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Abstract

The present thesis addresses the problem of cosmological backreaction, i.e., the question of wheth-
er and to which extent cosmological inhomogeneities affect the global evolution of the Universe.
We will thereby focus on, but not restrict to, backreaction in a purely quantum theoretical frame-
work which is adapted to describe situations during the earliest phases of the Universe. Our
approach to evaluating backreaction uses a perturbative and constructive mathematical formal-
ism which is denoted as space adiabatic perturbation theory, and which extends the well-known
Born-Oppenheimer approximation to molecular systems.

The underlying idea of this scheme is to separate the system into an adiabatically slow and
a fast part, similar to the separation of nuclear and electronic subsystems in a molecular setting.
Such a distinction is reasonable if a corresponding perturbation parameter can be identified. In
case of molecular systems, such a parameter arises as the ratio of the light electron and heavy
nuclear masses. In the case of the here considered cosmological systems, we identify the ratio of
the gravitational and the matter coupling constants as a suitable perturbative parameter. In a first
step, we apply the space adiabatic formalism to a toy model and compute the backreaction of a
homogeneous scalar field on a homogeneous and isotropic geometry. We restrict the computa-
tions to second order in the adiabatic perturbations and obtain an effective Hamilton operator for
the geometry.

In the sequel, we apply space adiabatic perturbation theory to an inhomogeneous cosmol-
ogy and calculate backreaction effects of the inhomogeneous quantum cosmological fields on
the global quantum degrees of freedom. Therefore, it is necessary to first extend the scheme
adequately for an application to infinite dimensional field theories. In fact, the violation of the
Hilbert-Schmidt condition for quantum field theories prevents a direct application of the scheme.
A solution is obtained by a transformation of variables which is canonical up to second order in
the cosmological perturbations. This allows us to compute an effective Hamilton operator for a
cosmological field theory previously deparametrized by a timelike dust field as well as the identi-
fication of an effective Hamilton constraint for a system with gauge-invariant cosmological per-
turbations. Both objects act on the global degrees of freedom and include the backreaction of the
inhomogeneities up to second order in the adiabatic perturbation theory.

We conclude that it is a priori inadmissible to neglect cosmological backreaction. However,
due to the general difficulties associated with finding solutions for coupled gravitational systems,
the concrete evaluation of the operators found here must remain the subject of future research.
One obstacle is the occurrence of indefinite mass squares associated with the perturbation fields
which are the result of the previous transformations (which however, already appear in indepen-
dent problems, for example in the use of Mukhanov-Sasaki variables) . A further complication
in the final quantization and search for appropriate solutions arises from the non-polynomial
dependence on the global degrees of freedom. We discuss these obstacles in detail and point to
possible solutions.






Zusammenfassung

Die vorliegende Dissertation befasst sich mit dem Thema der kosmologischen Riickwirkungen,
also insbesondere der Frage ob und in welchem Ausmafie kosmologische Inhomogenitédten die
Entwicklung des Universums auf seinen gréfiten Skalen beeinflusst. Dabei liegt unser Fokus
auf Riickwirkungen in einem rein quantenmechanischen Formalismus, welcher mutmafllich das
Universum in seinen frithesten Phasen addquat beschreibt. Wir werden allerdings ebenso auf
Resultate und den Forschungsstand auf dem Gebiet der Riickreaktionen fiir die spiteren semik-
lassischen und klassischen Phasen eingehen. Unser Ansatz zur Berechnung von quantenmech-
anischen Riickwirkungen beruht auf der perturbativen und konstruktiven Raumadiabatischen
Storungstheorie, welche eine Erweiterung der bekannten Born-Oppenheimer Approximation fiir
molekulare Systeme darstellt.

Die Idee des verwendeten Schemas beruht darauf das betrachtete Gesamtsystem in einen
adiabatisch langsamen und einen schnellen Anteil zu separieren, dhnlich wie die Unterteilung
in Kern- und Elektronensysteme auf molekularer Ebene. Dies ist dann physikalisch sinnvoll,
wenn ein entsprechender Stérparameter identifiziert werden kann. Im Falle von molekularen
Systemen ist dies das Massenverhiltnis; im Falle der hier betrachteten kosmologischen Systeme
identifizieren wir das Verhiltnis der gravitationellen und der Materie—-Kopplungskonstanten als
Storparameter. In einem ersten Schritt wenden wir die Raumadiabatische Stérungstheorie auf
ein einfaches Beispielsystem an und berechnen die Riickwirkung eines homogenen Skalarfeldes
auf eine homogene und isotrope Geometrie. Wir beschrinken uns dabei auf die Ermittlung eines
effektiven Hamiltonoperators fiir die Geometrie bis zur zweiten Storungsordnung.

Im Weiteren wenden wir das Raumadiabatische Schema auf inhomogene kosmologische
Systeme an und berechnen die Riickwirkungen der inhomogenen quantenkosmologischen Felder
auf die globalen Quantenfreiheitsgrade des Systems. Dazu miissen wir das Schema zunichst
addquat fiir die Anwendung auf unendlich dimensionale Feldtheorien erweitern. Tatsdchlich
verhindert die Verletzung der Hilbert-Schmidt Bedingung fiir Quantenfeldtheorien die Anwen-
dung des Schemas auf die hier betrachteten Systeme. Eine Losung erhilt man durch eine Vari-
ablentransformation der Feldtheorie, die hier bis auf zweite Ordnung in den kosmologischen
Storungen kanonisch ist. Dies ermdoglicht die Berechnung eines effektiven Hamiltonoperators
fiir eine kosmologische Feldtheorie, die zuvor durch ein Staubfeld deparametrisiert wurde, sowie
die Bestimmung einer effektiven Hamilton Zwangsbedingung fiir ein System mit eichinvarianten,
kosmologischen Storungen. Beide Objekte wirken auf die globalen Freiheitsgrade und beinhalten
die Riickwirkungen der Inhomogenititen bis zur zweiten adiabatischen Stérungsordnung.

Wir schlieflen daraus, dass es a priori unzuldssig ist solche kosmologischen Riickwirkun-
gen zu vernachlidssigen. Aufgrund der allgemeinen Schwierigkeit Losungen fiir gekoppelte grav-
itationelle Quantensysteme zu finden, muss allerdings die konkrete Auswertung der ermittelten
Operatoren und Zwangsbedingungen Gegenstand zukiinftiger Forschung bleiben.

Eine Hiirde stellt dabei das Auftreten von indefiniten Massenquadraten fiir die Feldtheorien
dar, die Resultat der zuvor durchgefiihrten Transformationen sind (welche aber auch schon in



hiervon unabhéngigen Problemen auftauchen, zum Beispiel bei der Verwendung von Mu-
khanov-Sasaki Variablen). Ein Erschwernis bei der finalen Quantisierung und Suche nach ent-
sprechenden Losungen ergibt sich zudem durch die nicht-polynomielle Abhingigkeit von den
globalen Variablen. Wir diskutieren diese Hiirden ausfiihrlich und weisen auf mogliche Lo-
sungsstrategien hin.



Résumeé

Cette thése aborde le probléme des réactions inverses en cosmologie. Plus précisément, nous cher-
chons a donner une réponse a la question de la signification et de la forme des effets excercés par
les inhomogénéités cosmologiques sur 'évolution globale de 'Univers et cela dans un cadre pure-
ment quantique. Nous nous concentrerons donc, mais sans nous y limiter, sur les réactions in-
verses quantiques adaptées pour décrire les premiéres phases de 'Univers. Notre approche se sert
d’un formalisme perturbatif et constructif nommé théorie des perturbations spatio—adiabatiques
et qui s’inspire de ’'approximation de Born—-Oppenheimer bien connue de I’analyse spectrale des
systémes moléculaires. Cette théorie développe 'approche de Born-Oppenheimer de plusieurs
facons.

L’idée sous-jacente de cette approche consiste a séparer le systéme en une partie adiaba-
tiquement lente et en une partie rapide, similaire a la séparation des sous-systemes nucléaires
et électroniques dans un molécule. Une telle distinction est raisonnable si un parameétre pertur-
batif correspondant peut étre identifié. Dans le cas des systemes moléculaires, un tel parametre
provient de la fraction des masses des électrons légers et des noyaux lourds. En cosmologie par
contre, nous identifions le rapport des constantes de couplage de la gravitation et de la matiere
comme un parametre perturbatif susceptible. Dans une premiére étape, nous appliquons ce for-
malisme spatio—adiabatique a un modele d’oscillateurs simples ainsi qu’a un modele cosmologique
réduit de symétries comprenant un champ scalaire couplé a la géométrie d’espace-temps. Nous
réussissons a dériver des opérateurs hamiltonien effectifs dans les deux cas qui comprennent les
réactions inverses du systéme rapide excercés au systeéme lent. Nous nous limitons a des calculs
au second ordre dans les perturbations adiabatiques.

Par la suite, nous appliquons la théorie des perturbations spatio—adiabatiques a des mod-
éles de cosmologie inhomogeéne et calculons les effets des réactions inverses des champs cos-
mologiques quantiques et inhomogenes sur les degrés de liberté quantiques globaux (par exemple
sur le taux d’expansion de I'Univers). Pour cela, il est nécessaire d’étendre le schéma de maniere
adéquate pour permettre son application aux théories des champs de dimension infinie. Plus
précisément, la violation de la condition de Hilbert-Schmidt dans le contexte des théories quan-
tiques des champs empéche l'application directe du schéma. Il s’avere qu’une transformation des
variables (au niveau classique) qui est canonique jusqu’au second ordre dans les perturbations
cosmologiques offre une solution a ce dilemme. Ces transformations nous permettent de calculer
un opérateur hamiltonien effectif pour une théorie cosmologique des champs quantiques, préal-
ablement déparamétrisée par un champ de poussiére, ainsi que I'identification d’une contrainte
hamiltonienne effective pour un systéeme comprenant des perturbations cosmologiques invari-
antes de jauge. Les deux objets agissent sur les degrés de liberté globaux et incluent les effets des
réactions inverses des inhomogénéités jusqu’au second ordre spatio—adiabatique.

Nous concluons par souligner qu’il est a priori inadmissible de négliger les effets de réaction
inverse en cosmologie selon nos résultats. Cependant, en raison des difficultés générales associées
a la recherche de solutions pour les systémes gravitationnels couplés a la matiére, ’évaluation



concréte des opérateurs trouvés ici reste le sujet de recherches futures. Un obstacle est
lapparition de carrés de masse indéfinis associés aux champs perturbatifs qui sont le résultat des
transformations mentionnées ci-dessus. Une autre complication dans la quantification finale et
la recherche de solutions appropriées provient de la dépendance non—polynomiale des degrés de
liberté globaux. Nous discutons ces obstacles en détail et indiquons des solutions possibles.
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1. Backreaction and the Physical Standard Model

The aim of this work is to investigate the physical interactions in the very early Universe and
more precisely to develop a suitable theoretical formalism that incorporates backreaction effects
between the different components of gravity-matter systems. In particular, we develop a formal-
ism within non-perturbative quantum gravity that allows to iteratively include the interactions
between its constituents while providing effective quantum constraints or equations of motion
with a significantly simpler structure compared to full quantum gravtiy, and whose solutions be-
come hence into reach. Progress in this direction will also allow to approach the semiclassical
limit in quantum cosmology which is of utmost importance in order to bridge the gap between
theory and experiment. The purpose of this introductory chapter is to motivate and specify the
assumptions of this endeavor, to examine their adequacy, and to eventually provide the reader
with a short outline of our goals and achievements.

We will first show how our specific research question is directly linked to the scientific
progress in the fields of general relativity, the concordance model of cosmology, and the open
questions related to it, the invention of quantum mechanics and the related perturbative quan-
tum field theories, the technical difficulties arising in quantum field theories on curved space
times and full non-perturbative quantum gravity. We will then present several strategies to mit-
igate the latter obstacles and bridge the gap between theory and observation. In particular, we
shortly discuss several Planck mass perturbation theories, symmetry reduction, and the question
of how the semiclassical limit of quantum gravity is related to our question of backreaction. The
two former programs are however only partly able to solve these problems and neglect important
parts of the interaction between the gravity and matter degrees of freedom. We therefore strongly
advocate to apply the scheme of space adiabatic perturbation theory to quantum gravity,
or our extension thereof, and point to the goals that have been achieved in the course of this thesis.

We refer the reader who is exclusively interested in acquiring information about the consid-
erable advantages of implementing[SAPT]|in perturbative quantum cosmology in comparison to
other approaches studied so far, and who would like to jump to the specific achievements of this
thesis, directly to section[1.1.10|of this chapter. Besides, more detailed overviews of certain topics
can be found in part|I) of this thesis. Since we follow the development of the relevant theories in
chronological order, this chapter can also be perceived as a historical synopsis. It provides the rel-
evant notions necessary for this thesis but also goes beyond in that it offers a thorough historical
embedding. A concise and more pragmatic outline of this thesis will be given in section|1.2
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1. Backreaction and the Physical Standard Model

1.1. Physical and Historical Background

To begin with, we clarify the meaning of the notion of “backreaction” used here, leading us directly
to the theoretical foundations of this work and its embedding in 20th and 21st century physics.
In particular, by backreaction we mean the effect of quantum cosmological perturbations (i.e., of
quantized fields of linear cosmological perturbations) on the homogeneous quantum cosmologi-
cal degrees of freedom of a gravity-matter system. This is of course not the only possible definition
of backreaction as we will see in the sequel but it makes certainly sense to denote these effects as
backreaction effects.

The backreaction problem is then concerned with the question about how and to which
extent these backreactions from the perturbations possibly affect the background, and aims hence
at incorporating the actual (or at least improved) dynamics of the system which has been (over-
)simplified before. Here, we start however with the question of why this problem arises at all and
how it is founded in the developments of physics during the last centuries. We take a step back
and start with the inceptions of general relativity, quantum theory and quantum field theory on

curved space time (QFT on CST)).

1.1.1. The Success of General Relativity

Indeed, the 20th century started with a physical revolution regarding the common understanding
of space and time especially brought forward by Einstein (1905b), (Weinberg 1972): In accor-
dance with most experimental data at that time and following Newton’s Philosophice Naturalis
Principia Mathematica, most physicists and natural philosophers had assumed that all motions
take place on a static three-dimensional Euclidean spatial manifold with a common uniform time
variable. It was soon recognized that the induced Galilean space time transformations led to in-
consistencies when applied to the famous Maxwell equations for electromagnetism but that an-
other set of transformations which became known under the name of Lorentz transformations
leaves them invariant (Larmor 1897; Lorentz 1904; Macrossan [1986; Poincaré 1905; Weinberg
1972). Thereupon, Einstein (1905b)) derived the same transformations by assuming the principle
of relativity and the constancy of the speed of light in all inertial frames, hence showing that the
transformation of space and time coordinates of relatively moving inertial observers is provided
by Lorentz’ transformations (Weinberg [1972). As Minkowski (1909)) realized, Einstein’s special
theory of relativity is most conveniently formulated by introducing four-dimensional space time
vectors, and more generically in a covariant way in which the static Minkowski metric 7,,,, is a con-
stant Lorentz-invariant tensor field providing a measure of space and time for inertial observers
(Einstein [1914).

Einstein and Grossmann (1913) finally succeeded in developing a likewise covariant the-
ory of the gravitational force denoted as general relativity (see chapter [2|and particularly section
which replaces the constant Minkowski metric with a generally space time dependent metric
tensor field g, (Einstein [1914, 1916a; Weinberg |1972). The dynamical Einstein field equations
for g,,, depend directly on the distribution of the matter and energy content, and are given by
G = STW where G, is the geometric Einstein tensor, T, is the matter stress-energy ten-
sor and |G|is Newton’s constant. Einstein’s theory changed the understanding of space and time
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1.1. Physical and Historical Background

severely. One relevant feature is that there is no preferred coordinate system and that physics
must not depend on a coordinate choice, i.e., the theory is diffeomorphism invariant. Besides and
most importantly, the geometry of space time is dynamical which is a very crucial feature for our
backreaction problem here.

To date, general relativity presents one of the most successful physical theories whose foun-
dations and implications could be tested up to very high precision at the scale of our solar system
and below: Both the weak and the strong equivalence principle underlying the theory (Will|1993)
could be checked and confirmed to the highest accuracy (Dittus and Limmerzahl [2005)). For ex-
ample, Touboul et al. (2017)) tested the universality of free fall (and hence the weak equivalence
principle) with a precision to the order of 107! while Voisin et al. (2020) confirmed the strong
equivalence principle with a pulsar in a triple stellar system. The recent detection of gravitational
waves provides a meanwhile extensive catalog of different gravitational systems confirming Ein-
stein’s theory in an additional astonishing way (B. P. Abbott et al. 2019} R. Abbott et al. 2020). In
fact, Einstein (1916a)) himself had already deduced the anomalous precession of the perihelion
of Mercury and thus presented a first important test of his theory by explaining already existing
experimental data (Le Verrier 1859). In short, general relativity is one of the best tested scientific
theories, at least on scales of the solar system (Will 2006), and predicts a plethora of physical phe-
nomena that have been detected today such as black holes (Ghez et al.[1998; Schwarzschild|1916))
and gravitational waves (B. P. Abbott et al. 2019} Einstein (1916b), [1918)).

1.1.2. Our Universe and Concordance Cosmology

Unfortunately, Einstein’s equations are second order, non-linear differential equations for the
metric tensor and consequently very difficult to solve. Exact solutions only exist for very specific,
highly symmetric situations such as black holes (Townsend|1997)) or for cosmological symmetries
(Stephani et al.|2003])). In fact, the homogeneous and isotropic solutions of the field equations, the
solutions of gravity (Friedman 1922, (1924 Lemaitre|1931; H. P. Robertson (1935} [1936albj
Walker|1937), have not only convinced by their simplicity but also provide a model of the Universe
that is in astonishing agreement with observational data (despite a number of open puzzles to
which we will come in the following), see sections|2.2|and Probably due to the simplicity of
these equations, the recording of cosmological data has experienced a substantial upswing during
the last decades.

In fact, the today’s measurement technology permits to register electromagnetic radiation
from astronomical objects that are up to 32 billion light-years away from us (Oesch et al. |[2016)),
and hence, provide information about the Universe from about 13.4 billion years ago. The LIGO
and Virgo collaborations have recently succeeded in detecting gravitational radiation from dis-
tances of more than 8 billion light-years (B. P. Abbott et al. 2019). The cosmic microwave back-
ground radiation offers an even more ancient relic of cosmic history (Aghanim et al. 2020a;
Penzias and Wilson [1965)). It shows a picture of the Universe from the time of decoupling, i.e.,
from around 13.7 billion years ago (Alpher and Herman 1948c; Peebles, Schramm, et al. |[1991).
Most of the data points to a very simple picture of the Universe modeled by only six parameters
(Aghanim et al. [2020a; Spergel 2014). The corresponding theory is known as the standard in-
flationary [ACDM] model. A thorough introduction to the current cosmological standard model
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1. Backreaction and the Physical Standard Model

will be given in section[2.2] According to this model, the almost homogeneous and isotropic Uni-
verse has been expanding over its entire history from a very hot and dense state into the present
Universe, presumably starting with a phase of inflationary expansion. The underlying “inflaton”
scalar field eventually decayed into other matter species (Albrecht and Steinhardt [1982; Linde
1982) giving rise to the rich cosmic inventory we observe today.

In order to account for the matter content of the Universe, namely the large scale struc-
ture of galaxies and the flucutations in the it is however necessary to introduce inhomo-
geneous cosmological fields (Dodelson and Schmidt|2021; Halliwell and Hawking1987). In fact,
the concordance model of cosmology assumes that small quantum perturbations of the inflaton
field provide the seeds of the present large scale structure of the Universe, and induced the neces-
sary inhomogeneities in the early Universe (Bardeen, Steinhardt, and Turner (1983; Guth and Pi
1982; Hawking 1982; Starobinsky 1982). These inhomogeneities are modeled as small Gaussian
perturbations (Aghanim et al. 2020a)) around the symmetry-reduced model at earliest times, and
are stretched to cosmic scales by the continual expansion of space (Blumenthal et al.|1984)). For
the main part of the known cosmic history, they can be described by classical means but as we
go backwards in time, quantum effects should be considered (Baumann 2012)). The question of
the quantum-to-classical transition of these perturbations has for example been investigated by
Kiefer, Polarski, and Starobinsky (1998) and Polarski and Starobinsky (1996)), and we will not say
much about it here. The purely quantum theoretical part will be discussed in the next paragraph
but we remain with the classical late time Universe for the time being.

1.1.3. Problems of the Concordance Model

At the classical level, the above-described procedure of strictly splitting the cosmological fields
into a symmetry-reduced part and perturbations thereof provides of course a first mean to study
solutions to such a simple model (in contrast to the highly non-linear full Einstein equations)
but it leads to several problems and might oversimplify the model at hand: First, at the technical
level, it breaks the covariance of the theory, and depending on the concrete problem, it is usually
advisable to use a gauge-invariant perturbation formalism (Bardeen [1980; Kodama and Sasaki
1984; Mukhanov, Feldman, and Brandenberger 1992). This might be mathematically cumber-
some but does not alter the physical results at the classical level, and provides us indeed with a
sound theory of cosmological perturbations. Another problem is however more severe (Abramo,
Brandenberger, and Mukhanov|1997): In fact, the procedure for examining the cosmological dy-
namics starts by solving the purely homogeneous and isotropic, zeroth order contributions to the
field equations independently of the perturbations. Then, by employing this classical “fixed” back-
ground solution in the first order equations of motion for the perturbations and truncating any
higher order contributions, one can evolve the cosmological perturbations on this fixed geometry.
Due to the split, the background is considered completely independent of the perturbations and
thus, possible backreactions of the dynamical perturbations on the homogeneous degrees of free-
dom are neglected. It is still unclear whether and to which extent these classical backreactions
have an impact on the global evolution of the Universe, and we dedicate chapter[3|to an overview
of the most relevant results in this field.

One motivation for studying backreaction actually came from the hope that such effects
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could shed light on any of the existing discrepancies between the cosmological standard model
and observational data (see for example (Buchert|2008])). Some of these hypotheses did not stand
the test of numerical studies (Adamek, Clarkson, et al.[2019; Macpherson, Price, and Lasky|2019),
others are not tested yet. In any case, it is timely to approach the severe problems of the cosmo-
logical standard model and to search for viable solutions for the dark energy and dark matter
problems (Bertone and Hooper 2018 Perlmutter et al.|[1999; Riess et al.[1998]). We also point to
the recently discovered discrepancy between different measurement results for the Hubble pa-
rameter H, (Pesce et al.|2020), and we will be more explicit regarding the open problems of the
concordance model in section[2.3] As of today, there exists a variety of proposed solutions among
which classical backraction but there is no general agreement on any particular solution. Some
approaches suspect to find their answers in earlier phases of the cosmic history. In fact, the above
discrepancies in the recent measurements of H, could point to inconsistencies of the cosmolog-
ical concordance model applied to the early Universe (Aghanim et al.[2020b)). This brings us to
the second important thematic field in physics of the last two centuries — quantum theory.

1.1.4. The Beginnings of Quantum Mechanics

While the revolutionary thoughts on gravity were inspired by the rather well-tried theories of
gravitation and electromagnetism by Newton and Maxwell, very novel ideas were needed to de-
scribe experimental results at the microscopic scale. Planck (1900a)) was the first to find a correct
law for the black body radiation by assuming that a cavity wall viewed as a collection of oscilla-
tors absorbs and emits radiation only in discrete “quanta” (Weinberg2015). Shortly after, Einstein
(1905a) succeeded in explaining the photoelectric effect (Lenard 1902) also by means of discrete
energy quanta of the radiation field. Furthermore, Bohr (1913) with his atomic model of discrete
energy levels as well as De Broglie (1923)) with his wave-particle dualism contributed to the search
for a thorough new theory of “quantum mechanics” (Born|[1924; Weinberg 2015). Its theoretical
foundations were laid by Born, Heisenberg, and P. Jordan (1926)), Born and P. Jordan (1925)), and
Heisenberg (1925) using a matrix approach, by Schrodinger (1926albljc,d)) with a wave mechanics
formulation, and Schrédinger (1926e) finally established the equivalence of these two approaches
(Weinberg 2015)). Neumann (1932a)) finally succeeded in integrating both theories into a coher-
ent mathematical picture of operator algebras and Hilbert spaces (O’Connor and E. F. Robertson
1996).

