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RÉSUMÉ EN FRANÇAIS

La numérisation des objets archéologiques est une tâche importante pour la préservation

et la transmission du patrimoine culturel, mais il est également indispensable de s•occuper du

problème de leur restauration. Cependant, les processus de restauration physique traditionnels

sont di�ciles, coûteux et parfois risqués pour l•intégrité des vestiges eux-mêmes, en raison de

mauvais choix de restauration par exemple. Pour éviter cela, il est intéressant de se tourner vers

la restauration virtuelle, qui permet de tester des hypothèses de restauration, qui pourront être

réalisées ultérieurement sur les vestiges réels. Dans ce contexte, notre objectif est de développer

une nouvelle approche de restauration virtuelle de statues numérisées, fondée sur l•utilisation

d•un modèle uni“é gardant le lien avec la précision originale des scanners utilisés et permettant

d•échafauder di�érentes hypothèses.

Cette thèse présente un cadre pour compléter les parties manquantes de statues archéologiques

représentant des personnages ou des animaux.

Tout d•abord, nous proposons l•algorithme FAKIR qui permet de recaler un modèle anatomique

articulé de type sphere-mesh sur un nuage de points résultant de la numérisation d•une statue, en

découvrant conjointement les paramètres anatomiques utiles à l•étalonnage du modèle. Il s•agit

en e�et d•un problème d•optimisation pour lequel il est possible d•exploiter des hypothèses de

recalage rigide par morceaux, tout en s•inspirant d•algorithmes de cinématique inverse. Nous

avons également testé les capacités actuelles o�ertes par l•apprentissage profond pour le re-

calage de squelette 2D et 3D a“n de comparer et de mieux positionner l•algorithme FAKIR. La

comparaison étaye notre intuition que l•apprentissage e�ectué à partir des images ou des relevés

de vrais modèles humains ne permet pas de détecter avec justesse le squelette d•une statue. De

plus, l•approche de recalage FAKIR se généralise à des modèles non humanoïdes, pour lesquels

on ne dispose généralement pas de base d•apprentissage.

Ensuite, nous proposons deux nouvelles approches de skinning pour modi“er la position

d•une statue décrite par un nuage de points après que l•on ait identi“é sa structure anatomique

en utilisant FAKIR. La premier approche adoptée distingue les mouvements de torsion, des

mouvements de dépliement ou repliement d•une articulation entre deux membres, en prenant

en compte l•anisotropie propre à ces articulations, mais reste fondée sur l•utilisation de poids

pour déterminer le déplacement d•un point in”uencé par plusieurs os. La seconde approche de

skinning utilise une description du détail de la statue au dessus d•un ensemble de lignes couvrant

notre modèle articulé, avec une approche géométrique pour déterminer l•évolution des lignes et

du détail suite à une déformation.
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Finalement, sur la base de ces contributions, nous proposons une méthode pour combiner

entre elles des parties de di�érentes statues après les avoir ramenées à une pause et une mor-

phologie communes. Étant donné une statue à restaurer, nous commençons par identi“er les

parties manquantes. Des statues compatibles sont ensuite fournies par les utilisateurs a“n de

pouvoir compléter la statue à restaurer par combinaison la plus harmonieuse possible. Pour cela,

la morphologie et la pose des statues sont modi“ées au préalable pour correspondre à celles de

la statue cassée. Une des originalités des approches développées est qu•elles opèrent directement

sur des nuages de point, sans recourir à un maillage, a“n de préserver la richesse de la précision

fournie par les scanners.

Mots clés: restauration virtuelle, nuage de points, recalage, skinning sur nuage de point,

déformation de forme, modèle de sphère-mesh,
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ABSTRACT

The digitization of archaeological objects is an important task for the preservation and trans-

mission of cultural heritage, but it is also essential to deal with the problem of their restoration.

However, traditional physical restoration processes are complicated, costly, and sometimes risky

for the artifact itself due to poor restoration choices. It is interesting to turn to virtual restora-

tion, which allows testing restoration hypotheses, can later carry that out on the real artifact.

In this context, our objective is to develop a new approach to the virtual restoration of digitized

statues, based on a uni“ed model keeping the link with the original precision of scanners and

allowing to build di�erent hypotheses.

This thesis presents a framework to complete the missing parts of archaeological statues

representing characters or animals.

First of all, we propose the FAKIR algorithm which makes it possible to register an articu-

lated anatomical model of the sphere-mesh type on a point cloud resulting from the digitization

of a statue, by jointly discovering the anatomical parameters useful for the calibration of the

model. This is indeed an optimization problem for which it is possible to exploit piecewise rigid

registration assumptions while being inspired by inverse kinematics algorithms. We also tested

the current capabilities o�ered by deep learning for 2D and 3D skeletal registration to compare

and better position the FAKIR algorithm. The comparison supports our intuition that learning

from images or scans of real human models does not accurately detect a statue•s skeleton. Be-

sides, FAKIR registration approach is generalized to non-humanoid models, for which there is

generally no basis for learning.

Second, we propose two new skinning approaches to modify the position of a statue described

by a point cloud after its anatomical structure has been identi“ed using FAKIR. The “rst

approach adopted distinguishes torsion movements, unfolding or folding movements of a joint

between two limbs, by taking into account the anisotropy speci“c to these joints, but remains

based on the use of weights to determine the displacement of a point in”uenced by several bones.

The second skinning approach uses a description of a statue•s detail above a set of lines covering

our articulated model, with a geometric approach to determine the evolution of lines and detail

following deformation.

Finally, based on these contributions, we propose combining di�erent statues after bringing

them to a common break and morphology. Given a statue to be restored, we start by identifying

the missing parts. Compatible statues are then provided by the users in order to be able to

complete the statue to be restored by the most harmonious combination possible. For this, the
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morphology and the pose of the statues are modi“ed beforehand to correspond to those of the

broken statue.

One of the originalities of our approaches is that they operate directly on point clouds,

without resorting to a mesh, in order to preserve the wealth of precision provided by the scanners.

Key words: virtual restoration, point cloud, registration, point set skinning, shape deforma-

tion, sphere-mesh model
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INTRODUCTION

Context

Today we are quite aware of the disappearance of world heritage. It is imperative to bear

witness to these works by conserving, restoring, and showing them. With the progress of 3d

scanning techniques, it is now common to create digital replicas of artworks, which will remain

forever intact. Simultaneously, their real-world counterparts will slowly decay due to time damage

or human activity. 3D acquisition of archaeological artifacts has become an essential part of

cultural heritage research for preservation or restoration purposes. Statues, in particular, have

been at the center of many projects. However, when the digitization is performed, the sculptures

are often already degraded and need to be restored.

The e-ROMA project is on the theme of cultural heritage, aims to digitize, restore and

animate statues and artworks, take advantage of the context of sites where they have occupied

and the times they have passed. The problem of restoring statues is signi“cant for the Gallo-

Roman museum of Lyon-Fourvière, which is a partner in the project. Indeed, the museum

has an important but very fragmentary collection of stone reliefs, testifying the high degree of

Lugdunum Romanization. The museum now wishes to take advantage of the digital revolution

to reconstruct a number of them and imagine the re-population of its architectural elements

into statues that have now disappeared. This thesis is a part of the e-ROMA project, which

concentrates on the virtual restoration of digital statues while keeping the original precision of

data.

The “rst axis of this thesis consists of revisiting the problem of digitization and 3D modeling

of artworks by putting precision, plausibility, and interactivity at the center of concerns and

by associating it to real possibilities of virtual restoration, respecting the style of the time,

with traceability and control of modi“cations done. The “rst step is to allow better use of laser

surveys without restricting it only to 3D scanning and reconstruction steps. It is then a question

of making full use of existing works and complementary knowledge that may relate to human

anatomy or the behavior of the drape of fabrics, or even the history of canons in the art “eld,

gestures, and sculpture tools of the time.

The second axis of the thesis focuses on generating new statues corresponding to new poses,

physiognomies, or even to other trades or social positions to complete and give meaning to

various architectural elements from excavations. Therefore, the notion of variety is essential and

the ease with which a restorer or sculptor can obtain a new virtual model while remaining within

11



Introduction

the framework of plausible hypotheses.

Thesis summary

Restoration requires a comprehensive understanding of archaeology and art history. Many

recommendations have been made for guiding the restoration process [ICO64]. Manual restora-

tions being costly, invasive and sometimes even risky, museums are often reluctant to carry out

such processes. On the contrary, a virtual restoration process gives restorers the possibility to

build and test di�erent hypotheses with minimum user intervention.

While research has mainly focused on reassembling fractured objects[ED17, HFG� 06], this

thesis focuses on the virtual restoration of incomplete human statues, provided as 3D point sets.

Nowadays, most of the virtual heritage restoration actions have been carried out by putting

together the results obtained with decorrelated software suites. Sometimes, partial results are

low, and tasks are repetitive and slow. The proposed framework in this thesis “nds its roots

in the work of Grossman et al. [GPT03] who discuss varying approaches to the restoration of

ancient sculptures. In particular, they discuss restoration through the combination of ancient

fragments, a technique widely used in the 18th and 19th centuries. Our virtual restoration follows

this idea by harmoniously combining parts belonging to di�erent statues after bringing them

to a common pose and anatomy. The process contains three stages which we introduced in the

following chapters.

„ Stage 1: Pose and anatomy estimation of statues.

„ Stage 2: Pose and anatomy changes.

„ Stage 3: Completion by a combination of di�erent statues.

First, we apply the FAKIR [ FCD20b] method to register an articulated model to the statue point

set. Second, each input point is represented by its residual displacement above the registered

anatomical model. This point set encoding is coupled with a skinning method to modify statue

poses and proportions. All steps are achieved directly on the point cloud, avoiding thus tedious

meshing steps and preserving initial sampling accuracy. This virtual restoration has two advan-

tages. First, there is no limit to the number of restoration hypotheses test. Second, completion

can be achieved using di�erent morphology and poses statues, avoiding thus adding an oversized

arm to a little body. This thesis achieved a new approach of virtual restoration of digitized

statues, based on the use of a uni“ed model that keeps the link with the original precision of

scanners and allows to build di�erent hypotheses, to simulate evolutions over time and also to

be interactive.

The following summarizes the content of each chapter:

12



Introduction

Chapter 1: State of the art

This chapter develops state of the art on related works of virtual statue restoration. The

three-stage framework proposed in this thesis reviews research on human models, skeleton reg-

istration, skinning algorithm, inverse kinematic, and shape synthesis.

Chapter 2: FAKIR: Anatomical model registration

This chapter introduces a way to improve the understanding of acquired statues representing

real or imaginary creatures by registering a simple and pliable articulated model to the raw point

set data. Our approach performs a Forward And bacKward Iterative Registration (FAKIR)

which proceeds joint by joint, needing only a few iterations to converge. The model we use

is inspired by the sphere-mesh model [TGB13]. The registration process iterates alternatively

forward and backwards on kinematic chains. In spirit, this is similar to inverse kinematics, such

as Fabrik [AL11] and CCD [WC91] algorithms, which de“ne kinematic chains and compute their

transformation from an input pose to a target pose by updating pose parameters one after the

other alternatively forward and backward along each chain. However, we can detect the pose

and the elementary anatomy of sculptures, possibly non-realistic body proportions. Our method

can work on animals and imaginary creatures (Figure 1).

Figure 1 … FAKIR is able to detect the morphology and pose of articulated shapes, given an
elementary anatomical model, from a single static scan. It is equally e�ective for human, animal
shapes and even imaginary creatures.

We use the FAKIR algorithm to estimate the pose and anatomy of statues in the “rst stage

of our virtual restoration.

The contributions are the following:

„ A simple articulated model e�ciently representing a statue pose and anatomy.

„ An e�cient calibration and registration process based on inverse kinematics principles.

Chapter 3: A “rst approach to sphere-mesh model skinning

We present our “rst approach of point set skinning using our sphere-mesh model in this

chapter. While most skinning techniques work on a mesh, our skinning works directly on a point

set for keeping the original precision of scan. Each input point is represented by its residual
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displacement above the registered anatomical model. This point set encoding is coupled with

an alternative to classical skinning method [BP07, TGB13]. The introduced skinning approach

considers a movement as a combination of bending and twisting rotation. We compute bones•

weights automatically. Weights are di�erent for bending and twisting. We can use the presented

method to modify statue poses and proportions in the second stage of our virtual restoration

framework.

The contributions are the following:

„ An approach to encode the point set to sphere-mesh model by height“eld.

„ A point set skinning process with bending and twisting movement.

Chapter 4: A second approach to sphere-mesh model skinning

We introduce another skinning approach to the point set in this chapter. We provide a

skinning technique that gives a realistic result and keeps the original precision for a statue•s

point set. This approach combines a point set to a registered sphere-mesh model so that deform

the model will deform the point set accordingly. We propose associating a base-point on the

articulated model to each of the original points. A baseline drives each base-point on the model

and the position of a base-point after deformation follows its baseline movement. The new

position of an input point is then deduced from its corresponding base points new position by

reporting their initial detail values. Our approach•s originality is to avoid using a mesh with

“xed connectivity whose triangles quality may be altered by deformations related to pose and

anatomy changes, possibly creating triangle slivers and self-intersections. Furthermore, we do

not need to give weights of in”uenced bones for each point.

Chapter 5: Virtual restoration results

This chapter gives the full process for virtual restoration. We call a damaged statue to

restore as the target statue. Statues who are chosen to complete the target statue are candidate

statues. We introduce the method to complete missing parts of the target statue by combining

the candidate statues• corresponding parts. Figure 2 shows an entire restoration process on the

statue Prince Paris. We also show other restoration results of some impressive incomplete statues

in this chapter.

14



Figure 2 … Restoration and pose change of the Prince Paris statue. Through articulated model
regression, we identify the anatomy and pose. We then adapt parts from other statues after a
change of morphology and use them to complete the input. Once the statue is complete, we can
also change its pose: here we bring it to the pose ofThe Thinker by Auguste Rodin.





Chapter 1

STATE OF THE ART

The advent of laser scanners marked the digitization campaign•s start, making it possible

to obtain digital models of speci“c artworks and buildings. The digitization has many advan-

tages for libraries and museums who wish to implement it, compared to the conservation or

dissemination techniques previously used (such as photography, micro-forms): quality of the

restitution, transfer and safeguard of data, possibility of reworking digitized documents to facil-

itate their appropriation by the public and the work of researchers. Digitization provides a new

means of access to heritage, both for the public and for researchers, thanks to the possibility

of networking digitized data. The digitization is useful when the shape has been well preserved.

