
√

dTV(X̄n, Ȳ n) + dH(Ȳ n,θ
∗)

≤ ε1/2 +

√
5s log(2s/δ)

n
+

√
log(2/δ)

2n
,

with probability at least 1− δ. This completes the proof of the theorem.

A.5 Proofs of instance based bounds

Proof of Proposition 5 on page 49. In the adversarial model, we have Xi = Y i if i ̸∈ O where

Y1, . . . ,Yn are generated from the reference distribution θ∗. By Proposition 3 and Lemma 6

in Berend and Kontorovich (2013) and using the triangle inequality

∥∥Ȳ n − θ∗∥∥
1
− |O|

n
sup

x,y∈∆∞
∥x− y∥1 ≤ dTV(X̄n,θ

∗)

≤
∥∥Ȳ n − θ∗∥∥

1
+
|O|
n

sup
x,y∈∆∞

∥x− y∥1,
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the proposition is proved.

Proof of Theorem 10 on page 49. Using Theorem 2.1 in Cohen et al. (2020) and applying the

same triangle inequality as in the proof of Proposition 5, we conclude the theorem.
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B.1 Proof of Theorem 11

Before proving Theorem 11, we provide some auxiliary lemmas and propositions.

B.1.1 Bounding the projected error of the average of filtered observations

For any J ⊂ [n], we define ZJ and Σ̂Z
J as the sample average and sample covariance matrix

of the subsample {Zi : i ∈ J}, that is

ZJ =
1

|J |
∑
i∈J

Zi, Σ̂Z
J =

1

|J |
∑
i∈J

ZiZ
⊤
i −ZJZ

⊤
J .

The main building block of the proof is the following result.

Proposition 6. Let S ⊂ [n] be an arbitrary set. We define its subsets SI = S ∩ I and SO =

S ∩O. Let Z1, . . . ,Zn and µZ be arbitrary points in Rq with q ≥ 2. Let ΣZ be an arbitrary q× q

92



covariance matrix and let Pk be the projection matrix projecting onto the subspace spanned

by the bottom k eigenvectors of Σ̂Z
S −ΣZ , for k = 1, . . . , q − 1. We have

∥∥Pk(ZS − µZ)
∥∥
2
≤

{
2ωO∥Σ̂Z

SI −ΣZ∥op +
ω2
O

ωI

(
(λq − λ1)(Σ

Z) +
δ2Z

q − k

)}1/2

+
∥∥PkξZSI

∥∥
2
,

where ωO = |SO|/|S|, ωI = 1 − ωO, ξZi = Zi − µZ and δZ = infµmaxi∈S ∥Zi − µZ∥2.
Furthermore, if |S| ≤ q − k, then

∥∥Pk(ZS − µZ)
∥∥
2
≤

{
2ωO∥Σ̂Z

SI −ΣZ∥op +
ω2
O

ωI
(λq − λ1)(Σ

Z)

}1/2

+
∥∥PkξZSI

∥∥
2
.

Proof. Since there is no risk of confusion, we remove the superscript Z from ΣZ , Σ̂Z
S and so

on. Since ZS = ωIZSI + wOZSO yields ZS −ZSI = wO
(
ZSO −ZSI

)
, the triangle inequality

implies that

∥∥Pk(ZS − µ)
∥∥
2
≤

∥∥Pk(ZS −ZSI )
∥∥
2
+
∥∥Pk(ZSI − µ)

∥∥
2

≤ wO
∥∥Pk(ZSI −ZSO)

∥∥
2
+
∥∥PkξSI

∥∥
2
. (B.1)

Moreover, one can check that

Σ̂S = ωIΣ̂SI + ωOΣ̂SO + ωIωO(ZSI −ZSO)
⊗2 (B.2)

⪰ ωIΣ̂SI + ωIωO(ZSI −ZSO)
⊗2.

Hence, multiplying from left and right by Pk and computing the largest eigenvalue of both sides,

we get

ωIωO∥Pk(ZSI −ZSO)∥
2
2 ≤ λq

(
Pk(Σ̂S − ωIΣ̂SI )P

⊤
k

)
≤ λq

(
Pk(Σ̂S −Σ)P⊤k

)
+ λq

(
Σ− ωIΣ̂SI

)
≤ λk(Σ̂S −Σ) + ωI λq

(
Σ− Σ̂SI

)
+ ωOλq(Σ). (B.3)

On the other hand, using the Weyl inequality (several times) and the identity (B.2), we get

λk(Σ̂S −Σ) ≤ ωIλq

(
Σ̂SI −Σ

)
+ ωOλk

(
Σ̂SO −Σ+ ωI(ZSI −ZSO)

⊗2
)

≤ ωIλq

(
Σ̂SI −Σ

)
+ ωOλk+1

(
Σ̂SO −Σ

)
+ ωIλq−1

(
(ZSI −ZSO)

⊗2
)

≤ ωIλq

(
Σ̂SI −Σ

)
+ ωOλk+1(Σ̂SO)− ωOλ1(Σ). (B.4)
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For the middle term of the right hand side, we can use the following upper bound

λk+1(Σ̂SO) ≤
λk+1(Σ̂SO) + . . .+ λq(Σ̂SO)

q − k

≤ Tr(Σ̂SO)

q − k
=

1

q − k
Tr
(

1

|SO|
∑
i∈SO

(Zi −ZSO)
⊗2

)
=

1

q − k
inf
µ

Tr
(

1

|SO|
∑
i∈SO

(Zi − µ)⊗2

)

= inf
µ

1

(q − k)|SO|
∑
i∈SO

∥Zi − µ∥22 ≤
δ2Z

q − k
.

Combining (B.3), (B.4) and the last display, we get

ωIωO∥Pk(ZSI −ZSO)∥
2
2 ≤ 2ωI∥Σ̂SI −Σ∥op + ωO

(
λq(Σ)− λ1(Σ)

)
+

ωOδ
2
Z

q − k
.

Dividing both sides by ωIωO, we arrive at

∥Pk(ZSI −ZSO)∥
2
2 ≤

2

ωO
∥Σ̂SI −Σ∥op +

1

ωI

(
λq(Σ)− λ1(Σ) +

δ2Z
q − k

)
.

Combining this inequality with (B.1), we obtain the first claim of the proposition. To get the

second claim, we simply remark that λk+1(Σ̂SO) = 0 since the rank of the matrix Σ̂SO is less

than |SO| ≤ |S| ≤ q − k.

B.1.2 Bounding the error of the geometric median of projected observations

We assume in this section that V is a linear subspace of Rp of dimension k and consider the

geometric median µ̂GM
V of the projected vectors PV X1, . . . , PV Xn that is

µ̂GM
V ∈ arg min

µ∈Rp

n∑
i=1

∥PV Xi − µ∥2.

Lemma 2. With probability at least 1− δ, for all linear subspaces V ⊂ Rp, we have

∥µ̂GM
V − PV µ

∗∥2√
dim(V )

≤
2
√
∥Σ∥op

1− 2ε

(
1 +

√
rΣ +

√
2 log(1/δ)√
n

)
.

Proof. It follows from (Dalalyan and Minasyan, 2020, Lemma 2) that

∥µ̂GM
V − PV µ

∗∥2 ≤
2

n(1− 2ε)

n∑
i=1

∥PV ξi∥2.
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Upper bounding the last term using Cauchy-Schwartz’s inequality, one obtains

∥µ̂GM
V − PV µ

∗∥2 ≤
2√

n(1− 2ε)

( n∑
i=1

∥PV ξi∥22
)1/2

.

Let e1, . . . , ek be any orthonormal basis of V , with k = dim(V ). We have

∥µ̂GM
V − PV µ

∗∥2 ≤
2√

n(1− 2ε)

( n∑
i=1

k∑
ℓ=1

|e⊤ℓ ξi|2
)1/2

≤ 2√
n(1− 2ε)

(
k sup
∥e∥2=1

n∑
i=1

|e⊤ξi|2
)1/2

=
2√

n(1− 2ε)

(
k sup
∥e∥2=1

∥∥[ξ1, . . . , ξn]⊤e∥∥22)1/2

=
2
√
k√

n(1− 2ε)

∥∥[ξ1, . . . , ξn]∥∥op.
By Corollary 5.35 in (Vershynin, 2012), the inequality

∥∥[ξ1, . . . , ξn]∥∥op ≤ ∥Σ∥1/2op

(√
n+
√

rΣ +
√

2 log(1/δ)
)

holds with probability at least 1− δ. This yields the desired inequality.

B.1.3 Bounding the number of filtered out observations

Throughout this section, we assume without loss of generality that ∥Σ∥op = 1.

Lemma 3. Let τ and δ be two numbers from (0, 1). Define

z = 1 +

√
rΣ +

√
2 log(1/δ)√
nτ

+
√

2 + 2 log
(
1/τ

)
.

With probability at least 1− δ, we have

sup
V

n∑
i=1

1
(
∥PV ξi∥22 > z2 dim(V )

)
≤ nτ,

where the supremum is over all linear subspaces V of Rp.