The new quantum theory was however incompatible with Einstein’s special and general rel-
ativity which motivated researchers to find, as a first step, a Lorentz invariant theory of quantum
fields, i.e., a theory that incorporates the principles of special relativity (Kuhlmann 2020). Born,
Heisenberg, and P. Jordan (1926) had already considered the (free) electromagnetic field as an
infinite number of quantum oscillators and Dirac (1927) added an interaction term in order to ac-
count for the emission and absorption of radiation in a first order perturbative manner (Weinberg
1977). In order to describe electromagnetically interacting matter particles in a Lorentz invariant
way, Dirac (1928) established the one-particle equation for electrons and positrons named after
him. Accordingly, while radiation was treated in a field formalism, matter particles were under-
stood as individually occurring objects, see the historical overview by Weinberg (1977). P. Jordan
and Wigner (1928)) showed that material particles can also be regarded as the quanta of fields (e.g.,

21



1. Backreaction and the Physical Standard Model

the Dirac field) and the idea of a field-theoretical quantum electrodynamics began to take root.
The idea was developed further by Heisenberg and Pauli (1929, 1930) and P. Jordan and Pauli
(1928)), and by Pauli and Weisskopf (1934)) and Weisskopf (1934). Furry and Oppenheimer (1934)
succeeded to show that quantum electrodynamics naturally incorporates antiparticles which had
already been predicted by Dirac (1928), (Weinberg|1977).

The benefits of this quantum theory have been demonstrated experimentally, for example
by the correct prediction of additional quantum mechanical degrees of freedom such as electron
spin (Debye |1916; Sommerfeld 1916; Uhlenbeck and Goudsmit|1925)), and the correct theoretical
determination of the fine structure of atomic spectra (Michelson and Morley [1887; Sommerfeld
1940). However, the resounding success of the theory was limited to simple dynamical problems,
and in order to describe quantum mechanical interactions, approximation methods had to be
used for both relativistic and non-relativistic phenomena. One particularly important approxi-
mation method for non-relativistic problems that is still of great relevance today was introduced
by Born and Oppenheimer (1927). It introduces the ratio of the small electron mass and the nu-
clear mass as an “adiabatic” perturbation parameter to establish a first order perturbative theory
for molecular systems. The scheme is widely used in theoretical and computational chemistry
(Cramer 2004). Despite its success, the Born—-Oppenheimer theory is restricted to a narrow class
of Hamiltonian systems and cannot be extended to higher perturbative orders. We will be more
explicit regarding the Born-Oppenheimer formalism in section|6.1]as it forms the physical basis of
this work. A possible extension was introduced by Panati, Spohn, and Teufel (2003)), the so—called
space adiabatic perturbation theory which overcomes the afore-mentioned shortcomings,
see sections - It requires to introduce a phase space quantization scheme (Groenewold
1946; Moyal 1949; Weyl [1927; Wigner |1932), and pseudodifferential calculus (Hérmander (1979,
1985bj; Kohn and Nirenberg|1965).

1.1.5. Perturbative Quantum Field Theory

Perturbative methods to quantum theory have also been employed on the (special) relativistic
quantum field theory side. In fact, the above-mentioned first models in|QFT|are perturba-
tive in nature (as are most of the theories studied today), and most importantly for us, they rely
on a non-dynamical Minkowski background (Strocchi 2013). The motivation for developing such
perturbative models obviously lies in the complexity of the non—perturbative interacting theories.
In fact, we only know a very limited number of that can be solved exactly, in particular in
four space time dimensions these are exclusively the free field theories of any mass and spin, and
theories with solutions that can be expressed as functions of such free fields (Strocchi|2013)). We
will provide a short review of in section focussed on the of a free Klein—-Gordon
scalar field.

Strictly speaking, of course, there is not one single[QFT|because as numerous as the problems
for formulating a quantum theory of physical interactions are, so are the approaches to solving
them (Kuhlmann 2020). Streater and Wightman (1964) succeeded to find a mathematically rig-
orous formulation for these free theories by introducing their Wightman axioms (Strocchi|2013).
Unfortunately, none of the known interacting quantum field models in four space time dimen-
sions could be rigorously constructed and thus could be verified to obey these axioms. Now, one
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can either try to obtain physically relevant results from these interacting theories, despite the lack
of a mathematical foundation, or one can pursue the goal of developing that satisfy the
axioms. In the first case, it is necessary to resort to perturbative methods as had already been
recognized by Dirac and his peers. These perturbative approaches assume that the Hamilton op-
erator H of the interacting theory splits into a free solvable Hamiltonian H, and an interaction
term V, and that the interaction term enters with a small coupling or perturbation parameter &
such that H = H, + 6 V (Kuhlmann 2020): The calculation of scattering amplitudes, i.e., of the
S-matrix elements S, g : = lim,_, (&, U(¢{_; —;)B) requires the (vacuum) states a, § € J in the
free Hilbert space H, of the free theory and the time evolution operator U(ts — t;,) evaluated for
some initial and final times t;,, t5 in the infinite past and future. The time evolution operator in
perturbation theory consists of a power series in § whose coefficents are the time-ordered prod-
ucts of V' represented in terms of the free operators. Every perturbative order results in a number
of cross sections which represent different particle processes.

Now there are several fundamental problems with these calculations. The first is that the
individual scattering amplitudes give infinite results as Oppenheimer (1930) realized in the frame-
work of quantum electrodynamics and these are due to the self-energy of the fields and vacuum
polarization. The theory consequently looses its predictive power and many physicists believed
back then that the framework was useless. From 1947 on however,[QFT]experienced a remarkable
upswing, triggered by the measurement of an effect of the self-energy of the electron in the hydro-
gen atom, namely the Lamb shift (Lamb and Retherford |1947), (Weinberg|1977): The year before,
Tomonaga (1946), and then in the following years, Tomonaga et. al. (Ito, Koba, and Tomonaga
1948; Kanesawa and Tomonaga|1948; Koba, Tati, and Tomonaga|1947; Koba and Tomonaga |1948;
Tomonaga|1946) as well as Schwinger (1948, [1949alb,|1951a,b)) and Feynman (1948alb,cl(1949alb,
1950) developed renormalization formalisms which absorb the infinities into a redefinition of the
physical parameters (Weisskopf|1936]). Dyson (1949a/b)) showed that these procedures apply well
to quantum electrodynamics but in general only to a very limited number of theories.

Fortunately, through the work by many physicists from the 1950’s to the 1970’s ('t Hooft
and Veltman [1972; Englert and Brout (1964; Fritzsch, Gell-Mann, and Leutwyler [1973; Glashow
1961; Gross and Wilczek (1973 Guralnik, Hagen, and Kibble 1964; Higgs |1964; Politzer [1973;
Salam [1968; Weinberg |1974alb; Yang and Mills|1954), it was possible to formulate a certain class
of physically relevant theories which are indeed renormalizable (Weinberg 1977): These are the
gauge theories for the interactions subsumed in the Standard Model of physics: The electroweak
interactions as well as the strong interaction together with the Higgs mechanism of spontaneous
symmetry breaking. Within these theories, it is possible to compute finite values for the scattering
amplitudes which are in astonishing agreement with experimental data. We refer to the discovery
of the zoo of Standard Model particles, and especially to the detection of the Higgs boson at the
LHC (Aad et al.|2012; Chatrchyan et al. 2012).

Despite the experimental agreement, the Standard Model stands on rather thin mathemat-
ical grounds as we have explained above. Besides, an important result which questions the con-
struction of a perturbative |[QFT|using the tools of the free theory was formulated by Haag (1955).
Namely, the free and the fully interacting Hamiltonian give rise to different unitarily inequivalent
representations (D. Hall and Wightman [1957). It turns out that this also applies to free neutral
scalar fields of different mass and hence, prevents these models from having unitarily equivalent
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representations (Reed and Simon|1975b)). We will encounter similar problems in the construction
of the cosmological in this thesis (see sections[8.1]and[9.1)) which can however be (partially)
circumvented by introducing a suitable set of transformations for the fields.

1.1.6. Quantum Field Theory on Curved Space Times

So far, we restricted our considerations to perturbative models of which heavily rely on a
static Minkowski background. In fact, standard Minkowski only admits the matter fields
as dynamical entities while treating space time as static. This kind of simplification is of course
reasonable as long as space time is almost Minkowskian, for example for Earth-based particle
experiments but for the cosmological situations that we have in mind we need to drop this as-
sumption. One can anticipate that such an endeavor will aggravate the theoretical problems of
perturbative substantially but there are several proposals for how to make progress, and we
will present them in the following. To start with let us point out that so far, the matter fields
are considered in a quantum framework while the metric field is considered classically. How-
ever, Einstein’s equations directly relate the quantum matter content with the classical space time
geometry which appears to be a contradiction from a mathematical perspective. Although not
providing an answer to the question of why we should treat quantum fields and a classical ge-
ometry at the same level, try to provide a connection between standard Minkowski
and general relativity.

The idea of on generically curved space times (Fulling|1989; Hollands and Wald 2010;
Wald [1995) is to consider classes of classical geometries and to examine the given such ge-
ometries. This is of course not a trivial enterprise since standard [QFTI] heavily relies on the notion
of a preferred vacuum state and an associated Hilbert space of excited particles. The existence
and uniqueness of such a preferred vacuum is due to the strong Poincaré symmetry of Minkowski
space, and hence completely looses its relevance on generically curved space times. A framework
that does not rely on representations of the quantum theory but which focusses on the operator
algebraic aspects, and which is hence much more flexible when it comes to generic space times is
algebraic[QFT| (Araki[1999; Brunetti, Dappiaggi, et al. 2015, Haag[1955). Chapter [4]is devoted to
several aspects of[QFT on CST] and section4.1]particularly introduces and discusses the algebraic
approach.

However, such theories obviously make an important simplification: Similar to the backre-
action problem in classical cosmological perturbation theory, they omit the effects of one part of
the system (here, of the quantum matter fields) on another part (the geometry of space time). This
cuts out a relevant part of the interactions within the system. While it is certainly a progress to
consider the geometry of space time as a dynamical entity, one only examines the propagation of
the quantum fields on the latter while neglecting their effects on the space time geometry. There
are several proposals for how to include such backreaction effects, namely semiclassical gravity
(Ford [2005; Wald [1977), and stochastic (semiclassical) gravity (Calzetta and Hu 1987; Hu 1989
R. Jordan|1986,(1987)). Both approaches will be discussed in sections |4.2{and [4.3|respectively, and
we provide the reader with an overview of the current state of research in these fields.

Although these approaches provide the possibility of including backreaction effects at a
semiclassical level, the fundamental issue of equating a classical with a quantum mechanical en-
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tity via Einstein’s field equations remains unanswered. This suggests in fact to rethink the meth-
ods used so far, and it seems natural from the previous discussion to consider the gravitational
field as a quantum mechanical field. As a first step in formulating such a theory of quantum
gravity, one could consider a perturbative framework in which the gravitational perturbations
of a Minkowski metric (i.e., gravitons) are being quantized in the same manner as the quantum
matter fields of standard and using the same Fock representations. As it turns out, such
perturbative theories are non-renormalizable ('t Hooft and Veltman [1974; Goroff and Sagnotti
1986), and which should prevent the whole endeavor right from the beginning. One could now
argue that it is still possible to formulate an effective field theory for low energies as proposed by
Donoghue (1994). In order to describe situations with high energy densities as we have in mind,
this is however of little utility.

1.1.7. Quantum Gravity and its Open Problems

We are hence led to consider fully non-perturbative approaches to quantum gravity. The formu-
lation of such a non-perturbative theory of quantum gravity has occupied researchers for over a
hundred years now, in particular since Einstein (1916b) first speculated about the modifications
that quantum theory would bring for general relativity (Rocci|2013). At present, we have a num-
ber of different approaches for quantizing gravity, among which asymptotic safety (Niedermaier
and Reuter 2006; Weinberg 1976, |1980), string theory, in particular in its AdS/CFT-incarnation
(Ammon and Erdmenger 2015} Polchinski 2005)), causal dynamical triangulations (Ambjorn, Ju-
rkiewicz, and Loll 2005; Loll [2020), causal sets (Bombelli et al.|1987; Sorkin |[2003)) as well as spin
foam and loop quantum gravity (Rovelli [2010; Thiemann [2008) to mention but a few. We
emphasize that remarkable progress has been made in the theoretical and phenomenological elab-
oration of these theories during the last years. Unfortunately, none of them has so far been able
to provide a uniform model for describing the cosmological data situation, and the mathematical
formulation of any of these theories of quantum gravity is a highly complex endeavor.

We refer exemplarily to[LQG|which provides a mathematically sound framework to formu-
lating the quantum dynamics of gravity including a rigorous representation of the canonical com-
mutation relations and in which even the problem of gauge reduction can be solved using material
reference systems (Giesel and Thiemann 2015; Thiemann [2008). The problem in this particular
quantum gravity framework is then related to the fact that the quantum dynamics is plagued by
quantization ambiguities which have found their way into the quantum Einstein equations after
removing an auxiliary regulator. This problem is more precisely due to the tremendous non-
linearity of the Einstein equations, and hence prevents the prediction of testable results. Since
however [LQG]is a non-perturbative approach to quantum gravity, at least no perturbation series
have to be summed with unknown (presumably zero) radius of convergence. To make pre-
dictive, many efforts are made regarding non-perturbative (Wilsonian) renormalization for[LQG]
for example by Bahr (2017), Bahr and Steinhaus (2017, Dittrich (2017)), Dittrich and Steinhaus
(2014), Lang, Liegener, and Thiemann (2018ajbic|d), and Liegener and Thiemann (2020).

In addition to the open questions on the theoretical side, one major problem in the devel-
opment of a theory of quantum gravity is the lack of relevant measurement data owing to the fact
that the large reduced Planck mass My, = \/hc/(87G) ~ 4.34 x 107° kg ~ 2.43 x 10'3GeV/c?
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(NIST-Database 2019) suppresses any quantum gravity effects in earth based experiments. In
fact, the heaviest known Standard Model particle (or rather boson) is the Higgs with a mass
My =~ 125.10GeV/c? <« (Zyla et al. [2020). The huge mass difference is known as the hi-
erarchy problem. On the other hand, this specifically allows to develop perturbation theories
for gravitational models coupled to matter. This will be particularly important for our purposes
here as we are going to introduce a perturbative scheme with respect to 1, or rather its ratio
with a typical Standard Model coupling constant. In fact, the idea to use 1 as a perturbative
parameter in quantum gravity or cosmology has a long tradition and goes back to Brout (1987),
(Kiefer|[2007). We will provide an overview of its applications to quantum gravity and cosmology
in chapter|[5]

While this large mass difference prohibits to test quantum gravity effects on Earth, there
is hope that the increasing abundance of cosmological data can improve the situation. In or-
der to make contact between empirical data and a fully-fledged theory of quantum gravity, one
would, in a first place, seek the cosmological sector of such a theory by examining specific states
in the physical Hilbert space which possess the appropriate semiclassical “cosmological” proper-
ties. Unfortunately, none of the existing approaches has yet reached a stage where such (exact)
solutions are available, in particular when gravity additionally couples to matter. This is however
indispensable in order to bridge the gap between theory and experiment. More precisely, only if
such a semiclassical regime of the theory exists, it will be possible to identify a viable candidate
theory of quantum gravity. Due to the non-linear character of the resulting field equations, the
intricate coupling between matter and gravity as well as the inherent problems of any quantiza-
tion procedure for an infinite number of degrees of freedom, any effort to extract exact solutions
of a quantum gravity—-matter system (even when restricted to cosmological situations) appears to
be pointless at present.

1.1.8. Born—-Oppenheimer for Quantum Gravity and Semiclassical Limit

Fortunately, the situation is not hopeless and we can anticipate to make progress by consider-
ing suitable approximation schemes. Unsurprisingly, the tiny inverse Planck mass can now be of
considerable advantage - its occurence in the quantum Einstein equations can serve to establish
a rigorous perturbation scheme. From a physical point of view, such a scheme would probably
divide the system, at least formally, into a matter and a gravitational part, since the inverse mass
values of the Standard Model matter fields are significantly larger than 1. This picture al-
ludes to the idea of an “adiabatic” limit in which the gravity part appears as the zeroth order
subsystem while the quantum matter content is associated with a perturbative subsystem that
backreacts on the gravitational degrees of freedom. Recall therefore the well-known ideas of the
Born-Oppenheimer approximation. Such a perturbation theory might not only help to extract
viable results from the quantum theory itself but could serve to establish the semiclassical limit
of quantum gravity.

Our observations teach us that this semiclassical limit should yield a|QFT on CST] similar
to what the model refers to during the earlier stages of the Universe. Hence, in this limit
the theory describes gravity in (almost) classical terms while the matter content features entirely
quantum mechanical characteristics. Consequently, the approximation scheme naturally splits
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the system into a gravity and a matter part. Indeed, it turns out that the first approximation scheme
with respect to the inverse Planck mass, and the semiclassical limit are intimitely related - but it
is important to stress that they are not equivalent. In fact, it is possible to consider thelME]’l—limit
without making reference to a semiclassical limit at all as we will explain in a moment. However,
both approaches naturally include a split between matter and gravitational degrees of freedom
which could allow us to formally separate the problems in order to make progress.

This is why many researchers have considered the 1—limit in order to make progress
regarding the semiclassical limit, and which is a perfectly legitimate proceeding. In many ap-
proaches, regardless of the underlying quantum gravity formalism, the semiclassical limit is then
invoked in a second step by defining suitable semiclassical, maybe coherent, quantum states
which have low fluctuations around a given classical metric. Before amounting to the difficul-
ties related to defining such semiclassical states, let us shortly specify the ideas that have been
pursued regarding the 1— and the semiclassical limit in quantum gravity. Many of them but
not all refer to the Born—-Oppenheimer approximation or extensions thereof.

The first investigations using an 1—expansion within quantum gravity-matter models
were performed in the framework of quantum geometrodynamics (Kiefer2007; Wheeler|1957)) by
expanding the Wheeler-DeWitt equation in terms of the ratio of the Planck mass and the matter
field mass (Kiefer and T. P. Singh |1991)), and possibly by using the Born-Oppenheimer approach
(Bertoni, Finelli, and Venturi [1996; Brout and Venturi [1989; Kiefer [1994) (for a summary, see
(Kiefer|2007)). In a second step, these approaches employ the typical Born—-Oppenheimer ansatz
solution that seperates the system into a gravitational and a matter part (Kamenshchik, Tronconi,
and Venturi 2020; Kiefer 2007). Integrating out the matter part gives rise to an effective quantum
problem for the geometric part including the backreaction effects of the quantum matter system.
Note that there is no semiclassical limit invoked so far. However, in a second step, one can addi-
tionally employ a semiclassical approximation giving rise to a matter[QFT on CST] In this respect,
it is common to employ a Wentzel-Kramers—Brillouin ansatz (Brillouin [1926; Kramers
1926; Wentzel [1926)), for the geometrical states, yielding a set of semiclassical Einstein equations.
Such states are however not coherent and do not solve the quantum constraint. In this respect,
the question of time and of unitary evolution arises, and we refer to the book by Kiefer (2007) and
the more recent paper by Di Gioia et al. (2021)) and references therein for a discussion of this topic.
We will be more precise regarding these approaches (and others) within the geometrodynamical
paradigm that attempt to better incorporate interactions between the gravity-matter components
in chapter|[5]

Other attempts to implement the Born-Oppenheimer approximation in quantum gravity-
matter systems have been pursued by Giesel, Tambornino, and Thiemann (2009) in an [LQG
related framework. While the Born—-Oppenheimer approximation represents an ideal framework
for including backreactions, its applicability is quite restrictive. In fact, the choice of variables
within [LQG]| prevents the direct use of the Born-Oppenheimer methods as the flux operators are
mutually non-commuting (which is a prerequisite for the Born-Oppenheimer scheme). Conse-
quently, the authors use another set of variables for the gravity sector and a scalar field for the
matter sector to derive a set of semiclassical Einstein equations. They also point to the possibility
of pursuing the formal Born-Oppenheimer scheme and computing quantum solutions to the grav-
ity sector with the effective backreaction of the quantum matter fields, and propose to introduce
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coherent states for the gravitational subsystem in order to make progress in finding solutions.

Unfortunately, the construction of such semiclassical, coherent states within a full theory of
quantum gravity is a highly non-trivial task. In[LQG] for example, candidates for such coherent
states have been extensively studied by Thiemann (2001)) and Thiemann and Winkler (2001albic).
Nevertheless, the task of defining the semiclassical limit within[LQG|and within other approaches
to quantum gravity by means of such states could not be fully addressed, and it is, in general, a dif-
ficult exercise, see for example in (Sahlmann and Thiemann [2006a,b; Stottmeister and Thiemann
2016ajblic) for works within More precisely, these coherent states are primarily defined for
a free gravitational system, and fail to follow the classical trajectory in interacting systems with
matter for a sufficiently long time, i.e., the quantum Hamiltonian does not preserve their semi-
classical properties. The difficulty of defining such states for full quantum gravity plus matter has
motivated several lines of research in order to make progress regarding the semiclassical limit,
and which has also stimulated research for understanding the (more generic) problem of quan-
tum backreaction in such models.

One idea is of course, again, to recover first a formal split between quantum gravity and mat-
ter degrees of freedom, and which would facilitate the implementation of the semiclassical limit
and the possible quest for suitable semiclassical states. In this respect, Stottmeister and Thiemann
(2016alblc) considered the application of the SAPT|scheme within[LQG| While the application of
this scheme allows to consider the question of pure quantum backreaction, it is also ideally suited
to investigate the semiclassical limit due to the reasons mentioned above. Since in the[SAPT|ap-
proach, the variables of the gravitational (adiabatic) sector are not required to commute, it is in
principle possible to apply the Born-Oppenheimer ideas also to[LQG]and related theories, which
was not possible before (see above). The concrete implementation turns however out to be diffi-
cult due to the particular structure of the phase space and its quantum representation, see
chapter [5for more details.

1.1.9. Making Progress with Symmetry Reduction

All these difficulties regarding the question of backreaction in full quantum gravity and the deriva-
tion of the semiclassical limit suggest to first consider simpler, possibly symmetry-reduced models
of quantum gravity with matter. I.e., like in many other situations, it seems reasonable to first ex-
plore symmetry reduced models before attacking the less symmetric situations — connected with
the hope of obtaining at least qualitative statements. These so-called “minisuperspace” models
perform first a symmetry reduction in the classical theory and then quantize the finitely many, re-
maining degrees of freedom. Of course, this procedure stands in opposition to Heisenberg’s uncer-
tainty principle which prohibits the freezing of what are actually quantum mechanical, fluctuat-
ing degrees of freedom. While Kuchar and Ryan (1989)) have shown that some symmetry reduced
models do not reflect the behavior of less symmetric models in metric gravity, there is no generic
result that prevents the symmetry reduced models from serving as an arena for testing mathe-
matical methods. In line with the various approaches to quantum gravity, there is a multitude
of attempts to define a quantum cosmology, e.g., the canonical Wheeler-DeWitt approach (De-
Witt|1967), the standard path integral approach due to Hartle and Hawking (Hartle and Hawking
1987; Hawking [1987), string cosmology (Veneziano 1991)), spinfoam cosmology (Vidotto 2011)),
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and canonical loop quantum cosmology (LQC) (Ashtekar, Bojowald, and Lewandowski 2003a;
Ashtekar, Pawlowski, and P. Singh 2006bj; Bojowald 2008) and many more.