Otherwise, it is better to rely on art historians and restorers. In the formation of digital models,

it is necessary to go much further than the cultural heritage•s simple digitization. We need to

move towards real virtual restoration actions. The application of geometry processing for vir-

tual restoration in the cultural heritage has exciting potential for future research. Some virtual

restoration has been achieved physically by digital fabrication support thanks to the 3d printing

technology, such as the completion of vessels or vases [AEa� 11], the restoration of a damaged

medieval skull [FDCP� 08] (See in Figure 1.1). Researches have focused on reassembling frac-

tured objects[ED17, HFG� 06] or fragmented statue [ASC� 13] (See in Figure 1.2). However, these

restorations are based on reassembling the existed pieces. They are not suitable for restoring

statues whose missing parts are no longer existed.

This thesis proposes a virtual restoration framework for incomplete human statues that the

missing parts can not be found. The proposed framework in this thesis “nds its roots in the

(a) Restoration of a bowl [AEa� 11] (b) Restoration of a medieval skull [FDCP� 08]

Figure 1.1 … Restoration by 3d printing technology
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(a) Reassembling a fractured head model [HFG� 06] (b) Virtual assembly of the fragments of a
statue [ASC� 13]

Figure 1.2 … Virtual restoration by reassembling fractured pieces

work of Grossman et al. [GPT03] who discuss varying approaches to the manual restoration

of ancient sculptures. The restorer•s widely used technique is to combine parts belonging to

di�erent statues harmoniously. For example, the Diana statue•s (Figure 1.3) head and torso

date from antiquity and come from di�erent statues, all other parts were manufactured in the

19th century.

1.1 Anatomical Model.

Designing anatomical models for human shapes has raised much interest in Computer Graph-

ics. The most common representation consists in a more or less detailed graph of bones such

as the ones used in the MakeHuman framework [Bas00], while some methods go beyond this

kind of elementary skeleton representation and model every single muscle to increase real-

ism [LGK � 12]. We will focus on basic skeletons, which are pliable and e�cient enough for

our purpose due to our nonrealistic context. A skeleton-based model consists of two compo-

nents: a skeletal structure [BK00] and a representation for the volume surrounding it. This

representation can be either mesh surfaces or volumetric primitives. Recent surface-based mod-

els [ASK� 05, PMRMB15, LMR � 15, HSS� 09, ZB15] are learned from numerous scans of real

people. We show examples in Figure 1.4. Among those, SMPL [LMR � 15] is a human anatom-

ical mesh model in which a set of parameters control non-rigid deformations resulting from a

statistical study on a large number of humans and positions. However, to our knowledge, no

approach allows us to position this model from a static point cloud without positioning the

model close to the data or without using 2D views and deep learning. It works well to cap-
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1.1. Anatomical Model.

Figure 1.3 … Diana,goddess of the hunt. It is restored in 2013.

ture human motion and shapes in a video [ZPBPM17] or images [BKL � 16, HBL � 17]. But this

model has a poor performance when the data is unrealistic which is common for archaeologi-

cal statues. Another possible shape representation is based on volumetric primitives, e.g. using

medial axis transform (MAT) [ Blu67, SCYW15], metaballs [PF01], B-meshes[JLW10] or other

primitives [ GD96, SBR� 04, ARM � 19] (See in Figure 1.5). Among these models, the sphere-mesh

model [TGB13], a variant of convolution surfaces [BS91], has been introduced for representing

mesh models by packing spheres into it and encoding their structure. Conceptually, the sphere-

mesh model can be seen as a piecewise linear simpli“cation of the computational geometry

skeleton [TDS� 16]. Although sphere-meshes were developed to extract the shape structure from

an input mesh, they can represent an anatomical model by imposing constraints. It has been

used successfully for representing hand skeletons [TPT16, RTTP17 ]. This model is light and

pliable, and we will also rely on it.
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(a) SMPL model [LMR � 15] (b) Dyna model [PMRMB15]

Figure 1.4 … Two human models in di�erent shapes and poses

(a) Medial axis transform [SCYW15] (b) B-mesh [JLW10] (c) ZBrush [TGB13] (d) Sphere-
mesh [TGB13]

Figure 1.5 … Examples of shape representation based on volumetric primitives

1.2 Skeleton registration

Registering a model to a shape is an important task which has received much research

interest. The goal can be to animate a shape by skeletonrigging and skinning or to detect

human poses. Skeleton rigging can be performed manually [BK00, JLW10], but a few methods

have investigated automatic processes. In particular, the Pinocchio algorithm [BP07] adapts a

skeleton to a static mesh by de“ning an objective function and maximizing it (Figure 1.7a). It

works by packing spheres into the mesh and considering their centers, gathered in a graph, as the

admissible joint positions. This pre-computation makes the skeleton pose estimation tractable.

On points sets, a� 1-medial skeleton could be used [HWCO� 13] alternatively to sphere-packing

(Figure 1.7b), but it is not suitable for noisy or incomplete data, as shown by our experiments

(Figure 2.18).

If the input data is dynamic, it is possible to infer or track, a skeleton. Most tracking ap-

proaches [SBB10, GSDA� 09, TZMS04] focus on the capture of the positions of the joints and

deduce pose parameters (angles) and intrinsic parameters (e.g. bone lengths) from it. Many

of such tracking methods [SHG� 11, WZC12] start with a calibrated skeleton, but the calibra-

tion itself can be performed from a depth video and a set of known admissible poses [TPT16,

RTTP17 , TTR � 17]. Such methods require a dynamic scene and cannot apply to the static shape
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(a) Pinocchio automatic rigging [BP07] (b) L 1-medial skeleton of
point cloud [HWCO� 13]

Figure 1.6 … Di�erent methods to discover the skeleton.

rigging problem. It is also possible to rely on a database of people scans to learn the pose and

deformation of human bodies using the SMPL model [HLRB12, WHB11, AMX � 18]. Recently,

CNN-based detectors, such as DeepCut[PIT � 16] and OpenPose[CSWS17] were used for 2D joints

detection in images or videos. Bogo et al. [BKL � 16] estimate the 3d human pose and propor-

tions from a single image by “tting an SMPL model to DeepCut estimated joint positions. Using

multi-view images over time [HBL � 17] improves the pose accuracy. However, human proportions

remain approximate. Human tracking can also be done without needing a model [BBLR15]. Sim-

ilarly, it is possible to register two models using manifold-harmonics based non-rigid registration

[LRB � 16], but this would not help for skeleton-based registration. Learning approaches can also

work from a single image [LIPM19 , AMB � 19].

Registering an SMPL skeleton directly to a point cloud has been addressed using deep

learning directly on point sets augmented with feature detection [JCZ19], but this method only

targets human shapes, which it learns from a database. In contrast, our method can work on

nonrealistic anatomies and various animals, as demonstrated in our experiments. Deforming a

point cloud to match a template mesh has also been tackled using auto-encoders [LSS� 19], but

this requires a full template mesh for each model. Our required skeleton model is much lighter.

Finally, recently, the FARM[ MMRC20] method builds on the functional map framework to

register a parametric model (such as the SMPL one) to a mesh or a point set in a fully automatic

way. This approach reaches the state of the art results while being the closest in goal to ours,

and we will compare to it. Finally, some methods [HSR� 09, ZPBPM17, PMPHB17, YZZ� 19]

aim at “nding a person•s pose despite its sometimes loose clothing, but this is outside the scope
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(a) Registration by SMPLify
method [BKL � 16]

(b) Registration by FARM method [ MMRC20]

Figure 1.7 … Di�erent registration methods.

of our paper [SBB10, GSDA� 09, TZMS04].

Our registration algorithm makes extensive use of kinematic chains, processing them alter-

natively forward and backwards. In spirit, this is related to inverse kinematics, and in particular,

the Fabrik [AL11] and CCD [WC91] algorithms. Indeed, both methods de“ne kinematic chains

and compute their transformation from an input pose to a target pose by updating pose pa-

rameters one after the other alternatively forward and backward along each chain. However, the

similarity ends here, since our goal is to estimate the pose and the proportions of the model

limbs using data-attachment constraints in a static framework.

1.3 surface skinning

Once the skeleton is correctly positioned, a skinning process can be used for pose change or

animation purposes. The most famous and simple skinning method is called Linear Blend Skin-

ning (LBS for short) [ MtLTM88 ]. A vertex on a mesh surface point is transformed by a linearly

weighted combination of the motions of the moving bones it is attached to. Despite well-known

limitations (the candy wrapper e�ect and the elbow collapse e�ect), Linear Blend skinning is still

the standard skinning method for real-time animation purposes. Many skinning approaches base

on the principle of LBS and improve its limitations, such as Pose Space Deformation [LCF00],

Log-matrix blending [Ale02, TCSP04], Optimized centers of rotation [LH16], Multi-Weight En-

veloping [WP02], spherical Skinning [Kv05] and Dual Quaternions Skinning [KCZO08]. Kavan

et al. [JS11, KSH12] decomposes the motion of a joint into bend and twist motions to reduce

the artefacts of Linear Blend Skinning and Dual Quaternions Skinning. Our method [FCD20a]

further improves the result by handling bend rotations anisotropically. But there are still some

artefacts at joints such as a bulge e�ect.

Furthermore, setting the right weights is an important question for these skinning methods:

while the pro“le of the weights is generally sketched by graphic designers [MTG03], there exist
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(a) Linear blend skinning results (b) Dual quaternion skinning results

Figure 1.8 … Comparaison of linear and dual quaternion blending. Images from [KCZO08]

automatic weighting techniques that, for example, use heat di�usion [BP07, TGB13, ARM � 19],

geodesic voxel binding [DL13] or set bounded biharmonic weights [JBPSH14]. Applying suitable

weights on the transformation matrices of bones gives a smooth transition at bones joints when

the joints are bending, but they are not su�cient to handle twisting or bone stretching. Our

method doesn•t require such weights computation and can deal with all these deformations in

a uni“ed way. A recent skinning method [LL19] corrects artefacts of Linear Blend Skinning by

locally estimating the rigid transformation that best restores the relative position of a vertex

with respect to its neighbors using Laplacian di�erential coordinates. This method, designed for

meshes, involves a de“nition of details in terms of Laplacian di�erences. In our approach, we

rather de“ne the detail as the residual over the registered anatomical model. Instead of using

a skeleton, some methods [JSW05, JMD � 07] rely on a cage deformation which can deal with

more general deformation like twisting or stretching. The deformations are controlled using a

topologically ”exible cage that consists of a closed three dimensional mesh. Cage deformations

are designed for unrealistic articulate characters such as cartoon characters or objects and can

work in 2D or 3D.

Going in a di�erent direction, Physics-based methods simulate the growth of skeletal muscles

and fat tissues using a biological model. Hamadi et al. [AHLG � 13] transfers the volume delimited

by a mesh to the interior of another mesh by minimizing some harmonic energy. To do so, a

deformation “eld is computed between the two meshes, based on a nearest point matching

which is updated at each iteration [GRP10]. However, the process is not fully automatic. Recent

researches [SZK15, IKKP17 , KIL � 16] achieve a desired deformation of human body and face by

direct control of each muscle. These methods are computationally expensive and need to de“ne

the physical model from physiological data. They are not suitable for artistic shapes since the

morphology and the muscle of an artwork may be very di�erent from a biological model.

Taking a di�erent perspective on the problem, Implicit skinning [ VBG � 13] uses an implicit
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formulation of the surface that better supports pose changes and re-projects skinned vertices

on the implicit model after each pose change. In this paper, we also use a proxy model but

it is explicit. Volume preserving skinning methods [FTS08, RHC09, AS07] correct for volume

changes through the generation of extra bulges and wrinkles. They use vector “elds induced by

skeletal motion to describe the skin deformation.

Example-based methods [SRC01, WPP07, MG03, KJP02] produce more realistic results but

require extra training data. They have a limitation for a given range of deformations. In addition,

these methods can only be as good as their training dataset is, and for unrealistic characters

(imaginary creatures or characters with unrealistic body proportions), relevant datasets are

nontrivial to build.

1.4 Pose change and shape synthesis

When a model is rigged and skinned, it is possible to change its pose manually by interacting

with the skeleton joints. Through the skinning weights, the mesh surface should deform accord-

ingly. However, it is often tedious to design every single motion of each joint for each animation

frame. Consequently, research has focused on inferring the movement from some critical joints

and frames with given skeleton positions. In this inverse kinematics context, the Fabrik [AL11]

and CCD [WC91] algorithms de“ne kinematic chains and aim at transforming each chain from

its input pose to its target pose by updating pose parameters one after the other alternatively

forward and backward along the chain. Shape synthesis is often done by reusing existing models

[FKS� 04]. The idea is to retrieve suitable models from a database and warp the retrieved models

to conform with the incomplete model [PMG� 05, CK10]. A probabilistic representation for the

components of a shape has been developed to suggest relevant components during an interactive

assembly-based modelling session [CKGK11, KCKK12 ]. In our work, we propose a framework to

statue shape synthesis by part combination, the choice of the parts being done manually while

the part adaptation is automatic.
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Chapter 2

FAKIR: A NATOMICAL MODEL

REGISTRATION

3D scanning techniques make it possible to create digital replicas of artworks. As part of the

automatic processing of scanned statues, it is often necessary to identify the model•s pose and

anatomy. Indeed, registering a model to a statue is useful for many applications. For example,

one can bring statues to a common pose to better compare their style. It can also combine statue

parts to restore broken statue virtually or animate a statue.

While pose recognition has been e�ciently addressed for human models, in particular using

Machine Learning algorithms, these methods can only work if the model “ts the training dataset

of shape models. A challenge of artistic human statues than real human scans lies in the di�erence

in aesthetic perception. As we will see, this has drastic consequences for example-based machine

learning algorithms, which fail at adapting to these statues. As for imaginary creatures, no such

training database exist. Hence there is a need for simple anatomical models, that can be “tted

without extensive training on various creatures, animals or humans with non-realistic body

proportions.