Proof. Let us define the random variable

Tn = sup
V

n∑
i=1

1
(
∥PV ξi∥22 > z2 dim(V )

)
.
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In what follows, we write dV for the dimension of the subspace V . We check that

P(Tn > nτ) ≤ P
(
∃V ⊂ Rp,∃J ⊂ [n] with |J | = nτ, s.t. min

i∈J
∥PV ξi∥22 ≥ z2 dim(V )

)
≤

∑
J⊆[n]
|J |=nτ

P
(
sup
V

min
i∈J
∥PV ξi∥22/dV ≥ z2

)

=

(
n

nτ

)
P
(
sup
V

min
i∈{1,...,nτ}

∥PV ξi∥22/dV ≥ z2
)

≤
(

n

nτ

)
P
(
sup
V

1

nτdV

nτ∑
i=1

∥PV ξi∥22 ≥ z2
)
. (B.5)

Given a linear subspace V ⊂ Rp of dimension dV , let eV1 , . . . , e
V
dV

be an orthonormal basis of

V . Using (B.5), we get

P(Tn ≥ nτ) ≤
(

n

nτ

)
P
(
sup
V

1

nτdV

dV∑
l=1

nτ∑
i=1

∣∣ξ⊤i eVl ∣∣2 ≥ z2
)

≤
(

n

nτ

)
P
(

sup
∥e∥=1

1

nτ

nτ∑
i=1

∣∣ξ⊤i e∣∣2 ≥ z2
)

=

(
n

nτ

)
P
(
∥[ξ1, . . . , ξnτ ]∥op ≥ z

√
nτ

)
.

By (Vershynin, 2012, Corollary 5.35), the inequality

∥∥[ξ1, . . . , ξnτ ]∥∥op ≤ (√
nτ +

√
rΣ +

√
2 log(1/δ0)

)
holds with probability at least 1 − δ0. Taking δ0 = δ/

(
n
nτ

)
and using the inequality log

(
n
nτ

)
≤

nτ
(
1 + log(1/τ)

)
, we can conclude that P(Tn ≥ nτ) ≤ δ. This proves the lemma.

Lemma 4. Let τ ∈ (0, 1/2) and δ ∈ (0, 1/2) be arbitrary. Set

t =
3− 2ε∗

1− 2ε∗

(
1 +

√
rΣ +

√
2 log(2/δ)√
nτ

)
+
√

2 + 2 log
(
1/τ

)
,

where ε∗ < 1/2. Assume that {Xi} are drawn from GAC(µ∗,Σ, ε) model with ε ≤ ε∗. Then,

with probability at least 1− δ, for any linear subspace V of Rp, the inequalities

NV =
∑
i∈I

1

(
∥PV Xi − µ̂GM

V ∥2√
dim(V )

≤ t

)
≥ n(1− ε− τ),

∥PV µ∗ − µ̂GM
V ∥2√

dim(V )
≤ 2

1− 2ε

(
1 +

√
rΣ +

√
2 log(2/δ)√
n

)
,

where µ̂GM
V is the geometric median of PV X1, . . . , PV Xn.

Proof. To avoid unnecessary technicalities, we assume in this proof that nτ is an integer. We
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also write

t1 =
2

1− 2ε

(
1 +

√
rΣ +

√
2 log(2/δ)√
n

)
t2 = 1 +

√
rΣ +

√
2 log(2/δ)√
nτ

+
√

2 + 2 log(1/τ),

so that t ≥ t1 + t2. Simple algebra yields

NV =
∑
i∈I

1
(
∥PV ξi + PV µ

∗ − µ̂GM
V ∥2 ≤ t

√
dim(V )

)
≥

n∑
i=1

1
(
∥PV ξi + PV µ

∗ − µ̂GM
V ∥2 ≤ t

√
dim(V )

)
− nε

= n− nε−
n∑

i=1

1
(
∥PV ξi + PV µ

∗ − µ̂GM
V ∥2 > t

√
dim(V )

)
≥ n− nε−

n∑
i=1

1
(
∥PV ξi∥2 + ∥PV µ∗ − µ̂GM

V ∥2 > t
√

dim(V )
)
,

where in the last step, we used the triangle inequality. According to Lemma 2, on an event Ω1

of probability at least 1− δ/2, we have ∥PV µ∗− µ̂GM
V ∥2 ≤ t1

√
dim(V ) for every V . This implies

that on this event,

NV ≥ n− nε−
n∑

i=1

1
(
∥PV ξi∥2 > t2

√
dim(V )

)
, ∀V ⊂ Rp.

Using Lemma 3, we get that on an event Ω2 of probability at least 1− δ/2, the sum on the right

hand side of the last display is less than nτ . Therefore, on the intersection of the events Ω1

and Ω2, we have NV ≥ n(1− ε− τ) for every linear subspace V of Rp.

B.1.4 Estimating the mean from a low-dimensional adversarial projection

In this section, we consider the following problem. We assume that for a q dimensional linear

subspace V of Rp, which can depend on the sample X1, . . . ,Xn, we observe the projected

data PV X1, . . . , PV Xn. The goal is to estimate the projected mean µ∗
V = PV µ

∗ ∈ Rq. We

will estimate µ∗
V by the mean of filtered data points. More precisely, let µ̂GM

V be the geometric

median of PV X1, . . . , PV Xn. We set

SV = {i ∈ [n] : ∥PV Xi − µ̂GM
V ∥2 ≤ t

√
q}, NV = |SV |,

where t is a real number. We estimate µ∗
V by

µ̂V = PV XSV
=

1

NV

∑
i∈SV

PV Xi.
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Lemma 5. For every positive threshold t > 0, we have

∥µ̂V − µ∗
V ∥2 ≤

∥∥PV ξ̄∥∥2
NV

+
1

NV

∥∥∥∥ ∑
i∈Sc

V ∪O
PV ξi

∥∥∥∥
2

+
nε(t
√
q + ∥µ̂GM

V − µ∗
V ∥2)

NV
.

Proof. For this estimator, using the triangle inequality and the fact that Xi = µ∗ + ξi for every

i ∈ I, we have

∥µ̂V − µ∗
V ∥2 =

1

NV

∥∥∥∥ ∑
i∈SV

(PV Xi − PV µ
∗)

∥∥∥∥
2

≤ 1

NV

∥∥∥∥ ∑
i∈SV ∩I

PV ξi

∥∥∥∥
2

+
1

NV

∥∥∥∥ ∑
i∈SV ∩O

PV (Xi − µ∗)

∥∥∥∥
2

≤ 1

NV

∥∥∥∥ ∑
i∈SV ∩I

PV ξi

∥∥∥∥
2

+
nε(t
√
q + ∥µ̂GM

V − µ∗
V ∥2)

NV
.

Using once again the triangle inequality, we arrive at

∥µ̂V − µ∗
V ∥2 ≤

∥∥PV ξ̄∥∥2
NV

+
1

NV

∥∥∥∥ ∑
i∈Sc

V ∪O
PV ξi

∥∥∥∥
2

+
nε(t
√
q + ∥µ̂GM

V − µ∗
V ∥2)

NV

≤
∥∥PV ξ̄∥∥2
NV

+
1

NV

∥∥∥∥ ∑
i∈Sc

V ∪O
PV ξi

∥∥∥∥
2

+
nε(t
√
q + ∥µ̂GM

V − µ∗
V ∥2)

NV
.

This completes the proof.

B.1.5 Bounding stochastic errors

Throughout this section, without loss of generality, we assume that ∥Σ∥op = 1.

Lemma 6. For any positive integer m ≤ n and any t > 0, we have

P

(
max

|S|≥n−m

∥∥∥ 1

|S|
∑
i∈S

P ξi

∥∥∥
2
≤ n∥Pξ̄n∥2

n−m
+

√
m(2rΣ + 3t) +m

√
3 log(2ne/m)

n−m

)
≥ 1− e−t.

Proof. Using the triangle inequality, one has

1

|S|

∥∥∥∑
i∈S

Pξi

∥∥∥
2
≤ 1

n−m

∥∥∥∑
i∈S

Pξi

∥∥∥
2
=

1

n−m

∥∥∥ n∑
i=1

Pξi −
∑
i∈SC

Pξi

∥∥∥
2

≤ 1

n−m

∥∥∥ n∑
i=1

Pξi

∥∥∥
2
+

1

n−m

∥∥∥ ∑
i∈SC

Pξi

∥∥∥
2

≤ n∥Pξ̄n∥2
n−m

+
1

n−m
max
|J |≤m

∥∥∥∑
i∈J

ξi

∥∥∥
2
. (B.6)
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For s ∈ [1,m], we choose ts by

ts = 3s log
(2ne

s

)
+ 3t,

so that ts ≤ tm = 3m log
(
2ne
m

)
+ 3t and(ne

s

)s
e−ts/3 ≤ 2−se−t.