To approach our goal of describing the interactions of full quantum gravity plus matter, it is
of course indispensable to include inhomogeneities in such models. In a first step, this might be
done using linear perturbation theory for simplifying our enterprise and also in recognition of cos-
mological observations. Such approaches hence include dynamical cosmological perturbations as
well as a dynamical homogeneous sector. Thus, they still fall into the category of non-perturbative
approaches to quantum gravity in comparison to the traditional perturbative Minkowski space
plus graviton frameworks, and should consequently be ideally suited to describe the interactions
within the very early Universe. At the same time, they might alleviate the problems associated
with the substantial non-linearities in Einstein’s field equations. Similar to the full theory, how-
ever, these models pose a number of question if one aims at understanding and describing the
interactions of the components or derive a semiclassical limit.

Progress with respect to the semiclassical limit can be achieved by computing expectation
values with respect to some admissible semiclassical ansatz state. Most easily, one starts with con-
sidering semiclassical states for the homogeneous quantum degrees of freedom but of course it
is (in principle) possible to extend the procedure to the quantum perturbations. To start with,
one may derive a semiclassical trajectory of the homogeneous degrees of freedom using such
semiclassical states for the homogeneous sector, giving rise to a formal The latter
now includes effective quantum modifications to the semiclassical homogeneous curved space
time. The additional (gauge-invariant) cosmological perturbations on this effective background
are then quantized using standard Fock representations. As examples, we point to the hybrid
quantization schemes in (i.e., the dressed metric approach (Agullo, Ashtekar, and Nelson
2012)), the deformed algebra approach (Barrau et al. 2015) and the hybrid approach (Elizaga Navas-
cués, Martin-Benito, and Mena Marugan 2016; Martin-Benito, Garay, and Mena Marugan [2008))
which use different methods to establish effective quantum field equations of motion for the cos-
mological perturbations on an|[LQC]|effective quantum background.

Common to these approaches is that they choose a specific product ansatz for the wave func-
tion with a homogeneous and an inhomogeneous contribution, in close analogy to the standard
Born-Oppenheimer ansatz. They determine effective equations of motion for the quantum per-
turbations on an effective semiclassical homogeneous quantum background which hence corre-
sponds to a[QFT on CSTjwith a modified cosmological space time. On the other hand, they ne-
glect backreactions in the sense of a Born-Oppenheimer approximation from the perturbations
on these approximate homogeneous solutions, and are consequently unable to provide a better
understanding of the interactions within the quantum gravity-matter system. The assumptions
that went into these approaches and which are in our opinion not easy to control have been de-
tailed by Castell6 Gomar, Martin-Benito, and Mena Marugan (2015) for the hybrid and by Agullo,
Ashtekar, and Nelson (2013) for the dressed metric approach.

Moreover, these approaches rely on introducing one specific semiclassical state. To (par-
tially) overcome these shortcomings, considerations of including backreaction have been pursued
by (Rovelli and Vidotto 2008 and by Castell6 Gomar, Martin-Benito, and Mena Marugan (2016)
within the approach, and by Chataignier and Kramer (2021)) and references therein within
the geometrodynamical approach. Many of these approaches remain however on a purely formal
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level due to technical difficulties or rely on a set of specific semiclassical ansatz functions.

1.1.10. Space Adiabatic Perturbation Theory in Quantum Cosmology

It is precisely at this point that we propose a new but at the same time conservative formalism to
describe the interactions within a non-perturbative theory of quantum gravity plus matter, and
which improves the current state of the art in several respects. More specifically, we implement
a perturbative approach with respect to the inverse Planck mass that is able to rigorously attack
the question of whether the backreactions of the inhomogeneous cosmological quantum fields
have a substantial effect on the homogeneous quantum degrees of freedom — A very crucial open
problem that has been neglected in most approaches so far (mostly due to technical problems), and
which represents the first important step towards a thorough understanding of the interactions
in quantum gravity-matter systems, and a step towards a semiclassical limit of the theory.

As opposed to the approaches above, we will not rely on the introduction of some semiclas-
sical ansatz functions for the homogeneous sector. We are hence, for the time being, not primarily
interested in the semiclassical limit of the respective models but rather in formulating a consis-
tent approach for obtaining effective and simpler constraints or equations of motions that take
the full quantum mechanical and dynamical character of non-perturbative quantum gravity into
account. Of course, it is still possible to consider the semiclassical limit in a second step. As an-
ticipated above, our goal is to develop and implement a perturbative scheme following the ideas
of the Born—-Oppenheimer approach but which improves the latter in several essential ways. The
space adiabatic approach by Panati, Spohn, and Teufel (2003) represents an ideal starting point
for achieving just this. Their original formalism will be presented in chapter|[f]

Its Advantages

The considerable advantages of employing[SAPT| methods in order to approach a working theory
of interactions in quantum cosmology plus matter can be identified by comparing to the above
mentioned approaches: First, while adhering to the sucessful idea of considering an 1—limit
in quantum gravity, it establishes a rigorous perturbative formalism with respect to 1 which
can be evaluated up to any desired order. This allows to derive effective quantum Hamilton con-
straints or operators whose structure is much simpler than the original one but whose solutions
approximate the true solutions up to an, in principle, indefinitely small error. Secondly, these tech-
nically much simpler constraints are derived without invoking a semiclassical limit or behaviour
of any kind. We are also not forced into choosing one specific (semiclassical) ansatz state in order
to derive physical results as it is required by most of the approaches considered before. Thirdly,
the scheme performs a formal split between the homogeneous and the inhomogeneous sector
in quantum cosmological perturbation theory, and which allows to analyze the two subsystems
(again on a formal level) at different stages of the procedure. This split brings us one step closer to
recovering the semiclasssical [QFT on CSTHimit of quantum cosmology, and might simplify the
identification of suitable semiclassical states considerably. Finally, since the formalism relies on
a phase space quantization scheme, it substantially enlarges the range of systems to which it can
be applied - most importantly, to the cosmological systems that we have in mind. Recall that the
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Born-Oppenheimer approach restricts to models in which the coupling of subsystems is mediated
via commuting operators. lifts this restriction, and makes it hence possible to apply such a
scheme at all.

Our Achievements

With these prerequisites in mind, we have hence achieved the following goals on the way to a
rigorous formulation of a theory of interactions in coupled quantum gravity plus matter:

« We have shown that the methods of as introduced by Panati, Spohn, and Teufel (2003])
for unconstrained, quantum mechanical systems can be extended to constrained Hamil-
tonian systems, most importantly to problems in quantum cosmology. In fact, the con-
straint itself thereby justifies the use of the perturbative (adiabatic) hierarchy rather than
the equipartition theorem. This will be made very clear in chapter [7] where we introduce
a cosmological toy model in order to test the application of to constrained systems.
More precisely, we apply the scheme up to second (adiabatic) order to a homogeneous and
isotropic[FLRW|model with a scalar field as the matter content.

« [SAPT]also applies to quantum field theoretical models. In fact, we show that a general ob-
struction to implementing the [SAPT]|formalism to such infinite dimensional theories is the
failure of the Hilbert-Schmidt condition. This generically indicates that the dynamics of
the quantum cosmological perturbations in such theories is not unitarily implementable.
In chapter |8, we examine this problem for a cosmological model with scalar matter field
perturbations and propose a transformation of variables which alleviates the failing of the
Hilbert-Schmidt condition. We then successfully apply[SAPT]to cosmological perturbation
theory with a scalar field and dust matter content up to second order in the adiabatic per-
turbations. This results in an effective Hamilton operator for the homogeneous sector and
which takes the backreaction of the perturbations thoroughly into account.

+ We are able to identify an important challenge which occurs when implementing to
quantum cosmological perturbation theory: The transformations of variables mentioned
before yield modified mass values or rather mass functions of the perturbation fields. In
particular, the mass squares become functions of the homogeneous variables and may be
indefinite, inducing tachyonic instabilities for the perturbations. In chapter[9} we point to
a number of solutions to this problem, and apply one of them to the model in chapter[8Jand
also to the next model considered in chapter[9} We also assert that the standard transforma-
tions to gauge-invariant cosmological perturbations already lead to such tachyonic fields,
hence the very occurence of such tachyonic instabilities is not first and foremost due to the

[SAPTIscheme.

« We apply[SAPT]to the standard gauge-invariant cosmological perturbation model in quan-
tum cosmology up to second order in the adiabatic perturbations in chapter[9} Again, the
transformations for obtaining gauge-invariant variables and in order to circumvent the
Hilbert-Schmidt condition lead to indefinite mass squared functions for the scalar and ten-
sor perturbations. These functions are non—polynomial with respect to the homogeneous
degrees of freedom. As mentioned before, we propose several strategies for coping with
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these peculiar mass functions, and apply one of them to the cosmological model in this
chapter.

« Despite the indefinite mass squared functions, we emphasize that[SAPT]|can always be for-
mally carried out. One simply needs to assure that the tachyonic phase space regions as well
as regions where the eigenvalues of the perturbative fields cross are avoided when quantiz-
ing the homogeneous sector. One possibility is to restrict the underlying phase space by
hand, which is conceivable due to the phase space quantization procedure pursued here.

« For all the cosmological models considered in this thesis, i.e., the purely homogeneous
model in chapter|[7] the scalar and dust field cosmological model with inhomogeneities in
chapter (8, and the perturbative scalar field model with gauge—invariant scalar and tensor
perturbations in chapter[9] we are able to compute an effective Hamilton constraint or op-
erator that takes the backreaction of one part of the system onto the remaining system into
account. Finding solutions for this considerably simpler Hamiltonian will provide us with
approximate solutions to the coupled gravity—matter system, and which takes their inter-
actions adequately into account. While formally symmetric, these effective Hamiltonians
are non-polynomial, both in momentum and configuration degrees of freedom, leading to
unpleasant domain issues. We emphasize however that such questions of self-adjoint ex-
tensions are generic in quantum gravity and not caused by the[SAPT|scheme itself. We have
identified possible choices of dense domains.

This being said, we finally take the opportunity to emphasize once again that our consid-
erations of backreactions are performed in a purely non—perturbative quantum gravity frame-
work, i.e., the inhomogeneous as well as the homogeneous degrees of freedom are both dynami-
cal and quantum. In particular, we do not refer to any background structure like in perturbative
Minkoswki quantum gravity. The use of the cosmological perturbation series up to linear order is a
tool for simplifying the calculations and should not be confused with a perturbative limit of quan-
tum gravity implying a background structure. While the pure quantum gravitational theories have
not yet reached a stage in which physical solutions are known, the cosmological split performed
in this work permits to make progress in this direction — while still considering all degrees of free-
dom in a quantum framework. Hence, our application of provides a formidable avenue to
better understanding and possibly solving purely non-perturbative quantum cosmological mod-
els, thoroughly taking into account the interactions between matter and gravity. Very importantly,
due to the natural split of its degrees of freedom and the formal consideration of homogeneous
and inhomogeneous degrees of freedom at different levels of the scheme, it offers the attractive
perspective to also simplify the quest for a semiclassical limit of quantum cosmology.

We will provide a detailed summary of our findings in part[[V]and point to the numerous
future routes entailed by our work. The next section provides a short and more concise outline of
this thesis (i.e., without historical references).

1.2. Outline

Following the thematical map given above, the structure of this thesis is as follows:
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In part[II] we provide the reader with the necessary mathematical tools and physical back-
ground for this thesis. We thereby assume the reader to be familiar with the basic notions of
general relativity, the concordance model of cosmology and In order to make this work as
self-contained as possible, we will nevertheless review some of the relevant issues within these
fields. We start in chapter 2] with the theory of general relativity and the concordance model of
cosmology. We will use the opportunity to point to the various open questions and problems of the
contemporary cosmological model. This will subsequently bring us to chapter [3|which reviews
the current state of research in the field of classical cosmological backreaction. There, the ques-
tion is whether and to which extent classical cosmological inhomogeneities in the rather recent
Universe might modify the evolution of the Universe on its largest scales. As it turns out, there is
no consensus, and opinions about the interpretation of the physical results differ widely.

We then leave the purely classical realm of the cosmic history — going backwards in time
- and start in chapter [4] with a short review of This will prove to be useful for the
subsequent sections which discuss the backreaction problem in the semiclassical theory. Here,
semiclassical means that matter fields are considered as quantum fields which propagate on a
purely classical space time, and thus the question of backreaction is whether those quantum fields
alter the classical Einstein equations for gravity. One possible path to examining this question,
denoted as semiclassical gravity, computes the expectation value of the quantum stress—energy
tensor in a suitable (cosmological) quantum state of the matter fields and uses the result as an
effective source for the classical Einstein equations. The second approach that we will discuss is
denoted as stochastic (semiclassical) gravity, and adds stochastic noise terms that account for the
quantum fluctuations of the matter fields. Both approaches are shortly reviewed and the current
state of research is presented.

Further proceeding backwards in time, the concordance model of cosmology suggests that
a purely quantum mechanical framework of the physical interactions in the very early Universe
should be considered. Accordingly, in chapter |5, we review the notion of backreaction in purely
quantum (field) theoretical approaches to gravity. More precisely, we will specifically point to
the works in quantum gravity and quantum cosmology that employ the inverse Planck mass as a
perturbation parameter to evaluate backreaction similar to the approach that is promoted in this
thesis.

This brings us to the final chapter[6|of the introductory part[[Ilwhich is dedicated to the anal-
ysis of coupled quantum systems using appropriate approximation schemes. It introduces
as promoted by Panati, Spohn, and Teufel (2003 which will be used for the computation of back-
reaction in the following chapters. The approach is inspired by the standard Born-Oppenheimer
approximation for molecules (which will be reviewed as well) but uses advanced mathematical
tools in order to enlarge the scope of the scheme and to provide a systematic perturbation theory.
It uses a phase space quantization for parts of the physical system and employs pseudodifferen-
tial calculus in various ways. More precisely, it relies on an operator-valued pseudodifferential
calculus which will be thoroughly introduced in chapter[6| We will provide a systematic iterative
evaluation of the scheme as well as the explicit formulae of this perturbation scheme up to second
perturbative order (which are particularly relevant for the remaining chapters). We finish with a
showcase example of two coupled oscillators.

In part[ITI} we use and extend [SAPT|in order to compute the backreaction effects for cosmo-
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logical systems. Thereby, we encounter several difficulties since we apply the scheme to quantum
field theoretical models while the original theory is conceived for finite~dimensional quantum
systems.

As a warm-up, chapter [7] discusses a homogeneous and isotropic cosmological model that
consists of the geometric degrees of freedom (i.e., the scale factor and its conjugate mo-
mentum), and a homogeneous and isotropic real scalar field. We compute the backreaction from
the scalar field to the geometry. While the evaluation of proceeds in a very similar way as
for the oscillator model, there are new challenges that we will discuss in detail. In fact, due to
the constraint character of general relativity, the identification of slow and fast sectors like in the
Born-Oppenheimer theory is not trivial, and the special form of the Hamilton constraint induces
the occurrence of non—polynomial operators in the final effective Hamilton constraint.

In chapter 8] we apply the ideas of to a quantum field theoretical model that consists
of a homogeneous and isotropic geometry and a dust particle that serves to deparametrize the
model (i.e., to introduce a clock) as well as a quantized Klein-Gordon scalar field. Before apply-
ing the space adiabatic formalism, it is appropriate to introduce a set of transformations on the
whole classical phase space. These transformations will assure that (up to second order in the cos-
mological perturbations) the parametrized by the geometry can be linked unitarily
which is a necessary prerequisite for the space adiabatic quantization scheme.

Finally, chapter 9} as the centerpiece of this thesis, examines the backreaction of gauge-in-
variant cosmological perturbations on a homogeneous and isotropic model including the
homogeneous mode of a real-valued scalar field. It includes an metric and perturbations
thereof as well as a perturbed Klein-Gordon scalar field which are combined in order to define
gauge-invariant scalar, vector, and tensor perturbations. As for the previous model, we start by
introducing appropriate phase space transformations that are canonical up to second order in the
perturbations in order to obtain a well-defined[QFT]} and in order to allow for a quantization of the
total system. We thereby follow the ideas of Castell6 Gomar, Martin-Benito, and Mena Marugan
(2015) and Martinez and Olmedo (2016)). Subsequently, we discuss the presence of indefinite
mass squared functions, and possible methods to circumvent the subsequent problems. Finally,
we come back to the question of identifying slow and fast sectors and provide some ideas in order
to achieve such an identification.

Part [IV|concludes the thesis by providing a summary of the work and giving an outlook to
possible future avenues entailed by our findings. In chapter[12] we provide a detailed summary
of this thesis in French in which we recapitulate every chapter seperately.

The appendices[A] [B|and [C] detail some of the computations that are relevant to the under-
standing of the thesis but can readily be assigned to the end. In appendix[A] we provide compu-
tations regarding the Born-Oppenheimer scheme in chapter ] that help to understand the equa-
tions stated there. In appendix [B] we detail the computations for the spectral deviations of the
anharmonic osillator problem in chapter [6 that are due to the second order backreaction of the
harmonic oscillator subsystem. In appendix|C] we give a prescription for a Weyl quantization for
a system with a compact configuration space.
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1.3. List of Publications

This thesis mainly relies on the following publications that resulted from collaborations of the
author with T. Thiemann (and one of them also in collaboration with J. Neuser),

i) “Quantum Cosmological Backreactions I: Cosmological Space Adiabatic Perturbation The-
ory” by Schander and Thiemann (2019a),

ii) “Quantum Cosmological Backreactions II: Purely Homogeneous Quantum Cosmology” by
Neuser, Schander, and Thiemann (2019)),

iii) “Quantum Cosmological Backreactions III: Deparametrized Quantum Cosmological Per-
turbation Theory” by Schander and Thiemann (2019b)),

iv) “Quantum Cosmological Backreactions IV: Constrained Quantum Cosmologial Perturba-
tion Theory” by Schander and Thiemann (2019c).

As a consequence, parts of this thesis are based or are strongly inspired by these publications. In
the relevant chapters, we will point more precisely to the respective publications.

In order to already provide an overview, reference ii) elaborates on the two toy models dis-
cussed in section[6.8/and chapter[7, in particular the oscillator model and the homogeneous and
isotropic cosmological model. Reference iii) is devoted to the inhomogeneous cosmological model
with dust matter that we encounter in chapter[8| Reference iv) examines the inhomogeneous cos-
mological model with gauge-invariant scalar and tensor perturbations which is the subject of
chapter[9] Besides, it provides the precise formulae of the space adiabatic scheme up to second
order in the adiabatic perturbations that we give in section Finally, reference i) details the
conceptual issues encountered when applying[SAPT|to the (inhomogeneous) cosmological mod-
els and which we discuss at various stages of this thesis. Again, a precise statement about the
content of the chapter and the corresponding references will be given at the beginning of each
chapter.

Further publications that have been published by the author and collaborators during the
preparation of the author’s thesis are,

v) “Detailed investigation of the duration of inflation in loop quantum cosmology for a Bianchi-
I universe with differrent inflaton potentials and initial conditions” by Martineau, Barrau,
and Schander (2017)),

vi) “Backreaction in Cosmology” by Schander and Thiemann (2021)).

Reference vi) is a resume of the application of[SAPT|to cosmological models and arose during the
writing of this thesis manuscript. Certain sections therefore strongly resemble paragraphs of this
reference. We will identify these sections in the appropriate places.
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2. General Relativity and Concordance Cosmology

In this thesis, we introduce and develop quantum cosmological models that take backreactions
from one part of the system on the remaining part into account. In particular, the ultimate goal
is to consider gauge-invariant quantum cosmological perturbations and their backreaction on
a homogeneous and isotropic quantum background. Thereby, we build on the pillars of
Einstein’s theory of general relativity and on (some aspects of) the concordance[ACDM|model of
cosmology. In this chapter, we provide the basic ideas and results of these theories with a focus on
those notions relevant for our purposes. We assume familarity with the basic concepts of general
relativity and the standard cosmological model, and refer the reader to the excellent textbooks by
Wald (1984), Carroll (2014), Weinberg (1972), Misner, Thorne, and Wheeler (1973]) and Sachs and
Wu (1977) regarding general relativity, and by Mukhanov (2005), Dodelson and Schmidt (2021)),
Durrer (2008)) and Baumann (2012) for the concordance model of cosmology. This chapter is
based on these references (among others). Some parts of this chapter, especially section [2.3| are
inspired and partially taken from reference (Schander and Thiemann [2021) which resulted from
a collaboration of the author and T. Thiemann.

Throughout this chapter, we assume [M]to be a smooth four-dimensional Lorentzian man-
ifold with signature (—, +, +, +), and we identifiy points X with coordinates thereon. We denote
the bundle of (r,s) tensors over [M| by T;M, and accordingly the space of sections of T;M by
[(TiM). Greek indices run from 0 to 3 while latin indices run from 1 to 3. We use units with
c=1l=h

2.1. General Relativity and the ADM Formalism

The theory of general relativity relies on the strong equivalence principle which implies that any
theory of gravitation has to be described in terms of a pseudo-Riemannian space time geometry,
and the corresponding field equations must admit a certain form (Dittus and Lammerzahl 2005).
More precisely, general relativity ties the geometry of space and time, parametrized by the sym-
metric two-times covariant metric tensor field g € FJV[), to the (matter) stress—energy tensor
field T € FM ). The relation is provided by Einstein’s famous field equations (Wald|1984)

@ 1
Gy 1= R — 3R g, +@MV =87G Ty, (2.1)

where R® € F and R® e F denote the Ricci tensor and the four-dimensional
curvature scalar respectively, and G, the Einstein tensor. They depend on g and the associated
unique covariant derivative V. We also introduce a cosmological constant A € R, and Newton’s
constant G. These equations need to be postulated but are based on plausible arguments (Carroll
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2014): One way to obtain them is to first introduce the Einstein—Hilbert action functional of the

gravitational field

1

_ 4 @ _
Senlgl = 7 dX\/|g|(R ). (2.2)

and to apply the principle of least action. |g| denotes the absolute value of the determinant of the
metric tensor. As the matter content, we employ a free real-valued scalar field ® € FJV[ ) (or
since @ is trivial, we simply write @ : — R) with a mass m € R* and a quadratic potential.
Its action functional is given by (Wald 1984))

Sulg, @] = L d*x+/|gl (8#9,98,® + m*®?) (2.3)
2&

where 4 € R* is the coupling constant of the scalar field. Note that 1/1 has dimension of mass
squared and we assume it to be of the order of the typical Standard Model particle masses.

The choice of the scalar field serves two purposes: On the one hand, we explore uncharted
territory by including quantum mechanical backreaction in the later stages of this work, and
therefore refrain from disguising our results by choosing a more complicated matter content. On
the other hand, we wish to make contact with cosmological models of the early Universe and
follow the concordance theory which introduces a scalar inflaton field as the dominant primor-
dial matter content. To derive Einstein’s equations, one can apply the action principle to the total
action functional S = Sgy + Sy, see for example in the textbooks by Wald (1984) and Carroll
(2014). Here, we will however follow the idea by Arnowitt, Deser, and Misner (1959) and per-
form a foliation of spacetime into (a priori arbitrary) spacelike hypersurfaces before we consider
dynamics. Thanks so this splitting (also denoted as ADM formalism due to its inventors), it is pos-
sible to define velocities and hence canonical momenta of the basic variables. This is necessary
for a Hamiltonian formulation of the problem. In fact, we must follow this Hamiltonian path as
we are going to canonically quantize the system later on. We emphasize that this slicing does not
break diffeomorphism invariance as the split remains arbitrary. For detailed introductions to the
ADM formalism, we refer to the original reference and the books by Wald (1984) and Thiemann
(2008), and on which the following section is based.