We focus on human statues with no or few garments, animals, and imaginary creatures in

this work. Furthermore, we consider that the digitized statues are provided as point sets. We

propose a method for calibrating and registering a simple articulated model to a point set,

named Forward And bacKward Iterative Registration (FAKIR). FAKIR works directly on the

point cloud, avoiding the tedious meshing step. FAKIR iterates between assigning each point

to its best corresponding model part, optimizing the anatomical model pose and proportions

accordingly, and converges in only a few iterations.

2.1 Human model

Indeed many sculptors favoured the perceived beauty of their work over the realism of hu-

man proportions [Hus55, New34]. Figure 2.1 shows examples of such unrealistic statues of the

Roman and Gallo-Roman eras. In this context, it is necessary to devise a human model with

few constraints, allowing to “t a sculpture which does not follow the human proportion beauty

canons. The existing fully detailed human templates modelling every single limb and muscle in a
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very realistic way are too constrained for our purpose. In particular, we avoid modelling muscles

in our model. After we have registered our simpli“ed human model to the statue point cloud,

a further step could be to add new ”exible muscle models and is unnecessary for statues where

the sculptor uses muscles as stylistic elements, in the same way, that he could use arabesques,

yielding a possibly unrealistic result.

(a) A Gallo-Roman statue of a Gal-
lic warrior (Avignon, France, picture: F.
Philibert-Caillat )

(b) Statue of Heracles and Cacus (1530-
1534) by Baccio Bandinelli, (Florence,
Italy, picture: Cyberuly)

Figure 2.1 … Examples of statues with unrealistic anatomies.

We introduce an anatomical model inspired by the sphere-mesh model [TGB13], already

successfully used for hand tracking [TPT16, RTTP17 ], using only one-dimensional elements.

In this model, each bone is represented by a sphere-meshB corresponding to the envelope of

the union of a set of spheres centered on a segment and with a linearly varying radius (Figure

2.2b). Each bone is de“ned by two end sphere centersc1 and c2 with associated radii r 1 and r2

respectively. The segment [c1c2] is the medial axis of the bone. For each pointc � [c1c2], the

radius of the sphere centered atc is r (c) = (1 Š � )r 1 + � r 2, with � = � c1c�
� c1c2 � .

The sphere-mesh model is controlled by the lengthl = � c1c2� and the pair of sphere radii

r = { r 1, r 2} . Consequently, we denote the sphere-mesh model for one bone asB (l, r ). We also

denote by � the angle of the conic part of the bone, as illustrated on Figure 2.2a. Signi“cantly

enough, the bones we are de“ning do not correspond to anatomical bones, but more to limbs

(i.e. it includes a coarse description of the ”esh volume around the anatomical bone). By analogy
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to inverse kinematics, we keep the wordbone instead of limb.

c1 c c2

r(c)r 1

r 2

l

(a) Cross-section of a bone (b) Sphere-mesh of a 3D bone.

Figure 2.2 … The sphere-mesh of a bone is the union of the spheres centered on segment [c1c2],
with radius varying linearly between the two extremities of the segment.

With this type of bone element, we construct a simple human body template with very coarse

respect of human proportions as an initial body shape (Figure 2.3a), but we can construct a

template for any other animal or imaginary creature (Figure 2.3b) as well. Our human body

template contains 22 bones{ Bk} k=1 ..22. Three bones correspond to the pelvis and have no

relative motion: their length is “xed up to a common scale parameter that will be determined

during the registration, along with the orientation of the triplet. Additionally, we use a particular

bone to connect the spine bone to the neck, and its length and orientation directly depend on

the adjacent spine bone. The other bones have no constraint on their relative proportions. The

bones are organized into “ve chains, depicted in di�erent colours in Figure 2.3: the spine chain,

the right arm chain, the left arm chain, the right leg chain and the left leg chain. These chains

are independent with the only constraint that some extremities must remain anchored to the

spine. The chains• orientation is used to de“ne the predecessor and successor of each bone. The

ordering will be reversed to process the chain forward and backward several times during the

registration process. Each bone is thus fully de“ned by its intrinsic parameters (length and two

radii) and its extrinsic parameter (rotation with respect to its predecessor). Furthermore, two

successive bones share a common radius. Because of the simplicity of the sphere-mesh bone

model, the distance from a point to the model can be easily computed. In contrast, using a mesh

model would make these computations much more demanding.

2.2 Distance between the model and a point set

To capture the anatomy and the pose of a statue, we need a distance function to measure how

the sphere-mesh model “ts a point setP, even if the points are far from their attached bones.

The sphere-mesh model calibration and registration strive to reduce the distance between the

sampled points and their corresponding bones. The problem is that the bone to which a point

should be assigned is unknown, especially if the model has not been calibrated beforehand and

if it is far from the data. Therefore, the target bone is usually replaced by the closest bone. We
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(a) Human model (b) Centaur model

Figure 2.3 … Skeleton and sphere-mesh models for humans and centaurs. For the human model:
the bones are organized into 5 chains shown in di�erent colors. 4 additional bones are drawn in
black: the pelvis which is a constrained triplet of bones, and the connection bone between the
spine and the neck. Our model can also be adapted to various creatures, even imaginary ones
such as a centaur.

assume that the points• coordinates are provided with a coarse approximation of the oriented

normal. This speeds up the registration when the model is not close to the data, but it remains

possible to implement our registration algorithm with a simple Euclidean distance from the

points to the model.

2.2.1 Distance from a point to one bone.

We start by de“ning the normal-constrained projection of a sampled point p on a single

bone B by using the oriented normal vector np to disambiguate the choice between several

orthogonal projection possibilities. Given a point p in the ambient space with oriented normal

np, we consider the lines passing throughp and orthogonally intersecting the sphere-mesh surface

(possibly crossing its interior) at some points.

Whenever it is possible, we select the projection �p whose normal n �p has positive scalar

product with np. Considering this normal-constrained orthogonal projection allows for a faster

convergence and better results (see section 2.6.3 for more details). Since each pointp has a

normal-constrained projection on all the bones, we refer to its normal-constrained projection on

bone Bk as �pk. If no subscript is provided, �p refers to the normal-constrained projection ofp on

the closest bone.

We detail the projection of a point p on a boneB given an approximation of the oriented

normal of point p. Instead of using the usual orthogonal projection on the bone, we constrain

the projection �p to have a normal coherent with the one ofp. This constraint is helpful when

the bone lies far away from its corresponding point set: the point can then be projected on the

•right sideŽ of the bone. In the following, without loss of generality, let us assumer1 � r 2. All
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p

c1
c2

r 1
r 2

q

o
h

Figure 2.4 … Various projection cases.p has two possible projections �p� and �pŠ � depending on
the orientation of the normal at p. Point p� is the projection of p on line c1c2. If the normal at
p is oriented upward �p = �p� . Otherwise, �p = �pŠ � . The same strategy is used to project pointsq
and o.

the following computations depend on an angle� de“ned in Fig. 2.4 and which can be expressed

as � = arctan |r 2Š r 1 |�
� c1c2 � 2Š (r 2Š r 1)2

. Let us “rst compute p� the projection of p on the oriented line

c1c2, and two translations of these points along this line:p�
� at the distance � pp� � tan � of p�

and p�
Š � at the distance Š� pp� � tan � , as illustrated on Figure 2.4. Let � � = p�

� Š c1
c2Š c1

, so that p�
�

can be expressed as� � c1 + (1 Š � � )c2. Di�erent cases can occur:

„ 0 < � � < 1: the point projects on the cone part of the bone. Let �p� be the intersection

of segment [p�
� p] with the cone. �p� is the orthogonal projection of p on the bone. If the

normal to �p� has a positive scalar product with the normal of p, �p = �p� . Otherwise,

normals are deemed inconsistent and �p = �pŠ � , i.e. the farthest intersection of pp�
Š � with

the non-truncated cone. This situation occurs when the pointp is on the wrong side of

the bone (i.e. its normal is inconsistent with the normal of its closest point on the bone).

„ � � < 0 (resp. � � > 1): �p is the projection of p on the sphere centered atc1 (resp. c2) with

consistent normal direction, except if this normal-constrained projection falls within the

bone and not on the envelop. In that case,p is on the wrong side of the bone, and we set

�p = �pŠ � on the other side of the non-truncated cone.

In any case, the distance betweenp and its normal-constrained projection �p vanishes when

p is located near the surface of one bone, with a normal oriented consistently. It may happen

that the returned projection does not provide a point belonging to the surface of the bone: on

Figure 2.4, �qŠ � is the normal-constrained projection of point q, but it is not on the surface of

the bone. It corresponds to a case where the point is very far from the part of the bone, which

is coherent with its normal. During the registration process, �qŠ � will attract q on the other side
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of the bone, so that a more consistent one will gradually replace the projection point.

For completeness, let us express unsigned distanced(p) = � p Š �p� in the various cases since

they will be required in the following Levenberg-Marquardt optimization formulations. If � � < 0

(resp. � � > 1), d(p) = � c1p� Š r1 (resp. d(p) = � c2p� Š r2). If 0 � � � 1:

d(p) =

�
�

�

� pp�
� � Š r � (p) if n �p · np > 0

� pp�
Š � � + rŠ � (p) if n �p · np � 0

(2.1)

Since the radius of the cone varies linearly along linec1c2:

r � (p) = � �p� p�
� � = (1 Š � � (p)) r 1 + � � (p)r 2

rŠ � (p) = � �pŠ � p�
Š � � = (1 Š � Š � (p)) r 1 + � Š � (p)r 2

(2.2)

with: � � (p) = c1p�
� ·c1c2

� c1c2 � 2 and � Š � (p) =
c1p�

Š � ·c1c2

� c1c2 � 2 . Furthermore � pp�
� � = � pp�

Š � � = � pp� � / cos� .

Hence, for each bone, we “rst compute the� angle, then, for each point p, we compute its

projection p� on c1c2 and the corresponding� � (p) yielding r± � (p) and �p± � .

2.2.2 Distance from a point set to a sphere-mesh chain.

Given a point set P and a sphere-mesh chain ofK bones, we “rst need to approximate the

subset of current points that project on each bone. In the following, we de“ne the point setPk

as the subset of pointsp � P which are closest to boneBk using the distancedk = � pŠ �pk � , k =

1· · · K . Once the assignment is computed, the one-bone distance functionEk is de“ned as the

sum of squared distances from points ofPk to bone Bk:

Ek(Pk, Bk(lk , r k ), � k ) =
�

p� Pk

� p Š �pk � 2 (2.3)

Importantly enough, the subset Pk and the one-bone energyEk depend on the position of the

initial extremity of the chain of bones involving Bk, as well as the parameters of the other bones

in the chain.

The sum of one-bone distance functions measures the “tness of the model and serves as an

objective function that we aim to minimize to capture the anatomy and pose of the sphere-mesh

that best corresponds to our point set.

E =
K�

k=1

�

p� Pk

� p Š �pk � 2. (2.4)

In the next sections, we will also be interested in the distance restricted to two adjacent
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bonesBk and Bk+1 , which we call two-bones energy:

Ek,k +1 =
�

p� Pk

� p Š �pk � 2 +
�

p� Pk +1

� p Š �pk+1 � 2. (2.5)

2.3 Optimization

2.3.1 Optimization for one bone

The optimization of the one-bone energy is only used to estimate the parameters of the ex-

tremities of a chain, or for the “rst forward pass in Algorithm 1. After this step, the optimization

of a joint•s position using a bone pair should be preferred because it is more precise than the

optimization of one bone.

In the single-bone case, the aim is to estimate the 3D rotation of the bone, its length and the

radius of its free extremity by minimizing the one-bone energyEk(Pk, Bk(lk , r k ), � k ), where � k

are the angles of rotation with respect to the predecessor•s bone. This optimization is performed

using the Levenberg-Marquardt algorithm for each parameter. In particular, the rotation can

be decomposed into two rotations around two axes that are orthogonal tockck+1 , indeed the

rotation around ckck+1 is not considered since it leaves the bone unchanged.

To optimize � k , we iteratively look for the best angle� k+ � � k . At a minimum, � � � k Ek(Pk, Bk(lr , r k ), � k+

� � k ) = 0, and the value for � � k follows. The details for the damped least-squares estimation are

provided in the following.

Let us assume that c1 (Fig. 2.4) is “xed and let us optimize for the pose and intrinsic

parameters of boneB . In a local reference frame centered atc1 with x-axis aligned with c1c2,

c1 has coordinates (0, 0, 0) and c2 has initial coordinates (l, 0, 0). The rotation of the bone can

be parameterized by a rotation of angle� 1 around the y-axis followed by a rotation of angle� 2

around the z-axis. The one-bone energy is invariant by rotation around the x-axis. After the

double rotation, c2 has coordinates (l cos� 2 cos� 1, l sin � 2, l cos� 2 sin � 1). Let us call (x, y, z) the

coordinates of pointp in this local coordinate system and expressd(p) with respect to parameters

� = ( � 1, � 2),l and r = ( r 1, r 2). We have:

tan � =
r2 Š r1�

l2 Š (r 2 Š r1)2
, cos� =

�
l2 Š (r 2 Š r1)2

l

� c1p� 2 = x2 + y2 + z2

� c1p� � = x cos� 2 cos� 1 + y sin � 2 + z cos� 2 sin � 1

� p� p� 2 = x2 + y2 + z2 Š (x cos� 2 cos� 1 + y sin � 2 + z cos� 2 sin � 1)2

� p� p�
� � = � p� p� tan �
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Part, Chapter 2 …FAKIR: Anatomical model registration

� p�
� p� =

� p� p�
cos�

� ± � (p) =
� c1p� � ± � p� p�

� �
l

� c2p� 2 = ( x Š l cos� 2 cos� 1)2 + ( y Š l sin � 2)2 + ( z Š l cos� 2 sin � 1)2

The one-bone energy function is (dropping thek subscript for simplicity):

E (P, B(l, r ), � ) =
�

p � P

d(p)2 (2.6)

The optimization is performed on three set of parameters in turn: angles� , bone length l and

bone radii r .

the optimization for bone B with respect to � writes:

�� � argmin
�

E (P, B(l, r ), � ) = argmin
�

�

p� P

d(p, � )2 (2.7)

Following the Levenberg-Marquardt algorithm, at each iteration, parameter � is replaced by

a new estimate� + � � , computed as:

argmin
�

E (P, B(l, r ), � ) � argmin
� �

E (P, B(l, r ), � + � � ) (2.8)

which is computed by taking:

�E (P, B(l, r ), � + � � )
�� �

= 0

We “nally get � � :

� � = Š[J T J + �diag (J T J )]Š 1J T g(� )

where J = [ J1, J2], Ji 1 = �d (pi )
�� 1

and Ji 2 = �d (pi ))
�� 2

and g(� ) is a column vector whose entries

are d(p, � ) for each point p. � is a damping factor set to 0.01 initially and adapting it throughout

iterations.