For every J of cardinality m, the random variable ∥
∑

j∈J ξj∥2 has the same distribution as

m
∑p

j=1 λj(Σ)α2
j , where α1, . . . , αp are i.i.d. standard Gaussian. Hence, using the union

bound, the well-known upper bound on the binomial coefficients and (Comminges and Dalalyan,

2012, Lemma 8), we have

P
(
max
|J |≤m

∥∥∥∑
i∈J

ξi

∥∥∥2
2
≥ m(2rΣ + tm)

)
≤

m∑
s=1

(
n

s

)
P
(∥∥∥ s∑

i=1

ξi

∥∥∥2
2
≥ m(2rΣ + tm)

)
≤

m∑
s=1

(ne
s

)s
P
(∥∥∥ s∑

i=1

ξi

∥∥∥2
2
≥ s(2rΣ + ts)

)
≤

m∑
s=1

(ne
s

)s
e−ts/3 ≤ e−t.

This entails that with probability at least 1− e−t, we have

max
|J |≤m

∥∥∥∑
i∈J

ξi

∥∥∥
2
≤

√
m(2rΣ + tm) ≤

√
m(2rΣ + 3t) +m

√
3 log(2ne/m).

Combining this inequality with (B.6), we get the claim of the lemma.

In the two next lemmas, given a set S ⊂ [n], we look at the sample average and sample

covariance matrix of the subsample {Xi : i ∈ S},

XS =
1

|S|
∑
i∈S

Xi, Σ̂S =
1

|S|
∑
i∈S

XiX
⊤
i −XSX

⊤
S .

Lemma 7. There exists a positive constant A such that, for any positive integer m ≤ n and

any t ≥ 1, with probability at least 1− 2e−t, the inequality

∥Σ̂S −Σ∥op ≤ A

√
nrΣ + rΣ +m log(2ne/m) + 2t

n−m
+
∥∥ξS∥∥22

is satisfied for every S ⊂ [n] of cardinality ≥ n−m.
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Proof. The triangle inequality implies

∥Σ̂S −Σ∥op ≤
∥∥∥ 1

|S|
∑
i∈S

(Xi − µ)⊗2 −Σ
∥∥∥
op

+
∥∥(µ−XS)

⊗2
∥∥
op

=
∥∥∥ 1

|S|
∑
i∈S

ξiξ
⊤
i −Σ

∥∥∥
op

+
∥∥ξS∥∥22. (B.7)

Using again the triangle inequality, one gets∥∥∥∑
i∈S

ξiξ
⊤
i −Σ

∥∥∥
op
≤

∥∥∥∑
i∈S

(
ξiξ

⊤
i −Σ

)∥∥∥
op

≤
∥∥∥ n∑

i=1

(
ξiξ

⊤
i −Σ

)∥∥∥
op

+
∥∥∥ ∑
i∈SC

(
ξiξ

⊤
i −Σ

)∥∥∥
op

≤
∥∥∥ n∑

i=1

(
ξiξ

⊤
i −Σ

)∥∥∥
op

+ max
|J |≤m

∥∥∥∑
i∈J

(
ξiξ

⊤
i −Σ

)∥∥∥
op
. (B.8)

In view of (Koltchinskii and Lounici, 2017, Theorems 4 and 5), one can show that there exists

a positive universal constant A1 such that for every t ≥ 1 and every set J of cardinality s, the

inequality ∥∥∥∑
j∈J

ξjξ
⊤
j − sΣ

∥∥∥
op
≤ A1(

√
mrΣ + rΣ + t)

is satisfied with probability at least 1− e−t. We define ts by

ts = s log
(2ne

s

)
+ t,

so that ts ≤ tm = m log
(
2ne
m

)
+ t and(ne

s

)s
e−ts ≤ 2−se−t.

Applying the union bound and the well-known upper bound on the binomial coefficients, this

yields

P
(
max
|J |≤m

∥∥∥∑
j∈J

(
ξjξ

⊤
j −Σ

)∥∥∥
op
≥ A1(

√
mrΣ + rΣ + tm)

)
≤

m∑
s=1

(
n

s

)
P
(∥∥∥ s∑

j=1

ξjξ
⊤
j − sΣ

∥∥∥
op
≥ A1(

√
mrΣ + rΣ + ts)

)
≤

m∑
s=1

(ne
s

)s
e−ts ≤ e−t.
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One deduces from (B.8) that, with probability at least 1− 2e−t,

∥∥∥ 1

|S|
∑
i∈S

ξiξ
⊤
i −Σ

∥∥∥
op
≤ A1

(
√
n+
√
m)
√

rΣ + 2rΣ +m log(2ne/m) + 2t

n−m

≤ A

√
nrΣ + rΣ +m log(2ne/m) + 2t

n−m
.

Combining this with (B.7), one gets the claim of the lemma.

Lemma 8. For any positive integer m ≤ n and any t > 0, with probability at least 1− 4e−t, the

inequality

∥Σ̂S −Σ∥op ≤
5p+

(
8 log(2ne/m) + 2

)
m+ 7t

n−m
+ 2

√
p+
√
t

√
n−
√
m

+
∥∥ξS∥∥22

is satisfied for every S ⊂ [n] of cardinality ≥ n−m.

Proof. In this proof, without loss of generality, we assume that the matrix Σ is invertible. In

view of (B.7) and (B.8), we have

∥Σ̂S −Σ∥op ≤
∥∥∥ 1

|S|

n∑
i=1

(
ξiξ

⊤
i −Σ

)∥∥∥
op

+ max
|J |≤m

∥∥∥ 1

|S|
∑
i∈J

(
ξiξ

⊤
i −Σ

)∥∥∥
op

+
∥∥ξS∥∥22. (B.9)

Let us define ζi := Σ−1/2ξi for all i ∈ [n]. For every set J of cardinality s, it holds that∥∥∥∑
i∈J

(
ξiξ

⊤
i −Σ

)∥∥∥
op
≤

∥∥Σ∥∥
op

∥∥∥∑
i∈J

(
ζiζ

⊤
i − Ip

)∥∥∥
op

= max
(
λmax

(∑
i∈J

ζiζ
⊤
i

)
− s, s− λmin

(∑
i∈J

ζiζ
⊤
i

))
= max

(
σ2
max

(
ζJ

)
− s, s− σ2

min

(
ζJ

))
,

where ζJ is the s × n random matrix obtained by concatenating the vectors ζi with i ∈ J . By

(Vershynin, 2012, Corollary 5.35), we know that for every x > 0

√
s−√p− x ≤ σmin(ζJ) ≤ σmax(ζJ) ≤

√
s+
√
p+ x

is true with probability at least 1− 2e−x2/2. This yields1

∥∥∥∑
i∈J

(
ξiξ

⊤
i −Σ

)∥∥∥
op
≤ max

(
(
√
p+ x)(2

√
s+
√
p+ x), (

√
p+ x)(2

√
s−√p− x)

)
≤ p+ x2 + 2

√
ps+ 2x

√
p+ 2x

√
s

with probability at least 1 − 2e−x2/2. By applying the same technique as in the proof of
1We provide the argument only in the case

√
s ≥ √

p+ x, but the conclusion is true for every value s.
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Lemma 7, we can set

ts = 2

√
s log

(2ne
s

)
+ t,

and obtain

P
(
max
|J |≤m

∥∥∥∑
j∈J

(
ξjξ

⊤
j −Σ

)∥∥∥
op
≥ p+ t2m + 2

√
pm+ 2tm

√
p+ 2tm

√
m
)
≤ 2e−t.

Hence, going back to (B.9), we can show that the inequalities

∥Σ̂S −Σ∥op ≤
p+ t+ 2

√
pn+ 2

√
tp+ 2

√
tn

n−m
+

p+ 4t+ 4m log(2ne/m) + 2
√
pm

n−m

+
4(
√
p+
√
m)

√
m log(2ne/m) + t

n−m
+
∥∥ξS∥∥22

≤ 5p+ 8m log(2ne/m) + 2m+ 7t

n−m
+

2(
√
p+
√
t)(
√
n+
√
m)

n−m
+
∥∥ξS∥∥22

hold with probability at least 1− 4e−t, and this proves the lemma.

B.1.6 Putting all the pieces together

All the ingredients provided, we can now compile the complete proof of Theorem 11.

Taking UL := VL, the algorithm detailed in (3.2) returns µ̂SDR =
∑L

ℓ=0 µ̂
(ℓ) with µ̂(ℓ) ∈

Uℓ = Im(VℓU
⊤
ℓ ) for every ℓ ∈ {0, . . . , L}where the two-by-two orthogonal subspaces U0, . . . ,UL

span the whole space Rp. This allows us to decompose the risk:

∥∥µ̂SDR − µ∗∥∥2
2
=

L∑
ℓ=0

∥∥µ̂(ℓ) − PUℓ
µ∗∥∥2

2
=

L∑
ℓ=0

∥∥PUℓ
(Xℓ − µ∗)

∥∥2
2

=
L∑

ℓ=0

∥∥Pℓ(V⊤
ℓ Xℓ −V⊤

ℓ µ
∗)
∥∥2
2
,

where Pℓ := U⊤
ℓ Uℓ is the projection matrix projecting onto the subspace of Rpℓ spanned by

the bottom pℓ − pℓ+1 eigenvectors of V⊤
ℓ (Σ̂

(ℓ) −Σ)Vℓ for ℓ = 0, . . . , L with the convention that

pL+1 = 0.