2.1.1. ThelADMi Formalism

The split of a four-dimensional spacetime manifold M requires the latter to have the topol-
ogy[M] ~ R x o where o is a fixed three-dimensional (spatial) manifold of arbitrary topology. If
[M]is globally hyperbolic, this is already granted due to a theorem by Geroch (1970). In this work,
we assume global hyperbolicity and define the spatial (Cauchy) hypersurfaces ¢ ~ T3 to have
the topology of flat, compact three-tori. The flatness is supposed to mimic the properties of the
concordance cosmological model and the compactness will prevent divergences to appear for the
quantum field theory that we consider in the following chapters. Since the radii of the torus can
be chosen arbitrarily, it is possible to fix them as the size of the observable Universe such that the
model mimics the flatness of the concordance cosmological model while the compactness will
prevent divergences to appear for the[QFT|that we consider in the following chapters.

In the context of the ADM split which we review here following Thiemann (2008)), it is useful
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2.1. General Relativity and the ADM Formalism

to introduce a diffeomorphism X : R X ¢ — [M]which maps points (t,x) € R X ¢ to points
X € [M] The spatial hypersurfaces o can be labeled by a global time parameter t € R and we
will consequently denote them by X,. The “time” vector field t € F]V[) obeys t“V, ¢t = 1. It
is possible to decompose the components of t* into its components normal and tangential to %,
according to

t = Nn# + NH 24)

where N € FJV[ ) is the lapse function, V' € FM ) the shift vector and n € FM ) is the
unit normal to %;. The metric tensor g, induces a three-dimensional metric h € F(M) on
the spatial hypersurfaces defined as

e 1= v + NyNy, (2.5)

which is spatial in the sense that any contraction of the vectors n#, n” with h,,,, vanishes. In order
to introduce a notion of velocity for the spatial metric, it is useful to define the second fundamental
form or extrinsic curvature K € F]V[ ) such that

K,y 1= hohgVong, = (L,h),, (2.6)

where indices are moved with respect to the original metric g,,, and K, is a spatial tensor, too.
The second expression introduces the Lie derivative of h,, with respect to the “temporal” vector
n#, and hence underlines that K,,, can be interpreted as some kind of velocity of h,,. On the
spatial hypersurfaces, it is possible to define a unique, covariant derivative D, associated with
hw with which in turn, we can define a “spatial” curvature tensor REG) e F, Ricci tensor

RO e F and curvature scalar R® e F.

To pull tensors back to the spatial hypersurfaces, one employs the three spatial vector fields
XZ(X) 1= XH,q (&, %) | x(t,x)=x» for example hy,(f, x) = (XH,, X7, hyy )X (2, X)). In total, this per-
mits to express the Einstein—Hilbert and scalar field actions in terms of the variables on the hy-
persurfaces, the time parameter ¢t as well as lapse N and shift ¢ and which are hence given

by

1
Seulhl = 1=

H2 a anrb
Sulh, ®] = %f dr d3xV/ |h|N (qi —2N—<i>q>,a—(hab— NN )@,aqn,b—m%w).

dt d*xV |h|N (R® + K, K% — (K2)? — 2A), 2.7)

N2 N2 N2

2.1.2. Legendre Transform and Dirac Analysis

In this form, the action functional S = f° dt d*>x £, with its Lagrange density £, allow to perform
a Legendre transformation and to define conjugate momenta for h,, and ® as well as a Hamilton
and diffeomorphism constraints. In particular, the conjugate momenta of the spatial metric p and
the scalar field ITg are defined as (Thiemann [2008)

oL _ VIhl
pab:zﬁzm(Kab—Khab), g
ab

s Il

=5 TN (& -ND,,) (2.8)
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2. General Relativity and Concordance Cosmology

with p € F(TSJM Yand IIg € F(Tg’lM) where the additional index indicates that both fields have
density weight w = 1. On any fixed spatial hypersurface (i.e., for any fixed value of ¢), the fields
{hgp, @, p?°, T4} span the infinite dimensional phase space I of the theory. More precisely, T is
the cotangent bundle T*¥ of the configuration space F of fields that is spanned by the fields h,
and ®@. Due to the possibly distributional character of the canonical fields, one introduces spatial
smearing functions f;, f, on (some chart of) the spatial manifold o, in order to define the only
non-vanishing Poisson brackets on this phase space

{hap(f0, P4} = 8587 (f1. f2)y {@(f 1) Mo(f2)} = (f1, f2), (2.9)

and where the brackets denote the inner product of the considered smearing function space, e.g.,
the space of smooth functions with compact support on o, C;°(o). Since the velocities of lapse and
shift do not occur in the action it is not possible to derive relations that represent them in terms
of the fields and their momenta. Rather we obtain the four primary constraints

_aL 0L

0=:Cy, P,:= =0=:C, (2.10)

py =2 =
NCTN dNa

where we introduced the functions Cyy and C, to emphasize the constraint character of these
equations. Obviously, the constraints imply that the canonical fields hg;,, N, N'¢, p%®, Py, P, are
not all independent and this requires a special treatment of the dynamical system.

We therefore follow the so-called Dirac analysis given in the textbooks by Henneaux and
Teitelboim (1994), Thiemann (2008) and Kiefer (2007)), and to which we also refer for more de-
tails: In a nutshell, the procedure is similar to the Hamiltonian program for unconstrained field
systems in order to define a Hamiltonian density ¢ and additionally append the primary con-
straints multiplied with a corresponding set of Lagrange multiplier functions Ay and 1¢ such that

H = hg p® + &Iy + NPy + NP, — L 4+ AyCy + A°C,,. (2.11)

In fact, the Hamiltonian is only well defined on a submanifold of the total phase space given by the
primary constraints Cy = 0 and C, = 0. Since they vanish, they can be added without changing
the formalism. The Lagrange multipliers are in principle arbitrary phase space functions but their
introduction in the Hamiltonian serves the purpose to properly recover the correct dynamics of the
system. Seen as independent variables they ensure that the variational action principle returns the
correct equations of motions including the primary constraint equations. The total Hamiltonian
has the form (Thiemann |[2008))

H:= f dt d* (N H + N9H, + AyCy +1°C,) = H(N) + HOV) + Cy(Ay) + CQD),  (2.12)

where we simply merged the arbitrary functions N, 1y and N'¢, 1% into the new Lagrange mul-
tipliers Ay and A¢ respectively, and defined H and H, such that N and N can be extracted as
prefactors. Now, the Dirac algorithm proceeds by varying the action with respect to these La-
grange multipliers, and as anticipated, this simply yields the four primary constraints Cy, = 0
and C, = 0 as can also be read off the Hamiltonian in equation (2.12)). To obtain a consistent
dynamics, the Dirac algorithm must demand that these constraints are preserved under the evo-
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2.2. The Concordance Lambda-CDM Model

lution of the Hamiltonian. These requirements correspond to evaluating Hamilton’s equations for
the primary constraints and to require them to vanish for any smearing functions f, f, namely
(Thiemann [2008))

C(f) = {M,C(=H(f)=0, CF):={HCF)}=H({F)=0. (2.13)

These secondary constraints imply that the total Hamiltonian is forced to vanish. Checking whether
these secondary constraints are preserved under the evolution of the Hamiltonian yields the Dirac
or hypersurface deformation algebra evaluated with respect to suitable smearing fields f1, f», f 1> f 5
such that (Thiemann 2008))

(1), H(f,)} = —167G H(L 7 (), (2.14)
{H(f1), H(f2)b = —167GH(L;, f2), (2.15)
{H(f1), H(f2)} = =167GH(M(f1, f5, b)) (2.16)

We see that these equations do not generate new secondary constraints and vanish if the first set
of secondary constraints are zero, i.e., the constraints are of first class. We will not discuss these
results in more detail as the primary purpose of this section was to present Dirac’s algorithm. In
chapter [9] we will make explicit use of this algorithm but applied to a cosmological model with
appropriate perturbations. This brings us to the topic of our next section.

2.2. The Concordance Lambda-CDM Model

The current concordance model of cosmology (Aghanim et al.2020alb; Cervantes—Cota and Smoot
2011} Deruelle and Uzan 2018 Dodelson and Schmidt 2021) is a compilation of physical ap-
proaches based on general relativity and the Standard Model of particle physics that intend to
interpret and explain cosmological data. Many of its theoretical results are in astonishing agree-
ment with past and present cosmological observations such as the light element abundances that
are (to a large extent) in accord with Big Bang Nucleosynthesis (Coc and Vangioni 2017), and the
temperature map and power spectra obtained by a multitude of cosmic microwave observa-
tions (Aghanim et al.[2020a; Bennett et al. 2013; Leitch et al. 2005, Smoot et al.|1992).

It draws the picture of an ever increasing, statistically and spatially homogeneous and isotropic
Universe starting from a dense and hot Big Bang, culminating into the present Universe which
is composed of a constant “dark” energy component associated with a cosmological constant
A (~ 69% of the total energy budget), cold “dark” matter (CDM, ~ 25%) and baryonic matter
(~ 6%). Despite its achievements, the increasing amount of high—precision measuring data from
early Universe surveys such as Planck (Aghanim et al. 2020a)), and late time scrutinies such as
the Hubble space telescope (Riess et al. 2016) strenghten the doubts regarding our cosmological
world view, see for example (Reid, Pesce, and Riess 2019). It is the goal of this section to review
the basic ideas of the concordance model with a focus on those aspects relevant for this thesis, as
well as to point to its cavities.

43



2. General Relativity and Concordance Cosmology

2.2.1. Homogeneity and Isotropy

Cosmological data indicates that the Universe has been spatially homogeneous and isotropic up to
small perturbations during its earlier phases and when integrated over very large scales (roughly
100 Mpc) today (Dodelson and Schmidt 2021). This is the content of the cosmological princi-
ple). One of the most impressive set of results that underlines this hypothesis for the early Uni-
verse comes from a multitude of cosmic microwave missions, in particular from the Planck col-
laboration which offers the most recent and precise temperature map of the observable Universe
(Akrami et al.[2020), see Fig. The observed photons exhibit an almost perfect black body spec-
trum with an average temperature of T = 2.726 + 0.001 K (Fixsen |[2009), hence denoted as cosmic
microwave background radiation. It displays fractional temperature fluctuations of only
10> which makes the assumption of a purely homogeneous and isotropic Universe plausible.
The gravitational field that corresponds to a purely homogeneous and isotropic Universe is the

Figure 2.1.: The Planck 2018 CMB temperature map taken from (Aghanim et al. . Red
points indicate slightly hotter and blue points slightly colder spots compared to the
mean temperature. The region delineated by a grey line has been masked and in-
painted due to residuals from foreground emission.

Friedmann-Lemaitre-Robertson-Walker (FLRW|) metric given by the line element (Mukhanov
2005)

2
_dr 5t r’dQ*| =: —Nyde® + h?, (t, x) dxdx®, (2.17)

ds* = =Ny dt? + a(t)?
S 0 +a() 1—k

where dQ is the solid angle volume form, r a corresponding radial coordinate, ¢ is cosmic time,
and k € {—1,0, 1} is the curvature parameter defining a hyperbolic, Euclidean or elliptic topol-
ogy of the spatial hypersurfaces respectively. a € R is the scale factor which parametrizes the
purely homogeneous and isotropic metric. hgb denotes the spatial metric induced by the total
metric g, where we additonally inserted the superscript “0” to emphasize that we deal with the
purely homogeneous and isotropic metric (without any perturbations). It is often con-
venient to introduce the time-independent spatial metric 4° on the hypersurfaces according to
ho(t, x) =: a?(t) h°(x). Following our conventions from the previous section, we set the arbitrary
lapse function equal to one, Ny = 1, such that the only remaining dynamical degree of freedom
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2.2. The Concordance Lambda-CDM Model

dt

a(t)
such that the metric is conformally equivalent to the Minkowski metric up to a global factor a(7).

Many observations point to a flat Universe with k = 0 such as the Planck results combined with
data from acoustic baryonic oscillations (Akrami et al. [2020), and we will henceforth adopt this
choice. However, we also point to an analysis of the very same data combined with lumi-
nosity distance data that excludes this scenario, namely (Di Valentino, Melchiorri, and Silk [2020)).

is the scale factor a. It is often useful to use the conformal time parameter 7 defined by dt :=

So far, cosmological data supports the idea that the observable Universe is and has been ex-
panding for a very long period of time, i.e., the scale factor has been increasing. As a consequence
the physical wavelength of relativistic particles is stretched out and leads to a redshift z defined
as (Dodelson and Schmidt|2021])

1+:=i=ﬂ, (2.18)

/1in Qin

where 1;, and a;, denote the wavelength and the scale factor at the time when the light is emitted,
and a, = 1 is the scale factor today. Accordingly, light from remote objects is redshifted when it
arrives on Earth and provides a mean to estimate their distance and age if the spectrum is known.
According to Einstein’s equations (2.1)), the evolution of the scale factor depends on the matter
content of the Universe. A convenient choice for an isotropic and homogeneous Universe is a
perfect fluid as it is isotropic in its rest frame. The stress-energy tensor of a perfect fluid with
four-velocity u#, energy density p, and pressure P is given by (Mukhanov|2005)

T,, = (P + p)uyu, + Pgyy. (2.19)

Inserting the metric (2.17)) into both sides of Einstein’s equations yields the Friedmann and

the Raychaudhuri equations which determine the evolution of the Hubble parameter H : = Zand
a

the acceleration of the scale factor respectively (Mukhanov|2005))

_ 871G k [Al 4nG [Al

i
3Pty E__T(‘O+3P)+§ (2.20)

H2
where we included a cosmological constant A > 0. Besides, the conservation of energy, V MTP”’ =
0, yields the continuity equation for the perfect fluid (Mukhanov|2005))

o+ 3H(p+P) =0. (2.21)

From now on, we denote quantities that are measured today by a subscript “0” and see how they
relate to the quantities at earlier times according to these three equations. By default, one defines
and measures the present “critical” energy density using Friedmann’s equation assuming
a flat Universe (k = 0) (Dodelson and Schmidt[2021)

3H;
Por = g—= =188 h?x107°gcm™3 (2.22)

where the parameter h has been introduced for convenience since H is commonly defined as
H, := 100 hkm s~ Mpc ™
disagreement between late and early Universe measurements denoted as the Hy-tension. For

. Recent analyses yield i ~ 0.7 together with a statistically significant

example, a combination of data from red giant stars and of Omega Centauri from the Hubble
Space Telescope yield h = 0.72 + 0.2 (Soltis, Casertano, and Riess 2020)) while the 2018 Planck
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mission attains & = 0.68 + .0 (Aghanim et al. 2020b). If we allow for a non-vanishing curvature
in the Friedmann equation (k # 0), definition (2.22]) implies that a curved Universe has a density
Po today that is different from the critical energy density.

2.2.2. Cosmic Inventory

The total energy density p(t) at any time is commonly split into different parts according to the
constituents that formed the Universe at time ¢. In the simplest case of a barotropic fluid (i.e., a
fluid whose density is a function of pressure only), the behavior of p(t) follows from a constant
equation of state P = wp with w € R and the resulting continuity equation (Baumann 2012)

a —-3(1+w)
) (2.23)

P = Pin (a—m
where p;, and q;, denote the energy density and scale factor at some initial time ¢;,. A gas of non-
relativistic matter particles has vanishing pressure (w = 0) such that its energy density scales like

-3
Pm ~ a .
Radiation has an equation of state P, = Pr such that p, ~ a~

,1.e., for an increasing scale factor matter is diluted according to the volume expansion.
4 which accounts for the additional
energy redshift. The accelerated expansion of the Universe today is attributed to a cosmological
constant Awith w = —1, and hence p, ~ a®. Since itis unclear if this acceleration is soleley driven
by a cosmological constant or whether there is an(other) microphyiscal origin, one associates A

with a “dark energy” component.

We define the dimensionless density parameters Qg := 250 for any of the matter species
Per
s by dividing by the critical energy density p.., and assume that the respective constituents are
non-interacting. Dividing the Friedmann equation by Hg yields (Dodelson and Schmidt|2021)

H2 ay 4 ay
= %0 () +mo(3)

The model includes photons and relativistic neutrinos as radiation as well as baryonic mat-
ter, cold dark matter and non-relativistic neutrinos in the matter sector, and we defined density

3 a 2
+ Qo (EO) + Q. (2.24)

parameters for the curvature Qy ; and for the cosmological constant Q, . The notion of cold dark
matter (CDM) was introduced to name a yet unknown (hence “dark”) non-relativistic (hence
“cold”) and gravitationally interacting matter component present in the Universe (Blumenthal
et al.|[1984). The Planck collaboration determined values for these parameters (within the 68%
confidence limit) using the data as well as measurements from recent galaxy surveys such
as SDSS, 2dFGRS and many more given by (Aghanim et al. 2020b)

Qpo = 0.689 +0.006, Qo =0.311%£0.006, Qo =0.001+0002, Q. 4<107* (2.25)

Consequently, the standard baryonic matter represents only about 6% of the total energy density
contributions while the remaining matter part is attributed to a[CDM|component. According to
Friedmann’s equation (2.24)), the relative abundances of the components have changed during the
evolution of the Universe. Using the formula for the redshift together with Friedmann’s law
and the parameters (2.25)), it is straightforward to deduce the redshift at which dark matter starts
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2.2. The Concordance Lambda-CDM Model

to dominate over cold matter, and the redshift when matter begins to dominate over radiation. In
particular, we have that (Aghanim et al.[2020b))

Qp\3 Qm>
Za.m =|—] —1~0.30, Zn_r = | — ] —1 =~ 3380. 2.26
A—m <Qm> m—r ( Qr ( )
There is yet another possibility to identify epochs and events of cosmic history which is partic-
ularly useful as is extends to phases prior to radiation domination and the release of the
photons. Wien’s displacement law stipulates the ratio of the peak of the black body frequency
and the corresponding temperature to be a constant such that the temperature T at some time ¢

isgiven by T(t) = Ty - ((t)/vg) = To/a(t) = 2.726 K - (1 + z(1)).

2.2.3. Cosmic Evolution

The Friedmann equation reveals that the first dominant energy component among the ones given
in equation in an expanding Universe with non-interacting constituents must have been
relativistic radiation, followed by a period with non-relativistic matter preeminence. In our Uni-
verse, the curvature density parameter is to small to yield a nominal effect such that the subse-
quent phase (today) is dark energy-dominated. This recent epoch sees the formation of a rich
structure of galaxies and clusters due to the gravitational force that drives the accumulation of
matter in an elsewhere rather empty and expanding Universe. The following chronology is based
on (Mukhanov 2005; Wikipedia 2020)).

At redshift z,_,, ~ 0.3 (T = 3.5 K), going backwards in time, the matter components took
over and prepared the present structure formation. The first stars were born at around z ~ 16
(T ~ 46 K) which gave rise to the phase of reionization due to the intense radiation they emitted.
The first galaxies formed at z = 11.1 (T = 33 K) (Oesch et al. 2016). Prior to reionization, there
were no light-emitting structures yet which led to the notion of the “Dark Ages”. At these times,
the Universe had cooled down enough to allow photons to travel long distances and in fact, the
Universe was pervaded by a radiative background which would later form the The photons
decoupled at around z =~ 1090 (T =~ 3000 K) from the hot and dense plasma of baryonic and dark
matter which itself began to recombine to neutral atoms. This epoch sees the formation of the
cosmic web driven by the presence of dark matter that acts gravitationally and which reinforces
the already existing density fluctuations in the hot plasma.

The matter-dominated era passes into a phase of radiation supremacy at around z ~ 3600
(T ~ 10*K). The high temperatures allowed for nuclear fusion to occur which ushers in the era of
Big Bang Nucleosynthesis, producing light elements like hydrogen (~ 75%), helium (~ 25%) and
negligible parts of lithium at around T = 107K - 10°K. The predicted relative abundances of these
elements can be tested against observational data from galaxies and provide yet another impres-
sive confirmation of the standard hot Big Bang model, despite the yet unsolved discrepancy of the
lithium abundance between measurements and predictions by a factor of 3 (Coc and Vangioni
2017). Prior to this phase, the Universe was presumably and dominantly filled with leptons and
neutrinos (T = 107K - 10°K). The decoupling of the latter species produced a cosmic neutrino
background that is observable today (at least indirectly in the patterns) (Follin et al.[2015).
Aforetime, hadrons started to be produced as the Universe cooled down to temperatures of 101°K
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- 10'2K, and made up the dominant energy contribution before even lower temperatures pre-
vented their production. The hadron epoch was preceded by the quark epoch during which the
Universe’s temperature of 102K - 10'°K were too high to allow the formation of hadrons from
the dense quark-gluon plasma that pervaded the Universe. The quark epoch had followed the
phase of electroweak symmetry breaking that occured at T = 10'°K and presented the end of the
thermalization phase during which the first particles interacted such that a thermal equilibrium
was achieved. This era is denoted as the electroweak epoch and roughly encounters temperatures
between 10%2K and 10%°K.

Physics prior to this epoch is still very speculative. The standard Hot Big Bang model as-
sumes that the mentioned particles have been produced by a decaying real scalar field that domi-
nated the Universe during its very first moments. This is the inflaton field, and the corresponding
“inflationary” phase is claimed to provide answers to some of the open questions of the standard
hot Big Bang model.

2.2.4. Problems of the Lambda-CDM Model

The model as presented above implies a number of odd results. One of these problems
concerns the apparent isotropy of the[CMB|radiation which leads us to assume that[CMB|photons
from any direction arriving today on Earth must have thermalized at earlier times, i.e., must have
been in causal contact. To verify this assumption, we evaluate the angle between two points (pho-
tons) in the radiation map that had the possibility to causally interact from the presumed
beginning of the Universe until photon decoupling (last scattering) at a3 ~ (1 + zi)™* ~ 1073,
Since photons follow null rays their maximal radial comoving distance Ax they can cover equals
the conformal time A7 that has passed. Between an initial time ¢ = ¢;;, and the time of last scat-
tering t;5, @ photon could hence have covered the comoving distance (Baumann 2012)

as

fs dt 3
tin a(t)

da

Tors (2.27)

Ax =1 xpn(ts) = /

Qin
which is precisely the particle horizon y, of a photon at t, i.e., the maximal distance from where
the photons can receive light signals given the Universe “begins” at t = t;,. This corresponds to
a physical distance [ = a5 - xpn(t;s) at the time of last scattering. Two photons seperated by that
distance at t;; might have travelled towards us and the comoving distance they covered if they
arrive today is (Baumann [2012])

to a,
dt da
(tp) := f — = _—, (2.28)
#entto e a(t) a H(a)a?

which is the photon’s event horizon y.,(ty), i.e., the maximal distance they could have traveled
until today. The comoving particle and the event horizons can be computed explicitely using those
two formulae and equation assuming that we evaluate it before dark energy dominates.
Using the parameters shows that y,, << x.n such that the small angle-approximation is
valid in order to infer the angle through which we observe a formerly causally connected patch in
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the map, namely (Mukhanov|2005)

o 1 := Xph(tis)
dA )(eh(to)

~ 0.019rad, (2.29)

where we implicitely stated the standard formula for the angular diameter distance d,. This cor-
4r

0.0192

connected patches which seems implausible given the high degree of isotropy in the map.
A possible solution to this problem becomes apparent by rewriting the integral in equation ([2.27)
using the logarithm of the scale factor as,

responds to an angle of 1.1°, and consequently a sky consisting of ~ 3 x 10* causally dis-

Inajg
Xpn(tis) = f (aH)"'dIna. (2.30)
In aj,

Any process between the initial time ¢;, and last scattering that leads to a decreasing Hubble radius
(aH)™! (the comoving distance which particles can travel during the time dtha) would increase
the particle horizon and hence ease the causality problem which is also known as the horizon
problem. This requirement can be achieved by a phase of accelerated expansion d@ > 0 during
which the scale factor grows by a factor eV with N := In(a,) — In(a;,) being the number of e-
folds (Baumann [2012)).