In the following, we assume 0< � � (p) < 1 and n�p · np > 0. In this case,p projects on �p� and

d(p) = � pp�
� � Š r � (p) with r � (p) = (1 Š � � (p)) r 1 + � � (p)r 2, and � � (p) = � c1p�

� �
l . Hence:

�d (p)
�� 1

=
1

cos�
� � p� p�

�� 1
+ ( r 2 Š r1)

1
l
(
� � c1p� �

�� 1
+ tan �

� � p� p�
�� 1

) (2.9)

�d (p)
�� 2

=
1

cos�
� � p� p�

�� 2
+ ( r 2 Š r1)

1
l
(
� � c1p� �

�� 2
+ tan �

� � p� p�
�� 2

) (2.10)

The full expression for the derivatives can be easily derived given the expressions for� p�
� p� ,
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Ck Bk

(a) Rotate Bk 	 Bk+1

Ck Bk

(b) Re“ne length lk of Bk

Ck Bk

(c) Re“ne length lk+1 of Bk+1

Ck Bk

(d) Re“ne radius r k+1

Figure 2.5 … Pairwise Optimization. With “xed extremities ck and ck+2 , the pair of bones Bk

and Bk+1 is “rst rotated around axis ckck+2 in order to minimize the two-bones energy. Then
the lengths of the bonesBk and Bk+1 and their common radius r k+1 are optimized successively.
After these updates, the point-to-bone assignment is recomputed. As the process is repeated the
distances are more accurate since the point-to-bone assignment becomes more meaningful.

� c1p� � , � p� p� above. The cases� � (p) < 0, � � (p) > 1 or n �p · np < 0 can be computed similarly.

2.3.2 Optimization for a joint between two consecutive bones

The optimization of the position and radius of the joint between two consecutive bones

(Bk, Bk+1 ) is performed by optimizing a set of four parameters in a loop (an angle, two lengths

and a radius) minimizing the two-bones energy. The two end-sphere centers being “xed (ck and

ck+2 in Figure 2.5), we “rst compute the optimal rotation of the two bones around axis ckck+2 .

We then optimize the bone lengths�lk = lk + �l k and �lk+1 = lk+1 + �l k+1 and, “nally, the radius

of the common joint is computed as �r k+1 = r k+1 + �r . The parameters optimization alternates

with a re-computation of point sets Pk and Pk+1 , which re“nes the point-to-bone assignment.

The optimization is also performed using the Levenberg-Marquardt algorithm.

Let us consider the geometric optimization of the joint•s center between two bones by op-

timizing the two-bones energy concerning the lengthslk and lk+1 . Each length is optimized in
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Part, Chapter 2 …FAKIR: Anatomical model registration

turn, with a side-e�ect on the other length•s value. The two-bones energy can be expressed as a

function of lk :

E(k,k +1) (lk ) =
�

p� Pk

� �pk Š p� 2 +
�

p� Pk +1

� �pk+1 Š p� 2 (2.11)

Following the Levenberg-Marquardt algorithm, at each iteration, each parameter lk is re-

placed by a new estimatelk + �l :

argmin
lk

E(k,k +1) (lk ) � argmin
�l

E(k,k +1) (lk + �l ) (2.12)

By setting
�E ( k,k +1) (lk + �l )

��l = 0, we get:

�l = Š

�
p� Pk

dk
�d k
�l k

+
�

p� Pk +1
dk+1

�d k +1
�l k

�
p� Pk

( �d k
�l k

)2 +
�

p� Pk +1
( �d k +1

�l k
)2

(2.13)

where dk = � p Š �pk � and dk+1 = � p Š �pk+1 � are expressed as functions oflk .

Let us detail the expression ofdk with respect to lk : during the pairwise optimization ck

and ck+2 remain “xed (Figure 2.5). Let ck be the origin of a local reference frame with the

x-axis aligned with ckck+1 . In this frame, the coordinates write ck(0, 0, 0), ck+1 (lk , 0, 0) and

ck+2 (x2, y2, z2) while a point P has coordinates (x, y, z). Then ck+1 ck+2 = ( x2 Š lk , y2, z2),

ck+1 p = ( x Š lk , y, z).

Let us assume thatp projects on �p� (the case �pŠ � can be deduced with minor changes). Using

the same notation as in Figure 2.4 and section 2.3.1, recall thatdk = � p Š �pk � = � pp�
� � Š r � (p).

Since when optimizing lk the orthogonal projection on ckck+1 does not change,� pp� � remains

the same. However both� and r � (p) change. Sincer � (p) = (1 Š � � (p)) r k + � � (p)r k+1 with

� � (p) = � ck p�
� �

l k
, we get:

�d k

�l k
= Š

� pp� �
cos2 �

� cos�
�l k

Š (r k+1 Š rk)
�� � (p)

�l k
(2.14)

Simple geometric considerations give cos� =
�

1 Š (r k +1 Š r k )2

l2k
, � � (p) = � ck p� � + � pp� � tan �

lk
and

tan � = r k +1 Š r k�
l2k Š (r k +1 Š r k )2

, whose di�erentiation with respect to lk is easy.

One must also express distancesdk+1 as functions oflk . In that case, the projection on bone

Bk+1 is slightly di�erent, since the position of point ck+1 changes withlk . The formulas are only

slightly modi“ed by it, but this time � pp� � also depends onlk . We get:

�l k+1

�l k
=

1
cos�

� � pp� �
�l k

Š
� pp� �
cos2 �

� cos�
�l k

Š (r k+2 Š rk+1 )
�� �

�l k
(2.15)

The full expression for the derivatives can be easily computed using the following formulas:
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2.4. FAKIR : Forward And bacKward Iterative Registration

cos� =

	

1 Š
(r k+2 Š rk+1 )2

(x2 Š lk)2 + y2
2 + z2

2

� � (p) =

	
(x Š lk)2 + y2 + z2

(x2 Š lk)2 + y2
2 + z2

2

� ck+1 p� � =
ck+1 p · ck+1 ck+2

� ck+1 ck+2 �
=

(x Š lk)(x2 Š lk) + yy2 + zz2

(x2 Š lk)2 + y2
2 + z2

2

Plugging all the derivatives in Equation 2.13 yields �l , and lk can be updated as�lk = lk + �l .

This impacts the position of ck+1 , whose new position is computed as �ck+1 = ck + �lk
ck ck +1
ck ck +1

, and

lk+1 is recomputed as :lk+1 = � �ck+1 ck+2 � .

The two-bones energyEk,k +1 is then optimized with respect to lk+1 . This optimization is

symmetric to the lk case above and can be easily adapted. Finally, the optimization of the radius

of the common joint and rotation angle around axis ckck+2 is done similarly.

2.4 FAKIR : Forward And bacKward Iterative Registration

To register our anatomical model, we propose a kinematic approach considering the way the

model is articulated. Contrarily to many methods that work from videos or multiple views [ TPT16,

RTTP17 ], our method requires only one joint center to be close to its optimal position, the rest

of the skeleton pose being arbitrary. Inspired by the FABRIK [AL11] and CCD [WC91] algo-

rithms, our registration algorithm successively loops forward and backward through the chains

of bones to rotate and scale them to match the data, re“ning the parameters while temporarily

“xing the extremities of some bones. Hence our algorithm is named Forward And bacKward

Iterative Registration (FAKIR). Our method•s originality is that bones are mainly considered

by consecutive pairs, which allows for a more robust estimation of the pose and skeleton param-

eters along a chain. The optimization of parameters related to boneBk requires that relevant

points attract that bone into the data attachment term, which justi“es a special order for the

optimizations.

2.4.1 Registration process for a chain of bones.

If parameters of boneBk have not yet been initialized, and Bk is close to a subset of points

to which it should ideally associate, the estimation of the one-bone energy is meaningful, and

the minimization of this energy can be used to initialize the position and radii of that bone

concerning the data. Our algorithm gradually rotates and scales the current boneBk with

respect to its predecessor, updatingPk after each step, so that Pk gradually contains more

relevant points. However, if Pk is empty, the bone is “rst rotated around the three axes until
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Part, Chapter 2 …FAKIR: Anatomical model registration

some input points are projected onto it to bootstrap the optimization. Once the position of Bk

has been approximately found, the algorithm turns to the coarse estimation of the position of

Bk+1 . All these computations are driven by the minimization of the one-bone energy. However,

the one-bone energy alone might be ine�cient to accurately approximate the full length of a

bone. To alleviate that, in an intertwined manner, a “ner local registration is performed each

time two consecutive bonesBk and Bk+1 have been processed, by minimizing the two-bone

energy. This process optimizes the common joint position and radius while keeping the two

other joints “xed. It is the essential component in our algorithm. Once a chain ofK bones has

been positioned and scaled over its entire length, we repeat the process forward and backward

in the chain to further re“ne the joints positions and radii between pairs of consecutive bones,

using only two-bone energies optimizations. Extremity bones are optimized based on the one-

bone energy after each forward or backward pass. The full process is summarized in Algorithm

1 and illustrated with a chain of three bones in Figure 2.6.

Notice that if two limbs are aligned, the joint position can not be guessed from the data and

it may cause several limbs to be included in a single primitive of our sphere-mesh. To avoid this,

very loose constraints on the di�erences in proportions between consecutive bones can be set.

c1 c2 c3 c4

B1 B2
B3

(a)

c1

c2

c3

c4B1
B2

B3

(b)

c1

c2 c3 c4

B1
B2 B3

(c)

c1

c2 c3 c4

B1
B2 B3

(d)

c1

c2

c3

c4

B1 B3B2

(e)

c1

c2

c3

c4

B1 B3
B2

(f)

c1

c3

c4B1 B3B2c2

(g)

Figure 2.6 … Overview of the forward and backward iterative registration for a 3-bone chain.
From an initial position (a), the chain extremity c1 is “xed and the “rst bone B1 is rotated
and scaled to roughly calibrate its dimensions and pose through the optimization of the one-
bone energy (b); the boneB1 is “xed and the parameters of the second boneB2 are roughly
calibrated in turn (c); joint c2 which is common to the “rst two bones is scaled and its position
is optimized, by using the two-bones energy, the other joints being “xed (d); The position and
length of the third bone B3 are then coarsely calibrated through one-bone optimization and the
process continues by alternating single bone optimization and two-bones optimization, until the
last bone of the chain (e). After this “rst coarse calibration forward pass “nishes, a backward pass
using only two-bone optimizations is performed (f) permitting to re“ne the pose and skeleton
parameters and solve for the chain extremity position. With few forward and backward pass
involving two-bone optimization only, the model is registered (g).
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Algorithm 1 Forward and backward iterative registration

Input: A point set P and a sphere-mesh chain ofK bones with one chain extremity close to
its optimal position

Output: The registered sphere-mesh chain.
1: Initialization:
2: Fix the center of the “rst extremity of the chain. Rotate the “rst bone and adjust its radii

and length by minimizing the one-bone energy;
3: for k := 1 to K Š 1 do
4: Consider the pair of bonesBk, Bk+1 :
5: Fix the position of the joint common to Bk and Bk+1 ;
6: Alternate between the optimization of Bk+1 •s rotation w.r.t Bk, optimization of Bk+1 •s

intrinsic parameters and update of Pk+1 ;
7: Fix the positions of the 2 joints that Bk and Bk+1 do not share, and free their common

joint;
8: Compute the position and the radius of the common joint by using the two-bones energy.
9: end for

10: Compute the length of the last bone and the radius of the last sphere.
11: Forward and Backward registration loop:
12: repeat
13: Reverse the order of the bones in the chain;
14: for k := 1 to K Š 1 do
15: Consider the pair of bonesBk, Bk+1 :
16: Fix the positions of the 2 joints that Bk and Bk+1 do not share;
17: Compute the position and the radius of the common joint by using the two-bones energy.
18: end for
19: Compute the length of the last bone and the radius of the last sphere with the one-bone

energy.
20: until convergence

37



Part, Chapter 2 …FAKIR: Anatomical model registration

2.4.2 Full Skeleton Registration

The full model corresponds to a tree whose branches are composed of chains. The process of

registering each of the chains must be done to gradually ensure the relevance of the data attached

to each chain. Thus, previously registered chains can be questioned again if their attached points

are reassigned to other chains or if they catch new points during the process (see Figure 2.7).

(a) Initialization (b) First forward passage (c) First backward passage

Figure 2.7 … The assigned points for the “rst spine is showed in red. The spine is “rst registered
with points that are not yet assigned to the legs, which distorts its position. Once the legs are
registered, the registration backtracks to the spine and its position can be corrected. The “nal
result is shown on Figure 2.16.

Our system depends on the initial position of a joint chosen as the skeleton•s root. For

example, we assume that the pelvis part of our model is initialized near the corresponding part

of the point set for human or quadrupeds models, which is done manually through a single point

and click. Each chain is then registered in turn using FAKIR yielding a registered skeleton both

in terms of intrinsic parameters and pose in only a couple of iterations.

For human models, the registration order is the following: “rst, the spine chain is registered,

re“ning the pelvis position and scale during the process, followed by each of the two leg chains

and each of the two arm chains. When registering the arms and legs chains, the joint•s position

attached to the spine or the pelvis remains “xed. However, after one arm is registered, changing

the spine-arm joint position, the spine chain is updated accordingly (and similarly for legs and

head). Thus the forward and backward chain registration extends to the whole model. This leads

to a calibrated and accurately positioned articulated model.
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2.5 Results

In this section, we show the performance of FAKIR both on synthetic data and on point

sets resulting from statue digitization. We developed our algorithm in C++, using OpenMP for

computing point to bone distances in parallel. All experiments are run on an Intel Core i7-4790K

CPU @ 4.00GHz. Normals were computed by using the state of the art approach of Hoppe et

al [HDD� 92].