For ℓ ∈ {0, . . . , L− 1}, we intend to apply Proposition 6 to Zi = V⊤
ℓ Xi and µZ = V⊤

ℓ µ
∗ in

order to upper bound the error term Errℓ := ∥Pℓ(V⊤
ℓ Xℓ −V⊤

ℓ µ
∗)
∥∥
2
. Using the inequalities

∥V⊤(Σ̂(ℓ) −Σ)V∥op ≤ ∥Σ̂(ℓ) −Σ∥op, λpℓ(V
⊤ΣV) ≤ λp(Σ), λ1(V

⊤ΣV) ≥ λ1(Σ)
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that are true for every orthogonal matrix V , and keeping in mind the definition of Pℓ, we get

Errℓ ≤
{
2ωO∥Σ̂(ℓ) −Σ∥op +

ω2
O

1− ωO

(
(λp − λ1)(Σ) +

δ2ℓ
pℓ+1

)}1/2

+
∥∥PℓV⊤

ℓ ξS(ℓ)
I

∥∥
2
,

where we have used the notation

ωO = max
ℓ

|S(ℓ) ∩ O|
|S(ℓ)|

, ξi = Xi − µ∗

and δℓ = infµmaxi∈S(ℓ) ∥V⊤
ℓ (Xi − µ)∥2. Note that when O and (S(ℓ) ∩ I)c are of cardinality

less than nε and n(ε+ τ), respectively, we have

|S(ℓ)|
|S(ℓ) ∩ O|

=
|S(ℓ) ∩ I|+ |S(ℓ) ∩ O|

|S(ℓ) ∩ O|
=
|S(ℓ) ∩ I|
|S(ℓ) ∩ O|

+ 1 ≥ n(1− ε− τ)

nε
+ 1 =

1− τ

ε

and, therefore, ωO ≤ ε/(1 − τ). We set η := ε + τ ≤ 3/4 and apply Lemma 4 to infer that

ωO ≤ ωO/(1 − ωO) ≤ ε/(1 − η) ≤ 4ε is true with probability at least 1 − δ. Furthermore, we

know that δℓ ≤ maxi∈S(ℓ) ∥V⊤
ℓ Xi − µ̄(ℓ)∥2 ≤ t

√
pℓ. This yields

Errℓ ≤
{
8ε∥Σ̂(ℓ) −Σ∥op + 16ε2

(
(λp − λ1)(Σ) +

t2pℓ
pℓ+1

)}1/2
+
∥∥PUℓ

ξS(ℓ)
I

∥∥
2
.

Let us introduce the shorthand

T1 = max
ℓ∈[L]
∥Σ̂(ℓ) −Σ∥op + ε(λp − λ1)(Σ).

This leads to

Errℓ ≤
{
8εT1 +

16ε2t2pℓ
pℓ+1

}1/2
+ ∥PUℓ

ξS(ℓ)
I

∥∥
2
. (B.10)

For the last error term, since pL = 1 we have by Lemma 5

ErrL ≤
∥∥PUL

ξ̄S(L)
I

∥∥
2
+

nε(t
√
pL +

∥∥PUL
µ∗ − µ̂GM

UL

∥∥
2
)

|S(L)|

≤
∥∥PUL

ξ̄S(L)
I

∥∥
2
+

εt+ ε
∥∥PUL

µ∗ − µ̂GM
UL

∥∥
2

1− η

≤
∥∥PUL

ξ̄S(L)
I

∥∥
2
+ 4εt+ 4ε

∥∥PUL
µ∗ − µ̂GM

UL

∥∥
2
. (B.11)
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Combining (B.10), (B.11), inequality pℓ ≤ epℓ+1, as well as the Minkowski inequality, we get

∥∥µ∗ − µ̂SDR
∥∥
2
=

{ L∑
ℓ=0

Err2ℓ

}1/2

≤
{
8εL(T1 + eεt2) + 16ε2

(
t+

∥∥PUL
µ∗ − µ̂GM

UL

∥∥
2

)2}1/2

+

{ L∑
ℓ=0

∥PUℓ
ξS(ℓ)

I

∥∥2
2

}1/2

≤ 2
√
2εLT1 + 9εt

√
L+ 4ε

∥∥PUL
µ∗ − µ̂GM

UL

∥∥
2
+

{ L∑
ℓ=0

∥PUℓ
ξS(ℓ)

I

∥∥2
2

}1/2

. (B.12)

To ease notation, let us set

rn =
(2rΣ + 3 log(2/δ)

n

)1/2
.

In view of Lemma 6, with probability at least 1− δ, we have

{ L∑
ℓ=0

∥PUℓ
ξS(ℓ)

I

∥∥2
2

}1/2

≤
{ L∑

ℓ=0

(
∥PUℓ

ξ̄n∥2
1− η

+
rn
√
η + η

√
3 log(2e/η)

1− η

)2}1/2

≤
{ L∑

ℓ=0

(
4∥PUℓ

ξ̄n∥2 + 4rn
√
η + 10η

√
log(2/η)

)2}1/2

≤ 4∥ξ̄n∥2 + 4rn
√
ηL+ 10η

√
L log(2/η).

Since the random variable ∥ξn∥22 has the same distribution as 1
n

∑p
j=1 λj(Σ)γ2j , where γ1, . . . , γp

are i.i.d. standard Gaussian, by (Comminges and Dalalyan, 2012, Lemma 8) we have

∥ξn∥22 ≤
2rΣ + 3 log(2/δ)

n
= r2n

with probability at least 1− δ. Therefore, with probability at least 1− 2δ,

( L∑
ℓ=0

∥PUℓ
ξS(ℓ)

I

∥∥2
2

)1/2

≤ 4rn
(
1 +

√
Lη

)
+ 10η

√
L log(2/η). (B.13)

Next, Lemma 4 and the fact that pL = dim(UL) = 1 imply that with probability at least 1− δ

∥∥PUL
µ∗ − µ̂GM

UL

∥∥
2
≤ 2(1 +

√
2rn)

1− 2ε
. (B.14)

Recall that we have chosen t in such a way that

t ≤ 3(1 +
√
2rn/
√
τ)

1− 2ε∗
+ 1.6

√
log(2/τ). (B.15)
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Combining (B.12), (B.13), (B.14) and (B.15), we arrive at the inequality

∥∥µ̂SDR − µ∗∥∥
2
≤ 2

√
2εLT1 + 9εt

√
L+

8ε(1 +
√
2rn)

1− 2ε
+ 4rn

(
1 +

√
Lη

)
+ 10η

√
L log(2/η)

≤ 2
√
2εLT1 +

27ε
√
L(1 +

√
2rn/
√
τ)

1− 2ε∗
+ 14.4ε

√
L log(2/τ)

+
8ε(1 +

√
2rn)

1− 2ε
+ 4rn

(
1 +

√
Lη

)
+ 10η

√
L log(2/η)

that holds with probability at least 1− 3δ. In the upper bound obtained above, only the term T1

remains random. We can upper bound this term using Lemma 7. It implies that with probability

at least 1− 2δ, we have

T1 ≤ A

√
nrΣ + rΣ + nη log(2e/η) + 2 log(1/δ)

n(1− η)
+
(
4rn(1 +

√
η) + 10η

√
log(2/η)

)2
+ ε

≤ 2A
(√

2rn + r2n + 4η log(2/η)
)
+

(
7.5rn + 10η

√
log(2/η)

)2
+ ε.

Consequently,

√
εT1 ≤

{
2Aε

(√
2rn + r2n + 4η log(2/η)

)}1/2
+
(
7.5rn + 10η

√
log(2/η)

)√
ε+ ε

≤
{
2Aε

(√
2rn + r2n + 4η log(2/η)

)}1/2
+ 5.4rn + 7.1η

√
log(2/η) + ε

≤
{
2Aε

(√
2rn + 4η log(2/η)

)}1/2
+ (
√
A+ 5.4)rn + 7.1η

√
log(2/η) + ε

≤
√

2
√
2Arnε+ 2

√
2Aεη log(2/η) + (

√
A+ 5.4)rn + 7.1η

√
log(2/η) + ε

≤ ε+Arn/
√
2 + 2η

√
2A log(2/η) + (

√
A+ 5.4)rn + 7.1η

√
log(2/η) + ε

≤ (A/
√
2 +
√
A+ 5.4)rn + (7.1 + 2

√
2A)τ

√
log(2/τ) + (9.1 + 2

√
2A)ε

√
log(2/ε).

These inequalities imply that there exists a universal constant C such that

∥∥µ̂SDR − µ∗∥∥
2
≤

C
(
rn + τ

√
log(2/τ) + ε

√
log(2/ε) + rnε/

√
τ
)√

L

1− 2ε∗
. (B.16)

We choose

τ =
1

4

∧ r̄n√
log+(2/r̄n)

, with r̄n =

√
rΣ +

√
2 log(2/δ)√
n

.

Note that rn ≤
√
2r̄n and, furthermore, τ = 1/4 whenever r̄n ≥ 1/2. Therefore, rnε/

√
τ ≤ rn+ε.