Another peculiarity of the]ACDM|model is the so-called flatness problem which results from
the present density parameter p(t,) being very close to the critical density p.,. This means that
the reduced density Q(t,) := £l i very close to unity. In fact, this also implies that the density
parameter Q(t) must have beerl;crvery close to unity throughout its entire history which seems a
very ad hoc assumption given its diverse history. Since the actual density Q(¢) of the Universe at
some previous moment in time ¢t < ¢, differs from the critical density Q. = 1 by the curvature
term Q(t) — 1 =: Q;(t) = k - (aH)~? with k being constant, the critical curvature density at any
time ¢ is given by (Mukhanov|2005])

2
(aoHy)? a,

Qi (1) = (Q(ty) — 1)m = (Qtp) — 1) A

(2.31)
We evaluate this expression for the early radiation dominated Universe for which we have g -
a®)™t ~a(t) - ay L according to Friedmann’s equation. We consider the era of electroweak sym-
metry breaking as the first phase of which cosmologists are relatively certain and assume that the
scale factor was smaller by a factor 2.726 X 10~%° as it is today such that Q; (fe,,) < 7 X 10752, This
small value is difficult to reconcile with a cosmologist’s idea of a “natural” cosmological parame-
ter. From equation it follows that a very large Hubble radius (aH)~!(¢;,) at some earlier time
t;n provides a mean to allow for a larger value of Q, (t.,). If succeeded by a phase with decreasing
Hubble radius, this procedure provides a mechanism to have a very small density parameter at
tew Without choosing the value by hand.

Both the horizon and the flatness problem prefigure a phase of accelerated expansion at ear-
liest times during which the Hubble radius should decrease substantially. A similar mechanism
has also been proposed regarding the so-called monopole problem which occurs when including
a very early epoch of Grand Unification of forces (i.e., an early period at which the temperature
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was so high that the electroweak and the strong force were unified as the electronuclear force) .
Such a phase would produce a high abundance of massive monopoles during symmetry break-
ing which in turn would imply a monopole density of at least 10'® times the critical density today
(Mukhanov[2005)). This is in obvious disagreement with cosmological data. As anticipated before,
a long enough lasting period of accelerated expansion would dilute the monopole’s number den-
sity such that it drops to only one monopole per present horizon scale. The current concordance
model of cosmology invokes a real-valued scalar field ® with a potential energy V(®) and which
is able to drive a phase of such accelerated expansion.

2.2.5. Inflation

The simplest inflationary model enriches the cosmic inventory by a real-valued scalar field ® €
I‘ with a quadratic potential and an action Sy; given in equation (2.3)). Assuming that the
field has been spatially homogeneous and isotropic on the constant cosmic time hypersurfaces,
the action reduces to (Baumann [2012))

Suldl = = f de a® ($(£)* — m? (1)?) (2.32)

T 21
where we distinguish the time-dependent homogeneous and isotropic field ¢ : R — R from the
generic space and time-dependent field ®. The principle of least action yields the stress—energy
tensor T, by varying the action Sy with respect to the metric tensor g,,,. Comparing the resulting
tensor to the standard stress—energy tensor of a perfect fluid in the homogeneous and isotropic
case (cf. equation (2.19)) yields an equation of state (Baumann[2012)

P _ $(t)’ —m*$(t)
P g+ m2
The Raychaudhuri equation for an inflaton Universe indicates that a phase of accelerated

expansion with d@ > 0 requires that w < —%. In this case, we infer from equation (2.33) that the
potential energy of the field must dominate over the kinetic energy. In cosmology, it is common

(2.33)

to use the so-called slow-roll approximation to guarantee a phase of accelerated expansion by
assuming that ¢ < m? ¢ such that w ~ —1. This corresponds to a dynamical phase with a large
potential energy and a vanishing kinetic energy, hence the name “slow-roll”. In such a case, the
continuity equation for a perfect fluid reduces to ¢ ~ 0 and Friedmann’s equation consequently
yields a constant Hubble parameter H such that

a(t) = ay, et (2.34)

Consequently, inflation generates a de Sitter-like expanding Universe, i.e., a Universe with a con-
stant exponential expansion. To obtain a sufficient amount of inflationary e—folds, this expansion
must persist long enough. This requirement together with the first slow-roll condition from above
is usually expressed using the so—called slow roll parameters € and 7 (Baumann [2012)

ATGP? é
1 = 1 2.35
<L mim < @39)
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which should remain small and constant during inflation. Knowing that H remains unchanged
during inflation and that a grows exponentially, the flatness problem gives an estimate on
how many e-folds are necessary to outweigh the very small factor (ayH,)*(a(t)H(t))™2 ~ 7x1078
which led to Q(t) < 7 x 107%2. In particular, this requires the number of e-folds to be N >
In(10%°/2.726) ~ 66. An inflationary model which is capable of generating this number of e-
folds would as well solve the horizon and the monopole problem (Mukhanov 2005). Providing
such a phase of accelerated expansion was the motivating idea behind the inflationary model, and
its simplicity gave the theory soon its present standing in the cosmological concordance theory.

Another important feature of the inflationary model is that it provides a natural mechanism
to account for the observed large scale structure of the present Universe and the tiny perturbations
in the temperature map. The idea is to introduce very small perturbations of the inflaton
and the metric field that are presumably caused by inhomogeneous quantum fields at earliest
times. The homogeneous part of the inflaton would stretch these perturbations to horizon scales
while a suitable mechanism (e.g., decoherence (Schlosshauer 2007)) renders the perturbations
classical. This would lead to the rich cosmic structure of our present Universe. Since these per-
turbations depend on both space and time coordinates they introduce a gauge arbitrariness due
to the underlying diffeomorphism invariance of general relativity.

2.2.6. Cosmological Perturbations

The basicidea underlying standard cosmological perturbation theory is on the one hand to assume
that it is physically meaningful to foliate space time into certain spatial hypersurfaces %;, t €
R, on which it is admissible to consider the cosmological fields as maximally symmetric, i.e., as
homogeneous and isotropic. This corresponds to the assumptions of the cosmological principle,
namely that the geometry of the Universe admits a purely spatially homogeneous and isotropic
solution associated with a spatially homogeneous and isotropic matter content. On the other
hand, cosmological perturbation theory allows for small inhomogeneities. This motivates the
following split for any cosmological field 6(t,x), a = 1,2,..., such as the components of the
metric tensor g, or the scalar field ® (Abramo, Brandenberger, and Mukhanov|1997)

09(t, x) =1 62(t) + 569(t, x). (2.36)

The first contribution 6(¢) is obtained by a maximal symmetry reduction of the total fields 6°(¢, x)
(for example, the metric), and provides a solution for an actual spatially homogeneous
and isotropic Universe. It is often assumed that the functions 6 result from a spatial averaging
of the fields 6%(¢, x). By definition, they depend only on time. The scale factor a(t) would be
one example. The second part represents a small linear perturbation of the homogeneous and
isotropic solution 8;. They are required to be small in the sense that [66¢| < |6 | for any scalar
component 69,

To be more precise, we introduce a set of perturbation fields of the metric and the scalar field
following the notation by Castell6 Gomar, Martin-Benito, and Mena Marugén (2015) as we are
going to make use of their results when it comes to gauge-invariant perturbation theory in chapter
[9 Their notation differs from the standard one, used for instance in the textbook by Peter and
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Uzan (2009) and the article by Ma and Bertschinger (1994)) but turns out to have advantages for
the pursued Dirac analysis (the difference basically consists in adding factors of a(t) and covariant
derivatives at various places). It is useful to decompose the perturbations into its scalar, vector and
tensor components with respect to three—dimensional rotations since at linear perturbative order
the perturbations will decouple. The perturbed FLRW|metric element then has the form

ds? = — (Ng + an(t, x)) dt? + 2a*(Dgk(t, x) + €2 Dpk.(t, x)) dx?dt (2.37)
3 h?
+a|( +att, )R, + 6<Dan— %A)ﬂ(t, %) + 2V/6t a5 (1. x) + 43D a0y (1, ) [dxedx

where A := D,D? is the Laplace-Beltrami operator on the spatial hypersurface. It includes a
lapse perturbation 7, the shift perturbation k and the spatial perturbation fields « and 3 in the
scalar sector. The vector perturbations are incorporated in the shift vector by the function k, and
in the spatial metric by v,. The tensorial perturbations are denoted by ¢,,. The matter scalar field
splits up into a homogeneous and an inhomogeneous part according to ®(¢, x) =: ¢(t) + ¢(t, x).

The choice of field degrees of freedom in this representation is obviously redundant as the
number of variable fields is higher than the number of physical fields (recall that the metric tensor
has a totality of only two physical degrees of freedom), ergo there is a gauge choice to be made.
One possibility is to set several of the fields equal to zero which is particularly convenient when a
choice of spatial hypersurfaces is physically prescribed and fixed. If the possibility of coordinate
(or rather gauge) transformations should be kept open and in order to prevent fictitious unphys-
ical perturbations when changing the gauge, it is advisable to introduce a set of gauge-invariant
perturbation variables. Regarding the tensor sector, ¢, is already gauge invariant. In the scalar
sector, the real-valued Mukhanov-Sasaki field 3 represents the standard choice for a gauge in-
variant field (Kodama and Sasaki|1984; Mukhanov|1988|,12005)

8:=a (qo - C;I_qﬁ(a - Aﬁ)) . (2.38)

For the time being, we omit the discussion of the vector perturbations as they are not relevant for
our later results. The remaining scalar functions 7 and k associated with lapse and shift pertur-
bations are Lagrange multipliers and can hence be chosen arbitrarily. Knowing the evolution of
the remaining dynamical fields will allow to relate the primordial perturbations to the matter and

fluctuations today.

2.2.7. Evolution of Perturbations

The dynamics of the physical perturbation fields §6¢ result from inserting the ansatz 6 + 66
for the cosmological quantities into Einstein’s equations. The latter will be written in shorthand
notation as

6] =1, [g, ®] := G,y lg] — 87GT,,[g, @] =0 (2.39)

where the Einstein and stress—energy tensor are to be understood as functionals of g and ®. The
standard cosmological reasoning goes as follows (Mukhanov, Feldman, and Brandenberger|1992):

1. Expand Einstein’s equations in a functional power series in §6¢ about the background 6
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(Abramo, Brandenberger, and Mukhanov|(1997)

I1[6,] + IL,, [6,]56% + %Haab [6,]66956" + O(563) = 0 (2.40)

where 9(663) subsumes any contribution of third or higher order in the perturbative fields,
and a comma stands for the derivative with respect to the perturbative field.

2. Assume that the homogeneous and isotropic fields 0, solve Einstein’s equations such that
I1[6,] = 0 holds true independently of the remaining perturbative expressions.

3. Assuming that quadratic and higher perturbative terms are negligible compared to the lin-
ear ones, and that the Friedmann equations from the previous step are satisfied, the lin-
earized equations of motion for the cosmological perturbations read

L, [6,]66° = . (2.41)

Insert the solutions of the homogeneous Friedmann equations into equation and
solve for the perturbative degrees of freedom. The result is a set of second order differen-
tial equations for the perturbations that depend (non-linearly) on the (fixed) “back-
ground” Friedmann solutions.

4. Omit any higher order contributions of the perturbed Einstein equations.

Following this procedure, it is straightforward, although lengthy, to derive the concrete form of the
perturbative equations of motion (2.41)), and we therefore refer to the seminal work by Mukhanov,
Feldman, and Brandenberger (1992)). For stating the results, we note that the tensor perturbations
carry only two independent degrees of freedom corresponding to their two polarizations and we

label these fields by ¢, . Besides, it is convenient to use the conformal time parameter 7 instead

of cosmic time ¢, and the time-dependent function { := a% where H is the Hubble parameter.

This gives the three differential equations for the Mukhanov-Sasaki field ¢ and the two tensor
polarizations ¢, (also known as gravitational waves):

2 d? d?t 2
Q—(A+l—§)8=o, i—(A+ld—a)t+=o. (2.42)
adr?2 | =

dr2

Both equations resemble the standard Klein-Gordon field equations with a time-dependent mass,
and they differ precisely in the form of this mass term. Without loss of generality, let us focus on
the case of the scalar modes here.

Before we continue with the solutions, let us note that instead of deriving the equations of
motions for the (scalar) perturbations by inserting the perturbed fields into Einstein’s equations,
one can start with the action functional of the gravity-matter system and insert the perturbed
fields at this level. The part of the action associated with the perturbative Mukhanov-Sasaki vari-
ables is given by the second order matter action (Mukhanov|2005))

Sul9]l, = % f d3x ((9')2 +9 (A + %ﬂ) 9) (2.43)

where the prime denotes a derivative with respect to conformal time 7. The corresponding Hamil-

53



2. General Relativity and Concordance Cosmology

tonian obtained by a Legendre transformation with canonically conjugate momentum 7y :=

aLMlZ
1 X ) g/r
HM|2=§f d x 7T9+‘9 —A+? 9 (244)

o = 9’ of 9 is given by
where L], is the Lagrange density associated with the second order perturbative action Sy|s.
The transition to a Hamiltonian description is most useful since the standard cosmological para-
digm considers the perturbative fields as quantum fields at earliest times (on a cosmological clas-
sical background), and hence the procedure makes it possible to directly perform a canonical
quantization. Therefore, one imposes the standard field commutation relations evaluated for two

smearing fields f1, f, € 8(0):

[8(f D, w5 (f D ]pere = £f1> f2) Lperts (2.45)

and all other commutators are vanishing. The quantum fields 4 and 7 g belong to the algebra of
quantum fields A,. The commutator defined on this algebra obviously acts on the only dynamical
degrees of freedom - the perturbative fields. The angle brackets denote the inner product of the
function space 8(0) and 1,¢;; denotes the one of the perturbative field operator algebra. We will

review the basics of [QFT on CST|in chapter 4 in more detail.

In order to gain insights into the structure of solutions, it is useful to use standard annihila-
tion and creation operators a and a* which are linear functions of the canonical field operators.
These are usually introduced by expanding the canonical fields with respect to a mode basis, i.e.,
a set of normalized solutions to the classical field equations (Mukhanov [2005)). Since the
underlying [FLRW]space time is conformally static, time and space variables can be separated in
a suitable ansatz function for the solutions. In the spatially flat case, the solutions of the spatial
equation are the standard plane waves labeled by the wave vectors k; € R* (Fulling|1989). For
simplicity, we will omit spatial indices for the coordinates x and the wave vectors k and denote
products simply by kzx9 =: kx.

The temporal solutions of the field equations are the corresponding Fourier modes vy (7)

2
which obey a standard oscillator equation with time-dependent frequency coi = k% — %j—i, see
T

equation (2.47). Since the differential equation is of second order, there are two independent
solutions for every k? associated with k and —k. Hence, the quantum field can be decomposed
according to (Baumann [2012)

3
s - [ o @O+ @) (246)
where we introduced the spatial smearing function f € 8(¢) and its Fourier transform f € 8(o).
Besides, v, : R — C is a complex-valued function and the bar denotes complex conjugation.
The a;_ denotes the adjoint of @;.. Note that this map actually underlies a representation map and
we will be more precise in chapter[4but remain here with the standard proceeding in cosmology.
Besides, we used that for a real-valued scalar field §(z, x), the mode functions satsify v, (7) =
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U_g (7). Then, the temporal mode functions v, (7) must satisfy (Baumann 2012)

dzvk 1 d2§*
+ (k2 - E@ UV = 0 (247)

dr?
as well as the (Wronskian) normalization condition (Baumann [2012)
(Uk), Ek — U (Uk), = 2i. (248)

Then, the standard commutation relations for the annihilation and creation operators have the
only non-vanishing commutator

[a(f1)s a*(fz)]pert = (f1,f2) Lpert (2.49)

where the smearing functions f; and f, are chosen as above. We emphasize that in this picture,
the quantum fields carry the time dependence while the states of the theory are defined to be
time—independent. This is the Heisenberg picture, commonly used in cosmological applications.
Later on, we will also use the Schrddinger picture in which the states are time—dependent, not the
operators.

Having defined the annihilation and creation operators by means of their commutation re-
lations, one can construct an appropriate Hilbert space (for example a Fock space). The vac-
uum state Q is defined as the state that is annihilated by any of the annihilation operators, i.e.,
a(f)Q =0,Vf € 8(o), and any excited state can be constructed by an appropriate application of
creation operators on the vacuum. However, the physical content of the theory and the physical
interpretation of the states becomes clear only after fixing the mode functions v, (Mukhanov and
Winitzki 2007). In fact, a different choice of normalized mode functions u; that is related to the
ui’s and v;’s by a simple linear transformation

U = U + Py, P ECVk € R, |y > — |B1* =1 (2.50)
gives rise to a new set of annihilation and creaction operators given by

bk = aray — ﬁka*_k, b;: = Ekaz - ,Bka_k. (2.51)

The linear coefficients o and 8 are known as the Bogoliubov coefficients (Bogoliubov|1958). One
can easily deduce that the mean density of particles of the v-representation in the vacuum state
of the u-representation is given by, /* d*k|B,|> (Mukhanov and Winitzki [2007). This density is
only finite if |8; |? decays faster than k3 for large k. If this is not the case the Bogoliubov trans-
formations are not well-defined and it is not possible to express the one vacuum state by means
of excited states in the other representation.

All the choices of mode functions are a priori equivalent, or rather, there is no preferred
choice of mode solutions inherently given by the theory. However, in order to make physical
predictions or to compare to physically relevant results, it is of course vital to choose a certain
representation, i.e, a set of mode functions. As seen above, this choice is tantamount to a choice
of vacuum and correspondingly excited states. Unfortunately, in general curved space times, there
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is no preferred choice of normalized mode functions, and hence no preferred vacuum state. The
notion of a preferred vacuum state is only available in highly symmetric situations. For example in
Minkowski space time, the Poincaré symmetries unambiguously fix such a set of mode functions
for a quantum field with a certain mass which is hence associated with a physical vacuum state
(namely the state that is invariant under Poincaré transformations) and the corresponding excited
particles. Note that the vacua for fields with different masses remain unitarily inequivalent even
in this highly symmetric scenario. Similarly, in de Sitter space time the Bunch-Davies vacuum
is the physically preferred vacuum state for a matter quantum field of a certain mass. In general
curved space times, possibly without any symmetries, such a criterion is missing, and hence, the
choice of mode functions is ambiguous. There are however certain physically reasonable criteria
that allows one to choose a set of mode functions rather than others.

One possibility is to fix an “instantaneous” vacuum state for some particular time 7 = 7,
(Mukhanov and Winitzki [2007). The idea is to fix the initial conditions for a set of mode func-
tions with respect to which the Hamilton operator H has a minimal expectation value in the cor-
/2 exp(iay (7))
and v,’{(ro) = iw(7)vi(1y) where ai (7)) € R is a free parameter. Hence, this prescription does

responding vacuum state. These initial conditions are given by vy (7y) = wi (7))

not fix the freedom in the initial conditions completely. In the case that cui(ro) < 0, such an in-
stantaneous vacuum does not exist. Besides, the instantaneous vacuum at any other time 7; # 7,
will be different from the one at 7.

Another useful notion of the vacuum is available in space times with a slowly changing grav-
itational field, more precisely, when the frequencies w;(7) are varying slowly. The construction
of these so-called adiabatic vacuum state relies on a[WKB|approximation for the ansatz solutions
of the mode functions accordingly given by (Parker|1969)

T
U(7) = 1 exp [lf dTWk(T)l , (2.52)
VWi() To

and which must obey the mode equations of motion (2.47). One expands W}, in powers of the
small parameter (w, T)~! where T is a fixed time interval within which w; and all its derivatives
do not vary substantially. This gives a perturbative scheme for determining the adiabatic mode
functions vy, and their initial values v(7,) and Ul,c(TO)' It was shown that the adiabatic states
of fourth order in this perturbative scheme can regularize the stress-energy tensor of the free
theory and are thus physically reasonable states (Lindig[1999) (we will be more precise on this
topic in chapter [4). We point out that similar to the instantaneous vacuum state, the adiabatic
vacuum states depend on the precise choice of an initial time 7, and are thus still ambiguous.
Finally, we mention that Agullo, Nelson, and Ashtekar (2015) have introduced another notion
of a preferred instantaneous vacuum state for FLRW]cosmologies for which every Fourier mode
makes a vanishing contribution to the adiabatically renormalized stress—energy tensor. Here as
well, the vacuum choice depends on the moment 7, at which the initial conditions are set.

In short, due to the lack of symmetries in general curved space times, it is simply not possible
to fix a particular vacuum state. Since one is free to choose a coordinate system, it is impossible
by principle to have a physically unambiguously preferred vacuum. As mentioned above, there
are however situations in which one can relate the states of one representation with the states of
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another representation. In many cases, this fails namely when the mean density of one particle
species, in the other vacuum is infinite. This problem will also occur in the quantum field theories
we have in mind, and we will come back to this issue in chapters[d] [8|and[9]

2.2.8. Power Spectrum

Coming back to the standard cosmological model starting with the semiclassical picture of cosmo-
logical quantum perturbations on a classical homogeneous background, it is generically assumed
that these perturbations are stretched during the cosmic expansion and evolve into today’s large
scale structure. During this process, the perturbations become classical, possibly by a process of
decoherence. In order to compare the theoretically predicted scalar perturbations that obey the
above equations of motion with observations, it is necessary to compute a statistically relevant
measure of these perturbations as it is impossible to trace back the exact evolution of the pertur-
bations starting with some specific initial conditions. A well-suited and simple tool are the power
spectra of the scalar (and tensor) perturbations (Durrer 2008} Piattella2018), that directly depend
on the mode amplitudes vy, of the perturbations. In case of Gaussian random fluctuations, this sta-
tistical measure is indeed sufficient to reproduce all the statistical information contained within
the perturbative fields (it relies on computing the two-point functions). The power spectrum is
given by (Baumann 2012)

k3
AZ(k) = 2_71_2|Uk|2, (2.53)

and the amplitude of the modes vy, is to be extracted at the end of inflation. The initial condi-
tions for the quantum fields are set at the beginning of inflation at which point the Universe is
expected to be in an almost de Sitter state. Moreover, at sufficiently early times, all modes of cos-
mological interest are presumably well inside the cosmological horizon, i.e., k* > ¢ /¢. One
can hence disregard the time-dependent potential term in the mode equations of motion, which
gives rise to a quantum field in Minkowski space time. Consequently, the cosmological paradigm
sets Minkowski initial conditions for the perturbative fields which give rise to a unique and well-
defined vacuum state. These initial conditions are then evolved according to a simplified mode
equation of motion in de Sitter space (the modes can leave the horizon during inflation).

The mode amplitudes at the end of inflation then serve to compute the primordial power
spectrum. This spectrum in turn gives the initial conditions for the equations of motion that
govern the evolution of the cosmological perturbation during its later history up to the present
date. The evolution underlies a coupled set of Boltzmann equations of the different matter species
present during the various stages of the cosmic history. Analytical investigations of this evolution
are too complex but there are a range of cosmological numerical codes that allow to trace the
evolution of the matter species during these times, e.g., the Cosmic Linear Anisotropy Solving
System (CLASS) (Blas, Lesgourgues, and Tram 2011; Lesgourgues 2011). These codes generate the
late-time angular power spectrum that can be compared to the observable traces of, for example
the[CMB| Temperature anisotropies (or rather its two point correlators), see Figure
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Figure 2.2.: Planck CMB foreground-subtracted angular power spectrum for temperature, taken
from (Aghanim et al.|[2020a). The blue lines show the best-fitting standard |[ACDM
model.

2.3. Problems and Inconsistencies

In the following section, we examine the open questions and problems inherent to the standard
concordance cosmological model as outlined before. We note that this section coincides in large
parts with segments of reference (Schander and Thiemann [2021)).