2.5.1 Experiments on synthetic data

We “rst tested our algorithm on synthetic data to provide a quantitative evaluation of the

FAKIR performances. We considered a point set of 5k points sampled on a sphere-mesh of a

4-bone chain in a speci“c pose and registered a generic 4-bone chain to it. Although the point set

and the initial chain are quite distant from each other, providing an approximate initial position

of a single anchor point (one of the extremity) is enough to register accurately the chain. The

accuracy of the registration is evaluated as the average distance between the point set and the

model.

dist =
1

Npoints

�

p� P

� p Š �p� . (2.16)

In the noiseless case, our algorithm takes 7 iterations to converge to a 0 distance in 2.37s,

including 0.62s for the “rst forward pass. The distance of the point set to the model with respect

to the iterations for larger point sets and increasing noise is shown on Figure 2.8: the number of

points has only a moderate impact on the number of iterations needed to converge (around 7).

When there is noise in the data, the distance also converges in a few iterations independently of

the noise, however the distance at convergence is directly correlated to the variance of the noise.

As shown by our experiments, FAKIR is rather resilient to even relatively high levels of noise

(Gaussian noise in Figure 2.9 and Poisson noise in Figure 2.10). Figure 2.11 shows how FAKIR

handles an initial position of the anchor point that is not in the vicinity of its optimal position in

the point set. FAKIR can handle initial positions that are moderately far from the true position,

but in some cases (last column), the backward optimization of the one-bone energy alone fails to

reduce the length of the “rst bone and the radius of its free extremity degenerates to 0 instead.

This is due to the fact that no point is projected on the spherical free extremity of that bone.

This problem could be avoided by adding a bone occupancy term to the one-bone energy. A

preferential alternative would be to modify the one-bone energy of the “rst and last bones by

adding a term corresponding to the distance of the free caps to the data points. However, if the

initial point is reasonably close to its true position, this problem does not occur. FAKIR is also

rather robust to missing data thanks to the iterated forward and backward passes (Figure 2.12).

Naturally when the missing parts are on the “rst or last bone or when a full bone is missing,
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the algorithm cannot predict the right length or angle.

Figure 2.8 … Evolution of the registration distance with the iterations for di�erent number of
points in the point set (left image), di�erent levels of Gaussian noise and Poisson noise (right
image).

Figure 2.9 … Evaluation of FAKIR with respect to increasing Gaussian noise after 20 iterations.
The “rst row shows the initial point set and the bottom row shows the registered bone chain.
From left to right: without noise, 	 = 0 .5, 	 = 1, and 	 = 2. The total groundtruth model
length is 140 (All values are given in length units).

2.5.2 Skeleton registration results on statues

We selected some interesting statues from various sources.

Complete models:

1. Dancer with Crotales, Louvre Museum

2. The Goddess Parvati, South India

3. Saint John the Baptist, Ny Carlsberg Glyptotek
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Figure 2.10 … Evaluation of FAKIR with respect to increasing Poisson noise after 20 iterations.
The “rst row shows the initial point set and the bottom row shows the registered bone chain.
From left to right: without noise, � = 0 .5, � = 1, and � = 2. The total groundtruth model length
is 140 (All values are given in length units).

4. Aphrodite, Thorvaldsens Museum

5. Dancing Faun, Pompei excavations

6. Age of Bronze,

7. Mermaid, Royal Bibliotek of Copenhagen

Incomplete models:

1. A plaster copy of Esquiline Venus, The Royal Cast Collection

2. A copy of The Old Fisherman, The Royal Cast Collection

3. A statue in the style of the Venus De Milo

4. Wounded amazon, Ny Carlsberg Glyptotek

While the •Dancer with crotales• is a raw point set. The other 7 models are point sets sampled

on meshes extracted from the Sketchfab website. We also use several models from the TOSCA

dataset [BBK08], including nonhuman models to show the pliability of our method.

Figure 3.9 shows our registrations on four statues. The registration algorithm performs well

for statues depicting naked characters: in this case, the registration is not hindered by additional

clothing or accessories, and the simple sphere-mesh model “ts well the data. Even with moderate

clothing (Dancer with Crotales) FAKIR recovers the pose of the statue . FAKIR can also work

on incomplete statues on as shown in Figure 2.14 and on imaginary creature statues (Figure

2.15). We also demonstrate that FAKIR can work with real human bodies in more complex

poses (Figure 2.16) or animals (Figure 2.17) from the TOSCA dataset.

While skeleton extraction is a much explored topic in geometry processing, we emphasize that

extracting a computational geometry skeleton is very di�erent than extracting an anatomical
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Figure 2.11 … Evaluation of FAKIR with respect to a bad initial anchor point position after 20
iterations. The “rst row shows the initial point set and the bottom row shows the registered
bone chain. The last column shows that due to a bad initialization, the points (plotted in red)
that are a�ected to the “rst bone do not bring enough information for the one-bone energy to
move the chain extremity. Then, not enough bones remain to approximate the whole point set.

Figure 2.12 … Evaluation of the FAKIR algorithm with respect to missing data after 20 iterations.
The “rst row shows the initial point set and the bottom row shows the registered bone chain.

skeleton [HWCO� 13, TDS� 16]. Figure 2.18 show the� 1-medial skeleton extracted [HWCO� 13]

on the Aphrodite and Danseuse with Crotales point sets … to be compared with our results on

Figures 2.19 and 2.20. This experiment shows that the geometrical skeleton de“nition is not

enough for our purpose.

We compare FAKIR with Pinocchio [ BP07] in Figure 2.19. The FAKIR algorithm yields a

better skeleton registration, in particular for the shoulders and neck bones. As far as computation

times are concerned, the Pinocchio method takes about 35s for a mesh with 138048 vertices,

which is roughly the same time as the 10 iterations of FAKIR optimizing not only for the joint

positions but also for the bone radii (38s). Furthermore, a single iteration of FAKIR takes 9s and

already provides a better result with a much more plausible shoulders location. However it is

important to note that the Pinocchio method does not require an initial skeleton position, while
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our method requires one of the joint to be not far from its optimal position (in this experiment

we chose the pelvis joint).

We also compare compare FAKIR with the SMPLify method [BBLR15] (Figure 2.20). First

we compute a front-view rendering of the shape and run DeepCut [PIT � 16] to estimate the joint

position used for SMPLify. The registration is clearly less accurate than ours (Figure 2.20b).

We then extend SMPLify method to multi-view images using epipolar constraints to estimate

a 3D joint positions from 2D joint positions obtained by DeepCut before applying SMPLify,

which slightly improves the registration (Figure 2.20c). We also show that our articulated model

regression can serve to initialize an SMPL model, leading to a better registration than with

DeepCut (Figure 2.20d). However, the shape estimation of SMPL still cannot “t a statue with

non-realistic body proportions.

Finally we compare FAKIR with the FARM method [ MMRC20] a fully automatic method

for registering an underlying model, such as SMPL, to a point set or a mesh. While this method

exhibits excellent results on humanoid shapes, in the case of artistic statues, with irrealistic

body proportions (Figure 2.19) or with moderate garments (Figure 2.20), it cannot reconstruct

a plausible model. Furthermore, scanned statues often exhibit inconsistent topologies, such as

an arm glued to the body (Figure 2.19) which is not handled by the FARM method.

2.5.3 Computation time

The computational bottleneck of FAKIR lies in the assignment of each point several times

during the optimization process. This assignment is updated after each bone parameter change.

However, the number of updates is related to the geometry of the surface and not to the number

of sample points. Therefore, the overall complexity is linear with respect to the number of points.

From an experimental point of view, FAKIR is a reasonably light algorithm: for a point cloud

of 10000 points and the 22-bone human model, the “rst forward pass of FAKIR takes 2.5s and

the computation time for one pass decreases to 1s in average afterwards.

2.6 Discussion

2.6.1 Limitations

Despite its good results, FAKIR has some limitations. First, if two consecutive bones are

aligned, their length estimation is not reliable, since the position of the middle joint is undeter-

mined if no proportion constraint is set on the model. This limitation appears on the Aphrodite

left leg (Figure 3.9). We could also improve registration results by adding constraints of sym-

metry to the energy functions. However these constraints should be quite loose, because of the

unrealistic proportions of artistic statues. Furthermore, failure cases include some misalignments

due to a local minimum (one of the arms of the mermaid in Figure 2.15, the feet of the shape
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on the top-right of Figure 2.16 and the back leg of the centaur in Figure 2.17.) Further local

extrinsic re“nement would improve the result. In addition, a process of local modi“cation of the

skeleton structure could be carried on, followed by an update of its registration. Last, to avoid

any manual intervention, we have tested an automatic approach by initializing the pelvis in the

center of the bounding box of the points and by orienting it upwards. This initialization is e�ec-

tive for most standing statues (results provided in the section 2.6.4). Using principal component

analysis to initialize the orientation of the body would also improve the registration for classical

human poses (e.g. walking, sitting, lying down). However, the handling of the relaxation process

at bifurcations could also be improved. Currently, the position of the pelvis is not updated by

exploiting the whole information arising from the registration of all the incident branches.

2.6.2 Importance of the optimization order for registering a chain of bones.

During our optimization process our approach takes advantage of the articulated property

of our model by processing bones in a speci“c order. Here, we run an experiment to illustrate

that the order in which the optimizations are made is crucial.

To do so, we replace our iterations of sequential optimizations followed by point to bone reas-

signment by iterations of simultaneous parameter optimizations followed by point reassignment.

At each iteration, the positions of all the joints are simultaneously optimized by minimizing their

two-bone energies as if the adjacent joints remained “xed. The free joints at the extremities are

also optimized at the same time by minimizing their one-bone energy as if their non free joint

remaining “xed. However the parameter and pose change is not applied right away after each

optimization but simultaneously once all updates have been computed.

If this optimization is run after our forward step (which is useful to bring each bone close to

relevant data), it takes 43 iterations to converge, against 9 iterations only with our approach (See

Figure 2.21 for an illustration of the stages). On the contrary, if the simultaneous optimization is

run directly from the initial position, the method fails to converge. Figure 2.22 shows the result

after 50 simultaneous optimizations steps.

2.6.3 Importance of the normal-constrained projection

In this section we demonstrate that the normal-constrained projection both improves the

result of the registration and the computation time. It is especially true in the case of the

Aphrodite statue (Figure 2.23). Indeed, for this statue, the arms cling to the body which leads

to wrong assignment of points when no normal information is used, yielding an unrealistic statue

pose. The normal-constrained projection, on the contrary, permits to recover a good pose of the

arms. Furthermore, it takes 16.9s and 2 iterations for the algorithm using normal-constrained

projection, against 32.8s and 8 iterations … to converge to a wrong registration … otherwise

(number of points: 38954). On simpler cases, like the Dancing Faun (see the main paper for a
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rendering of the shape), both methods manage to converge to the correct registration, but the

computation time and number of iterations are still lower for the normal-constrained projection

(8.7s, 6 iterations) than for the simple orthogonal projection (10.4s, 10 iterations).

2.6.4 Automatic initialization test

Our attempt to automatically initialize FAKIR by placing the pelvis in the center of the

bounding box is e�ective for many statues. The Figure 2.24 illustrates that this works with a

vertically oriented statue, while the Figure 2.25 shows a failure result, due to the fact that the

center of the bounding box does not give any information about the orientation of the body.

Thus the chains of bones are not aligned with the appropriate points, which leads to a local

minimum. An improved version using principal component analysis of the points to initialize the

orientation of the pelvis and adding loose constraints on the length of the bones could improve

the registration.

2.7 Conclusion and perspectives

We introduced a sphere-mesh anatomical model and a combined calibration and registration

algorithm to estimate the anatomy and the pose of digitized archaeological statues. Our algo-

rithm is useful when it is not possible to extract a shape template from a statistical analysis

of examples representative of the diversity of poses and morphologies. Given the simplicity of

our anatomical model, it is very easy to adapt it to many shapes, such as animals or imaginary

creatures. While our method already gives good results, a further improvement would be to

handle the case of a clothed statue.
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Figure 2.13 … Registration of 6 statues: the Dancer with Crotales (“rst row at left), the Goddess
Parvati(“rst row at right), the Saint Joint the Baptist (second row at left), the Aphrodite
(seconde row at right), the Dancing Faun (third row at left) and the Age of Bronze (third row
at right). For each result, we show from left to right: initial point set, overlay of the registered
model and the point cloud, registered model.



Figure 2.14 … Registration of 4 incomplete statues, Esquiline Venus (“rst row), Old Fisherman
(second row), Venus de Milo (third row) and Wounded Amazon (fourth row). First column:
initial point set, second column: overlay of the registered model and the point set, third column:
registered model alone.



(a) Mermaid statue (b) Overlayed registered model (c) Registered model

Figure 2.15 … FAKIR result on the Mermaid statue, the skeleton is a human one but with a
single chain instead of two legs.



Figure 2.16 … Skeleton registration on human in various poses from the TOSCA dataset.



Figure 2.17 … Skeleton registration on di�erent animals or created characters from the TOSCA
dataset. The skeleton is simply the human skeleton (Figure 2.3) supplemented with a bone chain
for the tail.



(a) Danseuse with crotales (b) Aphrodite

Figure 2.18 …� 1-medial skeletons [HWCO� 13] extracted from the Aphrodite and Danseuse with
Crotales point sets. To compare to our results on Figures 2.19 and 2.20.

(a) Pinocchio
(vanilla)

(b) Pinocchio (our
skeleton)

(c) FAKIR (1 itera-
tion)

(d) FAKIR (10 itera-
tions)

(e) FARM

Figure 2.19 … Comparison with Pinocchio [BP07] and FARM [ MMRC20] algorithm on the
Aphrodite statue. From left to right: (a) Pinocchio with the Pinocchio-provided initial skele-
ton (17 bones); (b) Pinocchio with our initial skeleton (22 bones); (c) FAKIR with our initial
skeleton after a single forward iteration; (d) FAKIR with our initial skeleton in 10 iterations.
Only the skeleton is displayed since the bone radii are not taken into account by Pinocchio. (e)
Model reconstructed by the FARM method.



(a) FAKIR

(b) SMPLify + DeepCut 2D

(c) SMPLify + DeepCut 3D

(d) SMPLify + FAKIR

(e) FARM

Figure 2.20 … Comparison with SMPLify on the Danseuse with Crotales. (a) FAKIR registration;
(b) SMPLify using DeepCut predicted 3D joint positions on a single rendering; (c) SMPLify
using DeepCut predicted 3D joint positions on two rendered views; (d) SMPLify using 3D
joint positions estimated by FAKIR; (e) FARM registration. (First and third column: overlayed
registered model; Second and fourth column: registered model)



Figure 2.21 … Simultaneous Optimization for a chain of bones applied after the “rst Fakir forward
pass. From left to right: initial position (after our forward step), position after 10 iterations,
position after 35 iterations, position after convergence (43 iterations).