Inserting this value of τ in (B.16) leads to

∥∥µ̂SDR − µ∗∥∥
2
≤

C
(
rn + ε

√
log(2/ε)

)√
L

1− 2ε∗
.

where C is a universal constant, the value of which is not necessarily the same in different

places where it appears. Replacing rn by its expression, and upper bounding L by 2 log p, we
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arrive at

∥∥µ̂SDR − µ∗∥∥
2
≤ C
√
log p

1− 2ε∗

(√
rΣ
n

+ ε
√
log(2/ε) +

√
log(1/δ)

n

)
.

Note that this inequality holds true on an event of probability at least 1− 5δ.

To prove the second part of the theorem, we use Lemma 8 instead of Lemma 7 in order

to bound the term T1. Moreover, in the definitions of rn and r̄n the effective rank rΣ is replaced

by the dimension p. Then, with probability at least 1− 2δ, we have

T1 ≤
5p+ nη(8 log(2e/η) + 2) + 7 log(2/δ)

n(1− η)
+ 2

√
p+

√
log(2/δ)

√
n(1−√η)

+

+
(
4rn(1 +

√
η) + 10η

√
log(2/η)

)2
+ ε

≤ (10r2n + 15rn + 72η log(2/η)) +
(
7.5rn + 10η

√
log(2/η)

)2
+ ε.

Then, repeating the same steps as for the previous case where the effective rank is used

instead of dimension we arrive at the following inequality

√
εT1 ≤

{
ε(10r2n + 15rn + 72η log(2/η))

}1/2
+
(
7.5rn + 10η

√
log(2/η)

)√
ε+ ε

≤ 12rn + 16τ
√

log(2/τ) + 18ε
√
log(2/ε).

Combining the obtained inequalities, plugging in the values of τ and rn and bounding L by

2 log p we arrive at a final bound which reads as

∥∥µ̂SDR − µ∗∥∥
2
≤ 156

√
2 log p

1− 2ε∗

(√
2p

n
+ ε

√
log(2/ε) +

√
3 log(2/δ)

n

)
,

which concludes the proof.

B.2 Proof of Theorem 13

The proof follows the same steps as that of Theorem 11. The assumption ∥Σ−1/2Σ̃Σ−1/2 −
Ip∥op ≤ γ gives upper and lower bounds on the effective rank of Σ̃ using that of Σ, which we

formulate as a separate lemma. Therefore, the choice of the threshold parameter t̃γ stated in

Theorem 13 makes Lemmas 3 and 4 applicable to this case as well. To bound the operator

norm of ∥Σ̂(ℓ)−Σ̃∥op we make use of the assumption ∥Σ−1/2Σ̃Σ−1/2−Ip∥op ≤ γ and Lemma 7

using triangle inequality. We provide the full proof for reader’s convenience.

Before proceeding with the proof we first formulate and prove an auxiliary lemma for bound-

ing the effective rank of Σ̃ using that of Σ.

Lemma 9. Let Σ and Σ̃ be symmetric positive definite matrices such that ∥Σ−1/2Σ̃Σ−1/2 −
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Ip∥op ≤ γ. Then,

rΣ ·
1− γ

1 + γ
≤ rΣ̃ ≤ rΣ ·

1 + γ

1− γ
.

Proof of Lemma 9. We start with upper- and lower-bounding the operator norm of Σ̃. Using

triangle inequality we have

∣∣∥Σ̃∥op − ∥Σ∥op∣∣ ≤ ∥Σ̃−Σ∥op ≤ ∥Σ∥op · ∥Σ−1/2Σ̃Σ−1/2 − Ip∥op ≤ γ∥Σ∥op.

This readily yields

(1− γ)∥Σ∥op ≤ ∥Σ̃∥op ≤ (1 + γ)∥Σ∥op. (B.17)

Moreover, for any pair of positive definite matrices A,B ⪰ 0 the following holds Tr(A)λ1(B) ≤
Tr(AB) ≤ Tr(A) · ∥B∥op. Hence, combining the cyclic property of trace, the trace inequality

and the fact that the spectrum of the matrix Σ−1/2Σ̃Σ−1/2 is between 1− γ and 1 + γ, we get

both the upper and the lower bounds for Tr(Σ̃). The upper bound reads as

Tr(Σ̃) = Tr((Σ1/2Σ−1/2)Σ̃(Σ−1/2Σ1/2)) = Tr(Σ(Σ−1/2Σ̃Σ−1/2))

≤ ∥Σ−1/2Σ̃Σ−1/2∥op Tr(Σ) ≤ (1 + γ)Tr(Σ). (B.18)

Similarly, the lower bound can be obtained as follows

Tr(Σ̃) ≥ λ1(Σ
−1/2Σ̃Σ−1/2)Tr(Σ) ≥ (1− γ)Tr(Σ). (B.19)

Therefore, combining (B.17) and (B.19) we get the lower bound for rΣ̃, while combining (B.17)

and (B.18) yields the upper bound, concluding the proof of the lemma.

Taking UL := VL, the Algorithm 2 returns µ̂SDR =
∑L

ℓ=0 µ̂
(ℓ) with µ̂(ℓ) ∈ Uℓ = Im(VℓU

⊤
ℓ )

for every ℓ ∈ {0, . . . , L} where the two-by-two orthogonal subspaces U0, . . . ,UL span the

whole space Rp. This allows us to decompose the risk:

∥∥µ̂SDR − µ∗∥∥2
2
=

L∑
ℓ=0

∥∥µ̂(ℓ) − PUℓ
µ∗∥∥2

2
=

L∑
ℓ=0

∥∥PUℓ
(Xℓ − µ∗)

∥∥2
2

=
L∑

ℓ=0

∥∥Pℓ(V⊤
ℓ Xℓ −V⊤

ℓ µ
∗)
∥∥2
2
,

where Pℓ := U⊤
ℓ Uℓ is the projection matrix projecting onto the subspace of Rpℓ spanned by

the bottom pℓ − pℓ+1 eigenvectors of V⊤
ℓ (Σ̂

(ℓ) − Σ̃)Vℓ for ℓ = 0, . . . , L with the convention that

pL+1 = 0.

For ℓ ∈ {0, . . . , L− 1}, we intend to apply Proposition 6 to Zi = V⊤
ℓ Xi and µZ = V⊤

ℓ µ
∗ in
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order to upper bound the error term Errℓ := ∥Pℓ(V⊤
ℓ Xℓ −V⊤

ℓ µ
∗)
∥∥
2
. Using the inequalities

∥V⊤(Σ̂(ℓ) − Σ̃)V∥op ≤ ∥Σ̂(ℓ) − Σ̃∥op, λpℓ(V
⊤Σ̃V) ≤ λp(Σ̃), λ1(V

⊤Σ̃V) ≥ λ1(Σ̃)

that are true for every orthogonal matrix V , and keeping in mind the definition of Pℓ, we get

Errℓ ≤
{
2ωO∥Σ̂(ℓ) − Σ̃∥op +

ω2
O

1− ωO

(
(λp − λ1)(Σ̃) +

δ2ℓ
pℓ+1

)}1/2

+
∥∥PℓV⊤

ℓ ξS(ℓ)
I

∥∥
2
,

where we have used the notation

ωO = max
ℓ

|S(ℓ) ∩ O|
|S(ℓ)|

, ξi = Xi − µ∗

and δℓ = infµmaxi∈S(ℓ) ∥V⊤
ℓ (Xi − µ)∥2. Note that when O and (S(ℓ)I )c are of cardinality less

than nε and n(ε+ τ), respectively, we have ωO ≤ ε/(1− τ) and

ωO
1− ωO

≤ ε

1− ε− τ
.

Since CγrΣ̃ ≥ rΣ (by Lemma 9) then Lemma 4 holds for the new threshold t̃γ as well. We set

η := ε+ τ ≤ 3/4 and apply Lemma 4 to infer that ωO ≤ ε/(1− η) ≤ 4ε is true with probability

at least 1− δ. Furthermore, we know that δℓ ≤ maxi∈S(ℓ) ∥V⊤
ℓ Xi− µ̄(ℓ)∥2 ≤ t̃γ

√
pℓ. This yields

Errℓ ≤
{
8ε∥Σ̂(ℓ) − Σ̃∥op + 16ε2

(
(λp − λ1)(Σ̃) +

t̃2γpℓ

pℓ+1

)}1/2
+
∥∥PUℓ

ξS(ℓ)
I

∥∥
2
.