The[ACDM]|concordance model based on the pillars of the Standard Model of particle physics
and general relativity has shaped our current view of the Universe, and has been the driving force
behind many of the breakthroughs of modern cosmology, for example the prediction and the
discovery of the radiation (Aghanim et al.|[2020a/b; Alpher and Herman [1948a,b; Gamov
1948alb; Penzias and Wilson 1965). Modelled by only six parameters (Aghanim et al. 2020b;
Spergel 2015)), it features an impressive simplicity while correctly predicting and fitting large parts
of the existing cosmological data (Aghanim et al.|[2020alb).

As we have seen, one of the most important assumptions within the paradigm is
that the Universe is almost spatially homogeneous and isotropic in a statistical sense. Within the
standard ACDM model, small inhomogeneities on any scale smaller than the observable Universe
are presumed to evolve following the underlying background structure, but conversely
their presence does not affect the global FLRW]evolution. More precisely, it is assumed that effects
from the small scale inhomogeneities onto the largest scales can be neglegted, i.e., there is no
substantial backreaction.

Doubts regarding the simplistic nature and the question of backreaction have gained mo-
mentum in recent years. In fact, the model, as appealing it may be, leads to the conclu-
sion that approximately 69% of the energy budget of our Universe consists of a yet unknown fluid,
dubbed “dark energy” (Aghanim et al. 2020b), and which drives the very recent accelerated ex-
pansion of the Universe (Peebles and Ratra2003; Perlmutter et al.[1999; Riess et al.{1998]). Most of
the remaining 31% of the energy budget is credited to another yet unknown form of cold “dark”
matter (Aghanim et al. 2020b; Blumenthal et al. 1984; Peebles |1982) which provides an expla-
nation for the characteristic rotation and motion of the remaining 6% of ordinary matter in the
Universe. In summary, we are faced with the problem that we are literally in the dark about 94%
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of the energy and matter content of the observable Universe.

We emphasize that the creativity of researchers in terms of possible solutions to these two
problems seems almost inexhaustible. On the dark matter front, weakly interacting massive par-
ticles (WIMPs) are among the most famous candidates but none of the proposed solutions could
yet be detected (Bertone and Hooper 2018). Another proposal is that dark matter is constituted
(partly) by primordial black holes (Carr and Kiihnel 2020; Carr, Kiihnel, and Visinelli|2020). Re-
garding dark energy, the simplest explanation could be a fundamental energy of space apparent
through the cosmological constant[A|while for example the existence of an additional dynamical
field (the “quintessence”) would provide another answer (Ratra and Peebles|1988)). But long story
short — we still don’t know the answer.

In recent years, these conceptual problems have been accompanied by tensions in the esti-
mates of certain cosmological parameters as made by different collaborations (Di Valentino et al.
2021ajc; Pesce et al.[2020). The evaluation of the Hubble constant H as performed by the Planck
collaboration (explicitely assuming a]A\CDM|model) gives a value of H, = (67.27 % 0.60)km /(s -
Mpc) (Aghanim et al. 2020b) while the SHOES collaboration finds H, = (74.03+1.42)km /(s-Mpc)
(Riess et al.2019) which in turn is based on the measurements of the Hubble Space Telescope, see
also Figure This leads to a tension at the 4.4c-level (Di Valentino et al.[2021c). While others
(Efstathiou|2020; Freedman [2021)) claim that this tension can be alleviated by a careful analysis of
the late time cosmological measurements, there is no consensus within the research community
about this question.

Furthermore, the estimate of the parameter Sg, a measure for the matter energy density Q,,
and the amplitue of structure growth oy, is subject to similar but less stringent discrepancies (see
Figure[2.3). Its value as determined by the Planck collaboration (Aghanim et al.2020b) and other
low-redshift measurements (Heymans et al. 2020) is in tension above the 2o - level (Di Valentino
et al.|2021a)). There are also numerous proposed solutions for this problem, some of them adding
further content to the model of the early Universe (Di Valentino, Mena, et al.[2021)), others claim
that the systematic uncertainties related to the Cepheid color-luminosity calibration prevents us
from correctly measuring H,, at late times (Mortsell et al. 2021). Interestingly, Krishnan et al.
(2021)) propose that the Hubble tension indicates a possible breakdown of the model and
possibly the assumption of an isotropic Universe.

Indeed, it has been claimed, inspired by the work of Ellis and Baldwin (1984)) that even the
assumption of the cosmological principle should be questioned according to the evaluation of
measurement data of the preliminary CatWISE quasar catalogue (Eisenhardt et al.|2020). More
precisely, Secrest et al. (2021) assert that our peculiar velocity with respect to these quasars is
different from the peculiar velocity of the CMB, and hence the kinematic interpretation of the
CMB dipole is rejected with a p-value of 5 X 1077, or put otherwise, is in 4.9¢ tension with ob-
servations. Similar conclusions were already drawn by Colin et al. (2011). On the other hand,
Stahl et al. (2021)) find results inferred from measurements of recent supernovae of types Ia and
II consistent with the Planck results and the ACDM model.

Furthermore, in (Bullock and Boylan—-Kolchin [2017; Del Popolo and Le Delliou 2017)), it is
argued that the concordance model comprises also severe problems on the smallest scales which
are reflected in discrepancies between the[ACDM|model and observations. For example, the cores

59



2. General Relativity and Concordance Cosmology

76 DES Y3: ACDM-Optimized
Riess et al. (2019) 0.94 HSC Cy (dashed)
r‘\— 72 HSC &. (solid)
2 KiDS-1000 COSEBIs
S 2 o0 S~ 2T
- / B
684 ARG | e S
” L & |
£ L > 0.8{ / /
(=] —
£ 64 BAO+Pantheon+D/H BBN
60 BAO+Pantheon+D/H BBN+0yc
Planck TT,TE,EE+lowE i
T T T T 07h s
0.24 0.28 0.32 0.36 0.40 0.1 0.2 0.3 0.4 0.5
Qm Qi

Figure 2.3.: Left panel: Inverse-distance-ladder constraints on the Hubble parameter and Q,, due
to (Riess et al. 2019)) (grey bands), compared to the result from Planck (blue) (Aghanim
et al. 2020b). Contours contain 68% and 95% of the probability. The figure is taken
from (Aghanim et al. 2020a)) where more details are given. Right panel: Cosmic shear
results with constraints on Sg and Q,, for the Dark Energy Survey (DES Y3) (green)
(Amon et al. 2021)), the Planck 2018 CMB data (Aghanim et al. [2020c)), (yellow), as
well as the KiDS-1000 COSEBISs analysis (blue) and the HSC results (red). The figure
is taken from (Amon et al.[2021])), see also there for more references and explanations.

of many dark matter dominated galaxies are less dense and cuspy than predicted by the ACDM
paradigm.

These pressing open questions on the observational side and the growing tensions between
different parameter estimates indicate that there might be some fundamental problems in our un-
derstanding of modern cosmology and the theoretical models underlying it. Indeed, the criticism
of many aspects of the model is growing louder in recent years. Many of the objections
concern the inflationary paradigm that was introduced to solve some of the initial problems of the
standard cosmological model. In particular, inflation was introduced to solve the monopole, the
flatness and the horizon problem. Regarding the monopoles, one could however argue that there
are simply no monopoles - in fact, we do not have observational evidence for a process that pro-
duces a high abundance of monopoles at earliest times. Hence, a natural proposal for explaining
the non-existence of monopoles in the Universe is simply to assume that there haven’t been any
in the first place.

Regarding the fine tuning problems, one could argue that our discomfort to assume a very
tiny value for the curvature density at earliest times is rather an aesthetic problem than a physical
one. Nature could simply choose a large range of initial conditions - why should all the cosmo-
logical parameters be close to one? Finally, it is often claimed that inflation solves the problem of
initial conditions in the sense that it provides a natural explanation for why our Universe has been
almost homogeneous and isotropic throughout its history (the horizon problem). While inflation
provides indeed a formalism for having causally connected patches in all directions of the sky at
earliest times, it certainly does not ease the fine-tuning problem. More precisely, one needs a very
specific set of parameters within the inflationary model for obtaining a long enough lasting phase
of inflation and for producing the right amplitudes of the scalar density power spectrum (Adams,
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Freese, and Guth|1991; Ijjas and Steinhardt|2016).

Moreover, an analysis of the standard Liouville phase space measure for cosomological mod-
els shows that single field inflationary models with large numbers of inflation (e.g., N > 60) are
exponentially suppressed (Gibbons and Turok 2008; Penrose |1989)). This fact can be related to the
requirement that inflation requires a long lasting phase of potential energy dominance which is
hard to attain (Jjjas and Steinhardt|2016]). Eventually, we mention that already according to the
Planck 2015 data release, many of the inflationary scalar field models have been experimentally
excluded. While the Gaussian nature of the perturbations eliminates the rather complex
inflationary models and favors the single field models, the Planck 2015 data disfavors the single
field models (Jjjas and Steinhardt|2016).

In either case, none of the known Standard Model particles and fields seem to resemble the
postulated inflationary field or to give a hint regarding its origin. The only yet detected scalar field
currently included in the Standard Model is the Higgs boson but in order to provide a long enough
lasting inflationary phase at early times, the field would be required to be non-minimally coupled
to gravity (Bezrukov and Shaposhnikov|2008]).

Another criticism that is raised regarding the standard cosmological model both without
and with an inflationary phase concerns the inherent singularities predicted by the theory. In fact,
classical general relativity presumes that for an expanding Universe filled with ordinary matter
the Universe encounters a “Big Bang” singularity with infinite density when going backwards in
time (Hawking|1966). Furthermore, Borde, Guth, and A. Vilenkin (2003)) have shown that also
inflationary Universes are past-incomplete, and thus encounter the same singularity issues. It is
claimed that these singularities predict the theory’s own breakdown and should be avoided.

Despite these criticisms and the existing data, the theory of inflation remains an active field
of research. On the other hand, many new proposals suggest to replace the inflationary paradigm
by other cosmic scenarios such as bouncing cosmologies (Brandenberger and Peter 2017; Cai
2014; Novello and Perez Bergliaffa |2008)). A wide variety of such bouncing approaches are be-
ing pursued, some of them are motivated by purely classical theories, e.g., (Ijjas and Steinhardt
2019) while others rely on quantum mechanical approaches to the early Universe, e.g., (Ashtekar,
Pawlowski, and P. Singh 2006a)).

While these approaches attempt to replace the almost homogeneous and isotropic inflation-
ary paradigm using a variety of different approaches, most of them adhere to linear cosmological
perturbation theory assuming that the test field perturbations propagate on a fixed (possibly quan-
tum) cosmological background. In these models, the perturbations do not backreact on the cos-
mological homogeneous degrees of freedom, i.e., they do not alter the global evolution of the Uni-
verse. Such possible backreaction effects are neglected in most of the cosmological approaches,
both for models of the late time Universe as well as for the early Universe. In view of the existing
data situation and the growing discrepancies within the cosmological standard model, it seems
however very timely to reassess the question of backreaction. Furthermore, as the Hy—tension
might point to discrepancies of our concordance model in the very early Universe, it is important
to further examine and understand theories of quantum gravity — of course coupled to matter. As
explained in the introduction, a particularly interesting endeavor would be to consider the semi-
classical limit of a quantum cosmological scenario (i.e., finding a|QFT|on a cosmological CST),
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or more generically, to find (approximate) quantum solutions within such a theory of quantum
cosmology with quantum matter. This requires an understanding of the inter-and backreaction
of such quantum models.

Hence, in our view the question of backreaction is one of the most obvious and pressing
ones as it examines not only one of the most important assumptions of modern cosmology (i.e.,
that cosmological backreaction can be neglected) but it also allows to approach the true quantum
solutions of coupled gravity—matter systems. To investigate this question, no exotic new physics is
needed (in the first place) but only the appropriate mathematical tools. The formalism employed
to study this question in this thesis will also provide the means to analyze the semiclassical limit
of such theories.

Therefore, in chapter [3| we first review the existing approaches to the problem of backre-
action for the late time classical Universe. Chapter 4| examines the question of backreaction in
semiclassical approaches to cosmology. In chapter[5 we revise the existing approaches to includ-
ing backreaction in quantum mechanical approaches to cosmology. The remainder of this thesis
will focus on one specific and new proposal for including purely quantum mechanical backre-
action which relies on a very flexible and suitable formalism relying on the Born—-Oppenheimer
approach, and which we adapt for an application to quantum cosmological perturbation theory.
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The previous chapter has underlined that the concordance model, despite its achieve-
ments, comes with many (often unstated) assumptions. One of them is the conjecture that cos-
mological backreaction is negligible, i.e., the assumption that any phenomenon related to the
effects of cosmological inhomogeneities on the global or macroscopic evolution of the Universe
can be ignored. In this chapter, we analyze the underlying problems that could arise due to ne-
glecting such backreaction in purely classical approaches to cosmology, and provide an overview
of the ideas discussed in the literature.

The topic is of course multifaceted and includes various aspects that require different meth-
ods and answers. An analysis of all the proposed approaches is beyond the scope of this work,
and we therefore focus on the most relevant and most discussed ideas. Owing to the different
physical situations, it is useful to distinguish between backreaction that occurs in the early and
the late time Universe. Hereby, “late” refers to times after the decoupling of matter and radiation,
whereas “early” studies encompass the inflationary Universe including the reheating phase. We
start with a discussion of backreaction during the recent eras in cosmology and work our way back
to the effects of backreaction in the early Universe. The former approaches rely on purely classi-
cal models of the late time Universe while some of the latter schemes (but not all) are based on
quantum field theories on curved space times. The approaches based on quantum field theories
will be the topic of the next chapter.

As far as it stands, there is no consensus on the question of backreaction, and results de-
pend on the underlying physical model as well as on the averaging procedure being chosen. Our
discussion of the late and early Universe backreaction effects in the following relies mainly on
(but is not limited to the works by) Bolejko and Korzynski (2017), Clarkson, Ellis, et al. (2011),
Ellis (2011), and Paranjape (2012), and references therein. A similar but shorter discussion of the
topic can also be found in (Schander and Thiemann[2021]), and certain parts of this paper coincide
with parts of this section. The remainder of this thesis examines the question of backreaction in
the very early Universe, where quantum effects for different parts of the cosmological system are
presumed to play a role.

3.1. Backreaction in the Late Time Universe

To understand the issue of backreaction, it is useful to make a distinction between a truly spatially
homogeneous and isotropic Universe, and a Universe which is only statistically homogeneous
and isotropic (such as ours). In the first case, the geometric quantities of the theory as well as
the matter content of the Universe reduce to[FLRW|form: the metric tensor can be parametrized
by the scale factor a(t) and the matter content may be described by a spatially homogeneous and
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isotropic field or fluid. The Friedmann equations provide the corresponding equations of motion.
In the case of a statistically homogeneous and isotropic Universe, there are inhomogeneities and
obviously, the physical geometry and matter content fail to be well represented by an Uni-
verse. Nevertheless, it is reasonable to ask whether the model provides a good fit to the
true lumpy Universe on its largest scales. This is the question underlying the “fitting problem”
in cosmology (Ellis and Stoeger [1987), namely to define a suitable homogeneous and isotropic
model with suitable cosmological parameters that fit well cosmological observations.

One possibility to make progress with regards to the fitting problem is to derive global quan-
tities such as a global expansion parameter. For example, one could identify spatial hypersurfaces
in space time and compute spatial volume averages of the local expansion rate. These averaged
quantities however do not in general obey the Einstein equations (or the Friedmann equations)
because the averaging process does not commute with evaluating the Einstein tensor (Ellis[2011]).
This is due to the non-linearity of Einstein’s equations and can heuristically be understood as
follows (Paranjape 2009): The Einstein tensor G,,[g] depends on derivatives of the Levi-Civita
connection T associated with the metric as well as on its square I'2. Given an appropriate defini-
tion of spatial hypersurfaces in space time, an averaging over spatial volumes yields contributions
(I?) to the averaged Einstein equations while the matter content is described by the averaged
stress-energy tensor (T'),,,. In contrast, the Friedmann equations depart from the averaged met-
ric tensor (g) and are assumed to have the form, 87G(T),, = G[(g)].n ~ (I‘)fw. The first equality
is hence an assumption! The true equations of motion valid on the averaging scale contain (a
priori) non-vanishing contributions E,,, of the form (Paranjape 2012)

Guv[<g>] = 871G <T>;,w + Euv ~ 87TG<T>/,U) + (<F>2 - <F2>),uv (3.1

where it was assumed that the Einstein equations hold for the inhomogeneous metric on the
smallest scale where they have been excellently checked. The effects of backreaction have been
stored into the additional effective stress-energy tensor E,,, .

The resulting equations and quantities obviously depend heavily on the concrete averaging
procedure, the assumed matter content and on how inhomogeneities are built into the model.
Likewise, the results range from negligible deviations from the assumed ACDM evolution to major
changes of the theory such as works that aim at explaining the recent accelerated expansion of
the Universe by backreaction (Buchert 2008} Heinesen and Buchert [2020).

The following sections provide a short overview of some of the relevant contributions, start-
ing with approaches that focus on purely non-perturbative situations, then restricting to the man-
ifestly perturbative methods, and continuing with an explicit consideration of numerical results.
As advertised, we finish with an overview of classical backreaction in the early Universe.

3.1.1. Non-Perturbative Techniques
One possibility to quantify backreaction is to average a given inhomogeneous geometry and to
compare the result to a purely homogeneous and isotropic solution to Einstein’s equations. In

a general relativistic setting, this problem was first considered by and, e.g., by considering the
backreaction of gravitational waves on a slowly varying background (Ellis [2011). The seminal
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work by Ellis (1984) transferred these ideas to cosmology, and in the sequel, many authors have
proposed avenues to its solution among which Anastopoulos (2009), Carfora and Piotrkowska
(1995), Futamase (1996), Kasai (1992)), Mustapha et al. (1998]), and Zotov and Stoeger (1992)) in
the non—perturbative regime (Paranjape 2009).

One challenge is to define a proper averaging mechanism for generic tensor fields since ten-
sors at different space time points cannot simply be compared one to another in a curved back-
ground (Clarkson, Ellis, et al.2011). A second issue is that a proper averaging procedure requires
some information about the correct solution of geometry right from the beginning which is in
most cases not available. In fact, one needs to choose physically reasonable spatial hypersurfaces
to perform the averaging.

One of the most prominent approaches to a background independent averaging procedure
was introduced by Buchert (2000, 2001)), and is based on building spatial averages of scalar fields
in inhomogeneous cosmologies. To illustrate the procedure, let us focus on late time cosmological
situations using a pressureless vorticity—free dust as the matter content and comoving coordinates
such that the equal-time hypersurfaces coincide with the matter rest frame. The gradient of the
dust 4-velocity u* can be expressed in terms of the volume expansion rate 6 and the shear tensor
04 using the decomposition (Buchert and Résénen 2012)

1
Vﬁua =: ghaﬁe + Ogp- (3.2)

The spatial average of a scalar field S(t, x) over a spatial region D is defined with the induced
spatial metric & as

(S)p(t) = ViD f BeVh S, %), (3.3)
D

Since taking a time derivative does not commute with spatial averaging in this formalism (Clark-
son, Ellis, et al. 2011)) the averaging of the Einstein field equations yields an additional kinematical
backreaction term Qp in the Raychaudhuri equation for the volume scale factor ap « V;/ 3

32_2 +4nG{p)p =A+Qp, Qp:= % [(6*)p = (©);,] — 2(c?)p. (3.4)

Note that structure formation and clustering in the late Universe lead to an increasing variance
of the expansion rate, and hence to growing backreaction Qp (Buchert and Rédsdnen [2012). If the
backreaction acts similarly to a positive cosmological constant, as has been suggested by Nambu
and Tanimoto (2005) and Risdnen (2004])), this would yield a very natural solution to the coinci-
dence problem, i.e., to the question of why the accelerated expansion starts just now when non-
linear structure formation begins (Clarkson, Ellis, et al. 2011). To date, however, it is not clear
as to which extent this formalism actually leads to observable predictions. Since the formalism
only knows how to average scalar quantities, the resulting system of scalar equations is not closed
and requires suitable external input to estimate the averaged shear (Ellis 2011). Consequently,
backreaction can not be determined without ambiguity by this procedure.

Possible avenues to proceed are provided by the scaling solutions employed by Desgrange,
Heinesen, and Buchert (2019)), Larena et al. (2009), and Roy et al. (2011)) which lead to results
that can be compared to observations. In general, the averaged fields, e.g., the volume scale factor
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do not have a clear physical meaning a priori (Clarkson, Ellis, et al.2011). Rédsénen (2009, 2010)
argues however that they precisely describe observations along the past lightcone while Adamek,
Clarkson, et al. (2019) underline that averaged quantities that are attached to the dust particles fail
to provide a meaningful description of cosmological models when it comes to structure formation
and shell-crossing. Instead, they advocate choosing averaging surfaces that correspond to the
Poisson gauge as it results in negligible backreaction. Recently, Heinesen and Buchert (2020)
have stressed that this approach lacks physical significance.

Another approach to the averaging problem which is manifestly covariant and hence eases
the limitations of Buchert’s formalism has been introduced by Zalaletdinov (2008)). This scheme,
denoted as “Macroscopic Gravity”, relies on introducing an auxiliary so—called bi-local transport
operator A2(X, X’) that acts as an integral kernel on a tensor T;,(X) in order to give its average
T 4»(X) (Zalaletdinov|[1997),

S5 d* X' AL (X, XA (X, X)T iy (X')
fz a*X+/|gl

The transport operator AZ(X ) is constructed such that its contractions with the actual physical op-

Tab (X) =

(3.5)

erator transforms as a tensor at the point X but as a scalar elsewhere which allows to average over
the space time region X (Clarkson, Ellis, et al.|[2011)). The field equations for the averaged quanti-
ties comprise an additional geometric correlation tensor that can be understood as an additional
source term due to backreaction (Clarkson, Ellis, et al.[2011). In a flat[FLRW]| macroscopic back-
ground, the resulting backreaction takes the form of an additional spatial curvature term (Hoogen
2009), and it was shown that the scheme reduces to Buchert’s formalism in an appropriate limit
(Paranjape and T. P. Singh 2007). Since the averaging procedure depends on the choice of the
transport operator, the scheme lacks however predictive power and it is not clear how the choice
of the transport operator affects the theory (Hoogen [2010).

One major criticism inherent to both presented formalisms is that they focus on deriving
effective equations of motion for the averaged metric which by itself lacks a direct physical mean-
ing. The averaged geometric quantities do not relate directly to physical observables (Clarkson,
Ellis, et al.[2011)): In particular, physical observables are related to light emission by some distant
sources, for example the angular diameter distance or the redshift, and backreaction should be
evaluated with respect to these observables. This can of course be overcome by imposing further
physical assumptions that relate the results to observations.

Within Buchert’s scheme, this has been done using the above-mentioned scaling solutions.
Within the Macroscopic Gravity approach, Paranjape (2008)) and Paranjape and T. P. Singh (2008])
conclude that backreaction effects remain negligibly small both in the perturbative as well as in
the non-linear regime of gravity. On the other hand, Coley (2009) and Risdnen (2009, 2010) de-
rived effective cosmological equations of motion related to an averaging procedure on the past null
cone. Another proposal for defining covariant light-cone averages was put forward by Gasperini
et al. (2011)), but the procedure requires dynamical equations of motion to relate variables at dif-
ferent times (Clarkson, Ellis, et al.|2011). See also in (Fanizza et al. 2020)) for a more recent gen-
eralized proposal with a direct application to cosmological situations. It is in fact possible that
inhomogeneities directly influence the measurement of cosmological parameters (Ellis 2011), for
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example the redshift and its drift (Koksbang and Hannestad|2016) or area distances (Bertotti|1966;
Ellis2011). The relevance of these effects depends of course on the actual distribution of matter
in our Universe (Ellis|2011). Recently, many proposals regarding the measurement of the redshift
and its possible drift have been made in order to falsify the question of the backreaction problem
(Heinesen 2021alb; Koksbang|2019} 2020, 2021)).