(a) Initial position for a simultaneous op-
timization

(b) Position after 50 iterations

Figure 2.22 … Simultaneous Optimization for a chain of bones applied directly from the initial
position.

Figure 2.23 … From left to right: Aphrodite statue, registration result without the normal-
constrained projection, registration result with our normal-constrained projection



Figure 2.24 … From left to right: the Dancer with Crotales statue, initialization position at
bounding box center of point cloud, automatic registration result.

Figure 2.25 … A failure case for automatic initialization. From left to right: the Victoria from
TOSCA data set, initialization position at bounding box center of point cloud, automatic reg-
istration result.



Chapter 3

A FIRST APPROACH TO SPHERE -MESH

MODEL SKINNING

Once the anatomical model is registered to the statue point set, we exploit the relative posi-

tion of the points with respect to the sphere-mesh model to change the pose and the elementary

anatomy of a statue by modifying the extrinsic and intrinsic parameters of the bones respec-

tively and by reporting the point set details above it. One of the challenges when changing the

pose and anatomy of a virtual statue is the production of plausible skin deformation at joint.

Methods to give a new skin of a virtual character after a deformation are called skinning. The

main idea of mesh skinning is to deform a mesh following an underlying skeletal animation. Each

vertex is in”uenced by one or more joints and vertex weights describe the in”uence of relevant

joints on each vertex.

Compared to existing animation approaches based on sphere-meshes, we work directly on

the point set and not on a lower-resolution mesh to which a skinning algorithm can be applied

after carefully setting weights. Using skinning on a mesh with “xed connectivity leads anyway

to triangle slivers and possibly self-intersections and dropping the connectivity alleviates this

problem. However, we have not given up the idea of using a skinning algorithm. It is applied

directly to the base-points of the sphere-mesh model with weights that are independent of the

detail and that do not need to be completely revised from one model to another.

In our case the skinning is applied to the set of base-points of the sphere-mesh model with

adapted weights that only depend on the base-points. To do so, we need to attach the detail

point set to its registered articulated model so that deforming the model will deform the point

set accordingly. We propose to associate a base-point on the articulated model to each of the

original points, the originality of our approach being that those base-points may locally slide on

the moving sphere-mesh to mimic the sliding of the skin on joints. For instance, some base-points

can evolve from the conic section of a bone to the neighboring sphere, resulting in continuous

deformation with better volume preservation than the usual linear blend skinning. In addition,

special care is given to the twisting and bending rotations at each joint. The new position of

the input points is then deduced from the new position of their corresponding base-points, by

reporting their initial height. We will explain this height“eld skinning in section 3.1. For moving
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the base-points, we propose a new point set skinning method where the deformation at a joint

is the combination of a twisting rotation and a bending rotation in section 3.2.

3.1 Height“eld skinning

3.1.1 Height“eld over the sphere-mesh model

We propose to consider the skin of model as a set of detail-points, encoded as a set of heights

on top of our articulated model, that will be transferred back on the model after pose or intrinsic

parameters change. This approach is in line with displacement maps on top of polygonal models

[POC05], but instead of de“ning a complete height“eld over the model, we de“ne it only on

base-points. The same base-point can correspond to several detail points, making it possible to

handle layered details, i.e. folded surface sheets over the sphere-mesh model (see the Dancer

with Crotales on Figure 3.2 and the dragon on Figure 3.1).

In the following, let us assume that the sphere-mesh model is registered to the point set. The

height“eld value h of a point p is de“ned as a signed distance fromp to its projection on the

sphere-mesh base point �p: p = �p+ h(p)n �p, where n �p is the normal to the sphere-mesh surface at

�p and �p is the orthogonal projection on the bonep is assigned to. Hence the surface point set is

decomposed into the set of base-points on the sphere-mesh and a residual orthogonal height“eld.

Using that decomposition, any skinning algorithm can be transformed into a height“eld

skinning algorithm above a sphere-mesh. The base-points are skinned using the given algorithm

and then the height“eld is added back to the modi“ed base-points yielding the “nal point set

(Algorithm 2). It is preferential to use a skinning algorithm where base-points remain on the

sphere-mesh, otherwise we re-project them on the sphere-mesh, similarly to what is done with

implicit skinning [ VBG � 13].

3.1.2 Continuity

The positions of detail points continuously evolve with the parameters of sphere-mesh and

there is no tearing of the surface. Indeed, a base-point can slide continuously along a bone and

move from the conic part to the sphere part of the bone and conversely. Since the conic part is

tangent to the sphere, both the base-point and its normal evolve continuously even in case of

cone to sphere or sphere to cone base point motion. Since the height“eld of a detail-point is either

preserved or continuously scaled, the whole motion is continuous throughout the deformation.

Naturally, some base-points may become hidden because of a local intersection of the two bones

of a joint being bent. We chose to keep these local intersections, since it will not degrade the

resulting outer envelop of the model, which remains visually satisfying as if the surface became
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”attened in the fold of a joint [ VBG � 13]. Furthermore, if the base-point associated to a detail-

point is hidden, the detail-point is also hidden in the fold of a joint. Figure 3.1 illustrates that our

height“eld skinning can also be used for meshes by skinning the vertices heights, while keeping

the connectivity “xed, at the risk of creating self-intersections or slivers, a risk shared by many

mesh skinning methods (e.g. [TGB13]).

Figure 3.1 … Pose change for a mesh with folded surface sheets by height“eld skinning.

Algorithm 2 Pose change using height“eld skinning

Input: Sphere-mesh model registered to the input point setP.
Target pose and anatomy.

Output: Point set P � corresponding to the target changes.
1: Compute base point set �P corresponding toP on the registered sphere-mesh and compute

the set of height valuesh(P)
2: Apply point set skinning on the base points �P
3: Deform �P to the target pose and anatomy, yielding �Psk

4: Re-project points of �Psk on the sphere-mesh yielding�P �

5: Lift points �P � to the skin surface using the - possibly scaled - initial height of each point,
yielding P�.

3.2 Base-point skinning

The skinning approach that we apply to the base-points is an alternative to classical skinning

approaches [BP07, TGB13]. It could also have been used directly on the point-set details. Figure

3.2 compares the result of using a height“eld over base-point skinning with using directly point

set skinning. Thus, in the following we describe the method in a generic point set context for

notation simplicity.

The general idea of skinning is to attach each point to one or more bones with weights measur-

ing the in”uence of each bone on it. The position of point after a deformation is a weighted linear
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Figure 3.2 … Height“eld skinning. From left to right: original point set; pose change with direct
point set skinning; pose change with height“eld skinning.

combination of the positions relative to its in”uencing bones. Linear Blend Skinning [MTLT88 ],

one of the most popular skinning method, causes some well-known collapsing problems at joints,

in particular for large rotations. For example, the volume at joint is not preserved when it is bent

around its axis (Figure 3.5a). Similarly, if we apply a twist around the axis of a bone while keep-

ing its predecessor “xed, Linear Blend Skinning produces a folding of the joint around a singular

point (Figure 3.6a). These ”aws are avoided by Dual Quaternions Skinning [KCvO07] which

interprets a combination of rigid transformations as a rigid transformation, however artefacts

still appear in the concavities (Figure 3.5).

We propose to deal with the pose change in a di�erent way that breaks down the movement

into its natural components. Similar as [KSH12], we consider that the motion between two bones

at a joint is the combination of a twisting rotation around the axis of one of the bones and a

bending rotation around an axis perpendicular to both bones• axes. From there, we introduce

motion-dependent skinning weights: the weight of a point is not the same for twisting and

bending rotations. The impact of bending on the base point set should naturally be limited

to an area loosely enclosing the rotating sphere joint, while the impact of twisting obviously

extends to the length of the bones adjacent to the twisted articulation. This is more coherent

with the fact that underlying muscles are arranged along the bones and attached to the joints.

In our approach, a point p � Pk can only be in”uenced by the bones adjacent toBk so that it

has at least one and at most three weights.
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3.2.1 Bending rotation with anisotropic weights

In order to overcome the artefacts that arise in the convex part of joints with Linear Blend

Skinning, we use Dual Quaternions Skinning [KCvO07]. The weights of a point p during a

bending rotation follow a Gaussian pro“le of the distances fromp to each of the bones that

in”uence it. It is driven by a parameter 
 r controlling the size of the in”uence area (Figure

3.3). In our experiments, we automatically set 
 r larger than the average distance between

the point set and our model. If the skinning process is used on base-points on a sphere-mesh,

we set 
 r value for a joint as a function of its radius and the length of the adjacent bones :


 r = 0 .2 
 min( r k+1 , lk Š r k+1 Š rk , 0.5lk+1 Š rk+1 Š rk+2 ).

The weight � j (p), relative to one of p•s in”uencing bonesBj writes:

� j (p) =
1
c

expŠ
� p�pj � 2

2(
 r / 3)2 (3.1)

where c is a normalizing factor ensuring that the weights sum to 1, and �pj is the orthogonal

projection of p onto Bj , Hence if p is on boneBj (as is the case for base-points), �pj = p. Figure

3.3 shows the weights pro“le along two bones.

(a) (b)

Figure 3.3 … Skinning weights for the bending rotation around a joint. (a) the red curve represents
the in”uence weights of the left boneBk and the blue curve represents the in”uence of the right
boneBk+1 . The in”uence area of each bone is controlled by
 r . (b): values of anisotropic 
 r on a
bone. Points such that 
 r = 0 are shown in white. From yellow to red, the value of 
 r increases
linearly.

However, it is possible to further improve the Dual Quaternion skinning method, by noticing

that if 
 r is large, the convex part behaves well with points sliding from the conic parts of both

bones to the joint sphere, while an artefact is created in the concave part. On the contrary,

if 
 r is close to 0, which corresponds to no skinning at all, a hole appears in the convex part,

but a self-intersection is created in the concave part (Figure 3.4). Quite counter-intuitively, this

self-intersection is much more visually satisfying than the thinning artefact observed otherwise.

Indeed, only the outer envelop is visible and, when allowing self-intersection, this envelop is
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similar to the one obtained if a contact area was computed between the two bones [VBG � 13].

To get the most of the two possibilities, we propose to adapt
 r so that it is close to 0 for points

in the concave part and it reaches its larger value for points on the convex parts. More precisely,


 r varies continuously with respect to ananisotropy angle(See Figure 3.3).

close-up

Figure 3.4 … In”uence of
 r on the skinning resulting from a bending rotation. In the “rst “gure,

 r = 0. The value 
 r increases from left to right.

We de“ne the anisotropy angle� b at p as the angle between the plane de“ned byBk and Bk+1

axes and the plane de“ned byBk•s axis andp. This angle allows for a continuous transition over

the skinned surface between points with no skinning, favoring local self-intersections (� b � �/ 2),

and points with skinning, favoring the di�usion of points over the spherical joint surface ( � b �

�/ 2). Here, 
 r is deduced from the anisotropy angle as
 r = cos � b
 �
r , with 
 �

r controlling the

in”uence area size. Therefore, the weight� j (p) associated to point p and one of its in”uencing

bone Bj is:

� j (p) =

�




�





�

1
c expŠ � p�pj � 2

2(cos� b
� �

r
3 )2

if cos� b < 0

1 if cos� b � 0 and p � Pj

0 if cos� b � 0 and p /� Pj

(3.2)

(a) Linear blend skinning (b) Dual Quaternions skinning (c) Our anisotropic skinning

Figure 3.5 … Comparison of our anisotropic skinning method with Linear Blend Skinning and
Dual Quaternions for a bending rotation. For a fair comparison, the two “rst methods use the
Gaussian weight of Equation 3.1 which is made anisotropic in our anisotropic skinning. Dual
Quaternions “x the volume collapse of Linar Blend Skinning near the convexity, but artefacts
remain in the concave part, while our skinning method does not su�er from any of these ”aws.
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3.2.2 Twisting rotation

Let us consider a boneBk+1 twisted around its axis by an angle  , with its predecessor

Bk kept “xed. Such a rotation impacts points attached to bones Bk and Bk+1 . To handle this

twist, we replace the linear combinations of bone motions with rotations adapted to the points.

More precisely, each point is rotated aroundBk•s (resp.Bk+1 ) axis by an angle that depends

on its distance to Bk (resp. Bk+1 ). For p � Pk rotating around the axis of Bk, this angle writes

 (p) = � (p) with

� (p) =
� vk+1 Š p� �

� vk+1 Š ck+1 � + � ck+1 Š wk+1 �
(3.3)

p� is the projection of p on Bk•s axis, andvk+1 (resp. wk+1 ) is a point on Bk•s axis (resp.Bk+1 )

delimiting the impacted areas (Figure 3.7). By default vk+1 = ck and wk+1 = ck+2 , but di�erent

impacted areas can be designed by choosing di�erentvk+1 and wk+1 . Here, the expression for

� (p) corresponds to a linear evolution of the rotation angle along the bone, but other types of

in”uences could be designed. On Figures 3.6 and 3.7, we compare our method with Linear Blend

Skinning and Dual Quaternions for a twisting rotation: the trace of the points initially aligned

on a segment is much smoother with our approach.

(a) Linear Blend Skinning (b) Dual-Quaternions Skinning

Figure 3.6 … Twist motion: near blend Skinning and Dual-Quaternions Skinning to be compared
with our approach in “gure 3.7 that uses twist speci“c weights. Green dots show points that
were aligned before the twisting rotation.

3.2.3 Combination of twist and bend.

Twist and bend speci“c skinning are combined to get the skinning result for any rotation

around a joint. We perform “rst the twisting rotation and then the bending rotation. The

positions and the weights of the points relative to each bone are updated between these two

speci“c rotations. Figure 3.8 shows a comparison of our approach with Linear Blend Skinning

and Dual Quaternions on synthetic data with a two-bones sphere-mesh model. As was expected,

Linear Blend Skinning yields the well-known collapse at the joint. To alleviate this e�ect, bending

with Dual Quaternions can be used, with a region of in”uence restricted to the neighborhood of

the joint but some artefacts remain in concave area. However, the twist is handled di�erently in

our approach and its e�ect is distributed over the length of the bone, yielding a more natural

result.
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Figure 3.7 … The blue curve represents the value of� � . Points vk+1 and wk+1 de“ne the range
of the twisting e�ect of Bk+1 . p� is the projection of p on the skeleton line.