Let us introduce the shorthand T̃1 = maxℓ∈[L] ∥Σ̂(ℓ) − Σ̃∥op + ε(λp − λ1)(Σ̃). This leads to

Errℓ ≤
{
8εT̃1 +

16ε2t̃2γpℓ

pℓ+1

}1/2
+ ∥PUℓ

ξS(ℓ)
I

∥∥
2
. (B.20)

For the last error term, since pL = 1 we have by Lemma 5

ErrL ≤
∥∥PUL

ξ̄S(L)
I

∥∥
2
+

nε(t̃γ
√
pL +

∥∥PUL
µ∗ − µ̂GM

UL

∥∥
2
)

|S(L)|

≤
∥∥PUL

ξ̄S(L)
I

∥∥
2
+

εt̃γ + ε
∥∥PUL

µ∗ − µ̂GM
UL

∥∥
2

1− η

≤
∥∥PUL

ξ̄S(L)
I

∥∥
2
+ 4εt̃γ + 4ε

∥∥PUL
µ∗ − µ̂GM

UL

∥∥
2
. (B.21)
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Combining (B.20), (B.21), inequality pℓ ≤ epℓ+1, as well as the Minkowski inequality, we get

∥∥µ∗ − µ̂SDR
∥∥
2
=

{ L∑
ℓ=0

Err2ℓ

}1/2

≤
{
8εL(T̃1 + eεt2) + 16ε2

(
t̃γ +

∥∥PUL
µ∗ − µ̂GM

UL

∥∥
2

)2}1/2

+

{ L∑
ℓ=0

∥PUℓ
ξS(ℓ)

I

∥∥2
2

}1/2

≤ 2

√
2εLT̃1 + 9εt̃γ

√
L+ 4ε

∥∥PUL
µ∗ − µ̂GM

UL

∥∥
2
+

{ L∑
ℓ=0

∥PUℓ
ξS(ℓ)

I

∥∥2
2

}1/2

. (B.22)

To ease notation, let us set

rn =
(2rΣ + 3 log(2/δ)

n

)1/2
.

In view of Lemma 6, with probability at least 1− δ, we have

{ L∑
ℓ=0

∥PUℓ
ξS(ℓ)

I

∥∥2
2

}1/2

≤
{ L∑

ℓ=0

(
∥PUℓ

ξ̄n∥2
1− η

+
rn
√
η + η

√
3 log(2e/η)

1− η

)2}1/2

≤
{ L∑

ℓ=0

(
4∥PUℓ

ξ̄n∥2 + 4rn
√
η + 10η

√
log(2/η)

)2}1/2

≤ 4∥ξ̄n∥2 + 4rn
√
ηL+ 10η

√
L log(2/η).

Since ∥ξn∥22 has the same distribution as 1
n

∑p
j=1 λj(Σ)γ2j , where γ1, . . . , γp are i.i.d. standard

Gaussian, by (Comminges and Dalalyan, 2012, Lemma 8) we have

∥ξn∥22 ≤
2rΣ + 3 log(2/δ)

n
= r2n

with probability at least 1− δ. Therefore, with probability at least 1− 2δ,

( L∑
ℓ=0

∥PUℓ
ξS(ℓ)

I

∥∥2
2

)1/2

≤ 4rn
(
1 +

√
Lη

)
+ 10η

√
L log(2/η). (B.23)

Next, Lemma 4 and the fact that pL = dim(UL) = 1 imply that with probability at least 1− δ

∥∥PUL
µ∗ − µ̂GM

UL

∥∥
2
≤ 2(1 +

√
2rn)

1− 2ε
. (B.24)

Recall that we have chosen t̃γ in such a way that

t̃γ ≤
3(1 + Cγ

√
2rn/
√
τ)

1− 2ε∗
+ 1.6

√
log(2/τ). (B.25)
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Combining (B.22), (B.23), (B.24) and (B.25), we arrive at the inequality

∥∥µ̂SDR − µ∗∥∥
2
≤ 2

√
2εLT̃1 + 9εt̃γ

√
L+

8ε(1 + Cγ

√
2rn)

1− 2ε
+ 4rn

(
1 +

√
Lη

)
+ 10η

√
L log(2/η)

≤ 2

√
2εLT̃1 +

27ε
√
L(1 + Cγ

√
2rn/
√
τ)

1− 2ε∗
+ 14.4ε

√
L log(2/τ)

+
8ε(1 + Cγ

√
2rn)

1− 2ε
+ 4rn

(
1 +

√
Lη

)
+ 10η

√
L log(2/η)

that holds with probability at least 1− 3δ. In the upper bound obtained above, only the term T̃1

remains random. To bound T̃1 we first apply a triangle inequality then use Lemma 7. It implies

that with probability at least 1− 2δ, we have

T̃1 ≤ A

√
nrΣ + rΣ + nη log(2e/η) + 2 log(1/δ)

n(1− η)
+
(
4rn(1 +

√
η) + 10η

√
log(2/η)

)2
+ (1 + γ)ε+ γ

≤ 2A
(√

2rn + r2n + 4η log(2/η)
)
+
(
7.5rn + 10η

√
log(2/η)

)2
+ ε+ 2γ.

Consequently,√
εT̃1 ≤

{
2Aε

(√
2rn + r2n + 4η log(2/η)

)}1/2
+

(
7.5rn + 10η

√
log(2/η)

)√
ε+ ε+

√
2εγ

≤
{
2Aε

(√
2rn + r2n + 4η log(2/η)

)}1/2
+ 5.4rn + 7.1η

√
log(2/η) + ε+

√
2εγ

≤
{
2Aε

(√
2rn + 4η log(2/η)

)}1/2
+ (
√
A+ 5.4)rn + 7.1η

√
log(2/η) + ε+

√
2εγ

≤
√

2
√
2Arnε+ 2

√
2Aεη log(2/η) + (

√
A+ 5.4)rn + 7.1η

√
log(2/η) + ε+

√
2εγ

≤ ε+Arn/
√
2 + 2η

√
2A log(2/η) + (

√
A+ 5.4)rn + 7.1η

√
log(2/η) + ε+

√
2εγ

≤ (A/
√
2 +
√
A+ 5.4)rn + (7.1 + 2

√
2A)τ

√
log(2/τ) + (9.1 + 2

√
2A)ε

√
log(2/ε) +

√
2εγ.

These inequalities imply that there exists a universal constant C such that

∥∥µ̂SDR − µ∗∥∥
2
≤

C
(
Cγrn + τ

√
log(2/τ) + ε

√
log(2/ε) + rnε/

√
τ +
√
εγ

)√
L

1− 2ε∗
. (B.26)

Let us denote log+(x) = max{0, log(x)} the positive part of logarithm, then we choose

τ =
1

4

∧ r̃n√
log+(2/̃rn)

, with r̃n =

√
CγrΣ̃ +

√
2 log(2/δ)

√
n

.

Note that rn ≤
√
2̃rn and, furthermore, τ = 1/4 whenever r̃n ≥ 1/2. Therefore, rnε/

√
τ ≤ rn+ε.

Inserting this value of τ in (B.26) leads to

∥∥µ̂SDR − µ∗∥∥
2
≤

C
(
Cγrn + ε

√
log(2/ε) +

√
εγ

)√
L

1− 2ε∗
.

where C is a universal constant, the value of which is not necessarily the same in different

places where it appears. Replacing rn by its expression, upper bounding L by 2 log p, and
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using the fact that Cγ ≤ 3 for γ ∈ (0, 1/2] we arrive at

∥∥µ̂SDR − µ∗∥∥
2
≤ C
√
log p

1− 2ε∗

(√
rΣ
n

+

√
log(1/δ)

n
+ ε

√
log(2/ε) +

√
εγ

)
.

Note that this inequality holds true on an event of probability at least 1− 5δ.

B.3 Extension to Sub-Gaussian distributions

This section is devoted to the proof of Theorem 12, which is an extension of Theorem 11 to

the case when the 1 − ε portion of observations are sub-Gaussian. First, we formulate some

technical lemmas necessary for the proof of Theorem 12 postponing the full proof to the end

of the present section.

Recall that a random vector ζ with zero mean and identity covariance matrix is sub-

Gaussian with variance proxy s > 0, ζ ∼ SGp(s), if

E[ev
⊤ζ ] ≤ exp

{ s

2
∥v∥2

}
, ∀v ∈ Rp.

The concentration inequality for sub-Gaussian vectors is a well-known fact (see, e.g. (Rigollet

and Hütter, 2019), Theorem 1.19) that if ζ ∼ SGp(s) then for all δ ∈ (0, 1), it holds

P
(
∥ζ∥2 ≤ 4

√
ps+

√
8s log(1/δ)

)
≥ 1− δ. (B.27)

In the definition of SGAC(µ∗,Σ, s, ε) we assume that the 1− ε portion of the data {Xi}ni=1 are

sub-Gaussian, that is Xi = µ∗ +Σ1/2ζi for all i ∈ I, where the set I is of cardinality at least

(1− ε)n. Denote ξi = Σ1/2ζi for all i = 1, . . . , n and assume that ∥Σ∥op = 1.

First, we show that with the choice of threshold parameter the analogous to Lemma 2,

Lemma 3, Lemma 4 lemmas hold true. Notice that all three lemmas are using the concen-

tration bound for the operator norm of (sub)-Gaussian vectors. In the case of Gaussian vec-

tors we make use of (Vershynin, 2012, Corollary 5.35), while the analogous result for the

sub-Gaussian distributions is also known (Vershynin, 2012, Theorem 5.39). For the readers

convenience the latter is formulated in Lemma 1.