In addition to the question of a meaninigful averaging mechanism, the evaluation of back-
reaction also raises the question of how to design the underlying model of the Universe. The
[ACDM]model uses a purely homogeneous and isotropic fluid to represent the matter content that
drives the global evolution of the Universe. But the Universe is made up of structures and meta-
structures that cluster in certain regions while other regions are almost empty. In the field of
Inhomogeneous Cosmology (Bolejko, Celerier, and Krasinski[2011}; Krasinski 2006) many propos-
als have been made to improve the simplistic assumptions of the standard model, some of which
have been used to evaluate backreaction (Bolejko and Korzynski2017; Clarkson, Ellis, et al.[2011).

One proposal by Wiltshire (2009)) is the “Timescape Cosmology” which separates the Uni-
verse into underdense expanding regions bounded by overdense virialized structures. Wiltshire
also computes an average using Buchert’s formalism but it turns out that the strength of the corre-
sponding backreaction is limited to a few percent (Clarkson, Ellis, et al.2011). More importantly,
the different time measures in the overdense regions and the averaged model have the effect of
an additional redshift for observers in the overdense region which could account for the dimming
of supernovae (Ellis|[2011; Leith, Ng, and Wiltshire 2008). Similar attempts but with different as-
sumptions for the matter distribution in the Universe are the Swiss Cheese model (Biswas and
Notari 2008; Kantowski 1969; Tomita [2000), modifications of an Universe by introduc-
ing spherically symmetric Lemaitre-Tolman-Bondi or Szekeres dust space times (Bolejko and
Celerier|2010; Marra, Kolb, and Matarrese 2008)).

All these models rely on introducing a cosmological fluid that is consistently modified, but
the matching conditions assure that the global evolution of the models do not differ from the stan-
dardexpansion (Clarkson, Ellis, et al.2011). Inhomogeneous cosmologies that do not as-
sume an underlying[FLRW|background are for example regular black hole lattices (e.g., (Yoo and
Okawa 2014)) or the Lindquist-Wheeler models which consist of a regular lattice of Schwarzschild
domains that are bounded by matter shells (Lindquist and Wheeler|1957). Interestingly, the global
evolution in these models approximately follows the corresponding [FLRW]evolution (Clarkson,
Ellis, et al.|2011)). Although this restricts their value for evaluating backreaction as an effect on
the global evolution of the Universe, they provide insights into backreaction effects on light prop-
agation (Krasinski and Bolejko 2011; Sussman [2011).

In summary, we acknowledge that evaluating the form and strength of backreaction for non-
perturbative inhomogeneous cosmology is a difficult task. There are several proposals for how to
average the inhomogeneous fields in order to obtain macroscopic quantities that one can compare
with global cosmological parameters. All presented schemes require to make a priori assumptions
that have physical consequences, for example the choice of a suitable averaging volume or the
form of the bi-local transport operator in Macroscopic Gravity. There is no consensus regarding
these questions so far. One possibility to yet make progress is to construct a viable model of the
Universe that admits exact solutions and to compare its evolution and observable quantities with
an assumed [FLRW| Universe. This comes however at the price of oversimplifying the true lumpy
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Universe and care must be taken in the choice of boundary and matching conditions (Bolejko
and Korzynski 2017). It is thus of interest to analyze perturbative based models whose
results on backreaction effects can possibly be compared to cosmological observations without
ambiguities owing to the theoretical framework (Clarkson, Ellis, et al.[2011). Of course, it must
be noted that this approach might not be adequate during recent times when structures have
formed. These computations for backreaction need a particular[FLRW|background solution as an
input. But this background will be altered by the effects of backreaction. We can thus never start
with the correct background — a vicious circle (Paranjape [2009).

3.1.2. Perturbative Techniques

Perturbative models assume that the Universe is well described by a spatially homogeneous and
isotropic solution to Einstein’s equations with small perturbations. The question is thus whether
and to which extent the perturbative fields alter the dynamics of the homogeneous background
solution in a linear or weakly non-linear regime. The goal of the game is to compute averaged
macroscopic quantities which include backreactions by the perturbations and which can ulti-
mately be compared to observable quantities such as the luminosity distance.

Similar to the non-linear regime, the explicit backreaction effect depends on the chosen
averaging scheme and the underlying matter model. The results of the averaging formalisms by
Buchert and Zalaletdinov, although constructed for explicitely non-perturbative models, can be
applied to the perturbative cosmological regime. This has for example been done by Paranjape
and T. P. Singh (2007) for Macroscopic Gravity and the Buchert scheme, the result being negligi-
ble backreaction effects in the new effective Friedmann equations. Other proposals for averaging
schemes that explicitely apply to the perturbative regime were proposed by Boersma (1998)), Fu-
tamase (1996), and Noonan (1984), see also (Paranjape [2009).

Most of the works tie in with cosmological observations and consider flat models
with Gaussian scalar perturbations to start with (Ellis|2011)). To evaluate backreaction, they com-
pute the deviations to the Hubble expansion rate or similar variables that are caused by backreac-
tion (Clarkson, Ananda, and Larena 2009; Clarkson and Umeh 2011; Kolb, Marra, and Matarrese
2010; Kolb, Matarrese, Notari, et al.[2005; N. Li and Schwarz 2008; Russ et al.|1997)), or give effec-
tive Friedmann equations with additional contributions (Baumann et al.2012; Behrend, I. Brown,
and Robbers|2008; I. Brown, Robbers, and Behrend 2009; Noonan (1984; Paranjape and T. P. Singh
2007; Peebles|2010), see also (Clarkson, Ellis, et al.[2011)).

The basic idea underlying the perturbative treatments is to expand the metric and the matter
fields in first (and second) order perturbation theory and to write the deviations of the original
theory in terms of averages of these perturbative fields. The assumption is hence that the real
inhomogeneous Universe, consisting of large voids between the matter dominated regions, can be
well described using a Newtonian approximation (Ellis|2011). This conjecture has been supported
for example by Baumann et al. (2012) and Ishibashi and Wald (2006). In fact, Buchert, Ellis, and
Elst (2009) estimate the relative size of spatial metric perturbations at the scale of voids and walls
in our Universe to be of the order of 107>, and which would hence support the perturbative ansatz.
The field equations include however density perturbations of the form k?8g where k is the mode
number of the field and which can be large (Clarkson, Ellis, et al. 2011}
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To evaluate the corrected global Hubble expansion rate, it is convenient to first compute
a spatial average over some appropriate macroscopic domain (like for the non-perturbative ap-
proaches above), and to use then the given statistical information about the perturbation fields in
guise of their power spectra in order to give concrete estimates of the size of the effects (Clarkson,
Ellis, et al.|2011)): More precisely, one computes the corresponding ensemble average of, for ex-
ample the Hubble rate, including second order terms due to the perturbations. First order terms
in the metric perturbations drop out (that is why a second order extension is needed), and one is
left with computing the ensemble averages of the spatial averages (0" ®3"®), n,m € N, as far as
the Hubble expansion rate is concerned. Here, ® denotes the Newtonian potential of the metric
which is perturbed using a Poisson gauge.

Employing the observational constraints on the power spectra, it turns out that the dom-
inant contributions are at most of the order of 10~> which is due to the large horizon scale at
matter equality, or equivalently, the low temperatures at that time, and backreaction only de-
pends on the modes that are larger than this scale (Clarkson, Ellis, et al. 2011). The subdominant
terms depend directly on an IR—cutoff that is necessary for the computations and which is set by
the largest modes we can observe today. It reflects our ignorance of physics that might happen
on larger scales, and some have claimed that this could result in observable backreaction effects
(Clarkson, Ellis, et al.[2011), namely by finding a bound for the start of inflation which basically
determines the cutoff (Barausse, Matarrese, and Riotto|2005; Kolb, Matarrese, Notari, et al.|2005}
Kolb, Matarrese, and Riotto 2006) while others disagree in this respect (Flanagan 2005; Geshniz-
jani, Chung, and Afshordi[2005; Hirata and Seljak [2005)).

Regarding the corrections to the variance of the Hubble rate and the deceleration parame-
ter ¢ = —(1 + H/H?), the second order perturbative contributions include averaging terms that
manifestly depend on an artificial UV-cutoff which should in principle be set by the end of infla-
tion and the structure scale of dark matter (Clarkson, Ellis, et al.[2011). And even if the cutoff is
set by larger scales (i.e., larger than the scales of non-linearity), it can lead to large backreaction
of order unity in the variance of the Hubble rate, see also in the previous reference. Baumann
et al. (2012) propose a reformulation of perturbation theory which could ease the problem. More
precisely, they develop an effective field theory valid on large scales k << A while carefully imple-
menting a split of long and short wavelength modes in their effective equations of motion. They
find no significant backreaction on the largest scales but claim that there are relevant effects on
the baryon accoustic oscillations. This promising approach has however been critizised to neglect
backreaction terms due to their partly non-Riemannian averaging procedure (Clarkson, Ellis, et
al.|2011)).

The problems that arise for Riemannian averaging have been addressed by Green and Wald
(2011}, 2012, [2013)) using a weak field limit. Instead of considering averages of inhomogeneous
fields over a certain volume as discussed above, they define a point limit process for the cosmo-
logical inhomogeneities. They find that backreaction for matter that behaves non-relativistically
on small scales can only occur in form of an effective radiation stress-energy tensor, and they
claim that the overal evolution is not significantly affected by such backreaction (Green
and Wald 2014)). Their scheme omits however the effects of matter clustering (which should be
the most relevant contribution to backreaction) (Ellis [2011)), and it has been questioned whether
the limiting process can describe any realistic situation in nature (Buchert et al.|[2015)).
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This last criticism seems to be inherent to any of the discussed approaches that consider
averaging over spatial or spatio-temporal volume cells. What is however being measured are
quantities that are related to light emission (such as the redshift and the angular diameter dis-
tance), and one could ask whether a null-fitting, i.e., an averaging procedure along the past null
cone, yields meaningful results (Clarkson, Ellis, et al.2011). The ideas for how this might work in
a perturbative setting were laid out in a seminal work by Kristian and Sachs (1966). These ideas
were for example used by Flanagan (2005) to compute the deceleration parameter as measured by
comoving observers. Other approaches evaluate the effects of perturbations on observable quanti-
ties such as the distance-redshift relation (Barausse, Matarrese, and Riotto[2005; Bonvin, Durrer,
and Gasparini [2006)) which includes corrections as the ones to the Hubble rate. Second order
(possibly large) contributions might furthermore affect the variance of the luminosity distance
average as well as the deceleration parameter (Clarkson, Ellis, et al. 2011)).

Finally, it is fair to say that there is no consensus on the question of backreaction in perturba-
tive cosmology. It is however clear that the Newtonian potential, responsible for the backreaction
in many of the approaches, is very small (except in the vicinity of heavy objects such as neutron
stars) and the peculiar form of its power spectrum (namely its small magnitude on large scales)
prevent the backreaction effect for any quantity that depends on ® and its derivatives to be large
(Clarkson, Ellis, et al. 2011)). Only the variance of cosmological parameters might receive relevant
backreaction effects but solely on small scales of a few Mpc. In general, it is not surprising thatin a
model for which the background is already fixed up to tiny perturbations the backreaction effects
remain small, but it is of course questionable whether this approach is able to describe the phys-
ical reality in a very lumpy Universe (Ellis|2011). The sceptic will also oppose that backreaction
is an effect due to full general relativity and cannot be captured with Newtonian approximations.
Another open issue is whether higher order perturbation theory might change the given results,
and as mentioned above, whether the ambiguities introduced by the IR- and UV-cutoffs play a
role for the ultimate results (Clarkson, Ellis, et al.[2011)).

3.1.3. Relativistic Simulations

Numerical methods for simulating the evolution of realistic relativistic space times might help to
make progress on the question of backreaction, in particular in situations where exact solutions
to Einstein’s equations are out of reach. As it currently stands, several different coding environ-
ments are available (Bolejko and Korzyniski|2017): The most important ones are the cosmological
N-body code “gevolution” which includes relativistic effects by means of a weak field approxima-
tion (Adamek, Daverio, et al.[2016); the N-body code “GRAMSES” implementing a constrained
formulation of general relativity (Barrera — Hinojosa and B. Li 2020); the numerical relativity
“Einstein toolkit” based on the Cactus infrastructure (Loffler et al.[2012); and the numerical rel-
ativity code “Cosmograph” (Mertens, Giblin, and Starkman 2016]) (for a comparison of the codes
see Adamek, Barrera - Hinojosa, et al. [2020).

As an application to an inhomogeneous cosmological situation in which the matter content
is modelled by a pressureless fluid, Mertens, Giblin, and Starkman (2016) employ the “Cosmo-
graph” code and compare their simulation to the evolution of a homogeneous[FLRW|model. They
show that inhomogeneities generate fluctuations in the extrinsic curvature parameter but defer
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the evaluation of physical observables to future work. As another more concrete application to the
backreaction problem, Bentivegna and Bruni (2016]) use the Einstein toolkit in an Einstein — de
Sitter Universe with small initial density perturbations in order to show that the kinematic back-
reaction term Qp scales like L but remains very small even for large perturbations. Also based on
the Einstein toolkit, Macpheflison, Price, and Lasky (2019) show that backreaction remains negli-
gibly small in a CDM-Universe. All these results rely however on a fluid approximation which
breaks down when it comes to structure formation and shell-crossing in the late time Universe.

In contrast, Adamek, Clarkson, et al. (2019) work with the gevolution code modelling a
ACDM and an Einstein - de Sitter Universe with [CDM}-particles. Depending on the gauge -
Poisson or comoving — and a corresponding choice of averaging hypersurfaces, they demonstrate
that in the former case backreaction in the Hubble expansion rate remains always small (at the
subpercent level), while when following the comoving dust particles, backreaction can become
large (~ 15%). They subsequently argue that the correct question to ask is whether there are time
slicings with respect to which backreaction remains small, while Heinesen and Buchert (2020)
question the physical relevance of this hypothesis.

3.2. Backreaction in the Early Universe

For the evaluation of backreaction during the earliest cosmic eras, it seems admissible, accord-
ing to the concordance model, to assume a spatially homogeneous and isotropic Universe with
small perturbations. In line with the ACDM model, one can for instance assume an inflation-
ary phase prior to the radiation dominated era and an[FLRW|metric plus perturbations to model
the Universe as has been done for example by Abramo, Brandenberger, and Mukhanov (1997)
and Mukhanov, Abramo, and Brandenberger (1997). We will explain the latter approach in more
detail, and also review subsequent findings. Note that the following overview coincides with a
section in (Schander and Thiemann 2021)) which arose as a collaboration between T. Thiemann
and the author.

The idea brought forward by Abramo, Brandenberger, and Mukhanov (1997) is to consider
backreaction from long wavelength modes in models of the early Universe. Other earlier contri-
butions in that direction were notably made by Tsamis and Woodard (1993, 1996|). Their proce-
dure improves on the strict perturbative truncation of the perturbative ACDM model by including
second order contributions to the perturbative Einstein equations. Therefore recall from the pre-
vious chapter that in the standard perturbative treatment, the zeroth order homogeneous Einstein
equations are assumed to hold exactly by neglecting any perturbations, i.e., IT[6,] = 0. The evo-
lution equations for the perturbations arise from considering any linear first-order terms of the
field equations, namely IT,, [6,]66¢ = 0, together with the homogeneous solutions for 6, from
the previous step.

A possible improvement of this truncation arises by performing a spatial average of the per-
turbative Einstein equations (2.40). Equipped with a global time parameter ¢ and using that the
spatial average of any perturbative field §6¢ vanishes, a set of improved Friedmann equations
including backreaction effects up to second order can be derived (Abramo, Brandenberger, and
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Mukhanov|1997):
T1160] + 3 (ML [6,166° 86°) = 0, 36)

Abramo, Brandenberger, and Mukhanov (1997) apply the scheme to an inflationary scalar field
model with gauge-invariant cosmological perturbations, and consider the backreaction prob-
lem associated with an effective long wavelength energy momentum tensor. However, Unruh
(1998) subsequently examined the question of whether this effect is indeed locally measurable,
and found that such backreaction effects (in single field inflationary theories) can be absorbed
by a gauge transformation (Abramo and Woodard [2002; Geshnizjani and Brandenberger [2002).
It was then shown by Geshnizjani and Brandenberger (2005) that backreaction of such fluctu-
ations becomes locally measurable after introducing an additional subdominant clock field, see
also (Brandenberger and Lam 2004)). This approach was then extended by Marozzi, G. Vacca, and
Brandenberger (2013) based on the gauge-invariant formalism by Finelli, Marozzi, G. P. Vacca,
et al. (2011). Besides, an extension of these works to second order perturbation theory shows
that backreaction induced by super—-Hubble perturbations is relevant even beyond perturbation
theory and induces a negative contribution to the local Hubble expansion rate (Brandenberger,
Graef, et al. 2018). Further contributions were notably made by Losic and Unruh (2005} 2008])
who support the idea that backreaction represents a real and measurable effect in early Universe
cosmology.
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The considerations in the previous chapter were of a purely classical nature in that the gravita-
tional as well as the matter fields were analyzed as classical fields. This seems to be a reasonable
assumption for the late time Universe but it should be questioned for the earlier phases when the
Universe was a hot and very dense place. In such situations, at least the matter degrees of free-
dom require a description with quantum field theoretical methods. The direct implementation of
this idea leads to the wide terrain of quantum field theory on curved space times (QFT on CST)
in which the quantum fluctuations of matter fields are coupled to a purely classical gravitational
field. This should in fact provide a good approximation to physical situations where curved space
time effects are significant, but the quantum nature of gravity is negligible. Due to its hybrid na-
ture, it is clearly not a fundamental theory, but one can hope to make progress towards a more
fundamental theory by asking the right questions within the approximative framework of

The main issue of is to examine the structure of the quantum matter fields on
some fixed curved space time determined by the classical gravitational field. Heuristically, this
admits the picture of quantum fields propagating as test fields on a specific classical background,
and the theory takes the effect of gravity upon the quantum fields into account. The backreaction
effects of the quantum field fluctuations on the gravitational background are however neglegted
in this framework. To include such backreaction, the approach of semiclassical gravity includes
the expectation value of the quantum stress-energy tensor in some appropriate matter state as an
effective source term in the Einstein equations, hence denoted as semiclassical Einstein equations.
Another approach to including backreaction is denoted stochastic (semiclassical) gravity. In this
framework, additional stochastic terms appear in the semiclassical Einstein equations.

Before attacking the question of backreaction in semiclassical (section [4.2)) and stochastic

gravity (section [4.3), we provide a review of the relevant notions and results of[QFT on CST| The
latter is based on (Birrell and Davies|1984; Hollands and Wald 2015; Wald [1995)).

4.1. Quantum Field Theory on Curved Space Times

4.1.1. Covariant Approach

As the name suggests, quantum field theory on curved space times aims at defining a consistent
quantum theory for (matter) fields that are coupled to a generic classical gravitational field. This
is in fact not a trivial task since many of the fundamental concepts of QFT on Minkowski space
time such as Poincaré invariance, and hence the notion of a Poincaré invariant vacuum state and
excitations thereof are meaningless. Nevertheless, it is possible to define a set of basic principles,
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inspired by Minkowski QFT, but which are more general in nature. These are as follows (Hollands
and Wald [2015)):

First, any quantum field ® is to be considered as a distribution on some space of test func-
tions on the underlying Riemannian space time manifold (M] g) with metric tensor g, and with
values in a quantum algebra A, = AQ@ g). The focus on the algebraic character releaves us
from fixing one particular field representation. In fact, due to the infinite number of degrees of
freedom, different representations of the field algebra are in general not unitarily equivalent - the
Stone-von Neumann theorem does not apply here — and hence, the choice of a representation does
not seem to be fundamental for the definition of a We thereby follow the algebraic
approach to (Haag|1955). Second, the QFT should be locally and covariantly constructed,
in the sense that information propagates according to the laws of general relativity and the fields
should be constructed without any further background structure. Third, the fields of the QFT
should obey a suitable so—called microlocal spectrum condition which translates the requirement
of positive energy from QFT on Minkowski space time to the generic relativistic case.

With these preliminaries in mind, we give the basic notions and ideas of (algebraic)[QFT on]
[CST|for a free real-valued scalar field @ : — R. The section is mainly based on (Birrell and
Davies |1984; Hollands and Wald [2015)). The classical Klein—-Gordon field on a generically curved
but globally hyperbolic space time M with Lorentzian-signature metric tensor g and generated
by some smooth source j : — R satisfies the equation of motion (Hollands and Wald [2015)

(8"V,V, —m?)® = j (4.1)

where \ is the covariant derivative associated with g, and m € R the mass of the scalar field.
After a (3 + 1)-split, any pair f;, f, of smooth functions on a spatial hypersurface o with unit
normal n* determine a unique solution ® to the Klein-Gordon equation with

Pl = f1, n*V, Pl = ) (4.2)

The solutions @ of such an initial value formulation depend continuously and causaly on the ini-
tial data f;, f,, and on the source j, see (Hollands and Wald 2015) for more details. It is common
to define the advanced and retarded propagators E* of the Klein-Gordon field as functions on
Co (M) or equivalently as distributional kernels on [M]x[M]such that formally

(8*V,V, —m?) EX(x,y) = 6(x,) (4.3)

where the operator on the left hand side acts on the first variable in a distributional sense. It will
also turn out to be useful to define the “commutator function” E := E* — E~.

The[QFT]of the Klein-Gordon field is then most suitably constructed by introducing a “quan-
tum” algebra of observables AQ(PZ[], g) that reflects the properties of the linear and real-valued
Klein-Gordon field in an appropriate sense. Let therefore A, be a unital x-algebra with the invo-
lution *. A quantum field ® € g) is a distribution over the Riemannian manifold (] g)
such that for any set of smearing functions f, f1, f, € C¢° @, the field ® has values in the unital
“quantum” x-algebra A and satisfies (Hollands and Wald 2015)

1. ®(c,f1+cofs) =1 P(f1) + c,®(f,), for all ¢, ¢, € C (Linearity),
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2. ®((g""V,V, —m?) f) = 0 (Field equation),
3. ®(f)* = ®(f), (Hermicity),
4. [®(f),®(f,)] =iE(f1, f2)1 (Commutator relation)

where 1 is the one in the quantum algebra and an overbar denotes complex conjugation. Then,
one can establish (Hollands and Wald [2015)) that the linearity allows to informally interpret the
field as an operator-valued distribution of the form

() = f & xy/g B0 f (x). 44)

The notion of a physical state w refers to a linear map w : @ — C which is normalized, w(1) = 1,
and positive, w(A*A) > O forall A € @ By construction, any state is determined by the set of
its n—point functions W, with n > 1 defined by (Hollands and Wald [2015)

Wn(fla cees fn) = a)(CI)(fl) q)(fn)) (4-5)

Given such a state or its n—point functions, we know all the expectation values of all powers of
the field operators ®(f), and hence we have all physical information that can be extracted. Two
states w and ' can be taken to form a new state via their convex linear combination Aw+(1—2)w’
where 0 < 1 < 1. A state is called pure if it cannot be decomposed into a non-trivial convex linear
combination.

There is also a direct relation between the algebraic states defined above and vector states in
a Hilbert space H (Hollands and Wald |2015): For this, one needs a Hilbert space # with a dense
domain D C K and a x-algebra of linear operators @ C L£(D) on this dense domain. Then, the
algebraic state wy arises from a non-zero vector $ in D according to

wy(A) 1= AP (4.6)

. 9)

where (-, -) is the inner product in #(, and A € [Ag} On the other hand, any algebraic state

gives rise to a Hilbert space # with invariant domain D, a representation 7 of [4g|on ¢ and a
vector Q € D such that holds. This is known as the GNS construction in[QFT](Gel’fand and
Naimark 1943; Segal [1947)), and which proves that the algebraic and the Hilbert space represen-
tations in quantum field theory are essentially equivalent. However, the Hilbert space represen-
tation obviously chooses one particular representation, in constrast to the algebraic ansatz which
is hence more general.