Figure 3.8 … Comparison of skinning approaches on a sphere-mesh model with combined twist
and bend motions. Left to right: Isotropic Linear Blend Skinning, Isotropic Skinning with Dual
Quaternions, Ours

3.3 Results

In this section, we show the performance of our skinning method and results of virtual

restoration. We developed our algorithm in C++, using OpenMP for computing point to bone

distances in parallel. All experiments are run on an Intel Core i7-4790K CPU @ 4.00GHz.

Figure 3.9 shows the FAKIR registrations on four statues and compares resulting models

after skeleton pose change and skinning with our method or skinning with Dual Quaternions.

Our skinning method clearly improves the quality near bone joints. As can be seen in particular

in the areas circled in red in the “fth column, our method suppresses or at least reduces the

Dual Quaternion artefacts around the bone joints. For 500000 points, our skinning approach

takes about 1s, including computation of base points and re-projection.
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Figure 3.9 … Registration and pose changes of 4 statues: the Dancer with Crotales (“rst row),
the Dancing Faun (second row), Aphrodite (third row) and the Old Man Walking (fourth row).
First column: initial point set, second column: overlay of the registered model and the point
cloud, third column: “nal point set in a modi“ed pose by our skinning method, fourth column:
skinning result with Dual Quaternion.
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Chapter 4

A SECOND APPROACH TO SPHERE -MESH

MODEL SKINNING

Skinning techniques are widely used in the context of character animation. In the animation

research community,skinning process allows deforming the skin following an underlying skeletal

animation, which is a widespread method to animate 3D models. In most skinning methods,

the skin is a 3D mesh whose vertices are attached to a set of bones using di�erent weights, and

the skeleton is a tree whose nodes represent joints of the skeleton and edges represent bones.

Unlike the animation of 3D characters, skinning for virtual restoration is more sensitive to

preserving the initial surface details. Besides, it demands not only rigid transformations but also

a�ne transformations such as scaling. The existed geometric skinning methods, for example,

linear blend skinning [MtLTM88 ] or dual quaternion skinning [KCZO08], su�er volume collapse

problems and need to set appropriate weights. Example-based methods [MTG03] and physics-

based methods improve artefacts of geometric skinning. However, they are computationally

expensive, and both need additional input data. Our goal is to provide a skinning technique

that gives a logical result and keeps the original precision for the point set of statues.

In this chapter, we introduce another skinning approach called Baseline skinning. Our base-

line skinning method is based on a registered sphere-mesh model and works directly on a point

set. The registered model is built from the FAKIR algorithm introduced in chapter 2. We propose

considering the skin of the model as a set of detail points, encoded as a set of displacements on

top of our elementary articulated model and transferred back on the model after pose or intrinsic

parameters changes. We associate each detail points to a base-point on the articulated model so

that each point has a relative position concerning the model. The principle of our baseline skin-

ning is that a baseline drives each base-point on the model, which moves with the model. After

applying skinning on base-points, we lift base-points by adding relative displacement values to

recover the point set after deformation. The baseline movement mimics muscle•s change, and

base-points may locally slide on the moving baseline to mimic the sliding of the skin on joints.

Meanwhile, our point set skinning process does not need to compute weights. In the following,

we explain the baseline and base-point de“nition for a giving point and give the algorithm of

baseline skinning.
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Part, Chapter 4 …A second approach to sphere-mesh model skinning

4.1 Baseline

In our articulated model, we consider each sphere-mesh chain of bones as a union of baseline

curves composed of a succession of segments and circle arcs. Each circle arc involved in the

baseline curve is coplanar with the segment that precedes it and the segment that follows it

(See green curve Figure 4.1). A circle arc does not separate two consecutive segments if their

supporting generator lines intersect on the bones• conic part (See blue curve in Figure 4.1).

In the following, we take an example of one pointp and a pair of bones to show the baseline

of point p on the model. We “rst project p on its closest boneB1. �p is the orthogonal projection

of p on the boneB1 and pb is the base-point ofp (See in Figure 4.1). Let consider one portion

of the chain that is composed of a sphere joint (c2, r 2) and its two tangent pieces of cones onB1

and B2, which are tangent to the spheres (c1, r 1) and (c2, r 2) respectively. Let A1 and A2 denote

the apices of the two cones. By intersecting the sphere-mesh portion with a plane including the

line A1A2 and point �p, one obtains pieces of the baseline curves for pointp. Each piece of the

curve comprises two segments joined by a circle arc when they do not share a common extremity.

More precisely, there are always two intersection paths on the model for one point except when

plane A1A2 �p is the tangent plane to two bones. One intersection path is showed in green in

Figure 4.1 which contains two segments (UV and XY in green in Figure 4.1b) and an arc (
�

UX

in green in Figure 4.1b and point S is the midpoint of the arc). The other is showed in blue

which has two segments (US and SY in blue in Figure 4.1b and the point S is the intersection

of two segmentsUV and XY ). We choose the one that �p is on it. So in Figure 4.1b the blue one

is the real baseline for pointp. Points U, V , X , Y and S are key points of the baseline.

Indeed, such a plane intersects the cones through generator lines and the joint sphere through

a circle. By intersecting the portion mentioned above of the sphere-mesh for varying positions of

the plane containing the line A1A2, one can decompose the shape portion as a union of curves.

If one of the cones degenerates into a cylinder, the varying plane should include the line that

goes through the remaining cone•s apex, parallel to the cylinder axis. If both cones degenerate

into cylinders, the plane intersecting the portion should be parallel to the cylinders• axes.

4.1.1 Baseline before transformation

In our method, each point is attached to its closest bone. The position of one point for a

movement is in”uenced by its closest bone, the predecessor bone and the successor•s bone. So

the baseline of one point passes two or three bones. In our skinning process, we de“ne for each

point its initial baseline before transformation and its baseline after transformation.

Generally, for a point pk attached to bone Bk, we need to “nd the initial baseline passes

through its predecessor boneBkŠ 1, its attached bone Bk and its successor boneBk+1 . To do

so, we consider each time a pair of bones. Taking example in Figure 4.2a, forB0 and B1, the
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4.1. Baseline

(a) An example of baseline
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(b) 2D Cross-section

Figure 4.1 … Illustration of baseline and base-point

intersection path consists of segmentsMS1 and S1V . We get key points M , N , U, V and S1.

They are all in the plane A0A1pb. Similarly, we can get key pointsU, V , X , Y and S2 for B1 and

B2, which are all in the plane A1A2pb. SegmentUV is on the intersection line of planeA0A1pb

and planeA1A2PB . In this example, the baseline of pointp composes by segmentMS1, segment

S1S2 and segmentS2Y . A complete baseline contains 8 key pointsM , N , U, V , X , Y , S1 and

S2.

4.1.2 Baseline after transformation

when bones move, the base-pointpb of point p and its baseline move also with bones. Let

trans k(·) represent the function of the transformation for Bonek. We take the example of two

bones like in Figure 4.1b and assume that bones transform in a new position which is shown

in Figure 4.3a. The new positions for key points of the baseline aretrans 0(U), trans 0(V ),

trans 1(X ) and trans 1(Y ). To simplify we use still U, V , X and Y to represent new positions of

key points. So segmentUV and segmentXY are no longer coplanar. We illustrate this in blue

segments in Figure 4.3a and Figure 4.3b respectively for the case of two bones and three bones).

For this reason, we can not use directly segmentUV and segmentXY to de“ne the baseline

after a transformation. Instead, we take a baseline in middle of segmentUV and segmentXY

which we show in Figure 4.3a in yellow: segmentU�S� and S�Y �. S� is the intersection of segment

U�V � and segmentX �Y �. Point V � and point X � are not shown in the Figure 4.3a. More details

is in section 4.4. In general, we get key pointsM �, N �, U�
1, V �

1 and S�
1 for bonesBkŠ 1 and Bk,
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Part, Chapter 4 …A second approach to sphere-mesh model skinning

A1

A2

M

N
U

V

B1

B2

I

B0

A0

Y

X

(a) Baseline before transformation
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B0

A0

X'

(b) Baseline after transformation

Figure 4.2 … Illustration of baseline before and after a movement

U�
2, V �

2, X �, Y � and S�
2 for bonesBk and Bk+1 . As showing in Figure 4.3b, the red segmentS�

1V �
1

and the yellow segmentU�
2S�

2 are two di�erent segments. So we need an interpolation process

betweenS�
1 (U�

1 if there is an arc between two segments) ands�
2 (V �

2 if there is an arc between

two segments) to keep the continuity on the baseline curve when we determine the baseline after

a transformation. We introduce our interpolation scheme in section 4.2.1.

Finally, the baseline after transformation for one point is de“ned by key points: M �, N �, U�
1,

S�
1, V �

2, S�
2, X � and Y � (See in Figure 4.3b).

(a) Initial baseline after transformation (b) Baseline after transformation for 3 bones

Figure 4.3 … Illustration of baseline and base-point after transformation
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4.2. Base-point

4.2 Base-point

Each base-pointpb of a baseline curve is associated with a direction of detailŠ�nb. We do not

use directly �p as the base-point of pointp. Instead, the base-pointpb depends on the direction of

detail Š�nb and �p helps to “x pb and Š�nb. If the point is on a circular arc of the sphere (c2, r 2), the

direction of detail is given by the unit vector pointing from c2 towards �p. In this case, �p is the

base-point of p. If �p is on a segment part supported byB1 (resp. B2), its direction of detail is

enclosed in the plane includingB1•s axis (resp.B2•s axis) and �p. Therefore, directions of detail

are coplanar along a baseline segment but not along a circular arc and not from one segment of

the curve to another (See “gure 4.8).

Along a segment, directions of details are distributed continuously with some constraints

at the segment extremities and the coplanarity constraint. At one extremity, one should pass

continuously from the direction of detail on the segment to the direction of detail on an incident

arc of a circle or an incident segment. If a segment is adjacent to two circle arcs on the baseline

curve, the direction of detail locally corresponds to the cone•s normal. Though, if a segment on

Bk is incident to another segment onBk+1 , the direction of detail at their common extremity

S is given by the unit vector pointing from the center ck+1 of the sphere towardsS. We show

this case in Figure 4.1b. The direction of detailŠ�nb is set by an interpolation between
ŠŠ�
c1U and

Š�
c2S. c1 and c2 are centers of spheres. In the following, we note

ŠŠ�
c1U as Š�nu and

Š�
c2S as Š�nv. The

interpolation can be set as linear, quadratic, cubic, etc. If we use a linear interpolation to de“ne
Š�nb:

Š�nb = (1 Š t) 
 Š�nu + t 
 Š�nv

where t is the index of the base-point position: The base-point ofp is de“ned by:

p = pb + h 
 Š�nb

where h is the displacement value for pointp.

Figure 4.8 illustrates a linear distribution of the directions of details over each segment of a

baseline curve, but any other continuous distribution could be chosen. That way, one or several

detail points can be given above a baseline curve point in the associated direction of detail.

4.2.1 Base-point after transformation

As we discussed in the section 4.1.2, the key pointsS�
1 and S�

2 (or U�
1 and V �

2 if there are

arcs between segments) are not in the same plane after a pose and anatomy change. To keep

the continuity of the baselinebrazil
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Part, Chapter 4 …A second approach to sphere-mesh model skinning

Interpolation for base-point position

We apply an interpolation from U�
1 to V �

2 when we determine the position of base-pointp�
b.

We note respectively planec1c2U�
1 and c1c2V �

2 as planeu and plane v in the following. To do

so, we rotate the planeu to the plane v to “nd an interpolation between point U�
1 and V �

2. The

angle between planeu and plane v is � . When rotating plane u to plane v � p(t) degrees, we get

intersection points U� and V � between the rotating plane and the bone. To compute pointU�

and point V � , we can consider pointU�
1 rotates � (t) degrees aroundŠŠ�c1c2 and point V �

2 rotates

1 Š � (t) degrees aroundŠŠ�c2c1. So the positions of pointsU� and V � is computed by:

U� = Rotation (ŠŠ�c1c2, � p(t))( U�
1)

V � = Rotation (ŠŠ�c2c1, (1 Š � p(t))( V �
2)

The position of base-point p�
b after transformation is:

p�
b = (1 Š t) 
 U� + t 
 V �

Where � p(t) is the function of the interpolation strategy. It is controlled by t and decides the

rotation angle for interpolation between point U�
1 and V �

2. This interpolation can be linear,

quadratic, cubic, or users can de“ne it according to the desired result. We give here a linear and

a cubic interpolation functions which we have used in our experiences:

� p(t) = t�

� p(t) = Š2 
 � 
 t3 + 3 
 � 
 t2

Interpolation for detail direction of base-point

The de“nition of � d(t) is similar as � p(t). We can use linear interpolation, quadratic inter-

polation, cubic interpolation or other type of the interpolation that a user can choose. If � d(t)

= � p(t), the detail direction Š�nb
� of one point p�

b is in the same plan which consists of the axe of

the bone and point p�
b. But it is not necessary that � p(t) and � d(t) are identical. Š�nu and Š�nv are

the direction of details on point S�
1 (or U�

1) and S�
2 (V �

2). Š�nu is in the direction
ŠŠ�
c1S�

1 (or c1U�
1)

and Š�nv is in the direction
ŠŠ�
c2S�

2 (or c2S�
2). We illustrates in Figure 4.2b. After an interpolation:

Š�nu
� = Rotation (ŠŠ�c1c2, � d(t))( Š�nu)

Š�nv
� = Rotation (ŠŠ�c2c1, (1 Š � d(t))( Š�nv)
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4.3. Baseline skinning process

The direction of detail of point p�
b is de“ned by:

Š�nb
� = (1 Š t) 


Š�
n�

u + t 

Š�
n�

v

4.3 Baseline skinning process

We show an entire baseline for pointp before and after transformation in Figure 4.2. In the

initial position, we de“ne baseline b with key points, base-point pb and distanceh for point p as

well as t to indicate the relative position of pb on the baseline.t is computed by:

t =
length(S1, pb)
length(S1, S2)

Where length(S1, pb) and length(S1, S2) are not always distance between two points but are

sometimes a combination of the length of a segment and the length of an arc or two arcs. The

value of h equals to the distance between pointp and its base-point pb:

h = � ppb�

While deforming the model, the baselineb moves with the model so that we get the new position

of the baselineb� which the key points of b� are: M �, N �, U�, V �, X �, Y �, S�
1 and S�

2 (See in

Figure4.2b). Then we uset to determine the position of p�
b on the new baselineb� after the

transformation of the model. The position p�
b meets the condition:

length(S�
1, p�

b) = t 
 length(S�
1, S�

2)

Finally, the new position of point p after a movement is computed by:

p� = p�
b + h 
 Š�nb

�

Algorithm 3 Pose and anatomy change using baseline skinning

Input: Sphere-mesh model registered to the input point setP.
Target pose and anatomy.