Lemma 10. Let J ⊂ {1, . . . , n} be a subset of cardinality m. For every δ ∈ (0, 1), it holds that

P

(∥∥∥∥∑
j∈J

ξj

∥∥∥∥
2

≤ 4
√
pms+

√
8ms log(1/δ)

)
≥ 1− δ.

Proof of Lemma 10. Without loss of generality, we assume that J = {1, . . . ,m}. On the one

hand, ∥Σ∥op = 1 implies that ∥∥∥∥ m∑
i=1

ξi

∥∥∥∥
2

≤
∥∥∥∥ m∑

i=1

ζi

∥∥∥∥
2

.
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On the other hand, ζ1+. . .+ζm ∼ SGp(ms). Applying inequality (B.27) to this random variable

yields the desired result.

We now state the versions of Lemma 2 and Lemma 4 that are valid in the setting of sub-

Gaussian vectors. Notice that the only difference is in the choice of the threshold; thanks

to Lemma 1, the threshold now includes the universal constant C0 and the variance proxy

s. The proofs of these lemmas are omitted, since they are the same as in the Gaussian

case presented in Appendix B.1.3 (except for bounding the operator norm of a matrix with

sub-Gaussian columns we use Lemma 1).

Lemma 11. With probability at least 1− δ, for all linear subspaces V ⊂ Rp, we have

∥µ̂GM
V − PV µ

∗∥2√
dim(V )

≤
2
√
∥Σ∥op

1− 2ε

(
1 +

C0

(
s
√
p+ 2s

√
log(1/δ)

)
√
n

)
,

where the constant C0 is the same constant as in Lemma 1.

Lemma 12. Let τ and δ be two numbers from (0, 1). Define

z = 1 +
C0s(
√
p+

√
2 log(1/δ))

√
nτ

+ C0s
√
2 + 2 log

(
1/τ

)
with the same constant C0 as in Lemma 1. Then, with probability at least 1− δ, we have

sup
V

n∑
i=1

1
(
∥PV ξi∥22 > z2 dim(V )

)
≤ nτ,

where the supremum is over all linear subspaces V of Rp.

Lemma 13 (Koltchinskii and Lounici (2017), Theorem 9). There is a constant A3 > 0 depend-

ing only on the variance proxy τ such that for every pair of integers n ≥ 1 and p ≥ 1, we

have

P

(
∥ζ1:nζ⊤1:n − nΣ∥op ≥ A3

(√
(p+ t)n+ p+ t

))
≤ e−t, ∀t ≥ 1.

Lemma 14. There exists a positive constant A such that, for any positive integer m ≤ n and

any t ≥ 1, with probability at least 1− 2e−t, the inequality

∥Σ̂S −Σ∥op ≤ A

√
np+ p+m log(2ne/m) + 2t

n−m
+
∥∥ξS∥∥22

is satisfied for every S ⊂ [n] of cardinality ≥ n−m.

Proof. The proof of this lemma is similar to the proof of Lemma 7 with the only difference that

instead of Theorems 4 and 5 from (Koltchinskii and Lounici, 2017) we now use Lemma 13.
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Lemma 15. For any positive integer m ≤ n and any t > 0, with probability at least 1− e−t, we

have

max
|S|≥n−m

∥∥∥ 1

|S|
∑
i∈S

P ξi

∥∥∥
2
≤ n∥Pξ̄n∥2

n−m
+

√
ms(4

√
p+ 2

√
2t) + 2m

√
2s log(2ne/m)

n−m
.

Proof. The proof of this theorem is similar to that of Lemma 6, with the only exception that now

we need to bound the maximum of a norm of a sum of at most m sub-Gaussian vectors, where

the maximum is taken over all subsets of [n] of size at most m. Since, each sub-Gaussian

vector has a variance proxy s then using Lemma 10 along with union bound, we have

P
(
max
|J |≤m

∥∥∥∑
i∈J

ξi

∥∥∥
2
≥
√
ms(4

√
p+ tm)

)
≤

m∑
l=1

(
n

l

)
P
(∥∥∥ l∑

i=1

ξi

∥∥∥
2
≥
√
ms(4

√
p+ tm)

)

≤
m∑
l=1

(ne
l

)l
P
(∥∥∥ l∑

i=1

ξi

∥∥∥
2
≥
√
ls(4
√
p+ tl)

)
≤

m∑
l=1

(ne
l

)l
e−tl/3 ≤ e−t.

Therefore, we obtain that with probability at least 1− e−t the inequality

max
|J |≤m

∥∥∥∑
i∈J

ξi

∥∥∥
2
≤
√
ms(4

√
p+ 2

√
2t) + 2m

√
2s log(2ne/m)

holds. Then, combining with

1

|S|

∥∥∥∑
i∈S

Pξi

∥∥∥
2
≤ n∥Pξ̄n∥2

n−m
+

1

n−m
max
|J |≤m

∥∥∥∑
i∈J

ξi

∥∥∥
2
.

yields the desired result.

B.3.1 Proof of Theorem 12

All the ingredients provided, we can now compile the complete proof of Theorem 12.

Taking UL := VL, the algorithm detailed in (3.2) returns µ̂SDR =
∑L

ℓ=0 µ̂
(ℓ) with µ̂(ℓ) ∈

Uℓ = Im(VℓU
⊤
ℓ ) for every ℓ ∈ {0, . . . , L}where the two-by-two orthogonal subspaces U0, . . . ,UL

span the whole space Rp. This allows us to decompose the risk:

∥∥µ̂SDR − µ∗∥∥2
2
=

L∑
ℓ=0

∥∥PUℓ
(Xℓ − µ∗)

∥∥2
2
=

L∑
ℓ=0

∥∥Pℓ(V⊤
ℓ Xℓ −V⊤

ℓ µ
∗)
∥∥2
2
,

where Pℓ := U⊤
ℓ Uℓ is the projection matrix projecting onto the subspace of Rpℓ spanned by

the bottom pℓ − pℓ+1 eigenvectors of V⊤
ℓ (Σ̂

(ℓ) −Σ)Vℓ for ℓ = 0, . . . , L with the convention that
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pL+1 = 0.

For ℓ ∈ {0, . . . , L− 1}, we intend to apply Proposition 6 to Zi = V⊤
ℓ Xi and µZ = V⊤

ℓ µ
∗ in

order to upper bound the error term Errℓ := ∥Pℓ(V⊤
ℓ Xℓ −V⊤

ℓ µ
∗)
∥∥
2
. Using the inequalities

∥V⊤(Σ̂(ℓ) −Σ)V∥op ≤ ∥Σ̂(ℓ) −Σ∥op, λpℓ(V
⊤ΣV) ≤ λp(Σ), λ1(V

⊤ΣV) ≥ λ1(Σ)

that are true for every orthogonal matrix V , and keeping in mind the definition of Pℓ, we get

Errℓ ≤
{
2ωO∥Σ̂(ℓ) −Σ∥op +

ω2
O

1− ωO

(
(λp − λ1)(Σ) +

δ2ℓ
pℓ+1

)}1/2

+
∥∥PℓV⊤

ℓ ξS(ℓ)
I

∥∥
2
,

where we have used the notation

ωO = max
ℓ

|S(ℓ) ∩ O|
|S(ℓ)|

, ξi = Xi − µ∗

and δℓ = infµmaxi∈S(ℓ) ∥V⊤
ℓ (Xi − µ)∥2. Note that when O and (S(ℓ)I )c are of cardinality less

than nε and n(ε+ τ), respectively, we have ωO ≤ ε/(1− τ) and ωO
1−ωO

≤ ε
1−ε−τ .

We set η := ε+ τ ≤ 3/4 and apply Lemma 12 to infer that ωO ≤ ε/(1− η) ≤ 4ε is true with

probability at least 1 − δ. Furthermore, we know that δℓ ≤ maxi∈S(ℓ) ∥V⊤
ℓ Xi − µ̄(ℓ)∥2 ≤ t

√
pℓ.

This yields

Errℓ ≤
{
8ε∥Σ̂(ℓ) −Σ∥op + 16ε2

(
(λp − λ1)(Σ) +

t2pℓ
pℓ+1

)}1/2
+
∥∥PUℓ

ξS(ℓ)
I

∥∥
2
.

Let us introduce the shorthand T1 = maxℓ∈[L] ∥Σ̂(ℓ) −Σ∥op + ε(λp − λ1)(Σ). This leads to

Errℓ ≤
{
8εT1 +

16ε2t2pℓ
pℓ+1

}1/2
+ ∥PUℓ

ξS(ℓ)
I

∥∥
2
. (B.28)

For the last error term, since pL = 1 then, by the combination of Lemma 11 and Lemma 12,

we have

ErrL ≤
∥∥PUL

ξ̄S(L)
I

∥∥
2
+

nε(t
√
pL +

∥∥PUL
µ∗ − µ̂GM

UL

∥∥
2
)

|S(L)|

≤
∥∥PUL

ξ̄S(L)
I

∥∥
2
+

εt+ ε
∥∥PUL

µ∗ − µ̂GM
UL

∥∥
2

1− η

≤
∥∥PUL

ξ̄S(L)
I

∥∥
2
+ 4εt+ 4ε

∥∥PUL
µ∗ − µ̂GM

UL

∥∥
2
. (B.29)
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Combining (B.28), (B.29), inequality pℓ ≤ epℓ+1, as well as the Minkowski inequality, we get

∥∥µ∗ − µ̂SDR
∥∥
2
=

{ L∑
ℓ=0

Err2ℓ

}1/2

≤
{
8εL(T1 + eεt2) + 16ε2

(
t+

∥∥PUL
µ∗ − µ̂GM

UL

∥∥
2

)2}1/2

+

{ L∑
ℓ=0

∥PUℓ
ξS(ℓ)

I

∥∥2
2

}1/2

≤ 2
√
2εLT1 + 9εt

√
L+ 4ε

∥∥PUL
µ∗ − µ̂GM

UL

∥∥
2
+

{ L∑
ℓ=0

∥PUℓ
ξS(ℓ)

I

∥∥2
2

}1/2

. (B.30)

To ease notation, let us set

rn,s =
4
√
s
(√

p+ 2
√
log(2/δ)

)
√
n

.