In order to filter the physically relevant states off the large class of admissible states on@
one can impose a set of natural conditions on the states (Hollands and Wald [2015). One relevant
class of states known as Hadamard states are constructed such that i) they control the high fre-
quency modes of the field, in the sense that, ii) the singular structure of the n-point functions at
short distances should not be worse than for the vacuum state in Minkowski, and iii) the singu-
lar structure of the n—point functions should be of “positive frequency type” (Hollands and Wald
2015)). This can be most precisely phrased in terms of wave front sets (Radzikowski 1996alb)). As
it turns out, the restriction to Hadamard states is necessary in order to define expectation values
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of polynomials of the fields and its derivatives at the same space time point, hence, they assure
that a covariant renormalization prescription can be defined for the stress—energy tensor. A class
of Hadamard states exists on any globally hyperbolic space time (Fulling, Narcowich, and Wald
1981; Gérard and Wrochna 2014) which makes them particularly useful in

A generalization of the class of Hadamard states yields the adiabatic vacuum states (Junker
and Schrohe [2002)), initially introduced by Parker (1969) in order to describe particle creation
in an expanding Universe (note that this notion of adiabaticity has to be strictly distin-
guished from the notion of adiabaticity in the space adiabatic perturbation theory approach).
When extended to generically curved space times, the class of adiabtic states contains the class
of Hadamard states as these are adiabatic states of “infinite order” (Junker and Schrohe 2002).
We already encountered the adiabatic states in chapter 2] where they were defined by introducing
a ansatz for the mode solutions of the Klein-Gordon field. It was pointed out that
these mode solutions are iteratively constructed with respect to an adiabatic perturbation param-
eter under the assumption that the geometry changes slowly. An infinite iteration of this type
yields precisely a Hadamard state.

Another very important class of states are the so—called Gaussian or quasi—free states. These
are defined by the requirement that their connected n-point functions (Hollands and Wald |[2015))

n
W;(Al, ,An) = al’a—at In [CU (etlAl"'t”A”)] , Al’ ,An S @ (47)
n

1 es

be vanishing for all n > 2, i.e., Gaussian states are completely determined by their one- and two-
point functions W7 and W3. Accordingly, a Gaussian state is positive iff for any f € Cﬁ@ the
two-point function W,(f, f) is positive semidefinite, which gives rise to a large set of admissible

Gaussian states useful for|QFT on CST!

Most interestingly, a certain class of Gaussian states can be identified with a vacuum state
in a Fock representation of g) (while other Gaussian states include KMS (temperature)
states) (Hollands and Wald [2015]). Therefore one uses the two point function W, associated with
the Gaussian state w to define an inner product on C° @ C) and to identify corresponding degen-
erate vectors. The factor space of C° @ C) divided by the degenerate vectors yields a subspace §
of complex valued smooth solutions to the Klein-Gordon equation which correspond to the posi-
tive frequency modes known from the standard Hilbert space representation (Hollands and Wald
2015). b is most conveniently referred to as the one—particle Hilbert space. The corresponding
symmetric bosonic Fock space F4(§) is given by

FH)=COEP B, &), (4.8)

n>1

where ® is the symmetrized tensor product, here applied n times. It is then convenient to choose
a representation 7 of the quantum algebra@ given by

7@l =a(fD) +adfD, (4.9)

and we identify the usual creation and annihilation operators a*([f]) € £(F) and a([f]) €
L(F,) associated with the equivalence class of f in . The vacuum state Q € Fy () indeed co-
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incides with the algebraic Gaussian state w through the construction (Hollands and Wald
2015). Another way of defining pure Gaussian states uses a set of smooth, complex-valued mode
functions u; (x) where the modes k belong to an appropriate measure space (X, du), and any mode
function satisfies the Klein-Gordon equation with zero source. For every f € C° @ R),
one defines a map Kf : X — C by (Hollands and Wald |[2015)

Kf (k) = f a5 g () (), 4.10)
M

and we assume that K f is square-integrable over X and that the span of these functions is dense
in L2(X, dw). Besides, the mode functions should be complete with respect to the Klein-Gordon
inner product on (M] g) in the sense that

Im[(KF,Kf o) = SEGu S, Vi f € CR(). (1)

This yields indeed the two-point function of a Gaussian state defined as
Wa(x,y) = f duCk)uy (X )ug(y). (4.12)
b'e

Since K is well-defined on the equivalence classes [ f] and provides a bounded isomorphism K :
h — L%(X,du), the representation yields the symmetric Fock space F(L*(X, du)) as a Hilbert
space and the representation 7 on this Fock space can be informally written as

(®(x)) = f du(k) [uk(x) a; + u(x) a;‘;] . (4.13)
X

From this, one recovers the standard Fock representation on Minkowski space if we identify the
modes k with the wave vectors k in R3, and uy(x,t) = e ®!*kx /\[2¢), . Considering the flat
three—torus, as we will frequently do, k is in 73 and we have the same mode functions.

In general, two representations (#, 7z, Q) and (#’, 7/, Q') of the field algebra are said to be
unitarily equivalent if there exists an isometry U : H — Z(’ such that Un(A)U* = 7'(A) for
allA € @ (Hollands and Wald [2015). This means that two unitarily equivalent representations
are physically equivalent in the sense that the physical results do not depend on the choice of the
representation. It is hence an important question which of the representations of a field algebra
can be identified as unitarily equivalent, and it turns out that most of the representations are not
unitarily equivalent. In case of two Gaussian states w and ', a necessary condition for them to
be unitarily equivalent is that there exists a constant c such that (Hollands and Wald [2015)

WZ(f /) SWUS, ) < cWo(f, ), ercm@uqa). (4.14)

In fact, it is easy to construct states which violate this condition. Let us make this more explicit by
using a mode decomposition, and for simplicity, let us assume that we are on the flat three-torus,
and the modes k are hence in Z3. The representations of the two algebraic states are given by,

k

(@) = Y. [w()ay +u(x)al], #'@x) = Z [ul’((x)a’k + H;{(x)a;(*] . (4.15)
k
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Asboth sets of mode functions are required to be complete, it is possible to expand one set of mode
functions in terms of the other set,

w () = D [anejuy + By ] (4.16)

J

These are the well-known Bogoliubov transformations (Bogoliubov 1958) with the Bogoliubov
coefficients a; ; and S ;. They satisfy (Birrell and Davies|1984)

D [aikajk - ﬁikﬁjk] =8;;, 2, 0B — Biaji] = 0. (4.17)
k P

With that it is easy to show that the annihilation operators of the two representations are related
according to

a, =Z[ajka;+ﬁjka;*], al =Z[ajkaj—ﬁjkajf] (4.18)
J J

It is hence clear that non-vanishing ﬁ{js prevent the associated Fock spaces from being unitarily

equivalent, in particular Q' will in general not be annihilated by ay, i.e., a; Q" # 0. Even worse,

one vacuum state may correspond to an infinite number of excitations with respect to the other

representation. Therefore, let us consider the operator Ny := a, a; for the number of u;-mode

particles, and compute its expectation value with respect to the vacuum Q’. This gives (Birrell

and Davies|1984)
2
(N Qe =2 B - (4.19)
j

Hence, if the right hand side of this equation is not finite, the vacuum state of the second rep-
resentation carries infinitely many particles with respect to the first representation, and the two
representations cannot be unitarily equivalent.

4.1.2. Hamiltonian Formalism

The above considerations of were presented in a covariant manner in the sense that
no space time split was performed. Even if this proceeding best reflects the nature of the under-
lying concepts of general relativity, it is often useful to perform a split. It allows us to carry out
a Hamiltonian analysis required for the following chapters. This section is mainly based on the
textbooks by Fulling (1989), Peskin and Schroeder (1995)), and Reed and Simon (1975b).

In Minkowski space, the relation between the covariant formalism and the standard Hamil-
tonian framework can be established by using only certain classes of smearing functions (Reed
and Simon |1975b). In particular, the Hamilton formalism requires an initial value formulation in
which the smearing fields have support on one precise spatial hypersurface. Formally, this can
be achieved by using distributional smearing functions that are delta distributions with respect
to time (i.e., they restrict the field to one spatial hypersurface) and ordinary test functions (for
example Schwartz functions) with respect to the space coordinates. Unfortunately, smearing by a
distribution is not an a priori well-defined procedure and one must assure that the given theory
allows one to do so. However, if this is possible such a restriction gives in fact rise to the standard
Hamiltonian quantum field theory. We refrain from going into more details as this is not relevant
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for this thesis but refer the interested reader to the book by Reed and Simon (1975b), part X.7.).

We directly suppose that such a Hamiltonian formalism is available, and consider a Rie-
mannian space time manifold (M] g) which is globally hyperbolic,[M] = R x o, and consequently
admits a foliation into spatial hypersurfaces Z;, = o, labelled by the cosmic time parameter t € R.
We consider the case of a spatially homogeneous and isotropic gravitational field with the scale
factor a asits only dynamical degree of freedom. The classical action of a free Klein-Gordon scalar
field with mass m € R* and coupling constant[]] € R* on this geometry is given by (Fulling[1989)

1 7o 1
S¢[a, CID] = @ /RX dt d3x ho a3N (m - E‘D (—A + azmz) CD) (420)
o

where V /0 is the spatial volume element and A := D,D“ is the Laplace-Beltrami operator as-
sociated with o. A dot denotes a derivative with respect to t and N is the homogeneous lapse. A
standard Legendre transformation yields for the canonically conjugate momentum of ®:

- __a_L_\/ﬁa3
* T 56 ON

o. (4.21)

The infinite dimensional phase space I of the theory is spanned by the fields (®, I1y) for every
fixed time ¢. In order to define the Poisson brackets in I', we use a set of suitable test (or smearing)
functions f1, f,, usually functions with compact support in (a chart of) the spatial manifold o
such that

{O(f ), Uo(f2)} = (f1, f2) (4.22)

is the only non-vanishing Poisson bracket. The angular brackets denote the inner product within
the space of test functions. The Legendre transformation yields the Hamiltonian of the classical
theory

= IT;
H = ﬁ/ Ex Vo a3N (@Zﬁ—o Z) + %‘1’ (-A + a*m?) q:)_ (4.23)
a
g

Since N is a Lagrange multiplier, we can arbitrarily fix its value without affecting the theory, and
we choose here N = 1. Besides, in this section the value of the coupling constant [] is of no
relevance, and so we fix it to@] = 1. In addition, we assume that the spatial manifold is a compact
and flat manifold, i.e., the three-torus T> = S! x S x S!. We choose its sides to have lengths 1
in all three directions. Certainly, a more extended analysis for general spatial manifolds would be
possible. But since this is not the very emphasis of this section, we choose a topology that is as
simple as possible. With this, we formally write the Hamiltonian as a function of a as

H(a) := % f d*x (T3 + @ (—Aa* + a®m?) @) (4.24)
T3

where the scale factor should be understood as an external parameter. Note that the metric of the
flat three-torus is the standard Euclidean flat metric on the respective domain. Consequently, its
determinant evaluates to 1. We define the a-dependent frequency operator w(a) on the space of
two-times differentiable functions on T* as

w(@?*(f) := (=Aa* + a®m?) (f), Vf € CXT?). (4.25)
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The corresponding quantum theory of fields promotes the classical fields to operator-valued dis-
tributions ®(f;) and II4(f,) which are defined, as before, on a suitable space of test functions
(Reed and Simon [1975b). The theory is accordingly defined by the commutator relation

[@(f ). Io(f2)] = i{f1,f2)1 (4.26)

where 1 is the one in the quantum operator algebra@ This commutation relation is compatible
and actually follows from the commutator relation of the scalar field in section [4.1] after restrict-
ing to the above-mentioned appropriate class of smearing functions (Reed and Simon [1975b). A
representation 77 : @ — B(J() of the field algebra on a suitable Hilbert space J in terms of
(linear) annihilation and creation operators b(a, f) € £(¥) and b*(a, f) € L(J) can be given
by (Hollands and Wald [2015])

ba. ) = = | (Vat@e) (1) -1 (Val@ 11a) (1), (427)
b(a.f) 1= % 7 |(Ve@e) () +i (V@ 1)), (428)

&

for a suitable test function f. Here, the action of the operator W on the quantum fields is
to be understood in the distributional sense as W d(f) := @(W f). By means of the
commutation relation for the field operators, the commutator of the annihilation and creation
operators are given by

[b(a, f1),b%(a, f2)] = (f1. f2) 1. (4.29)

For any fixed value of a, the theory is very well-known and one can easily provide a concrete
Hilbert space representation. For the time being, let therefore a = 1 which precisely corresponds
to the quantum Klein-Gordon field on Minkowski space. We omit any occurence of a and write

W (f) := (A +m?)(f), (4.30)

and introduce this operator w into the formulae for the annihilation and creation operators b(f)
and b*(f). It follows that the field operators have the form

7 1®()] = \/%(b(be*(f)), 7 [Ma(f)] =—i\/§ B -b*(f).  @3D)
w

It is convenient to fix a basis of mode functions and to provide formulae for the annihilation and
creation operators with respect to the label set of the basis. On the torus, we can consider the
discrete mode functions

{f(x) 1= exp(—ikx)},, x€[0,1* =T, ke X :=2n7> (4.32)

The mode functions f} define a discrete basis for L?(T?, dx), and most importantly are eigenfunc-
tions of the Laplace operator on the torus such that —Af; = k?f,. Hence, we also have that

wfr = Vk2+ m2 f;, and we consquently define w;, := YV k2 + m2. Due to the linearity of the
fields and the completeness of the basis, we can expand the fields with respect to the modes and
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define the mode annihilation and creation operators (Hollands and Wald 2015)

bi=b(f)= [ axbCIfico. b i=b(f' = [ dxb@fit.  @39)
T3 T3

The hermicity of the canonical quantum fields imposes that b_, = b;. By expanding the Hamil-

tonian with respect to the mode functions, it follows that

1 *
H = 5 Z Wi bk bka (434)
kex

where we directly omitted the infinite vacuum energy contribution. It comes as no surprise that
the annihilation and creation operators satisfy the standard commutation relations

[bk’b;:/] = 5k7kll, (435)

where 8y ;» is now a Kronecker delta. An appropriate Hilbert space of this representation is the
Fock space of some one particle Hilbert space X whose basis elements are labeled by the k-
vectors. For example, we can use the mode basis {f;} on L?(T3,dx) =: J{. The corresponding
symmetric Fock space is constructed according to (see the previous section)

F(H) :=C &P (H @+ ®; H),, - (4.36)

n>1

A symmetric state with n particles corresponds to an element ™ (x;, ..., x,) € F(H) with n
coordinates in position representation. One can also use a representation in terms of occupation
numbers and simply specify a state by all non-vanishing excitation numbers {n;} of all modes k.
The annihilation and creaction operators annihilate and create a state f respectively according to
(Reed and Simon 1975b)

(b)Y (xy, ..., x,) =V + lf dx myb(”“)(x,xl, s X)), (4.37)
e
b* (NP (xy, .., x,) = L Z Py, e, Ky oo X)) (4.38)

Vria

where the tilde in the last line indicates a missing entry. The state that is void of any excitations
is the vacuum state Q € F,(¥(). Any excited state with excitation numbers (n) := {n;};cx With
respect to the chosen mode basis results from applying the appropriate number of creation oper-

ators "
.

P = H @

kex k!

This shortly summarizes the standard quantum field theory of a Klein-Gordon real scalar field on

Q. (4.39)

Minkowski space. In order to recover the full theory set out at the beginning, we would however
need to leave the scale factor a variable.

Starting from the theory on Minkoswki space, the question is how the theory for another
value of a is different from the original one with a = 1. More precisely, we recognize that the
theories for different values of a differ in the frequency w(a), and in a global prefactor of the
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Hamiltonian. In our notation, the canonical quantum field and its conjugate momentum do not
depend on a, but the annihilation and creation operators acquire an a-dependence through the
frequency operator w(a). As the annihilation operator fixes a particular vacuum state and the
associated excited states, these states obviously depend on a. The vacuum state will consequently
be denoted by Q(a) and the excited states by ¥(a), and they are still related by the analog of
equation (4.39) where now b*(a) as well as "™ (a) and Q(a) depend on a. To make the relation
between the theories more precise, one can compare the annihilation and creation operators for
two different values of a. Let therefore a;, a, € R, and let f € L?(T3,dx). Since ®(f) and ()
are a-independent, we can use the decomposition of their representations into annihilation and
creation operators to deduce that

-1 -1 -1 -1
[\/cxal) b(ay) +/w(ar) b*(al)l(f)=[\/w(az) b(as) +/w(as) b*(az)l(f) (4.40)
[ w<a1>b(a1>—\/w<a1>b*(a1)]<f)=[\/w(az)maz)— w(az)b*(az)](f)- (4.41)

The two equations allow us to represent b(a;, f) and b*(a;, f) in terms of b(a,, f) and b*(a,, f).
Therefore, let us define the two differential operators (Schander and Thiemann [2019a))

uy(ay,ay) 1= \\/a)(al) cu(az) ‘ (4.42)

w(ay) — \ w(ay)

which provides us with relations for the annihilation and creation operators given as

b(ay, f) = [u4(ay, a2) b(ax)] (f) + [u_(ay, a2) b*(ax)] (), (4.43)
b(ay, f) = [u_(a1, a2) b(ay)] (f) + [u4(ar, az) b*(a)] (f). (4.44)

For both values of a, one can choose the standard representations on Fock space and define vac-
uum states Q(a;) and Q(a,) accordingly. The important question is of course how or rather if
these two vacua and hence the representations of the field theory can be unitarily related.

It turns out that the answer is in the negative, and this will prevent the application of space
adiabatic theory to quantum field theoretical models in the first place. We will come back to this
problem in chapter [8| when we discuss the first of the quantum field theoretical models of this
thesis. In fact, it is possible to perform a perturbative transformation on the whole canonical
phase space that allows to relate the two representations in a unitary way. Before, we will give an
overview of the backreaction problem in quantum field theory on curved space times, i.e., in the
semiclassical regime, to which the two following sections are dedicated.

4.2. Semiclassical Gravity

Semiclassical gravity is a program that builds on the former [QFT on CST|approach but which is
interested in the backreaction excerted from the quantum field fluctuations on the classical grav-
itational field. The problem was first laid out by Wald (1977), who considered the backreaction
from particle creaction on the gravitational field. The first goal in this program is to consistently
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define a modified set of Einstein field equations in which the expectation value of the quantum
stress—energy tensor T, with respect to an appropriate algebraic quantum state w of the matter
fields appears as a source term, i.e., (Ford [2005))

» 1
R + 38wR® = 871G w(: Ty 1), (4.45)

where 2® and R® are the classical four-dimensional Ricci tensor and curvature scalar (cf. chap-
ter , G is Newton’s constant, and w a suitable algebraic state as defined in the previous section.
The colons indicate the normal ordering of the stress-energy tensor T ,,,..

Evaluating the right hand side of this equation is of course not a trivial task and is only well
defined after a suitable regularization and renormalization procedure. The explicit implemen-
tation of such procedures for a suitable set of quantum states w is the first goal of semiclassical
gravity (Ford|2005). The second goal of semiclassical gravity is to solve these equations and to find
the improved dynamics of the classical gravitational field that consistently includes the backre-
action of the quantum matter fluctuations. The following summary of the basic ideas and results
in semiclassical gravity is mainly based on the the textbooks and articles by Ford (2005), Hack
(2016)), Hu and Verdaguer (2020)), and Siemssen (2015). Note also that parts of this summary can
be found in (Schander and Thiemann [2021)).

Regarding the first of these two goals, difficulties occur due to the divergent structure of the
stress—energy tensor T, of the quantum fields (Ford [2005): The tensor generically depends on
products of operator-valued distributions of the fields at the same space time points, for exam-
ple one is faced with the formal expression ®(x)2. In fact, the two-point function W,(x,y) :=
w(P(x)P(y)) is singular at x = y for a generic quantum state w. In Minkowski space, the solution
is to consider the normal ordered operator :@(x)?: and to realize that the products of the expec-
tation value Q(:®(x)?:) at different points are well-defined for the Minkowski vacuum Q. More
precisely, such expectation values are well-defined distributions such that a smearing with any
two test functions is finite. In general curved space times, the Minkowski vacuum is not available
but there are different ways of generalizing the procedure and to obtain a meaningful expression
for w(: Ty, 2).

More precisely, in his seminal work Wald (1977) introduced five axioms that are required to
hold for a suitable renormalization scheme to give a meaningful expectation value for the stress
energy tensor. The first four axioms are automatically satisfied in every locally covariant theory
in line with (Brunetti, Fredenhagen, and Verch [2003). However, the fifth one which requires
w(: Ty, ) to depend on the derivatives of the metric coefficients up to second order (but not
higher derivatives) is not generically given (Wald|1978]). One explicit regularization scheme is the
Hadamard point-splitting method (Brunetti and Fredenhagen |2000; Hollands and Wald [2001))
which proceeds in similar lines as the standard Minkowski approach, and which we already al-
luded to in section As before, one considers the normal-orderd version of the stress-energy
tensor, and for a Klein—-Gordon field, the latter contains products of the operator-valued field
distributions. One then separates the space time points at which the fields in T, are evaluated
and thereby regularizes the theory. The result depends on the distance regulator, convention-
ally chosen to be the geodesic distance u between these points. This expression is evaluated in a
sufficiently regular state w before taking the coincidence limit © — 0. Physically relevant states
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are the Hadamard states, defined such that normal ordered fields have finite expectation values.
More precisely, the two—point distributions evaluated on Hadamard states satisfy the microlocal
spectrum condition (Brunetti, Fredenhagen, and Kohler 1996; Radzikowski[1996b). As a conse-
quence, their n—point functions are well-defined distributions. Still, these states have a universal
divergence (Kay and Wald |1991; Wald [1977), but the idea behind the point-splitting procedure is
to identify and subtract these divergencies in a controlled renormalization procedure before tak-
ing the coincidence limit. Namely, the divergencies that appear in w(: T, :) can be absorbed in
the gravitational contributions on the left hand side of the semiclassical Einstein equation by a re-
definition of the coupling constants such as Newton’s constant or the cosmological constant (Ford
2005)). Despite the non—-unique normal ordering procedure in the first step of the point-splitting
regularization, it was shown that this procedure yields a unique result of the renormalized stress-
energy tensor up to redefinitions of the coupling constants (Hollands and Wald [2005; Wald 1977,
1978).

For applications in cosmology, the so-called adiabatic regularization procedure (Fulling,
Parker, and Hu [1974alb; Parker and Fulling |1974) is another way to make sense of the formal
expression w(: T, ). This procedure is essentially equivalent to the above Hadamard point-
splitting regularization, in particular, they differ only by local curvature tensors (Siemssen 2015).
It relies on the use of adiabatic states (Parker|1969) which are only approximately Hadamard but
their straightforward construction proves to be useful (Junker and Schrohe 2002). We already
pointed out that its underlying idea is to define approximate solutions of the matter field
wave equation for a slowly varying cosmological space time up to a certain order in this approx-
imate scheme. It turns out that the expectation value with respect to such an adiabatic vacuum
state of fourth order is regularizable, and one can apply a standard regularization and renormal-
ization scheme as before (Fulling, Parker, and Hu 1974a; Hu and Verdaguer 2020)).

The result of these regularization procedures are sets of modified Einstein field equations
with quadratic curvature terms, e.g., (R®)? and Rfjﬁ}(ﬂeﬂbw are added to the original Einstein
Lagrangian. For general couplings of the scalar field, these give rise to fourth order derivatives
of the metric (Ford 2005) which cannot be completely reabsorbed in the renormalization con-
stants (Hollands and Wald [2001},2005)). Such 