Output: Point set P � corresponding to the target changes.
1: De“ne for each point p � P its base-point pb, baselineb on the registered sphere-mesh and

compute h and t
2: De“ne the baselineb� of point p on the target pose and anatomy
3: Determine p�

b and Š�nb
� by using t on baselineb� for target position

4: Lift point pb to the skin surface usingh and Š�nb
�
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Part, Chapter 4 …A second approach to sphere-mesh model skinning

4.4 Geometry

4.4.1 The intersection of two cones

Our process for de“ning the baseline curve considers each time a pair of bones. This model

can be regard as a combination of two intersected cones and a sphere which is tangent to two

cones. There are di�erent types of intersection for two cones. Figure 4.4 shows the type of

intersection in our case: two cones have two common tangent planes but di�erent vertices and

do not have a common generatrix. Their intersection curve degenerates into two conics.

Figure 4.4 … Intersection of two cones

A general principle for constructing points of the intersection of two surfaces uses the method

of cutting planes. To construct the intersection curves of our model, we choose a system of cutting

planes that intersect both cones along their generatrices, a pencil of planes containing the line

through both apices of the cones. Such a cutting plane can intersect a cone in two real and

di�erent generatrices, in one generatrix when a plane is a tangent plane. If a cutting plane

intersects both cones in one real generatrix, this plane is a common tangent plane, and the

intersection of these two generatrices is a double point of the intersection curve. As is shown in

Figure 4.4, point D is a double point of the intersection curves and pointA1, A2 are apices of

two cones. If the cutting plane passes the sphere surface, then the intersection curves consist of

two generatrices and an arc. Figure 4.5a shows a cutting plane and several intersection curves

on our model. Figure 4.5b shows a pencil of cutting planes for our model.
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4.4. Geometry

(a) A cutting plane and intersection curves (b) A pencil of cutting planes

Figure 4.5 … Cutting planes and intersection curves on our model

4.4.2 The cutting plane after transformation

In the model•s initial position, the cutting plane for one point p is constructed by its orthog-

onal projection �p on the surface and two cones• apices. However, we can not use the same way

to de“ne the cutting plane after transforming the model. The reason is that the new position

of point p is unknown since the model is changed. We need another point except two apices to

construct the new cutting plane.

We take the same notation as in Figure 4.3a. Figure 4.6a illustrates a baseline curve con-

taining segmentsUV, XY and an arc
�

V X . Figure 4.6b shows new positions of segmentUV and

segmentXY after a movement of model.UV and XY are not in the same cutting plane.

So our goal is to look for a cutting plane that is positioned •at bestŽ between the two plane

baselines passing throughV and X , respectively. Considering the bisector plane of planeA1A2V

and planeA1A2X does not solve the problem. In “gure 4.7, the yellow curve containing pointV

and point X 1 is the intersection curve of planeA1A2V ; and the blue curve containing point X

and point V1 is the intersection curve of planeA1A2X . We, therefore, come back to looking for a

plane that would pass close toVm and X m (see in Figure 4.7b).Vm is positioned halfway between

the two cutting plane (or between point V and point V1 on arc
�

V V1) on the “rst cone and X m on

the second cone). This time we take the bisector plane of planeA1A2Vm and plane A1A2X m as
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Part, Chapter 4 …A second approach to sphere-mesh model skinning

(a) A baseline curve at initial position
(b) New positions of segments after a transformation

Figure 4.6 … The positions of segments on a baseline before and after a movement.

(a) Intersection curves of two plane (b) A close-up at double point

Figure 4.7 … The positions of segments on a baseline before and after a movement.

the cutting plane. This plane can give a better baseline in the middle position passing through

V and X than the bisector plane of A1A2V and A1A2X .

4.5 Results

This section shows the performance of our baseline skinning method on synthetic data and

real statue point set. We developed our algorithm in C++, using OpenMP for computing point

to bone distances in parallel. All experiments are run on an Intel Core i7-4790K CPU @ 4.00GHz.

We “rst tested our algorithm on synthetic data. We generated a set of points lying on the

same baseline and used a chain of three bones model. The attachment of points to bones is

shown in di�erent colors: red, green and blue. In Figure4.8, we show original points, base-points

and their detail directions. The “rst row corresponds to a folding movement, and the second

corresponds to an unfolding movement. The “rst column shows the initial position of point sets

and models. The second column is our baseline skinning results by linear interpolation for both

� p and � d. The third column is resulted by cubic interpolation. Our baseline skinning method

74



4.5. Results

performs well in both situations. The skinning result can be adjusted by changing interpolation

schemes. Since we do not use the orthogonal normal of a surface as the detail direction, we can

avoid the intersection e�ect in the concave part between two bones.

Figure 4.8 … Baseline skinning on synthetic data for a folding movement (“rst row) and au
unfolding movement (second row). From left to right: initial position, linear interpolation for � p

and � d, cubic interpolation for � p and � d.

We selected a set of statues from various sources:

1. Dancer with Crotales, Louvre Museum

2. Dancing Faun, Pompei excavations

3. Aphrodite, Thorvaldsens Museum

4. Saint John the Baptist, Ny Carlsberg Glyptotek

While the •Dancer with crotales• is a raw point set. The other models are point sets sampled

on meshes extracted from the Sketchfab website. Compared with dual-quaternion skinning, our
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Part, Chapter 4 …A second approach to sphere-mesh model skinning

baseline skinning method improves the collapse or bulge e�ect at a joint and gives a more

realistic result for the point set. However, a boundary line can be observed at the joint of two

bones when unfolding bones, such as the right arm of the dancer at the third row in Figure 4.9.

Another limitation is that our skinning method can only deal with a chain of bones. For this

reason, we cannot deal with points that are in”uenced by two di�erent chains. For example, the

deformation of the dancer•s dress (third row in Figure4.9) can be in”uenced by the movement

of two legs.

4.6 Conclusion and perspectives

We introduced a novel baseline skinning method for the point set. Our method does not

require a weight computation for each point and gives good skinning results when changing a

point set•s pose and anatomy. As future work, we would like to add a smooth process to polish

the joint•s boundary line. Furthermore, we can associate di�erent chains for dealing with points

in”uenced by three or more bones.
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Figure 4.9 … Skinning results





Chapter 5

VIRTUAL RESTORATION RESULTS

Figure 5.1 … Restoration and pose change of the Prince Paris statue. Through articulated model
regression, we identify the anatomy and pose. We then adapt parts from other statues after a
change of morphology and use them to complete the input. Once the statue is complete, we can
also change its pose: here we bring it to the pose ofThe Thinker by Auguste Rodin.

Grossman et al. [GPT03] discuss varying approaches to the restoration of ancient sculptures.

In particular, they discuss restoration through the combination of ancient fragments, a technique

widely used in the 18th and 19th centuries.

Our goal is to replace missing parts of incomplete statues by deforming a point set of another

statue. Our virtual restoration process contains three stages:

„ Stage 1: Pose and anatomy estimation of statues. In this stage, we use FAKIR algorithm

to register a sphere-mesh model to the target statue (the statue to be completed) and

a sphere-mesh model to each of the statues used as candidates to complete the missing

parts of the target statue.

„ Stage 2: Pose and anatomy changes. We use a dedicated skinning method to change the

dimension and position of candidate statues by using the same dimension and pose as in

the target statue.

„ Stage 3: Combination. We complete missing parts of the target statue by combining the

corresponding parts of candidate statues.

In chapter 2, we introduced FAKIR algorithm which is used in the “rst stage. And we introduced

two skinning methods in chapter 3 and chapter 4 that is used in the second stage. The last step
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Part, Chapter 5 …Virtual Restoration results

of our virtual restoration process is to combine parts belonging to di�erent statues after bringing

them to a common pose and anatomy. As a nod, we also illustrate that the technique of changing

the pose of a statue can be used to generate new statues that could be used in the context of

an animated “lm accompanying the description of a work in a museum.

In the following, we note the registered model of the incomplete statue asM t = { Bk(lkt , r k
t ), � k

t } k=1 ,..,22

and the registered model of the complementary statue, that is chosen to combine with the in-

complete statue, asM c = { Bk(lkc , r k
c ), � k

c } k=1 ,..,22. The size of a limb of missing parts is corrected

by its existing symmetric limb after registration, if it exists. For example, we change the size of

left arm of Wounded Amazon (Figure 5.4, fourth row) by the intrinsic parameters of its right

arm. In case there is no clue for the size of a limb, such as for the missing arm, forearm and hand

of the Esquiline Venus (Figure 5.4, “rst row), we use default human proportions. We change the

overall elementary anatomy and pose of complementary model to match the incomplete statue

using our height“eld skinning process. The pose for the missing parts is the same as the one in

the complementary statue, unless some clue is given by some partial data. The position of one

point p is computed by:

p = Skinning (Scale(
lt
lc

,
r c

r t
,
r c

r t
)p)

where Scale is a scaling function to make the anatomy of the complementary statue correspond

to the incomplete statue andSkinning is our height“eld skinning function. Re-scaling the com-

plementary statue to adapt the incomplete statue is necessary for the reason that the morphology

of two statues can be quite dissimilar. We show in Figure 5.2 a comparison of restoration results

with and without morphology change. The leg we use to complete statue Spinario is too long

and too large (See right image in Figure 5.2). After scaling the length and the radii with the

parameters of the registered model, the restoration result is more satisfying.

At last, we integrate the selected parts into the incomplete statue. We assume that the se-

lected parts and the statue to complete slightly overlap, which is necessary to blend harmoniously

statue parts. In this overlap area, information must be merged.

Provided the details are not multi-layered above each sphere-mesh model in the overlap area,

the part merging consists in removing the lower layer, creating a sharp boundary between the

point sets, and then blending the points near the boundary. Recall that our sphere-mesh model

is used as a basis surface to express the residual height“eld informationh after the registration.

We propose to use it to combine the data points. Letp be a point and �p its projection on the

sphere-mesh model, we callQp be the subset of points of the two models that project on �p, up

to precision 3� . The “rst step is to keep only the upper layer in the overlap area. To do so,

we consider the subsetHp of the points in Qp whose height values are larger thanhmax Š � ,

where hmax is the maximum height value for points in Qp, and � is the average distance to the

nearest neighbor for the points in the overlap area. Then we replace the height value ofp by a
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Figure 5.2 … The importance of morphology change in restoration. Left: restoration with scaling
morphology of the leg part. Right: restoration using directly the original leg part.

Gaussian-weighted average of the height values inHp. The resulting height value of p is thus:

h(p) =
1
S

�

q� H p

e
Š � �pŠ �q� 2

2(3 � ) 2 h(q) (5.1)

with S a weight normalizing factor. This brings the points of the lower layer in the overlap

area to the upper layer, creating a sharp boundary. Finally, the sharp boundary is smoothed by

Gaussian-weighted averaging of the height“eld values across the boundary. The default value

of delta is set to 3� = 10� . A high value of delta smoothes the merging area but can cause

distortions.

Figure 5.3 … Overlap area. Left: blue points and red points come from di�erent statues. Right:
Merging result.
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In Figure 5.1, we show the process of completing a statue which lacks arms and legs. We can

also change the pose of a statue after completion. For instance, we bring the Prince Paris statue

to the pose of The Thinker statue. Indeed, sometimes the pose of a broken statue can not be

deduced by its remain parts. In this case, we can give several hypotheses of its pose through our

skinning algorithm.

Figure 5.4 shows the restoration of “ve other statues. The Esquiline Venus (“rst row) and

the Venus de Milo (third row) are both missing arms while The Old Fisherman is missing legs

(second row). The Wounded Amazon (fourth row) is missing an arm and the Spinario (“fth

row) is missing a leg. The restoration method recovers plausible arms and legs in all “ve cases,

leading to plausible restored statues. A limitation of our method is that sharp junction lines can

be observed sometimes in the multi-layered area (See the Wounded Amazon in Figure 5.4). This

due to the choice of� in equation 5.1. We make a compromise between a smooth fusion and

a preservation of styles of both parts. The arms we have chosen for the two Venus statues are

from masculine statues. Although the morphologies are quite di�erent, our restoration merges

the two parts in a satisfying manner. The legs we have chosen for The Old Fisherman have a

di�erent sculpture style, but again, our merging process blends in these two parts nicely. In our

results, the choice of the complementary statues may not correspond to the style of original

statues, the complementary statues would naturally be better chosen by an expert art restorer.
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Figure 5.4 … Registration and restoration of 5 incomplete statues, Esquiline Venus (“rst row),
Old Fisherman (second row), Venus de Milo (third row), Wounded Amazon (fourth row) and
Spinario (“fth). First column: initial point set, second column: overlay of the registered model
and the point set, third column: “nal restoration.
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Chapter 6

CONCLUSION

This thesis developed a uni“ed framework of virtual restoration of a statue that can keep

the scanners• precision. We introduced a FAKIR algorithm that allows the registration of an

anatomical model on a digital statue and identi“es the statute point set•s pose and anatomy.

The obtained results are of high quality, both on synthetic data and on real data. We also

presented two new skinning approaches to modify the position of a statue point set. Based on

these contributions, we came up with a method to combine di�erent statues after bringing them

back to a common pose and morphology.

We have already tested proposed approaches to di�erent datasets. It will be interesting to

show the results of real statues• scans from the museum. We can organise the scanning event

at Lugdunum museum in Lyon, one of our project members. The introduced virtual restoration

framework gives restorers the possibility of testing di�erent hypotheses before a real intervention.

In addition, we can develop a user-friendly interface so that users can choose candidate statues,

control the restoration parameters and compare di�erent restoration hypotheses.
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