In view of Lemma 15, with probability at least 1− δ, we have

{ L∑
ℓ=0

∥PUℓ
ξS(ℓ)

I

∥∥2
2

}1/2

≤
{ L∑

ℓ=0

(
∥PUℓ

ξ̄n∥2
1− η

+
rn,s
√
η + 2η

√
2 log(2e/η)

1− η

)2}1/2

≤
{ L∑

ℓ=0

(
4∥PUℓ

ξ̄n∥2 + 4rn,s
√
η + 10η

√
log(2/η)

)2}1/2

≤ 4∥ξn∥2 + 4rn,s
√
ηL+ 10η

√
L log(2/η).

Moreover, since the random variable ξn is sub-Gaussian with variance proxy s/n, hence by

Lemma 8 we have

∥ξn∥22 ≤
16s

(√
p+ 2

√
log(2/δ)

)2
n

= r2n,s

with probability at least 1− δ. Therefore, with probability at least 1− 2δ,

( L∑
ℓ=0

∥PUℓ
ξS(ℓ)

I

∥∥2
2

)1/2

≤ 4rn,s
(
1 +

√
Lη

)
+ 10η

√
L log(2/η). (B.31)

Next, the combination of Lemma 11 and Lemma 12 and the fact that pL = dim(UL) = 1

imply that with probability at least 1− δ

∥∥PUL
µ∗ − µ̂GM

UL

∥∥
2
≤ 2(1 + Crn,s

√
s/4)

1− 2ε
, (B.32)

where C is the same universal constant as in Lemma 1. Recall that we have chosen t in such

a way that

t ≤ 3(1 + C0rn,s
√
s/4
√
τ)

1− 2ε∗
+ 1.6C0s

√
log(2/τ). (B.33)
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Combining (B.30), (B.31), (B.32) and (B.33), we arrive at the inequality

∥∥µ̂SDR − µ∗∥∥
2
≤ 2

√
2εLT1 + 9εt

√
L+

8ε(1 + Crn,s
√
s/4)

1− 2ε
+ 4rn,s

(
1 +

√
Lη

)
+ 10η

√
L log(2/η)

≤ 2
√

2εLT1 +
27ε
√
L(1 + Crn,s

√
s/4
√
τ)

1− 2ε∗
+ 14.4Csε

√
L log(2/τ)

+
8ε(1 + Crn,s

√
s/4)

1− 2ε
+ 4rn,s

(
1 +

√
Lη

)
+ 10η

√
L log(2/η)

that holds with probability at least 1 − 3δ. In the upper bound obtained above, only the term

T1 remains random. We can upper bound this term using Lemma 14. It implies that with

probability at least 1− 2δ, we have

T1 ≤ A

√
np+ p+ nη log(2e/η) + 2 log(1/δ)

n(1− η)
+
(
4rn,s(1 +

√
η) + 10η

√
log(2/η)

)2
+ ε

≤ As

(
rn,s + r2n,s + 8η log(2/η)

)
+
(
7.5rn,s + 10η

√
log(2/η)

)2
+ ε,

where As is a constant depending only on the variance proxy s, the value of which is not

necessarily the same in further simplifications of the expression from the last display. Then,

using the triangle inequality several times we arrive at the following expression

√
εT1 ≤

{
Asε

(
rn,s + r2n,s + 8η log(2/η)

)}1/2
+
(
7.5rn + 10η

√
log(2/η)

)√
ε+ ε

≤ (As +
√

As/2 + 5.4)rn,s + (7.1 + 2
√
2As)τ

√
log(2/τ) + (9.1 + 2

√
2As)ε

√
log(2/ε).

These inequalities imply that there is a universal constant C such that

∥∥µ̂SDR − µ∗∥∥
2
≤

Cs
(
Asrn,s/

√
s+ τ

√
log(2/τ) + ε

√
log(2/ε) + rn,sε/

√
sτ
)√

L

1− 2ε∗
. (B.34)

Let us denote log+(x) = max{0, log(x)} the positive part of logarithm, then we choose

τ =
1

4

∧ r̄n,s√
log+(2/r̄n,s)

, with r̄n,s =
3
√
s
(√

p+ 2
√
log(2/δ)

)
√
n

.

Note that rn,s ≤
√
2r̄n,s and, furthermore, τ = 1/4 whenever r̄n,s ≥ 1/2. Therefore, rn,sε/

√
τ ≤

rn,s + ε. Inserting this value of τ in (B.34) leads to

∥∥µ̂SDR − µ∗∥∥
2
≤

C s
(
Asrn,s/

√
s+ ε

√
log(2/ε)

)√
L

1− 2ε∗
.

where C is a universal constant. Replacing rn,s by its expression, and upper bounding L by

2 log p, we arrive at

∥∥µ̂SDR − µ∗∥∥
2
≤ C s

√
log p

1− 2ε∗

(
As

√
p

n
+ ε

√
log(2/ε) +As

√
log(1/δ)

n

)
.
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Note that this inequality holds true on an event of probability at least 1− 5δ.
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Titre: Contributions à l’estimation robuste : optimalité minimax vs. efficacité calculatoire

Mots clés: robustesse, approche minimax, efficacité calculatoire, statistique en grande
dimension

Résumé: En statistique et en théorie
de l’apprentissage statistique, on suppose
souvent que les échantillons sont distribués
indépendamment et identiquement selon
une distribution de probabilité de référence.
Une approche plus réaliste pourrait consis-
ter à relaxer cette hypothèse en permet-
tant à une fraction des échantillons de ne
pas nécessairement suivre la distribution
de référence. Ces échantillons désobéis-
sants, appelés données aberrantes, peu-
vent considérablement détériorer la perfor-
mance des estimateurs classiques. Dans
ce travail, nous cherchons à estimer la
moyenne des distributions de référence
par des estimateurs robustes aux données
aberrantes. Nous nous intéressons au
comportement non-asymptotique des esti-
mateurs.
Dans un premier temps, nous décrivons
divers modèles de contamination qui déter-
minent la nature des données aberrantes

parmi nos observations. Puis, nous con-
sidérons le problème de l’estimation de la
moyenne d’une distribution dont le sup-
port est le simplexe de probabilité de di-
mension k dans le cas où une fraction
ε d’observations sont des données aber-
rantes générées par un adversaire. Un
exemple particulier simple est le problème
de l’estimation de la distribution d’une vari-
able aléatoire discrète. Dans un deux-
ième temps, nous étudions le problème
de l’estimation robuste de la moyenne
d’une distribution gaussienne. Les es-
timateurs minimax-optimaux connus pour
ce problème ne sont pas calculables en
temps polynomial. Nous introduisons un
estimateur efficace basé sur la réduction
spectrale de dimension et établissons une
borne supérieure sur son erreur qui est
minimax-optimale modulo des facteurs log-
arithmiques.

Title: Contributions to robust estimation: minimax optimality vs. computational tractability

Keywords: robustness, minimax approach, computational efficiency, high-dimensional
data

Abstract: In statistics and learning theory,
it is common to assume that samples are in-
dependently and identically distributed ac-
cording to a reference probability distribu-
tion. A more realistic approach could be to
relax this assumption by allowing a fraction
of samples to not necessarily follow the ref-
erence distribution. These disobeying sam-
ples, called outliers, may drastically skew
the classical estimators. In this work, we
aim to estimate the mean of reference dis-
tributions by estimators robust to outliers.
We are interested in the non-asymptotic be-
havior of the estimators.
In the first stage, we describe various con-
tamination models which determine the na-
ture of the outliers among our observations.

Then, we consider the problem of estimat-
ing the mean of a distribution supported
by the k-dimensional probability simplex in
the setting where an ε fraction of observa-
tions are outliers generated by an adver-
sary. A simple particular example is the
problem of estimating the distribution of a
discrete random variable. In the second
stage, we study the problem of robust esti-
mation of the mean of a Gaussian distribu-
tion. The known minimax-optimal estima-
tors for this problem are not computationally
tractable. We introduce a computationally
efficient estimator based on spectral dimen-
sion reduction and establish a finite sample
upper bound on its error that is minimax-
optimal up to logarithmic factors.
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